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ABSTRACT 

The technique of invariant imbedding, as introduced for the prob­

lem of electromagnetic scattering by V. A. Ambarzumian in 1943, provides 

a very convenient method for the solution (albeit numerical in many 

cases) of plane wave scattering from a one-dimensional region of in­

homogeneity. In the thirty-plus years which have intervened, the use­

fulness of this method has been extended in the case of electromagnetic 

properties of the region of inhomogeneity (dielectric constant, per­

meability, and conductivity). 

It is the purpose of this thesis .to examine the invariant imbed­

ding solution as it applies to periodic, almost periodic, and almost 

homogeneous media. The introduction of a complex number, Y , which is 

simply the reflection coefficient rotated by a fixed phase angle, is a 

new concept which allows the computation of the propagation constant 

for any periodic medium once the reflection and transmission properties 

for one cell are known, without any further complications such as matrix 

equations. The trajectory of the parameter, Y , also provides an in­

teresting graphical representation of the properties of a periodic medium. 

The concepts derived for general periodic media are then applied 

to the important class of media whose reflection coefficients remain 

small, except perhaps at special frequencies. In particular, a small 

reflection approximation leads to the result that for any medium which 

is "almost homogeneous," there ~1/iVI be one special frequency, for each 

structure constant in the cosine expansion of the index of refraction, 

for which the reflection gets large. 
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Chapter I 

Introduction 

The technique of invariant imbedding was first applied to elec­

tromagnetic scattering by Ambarzumian in 1943. 1 Since that time, 

there has been much work done both to extend the use of the technique 

in the solution of the wave-scattering problem (for instance, refer­

ences 2 through 6) and to expound the theory behind the technique. 7 

This thesis will be concerned with the application of Ambarzumian's 

technique to one-dimensional periodic and "almost periodic 11 materials. 

As the invariant imbedding approach of Ambarzumian applies to 

one-dimensional, linear wave-scattering problems, it may be stated 

with sufficient completeness very briefly as the following quasi­

algorithm: First, consider the simplest possible scattering problem, 

that is, the reflection from and transmission through a jump discon­

tinuity in the properties of the medium conducting the wave, assuming 

uniformity on either side of the discontinuity. In optical terms, 

this would be transmission and reflection at an interface between media 

with differing indices of refraction. In quantum mechanics, a similar 

example would be the matching of wave solutions on two sides of a 

potential discontinuity. Second, assume that we know the solution for 

up to N such interfaces stacked together and examine what happens when 

we add one more interface at a distance 6 from the last. Finally, 

the solution of the simple case may be iteratively transformed by the 

derived relationship between Nth and (N+l)St solutions until we arrive 

at the final answer. In the case of a continuously-varying medium, 
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the limiting process which makes the t 1 s very small and the N corres­

pondingly large yields first-order Riccati-type differential equa­

tions which, although hard to solve exactly, are very simple to 

approximate numerically to obtain the desired reflection and transmis­

sion properties of the inhomogeneous medium. 

The alternative methods for calculating the reflection and 

transmission are nearly always more difficult, both conceptually and 

mathematically. For instance, we could start with Maxwell's equations 

and reduce them to the second-order linear wave equation 

(when µ is constant), and solve for the proper ...,,ave solutions given 

k2(z), assuming that k2(z) is constant outside the slab and that the 

wave should look like the standard time-harmonic plane wave away from 

the region of inhomogeneity. Not only would this be a more difficult 

proposition numerically than invariant imbedding for almost all k2(z), 

but the physical process involved at each point along z would tend 

to be obscured by the sophisticated techniques used to solve the prob­

lem. Similarly, we could solve the quantum-mechanical one-dimensional 

11 square well II problem by matching solutions at the boundaries, but 

this method also tends to conceal the physical process until the final 

solution is examined. In contradistinction, the invariant imbedding 

formulation remains physically understandable at every point along the 

path to the solution and is capable of generating the solution in a 

straightforward manner for every applicable case. In this spirit, we 

will attempt to keep the mathematical formulation relatively simple 
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throughout. 

This much of the application of the invariant imbedding technique 

has previously been v1ell discussed by the authors of references 2 

through 6. It would seem that, since we understand so well how to cal­

culate the reflection and transmission coefficients for any given 

discrete distribution (and how to approximate accurately and easily in 

the continuous case), the problem is completely solved and there is no 

more to be done beyond, perhaps, finding some exact solutions previously 

unknown or solving interesting cases numerically. Indeed, the standard 

invariant imbedding formulation is capable of generating a numerical 

solution efficiently and accurately for any particular case of interest. 

However, the intent of this thesis is to extend the usefulness of the 

general invariant imbedding approach by deducing some general properties 

of the invariant imbedding solution and using these properties to derive 

new methods of exact and approximate solution of the problem based on 

the invariant imbedding solution. In particular, we will see how 

invariant imbedding leads to an interesting formulation of the problem 

of scattering from a periodic medium and how the Riccati equation may be 

reduced in many cases to a linear equation which greatly simplifies the 

analysis of any medium, in particular periodic and "almost periodic" 

media. 

Chapter II is concerned with reformulation of the invariant im­

bedding solution and the proof of general properties to be used later. 

It contains a substantial amount of non-original material. The contents 

of Section II.2, "The \:Jave Equation," are common knowledge to several 
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branches of physics and engineering. The mathematical ideas of 

Section II.3, 11 The Invariant Imbedding Solution, 11 are available in 

many places, for instance Wave Pro pagation in Turbulent Media by R. 

Adams and E. Denman (2). The notation used in this report is most 

similar to that found in Adams et al. (2). Sections II.5, 11 An Alt~r­

native Invariant Imbedding Scheme, 11 and II.8, 11 Variation of All 

Electromagnetic Parameters, 11 contain as their basis background material 

(again, mainly using the notation of Adams (2)), but extra ideas have 

been added to the basic principles in the interest of later results. 

For instance, we have found it necessary to make a detailed comparison 

of the two schemes for invariant imbedding and to provide an explicit 

transformation which extends the results for normal incidence and con­

stant permeability to the more general case. Finally, the similarity 

between electromagnetic and quantum mechanical scattering, as described 

in Section II.7, has been previously noted by Bellman et al. (3). 

Chapter III uses the general results of Chapter II to look at 

wave propagation in periodic media in a new way. We introduce a con­

cept cal led the 11Y-plot 11 in the analysis of the propagation constant. 

The complex variable, Y , is equal to the complex reflection coeffici­

ent times a phase adjustment to standardize two special points in the 

Y-plane, called the 11 fixed points.i1 The progression of the reflection 

coefficient as cells are added to the periodic structure is represented 

by a trajectory on the Y-plot. For STOP BANDS, the trajectories con­

verge on one fixed point and diverge from the other; for PASS BANDS, 

the trajectories orbit a fixed point. In both cases, the propagation 
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constant may be computed knowing only the fixed points, vi a very simple 

formulas. These results are applied to both lossless and lossy 

periodic media. 

Chapter IV examines the class of problems for which t he wavenumber 

(k) does not vary much as a function of position in the sl ab, which 'v-/e 

call "almost homogeneous media." The very complicated (at least, dif­

ficult to solve exactly) differential equation for the reflection coef­

ficient derived in Chapter II reduces to an almost embarrassingly simple 

linear approximation which possesses an equally simple Green's function. 

In these almost homogeneous cases, an inversion of the reflection coef­

ficient as a function of frequency to reconstruct the index of refraction 

as a function of position is quite simple to perform (with the help of a 

digital computer). This method may even be used with modest success 

for cases which are not "almost homogeneous . " We finally use the 

approximate theory to examine the STOP BANDS of periodic and almost 

periodic media. The conclusion is that there exists only one non­

vanishing STOP BAND corresponding to each structure constant in the 

cosine expansion of the index of refraction for either periodic or almost 

periodic media. 

Where applicable, all electromagnetic quantities are in MKS units. 
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Chapter II 

The Basic Equations and Relations 

Our first task 111ill be to reformulate the invariant imbedding 

equations for electromagnetic scattering from a medium with constant 

permeability,µ , zero conductivity, 0, and dielectric constant, s , 

which is a function only of the propagation direction (and perhaps fre­

quency.) In this case, we may think of the problem as that of a 

section of space between z = -a/2 and z = +a/2 where the medium may 

be characterized by an index of refraction 

n(z;w) = c ✓s(z;w)µ (I I. l) 

For now, we will drop the explicit dependence on w . Outside the re­

gion of the "slab," n(z) is constant. For reasons which will be clear 

later, we will let 

nN ; z < -a/2 
n(z) = (II.2) 

no ; z > +a/2 

With this definition of n(z), we may also consider the local wave­

number, k(z), given by 

k ( z) = ± ( w/ c) n ( z) (II.3) 

where w/c wi 11 often be called the "free space wavenumber" because 

n = l in free space. 
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II.2 The Wave Equation 

When the permeability is constant, Maxwell's equations reduce 

to a simple one-dimensional wave equation for harmonic waves (we as­

sume an exp(-iwt) time dependence) propagating in a direction per­

pendicular to both the electric and magnetic fields (which are, of 

course, also perpendicular to each other). The wave equation may be 

written in the simple form 

(II .4) 

where ~ is the (complex) length of -the electric field vector. The 

solutions where k2(z) is constant are right- and left-hand travel­

ing waves of the form 

~ = ~ exp(±ikz) 
0 

(II.5) 

where the (+,-) correspond to rig~t (+) and left(-) traveling waves 

(along the z-axis). We will assume for our scattering problem that a 

wave of unit electric field is incident from the left, traveling to 

the right. We will fix the phase of the incident wave so that it has 

zero phase angle at the front interface (z = -a/2). The scattering 

problem is to find the complex numbers R and T such that 

~ = lexp[+ikN(z+i/2)] + 

T exp[+ik (z-a/2)] 
0 

z < -a/2 

z > +a/2 
(II .6) 

is a solution of the wave equation in the homogeneous region which 

matches correctly with a solution in the inhomogeneous region (see 
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Figure l). At this point we are not concerned with the exact nature 

of the solution in the inhomogeneous region. The phase convention 

adopted for the l ransmitted wave is chosen so that the complex number 

T carries all of the phase information at z = a/2. In the trivial 

problem in which E(z) is constant everyHhere (no reflect ion), 

T = exp(ik
0
a). 

We will also consider the reverse problem of finding the reflec­

tion and transmission numbers (R' and T') when a unit wave is incident 

from the right (traveling to the left). In this case, we want our 

solution to be of the form 

z .:. -a/2 
(II.7) 

IT' exp[-ikN(z+a/2)] 

exp[-ik
0

(z-a/2)] + R'exp[+ik
0

(z-a/2)]; z ~ +a/2 . 

We note in passing that in the trivial case of total homogeneity, 

T' = exp(ik a)= T 
0 

Although we will not find it convenient to obtain the complete 

solution by solving the wave equation, there are several important 

results which may be derived easily by integrating the wave equation. 

Suppose that we have two solutions of the wave equation, ~l and ~2. 

Using a standard trick, 

(II.8) 

which reduces to 

= = 0 (II.9) 
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Integration from z = -a/2 to z= +a/2 is trivial. The result is 

(II.10) 

We may use this result to examine two pairs of solutions. For the 

first pair, consider the forward and backward scattering solutions 

(equations II.6 and II.7). Substitution into (II.10) gives 

(l+R 1 )(ik
0

)(T) (T)(ik
0

)(-l+R 1
) = 

(T 1 )(ikN)(l-R) - (l+R)(ikN)(-::T 1
) (II.11) 

which reduces to 

k T = k T1 

o N or (II.12) 

Equation (II.12) holds whether or not k(z) has an imaginary component. 

The second pair of solutions is a valid pair only when k2(z) is 

real and k2 is positive in the homogeneous region. If this restric-

tion holds, then the complex conjugate of a solution will also be a 

solution. The restriction k2 
> o in the homogeneous region is simply 

a convenience; we could as easily assume the opposite in either the 

right or left homogeneous regions and proceed from that assumption, but 

it is more usual to have k2(z) positive in the asymptotic region. If 

we substitute the solution (II.6) and its complex conjugate in equation 

(I I. 10) , the res u 1 t is 

= 

(II.13) 
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Reducing, we obtain 

(II.14) 

Had v-Je used instead the "reverse" solution of (II .7), we v-t0uld have 

obtained 

(R')*R' + (k /k) (T')*T' = 1 N o (II .15) 

The results given by equations (II.12), (II. 14), and (II. 15) are 

physically reasonable. The energy flux in a transverse electromag­

netic wave, by Poynting's theorem, is proportional to the electric 

field strength times the magnetic field strength. At the same time, 

the magnetic field of our "reduced wave" is proportional to the wave 

number times the electric field (for fixed w and µ ). Therefore, 

the flux is proportional to the reduced wave amplitude squared times 

the wavenumber. Equation (II. 12) implies that the same percentage of 

flux will get through the slab in either direction, while equations 

(II.14) and (II. 15) imply a conservation of flux. The combination of 

all three equations implies 

R*R = (R')*R' (II.16) 

which implies that the same percentage of flux will also be reflected 

in either direction. 

II.3 The Invariant Imbedding Solution 

Now that we have some simple relationships (equations II.12, 

II.14, II.15, and II.16), we may proceed to re-derive the basic in­

variant imbedding solution for R, T, R', and T'. As a check of the 
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invariant imbedding procedure, we expect to be able to prove these 

simple relationships from the invariant imbedding viewpoint. Although 

the general derivation of the invariant imbedding scheme has pre­

viously been discussed in many sources (references 2-6), we will find 

the derivation a useful prelude to later derivations for periodic, 

11 almost periodic, 11 and "almost homogeneous 11 media. 

Consider the problem of an electromagnetic wave incident on a 

region where there are N abrupt discontinuities (interfaces) in 

n(z), but n(z) is constant between interfaces (Figure 2). The simp­

lest non-trivial problem to solve is the problem of one interface. In 

this case, a= 0 and the reflection and transmission coefficients are 

real numbers given (respectively)by the standard Fresnel formulas: 

(II.17) 

(II.18) 

The derivation of these formulas is elementary, but beyond the scope 

of this report. 8 

Assume now that we know the solutions, R1 and T1, for a situa­

tion with I interfaces. The index of refraction is given by 

v1here z. 
l 

no . z > z
1
= +a/2 

' 
n(z) = n. ; Zi+ l < Z < Zi ' 

1 
1 

nr . z < z = -a/2 , I 

is the position of the ;th interface . 

< i < I (II. 19) 

Suppose that we wish 

to add another interface, thereby increasing the slab length, a , and 
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changing the index of refraction in the left hand asymptotic region 

(z < -a/2), The new index of refraction function is 

no . z > z1= +a/2 
' 

n. ; 2 i+l < z < z. l < i < I 
n(z) l l = 

nI 2 I+l < z < ZI 

nI+l ; z < ZI+l= -a/2 , (II.20) 

where the new interface is added at z =zI+l and we have shifted the 

z axis to keep the slab centered about z = 0 (merely a matter of 

convenience), The new reflection and t:ransmission coefficients wi 11 

be calculated using the method of multiple reflections between inter­

faces I and I+l (see Figure 3), The local reflection and transmission 

coefficients at the (I+l)st interface are given by the real numbers 

r = (nI+l- nI)/ (nI+l+ nI) 

t = 2nI+l/(nI+l+ nI) 

The local reverse coefficients are given by 

r' = (nI- nI+l)/(nI+ nI+l) 

t' = 2n1/(n 1+ nI+l) 

These quantities are related by the Kirchhoff equations: 

r 1 = -r 

t = l + r 

t' = l - r 

(II.21) 

(II. 22) 

(II.23) 

(II.24) 

(I I. 25) 

(I I. 26) 

(I I. 27) 
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The distance between interfaces, 6 , is given by 

(II.28) 

A wave propagating between the interfaces will gain the phase factor 

(II.29) 

We will now consider the multiple reflections which contribute to the 

new reflection coefficient, RI+l, and the new transmission coeffici­

ent, TI+l· The unit wave is incident from the left upon the (I+l)St 

interface. The first term of the infinite series for RI+l is simply 

the local reflection coefficient, r . The remainder of the wave, t, 

continues to the 1th interface gaining phase factor o . At the 1th 

interface, R1 is reflected and T1 gets through to the right asymptotic 

region. The reflected part propagates back to the (I+l)St interface, 

again gaining phase factor o . At the (I+l)St interface, t 1 gets 

through to give the second term of the series for RI+l (to R1ot 1) 

and r' is reflected back to become the second of the (infinite) mul­

tiple reflections. This process is illustrated in Figure 3. The 

series for RI+l and TI+l are given by 

RI+l = r + (l+r)oR1o(l-r) + (l+r)oR1o(-r)oR1o(l-r) + ... 

= r+(l-r2)a2R I iiRi(-r)i (II. 30) 
I i=O I 

TI+l = (l-r)oT1 + (l-r)oR1o(-r)oT1 + 

= (l-r)oT1 I o2iRi(-r)i (I I. 31 ) 
i=O 
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These expressions may be summed exactly with the use of the formula 

{X) 

I i (1-a)-l a = (I I. 32) 
i=O 

giving 

RI+l = ( r + o2RI) / ( l + ro2RI) 
(I I. 33) 

TI+l = tcST I/ (l + ro2RI) 

The recursion relationships (II .33 ) solve exactly any problem 

with discrete changes in n(z). For the case of a continuous change 

in n(z), we will derive differential equations for R(z) and T(z). 

The initial value conditions are R(a/2) = 0 and T(a/2) = l . The 

qualtities R(-a/2) and T(-a/2) are the numbers which give the final 

answers for the reflection and transmission coefficients. Since the 

incremental interfaces are added in the negative z direction, we must 

be careful of our signs. If v.;e let the t,,,'s get very small (and N very 

large) when n(z) is a differentiable function, we may approximate 

the quantities in the discrete derivation: 

r(z) = (n(z-dz) - n(z))/(n(z-dz) +n(z)) (I I. 34) 

n(z-dz) = n(z) n'(z)dz (I I. 35) 

R(z-dz) = R(z) - R'(z)dz (I I. 36) 

In this spirit, we will expand all quantities in orders of (dz) and 

keep only the constant and linear terms: 

r(z) = -n'(z)dz/2n(z) 

o2 = l + 2ik(z)dz 

(II .37) 

(I I. 38) 
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(l + ro2R)-l = l + n'(z) R(z) dz 
2n{z) (I I. 39) 

If we make a simple substitution of these quantities in the standard 

recursion fo rmula (II . 33), and keep only terms of order dz , we obtain 

R(z) - R1 (z)dz = 2t(~)) dz+ R(z) + 2ik(z) R(z) dz 

+ k I ( z ) R2 ( ) d 
2k{z) z z (II. 40) 

or, reducing, 

(II .41) 

Similarly, we get for T(z) 

T(z) - T1 (z) dz= T(z) + ik(z) T(z) dz 

-k'(z) k1 (z) 
2k(z) T(z) dz+ 2k(z) R(z) T(z) dz (II.42) 

T'(z) = {}(1 -R(z)J ~(~)) - ik(z)} T(z) . (II.43) 

Equation (II.43) is very convenient to integrate once R(z) is known. 

din T = l r1 _ R(z)J d( £n k) _ ik(z) (II.44) 
dz ~ dz 

in(T(a/2)) - i n(T(-a/2)) = 

a/2 a/2 
- i J k(z) dz + } J [l - R(z)J d( i ~/) dz (II.45) 

-a/2 -a/2 

Our boundary condition on T is T(a/2) = l . If we define 
a/2 

k = 1/a J k(z) dz avg 
-a/2 

(I I. 46) 
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a/2 

T = T(-a/2) = explik a - l f • avg 2 
-a/2 

II.4 Some General Properties of the Transmission Coefficient 

Equation (II.47) reveals some important general properties of T. 

The first is that the major phase contribution when R is sma 11 comes 

'from the exp(ik a) term. When we actually solve a problem) we avg 
should expect the phase of T to be near ( k a). The second is an avg 
interesting expression for the minimum magnitude that T could possibly 

have for a given k(z) (or n(z)). The magnitude of T is simply the 

exponential of the real part of the integral in equation (II.47) (when 

k is rea 1 ) : 

a/2 

ITI = ex+} J Re[l - R(z)J d[~zk(z)l dz i 
-a/2 

(I I. 48) 

Since the magnitude of the reflection is constrained to be less than or 

equal to one, the real part of (l -R) must lie between two and zero. 

Therefore, when k(z) is an increasing function, the integrand in 

(II.48) is positive, and when k(z) is a decreasing function) the inte­

grand is negative. A conservative estimate of the minimum possible 

value of the magnitude of T results when v,ie estimate the maximum pos­

sible value of the integral. Without solving the problem in advance, 

we do not know what the function R(z) looks li ke. However, if we let 

R(z) = -1 where k(z) is increasing and R(z) = +l where k(z) is 

decreasing, then the integral obtains the maximum value it could 
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possibly have for any R(z) 

!Tl > exp{-}· 2 I d[ t n k(z)J} 
k'(z) >O 

or, integrating (over the regions where k'(z} > 0), 

(II. 49) 

!Tl > (k . /k ) (k . /k ) ·,, (k . /k ) (II 50) min max • min max min max • 

where the k . 
mm 

l l 2 2 n ' n 

and kmax are the values of k(z) at the beginning 

and end (respectively) of portions of k(z) where k(z) is an in­

creasing function. In practice, this estimate is usually over­

conservative, but it is completely reliable. For instance, suppose 

that n(z) is given by 

n(z) = l +x(l + cos 2TT z/a) 

l 

; z < -a/2 

-a/2 ~ z ~ a/2 

; z > a/2 

(II.51) 

It is relatively easy to program a computer or programmable calculator 

to solve the Riccati equations (II.41 and II.43) for various values of 

k
0 

= (w/c) . We will examine some numerical solutions in detail later 

(Section III.9), but for the purposes of this section, we are inter­

ested in the minimum magnitude of T which we see when we solve 

numerically for as many ko as necessary. The following table 1 is ts 

results for three cases, X = 1 ' X = . 05, and X = • 01 

X !Tl at minimum (km;/kma) 

1 0.65 0.33 

.05 0.997 0. 909 

. 01 0.99987 0.98039 
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If the variation in k(z) is small, then 

(II.52) 

where ~ is a small positive number. When this is the case, then we 

also have a very useful estimate of the maximum maqnitude of 2 
R over 

the entire interval, not just at the end of the solution. Suppose we 

wish to get estimates of the magnitudes of R(z) and T(z) at some 

particular point, z , in the interval of integration of the Riccati 

equations. If we recognize that by integrating the equations for R 

and T from +a/2 to z , we have solved the problem of a distribu­

tion of k(y) identical to the original from +a/2 to z and con­

stant after that, then we have immediately from (II.14), 

I R2
(z) I + (k /k(z)) IT2

(z) I = 1 
0 

(II .53) 

Since the estimates for the 11 new prob 1 em 11 wi 11 be 

IT( z) I > l - 0 (t,;) - (I I. 54) 

(k /k(z)) = 1 - O( ~) 
0 

(II.55) 

due to the fact that we have the same k(y) from +a/2 to z and a 

constant k(y) for y less than z , we easily obtain 

(II.56) 

This result is the basis of the useful approximation described in 

Chapter IV, in which we wish to be able to guarantee before we start 

that R2(z) will be 11 small 11 throughout the interval. 
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II.5 An Alternative Invariant Imbedding Scheme 

The recursion relationships and differential equations (II.32, 

II.33, II.41, II.43) provide a convenient method for solving the elec­

tromagnetic scattering problem in one dimension. If we we re to program 

a computer to solve the problem, the most convenient way would be to 

use the recursion relations (II.32 and II.33) directly, le t ting the 

size of the intervals become as small as practicable. We could, there­

fore, consider the task of solving these problems reduced to the almost 

trivial matter (in these days of computer abundance) of generating 

numerical solutions for interesting cases. However, we will obtain 

some very useful confirmations of the soundness of the invariant imbed­

ding scheme (plus a new result which makes Chapter III possible) by 

considering an alternative invariant imbedding scheme in which we add 

slices from the right of the slab (rather than from the left as before). 

For convenience, we will call the "adding from the left method," method 

11 A11 and the "adding from the right method," method 11 B. 11 

In method 11 B11 we start at the Nth interface and work back to the 

1st interface. We may use the simple Fresnel equations to generate RN, 

TN, Rt'.1' T' . 
N 

RN = (nN- nN-1)/(nN+ nN-1) (II .57) 

TN = 1 + RN (II .58) 

R' = -RN (II .59) N 

T (1 = l - RN (II.60) 

Assume now that we have the solution for interfaces N, N-1, • · · , I+l ,I. 
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We wish to calculate R~_ 1, T1_1, R1_1, and T1_1. R
1

_1 and T
1

_1 may 

be found using the (suitably modified) recursion relations of method 

A (equations II.32 and II.33). This time, the multiple reflections 

are occurring at the ri ght- hand side of the slab (see Fi gure 4) 

As with method A, we will define local reflection and trans­

mission coefficients and phase factor 

t = l + r 

(II.61) 

(I I. 62) 

(II. 63) 

Without further ado, the infinite series for R1_1 and T1_1 are 

+ ... (I I. 64) 

(II.65) 

We may again sum these series with the help of equation (II.31) to 

give 
R1 + r o2(T1T1 - R1R1) 

l - r o2R1 
TI-1 = t oTI/(1 - r iRi) 

(II.66) 

(II .67) 

We will not have need of the differential equation for R(z) in method 

B. The differential equation for T(z) may be found in analogy with 

previous arguments : 

T1_1 = T(z+dz) = T(z) + (dT/dz)dz 

r = -(k'(z)/2k( z))dz 

(II.68) 

(II.69) 
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t = l + r 

T(z) + (dT/dz)dz = T(z) + ik(z) T(z)dz - (k'(z)/2k(z)) 

• R'(z) T(z)dz - (k'(z)/2k(z)) T(z)dz 

(II.70) 

(II.71) 

(I I. 72) 

The boundary condition is T(-a/2) = l (as opposed to method A). We 

easily integrate (II.72) to obtain 

a/2 
T = T(+a/2) = exp{ik a _l J [l + R'(z)J d[in k{z)J dz} 

avg 2 . dz 
• -a/2 

(II.73) 

Once R'(z) is known, T may be calculated by integration. 

Suppose we vJere to calculate TI by method B . The trans forma­

tion z' = -z gives the answer 
a/2 

T1 = exp{ik a_ l J [l+R 11 (z 1 )] d[in k(z')] dz'} (II.74) 
avg 2 dz' 

-a/2 

R11 (z) is functionally the same as R(-z) from method A, and k(z) = 

K(-z) by the same argument. The integral expression for T1 becomes 

a/2 
T1 = exp{ik a+ -2

1 f [l + R(z)J d[in k(z)J dz} avg dz 
-a/2 

(II.75) 

If we compare this expression with (II.47), we easily calculate . 

(II.76) 

This result agrees with (II.12), which was derived directly from the 

reduced wave equation. 
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We should be careful to note the differences between the vari­

ables in the reduced \vave equation and the R and T coefficients in 

methods A and B. This difference is illustrated in Figure 5. If we 

were to solve the wave equation for ~(z), we would have information 

about the electric (and magnetic) field at any point in the slab. We 

do not get the same information from R(z) and T(z) in the invariant 

imbedding method, since it is the problem itself we are changing as a 

function of z . If we need specific information about the electric 

field at any point in the slab, one method to use would be to divide 

the slab at z , solve each half-slab separately with invariant imbed­

ding, then finally use the method of multiple reflections at z to 

give both the final reflection and transmission coefficients and the 

value of the electric field in the multiple reflection region. We will 

not find it necessary to do this. However, it will be nice to have the 

mathematical formulation if we should need it later. 

Assume that we have used invariant imbedding to get the reflec­

tion and transmission coefficients. In particular, if we use sub­

scripts 11A11 and 11 811 to designate quantities found \vith methods A and B 

respectively, we need T8(z), R8(z), and RA(z). RA(z) may be found by 

solving (II.41), and R8(z) may be found by making the transformation 

2 1 = -z, solving (II.41), then making the transformation back again. 

Once R8(z) is known, T8(z) is found from (II.72) or (II.73). Once 

these quantities are known, the series for the right- and left-going 

multiply-reflected waves are given (almost by inspection) by 
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Invariant Imb eddi ng - Method A 

z +a/2 

Invariant Imbedding - Method B 

(> direction of integration 

l!.R'(z) 

z 

Solution of the Wave Equation -

Two Independent Solutions 

Figure 5 

+a/2 

+a/2 

z-axis 

z-axis 

z-axis 
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¢ = T8(z)RA( z) + T8(z)RA(z)R8(z)RA(z) 

+ T8(z)RA(z) R8(z)RA(z)R8(z)RA(z) + 

Once again, we invoke (II.31) to sum these series to get 

¢+ = T8(z)/(l - RA(z)R8(z)) 

¢ - = TB ( z) RA ( z) / ( l - RA ( z) RB ( z) ) 

(I I. 78) 

(I I. 79) 

(I I. 80) 

The directions of the electric and magnetic field vectors may be found 

by elementary considerations (in the simple normal incidence case found 

here, the directions of the vectors remain constant). Their lengths 

(complex) may be found by 

E = ¢+ + ¢_ 

H = n/µ(¢+ - ¢_) 

II.6 Five Basic Relationships 

(I I.81) 

(II.82) 

We are now in a good position to derive the basic relationships 

among the parameters R, T, R1
, and T1

• We will show inductively in 

Appendix I that the following five relationships hold. As a matter of 

notatig.n, we let 

R = r exp(i cp R) (I I.83) 

T = t exp(i cpT) (II.84) 

R' = r 1exp(i ¢R ,) (I I.85) 

T' = t I exp ( i ¢T, ) (I I. 86) 
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The five relationships are 

l. r' = r (I I. 87) 

2. t' = (k/kN )t (I I. 88) 

3. a) 2 + ( k /k ) t 2 
r o N = l (II.89) 

b) r'2 + (k /k )t 12 = l (II.90) N o 

4. ¢T. = ¢r (I I. 91) 

5. ¢R + ¢R1 = ±n + ¢T + ¢T, (I I. 92) 

The wave equati on has already given us rela t ions l through 4, and we 
-· 

have also shown 2 and 4 with the arguments of Section II.5 . Relation 

5 : may also be shown directly from the wave equation. Al­

though we prove relations l through 5 by induction for the disc rete 

case, there is no dependence on the number of slices or the size of the 

slices, so there is no problem passing to the limit which gives us the 

continuous case. 

In th.e light of the five basic relationships, let us reconsider 

the method B recursion for R . Recall that the basic method B recur­

sion for R (II.66) is somewhat inconvenient because it requires simul­

taneous calculation of T, T', and R', unlike the method A recursion 

(II.32). We may, however, simpli.fy the method B recursion formula for 

R with the use of 

R' I 

(II.93) 

(I I. 94) 

which are trivial results of the five relationships. The method B 
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solution for R becomes 

(II.95) 

\vhich eliminates the R' and T' dependences (the "r 11 in the equation 

is the "local reflection coefficient," not the magnitude of R1). We 

still have an explicit dependence on T which we cannot eliminate, 

but we may at least eliminate the R' and T' dependences in the method 

B recursion for T: 

(I I. 96) 

(the "t" in the equation is the local transmission coefficient and the 

"r" is the local reflection coefficient). Although method Bis useful 

in proving the five relationships, it is not as convenient in practice 

as method A, so we will not pursue it further. 

II.7 Relation to Quantum Mechanical Scattering in One Dimension 

The non-relativistic one-dimensional wave equation in quantum 

mechanics is 

(I I. 97). 

where 
2 2 

k = 2m(E - V)/fi (I I. 98) 

will put the equation in the same form as the retluced wave equation 

(II.4). This similarity leads us to try the invariant imbedding scheme 

when V is a function of z . 
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Suppose we have a situation where V = 0 for z < 0 and V = V 
0 

for z > 0 . This is a simple 11 step 11 potential barrier. Assume for 

simplicity that E > V 
0 

Our solution for 1jJ is as follows. Let 

k
0 

= )2mE/n2 

a =J2m(E-V
0
)/n2 

exp(ik z) + R exp(-ik z) 
0 0 

<JJ(z) = 
T exp ( i az) 

z < 0 

z > 0 

(II.99) 

(II. l 00) 

(II.101) 

R and T are connected by the continuity of 1jJ and 1jJ 1 at the boundary 

(z= 0): 

l + R = T 

The solution of these equations gives us the familiar result: 

R = (k
0 

- a)/(k
0 

+ a) 

T = 2k /(k + a) 
0 0 

(II. l 02) 

(II. l 03) 

(I I. l 04) 

(I I. 105) 

Although k(z) is calculated in hvo different ways for electromagnetic 

and quantum mechanical waves, the same formulas for the invariant imbed­

ding scheme apply in either case once k(z) is known. All of the pre­

viously derived theorems apply (with the restriction that k(z) must be 

real). As a simple test of this idea, we will solve the one-dimensional 

"square well II problem. 

We will let the potential barrier have height V
0 

and width a , 

extending from z = 0 to z = a . The solution will be of the form 
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exp(ik
0

z) + R exp(-ik
0

z) ; z < 0 

~ = (II. 106) 
T exp[ik (z-a)J z > a 

0 

There are only two interfaces to consider, so the problem is very easy . 

Applying (II.32) and (II.33), 

R1 = (a - k
0
)/(a + k

0
) 

T1 = 2a/(a + k
0

) 

R = R = 2 

T = T = 2 

k -a a-k 
o o (2' )' r+a + a+1< exp rna 
o a a o 

k - a 2 
1 - Cr+a) exp(2iaa)' 

0 Cl, 

2k 
( ~k )(k +0

) exp(i aa) 
a o o a 

k -a 2 
1 - (~) exp(2i aa) 

o a 

These expressions reduce to 

(k~-a2)[1-exp(2iaa)J 
R=-----------

4k
0
a exp(iaa) 

T = -----------

(k
0
+a) 2 - (k

0
-a) 2 exp{2i aa) 

(II.107) 

(I I. l 08) 

(I I. l 09) 

(II.110) 

(I I. 111) 

(II.112) 

They agree with the results obtained from the usual method of solution14 , 

if the difference in phase convention for the outgoing wave is taken 

into account. If it should be the case that E < V
0 

, then a will be 

imaginary, but the solutions (II.111) and (II.112) will still be 
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correct. Moreover, relations l through 4 (II.87 - II.91) will hold 

no matter how large V
0 

II.8 Variation of All Electromagnetic Parameters 

In the general case, the wavenumber (complex) of a transverse 

electromagnetic wave is given by 

k = w/µs(l + i0/ws) (II.113) 

The positive square root is assumed, which means that exp(ikz) will 

"damp out II as z increases. 

vJe now assume that we have a slab of thickness 11 a 11 (betv1een 

z = -a/2 and z =+a/2) in which s, µ , and 0 are functions of z 

(and perhaps w), but constant outside the slab. A plane wave with 

time dependence exp(-iwt) is incident on the left face (z = -a/2) at 

incident angle eN . Part is reflected at exit angle eN , part is 

absorbed in the slab, and part exits from the right face (z = +a/2) at 

exit angle 0
0 

. 

Let us see how the previous arguments are altered, without going 

through the complete derivation in detail again . For the moment, set 

0=0 (k2(z) real). There \vill be two polarizations to consider; the 

"l" case in which the electric field is perpendicular to the plane of 

incidence, and the "II" case in which the electric field is parallel 

to the plane of incidence. As SN approaches zero, these two cases 

become degenerate . 

The local reflection coefficients are given by8 
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ki(cos ei)'µ 1 - k1_1(cos e1_,)! i.t1_1 
rl = k/cos e1)tµ 1 + k1_,(cos e1_,:Vµ1_1 

(II. ll 4) 

(II.ll5) 

The Kirchhoff relations (II.25 - II.27) still apply . There is a sign con­

vention in common usage8 which reverses the sign of r ll , so that at zero 

incidence angle,the local reflection coefficients are equal in magnitude 

but have opposite signs . We will not use this convention. 

There remains the problem of determining the phase difference be­

tween adjacent interfaces. As a first guess, we might be tempted to say 

that the ray going between interfaces I and I-1 travels a distance 

6 sec e1_1 (true), so therefore the phase factor gained across the inter­

mediate region is exp(ik1_1[; sec e1_1) (false). Fi gure 6 illustrates 

this problem. We must remember to refer the phases to the z-axis (the 

line defined by x = 0, y = 0) and that the waves are no longer traveling 

along the z-axis, but at some angle to it. The phase of the wave at the 

z-axis on the front or bac k of the slab is the phase of the wavefront 

which intersects the surface of the slab at the z-axis. Consider the 

reflected rays 11 111 and 11 2 11 of Figure 6. These two rays are originally 

in phase at the first contact with the slab at point P. Ray l is imme­

diately reflected and travels a distance 

d -l -

-

(II.ll6) 

in medium I to the wavefront which intersects point Q , the exit point 

of ray 2. We will assume that point P lies on the z-axis, so we will 

have to refer phases to that point. Ray 2 travels a distance 



Figure 6 

e ·1 I--· -
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d2 = 26 sec e1_1 (II.117) 

in medium I-1 to the wavefront originally mentioned. The phase gained 

by ray l, referred back to point P, is zero. The phase gained by ray 

2, referred back to point P again, is 

(II.118) 

By virtue of Sne 11 1 s law, this reduces to 

p = 2kI-l 6(sec eI-l - sin eI-l tan e1_1)=2k1_16cose1_1 . 

(II.119) 

Alternatively, we could think of ray (2) as having started at such a 

point higher up on the slab so as to exit at point P . In any case, 

the phase factor gained is given by 

(II.12O) 

We may ask whether the phase factor gained by the transmitted wave is 

simply o , as equation (II. 120) would imply. Similar arguments will 

verify this conjecture. 

The invariant imbedding analysis remains remarkably unchanged. 

l1/here before we had the expression 11 1<1
11 in differences (or derivatives), 

we replace it by 11 k1cos eI/µ 1
11 in the perpendicular polarization ("11') 

case or by "krfµ 1cos 01
11 in the parallel polarization ( 11 11 11

) case. 

Hhere we had the expression 11 kI6I 11 (or 11 k(z)dz 11
) in phase factors, we 

replace it by 11 k161cos 01
11 in either case. This replacement leads to 

two interesting transformations for the two polarizations. 
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For l let 
a/2 

aT = f µ(z)/µ
0 

dz (II. 121) 
-a/2 

z 

ZT = -aT/2 + f µ(y)/µo dy (II.122) 
-a/2 

kT = k(z)[cos e(z)]µ/µ(z) (0(z) from Snell's Law) (II.123) 

The Riccati equations for R and T are given in the general case by 

~z = (1- R2(z)) d[k(z) cos e(z)/µ(z)J - 2ik(z) cos e(z) 
aL 2k(z) cos e(z)/µ(zY dz 

(II.124) 

~z = (1 - R(z)) d[k(z) cos e(z)/µ(z)J - ik(z) cos e(z) 
aL 2k(z) cos e(z)/µ(z) dz 

Since 

dz dzT -l µo 
Fr= (rz) = µ{TT (I I. 125) 

the transformed Riccati equations are 

(II.126) 

(II.127) 

This somewhat surprising result implies that any problem with perpendicu­

larly polarized waves may be transformed to a problem for which the 

incidence is normal and µ(z) is constant. 
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2 µ(z) cos e(z)/µ
0 

dz 

z 

zT = -aT/2 + f µ(y) [cos2e(y)]/µ
0 

dy 
-a/2 

The Riccati equations are 

dR - (l - R2(z)) d[k(z)/cos e(z) 1.l (z)J - 2ik(z)cos e(z) 
dz - 2k(z)/cos e(z) µ(z) dz 

(II.128) 

(II.129) 

(II.130) 

(II. 131) 

dT d[k(z)/cos e(z) µ(z)J . ( ) ( ) ( ) 
dz= (l - R(z)) 2k(z)/cos e(z) µ(z) dz - ,k z cos e z • II.132 

It is a trivial matter to verify that the transformation defined by 

equations (II.128) through (II.130) will reduce (II.131) and (II.132) 

to the standard form of (II. 126) and (II. 127). However, the parallel 

fonnulation encounters serious trouble when the factor, cos e , goes to 

zero or becomes imaginary due to Snell's law ("total internal reflection"). 

The transformation to zT becomes non-invertible and we are left with 

the full Riccati equations (II.131) and (II.132). 

The case of "total internal reflection" (cos2 e :;,_ 0) is interest­

ing because it is an example of how relation 5 (II.92) breaks down. We 

may always make a piecewise transformation similar to (II.128) through 

(II.130). If we do that, then k~ will be real even if cos2e is 

negative. The wave equation guarantees that relations 1 through 4 
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(II.87 through II.91) will continue to hold (in a slightly altered 

form which we will see later) as long as the homogeneous regions have 
2 cos e > 0 . However, relationship 5 relies on the unit magnitude of 

the phase factor, 6 , which is not the case when kT is not real. 

Regardless of any res t rictions on kT , the altered version of (II.76) 

will always be true. 

We may introduce 0 IO in the previous formulations with 

little change in the results, except we must be prepared for any quan­

tity to become complex as a result, thereby invalidating all relation­

ships except the connection between transmission coefficients as 

derived from the integrated Riccati e~uations of methods A and B: 

l (II.133) 

II (I I. 134) 

I I. 9 Summary 

The condition that n0sin e
0 

< n(z) applies to many cases of 

interest for which the plane wave originates in a region where n(z) 

is approximately unity , propagates through a re9ion where n(z) is 

greater than or equal to unity, and exits into a region where n(z) 

is again close to unity. Unless otherwise specified, we will assume 

that this is the case, because we may then always transform to the 

normal incidence, constant permeability case. If the conductivity is 

zero, we have the following relationships for perpendicular and paral­

lel polarization: 



1 
l. r' = r 

2. t' = (µNk 0 cos e /µ kNcos 
0 0 I 

3. 2 
+ (µNk

0
cos e / µ k

1
•1cos r 

0 0 • 

4. ¢T = ¢T' 

5. ¢R + ¢R' = ±TT+ ¢T + ¢T 1 

II : 

l. r' = r 

2. t' = (µNk
0

cos eN/µ 0 kNcos 

3. r2+ (µNk
0
cos eN/µ 0 kNcos 

4. ¢T = ¢T' 

5. ¢R + ¢R' = ±TT + </>T + ¢T I 
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eN) t 

eN) t2 

00) t 

00) t2 

= l 

= l 

(I I. 135) 

(II. 136) 

(I I. 137) 

(I I. 138) 

(II.139) 

(I I. 140) 

(II.141) 

(I I. 142) 

(II.143) 

(I I. 144) 

It is appropriate to ask the question whether there could be other 

relations connecting R, R', T, and T' when k(z) is complex, besides 

(II.76) or its alternatives for oblique incidence. A simple thought 

experiment will show that there can be no other general relations when 

the slab is arbitrarily conductive. Suppose we have a slab which is re­

flective at the ends but highly absorptive in the middle. The attenua­

tive middle effectively "decouples" R from R' so that we could change 

the parameters on one side 1t✓ithout changing the reflection from the 

other side. In contrast, if there is no absorption, it is impossible to 

change the parameters anywhere without affecting all quantities. Of 
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course, if the slab is only slightly absorptive at frequencies of 

interest, then all the relations will be approximately true; the 

amount by which they are not true is a measure of the lossiness. We 

will use this idea in our discussion of periodic media in the next 

chapter. 

In the following chapters, we will generally restrict our atten­

tion to cases vlith zero conductivity and no regions of 11 total internal 

reflection." Since it is always possible, with these restrictions, 

to make the transformation to the constant permeability, normal inci­

dence case, we will assume that we have done so. 

As a final comment on the results of this chapter, we remark 

that the invariant imbedding analysis will remain correct even if we 

make all quantities complex, so that we should have no difficulty using 

invariant imbedding in more sophisticated models of interaction with 

matter, such as the complex permeability of a ferromagnetic material, 

as used for example by Sommerfeld in Optics. 9 
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Chapter I I I 

Periodic Media 

III.l The Periodic Recursion Formula 

~4e will consider the class of problems for which the index of 

refraction is a periodic function 1-'dthin the slab (defined between 

z = -aM/2 and z = +aM/2) , with M peri ads. Each "ce 11 " of the slab 

has length a ( see Figure 7). We might worry about whether the index 

of refraction function fits continuously at the junctions of the cells 

with each other and at the b10 juncti ans with the "background, 11 or 

homogeneous index of refraction outside the slab. The junctions with 

the background will be taken into account when the problem of just one 

cell is solved, whether or not the cell fits continuously with the 

background. The junctions between the cells will be handled by the 

method of this section. 

A necessary preliminary step will be to show that the index of 

refraction of a thin zone intermediate to two semi-infinite zones will 

not affect the reflection and transmission in the limit as the size of 

the intermediate zone goes to zero. Let the index of refraction be 

given by 

n z < -t:,/2 a 
n(z) = n. 

l 
; -6/2 < z ,:s_ +6/2 (III.l) 

nb ; z > +t:,/2 

The standard invariant imbedding results are 
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(nb-ni)/(nb+ni) + (n.-n )/(n.+n ) exp(2ik.6) 
R2 = R = l a l a . l (III.2) (nb-ni) (n. -n ) 

l + 
(nb+ni) (n~+na) exp(2iki6) 

l a 

2nb 2n. 
l ) exp(ik. 6) (nb+ni) (n .+n 

T2 T l a l 
(III.3) = = 

(nb-ni) (n . -n ) 
l + l a exp(2iki6) (nb +ni) (n.+n ) 

l a 

As 6 ➔ 0, these solutions become 

(nb-n.)(n.+n ) + (n.-n )(nb+n.) 
R= l la l a l 

2nbni + 2nl; 
= (III.4) 

4nbni 
T = ---~-~ 2nb· n. + 2n n. 

·1 a l 

= (III.5) 

As we readily see, Rand Tare independent of n. as the size of the 
l 

intermediate zone goes to zero. This result enables us to link cells 

together without worrying what is the intermediate index of refraction 

in the zero distance bet\-'/een cells. \>Je will find it convenient to as­

sume that the index of refraction is the same between the cells as to 

the right of the first cell. When we solve the problem for L cells, 

we will assume that the index of refraction to the left is the same as 

the index to the right. If this is not so, one final application of the 

recursion relations (II.31) and (II.33) will give the correct final 

answer. In other words, we will assume that the background is identical 

on both sides, with the understanding that one simple final calculation 

will correct the result if this assumption is false. In case we wish 
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to have a non-zero distance between cells (constant to maintain 

periodicity), we should incorporate the extra distance into the de­

fined cell. 

We could, of course, simply solve the problem with our standard 

recursion formulas (II.32) and (II.33) and/or the Ricatti equations 

(II.41) and (II.43), but that would be inefficient and would not lend 

itself to a general solution. Suppose, instead, that we have used 

invariant imbedding (or any other method) to calculate R1, T1, R1, and 

T1 for one cell. The invariant imbedding method may be used to calcu­

late RM and TM for M cells. 

Suppose that we know the solutions, RL and TL, for L cells, and 

we wish to add one more cell (see Figure 8). The method of multiple 

reflections in the zero-distance region between the new cell and the L 

original cells is straightforward (and analogous to the previous ex­

amples of multiple reflection). The recursion formulas obtained are 

Rl + RL(T, Tl- Rl Rl) 
1 - Rl RL 

As a matter of notation, let 

r = !R1 I 

cpR = arg(R1) 

t = I Tl I 

¢T = arg(T1) 

(III.6) 

(III.7) 

(III.8) 

(III.9) 

(III.10) 

(III.11) 
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Using the reciprocity relationships (II.87- II.92), we may rewrite 

the periodic recursion formulas: 

r + Rlexp(2icpT- icpR) 
1 + rRLexp(2i cpT- i¢R) (III.12) 

(III .13) 

III.2 Fixed Points of the Recursion 

In general, we should not expect the sequence IRLI to con­

verge. If the sequence is to converge, it will converge to a fixed 

point of the transformation, RF , where RF obeys the equation 

r + RF exp(2icpT- icpR) 
RF = exp(i¢R) [------~-] . 

l + rRFexp(2i¢T- i¢R) 

This is simply a quadratic equation whose solutions are 

(III.14) 

[exp(2icpT)-l] ± {[exp(2i¢T)-1J2+ 4r2exp(2icpT)} 112 

RF = -----~--------~~- . (III. 15) 
2r exp(2i¢T- i¢R) 

We will leave it for later discussion to show that the sequence RL 

converges to RF only if I RF I = 1 . Let us see what happens if 

I RFI = 1 : 

(III .16) 

Substitution of (III.16) into (III.14) yields 
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Let 

With a small amount of manipulation, assuming ¢R is real, 
F 

(III.17) 

(III.18) 

(III.19) 

So far, ¢R has not been determined. It will be equal to whatever it 
F 

must equal to make (III.19) true. Figure 9 illustrates the maximum 

range of angles which ~ may obtain given r. It is obvious from the 

diagram and elementary geometry that 

l~I:;.. arcsin(r) (III.20) 

If we convert ¢r to the region ±TI , then we have a very simple rela­

tionship which must hold if and only if jRFI = l : * 

l<t>rl :5.. arcsin(r) (III.21) 

It is more convenient to rewrite (III.21) so that it is not necessary 

to convert ¢r back to the region ±TI : 

(I I I. 22) 

The alternative, which holds if and only if IRFI I 1*, is 

(III.23) 

Since the condition that the sequence {IRL1} converges to unity means 

*See also next section. 
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that no flux will get through in the limit as we add many cells, we will 

call condition o:n.22) the 11 STOP BAND 11 condition. The obvious corollary 

is to call condition(rn.23) the 11 PASS BAND 11 condition. We have not given 

a rigorous proof yet, but conditions (III.22) and (III.23) are enough to 

make a PASS BAND/STOP BAND analysis of any (lossless) periodic medium. 

One need only find r and ¢1 as a function of frequency and then use 

(rir.22) and(III.23) to determine whether any particular frequency is in 

a PASS BAND or a STOP BAND . We will do this later for several media. 

III.3 Convergence to a Fixed Point; Method One 
.. 

Suppose that RL is "very close 11 to RF . ~Je may write 

(III.24) 

where lt;I << l . Using (III.12) to calculate RL+l and expanding in 

terms of ~ , we obtain 

If .,.,e write 

(III. 26) 

then 

I t; I I (III.27) 

The 0( ~2) term is very small when lt;I is small, but it is not zero. We 

define 
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1 - rRFexp (-i </JR) 
=---------

1 + rRFexp(2i¢T- i¢R) 
(I I I. 28) 

If we examine P simultaneously with RF , we obtain the following re­

sults: 

A. I RF I = l 

In this case the STOP BAND criterion (III.22) holds. There are 

two solutions for RF . For one of them, !Pl > l . For the other, 

IP! < l ; this will be the one to which {RL} converges . 

.. 

Here the PASS BAND criterion (III.23) holds. For both solutions 

of RF , IP! = l . v!e cannot prove it with this simple analysis, but 

the 0(~2) term will prevent convergence, and instead leads to orbits 

around RF . The solution in which we are interested lies inside the 

unity circle (jRFI = l). The other solution is not interesting because 

it lies outside the unity circle and is therefore not possible for usual 

media. 

III.4 Convergence to a Fixed Point; Method Two 

~~e may think of equation (III. 12) as a transformation which maps 

points in the complex plane to points in the complex plane. This trans-

formation is parameterized by the numbers r , </JR , and ¢T Part of 

the transformation is a simple rotation which we may factor out by noting 

r + [Rlexp(-i¢R)J exp(2i¢T) 

l + r[Rlexp(-i¢R)J exp(2i¢T) 
(III.29) 
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(I I I. 30) 

and write 

r + \ exp(2i ¢T) 
=------- (II I. 31 ) 

We are only interested in those points which lie inside the unity circle 

and only those transformations for which O .s_ r < l . The inverse trans­

formation is 

r-X 
=XL= exp(-2i¢ )[ L+l J 

T 1-r\+l 
(I I I. 32) 

It is very easy to prove _that both -1 
¢ and ¢ will leave points 

inside the unity circle. Let Z be any complex number with magni-

tude less than one, and let ijJ = arg(Z) . Then 

r2 + 1z12 < l + r21zl2 

r2 + 2 r I Z I cos ijJ + I Z j 2 
< l + 2 r I Z I cos 1jJ + r2 I Z I 2 

t~e conclude that for any ¢T and r < l , the transformation 

r + X exp(2i¢T) 

l + rX exp(2i¢T) 

(III .33) 

(I I I. 34) 

(III. 35) 

(I I I. 36) 

is one-to-one and onto inside the unity circle, (This topic is also 

mentioned by Bellman et al. (3).) The fixed points of ¢ reveal where 

the transformation may converge after many applications. If we call 

the fixed point of ¢,XF, then XF obeys 
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(III.37) 

This is a quadratic equation, whose solutions are 
. . 2 

sin ¢ sin ¢r 1/2 
XF exp ( i ¢r) = i [ r T J ~ [1 - 2" J 

r 
(III. 38) 

This is a slightly inconvenient result because it depends directly on 

¢r , so we will make one last change of variable. Let 

Evidently, 0 is one-to-one and onto in the same sense as ¢ . If 

we wish to calculate RL given YL , it is easy: 

(III .41) 

The fixed points of 0 are calculated using 

sin ¢r 
Tl = r ' 

(III.42) 

giving 

YF = in ± [l _ n2Jl/2 (III.43) 

The fixed points lie either on the imaginary axis (Jnl > l: PASS BAND) 

or on the unity circle (lnl < 1: STOP BAND). 

Let us consider now the transformation (which we tentatively as­

sume is a member of the class of transformations {e} ) defined by 
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(I I I. 45) 

We may calculate YL+2 two ways and compare the answers: 

l + ~ Ylexp(i¢T) 
= ..--------
~ exp(-i¢T) + YL 

(I I I. 46) 

r2exp(2i¢T) + exp(4i¢T) 
1 

+ r exp(i¢T) +rexp(3i¢T) YL .(III. 47) 
2 . 

l + r exp(2i¢T) 
---------- + y 
r exp(i¢.T) + r exp(3i¢T) L 

Examination of (III.46) and (III.47) reveals the following connections 

between r, ¢T' r', and ¢f 

l + exp(2i¢T) 
r' = r 

l + r2exp(2i¢T) 
(I I I.48) 

sin <1>+ sin ¢r 
= = n r r (I I I. 49) 

We would like to use equations (III.48) and (III.49) to find r and 

¢T given r' and ¢r so that we may decompose any transformation 

into two "smaller" transformations. Of course, we may always invert 

(III.48) and (III.49) numerically to obtain the desired results. It 

is not important that we actually obtain a closed-form inversion of 

(III.48) and (III.49), only that we recognize that we may find the 

solutions if necessary. When r' and ¢r are small, then the approxi­

mate inversion is very simple: 
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r = l I - r 
2 (I I I. 50) 

(III.51) 

The point of this argument is that v,e may always decompose any 0,1, 
'+'T• r 

into 2M smaller transformations; in the limit, we may consider 

0,1, to be infinitely-many infinitesimal transformations which preserve 
'+'T' r 

the fixed points (or, equ·ivalently, n) . 

An infinitesimal transformation w"ill have the parameters t;;r and 

E;:¢T, where E;: is a small real number. If r itself is small, then 

t;; v,rill be (1/N), where N is the number of "smaller" transformations 

\vhich are equivalent to the transformation 11hich is parameterized by r 

and cpT. The infinitesimal transformation may be written 

YL +[; 

r + \exp(i[;¢T) 
J exp(i[;cpT) = [ 

l + t;;r \ exp ( i [;cpT) 
(I I I. 52) 

Since 

n = sin(t;:¢T)/t;;r ~ ¢r/r (III.53) 

we easily expand (III.52) in powers of t;; , keeping up to linear terms, 

to obtain 

(I I I. 54) 

The form of (III.54) very closely resembles the Riccati equation for 

R(z) (II.41), which is not surprising. It is interesting that explicit 

dependence on t;; and r occurs in the expression for (YL+E;: - YL) only 
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as the multiplier, (;r), which implies that the path of evolution of 

YL+; is independent of ; and r (for fixed n ), but the "speed 11 of 

evolution is linearly dependent on (;r). If we associate a quasi-time 

coordinate with ; , so that adding a cell is equivalent to advancing 

quasi-time by some increment, then we may define a velocity function 

(III. 55) 

The value of r may vary, but the shape of the velocity field depends 

only on n. When r is small, one "unit" of quasi-time corresponds 

to one cell added. When r is close to unity, the correspondence is 

not so easy, but may be found using (III.48); in any event, the relation 

between quasi-time and adding one cell is simply a multiplicative con­

stant. Straightforward substitution of (III.43) into (III.55) yields 

(I I I. 56) 

We now have the necessary background for a detailed analysis of 

the paths of YL (and therefore RL) for the PASS BAND and STOP BAND 

cases. 

A. In I < l (PASS BAND) 

For simplicity, we will assume that n is positive. The fixed 

point v1hich is inside the unity circle is given by (III.43) as 

(III.57) 

Let 
(III.58) 

The velocity field is 
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(I I I. 59) 

When Z has a small magnitude (Y is close to VF), the lin ea r term of 

(III.59) dominates and the orbit path circulates about VF (Z = 0). The 

quadratic term causes the orbit to depart somewhat from a purely circu­

lar form. Since 0 is continuous and invertible, no t \.'/O orbits may 

cross. We can see from (III.59) that an orbit cannot converge to the 

fixed point; neither can it get outside the unity circle . For these 

reasons, the orbit may neither shrink nor expand each time it completes 

one cycle around YF. The orbits simply repeat themselves indefinitely. 

Figure 10 illustrates two orbits whic~were calculated using 

r + YL exp(i¢T) 
= [-----] exp(i ¢T) 

1 + r YL exp(i¢T) 
(I I I. 60) 

for r = 0.1 and n = 1.4 . Two starting values, Y
0 

, were used: 0.0 

and -(0.B)i.The first starting value corresponds to the physical process 

of adding cells, starting with no cells (no reflection). The ends and 

tips of the arrows in Figure 10 are located at the points YL 

B. In! < l (STOP BAND) 

Again for simplicity, we assume that n is positive. There are 

b10 fixed points of concern, both on the unity circle. Let 

(III.61) 

Y F2 = in - / l - n 2 (III.62) 

For YFl let: 
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(III.63) 

The velocity field is given by 

(I I I. 64) 

Clearly, the orbits near YFl will be exponentially converging toward 

y Fl. 

For Y F2 let: 

z = y - YF2 (III.66) 

The velocity field is given by 

J 2 2 V(Y)=r(+2.l-n Z-Z) (III.67) 

The orbits near YF2 will be exponentially diyerging from YF2 . 

It is easy to see that the paths of the orbits for the STOP BAND 

case originate at YF2 and converge toward YFl" Figure 11 illustrates 

the paths as calculated with (III.60) for r = 0.1 and n = 0.7. One 

path beginning at Y
0 

= 0 was calculated (the physical case); the rest 

were chosen to begin near YF2 
to Figure 10. 

The meaning of the arrows is identical 

III.5 Calculation of the Propagation Constant; STOP BAND 

The propagation constant, S , is a complex number which is defined 

by the ratio (suitably averaged) of transmission coefficients for L 

and L+l cells: 

(III.67) 
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exp(iSa) = 
t 

(I I I. 70) 

In view of the fact that the transmission is expected to gain the phase ¢T 

for each cell, and ¢T is close to nn (the Bragg condition) for the 

STOP BANDS, we may write our final solution for B in the STOP BAND as 

where the absolute value operator and the (nn/a) term account for the 

case of cos ¢T < 0 . The positive imaginary component of S repre­

sents an ~xponential average decrease in transmission for the STOP BAND, 

which is the reason it is ca 11 ed the "STOP BAND" vJhen lnl > 1, 

we are in the PASS BAND and the situation is not as easy, because the 

reflection coefficient never converges to RF 

velop a technique to do the proper averaging. 

We must therefore de-

III.6 Calculation of the Propagation Constant; PASS BAND 

From the definition of S , we must compute the following average: 
L 

s = limit i/al I £n(TM/TM+l) = 
L ➔ co M= 1 

limit i/al £n(T1/\+l). (III.72) 
L ➔ co 

As L approaches infinity, RL will make many orbits around RF , the 

fixed point, as discussed in Section III.4. It is sufficient to calcu­

late the average of £n(TM/TM+l) as one orbit is made. Since the rel­

ation between the "quasi-time" to get once around the orbit and the 

number of cells to get once around the orbit is simply a multiplicative 

constant, we need only average £n(TM/TM+l) over quasi-time once around 



-62-

the orbit. We must first calculate the quasi-period of one orbit. 

Th e quasi-period is simply the contour integral of v- 1(Y) around the 

orbit: 

P = f v-1(Y) dY (III.73) 

v- 1(Y) has only one simple pole at YF. By Cauchy 1 s integral theorem, 

using equation (III.59), we easily have 

p = _2_TTr, i===== = 

2i r/n2- l 
TI 

r } n2 - l 
(III.74) 

This equation is supported by Figure lO. When r is small (O. l is 

small enough), one unit of quasi-time corresponds to one cell added. 

From the figure, we see that approximately 32 cells are needed for one 

.orbit. Equation (III.74) predicts 32.5 units of quasi-time. 

If we wish to compute the average of any function, G, of RL 

around one orbit, the equation to use is 

(III. 75) 

If G(R) is a nonsingular function everywhere within the unity circle 

(or even just along and inside the orbit), then we have the simple and 

convenient result 

(III.76) 

For the case at hand, 

G(R) (III.77) 
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The restriction on the magnitudes of r and R (less than one) keeps 

G(R) "well-behaved" in the region of integration: no singul arities or 

branch cuts. The propagation constant is given by 

(I I I. 78) 

Using the formula for the fixed point inside the unity circle, equation 

(III. 14), we obtain 

(I I I. 79) 

Since we are following orbits which neither expand nor contract, it fol­

lows that B cannot have an imaginary component . Since this is the 

case, it makes sense to find the cosine of Ba: 

cos(Ba) = Re[exp(iBa)J = cos ¢T/t (I I I. 80) 

Our final answer .for the propagation constant in the PASS BAND case is 

B = -1 a arccos[cos ¢Tit] (I I I. 81 ) 

where by 11 arccos 11 we mean that (Ba) is to be adjusted by 2mr to be 

as close as possible to ¢T 

it follows that Ba= ¢T 

Clearly, for the trivial case t = l , 

The adjustment of (Ba) to the proper quad-

rant allows us to make a Brillouin diagram in the traditional sense. 

III.7 Summary of Results for Lossless Media 

If we have a periodic, lossless medium, then an analysis of one 

period (by any method) will yield all the n·ecessary information to 
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calculate the PASS and STOP BANDS for propagation in the medium, 

including the propagation constant. In particular, we need only cal­

culate the fraction of flux reflected from one period (r2) and the 

phase of transmission through one period (¢T). If we define t = / 1-r2 
we have the following formulas: 

A. PASS BAND: Jsin ¢Tl/r > l or Jcos ¢rift < 1 

-1 s = a arccos[cos ¢Tit] (III.81) 

When r is small, then the reflection from the periodic medium repeats 

every 

(I I I. 82) 

cells. If M, the actual number of cells in the whole slab, is much 

less than P, then (MBa) is not necessarily a good estimate of the 

phase gained in transmission through M cells. 

B. STOP BAND: I sin ¢rl /r < l or I cos ¢rl /t > l 

S = nTI/a + i/a ,Q, n[lcos ¢rl/t+/cos 2¢T/t2- 1 ]. (III.83) 

Whether r is small or is close to one, exp(iMBa) is a good estimate 

to use to calculate the transmission coefficient after M cells. 

Figure 12 is a Brillouin
10

'
11 

diagram of the first several PASS 

and STOP BANDS for the periodic medium with cell index of refraction 

given by 

n(z) = 2 + cos(2Tiz/a) (II I. 84) 

(see also Figure 15). The form of this diagram is very similar to one 
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done by D. Jaggard and G. Evans of the California Institute on a simi­

lar periodic medium using a different approach. 11 

III . 8 Lossy Periodic Media 

If the periodic medium is lossy, then the derivations of the pre­

ceding sections are no longer correct past equation (III.?). The 

quantity (T1T1 - R1R1) is no longer of unit magnitude. vie will find 

it convenient to define the following quantities 

(I I I. 85) 

.. 

¢Y = 2¢a - ¢R - ¢R' ± TI (I I I. 86) 

(III.87) 

(I I I. 88) 

The recursion relation for YL becomes 

(I I I. 89) 

As the losses in the medium go to zero, the "loss parameters" approach 

the following limits: 

a = 1 (I I I. 90) 

¢ = ct> a T 
(III.91) 

y = 1 (III.92) 

¢y = 0 (III.93) 
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reducing equation (III. 89) to the lossless form (III.60). The fixed 

points of the n~w recursion obey the equation 

(I I I. 94) 

The solutions may be computed trivially. As compared with the lossless 

fixed points, there are tv/0 general comments to make . For the PASS BAND 

fixed points, both will move off the imaginary axis, but the fixed 

points will remain inside and outside the unity circle, respectively. 

For the STOP BAND fixed points, the convergent fixed point will move 

inside the unity circle, while the divergent fixed point vlill move out-
.. 

side the unity circle. (These results would not be true if the magni-

tude of a were not less than or equal to one.) Once we have found VF 

(or RF), it is a simple matter to compute the propagation constant by 

substitution of RF in 

exp(i Sa) (III.95) 

When the medium is very lossy, convergence to RF is very rapid. When 

the medium is only slightly lossy, then the STOP BAND case still con­

verges to RF, but the PASS BAND case displays a decaying orbit behavio~ 

There is no problem using RF even in this event, because either the 

orbit will not be decaying very rapidly, in which case equation (III.76) 

is approximately true, or the orbit is decaying rapidly, in which case 

RL converges to RF quickly. Of course, the distinction between PASS 

and STOP BANDS is blurred somewhat in a lossy medium, since enough 

cell s will eliminate the bulk of the transmit t ed wave in either case; 

the greater the "lossiness, 11 the more the distinction between PASS and 
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STOP BANDS is lost. When the losses are slight, then the PASS BAND 

path on the Y-plane retains its general orbit feature. A good approxi­

mate criterion to use to separate the PASS and STOP BANDS is to deter­

mine whether !sin( ¢ )l/r is greater than one (PASS) or less than one 
a 

(STOP); however, this should only be used to get an idea of the PASS 

and STOP BANDS and not to provide the fine distinction that was possible 

in the lossless case. Figures 13 and 14 illustrate the Y-orbits for 

two cases of slightly lossy, symmetric (y = l) cells, which are identi­

cal in the limit as the losses go to zero with the cases illustrated 

in Figures 10 and 11. 

III.9 Multiply Periodic Media 

If an inhomogeneous slab has a periodic structure with cell 

length a , so that 

n(z + Na) = n(z) , (III.96) 

and an average index of refraction in the cell, navg' then we expect 

to have STOP BANDS whenever the phase gained through one cell is an 

integral multiple of TT (but not zero): 

(III.97) 

This formula helps us to understand the positions of the STOP BANDS in 

Figure 12. As (w/c) gets larger, the reflection coefficient gets 

smaller for cases with continuous variation in n(z), so we expect that 

the width of the STOP BANDS will get smaller as (w/c) increases. This 

feature is also apparent in Figure 12. When r is small and almost 

constant as a function of (w/c), the \vidth of the STOP BAND is given 
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approximately by 

6kSTOP-N = 2 arcsin(r)/anavg = 2r/anavg, (III.98) 

because the phase for small reflection cases is very nearly 

(I I I. 99) 

(Recall the arguments of Section II.4). 

The index of refraction in any periodic medium with symmetric 

cells of length a may be written in the Fourier cosine series form: 

00 

(I I I. l 00) 

where 

(III .101) 

(We will generally restrict our attention to indices of refraction 

which ah1ays remain greater than or equal to one, but this restriction 

is not necessary.) Equation (III.97) may be written in terms of the 

lattice structure numbers, K£ , as 

We expect all STOP BANDS to exist for £ = l to infinity \vhether or 

not there is a component in n(z) with corresponding K£, but we also 

expect that the widths (strengths) of the STOP BANDS will be strongly 

influenced by the presence of a non-zero component in n(z) with cor­

responding K£ 
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To illustrate this idea, consider the two cell indices of re­

fraction given by 

= 2 + cos (Kl z) 

= l l 2 + 2 COS(K1z) + 2 COS(K
3
z) 

(III.103) 

(I I I. l 04) 

These two functions have identical averages (n = 2), minimum values avg 
(n . = l), and maximum values (n = 3). They are shown in Figure 15 min max 

(x= l). Consider also the index of refraction function given by 

l l = 2 - - cos(K z) - - cos(K z) 2 l 2 3 (III.105) 

We have not illustrated nc(z) because it is so similar to n8(z). In 

fact, if we had one slab composed of many cells of type B, and another 

composed of many cells of type C, they would differ only at the very 

ends, since nc(z) is n8(z) shifted by a/2 We expect that the PASS 

and STOP BANDS should be identical for the two slabs \'lith cells of types 

B and C. 

Figures 16, 17, and 18 represent the computed magnitude of reflec­

tion from one cell i,,iith index of refraction given by equations (III.103) , 

(III.104), and (III.105) respectively, where we have assumed a back­

ground index of unity. Note in particular that IR(w/c)I is not iden­

tical for n8(z) and nc(z). We expect this because, among other 

reasons, nc(z) has abrupt discontinuities which prevent I R(w/c) I from 

becoming smaller as (w/c) becomes large. (In fact, the maxima of 

IR(w/c)I will approach 0.8 for case C as (w/c) becomes large.) We have 

not plotted ¢T(w/c), but of course it was also calculated so that 
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S(w/c) could be computed. In all cases, ¢T(w/c) is close to the ex­

pected value: 

( I I I. l 06) 

but the smal 1 differences betv1een the expected and actual values deter­

mine the exact nature of the STOP BANDS. Figure 19 reveals the STOP 

BANDS (shaded areas) for the three cell types. It is interesting to 

note that, as predicted, the STOP BANDS for cell types Band Care iden­

tical [in fact, so is S(w/c)], even though both I R(w/c) I and ¢T(w/c) 

are different for the two cases. This result gives us greater confi-
.. 

dence in our theory of periodic media, especially the arguments of 

Section III. 1, since the calculations for the cell type C case assumed 

a unit index of refraction between eel ls when the 11 actual II value is 

three. Figure 19 also gives instancial evidence for our claim that 

some STOP BANDS will be enhanced and others diminished by the addition 

of higher-order components in n(z). The exact amount of enhancement 

is a matter for calculation in each patticular case. 

III. 10 Conclusions for Periodic Media 

We have seen that electromagnetic wave propagation in any periodic 

medium may be calculated very conveniently in terms of a propagation 

constant (S) once the reflection and transmission properties of one cell 

are determined. We have done our calculations assuming that the inci­

dence is normal and the permeability is constant. However, the trans­

formations of Section II.8 extend all results to the more general case 

in which all electromagnetic parameters are variable. Although we have 
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dropped the explicit dependence on w, it is also possible to assume 

that the electromagnetic parameters are functions of w as well as 

z ; in this case, the formulas for the propagation constant and the 

criteria for PASS and STOP BANDS will be the same, but the form of 

the Brillouin diagram will be altered somewhat because navg is no 

longer a constant, but depends on w. 

Chapter IV will deal with media which are "almost homogeneous" 

and, perhaps, "almost periodic." We will see that, if we are so 

fortunate as to have a medium which is both "almost homogeneous" and 

purely periodic, then the calculation of the propagation constant be-

comes particularly easy. Based on the material of Section 111.9, we 

pose the interesting question of what would happen to the PASS and 

STOP BANDS if the index of refraction has cosine components at K-

values which are not rational multiples; in other words, the index of 

refraction is an "almost periodic" function. The res·ults of this chap­

ter are, unfortunately, not suited to answering this question, since 

we assumed from the outset that we were dealing with a purely periodic 

index of refraction. However, we will find the results of the next 

chapter very convenient for handling the important subset of "almost 

periodic" cases \'lhich are also 11 almost homogeneous. 11 
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Chapter IV 

Almost Homogeneous Media 

IV. l The Almost Riccati Equation 

The main difficulty in integrating the Riccati differential equa­

tion for R(z) (equation II.41) is the R2 term. It would be nice if we 

could simply ignore this term entirely. The purpose of this chapter is 

to consider those cases for which the R2 term may~ priori be neglected. 

We \<Jill consider first exactly what we mean by an "almost homo­

geneous medium. 11 t~e mean by 11 almost homogeneous" that the index of re­

fraction is very nearly constant, or 

(IV.l) 

where l;(z) is small compared with unity. For simplicity, we vlill let 

s = max[il;(z)IJ (IV.2) 

be the measure of II al most homogeneity. 11 We wi 11 deal later with the 

situation for which there are many oscillations in n(z) For no1--1, we 

will assume that there are only 11 a fev1 11 oscillations in n(z) over the 

length of the slab. In this case, the results of Chapter II (equation 

I I. 50) give 

ITI > l - Ll; (IV.3) -

IT21 > 1 - 2LE,: (IV.4) -

I R2 I < 2Ls (IV.5) 

where L is the small number of oscillations, and we have dropped a 11 



terms beyond the linear terms in ,; 

i~ith an "almost homogeneous medium," we need an "almost Riccati 

equation" to use to find the reflection. ~<le may find this equation by 

substitution of appropriate approximations in the standard Riccati 

equation for reflection (11.41): 

dR _ l [ dn/ dz . ( 
dz - 2 l - O(,;)] n [l + O(,;)] - 2inavg w/c) [l + O(,;)] R(z). 

avg 
(IV.6) 

The two terms in equation (IV.6) do two different things. The first 

term generates local reflections as n(z) varies. The second term 

acts to change R(z) at right angles . to itself in the complex plane; 

in other words, it is a rotation. Since the two terms do two different 

things, there is no problem taking them to two different orders in ,; . 

Since R is small (of order .;112 ), we might want to eliminate the 

second term in (IV.6) completely. However, vJith no knowledge of the 

size of (dn/dz), this is inadvisable, not to mention the loss of the 

"rotation" effect which would result. Therefore, whatever the size of 

(dn/dz), we vlill take each term in equation (IV.6) to lo1t1est order in 

,; . This yields the 11 almost Riccati equation 11
: 

dR = 
dz 

dn/dz - 2in (w/c) R(z) 
2 navg avg 

(IV. 7) 

One of the wonderful things about.the "almost Riccati equation'' 

is that it is a linear equation, in the sense that if R
1

(z) is a 

solution for n(z) = n + n
1

(z) and R2(z) is a solution for avg 

n(z) = navg + n2(z) , then 

(IV.8) 
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is a sol u ti on for 

(IV.9) 

as long as a and b are not large numbers (compared with unity). 

This may be verified by direct substitution in (IV.7). 

IV.2 Green's Function for the Almost Riccati Equation 

Since the almost Riccati equation is linear, it makes good sense 

to attempt to find a Green's function to reduce it to a simple integra­

tion over a 11 source function. 11 This is actually fairly easy, so we 

will not needlessly obfuscate the physical process involved in finding 

the Green's function with unnecessary mathematical ballast. 

Consider the partitioning of the function n(z) - navg into many 

pieces _which are constant_ except over a very small region and which are 

differentiabie where n(z) is differentiable. If we have M pieces, 

then 

n(z) = 

M 
dn/~z = I dnl/dz 

L=l 

(IV.10) 

(IV.11) 

The differential equation for RL(z)*begins with the initial value 

RL(+a/2) = O , at the right hand boundary of the slab. Since (dnl/dz) 

is zero until we reach zl (the z-coordinate at the region where 

(dnl/dz) is non-zero), RL(zl+) = 0 . In the very small region in which 

(dnl/dz) is non-zero, we get a contribution to R from the first term 

bf the almost Riccati equation (IV.7): 

*~(z) is a generalization of R1 and R2 in equation (IV.8). 
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(IV.12) 

The "phase shifting" term has negligible effect over the small region 

(zL-'zL+) . As we continue to solve the almost Riccati equation in 

the negative (dz) direction, we only have the phase shifting term as a 

contributor, since (dnl/dz) is zero beyond zl-. This adds a phase fac­

tor multiplier to RL(zl-) to give the final answer for one piece: 

RL(-a/2) 

RL(zl-) 
2in (w/c) dz] avg 

Putting equations (IV.12) and (IV.13) together, we obtain 

zl+ 

x f - f (dnl/navgdz) dz 

ZL-

(IV.13) 

(IV.14) 

To get the reflection for the original problem, we need only sum over 

all L : 

R = 
M 

= exp[ian w/c)J I exp[2inavgzl(w/c)J 
_avg L=l 

zl+ . 

x f -f(dnl/navgdz) .dz. 

zl-
(IV.15) 

If we make the number of pieces, M , very large, then we may make the 

regions (zL-'zL+) very small, small enough so that (dn/dz) is constant 

over each region. Since only one (dnl/dz) is non-zero over each region, 
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(dnl/dz) is nearly constant over the small region (or is a delta func­

tion if n(z) has a jump discontinuity in the region), so 

zl+ 

I (IV.16) 

ZL-

The 6ZL is just the factor we need to convert the sum to an integral. 

Over each interval, (dn/dz) is equal to (dnl/dz). The final integrated 

form is 
a/2 

R = exp[ianavg(w/c)J J exp[2inavg(w/c)z][-} (dn/navgdz)J dz. 
-a/2 

(IV.17) 

If we consider the function 

(IV.18) 

to be the 11 source function 11 giving rise to reflection, then the Green's 

function is 

G(w/c;z) = -exp[ian (w/c)J exp[2in (w/c)zl avg avg -

giving us the formal solution to the problem 

a/2 

R(w/c) = f G(w/c;z) S(z) dz 
-a/2 

IV.3 Almost Inversion of the Reflection 

(IV.19) 

(IV. 20) 

The second wonderful thing about the almost Riccati equation is 

that its Green's function is just a Fourier transform with slightly 

altered coordinates and a slightly different constant. Rec a 11 that the 

standard Fourier transform pairs are related by the equations 
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co 

f( v) = (2n):.. 112 f F(z) exp(ivz) dz (IV.21) 
- co 

co 

F(z) = (2nf l/2 I f( \) ) exp(-ivz) dv (IV.22) 
- co 

If we make th e identification of S(z) with F( z), with the additional 

(obvious) extension that S(z) = 0 outside the slab, then 
co 

(IV.23) 
- co 

and 

(IV.24) 

or 

-l/2 f(2navgw/c) = -(2n) exp(-ianavgw/c) R( w/c) (IV.25) 

It is then a si mple matter to get back the original source function by 

the inverse Fourier transform: 

co 

S(z) = -l/2n J exp(-ianavgw/c) R(w/c) exp(-2inavgzw/c)(2navg)d(w/c). 
- co 

(IV.26) 

Suppose that the index of refraction is represented by a Fourier 

series as 
co 

n(z) = J A(K) exp(-iKz) dK (IV.27) 
-co 

where 
co 

A(K) = l/2n J n(z) exp (iKz) dz (IV.28) 
- co 



-86-

The derivative of n(z) is given by 

00 

dn/dz = I B(K) exp(-iKz) dK 
-oo 

where 

B(K) = -iK A(K) 

B(K) may also be obtained from the Fourier inversion of dn/dz 

00 

B(K) = l/2TT f (dn/dz) exp(iKz) dz 
- co 

Comparing this with the integral for ·R(w/c), we have 

or 

where 

-i exp(-iKa/2) 

2TT(w/c) 

K = 2n w/c avg 

R(w/c) 

The inversion is complete with the final integral 

n(z) = n + 
0 

00 

I -i exe(-iKa/2) ( ) (" ) dK. • ZTT(w/c) R w/c exp lKZ 
- oo 

(IV.29) 

(IV. 30) 

(IV.31) 

(IV.32) 

(IV.33) 

(IV. 34) 

(IV.35) 

The additive constant, n
0

, must be determined by some extra informa­

tion, such as knowledge of the index of refraction in the left homogene­

ous region. 

vJe have assumed that navg is somehow knmvn before the inversion. 

This will probably not be the case, but no matter. In any event, navg 
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will not be very different from the background index of refraction be­

cause the medium is almost homogeneous. The average index was chosen 

as the representative index of refraction for substitution in the almost 

Riccati equation (over, say, the left background index) because it 

might tend to minimize the errors in the approximation, but mostly be­

cause of previous results relating the phase of the transmission coef­

ficient to the average index of refraction (equation II.47). To find a 

better guess for navg than the background index, it is a simple matter 

to iterate equation (IV.35) with n as calculated from the previous avg 
iteration. Since we are approximating by dropping O( ~) terms anyway, 

there is no point in doing the iteration more than once, if even once. 

The other term to worry about in the inversion is exp(-iKa/2), 

since we do not necessarily know what is the slab length before the in­

version. Here we are in luck, because we recognize this term to be a 

simple translation operator, which shifts n(z) to the left by a/2 . 

Since the origin of the z-axis is arbitrary anyway, this is no problem. 

If we wish, we may ignore this factor in the inversion, which means that 

the slab will be located between zero and a after inversion, rather 

than between -a/2 and +a/2. 

IV.4 Examples of Almost Inversion 

A good question to ask at this point is hO\'I well does the inversion 

work? This question is best answered by way of example. We will consi­

der three index of refraction functions. They are essentially the same 

as the three functions of Section III.9, except that the coefficients of 

the cosine terms are reduced by two orders ·of magnitude and the constant 
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term is adjusted accordingly. In terms of Figure 15, the x parameter 

is l/100. The three indices of refraction are 

n1 (z) = 1.01 + 0.01 cos(21T z/a) 

n2(z) = 1.01 + 0. 005[cos(2 1Tz/a) + cos(61Tz/a)J 

0.005[cos(2 1Tz/a) + cos(61Tz/a)J 

(IV.36) 

(IV.37) 

(IV~38) 

The full invariant imbedding Riccati equation (as programmed on a 

digital computer) was used to calculate R( w/c) for the relevant argu­

ments and a fast Fourier transform was calculated to reconstruct n(z). 

The magnitude of R( w/c) is illustrated in Figures 20, 22, and 24. The 

phase is not plotted, but is close to (wanavg/c) ± TI/2 (recall equation 

II.92 for symmetric n(z)). Figures 21, 23, and 25 illustrate the fast 

Fourier reconstruction of n(z) for the three cases (respectively). The 

11 high frequency wiggles 11 in n(z) as reconstructed (which are especi­

ally noticeable in Figure 25) are due totally to the arbitrary cut-off 

of the frequencies used in the fast Fourier transform. Except for the 

non-essential '\viggles," the reconstruction of n(z) is faithful for 

these almost homogeneous cases. 

The next question to ask is how poorly does the reconstruction 

work for cases which are not almost homogeneous by any stret ch of the 

imagination? Good examples of this would be the original functions of 

Section III.9. Since ~ve already wrote the computer program to handle 

the almost homogeneous reconstruction, there is no reason not to try 

it out on the other cases as well. The results are illustrated in 
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Figure 20 
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Magnitude of Reflection versus Free-Space Wavenumber (times Cell 
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Figure 22 
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n(z) from Reflection Inversion (Reflection on Figure 22) 

Figure 23 
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Magnitude of Reflection versus Free-Space Wavenumber (times 

Cell Size) for n(z) = 1.01 -0.005[cos(21rz/a) + cos(61rz /a)]. 

Figure 24 



n 

l.02 

l. 01 

0 
I 

a/2 

.-94-

a 

n(z) from Reflection Inversion (Reflection on Figure 

24). 

Figure 25 

z 



-95-

Figures 26 through 28 (respectively). As expected, they are not faith­

ful reproductions of the original functions, but they do still shoi,-1 the 

general features. The inversion represented in Figure 28 is particu­

larly bad because of the discontinuities in the original n(z) function 

which keep the reflection coefficient high even as frequency is in­

creased. An interesting feature of all three reconstructions is that 

the graph "jerks 11 near z = 2a, which marks the end of the slab, 

although the variation as reconstructed continues beyond that point. 

The reason that the slab as reconstructed seems to end at z = 2a 

(rather than at z = a) is that the inversion assumed that n = l - avg 
when it was really twice as much. The factor of two, if inserted in 

the inversion, shrinks the slab size back to its original length, 11 a 11
• 

The general similarity between the indices of refraction as reconstructed 

and as originally defined leads us to attempt to find a somewhat better 

method of inversion for the large-variation cases, but which remains 

the same as the old inversion for the almost homogeneous cases, which 

were inverted satisfactorily. 

IV. 5 Modified Al most Inversion 

In the derivation of the almost inversion, the source function 

was defined to be 

S(z) =} (dn/dz)/navg (IV.18) 

This 11 source function 11 would be more accurately represented as 

S(z) =} d[ t n(n)]/dz (IV.39) 

for the large variation cases (but reduces to the same definition for 
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n 

2 

l. 5 

0 a/2 a 3a/2 2a z 

n( z) from Reflection Inversion (Reflection on Figure 16). 

Figure 26 
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0 a/2 a 3a/2 2a z 

n(z) from Reflection Inversion (Reflection on Figure 17). 

Figure 27 
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n(z) from Reflection Inversi on (Reflection on Figure 18) 

Figure 28 
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the small variation cases). If we use the second definition, then we 

will find tn[n(z)J when we reconstruct. Of course, the over-all addi­

tive constant will be different (so that in(n) is matched in the left 

homogeneous region). Taking the exponential, the modified inversion 

becomes 
00 

n(z) = n exp[ f -i exp(-iKa/2) R(w/c) exp(iKz) dK] 
o 2TT(w/c) (IV .40) 

where n
0 

is a multiplicative constant which provides normalization 

based on n(z) at a known point (presumably in the left homogeneous 

region where R would be measured) . . 

The results of the modified inversion in the three cases are shown 

in Figures 29 through 31. The two improvements which may be seen over 

the original inversion are the increase in height (coming closer to the 

original n ) and the somewhat subtler effect of shaping the peaks to max 
conform more closely (but still not exactly) with the original func-

tions. The factor of two in the slab length is still a problem, but 

this time it can more easily be solved because it is immediately appar­

ent from the figures that the average index of refraction in the slabs 

is approximately two. The third case (with the discontinuities) is 

more or less hopeless with either method, but there is still some use­

ful information about n(z) in the reconstruction. 

IV.6 Purely Periodic, Almost Homogeneous Media 

If we are ever faced with the problem of a purely periodic, almost 

homogeneous medium, we are really in luck. For the purposes of this 

analysis, let us assume that the index of refraction in one cell is 
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n 

3 

2 

0 a/2 a 3a/2 2a z 

n(z) from Modified Reflection Inversion (Reflection on Figure 16) 

Figure 29 
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3 

2 

0 a/2 a 3a/2 2a z 

n(z) from Modified Reflection Inversion (Reflection on Figure 17) 

Figure 30 



-102-

n 

3 

2 

0 a/2 a 3a/2 2a z 

n(z) from Modified Reflection Inversion (Reflection on Figure 18) 

Figure 31 
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n(z) = n + X cos(2nz/a) avg (IV.41) 

v1here 11 a 11 is now the ce 11 size. The source function is 

S(z) = - TIX sin(2nz/a) 
navga 

(IV. 42) 

Because of parity considerations, the Green's function integral reduces 

to 

a/2 
2inX R(w/c) = -- exp(ianavgw/c) 
navga f sin(2nz/a) sin(2zn w/c)dz . avg 

0 (IV .43) 

This definite integral is trivial. Evaluation of it gives 

R(w/c) 
inX sin(n-an w/c) 

= 2n exp(ianavgw/c)[ TT- an a~7c 
avg avg 

sin(-n+an w/c) 
avg J 

TT + an w/ c • avg 
(IV .44) 

Since x is small, R remains small for all values of (w/c). 

The PASS BANDS in this case will be very large and, since the re­

flection is very small, the propagation constant (real part) is given 

very closely by 

S = n (w/c) avg (IV .45) 

everywhere. The STOP BANDS are expected to be located near the regions 

where sin(¢T) = sin(Sa) = 0. The first STOP BAND brackets the propa­

gation constant S = n/a , giving the free-space wavenumber at the 

first STOP BAND, (w/c) = n/anavg· The magnitude of the reflection co­

efficient there is a maximum (therefore almost constant) and has the 

simple form 
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r = JRI = nX/2n . avg (IV.46) 

Based on this, the maximum imaginary component of B in the first STOP 

BAND is 

Im( S) = a - l in [ 
1 +J- 1 

2 - l J 
max J1 - r2 l - r 

(IV.47) 

or, expanding based on the 11 sma 11 ness 11 of r , 

Im(B) x = a-1r = TTX/2n a ma avg (IV. 48) 

The width of the first STOP BAND (from equation III.98) is 

(IV.49) 

A similarly straightforward analysis is not possible for STOP BANDS 

two and beyond, because the magnitude of the reflection coefficient is 

not nearly constant in the vicinity of 

(w/c)N = kSTOP-N = NTT/anavg (N ~ 2) (IV.50) 

in fact, the reflection goes to zero, so we must be more careful in our 

investigation than for the first STOP BAND. The relevant parameter to 

calculate is n , given by 

(IV.51) 

where we have added the absolute value operator for convenience. Suppose 

that the incident wave has a wavenumber near the STOP BAND expected 

wavenumber: 

(w/c) = Nn/anavg + s/anavg (N ~ 2) (IV.52) 
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s is a small number. The magnitude of reflection is 

nX r = 
2n avg 

sin[(N+l )n + s] 
- (N+l)n + s (IV.53) 

This expression is easily expanded in terms of s to give (to first 

order in s ) : 

(IV.54) 

At the same time, the sine of the transmission phase is approximately 

!sin ¢Tl = lsin(Nn + s)I = Isl (IV.55) 

giving the value of n near the STOP BAND expected wavenumber: 

(IV. 56) 

Since X is small, n remains large (greater than one), which in turn 

means that the STOP BAND criterion is never satisfied for any expected 

STOP BANDS beyond the first. The sin(¢T) = 0 condition is repeatedly 

met, but the magnitude of reflection goes to zero quickly enough for 

STOP BANDS two and up that they are reduced to mere ghosts, making them­

selves known only through very small perturbations in the (real) propa­

gation constant near the STOP wavenumbers. Of course, as the reflec-

tion becomes non-infinitesimal, the STOP BANDS for all N will reappear. 

However, they will be very small compared with the first STOP BAND and 

very difficult to detect in an experiment; still mere ghosts of STOP 

BANDS. (This matter is treated further in Appendix II.) 
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This result should not be surprising, because the almost inver­

sion should reproduce an infinite, purely sinusoidal index of refrac­

tion by way of a delta function for R(w/c). On the other hand, it 

might not have been the case, since there are many cycles (instead 

of the few assumed in the almost Riccati equation derivation) and we 

have no~ priori guarantee that the reflection will stay small, which 

we need to do a proper almost inversion. 

The minimum value of n is found at the (expected) STOP BANDS. 

The result represented by equation (IV.56) and the theory of Y-orbits 

presented in Chapter III guarante~ that the reflection will not 

become large for any values of (w/c) except near the first STOP BAND 

for each sinusoidal term in n(z). In general, a purely periodic index 

of refraction, with cell length a , may be written 

n(z) = n + I Ar1cos(2Nnz/a + 6N) 
avg N=l . 

(IV.57) 

As long as the AN 1 s remain small, n(z) is almost homogeneous in the 

cell, and we are out of the STOP BANDS for all terms, then the almost 

Riccati equation serves to calculate the reflection and transmission 

for one cell, from which the PASS BAND formula (III.Bl) may be used to 

calculate the (real) propagation constant. The propagation constant 

in one of the STOP BANDS may be calculated similarly with the STOP BAND 

formula (III.83). 

IV.7 Almost Periodic Functions 

Our main use of the properties of almost periodic functions will 

be confined to the idea that we wish to have a medium which is almost 
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periodic (but not quite) and examine what, if anything, can be said 

about the propagation constant. 

The first concern is with what an almost periodic function will 

11 look like 11
• Our prototype almost periodic function will be 

(IV.58) 

where Ka and KB are not rational multiples of each other. We can 

see that this function cannot be purely periodic, because if we think 

that we have found a period, P , then 

2 = f(O) = f(P) = cos(K P) + cos(K
8

P) (IV .59) a 

which implies that 

K p = 2MTT and KBP = 2NTT (IV.60) a ' 
or 

(IV .61) 

which contradicts the hypothesis about Ka and KB . Of course, the 

11 almost periodic 11 nature of f(x) arises because we may always let 

(IV.62) 

where (M/N) is a rational approximation to (Ka/KB) taken to any accu­

racy we desire, and ~ is a correspondingly small number. If this is 

the case, then any period near 

P = 2MTT/K a a 
and (IV .63) 

may be considered an 11 almost period. 1112 •13 
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For a definite example, consider the function 

f(x) = cos(TTx) + cos(v'2TTx) (IV.64) 

This function is represented graphically in Figure 32 for the range 

of argument x= 0 to x= 10. We will let K = TT 
8 

and K = ✓2TT . 
(J, 

One 11 reasonab l e 11 rational approximation of K /K 
a 8 = ll is 7 / 5 = M/N. 

Associated with this approximation are the 11 almost periods 11 

P = 14TT/12 = 7/2 
Cl 

and PB = l OTT/ TT = 10 (IV .65) 

Examination of Figure 32 reveals that a number near 10 is indeed a 

good es ti mate of the first 11 a l most period. 11 

A better rational estimate of /2 is (M/N) = 75/53 = 1.415 

This approximation gives an "almost period 11 of P8 = 106. Figure 33 

illustrates our almost periodic function in the region from x= 100 

to x=llO. It is readily seen that f(x) gets very close to 2 near 

x = 106. In fact, f(x) reaches a maximum around x = 106.04, obtain­

ing the value f(l06.04) = l .986. However, f(x) quickly loses its 

similarity to f(x-106.04), as may be seen by comparing f(x) in the 

region between x = 2 and x = 3 (Figure 32) with f(x) in the region 

between x = 108 and x = 109 (Figure 33). 

IV.8 STOP BANDS in Almost Periodic, Almost Homogeneous Media 

All of the work has already been done to find the STOP BANDS in 

an almost periodic, almost homogeneous medium. Although the results 

are somewhat disappointing, since we would like to see something 
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11 speci al II happen v.;i th al most periodic structures, they are comforting 

in the sense that it would be a big surprise if it really mattered (in 

a physical sense) v,hether the structure of a medium is periodic or only 

11 almost periodic. 11 

Let the index of refraction be given in the general case by 

00 

(IV.66) 

where the K are 1\.1ell-separated 11 constants (we will define this more 
a 

precisely later), not necessarily rational multiples, and 

00 

I 
a=l 

X « l a 
(IV .67) 

There will be one and only one non-vanishing STOP BAND associated with 

each a , centered at 

(IV. 68) 

with width 

~(w/c) = 2
1 X K /n2 

a a a avg (IV .69) 

and maximum imaginary component of the propagation constant 

Im(Q) = x K /4n . 
µ max-a a a avg (IV.70) 

These results apply as long as condition (IV.67) holds and the STOP 

BANDS do not overlap; in other words 

MINQ[I KQ- K IJ > x K /n (for all a ) 
µ µ a a a avg (IV.71) 

We need not worry about whether the K.'s are or are not rational mul­

tiples of each other; the formulas work just as well in any event. 
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Chapter V 

Conclusion 

It has been the purpose of this thesis to make a general inves­

tigation of the properties of the invariant imbedding solution for 

electromagnetic wave propagation in general, periodic, almost homo­

geneous, and almost periodic media. While the analysis was (almost) 

exclusively made for electromagnetic waves, a section of the second 

chapter (Section II.7) extends all results to quantum mechanical waves, 

or in a more general sense to any wave which may be characterized by 

the standard wave equation (equation II.4). 

Chapter II contained a reformulation of the invariant imbedding 

solution and the derivations of some very important general properties 

of the solution. These general properties, which related the reflec­

tion and transmission coefficients in two directions through the region 

of inhomogeneity, and related the minimum transmitted flux with the 

range of variation of the local wavenumber, provided the basis for 

Chapters III and IV. 

Chapter III was a new way of looking at waves in a periodic 

medium. Assuming that we have already solved the problem of reflec­

tion and transmission for a single cell, an invariant imbedding recur­

sion using the cell as the basic unit of recursion gave the propagation 

constant according to very simple formulas which did not involve any 

matrix operations. The computation of the PASS BANDS .and STOP BANDS 

was seen to be completely t~ivial once the transmission and reflection 

coefficients for one cell are known as a function of frequency. The 
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general treatment was extended to include absorptive media as well, 

al though the sharp distinction between PASS and STOP BANDS was lost. 

Chapter IV looked at those situations for \vhich the reflection 

coefficient is small. In this case, a very simple exponential Green's 

function is available to transform the differential equation for the 

reflection coefficient into a definite integral. The reflection was 

also transformed back to get the original index of refraction function. 

It was possible simply to use this same method when the reflection was 

large, and we have seen that the resulting reconstructed index of re­

fraction has the same general appearance as the original, although the 

fact that the reflection was not small made the shape progressively 

worse as the reflection failed to get smaller with increasing fre­

quency. Finally, we used the small reflection theory to show that an 

almost periodic medium will not exhibit interference between structure 

constants to produce STOP BANDS at frequencies beyond the fundamental 

for each structure constant, in the limit as the variation in wave­

number with distance is small. We have not addressed ourselves to the 

problem of a large-variation type of almost periodic medium, since 

neither the methods of Chapter III nor Chapter IV are applicable to 

that case. It is very possible that there could be an interference 

effect between irrationally related structure constants to produce STOP 

BANDS at frequencies which are sums of integral multiples of the funda­

mental frequencies, when the variation in wavenumber with distance 

becomes large. This \vould be a very difficult thing to calculate, even 

numerically, since no finite slice of an almost periodic structure may 
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be considered as representative of the whole, in contradistinction to 

a purely periodic medium. 
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Appendix I 

Inductive Proof of Reciprocity Relations 

We v1ill prove inductively, using (II.32L (II.33L (II.66), and 

(II.67), the five reciprocity relationships: 

l. r' = r 

2. t' = ( k/kN )t 

3 a) r'2 + 2 
l (k/kN)t = 

b) r'2 + ( k /k ) t ' 2 = l N o 

Inductive Proof: 

(AI. l) 

(AI.2) 

(AI.3) 

(AI.4) 

(AI . 5) 

(AI.6) 

-
I. When there is only one interface (N=l), ~he transmission and 

reflection coefficients are 

R = (k1-k
0

)/(k1+k
0

) 

T = 2k,J(k1+k0) 

R' = (k
0

-k1)/(k1+k
0

) 

T' = 2k
0

(k1+k
0

) 

All of the relations follow trivially. 

(AI. 7) 

(AI.8) 

(AI.9} 

(AI.10) 

II. Assume that we have shown (AI .1-6) for I interfaces. l~e wish 

to verify that they will also hold for I+l interfaces. It will be con­

venient to use Method A (II.32 and II.33) to calculate Rl+l and TI+l, 
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and Method 8 (II.66 and II.67) to calculate R~+l and Ti+i· We should 

note a change of notation (of subscripts) for method B due to the 

fact that we will be adding interfaces in the usual direction (that 

is, l to N) when calculating the reverse coefficients (R' and T'). 

Let 

rl = (kI+l-kI)/(kI+l+ kl) (AI. 11) 

tr = 1 + rr (AI.12) 

r' = -rr (AI. 13) I 

t• = 1 + r' = 1 - r (AI.14) I I I 

cS = exp[ik1(z1-zI+l)J (AI.15) 

The invariant imbedding recursions give 

2 

RI+l = 
r1 + cS R1 (AI.16) 2 l + r1o RI 

TI+l = 
t 1 o TI 

(AI. 17) 2 1 + r2o R1 

RI+l = 
Ri + rii(TFr- RIRI) 

(AI. 18) 
l - r 1 02 

RI I 

t I o T' I I (AI.19) 

Straightforward calculation will verify the relationships. 

1 : 
r = IRI+11 = ir1+ o2R1i/[l +r1o

2R11 (AI.20) 

r' = 
IRi + rio2

(T1T1- R1R1)[ 

2 
11 + r 1o R1 1 

= (AI. 21) 
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We need only compare numerators as denominators are equal. From the 

previous step in the recursion, we have 

T1 = (k/k1) T1 

RiRI = -exp(2i¢T )1Rr1
2 

I 

TiTI - RIRI = exp(2i¢T) 
r 

(AI.22) 

(AI .23) 

(AI. 24) 

Substitution of (Ar.24) in (Ar.21) and division by (Ar.20) gives 

r'/r = 
IR1 - rro2exp(2i¢T1)1 

2 
Irr+ o -Rrl 

A little manipulation and the use of (Ar.6) gives 

l-a2exp(2i¢rr) I • Irr+ o-
2

1Rr lexp(-i¢R
1
) I 

r' /r = 

Since lol = l and lx*I = !xi for any complex number x , 

l • I ( rt a2 I R1 I exp ( i ¢R ) )* I 
r '/r = ---2---~---I -

l(r1+ o IR11 exp(i¢R ))I 
I 

= l 

(This would not work if k1 had a complex nature . ) 

2 and 4: 

(AI.25) 

(AI.26) 

(AI. 27) 

(AI.28) 

(This works even if k1 is complex, but if it is, 2 and 4 must be com­

bined . ) 
.. 
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] R* R} 
( k + k )2 I I 

I+l I 

Follows immediately from 1, 2, and 3a. 

Let 

i_/J = arg( o) 

Then 

(AI. 30) 

(AI. 31) 
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(AI. 32) 

<PT' =~+<PT' + 80 
I+l I 

(AI.33) 

From the first step of the iteration, we have 

(AI.34) 

With this, equation (AI.18) reduces to 

R' - r 
1 
o 2 exp ( 2 i <Pr 

1 
) -· 

RI+l 
I = 
l 2 

+ rlo RI 
(AI.35) 

Let 

eN = arg( r + o2RI) (AI.36) 

Then 

(AI. 37) 

If we examine the numerator in (AI.35), we can manipulate it with the 

help of l, 4, and (AI.34) to read: 

-o 2exp(2i¢T )[IR1 1o-2exp(-i¢R) + r 1J. 
I I (AI.38) 

Then 

(AI. 39) 

We finally obtain the desired result: 
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= ±n + ¢T + ¢T' 
!+1 1+1 

(AI. 40) 

(This proof depends heavily on the fact that lo! = l , or k1 real.) 

This completes the inductive proof. 



-121-

Appendix II 

Careful Analysis of Higher Order Stop Bands 

We have seen in Section IV.6 that the magnitude of reflection 

for wavenumber 

(w/c) = NTT/an + ~/an avg avg (N ~ 2) (IV.52) 

where ~ is a small number, is approximately 

{IV.54) 

In that section we assumed that the phase of transmission was 

¢T = NTT + ~ (AII. 1) 

which is the basic approximation from equation (II.47). However, since 

the reflection vanishes where we expect the STOP BANDS, we should com­

pute a correction based on equation (II.47) for n(z) real: 

a/2 

¢T = NTT + ~ + ½ f 
-a/2 

Im[R(z)] (dn/dz) dz 
navg 

(AII.2) 

The function R(w/c,z) is a simple matter to calculate with the almost 

Riccati equation. Recall that R(w/c,a/2) = 0 and ~(w/c,-a/z) = 

R(w/c). The integrated form of R{w/c,z) is 
a/2 

R{w/c,z) = TTX exp[-2iznavgw/c] f sin(2TTz'/a)exp[2iz'navgw/c]dz'. 
navga 

z 
(AII.3) 

For convenience, we let 
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a= n a(w/c) = NTT + ~ avg 

The imaginary part of R(w/c,z) is easily integrated to become 

Im[R(w/c,z)] = TTX [cos( 2az/a}(sin(TT-a) _ sin(TT+a ) 
4navg TT-a TT+a 

sin[2(TT-a) !J sin[2(TT+a) 2 

------+ a TT+a TT-a 

_ sin( 2az/a)(-cos(TT-a) _ cos(TT+a) 
TT-a TT+a 

(AII.4) 

cos[2(TT-a ) ~] cos[2(TT+a) ~] 
+ •• a + + a )].(AII.5) TT-a TT a 

One more integral will give us the desired final answer. The 

(dn/dz) term is a sine, so some of the terms in the i~tegral will drop 

out by parity considerations, others will cancel. The result is 

TT2x2 2 2 (cos(TT-a) + cos(TT+a)) ¢T = NTT + ~ + -~- [- - - + 2 TI+a TI-a TI-a TI+a 
4n avg 

x (sin(TT-a) _ sin(TT+a))] . 
TI-a TI+a (AII.6) 

Expanding in terms of ~ and retaining only low-order terms in ~ and 

x
2, \-Je obtain 

(AI I. 7) 

Equation (AII.7) implies that the STOP BANDS are somewhat shifted from 

* NTI/an . They will be extremely small, so r will be approximately _avg 

* 2 2 2 If 1>1e let ~ =- (NTIX )/[(N -l)navg] , we \-Jill be right in the middle of 
the STOP BAND. 
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constant, and equal to 

The maximum imaginary component of S is 

NTTx3 
Im(S)max = -2----'--'--2_3 __ 

(N -1) anavg 

and the width of the STOP BAND is approximately 

(AI I. 8) 

(AII.9) 

( AI I. 10) 

Compared with the first STOP BAND, since x is a small number, these 

are "ghosts II indeed. 
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