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ABSTRACT

The technique of invariant imbedding, as introduced for the prob-
lem of electromagnetic scattering by V. A. Ambarzumian in 1943, provides
a very convenient method for the solution (albeit numerical in many
cases) of plane wave scattering from a one-dimensional region of in-
homogeneity. In the thirty-plus years which have intervened, the use-
fulness of this method has been extended in the case of electromagnetic
properties of the region of inhomogeneity (dielectric constant, per-
meability, and conductivity).

It is the purpose of this thesis .to examine the invariant imbed-
ding solution as it applies to periodic, almost periodic, and almost
homogeneous media. The introduction of a complex number, Y , which is
simply the reflection coefficient rotated by a fixed phase angle, is a
new concept which allows the computation of the propagation constant
for any periodic medium once the reflection and transmission properties
for one cell are known, without any %urther complications such as matrix
equations. The trajectory of the parameter, Y , also provides an in-
teresting graphical representation of the properties of a periodic medium.

The concepts derived for general periodic media are then applied
to the important class of media whose reflection coefficients remain
small, except perhaps at special frequencies. In particular, a small
reflection approximation leads to the result that for any medium which
is "almost homogeneous," there will be one special frequency, for each
structure constant in the cosine expansion of the index of refraction,

for which the reflection gets large.
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Symbols Used

1. Latin

avg
max

min

Slab or cell Tength

Transformed slab length

Fourier coefficient of the index of refraction
Fourier coefficient of the derivative of the index
Speed of light in free space

Wavenumber

Average wavenumber in the slab

Local maximum wavenumber in the slab

Local minimum wavenumber in the slab

Transformed wavenumber

Index of refraction

Average index of refraction in the slab
Quasi-period of an orbit on the Y-plot

Local reflection coefficient or magnitude of R
Complex reflection coefficient

Fixed reflection point

Local transmission coefficient or magnitude of T
Complex transmission coefficient

Quasi-velocity along a trajectory on the Y-plot

Rotated reflection coefficient

‘Fixed value of X

Standardized rotated reflection coefficient

Fixed value of Y



A=

Z Slab length coordinate

Zr Transformed slab length coordinate
zZ Y - YF

2. Greek

o Loss parameter

B Propagation constant

Y Antisymmetry loss parameter

S Phase shift (complex number)

A Distance between interfaces

€ Dielectric constant “

n Y-plot trajectory shape parameter
8 Angle of incidence

K Structure constant for periodic and almost periodic media
U Permeability

£ Parameter (small)

o] Conductivity

¢A’¢a Loss angle parameters

¢R Phase of R

¢T Phase of T

X Parameter

10 Wave function, or phase angle

W Radian frequency

3. Operators

arg Complex phase operator

exp Exponential function



Re

Im
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Real part
Imaginary part
Add one cell to Y
Add one cell to X
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Chapter I

Introduction

The technique of invariant imbedding was first applied to elec-
tromagnetic scattering by Ambarzumian in ]943.] Since that time,
there has been much work done both to extend the use of the technique
in the solution of the wave-scattering problem (for instance, refer-
ences 2 through 6) and to expound the theory behind the techm'que.7
This thesis will be concerned with the application of Ambarzumian's
technique to one-dimensional periodic and "almost periodic" materials.

As the invariant imbedding appfbach of Ambarzumian applies to
one-dimensional, linear wave-scattering problems, it may be stated
with sufficient completeness very briefly as the following quasi-
algorithm: First, consider the simplest possible scattering problem,
that is, the reflection from and transmission through a jump discon-
tinuity in the properties of the medfum conducting the wave, assuming
uniformity on either side of the discontinuity. In optical terms,
this would be transmission and reflection at an interface between media
with differing indices of refraction. In quantum mechanics, a similar
example would be the matching of wave solutions on two sides of a
potential discontinuity. Second, assume that we know the solution for
up to N such interfaces stacked together and examine what happens when
we add one more interface at a distahce A frqm the Tast. Finally,
the solution of the simple case may be iteratively transformed by the
derived relationship between Nth and (N+1)St solutions until we arrive

at the final answer. In the case of a continuously-varying medium,



D

the Timiting process which makes the A's very small and the N corres-
pondingly large yields first-order Riccati-type differential equa-
tions which, although hard to solve exactly, are very simple to
approximate numerically to obtain the desired reflection and transmis-
sion properties of the inhomogeneous medium.

The alternative methods for calculating the reflection and
transmission are nearly always more difficult, both conceptually and
mathematically. For instance, we could start with Maxwell's equations

and reduce them to the second-order linear wave equation

K= 0

(when u 1is constant), and solve for the proper wave solutions given
kz(z), assuming that k2(z) is constant outside the slab and that the
wave should look 1ike the standard time-harmonic plane wave away from
the region of inhomogeneity. Not only would this be a more difficult
proposition numerically than invariant imbedding for almost all kz(z),
but the physical process involved at each point along z would tend

to be obscured by the sophisticated techniques used to solve the prob-
lem. Similarly, we could solve the quantum-mechanical one-dimensional
"square well" problem by matching solutions at the boundaries, but
this method also tends to conceal the physical process until the final
solution is examined. In contradistinction, the invariant imbedding
formulation remains physically understandable at every point along the
path to the solution and is capéb]e of generating the solution in a
straightforward manner for every applicable case. In this spirit, we

will attempt to keep the mathematical formulation relatively simple



throughout.

This much of the application of the invariant imbedding technique
has previously been well discussed by the authors of references 2
through 6. It would seem that, since we understand so well how to cal-
culate the reflection and transmission coefficients for any given
discrete distribution (and how to approximate accurately and easily in
the continuous case), the problem is completely solved and there is no
more to be done beyond, perhaps, finding some exact solutions previously
unknown or solving interesting cases numerically. Indeed, the standard
invariant imbedding formulation is capable of generafing a numerical
solution efficiently and accurately for“any particular case of interest.
However, the intent of this thesis is to extend the usefulness of the
general invariant imbedding approach by deducing some general properties
of the invariant imbedding solution and using these properties to derive
new methods of exact and approximate solution of the problem based on
the invariant imbedding solution. In particular, we will see how
invariant imbedding leads to an interesting formulation of the problem
of scattering from a periodic medium and how the Riccati equation may be
reduced in many cases to a linear equation which greatly simplifies the
analysis of any medium, in particular periodic and "almost periodic"
media.

Chapter II is concerned with reformulation of the invariant im-

bedding solution and the proof of general properties to be used later.
It contains a substantial amount of non-original material. The contents

of Section II.2, "The Wave Equation," are common knowledge to several
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branches of physics and engineering. The mathematical ideas of
Section II.3, "The Invariant Imbedding Solution," are available in

many places, for instance Wave Propagation in Turbulent Media by R.

Adams and E. Denman (2). The notation used in this report is most
similar to that found in Adams et al. (2). Sections II.5, "An Alter-
native Invariant Imbedding Scheme," and II.8, "Variation of All

Electromagnetic Parameters," contain as their basis background material
(again, mainly using the notation of Adams (2)), but extra ideas have
been added to the basic principles in the interest of later results.
For instance, we have found it necessary to make a detailed comparison
of the two schemes for invariant imbedding and to provide an explicit
transformation which extends the results for normal incidence and con-
stant permeability to the more general case. Finally, the similarity
between electromagnetic and quantum mechanical scattering, as described
in Section II.7, has been previously noted by Bellman et al. (3).
Chapter III uses the general results of Chapter II to look at
wave propagation in periodic media in a new way. We introduce a con-
cept called the "Y-plot" in the analysis of the propagation constant.
The complex variable, Y , is equal to the complex reflection coeffici-
ent times a phase adjustment to standardize two special points in the
Y-plane, called the "fixed points." The progression of the reflection
coefficient as cells-are added to the periodic structure is represented
by a trajectory on the Y-plot. For STOP BANDS, the trajectories con-
verge on one fixed point and diverge from the other; for PASS BANDS,

the trajectories orbit a fixed point. In both cases, the propagation
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constant may be computed knowing only the fixed points, via very simple
formulas. These results are applied to both Tossless and lossy
periodic media.

Chapter IV examines the class of problems for which the wavenumber
(k) does not vary much as a function of position in the slab, which we
call "almost homogeneous media." The very complicated (at least, dif-
ficult to solve exactly) differential equation for the reflection coef-
ficient derived in Chapter II reduces to an almost embarrassingly simple
linear approximation which possesses an equally simple Green's function.
In these almost homogeneous cases, an inversion of the reflection coef-
ficient as a function of frequency to reconstruct the index of refraction
as a function of position is quite simple to perform (with the help of a
digital computer). This method may even be used with modest success
for cases which are not "almost homogeneous." We finally use the
approximate theory to examine the STOP BANDS of periodic and almost
periodic media. The conclusion is that there exists only one non-
vanishing STOP BAND corresponding to each structure constant in the
cosine expansion of the index of refraction for either periodic or almost
periodic media.

Where applicable, all electromagnetic quantities are in MKS units.
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Chapter II

The Basic Equations and Relations

II.1 Definitions

Our first task will be to reformulate the invariant imbedding
equations for electromagnetic scattering from a medium with constant
permeability, u , zero conductivity, o , and dielectric constant, € ,
which is a function only of the propagation direction (and perhaps fre-
quency.) In this case, we may think of the problem as that of a
section of space between =-a/2 and z=+a/2 where the medium may

be characterized by an index of refraction

n(zzw) = ¢ J/E(Z;m)n . (I1.1)

For now, we will drop the explicit dependence on w . Outside the re-
gion of the "slab," n(z) is constant. For reasons which will be clear
later, we will let
Ny s Z< -a/2
n{z) = ’ (11.2)
Ng 3 272 +a/2
With this definition of n(z), we may also consider the local wave-

number, k(z), given by
k(z) = z(w/cin(z) , (11.3)

where w/c will often be called the "free space wavenumber" because

n =1 1in free space.



IT.2 The Wave Equation

When the permeability is constant, Maxwell's equations reduce
to a simple one-dimensional wave equation for harmonic waves (we as-
sume an exp(-iwt) time dependence) propagating in a direction per-
pendicular to both the electric and magnetic fields (which are, of
course, also perpendicular to each other). The wave equation may be

written in the simple form
o 5 pB _ |
"+ k“(z)y = 0 , (11.4)

where ¢ 1is the (complex) length of-the electric field vector. The
solutions where k2(z) is constant are right- and left-hand travel-

ing waves of the form

b=y, expleikz) (11.5)

where the (+,-) correspond to right (+) and left (-) traveling anes
(along the z-axis). We will assume for our scattering problem that a
vave of unit electric field is incident from the left, traveling to
the right. We will fix the phase of the incident wave so that it has
zero phase angle at the front interface (z=-a/2). The scattering

problem is to find the complex numbers R and T such that
exp[+ikN(z+a/2)] + R exp[—ikN(z+a/2)]; z < -a/2
T exp[+ik0(z—a/2)] 3z > +a/2

is a solution of the wave equation in the homogeneous region which

matches correctly with a solution in the inhomogeneous region (see
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Figure 1). At this point we are not concerned with the exact nature
of the solution in the inhomogeneous region. The phase convention
adopted for the transmitted wave is chosen so that the complex number
T carries all of the phase information at z = a/2. In the trivial
problem in which e(z) is conétant everywhere (no reflection),
T = exp(ikoa).

We will also consider the reverse problem of finding the reflec-
tion and transmission numbers (R' and T') when a unit wave is incident
from the right (traveling to the left). In this case, we want our

solution to be of the.form

T! exp[-ikN(z+a/2)] g z < -a/2
Vo= (11.7)
exp[—iko(z-a/Z)] + R'exp[+iko(z—a/2)]; z > +a/2 .

We note in passing that jn the trivial case of total homogeneity,
T' = exp(ikoa) =T.

Although we will not find it convenient to obtain the complete
solution by solving the wave equation, there are several important
results which may be derived easily by integrating the wave equation.
Suppose that we have two solutions of the wave equation, b1 and 7%

Using a standard trick,
" 2 _ _ n Z
wzw] + Kk (Z) w]wz =g = w]wz + k (Z> Kb]wZ s (11-8)
which reduces to

A 7170 R I (11.9)
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Integration from z=-a/2 to z=+a/2 is trivial. The result is
Uy (a/2)9(a/2) - y(a/2)v,(a/2) =
Vo (-a/2)y (-a/2) - ¥y (-a/2)uy(-a/2) . (11.10)

We may use this result to examine two pairs of solutions. For the
first pair, consider the forward and backward scattering solutions

(equations II.6 and II.7). Substitution into (II.10) gives

(14R*) (1K ) (T) - (T)(ik )(-1+R") =

which reduces to

koT = kNT' or T' = (ko/kN)T ’ (11.72)

Equation (II1.12) holds whether or not k(z) has an imaginary component.
The second pair of solutions is a valid pair only when kz(z) is
real and k2 is positive in the homogeneous region. If this restric-
tion holds, then the complex conjugate of a solution will also be a
solution. The restriction k%> > 0 in the homogeneous region is simply
a convenience; we could as easily assume the opposite in either the
right or left homogeneous regions and proceed from that assumption, but
it is more usual to have k2(z) positive in the asymptotic region. If

we substitute the solution (II1.6) and its complex conjugate in equation

(I1.10), the result is
(T (k) (T) - (T (ik)(-T%) =

(1+R*)(ikN)(1-R) - (1+R)(ikN)(-]+R*) ‘ (11.13)
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Reducing, we obtain
R*R + (ko/kN) ™T = 1 . (11.14)

Had we used instead the "reverse" solution of (II.7), we would have

obtained

(RU)*R' + (ky/k)) (TH)*TH = 1 X (11.15)

The results given by equations (I11.12), (II.14), and (II.15) are
physically reasonable. The energy flux in a transverse electromag-
netic wave, by Poynting's theorem, is proportional to the electric
field strength times the magnetic field strength. At the same time,
the magnetic field of our "reduced wave" is proportional to the wave
number times the electric field (for fixed w and u ). Therefore,
the flux is proportional to the reduced wave amplitude squared times
the wavenumber. Equation (II.12) implies that the same percentage of
flux will get through the slab in either direction, while equations
(I1.14) and (II.15) imply a conservation of flux. The combination of

all three equations implies

R*R = (R')*R' s (11.16)
which implies that the same percentage of flux will also be reflected
in either direction.

I1.3 The Invariant Imbedding Solution

Now that we have some simple relationships (equations II.12,
I1.14, 11.15, and I1.16), we may proceed to re-derive the basic in-

variant imbedding solution for R, T, R', and T'. As a check of the
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invariant imbedding procedure, we expect to be able to prove these
simple relationships from the invariant imbedding viewpoint. Although
the general derivation of the invariant imbedding scheme has pre-
viously been discussed in many sources (references 2-6), we will find
the derivation a useful prelude to later derivations for periodic,

"almost periodic," and "almost homogeneous" media.

Consider the problem of an electromagnetic wave incident on a
region where there are N abrupt discontinuities (interfaces) in
n(z), but n(z) 1s constant between interfaces (Figure 2). The simp-
lest non-trivial problem to solve is the problem of one interface. In

this case, a=0 and the reflection and transmission coefficients are

real numbers given (respectively)by the standard Fresnel formulas:

pre)
1]

1 = (ny=n )/ (nqn ) (11.17)

—
1

1 2n]/(n]+n0) . (11.18)

The derivation of these formulas is elementary, but beyond the scope
of this report.8
Assume now that we know the solutions, RI and TI’ for a situa-

tion with I interfaces. The index of refraction is given by

Ny 3 z> 2= +a/2
n(z) = n.oos 2, 1<Z<Z; 1 <i<lI (I1.19)
Ny 5 zZ < zI= -a/2

where Z; is the position of the ith interface. Suppose that we wish

to add another interface, thereby increasing the slab length, a , and
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changing the index of refraction in the left hand asymptotic region

(z < -a/2). The new index of refraction function is

n0 4 z>z]=+a/2
n; S Zyyq <2< 25, 1 <1<
n(z) =
Ny S Zpey <2< 7
Npep 3 2 < Zp47 -a/2, (I1.20)

where the new interface is added at z =219 and we have shifted the
z axis to keep the slab centered about z=0 (merely a matter of
convenience). The new reflection and transmission coefficients will
be calculated using the method of multiple reflections between inter-
faces I and I+1 (see Figure 3). The local reflection and transmission

coefficients at the (I+1)st interface are given by the real numbers

r = (nI+]- nI)/ (nI+]+ nI) (11.21)

~+
!

= 2nI+]/(nI+]+ nI) . (11.22)

The Tocal reverse coefficients are given by

Pl = (nI- nI+1)/(nI+ nI+]) (11.23)

tl

i

2"1/(n1+ nI+]) . (11.24)

These quantities are related by the Kirchhoff equations:

r' = -p (11.25)
t = 1+vr (11.26)
t' = 1 -p (11.27)
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The distance between interfaces, A , is given by
A=zp - 20, g (11.28)
A wave propagating between the interfaces will gain the phase factor
§ = exp(ikIA) . (11.29)

We will now consider the multiple reflections which contribute to the

new reflection coefficient, R 1° and the new transmission coeffici-

I+
ent, TI+]' The unit wave is incident from the left upon the (1+1)st
interface. The first term of the infiﬁite series for RI+1 is simply
the Tocal reflection coefficient, r . The remainder of the wave, t ,
continues to the Ith interface gaining phase factor & . At the Ith
interface, RI is reflected and TI gets through to the right asymptotic
region. The reflected part propagates back to the (I+1)St interface,
again gaining phase factor & . At the (I+1)St interface, t' gets
through to give the second term of the series for Ri+] (ts RIGt‘)

and r' is reflected back to become the second of the (infinite) mul-
tiple reflections. This process is illustrated in Figure 3. The

series for R 1 and TI+1 are given by

I+

Rieq = r+(1+r)sR8(1-r) + (1+r)6R;8(-r)6R 6(1-r) + -
= r+(]-r2)62RI 2 621R}(—Y‘)1 3 (11.30)
i=0
TI+] = (]“Y')(STI + (]—Y‘)GRIG(—Y‘)STI S BE

(-r)Ty I slRi(-n)t . (11.31)
1:
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These expressions may be summed exactly with the use of the formula

,20 a' = (1—a)~] " (11.32)
]:
giving
Rppp = (r + 6°R)/(1+re%R))
(11.33)
- 2
T = 8T /(14 re%R))

The recursion relationships (I1.33) solve exactly any problem
with discrete changes in n(z). For the case of a continuous change
in n(z), we will derive differential equations for R(z) and T(z).
The initial value conditions are R(a/2) = 0 and T(a/2) =1 . The
qualtities R(-a/2) and T(-a/2) are the numbers which give the final
answers for the reflection and transmission coefficients. Since the
incremental interfaces are added in the negative z direction, we must
be careful of our signs. If we Tet the A's get very small (and N very
large) when n(z) is a differentiable function, we may approximate

the ‘quantities in the discrete derivation:

r(z) = (n(z-dz) -n(z))/(n(z-dz) +n(z)) (11.34)
n(z-dz) = n(z) -~ n'(z)dz (11.35)
R(z-dz) = R(z) - R'(z)dz : (11.36)

In this spirit, we will expand all quantities in orders of (dz) and

keep only the constant and linear terms:
r(z) = -n'(z)dz/2n(z) (11.37)

§2 = 1+ 2ik(z)dz (I1.38)



(1+rs2R)™! = 1+ n'(z) p(z) dz . (11.39)

If we make a simple substitution of these quantities in the standard

recursion formula (II.33), and keep only terms of order dz, we obtain

+ ;l(i) Rz(z) dz R (I1.40)
or, reducing,
R'(2) = o1 - R¥(2)] E%é%l-- 2ik(z) R(z) . (11.41)

Similarly, we get for T(z)

T(z) - T'(2) dz = T(z) + ik(z) T(z) dz

_;-(i) T(z) dz + %ﬁ%ﬁ%‘R(Z) T(z) dz (11.42)

T'(z) = {31 -R(2)] {_(%J. - ik(2)} T(2) . (11.43)

Equation (II.43) is very convenient to integrate once R(z) is known.

dinT _ ln_peayy dltal) | gz (11.44)

en(T(a/2)) - an(T(-a/2)) =

a/2 a/2
- J k(z) dz + %. J [1-R(z)] d(zgzk) dz  (I1.45)
-a/2 -a/2

Our boundary condition on T is T(a/2) =1 . If we define
a/2
g = 172 f K(z) dz (11.46)
-a/2
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then

T =T(-a/2) = expgikavga = %— [1-R(z)] gL&Eaéizll‘dz . (I1.47)

II.4 Some General Properties of the Transmission Coefficient

Equation (II1.47) reveals some important general properties of T.
The first is that the major phase contribution when R s small comes
‘from the exp(ikavga) term. When we actually solve a problem, we

a). The second is an

should expect the phase of T to be near (kavg

interesting expression for the minimum magnitude that T could possibly
have for a given k(z) (or n(z)). TheAmagnitude of T is simply the

exponential of the real part of the integral in equation (II.47) (when

k is real):
a/2
7] =exp3—%— f Rel1-R(z)] L k() g [ (11.28)
-a/2

Since the magnitude of the reflection is constrained to be less than or
equal to one, the real part of (1 -R) must lie between two and zero.
Therefore, when k(z) 1is an increasing function, the integrand in
(I1.48) is positive, and when k(z) is a decreasing function, the inte-
grand is negative. A conservative estimate of the minimum possible
value of the magnitude of T results when we estimate the maximum pos-
sible value of the integral. Without solving the problem in advance,

we do not know what the function R(z) 1looks 1ike. However, if we let

R(z) = -1 where k(z) 1is increasing and R(z) = +1 where k(z) is

1

decreasing, then the integral obtains the maximum value it could
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possibly have for any R(z) :

|T] > exp{- dlen k(z)1} , (11.49)

N —
N
S

k'(z)>0

or, integrating (over the regions where k'(z) > 0),

IT) > (k.o /k o) (k. Jk ) +es (K

iy iy iy minn/kmaxn) (11.50)

where the k and kma are the values of k(z) at the beginning

min %
and end (respectively) of portions of k(z) where k(z) 1is an in-
creasing function. In practice, this estimate is usually over-

conservative, but it is completely reliable. For instance, suppose

that n(z) s given by

1 3z < -a/2
niz) = 1+x(1+cos2mz/a) ; -a/2 <z < a/2 (11.51)
1 3 Z > a/f2

It is relatively easy to program a computer or programmable calculator
to solve the Riccati equations (II.41 and II.43) for varicus values of
kO = (w/c) . We will examine some numerical solutions in detail later
(Section III.9), but for the purposes of this section, we are inter-
ested in the minimum magnitude of T which we see when we solve
numerically for as many k0 as necessary. The following table lists

results for three cases, x = 1, x = .05, and ¥ = .0l

X |T| at minimum (kmin/kmax)
1 0.65 0,33
.05 0.997 0.909

.01 0.99987 0.98039
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If the variation in k(z) is small, then
Tl > 1-¢ (11.52)

where £ is a small positive number. When this is the case, then we
also have a very useful estimate of the maximum magnitude of R2 over
the entire interval, not just at the end of the solution. Suppose we
wish to get estimates of the magnitudes of R(z) and T(z) at some

particular point, z , in the interval of integration of the Riccati

equations. If we recognize that by integrating the equations for R
and T from +a/2 to z , we have salved the problem of a distribu-

tion of k(y) identical to the original from +a/2 to z and con-

stant after that, then we have immediately from (I1.14),

RE(2)| + (k /k(2) |T5(2)] = 1 . (II.53)

Since the estimates for the "new problem" will be
|T(z)| > 1 - 0(g) (11.54)
(k,/k(z)) = 1 -0() (11.55)

due to the fact that we have the same k(y) from +a/2 to z and a

constant k(y) for y 1less than z , we easily obtain
2
[R%(z)] < o(g) : (I1.56)

This result is the basis of the useful approximation described in

Chapter IV, in which we wish to be able to guarantee before we start

that R2(z) will be "small" throughout the interval.
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IT.5 An Alternative Invariant Imbedding Scheme

The recursion relationships and differential equations (II.32,
I1.33, I1.41, I1.43) provide a convenient method for solving the elec-
tromagnetic scattering problem in one dimension. If we were to program
a computer to solve the problem, the most convenient way would be to
use the recursion relations (II,32 and 1I1.33) directly, letting the
size of the intervals become as small as practicable. We could, there-
fore, consider the task of solving these problems reduced to the almost
trivial matter (in these days of computer abundance) of generating
numerical solutions for interesting cases. However, we will obtain
some very useful confirmations of theﬂsoundness of the invariant imbed-
ding scheme (plus a new result which makes Chapter III possible) by
considering an alternative invariant imbedding scheme in which we add
slices from the right of the slab (rather than from the left as before).
For convenience, we will call the "adding from the left method," method
"A" and the "adding from the right method," method "B."

In method "B" we start at the Nth interface and work back to the
1St jnterface. We may use the simple Fresnel equations to generate RN’
-

RI TI

MY RN N
Ry = (nN- nN_1)/(nN+ nN_]) (11.57)
Ty =1+ Ry (11.58)
Ry = =Ry | (11.59)
Ty =1- R, (II.60)

Assume now that we have the solution for interfaces N, N-1, ---, I+1,1.
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We wish to calculate Ri_1s Tio1> Ry_y» and RE Ri_] and Ti_] may
be found using the (suitably modified) recursion relations of method
A (equations I1.32 and 1I.33). This time, the multiple reflections
are occurring at the right-hand side of the slab (see Figure 4)

As with method A, we will define local reflection and trans-

mission coefficients and phase factor

r=(ng= Ny ;)/(nptnp o) (I1.61)
t=1+r (II.62)
§ = explik;_1(z;_4- z;)] (11.63)

Without further ado, the infinite series for RI—] and T, ; are

R

Ry + T, 878 Tg

I t 678 Ty + wes (11.64)

+T16r6RI I

I-1 I I

T

1§

Sr& RISt + - (I1.65)

TI §t+ TI I

I-1

We may again sum these series with the help of equation (II.31) to

give 2
RI +ré (TITf - RIRi)
RI—1 = 5 (11.66)
1-ré Ri
Ly §
TI-1 t(STI/(l ré RI) . (11.67)

We will not have need of the differential equation for R(z) in method
B. The differential equation for T(z) may be found in analogy with

previous arguments:

T

11 = T(z+dz) = T(z) + (dT/dz)dz (11.68)

1}

r -(k'(z)/2k(z))dz (I11.69)
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t=1+r (11.70)

T(z) + (dT/dz)dz = T(z) + ik(z) T(z)dz - (k'(z)/2k(z))

- R'(z) T(z)dz - (k'(z)/2k(z)) T(z)dz (11.71)

I nsr@ k@l o1 L ()

The boundary condition is T(-a/2) = 1 (as opposed to method A). We
easily integrate (II.72) to obtain

a/2

T = T(+a/2) = exp{ik__ a- [1+ R (2)] SE0K2IL 47)  (11.73)

1

avg 2
‘ -a/2

Once R'(z) is known, T may be calculated by integration.

Suppose we were to calculate T' by method B . The transforma-

tion z' = -z gives the answer
. [an £(2')
| - , 2 - l_ " d Q/n k ] ]
T = expliky -y | DRl dnzdlay o g
-a/2

R"(z) is functionally the same as R(-z) from method A, and k(z) =
k(-z) by the same argument. The integral expression for T' becomes

a/2

[1+R(z)] 420 K(ZML oz . (11.75)

N —

- .
T = exp{1kavga +
_a/z

If we compare this expression with (I11.47), we easily calculate

T/T = explan k(a/2) - an k(-a/2)] = k /ky - (I1.76)

This result agrees with (I1.12), which was derived directly from the

reduced wave equation.
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We should be careful to note the differences between the vari-
ables in the reduced wave equation and the R and T coefficients in
methods A and B. This difference is illustrated in Figure 5. If we
were to solve the wave equation for ¥(z), we would have information
about the electric (and magnetic) field at any point in the slab. Ue
do not get the same information from R(z) and T(z) in the invariant
imbedding method, since it is the problem itself we are changing as a
function of z . If we need specific information about the electric
field at any point in the slab, one method to use would be to divide
the slab at z , solve each half-slab separately with invariant imbed-
ding, then finally use the method of multiple reflections at z to
give both the final reflection and transmission coefficients and the
value of the electric field in the multiple reflection region. We will
not find it necessary to do this. However, it will be nice to have the
mathematical formulation if we should need it Tlater.

Assume that we have used invariant imbedding to get the reflec-
tion and transmission coefficients. In particular, if we use sub-
scripts "A" and "B" to designate quantities found with methods A and B
respectively, we need TB(z), Ré(z), and RA(Z). RA(Z) may be found by
solving (II.41), and Ré(z) may be found by making the transformation
z' = -z, solving (II.41), then making the transformation back again.
Once Ry

B
these quantities are known, the series for the right- and left-going

(z) is known, TB(z) is found from (II1.72) or (II.73). Once

multiply-reflected waves are given (almost by inspection) by

v, = Tp(z) + TB(Z)RA(Z)Ré(z)-+TB(z)RA(z)Ré(z)RA(z)Ré(z)4-... (11.77)
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‘ + TB(z)RA(z)Ré(z)RA(z)Ré(z)RA(z) oo (I1.78)

Once again, we invoke (II1.31) to sum these series to get

1]

b, = Tp(2)/(1 - Ry(2)Rp(2)) (11.79)

=
]

TB(z)RA(Z)/(T— RA(Z)Ré(z)) (11.80)

The directions of the electric and magnetic field vectors may be found
by elementary considerations (in the simple normal incidence case found
here, the directions of the vectors remain constant). Their lengths

(complex) may be found by

m
1]

Y, + U (11.81)

= =
1

n/uly, - v_) (11.82)

I1.6 Five Basic Relationships

We are now in a good position to derive the basic relationships
among the parameters R, T, R', and T'. We will show inductively in
Appendix I that the following five relationships hold. As a matter of

notatign, we let

R = r exp(i¢R) (11.83)
T = % exp(1¢T) (11.84)
R' = r'exp(i¢R.) | (11.85)
T' = t'exp(i¢T.) ; (11.86)
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The five relationships are

1. r=vr - (11.87)
2. t'-= (ko/kN)t (11.88)
3. a) rf o+ (k /)t = , (11.89)

b) rZ 4 (k/k )t = 1 (11.90)
4 bpi = 4 (11.91)
5. ¢p * dpr T ETF Op F bp, (11.92)

The wave equation has already given us relations 1 through 4, and we
have also shown 2 and 4 with the arguhénts of Section II.5. Relation

5 ‘may also be shown directly from the wave equation. Al-
though we prove relations 1 through 5 by induction for the discrete
case; there is no dependence on the number of slices or the size of the
slices, so there is no problem passing to the 1imit which gives us the
continuous case.

In the 1ight of the five basic relationships, let us reconsider
the method B recursion for R . Recall that the basic method B recur-
sion for R (II.66) is somewhat inconvenient because it requires simul-
taneous calculation of T, T', and R', unlike the method A recursion
(I1.32). We may, however, simplify the method B recursion formula for

R with the use of
TITi - RIRI = exp(21¢T) (11.93)

R} = -Rp exp(2igr- 2i05) (11.94)

which are trivial results of the five relationships. The method B
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solution for R becomes

R, +r Gzexp(21¢ )

I T

Rpp = , (11.95)
2 . y
1+rR;8 exp(21¢T— 21¢R)

which eliminates the R' and T' dependences (the "y" in the equation
is the "local reflection coefficient,"” not the magnitude of RI)' We
still have an explicit dependence on T which we cannot eliminate,

but we may at least eliminate the R' and T' dependences in the method
B recursion for T :

tG'TI .
T = (I1.96)

I-1 2 . .
1+-rR16 exp(21¢T— 21¢R)

(the "t" in the equation is the local transmission coefficient and the
"v'" is the local reflection coefficient). Although method B is useful
in proving the five relationships, it is not as convenient in practice

as method A, so we will not pursue it further.

IT.7 Relation to Quantum Mechanical Scattering in One Dimension

The non-relativistic one-dimensional wave equation in quantum

mechanics is
o'+ 2m(E- V)AZy = 0, (11.97).

where

Z

K2 = 2m(E- V)2

(11.98)

will put the equation in the same form as the reduced wave equation
(I1.4). This similarity leads us to try the invariant imbedding scheme

when V s a function of 1z .
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Suppose we have a situation where V=0 for z < 0 and V==VO
for z >0 ., This is a simple "step" potential barrier. Assume for

simplicity that E > VO . Our solution for ¥ 1is as follows. Let

k. = J2mE/H° (11.99)

o = /on(E- vo)/-ﬁ2 (I11.100)
exp(ikoz) + R exp(-ikoz) s z2<0

Y(z) = (11.101)
T exp(ioz) s z>0

R and T are connected by the continuity of ¥ and ¢' at the boundary
(z= 0}z )

1R = T (11.102)
k0(1 -R) =al . (1I1.103)

The solution of these equations gives us the familiar result:

e
1

(kO - a)/(ko + o) (11.104)

T

1

2k0/(k0+ o) : (I1.105)

Although k(z) is calculated in two different ways for electromagnetic
and quantum mechanical waves, the same formulas for the invariant imbed-
ding scheme apply in either case once k(z) is known. A1l of the pre-
viously derived theorems apply (with the restriction that k(z) must be
real). As a simple test of this idea, we will solve the one-dimensional
"square well" problem,

We will let the potential barrier have height V0 and width a ,

extending from z=0 to z=a . The solution will be of the form
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exp(ikoz) + R exp(-ikoz) § 2z %0
Vo= (I11.106)
T exp[iko(z-a)] 1 zZ> a
There are only two interfaces to consider, so the problem is very easy.

Applying (I1.32) and (II.33),

R-I = (g - ko)/(a + ko) (I11.107)
T] = 20/ (o + ko) (11.108)
ko-a a—ko
e aiE—-exp(Ziaa)
R=Ry = 20— 20 (11.109)
0 e
1 -(F;F;;) exp(2ica)
2k
(25 (52) exp(ica)
T=T, - 0 L , (11.110)

& :
1 - (EQ?E) exp(2iaa)
0
These expressions reduce to

(kg -uz)[l - exp(2ica)]
R = (I1.111)

(k0+a)2 - (ko-a)2 exp(2ica)

4koa exp(ica)
T = : (I11,112)

(k ta)? - (k -0)® exp(2iaa)

They agree with the results obtained from the usual method of so]utionl4,

if the difference in phase convention for the outgoing wave is taken
into account, If it should be the case that E < V0 , then o will be

imaginary, but the solutions (II.111) and (II.112) will still be
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correct. Moreover, relations 1 through 4 (II.87 - I1.91) will hold
no matter how large Vo .

I1.8 Variation of All Electromagnetic Parameters

In the general case, the wavenumber (complex) of a transverse

electromagnetic wave is given by

k = w/ipe(l + 10/we) . (I1.113)

The positive square root is assumed, which means that exp(ikz) will
"damp out" as z increases.

e now assume that we have a slab of thickness "a" (between
z=-3/2 and z=+a/2) in which €, u , and o are functions of z
(and perhaps w), but constant outside the slab., A plane wave with
time dependence exp(-iwt) is incident on the left face (z=-a/2) at
incident angle eN . Part is reflected at exit angle eN , part is
absorbed in the slab, and part exits from the right face (z=+a/2) at
exit angle 60

Let us see how the previous arguments are altered, without going
through the complete derivation in detail again. For the moment, set
o=0 (kz(z) real). There will be two polarizations to consider; the
”iﬁ case in which the electric field is perpendicular to the plane of
incidence, and the "|| " case in which the electric field is parallel
to the pnlane of incidence. As eN approaches zero, these two cases
become degenerate.

The local reflection coefficients are given by8



3l

q‘=k§mseyul-k14®% %-W“L1
kfcos 8 Yuy + ky_cos o;_Yug

(I1.114)

kpfipcos 6y) - kp 1/ cos 81 o)

e (11.115)

kIKnIcos 61)+ kI_1KuI_]cos 61_1)

The Kirchhoff relations (I1.25-11.27) still apply. There is a sign con-

vention in common usage8

which reverses the sign of rll, so that at zero
incidence angle,the local reflection coefficients are equal in magnitude
but have opposite signs. We will not use this convention.

There remains the problem of determining the phase difference be-
tween adjacent interfaces. As a firsthguess, we might be tempted to say
that the ray going between interfaces I and I-1 travels a distance
A sec 6, (true), so therefore the phase factor gained across the inter-
mediate region is exp(ik;_;Asec 6; ;) (false). Figure 6 illustrates
this problem. We must remember to refer the phases to the z-axis (the
line defined by x=0, y=0) and that the waves are no longer traveling
along the z-axis, but at some angle to it. The phase of the wave at the
z-axis on the front or back of the slab is the phase of the wavefront
which intersects the surface of the slab at the z-axis. Consider the
reflected rays "1" and "2" of Figure 6. These two rays are originally
in phase at the first contact with the slab at point P. Ray 1 is imme-

diately reflected and travels a distance
dy = (sin eI) (2a tan 91_1) (I11.116)

in medium I to the wavefront which 1n£ersects point Q , the exit point
of ray 2. We will assume that point P Tlies on the z-axis, so we will

have to refer phases to that point. Ray 2 travels a distance
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Figure 6
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d, = 24 sec ;_, (I1.117)

in medium I-1 to the wavefront originally mentioned. The phase gained
by ray 1, referred back to point P, is zero. The phase gained by ray

2, referred back to point P again, is

p=kpqdy - kd . (11.118)

By virtue of Snell's law, this reduces to

p = 2kI-1 A(sec 6 - sin © tan 61_])=:2k AcosOr_q .

1-1 I-1 I-1

(I11.119)
Alternatively, we could think of ray (2) as having started at such a
point higher up on the slab so as to exit at point P . 1In any case,

the phase factor gained is given by

5% = exp(2ik;_ Acos 6; 4) . (II.120)

We may ask whether the phase factor gained by the transmitted wave is
simply 6 , as equation (II.120) would imply. Similar arguments will
verify this conjecture,

The invariant imbedding analysis remains remarkably unchanged.
Where before we had the expression ”kI" in differences (or derivatives),
we replace it by "kjcos o;/u" in the perpendicular polarization ("]")
case or by "k /ugcos 6;" in the parallel polarization ("Il ") case.
Where we had the expression "kIAI" (or "k(z)dz") in phase factors, we

replace it by “kIAIcos 61" in ejther case. This replacement leads to

two interesting transformations for the two polarizations.
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For | et
' a/2
ar = f u(z)/uo dz (11.121)
-a/2
Z
Zp = -aT/Z + J (y)/u_ dy (11.122)
-a/2

Ky k(z)[cos e(z)]uo/u(z) (6(z) from Snell's Law) (II.123)

The Riccati equations for R and T are given in the general case by

- - FHEAPIL - 200 e o
(I1.124)
%%-= (1-R(2)) g£%£§)cggse?§§}£%§§)gz - ik(z) cos 6(z)
Since
dz- -1 u
dz _ T )
HE¥'_ (dz ) = =T , (I1.125)
the transformed Riccati equations are
dR 2 dky .
'azl_'r' (1"R (ZT)) m—i;- 21kT(ZT) (II~]26)
dT dky .
a—z—-r- = (] -R(ZT)) *ZFr-'—d'Z*-F - 1kT(ZT) " (110127)

This somewhat surprising result implies that any problem with perpendicu-
larly polarized waves may be transformed to a problem for which the

incidence is normal and u(z) 1is constant.
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For || Tet
a/2
a = f u(z) cos?e(z)/y, dz (11.128)
-a/2
Z
zp = -ag/2 + f u(y) [cos e(y)]/uo dy (I1.129)
-a/2
kT = k(z) “04?(2) cos e(z” . (11.130)

The Riccati equations are

R - (1-8%2)) g{‘g%%ggseﬁg)u‘gs)gz - 2ik(z)cos 6(z) (I1.131)

= (1-Rr(2)) gg%ijz}éggse?x)u%x)gz - ik(z) cos 8(z) . (11.132)

It is a trivial matter to verify that the transformation defined by
equations (II.128) through (II.130) will reduce (II.131) and (I11.132)
to the standard form of (II.126) and (II1.127). However, the parallel
formulation encounters serious trouble when the factor, cos 6, goes to
zero or becomes imaginary due to Snell's law ("total internal reflection").
The transformation to 21 becomes non-invertible and we are left with
the full Riccati equations (II.131) and (II1.132).

The case of "total internal reflection” (cosze < 0) is interest-
ing because it is an example of how relation 5 (I1.92) breaks down. We
may always make a piecewise transformation similar to (I1.128) through
(If.130). If we do that, then k% will be real even if cosze is

negative. The wave equation guarantees that relations 1 through 4
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(I1.87 through I1.91) will continue to hold (in a slightly altered
form which we will see Tater) as Tong as the homogeneous regions have
c0526 > 0 . However, relationship 5 relies on the unit magnitude of
the phase factor, § , which is not the case when kT is not real.
Regardless of any restrictions on kT , the altered version of (I1.76)
will always be true.

We may introduce o # 0 in the previous formulations with
little change in the results, except we must be prepared for any quan-
tity to become complex as a result, thereby invalidating all relation-
ships except the connection between transmission coefficients as

derived from the integrated Riccati equations of methods A and B:
|« TYT = uNkOcos eo/uochos Oy (I11.133)

|« TYT-= Hkcos B/ kycos 8 (I1.134)

IT.9 Summary

The condition that nosin 60 < n(z) applies to many cases of
interest for which the plane wave originates in a region where n(z)
is approximately unity, propagates through a region where n(z) is
greater than or equal to unity, and exits into a region where n(z)
is again close to unity. Unless otherwise specified, we will assume
that this is the case, because we may then always transform to the
normal incidence, constant permeability case. If the conductivity is
zero, we have the following relationships for perpendicular and paral-

lel polarization:
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T« F =p (11.135)
2., t'-= (uNkocos eo/uochos eN) t (I1.136)
3. r% 4 (wgk cos 6 /u kycos 8y) t =1 (11.137)
4, ¢T = ¢T. (11.138)
5. gt dpi T AT O+ by (I1.139)
|| :

1. =% | (I1.140)
2. P = (uNkocos eN/uOchos 60) & (I1.141)
3 rz + (uNkocos eN/uochos eo) t2 = (I11.142)
4, ¢T - ¢T' (11.143)
5. dp T dpi T AT Op F o (11.144)

It is appropriate to ask the question whether there could be other
relations connecting R, R', T, and T' when k(z) 1is complex, besides
(I1.76) or its alternatives for oblique incidence. A simple thought
experiment will show that there can be no other general relations when
the slab is arbitrarily conductive. Suppose we have a slab which is re-
flective at the ends but highly absorptive in the middle. The attenua-
tive middle effectively "decouples" R from R' so that we could change
the parameters on one side without changing the‘ref1ection from the
other side. In contrast, if there is no absorption, it is impossible to

change the parameters anywhere without affecting all quantities., Of
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course, if the slab is only slightly absorptive at frequencies of
interest, then all the relations will be approximately true; the
amount by which they are not true is a measure of the lossiness. We
will use this idea in our discussion of periodic media in the next
chapter.

In the following chapters, we will generally restrict our atten-
tion to cases with zero conductivity and no regions of "total internal
reflection." Since it is always possible, with these restrictions,
to make the transformation to the constant permeability, normal inci-
dence case, we will assume that we have done so.

As a final comment on the resu1t§ of this chapter, we remark
that the invariant imbedding analysis will remain correct even if we
make all quantities complex, so that we should have no difficulty using
invariant imbedding in more sophisticated models of interaction with
matter, such as the complex permeability of a ferromagnetic material,

as used for example by Sommerfeld in Ogtics.g
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Chapter III

Periodic Media

III.1 The Periodic Recursion Formula

We will consider the class of problems for which the index of
refraction is a periodic function within the slab (defined between
z=-aM/2 and z=+aM/2), with M periods. Each "cell" of the slab
has length a (see Figure 7). We might worry about whether the index
of refraction function fits continuously at the junctions of the cells
with each other and at the two junctions with the "background," or
homogeneous index of refraction outside the slab. The junctions with
the background will be taken into account when the problem of just one
cell is solved, whether or not the cell fits continuously with the
background. The junctions between the cells will be handled by the
method of this section.

A necessary preliminary step will be to show that the index of
refraction of a thin zone intermediate to two semi-infinite zones will
not affect the reflection and transmission in the 1limit as the size of
the intermediate zone goes to zero. Let the index of refraction be
given by

‘n_. 3 z< =-pA2

a

n(z) = N, s -A/2 <2 < +M2 (I11.71)

np s z> +A/2

The standard invariant imbedding results are
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(ny-n;)/(ngtn) + (ne-n_ )/ (n+n ) exp(2ik;a)

R, =R = TreF T T ) - (I11.2)
1 + (hb+n17‘(ni+na) exp(21kiA)
an 2n. -
(n.+n.) (n.+n_) exp(1k1A)
T, =T b_1 i_a (111.3)
2 (np-n;) {ng-n,) . '
1 + (nb+n1) (n1+na7 exp(21k1A)
As A - 0, these solutions become
5 (ny-n;)(ng#n, ) + (ng-n ) (npin,) _ "7 Ma (111.4)
anni + Znani nb+ na
4n, n. 2n
_ b'i B b
T= anni + Znani N ny ¥ n (I11.5)

As we readily see, R and T are independent of n; as the size of the
intermediate zone goes to zero. This result enables us to 1ink cells
together without worrying what is the intermediate index of refraction
in the zero distance between cells., We will find it convenient to as-
sume that the index of refraction is the same between the cells as to
the right of the first cell. When we solve the problem for L cells,
we will assume that the index of refraction to the Teft is the same as
the index to the right. If this is not so, one final application of the
recursion relations (II.31) and (II.33) will give the correct final
answey. In other words, we will assume that the background is identical
on both sides, with the understanding that one simple final calculation

will correct the result if this assumption is false. In case we wish
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to have a non-zero distance between cells (constant to maintain
periodicity), we should incorporate the extra distance into the de-
fined cell.

We could, of course, simply solve the problem with our standard
recursion formulas (I1.32) and (II.33) and/or the Ricatti equations
(I1.41) and (I1.43), but that would be inefficient and would not lend
itself to a general solution. Suppose, instead, that we have used
invariant imbedding (or any other method) to calculate R], T1, Ri, and

Ti for one cell. The invariant imbedding method may be used to calcu-

late R,, and TM for M cells.

M }
Suppose that we know the solutions, RL and TL’ for L cells, and

we wish to add one more cell (see Figure 8). The method of multiple

reflections in the zero-distance region between the new cell and the L

original cells is straightforward (and analogous to the previous ex-

amples of multiple reflection). The recursion formulas obtained are

R, + R (T! T,- R!R,)
_ 1 LY 1 71 171
Ry = %R (I11.6)
1L
T, T
1L
T B memin s (I11.7)
L+1 ]_R_l RL
As a matter of notation, Tet
r=|Rl ’ (111.8)
¢p = arg(Ry) (111.9)
t = T (I111.10)

¢ = arg(Ty) . (I11.11)
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Using the reciprocity relationships (I1.87-11.92), we may rewrite

the periodic recursion formulas:

y & RLexp(21¢T— 1¢R)
T+ rRLexp(21¢T— 1¢R)

R 4q = exp(igp) (I11.72)

t TLexp(i¢T)
1-+rRLexp(21¢T— 1¢R)

1

T (IT1.13)

L+1

III.2 Fixed Points of the Recursion
In general, we should not expect the sequence [RL[ to con-
verge. If the sequence is to converge, it will converge to a fixed

point of the transformation, RF > where RF obeys the equation

r+ Re exp(21¢T- i¢R)
Re = expligp) [ ] (I11.14)
1+ rRFexp(2i¢T— 1¢R)

This is simply a quadratic equation whose solutions are

2

 Lexp(2i07)-11% {[exp(2i4;) 11+ ar’exp (216} /2

2y exp(Zi¢T— 1¢R)

(I11.15)

R

We will leave it for later discussion to show that the sequence RL
converges to R only if IRF[ =1 . Let us see what happens if

[Re| =1

R = exp(i@RF) ’ (I11.16)

Substitution of (III.16) into (III.14) yields
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exp(21¢T— 1¢R+ 1¢RF) + r

exp(1¢RF) = exp(idp) [ (2T~ T+ 1oy 7] (111.17)
F
Let
P = arg[1 + r exp(-2i¢-+ Tdp- 16y )] . (111.18)
T R RF
With a small amount of manipulation, assuming n is real,
F
1= exp(21'¢T+ 2iy) . (I11.19)

So far, ¢R has not been determined. It will be equal to whatever it
F
must equal to make (III.19) true. Figure 9 illustrates the maximum

range of angles which ¢ may obtain given r . It is obvious from the

diagram and elementary geometry that
|v| < arcsin(r) . (1I1.20)

If we convert ¢T to the region zmw , then we have a very simple rela-
tionship which must hold if and only if [R.| =1 : "
|¢T] < arcsin(r) ) (111.21)

It is more convenient to rewrite (III.21) so that it is not necessary

to convert o1 back to the region #m :

[sin ¢ < r . (I111.22)
The alternative, which holds if and only if [Rg| # 1%, is

|sin o] > r . (111.23)

Since the condition that the sequence {|RL1} converges to unity means

*See also next section.
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that no flux will get through in the limit as we add many cells, we will
call condition (11.22) the "STOP BAND" condition. The obvious corollary
is to call condition(111.23) the "PASS BAND" condition. We have not given
a rigorous proof yet, but conditions (III.22) and (III.23) are enough to
make a PASS BAND/STOP BAND analysis of any (lossless) periodic medium.

One need only find r and ¢T as a function of frequency and then use
(I11.22) and (II1.23) to determine whether any particular frequency is in

a PASS BAND or a STOP BAND., We will do this Tater for several media.

ITT1.3 Convergence to a Fixed Point; Method One

Suppose that RL is "very close" to RF . We may write
RL = (1+¢) RF . (111.24)

where |E] << 1 . Using (III.12) to calculate R 1 and expanding in

terms of & , we obtain

—rRFexp(21¢T- 1¢R)+-exp(21¢T)

_ 2
Ryp = [1 + El——— R (2167 7o) ) + 0(g7) IR . (I11.25)
If we write
RL+1 = (1+&") RF 5 (I11.26)
then
1-rReexp(-id,)
le'] = |g] E 2 £ OfE") (111.27)

1+ rRFexp(21'¢T-1'¢R)

The O(EZ) term is very small when [£| is small, but it is not zero. We

define
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1 —rRFexp(—i¢R)

P(rigroRe) = (111.28)

14-rRFexp(21¢T— 1¢R)

If we examine P simultaneously with RF , we obtain the following re-

sults:
Ao IR =1

In this case the STOP BAND criterion (III.22) holds. There are
two solutions for RF . For one of them, [P| > 1 . For the other,

|[P| <1 3 this will be the one to which {R } converges.

B. [Re| #1

Here the PASS BAND criterion (IIi.23) holds. For both solutions
of RF s |P| =1 . MWe cannot prove it with this simple analysis, but
the 0(52) term will prevent convergence, and instead leads to orbits
around RF . The solution in which we are interested lies inside the
unity circle ([RF| = 1). The other solution is not interesting because
it Ties outside the unity circle and is therefore not possible for usual

media.
I11.4 Convergence to a Fixed Pointy Method Two

We may think of equation (III.12) as a transformation which maps
points in the complex plane to points in the complex plane., This trans-
formation is parameterized by the numbers r , ¢R , and ¢T . Part of

the transformation is a simple rotation which we may factor out by noting

r+ [R exp(-i6)] exp(2i7) (111.29)

[R iexp(-105)] = -
Gl R 1+ r[R exp(-igp) ] exp(2i¢p)

We let
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X, = R exp(-igp) (111.30)
and write

r+ X exp(2i¢-)
(%) =X, = 2 )

L+1 ~ .
1+ rXLexp(21¢T)

®¢ ¥ L) (I11.31)

T
We are only interested in those points which 1ie inside the unity circle
and only those transformations for which 0 < r <1 . The inverse trans-

formation is

@&1 r(XL+1) = ¥ = exp(—21¢T)[;;;§Lil—J
T =t

(I11.32)

It is very easy to prove that both o and 5!

will leave points
inside the unity circle. Let Z be any complex number with magni-

tude Tess than one, and let ¢ = arqg(Z) . Then

et o+ 2% <1 + P[Z)? (II1.33)
Pl 2v| Z| cos ¢+-[Z]2< 1+ 2r|Z|cosy+ rZIZI2 (111.34)
r+ 7

T < (111.35)

We conclude that for any ¢T and r < 1 , the transformation

r+ X exp(2i¢)
8, (X) = . (1I1.36)
¢T’ 1+ rX exp(21¢T)

is  one-to-one and onto inside the unity circle. (This topic is also
mentioned by Bellman et al. (3).) The fixed points of @ vreveal where
the transformation may converge after many applications. If we call

the fixed point of @,XF, then XF obeys
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P+ X exp(21¢T)

(I11.37)

XF = :
T+ vk exp(21¢T)
This is a quadratic equation, whose solutions are
_ ~ sin ¢; sin2¢T 1/2
Xp exp(igp) = i[——] + [1 - ——;7——] . (111.38)

This is a slightly inconvenient result because it depends directly on

¢T » SO we will make one last change of variable. Let

Y =X exp(1¢T) = R exp(i¢T— 1¢R) . (I111.39)
eéT’r(Y) = exp(1¢T) ®¢r,r(Y exp(—1¢T)) . (II1.40)
Evidently, © is one-to-one and onto in the same sense as & . If

we wish to calculate RL given YL , 1t is easy:
RL = YL exp(i¢R— 1¢T) ; (I11.41)

The fixed points of © are calculated using

sin or

- , (111.42)

giving

Ye = inz [1 - etz (111.43)

The fixed points lie either on the imaginary axis (|n| > 1: PASS BAND)
or on the unity circle (|n| < 1: STOP BAND).
Let us consider now the transformation (which we tentatively as-

sume is a member of the class of transformations {0} ) defined by
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e 1 1
¢T3Y‘ brol

We may calculate YL+2 two ways and compare the answers:

1 ;
i 1+ FT'YLeXp(1¢T)

= o . (III.46)
;ﬁ—exp(-1¢T) + YL

Y‘ZeXP(Zi(bT) + exp(41¢T)
r exp(ToT) Frexp(310T) 'L (111.47)
1+ rzexp(21¢T)

1 +
Y

L+2 ~ O¢T,r[@¢T,r(Y )1 =

+ Yy
r exp(i¢T)-+r exp(31¢T)
Examination of (III.46) and (II1.47) reveals the following connections

between r, ¢T, r', and ¢% -

1+ exp(21¢T)
r' =r 5 (I11.48)
1# ¥ exp(2i¢T)
sin ¢- sin ¢
Ly L=y . (111.49)

r r

We would Tike to use equations (III.48) and (III.49) to find r and

¢T given r' and ¢% so that we may decompose any transformation

into two "smaller" transformations. Of course, we may always invert
(I11.48) and (III.49) numerically to obtain the desired results. It

is not important that we actually obtain a closed-form inversion of
(I11.48) and (III1.49), only that we recognize fhat we may find the
solutions if necessary. When r' and ¢% are small, then the approxi-

mate inversion is very simple:
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r' (I11.50)

N —

br = For . (I11.51)

T

The point of this argument is that we may always decompose any O

Prs 1
M T

into 2 smaller transformations; in the limit, we may consider

@¢T’r to be infinitely-many infinitesimal transformations which preserve
the fixed points (or, equivalently, n) .

An infinitesimal transformation will have the parameters &r and
£¢T > where & is a small real number. If r idtself is small, then
& will be (1/N), where N 1is the number of "smaller" transformations
which are equivalent to the transformation which is parameterized by r
and ¢T . The infinitesimal transformation may be written

r+ Y exp(iggs)

Y = [ 1 exp(i&¢-) . (111.52)
S e gr v exp(igep) T

Since

3
1

= sin(go)/Er = ¢p/r , (I11.53)

we easily expand (II1.52) in powers of & , keeping up to linear terms,

to obtain
_ 2 .
YL+£ = YL + er[(1 - YL) + 21nYL] . (I11.54)

The form of (I11.54) very closely resembles the Riccati equation for
R(z) (I1.41), which is not surprising. It is interesting that explicit

dependence on & and r occurs in the expression for (YL+£ - YL) only
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as the multiplier, (&r), which implies that the path of evolution of
YL+£ is independent of & and r (for fixed n ), but the "speed" of
evolution is linearly dependent on (&r). If we associate a quasi-time
coordinate with & , so that adding a cell is equivalent to advancing

quasi-time by some increment, then we may define a velocity function

V(Y ) = Timit (Y, - Y )/E = r[(1-Y7) + 2iny, 1 . (111.55)

£E~>0
The value of r may vary, but the shape of the velocity field depends
only on nn . When r 1is small, one "unit" of quasi-time corresponds
to one cell added. When r s close to unity, the correspondence is
not so easy, but may be found using (III1.48); in any event, the relation
between quasi-time and adding one cell is simply a multiplicative con-

stant. Straightforward substitution of (II11.43) into (III.55) yields

V(YF) = i . (I11.56)

We now have the necessary background for a detailed analysis of
the paths of YL (and therefore RL) for the PASS BAND and STOP BAND
cases.

A. In| <1 (PASS BAND)
For simplicity, we will assume that n is positive. The fixed

point which is inside the unity circle is given by (I11.43) as

-
i

c=iln - e 1) (111.57)

Let
7 = Y - YF . (111.58)

The velocity field is
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V(Y) = r(2ifn®- 117 - 7%) (111.59)

When Z has a small magnitude (Y is close to YF)’ the Tinear term of
(I11.59) dominates and the orbit path circu1étes about YF (Z =0). The
quadratic term causes the orbit to depart somewhat from a purely circu-
lar form. Since 0O 1is continuous and invertible, no two orbits may
cross. We can see from (II1.59) that an orbit cannot converge to the
fixed point; neither can it get outside the unity circle. For these
reasons, the orbit may neither shrink nor expand each time it completes
one cycle around YF . The orbits simply repeat themselves indefinitely.
Figure 10 illustrates two orbits which were calculated using

r + YL exp(1¢T)

Y = [ 1 exp(io-) (I11.60)
L+1 14 p YLexp(1¢T) T

for r=0.1 and n = 1.4 . Two starting values, YO , were used: 0.0
and -(0.8)1.The first starting value corresponds to the physical process
of adding cells, starting with no cells (no reflection). The ends and

tips of the arrows in Figure 10 are located at the points YL .

B. |n|] <1 (STOP BAND)

Again for simplicity, we assume that n is positive. There are

two fixed points of concern, both on the unity circle. Let

—<
1

. 7
e = i + [1-n (111.61)

3 2
YF2 = 1n '\/] =N ¢ (III.62)

For YF] let:
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Z = Y - YF . (I11.63)

The velocity field is given by

V(Y) = r(-2J1-12 7 - 7%) (111.64)

Clearly, the orbits near YF] will be exponentially converging toward

YF]’

For Y let:

F2
L = Y - YF2 . (I11.66)

The velocity field is given by

V(Y) = r(+21-n2 7 - 28y . (111.67)

The orbits hear YF2 will be exponentially diyerging from YF2 .

It is easy to see that the paths of the orbits for the STOP BAND
case originate at YF2 and converge toward YF]‘ Figure 11 illustrates
the paths as caTcﬁ]ated with (I11.60) for r =0.1 and n = 0.7 . One
path beginning at Y =0 was calculated (the physical case); the rest
were chosen to begin near YF2 . The meaning of the arrows is identical

to Figure 10.

II1.5 Calculation of the Propagation Constant; STOP BAND

The propagation constant, g , is a complex number which is defined
by the ratio (suitably averaged) of transmission coefficients for L

and L+1 cells:

<T| 41/T > = exp(ipa) , (I11.67)
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exp(iga) = £ (111.70)

Cos ¢T * /cosZ¢T = t2

In view of the fact that the transmission is expected to gain the phase o7
for each cell, and o1 is close to nm (the Bragg condition) for the

STOP BANDS, we may write our final solution for B in the STOP BAND as

B = i/a[an(]cos ¢T[ +|/cosZ¢T- £2 ) -2an(t)] + nn/a , (III.71)

where the absolute value operator and the (nw/a) term account for the
case of cos ¢T < 0 . The positive imaginary component of B repre-
sents an exponential average decrease fh transmission for the STOP BAND,
which is the reason it is called the "STOP BAND" ! When |n| > 1,

we are in the PASS BAND and the situation is not as easy, because the
reflection coefficient never converges to R. . We must therefore de-

F
velop a technique to do the proper averaging.

ITI.6 Calculation of the Propagation Constant; PASS BAND

From the definition of 8 , we must compute the following average:

L
B = limit i/aL ) zn(TM/TM+]) = 1imit i/al Qn(T]/T

! A ! e o (TTL.72)
> o = - oo

As L approaches infinity, RL will make many orbits around RF , the
fixed point, as discussed in Section III.4. It is sufficient to calcu-
late the average of Qn(TM/TM+]) as one orbit is made. Since the rel-
ation between the "quasi-time" to get once around the orbit and the
number of cells to get once around the orbit is simp]y a multiplicative

constant, we need only average zn(TM/TM+]) over quasi-time once around
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the orbit. We must first calculate the quasi-period of one orbit.
The quasi-period is simply the contour integral of V_](Y) around the

orbit:
p =§ v vy ay (111.73)

V_](Y) has only one simple pole at YF . By Cauchy's integral theorem,

using equation (III.59), we easily have

JES < E—— L . (111.74)
2ir/n- 1y /n% 1

This equation is supported by Figure 10. When r s small (0.1 is
small enough), one unit of quasi-time corresponds to one cell added.
From the figure, we see that approximately 32 cells are needed for one
.orbit. Equation (III.74) predicts 32.5 units of quasi-time.

If we wish to compute the average of any function, G , of R

L
around one orbit, the equation to use is

> = p7! § G(R) V'I(R) dr . (111.75)

If G(R) s a nonsingular function everywhere within the unity circle
(or even just along and inside the orbit), then we have the simple and

convenient result

(111.76)

For the case at hand,

1+rR exp(21¢T~ 1¢R)

BRI = fnl T exp(id)

(I111.77)
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The restriction on the magnitudes of r and R (less than one) keeps
G(R) "well-behaved" in the region of integration: no singularities or

branch cuts. The propagation constant is given by
B = 1i/a G(RY) . (111.78)

Using the formula for the fixed point inside the unity circle, equation
(I11.14), we obtain

cos ¢T - ix/tz- c052¢T

g =i/a an[ z ] . (I11.79)

Since we are following orbits which neither expand nor contract, it fol-
lows that B cannot have an imaginary component. Since this is the

case, it makes sense to find the cosine of BRa :

cos(Ba) = Re[exp(iBa)] = cos ¢T/t ; (111.80)

Our final answer.for the propagation constant in the PASS BAND case is

B = a”l arccos[ cos ¢T/t] , (111.81)

where by "arccos" we mean that (Ba) is to be adjusted by 2nm to be
as close as possible to ¢T . Clearly, for the trivial case t =1,
it follows that Ra = o1 - The adjustment of (Ba) to the proper quad-

rant allows us to make a Brillouin diagram in the traditional sense.

III.7 Summary of Results for Lossless Media

If we have a periodic, lossless medium, then an analysis of one

period (by any method) will yield all the necessary information to
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calculate the PASS and STOP BANDS for propagation in the medium,
including the propagation constant. In particular, we need only cal-
culate the fraction of flux reflected from one period (rz) and the
phase of transmission through one period (¢T). If we define t =-th;z

we have the following formulas:

A. PASS BAND: |[sin ¢¢|/r> 1 or [cos ¢7|/t <1

B = a”! arccos[cos ¢T/t] . : (111.81)

When r is small, then the reflection from the periodic medium repeats
every
t2

P = n/v/t% cos® ¢ (111.82)

cells. If M, the actual number of cells in the whole slab, is much
less than P, then (MBa) is not necessarily a good estimate of the

phase gained in transmission through M cells.

B. STOP BAND: [sin ¢ [/r <1 or [cos ¢ [/t > 1

B = nm/a + i/a &n[|cos ¢T]/t-+fzosz¢T/t2- 17.(111.83)

Whether r s small or is close to one, exp(iMga) is a good estimate
to use to calculate the transmission coefficient after M cells.

3

10,1 : ’
Figure 12 is a Brillouin : diagram of the first several PASS
and STOP BANDS for the periodic medium with cell index of refraction
given by

n(z) = 2+ cos(2nz/a) (I11.84)

(see also Figure 15). The form of this diagram is very similar to one
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done by D. Jaggard and G. Evans of the California Institute on a simi-

lar periodic medium using a different approach.]]

IT1.8 Lossy Periodic Media

If the periodic medium is lossy, then the derivations of the pre-
ceding sections are no longer correct past equation (III.7). The
quantity (T]Ti - R]Ri) is no longer of unit magnitude. We will find

it convenient to define the following quantities

o exp(2i9,) = TIT, - RiR, (I11.85)
6, =20, = o = 9 + (I11.86)
vy o= [Ry/R] (111.87)
YL = RL exp(i¢a - 1¢R) . (I11.88)

The recursion relation for YL becomes

r+exp(io,) Y|
T = L oo BB} (111.89)
1+ vyr exp(1¢u - 1¢Y)YL

As the Tosses in the medium go to zero, the "loss parameters" approach

the following Timits:

a =1 (111.90)
¢y = 07T (111.971)
v =1 (111.92)
¢, =0 s (I111.93)
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reducing equation (II1.89) to the lossless form (III1.60). The fixed

points of the néw recursion obey the equation
. 2 > : _
[yr exp(—qu)]YF + [exp(-i¢,) - oc_exp(1¢u)]YF +[r] =0 . (III.94)

The solutions may be computed trivially. As compared with the lossless
fixed points, there are two general comments to make. For the PASS BAND
fixed points, both will move off the imaginary axis, but the fixed
points will remain inside and outside the unity circle, respectively.
For the STOP BAND fixed points, the convergent fixed point will move
inside the unity circle, while the divergent fixed point will move out-
side the unity circle. (These results would not be true if the magni-
tude of o were not less than or equal to one.) Once we have found YF
(or RF), it is a simple matter to compute the propagation constant by

substitution of RF in

exp(ipa) = TF R R . (IT1.95)
1

When the medium is very lossy, convergence to RF is very rapid. When
the medium is only slightly Tossy, then the STOP BAND case still con-
verges to RF , but the PASS BAND case displays a decaying orbit behavior.
There is no problem using RF even in this event, because either the
orbit will not be decaying very rapidly, in which case equation (III.76)
is approximately true, or the orbit is decaying rapidly, in which case

RL converges to RF quickly. Of course, the distinction between PASS
and STOP BANDS is blurred somewhat in a lossy medium, since enough

cells will eliminate the bulk of the transmitted wave in either case;

the greater the "lossiness," the more the distinction between PASS and
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STOP BANDS is Tost. When the losses are slight, then the PASS BAND

path on the Y-plane retains its general orbit feature. A good approxi-
mate criterion to use to separate the PASS and STOP BANDS is to deter-
mine whether Isin(¢a)|/r is greater than one (PASS) or less than one
(STOP); however, this should only be used to get an idea of the PASS

and STOP BANDS and not to provide the fine distinction that was possible
in the Tossless case. Figures 13 and 14 illustrate the Y-orbits for

two cases of slightly lossy, symmetric (y = 1) cells, which are identi-
cal in the limit as the losses go to zero with the cases illustrated

in Figures 10 and 11.
III.9 Multiply Periodic Media

If an inhomogeneous slab has a periodic structure with cell

length a , so that
n(z + Na) = n(z) , (IT1.96)

and an average index of refraction in the cell, navg’ then we expect
to have STOP BANDS whenever the phase gained through one cell is an

integral multiple of = (but not zero):

kSTOP—N = NTr/anavg . (I11.97)

This formula helps us to understand the positions of the STOP BANDS in
Figure 12. As (w/c) gets larger, the reflection coefficient gets
smaller for cases with continuous variation in n(z), so we expect that
the width of the STOP BANDS will get smaller as (w/c) increases. This
feature is also apparent in Figure 12. When r s small and almost

constant as a function of (w/c), the width of the STOP BAND is given
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approximately by

Akgropoy = 2 arcsin(r)/anavg = 2r/anav i (I11.98)

g

because the phase for small reflection cases is very nearly

op = (w/c)ang, o - (111.99)

(Recall the arguments of Section II.4).
The index of refraction in any periodic medium with symmetric

cells of Tength a may be written in the Fourier cosine series form:

[ee)

L + 221 ny cos(ng) , (111.1700)

1

n(z)

where

N
t

3 2%/ a ; (II1.1071)

(We will generally restrict our attention to indices of refraction
which always remain greater than or equal to one, but this restriction
is not necessary.) Equation (III.97) may be written in terms of the
lattice structure numbers, Ko » @S

k =

STOP-9, §'K1/navg (I11.102)

We expect all STOP BANDS to exist for & =1 to infinity whether or

not there is a component in n(z) with corresponding « but we also

2, b
expect that the widths (strengths) of the STOP BANDS will be strongly

influenced by the presence of a non-zero component in n(z) with cor-

responding Ky
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To illustrate this idea, consider the two cell indices of re-

fraction given by

=
]
—
N
S—
1

2+ COS(K1Z) (I11.703)

1
ng(z) = 2+ cos(kz) + 32— cos(kgz) - (111.104)

These two functions have identical averages (navg= 2), minimum values
1), and maximum values (nmax: 3). They are shown in Figure 15

(x=1). Consider also the index of refraction function given by

nC(z) = 2 - %—COS(K]Z) - %—cos(x3z) (I111.705)

We have not illustrated nC(z) because it is so similar to nB(z). In
féct, if we had one slab composed of many cells of type B, and another
composed of many cells of type C, they would differ only at the very
ends, since nC(z) is nB(z) shifted by a/2 . We expect that the PASS
and STOP BANDS should be identical for the two slabs with cells of types
B and C.

Figures 16, 17, and 18 represent the computed magnitude of reflec-
tion from one cell with index of refraction given by equations (II1.103),
(I11.104), and (III.105) respectively, where we have assumed a back-
ground index of unity. Note in particular that |R(w/c)| is not iden-
tical for nB(z) and nC(z). We expect this because, among other
reasons, nc(z) has abrupt discontinuities which prevent |R(w/c)| from
becoming smaller as (w/c) becomes large. (In fact, the maxima of
|R(w/c)| will approach 0.8 for case C as (w/c) becomes large.) We have

not plotted ¢T(w/c), but of course it was also calculated so that
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B(w/c) could be computed. 1In all cases, ¢T(w/c) is close to the ex-

pected value:

¢T(w/c) wan_ /c , (I11.7086)

expected - avg

but the small differences between the expected and actual values deter-
mine the exact nature of the STOP BANDS. Figure 19 reveals the STOP
BANDS (shaded areas) for the three cell types. It is interesting to
note that, as predicted, the STOP BANDS for cell types B and C are iden-
tical [in fact, so is B(w/c)], even though both |R(w/c)| and ¢T(w/c)
are different for the two cases. This result gives us greater confi-
dence in our theory of periodic media,”especia11y the arguments of
Section III.1, since the calculations for the cell type C case assumed
a unit index of refraction between cells when the "actual" value is
three. Figure 19 also gives instancial evidence for our claim that
some STOP BANDS will be enhanced and others diminished by the addition
of higher-order components in n(z). The exact amount of enhancement

is a matter for calculation in each particular case.

IIT1.10 Conclusions for Periodic Media

We have seen that electromagnetic wave propagation in any periodic
medium may be calculated very conveniently in terms of a propagation
constant (B) once the reflection and transmission properties of one cell
are determined. We have done our calculations assuming that the inci-
dence 1is normal and the permeability is constant. However, the trans-
formations of Section II.8 extend all results to the more general case

in which all electromagnetic parameters are variable. Although we have



S NN\NN\N\\\\'h

k=

cana)

XXSSQS§§§§§§§5*§§

I ¢

< < F



-79-

dropped the explicit dependence on w , it is also possible to assume
that the electromagnetic parameters are functions of w as well as

z 3 in this case, the formulas for the propagation constant and the
criteria for PASS and STOP BANDS will be the same, but the form of
the Brillouin diagram will be altered somewhat because navg is no
longer a constant, but depends on w .

Chapter IV will deal with media which are "almost homogeneous"
and, perhaps, "almost periodic." We will see that, if we are so
fortunate as to have a medium which is both "almost homogeneous" and
purely periodic, then the calculation of the propagation constant be-
‘comes particularly easy. Based on the material of Section III.9, we
pose the interesting question of what would happen to the PASS and
STOP BANDS if the index of refraction has cosine components at k-
values which are not rational multiples; in other words, the index of
refraction is an "almost periodic" function. The resu]ts of this chap-
ter are, unfortunately, not suited to answering this question, since
we assumed from the outset that we were dealing with a purely periodic
index of refraction. However, we will find the results of the next
chapter very convenient for handling the important subset of "almost

periodic" cases which are also "almost homogeneous."
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Chapter IV

Almost Homogeneous Media

IV.T The Almost Riccati Equation

The main difficulty in integrating the Riccati differential equa-
tion for R(z) (equation II.41) is the R? term. It would be nice if we
could simply ignore this term entirely. The purpose of this chapter is
to consider those cases for which the R? term may a priori be neglected.

We will consider first exactly what we mean by an "almost homo-
geneous medium." We mean by "almost homogeneous" that the index of re-

fraction is very nearly constant, or

n(z) = n (1 +&(z)) s (IV.1)

Vg

where £&(z) 1is small compared with unity. For simplicity, we will let

>

g = max[|&(z)]] (1vV.2)

be the measure of "almost homogeneity." We will deal Tlater with the
situation for which there are many oscillations in n(z) . For now, we
will assume that there are only "a few" oscillations in n(z) over the
length of the slab. In this case, the results of Chapter II (equation
11.50) give

IT| > 1-LE (1V.3)
T8 > 1 - 2Le (1V.4)
IR%] < 2Le , (1V.5)

where L s the small number of oscillations, and we have dropped all
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terms beyond the Tinear terms in & .

With an "almost homogeneous medium," we need an "almost Riccati
equation"” to use to find the reflection. We may find this equation by
substitution of appropriate approximations in the standard Riccati

equation for reflection (II.41):

& I1-0(E)] ”avgg?/*dé(m - 2in,, (w/c) [1+0(e)] R(z). (1V.6)

The two terms in equation (IV.6) do two different things. The first
term generates local reflections as n(z) varies. The second term
acts to change R(z) at right angles.to itself in the complex plane;
in other words, it is a rotation. Since the two terms do two different
things, there is no problem taking them to two different orders in £ .
Since R 1ds small (of order g]/z), we might want to eliminate the
second term in (IV.6) completely. However, with no knowledge of the
size of (dn/dz), this is inadvisable, not to mention the Toss of the
"rotation" effect which would result. Therefore, whatever the size of

(dn/dz), we will take each term in equation (IV.6) to lowest order in

§& . This yields the "almost Riccati equation":

dR _ dn/dz .
o Eﬁﬁ;;g 21navg(w/c) R(z) . (1v.7)

One of the wonderful things about.the "almost Riccati equation"
is that it is a Tinear equation, in the sense that if R](z) is a
solution for n(z) = L + n](z) and Rz(z) is a solution for
n(z) = n + nz(z) , then

R(z) = aR](z) + bRZ(z) (1v.8)
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is a solution for

n(z) = Mavg + an](z) + bnz(z) 2 (1v.9)

as long as a and b are not large numbers (compared with unity).

This may be verified by direct substitution in (IV.7).
IV.2 Green's Function for the Almost Riccati Equation

Since the almost Riccati equation is linear, it makes good sense
to attempt to find a Green's function to reduce it to a simple integra-
tion over a "source function." This is actually fairly easy, so we
will not needlessly obfuscate the phys%ca] process involved in finding
the Green's function with unnecessary mathematical ballast.

Consider the partitioning of the function n(z) - Navg into many

pieces which are constant except over a very small region and which are

differentiable where n(z) is differentiable. If we have M pieces,

then
n(z) = n + n, (z) (IV.10)
avg o L
M
dn/dz = ) dnL/dz ; (Iv.11)
L=1

The differential equation for RL(z)*begins with the initial value
RL(+a/2) = 0 , at the right hand 50undary of the slab. Since (dnL/dé)
is zero until we reach z, (the z-coordinate at the region where
(dnL/dz) is non-zero), RL(zL+) =0 . In the very small region in which
(dnL/dz) is non-zero, we get a contribution to R from the first term

of the almost Riccati equation (IV.7):

*RL(z) is a generalization of Rl and R2 in equation (IV.8).
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L™ (dn /dz)
RL(ZL—) = I T dz . (IV.]Z)
zL+ Aan

The "phase shifting" term has negligible effect over the small region
(zL—,zL+) . As we continue to solve the almost Riccati equation in

the negative (dz) direction, we only have the phase shifting term as a
contributor, since (dnL/dz) is zero beyond z - This adds a phase fac-

tor multiplier to RL(zL—) to give the final answer for one piece:

R, (-a/2) mE
ﬁ[TEI:7—- = exp[ J - 21navg(w/c) dz]
z) -
= exp{Zinavg(w/c)(zL— + a/2)] : (IV.13)

Putting equations (IV.12) and (IV.13) together, we obtain

R = exp[ianavg(w/c)] exp[Zianan(w/c)]

ZL+
1
x J - §-(dnL/nandz) dz . (IV.14)

gl
To get the reflection for the original problem, we need only sum over

all L :
M 4 :
R = LZ] R = exp[1arjavg w/c)] LZ1 eXp[z”’angL(‘*’/C)]
zL+ : :
y J - gldn /n dz) dz (1V.15)
ZL_ '

- If we make the number of pieces, M , very large, then we may make the

regions (z, -,z,+) very small, small enough so that (dn/dz) is constant
L

L
over each region. Since only one (dnL/dz) is non-zero over each region,
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(dnL/dz) is nearly constant over the small region (or is a delta func-

tion if n(z) has a jump discontinuity in the region), so

z
L
1 1
J - §-(dnL/nandz) dz = - E—AZL(dnL/navgdz) . (1v.16)
Z

The AzL is just the factor we need to convert the sum tc an integral.

Over each interval, (dn/dz) is equal to (dnL/dz). The final integrated

form 1is
a/2
- . . 1
R = exp[1anavg(w/c)] [ exp[21navg(w/c)z][— 5 (dn/navgdz)] dz.
-a/2
(IV.17)
If we consider the function
1
8lz) = 5 (dn/navgdz) (I1v.18)

to be the "source function" giving rise to reflection, then the Green's

function 1is

G(w/c3z) = —exp[ianavg(w/c)] exp[Zinqu(w/c)z] , (1V.19)

giving us the formal solution to the problem
a/2
R{w/c) = J 6(w/csz) S(z) dz . (1V.20)
-a/2

IV.3 Almost Inversion of the Reflection

The second wonderful thing about the almost Riccati equation is
that its Green's function is just a Fourier transform with slightly
altered coordinates and a slightly different constant. Recall that the

standard Fourier transform pairs are related by the equations
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o

flv) = (2m) /2 f #12) Epltval) o (1v.21)

-0

F(z) = (2m)" /2 f ) xel-tez] de (1V.22)
If we make the identification of S(z) with F(z), with the additional

(obvious) extension that S(z) = 0 outside the slab, then

(o0}

f(2n,, go/c) = (2m)~1/2 j S(2) expl2in, (w/c)z] dz (1v.23)
and

R(w/c) = -(2m)*1/2 f(znavgw/c)éxp(ianavgw/c) (1V. 24)
or

f(2n,, qo/c) = fer) 172 exp(-ian,, w/c) R(w/c) (IV.25)

It is then a simple matter to get back the original source function by

the inverse Fourier transform:

[ee]

S(z) = -1/27 J exp(—ianavgw/c) R(w/c) exp(—21naV92w/c)(Znavg)d(w/c).

(Iv.26)

-0

Suppose that the index of refraction is represented by a Fourier

series as

gl = J M) espl-tee) e (1v.27)

where

=)

—
~

~
i

1/2w J n(z) exp(ikz) dz . (I1v.28)
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The derivative of n(z) 1is given by

1

dn/dz J B(k) exp(-ikz) dx ; (Iv.29)

where

B(k)

1

-ik A(k) ; (IvV.30)

B(x) may also be obtained from the Fourier inversion of dn/dz :

B(k) = 1/2m J (dn/dz) exp(ikz) dz . (IV.31)

Comparing this with the integral for R(w/c), we have

B(k) = —exp(—ianavgw/c)navg/ﬂ R(w/c) , {1¥.37)
or
-i exp(-ika/2)
A(k) = STE] R(w/c) 5 (Iv.33)
where
K = 2navgw/c : (1v.34)

The inversion is complete with the final integral

n(z) = n_+ J —i-gi?i;lfa/z) R(w/c) exp(ikz) d< . (IV.35)

The additive constant, n, > must be determined by some extra informa-
tion, such as knowledge of the index of refraction in the left homogene-
ous region.

We have assumed that navg is somehow known before the inversion.

This will probably not be the case, but no matter. In any event, navq
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will not be very different from the background index of refraction be-
cause the medium is almost homogeneous. The average index was chosen
as the representative index of refraction for substitution in the almost
Riccati equation (over, say, the left background index) because it
mignt tend to minimize the errors in the approximation, but mostly be-
cause of previous results relating the phase of the transmission coef-
ficient to the average index of refraction (equation I1.47). To find a
better guess for navg than the background index, it is a simple matter
to iterate equation (IV.35) with navg as calculated from the previous
iteration. Since we are approximating by dropping 0(&) terms anyway,
there is no point in doing the 1teratioﬁ more than once, if even once.
The other term to worry about in the inversion is exp(-ika/2),
since we do not necessarily know what is the slab length before the in-
version. Here we are in luck, because we recognize this term to be a
simple translation operator, which shifts n(z) to the left by a/2 .
.Since the origin of the z-axis is arbitrary anyway, this is no problem.
If we wish, we may ignore this factor in the inversion, which means that
the slab will be Tocated between zero and a after inversion, rather

than between -a/2 and +a/2.

IV.4 Examples of Almost Inversion

A good question to ask at this point is how well does the inversion
work? This question is best answered by way of example. We will consi-
der three index of refraction functions. They are essentially the same
as the three functions of Section III.9, except that the coefficients of

the cosine terms are reduced by two orders of magnitude and the constant



-88-

term is adjusted accordingly. In terms of Figure 15, the y parameter

is 1/100. The three indices of refraction are

n](z) = 1.01 + 0.01 cos(2wz/a) (1v.36)
nz(z) = 1.01 + 0.005[cos(2mz/a) + cos(6mz/a)] (1v.37)
n3(z) = 1.01 - 0.005[cos(2nz/a) + cos(6mz/a)] . (1v.38)

The full invariant imbedding Riccati equation (as programmed on a
digital computer) was used to calculate R(w/c) for the relevant argu-
ments and a fast Fourier transform was calculated to reconstruct n(z).
The magnitude of R(w/c) is illustrated in Figures 20, 22, and 24. The
phase is not plotted, but is close to (wanavg/c) + /2 (recall equation
I1.92 for symmetric n(z)). Figures 21, 23, and 25 illustrate the fast
Fourier reconstruction of n(z) for the three cases (respectively). The
"high frequency wiggles" in n(z) as reconstructed (which are especi-
ally noticeable in Figure 25) are due totally to the arbitrary cut-off
of the frequencies used in the fast Fourier transform. Except for the
non-essential "wiggles," the reconstruction of n(z) is faithful for
these almost homogeneous cases.

The next question to ask is how poorly does the reconstruction
work for cases which are not almost homogeneous by any stretch of the
imagination? Good examples of this would be the original functions of
Section IIT.9. Since we already wrote the computer program to handle
the almost homogeneous reconstruction, there is no reason not to try

it out on the other cases as well. The results are illustrated in
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Figures 26 through 28 (respectively). As expected, they are not faith-
ful reproductions of the original functions, but they do still show the
general features. The inversion represented in Figure 28 1is particu-
larly bad because of the discontinuities in the original n(z) function
which keep the reflection coefficient high even as frequency is in-
creased. An interesting feature of all three reconstructions is that
the graph "jerks" near 2z = 2a, which marks the end of the s]ab,
although the variation as reconstructed continues beyond that point.
The reason that the slab as reconstructed seems to end at z = 2a
(rather than at z = a) is that the inversion assumed that navg =]
when it was really twice as much. The factor of two, if inserted in
the inversion, shrinks the slab size back to its original length, "a".
The general similarity between the indices of refraction as reconstructed
and as originally defined leads us to attempt to find a somewhat better
method of inversion for the large-variation cases, but which remains

the same as the old inversion for the almost homogeneous cases, which

were inverted satisfactorily.
IV.5 Modified Almost Inversion

In the derivation of the almost inversion, the source function

was defined to be

s(z) = %—(dn/dz)/navg . (1v.18)

This "source function" would be more accurately represented as

S(z) = &+ d[2n(n)]/dz (1V.39)

™

for the large variation cases (but reduces to the same definition for
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the small variation cases). If we use the second definition, then we
will find 2n[n(z)] when we reconstruct. Of course, the over-all addi-
tive constant will be different (so that 2n(n) is matched in the left
homogeneous region). Taking the exponential, the modified inversion

becomes

[ee]

n(z) =ng exp[J _12§%2521Ka/2) R(w/c) exp(ikz) d«] , (1v.40)

-0

where By is a multiplicative constant which provides normalization
based on n(z) at a known point (presumably in the left homogeneous
region where R would be measured). .

The results of the modified inversion in the three cases are shown
in Figures 29 through 31. The two improvements which may be seen over
the original inversion are the increase in height (coming closer to the

original n___) and the somewhat subtler effect of shaping the peaks to

max
conform more closely (but still not exactly) with the original func-
tions. The factor of two in the slab Tength is still a problem, but
this time it can more easily be solved because it is immediately appar-
ent from the figures that the average index of refraction in the slabs
is approximately two. The third case (with the discontinuities) is

more or less hopeless with either method, but there is still some use-

ful information about n(z) in the reconstruction.

IV.6 Purely Periodic, Almost Homogeneous Media

If we are ever faced with the problem of a purely periodic, almost
homogeneous medium, we are really in luck. For the purposes of this

analysis, let us assume that the index of refraction in one cell is
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given by

n(z) = navg + % cos(2mz/a) . (1v.41)

where "a" is now the cell size. The source function is

S(2) = - = “Xa sin(2mz/a) . (1V.42)
avg

Because of parity considerations, the Green's function integral reduces

to

a/2
R(w/c) = %lﬂzg-exp(ianavgw/c) f sin(2nz/a) sin(22navgw/c)dz .

gV 0 (1V.43)

"This definite integral is trivial. Evaluation of it gives

s1n(ﬂ—anavgw/c)

T-an__ w/cC T + an__ w/c
. / avg /

51n(m~+anavgw/c)

R(w/c) = 7%33—-exp(ian

w/c)[
avg Y

a a
(1v.44)
Since yx 1is small, R vremains small for all values of (w/c).
The PASS BANDS in this case will be very large and, since the re-
flection is very small, the propagation constant (real part) is given

very closely by
B = navg(w/C) (1v.45)

everywhere. The STOP BANDS are expected to be located near the regions
where sin(¢T) = sin(Ba) = 0 . The first STOP BAND brackets the propa-
gation constant B = m/a , giving the free-space wavenumber at the

first STOP BAND, (w/c) = w/ana The magnitude of the reflection co-

vg*
efficient there is a maximum (therefore almost constant) and has the

simple form
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r = |R| = mx/en (1v.46)

g

Based on this, the maximum imaginary component of B in the first STOP

BAND is

-1 1 il
Im(g) .. =a ' e[ == +V/] 7 - 17, (1v.47)
-r | =

or, expanding based on the "smallness" of r ,

- —’] -—
Im(B)maX a r ﬂX/Znavga . (1v.48)

The width of the first STOP BAND (from equation III.98) is

Mw/¢)grgp_q = T/ (1V.49)

a
avg

A similarly straightforward analysis is not possible for STOP BANDS
two and beyond, because the magnitude of the reflection coefficient is

not nearly constant in the vicinity of

(w/e)y = kergp_y = Nm/an (N>2) (1V.50)

avg

in fact, the reflection goes to zero, so we must be more careful in our
investigation than for the first STOP BAND, The relevant parameter to

calculate is n , given by

n=[sin o;l/r (1V.51)

where we have added the absolute value operator for convenience., Suppose
that the incident wave has a wavenumber near the STOP BAND expected
wavenumber:

(w/c) = Nw/anavg + g/anavg (N > 2) . (Iv.52)
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£ 1is a small number. The magnitude of reflection is

mX  sin[(N-1)7 + £] sinf(N+1)7 + &]

N (S A (T ‘ (1v.53)

This expression is easily expanded in terms of & to give (to first

order in £ ):

peXlEl

2
navg(N =1)

. (1V.54)

At the same time, the sine of the transmission phase is approximately

|sin ¢T| [sin(Nm + &) = |g] , (IV.55)

giving the value of n near the STOP BAND expected wavenumber:
no=n. (N-1)/x (1V.56)
avg . ;

Since X 1is small, n remains large (greater than one), which in turn
means that the STOP BAND criterion is never satisfied for any expected
STOP BANDS beyond the first. The sin(¢T) = 0 condition is repeatedly
met, but the magnitude of reflection goes to zero quickly enough for
STOP BANDS two and up that they are reduced to mere ghosts, making them-
seTves known only through very small perturbations in the (real) propa-
gation constant near the STOP wavenumbers, Of course, as the reflec-
tion becomes non-infinitesimal, the STOP BANDS for all N will reappear.
However, they will be very small compared with the first STOP BAND and
very difficult to detect in an experiment; still mere ghosts of STOP

BANDS. (This matter is treated further in Appendix II.)
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This result should not be surprising, because the almost inver-
sion should reproduce an infinite, purely sinusoidal index of refrac-
tion by way of a delta function for R(w/c). On the other hand, it
might not have been the case, since there are many cycles (instead
of the few assumed in the almost Riccati equation derivation) and we
have no a priori guarantee that the reflection will stay small, which
we need to do a proper almost inversion,

The minimum value of n s found at the (expected) STOP BANDS.
The result represented by equation (IV.56) and the theory of Y-orbits
presented in Chapter III guarantee that the reflection will not
become large for any values of (w/c¢c) except near the first STOP BAND
for each sinusoidal term in n(z). In general, a purely periodic index

of refraction, with cell length a , may be written

[ee]

n{z) = n )

V.57
avg N ( )

ANcos(Zan/a + SN)

As long as the AN's remain small, n(z) is almost homogeneous in the
cell, and we are out of the STOP BANDS for all terms, then the almost
Riccati equation serves to calculate the reflection and transmission
for one cell, from which the PASS BAND formula (III.81) may be used to
calculate the (real) propagation constant. The propagation constant

in one of the STOP BANDS may be calculated similarly with the STOP BAND

formula (III.83).

IV.7 Almost Periodic Functions
Our main use of the properties of almost periodic functions will

be confined to the idea that we wish to have a medium which is almost
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periodic (but not quite) and examine what, if anything, can be said
about the propagation constant.
The first concern is with what an almost periodic function will

"Took Tike". Our prototype almost periodic function will be
f(x) = cos(Kax) + COS(KBX) g (1v.58)

where Ky and Kg are not rational multiples of each other. We can
see that this function cannot be purely periodic, because if we think

that we have found a period, P , then

2 = f(0) = f(P) = cos(KaP) + COS(KBP) ; (IvV.59)

which implies that

KaP = 2Mm and KBP = 2Nt " (IvV.60)
or

Ka/KB = M/N " (1v.61)
which contradicts the hypothesis about Ky, and Kg - 0f course, the

"almost periodic" nature of f(x) arises because we may always let
(Ka/KB) = (M/N) (T+g) s v (Iv.62)

where (M/N) 1is a rational approximation to (Ku/KB) taken to any accu-
racy we desire, and & s a correspondingly small number. If this is

the case, then any period near

Pa = ZMW/Ku and PB = 2N1T/:<B (1v.63)

may be considered an "almost period.“]z’13
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For a definite example, consider the function
f(x) = cos(mx) + cos(vV2mwx) . (1v.64)

This function is represented graphically in Figure 32 for the range
of argument x=0 to x=10 . We will Tet x, =7 and « = 2m .
One "reasonable" rational approximation of KQ/K = /2 is 7/5 = M/N.

8
Associated with this approximation are the "almost periods”

P, = 14n/v2 = 7/2 and PB = 10m/m =10 . (IV.65)
Examination of Figure 32 reveals that a number near 10 is indeed a
good estimate of the first "almost period."

A better rational estimate of v2 is (M/N) = 75/53 = 1,415 ...
This approximation gives an "almost period" of PB = 106, Figure 33
illustrates our almost periodic function in the region from x=100
to x=110. It is readily seen that f(x) gets very close to 2 near
x = 106. In fact, f(x) reaches a maximum around x = 106.04, obtain-
ing the value f(106.04) = 1.986. However, f(x) quickly loses its

similarity to f(x-106.04), as may be seen by comparing f(x) in the

1

region between x =2 and x =3 (Figure 32) with f(x) in the region

between x = 108 and x = 109 (Figure 33).
IV.8 STOP BANDS in Almost Periodic, Almost Homogeneous Media

A11 of the work has already been done to find the STOP BANDS in
an almost periodic, almost homogeneous medium. Although the results

are somewhat disappointing, since we would like to see something
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"special" happen with almost periodic structures, they are comforting
in the sense that it would be a big surprise if it really mattered (in
a physical sense) whether the structure of a medium is periodic or only
"almost periodic.,"

Let the index of refraction be given in the general case by

[o0]

n(z) =n XuCOS(KuZ + da) , (Iv.66)

+
ave azl

where the Kk, are "well-separated" constants (we will define this more

precisely later), not necessarily rational multiples, and

21 X, <1 . (1V.67)
u:

There will be one and only one non-vanishing STOP BAND associated with

each o , centered at

(w/c), = %’Ka/navg ’ (1v.68)

with width

_ 2
A(w/c)a =5 X, Ka/navg " (1v.69)

and maximum imaginary component of the propagation constant

=y« /Bn__ . (1v.70)

Im(g) a o avg

maXx-o.
These results apply as long as condition (IV.67) holds and the STOP

BANDS do not overlap; in other words

MINB[1KB-Ka|j > X, Ka/navg (for all a) : (Iv.71)

We need not worry about whether the k's are or are not rational mul-

tiples of each other; the formulas work just as well in any event.
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Chapter V

Conclusion

It has been the purpose of this thesis to make a general inves-
tigation of the properties of the invariant imbedding solution for
electromagnetic wave propagation in general, periodic, almost homo-
geneous, and almost periodic media. While the analysis was (almost)
exclusively made for electromagnetic waves, a section of the second
chapter (Section II.7) extends all results to quantum mechanical waves,
or in a more general sense to any wave which may be characterized by
the standard wave equation (equation II.4).

Chapter II contained a reformulation of the invariant imbedding
solution and the derivations of some very important general properties
of the solution. These general properties, which related the reflec-
tion and transmission coefficients in two directions through the region
of inhomogeneity, and related the minimum transmitted flux with the
range of variation of the Tocal wavenumber, provided the basis for
Chapters III and IV,

Chapter III was a new way of looking at waves in a periodic
medium., Assuming that we have already solved the problem of reflec-
tion and transmission for a single cell, an invariant imbedding recur-
sion using the cell as the basic unit of recursion gave the propagation
constant according to very simple formulas which did not involve any
matrix operations. The computation of the PASS BANDS and STOP BANDS
was seen to be completely trivial once the transmission and reflection

coefficients for one cell are known as a function of frequency. The
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general treatment was extended to include absorptive media as well,
al though the sharp distinction between PASS and STOP BANDS was lost.
Chapter IV looked at those situations for which the reflection
coefficient is small. In this case, a very simple exponential Green's
function is available to transform the differential equation for the
reflection coefficient into a definite integral. The reflection was
also transformed back to get the original index of refraction function.
It was possible simply to use this same method when the reflection was
large, and we have seen that the resulting reconstructed index of re-
fraction has the same general appearance as the original, although the
fact that the reflection was not small made the shape progressively
worse as the reflection failed to get smaller with increasing fre-
quency. Finally, we used the small reflection theory to show that an
almost periodic medium will not exhibit interference between structure
constants to produce STOP BANDS at frequencies beyond the fundamental
for each structure constant, in the limit as the variation in wave-
number with distance is small. We have not addressed ourselves to-the
problem of a Targe-variation type of almost periodic medium, since
neither the methods of Chapter III nor Chapter IV are applicable to
that case. It is very possible that there could be an interference
effect between irrationally related structure constants to produce STOP
BANDS at frequencies which are sums of integral multiples of the funda-
mental frequencies, when the variation in wavenumber with distance
becomes large. This would be a very difficult thing to calculate, even

numerically, since no finite slice of an almost periodic structure may
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be considered as representative of the whole, in contradistinction to

a purely periodic medium.
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Appendix I

Inductive Proof of Reciprocity Relations

We will prove inductively, using (I1I1.32), (I1.33), (1I.66), and

(11.67), the five reciprocity relationships:

1. r'=rp (AI.1)

2. t'= (ko/kN)t (A1.2)
% 2 _

3a) r'c+ (ko/kN)t 1 (A1.3)

b) r'? + (kN/kO)t'2 = 1 (AI.4)

b ¢r = bp . (AI.5)

5. ¢R + ¢Rl = £+ (bT + ¢T| (AI~6)

Inductive Proof:

1. When there is only one interface (N=1), the transmission and

reflection coefficients are

R = (kq-k, )/ (kytk ) (AI.7)
T = 2k /(kq+k) (AI.8)
R' = (ky-kq)/(kytk,) (AI.9)
T = 2k (kytk,) ; L 100

A1l of the relations follow trivially.

IT1. Assume that we have shown (AI.1-6) for I interfaces. We wish
to verify that they will also hold for I+1 interfaces. It will be con-

venient to use Method A (II1.32 and II.33) to calculate R and T

I+1 I+1°?
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and Method B (II1.66 and I1I.67) to calculate RI+1

and TI+1'

note a change of notation (of subscripts) for method B due to the

fact that we will be adding interfaces in the usual direction (that

is, 1 to N) when calculating the reverse coefficients (R' and T').

Let

rp = (kpeq=kg)/ kgt ko)

tI =1 + r
I = —

T = =%

ti =

b=l =1 -y

(2]
n

explik;(z;-z;,4)]

The invariant imbedding recursions give
5 .

.
By = qzi“;"ZQEi“'
pd fhe
e T
28" Ry
R,y = Rf]+ “iazéTiTI" RiRp)
| - e By
T+ 7 1tf iTéz R
% Ry

Straightforward calculation will verify the relationships.

1:

_ ) 2 2
r = |Rpgql = [+ 6 RI[/ll-FrIS RII
ey i
R [Rp + rp8™(T1Tp- RiR)|
I+1 ! 2 g

1+ 16 RII

(AI.

(AI.

(AI
(A1

(AI

(AI

(A1

(AT

(AI

(AI

We should

11)

12)

.13)

.14)

.15)

.16)

37]

.18)

.19)

.20)

.21)
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We need only compare numerators as denominators are equal. From the

previous step in the recursion, we have

Ty = (ko/kI) T; (A1.22)
, : 2

R{R; = —exp(21¢TI)|RI] (AI.23)

TiT; - RiR; = eXp(szI) ) (AI.24)

Substitution of (AI.24) in (AI.21) and division by (AI.20) gives

' 4 -
IRI - Y'16 eX’P(21¢TI)|

1 o (AI.25)

2
Iy + 8°Ry|
A Tittle manipulation and the use of (AI.6) gives

|-6%exp(2igy )| - [rp+ 672[R lexp(-ig, )|
I T
r/r = ; — . (A1.26)
ret 87 Ry | exp(1¢RI)l

Since [8] =1 and |x*| = |x| for any complex number x ,

1o [ (rpr 62 Ry exp(igp ))*|
r/r = . == =1 (AI.27)
| (rpt 67 (R exp (1¢p )|
I

(This would not work if k; had a complex nature.,)

2 and 4:
Vg _ U= 8Ty 2kp/lkpg* ky) Ky .:.,k...._o (AI.28)
T4 (14—?1) 6Ty 2k1+1/7(k1+1+ k) E; I+]

(This works even if kI is complex, but if it is, 2 and 4 must be com-

bined.)
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3b:
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2, 2 _ o
Rpaql™ + Gk T ™ = RpgRpaq + (/)T Ty =
i k1> v o2 Skt kD) o (kg k)
(k”+kI) IZ +k§ IT_+kS
+
2
k. 4k K
I+]
+ (%) > (1-Rf RO(D} =
4 (gt ky) 0
- Ky 1~ Ky 2
25 B (T 117 K12
[+ (8" “RT + 8°R,) + (————) R
K K I L
(kpq- k)% ako .k Kppq- k)
+1” M1 1+1%1 1417 %) 2
7 7t ' 7 &Y SR
(Kpoqt kp? - Gepyr k® - Hn
2
L i Ul {1 S -
2 2) Ry Ry
LRyt Kyl (kg by
2
(s ™ K1) 2e o 2ery o S K s
(Kp® K ORI U e k) ]

Follows 1mmediate1y from 1, 2, and 3a.

Then

2
D arg(1 + res RI)

1
D
1]

arg(s)

=
1

T

= 1. (AI.29)

(A1.30)

(AI.31)
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) =y + ¢ + 6 (AI1.32)
T T D

¢rv =Y+ o + 0 (= ¢ ) S (AI.33)
TI+1 TI D i

From the first step of the iteration, we have
b * Dps B AT F G ¥ Py : (AI.34)
iy iy L

With this, equation (AI.18) reduces to

; 2 :
Rp = 18 exP(2?¢TI)‘

Risq = (AI.35)
+
i 1+r 62 R
I I
Let
Oy = arg(r + 62RI) . (AI.36)
Then
) =6, + 6 . (AL.37)
RI+] N D

If we examine the numerator in (AI.35), we can manipulate it with the

help of 1, 4, and (AI.34) to read:

R! - r 62exp(21¢ ) = —62exp(21¢ )[R Jé_zexp(—i¢ Y + r.].
I I TI TI I RI I
(AI.38)

Then

¢R'I+1 = 1 + 2y + 2¢TI ¥ [—eN] + 6y . (AI.39)

We finally obtain the desired result:
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oo+ O O, + 0, + 20 *m - O, + 6 + 20
Rigy  "Rpgy  NOD T, NTOOD

BTb gr o+ o,

(AI.40)
I+1

I+1
(This proof depends heavily on the fact that |§] =1, or Kq real.)

This completes the inductive proof.
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Appendix 11

Careful Analysis of Higher Order Stop Bands

We have seen in Section IV.6 that the magnitude of reflection

for wavenumber

(w/c) = Nn/an, .+ &/an, (N > 2) , (1V.52)

g vy

where & 1is a small number, is approximately

2

ro= xlEl/n g (N°-1) : (1V.54)

In that section we assumed that the phase of transmission was
¢ = Nm+ g . (AIL.1)

which is the basic approximation from equation (1I1.47). However, since
the reflection vanishes where we expect the STOP BANDS, we should com-

pute a correction based on equation (11.47) for n(z) real:

a/?2
b= Nm+ £+ 2 J Im[R(z)]@—%@dz i (AI1.2)
_a/z avg

The function R(w/c,z) is a simple matter to calculate with the almost
Riccati equation. Recall that R(w/c,a/2) = 0 and R(w/c,-a/z) =

R(w/c). The integrated form of R(w/c,z) is

a/2
R(w/c,z) = nﬂX 5 exp[-212navgw/c] J sin(2ﬂz'/a)exp[Ziz'navgw/c]dz'.
avg
z

(AII.3)

For convenience, we let
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o = navga(w/c) = Nm + & N (A11.4)

The imaginary part of R(w/c,z) is easily integrated to become

Im[R(w/c,z)] = 4:X [COS(ZaZ/a)(Sigfg‘u) - Si2£g+a)
avg

sin[2(m-a) %] sin[2(7r+q) -g-

- +
m=Q o

)(—cos(ﬂ—a) _ cos(mta)

- sin(2az/a = =

coé[z(ﬂ-q) %J . cos[2(m+a) %J

+
T=0l m+o,

) 1. (AIL.5)

One more integral will give us the desired final answer. The
(dn/dz) term is a sine, so some of the terms in the integral will drop

out by parity considerations, others will cancel. The result is

ﬂ2X2 [ g .. 2 4 (Cos(ﬂ-a) " cos(w+a))

2 o T-a ™0 mta
4n
avg

¢T = Nm + & +

o .
x (Sinlro) _ sin{mtalyy (a1 g)

Expanding in terms of & and retaining only low-order terms in & and

XZ, we obtain

2
op = Nm+ g+ B s e ns ’ (AI1.7)

2 2
(N —1)navg

Equation (AII.7) implies that the STOP BANDS are somewhat shifted from

Nw/ana They will be extremely small, so r will be approximately

*
vg'

2 9 we will be right in the middle of

*If = 2 2
we Tet & =- (Nwx°)/[(N —])navg-

the STOP BAND.
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constant, and equal to

mTX3

" T wid o
(N“-1) 0o

The maximum imaginary component of g is

3
- NmX
Im(B)max (N2-1)2an3

avg

and the width of the STOP BAND is approximately

3
__ 2N7X
A(m/C)STOP"N - (N2_1)2a4

n
avg

(AII.8)

(AI1.9)

(AI1.10)

Compared with the first STOP BAND, since X is a small number, these

are "ghosts" indeed.
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