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ABSTRACT

The interaction of electrdmagnetic waves of wavelength A with
periodié structures of spatial period A are studied. The emphasis of
the work is on Bragg interactions where \ = 2A/N and the Bragg order
N takes on the values 1,2,... . An extended coupled waves (ECW)
theory is developed for the case N 2 2 and the results of the theory are
found to compare favorably with the exact results of Floquet theory.
Numerous numerical results are displayed as Brillouin diagrams for
the first few Bragg orders. Moreover, explicit expressions for
coupling coefficients, bandgap shifts and bandgap widths are derived
for singly periodic media. Particular note is taken of phase speeding
effects.

The effects of multiharmonic periodicities on the control of
feedback strength are investigated. It is found that with proper
phasing the feedback strength becomes zero and the bandgap disappears.
Coupling parameters are calculated for typical multiharmonic perio-
dicities for the first three Bragg orders,

For odd Bragg orders, inverted bandgaps and phase slowing
occur when the gain or loss of the media is modulated., Also average
gain or loss affects the bandgap shape and the spatial or temporal
growth or decay. Absolute instabilities are observed and expressioné
are derived for the instability frequencies, thresholds and growth
rates, Under certain conditions, instabilities-occur for structures
with average loss, The results for the first and secqnd Bragg orders

are archetypical of all odd and even orders respectively.



Applications of the ECW theory to higher-order DFB filters
involve such phenomena as transient .propagation,‘ effects of periodicity
profiles and the relative coupling due to boundaries and periodicities.
The calculation of higher-order DFB laser parameters shows that the
mode spectrum is asymmetrically shifted and the threshold gain is
greatly dependent upon the periodicity profile, Approximate threshold
parameters are calculated for high and low gain and for all Bragg
orders., In addition, application of the ECW theory to holographic

gratings and beam propagation is made,.
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CHAPTERI
INTRODUCTION

This report investigates Bragg interactions in periodic media
by using the example of electromagnetic waves propagating in spatially
periodic dielectrics. The main purposes of this report are to develop
physically meaningful approximate methods for higher-order Bragg
interactions, to show the mathematical foundations of the coupled
waves theory and to give physically meaningful explanations for
several previously unexplained mathematical results. Exact and
approximate theories are compared numerically and applications are
made to both bounded and unbounded media, tolossless and lossy media
and to both passive and active media., Examples are given which
correspond both to wave-packets in space and time and to the steady-
state response of plane waves,

The history of wave propagation in periodic lmedia started with
Mathieu's equation1 in 1868 and subsequent generalizations by Floquet2
and Hill® in the 1880's. Although Mathieu's equation had its origin in
problems associated with elliptical boundaries, we will also show its
connection to wave propagation in periodic media, This latter problem
was first considered by Lord Rayleigh4 in 1887. He considered the
effect of periodic density variations upon the propagation of waves on
a string. In the early 1900's a different, more physical, approaéh
was taken by Sir William Bragg. He derived the necessary sp'atial
period for constructive reflection of X-rays by cryst:;mls. These ideas
were formalized for quantum mechanical applications by 'Bloch44 in
1928, F‘wo books in the 1940's, one by McLachlan5 and the other by

Brillouin,() summarized previous work with Mathieu functions and
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with waves in periodic media. The books also provide useful
bibliographies,

While most of the above work was concerned with exact
solutions of differential equations, a second, independent approach
was taken in the late 1940's and early 1950's. This approach
stressed the physical concept of wave coupling by periodic pertur-
bations., A 'mechanical device demonstrated this effect in 1949 by
coupling torsional energy between two bicycle wheels which were
periodically loaded with magnets.7 In 1953 ]?’ierce9 used energy
considerations to formulate what is now known as the coupled waves
approach or the coupled mode theory. This approach has been
popular because of its simplicity and intuitive appeal. Summaries
of the coupled waves approach are given in texts by Piercelo and

14, 18,26

others. Within the last twenty years the coupled waves

approach has been successfully used in such diverse areas as holo-

gram diffraction,15’ 22, 68,69,81, 82,83, 84,85 waveguide coupling,

12,14, 16,19, 20 17, 74

traveling-wave tubes,
13,14,18,56

parametric

X-ray diffraction, 21 distributed feedback (DFB)
10,14,22,26,27,28,29,

devices,

14,23,24,25, 30,35, 36, 58, 70

lasers, and others,

31 Extensive bibliographies on recent applications in optics and elec-

12, 14,20, 87 We note that

tromagnetics are given in the references.
the telegrapher's equations which were developed before the coupled
waves theory are of the coupled waves form. These equations are

not approximations, however, since they exactly describe one-

dimensional transmission line problems.
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The Floquet theory, which originated in the study of ordinary
differential equations with periodic coefficients, has also been useful
in the study of electromagnetic waves in periodic media. Although
this theory is more cumbersome than the coupled waves approach,
it provides an exact numerical solution, Extensions of the theory
to include partial differential equations and finite length media have

44, 45

also been made. Applications of Floquet theory to electro-_

magnetic waves have been made in the areas of traveling-wave

11, 43, 56 integrated optics,

11,22, 40,57, 61,

48 . -4 .
antennas, space-time periodic media,

32,58, 63, 64 corrugated structures,8’ 60 and others.

62,75

Other exact methods that are used in plane-stratified material,

88,89

H

such as the matrix method78 or the method of invariant imbedding
will not be used here.

The second chapter of this report contains the derivation of
the first Bragg order coupled waves equations and the Floquet solution
for electromagnetic waves in iongitudinally periodic media. A simple
explanation for phase speeding is given and the connection between
the Floquet and coupled waves theory is explained. The dispersion
relation is found as well as all pertinent coupling parameters.

Several Brillouin diagrams illustrate physical principles and com-
pare the approximate and exact theories.

The primary purpose of the third chapter is to extend the
coupled waves concept to higher Bragg orders, The resultir;g ex-
tended coupled waves (ECW) equations provide e#plicit dispersion

and coupling information for every Bragg interaction. Numerical
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examples again illustrate the results of both approximate and exact
theories. A section is devoted to effects caused by perturbations
of several frequencies and the resulting disappearance of bandgaps.

Periodic media with loss or gain is covered in chapter four,
Inverting and non-inverting bandgaps are found which depend upon
Bragg order and coupling type. Index and gain/loss coupling are
both considered. The effect of the periodicity upon average gain or
loss near Bfagg resonance is noted,

The fifth chapter discusses the ’stability of active periodic
media and gives explicit values for instability frequencies and
thresholds at all Bragg orders. The stability criterion also speci-
fies the correct root of the dispersion relation.

Several applications of the ECW theory are given in successive
sections of chapter six, The reflection and transmission of transients
are discussed and demonstrated with detailed numerical examples.
The extension of previous work to higher order DFB lasers is
briefly covered. Diffraction efficienciescan be found when the ECW
theory is applied to holographic gratings. Finally, the case of
beam propagation in longitudinally and transversely periodic media
is outlined.

Conclusions of this report are given in chapter seven,
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CHAPTER II

COUPLED WAVES AND FLOQUET THEORY

A. Bragg Reflections

In order to gain physical insight into the problem of waves
in periodic media, we consider a plane wave incident upon a periodic
structure as shown in Figure 2,1, It is apparent that the reflecting
waves will coﬁstructively interfere if the reflections from successive
layers differ by an integral number of wave lengths, N\A (N=1,2,3,...).

This result is usually stated as Bragg's Law,

NX = 2 A sind (N=1,2,...) (2A. 1)
where X = 2w/k = wavelength of plane wave
A = 2w/K = spatial period of structure

N = Bragg order
and where the velocity is assumed to be that of free space. The cases
N> 2 are referred to as higher-order Bragg interactions. For media

with relative dielectric constant €, we restate the result as
1
ke?/K = N/2 (N=1,2,... ) (2A.2)

for normally incident waves., Note that Bragg's Law does not account
for the reflected wave amplitude, for the type of periodicity preseht
or for the effect of slight variations of the wavenumber k from V1’:he
value given by Bragg's Law.

The latter effect is called phase mismatch and can be‘ con-

sidered in a semi-quantitative way by the use of Fig, 2.2. This figure

shows an incident wave I which is reflected from a three:layer



Fig. 2.1 Bragg scattering of plane wave from periodic
media,
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Fig. 2.2 The effect of phase mismatch upon the reflected
wave, Zero phase mismatch a) indicates
1

k €'E/K = N/Z.
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periodic medium to form a total reflected wave R. The wave R is a
phasor sum of four sub-reflections each of which has phases relative
to the first sub-reflection at the incident phase. Multiple reflections
are ignored in this simple model. Parts a)-d) of Fig. 2.2 show the
relation of the strength of the reflected wave R to the phase mismatch.
Fig. 2.2a shows the constructive interference at the exact Bragg
condition (i.e. zero phase mismatch) that produces large R. It is
apparent that there is a considerable reflected wave R for slight
phase mismatch (Fig. 2.2b) whereas large phase mismatch will pro-
duce small R (Fig. 2.2d).

Therefore, from simple wave interference arguments, one
can deduce Bragg's Law and the qualitative effects of phase mismatch,
Other theories are needed, however, to account for wave amplitudes

and the effect of the form of the periodicity.

B. Coupled Waves Approach

1. TEM Waves in Passive Unbounded Media

Consider the case of a plane transverse electromagnetic (TEM)
wave that propagates in a longitudinally periodic unbounded medium
as shown in Fig. 2.3. Assume a time variation of the form e-lwt.

Starting with Maxwell's equa.tions67 in a source-free, linear, iso-

tropic region, we find in the frequency domain that

VXE (z, w) = iw By H(z, w) (2.B1)
VvxH (z, w) = -iweoe(z) E(z,w) ’ (2. B2)
VeE (z,w) = 0 : (2. B3)

VeH(z, @) = 0 (2. B4)



lz) = e[l + nﬁ fn cos(n Kz)]

Fig. 2.3 TEM wave propagating in unbounded periodic media.
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where w o= radian frequency
By = free-space permeability

€, = free-space permittivity

1]

€(z) relative permittivity or relative dielectric
constant
and where E and H are the electric and magnetic field vectors.

By combining (2, B1), (2. B2) and (2. B3) we find the wave equation

for no transverse variation

2 .
‘l—%—(z) + %% e(z) B(z) = 0 (2. B5)
dz
where E(z, w) = E(z)e-lwt = transverse component of E(z, w)
k =w/c = 2u/\ = free-space wave number
0
€(z) = el:l + an;O fp cos(pKz)] s fO =0, fl =1

n < 1 is the perturbation.
The periodic dielectric constant has been expanded in a Fourier cosine
series. Assume that the electric field can be represented by just

10,12,15,19 _ (0. ward wave F(z) and a backward wave

two waves,
B(z) which travel with positive and negative phase ve].ocity‘along Zia
This assumption is intuitively appealing for n << 1 since these are

the only two possible waves in the unperturbed case. Thus, we con-

sider the transverse electric field

Elz) = Bz)eP? + Bz o~ P2 (2. B6)

-

where B is the longitudinal wavenumber. For first-order Bragg

interactions, B/K =1/2. Then let
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B - po-+A;3=,K/24-Aﬁ (2. B7)

iABz

?

-iABz

F(z) = F(z)e B(z) = B(z)e (2. B8)

Use equations (2. B5) - (2. B8) and the slowly varying approximation

I LA / Fit
and l \ B )

< 12Bo\m)

F[l’
B

2 ( F
s | o B)‘ , Where
primes denote differentiation with respect to z, to find
1{307,

2 2 ke
[-B_ F +2ip  F' +k% F+_Z-ﬂB]e

2 .
+[-p2 B-2ip B! + ke B+ 20 plemtPo?

2 i3p 2 -i3B =
+[____13k < F]e © 4 [————-—k L2t B]e °
2 2
2 0 i2pB_z -i2PP =z iz -ip =z :
= - ———nkze £ [e © te @ ] Fe © +Be © ] (2.B9)
p=2 p
where the arguments in z have been dropped. The coupled waves
+if =z
equations are found by equating the coefficients of e to
15,19 iipﬁoz
zero, °’ The terms proportional to e (p=2,3,...) are

either ignored, termed non-synchronous or averaged over time and
considered zero.14 It will be shown later that these terms corre-
spond to relatively unimportant coupling to other waves when 3 /K>=1/2.

The resulting coupled waves equations are,

Fi(z) - 16 F(z) =1y B(z) (2.B10)
-B'(z) - i 6 B(z) =iy F(z) (2.B11)
kze-pj
where o= ZE = phase mismatch (2.B12)
o )
n k2¢ . . .
k=g = coupling coefficient (2.B13)

o
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These equations agree in form with those derived elsewhere,lo’ 14,15,

18,20, 23,30 The equations account for both the wave amplitudes
and the phase mismatch as well as the interaction of the waves With
the fundamental Fourier component of the dielectric periodicity.
When 6§ = 0, the waves F(z) and B(z) are coupled only through the
perturbation 1 while the change in amplitude of one wave is propor-

tional to the amplitude of the other wave. For zero perturbation,

the wavenumber of F(z) and B(z) becomes equal to the phase mismatch.,

2. ,Coupled Waves Dispersion Relation

By differentiating the coupled waves equations, a wave equation

2
F
[ ][5 -
; ‘ : : . +iABz ; ;
is constructed. Assuming a solution of the form e , the dispersion

relation is found to be

G ' (2. B15)

The approximations for 6 and ¥ are
1 1
6 = k ez-ﬁo = Ak g2 (2. B16)
X = Xlege = NK/B (2. B17)
o

Y
when AB <<K and where k_€?/K=73 and B_ = K/2.

This produces the dispersion relation

.2 |
3 2

A Ak €2

£ . \/< = ) - (3 | (2. B18)

The following properties are evident for real € and 1.
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1. Waves propagate without decay for lAkeé/Kbln/Sl

which correspond to passband regions.

2. Stopbands or bandgaps occur for imaginary AB/K or for

|Ak€%/Kl<|n/8|. Here waves decay.

3. The coupling of waves is maximum at the bandgap

center (Ak e%/K = 0) where AB/K =1in/8.

The dispersion relation (2. B18) is plotted as a Brillouin
diagram in Fig, 2.4 which clearly shows the regions of interest,
namely the stopbands (ellipse) and passbands (part of hyperbola).

Note that the coupled waves analysis gives much more in-
formation than Bragg's Law. However, the coupled waves approach
is only valid around the first Bragg interaction and does not describe

41, 42 Further-

important wave interactions at higher Bragg orders.
more, we have assumed a solution that is based on only two waves,

F(z) and B(z). This is strictly valid only as n = 0 when 'F(z) and

B(z) are the two eigenmodes of the media,

C. Floquet Solution

1. TEM Waves in Passive Unbounded Media

An exact solution to the wave equation (2. B5) may be coh-
structed through the application of Floquet's theorem. A form of
this theorem is stated as follows: a linear differential equation with
coefficients periodic in zwithaperiod A has a solution E(z) with the prop-

erty E@+A)= eiﬁA‘E(z) where Bis the fundamental wave number and A is
the fundamental period; define ¢(z) such that E = elﬁzﬂ #(z); then

#(z) is periodic in z since ¢(z+tA) = d(z). A proof of the theorem
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Fig. 2.4 Brillouin diagram near first Bragg interaction,
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lines are for unperturbed media where 1 = 0,
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s . 47
is given in several references,z’ 5, 46,

We now expand the function ¢(z), mentioned above, in a

3,43-47

Fourier series, The resultant expansion for E(z) is

E(z) = % 2 GlBtnK)z

n=-o

(2. Cl1)

which is the constructed solution for the wave equation., This solution
is made up of an infinite number of space harmonics, a of order n,
which propagate with longitudinal wave numbers (f+nK) (see Fig. 2.6).

Substitute the solution (2. Cl) into the wave equation (2. B5) to find

2 o - -
{[€k2 - (f3+nK)2] a +EEMN 5 ¢ 4 }e“ﬁﬂlh)z =0
n 2 p=-c0 P 1-P o

(1’1'—‘0, :l:l, iz,noa)

where we have defined fp = f-p' Algebraic manipulations transform

this result to

00
D a + 2 a f = 0 (2. C3)
n“n’ pil, B-p P

where Dn = %[1 - (:1-&2-;1&2] (2. C4)

In matrix form this can be rewritten as

D2 = o0 (2. C5)

where

(2. C6)

fo
|
W

o



-2 1 2 3 Ig
£ D £ £, 1
£ £y Dy £ £ 7

Dl = . | (2. C7)
fs ty £, Dy &
£, £, £, £, D,

The non-triviality condition for the matrix equation requires

det|D|| = 0 (2. C8)

which is the Floquet dispersion relation connecting f and k., For
singly periodic media (i. e. fp = 0 for p 2 2) an expression for the

space harmonic ratios and for the dispersion relation can be found

in terms of a rapidly convergent continued f.‘raction.43

2: Hill's Determinant

mil1%s 3, 47

suggested an alternative form for the dispersion
relation which is equivalent to (2. C8)., The derivation for the case
under consideration has been given in a previous 1"eport42 with the

following result,

pofe=

sin?(rB/K) = A(0) sin®(r k ¢2/K) " (2. C9)



~17-

where the elements of the Hill's determinant A(0) = det |4 || are given

by ' 1 P=n
A = |
pn _ kze n f|n-pl (2.C10)
27 2 Bpeo
p K -k e 2
Figure 2.5 shows the qualitative behavior of si112(-rr B/K) and the

resulting bandgaps where B is complex.

Several auth01'33-5 sugges! an approximation for the infinite

order determinant,
. mcot(mke? /K
A(0) =1 + T S g Ty
16 k €2 /K [17- 4k™ e /K"] [2°-4k"e/K"]

\ [2k% nf, /K [2xPent, /K]

+ (2. C11)

[2k%e n £,/K7)°
TLNPTCINCERE }
which is valid for nfp L1 (p=1,2,3,000)e

Note the following points about the dispersion relation (2.C8)

and its approximation (2, Cl11).

1. This dispersion relation takes into account all Fourier
components fP of the perturbation and is valid for all
k and B.

2., Away from the Bragg interaction regions ke%/K =N/2
(N=1,2,...), A(0)>1 asmn — 0. Hencek G% =+ B. Thus,
the periodic medium has little effect upon wave propaga-
tion in the passbands as n = 0. This was expected from

Bragg's Law and the coupled waves approach.
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sin® (m8/K) &

O /2 — 3w/ 2

Fig. 2.5 A sketch of the behavior of the dispersion
relation which shows the bandgap location for Bragg
orders N = 1, 2,3 whenever sin2 (wp/K) > 1 or

sin2 (mp/K) < 0. It is assumed that fl’ fz and f3
are significant in the perturbation.
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3., When sin® (mB/K) > 1 or si.nZ(TrB/K) <0, B is complex,
From (2. C9) and Figure 2.5, this occurs for k e%/K =N/2
(N=1,2,3,...). Hence, the dispersion relation agrees
qualitatively with the position of the bandgaps predicted
by both Bragg's Law and the coupled waves approach.
Note that the Floquet solution provides all of the information
of the coupled waves equations with the additional advantage of being
an exact solution that is valid for all § and k., However, the Floquet
solution lacks the intuitive appeal and simplicity of the coupled
waves approach., In particular, cne has to use an approximation to

find the approximate bandgap placement. In addition, a truncation

of an infinite determinant must be performed,

D. Relation of Coupled Waves Solution and Floquet Solution
25,51, 52

The recent interest in the relation of the coupled
waves solution and the Floquet solution is important for two reésons.
First, it gives a more rigorous mathematical foundation for the
coupled waves theory. Second, it can be used to expand the coupled
waves approach to higher-order Bragg interactions, o5 This will be

shown in Chapter III.

Consider equation (2. C3) for the case of cosinusoidal per~

turbations.
+ = .
Da +ta ,ta 0 (2.D1)
2 - o
B = é[l_(3+nK) :l (n=0%1,%2,...) (2.D2)
L n kze , 3
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For n<<1
1
ke€?/K =+ (B/K+n) (n =0, £1,%£2,...) (2.D3)

The resulting Brillouin diagram is shown in Fig. 2.6 to consist of an
infinite number of space harmonics aLni which propagate as ed:i(ﬁ+nK)z.
From Bragg's Law, it is known that important interactions
between F(z) and B(z) occur at k 6%/1{ =~ B/K = * } where the £ sign
comes from considering waves of both positive and negative phase

velocities. Therefore, consider only the aml_, a:, a; and a:i space

harmonics in the Floquet solution for the electric field

+ ip=z ta e—1ﬁz +a + el(|3+K)Z

E(z) = a ., oKz ta e Fa g Fa g

(2. D4)
Let

B-p, +0B= (XK/2+Ap) (2.D5)

where the + sign holds for space harmonics that intersect each other

at p/K = * 1.

Blz) = (a e 10BB . ¥ 108P7 1Bo7
_ o g
2 F(a)
! (a e"'iAﬁ'Z + a+z:-" e+iABZ))e—iﬁoz
L Y, -
o (2.D6)
& B(z)

Blz) = TF(z)erPo? 4 Blaje Po? 2.D7)



x
2l

a; at az c}f‘ a; * a s
2% 919 G a ?: a>
A

—=—"B/K

n=-2

n=2 n=i n=0 n=-i
‘a) Brillouin diagram for an unperturbed, homogeneous, infinite medium,

Fig, 2.6

b) Brillouin diagram for an infinite medium after introduction of a period perturbation,
Part 'b) is derived from successive translation of a) along the B/K axis.
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This is exactly equivalent to the assumed form of the electric field
in the coupled waves approach, The waves F(z) and B(z) are each

the sum of two space harmonics which are in agreement with pre-

viously derived results, 51 However, the terms e—'tln‘goZ (=34 5;s.5)

that were discarded in the coupled waves approach now have a clear

meaning, These terms correspond to coupling to higher order

space harmonics. 52 Explicitly, the terms e:tl?’FSOZ correspond to

+§ and a_é which (along with a+; and a_i_) couple
1

to the adjacent Bragg intersections at k €2 /K =~+3, B/K =+ 3/2,

space harmonics a

This truncated Floquet theory can also reproduce the coupled
waves dispersion relation. Consider the first Bragg intersection
at B/K =%, Here only the a: and a_; space harmonics are important.
If we truncate the relation D-a = 0 to include only these two space

harmonics, we find the dispersion relation,

D_, 1
det h ) = 0 (2.D8)
1 D '
g Ake?
(B +AB - K) N
where D, = 2 1- 35 2ﬁi——£+%p—
n ke " koea o
2 L
0 2 n 3 B
ke koe o

By evaluating the determinant we reproduce the results of the coupled

waves theory, namely,



A S

= \2 2
2 ﬁ
\/(AKM ) - (8) (2.D9)

Similar results are found at /K = -3 if we use the ao~ and a ; space

+
harmonics.

We note the following.

1. The coupled waves expressions for F(z) and B(z)

~are each the sum of two space harmonics.

2. The coupled waves approach can be viewed as a trunca-
tion of the Floquet solution, This shows that previously
discarded terms correspond to coupling to higher-order
space harmonics.

3. The coupled waves approach shows that wave coupling
in periodic media can be viewed as coupling between

the intersecting pairs of waves that make up F(z)

and B(z).

E. Numerical Results

The dispersion relations are numerically compared by using
the Hill's determinant and the coupled waves approach.

1. Limitations of Hill's Determinant

The Hill's determinant dispersion relation
.2 .2 L
sin (mp/K) = A(0) sin” (wke?/K) (2. E1L)

is limited by the number of significant places used by the computer,
In the case of the Univac 1108 this is 9 places for complex calcula-

tions, The smallest number that can be used which is 1a’frger than
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unity is 1 + 10“8. Thus, if

sin® (rB/K) =1+ 10”5 (2. E2)

at the first bragg order, then

sin(wﬁr/K) cosh(wﬁi/K) + i cos(vﬁr/K) sinh(nﬁi/K)

~1+107%8 (2. E3)

where B = Br . 5 ﬁi "
For ﬁﬁi/K <<'1 and 'rrﬁr/K = /2, the above relation is approx-

imated by

1+ (nﬁi)z/(ZKZ) ~1+10°8 (2. B4)

through trigonometric expansions. The maximum value of ﬁi/K is

N/8 from equation (2.D9)., Thus, the Floquet numerical calculations

should be limited to n > 10"4 at the first Bragg order. In this report,

A

n = 10_2 to account for this and any other computer errors, Similar

arguments limit the numerical calculations at higher Bragg orders.

2. Brillouin Diagrams for Il.ossless Passive Media

Each Brillouin diagram is a plot of normalized frequency
[k e%/K = we%/(cK)] versus normalized wavenumber [B/K] .
In many of the cases the diagrams are expanded around the Bragg
interaction region where Ak and AR replace k and B.

Figure 2.7 illustrates the main features of Floquet thegry for a co-
sinusoidal perturbation (i. e. fp =0forp# 1) withn=1. The largest effect

i
of the periodicity is in the vicinity of the Bragg wavenumbers ke?/K= N/2
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Fig, 2,7 Brillouin diagram. for first three Bragg orders when
N = 1. 0 using Floquet theory, Dotted lines show imaginary parts of
B/K on separate scales, Dashed line represents the unperturbed

case. A cosinusoidal perturbation is assumed.,
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where the dispersion relation deviates from the unperturbed case
(dashed line) and B becomes complex. Note that the bandgap is
shifted towards the larger wavenumber and that this shift increases
with Bragg order., This causes phase speeding43 which is an in-
crease in phase velocity (= w/p) due to an effective decrease in the
dielectric constant. Physically, as the wave travels through the
periodic medium, it speeds up and slows down with respect to the
unperturbed velocity c/e%. However, if we consider an.average

velocity (v) we find for singly periodic media

A >
e dz (2, E5)
"0 Je(l4ncos Kz)

(v) =

=]

where A = 27/K = spatial period. For m < 1, expand the square

root to find

A

(v) = ——C_r— f (I—I%cous+;83—T]2 cossz +oeo)dz (2. E6)
Ae? 0

fed = —C—% [14(37/16) 0% + O(n™)] (2. E7)
[

Hence, the phase speeding is accounted for by effects Omz) for n< 1.
Figure 2.8 is an expansion of the first-order Bragg interaction
region of Figure 2,7. The coupled waves dispersion relation (2, B19)
is superimposed., Even for 1 = 1, the coupled waves theory closely
predicts the correct coupling coefficient as indicated by the maxi -
mum value of B in the bandgap. However, the coupled waves theory
does not predict the bandgap shift or phase speeding fér fir st—o_rder

Bragg interactions.



P T

~03 -02 -ol 0 X 02 03 A

Fig. 2,8

Brillouin diagram of first Bragg interaction with 1 = 1,

This compares Floquet theory (upper curve) with

coupled waves theory (lower curve). Dotted and

heavily dashed lines are imaginary parts of A8 /K.
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The coupled waves result (lower curve of Figure 2,8) can be used
for perturbations other than n = 1 by multiplying each scale by 1.

Figure 2.9 shows similar results for n =1.0, 0.1, 0.01
from the Floquet theory. As 71 decreases, the coupled waves theory
becomes a better approximation to the Floquet theory. The curve
for n = 0,01 is also the coupled waves curve for all three cases
since the Floquet theory and the coupled waves theory are graphic-
ally indistihguishable.

Results of Figures 2.8-2,9 are summarized in Table 2, 1.

Coupled Waves Floquet

——

n=1 n=0.1 N=0,01 || n=1 =0, 1 N=0.01
===

Coupling X/K |/ 0.1250f0.01250}0,001250({0.1267|0.01250{0.001249

Bandgap Shift
BGS 0.0 0.0 0.0 0.04 0.0005 |<0.0001

Bandgap Width

W 0.250 |0.0250 }0.00250 {j0.26 0.0255 | 0.00255

Table 2.1 Summary of coupled waves and Floquet theory at the first
Bragg order.

The relative contributions of the different space harmonics
are shown in Figure 2.10, The upper and lower curves are the
result of matrix truncation at 3x3 and 5x5 elements respectively.
Each truncated matrix is centered around the matrix element Aoo
in equation (2.C10). The differences are not large and the 5x5 matrix
produces dispersion characteristics that are < 1% different than those

of the 19x19 matrices used in Figures 2, 7-2.9,
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Fig., 2.9 Brillouin diagram at first Bragg order for n = 1.0 (top
curve), N = 0,1 (middle curve), and 1 = 0,01 (bottom curve) using
Floquet theory., Bottom curve also represents coupled waves
solutions for all three cases., Note difference in scale for each
case, Imaginary AB/K values are the elliptical curves with

separate scale,



akye
K
-0.1
), 2 e ‘BOIK = 0.5 \\
: \
L/ D 3 x 3 Matrix \
i . \
0.3}/ @ 5 x 5 Matrix N
l | | | | | LN
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

——e

AB
K

Fige 2,10 The effect of limiting space harmonics in the Brillouin

diagram using Floquet theory at the first Bragg interaction,
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F. Modifications and Comments

1. Arbitrary Periodicities

The coupled waves equations were derived for
00
€(z) = e(l4n ZO fp cos(pKz)) where only the f1 term played a role
p:
inthe first Bragg order calculations. For generality, consider the

expansion of a completely arbitrary (although smooth) €(z) as

e(z) = e[l +np§§0[fp cos(pKz)+ g, Sin(pliz)]] (2. F1)
where fO =0 = g

nf, =My

ng; = M,

The analysis is similar to the previcus calculations which
lead to the coupled waves equations (2, B10-13), Following the

identical procedure we find

F'(z) -1 6F(z) = i¥% B(z) (2. F°2)
B(z) -1 6B(z) = i%x F(z) (2. F3)
kze -g 2
vhere § = ol
w 2B, (2. F4)
o M =My P
4 B (2. F5)
The dispersion relation (2.D9) is modified by the substitutions
2 2.1 .
N~ My +1;) (2. F6)

x° =% x (2. F7)



-32-

All previous Brillouin diagrams can be used with the above substi-
tutions for the periodicity given by (2. F1). The fact that ¥ = (X+)*,
where the asterisk denotes complex conjugate, is a general result

which holds for lossless systems.

2, Corrugated Surfaces

The previous results are strictly valid only for volume per -
turbations, Similar results have been extended to surface perturba-

&ty 24 The extension involves the as sumption

tions or corrugations.
that the surface perturbation can be replaced by an equivalent volume
perturbation. However, this assumption, known as the Rayleigh
assumption, is valid only for Kd < 0,448 (where d = corrugation
depth and K = periodicity wavenumber) as shown by Millar. 33
Physically this occurs because deep surface corrugations have
proportionately less effect on the surface waves than do shallow
corrugations. An exact Floquet analysis which solves the boundary-

value problem has been given. 65, 6

3. Comments

This chapter has set the groundwork for the next calculations.
In addition the differences and similarities of the Floquet and coupled
waves theory were discussed. In I;articular the coupled waves theory
was seen to be an approximation of the exact theory, where certain
space harmonics were retained and combined while others were
discarded., A similar process will lead to descriptioﬁs at higher-

order Bragg resonances in the succeeding chapters.
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CHAPTER III

HIGHER -ORDER BRAGG INTERACTIONS

This chapter is a.'.n extension of the previous chapter to higher-
order Bragg interactions (i,e., N 2 2 in Bragg's Law). Present man-
made dielectric periodicities other than superlattices are limited to
the order of A~ 1000 . Therefore, some applications in integrated
optics require operation at higher ~order Bragg interactions. Already
higher order DF B lasers have been experimentally demonstrate %0’70‘71
Other optical applications include couplers arnd filters.

In section A, the coupled waves theory is extended to all Bragg
orders for singly periodic media. Explicit expressions are given
for all important parameters relating to the bandgap and coupling.
Numerical examples are given in section B for the first three Bragg
orders, Multiharmonic periodicities and a fourth-order numerical
example are given in section C. An example of disappearing band-
gaps is also shown. In some of the illustrative numerical examples,
we will use large values of the perturbation that may not be physically
realizable. However, the objective. is to dramatize the effects of the
perturbation on the Brillouin diagram. In addition, thq extended

coupled waves (ECW) examples are easily scaled for other values of m,

A, Extended Coupled Waves (ECW) Theory

1. TEM Waves in Passive Unbounded ivedia

By extending the assumptions made in Chapter II, we state

the following assumptions for Nth order Bragg interactions:



et
1. The most significant space harmonics are Fl(z) = a: eiﬁz

. - ~i(P-NK)z _ .= -~ipz + i(f+NK)z
fa_N e and Bl(z) =a_ e +a_N e .
2. To provide cross-coupling between Fl(z) and Bl(z) we

account also for the following pairs of space harmonics

@ _Nt1° a+-11_), @ _np2? a+z+ s eees (a-l-’ aN_-; ) which are
slowly varying near k €%/K = N/2. In this way we account
for the intersecting space harmonics between Fl(z) and
Bl(z) in the simplest possible manner,

3. Self-coupling which occurs between Fl(z), Bl(z) and their
adjacent space harmonics must also be included.

4. Assume 1M << 1 although the theory may hold for n —~ 1 as
in the first order case.

5. All other space harmonics are ignored,

The derivation is started by including the above mentioned

space harmonics of the Floquet theory in the expression for the electric

field
0 o N4L o
Bzl 2 ¥ m_ e MotmEE 5 ¥ iBieK)e (3. Al)
n=-(N+1) * n=0

Near the Nth order Bragg interaction let

BB, +AB= (£ NK/2 + AR) (3. A2)

where the * sign is used for space harmonics that intersect each other

when B/K 2 0. The electric field becomes
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N_ /2 . :
E(z) :nzz}.\l LaI';-N e-lABZ ¥ a:n elAsz]eXp[i(l-Zn/N)ﬁozj

S
N /2 ) s . )
a2t e:‘Aﬁz. pa " e-lA[SAJexp - [1(1-211/1\1)}301,]

T . N-n -

f==l (3. A3)

1 - -iABz + iAﬁz.]
+(5)[
0 a.mN/2 e + a N/2 e |
where

N -2

5 for N even

E -

N Nzl tor N sdd
-1 forN=1
{1 for N even

0 for N odd

This can be rewritten as
N¥/2
E(z) = nil Fl-Zn/N(Z) expli(l —211/N)[30z]
(3. A4)

1
+ Bl-Zn/N(Z) exp[“i(l-Zn/N) ﬁOZ] } + (0) 5(z)

where

- -1ARz + ilBz
Fl-Zn/N(Z) =a N° + a e

< AR, Ty
a+ e1Apz +a o 0Bz

B .on/n'?) N-n ey

- ~iARz + =  8BE e o
a_N/Z e + a.I\Ilz e = F()(Z) = B()(Z)

S(z)

Substitute the assumed form of the solution (3. A4) into the wave

equation (2, B5) and use the slowly varying approximation as before,
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We drop the arguments in z for simplicity.

{ (1-2n/N)° rﬁ +2i(1-2n/N)B_F) _ }ei(l"ZH/N)BOZ

1-2/n/N 2n/N

2

+{ - (1-2n/N)%p 1-2n/N)Byz

B _on/n - 2(1-20/N)B B /N}

2 i(1-2n/N) B,z -i(1-2n/N) Bz
¥k Q{Fl-Zn/Ne Ot By an/n © © +S}
2
L k7en i(1-2n/N)p =z -i(l1=2n/N)B,z
Y2 {Fl-Zn/N © ° * By on/n ° ° }

y {% ¢ l'einsoz/NJre-iZPﬁoz/N]} o
=1 Bl
(3. A5)
(1'1 = "1: Oo 1: 230"')
which is analggous to (2. B9). Next, for simplicity we limit the
Fourier coefficients of the periodicity such that fp =0forp#1
#(1-2n/N)Bgyz

(i.e. singly periodic media), Equate the coefficients of e

to zero for each n to get the following N+3 coupled equations.

‘ _i2 )
E(ze-(1+2 /N)ZBOZ ]FHZm—}-Zi(lJrZ/N)[SOFHZ/N: k_ie—TL F,
2 2 ’ kze
(ke -p,)F;, + 2iP,F) = 7B ontHeen
2 2
(1% - (1217 B2 |5, o #2i(1-2N0BFy o - Wenp e
) 2
(Difes = -2 m, 08,00 ) (3.8)
—k"‘
[kze (1-2/N) BZ]BI o2l -2)B B e 29 (By+ By 4
2
. 3 -k :
ace - ‘302)31 TP, By B "2‘3"( 1-2/N P12

. 12
[P e- (128 ]By o pr 22 (L42INBBy o = =7 By g
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(=3

We define interaction as meaning the region in the (ke?, B) plane near
the intersection of two space harmonics., We again note that higher ~
order interactions refer to interactions with frequency greater than
that of the fundamental Bragg frequency defined by kG%/K = 3, Thus
each wave, F(z)1 20 /N and B(z)1 20 /N defines an interaction, The
coupling diagram, Figure 3,1, and the above set of coupled equations
show that Fl(z) and Bl(z) are coupled through N intervening inter -
actions, Since each coupling is proportional to 1, the cross-coupling
between Fl(z) and Bl(z) should be proportional to ‘nN. The adjacent
interactions to Fl(z) and Bl(z) contribute terms of order ‘nz to the
phase mismatch and hence both the ]1"(z)1:[:2 /N and B(Z)I:I:Z /N terms
need to be retained to obtain correct self-coupling, The F(Z)H-Z /N
and B(Z)1+2 /N terms will not contribute to the cross-coupling except

N+2¢ This small contribution is ignored.

to order 1
To show the above statements mathematically, apply the

slowly varying assumption and solve the inner N=-1 and the ocuter

two equations of (3. A6) to get all waves F(Z)I-Zn/N’ S(z), B(z)l-Zn/N

n=-1,41,2,3,...) in terms of Fl(z) and Bl(z). The outer two equa-~

tions can be solved tr1v;a11y for F(Z)I-I-Z/N and B(Z)1+Z /N°
We begin by using matrix manipulations on the inner N-1

| equations of (3. Ab6)

F det [|A]}/det ||C]|

1]

1-2/N
(3. A7)

Lz = det lcll7det |||
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Fige 3.1 Coupling diagram at NlCh order Bragg interaction, Dominant
cross=-coupling between Fl and B1 is shown as well as self-coupling
for ECW theory,
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where
C, C
C & C 0
lcll = I T : (3. A8)
0 C C, C
C C,
Ay C
C C, C 0
lall= (3. A9)
0 C c, C
&, C C,
G, C
C, C 0
gl = °, . ‘. (3.A10)
0 C c, C
G, C C,
.2 2 .2 . .2 2
Cn-k € ~ (1-2n/N) ﬁo GZ..A1 = -k enFl
C =nke/2 G, = A, = -kenB}

Instead of solving (3. A7) exactly, we approximate the determinants for

n << 1 when N 2 2, Since C << Cn’ we find

% 2
aet |l =T} )

]T [k%¢ - (1-2n/N) 502] (3.Al1)
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(N=1)/2
r T #@) for Nodd
n=1
< N/2
where Tl_* fz(n) = TT f(n) for N even
n=1
\. 1 for N =1

Approximate det||AH and det HGH in a similar manner,

A ,
det|la]] = 'cﬁ T* @ + -V a, N2 (3.A12)"
G ,
det||G =6—i T* @ + -1V g, c N2 (3.A13)
The solution for F(Z)I-Z /N becomes
A, ()N a, N2

Near the Nth‘ Bragg interaction we approximate the free-space wave=-
number by

2 2 2 2
ke ko g = [30 = (NK/2)" .

The expression for F(Z)I-Z /N can be approximated by

-m/2)F @) (KCen/2N T B (2)

b (2.A15)
1 - (1-2/N) TT* £ ()

F(z)) 2 /N

Extend the above formulation to include the N=1 case by

introducing the symbol CN.



wd] =

o) O INF (z) (DN n72)N 7 B () oate)
*(z = L — 3.
1-2/N " 51/N) T {4nm-N)/N>}2

0 N=1

where (. .= {
= 1 N =2

Similarly for B(Z)I-Z /N Ve find the analogous result,

N /2N F ()

2}2

Ly MNB () (1)
+
8(1-1/N) 1T * (4n(-N) /N

B (Z)']. «2 /N = (3.A17)

The expressions for F(z)1Jr2 /N and B(z)“_2 /N are trivially found from

(3. A6) under the stated approximations as

=L (N/2)F, (z) CNNF.(z)
N 12 = 1 (3. A18)
1-(1+2 /N) 8(1+1 /N)

F(z)) 42 /N

—CN(H/Z)Bl(Z) ) CN 1’1NB1(Z)
1- (1+2/N)‘2 8(1+1/N)

B2,/ (3. A19)

Expressions (3, Al16-3,Al9) are substituted into the following two

equations from (3. A6) for Fl(z) and Bl(z)

--k2 e

(Ce-p 2P, (2) + 20 B T (2) = T52D (), ;T ()45 1)
(3. A20)
.2
(Pe-p2)B, (2)42if B (2) = ISEU(B(2); , (+B(2)) 4p )
(3. A21)

Upon rearrangement the-followi‘ng extended coupled wave (ECW)

equations are formed.
’ . s gy s ‘
~F1 (z) ~1 SNI'l(a) —1xNBl(z) (3. A22)

-Bl’(z) -1 6y By(z) =iy Fy(2) _ (3. A23)
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where 6N = ) ﬁo (3.A24)

= phase mismatch

o B DI a2 e N : (3. A25)

+ 2 °
N 2N g 1T {4n(n-N)/N%}2

= coupling coefficient

N = Bragg order

B, = nK/2

The ECW equations agree in form with other work in diffraction

or holographic gratingszz’ 68, 69

to the propagation direction,

However, this is the first time that

where the periodicity is perpendicular

analytic expressions have been derived for propagation in longitudinally

varying media where the coupling, bandgap shift and bandgap width

are given explicitly for all Bragg orders.,

Table 3.1 presents numerical factors found in the ECW equa-

tions for the first five Bragg orders.

g(N) = (4/N)(1-1/N)

1-Cpon/2)2 [N/ (2N

LlE

N [T {4n(n-N)/N*F
1 1

2 1

3 (8/9) %

4 (3/4)%

5 (16/25)2

0

1

8/9

3/4

16/25

Table 3.1 Numerical values for factors in ECW equations,
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2., ECW Dispersion Relations

The dispersion relation is derived from the ECW equations

as in the first order case.

SRy

The following approximations may be made in the interaction region

when A BN <K K.

1%e n? NP

1
5. = ANk, . e? 5
16 B (N°-1)

N N - QN (3. A27)

N (_1)N+1

¥ kg ez ﬂN
N N T
270

{4n(n-N)/N

2}2 (3. A28)

where

1
2

My = k-p/e

ABN‘;B'B

o

B = NK/2

The Nth order dispersion relation is explicitly

A Me ez 2 Mk.e? 2.3 ¢ ntn®
Py _ ( N )_g NN SN
K K N K yen%1)  1024(N%-1)>

2
nZN N | ) (3. A29)
>

L (TT*{sn(n-N)/NZ}

Note that for real € and 1, the maximum imaginary part of A BN/K
occurs when 6N/K = 0. This defines the normalized coupling in terms

of the bandgap behavior since,
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AB
‘M{—_I%\I}max

If 6N/K = 0, then maximum coupling takes place at a wavenumber

LSRR N
- 1

(3. A30)
2N T {an(n-N) /N*}2

ey
that is displaced from the exact Bragg condition ke? /K = N/2 for

N = 2. This is referred to as bandgap shift (BGSN) and is defined by
1
Ak, €2 Con® N
_ N _°N
i = (3. A31)

6= 0 32(N°-1)

We note that this raises the Brillouin diagram and produces phase
speeding O(nz) as expected. The bandgap occurs whenever

|5N/K| < lxN/Kl which causes 0B /K to become imaginary. The
bandgap width (WN) is defined by

W —ZXN|~nN N
N © 4K |*INTI

: ~ (3. A32)
2 T (4nn-N)/N°}2

Table 3.2 summarizes some of the ECW results for the first

five Bragg orders.

N Coupling Bandgap shift ° Bandgap - width
X/ K BGSy, Wi
n n
! 8 0 4
2 2 2
2 . . n_
8 12 4
243 1> 27 1° 243 n°
3 &2 n - ; LT
2048 256 1024
4 2
4 - 21 4
5 . 5 | Z._g_ﬂ
5 2 5
5 1953125 n 125 n 1953125 n
18874368 768 9437184

Table 3.2 Summary of the main features of the ECW
theory for the first five Bragg ordérs,
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We note the following points about the ECW theory:

&y

The ECW derivation is an intuitively based theory
that gives explicit values for XN/K, 6N/K, BGSN
and WN for any Bragg order.

The ECW theory predicts coupling coefficients that
are proportional to (1']/2)N due to cross-coupling.
This is expected because of the N interactions be-

tween Fl(z) and B, (z) where each interaction couples

(
with strength n/2 to adjacent interactions. The sign
of the coupling coefficient alternates with Bragg
order,

The ECW theory predicts that maximum coupling
occurs not at exact Bragg resonance but at a shifted
frequency instead. This shift is proportional to
N’r]2 for N 2 2 and is due to the self-coupling of
Fl(z) and Bl(z)‘, This bandgap shift accounts for
the phase speeding effect that was first found in the
Floquet results.

The bandgap width is proportional to (T)/Z)N., Hence
for large N, only a small range of frequencies will
cause significant coupling between Fl(z) and Bl(z).,

Also note that for large N, W, . <2 BGS) so that the

N
longitudinal wavenumber B may be real at exact Bragg
resonance. Since bandgap width and coupling are

proportional, it is impossible to attain large coupling

and small bandgaps simultaneously.
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5. A simple scaling rule exists such that if n and AkN e%/K
are reduced by the same factor, then A{SN/K will be
reduced by the identical factor. Thus ECW results
for large perturbation can be directly applied to other
perturbations,

The extension to sinusoidal perturbations is made in the same
manner as in the first order theory. Let XN(T]Z) = XN(nlei-nzz) for
periodicities of the type ul cos(NKz) + uh sin(NKz).

The relative magnitude of the waves F(Z)].-Zn/N’ S(z),
B(Z)I-Zn/N (= 2,3,ss8 N*/Z) can be found from equation (3.A6) in
the same manner that F(Z)I-Z/N and B(Z)I—Z/N were found, The

results are in terms of Fl(z) and Bl(z) which are in turn related by

the boundary conditions. We will not need these results now.

B. Numerical Examples

1. Second-Order Interaction

The ECW approach uses the ten space harmonics shown in

Fig. 3.2 for N = 2, The explicit dispersion relation is

1
AR Mk, e? 2, Ak, €2 2
SO R T IV

and the phase mismatch and coupling are

i%e (1-1%/6) - B2

62 = VA ﬁo ' (3» BZ)
12 o2 |
XZ = ———-—ﬂ—S ﬁo (3. B3)

where ﬁo = K



Fig, 3.2 Coupling diagram which shows the ten relevant space
harmonics that are used in the ECW theory for second-

order interactions,

,.L.'&—
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Note the change in sign of the coupling coefficient from that
of the first-order theory. The coupling is provided by S(z) and the
bandgap shift is accounted for by Bz(z), S(z) and Fz(a). Phase
speeding is the result of the bandgap shift,

Figure 3.3a,b,c shows a comparison of the Flogquet and ECW
theories at thé second Bragg order for n = 1.0, 0.1 and 0, 05 respec-
tively., Although one would not expect the ECW theory to hold as n -1,
Figure 3.4 d.emonstrates the validity of the theory in this case. We
note that for n = 1, the Floquet theory predicts a slightly larger
bandgap than does the ECW theory. However, in the practical case

ofn €0.1, the two theories become graphically indistinguishable.

Table 3.3 summarizes these results for second order Bragg inter-

actions,
ECW Floquet
n=1.0fn=0.0 n=0.05|n=1 n=0.1 n= 0,05
Coupling . 125 .00125 |.00031254.133|.00125{.000311
X, /K
Bandgap Shift .0833 |.,000833|.000208 .10 |.00080 §.00022
BGS2
Bandgap Width || .250 . 00250 |, 00625 .26 |.0025 . 00063
W
2

Table 3.3 Summary of ECW and Floquet dispersion
relations at the second Bragg order interaction.

Figures 3.4 and 3.5 show the effect of truncating the ECW
and Floquet theories, In Figure 3.4, the outermost space harmonics
((al-, a;) and (a_:;, a_:) of Figure 3. 2) are not used for = 0.1. In

this case the coupling between F'; and Bj is given correctly since the
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in the ECW theory at the second Bragg interaction,
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cross=-coupling is only dependent on S. However, the bandgap shift
is not given correctly since S, FZ and B2 contribute terms of order
1’]2 to the self-coupling and bandgap shift., Figure 3.5 shows the effect
of limiting the space harmonics in the Floquet theory for n = 1.0,
The upper curve has a greatly enlarged bandgap width for a 3X3 matrix

2 +
a, and a The lower curve

1 1°

space harmonics., The resulting 5X5 matrix

. s ; 5 &+
which includes the space harmonics ag

£

e :i:
adds the a, ‘and a_,
produces results that are graphically indistinguishable from the 19x19

matrix used for all other Floquet results.

2., Third-Order Interaction

The ECW approach has twelve space harmonics ((a_;, a_2+),
-+ -+ -+ -+ -+ -+
(a'_.3 3 a_l): (a-2. E ] a’O ): (a].’ a’l ); (a'o 3 a’z ): (a'l 3 a3 ): (a'z > a‘4)> for N - 3‘
The results are similar to the N=2 case., The explicit dispersion

relation is

e

W=
V)=

6

OB. Ak, e . bk, €
e m e

and the phase mismatch and coupling are

1% (1- 9n°/64) - B
63 = 5 BO (3; B5)
81k% ¢ n>
v = Sl (3. B6)
3 1024 B
where By = 3K/2

Figure 3. 6a,b displays the results of ECW and Floquet calcu-
lations for n = 1.0, 0.5 at the third Bragg interaction. Note that for

the first time the half width (= WN/Z) is less than the bandgap shift
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(= BSGN) which causes the entire bandgap to be above the exact Bragg
wavenumber. This effect becomes more pronounced with increasing
order and decreasing perturbation since WNoc (T]/Z)N whereas
BSC}N &« ('r]/Z)2 . Although the ECW theory does not approximate
the Floquet theory for N = 3 as well as it does for N = 2 (compare
Figures 3.3a and 3. 6a), the ECW approximation improves as n
decreases, This is an expected result since in the ECW theory all

waves except Fl and B, are assumed to be slowly varying, However,

1

as N increases, more of the waves contribute to the coupling between

Fy and B1° Table 3.4 summarizes the results of Figure 3. 6.

ECW Floquet
ne=1l fned.50 n=1 n=0.5
Coupling .1186 .0149 . 136 . 0155
X3 /K
Bandgap Shift . 105 . 0264 .16 . 030
BGS
3
Bandgap Width 211 . 0297 .27 . 033
Mg

Table 3.4 Summary of ECW and Floquet
dispersion relations at the third Bragg
order interaction.

Figure 3.7 shows the effect of increasing the matrix order
that is used in the Hill's determinant for the Floquet dispersion rela-
tion (2. El). It is apparent that space harmonics of order n > 2N+1
must be used to insure accuracy of the Floquet result. Graphs are
shown for 7x7, 9X9 and 17x17 size matrices., As before, 19X19 size

matrices have been used in the Floquet theory for other figures in this
section,
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Fig. 3.7 The effect of limiting space harmonics in the Brillouin

diagram using Floquet theory at the third Bragg interaction.
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C. Multiharmonic Perturbations in ECW Theory

Higher-order Bragg interactions are interactions in the region
of k €_%./K >B/K=N/2 where N 2 2. However, there can be competing
processes between different Fourier components, fp cos (pKz), of
multiharmonic (i.e. p=1,2,3,...) periodicities for N2 2, In par-
ticular we may find passbands where bandgaps existed in the singly
periodic casc, This latter fact has been of interest in solid-state
theory Wheré the Saxon-Hunter theorem65 states that a forbidden level
in an infinite lattice of pure type-A potentials and in a lattice of pure
type-B potentials is also forbidden in any alloy containing both type A
and type B potentials., As applied to our problem, this theorem im-
plies that bandgaps formed by two dielectric periodicities T(Kz) and
?(Kz) are just the bandgaps caused by T(Kz) and ?(Kz) separately. A

65, 66

number of counter-examples have been given to the Saxon-Hunter
theorem. The ECW approach will show explicitly the effect of multi-
harmonic periodicities upon the bandgap.

The extension of the ECW theory is straightforward. However,
the results for arbitrary multiharmonic periodicities become cumber-
some., Several special cases will illustrate the general theory.

From the previous sections we know that the waves between
Fl(z) and Bl(z) are needed to couple energy from Fl(z) to Bl(z). We
also know that the waves F(Z)1+2/N and B(Z)1+2/N have to be included
to properly account for the bandgap shift. In addition, other waves

that can couple significant energy between FI(Z) and Bl(z) or that

couple Fl(z) and Bl(z) to themselves have to be included.
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Since the Fourier component [n fp cospK2] couples energy
between intersections, p intersections apart with strength approxi-
mately proportional to m fp’ then coupling diagrams will again help
to show the waves that should be included in the ECW theory. Figure
3.8 demonstrates some of the possible couplings for N = 2,

We list the possible couplings and strengths shown in Figure

1. vtvvo first-order couplings <« ('rlfl.)2 ;

2. one second-order coupling «n fz :

3. one third- and one first-order coupling <« (n fl)'(n f3);

4. one third-, one second- and one first-order coupling

= (nf,)(n £,)(n £,);

5. omne fourth- and one second-order coupling «(n f4)(n f.?. ;
6. one fourth- and two first-order couplings o (n f4)(n fl)z.
The mathematical solution consists of writing a set of equa-

tions analogous to (3.A6) where the right hand terms are augmented

by all of the possible couplings by each Fourier component of the

periodicity, fp .

1, N.th Order Bragg Interaction with f; and fN

Consider the periodicity made up of Fourier components
[nfl cosKz + an cosNKz] at the Nth Bragg order. We assume the
non-trivial case where O[A(ﬂfl_,)N] ~ O('r]fN) so that contributions to the
cross-coupling from the two Fourier components are of the same
order., The major bandgap shift is given by terms O'[(nfl)z:la Figure
3.9 is the coupling diagram which shows the important space har-

monics and couplings that are used in this case.



Fige 3.8 Coupling diagram that shows several of the possible

cross~couplings from F . to Bl and self-couplings

1

for Fl when N = 2, The approximate magnitude of

the coupling strangths are shown,
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Since the coupling an only affects the equations for Fl(z)
and BI(Z) and the coupling 'qfl is used to couple Fl(z) to Bl(z) as
well as the coupling Fl(z) - F(Z)I-Z/N - Fl(z) and Fl(z)—'F(z)l_I_z/N

= Fl(z), we can write by inspection from Figure 3.9 and equation

(3. A6),
2 2 2 . -kze w
(k7e-(142/N)" B )y 4o g T2HLHFZ/NIB Y o o =~ N Ty
(KPe-pZ) F +2ip F = k S, (F, 27t FLan e B ]
1,,2 k € .
(k’es = - () 5= N1 (F, By ) > (3. Cl)
% 2\B. - 2i B'—'kze f +nf,  F
(k7€ = P }By - 2P, By = M (By 5 /N By /NN Ty
2 2 ' -kze
(k"6 « (142/N) "B )By 5 20142/ NIB By 5 g = =5 N £ By

The only difference from the previous coupled equations (3.A6) is the

change of notation 71 = nf and the addition of the n fN 1 1

terms, It is apparent from the N+3 coupled equations (3. Cl) that the

and 'r]fNF

bandgap shift will be due to 'r]f1 as before but that the coupling co-
efficient will be the algebraic sum of terms involving 'r]f1 and ’r]fN.

Solve the coupled equations as before to find
1
Fl(z) -1 6N Fl(z) =1 Xy Bl(z) (3. C2)
1 .
- Bl(z) -1 ESN B (z) =1ixy E (z) (3. C3)

{1 Cnniy /2)° . N%/2(N -1)]}

6N = 250 (3.C4)
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N+1, . N
" %% [”fN L U mhy) 1 ](3 c5)
N 2By L 2 g TT " {4n(n-N) /N% 32
AB 5. & Xng 2
N N N
= = «/<"’1‘<‘>‘(““1‘<‘> (3.C6)

Table 3.2 may be used to find the appropriate bandgap shift, The
effective coupling coefficient is found by adding the values for X1 and
XN* Hence the results in equations (3. C2-3. C6) could be written
down by inspection,
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