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ABSTRACT 

The interaction of electromagnetic waves of wavelength A with 

periodic structures of spatial period A. are studied. The emphasis of 

the work is on Bragg interactions where A""' 2/\./N and the Bragg order 

N takes on the values 1, 2,... . An extended coupled waves (ECW) 

theory is developed for the case N ;;;: 2 and the results of the theory are 

found to compare favorably with the exact results of Floquet theory. 

Numerous numerical results are displayed as Brillouin diagrams for 

the first few Bragg orders. Moreover, explicit expressions for 

coupling coefficients, bandgap shifts and bandgap widths are derived 

for singly periodic media. Particular note is taken of phase speeding 

effects. 

The effects of multiharmonic periodicities on the control of 

feedback strength are investigated. It is found that with proper 

phasing the feedback strength becomes zero and the bandgap disappears. 

Coupling parameters are calculated for typical multiharmonic perio­

dicities for the first three Bragg orders. 

For odd Bragg orders, inverted bandgaps and phase slowing 

occur when the gain or loss of the media is modulated. Also average 

gain or loss affects the bandgap shape and the spatial or temporal 

growth or decay. Absolute instabilities are observed and expressions 

are derived for the instability frequencies, thresholds and growth 

rates. Under certain conditions, instabilities,occur for' structures 

with average loss. The results for the first and second Bragg orders 

are archetypical of all odd and even orders respectively. 
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Applications of t i e ECW theory to higher-order DFB filters 

involve such phenomena as transient propagation, effects of periodicity 

profiles and the relative coupling due to boundaries and periodicities. 

The calculation of higher-order DFB laser parameters shows that the 

mode spectrum is asymmetrically shifted and the threshold gain is 

greatly dependent upon the periodicity profile. Approximate threshold 

parameters .are calculated for high and low gain and for all Bragg 

orders. In addition, application of the ECW theory to holographic 

gratings and beam propagation is made. 



Chapter I: 

Chapter II: 

Chapter III: 

vi 

TABLE OF CONTENTS 

Introduction 

Coupled Waves and Floquet Theory 

A. Bragg Reflections 

B. Coupled Waves Approach 

1. TEM Waves in Passive Unbounded 

Page 

1 

5 

5 

8 

Media 8 

2. Coupled Waves Dispersion Relation 12 

C. Floquet Solution 13 

1. TEM Waves in Passive Unbounded 
Media 13 

2. Hill's Determinant 16 

D. Relation of Coupled Waves Solution and 
Floquet Solution 1 9 

E. Numerical Results 23 

1. Limitations of Hill's Determinant 2 3 

2. Brillouin Dia.grams for Lossless 
Passive Media 24 

F. Modifications and Comments 

1. Arbitrary Periodicities 

2. Corrugated Surfaces 

3. Com.ments 

Higher -Order B r agg Interactions 

31 

31 

32 

32 

•. 33 

A. Extended Coupled Waves (ECW) Theory 33 

I. TEM Waves ih Passive Unbounded 
Media 33 

2. ECW Dispersion Re.lations 43 



Chapter IV: 

Chapter V: 

vii 

Table of Contents (Cont'd) 

B. Nunierical Examples 

1. Second-Order Interaction 

2. Third-Order Interaction 

C. Mult:iharm.onic Perturbations in ECW 

Page 

46 

46 

52 

Theory 56 

th 
1. N Order Bragg Interaction with 

£1 and fN 57 

2. Fourth-Order Bragg Interaction with 
f 1, f 2 and £4 63 

D. Comments on ECW Theory 

Complex Periodic Media 

A. Floquet Solution 

B. ECW Theory for Complex Media 

1. Analytic Expressions 

2. First-Order Interaction 

3. Second-Order Interaction 

4. Third-Order Interaction , 

68 

70 

71 

75 

75 

76 · 

80 

84 

C. Multiharmonic Periodicities 87 

D. Comments on Com.pl.ex Periodic Media 88 

Stability of Brag~ Interactions in A~tive 92 

A. ECW Equations with Sources 93 

B. Application of Stability Criteria to 
Bragg Resonances 99 

C. Complex Coupling and Multiharmonic 
Periodicities 108 

D. Comments on Stability U"l 



Chapter VI: 

viii 

Table of Contents (Cont'd) 

Applications of ECW Theory 

A. DFB Filters 

Page 

113 

113 

1. Effect of Longitudinal Boundaries 113 

2. ECW Reflection and Transmission 
Coefficients 117 

3. Born Approximation Reflection 
Coefficient 127 

4. Transients in Periodic Slabs 129 

5. Discussion of DFB Filters 133 

B. Higher-Order DFB Lasers 136 

1. ECW Result for Threshold Gain 
and Mode Spectra 136 

2. High-Gain Approximation 137 

3. Low-Gain Approximation 138 

4. Discussion of Higher-Order DFB 
Lasers 142 

C. Higher -Order Hologram Diffraction 

1. ECW Equations for Transversely 
Periodic Media 

2. ECW Reflection and Transmission 

142 

144 

Coefficients 146 

3. Discussion of Holographic Gratings -147 

D. Gaussian Bean1s in Periodic Media 

Chapter VII: Conclusions 

148 

153 

Appendix A: Asymptotic Form of Fields for Absolute 
Instabilities in Periodic Media 

Appendix B: ECW Param.eters for Square-Wave, Triangular -

155 

Wave and Sawtooth Periodicities ]59 



Appendix C: 

Appendix D: 

Appendix E: 

References·: 

ix 

Table of Contents (Cont'd) 

Reflection and Transmission Coefficients 
of DF'B Filter 

Approximations for DFB Threshold and 
Spectrum 

ECW Equations for Transversely Periodic 
Media 

Page 

165 

168 

173 

177 



CHAPTER! 

INTRODUCTION 

This report investigates Bragg interactions in periodic media 

by using the example of electromagnetic waves propagating in spatially 

periodic dielectrics. The main purposes of this report are to develop 

physically meaningful approximate methods for higher-order Bragg 

' 
interactions, to show the mathematic.al foundations of the coupled 

waves theory and to give physically meaningful explanations for 

several previously unexplained mathematical results. Exact and 

approximate theories are compared nurnerically and applications are 

made to both bounded and unbounded media, to lossless and lossy media 

and to both passive and active media. Examples are given which 

correspond both to wave-packets in space and time and to the steady­

state response of plane waves. 

' The history of wave propagation in periodic media started with 

Mathieu's equation 1 in 1868 and subsequent generalizations' by Floquet2 

and Hill3 in the 1880' s. Although Mathieu's equation had its origin in . 

problems associated with elliptical boundaries, we will also show its 

connection to wave propagation in periodic media . This latter problem 

was first considered by Lord Rayleigh4 in 1887. He considered the 

effect of periodic density variations upon the propagation of waves on 

a string. In the early 1900 1 s a different, more physical, approach 

was taken by Sir William Bragg. He derived the necessary spatial 

period for constructive reflection of X-rays by crystals. These ideas 

were formalized for quantum mechanical application,s by Bloch 44 i_n 

1928. two books in the 1940's, one by McLachlan5 and ~e othe!' by 

Brillouin, 6 summarized previous work with Mathieu functions and 
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with waves in periodic 1nedia. The books also provide useful 

bibliographies. 

While most of the above work was concerned with exact 

solutions of differential equations, a second, independent approach 

was taken in the late 1940 1 s and early 1950 1 s. This approach 

stressed the physical concept of wave coupling by periodic pertur­

bations. A mechanical device demonstrated this effect in 1949 by 

coupling torsional energy between two bicycle wheels which were 

periodically loaded with magnets. 7 In 1953 Pierce9 used energy 

considerations to formulate what is now known as the coupled waves 

approach or the coupled mode theory. This approach has been 

popular because of its sirnplicity and intuitive appeal. Summaries 

of the coupled waves approach are given in texts by Pierce 10 and 

14, 18 26 . . 
others. ' W1th1n the last twenty years the coupled waves 

approach has been successfully used in such diverse areas as holo-

. . 15 22 68 69 81 82 83 84 85 . . gram diffraction, • • • ' • • • • waveguide couphng, 

12 14 16 19 20 . 17 74 . 
• ' ' ' traveling-wave tubes, ' parametric 

devices, 13 • 14• 18• 56 X-ray diffraction, 21 distributed feedback (DFB) 

1 14,23,24,25,30,35,36,58,70 d t·h 10,14,22,26,27,28,29, as er s, an o .er s. 

3 7 Extensive bibliographies on recent applications in optics and elec-

. . 12 14 20 87 tromagnetic s are given 1n the references. ' • ' We note that 

the telegrapher• s equaMons which were developed before the cqupled 

waves theory are of the coupled waves form. These equatio~s are 

not approximations, however, since they exactly describe one­

dimensional transmission line problems. 
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The Floquet theory, which originated in the study of ordinary 

differential equations with periodic coefficients, has also been useful 

in the study of electromagnetic waves in periodic media. Although 

this theory is more cumbersome than the coupled waves approach, 

it provides an exact numerical solution. Extensions of the theory 

to include partial differential equations and finite length media have 

also been made. 44• 45 Applications of Floquet theory to electro-. 

magnetic waves have been made in the areas of traveling-wave 

t 48 t· • d' d' 11, 43 56 • t t d t· an ennas, space- 1me per10 1c me 1a, ' 1n egra e op 1cs, 

8 60 11 22 40 57 61 
structures, • and others. ' J • ' ' 32,58,63,64 t d corruga e 

62, 75 

Other exact methods that are used in plane-stratified material, 

such as the matrix method 78 or the method of invariant imbedding,88, 89 

will not be used here. 

The second chapter of this report contains the derivation of 

the first Bragg order coupled waves equations and the Floquet solution 

for electromagnetic waves in longitudinally periodic media. A si~ple 

explanation for phase speeding is given and the connection between 

the Floquet and coupled waves theory is explained. The dispersion 

relation is found as well as all pertinent coupling param.eters. 

Several Brillouin diagrams illustrate physical principles and com­

pare the approximate and exact theories. 

The primary purpose of the third chapter is to extend the 

coupled waves concept to higher Bragg orders. The resulting ex­

tended coupled waves (ECW) equations provide explicit dispersion 

and coupling information for every Bragg interaction. Numerical 
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examples again illustrate the results of both_ approximate and exact 

theories. A section is devoted to effects caused by perturbations 

of several frequencies and the resulting disappearance of bandgaps. 

Periodic media with loss or gain is covered in chapter four. 

Inverting and non-inverting bandgaps are found which depend upon 

Bragg order and coupling tYJ.>e. Index and gain/loss coupling are 

both considered. The effect of the periodicity upon average gain or 

loss near Bragg resonance is noted. 

The fifth chapter discusses the stability of active periodic 

media and gives explicit values for instability frequencies and 

thresholds at all Bragg orders. The stability criterion also speci­

fies the correct root of the dispersion relation. 

Several applications of the ECW theory are given 1n successiv;e 

sections of chapter six. The reflection and transmission of transients 

are discussed arid demonstrated with detailed numerical examples. 

The extension of previous work to higher order DFB lasers is 

briefly covered. Diffraction efficiencies can be found when the ECW 

theory is applied to holographic gratings. Finally, the case of 

beam propagation in longitudinally and transversely periodic media 

is outlined. 

Conclusions of this report are given in chapter seven. 
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CHAPTER II 

COUPLED WAVES AND FLOQUET THEORY 

A. Bragg Reflections 

In order to gain physical insight into the problem of waves 

in periodic medi.a, we consider a plane wave incident upon a periodic 

structure as shown in Figure 2. I. It is apparent that the reflecting 

waves will constructively interfere if the reflections from. successive 

layers differ by an integral number of wave lengths, NA (N= 1, 2, 3, ... ). 

This result is usually stated as Bragg's Law, 

where 

NA. = 2 A. sin9 (N = 1, 2, ... ) 

A. = 2,r /k = wavelength of plane wave 

A. = • 2,r /K = spatial period of structure 

N = Bragg order 

(ZA. I) 

and where the velocity is assumed to be that of free space. The cases 

N~ 2 are referred to as higher-order Bragg interactions. For media 

with relative dielectric constant E:, we restate the result as 

= N/2 (N = 1, 2, . . . ) (2A. 2) 

for normally incident waves. Note that Bragg's Law does not account 

for the reflected wave amplitude, for the type of periodicity present 

or for the effect of slight variations of the wavenumber k from the 

value given by Bragg's Law. 

The latter effect is called phase 1nismatch and can be con­

sidered in a semi-quantitative way by the use of Fig. ·-2. 2. This figu,re 

shows an incident wave I which is reflected from a thre·e ,. layer 
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Fig. 2. I Bragg scattering of plane wave from periodic 
media. 
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a) I 
.... ..,__ 

R 

b) I 
► 

/ 
I Increasing 

Phase 
Mismatch 

c) I 

~ 
. .t 

d) I 

.... 
--◄ R 

I = Incident Wave 

R = Reflected Wave 

Fig. 2. 2 The effect of phase mismatch upon the reflected 
wave. Zero phase mismatch a) indicates 

l , 

k E:·2 /K = N / 2. 
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periodic medium to form a total reflected wave R. The wave R is a 

phasor sum of four sub-reflections each of which has phases relative 

to the first sub-reflection at the incident phase. Multiple reflections 

are ignored in this simple model. Parts a) -d) of Fig. 2. 2 show the 

relation of the strength of the reflected wave R to the phase mismatch. 

Fig. 2. 2a shows the constructive interference at the exact Bragg 

condition (i.e. zero phase mismatch) that produces large R. It is 

apparent that there is a considerable reflected wave R for slight 

phase mismatch (Fig. 2. 2b) whereas large phase mismatch will pro­

duce small R (Fig. 2. 2d). 

Therefore, from simple wave interference arguments, one 

can deduce Bragg's Law and the qualitative effects of phase mismatch. 

Other theories are needed, however, to account for wave amplitudes 

and the effect of the form of the periodicity. 

B. Coupled Waves Approach 

L TEM Waves in Passive ·Unbmmded Media 

Consider the case of a plane transverse electromagnetic (TEM) 

wave that propagates in a longitudinally periodic unbounded medium 

as shown in Fig. 2. 3. Assume a time variation of the form e - ·iwt_ 

Starting with Maxwell's equations 67 in a source-free, linear, iso;. 

tropic region, we find in the frequency don1a.in that 

V x E (z, w) = i w µ H(z, w) (2 . Bl) 
0 -

N' x H (z, W) = -i WE: E: (z) E(z,W) (2.B2) 
0 -

IJ • E (z, w) = 0 (2. B3) 

IJ • H (z, W) = 0 (-2. B4) 
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X TEM WAVE 

}-z~ 
y 

Fig. 2. 3 T EM. wave propagating in unbounded periodic media. 
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µo = 
€ = 

0 

€ (z) = 

-10-

radian frequency 

free-space permeability 

free-space permittivity 

relative permittivity or relative dielectric 

constant 

and where E and H are the electric and magnetic field vectors. 

By combining (2. Bl), (2. B2) and (2. B3) we find the wave equation 

for no transverse variation 

2 
d E{z) + k 2 e(z) E(z) = 0 
dz

2 (2. BS) 

where -iwt 
E(z, w) = E(z)e = transverse component of E(z, w) 

k 

e(z) 

ri 

= w/c = 2rr/)._ = free-space wave number 

= e[1 + ri f f. cos(pKz)], f 0 = 0, f 1 = 1 
p=0 p 

s:: 1 is the perturbation. 

The periodic dielectric constant has been expanded in a Fourier cosine 

series. Assume that the electric field can be represented by just 

10 12 15 19 ~ two waves, • ' • a forward wave ]'(z} and a backward wave 

B(z) which travel with positive and negative phase velocity ·along z. 

This assumption is intuitively appealing for Y) << 1 since these are 

the only two possible waves in the unperturbed case. Thus, we con­

sider the transverse electric field 

E(z) = F(z) ei/3z + B(z) e -i/3z 

where /3 is the longitudinal wavenumber. For first-order Bragg 

interactions, /3/K"""' 1 /2. Then let 

(2. B6) 
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/3 .... /3 0 + b. j3 = K/2 + 6 /3 

~ i6Az ~ -iM~z 
F(z) = F(z) e '"-' • B(z) = B(z)e '"-' 

(2. B7) 

(2 . B8) 

Use equations (2. BS) - (2. B8) and the slowly varying approximation 

I Ftr I I / F' ) I Bu << 2 /3 0 \ B' and I / F' I ) I I 2 ( F ) I \B" << /30 B 1 where . 

primes denote differentiation with respect to z, to find 

(2.B9) 

where the arguments in z have been dropped. The coupled waves 
± if3 z 

0 
equations are found by equating the coefficients of e to · 

• ±ip/3 z 
zero.

15
' 

19 
The terms proportional to e O 

(p = 2, 3, ... ) are 

either ignored, termed non- synchronous or averaged over time and 

considered zero. 14 It will be shown later that these terms corre­

spond to relatively unimportant coupling to other waves when /3 /K= 1 /2. 

The resulting coupled waves equations are, 

F'(z) - i 6 F(z) = i X B(z) 

-B'(z) - i 6 B(z) = i X f(z) 

where 
k2€-j3 2 

0 
6 = = phase nrismatch 

!l k2e x = = coupling coefficient 
4 /30 

(2.Bl0) 

(2.Bll) 

(2.Bl2) 

(2.Bl3) 



-12-

Th t • • f • -, th d • d 1 h 10 14 1 5 ese equa ions agree 1n orm w1tn ose er1ve e sew . ere. ' ' ' 

18,20,23,30 
The equations account for both the wave amplitudes 

and the phase mismatch as well as the interaction of the waves with 

the fundamental Fourier co1nponent of the dielectric periodicity. 

When o = 0, the waves F(z) and B(z) are coupled only through the 

perturbation Tj while the change in amplitude of one wave is propor­

tional to the amplitude of the other wave. For .zero perturbation, 

the wavenumber of F(z) and B(z) becomes equal to the phase mismatch. 

2. ,Coupled .Waves Disp~1·si9n Relation 
t 

By differentiating the coupled waves equations, a wave equation 

[d
2 

+ (02 _ _ 2)] [F(z)J = O LTz2 X B(z) .. 
(2. B14) 

is constructed. Assuming a solution of the forin e±i.6.f3z, the dispersion 

relation is found to be 

(2. BIS) 

The approxim.ations for o and X are 

(2 . B16) 

(2 . Bl7) 

l 

when D./3 << K and where k 8 2 /K = ½ and /3 = K/2. 
0 0 

This produces the dispersion relation 

~ = 
K 

2 
- (-R) _(2. Bl 8) 

The following properties are evident for real 8 and Tj. 
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1. Waves propagate without decay for I Cike 2/K I> I ri/8 I 

which correspond to passband regions. 

2. Stopbands or bandgaps occur for imaginary 6j3/K or for 
1 

ltike 2 /Kl<lri/SI. Here waves decay. 

3. The coupling of waves is maximum at the bandgap 
1 

center (6k e 2 /K = 0) where li/3 /K = i fl /8. 

The dispersion relation (2. Bl8) is plotted as a Brillouin 

diagram in Fig. 2. 4 which clearly shows the regions of interest, 

namely the stopbands (ellipse) and passbands (part of hyperbola). 

Note that the coupled waves analysis gives much more in­

formation than Bragg's Law. However, the coupled waves approach 

is only valid around the first Bragg interaction and does not describe 

important wave interactions at higher Bragg orders. 41 , 42 Further­

more, we have assun1ed a solution that is based on only two waves, 

F(z) and B(z). This is strictly valid only as ·ri ..... 0 when 'F(z) and 

B(z) are the two eigenmodes of the media. 

C. Floquet Solution 

1. TEM Waves in Passive Unbounded Media 

An exact solution to the wave equation (2. B5) may be con­

structed through the application of Floquet' s theorem. A form of 

this theorem is stated as follows: a linear differential equation with 

coefficients periodic in zwithaperiod.i\ has a solu.tionE(z) with the prop­

erty E(z+Jt) = J/31\.E(z) where /3 is the fundamental wave number and fi. is 

the fundamental period; define ¢(z) such that E = ei/3z , ¢(z); then 

¢(z) is periodic in z since ¢(z+J\) = ¢(z). A proof of the theorem 
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kJE _wv€ ---
K cK 

i7Jl8 

0.5 7Jl4 

. 

0.5 

Fig. 2. 4 Brillouin diagram near first Bragg interaction. 

Dotted line is imaginary part qf 13 /K. Dashed 

lines are for unperturbed media where 17 = O. 

/3 
K 
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. . . I f 2 5 46 47 1s given 1n severa re erences. ' ' ' 

We now expand the function \6(z), mentioned above, in a 

. . 3 43-47 
Fourier series. ' The resultant expansion for E(z) is 

~ iH3+n'K)z 
E(z) = L.J a e 

n:::-oo n 
(2.Cl) 

which is the constructed solution for the wave equation. This solution 

is made up of an infinite number of space harrnonics, a , of order n, . n 

which propagate with longitudinal wave numbers (l3+nK) (see Fig. 2. 6). 

Substitute the solution (2. Cl) into the wave equation (2. B5) to find 

{ [E:k2 - (f3+nK}2] a +k2E: '17 ~ f a } ei(l3+nK}z = 0 
n 2 p=-oo p n-p 

(2. C2) 

(n = 0, ±1, ±2, ... ) 

where we have defined f = f . Algebraic manipulations transform 
p -p 

this result to 

00 

D a + 6 a f 
n n p=-oo n-p p 

= 0 (2. C3) 

where (2. C4) 

In matrix form this can be rewritten as 

llnll· ~ = o (2. C5) 

where 

a 
-2 

a 
-1 

a = ao - (2. C6) 

al 

a2 
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D_2 fl £2 £3 £4 

. 
f 

1 D -1 fl £2 £3 

. 
"f f DO f £2 

. 
2 1 1 

llnll = (2. C7) 
o ' 
' . 

• f f fl DI fl 
. 

3 2 

• f 
4 £3 £2 f 

1 D2 

• 

The non-triviality condition for the matrix equation requires 

det llnll = O (2. CS) 

which is the Floquet dispersion relation connecting f3 and k. For 

singly periodic media (i.e. fp = 0 for p ~ 2) an expression for the 

space harmonic ratios and for the dispersion relation can be found 

in terms of a rapidly convergent continued fraction. 43 

2. Hill' s D-e.terminant 

Hi112 • 3 • 47 suggested an alternative form for the dispersion 

relation which is equivalent to (2. CS). The derivation for the case 

h b . 42 . h 'h under consideration as een given in a previous report wit t ,e 

following result. 

2 .!. 
= ~(O) sin ('IT k E: 2 /K) (2. C9) 
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where the elements of the Hill's determinant L\(O) = det ll L\ lj are given 

by { 1 p = n 

L\ = 2 
ri fln-p I (2.C!O) pn - k t: 

2 K2 k2 
p -1- n 

p - E: 2 

Figure 2. 5 shows the qualitative behavior of sin2 (TT j3/K) and the 

resulting bandgaps where j3 is cornplex. 

· 3-5 
Several authors sugge s t an approximation for the infinite 

order determinant, 

1 

L\(O) = 1 + TT cot(TT k € ~ /K) 

l6ke2/K 

which is valid for ri f << 1 (p = 1, 2, 3, ... ). 
p 

[2 k 2e '11 £2 /K
2 J2 

[2 2 -4k
2e /K2 ] 

(2. Cll) 

Note the following points about the dispersion relation (2.C8) 

and its approximation (2. Cl 1). 

1. This dispersion relation takes into account all Fourier 

components f of the perturbation and is valid for all 
p 

k and j3. 
1 

2. Away from the Bragg interaction regions k € 
2 /K """'N /2 

1 

(N = 1~ 2, ... ), L\(0)""" 1 as ri-+ O. Hence k e2 """'± j3. Thus, 

the periodic med'ium has little effect upon wave propaga­

tion in the passbands as ri -+ O. This was expected from 

Bragg's Law and the coupled waves approach. 
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sin2 (-,,-/3/K) 

Bandgap Bandgap 

Fig. 2. 5 A sketch of the behavior of the dispersion 

relation which shows the bandgap location for Bragg 
2 ' 

orders N = 1, 2, 3 whenever sin (rrl3/K) > 1 or 

sin
2 

(rrl3/K) < O. It is assumed that f
1

, f 2 and f
3 

are significant in the perturbation. 
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3. When sin
2 

(1r/3/K) > 1 or sin
2

(1r/3/K) < 0, /3 is complex. 
1 

From (2. C9) and Figure 2.5, this occurs for k € 2 /K """N /2 

(N = 1, 2, 3, ... ). Hence, the dispersion relation agrees 

qualitatively with the position of the bandgaps predicted 

by both Bragg's Law and the coupled waves approach. 

Note that the Floquet solution provides all of the information 

of the coupled waves equations with the additional advantage of being 

an exact solution that is valid for all /3 and k. However, the Floquet 

solution lacks the intuitive appeal and siinplicity of the coupled 

waves approach. In particular, ,.me has to use an approximation to 

find the approximate bandgap placement. In addition, a truncation 

of an infinite determinant m .ust be perforrned. 

D. Relation of Coupled Waves Solution and F'loquet Solution 

The recent intere st2 5 • 51 ' 52 in the relation of the coupled 

waves solution and the Floquet solution is important for two reasons. 

First, it gives a more rigorous mathematical foundation for the 

coupled waves theory. Second, it can be used to expand the coupled 

h t hi h d B • t t· 53 'rh· ·11 b waves approac o g er-or er ragg 1n erac .ions. 1s w1 e 

shown in Chapter III. 

Consider equation (2. C3) for the case of cosinusoidal per •­

turbations. 

Da +a +a = 0 
n n n+l n-1 

(2.DI) 

2 
D = ~ [1 - (j3+nK) J (n = 0, ± 1, ± 2, . ~. ) 

n fl k2e 
(2.D2) 
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For f) << I 

I 

k € 2 /K ➔ ± ([3/K+n) (n = 0, ±1, ±2, ... ) (2. D3) 

The resulting Brillouin diagran~ is shown in Fig. 2. 6 to consist of an 

• f" ·t b f h • ± h" h t ±i([3+nK)z 1n 1n1 e num er o • space armon1cs a w 1c propaga e as e . 
n 

From Bragg's Law, it is known that irnportant interactions 
I 

between F(z) and B(z) occur at k € 2 /K ""' !3/K ""'±½where the :f sign 

comes from considering waves of both positive and negative phase 

velocities. Therefore, consider only the a _1-, a:, a~ and a+; space 

harmonics in the Floquet solution for the electric field 

E(z) -= a _1 
-i([3-K)z 

e f-
+ i[3z -I - -i[3z 

1 
+ i([3+K)z - a e -a e - a e 

o o +l 
(2.D4) 

Let 

f3 __, f3
0 

+ b.[3 = (±K/2 + b. [3) (2. D5) 

where the ± sign holds for space harmonics that intersect each other 

at [3 /K = ± ½. 

E(z) = ( - -il.if3z + + ib.(3z) i/3 0 z a 
1

e a e e 
- 0 I., _____ / --~ F(z) 

~ B(z) 
(2.ri6) 

E(z) = 



02 a, a+ 
2 

k-1€ 
K 

k./E 
K 

a+ 
I 

a) 

b) 

73/K 

n =-I n=-2 n=-3 

a+ 
-3 

/3/K 
Fig. z. 6 a) Brillouin diagram for an unperturbed, homogeneous, infinite medium. 

b) Brillouin diagram for an infinite medium after introduction of a period perturbation. 

Part ·b) is derived from successive translation of a) along the 13 /K a:xis. 

I 
N ,_. 
I 
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This is exactly equivalent to the assumed form of the electric field 

in the coupled waves approach. The waves F(z) and B(z) are each 

the sum of two space harmonics which are in agreement with pre-

51 ±in!3 z viously derived results. However, the terms e o (n=3, 4, 5, ... ) 

that were discarded in the coupled waves approach now have a clear 

meaning. These terms correspond to coupling to higher order 

space harqionics. 52 Explicitly, the terms e ±i. 3!3oz correspond to 

space harmonics a+; and a_; which (along with a+~ and a _t) couple 
1 

to the adjacent Bragg intersections at k E: 2 /K """+½, f3/K = ± 3/2. 

This truncated Floquet theory can also reproduce the coupled 

waves dispersion relation. Consider the first Bragg intersection 

at f3/K =½. Here only the a+ and a 
1
- space harmonics are irnportant. 

0 -

If we truncate the relation D· a. = 0 to include only these two space 

harmonics, we find the dispersion relation, 

<let (2.D8) 

where D _l = 

= 

= 13 /K 
0 

By evaluating the determinant we reproduce the results of the coupled 

waves theory, namely, 
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(2. D9) 

Similar results are found at f3/K =-}if we use the a
0 

and a+; space 

harmonics. 

We note the following. 

1. The coupled waves expressions for F(z) and B(z) 

are each the sum of two space harmonics. 

2. The coupled waves approach can be viewed as a trunca­

tion of the Floquet solution. This shows that previously 

discarded term.s correspond to coupling to higher-order 

space harmonics. 

3. The coupled waves approach shows that wave coupling 

in periodic media can be viewed as coupling between 

the intersecting pairs of waves that make up F(z) 

and B(z). 

E. Numerical Results 

The dispersion relations are numerically compared by using 

the Hill's determinant and the coupled waves approach. 

1. Limitations of Hill's Determinant 

The Hill's determinant dispersion relation 

sirr ( ,rf3 /K) (2. E 1) 

is limited by the number of significant places used by the computer. 

In the case of the Univac 1108 this is 9 places for co.inplex calcula­

tions . The smallest number that can be used which is la:.rger than 
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uni ty is 1 + 1 0 - 8 . Thus, if 

2 -8 
sin (-rr/3 /K) ""' 1 + 10 

at the first bragg order, then 

sin (-rr/3 /K) cosh(-rr/3. /K) + i cos (1r/3 /K) sinh(Tr/3. / K) r 1 r 1 

(2. E2) 

""" I + 10 - S ( 2. E3) 

where 13 = /3 + (3. 0 r l 

For 1r/3./K << 1 and 1rl3 /K = 1r/2~ the above relation is approx-
1 r 

imated by 

through trigonometric expansions. 

(2. E4) 

The maximum value of /3. /K is 
l 

ri/8 fro1n equation (2. D9). Thus, the Floquet numerical calculations 

should be limited to rJ > 10- 4 at the first Bragg order. In this report, 

-2 ' 
ri:?: 10 to account for this and any other cornputer errors. Similar 

arguments limit the numerical calculations at higher Bragg orders. 

2. Brillouin Diagrams for .Lossless Passive Media 

Each Brillouin diagram is a plot of normalized frequency 
1 1 

[k e: 2 /K = w e: 2 /(cK)] versus normalized wavenumber [/3/KJ . 

In many of the cases the diagrams are expanded around the Bragg 

interaction region where Ak and A/3 replace k and /3. 

Figure 2. 7 illustrates the main features of Floquet the?ry for a co­

sinusoidal perturbation (i.e. f = 0 for p :#- 1) with ·17 = I. The largest effect 
p ' ., 1 

of the periodicity is in the vicinity of the Bragg wavenumbers kE: 2/K = N/2. 
• =:. 
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...... ,// .......... .. 
/ ...... . 

/ •••· ... 

0.05 ...... 9.J ........ 0.15 
···•••••••••• 

r; = 1.0 

0.5 1.0 1.5 2.0 

Fig. 2. 7 Brillouin diagram. for first three Bragg orders when· 

/3 
K 

'r] = I. 0 using Floquet theor y. Dotted lines show imaginary parts of 

{3 /K on separate scales . Dashed line represents the· _unperturbed 

case . A cosinusoidal perturbation is assumed,. 
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where the dispersion relation deviates from the unperturbed case 

(dashed line) and 13 beco1nes complex. Note that the bandgap is 

shifted towards the larger wavenumber and that this shift increases 

"th B d Th" h 1· 43 h" h • • w1 ragg or er. 1s causes p ase speec 1ng w 1c 1s an in-

crease in phase velocity (= w/13) due to an effective decrease in the 

dielectric constant. Physically, as the wave travels through the 

periodic medium, it speeds up and slows down with respect to the 
1 

unperturbed velocity c / € 2 . However, if we consider an average 

velocity (v) we find for singly periodic media 

(v) = 
C dz (2. ES) 

J€(lt'l') cos Kz) 

where /1. = 2rr/K = spatial period. For '1') < 1, expand the square 

root to find 

C /1. 3 2 2 
(v) = J (l - !l cosKz + - '1') cos Kz + • • • )dz (2. E6) 

/1. €2· O 2 8 

(v) 
C 

[1+(3rr/16)'1')
2 

+ O(ri
4

)] (2. E7) = --r 
€2 

Hence, the phase speeding is accounted for by effects O(ri
2

) for '1') < 1. 

Figure 2. 8 is an expansion of the first-order Bragg interaction 

region of Figure 2. 7. The coupled waves dispersion relation (2. Bl 9) 

is superimposed. Even for '1') = 1, the coupled waves theory closely 

predicts the correct coupling coefficient as indicated by the maxi­

mum value of 13 in the bandgap. However, the coupled waves theory 

does not predict the bandgap shift or phase speeding for first-order 

Bragg interactions . 
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0 

-0.1 

-0.2 

-0.3 

-c0.3 -0.2 -0.1 

17 = 1.0 

/3o -= 05 . 
K 

0 0.1 0.2 
I \, .., 

0.3 ~/3 
K 

Fig. 2. 8 Brillouin diagram of first Bragg interaction with 'r]::: 1. 

This compares Floquet theory (upper curve) with 

_ coupled waves theory ( 1 owe r -·curve). Dotted and 

heavily dashed lines are imaginary parts- of ~13 /K. 
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The coupled waves result (lower curve of Figure 2.8) can be used 

for perturbations other than 17 = 1 by multiplying each scale by 17. 

Figure 2. 9 shows similar results for 11 = 1. 0, O. 1, 0 . 01 

from the Floquet theory. As 1l decreases, the coupled waves theory 

becomes a better approxim.ation to the Floquet theory. The curve 

for 1l = 0. 01 is also the coupled waves curve for all three cases 

since the Floquet theory and the c oupled waves theory are graphic­

ally- indistinguishable . 

Results of Figures 2. 8-2. 9 are summarized in Table 2. 1. 

Coupled Waves Floquet 

ri= 1 ri=0. 1 17=0.0l n=l 17=0. 1 fl=0. 01 

Coupling x/K 0.1250 0.01250 o., 001250 0.1267 0.01250 0.001249 

Bandgap Shift 
BGS o. 0 0.0 o.o 0.04 0.0005 <0.0001 

Bandgap Width 0 .250 0.0250 0.00250 0.26 0.0255 0.00255 w 

Table 2. 1 Summary of coupled waves and Floquet theory at the first 

Bragg order. 

The relative contributions of the different space harmonics 

are shown in Figure 2. 10. The upper and lower curves are the 

result of matrix truncation at 3x3 and 5x5 ele1nents respectively. 

Each truncated matrix is centered around the matrix element 6 
00 

in equation (2. ClO). The differences are not large and the 5x5 matrix 

produces dispersion characteristics that are ~ 1 % diff~rent than those 

of the l 9xl 9 matrices used in Figures 2. 7-2.9. 
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77 = 1.0 
77 = 0.1 

'Y} = 0.01-

.15 

.015 
.0015 

-0.01 
-0.001 0.001249 

-0.2 
-0.02 

-0.002 

·-0.3 
-0.03 

-0.003 

f3o 
K 

~ 

0.5 
~ 
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~ 

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 ~/3 
-0.03 -0.02 -0.01 0.01 0.02 0.03 
-0.003 -0.002 -0.001 0.001 0.002 0.003 

Fig. 2. 9 Brillouin diagram at fir st Bragg order for rJ = l. 0 (top 

curve). ri = o. 1 (rrliddle curve). and 17 = O. 01 (bottom curve) using 

Floquet theory. Bottom curve also represents coupled waves 

solutions for all three cases. Note difference in scale £or each 

case. Imaginary b.!3 /K values are the elliptical curves with 

separate scale. 

K 
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Fig. 2~ 10 The effect of limiting space harmonics in the Brillouin 

diagram. using Floquet theory at the first Bragg interaction. · 
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F. Modifications and Comrnents 

1, Arbitrary Periodicities 

The coupled waves equations were derived for 
00 

E:(z) = e-( l+r) 6 f cos (pKz)) where only the f
1 

term played a role 
p=O p 

in the fir st Bragg order calculations. For generality, consider the 

expan·sion of a completely arbitrary (although sn1ooth) €(z) as 

E: (z) = € [1 +ri ~ [f cos (pKz )+ g_ sin(pKz) ]] 
p=O p p 

(2. Fl) 

where f = 0 = g 
0 0 

The analysis is similar to the previous calculations which 

lead to the coupled waves equations (2 . B 10 -13). Following the 

identical procedure we find 

F 1 (z)-i6F(z) = iX+B(z) (2. F2) 

B 
1 
(z) - i 6 B(z} = i X F(z) (2. F 3) 

2 2 
k e -13 

where 6 
0 

-- 2 f3 
0 

(2.F4) 

± . 17l±i172 k2e 
X = 4 -13 0 - (2 . F5) 

The <lisper sion relation (2. D9) is modified by the substitutions 

2 2 .!. 
fl -+ (111 + 112')2 (2. F6) 

2 t -
X -+ X X (2, F7) 
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All previous Brillouin diagrams can be used with the above substi-

tutions for the periodicity given by (2. Fl). - + * The fact that X = (X ) , 

where the asterisk. denotes co1nplex conjugate, is a general result 

which holds for lossless sys terns. 
18 

2. Corrugated Surfaces 

The previous results are st r ictly valid only for volume per -

turbations. · Similar results have been extended to surface perturba-

. 20 24 
tions or corrugations. ' The extension :involves the assumption 

that the surface perturbation can be replaced by an equivalent volume 

perturbation. However, this assum.ption, known as the Rayleigh 

assumption, is valid only for Kd < O. 448 (where d = corrugation 

depth and K = periodicity wavenumber) as shown by Millar. 33 

Physically this occurs because deep surface corrugations have 

proportionately less effect on the surface waves than do shallow 

corrugations. An exact Floquet analysis which solves the b01;mdary..-

. 63 64 value problem has been given . ' 

3. Comments 

This chapter has set the groundwork. for the next calculations. 

In addition the differences and similarities of the Floquet and coupled 

waves theory were discussed. In particular the coupled waves theory 

was seen to be an approximation of the exact theory, where certain 

space harmonics were retained and combined while others were 

discarded. A similar process will lead to descriptions at higher­

order Bragg resonances ih the succeeding chapters. 
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CHAPTER III 

HIGHER-ORDER BRAGG INTERACTIONS 

This chapter is an extension of the previous chapter to higher -

order Bragg interactions (i.e. N ;;;: 2 in Bragg's Law). Present man­

rnade dielectric periodicities other than superlattices are limited to 

the order of /i. ~ 1000 R.. Therefore, some applications in integrated 

optics require operation at higher -order Bragg interactions . Already 

higher order DFB lasers have been experimentally demonstrated~O, 70. 71 

Other optical applications include couplers arid filters . 

In section A, the coupled waves theory is extended to all Bragg 

orders for singly periodic media. Explicit expressions are given 

for all iinportant parameters relating to the bandgap and coupling. 

Numerical examples are give n in section B for the first three Bragg 

orders. Multiharm.onic periodicities and a fourth-order numerical 

example are given in section C. An example of disappearing band­

gaps is also shown. In some of the illustrative numerical examples, 

we will use large values of the perturbation that may not be physically 

realizable. However, the objective is to dramatize the effects of the 

perturbation on the Brillouin diagram .. In addition, the extended 
.. ... 

coupled waves (ECW) examples are easily scaled for other values of 'Tl• 

A. Extended Coupled Waves (ECW) Theory 

1. TEM Waves in Passive Unbounded Ivledia 

By extending the assumptions made in Chapter II, we state 

the following assumptions for N
th 

order Bragg interacti ons: · 
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1. The most significant space harmonics are F 
1 

(z) = a: eif3z 

. - -i(B-NK)z - -if3z + i(r,+NK)z 
+a_Ne • andB 1(z)=a

0
e +a_Ne . 

2. To provide cross -coupling between F 
1 

(z) and B 
1 

(z) we 

account also for the following pairs of space harm.onics 

- + + - + . 
(a_N+l' a+l ), (a_N+Z' a+2 ), ••• , (a_ 1 , aN-l) wluch are 

l 

slowly varying near k 8 2 /K = N /2. In this way we account 

for the intersecting space harm.onics between F 
1 

(z) and 

B 1 (z) in the simplest possible manner. 

3. Self-coupling which occurs between F
1 

(z), B
1 

(z) and their 

adjacent space harm.onics must also be included. 

4. Assume fl << 1 although the theory may hold for fl -, 1 as 

in the first order case. 

5. All other space hannonics are ignored. 

The derivation is started by in.eluding the above m .entioned 

space harmonics of the Floquet theory in the expression for the electric 

field 

""' i - -i(j3+nK)z NJl + i(f3+nK)z 
E(z) = Li a e + LJ a. e 

n n n=-(N+l) n::::0 

Near the N
th 

order Bragg interaction let 

{3 .... /3 + 6 {3 = (± NK/2 + L\ f.) 
0 

( 3. Al) 

( 3. A.2) 

where the ± sign is used for space harmonics that intersect each other 

when {3 /K ~ 6. The electric field becomes 
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* 
N /2G • N~ • bP ] 

E(z) = 6 a- N e -i t-'z +a~ e1 1_,z exp[i(l -2n/N)f3 z] 
n=-1 n- Tll o 

where 

* 
+ N✓

2 r + ibif3z _, - -ibif3z]exp - [i(l -2n/N)f3 zJ 
LJl LaN-n e -,-- a_n e o 

n=-

+ (1 ) [ - -H,f3z + + i6j3z] 
0 a -N /2 e a N /2 e 

N - 2 
2 

N - 1 
2 

for N even 

for Nodd 

- 1 for N = 1 

j 1 for N even 

f O for Nodd 

This can be rewritten as 

where 

F 1-Zn/N(z) 
- -i6j3z + i6j3z = a Ne ta e n- n 

+ i6~z - -i6~z 
= aN e + a e -n -n 

S(z) 

(3. A3) 

(3.A4) 

Substitute the assumed form of the solution (3. A4) into the wave 

equation (2. BS) and use the slowly varying approximation as before. 
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We drop the arguments in z for sin1plicity. 

{ - (l -2n/N) 2 /3 2 F + 2i(l -2n/N)[3 F' , } J(l -Zn/N)/3oz 
o 1-2/n/N o l-2n/N 

+ {- (l-2n/N)2/3; Bl-2n/N .• 2i(l-2n/N)l3oBl-2n/N}e-i(l-2n/N)/3oz 

2 
·f- k E: 7J {F i(l -2n/N)P z + B -i(l -2n/N)(30 z} 

2 l-2n/Ne O l-2n/Ne 

( n = -1, 0, 1, 2, •... ) 

which is analogous to (2. B9). Next,. for simplicity we limit the 

Fourier coefficients of the periodicity such that f = 0 for p -f. 1 . p 

(3. A5) 

(i.e. singly periodic media). Equate the coefficients of e ±i.(l -Zn/N)f3oz 

• 
ii . 

(3 • .A6) 
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1 

We define interaction as meaning the region in the (ke 2 , f3) plane near 

the intersection of two space harmonics. We again note that higher -

order interactions refer to interactions with frequency greater than 
1 

that of the fundamental Bragg frequency defined by k E: 2 /K = ½. Thus 

The each wave, F(z) 1 _2n/N and B(z) 1 _2n/N' defines an interaction. 

coupling diagram, Figure 3. 1, and the above set of coupled equations 

show that F 1 (z) and B 1 (z) are coupled through N intervening inter­

actions. Since each coupling is proportional to 17, the cross-coupling 

between F 1 (z) and B 1 (z) should be proportional ~o riN. The adjacent 

interactions to F 1 (z) and B 
1 

(z) contribute term.s of order ri
2 

to the 

phase mismatch and hence both the F(z)l±Z/N and B(z) 1±2 /N terms 

need to be retained to obtain correct self-coupling. The F(z) 1 +2 /N 

and B(z)
1

+2 /N term.s will not contribute to the cross-coupling except 

N+2 to order ri ~ This small contribution is ignored. 

To show the above statements mathematically, apply the 

slowly varying assumption and solve the inner N-1 and the outer 

two equations of (3.A6) to get all waves F(z) 1 _2n/N' S(z), B(z) 1 _2n/N 

(n = -1, +1, 2, 3, .•• ) in terms of F 
1 

(z) and B
1 

(z). The outer two equa-

tions can be solved trivially for F(z) 1+2 /N and B(z)l+Z/N" 

We begin by using matrix manipulations on the inner N-1 

equations of (3. A6) 

Fl-Z/N = det IIA!l/det llcll 

Bl-Z/N = <let [1611/det llcll I 
(3. A 7) 



XxXx--
~ ~ ~ 

81+2/N 81 81-2/N 81-4/N 

kV€ 
K 

~y71 "~ 

N/
2··XXXX 
~~~ 

Fl-4/N Fl-2/N FI F 1 +2/N 
..------- ~{31 K 

Fig~ 3~ 1 Coupling diagram at N
th 

order Bragg interaction. Dominant 

cross-coupling between F 1 and B
1 

is shown as well as self-coupling 

for ECW theory~ 

I 
w 
0:, 
I 
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where 

Cl C 

C c? 
L., 

C 0 

• 

\\c\\ = (3 . A8) . 
0 C CZ C 

C C 
1 

'A 
1 

C 

C c2 C 0 

\\A\\= . (3. A9) 

0 C CZ C 

AZ C C 
1 . 

Gl C 

C Cz C 0 

\\G\\ = (3.AJ.O) 

0 C Cz C 

GZ C Cl 

2 2 f3 2 G A k 2 F2 C = k e - (l-2n/N) 2 = 1 = - €T) 1 n 0 

C 
2 = T) k e /2 

2 2 
G 1 = A 2 = -k eriB 1 

Instead of solving (3. A 7) exactly, we approxirnate the deterrninants for 

T) << 1 when N ~ 2. Since C << C , we find 
n 

'2 ~:< 2 2 2 2 
<let \\ell """Tf' f (n) =rr [k € - (1-Zn/N) (30 ] (3.All) 



where -1-1 * £2 (n) = 
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(N-1)/2 

TT £
2 

(n) for N odd 
n=l 

N/2 

TT f(n) for N even 
n=l 

1 for N = 1 

Approximat_e detllAII and <let IIGlj in a similar rnanner. 

The solution for F(z)l-Z/N becomes 

(3.A.12) 

(3.Al3) 

(3.Al4) 

Near the Nth. Bragg interaction we approximate the free-space wave­

number by 

The expression for F(z)l-Z/N can be approximated by 

F(z)l -2 /N = 

Ex'i:end the above formulation to include the N=l case by 

introducing the symbol ~N. 

(2.Al 5) 
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N+l N-1 
-CN11NF

1
(z) (-1) (ri/2) B 1(z) 

F(z) = ----"'- + 
l-Z/N B(l-1/N) 11* {4n(n-N)/N2 }2 

where ,N = { 01 
N = 1 

N ~ 2 

Similarly for B(z)l-Z/N we find the analogous result, 

-C T)NB (z) (-l)N+l (r1/2)N-l F
1 

(z) 
N 1 + -------=-,~ 

8(1-1/N) lT*(4n(n-N)/N
2

}
2 B(z)l-2/N= 

(3.Al 6) 

(3.Al 7) 

The expressions for F(z\+2 /N and B(z) 1 +2 /N are trivially fotmd from 

(3. A6) under the stated approximations as 

F(z)l+2/N = 
-CN(rJ/2)F l (z) 

1-(1+2 /N/ -

CN17NF1 (z) 

8(1+1 /N) 

-CN(1']/2)B 1 (z) _ CN 11N B 1 (z) 

l-(1+2/N)2 - 8(1+1/N) 

(3. Al 8) 

(3.Al9) 

Expressions (3. A16-3. Al 9) are substituted into the following two 

equations from (3. A6) for F 
1 

(z) and B
1 

(z) 

2 
2 2 , -k e: 'IJ ) , 

(k e:-f3o )Fl (z) + 2i f3o Fl (z) = 2 (F(z,)1-2/N+F(z 1+2/N' 

Upon rearrangement the following extended coupled wave (ECW) 

equations are forrned. 

• . F 1' ( z) - i o N FI ( z) = i X N B l ( z) 

-B 1'(z)-i oN B 1 (z) = iXN F 1 (z) 

(3. A20) 

(3.A22) 

(3. A23) 



where 6N = 
2 /3 0 

(3. A24) 

= phase n1.isn1.atch 

= I 
-:< 2 2 Tf [ 4n(n-N)/N } 

(3. A25) 

= coupling coefficient 

N = Bragg order 

= nK/2 

The ECW equations agree in form with other work in diffraction 

h I h • t· 22, 68, 69 1 t·h • d. ·t . 1· 1 or o ograp 1c gra 1ngs w 1ere • e per10 1c1 .y 1s perpem.1cu ar 

to the propagation direction. However, this is the first time that 

analytic expressions have been derived for propagation in longitudinally 

varying media where the coupling, bandgap shift and bandgap width 

are given explicitly for all Bragg orders. 

Table 3. 1 presents num.erical factors found in the ECW equa­

tions for the first five Bragg orders. 

N 
,:< 2 2 rr [ 4n(n-N)/N • l g(N)= (4/N)(I-1/N) 1-C N(fl /2 / [N

2 
/ [2(N

2
-- l)] J • 

1 1 0 1 

2 2 
2 I 1 1 - - · (ri/2) 

3 

3 ( 8 /9) 2 8/9 1 9 2 -16 (ri/2) 

(3 I 4)
2 

3/4 
8 2 

4 1 --(ri/2) 
15 

5 (16/25/ 16/25 1 -~(ri/2>2 48 

Table 3. 1 Numerical values for factors 1n ECW equations. 
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2. ECW Dispersion Relations 

The dispersion relation is derived from the ECW equations 

as in the first order case. 

(3.A26) 

The following approximations may be made in the interaction region 

when !::. BN << K. 

(3. A2 7) 

(3.A28) 

where 
1 

L:ikN = k - j3 /e-2 
0 

l:ij3N = /3 - /3 0 

/30 = NK/2 

The N
th 

order dispersion relation is explicitly 

!::. /3 
N ----K 

(3. A29) 

Note that for real € and 'fl, the maximum imaginary part of L:i j3N/K 

occurs when cSN/K = O. This d efines the norm.alized coupling in terms 

of the bandgap behavior since, 



-44-

I Im{ 
613

KN}max I = l·XKNI = I 71 N • • N • I 
2N+Z Tr' [ 4n(n-N)/N2 }2 · 

(3 . A30) 

If o N/K = 0, then n1aximum coupling takes place at a wavenumber 
1 

that is displaced from the exact Bragg condition ke: a /K = N/2 for 

N :::: 2. This is referred to as bandgap shift (BGSN) and is defined by 

6k e; ½ C 'fl 2 N3 
BGS = N I = N (3. A3 l) 

N • K o = 0 3 2 (N2 - 1) 
N 

We note that this raises the Brillouin diagram and produces phase 

speeding 0(77
2

) as expected. The bandgap occurs whenever 

I 6N/K I < lxN/K I which causes 6/3N/K to become imaginary. The 

bandgap width (WN) is defined by 

N I * 2 2 • 
TT [ 4n(n-N) /N } 

(3. A32) 

Table 3. 2 summarizes some of the ECW results for the first 

five Bragg orders. 

N 

1 

2 

3 

4 

5 

Coupling Bandgap shift ; Bandgap • width 
';( /K 

N BGSN WN 

.!l. 0 .!l. 
8 4 

2 2 2 

-+ ..!L n_ 
12 4 

243 n3 
27 TI 2 

243 113 

2048 256 1024 

4 ~ ~ - ..!L 
9 15 

9 

1953125 n5 
125 !) 

2 
1953125 !] 

18874368 768 943 7184 

Table 3. 2 Summary of the main features of the ECW 
theory for the first five Bragg orders, 

5 
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We note the following points about the ECW theory: 

1. The ECW derivation is an intuitively based theory 

that gives explicit values for xN/K, oN/K, BGSN 

and W N for any Bragg order. 

2. The ECW theory predicts coupling coefficients that 

are proportional to (f)/2)N due to cross-coupling. 

This is expected because of the N interactions be­

tween F 
1 

(z) and B
1 

(z) where each interaction couples 

with strength Y)/2 to adjacent interactions. The sign 

of the coupling coefficient alternates with Bragg 

order. 

3. The ECW theory predicts that 1naximum coupling 

occurs not at exact Bragg resonance but at a shifted 

frequency instead. This shift is proportional to 

N ri 2 for N :?: 2 and is due to the self-coupling of 

F 
1 

(z) and B
1 

(z). This bandgap shift accounts for 

the phase speeding effect that was first found in the 

Floquet results. 

4. The bandgap width is proportional to (f)/2)N. Hence 

for large N, only a small range of frequencies will 

cause significant coupling between F 
1 

(z) and B
1 

(z). 

Also note that for large N, W N < 2 BGSN so that the 

longitudinal wavenurnber 13 may be real at exact Bragg 

resonance. Since bandgap width and coupling are 

proportional, it is impossible to attain large coupling 

and small band.gaps simultaneously. 
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5. A simple scaling rule exists such that if rJ and tkN e: 2 /K 

are reduced by the same factor, then t l3N/K will be 

reduced by the identical factor. Thus ECW results 

for large perturbation can be directly applied to other 

perturbations. 

The extension to sinusoidal perturbations is made in the same 

manner as in the first order theory. 

periodicities of the type ri
1 

cos(NKz) + ri
2 

sin(NKz). 

The relative magnitude of the waves F(z)l-Zn/N' S(z), 

B(z)l-Zn/N (n = 2, 3, ... N* /2) can be found from equation (3.A6) in 

the same manner that F(z)l-Z/N and B(z)l-Z/N were found, The 

rei;mlts are in terms Qf F 
1 

(z) and B
1 

(z) which are in turn related by 

the boundary conditions . We will not need these results now. 

B . Numerical Examples 

1. Second-Order Interaction 

The ECW approach uses the ten space harmonics shown in 

Fig . 3. 2 for N = 2. The explicit dispersion relation is 

= (3. Bl) 

and the phase mismatch and coupling are 

2 2 2 
k e: (1-rJ /6) - 13 0 

2 ~o 
= (3 . B2) 

Xz = 
2 2 

- k E:!] 
8 13 

0 

(3. B3) 

where = K 
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Fig. 3. 2 Coupling diagram which shows the ten relevant space 

harmonics that are used in the ECW theory for second­

order interactions. 
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Note the change in sign of the coupling coefficient from that 

of the first-order theory. The coupling is provided by S(z) and the 

bandgap shift is accounted for by B
2 

(z), S(z) and F 
2 

(a). Phase 

speeding is the result of the bandgap shift. 

Figure 3.3a,b,c shows a com.parison of the Floquet and ECW 

theories at the second Bragg order for fl= 1. 0, O. 1 and O. 05 respec­

tively. Although one would not e:,.,.'Pect the ECW theory to hold as fl ..... 1, 

Figure 3. 4 demonstrates the validity of the theory in this case. We 

note that for TJ = 1, the Floquet theory predicts a slightly larger 

bandgap than does the ECW theo1~y. However, in the practical case 

of fl ~ O. 1, the two theories become graphically indistinguishable. 

Table 3. 3 summarizes these results for second order Bragg inter­

actions. 

ECW Floquet 

fl=l.0 Tl = O. O fl=0.05 fl= 1 fl=O. 1 

Coupling . 125 . 00125 . 0003125 . 133 . 001:ZS 
x2 /K 

Bandgap Shift . 0833 . 000833 .000208 . 10 . 00080 
BGS2 

_ Bandga.p Width . 250 . 00250 . 00625 .26 . 0025 

w2 

Table 3. 3 Summary of ECW and Floquet dispersion 
relations at the second Bragg order interaction. 

ri= o. 0: 

. 000311 

. 00022 

. 00063 

Figures 3. 4 and 3. 5 show the effect of truncating the ECW 

and Floquet theories. In Figure 3. 4, the outern1ost space harmonics 

(<a 1-,a;) and (a_;,a_1) of Figure 3.2) are not used for .fl= 0.1. In 

this case the coupling between Fi and Bi i ::; given correctly since· the 
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Fig. 3. 4 The results of neglecting the effects of F 2 and B 2 
in the ECW theory at the second Bragg interaction~ 
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Fig. 3. 5 The effect of limiting space harm.onics in the Brillouin 

diagran1 using Floquet theory at the second Bragg • 

interaction. 
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cross-coupling is only dependent ori S. However, the bandgap shift 

is not given correctly since S, F 
2 

and B
2 

contribute terms of order 

ri
2 

to the self-coupling and bandgap shift. Figure 3. 5 shows the effect 

of limiting the space harrnonic s in the Floquet theory for '17 = I. 0. 

The upper curve has a greatly enlarged bandgap width for a 3X3 matrix 

which includes the space harmonics at, a1 and a_~. The lower curve 

adds the a: and a_~ space harmonics. The resulting 5X5 matrix 

produces results that are graphically indistinguishable from the l 9X 19 

matrix used for all other Floquet results. 

2. Third-Order Interaction 

The results are. similar to the N=2 case. The explicit dispersion 

relation is 

= (3. B4) 

and the phase mismatch and coupling are 

2 3 2 
k e ( 1 - 917 / 6 4) - f3 

63 
0 = 

2 f3 
0 

(3. B5) 

X3 = 8lk
2 

8 r/ 
1024 f3 

0 

(3. B6) 

where f30 = 3K/2 

Figure 3. 6a, b displays the results of ECW and .Floquet calcu­

lations for 17 = 1. 0, 0. 5 at the third B1·agg interaction. Note that for 

the first time the half width (=WN/2) is less than the 1?andgap shift 
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Fig. 5. 6 Brillouin diagram at third Bragg order for a) fl = 1. 0 and 

b) rt = o. 5 showing Floquet and ECW results. Imaginary l::.f3 /K values 

are the elliptical curves with separate scale. 
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(= BSGN) which causes the entire bandgap to be above the exact Bragg 

wavenumbero This effect becomes more pronounced with increasing 

order and decreasing perturbation since WN a: (ri/2f whereas 

BSGN a: (ri/2)
2

. Although the ECW theory does not approximate 

the Floquet theory for N = 3 as well as it does for N = 2. (compare 

Figures 3, 3a and 3. 6a), the ECW approximation improves as Tl 

decreases. This is an expected result since in the ECW theory all 

waves except F 
1 

and B
1 

are assumed to be slowly varying. However, 

as N increases, more of the waves contribute to the coupling between 

F 
1 

and B
1 

o Table 3o 4 summarizes the results of Figure 3. 6 . 

ECW Floquet 

Tl = 1 r1 = O. 5 Tl = 1 Tl = 0. 5 

Coupling . 1186 . 0149 . 136 
x3 /K 

Bandgap Shift . 105 .0264 • 16 
BGS

3 

Bandgap Width . 211 . 0297 . 27 

W3 

Table 3. 4 Summary of ECW and Floquet 
dispersion relations at the third Bragg 

order interaction. 

. 0155 

. 030 

. 033 

Figure 3. 7 shows the effect of increasing the matrix order 

that is used in the Hill's determinant for the Floquet <lisper sion rela­

tion (2 . . El). It is apparent that space harmonics of order n > 2N+l 

must be used to insure accuracy of the Floquet result. Graphs are 

shown for 7x7, 9X9 and l 7X 17 size matrices. As before, l 9X 19 size 

matrices have been used in the Floquet theory for other figures _in this 
section. 
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Fig. 3~ 7 The effect of limiting space harmonics in the Brillouin 

diagram using Floquet theory at the third Bragg interaction. 
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C. Multiharmonic Perturbations in ECW Theory 

Higher-order Bragg interactions are interactions in the region 
1 

of k e_2 /K ""'f3/K """N/2 where N::?: 2. However, there can be competing 

processes between different Fourier components, f cos (pKz), of 
p 

multiharmonic (i.e. p = 1, 2, 3, ... ) periodicities for N ': 2. In par-

ticular we may find passbands where bandgaps existed :i.n the singly 

periodic case. This latter fact has been of interest in solid-state 
• 65 

theory where the Saxon-Hunter theorem states that a forbidden level 

in an infinite lattice of pure type--A potentials and in a lattice of pure 

type-B potentials is also forbidden in any alloy containing bot·h type A 

and type B potentials. As applied to our problem, this theore1n im­

plies that bandgaps formed by two dielectric periodicities f(Kz) and 

f (Kz) are just the bandgaps caused by f(Kz) and f(I<z) separately. A 

65 66 . number of counter-examples • have been given to the Saxon-Hunter 

theorem. The ECW approach will show e:>..rplicitly the effect of multi­

harmonic periodicities upon the bandgap. 

The extension of the ECW theory is straightforward. However, 

the results for arbitrary multiharmonic periodicities becorne cumber­

some. Several special cases will illustrate the general theory. 

From the previous sections we know that the waves between 

F 
1 

(z) and B
1 

(z) are needed to couple energy from F 
1 

(z) to B 1 (z). We 

also know that the waves F(z\+2 /N and B(z) 1+2 /N have to be included 

to properly account for the bandgap shift. In addition, other waves 

that can couple significant energy between F 
1 

(z) and B 1 (z) or that 

couple F 
1 

(z) and B
1 

(z) to themselves have to be included. 
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Since the Fourier component [11 f cospK2 ] couples energy 
p 

between intersections, p intersections apart with strength approxi -

mately proportional to 17 f , then coupling diagrams will again help 
p 

to show the waves that should be included in the ECW theory. Figure 

3. 8 demonstrates son~e of the possible couplings for N = 2. 

3. 8: 

We list the possible couplings and strengths shown in Figure 

I. two first-order couplings Ct:: (ri.£
1

>2 ; 
2. o·ne second-order coupling cc 17 £

2 

3. one third- and one .first-order coupling cc(17 iif(rl £
3

); 

4. one third-, one second- and one first-order coupling 

5. o·ne fourth- and one second-order coupling cc(ri f 
4

)(17 £
2

); 

6. one fourth- and two first-order couplings cc (17 f 
4

)(17 f
1 

)~ 

The mathen~atical solution consists of writing a set of equa-

tions analogous to (3. A6) where the right hand terms are augmented 

by all of the possible couplings by each Fourier component of the 

periodicity, f . 
p 

th 
N Order Bragg Interaction with f i and fN 

Consider the periodicity 1nade up of Fourier components 

[ J fu 
17f1 cosKz + 17 fN cosNKz at the N Bragg order. We assume the 

non-trivial case where O[.{ri\,)N] ~ O(rifN) so that contributions to the 

cross - coupling from the two Fourier components are of the same 

order. The major bandgap shift is given by terms O[ (rif 
1 

)
2

]. Figure 

3. 9 is the coupling diagram ~hich shows the important space har­

monics and couplings that, are used in this case. 
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Fig. 3. 8 Coupling diagram that shows several of the possible 

cross -couplings frorn F 
1 

to B 
1 

and self-couplings 

for F 
1 

when N = 2" The approximate magnitude of 

the coupling strangths are shown. 
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Since the coupling Tj fN only affects the equations for F 
1 

(z) 

and B 1 (z) and the coupling Tj £
1 

is used to couple F 
1 

(z) to B
1 

(z) as 

well as the coupling F 1(z) _, F(z)l-Z/N _, F 1(z) and F 1(z)->F(z\+z/N 

-+ F 1 (z), we can write by inspection from Figure 3. 9 and equation 

(3.A6), 

(3.Cl) 

The only difference from the previous coupled equations (3. A6) is the 

change of notation Tj _, Tj.f 1 and the addition of the f) fN B 
1 

and Tj fN F 
1 

terms. It is apparent from the N+3 coupled equations (3. Cl) that the 

bandgap shift will be due to Tjf 
1 

as before but that the coupling co­

efficient will be the algebraic sum of terms involving Tjf 1 and· TjfN. 

Solve the coupled equations as before to find 

I 

- B 1(z)-i oN B 1(z) = iXN F 1(z) 

6 N = 
k

2
e{l-CN(f)fl/2)

2
[ ,N

2
/2(N

2
-I)J}- 13; 

2/3 
0 

(3. CZ) 

(3. C3) 

(3 .C4) 
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k2e: [ T']fN + 
2 j3 2 

0 

(3. C6) 

Table 3. 2 may be used to find the appropriate bandgap shift. The 

effective coupling coefficient is found by adding the values for x
1 

and 

XN• Hence the results in equations (3. C2-3. C6) could be written 

down by inspection. 

An interesting case arises when XN = O. For example at the 

second Bragg order, x2 = 0 implies 

(3. C7) 

which occurs when 17 f
2 

= (17 f 
1 

)2 /2. Here the bandgap disappears but 

the phase speeding effect is still given by the (T'] f 1 )
2 

/ 12 term in (3. C7). 

It is interesting to note that a periodic medium does not necessarily 

have bandgaps but it will still have the phase speeding property. 

In practical cases, if the effects of T']f 
1 

and 'rJfN cancel each other, 

other periodicities in the media may still cause bandgaps. 

Figure 3. 10a, b shows the ECW and Floquet results for 

2 ± Tl f
2 

= (17 f
1

) /2 = 1/4 at the second Bragg order. In the first case 

the effects of 17 f 
1 

and Tl f 2 cancel, and the ECW theory predicts no 

bandgap. The Floquet theory shows a greatly diminished bandgap 

with a coupling coefficient x
2 

/K = O. 00568. The Floquet theory 

bandgap can be reduced by an order of magnitude, and perhaps more 

2 • 2 
by slightly adjusting the ratio f

2 
/17f 

1 
away from f 2 /17 f 1 = O. 5. For 
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Fig. 3. 10 Brillouin diagra1n at second Bragg order for a) 'J1f1 = Jo.s, 

r,£
2 

= O. 25 and b} ri£
1 

= ,Jo:s, 11£2 = -0, 25 showing ECW and 

Floquet results for multiharmonic periodicities. Imaginary 

6[3/K values are the elliptical curves with separc1.te scale. 

Note the dependence of the bandgap upon the s_ign of ri£2• 
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2 
f 2 /nf

1 
= O. 55, x2 /K < O. 0002. The second case shows the large 

bandgap that occurs when the effect of 11£
1 

and 'rJ f
2 

is additive. 

The vanishing of the bandgap is due to the relative phasing 

off 1 and fN and is therefore dependent upon the symmetry of the 

periodicity. Analogous effects have been noted in the electronic 

stopbands of crystals 6 5, 86 and in stability diagrams of transverse 

magnetic (TM} wave propagation in periodic dielectrics. 57 

2. Fourth-Order Bragg Interaction with f1, f2 and f4 

In the preceding case, the resulting coupling coefficient was 

a direct sum of the coupling coefficients of the two Fourier compo­

nents. This is not always the case. To illustrate, consider a fourth­

order Bragg interaction where O(T] f 
1 

)
4 ~ O(T] f 2)

2 ~ O(T] f
4

}. That is, 

the Fourier com.ponents rif1, nf2 and ri£4 contribute values of the 

same order of magnitude (i.e. O(T] f
4

)) to the cross-coupling. The 

details of possible couplings and the relevant space harmonics are 

shown in the coupling diagram of Figure 3. 11. Weaker couplings 

such as those proportional to (T] f
1 

}
4

ri f2 have been neglected. 

From Figure 3. 11 and equation (3.A6) we write by inspection 

the following coupled equations. 



k{E 
K 

~;TJf1,;---TJf2\ 
~ ;--- .,.h ;"', 

,. :rl1~n 0rr.,,t1\(.,,t1 \ 
83/2-¾.-B, ~1/2-X- - -~F112*-..·F1*_F3/2 

-5 -4/ -3/ -£ ?f O '( 2 "3 4 '5 ►/3! K 
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2 2 . I -k2E: Tl 
(k E: - 9/4 J3

0
)F¾ + 31/3

0
F¾ = 2 (f1F1) 

(k2"' 1. 2) • B I " - °4 /3 B 1 - 1/3 1 
0 2 0 2 

2 2 I 
(k E:- 9/4 A )B3-3iA B3 

r--o z r--o z 

2 
= -k2E:!] [fl(Ffl-F¾)+f2S+f4Bl] 

(3. C8) 

where the arguments with respect to z have been dropped. Solve the 

coupled equations as before to find 

(3. C9) 

(3. ClO) 

(3. Cll) 

16 [ l.!l:. _!L 2 2l 3 J 
B ½ = 9 F 1 16 f 1 £2 - 8 f 1 £2 - 8 f 1 

(3. Cl2) 

(3. Cl3) 
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These values are substituted into the equations for F 
1 

(z) and Bl (z) 

in (3. CS) to find the coupled equations for F 
1 

(z) and B
1 
(z). The 

resulting values for 6 
4 

and x4. are 

k2e [1-~ f2] - /32 
· 15 1 o = (3. Cl4) 

(3. C15) 

where j3
0 

= 2K and where smaller order terms are neglected. 

As expected, the above expressions reduce to the first-order 

case if f1 = f 2 = 0, to the second-order case if £1 = f
4 

= 0, and the 

fourth-order case if f2 = f 4 = O. However, the presence of the mixed 

2 
term f 

1 
f
2 

means that the above results cannot be obtained from 

simple superposition of the terms from each component. As in the 

previous case, a proper choice of f
1

, f
2

, and f
4 

would allow us to 

eliminate the bandgap. 

The different terms in the expression of x
4 

can be easily ex­

plained as shown in Fig. 3.11. There are four possible ways to 

achieve a fourth-order coupling with the three Fourier co1nponents 

f
1

, f
2

, and £
4

. These are: 

I. four couplings through f
1

; 

2. , a .ny combination of one coupling through f2 and two 

couplings through f 
1 

; 

3. one coupling through f 
4

• 

The1if
2 

term in equation (3. Cl4) has a large numerical co­

efficient because this coupling can occur in three different ways. 
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I 

/ 
/ 

0. 0311 

77f1 = 0.5 
17 f2 = 0. 2 
77f 4 = 0. 1 

f3olK = 2.0 

-0. 06 -0. 04 -0. 02 0 0. 02 0. 04 0. 06 0. 08 
~/j 
K 

Fig. 3. 12 Brillouin diagram at fourth Bragg order when ,i£1 = O. 5, 

ri£
2 

= o. 2, and ri£4 = o. 1 showing ECW and Floquet results. Imaginary 

!':,.f, /K values are the elliptical curves with separate scale. 
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Fig. 3. 12 compares the ECW and the Floquet solution for 

the values 17f1 = 0. 5, rif2 = 0. 2 and rif
4 

= 0. 05. Note the close 

approximation of the ECW theory to the Floquet solution at the 

fourth Bragg order with several har1nonic periodicities even when 

the perturbation is relatively large. 

D. Comments on ECW Theory 

The predictive abilities of the ECW tb.eory have been sum­

marized at the end of Section A. The nurnerical examples dem.onstrate 

the accuracy of the ECW theory at higher Bragg orders and for 

rnultiharmonic periodicities. The ECW theory is particularly attrac­

tive for small perturbations where the Floquet theory is cumbersome 

and time consuming. This is relevant to present optical applications 

-3 where often 17 ~ 10 . 

The extension to higher Bragg orders opens up the possibility 

of using the many first-order results of the literature at higher Bragg 

orders by the use of the proper oN and ~• Several extensions of 

this nature will be made in a later chapter. 

Two interesting results have been explained in this chapter. 

Firs1; the phase speeding effect was observed to be a result of self­

coupling and occurs regardless of the value of the higher frequency 

Fourier components f . p 
Second, the disappearing bandgaps were 

explained through simple interference effects of different periodicity 

frequencies. This opens up the possibility of controlli1;1g feedback 

through the relative phases of two harmonics since feedback or 

coupling strength is directly proportional to bandgap width. 
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It is anticipated that a similar analysis could be applied to 

bounded media~ space-time periodic media and active media. The 

latter case will be covered in detail in the next two chapters. 

Parts of this chapter have been summarized elsewhere 
53 

and 

the results have been confirmed through calculations that use the 
I 

method of multiple scales . 95 
, 
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CHAPTER IV 

COMPLEX PERIODIC MEDIA 

Although the study of wave propagation in periodic structures 

has been a popular subject since late last century, most of the 

analytical studies have dealt with simple {passive and lossless) 

. 23 30 58 periodic media. The recent development of DFB lasers ' • 

has extended the applicability of periodic structures to the case of 

com.plex {e: = e: + ie:., T] = T] + iT].) periodic media. In their analysis r 1 r 1 

of DFB lasers Kogelnik and-Shank
23 

briefly discuss the Brillouin 

diagram near the first-order Bragg interaction when the gain co-

efficient is modulated. 25 58 Using Floquet theory, Wang ' presents 

a rnore detailed analysis of the first-order Brillouin diagram for 

active periodic media. Higher-order 71 and multiply-resonant ?O 

DFB lasers have been mentioned very recently in the literature. 

In this chapter we investigate in detail both the ECW and the 

Floquet theory for complex media at the first few Bragg orders. 

Analogous results will hold for higher even and odd orders. In section 

A we use the exact Floquet solution t:o plot the Brillouin diagram. for 

several values of the perturbation and average d:i.electric constant. 

In section B we use the approximate but sim.ple ECW solution to 

study in detail the changes in the Brillouin diagram for the first 

three Bragg orders in singly periodic media. A short discussion 

of multiharmonic periodicities is given in section C, and section D 

summarizes the results of the chapter. 

As in the previous chapter, some of the parameters in the 

numerical examples will be larger than those that might be _ 
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experimentally obtained. However, this exaggeration is again used 

to dramatize the periodicity effects. The ECW examples are easily 

scaled for other values of gain/loss and perturbation. 

A. • Floguet Solution 

We consider the case of a TEM wave propagating along the 

z axis in an unbounded medium with a periodically modulated dielectric 

constant: 

where 

and 

E:{z) = E: + ie. + E: ~('ll +iri.) f cospKz 
r 1 rp r 1p p 

E: = Re[e} E:. = Im[e} 
r 1 

'llr = Re[ri} '1'1· = Im[ ri} 
1 

f 0 = o, f 1 = 1, and I'll fl:;;;1,lri-fl:;;;1 
rp p lp p 

( 4. Al) 

for 

p=l,2,3, .... Index coupling will refer to the case where ri. = 0 
1 

and gain/loss coupling will refer to the case where ri = O. Note 
r 

that gain (loss) media implies E:. < 0 {E:. > 0) for e -iwt excitation. 
1 1 

The Hill's determinant equation 

(4. A2) 

of chapter Il still holds with minor changes in the matrix elements 

6 : 
pn 1 

2 
- k e 

2K2 k2 p - E: 

p=n 

,,, f E: 
'

1 In-pl r 
2 E: 

p,:Jn 

These elements make up the Hill's determinant 6(0) ·= <let II t.ll. 

(4. A3) 
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Several examples of the Floquet solution for singly periodic 

media are given in the Brillouin diagram Figure 4. I for real fre­

quencies. The example for simple periodic media (real E: and r,) was 

found in chapter III and is given in curve 1 of Figure 4. la. There 

are two main characteristics. First, note the presence of bandgaps 

in frequency where (3 becomes complex. These are known as non.­

inverting bandgaps. Second, note the phase speeding that is a result 

of upward bandgap shift. 

The Brillouin diagram changes drastically for gain or loss 

coupling where the perturbation is imaginary. In curve 2 of Figure 

4. la we plotted the case for real frequency where E: = E: and ri = irJ .. r l 

This corresponds to media with successive amplifying and lossy 

layers while the average gain (or loss) is zero. Note the inverting 

bandgaps (i . e. bandgaps in longitudinal wavenumber) at odd Bragg 

-
orders . The pattern of non-inverting and inverting bandgaps alternate 

with Bragg order. However, bandgaps of both types are shifted 

toward lower frequency. This latter effect can be understood from 

the average velocity which was given by 

(v) = (4. A4) 

for Ir, I < 1. It is !3-pparent that phase speeding (positive bandgap 

shift) occurs for ri = ri and phase slowing (negative bandgap shift) r 

occurs for ri = irJ.. This also follows naturally from the definition 
l 

of BGSN that was given in the previous chapter (3 . A3 If. 
Let us now consider the case of complex media where only 

the real part of the dielectric constant is sinusoidally perturbed 
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0~----;:-'-;:-------:-'~----,-1-----c:,-1,-,---!,--=-1,-,---l..---1--_J 
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0"'--------::-'-:-------:-''-::-------'--------L----"--L----1.-_.1...-~ 
0. 5 1.0 1.5 2.0 . 0 ±0.05±0.10±0._15 

~{f} ~{¾} 
Fig. 4~ 1 Brillouin diagram for first three Bragg orders using Floquet 

theory and real frequency using: a) index coupling (c_urve 1) and V,ain/ 

loss coupling (curve 2) when e. fr: = O; b) similar results for finite 
1 r . 

ei /er • The light dashed lines are the unperturbed values ('1"1=0) . 
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but average gain or loss is present (i.e. e: = e: + ie:., 17 = T\ ). The r 1 r 

corresponding Brillouin diagram for real frequency is shown in 

curve I of Figure 4. lb. For e:. -:J. 0, we observe that Re[f3/K} is no 
l 

longer a constant across the Bragg region and the effective spatial 

. 25 76 gain or loss increases appreciably near the Bragg frequencies. ' 

The unperturbed value ('1"]=0) is shown by the light dashed lines. 

When the gain or loss is sinusoidally perturbed, the spatial 

gain or loss diminishes near the odd-order Bragg resonances and is 

enhanced near the even-order resonances. This case is illustrated 

in curve 2 of Fig. 4. lb where there is an average imaginary dielectric 

constant and imaginary perturbation. Again the light dashed lines 

represent the unperturbed values: 

We see that the spatial gain can be either enhanced or 

diminished near Bragg resonances. This behavior depends upon 

Bragg order and perturbation or coupling type. 
l 

The sign of Im[f3/K} and Im[k e:;/I-<} (not shown) have not 

been specified because the correct root of the dispersion relation is 

dependent upon the stability of the wave. For passive m .edia, e:. > 0 
l 

and the correct signs are chosen to indicate spatially and temporally 

decaying waves since no sources are present. Hence, the media 

does not support instabilities. However, instabilities may arise 

in active periodic media where €. < 0 for some (or all) z. In this 
l 

case an analysis of wavepackets in the periodic medium must be 

made. 73 This case is taken up in the following chapter. For the 

present we will only examine monochromatic waves and will not 

specify the correct sign of the dispersion relation roots. 
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B. ECW Theory for Complex Media 

1. Analytic Expressions . 

Since we again assum.e a solution to the wave equation of the 

form 

E(z) 
N*/z 

= ~ [F(z) 
2 

/N exp[i(l-2n/N)!3 z] 
n=-1 1- n o 

+ B(z)l -Zn/N exp[-i(l -2n/N)!3 
0
z] + (~) S(z)] (4.Bl) 

where the symbols have the same meaning as in chapter III. This 

implies that the gain/loss and the perturbation of the 1nedia are 

small. Hence for a singly periodic effective dielectric constant 

E: (z) = E: +iE:. + E: (f] + ir, . ) cosKz 
r 1 r r 1 

(4.B2) 

we assume 

lri I. lri. I, le.le I<< 1 r 1 1 r 

However, as in the case of simple n,edia, we might expect the ECW 

dispersion relations to be a good approximation to the Floquet results 

even as 

I ri I. lri. I . I e. 1 e l -- 1 • r 1 1 r 

Following the identical analysis that led to the ECW expressions 

(3. A20-3. A25) we find immediately that for the N
th 

Bragg order 

2 
kze (l+it;./e ){1-cNC(ri Hri.)/2J2 [ 1'1 l}-132 

r 1 r r 1 lz(N -d· o 

2 130 
(4. B3) 
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1 

TT* 2 2 [ 4n(n-N) /N } 
(4. B4) 

where 13 
0 

= NK/2. Note that the coupling coefficient XN is not 

affected by 8.. The dispersion relation as before is 
l 

= (4. B5) 

2. First-Order Interactions 

At the fir st order Bragg interaction we have the approximate 

expressions 

61 
K 

Xl 
K 

which give 

(~f 
K ; = 

where 

tik1 = 

I 

6k 8 2 i 8. 1 r 
+ l ~ 48 K r 

17r + i 17. 
1 

~ 8 

I 

L\ k 8 2 
i r 
K 

I 

k - 13 /8 2 
o r 

( 
8. )2 
4; + i 

r 

17 2 - 17.2 r 1 

64 

(4. B6) 

(4.B7) 

I 

( 
.6k1 8;) _l 

K 28 
r 

i 17 17. r 1 

32 
( 4. B8) 

Note that at the first Bragg order, 8. only affects the phase mismatch 
1 

6
1

, and 17i only affects the coupling x1. For index coupling, the 

maxim.um value of Im[ti13 1 /K} occurs exactly at Bragg resonance 
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l 

L'ik
1 

•• e; /K = O. The value is 

I {6/\ 1 
Im Kf 

max 
= I c e/ + ri/ J½ I 
~ 64 

r 

Hence, near Bragg resonance, the effect of spatial gain or loss and 

the perturbation add as the sum of their squares £or index coupling. 

This enhancement of spatial gain or loss has been observed in the 

Floquet solution of Figure 4. 1 b and is shown in Figure 4. 2a £or the 

ECW solution for several values of e. le when 'l'1 ::2 O. 1. Far fro1n 
l r 'I 

the Bragg resonance Im.[6[3
1 

/K} = ± o
1 

/K, the unperturbed value. 
1 

The temporal gain or loss, Im[L'ik1 e; /K}. remains constant across 

the bandgap with value e. I 4e . 
i r 

2 
For gain or loss coupling, x

1 
changes sign and therefore 

6f3
1 

/K is real if E\ = O. This produces an inverted bandgap as shown 

in the previous Floquet results. The ECW results are shown in 

Figure 4. 2b £or several values of e. I e when T] = i O. 1. Two classes 
l r 

of behavior appear that depend upon the sign of 

A= [le.le I -lri./21]. 
l r 1 

2 2 .!. 
For A< 0, a bandgap of width 2[fl. /64 - e. /(4e )]2 appears in 

l l r 

Re[ti13
1 

/K}, and Im[lif3
1 

/K} = 0 at Bragg resonance. The two roots 
1 

of Iin[L'ik
1 

e; /K} are of opposite sign. For A> 0, there is no band-

gap and the gain or loss coupling diminishes the average spatial 

gain .or loss near Bragg resonance. This is due to the £act that the 

coefficients of 11~ and e~ have opposite sign in (4. B8). In this case, 
1 l. 

l 

the two roots of Im[tik1 e; /K} are of the same sign. 

Thus, the effect of finite E:. can either enhance ('ll = 'l1 ) or 
l r 

reduce (11 = i 'lli) the effective spatial gain or loss near the first Bragg 
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Fig. 4. 2 Brillouin diagrarn at fir st Bragg 

order using: a) index coupling; b) gain/loss 

coupling; and c), d) both couplings in the ECW 

theory. 
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resonance. For both cases of coupling, increased €. /e: tends to 
l r 

mask the effect of the coupling or perturbation. 

Figures 4. 2c, d show the effect of having complex coupling 

(17 = 17 ti 17.) in a media with no average gain or loss. As the ratio r l 

17. /17 is increased, the bandgap region changes from the shape 
l r 

typical of index coupling to the shape typical of gain or loss coupling 
1 

for Re[t.f3
1

/.K} and Re[t.k
1
e;/K}. The values of Im[t.f3

1
/K} and 

1 

Im [ 6k1 E:; /K} t .end to peak in the Bragg interaction region. 

3. Second-Order Interaction 

The second-order Bragg interaction and all even-order inter­

actions produce very different <lisper sion relations from those of 

the first-order for gain or loss coupling. This was seen in the 

Floquet results of Figure 4. 1. The change is due to the t·erm (i 17. /N 
l 

in the dispersion relation which takes on different signs depending 

upon the oddness or evenness of N. In the second-order Bragg region, 

the approximate relations are 
1 

(17 ti 17. )
2 

(17 +if).>2] 62 6k e: 2 
i E:. ~ 2 r r l t--1 1 r l 

K 
-::::=. 

K 12 2 8 - 6 
r 

(4. B9) 

Xz (17 ti 17./ r l ~ - 8 K (4.BI0) 
1 

where 6k =k-f3 /e z (3 = K. 
2 0 r 0 

Note that the perturbation affects not only the coupling x2, 

but also the phase mismatch o2. In fact, 'I') now acts to. modify the 

gain or loss from e. I (2 e; ) to the effective value e. (l-ri2 /6)/(2e: ). 
1 r 1 r 

The Brillouin diagram ·£or the case of index coupling is shown 

in Figure 4. 3a for various values of e:i/ E:r with 17 = O. 1. The result 
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is similar to the first-order case with the exception of the bandgap 

shift. Again, at the center of the bandgap, the effective gain or loss 

and the perturbation add as the sum of their squares. The spatial 

gain or loss is greatly enhanced near Bragg resonance when 

I 8. le I << I 111 2 
whereas the temporal gain or loss remains constant. 

l r 

In the case of gain or loss coupling, a difference occurs since 

x2 
is proportional to '11

4 
in (4. B 10) and the band gap shift changes sign 

which causes the Brillouin diagram to be a mirror image of the index 

coupling case about the axis o2 /K = O. That is, at the second Bragg 

order, the difference between index and gain or loss coupling is a 

matter only of positive or negative bandgap shift. This is demon­

strated in Figure 4. 3b for '11 = i O. 1 and several values of 8. / 8 • 
l r 

This dependence of the phase mismatch upon ri
2 

accounts for the 

phase speeding and slowing effects shown by previous Floquet re­

sults. The temporal gain or loss is constant as in the index coupling 

case. 
1 

Figures 4.3c,dare similar n-tlrror images about Re[6kz8J/K} = 0 

for 8. /8 = 0 and various ratios fl. /fl . The symmetry is expected 
1 r 1 r 

since fl always enters as an even power in the dispersion relation. 
1 

From (4.B9-10) it is evident that Im[613 2 /K} = 0 at Lk2 8;"/K = 0 

only when I fl. I = I fl I. This corresponds to curve 5 and is similar 
l r 

in shape to the gain or loss coupling Brillouin diagram at the first 
1 

Bragg order. For Im[6k
2 

e 2 /K} = .± · ,n -n. /12 Im[Lf3
2
/K} = 0 for 

r 'Ir ·11 • 

fl ~ fl.. Thus for co1nplex coupling, the perturbation will mask the 
r l 

spatial gain or loss for some frequency near Bragg resonance, while 

a large spatial gain or loss will occur for nearby frequencies. In 
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Fig. 4. 3 Brillouin diagrarn at second Bragg 

order using: a) index coupling; b) gain/loss 

coupling; and c}, d) both couplings in the ECW 

theory. 
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all cases of both index and gain or loss coupling, the temporal gain 

or loss is peaked in the vicinity of Bragg resonance. 

4. Third-Order Interaction 

From the structure of the dispersion relation it is apparent 

that odd Bragg order interactions will exhibit similar Brillouin 

diagrams for index and gain or loss coupling. To exemplify this, 

consider the third Bragg order approximate parameters, 

1 

03 L.\k fl -i 
27 ( E\ )( . )2 

i 38. 3 r l 

K 
~ K - 2 5 6 1 + € f]r +i f]i - :re- (4. Bl l) 

r r 

X3 243 
(ri +iri.)

3 ~ 2048 K r l 
(4.B12) 

1 

where L\k3 = k - f3 /e 2 
o r 

f3 0 = 3 K/2 

Figure 4. 4a, b de1nonstrates the dispersion characteristics 

for index and gain or loss coupling respectively. Except for the 

bandgap shift, the results are nearly identical to the first-order case. 

That is, the perturbation and gain or loss add at the center of the 

bandgap to enhance the spatial gain or loss for index coupling. In 

the case of gain or loss coupling the Brillouin diagram exhibits two 

distinct behaviors which depend upon strength of the gain or loss 

relative to the perturbation. For small average loss or gain, the 

effective spatial loss or gain is zero at the bandgap center. 

The case of both index and gain or loss coupling is shown in 

Figure 4.4c, d. In all third-order cases, the temporal gain or loss 

is peaked in the Bragg region just as for the first-order case. 
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Fig. 4. 4 Brillouin diagra1n at third Bragg 

order using: a) index coupling, b) gain/loss 

coupling and c /, d) both couplings in the ECW 

theory. 
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C. Multiharmonic Periodicities 

Recent experimental work in higher-order DFB lasers 
41

• 
71 

and in multiply-periodic DFB lasers
70 

make the results of multi­

harmonic ECW theorytimely. As in the passive-lossless case, ECW 

theory cannot give explicit dispersion relations for arbitrary Bragg 

order N, since the number of significant Fourier components (f ) 
p 

have to be specified. However, the extension is straightforward, 

although laborious, for any spe cific case. 

Consider the case where f 1 and fN are the significant Fourier 

components of the periodicity and 

(4.Cl) 

where 

Following the derivation of the previous chapter we find the slightly 

modified ECW equations: 

(4.C2) 

where 

(4. C 3) 

I 

TT* 2}2 ( 4n(n-N)/N 

( 4. C4) 
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The resulting dispersion relation is 

(6N)2 . _ 
\ K (4. C5) 

By varying the phase between the Fourier components, XN can be 

varied while 6N remains constant. This allows control of the coupling 

l + - .!. and bandgap width [= 2 (XN XN ) 2 J without change in the bandgap 

shift. 

For N = 2, the explicit dispersion relation is 

(4. C6) 

Figure 4. 5 shows two examples of multiharrnonic Brillouin diagram.s 

at the second Bragg order. In Figure 4. 5a, the index coupling case 

2 
is shown when (71 1 f 1 ) /2 = 172 f2 = O. 1 and E\ = O. The bandga.p width 

and Im[llf3 2 /K} both vary as sin(8/2). Figure 4. 5b represents max 

the case of index coupling ·with spatial wavenumber K and gain/loss 

coupling with wavenumber 2K. The result shows not only the 

Re [ 6[3 2 /K} typical of gain/loss coupling, but also the effective 

gain/loss typical of index coupling. In both cases shown, 
1 

Im[li~e; /K} = 0 for Re[6f3/KJ. The results for lossy media are 

similar if (e/er/ << x2+ x2- /K
2

• 

D. Com.ments on Complex Periodic Media 

The extension of chapter III results t c complex media has 

been mathematically straightforward for both the Floquet and the 

ECW results. However, interesting new features appeared in this 
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chapter: 

1. Even and odd Bragg orders produce non-inverting 

and inverting bandgaps, respectively., for gain/loss 

coupling. Index coupling always produces the usual 

non-inverting bandgaps. 

2. Phase speeding and positive bandgap shifts are pro­

duced by index coupling while gain/loss coupling 

produces phase slowing and negative bandgap shifts. 

3. The average effective spatial gain or loss (i.e. 

Im [llf3N/K}) is significantly enhanced or diminished 

near Bragg resonance whenever le./e l<lrilN. En-
1 r 

hancement or reduction depends upon coupling type 

and Bragg order. 
I 

4. Temporal gain/loss (i.e. Im[lll~ e//K}) is either 

constant or is peaked at the bandgap center. 

5. Multiharmonic periodicities offer great flexibility 

in changing the bandgap shape through phase and 

coupling variationso If the Fourier components f p 

are dynamically generated, this opens the po:ssibility 

of quickly controlling the feedback strength in DFB 

lasers or filters. Possible applications are in the 

areas of microwave and optical filters, switches 

and modulators. 

In this chapter, Floquet and ECW results were not directly 

compared because little or no graphical differences appear whenever 
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for the first few Bragg orders. The accuracy of the ECW results is 

sin1ilar to that of the passive-lossless case. The only notable differ­

ence occurred in the first order gain/loss coupling case where the 

ECW results predict Im[613 1 /K} = 0 at exact Bragg resonance. The 

Floquet result gives a small but finite value here for Im[6!3 . /K}. 
l 

Portions of this chapter have been summarized elsewhere. 96 
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CHAPTER V 

STABILITY OF BRAGG INTERACTIONS 

IN ACTIVE PERIODIC MEDIA 

The problem of wave stability was briefly mentioned in the 

previous chapter with regard to choosing the correct root of the 

dispersion relation for the frequency and longitudinal wavenumber. 

It is evident that the preceding monochromatic plane wave analysis 

is inadequate to predict the correct spatial a n d temporal behavior 

of waves in periodic media in all but the simplest (passive and loss -

less) cases. Our purpose is to forrn.ulate the stability problem in 

such a way that the preceding ECW equations can unam.biguously 

define wave characteristics. 

The problem of wave stability was greatly clarified through 

the original work of Sturrock 
72 

which provided a method for distin­

guishing between growing waves (unstable media) and decaying waves 

(stable media) through the dispersion relation. Sturrock further 

divided unstable media into convectively unstable and absolutely un­

stable media. The former referred to waves which grew and then 

decayed at a given point in space like waves in traveling-wave ampli­

fiers. The latter referred to waves which grow everywhere in space 

as those waves found in backward wave oscillators. This work was 

extended by Briggs 7 3 and was formulated as a mathematical pre -

scription which unambiguously classified waves according to their 

stability. A large number of electron-stream interactions demon­

strated the usefulness of Briggs I method in plasma physics. The 
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stability criterion was again extended to include time -varying media 

by Cassedy
56 

who examined the stability of parametric interactions 

due to space -time periodicities. 

In this chapter, the stability of time -independent active 

periodic media is studied at the first- and higher-order Bragg reso­

nances. The stability classification depends only upon the dispersion 

relation or the Brillouin diagram and hence the ECW theory of the 

previous two chapters will be used. We will follow the procedure 

suggested by Briggs. This requires the formulation of the field 

response as a function of a source, localized in space and time. 

In section A the ECW equations are developed with sources 

present and the stability criterion is stated~ The application of 

the criterion to the fir st two Bragg resonances is carried out in 

detail in section B. These resonances are the archetypes for all 

odd- and even-order Bragg interactions. Explicit values for insta­

bility threshold, frequency and growth rate are given. Section C 

contains a brief explanation of the effects of complex coupling (i.e. 

17 = 'l1 + i '!7.) and multiharmonic periodicities upon instability param-
r l 

eters. A short discussion of the results is given in section D. 

A. ECW Equations with Source~ 

We carry out the usual manipulations with the Maxwell equa -

tions that include a current density source J(z). The resulting in­

homogeneous wave equation67 for a TEM wave in longitudinally 

periodic media is 



where f E(z, W) 1 
l J (z. w) J = 

-94-

f {E(z, t)} eiwt dt 
. J(z,t) 

-oo 

e(z) = e- +ie. + E: 6(T] +iT].) f cospKz 
r 1 r p r 1p p 

(5. Al) 

Assume that E(z) is made up of the N+3 waves F(z)l+Zn/N' F 1(z), ••• , 

B 1 (z), B(z)l+Zn/N that are used in the ECW formulation. We then 

find the following N+3 ECW equations for singly periodic media at 

th 
the N Bragg order. 

2 2 
[k E: - f3 ]B o 1 

2 
-k E:TJ B . J- iO +2/N)f3 z = -2- 1-iwµo 1+2/N e 0 

(5. A2) 

where the arguments with respect to z and t have been dropped and 

the primes denote differentiation with respect to z. The current 

± 
densities J (z)l.-2n/N are the portions of J(z) which are in phase 

synchronism with the rest of the equation. We accomplish this by 

truncation in wavenumber space such that 

± ~] 
J 

2 1
_Jf3-(l-2n/N)f3 )=J(f3T(l-2n/N)f3 )rect[[l3:i:(l-2n/N)f3 ]/6(3 

1- n N' + o T o o 
(5. A3) 

(n = -1, 0, 1, 2, ... ) 
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where 

J (13) = 
00 ·R 

-li---Z J J(z)e dz 
-oo 

G 113 I < ½ 
rect(l3) = 

I 13 I > .!. 
2 

,., 
L'i 13 << 130 

As we shall see, the exact truncation details are unimportant since 

the current will only contribute to the field at wavenumber 13 = 13 • 
0 

Since we are particularly i_nter ested in the waves F 
1 

(z) and B 1 (z), 

assume that the current is slowly varying in wavenumber over the 

N+3 significant waves. Thus, we consider only the current con.tribu-

+ 
hons J 1 (z) and J 1-(z) and ignore current contributions O('Y']). Using the 

above approximation and the other usual ECW approximations we find 

the coupled equations, 

These equations can be solved by taking Fourier transforms with 

respect to z and solving for F 
1 

(L'il3, w) and B 1 (6f.>, w). The inverse 

transforms produce the time and space variation, 

w[ ( 613 +6 )Jr ( 6!3 +13
0

, W) -xJ
1
- ( 613 -13 

0
, W)} j ( lll3z -wt) cffil3 d W 

D ( L'il3 ~ w) ( 2 11/ 

(5. A5) 
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w[ (.6(3 Hi )J 1- ( .6(3 -(3 d w) -x J: ( .6(3 +f3o• w)} i ( .6(3 z -wt) 

D(.6(3, W) 

D(.6(3, w) = 

_d.6(3dw 

(2 ,r) 2 

(5. A6) 

(5. A 7) 

is the dispersion relation and the radian frequency w is related to the 
1 

wavenumber by w = c(k +t.k) le ·z and (3-(3 = t.(3 as before. All sub-
o r o 

scripts N have been dropped for simplicity. • Assume that the current 

is turned on at t = 0, hence J(z, t) = 0 for t < O. 

It is apparent that the integrand of (5. A5-6 ), excluding the 

currents, is the Green's function for a periodic medium in the ECW 

approximation. It is of similar form to an exact expression which 

75 
accounts for all space harmonics and current components. 

As pointed out by both Sturrock and Briggs, it is necessary 

to investigate wave packets in space and time due to localized sources. 

Therefore, the previous ECW equations (5. A4) with a source turned 

on at t = 0 are a useful start. The remaining problem is to find how 

F 
1 

(z, t) and B
1 

(z, t) behave asym.ptotically by choosing the contours 

of integration correctly and unambiguously. Note that the poles of 

the integrand, or the roots of D(t.(3, w), determine the field response. 

For causality, it is necessary to carry out the frequency 

integration above all singularities. The integration contour is shown 

in Figure 5. la. Note that no roots appear in the region enclosed by 

the contour for t < O. This contour is the rotated Bromwich contour 

that is used for Laplace transforrn.s. The contour in the wavenumber 

plane is ambiguous since the roots of D{t.(3, w) may cross the real t.(3 
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axis for different values of w(= w +i w. )~ This difficulty has been 
r l 

remedied by Briggs 
73 

by use of the following physical criterion: 

for a source with sufficiently large temporal growth rate (i.e. large 

w. = s > 0),- the waves away from the source rnust spatially decay. 
l 

Therefore, if the contour is chosen in the w plane to satisfy causality 

for w. = s, the roots of D(6f3, w) will detern1ine the response for F(z, t) 
l 

and B(z, t) and must represent spatially decaying waves~ Figure 5. lb 

shows this condition. Since it is convenient to integrate along the 

axis w. = 0, we depress the contour around singularities down to the 
l 

real waxis (Figure 5.lc). As w. _,. 0 for fixed w., the roots of 
l l 

D(6f3, w} will: 1) stay in the same half plane of 6f3; 2) cross the real 

6f3 axis; or 3) merge from opposite sides of the real 6f3 axis in pairs 

for some w. = a > 0. As shown by Briggs, the above cases lead re -
l 

spectively to: 1) decaying waves (stable media); 2) amplifying waves 

(convectively unstable media); or 3) tiine growing waves (absolutely 

unstable media). In the first case, the contour in the 6f3 plane along 

real 6f3 axis is not deformed (i.e. decaying roots) while in the second 

case the contour is deformed (i.e. arn.plifying roots) by root crossings 

(Figure 5. ld). In the third case, as w. _, a for some W = w (Figure 
l r 0 

5. le), the merging root behavior in the 6f3 plane (Figure 5. lf) pre­

vents the distortion of the contour since the integration must be 

carried out between the merging roots. The details of the integration 

are carried out in Appendix A for absolute instabilities with the 

proper contours shown in Figure A. 1. It can be shown (equation (A. 7)) 

that the field varies as 
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X X 
----l----1----j.-----1-Wr 

b) 
lWj 

s 
X X 

-+------+-------1--Wr 

~~-- Roots of 
D(~/3,w)=O 

c) 

e) 

IW· I 

IWj 

d) 

f) 

Merging 
Roots x 

z < 0 
Decaying 
Roots 

Fig. 5. 1 Integration contours in a) w plane for causality, b) wplane 

for t > 0 and time growing source, c) w plane with deformation to 

w axis, d) Lif3 plane which corresponds to c) with changing roots, 
r 

e) w plane for absolute instability at w. = <1", f) li.!3 plane corre-
1 

sponding to e ). 
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I 

i [ 6l3 Z - W
0 

t] at 

F(z, t) o::. 
e e 

t2 
(5. A8) 

Note that the frequency and wavenumber of the instability are just 

I I 

that of the merging roots (i.e. 613 = 613 , W = W = w + i a). Therefore, 
0 

th . t· CH e waves grow 1n 1me as e . The absolute instability paramet ," rs 

are deterinined from the mapping of the dispersion equation roots in 

the 613 plane for variable w. and different constant values of W • 
1 r 

B. Application of Stability Criteria to Bragg Resonances 

The Brillouin diagrams .take on different characteristics for 

even and odd Bragg orders in the case of index (T) = T) ) and gain 
r 

(T) = i T).) coupling. Thus, we will examine in detail the fir st and 
1 

second Bragg resonances for singly periodic media since they are 

the archetypes of all even and odd Bragg order n interactions. 

The first-order Brillouin diagrarns are repeated in Figure 

5. 2a, b for the case of index and gain coupling respectively with 

various values of average gain or loss. Figures 5. 3 and 5. 4 show 

a mapping of the roots of D(6l3, w) in the.6!3 plane as w. varies from 
l 

large positive values to zero for several values of w . Normalized r 
l 

frequency 6k E: 2 /K is used instead of w. Figure 5 . 3a shows the case 
r 

of no average gain or loss (E:. = 0) and index coupling which corre-
1 

sponds to curve 1 of Figure 5. 2a. The merging root behavior is 
l l 

noticed for Re [ 6k E: 2 /K} = T) / 8 when Ir.n [ 6k E: 2 /K} = O. Thus, the 
r r r 

instability has no temporal growth and the medium is .actually stable. 
l 

This is also noted from the fact that Im [ 6 k E: 2 /K} = 0 for all Re fo13/K} r 

and hence no instability is possible. Therefore, the physical notion 
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of the stability of passive periodic media is confirmed. Since there 

are no root crossings, the proper choice of the sign of Im [ 6!3 /K} is 

that which indicates spatially decaying waves. Figure 5. 3b shows 

the case of index coupling with average loss(€? O)which correspbnds to 

curve 3 of Figure 5. 2a. There are no root crossings or mergings 
1 

and hence the media is stable. The proper signs for Im [ 6k E: 2 /K} 
r 

and Im[6l3/K} indicate temporally and spatially decaying outgoing 

waves. The case of index coupling with average gain {E:. < 0) which 
l 

corresponds to curve 3 of Figure 5. 2a is shown in Figure 5. 3c. In 
1 

all cases, similar curves exist for Re [6k E: 2 /K} < 0 which are mirror 
r 

images about the imaginary 6!3/K axis. Note that the root crossing 
1 

occurs for 6k E: 2 /K = i E:. /4 E: ± 17 /8. Thus, absolute instabilities r 1 r r 

occur for index coupling with (the threshold condition) positive average 

gain at the bandgap edges 

The normalized temporal 

1 

corresponding to Re [ 6k E: 2 /K} = ± 17 /8. 
r r 

1 

growth rate is Im [ 6k E: 2 /K] = - E:. / 4c and 
r 1 r 

the longitudinal wavenumber r:3 = l3 is real,. (Bandgap edges will refer 
0 

to the lossless case for this chapter.) 

Figure 5. 4 shows similar mappings of the dispersion equation 

roots for gain coupling. In Figure 5. 4a, b, c the merging root be-
1 

havior occurs at the value L'ik e 2 /K = -i e. / 4 E: + i I '!"'I. I/ 8. Thus, for r 1 r ' 11 

gain modulation, absolute instability occurs at the center of the band-

gap for average gain {E:. < 0) and average loss (e. > 0) whenever the 
l l 

threshold €. / € < l 11- l /2 is satisfied. The result for zero average 
l r l 

gain is not surprising since the inverted bandgaps are similar to 

those of parametric instabilities and backward wave oscillators. 

However, note that gain-coupled media may also have instabilities 
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when the average gain is negative as long as the gain periodically takes 

on p·ositive values (i.e. the average loss is less than some fraction of 

the variation). 

As evidenced by the structure of the dispersion relations of 

chapters Ill and IV and the repeated Brillouin diagram of Figure 5. 5, 

index and gain coupling at the second Bragg resonance display similar 

characteristics, to the first-order index coupling diagrams (i.e. no 

inverted bandgaps appear). Thus, the stability of both index and gain 

coupling at the second Bragg resonance should be similar to that of the first 

order index coupling case since the stability criteria is dependent only upon 

the dispersion relation. The only difference should be in the sign of the 

bandgap shift,and hence the relative instability frequency; which is positive 

or negative for index or gain coupling respectively. Indeed this is true, 

The mapping of the complex roots (not shown) of D(6j3, w) as w.-+ 0 resembles 
1 

Figure 5.3. The absolute instability occurs at the bandgap edges for index 
1 

or gain coupling with temporal growth rate given by Im(6k e: 2 /K} at the 
r 

bandgap. The threshold condition requires positive gain (e:. <O) for abso-
1 

lute instabilities at the second Bragg resonance for both coupling types. 

The results of odd and even Bragg resonances show different 

stability characteristics as exemplified by the specific cases of N= 1, 2 

discussed above. The mathematical conditions for absolute instability 

parameters can be found from the above considerations and the ECW 

dispersion relation. For any Bragg order N, oscillation takes place at 

with temporal growth rate 

Im[oN/K} = + Im{xN/K} 

at or above the threshold 

(5. Bl) 

( 5. B2) 
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1 

Im[61)1//K} = 0 (5 . B3) 

The results for the first few Bragg resonances are summarized in 

Table 5. 1. It is noted that with incre~sing Bragg order, the 

threshold approaches zero for all couplings since fl is usually small. 

Also the instability frequencies tend to cluster above (index coupling) 

or below (gain coupling) the exact Bragg resonance for higher Bragg 

orders. This is due to the bandgap shift. 

The fir st two Bragg resonances have been shown to be arche­

typical of all Bragg resonances. In particular we found that for index 

coupling, absolute instabilities occur for positive average gain at 

both bandgap e dges with temporal growth rates given by w. = 0 at the 
1 

bandgap. For gain coupling, the behavior is identical to the index 

coupling case for N even, with the exception of the instability £re -

quency which is shifted due to the bandgap shift. For gain coupling 

with odd N, absolute instabilities occur only at the center of the band­

gap with temporal growth rates equal to the value of w . at the bandgap. 
1 

The correct choice for the sign of Im[6l3/K} depends upon the 

position of the roots .of the dispersion relation as w. _, 0 or at the 
1 

merging root point w. = 0. If the roots have crossed the real 6!3 /K 
1 

axis the outgoing waves are amplifying and if they do not cross, the 

outgoing waves are decaying. Thus, for the case of absolute instabil­

ities, there will be both amplifying and decaying waves at frequencies 

adjacent to the instability (see Figure 5 . 3 ~4). However, this behavior 

is over shadowed by the absolute instability and is not important for 

infinite media . The proper sign of Im [ 6 /K} is chosen by the fact that 
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the dominant time behavior is controlled by the highest root in the 

W plane. This is equal to the value W. = er that occurs when the 
l 

roots of 6j3/K merge. 

In all cases where the gain is not large enough to support 

absolute instabilities, the medium is stable and the outgoing waves 

decay spatially due to coupling and losses. Thus, because there are 

no axis eras sings of the roots of D (.613, W ) in the 6j3 /K plane, the sign 

of Im[6j3/K} > 0 is specified for outgoing waves. The sign of 

Im[o/K} is chosen to correspond to the least lossy wave (i.e. 

Im [ 6 /K} > 0) since this root produces the dominant field contribution. 

Thus, for stable media the periodicity will enhance the spatial decay 

and not affect the temporal decay for index and even-order gain 

coupling. For odd-order gain coupling the spatial and tem.poral 

decay are both diminished. 

C. Complex Coupling and Multiharmonic Periodicities 

In practical cases, both index and gain periodicity will occur 

together (Tl= fl +if] . ). This case, referred to as complex coupling, r l 

will usually cause absolute instabilities to occur at two frequencies 

due to finite f] . The explicit conditions are involved for arbitrary r 

Bragg order but reduce to the following form at first order: absolute 
1 

instabilities will occur in pairs at the bandgap edges (Re [tik
1 

E: 2/K} = ± f] /8) 
r r 

1 

with a growth rate Im[6k1 E: 2/K} == -e./4e +1ri-l/8; the threshold is 
r 1 r 1 

e ./ E: = \ri-1 /2 and thus cannot be reduced below the gain coupling value. 
l r l . 

At even Bragg resonances, where the threshold was pre -

viously zero, a reduction in threshold can take place for the case 

of complex couplings. As an example consider the second Bragg 
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resonance. Figure 5. 6 repeats the Brillouin diagram for complex 

coupling and E:. /e = O. For equal amounts of index and gain 
1 r 

coupling (i.e. fl = fl.) the curves give inverted bandgaps. Thus, 
r 1 

one expects absolute instabilities at exact Bragg resonance. It 

can be shown that the instability threshold is reduced to 

e./e = 5 lfl. fl I /6 (average loss). Two absolute instabilities occur 
1 r 1 r 

for fl f:. fl. and e./e = 0 at the frequencies where Im[ti13
2

/K} is 
r 1 1 r • 

zero and where it is maximum. Thus, as the ratio -n. /-n approaches '11 'Ir • 

zero or infinity, the instability frequencies merge to the center of 

the bandgap and as fl/flr -+ 1 the instability frequencies tend to 

merge in pairs toward exact Bragg resonance. The growth rates 
1 

are found from the value of Im[6k2 e; /K} at the bandgap center. 

The application of the stability criteria to multiharmonic 

periodicities is similar to the previous analysis (chapters III, IV) 

with the proper phase mismatch oN and coupling ')(N substituted into 

the dispersion relation. Although there is little or no effect at the 

fir st Bragg order for changes from sinusoidal periodicities to other 

typical periodicities, the effects at higher Bragg orders (N;;::: 2) may 

be significant due to Fourier components fN. It can be shown 

(Appendix B) that the coupling is increased from values O(fl
2

) for 

sinusoidal periodicities to values O(T]) for sawtooth periodicities 

at the second Bragg resonance. 

At the third Bragg order, the coupling can be increased 

3 • 
fro1n values O(T] ) to values O('ll) for square-, triangular - or 

sawtooth-wave periodicities. This implies that instability 
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thresholds can be changed at higher Bragg orders by the use of non­

sinusoidal periodicities, Typically, 111 I ~ 0(10-
2

-10- 5 ) in integrated 

optics applications, 

D. Comments on Stability 

In this chapter we have found the stability criteria for time­

independent periodic media, This media may support either decay­

ing (stable)· or temporally growing (absolutely unstable) waves in 

basically dispersionless dielectrics, The ECW equations provided 

explicit values of threshold, instability frequency and temporal 

growth rates for absolute instabilities, Average positive gain was 

required for oscillation at the bandgap edges for index coupling and 

even-order gain coupling, For odd·-order gain coupling, the average 

gain could be negative if the gain periodically took on positive values 

and the oscillation took place at the bandgap center, In some cases 

both types of coupling or multiharmonic periodicities could reduce 

thresholds. 

There has been some question as to the effect of boundaries 

upon DFB oscillation, It is apparent from the preceding sections 

that instability takes place when certain modes of the active peri­

odic media achieve threshold, No boundaries are needed since 

feedback action is produced by the periodicity, 

It appears that for frequencies other than the instability 

frequencies, waves may either decay or be convectiv~ly amplified 

if the structure is short enough such that the absolute instabilities 

do not occur, In this case, the active periodic structure might be 
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used as a filter-amplifier. However, each individual system must 

be considered along with the boundary conditions to determine sta-

b ·i ·t 35, 73, 74 
1 1 y, 

The results of this chapter have been summarized. 
97 
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CHAPTER VI 

APPLICA T IONS OF ECW THEORY 

The results of previous chapters have depended only upon 

the dispersion diagram of unbounded periodic media. In this chapter 

several cases of bounded media will be discussed. The use of the 

ECW equations allows behavior at all Bragg orders to be approxi­

mated easily. The purpose of this chapter is not an exhaustive 

coverage of periodic structures but ra~er an indication of a wide 

range of problems which may be solved by the use of the previous 

theory. 

In section A, longitudinally bounded passive media (i.e. DFB 

filters) will be covered along with examples of transients in a periodic 

slab. In section B the characteristics of higher-order DFB lasers 

will be given. Section C will cover the case of holographic grating 

diffraction and the last section will characterize the propagation of 

Gaussian beams in periodic media. 

A. DFB Filters 

1. Effect of Longitudinal Boundaries 

We consider waves in a periodic slab of length J,, The ECW 

equations account for Bragg coupling or scattering fro1n the perio­

dicities but not for the coupling or scattering due to the boundaries. 

The equations can be easily modified. The relative dielectric con­

stant is now 

E:(z) = E: + iE:. + rect(z/J,) E: i.J(ri +if) . ) f cospKz 
r 1 rp r 1p p 
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where 

= {: 

I z I < J/2 
rect(z/1,) 

lzl > L/2 

For simplicity, consider singly periodic media with no average loss 

or gain (i.e. f = 0 for p ,J. 1, e:. = 0). The additional Fourier com-
p 1 

ponents available for coupling or scattering arise from rect(z/ 1,) and 

have not been accounted for previously. These components are pro-

portional to ·the Fourier transform, 
00 

J i~z 
'I'] rect(z/ ~.) cos Kz e dz 

-oo 
_ ~ { sin(/3+-K)i,/2 + sin(Q-K)li/2 } 
- 2 (/3+K)~/2 (f3-K)li/2 

(6 . Al) 

Thus, the additional available perturbation per unit length is propor­

tional to the right-hand side of (6. Al) divided by fue length ii. As in 

the case of multi.harmonic periodicities, only the strongest effect 

(i.e. first order in 'I")) of the boundary perturbation of (6. Al) upon F 1 

and B
1 

are considered. For higher .. order Bragg interactions, the 

coupling diagram of Figure 6.1 is helpful. Not only is there the usual 

cross-coupling through terms 0(17N) and self-coupling through terms 

O(r,h, but there is cross- and self-coupling proportional to T)4! and ri@, 

respectively, where 

sin((:3+ 1(/2) 1, 

(~+K/2 )£. 

C { sin((3+IS:)£/2 + ~.in(/3 - K).t/2} 
N . (tJ+K)l,/2 (/3-K)t/2 

(6. A2) 

are the boundary effects. This is due to th~ terms [-k
2
e:r'l7( ®F 1+ if? B1 )/2.] 

and [-k2e:rn ( (8) B
1

+if? F
1
)/2] which are added respectively to the F 1 

and B
1 

equations of the ECW equations (3. A6). Consequently, fue 
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modified ECW equations become identical to the former ECW equations 

with the changes oN _, 6N and XN -- xN where 

~ 
oN oN !i!L @ 
K = K - 8 

~ (6. A3) 

XN XN ' ' 

+ Nn_ w K = K 8 

In each case the first term of the above equation expresses the effect 

of the periodicity while the second term expresses the effect of the 

boundary. For higher-order interactions, the latter effect predomi­

nates in coupling when Kt<< (17/2)l-N while the opposite is true for 

Kt>> (ri/2) 1-N. This is expected since for thick slabs the extra 

Fourier components introduced by the truncated periodic media are 

tightly clustered around the components introduced by the periodicity 

of the infinite rnedia and no new effects are observed. However, for 

thin slabs, the truncation produces Fourier components at many 

multiples of the Bragg wavenumber which are capable of directly 

coupling F 
1 

to B 
1

. In this case the boundary couplin_g (ex: 17 t) predomi­

nates. Note that the above inequalities denot e the region where the 

results of the infinite media can be directly applied to the longitudi­

nally bounded case. Also note that the bou ndary effects can be reduced 

if the perturbation is gradually truncated at the slab ends. A similar 

effect has been noted in quantum mechanical scattering. 79 The 

boundary effect s ddom affects the phase mismatch since it is negli­

gible when Kl. >> 17 - I. 
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2. ECW Reflection and Transmission Coefficients 

In this subsection we consider the general case of transversely 

and longitudinally bounded structures where each coupled wave repre­

sents a different mode. Hence, the longitudinal wavenumbers n1ay be 

different for each mode. 31 For simplicity the numerical examples 

will correspond to the special case of coupling between waves of 

identical modes in thick slabs although the analytic results are given 

for the general case using the ECW approximations. 

Figure 6. 2 schematically shows the configuration. Consider 
i /3 z 

a positive phase velocity wave F 1 (z) U (x)e P which couples to a 
p ip z 

negative phase velocity wave B
1

(z) U (x) e q . The subscripts p, q 
. q 

refer to the mode number of the tran sverse distribution U(x). The 

phase match condition for significant coupling at the N
th 

Bragg order 

is 

(3 + 13 = NK ( 6. A 4) 
p q 

where K = 2TI" / /\ and /\ is the fundamental spatial period. The 

boundary conditions are found from Figure 6. 3 by use of the ECW 

equations which correspond to continuity of the electric fi~ld at 

z:±1,/2. 

>'< 

e-if31,/2 + RN ei{3t/2 = i•12 F(z=-t/2) e-i(l-2n/N)t/2 
n=-1 1-211/N 

+B (z=-t/Z) ei(l-2n/N)t/2 
l-2n/N • 

I 
+ ( O) S(z= -t/2) 

(6.AS) 
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T 
i(3 i,/2 

Ne = 

where ~:, 
N /2 = 

(~) = 

-119-

~:< 

~2 F(z=t/2)ei(l-2n/N)£/2 
n=-1 1~2n/N 

.{ 

+ B(z= £,/Z) e-i(l-2n/N)£/2 
l-2n/N 

1 
+ ( 0 ) S(z=.l/2) 

N-2 
for N even -2-

N-1 
for Nodd -r 

1 for N = 1 

1 for N even 
0 for Nodd 

(6. A6) 

and RN and TN are the reflection and transm.ission coefficients. 

Similar equations result from m.atching the derivatives (or the mag­

netic field) at z = ± .l/2. The only additional equations needed are the 

ECW equations modified for transversely bounded media. 

(6. A 7) 

where the coupling and phase misrnatch are assumed to be known. 

Instead of solving the above equations exactly, a perturbation schem.e 

is introduced which significantly simplifies the calculation and elimi­

nates the boundary coupling which has been accounted for previously. 

Introduce the ordering parameter ).._ which will eventually be set to 

unity. 77 Consider a power series solution of the form 

- :F'iO)+AF:1)+),__2Ff)+ ... } 

= Bi°)+ AB?)+ AZ Biz)+._ .. 
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between identical modes {i.e. /3 = /3 = /3). p q 
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for the waves and let the smallness be specified by A.fl. If all the 

waves are solved in terms of F 
1 

and B
1 

(see equation (3 . A6) ), then 

the electric field continuity equation bec01nes, 

e -if3 i/2 + ~ eif3 i/2 

where f3 = f3 +L':i/3 o N 

f3 = NK/2 
0 

th 
near the N Bragg resonance. By equating terms O(A.) and phase 

matching, the approximate boundary conditions become 19 

(6. A12) 

The reflection and transmission coefficients are solved using the 

boundary conditions and the ECW equations . The details are carried 

out in Appendix C. We find 

R -_ 
N -

T = N 

(6.Al3) 

(6 . Al4} 
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where = 
6 +?; . l. 

[ ~ ~ ( q p )] 2 
Xpq Xqp - z 

If the two coupled modes are identical, then '5 = 6 = 6 
p q 

and 

Xpq = Xqp = X• The subscript N has been dropped on 6 and X for 

convenience. 

From the above equations for ~ and TN we observe the 

following: 

1. maximum reflection 

1 

R I = i tanh(x X ) 2 ;, • N max pq qp ' 

2. minimum. transmission 

1 

TNI . = 1/cosh(x X )2 t min pq qp 

6+6 
p q 

and for 

where the corresponding phase of ~ is (Zn- I hr /2; 

2 2 

(6.Al5) 

(6. Al6) 

(6.Al7} 

4. l RN!. + lTNI ::: 1 for passive and lossless media. 

These results are demonstrated in. Figure 6. 4 for the case X P., = 2 

where the boundary effects are neglected. The ff1agnitudes of the 

reflection and transrnission coefficients are shown as a function of 

oi-(i. e. frequency deviation from bandgap center)o Note that the 

half-width of the main reflection maximum is equal to t4e ba.ndgap 

width. Hence, there is significant reflection outside of the bandgap 

due to the deviation of Re(A/3/K} as well as Im.(l'll3/K} away from their 
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unperturbed values. Figure 6. 5 shows the equimagnitude and equi­

phase curves of the reflection coefficient plotted as a function of xt 

and oi where again the boundary effects are neglected. Note that 

Figure 6. 5a corresponds to a horizontal line (x.£. = 2) across Figure 

6. 4. If the coupled modes are different (i.e. p f. q), tl1e curves in 

Figure 6. 4 and 6. 5 are valid if o is replaced by (o + o )/2 and X by 
1 p q . 

(X X )2 . Similar results for media with average gain have been pq qp . 

discussed for the f:i,rst-order index coup~ing case when the modes are 

"d t· 1 35 
.1 en 1ca . 

It is of interest to note the change in the reflection coefficient 

with Bragg order. For small coupling XNi, << 1 , 

(6.Al8) 

Thus. the variation of RN with N is 

RN I a: i{ (ri/2)N Ki+17 sin[(N±l)K f,/2. J} 
max 

(6.Al9) 

where the first term expresses the dependence upon the periodicity 

perturbation and the second terrn expresses the effect of the boundary 

perturbation. 

For other typical periodicities, tl1.e results of Appendix B will 

provide appropriate coupling or phase mismatch. In particular, note 

that for thick slabs, the coupling is constant at odd Bragg orders for 

square-wave periodicities. This implies that the maxi~um reflection 

coefficient is also constant at odd Bragg orders. These results are 

in agreernent with well-known ex.act results that use matrix calcula­

tions. 78 Figure 6. 6 exemplifies fuese concepts for three typical 
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periodicities with index coupling. Note that periodicities with large 

Fourier components fN will have large coupling and reflection co­

~fficients at the N
th 

Bragg order. Thus, periodicities with odd 

Fourier components (e.g. square- or triangular-wave) will have 

large reflection coefficients only at odd Bragg orders. 

The use of dynamically generated (e.g. acoustic waves or 

electro-optic effect) multiharmonic periodicities opens up the possi­

bility of controlling the feedback strength in DFB filters. This, in 

turn, varies the passband. From the results of chapter IV it is ap­

parent that the passband could vary as sin(0 /2) where 9 is the relative 

phase between Fourier components of the periodicity at the second 

Bragg resonance (see Figure 4. 5). If the boundary effects are sig­

nificant or predominant, then the previous results will be modified. 

That is, for thin slabs, the reflection will be significantly increased 
l. 

at higher Bragg orders when [risin[(N±l)K + t:.k£; ].£/2} is no longer 

negligible. 

3. Born Approximation Reflection Coefficient 
I 

In order to summarize the properties of reflections from both 

thick and thin slabs, it is useful to find the Bo1·n approximation to the 

reflection coefficient. Consider the wave equation for some transverse 

component of the electric field E(z). 

[ 
d

2 
2 J 2 -

2 
+ k e E(z) = -AT'lk e cosKz E(z)= -AS(z) E(z) 

dz r r 

where the ordering parameter A has again been used to show the 

smallness of 17 . Assuming a solution 

E(z) = E(O)(z) + ~ E(l\,:) + :>i. 2 E(Z)(z) + ... 

(6. A20) 
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00 

= J S(z')g(z,z')E(n)(z')dz' 
- 00 

il3z e 

. i13 I z-z' I 
g(z, z 1

) = l e 
213 

1 

(6 . A2 l) 

and where 13 = k ~; for _this computation. A straightforward calculation 

shows, 
(l) i'nRi, _.

13 
[sin(@+K/2)Z+sin(@-K/2)i.,J 

E (z) = -'½f-=- e 
1 

.z (l3+K/2)i., (13 - K/2)£. 
(6. A22) 

Thus E(l) represents a wave traveling to the left which is produced 

by the wave E(O) traveling to. the right. The approximation which uses 

the terms E(O) and E( 1) is known as the Born approximati.on. The 

Born reflection coefficient is then the coefficient of e -il3z in E( 1), or 

= ~ [sin(@+K/2)1, + sin(@ - K/2)£.J 
4 (l3+K/Z)£. (13-K/2 ).l 

= 
1 

1 

i'nke: 2 .t 
'I r 

4 

(6. A2.3) 

which is valid for I ri k e:; i., I/ 4 << 1 at the first Bragg resonance 

or for I ri/ 41 << 1 at higher Bragg resonances. 

At the first Bragg order, for 1-x.t I << 1 and lri I << 1, 

the Born approximation and the n10dified ECW approximation 

become equal. Explic itly we find 

1 

R(l) I "'"' 
max 

i17ke:/t 

4 
"'"'R I 1 n1ax 

(6.A24) 
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at the bandgap center for Kl PIO. For higher Bragg orders, the Born 

approximation produces a series in powers of 'I'] which accounts only 

for the depth of the perturbation (i.e. the end effects) and not the 

length over which it acts. A series in riKt is needed to account for 

' significant periodic effects. This latter series occurs through the 

modified ECW equations. Thus, the Born approximation is useful 

at the first Bragg order or at higher orders where the slab satisfies 

the relation ~.e, << fll-N. For thick slabs, the ECW theory provides the 

proper phase mismatch, coupling and reflection. 

4. Transients in Periodic Slabs 

Consider an incident pulse f(t) with frequency spectrum 

• 
00 iwt F(w) = J f (t)e <lt (6.A25) 

- 00 

where the reflected and transmitted pulses are, respectively, 

1 00 ·wt 
r(t) = Zn J F(w) RN(w)e-

1 
d w (6. A26) 

-oo 

l 00 - iwt 
t(t) = Zir J F(w) T N(w )e dw (6. AZ 7) 

-oo • 

This case was shown in Figure 6. 2. Numerical inversion has been 

used by a number of authors to obtain tin1.e response to radiation and 

scattering problems. The Cooley-Tukey fast Fourier transform. 

(FFT)BO has been used in the numerical examples with 211 = 2048 

samples to calculate r(t) and t(t). 

The cases of reflection and transmission of rectangular and 

Gaussian pulses of several center frequencies and widths have been 

carried out. Normalized pulse lengths 'r were chosen to be O. 25 
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and 2. 0 time units where each time unit corresponds to the transit 

time of the pulse across the slab length 1-. As in previous sections, 

the numerical results are valid at the first Bragg order and all higher 

Bragg orders where the bour1dary effects can be ignored. 

Figure 6. 7 displays the envelopes of the reflected and trans-

1nitted pulses which result from. an incident pulse of length 'T = O. 25 . 

Several values of coupling are used and the carrier frequency is at 

the bandgap center (6N = O) _. In all the illustrations, the time value 

t = 0 corresponds to the instant when the center of the pulse is at the 

first boundary. Fo_r weak coupling, the reflected pulse is spread over 

2 . 25 time units (Figure 6. 7 a, c) because the energy is r eflected from. 

successive striations and the echo from the last boundary has a round 

trip tiine of 2 units. Since the 'successive reflections are relatively 

weak, t he reflected pulse is quasi-rectangular while the transmitted 

pulse is similar to the time delayed incident pulse . As the coupling 

is increased, multiple interference leads to transients over a longer 

time period (Figure 6. 7 i, j). The reflected pulse reaches a rnaxiinum 

at O. 25 units when the entire incident pulse has just entered the slab. 

The subsequent fall-off in the reflected pulse am.plitude is due to the 

fact that a large portion of the signed has already been reflected due 

to the first few striations. For large coupling, the transmitted pulse 

consists mainly of two peaks, O. 25 units apart, which correspond to 

differentiation (i.e. high-pass filter) of the incident pulse. 

The same coupling str ength sequence is given in ·Figure 6. 8 

for a rectangular pulse of length 'T = 2. For weak coupling (Figure 

6. _8a), the refle cted pulse is similar to the autocorrelation of the 
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incident pulse. This indicates that the reflection coefficient is similar 

to the incident pulse spectrum. For strong coupling, the transmitted. 

pulse is again similar to the absolute value of the derivative of the 

incident pulse with characteristic in terfering echo s . Note that the 

reflected pulse may have an amplitude larger than unity (Figure 6. 8g, i) 

due to constructive addition of successive reflections, • 

Figure 6. 9 displays the reflected and transmitted pulses for 

a Gaussian i~cident pulse of width 'f = 2 (width is taken at the 1 / e 

values). Since a Gaussian pulse contains smaller higher frequency 

spectral components, the reflected and transn1itted pulses are grossly 

similar to the incident pulse. For narrowed Gaussian pulses (not 

shown here), the results are somewhat similar to those obtained for 

a rectangular pulse of the same vvidth. 

Several examples of pulses with carrier frequencies at the 

first several zeros of the reflection coefficient have been given else­

where. 
29 

In general, the transrnitted pulse is similar to the incident 

pulse. However, the reflected pulse is broken up into a long pulse 

train which can be considerably longer than the incident pulse \vidth. 

5. Discussion of DFB Filters 

In the preceding subsections, the ECW theory was .applied to 

longitudinally bounded media. The EC W equations were 1nodified to 

directly account for the coupling between F 
1 

(z) and B 
1 

(z) due to the 

boundary. This changed the coupling so that it consisted of two parts 

with the following physical rneaning. One part of the coupling, due 

only to the perturbation is proportional to [riNKi,} and hence increases 
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with slab thickness since it is due to repeated reflections in the di-

electric. The second part of the coupling is due to the above n1entione d 
l 

boundary effects and is proportional to [ri sin[(N±l}K+fike: 2 ] i,/2}. This r 

accounts only for the interference effects due to the periodic ity tnm-

cation and may become zero f o r certain lengths at particular frequen­

cies. The application of the b01mdary conditions was then introduced 

in such a way that end effects were not accounted for again. 

The validity of this approach was tested by using the exact 

results of Bedrosian. 89 • 90 The cornparison was rna.de on periodic 

media of length K~ = 26,r with f] = 0. 05. The ECW and exact invariant 

ilnbedding technique agreed to within 1'% in the two cases where the 

boundary effect was insignificant (R2 I = 2 .. 55Xl0- 2 ) and where it 
rnax 

.had a large effect (R2 I = 5. 88x 10- 2} at the second Bragg order?
0 

max 
Comparisons to the Born approximation showed that at higher 

Bragg orders, the Born approxin1ation ignored the riNK.R, terrn of the 

coupling. However, at tl1e f:i.r st Bragg order the Born and 'EC W ap­

proximations are in very close agreement. For cases where fl --+ 1, 

the full Floquet theory must be used. This is straightforward in 

principle but laborious to carry out. The disadvantage is that lengthy 

numerical calculations have to be carried out and the intuitive appeal 

of the ECW theory is lost. 

We have shown that periodic slab::; may be useful as edge 

differentiations or multiple pulse generators. The transient re-

sults may be useful in the fields of microwave and optical filters 

and for sounders of subsurface layers. 
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B. Higher-Order DFB Lasers 

Ever since Kogelnik and Shank's demonstration54 and descrip­

tion
23 

of DFB lasers in the early .1970 1 s there has been great interest 

in this field. Since then much work has been done at the first Bragg 

d 14,24,25,30,35,36,58,70 Inl9 ?zB· khl dSh k41 or er. Jo r o m an an • 

demonstrated the first higher-order DFB laser with output at the 

second and third Bragg resonances. More recently there has been 

71 
further experim.ental work at the second Bragg :resonance and with 

multiple frequency DFB lasers. 
70 

In this section the approxin~ate 1node spectrurn and threshold 

gain are given as a function of Bragg order. The results, which use 

the ECW equations, are analogous to the coupled wave results of 

Kogelnik and Shank. 
23 

Hence, the derivation will be only briefly 

sketched here. The details are given in Appendix D. 

1. ECW Result for Threshold Gains and Mode Spectra 

Oscillation will take place when output occurs for zero input. 

This can be alternately stated as the condition where the reflection 

or transmission coefficient becomes infinite. We use the ECW re­

flection coefficient discussed in previous sections and set the denom.­

inator equal to zero or 

(6. Bl) 

This can be put into the form 
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= -1 (6. B2) 

The complex solution to the above transcendental equation produces 

the threshold gain and the mode spectrum when solved for amplitude 

and phase. 

2. High-Gain Approximation 

The high-gain approximation assurr1es that the periodicity 

has little effect on the prop.agation, or, for 

0 
_N = K 

oN 6 
K 

the condition is 

X << N 

6kNJe; C 173 N3 
N 

K 32(N
2 

-1} 

tiN i gN 
I( - --K 

i E:. 
2 2 

N [ 'N 11 N J +-~ 
4 1 - 8(N2 -1} E: 

r 
(6. B 3) 

(6.B4) 

(6.BS) 

This is approximated for singly periodic media by the inequality 

(6.B6) 

Fron~ Appendix D, the threshold gain approximation is given by 

(6.B7) 

and the longitudinal mode spectrum is given by 
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where the first term is usually· sm.all and can be neglected. These 

expressions · neglect boundary effects which can be accounted for by 

a straightforward modification as in the pr e vi ous section. Equation 

(6. B8) is first solved for t.N, the norrnalized fr e quency deviation from. 

the bandgap center and then (6.B7) is solved for gN' the nonn alized 

average gain. It is apparent that for singly periodic media, the 

average gain will increase drastically with B r agg order. However., 

bounda r y effects or multiharrnonic periodicities m.ay reduce tlb1e 

threshold gain by increasing the coupling. 

The mode spectrum. is asyn1metric and is sketched i n Figure 

6. 10 for higher Bragg orde rs. For index coupling (Figure 6. I Oa), the 

gain symmetr ically pushes the modes outward from the usual two 

mirror cavity case (shown by dashed lines). However , the bandgap 

shift produces an asymmetry and shifts the entire spectrmn toward 

higher wavenum.bers. As in the first order case, no oscillation 

takes place at exact Bragg resonance . Figure 6.10b, c shows the 

analogous information for gain coupling at ocld and even Bragg orders, 

respectively. For odd Bragg orde r s, oscillation is possible near 

Bragg resonance, but the ba.ndgap shift preve nts oscillation exactly 
1 

at 6 ke; ,£, = O. As expected from the Brillouin diagran.1.s, even - order 

ga:i.n/los s coupling is similar to even-order index coupling ex cept for 

the sign of the bandgap shift. 

3. Low-Gain Approxir.nation 

Low gain implies the inequality for singly periodic media 

le./e I << I ri121N· 
1 r 

(6. B 9) 
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Again the details of the approximation are given in Appendix D. 

Boundary effects are neglected since low gain implies a large 

coupling-length product. Hence the boundary effects are small. 

Consider first the case of index coupling. We find that 

the lowest-order longitudinal mode frequency is given by 

which becomes 

!::, 2 
N 

(6. BIO) 

(6.Bll) 

for long structures. Therefore, the oscillation takes place near the 

ba.ndgap edges. This agrees with the stability analysis of the pre­

vious chapter as expected. Identical reasoning holds for the ca.se 

of gain/loss coupling at even Bragg orders. 

The threshold gain condition for index coupling and for even­

order gain/loss coupling is given by 

This is approximated by 

E:. 
l 

E: 
r 

3 3 
(6. Bl2) 

l (6. Bl3) 

for singly periodic media. Hence the threshold gain varies inversely 

with (n/2)2N for singly periodic media and inversely with the length 

cubed. Thus the threshold gain condition predicts that the average 

gain approaches zero as the length becomes infinite. Again this is 

in agreement with the stability criteria results. 
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For gain/loss coupling at odd Bragg orders the lowest­

order longitudinal oscillation takes place at the bandgap center 

= 0 (6. Bl4) 

with the threshold condition 9n the perturbation 

(6. Bl5) 

for zero average gain. Thus for DFB oscillation to start with 8. = 0, 
1 

the necessary critical length .R,c varies as 

J., 
C 

J3 (6. Bl6) 

\3/ith Bragg order. The mode spectrum (6. B14,) agrees with the 

stability prediction and (6. Bl5) implies that negative average gain 

can produce oscillation of .R, > J., • This is verified by the a pproximate 
C 

threshold gain condition on the average gain which is 

= 
±6 (6.Bl7) 

and becornes 

(6 . BJ.8) 

as the length increases. For singly periodic m .edia the threshold 

N gain varies as (f]/2) . This also agrees with the stability criteria 

predictions since this condition is identical to equation (5 . B3). 

Os c:illation aga in takes place at the band.gap center given by 

°" 0 (6. B 19) 
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Note that only the lowest-order (m = 0) longitudinal mode 

characteristics are given in the low-gain approximation. 

4. Discussion of Higher-Order D:F'B Lasers 

In all cases, the previous results are extensions of the well­

known work of Kogelnik and Shank
23 

to higher Bragg orders. The 

ECW theory gives the correct XN and ON to use in the theories. 

Numerical results have been given at the first Bragg order for both 

transversely unbounded
23

• 35 and bounded24• 30 m.ed.ia and so can 

be used at higher orders for guided modes. 

The ECW theory shows that the m.ode spectrum. is asyrnmetri­

cally shifted from the exact Bragg resonance for high gain and has 

characteristic differences which depend upon coupling type and Bragg 

order. Note that in the low-gain case, the threshold gain and fre­

quency of the lowest-order longitudinal n:1.ode is also predicted by the 

stability criteria without regard for the boundary conditions. In this 

case, enough coupling or feedback is available to produce oscillation 

without boundary coupling. In general, threshold gains increase 

drastically with Bragg order unless multi.harmonic periodicities 

are used or un~ess boundary perturbations play a significant role. 

The low-gain threshold varies a.s (T]/2)-ZN or as (r1/2f for the case 

of index and even-order gain coupling or odd-order gain coupling, 

respectively, for singly periodic 1nedia. 

C~ Higher-Order Hologram Diffraction 

There has been interest in transversely varying periodic 

media {Figure 6-. 11 }. This configuration represents electrom.agnetic 
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Fig. 6. 11 Configuration of TE wave obliquely incident upon a 

holographic grating. The original wave and the Bragg reflected 

wave em.erge as TN and ¾ respectively. 

z 
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wave diffraction by acoustic waves or by holographic gratings. The 

former problem was solved by Chu and Tamir
22 

who used both the 

Floquet and the coupled waves approach. The latter problem. was 

dealt with exhaustively by Kogelnik15 who developed a coupled waves 

approach that was valid near the first Bragg resonance. More 

recently variations of these proble1ns have been investigated theo-

• 1 d • 11 b l h 68 69 81-84 rehcal..y an_ experirnenta y y severa aut ors. • ' 

In this section the ECW equatio_ns are discussed for trans­

versely periodic media. The derivation is siinilar to that of chapter 

Ill and the details are given in Appendix E. The approximate boundary 

conditions are applied and the results are given for the strengths of 

the undiffracted and Bragg diffracted waves in holographic gratings. 

As in previous chapters, the ECW results will hold for all Bragg 

orders. 

1. ECW Equations for Transversely Periodic Media 

Consider solutions to the wave equation for the transverse 

electric (TE) field 

[ ::2- + a:: + 1/ e(x)JE(x, z) ~ O (6. Cl) 

where 

E: (x) - e: + ie.. + c 6 {1l +i17.) f cos pKz r 1 rp r 1p p 

is the periodic relative dielectric constant . Following the example 

f K 1 .kl 5 ·d f £ i[J3x+kz z] • 1 • h • o oge 111 we cons1 er a wave o orm. e w nc 1s sue -

cessively scattered from the periodic dielectric to a wave of forn-i 

i[(/3 -NK) x+kz z] ( ) h e . The first wave is designated as F 1 z and t e Bragg 
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scattered wave as B
1 

{z). Using the same ECW assumptions as in 

chapter III we let 

N* /2 . 
E{ ) _ ,;;;, l F{ ) 1[(1-2n)/N)f3 0 xt6f3x+kz zJ 

x, z - L.J z 1 -Zn/N e o 
n=-1 

B{ ) 
-(l -2n/N)f3

0
xt6f3x+kz z] 

+ zl-2n/Ne 0 (6. C2) 

+ { ~) S{z) ei[L'if3x+lczoz] ! 
be the assumed TE field. Substituting the above expression into the 

wave equation (6 . Cl) for singly periodic lossless media, we find the 

following ECW equations {see Appendix E). 

(6. C3) 

where 

2 k 
z 

0 

{-l}N+l kze TIN 1 
(6. C5) XN = 

zN+l kz {sin29 )N-1 11 * 2 2 ( 4n(n-N) /N } 
0 0 

k = ko + t.kN 

f3 = f3 o + L'if3N 

k = kz + L'ikz z o N 

f3 0 = NK/2 

k2e = kr. 2 +f3 2 
0 zo 0 

1 

sin 8 = f3o/ko 82 
0 
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i.6k z 
\ssuming a solution of the form e z gives the dispersion relation 

(6. C6) 

C'he similarities and differences between the longitudinally periodic 

LP) and the transversely periodic (TP) case are given below . 

1. The sign differences in the TP case cause the dispersion 

relation to be real for real periodicities and passive 

lossless dielectrics (i.e. '!"). = 0 = €. ). Hence no bandgaps 
l l 

appear in the longitudinal wavenumber as in the LP case. 

2. Maximum phase matching between F 1 (z) and B 1 (z) occurs 

slightly away from the exact Bragg condition for higher -

order Bragg interactions in both the TP and LP cases. 

The first Bragg order results are found from (6. C4-5) 

6 1 """ [tik1 Je _ .6l3 1 sin8 0 ] _l __ .6l3 ! 
K K K cos8

0 
K2 

8 cos 8 sin 8 
0 0 

as 

(6. C7) 

(6. C8) 

Small changes in frequency or angle are accounted for by the first 

and second terms of the phase mismatch. The third term is negligible 

away from normal incidence. Results for other Bragg orders and 

for co1nplex periodicities can be found easily from previous results. 

A similar derivation for TM waves can also be made. 

2. ECW Reflection and Transmission Coefficients 

The slab configuration of Fig. 6. 11 shows the undiffracted 

wave proportional to TN and the Bragg diffracted wave proportional 
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to RN. The incident wave is of unit a1nplitude. The appropriate 

boundary conditions for the TP slab are approximately15 

F(-1,/2) = 1 

B(-t/2) = 0 

F(l/2) 

B(l/2) } (6. C9) 

These equations indicate that the Bragg diffracted wave increases 

in value from zero to RN while the undiffracted wave decreases from 

unity to TN• Note that any reflected ,wave in the region z < - l/2 is 

ignoredo 

The ECW equations (69 C3) are solved with the boundary con­

ditions imposed by (6. C9). The method of solution is analogous to 

that of the LP case (see Appendix C). The results are 

i ·xn sin 6 kz .e 
RN 

N__ = 6k (6. ClO) 

ZN 

tik cos 6.kzN .e + i oN sin t.kz .e 
TN 

ZN N = 6k (6. Cll) 
ZN 

for coupling between identical m.odes (i.e. o = o , X = X = x). p q pq qp 

Note that for exact phase matching, the reflection and transmi.s sion 

coefficients vary as sines and cosines. Hence, the energy is alter­

nately shifted between the undiffracted wave F 1 (z) and the Bragg 

diffracted wave B 
1 

(z), along the z coordinate. Away from exact 

phase match the energy transfer is incomplete. 

3. Discussion of Holographic Gratings 

We note that the development of the ECW equations for the 

TP case is identical to that of the LP case. The ECW equations are 

of the same form as that of several other authors ~ 19• 
22

• 69 The 
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advantage of the present derivation is the simplicity of the explicit 

expressions for phase mismatch and coupling. In particular the 

deviation frorn the exact Bragg condition that provides maximum 

coupling or highest diffraction efficiency is easily found. 

In the preceding derivation we found coupling between the 

waves F 
1 

(z) and B
1 

(z). This means that the diffracted and undiffracted 

waves, the amplitudes of which are given by RN and TN' are sym­

metric with respect to the z axis. A similar theory could be devel­

oped for coupling between any other set of two waves. For example, 

one could find a set of coupled equations for coupling between F 1 (z) 

and B(z)l+Zq/N where q = 0, 1, 2, ... represents different spectral 

orders. In this case t he undiffracted wave propagates at the angle 

0 °"' arc sin (f3 /k ) whereas the diffracted wave propagates at the 
0 Z 

0 

angle 0 ""'arcsin[f3 (1+2q/N)/kz ] with respect to the z axis. The 
0 0 

diffraction efficiency DE is usually defined by the relation DE = IT NI 
2

• 

The theory is approximate since only a few space harm.onics 

were used, only the approximate boundary conditions were applied 

and because the (assumed small) reflected wave for z < --J.,/2 was 

ignored. 

D. Gaussian Beams in Periodic Media 

With the advent of the las er, it is useful to consider Gaussian 

beam scattering from periodic structures. Several authors85• 91 - 94 

have considered Gaussian beam scattering at dielectric interfaces 

or in periodic media. The method of beam reflection at interfa ces 

was developed by Brekhovskikh. 91 We will use this formulation and 
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a similar one used by Tamir and Bertoni. 
92 

In this section, the formulation for Gaussian beam propaga­

tion in LP and TP slabs will be outlined. The previously derived 

ECW reflection and transmission coefficients will be used. Numerical 

examples will be given in a future report. However, the general 

characteristics may be determined from the previous transient anal­

ysis for certain cases. 

Consider the aperture Gaussian beam E (x, -h) of Figure 6.12 ap 

that is formed at the plane z = -h. 

E (x', 0) = ap 
e 

2 -(x' /w) 

The propagating wave is given approximately by 

E (x, z) I = ap 
z=-h 

-(xcos8/w/ . ik,./e[xsin'9+(z+h)cos9] I . e e 
1Tz w · . 

z=-h 

(6. Dl) 

(6. D2) 

The incident wave E. (x, z) is given by_ the Fourier transforrn of the 
inc 

spectral am.plitude <P (k ) 
X 

E. (x, z) = .1_ Joo ~ (k )e i [kx x + kz (z+h)] dk 
inc 2 x x 

'IT -oo 
(6. D3) 

-h<z<O 

where k = z 

The spectral amplitude is given in terms of the aperture field by 

the relation 

00 

<P (k ) 
X 

= J 
-oo 

-ik- X E (x, -h)e ·'X dx 
ap 

(6. D4) 
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X 

C 

Fig. 6. 12 Gaussian beam incident upon LP or TP 

slab near Bragg resonance. 

z 
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X 
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e-[w(kx-kJ°e sin8
0
)/2 cos8 0 J2 

cos8 
0 

(6 . D5) 

Two assumptions are made ~ First, assume that the beam 

is well-collirnated, or 

kF w >> l (6.D6) 

where w represents the beam width. This limits significant spectral 
1 

amplitude to values about k = k e 2 sin8 • Hence, k is usually real 
X O Z 

and the contribution to surface or lateral waves can be ignored. 

This is also necessary for the ECW approximations. Second, the 

incident and scattered waves are near Bragg resonance, or 

LP media 
TP media (6 . D7) 

The transmitted and reflected fields ET (x, z) and ER (x, z) are 

found from the integral of the product of the spectral amplitude 

(at z = 0) and the appropriate coefficient; 

ET(x, z) = I J00 
T(k )ii? (k )e +i[ly+kz{z+h)] dk. 

2,r X X X -oo . 

ER(x, z) = 1 J00 
R(k )ii? {k )li[kxx-kz{z+h )] dk 

2,r X X X 
-oo 

where the ( lupper) signs hold for ( LTPP) media. 
ower 

(6. DB) 

(6 ~ D9) 

The expressions for R(k ) and T(k ) can be found from equa-
x X 

tions (6.Al3, 14) and (6 . CIO, 11) for LP and TP media, respectively. 

The values of phase mismatch and coupling have been derived for 

arbitrary angle of incidence in TP media and at normal incidence for 
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LP media. The extension of the ~p results to arbitrary angles of 

incidence is a straightforward derivation and will not be given here. 

The explicit results near the first Bragg resonance are, 

tk 2 

J 1 • x for LP and sin8 -,., ---
o coso K2 TP media 

' 0 

(6. DIO) 

X1 
°"' sc2se 

1 for (LP) media (6.Dll) K 
(
c?s8 0 ) TP 

0 sm9 
0 

where 

{

k /~ EJ for LP media 
sin9 = 

XO , l 

0 /3 /k e2 for TP media 
0 _ 0 

tk = k k 
X X X 

0 

{ 2 
- /3 2 J½ [k e for LP media 

k 0 0 
= 

X 
/30 for TP media 0 

/30 = K/2 

Note that for LP media the expression~ for the transmitted 

and reflected fields are similar to the transient analysis if the time 

coordinate is replaced by the space coordinate. In particular, Figures 

6. 7-9 show the spatial dispersion of pulses in space for rectangular 

and Gaussian input beams at exact Bragg frequencies and non-normal 

incidence if the normalized time is replaced by normalized distance. 

In this section the derivation for spat_ially bounded beams was 

given a form that is easy to compute under the ECW assumptions. 

It was shown that temporal and spatial dispersion are similar and 

that the results of the transient analysis could be extended to include 

beam propagation. 
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CHAPTER VII 

CONCLUSIONS 

This report establishes an approximate method of calculating 

the properties of the Brillouin diagram at all Bragg orders for waves 

in periodic media. The method is introduced in the second chapter 

where the connection between the Floquet and the coupled waves 

theory is shown and demonstrated with several numerical examples 

at the first Bragg resonance. In the third chapter, the idea of cross­

and self-coupling helps to extend the coupled waves theory to all 

Bragg resonances by the use of coupling diagrams. These results 

explicitly show the dependence of the bandgap width, bandgap shift 

and coupling upon Bragg order. The results closely match the exact 

Floquet dispersion relations. Fur thermore, the ECW theory accounts 

for multiharmonic periodicities and demonstrates the idea of dis­

appearing bandgaps under certain conditions. 

The fourth and fifth chapters deal with active or lossy dielec­

trics. Inverted bandgaps occur only for certain types of coupling and 

at certain Bragg orders. The stability of active periodic media has 

characteristics that depended on the nature (i.e. inverting· or non­

inverting) of these bandgaps. Absolute stabilities are found to occur 

under certain conditions and only at certain frequencies in active 

periodic media. These threshold conditions and mode spectra agree 

with results found from an entirely different analysis, in the appro­

priate limit, at the first Bragg order. The advantage of the stability 

analysis is that only the dispersion relation is needed to fully describe 

the stability characteristics. 
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The last chapter includes a few applications of the preceding 

theory to finite length media. The topics of reflection, transmission, 

transients, DFB lasers, holographic gratings and beams in periodic 

media are briefly discussed and illustrated. 

The ECW theory demonstrates some of the power and versa­

tility of the coupled waves formalism. It is anticipated that space­

time periodic media and variable-frequency or almost-periodic media 

may be treated in a similar manner. The case of transversely 

bounded media can be treated using a previously developed approach32 

for the guided modes. The result is that each power of 17 will be mul­

tiplied by an overlap integral. Hence the coupling will be somewhat 

decreased. 

Exact theories such as the Floquet theory, matrix theory or 

the method of invariant imbedding will be useful for specific cases 

where exact results are needed. However, the intuitively appealing 

ECW theory gives results explicitly without lengthy computations 

and is surprisingly accurate in the cases treated here. 
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APPENDIX A 

ASYMPTOTIC FORM: OF FIELDS FOR 

ABSOLUTE INSTABILITIES IN PERIODIC MEDIA 

Consider the following equation for F(z, t) which is proportional 

to the electric field 

00 00 

F(z, t) = J J 
-oo -oo 

S(.6.@, w)ei(.6.f3z- wt) 
D(t.(3, W) (A. 1) 

where S(.6.(3, w) is the normalized source and D(.6.j3, u,l) is the dispersion 

relation. We are interested in the asymptotic value of F(z, t) for 

large times when an absolute instability occurs. This happens when 

the roots of D(.6.(3, W) merge in the .6.!3 plane from opposite half-planes 

separated by the line Im[.6.~} = O. We assume that the source is 

analytic in .6.{3 and that it is turned on at the time t = O. 

We follow the work of previous authors 
73

, 
74 

and expand the 

dispersion relation about the instability at w = w' and 6f3 = 413 ' in a 

Taylor series. Then the integration is first carried out in the .6.(3 

plane and finally in the W plane. 

The Taylor expansion of D(.6.(3, w)/S(43, w) is, 

D(.6.~ 1 w) :::,,, D f ( 43 - llf3 1 
/ + n i ( w - w 1 > (A. 2) 

S(.6.!3,W) 

where D2 1 a
2

(D/S) I = 2 I a (llf3 )
2 

llf3=.6.f3 , 

D2 = 
o(D/S! I w=w' 2 aw 

We rearrange the dispersion relation to find 
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F(z, w) = 1 
1 

4rriD
1 

D 2 (w-w')2 

where 
00 

F(z, t) = J -iwt 
F(z, w) e 

-oo 

dw 
2'IT 

(A. 3) 

d(6(3) 

and the contour C' is shown in Figure A. la. The first pole of (A. 3) is 

located in the upper half plane and contributes for z > 0 while the 

second pole is located in the lower half plane and contributes for z < O. 

For z > 0, equation (A. 3) becomes 

F(z, w) = 

1 

ei[6(3'+iDz(w-w')2 /D 1]z 

1 
2i D

1 
D 2 ( w- w')z 

(A. 4) 

To carry out the integration in w, we <;1.epress the contour around the 

singularities down to the real w axis. This contour C 11 is shown in 

Figure A. lb where two poles at w = ± w represent the harmonic s 

source contributions. This second integral is 

F(z, t) = 
iil{3 1 

Z e 

1 

en 

1 

e-[Dz(w-w')2 /D 1]ze-iwt dw 

(w-w 1
) 2 2'IT 

(A. 5) 

The branch cut of ( w-w1 ) 2 provides the major contribution. Hence, we 

approximate the integral (A. 5) as t-: oo by 

i6(3'z {o -[Dz(w-w')½/D 1] 0 +[Dz(w-w 1)½/D]z 
e J e • J e F(z, t) = Zi D D .!. - 1 

I z O (w-w 1 )2 o (w- w')z 

X 
-iwt dw 
e 21r (A. 6) 
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iW· I 

--...~~ .... .----➔--~~ .......... ~ ........... -__..wr 
Wo 

Fig. A. 1 a) Contour C' in 6f3-plane showing poles when 

6f3' = O. b) Contour Ctt in w-plane showing 2 poles due 

to source at ±w and branch cut at instability frequency w . 
S 0 



F(z,t) = 
illf3 I z -i(.c.b t 

e · e 

where w' = w + ia 
0 

Let (w. - a) = -q 
l 

F(z, t) = 
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a - t .!. J e q cosh[D1(-iq) 2 /D1]zdq (A.S) 

o (-i)2 q2 

Letting the upper limit tend to infinity we get 

F(z, t) _, as (A. 9) 

Thus, the electric field is time-growing with the wavenumber and 

frequency of the absolute instability. For two instabilities at 

different frequencies, there will b e two branch cuts in Figure A. lb 

and the F(z, t) will have two similar contributions, each of the form 

of (A. 9) . 
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APPENDIX B 

ECW PARAMETERS FOR SQUARE- WAVE, 

TRIANGULAR-WAVE AND SAWTOOTH PERIODICITIES 

For applications to instabilities and DFB filters and oscillators 

it is convenient to have the phase mismatch 6N and the coupling XN at 

the first three Bragg orders for square-wave, triangular-wave and 

sawtooth periodicities. 

It has been shown that the major contribution to N
th 

order 

coupling is from the Fouriei- component fN of the periodicity. Hence 

for the three periodicities under consideration, the results at first 

and third orders are a straightforward application of the results of 

chapter III since each wave contains odd harmonics. In addition the 

sawtooth wave contains both even and odd harmonics so previous 

results can be used at all Bragg orders for this periodicity. The 

computation that needs to be carried out is for parameters at even­

order resonances with odd-order Fourier components. We will carry 

out these computations for N = 2 in the lossless case (e=e ). r 

The three periodicities have the following Fourier decompo-

Square-wave 

Triangular-wave f p 

Sawtooth f = p 

p odd 

p even 
(B. 1) 

p odd (B. 2) 
p even 

(B. 3) 

with the normalization f 
1 

= 1. An appropriate sine or cosine Fourier 
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series is used for periodicities that are odd or even in z, re spec -

tively. 

At the first Bragg resonance, ...;,e find that X /K = ri/8 and 
1 1 

o1/K = 6k €
2 /K by the use of (3.A24, 3.A25) for all three periodicities . 

This is identical to the sinusoidal case. 

At the second Bragg resonance, we find x
2 

/K = -ri2 /8 and 

o
2

/K = 6ke½ /K-ri
2 

/12 for sinusoidal periodicities. The other perio-

dicities present need to be calculated. We consider the seventeen 

waves B
8

, B
7

, ... , S, ... , F 
7

, F 
8 

for periodicities with fp = 0 for 

p even and N = 2. Thus, we need only the eleven waves B
8

, B 6, ... , 

S, ... F 
6

, F 8 since no significant coupling can take place through 

B , F with q odd. q q 
Using the ECW approximations, we need to 

solve the following equations. 

= -1 f7 F 1 

= -¥ (f5Fl+f7Bl) 

-15 F 4 = -t (f3F l+fSBl) 

3 F 2 = -1 (f 1 F 1 +f 3 B 1) 
I 

26k 
Fl + 

2 i F
1 

7c ke"z 
= -1 [f5 (B6 + F 4)+f 7(F 8+ B6) 

+f3(F4+B2) + fl(Fz+S) J 

I 
s = -t [f 1 ( B 1 + F 1)] 

2i B 
1 

--r 
k e2 

+ = -°t [f5(B6 +F 4)+f7(Bg+F 6) 

+ f
3

(B
4
+F

2
) + f

1
(B

2
+S)] 

= -1 (fl B 1 + f 3 F 1) 

(continued on next page ) 
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= - °t(f3Bl + f5Fl) 

= -¥(f5Bl +f7F2) 

--.!lf B - 2 7 1 (B. 4) 

where self- and cross-coupling O(ri2) has been included. The equations 

(B. 4) are solved to give the usual coupled equations for F 
1 

and B
1 

with 

(B. 5) 

• 0. J (B. 6) 

In (3. B6), if the terms drop off as f ex: 1 /p or faster, only the first two 
p 

terms need to be kept in the series for accuracies of order 1% in phase 

mismatch. In (3. B5) the series can be summed explicitly by using 

Schlafli' s Polynomials 98 Sn of order 11 for the square- and triangular­

wave. Two terms will again give accuracies of order I%. For square-

waves we find 

l 

Xz 2 02 £1 ke: z 2 

K = "13" [-1+2 s2 ] K = Yz (.911) , 
ri 

(B. 7) 

while for triangular waves 

l 

Xz 2 62 '1ke: z 2 

K = 2L[-1+2S] K = -- - 1z (. 990) 8 3 , 
ri 

(B. 8) 

2 
where s2 

rr - 8 ::,., o. 1168 .. 0 = ---u;-

32-3,r 2 

S3 
::,., 0.3736 ... = 64 
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Thus, we have accounted for the major self- and cross­

coupling terms O(r/) which can be approximated by only considering 

the seven waves B 
4

, B 2, B 1, S F 
1

, F 2 , F 
4 

for periodicities with 

odd Fourier components f . p 

The case of the sawtooth-wave 1nust be treated separately 

since it contains both even and odd Fourie-r components and must be 

expanded in a sine series. To consider the correction to the self­

coupling from rif
1 

and to the cross-coupling from rif
2 

we consider 

only the first three Fourier components f 1, f 2 , f
3 

and the waves 

B
3

, B2 , B 1, S, F 1, F 2 , F
3 

for simplicity. The equations for N = 2 

in the ECW approximation are then, 

-15 F 4 

-BF 
3 

2 !!lk F + 
~ I 

I 

2i FI 

k ea 

= - -frf3 Fl 

- - -n-£2 Fl 

= ..11.. f ]"" 
- 2i I I 

The solution for the coupling and phase mismatch are 

(B. 9) 
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Xz 
1 [£2 + O(ri fp)] K = (B. 10) 

1 
2 3f z fz 

oz bike 2 

... J !L[ 2 2 3 
K = ~- 12 fl -16 - To - (B. 11) 

± 
where it is understood that X = ± i X• The approximations to 1% in-

volves keeping only the first term in (B . 10) for ri << 1) and the first 

two ter1ns in the series in (B. 11 ). Thus, for the ·sawtooth-wave, 

1 

Xz 02 t.k e 2 2 
.!l. - ..!L (0~953) (B. 12) K = 8 K = K 12 

The approximation that uses only the first term in both (B. 10) and 

(B. 11) can be gotten directly from (3. A24, 3. A25) with~ 5% accuracy. 

At the third Bragg order a.ll three of the periodicities con­

sidered here contain the Fourier c:omponent f
3

. Hence, the major 

cross-coupling will be due tori f
3 

and the major self-coupling will be 

due tori f
1

. The phase mismatch and coupling from (3.A24, 3.A25) 

are 

63 
1 2 

tik e2 27ri2fl 

K = K 256 
(B. 13) 

X3 3ri f3 

K = 8 
(B. 14) 

The error is again on the order of 1% except for the phase mismatch 

of the sawtooth-wave where the error~ 5%,. 

The results of this appendix and comparisons to the sine wave 

are found in Tables B. 1 and B. 2. 
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~ rul.J 'V'v 14 
N = I .!1 .!1 .!1 .!1 8 8 8 8 

2 2 2 
N = 2 :.!L. :!L ..:.!L .!1 

8 8 
(0. 77) 

8 
(0. 93) 

8 

N = 3 243ri3 ]1 .TI. ..!1 
2048 8 24 8 

Table B. I Normalized coupling coefficient xN/K for sine-, 

square-, triangular- _ and sawtooth-wave periodicities. For 

the sawtooth-wave the" coupling is x± = ± i X• 

fl_f7_i 

N = 1 

N = 2 
6kE: 1- _ .-TI.:_ i1kE: 1- !C. 

K 12 -r - 12 (0. 9J) 

N = 3 
..!c. 2 ~ 2 

6kE: 2 .. ~ 6kE: ·z- _ ~ 
K 256 K 256 

Vv 

6kE: t 2 717 2 

-X- - 256. 

..!,. 2 
6kE: 2 _ J:L_ 

K 12 

Table B. 2 Normalized phase mismatch oN/K for sine-,square- , 

triangular- and sawtooth-wave periodicities. 
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APPENDIX C 

REFLECTION AND TRANSMISSION 

COEFFICIENTS OF DFB FILTER 

Consider the following coupled equations 

= 
= 

( C. l) 

which describe waves in a DFB filter. The primes denote differen­

tiation with respect to the coordinate z. Differentiating (C. 1) and 

eliminating B
1 
(z) and F 

1 
(z) respectively, produces 

Ir I 

( ~) - i ( op - o q) ( r ) + ( o q op - Xpq Xqp ) ( ~ ) = 0 (C. 2) 

where the subscripts and arguments have been dropped for simplicity 

and the primes denote differentiation with respect to the coordinate z. 

The solutions to ( C. 2) are 
o -o 

- i( pz g )z 
Fe 

where D = p 9 2 

[ 
o +o ] 1. 

+ ~q Xqp - ( 2 ) 

Apply the boundary conditions 

F(ii/2)= l 

B(-ii/2) = R 

F(ii/2)= T } 

B(f,/2) = 0 

(C. 3) 

(C. 4) 

(C. 5) 

(C. 6) 
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to find the following equations 

( c. 7) 

(C. 8) 

( c. 9) 

(C. 10) 

Use (C . 7-8) to solve for f 1 and use (C . 9-10) to solve for b
1

. 

2 2 

_ [ e(i 6 .l/2 + D.l/2) _ T e( - i 6 .l/2 ± D.l/2) ] 

+ D.l -D.l 
e - e 

( c. 11) 

Re(i 6 .l/2 + D.l/2) 

Dt -Dt 
e - e 

[ ] (C.12) 

" where o = (o -o )/2 
p q 

Two other equations for f 
1 

and b 
1 

can be found by substituting ( C. 3, 4) 

into the coupled equations2 ( C. J. ). 2 This produces the coupled equations 

(C.13) 

(C.14) 

Equations (C.11-14) provide the necessary relations to solve for T 

and R, the transmission and reflection coefficients. After afgebraic 

manipulations, the results are, 



R = 

T = 
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o +o 
D coth Di. - i( P

2 
g) 

i(o - o )t/2 
De p q 

( o +o ) 
D cosh Di. - i E

2 
9 sinh D.Q, 

( c. 15) 

( c. 16) 

Note that the equations hold for all Bragg orders when the 

proper o and X are used. Also the equations hold for coupling between 

waves of different transverse modes, or in general for any coupled 

system where the phase mismatch and coupling might be different for 

the waves F(z) and B(z). 
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APPENDIX D 

APPROXIMATIONS FOR DFB THRESHOLD AND SPECTRUM 

1. High-Gain Approximation 

Oscillation will occur in a DFB laser when the reflection or 

transmission coefficient becomes infinite. This implies the condition 

DN coth DN i, = i oN (D. 1) 

2 0 2 ]2 where DN = [xN - N 

oN = 6N - i gN 

Equation (D. 1) can be written in exponential form 

(D. 2) 

which is a complex equation. Under the high-gain approximation 

gN >> XN and expanding the expression for DN we find 

i o -N-

Either root of (D. 3) when substituted into (D. 2) yields 

(D. 3) 

(D. 4) 

Taking the amplitude of (D. 4) we find the threshold gain condition 

(D. 5) 
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where the value 6N is found from. equating the phase of (D . 4), or, 

(m=O, ±1, ±2, ... ) (D. 6) 

This latter result produces rnultiple values for the spectrum or oscil­

lation frequencies which are called longitudinal 1nodes. Since 

tan - l (6N/ gN) << 1, the mode spectrum can be further approximated 

by 

where 

6k,/e_, 
r = 

2 3 
'N 17 N 

+-------K--

0 
( rr /2 ) 

32(N2 - 1) 
= ( 0 index coupling (all N), gain coupling 

• rr /2 gain coupling (N odd) 

for index or gain coupling . and singly periodic media . 

(D. 7) 

(N even) 

The high-gain approximation yield~ the entire spectrum and a 

transcendental equation for the threshold gain of each longitudinal 

mode . 

2 . Low-Gain Approximation 

It is more convenient to start with an alternative expression 

for index coupling or even-order gain coupling. Consider the solutions 

D n - Di, 
F 

1 
= f 

1 
e )(, + f 

2 
e (D . 8) 

-Di, 
B _ b Di,+ b 2 e 

1 - l e (D. 9) 

to the coupled equations 

I 

- Bl - i oN Bl = i XN Fl 
} (D.10) 

where 2 2 ½ 
DN = [xN - oNJ 
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Since there are no outside sources for DFB lasers, we may use the 

boundary conditions 

B(-l/2) = 0 = F(£,J2) 

This implies the relation 

= = 
-D i, N· 

-e 

(D. 11) 

(D. 12) 

When (D. 12) is substituted into the coupled equations (D. 10) along with 

expressions (D. 8, 9), the following equation can be derived. 

{D. 13) 

Either of the exact equations (D. 1) or (D. 13) may be used for threshold 

calculations. 

Consider the low-gain approximation where gN << XN for index 

coupling and even-order gain coupling. Expand the hyperbolic func-

(D. 14) 

where 

From the real part of the above equation, 

(D. 15) 

For /, large, oscillation takes place just outside the bandgap edges 

given by 

(D. 16) 
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From the imaginary part of (D. 14) the gain condition becomes 

(D. 17) 

The low-gain approximation for odd-order gain coupling is 

most easily derived from equation (D. 1). First consider the neces­

sary condition on the perturbation for no average gain (i.e. g N = 0). 

An expansion of the hyperbolic function in (D. 1) produces 

(D. 18) 

Equating the real and imaginary parts produces the results 

(D.19) 

(D. 20) 

Thus oscillation takes place at the bandgap center. The necessary 

length i, for a given perturbation, is the critical length 
C 

(D. 2 I) 

For gain perturbations or lengths less than those given by (D. 20), no 

oscillation takes place. 

To find the threshold condition on the average gain, equation 

(D. 22) 

Keep all terms in nJ to get 
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lxNI + 
2 ± 6 

gN = 
lxNl.e 

(D. 23) 

and 

L'.1N = 0 (D. 24) 

He1,1ce oscillation takes place at the bandgap center with the approxi­

mate gain condition 

(D. 25) 

when .e is large. 

Note that the low-gain approximation gives explicit values for 

the spectrum and thresholds of the average gain and perturbation for 

the lowest order (m=O) longitudinal mode only. 

All previous results match those of Kogelnik and Shank
23 

at the 

first Bragg order. This appendix extends their results to all Bragg 

orders. 
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APPENDIX E 

ECW EQUATIONS FOR TRANSVERSELY PERIODIC MEDIA 

Consider the wave equation 

[ 

dz + dz 2 ] • 
+ k e:(x) E(x, z)_ = 0 

dz
2 

dx:
2 (E. I) 

where E: (x) = · e: ( I +r] cosKz) for transverse singly periodic media . . 

Assume a TE field of the form 

E(x, z) 

where N-2 -z-
N-1 -z-

-1 

for N even 

for Nodd 

for N = 1 

for N even 

for Nodd 

(E. 2) 

This accounts for positive group velocity space harmonics involved in 

cross- and self-coupling of F 
1 

(z) and B
1 

(z). A similar expression 

exists for negative group velocity space harmonics. 

The following set of N+3 coupled equations exist when (E. 2) 

is substituted into (E. 1) for higher-order Bragg interactions. 
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(E.3) 

( 
2 2 • 2 

k e:-kz - (-(3 +t:.(3) }B 
o o I 

where k = kz0 
+ C:lk 

z z 

(3 = (30 + 6(3 = NK/2 + 6(3 

k = k + 6k 
0 

k 2 e: 2 (3 2 = kzo + 0 0 

The primes denote differentiation with respect to the coordinate z 

and the arguments with respect to z have been dropped for simplicity. 

The above equations are solved using the ECW assumptions and ap­

proximations of chapter III. 

First, solve for F(z)l-Z/N and B(z\_z/N· 

similar to (3.Al6-17) with the change 17 _, 17/sin2e 
·O 

l 

sin6 = (3 /k e: 2 • Hence, 

The result is 

where 

, 0 0 O· N-1 
(-l)N+l( .'.!]2 · ) Bl(z) -i 11 N F (z) 9 

F(z) = ·N 1 + 2sm 0 

1-2/N 8(1-1/N)sinZeo TT,,< (4JJ(n-N)/N2} 2 
(E. 4) 
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-CNriNB1(z) 
= 

8( 1-1 /N)sin
2 8 

0 

(E. 5) 

( 
N-1 

(-l)N+l !2 ) Fl(z) 
+ 2s1n 8 0 

~ 2 2 
TT [ 4n(n-N /N J. 

{~ 
N = 1 

where CN = 
N;;::z 

I 

(N-1)/2 
TT~< ? 

r(n) for Nodd 
n=l 

N/2 

TT f(n) for N even 

n=l 

1 for N = 1 

Second, trivially solve fdf F(z)l+Z/N and B(z)l+Z/N" The result is 

again identical to the previous results of (3.Al8-19) with the change 

fl _, ri/ sin2e . 
0 

F(z)l+2/N 
CNT")NF1(z) 

= 
8(1 +I /N)sin28 

0 

(E. 6) 

B(z)1+2/N 
CN fl N B 1(z) 

= 
8(1+1/N)sin

2e 
0 

(E. 7) 

S_ubstituting (E. 4-7) into the equations for F 
1 

(z) and B 
1 

(z) in (E. 3) 

produces the ECW coupled equations for TP media. 

(E. 8) 
I 

B 1(z) + i oN B 1(z) = i XN F 1(z) 

where 



-176-

z { 1J Z [ NZ ] } Z Z 
k e: I - C N ( Z sin 9 

0
) z (NZ_ I t - (f3 o +tif3N) -kz0 

(E. 9) 
2k 

z 
0 

I 

TT* Z 2 ( 4n(n-N)/N } 
(E.10) 

The expressions can be further sirnplified by noting the equality 
2 2 • 2 .!. 1 

k € = f3 + kz and the relations k e: 2 /kz ""' k e: 2 /k = l/cos0 
0 0 O O O zo 0 

1 1 

and k e3/f3 = I/ sin8 . The deviation from k e 2 and f3 represent the 
0 0 . 0 0 0 

changes in frequency and angle from the exact Bragg condition. 



-177-

REFERENCES 

1. E. Mathieu, 11Memoire sur le Mouvement Vibratoire d 1une 
Membrane de Forn1.e • Elliptique, 11 Jour. de Math. Pures 
et AppliquJs, (Jour. de Liouville) !1., 137 (1868). 

2. M. Floquet, 11Sur Les Equations Difftrentie],1.es LinJaires a 
Coefficients PJriodiques, 11 Ann. de l'Ecole Normale 
Superieure g_, 47 (1883). 

3. G. Hill, 11On the Part of the Motion of the Lunar Paragee which 
is a Function· of the Mean Motions of the Sun and Moon, 11 

Acta Mathematica VIII, 1 (1886). 

4. Lord Rayleigh, 11On the Maintenance of Vibrations by Forces 
of Double Frequency, and on Propagation of Waves 
through a Medium Endowed with Periodic Structures, 11 

Phil. Mag. 24, 145 (1887). 

5. N. McLachlan, Theory and Application of Mathieu Functions, 
Dover Publications, New York (1964). 

' 

6. Brillouin, Wave Propagation in Periodic Structures, Dover 
Publications, New York (1953). 

7. J. Pierce, private com.1nunication and Cutler, 11Mechanical 
Traveling-Wave Oscillator, 11 Bell Laboratories Record 
(April 1954). 

8 . D . Tseng, 11Guiding and Scattering of Electromagnetic Fields 
by Corrugated Structures, 11 Ph.D. thesis, Polytechnic 
Institute of Brooklyn (July 196 7). 

9. J. Pierce, 11 Coupling of Modes of Propagation, 11 .T. Appl. 
Phys. 25, 179 (1954). 

10. J. Pierce, Almost all About Waves, MIT Press, Carnbridge, 
Mas s . ( 1 9 7 4). 

11. C. Elachi, ''Electromagnetic Wave Propagation and Source 
Radiation in Space-Time Periodic Media, 11 Caltech 
Ant. Lab. Tech. Report No. 61, California Institute 
of Technology, Pasadena, Ca. (Nov. 1971 ). 

12. D. Marcuse, Theory of Dielectric Optical Waveguides, 
Academic Press, New York (1974). 

13. A. Yariv, Introduction to Optical Electronics, Holt, Rinehart 
and Winston, New York (1971 ). 



-178-

References (Cont'd) 

14. A. Yariv, Quantum Electronics, 2nd ed., John Wiley and 
-Sons, New York (1975). 

15. H. Kogelnik, 11Coupled Wave Theory for Thick Hologram 
Gratings, 11 Bell Syst. Tech. J. 48, 2909 (1969). 

16. S. Miller., 11Coupled Wave Theory and Waveguide Applications, 11 

Bell Syst. Tech. J. 33, 661 (1954). 

l 7. J. Pierce, Traveling Wave Tubes, Van Nostrand, Princeton 
_(1950). 

18. W. Louis ell, Coupled Mode and Parametdc Electronics, 
John Wiley and Sons, New York (1960). 

19. D. Marcuse, Light Transmission Optics, Van Nostrand, 
New York (1972). 

20. A. Yariv, 11Coupled-Mode Theory for Guided-Wave Optics,1 1 

IEEE J. QE-9, 919 (1973). 

21. B. Batterman and H. Cole, 11Dynamical Diffraction of X-Rays 
by Perfect Crystals, Rev. Mod. Phys. 36, 681 (1964). 

22. R. Chu and T. Tamir, 11Guided-Wave Theory of Light Dif­
fraction by Acoustic Microwaves, 11 IEEE Trans. MTT -17, 
1002 (1969). 

23. H. Kogelnik and C. Shank, "Coupled-Wave Theory of Distri­
buted Feedback Lasers, 11 J. Appl. Phys. 43, 232 7 ( 1972). 

24. C. Elachi and G. Evans, 11Transversely Bounded DFB Lasers, 11 

J. Opt. Soc. Am. § 404 (1975). 

25. S. Wang, "Principles of Distributed Feedback and Distributed 
Bragg-Reflector Lasers, 11 IEEE J. QE-10, 413 (1974). 

26. E. Denman, Coupled Modes in Plasmas, Elastic Media, and 
Parametric Am.plifiers, American Elsevier, New York 
(1970). 

2 7. C. Kittle, Introduction to Solid State Physics, 4th ed .• John 
Wiley and Sons, New York (1971). 

28. E. Bahar, "Radio Wave Propagation over a Rough Variable 
Impedance Boundary: Part !--Full-Wave Analysis, 
Part II--Application of Full-Wave Analysis, 11 IEEE 
Tran. AP-20, 354 (1972). 



-179-

References (Cont 1d) 

29. C. Elachi, D. Jaggard, and C. Yeh, 11Transients in a Periodic 
Slab: Coupled Waves Approach, 11 IEEE Trans AP-23, 
352 (1975). 

30. G. Evans, 11 Electromagnetic Theory of Distributed Feedback 
Lasers and Periodic Dielectric Waveguides, 11 Caltech 
Ant. Lab. Tech. Report No. 71, California Institute of 
Technology, Pasadena, Ca. (Sept. 1974). 

31. C. Elachi and C. Yeh, 11Mode Conversion in Periodically 
_Distributed Thin Film Waveguides, 11 J. Appl. Phys. 45, 
3494 (1974). 

32. C. Elachi and C. Yeh, 11Periodic Structures in Integrated 
Optics, 11 J .. AJ>pl. Phys. 44, 3146 (1973) • . 

33. R. Millar, 11On the Rayleigh Assumption in Scattering by a 
Periodic Surface, 11 Proc. Carnb. Phil. Soc. 65, 77 3 
(1969) and 11On the Rayleigh Assumption in Scattering by 
a Periodic Surface II, .11 Proc. Camb. Phil. Soc. 69, 
217(1971). -

34. D. Flanders, H. Kogelnik, R. Schmidt and C. Shank, 11Grating 
Filters for Thin-Film Optical Waveguides, 11 Appl. Phys. 
Lett. ~ 194 (1974). 

35. A. Yariv and H. Yen, !JBragg ,Amplification and Oscillation 
in Periodic Optical Media, 11 Opt. Comm. ~ 120 (1974). 

36. S. Chinn and P. Kelley, 11Analysis of the Transmission­
Reflection and Noise Properties of Distributed Feedback 
Laser Amplifiers, 11 Opt. Comm . .!..Q_, 123 (1974). 

37. H. Jones, Theory of Brillouin Zones and Electronic States in 
Crystals, North-Holland, . Amsterdam (1960 ). 

38. R. Collin, Field Theory of Guided Waves, McGraw-Hill, 
New York (1960). 

39. N. Kapeney and J. Burke, Optical Waveguides, Acadernic 
Press, New York (l 973Y. 

40. F. Borgnis and C. Papas, 11 Electromagnetie Waveguides and 
Resonators, 11 Appearing in Hanbuch der Physik,i Vol. 16: 
Elektrische Felder und Wellen, edited by S. FlUgge, 
Springer-Verlag, Berlin (1958). 

41. J. Bjorkholm and C. Shank, 11Higher·•Order Distributed Feed­
back Oscillators, 11 Appl. Phys. Lett. 20, 306 (1972 ). 



-180-

References (Cont'd) 

42. D. Jaggard and G. Evans, "Coupled Waves and Floquet 
Approach to Periodic Structures, 1! Caltech Ant. Lab. 
Tech. Report No. 73, California Institute of Tech­
nology, Pasaden~, California (Aug. 1975). 

43. E. Casaedy and A. Oliver, 11Dispersion Relations in Time­
Space Periodic Media: Part I - Stable Interactions, 11 

Proc. IEEE, ~ 1342 (1963). 

44. F. Bloch, "Uber die Quantenmechanik der Elektronen in 
Kristallgittern, 11 z. Physik g 555 (1928 ). 

45. F. Odeh and J. Keller, 11Partial. Differential Equations with 
Periodic Coefficients and Bloch Waves in Crystals, 11 

. J. Math. Phys._ 5, 1499 (1964). 

46. E. Ince, Ordinary Differential Equations, Dover Publications, 
New York (1944). 

4 7. E. Whittaker and G. Watson, A Course in Modern Analysis, 
4th ed., Cambridge University Press, London (1935). 

48. A. Hessel, "General Characteristics of Traveling-Wave 
Antennas, 11 appearing in Antenna Theory, Part II, 
edited by R. Collin and F. Zucker, McGraw-Hill, New 
York (1969). 

49. T. Tamir and H. Wang, "Characteristic Relations for Non­
periodic Solutions of Mathieu's Equation, 11 J. of Res • . 
ofN.B~S., sec. B69B, 101 (1965). 

50. G. Blanck, "Mathieu Functions 11 appearing in Handbook of 
Mathematical Functions, edited by M. Abramowitz and 
I. Stegun, Dover Publications, New York (1965). 

51. A. Yariv and A. Gover, 11The Equivalence of Coupled Mode 
and Floquet-Bloch Formalism in Periodic Optical Wave-
guides, 11 Appl. Phys. Lett. 26, 537 {1975). • 

52. G. Evans and D. Jaggard, unpublished report. 

53. D. Jaggard and C. Elachi, 11Higher Order Interactions in 
Periodic Media: Floquet and Coupled Waves Approach, 11 

presented at 1975 USNC/URSI-IEEE meeting, Boulder, 
Colorado (Oct. 20-23, 1975), also 11 Floquet and Coupled 
Waves Analysis of Higher Order Bragg Coupling in a 
Periodic Medium, 11 ;f,. Opt. S.Qc. Am._ 66, 674 (1976) • . 



-181-

References (Cont'd) 

54. H. Kogelnik and C. Sh,ank, "Stimulated Emission in a Periodic 
Structure, 11 Appl. Phys. Lett. ~ 152 (1971). 

55. C. Elachih G. Evans and F. Grunthauer, 11Proposed Distri ­
buted Feedback Crystal Cavities for X -Ray Lasers, 11 

Appl. Optics 14, 14 (1975). 

56. E. Cassedy, 11Disper sion Relations in Time-Space Periodic 
Media: Part II - Stable Interactions, 11 Proceedings 
IEEE 55, 1154 (1967). 

57. C. Yeh, K. Casey and Z. Kaprielian, "Transverse Magnetic 
Wave Propagation in Sinusoidally Stratified Dielectric 
Media, 11 IEEE Trans. MTT-13, 297 (1965). 

58. S. Wang, "Thin-Film Bragg Lasers for Integrated Optics, 11 

Wave Electronics !., 31 (1974/75). 

59. E. Cassedy, "Waves Guided by a Boundary with Time -Space 
Periodic Modulation, 11 Proc. IEE 112, 269 (1965 ). 

60. R. Hurd, "The Propagation of an Electromagnetic Wave along 
an Infinite Corrugated Surface, 11 Can. J. Phys. 32, 727 
(1954). -

61. K. Casey, J. Matq1.es and C. Yeh, "Wave Propagation in 
Sinusoidally Stratified Plasrna Media, 11 J. Math. Phys . 
.!Q., 891 (1969). 

62. K. Casey and C. Yeh, "Transition Radiation in a Periodically 
Stratified Plasma, 11 Phys. Rev. A 2, 810 (1970).· 

63. S. Peng, H. Bertoni and T . .Tamir, "Analysis of Periodic 
Thin-Film Structures with Rectangular Profiles, 11 

Opt ~ Comm . .!Q., 91 (1974.). 

64. S. Peng, T. Tamir and H. Bertoni, "Theory of Periodic 
Dielectric Waveguides, 11 IEEE Trans. MTT-23, 123 
(1975). 

65. B. Tong, "Electronic Structure of One-Dimensiona.i Binary 
Alloys, 11 Phys. Rev. 175,710 (1961). 

66. P. Sah and K. Srivastava, "A Generalized Diatonic Kronig­
Penney Model, 11 Physica 4 3, 528 (1969). 

67. C. Papas, Theory of Electromagnetic Wave Propagation, 
McGraw-Hill, New York (1965). 



-182-

References (Cont'd) 

68. S. Case, 11Coupled-Wave Theory for Multiply Exposed Thick 
Holographic Gratings, 11 J. Opt. Soc. Am. 65, 724 (1975). 

69. S. Su and T. Gaylord, 11Calculation of Arbitrary-Order Dif­
fraction Efficiencies of Thick Gratings with Arbitrary 
Grating Shape, 11 J. Opt. Soc. Am. 65, 59 (1965). 

70. H. Stoll and D. Seib, 11M.ultiply-Resonant Distributed Feedback 
Lasers, 11 Proc. Integrated Optics Conference, Salt 
Lake City, Utah (Jano 12-14, 1976), also in IEEE J. 

· QE-12, 53 (1976). 

71. Zh. Alferov, S. Gurevich, V. Kuchinsky, M. M.izerov, 
E. Portnoy and M. Reich, 11Investigations of Ga-As/Ca AlA$ 
Waveguide Lasers with Second Order Distributed Feed­
back, 11 Proco Integrated Optics Conference, Salt Lake 
City, Utah (Jan. 12-14, 1976). 

72. P. Sturrock 11Kinematics of Growing Waves, 11 Phys. Rev. 112, 
1488 (1958). 

73. R. Briggs, Electron-Stream Interaction with Plasmas, MIT 
Press, Cambridge, Mass. (1964). 

74. A. Scott, Active and Nonlinear Wave Propagation in Electronics, 
Wiley-Interscience, New York (1970). 

75. S. Peng and E. Cassedy, 11Scattering of Light Waves at Bound­
aries to Parametrically Modulated Media, 11 appearing in 
Modern Optics, Polytechnic Press, New York (1967). 

76. B. Minakovic and J. Gokgor, 11Attenuation and Phase-Shift 
Coefficients in Dielectric-Loaded Periodic Waveguides, 11 

IEEE Trans. MTT-21, 568 ( 197 3). 

77. A. Neyfeh, Perturbation Methods, John Wiley and Sons, New 
York (1973). 

78. M. Born and E. Wolf, Principles of Optics, 4th ed., Pergamon 
Press, Oxford (1970). 

79. R. Feynman and A. Hibbs, Quantum Mechanics and Path 
Integrals, McGraw-Hill, New York (1965). 

80. J. Cooley, P. Lewis and P. Welch, The Fast Fourier Trans­
£orrr1 Algorithrn, Yorktown Heights, N. Y., IBM Watson 
Research Center (1969). 



-183-

References (Cont 1d) 

81. R. Alferness, 11 Equivalence of the Thin-Grating Decomposition 
and Coupled Wave Analysis of Thick Holographic Gratings,1 1 

Opt. Co1nm • .!2._, 209 (I 975). 

82. R. Alferness, 11Analysis of Optical Propagation in Thick Holo­
graphic Gratings, 11 Appl. Phys. 7, 29 (1975). 

83. R. Alferness and S. Case, "Coupling in Doubly Exposed, Thick 
Holographic Gratings, 11 J. Opt. Soc. Am. 65, 7 30 (1975) . 

84. R. Alferness, 11Analysis of Propagation at the Second-Order 
• Bragg Angle of a Thick Holographic Grating, 11 J. Opt. 
Soc. Am. 66, 353 (1976). 

85. R. Chu and T. Tamir. 11Bragg Diffraction of Gaussian Beams 
bv Periodically Modulated Media, 11 J. Opt. Soc. Am. 66, 
220 (1976). -

86. G. Allen, 11Band Structures of One-Dimensional Crystals with 
Square Wells, 11 Phys. Rev. 91, 531 (1953). 

87. C. Elachi, 11Waves in Active and Passive Periodic Structures, 11 

to appear in Proc. IEEE. 

88. R. Bellman and G. Wing, An Introduction to Invariant Imbedding, 
Wiley-lnterscience, New York, (1975). 

89. G. Bedrosian, 11The Invariant Imbedding Solution for Electro­
ma.gnetic Wave Propagation in Periodic, Almost Homo­
geneous and Almost Periodic Media, 11 Ph.D. thesis, 
California Institute of Technology, Pasadena, California 
(1977). 

90. G. Bedrosian, private communication. 

91. L. Brekhovskikh, Waves in Lanyard Media, Academic Press, 
New York (1960). 

92. T. Tamir and H. Bertoni, 11Lateral Displacement of Optical 
Beams at Multilayered and Periodic Structures, 11 J. Opt. 
Soc. Am. g, 1397 (1971 ). 

93. T. Ooya, M. Tateiba, and O. Fukumitsu, 11Transmission and 
Reflection of a Gaussian Bearn at Normal Incidence on a 
Dielectric Slab, 11 J. Opt. Soc. Am. 65, 537 (1975). 

94. J. Ra, H. Bertoni and L. Felsen, 11Reflection and Transmission 
of Beams at a Dielectric Interface, 11 SIAM J. Appl. Math. 
24, 396 (1973). 



-184-

References {Cont 1d) 

95. S~ Seshadri, "Higher Order Wave Interactions in a Periodic 
Media, 11 Appl. Phys . .!..Q, 165 (1976). 

96. D. Jaggard and C. Ela chi, "Higher -Order Bragg Coupling in 
Periodic Media with Gain or Loss, 11 submitted for 
publication. 

97. D~ Jaggard, "Stability of Higher -Order Bragg Interactions 
in Active Periodic Media, " submitted for publication. 

98. I~ Gradshteyn and I. Ryzhik, Table of Integrals, Series and 
Products, Academic Press, New York (l '7 65). 




