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ABSTRACT

This research is concerned with the response of a two-dimen-
sional, isotropic, homogeneous, elastic, cantilevered plate subjected
to a step transverse velocity at the base. The investigation uses a
method by Miklowitz which is based on a double Laplace transform and
a boundedness condition on the solution.

The case of a semi-infinite plate is solved, for long-time, to
find the shear and normal stresses at the base. The solution in the in-
terior of the plate is shown to agree with that obtained by the
Bernoulli- Euler approximate theory. The solution is then extended to
the case of the finite length plate, with traveling wave and vibrational
forms of the solution being found for the interior of the plate.

At the base of the plate the investigation shows that the normal

stress is singular at the corners while the shear stress is non-singular.
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INTRODUCTION

Analysis of semi-infinite waveguides based on the equations of
motion for a linear elastic, homogeneous, isotropic medium is a sub-
ject of long standing interest. Recently a method has been developed
by Miklowitz for solving nonseparable elastic waveguide problems in-
volving nonmixed edge or end conditions. For the semi-infinite wave-
guide, the method uses a Laplace transform on the propagation coordi-
nate, and a related boundedness condition on the solution which gener-
ates integral equations for the edge unknowns (displacements and
strains). Solution of these integral equations determines the formal
solution to a problem. The first problem solved by Miklowitz [1] was
a symmetrically loaded waveguide with nonmixed displacement end con-
ditions, i.e. a cantilevered semi-infinite plate. Further details may
be found in Miklowitz [2], [3]. Sinclair and Miklowitz [4] extended the
method to non-mixed symmetric stress end conditions. More recently,
they have also extended the technique to antisymmetric stress end con-
ditions [5]. They found the solution to the problem of the semi-infinite
plate under a sudden end moment and zero end shear stress. Long-time
information for the near and far field was obtained. References for oth-
er work on plates with non-mixed edge conditions are given by Miklowitz
in [1].

| In the current work, the foregoing general ideas have been ex-
tended to the finite waveguide. Here the essential differences are that a
finite Laplace transform on the propagation coordinate replaces the one-

sided Laplace transform for the semi-infinite waveguide, and a related



entirety condition on the transformed solution replaces the above-men-
tioned boundedness condition.

To solve the problem of the cantilevered finite length plate, the
solution of the problem for a similar semi-infinite plate is needed. So
the first case solved here is the problem of a cantilevered semi-infinite
plate, subjected to a step transverse velocity at the base where the nor-
mal displacement is assumed to be zero. The integral equations re-
sulting from the boundedness condition were solved for long-time to
yield the shear and normal strains at the base, with the latter becoming
singular at the corners. The exact theo“ry solution and the Euler-
Bernoulli approximate theory solution are shown to agree for the long-
time-near-field region away from the base.

For the finite length cantilevered plate, the solution obtained
from the Euler-Bernoulli approximate theory is used to reduce the en-
tirety condition to the same set of equations that resulted from the
boundedness condition for the semi-infinite plate. The strains at the
base are shown to be the strains at the base for the semi-infinite plate
multiplied by a reflection function. The traveling wave and vibrational
forms of the solution are found for the interior of the plate, away from

the base.



I. THE SEMI-INFINITE PLATE

1. Statement of the Problem

To solve the finite cantilevered plate problem, it is first neces-
sary to find the solution of the semi-infinite cantilevered plate. This
problem is shown in Fig. 1. A homogeneous, isotropic, linear elastic
plate in plane strain of width 2h 1is built into a rigid base, and sudden-
ly this base is given a uniform velocity in the width direction. The
problem is formulated as a standard plane strain elastodynamic bound-
ary value problem. Displacements u and v are taken to be in the x

and y directions, respectively. The governing equations are

c2u (x,y,t) + (cz-cz)v (x t) + czu (x t) = ( t
d XxX ’ » d s XY ;Y: s yy .Y, - utt X, Y9 ) »

(1.1)
2 (2 2) 2
’ ’t + - s Yo =
S LR Sl Uy Vo) +egve (x,y,t) = v (x,y,8)
~ 2 2 7
cxx(ny’t) = U[k uX(X’ Yo t)+(k 'Z)Vy(xxy;t)J )
2 2
oyy(x,y,t) = u[(k -Z)ux(x,y,t)+k vy_(x,y,’c)ilI s (1.2)

Oy, 8) = [ v, Gy, b (9,80 ],

2 A
for x>0, -h<y<h, t> 0. Here cd:—:—z}—l- and cs :-% are, respec-

tively, the dilational and equivoluminal body wave speeds, A and u
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Fig. 1 Coordinates, Displacements and Boundary Conditions

for the Semi-Infinite Plate in Plane Strain.



are the Lame constants, p is the mass density and k2 = Cfl/cz' Sub-
scripts in this work, when associated with displacements, indicate dif-
ferentiation; but when associated with stresses identify the component
in the usual way.

Initial and boundary conditions are

u(x,y,0) = ut(x,y,O) =v(x, vy, 0) =vt(x,y,0) for x>0, -h<y<h, (1.3)
and
{0, y,t) = 0
for ~-h<y<h, t=20 |, (1.4a)
Vt(O,Y,t)= VOH(t)
0. (x,%h,t) =0 (x,%+h,t) =0 for x>0, t>0 . (1.4b)
yy xy

The radiation conditions are

u, ux, etc.

=0 for -h<y<h, t=0 .(1.5)
v,vx, etc.

limit
X - Q0

The problem is an antisymmetric (flexural)one with respect to the
midplane y = 0. Itmodels a very tall building whose rigid base (ground)
suddenly moves horizontally but not vertically. The problem is one of

wave radiation into the plate, and no interaction with the base, except

for wave reflection there.

2. Formal Solution

The problem is decomposed into a rigid body motion and a resid-

ual problem. ‘T'he rigid body motion is
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o

u(x,y,t)
for x>0, ~-h<sys<h, t>=0 . (1.6)

1t
<
-+

v(x,y,t)

The residual problem must satisfy the following initial and boundary

conditions
u(x,y,0) = u(x,y,0) = v(x,y,0) = 0
for x>0, -h<y<h , (1.7)
Vt(x,y,O) = =¥y '
u(0,y,t) =v(0,y,t) =0 for -h<sy<h, t=0 |, (1.8a)
o} s, xh, ) = ,£th, t) = . .
yy(x ) oxy(x h,t) =0 for x>0, t=0 (1.8b)

The radiation conditions now are

-
limit v Lz ¢
X = 00 B _VO

u, u etc. ~ for -h<sy<h, t=0 . (1.9)
limit

=0

X — 0

v , etc.

A

The residual problem has the same form as the ones considered
in [5]. The formal solution can be obtained in exactly the same manner
as was done in the [irst part of that paper. This gives (see Eq. (19) of

[5])



1 - t
alx,y,t) =5 | ulx,y,peltdp
Br

27l
P
1 — t
V(X! Y’t) :E;T—i ‘-{.B V(Xr Y, P)ep dp s
r
p
(1.10)
— 1 o= SX
u(x,y,p) = 5 "rB u(s,y,ple ds ,
r

=y 1 o~
V(X,Y,P) :-—Z—Tﬁ JrB V(S,Y, P)esxds ’
i o

S

where Brp and Brs are the Bromwich contours in the p- and s-

planes, respectively, and

Tl(s,y,p) =u(s,y,p) + uP(s,y,p)

~ ~ o (1.11a)
V(39 Y P) = Vc(sn Y, P) + Vp(sU Yy, P) ’

3c(s,y,p) = Cl(s,p)sinh ay + Cz(s,p)sinh By ,

=
v (s, Yy, P) =

(1.11b)
S

o .
;CI(S,p)COSh ay - BCz(s,p)cosh By



>=p 1 rY SZ . ’ ’
u*(s,y,p) = Z —~ sinh o (y-y")+p sinh B (y-y")g(s, ¥’ p)
S

‘0

e [cosh o (y-y')-cosh (y-y’)]h(s. Y, p)} dy’

(1.11¢)

ry ’ S2
o sinh o (y-y )+'B— sinh B (y-y')|h(s, Y’» p)

o 1
vp(s,y,p) ==z
kd 0

+§ [cosh o (y-y')-cosh B (Y-Y')]g(s,y', p)} day’

i

s |:k2(252-k§>coshﬁh-I(s,p)+25f3$inh(3h-J(s,p):| ,

Cs:P) = -5, p)

(1.114d)

Cz(s,p) = -% [Zkzsa coshah- I(S,p)-<232-k§) sinhoh e J(s,p):l 5



I(s,p) =

_121_2_ .Jj i‘?: [(252""2)5"@—}%&}2 + 2 sinh B(h-y)} g(s,y,p)
S

2
+ (Zsz-kz) cosh ¢ (h-y)-2s cosh B (h-y)] h(s,y, p)pdy

(1.11e)

I(s,p) = f {:252 sk a(h-y)—(Zsz—k§>cosh ﬁ(h-y)] (s, v, p)
S

+ kﬁ = [201[3 sinh o (h-y)+ (Zsz-kz) sinh B (h"Y):l h(s,y,p)pdy

-v(,h,p) ,
L - A
g(s,y,p) =k Lsu(O,y,p)+ux(0,y.p) +(k -l)vY(O.Y,p) .
(1.11f)
0 . 1 == s v
h(s,y,p) =—7=5 t—3 [SV(O,Y,p)JrVX(O,Y,P)‘r(k -1)u (O,Y,P)] ’
! scd k ¥
2 . 2 . 2\2
L(s,p) =4s of cosh @¢h sinh Bh + (Zs —ks\) sinh ¢ h cosh Bh . (1.12)

C S

Here ¢ = kz—sz, B:‘/kz-sz, k :L, k = and p and s are
v d N8 d d CS

the transform parameters for the time and x Laplace transforms,
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respectively. A bar over a quantity indicates that it has been Laplace
transformed with respect to t while a tilda indicates that it has been
Laplace transformed with respect to x. It should be noted that the
first term in h(s,y,p) comes from the nonzero initial condition,
which is the second of (1.7), and hence is not present in [5].

L(s,p) is the generalized Rayleigh-Lamb frequency equa-

tion for antisymmetric harmonic waves. Define s, (p) as the roots of
J

L[sj<p),p] =@ (1.13)

Then, as shown in [11, [5], g(s,y,p) and h(s,y,p) must, for
Re[sj (p)] > 0, satisfy the following boundedness condition (see pp. 8-12

in [1] and (22) in [5]).

h cosh a.y cosh B.y
Rel )1 f 262 k%) ——d- _2— 1| n(s.,y,p)
j s)cosh ozjh jcosh ﬁjh j

Ss. > 2 sinh o.y sinh B.y
2g= (25' -k >cosh cyjh+2°'jﬁj cosh ph g(s;y. P dy

ko, J s
J
kz 2\ —
+( > ) u(0, h, p) + Yj(sj,p)v(O,h,p) , (1.14)
k
(Zs?-kz) -2s.B.
Y.(s.,p) = tanh o h = ———J—J—Z— tanh B.h - »
I 2k”s 0 J kZ(ZSJ.Z—kS> J

f2_.2 f2_ 2
. B -s. - .= [k ~-s. .
I RAC I Pj =/ J
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The first of (1. 14) are two coupled integral equétions for

g(s,y,p) and h(s,y,p). Solving these equations completes the formal

solution of the problem.

3. Solution of the Boundedness Equations

" Using the boundary conditions at x = 0, (l.11f) reduces to

‘ .
g(s,y,p) = k uX(O.y,p) ;

(115)

6 ., 1
h(s,y,p) =—7% +—§\?X(0,y,p)
scd k

The unknown Laplace transformed edge strains Ex(O,y,p) and VX(O,y,p)
are found by assuming for them rcepresentations with unknown coefficients.
The representations consist of a singular term which corresponds to the
behavior of the strains at the corners y = *h plus a Fourier series.

If the singularity at the corner is the same as the assumed singular
form, then the Fourier series only has to represent a regular function
of y. The unknown coefficients in the Fourier series will decay as l/n2
or faster as n, the number of the term in the series, becomes large.

It should be noted that calculation of the values of the edge unknowns, to
a given level of accuracy, requires only a finite number of terms in the

series because of this two part representation.

In [1], Miklowitz found that a dynamically loaded elastic wave-

guide that was built-in at the base had the same types of singularities
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at the corners as did a similar statically loaded waveguide. The types
of singularities in the present problem should also be calculable from
statics. Since the present problem does not have a static limit, the
singularities of a static right-angled wedge with one edge built-in and
the other edge free will be used.

The possible stress (and strain) singularities of a static right-
angled wedge are known from the work of Knein [6], Williams [7] and
Uflyand [8]. As these works show, the dominant stresses are, near

E where r is the distance from the cor-

the corner, proportional to r
ner and q is a real positive number. “For a fixed corner angle, q de-

pends only on Poisson's ratio. In the remainder of this work, v will

be set equal to 0.2433 which makes q very close to 1/4.

Forms for the Edge Unknowns

It is necessary to assume forms for the unknown edge strains
EX(O,y,p) and —X(O,y,p). From the antisymmetry of the problem, Ex
will be odd in y and ;:x will be even. So Tl-x will be represented by
an antisymmetrized singular term plus a Fourier sine series while v
Will be represented by a symmetrized singular term plus a Fourier co-
sine series.

In order that the Fourier series converge rapidly, it is neces-
sary to choose the correct singular forms for the edge unknowns.
Based on the results of the right angled wedge problem, any singular-
ities that are present are expected to be of the r_% type. However,

since the present problem has two corners which will interact, one or

both of the strains may not be singular at the corners. Various
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combinations of strain singularities were tried. These were, both
strains singular, both strains nonsingular, and one strain singular and
one nonsingular. For each assumed form of the edge strains, g(s,vy,p)
and h(s,y,p) were calculated from (1.15), substituted into the bounded-
ness equations (1.14) and the resulting simple integrations were per-
formed. This gave an infinite set of algebraic equations which were
then approximated for long-time. The equations were solved numeri-
cally using the method of reduction to see if the unknown coefficients
could be determined. This procedure will be shown in more detail for
the case that solved the boundedness equations.

The boundedness equations were solved by assuming that Ex
was singular and that ;x was not. This gives the following forms for

the unknown edge strains:

o0
— e 8 21
uX(O,y,p) - bO(p)[(l_y/h) #-(1+y/h) *+2 4V/h]+?_2 bn(p) sinnTTquX g
néven
(1.16)
o)
v = ) nmy
vx(O,Y,p) = ao(p) +;_2 an(p) cos >
?1—even

ao(p), an(p), bO(p) and bn(p) are the unknown coefficients, functions
of the Laplace transform parameter p.

Substitute (1.16) into (1.15) to get g(s,y,p) and h(s,y,p) and
in turn these into the boundedness equations, (1.14). The latter equa-

tions are then integrated with the aid of the following integrals:
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h 1
j sinh a.y(1-y/h) *dy =S >
0 J ao
J
r -4
J sinh cyjy(ler/h) *dy = 'Ta ,
0 J
(1. 17)
h . sinh ¢.h
,r cosh a.y cosZTY dy = (-l)n/2 _J__TL , h even ,
Yo j> =2k (st 8°)
j n
rh o n/2 Gnsinh o.h
J sinh ajy Sm—th dy = (-1) ——-—2——21—- , n even ,
0 (. 487)
j n
where 6n= %E, and another analogous set of integrals with aj re-

placed by [3J.. Then the boundedness equations become an infinite set

of algebraic equations:

QO

Rel f 0 +§— n +h 0

{Re 20 (50 I+ L 2, (P) My(a;. p) +B(RIN (55, )
ns=
neven

(1.18)

Qo
S n _
+ Y b (PINI(s;,p)+Q (s )} = 0

n=2
neven

where
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0 2
M. (s.,p) =s.Y.(s.,p)/B. ,
J(sJ P) : J(Jp) ﬁJ
2 2
) (—l)n/ s.Y.(s.,p) /kZ ) 290
Ml 2) = - e \ s Y
(B5 + ¢,) <) (o)
2 (S =-T . (S, =T .(S =T
0 262 %5 (%0, Ta) Pi(%p.7T8) %5 (Se; T ay)
N (s,,p) = ~—4 N B— - 1 £
iy’ kZ o. coshao.h s, cosh B.h| . cosh a.h
g b o j j j j j
(1.19)
2 2
2 S. . k' Y.(s.,p) |{.2 2s.
+2-%:(k5)_32_+2-z JZJ <k5> s +1
: ’ .h k Y.
£ lay 5 %]
022 v(s,p) [ 2 G
n _ n jj -1 b g1
N.{(s.,p) = > > > 5 > R
i (ﬁ.+e.) k (a+e)
J J n

2
Qj (sj,p) = VOYJ.(SJ-,P)/CSBJ- ’

and Yj(sj,p) is as in (1.14).

Equations (1.18) can be solved for the unknown coefficients
aO(p),an(p),bO(p) and bn(p). That is, for a certain number of unknowns,
aO(p),aZ(p),a4(p), PR bo(p),bz(p),b4(p), . . . , matching numbers
of Sj(p) (which are infinite in number; see [1]) are available to give a
sufficient number of equations from (1.18) to solve for these unknowns.

To proceed further, a representation for the sj(p) is needed.

The long-time solution will be considered here.
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Long-time Approximation to the Boundedness Equations

The long-time solution can be derived from the first two of (1. 10)

by using Watson's Lemma. This gives (see Sec. 5.10,2.4 of [9])

u(x, Y,t) E(X, Y, P) :
- 2—1 ePfap . (1.20)
ml =
Br v(x,y,p)

v(x,y,t)

For p small, the roots sj(p) of L(s,p) are, for the lowest mode,

5, (P) = x(12i)y (1.21)

where vy = Z—ERI-‘— 5 cp = /—EZ— is the ''plate' wave speed and
Vop g Vo(l-v')

is the radius of gyration for the plate section. For the higher

b
3

modes, sj(p) = §

r
g
j,j > 1, where §j is a complex constant satisfying

f(éj) = sin 28;h - 28:h =0 . (1.22)

Equation (1.21) is the generalized frequency-wave number relation for
the Euler-Bernoulli approximate theory. f(s) is a well known function
in the analysis of two dimensional elastostatic layer problems, hence
its occurrence here is not surprising. The zeros of f(s) are an or-
dered infinite set, corresponding to the piercing points of L (s, p)inthe
plane p =0 (cf.[1], Fig. 8 for corresponding symmetric wave pierc-

ing points). Hillman and Salzer, [10], give the first ten roots to six



17

decimal places.

The Euler-Bernoulli approximate theory frequency-wave num-
ber relation is known to be a good approximation to the lowest mode of
the antisymmetric Rayleigh-Lamb frequency equation for a range of p

small but greater than zero., Furthermore, as Sinclair and Miklowitz

limit ds.(p)

show in (70)of [5], for the higher modes. g o

=0

It follows that the zeros of f(s) are a good approximation to the
Sj(p)'j > 1, for p small. This shows that the long-time approximation
will be valid for t large but not necessarily infinite.

It remains to approximate (1.19) for p small with sj(p) as in
(1.21) and (1.22) and with Re[sj(p)] > 0. For the lowest mode, so(p),

this gives, for p- 20

0 _ h
MO(SO, p) = —_2 + O(p) »
k
n n/2 kZ-Z ihp =
M, (sqsP) = -(-1) +O(p®) ,
ha s 2 |72
k k'cr @
p gn
0 -k Bh 2
NO(s o, p) =-(1+i)27% 25 /Z—P—c — +0(p?) , (1.23)
VTP g
n n/2 h2 p g
Ny (sy.P) = (-1) (Hl)T, e v T OorP?)
P g
voh 2¢ ¥
Qylsg, P) = (-1+i)— & & Of1)
ZCd
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Approximating (1.19) for the higher modes, sj(p),j > 1, gives

~ 5 24
M?(sj,p)= -tan sjh/k Sj + O(pz) ’

/24\ = A
(_1)n §.tan 8§ h 2 28
n, i i k™-1 j k™-2 2
MABLP) = = — g7 3 z) z 2*( z- ||t O)
J J ~a -
k (en sj) k (Gn Sj)
NO(3.,p) = - — (s = (kz-l)éhtan§h+-l— (1.24)
33 cos §.h 5; kZ kZ
2 A
k™~1) . -4 2 (tan §.h-8.h)
'(’"T) &h g.‘R§.>}+ 2t 52) A AY L oy
VA B \ k 8h
(-1)*%_tan 8h 2 ) 28.° ,
N (SJ’P)* 2 A2 ( 2) 2 62 1 +O(P ) »
(e -8 kK~ /p2-8%)
n o j n j
. B A 2. 2
Qj(sj,p) = =W tan sjh/cds. +O(p) ,
where
h -1
H§ = J‘ %cos sjy(l-%) “dy .
j 0
- (Y (1+%)°F (1.25)
a =, +cos §,y(l+%) *dy , .
5 o h j h
h 1
S.= | =in s5.y(1-¥)"2qy
sj "0 J h (cont.)
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N A X -1
sin sjy(1+h) “dy

The coefficients in (1.23) and (1.24) are split into their real and
imaginary parts and the order in p of each of the terms is determined.

Substituting the order of each term into (1.18) gives

3 3 3 -3
O(1) O(p?) . . . O(p% Oo(p®) . . . a,(p) O(p *)
i i -1
O(p) O(p) . .. O(p? Oo(p*)-. . . a,(p) O(p *)
O(1) o1y ... O o(1)y . .. b(;(p) ) O(1) (1.26)
Ofl) O{l) S O(l) O(l) .. bZ(P) O(1)
- ' i B R -
Using Cramer's rule on (1.26) gives that
-3
ag(p) = O(p™%) ,
(1.27)

a,(p) = by(p) = b_(p) = O(p™")

(1.27) shows that the unknown edge strains, ux(O,Y. t) and Vx(o’ Y, t),

are constant for long-time. Define
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AO
a.(p) =— |,
G NP
(1.28)
A B B
-1 B -_0 __n
a (p) > O(p) > bn(p) 5

where A , A, B
0 n

0 and Bn are independent of p. Substituting (1.23),

(1.24) and (1.28) into (1. 18), retaining only the lowest order terms in

p, and simplifying gives the following set of simultaneous equations:

AO: -—2g Zcprg »
CS
i o) 8 28 v
-2’4%B0+§ il — =-C_0 —2—2-— ) (1.29)
=2 d V3k“(1-v)
neven

An An /\O
A M.(z.)+B N.(z.)] +B.N.(=z. =
Tm LZ l:n J(zJ) " J(ZJ):I 0 J(ZJ) o ,

where j goes from 1 to infinity and

. (=312, fan =,
M J

2 2 2
(z.) = - j (k-> ZSZi +k-2) ’
5 <n27r2-4zj2> k2 /n ™ -4sz> 2

(cont.)
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k zj2
2
(-8 P tams 2. K2y 8z
N (2) = Tl e 1
U (n T -4z. ) k <n ™ -4z.>
J J
" (1.30)
1 1
H. = r r cos z.r(l-r) ¥dr ,
i 9 j
il -1
R. ="' rcosz.r(l+r) %dr |,
i j
1 1
g, = r sin z.r(l-r) ¢dr ,
i, j
P -1
T = ! sin z.r(l+r) %dr s
J g J

where zj is obtained from

sin ZZJ. = 2z.

The first two of (1.29) have important physical meanings. The

net shear force at the base is given by
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h

Q(0, 1) =fh Oy (0¥, 8y . (1.31)

Using (1.2), substituting for VX(O,y,p) from (1.16) and integrating

gives

Q(0, p) = 2uha(p)

Substituting for ao(p) from (1.28) and the first of (1.29) and inverting

gives

2c r
Q(0,t) = —ZVOph , (1.32)

wt

which goes to zero for long-time. The net moment at the baseis given by

h
M(0, t) =f_h 0, (0, ¥, t)ydy (1.33)
Using (1.2), (1. 16), (1.28) and integrating gives
2 n 2
B h w = 2B h
s _ 2),-3570 S 2 n
n=2
neven
Substituting from the second of (1.29) and inverting gives
M(0,t) = 2v . hpc_r H(t) (1.34)
Wi t) = Svgbpe (t)

which is constant for long-time.

The problem can also be solved approximately using
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Euler-Bernoulli approximate theory for the quantities Q(0,t) and
M(0,t). When the shear force and moment are calculated, (1.32) and
(1.34) result. So the approximate solution has the same net shear
force and net moment at the base as does the exact solution for long-
time. It should be emphasized however that the exact theory governs
the important singularity in EX(O,y,t). The following section assesses

this important contribution to the problem.

Numerical Solution of the Boundedness Equations

Equations (1.29) were solved numerically using Fortran IV.
The method of reduction was used to calculate the solution. The values
of the unknowns were calculated using more and more unknowns until
convergence to the final value of each unknown was reached. Conver-
gence should be obtained for a relatively small number of unknowns
since the Féurier series in (1.16) are not being called upon to repre-
sent the singularities at y = %h.

Values of the unknown coefficients for v = 0.2433 are shown in
Table I. As can be seen, the coefficients converge for 30 through 38

unknowns. The coefficients also decay faster than l/n2 for large n.

Therefore, the coefficients in Table I are a solution to (1.29) and hence
(1.16) is a solution to the boundedness condition for long-time.

A similar procedure was carried out for each of the other pos-
sible singular forms for the unknown base strains. For all of these
cases, the unknown coefficients failed to converge by the time fifty un-

knowns were used. This indicates that the other singular terms do not
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TABLE I
Coefficients A and B
n n

(v =0.2433 )

Coeffid Number of Unknowns Used

cients
20 24 28 30 32 34 38 42

0.5165(0.5165{0.5166 |0.5166 |[0.5166|0.5166 [0.5167 [0.5167

[a)

-0.2397 [ -0.2398 | -0.2399 |-0.2399 [-0.2399 | -0.2399 | -0.2399 |-0.2400

1N

0.1529{0.1532|0.1533 |0.1533 {0.1533(0.1534 (0.1534 |0.1534

o

-0.1111]-0.1118|-0.1121 —0.1122.-0.1123 -0.1123 |-0.1124 |-0.1124

oo

0.0859 [0.0875|0.0882 |0.0883 0.0884|0.0885|0.0886 |0.0887

o
o

-0.0674 | -0.0710 |-0.0722 |-0.0725 |-0.0728 | -0.0729 | -0.0731 |-0.0732

[o—
[a]

(==
AN

0.0505]0.0586 [0.0610 [0.0616 |0.0620 |0.0623 |0.0626 |0.0628

I A T

-0.0271 | -0.0470 |-0.0517 [-0.0527 {-0.0535 |-0.0539 |-0.0545 |-0.0548

fa—
o

o
o

0.7151]0.7136 {0.7129 [0.7127 |0.7127|0.7125|0.7126 |0.7128

0.2936 |0.2950 |0.2956 |0.2958 |0.2958 |0.2959 |0.2958 |0.2956

oo

-0.0970 |-0.0978 [-0.0981 {-0.0982 |-0.0982 |-0.0983 |-0.0982 {-0.0981

S

0.0469 |0.0475 |0.0477 |0.0478 |0.0478 |0.0478 |0.0478 |0.0477

o

-0.0265 [-0.0271 [-0.0273 |-0.0274 [-0.0274 [-0.0274 |-0.0274 |-0.0273

0]

0.0161 |{0.0168 |0.0171 [0.€171 |0.0171 |0.0172 |0.0172 |0.0171

-
o

-0.0097 |-0.0108 {-0.0111 {-0.0112 |-0.0112 |-0.0113 |-0,0113 |-0.0112

bt
3]

0.0049 |0.0069 |0.0075 |0.0076 |0.0077 {0.0077 {0.0078 |0.0077

wy) w m w 0 ™ los] vs]
N

0.0011 [-0.0037 |-0.0048 |-0.0050 |-0.0051 |-0.0052 |-0.0053 [-0.0053

o
o
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represent the base strains corfectly.

The coefficients from Table I were used to calculate the strains
at the base. Graphs of these strains are shown in Figs. 2 and 3.
The normal strain, ux(O,y,t), becomes infinite as the corners y=z=h
are approached indicating that there is restraint in the x direction.
On the other hand, the shear strain, vX(O,y,t), does not become in-
finite for long-time, probably because the motion in the direction is re-
strained to a lesser degree since the motion the base of the plate wants
to make in the thickness direction is the same as is given by the bound-
ary condition. Note that the shear strain may be singular at the cor-

ners for short-time.

4, Derivation of the Formal Long-Time Solution

Once the transformed edge unknowns, EX(O,y,p) and ;X(O,y,p),
have been determined for small p, the formal long-time solution can be
calculated from (1.11). g(s,y,p) and h(s,y,p) are found by substituting
the base strains from (1.16) into (1.15). The integrands in (1.11)are now
known and the indicated integrations are performed. The resulting forms

for the doubly transformed solutions are

4
ﬁ(S»Y»p):> q.(s,y,p) ,
j=1 .
(1.35)
4
%(S,Y,p) = v" gj(sr}’vp) ’
j=1

where
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Iu(s,y,p)
ul(S,Y,P) =f,(s,p) * s

. -~ J,(s,v,P)
uz(s,y,p) = [fe(s,p) + f.(s,p) + fD(s,p)Jj . —_—L(s,p) ,

|
o

2 2

~ k S ; .

u3(s,y,p) = —k—- bo(p) l}«— sinh oy (H(y-Rcv) + B s1nhﬁy(Hﬁ-Rﬁ):' .
s

4

G,(5,y,p) = [fc(s,y,0) + £ (s,y,p) ]
(1.36)
- I(s,y,p)
Vl(S,Y,P) =f,(s,p) * T *
N - 1 Jv(s,y,p)
v,y(s,y,p) = Lfs(s,p) +fc(s,p) + f[,(s,p)_J it
k2
?;3(8,}’,P) = s b (p)rcosh ay(H -R ) - coshBy( H ):l
ks
- - r
V4(S;Y’p) = LfG(S,Y.P) + fH(S,Y:P) + fK(S:Y’p)]
where
2
. (2s°-) 2%
f,(s,p) = ';Z bo(p) = cosh ozh(So[-Ta) =
S
(1.37a)
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2 ’ i
k 2| . 272
f = = - b -
g (s, P) '*Zk O(P){ZS [mnh ah (Sor To) + ]

2
o o h
(1.37b)
2 2 2-%
—(ZS -ks)[sinh Bh(SB-Tp) +'p?;:l s
o) ax
fe(s,p)=-)  (-1* (k% b_(p)-sa_(P)) 75—
n=2 ([3 +en>
n=even
(1.37¢)
2 2
k-1 2s s 2
+1] + == a (p)
[(kz )(a2+er21) J K2 n °’2+9§} g
v a (p)| .2
fD(s.P)=-[ &+ 5 :’k_,_s , (1.37d)
scy k B
kz s2
f.(s,y,p) = "2 bo(P){%- [cosh ay(SZ’-Tz)— sinh ay (HZ-RZ)
S
(1.37e)

Im

+B|}:osh ﬁy@é-Té)-sinh ﬂY(Hg'Rg)]‘Z_%%( z+ l)} ’

o
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oo sin 6, y{ |: 2 ] SZ
f(syp)—- kb()(2)22+1
+
neven@) ) . (a 9)
(1.37f)
kz-l) ( sen
- a \p »
vyl emy
2
fo(s,y,p) = -kzs sinh ay (Sy Ty>- cosh ay(Hy Ry>
S .
(1.37g)

- gkl ﬁy(S}é TE)+ cosh By (F.- RY) )

BB

o %0 cos 8_y | a_(p) [(kz_l)sz 1 (kz-l)bn(p)sen (1.37h)
w(s,y,p) 2 .2 2 2 2\ | 2, 2 ’
E (a +sn> 5 I_([3 +9n> (B +en>
A axply 2
fK(S:Y’p) = = 02 & 02 )k_z » (1037i)
sCyq k B

2
Iu(s,y,p) = —kzs l:(Zs -k

)

cosh Bh sinh oy + 2o B cosh oh sinh ﬁy] 2

(cont.)



31

Ju(s,y,p) = -B [232 sinh B h sinh ay ~ (Zsz-kz> sinh ¢ h sinh ﬁy:l s
(1.38)

I ls,9:P) = -kza[(ZSz-k§> cosh Bh cosh oy - 252 cosh o h cosh By ,
v

Jv(s,y,p) = -sliZQfB sinh B h cosh ay+(232—k§> sinh ¢ h cosh By}

L(s,p) is the Rayleigh-Lamb frequency equation as in (1.12), Sa and

T(y are as in the first two of (1.17) with ozj replaced by o and

h 1
Ha: fo cosh ay(l—%) dy

h 1
R :f cosh cvy(1+.x) *dy |,
o dy h

' r _i
H= [Tcoshay’ (1-L)7%ay
“ %o
(1.39)
y r 1
Ry:j cosh ay’(1+%) *dy ,
“ o

y_ 7 vy Y2
= 1 i 4
Soz fo sinh oy (1 h) dy ,

y It
y_ _ . ’ Y\-%
Toz— J‘ro sinh ay (1+h) dy
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Eauations (1.35) through (1.39) have resulted from the form of
the edge unknowns assumed in (1. 16), i.e. they are not directly de-
pendent on the assumption of small p. For use in the long-time solu-
tion, however, they will have to be approximated for p small to be
consistent with the approximations that were used to determine the un-
known coefficients aO(p), an(p), bO(p) and bn(p) that they contain.

The doubly transformed solution will now be inverted, using ap-
proximations that give the solution for two different regions of the plate.
First, the asymptotics of the Laplace transform will be used to find the
solution as x - 0. In the following section the doubly transformed solu-
tion is inverted by residue theory. This solution is valid in a region
away from the base, x = 0, but behind the body wave fronts. Since p

must be small, information about the wave fronts cannot be obtained.

a. Near-field Asymptotic Solution for x ~ 0

The near-field asymptotic solution, valid as x - 0, will be ob-
tained in the same manner as it was by Miklowitz in [1] and [2] Ap-

plying Watson's Lemma to the present case gives (see Sec. 5.10.2.3 of

[9])

E(X,y,p) t(s: Y;P)
i} ¥ds . (1.40)
_ 2ri >~
v(x,y,p) Br_ v(s,y,Pp)
x =0 |sl-»oo

Since p must be small, (1.35) through (1.39) will be expanded with

|sh|>>1 and |k§/szl<<l. This gives
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2 2
o kd/Zs

= -is |l - + O<p4/s4> ; (1.41}
B ks/Zs2

It should be noted that since large |s| here is necessarily on Brs,
(1.41) shows, assuming again that p is real, that the real parts of «
and P are large through the value of Ims while the imaginary parts
remain constant. Note that for very large |s | , o =pP=>=Ims. In the
work that follows s is chosen on the upper half of Brs. However,
since u and v are even in o and B, it follows that the large Ishl
approximation holds all over Brs in the usual way.

Because of the singular terms in (1.16), y = h must be given

special consideration. For the Ninterior' solution, 0 <y < h, the

following approximations are valid:

2 2

2 .
L(s, p) ~ 1 22 [K"-1) -2ish ’
S\ k

o 3 A 2,2 -is(h+y)

I(s,y,p)> -7 s kg (k”-1)(h-y)e ,
(1.42)
2

A 2 (e -is(hty)
J (8, y,P) > 7 s k_ (?—) (h-y)e ,

v L 2. 2.2 -is(hty)
Iv(s,y,p) i B ks (k7=1)(h-y)e .

(cont.)
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2
~1i 2 2(k"-1 -is(h+y)
JV(S.Y. P) 4 S kS( kz )(h-}')e

Now Sar and Toz may be written in the form

h
Scr _
1 e Y. u ¥
=z | T ¥
" (1%y/h)7%
0%
For large o these become
h
S
o 1 eQ’yd
-2 (1Fy/h)
Ta 0
Make thé variable change y = h-r. Then
ah 3
_ € ar Z
Sc[——---—2 J e (h/r)¢dr ,
ah 1
e f ar -z
Ta— . © (2-r/h) *dr

(1.43)

(1. 44)

Since o is a real, positive, large parameter in (1.44), according to

(1.41), these integrals may be approximated by Watson's Lemma, with

the results
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-
1 (..L)
s,=z¢ [P@h*a™® +0(Z)|

(1.45)

N

oMl
1l
I
Q |+
+
@)
ol
)
:_ e
N
 mecctil|

with an equivalent set for S, and TB. Equations (1.45) can now be

g
used to approximate f,(s,p) and fg(s,p) in (1.37) with the results

& 2 " 1 _§
-b0<p>%—e'213h[r<%>hé (-is) 4+0(1)] ;

fA(S: P) = " ;
s
(1.46)
2 2 .
~ ks~ -2ish A IR (_1_*
fg(s,p) = -bO(P) kz e [F(Z;)h (-is) *+0O s)
s
Similarly, the integrals Hcv and Ra are written as
- h
& 1 Ve Y
'—"2— T dy . (1.47)
i (1Fy/h)*
o' 0
Approximating these integrals gives
_1 oh 8 i 1
H=5e I}(Z)h - +o(ah) , (1.48)

(cont.)
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3
T P - PN
o 2 o 2 2
a h

33;(s,y,p) and ?é(s,y,p) in (1.36) are now approximated for |sh|

large with the aid of (1.48), yielding

i b (p) _.
u,(s,y,p) = 02 e'ls(thy)o(l) ‘
4k -
s
(1.49)
- ib (p) _.
vy(s,y,p) = R Tl OG)
4k 2
s
Also, for Ish| large
1
fC (S, P) = O(g) )
(1.50)
1
fD (As’ P) = O(;‘)
Combining terms from (1.42) through (1.50) together gives
~ 5 cis(hty) | n L, L <2 1 1 is(h-y)
u,(s,y,p) = -b (p)— (h-y)e F(ﬁ)h‘l(-is)‘wo(——) + O(—e );
1 0 4k2 4 s s
s
= s2 -is(hty) + -3 1 1 is(h-y)
u,(s,y,p) = b, (p) = (h-y)e T(é)h’*(—is)’*+o(—> +O(—e >
2 O 4k2 4 s s
s

(cont.)
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2
?1‘3(8,}7, pl =D (p Zk_z- 1s(h+}’) ( 3)+ O( is(h- y)> ’
) s
(1.51)
- . 2 y ;_g .
v,(s,y,p) = =by( ;iz (h-y)e ls(hﬂ’){r (2)h*=(-is) 4+0(§>i|+o(_i_els(h Y)>’
s
.2 . .
VpiE VBl = bo(P)% (h-y) e”s(h”)[r(% )b (-is) 5+ o(é)} +o(Leist-v)),
4
s
= i -is(h+y) 1 ..1 is(h-y)
V3(S’Y! P) 152 e = y O(—B‘) +O(gels -Y>
4k R

)]

o

Adding ?1‘1, 32 and u3, ?;1, ?2 and v3, it is easily seen that the low-

-is(hty)

est order terms containing e cancel each other. This cancel-

lation appears to occur for all orders in s. The terms of O(éels(h_}')>

=] e =~ ~ =~

will be exponentially small for y <« h. Therefore, Uy, U, u3,

and 33 will not contribute to the solution as x - 0.

It remains to approximate 34 and v,. Integrating f_(s,y, p)

4
and f;(s,y,p) by parts and approximating yields

i T | 1 1
by (p) | (1-y/h) % - (14y/h) %+ 27 y/h| L +o(——) ,

S

1

fE (S,y,p)

(1.52)

fG(S’y:p) =

1
=3
(@]
T
~
= ]
Y
f__—'ﬁ
A
T
<
N
£,
.p.
e
NS
bt
<
~~
2
.&.
N
M—-
UJ b—-l
e
O
e —
|.~
~——
———
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The other terms can easily be approximated to give

sin B8 y 2 8 sin B8 y :
n k -1\ "'n n 1
fr(S,Y:P) 2 bn(P) > +an(P)< 2) 3 i 4> 5
n=2 s k s

neven

\/|8

cos @ y cos 0 y
2 1
)
n—-::z S S
neven

a.(p) v
0 0 1
fK(S’Y:p) 2 + 2 3+i4)

From (1.51) through (1.53), it follows that

i
Z

(0 0]
S -1 -1 = . 1
u(s,y,p) = bo(p) (1-yh) % - (l+y/h)y ¢+ 2 %y/h|+ z bn(p) sin eny :Z

2 8 sin 6 vy \
k-1 n n 1
an(p)( k2 > 3 +O<—-—4) ,

S

(cont.)
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L. v

=~ 1

v(s,y,p) = [ao(p) + z an(p) cos en;} — + —% (1.54)
L) s c
neven B

2‘_ _5 _B ol
+by (p) L) [i—(l-y/h) 74 L lay/niT -2 4J

7, 1 1
- ) b e)"-1) 6 cos 8 vt 5 +o(—z)
n=2 s s
neven 2

The s-x Laplace transform can now be easily inverted, giving

oo
— i -1 -—
u(x,y,p) = bO(p) |}l-y/h)'4_(l+y/h) i+2 iy/h] + 2 bn(p) sin eny x

n=2
neven
oo 2 XZS
k™ -1 n . 3 ’
3 ? a(p)(——) sin 8 y+0O(x”) ,
w22 n kZ 2 n
neven
(1.55)
- 3 b e -2
vix, ¥, p)~[ (p) +Z a (p cos enyjlx+j2- g+b (p )( l)l:( -y/h) %
neven s

2 2 3
bn(p)(k -1) g cos 8 yrx +0O(x")

M8

=B ik
+4(L4y/n)E -2 4] .

n=2
neve

o 1

n
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Differentiating with respect to x, (1.55) yields the same Laplace

transformed strains at the base as were assumed in (1.16). The co-

efficients ao(p), an(p), bo(p) and bn(p) are given by (1.28) and Table I.

Substituting these into (1.55) and inverting gives

f ol S | x
ulx,y,t) = BO (1-y/h) “ - (1+y/h) 4+ 2 “%y/h|+ > anin eny x
A-...:Z
geven
b2y kZ_1 xZG
+>-J An(—z ) > sin § y + O(x™) ,
n=2 k
neven
(1.56)
< 1)ty |1 £l s 1
vix,y,t) = > , A xcos By +54B z(1-y/h) * + Z(1+y/b) = - 2
n-=
neven
& 2 2 3
—E Bn(k —l)encos eny x +0O(x") ,
n=2
n even

for x small and t large. Substituting the displacements from (1.56)

into (1.1), it is easily seen that they satisfy the displacement equations
of motion to lowest order in x.

The near field solution is. not singular for x>0 when y = h.
This is clear from (1.37) if it is noted that f¢(s,y,p) and f,(s,y,p),

and hence 34 and ;4, involve only integrable singularities. Since for

y = h, HZ/= Ha’ RZt:Ra, etc., f.(s,y,p) and f (s,y,p) can be
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approximated using (1.45) and (1.48), giving

fe(s,h,p) = bO(P) O(—I'Z) ’
S

(1.57)
fe(s,h,p) = bo(p)O(iS)
S
Also,
fF(s’hlp) = 0 »
(1.58)
od a_(p) 6
fuls,h,p) = ) (-1)“’2[“2 - b, ()(<*-1) —g‘] + O(L[;) ,
n=2 s s s
neven

while f (s, h,p) is given by the last of (1.53), From (1.57), (l.58)

it follows that

S(x, b, p) = bo(p)o(-l—4> ,
S

(1.59)
o) - o0
S, b,p) = fag@) + Y DM ) 4|5 - en™Pb it ng,
n_:z S CS =2 S
neven neven

+a_(p) 0(%1) + by (p) o(%)
S S

Substituting for the coefficients ao(p), an(p), bo(p) and bn(p) from
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(1.28) and inverting yields

u(x, h,t) = B0 O(x3) s
(1.60)
oo 2
iz, b, 1) = }: (-1)"/2[A g Ak =1 o x } + Of")
n=2
neven

If (l1-y/h) gets small at the same rate as x does, the behavior
of (1.60) is in agreement with that of (1.56). The singular terms in
(1.56), of course, get large as y —» h which is not consistent with their
absence at y = h. As Miklowitz shows in [2], through further
parts integrations of f;(s,y,p) and fg(s,y,p), a series of singular
terms (valid for small x) of the form xn/(l—y/h)n—% are obtained for
?1‘4 and ?r‘4. These terms alternate in sign (cf.(54) in [2]) and must
cancel the singular term in (1.56). It follows then, that for the leading
singular term in (1.56) to represent u, x must vanish at a faster rate
than (l-y/h)—‘lz does, i.e., the asymptotic solution, (1.56) is limited to
smaller and smaller x values as the corner at y = h is approached.

Otherwise the use of additional terms involving x3, x5, .« .« ., will be

needed, which will still have limitations as y gets closer and closer to

h.

b. Inversion by Residue Theory for the Domain h< x< c t

The doubly transformed displacements :J(s,y,p) and ?;(s,y,p)
are even functions of ¢ and f; thus they have no branch points in the

s-plane, and as a result they can be inverted solely by residue theory.
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From (1.13), sj(p) is defined as the roots of
Lls;(p),pl =0

Then the poles of Tl‘(s,y,p) and ?;(s,y,p) are

s =0
and (1.61)
sj(p)

0]
1

where, as a resultof the boundedness condition, (1. 14),. Re[sj(p)] < 0.

This gives
u, 0 W,
— S | i
o, (x,y,p) = R (0)+JZORJ. (s5))
(1.62)
v, D ¥,
— %% ‘ i
v,(x,y,p) = R (OH-ZoRj (550)
J:

u. v,
where le (sj(p)) and le (sj(p)> are the residues of ui(s,y,p)eSX

and ?r‘i(s,y,p)esx , respectively, at the pole sj(p).

Now eL‘1‘3(s,y,p), ?3(s,y,p) and 34(s,y,p) have no poles in the
s-plane and the only pole of 3‘4(s,y,p) comes from the pole of

fe(s,y,p) ats = 0. Therefore

u,(x,y,p) = v5(x,y,p) =0,
34(X,Y,P) =0 » (1°63)
v,(x,y,p) = i

4 H lp p2
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On the other hand, the other doubly transformed displacements
do not have a pole at s = 0. They do, however, have an infinite number

of poles at the modes s =

sj(p), Re[sj(p)] < 0.

Lowest Mode Contribution

First consider the contribution of the lowest mode to the solu-

tion. From (1.21), for p small, the lowest mode is given by
_ ; - [P
So(p)—-:’:(lil)Y ’ Y_ ZC r
P g
Of these, only the roots so(p) = -(1%i) y will have non-zero residues.
By definition
u, B 7]
R l(s (p)) u.(s,y,p)
S _ limit (s s Bl )> ! 0S¥ (1.64)
"~ s-s,(p) g% :
Vi 0 v.(s,y,p)
g (SO(P)> I 2 j
%
Expanding R0 (so(p)> gives

a.
1

0

Expand L(s, p)

R (s0(p)) = falsg,P)+ T (sq.y.p)e

SOX

in a Taylor series about s =

limit
S — sO(p)

sO(p). Then, since

|:(s—so(p)>/L(s,p)j|
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L(SO’ p) =0,

slr#»n::g(p) [(S'So(p)>/L(S,p)J = [—8?

Along a mode of the Rayleigh- Lamb frequency zquation, L(s,p) = 0.

Therefore

After a considerable amount of algebra, it can be shown that

oL _2ih 3 3
dp s:So(P)— g k, %plel +OpF) - (1.
For so(p) == (1%i)y
dp __2p (1
ds so(p) )

Combining (1.66) through (1.68) gives

oL
Os s =s,(p)

Write

fA(S,P)ZfAA(S;p)+rA(S;P) s

=1
5 =6, (p) . (1.

:-4ik‘:h+0(p5) : (1.

65)

.66)

67)

. 68)

69)

where (cont. )
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o s {(ZSZ-k§>
fals,p) = -F by (p) —5 — cosh ozh(SO/-TO[) + 2 B cosh ﬁh(SB-Tﬁ) "
S
(1.70)
s 2 (Zsz-kz)
rylBsB) = »g bO(P) B [remigueeniok 2‘

Then the following approximations are valid for s = sO(p) and p small

cosh oy - 2
=1+0()y |,
cosh By
(1.71)
sinh oy 3 3
=is,(p)y + O(P®)y~
sinh By
a -1 8 2 2
f4(sgsP) = -2 % 57 by(p)sy(p) h™+ by(p) O(p®) ,
(1.72)
RN 4
Iu(so’ylp) = -ik kS SO(P)Y + O(p )
Equations (1.69), (1.70) and (1.72) are now used to give
Rul( > B 2_% 2 : kZ 3 ’ so(p)x " L
o\Sg(P)) = -2 %57 o(p);Z so(P)hye + by (p) O(p®)
s
(1.73)

N ) 1 ( ) ?_I_J_ -1 SO(P)X
rA(SO,P a SO’ y,P is g :So(p) €
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u

a ;
R,O2 (so(p)> is found in exactly the same manner as R01<so(p))
was., First let
fg(s,p) = fe (s,p) + rg(s,p)
where (1.74)
2
fo(s,p) = -~ by(p){2s”sinh o h(S_-T )-(2s%-k%) sinh Bh(S,-T
g\S,P) = kz 0 P o o - » S 6- ﬁ) s
s
1 2 2)
kZ I 232 2s -k
rB(S;p):'_ZbO(p) h > " 2
k 0% B
s
Approximating gives
fg (so,p) =by(pP)O(p) ,
e ) 2
_ /2 k 3
felsy.p) = -E [(-Un b (p)g—+a (PYO(P®)| -
n=2 n
n even (1.75)
fD(SO, P) = 2 2 + 5 (p) + O(1) + aO(P) O(P ) -»
csso(p) 0

.23 g
= 2
Ju(so,y,p) ik sy(P)yh + O(p?)

Combining all these yields
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2
0, voso® 2@ se® 2 (1M @Ksdp)| sy p)x
RO (SO(P)> =N 7 = > + ? > ye
4p 4k’ = k[0
neven
1 L
+0(1) + a,(p) O(p%) + a_(p) O(p") + by (p) O(p) (1.76)

. oL
+ rB(Solp) ° ‘Tu(soy Y,P)‘:a_s‘

}-1 5(P) X
e
s = so(p)

The total contribution of the pole at so(p) to E(x,y,p) can be found by

u u
adding Rol(so(p)> from (1.73) to R02<so(p)> from (1.76). Set the sum

of the last term in (1. 73) plus the last term in (1.76) equal to R;(so(p)>,

1 =
s=s(p

i.e.,

0
R (p)) = {r,\(so,p)- I (sg,ysP)*ralsg, ) I (s, % pﬂg—s—

(1.77)
Approximating fig(so(p)> gives, after a great deal of algebra,
Ro(so(®) = -2%b < 3orhye 0T "4 b (@) ot 1.78
o\soP)) = - O(p)12k2 sy(p) hye + by (p) O(p?) . (1.78)
s

Then from (1.73), (1.76) and (1.78),
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2

3
15 x k7sq(p) s4(p) x
Ro(so(P)) = 1-2%2bo(p) + Y (-1 %b ()2 —— hye " ’
n=2

neven s

(1.79)

2
Voso(P) ay(p)s,(p) s,(P)x
= e
4 - ! 4k2 7
P s
Now we substitute the coefficients ao(p), an(p), bo(p) and bn(p) from

(1.28) into (1.79). Then, from the boundedness equations (the first and

second equations of (1. 29)), the following equations hold:

ao(p) = ig = V(Z) A
NP c %y

(o) n

> 2b_(p) v

L 2 P
-“?%(PHZ (D7 = = - / o

m=2 dP 3x“(1-v)
neven

Using these relations, (1.79) reduces to

v s2(p)  so(p)] s (p)x ,
u, N __9_ N 0 _ 0 0 -
RO \SO(P); = 4p2 [ SO(P) + > ZY?‘ :lye + O(p ) . (1.80)

Define the contribution to u(x,y, p) by the lowest mode by
ul(x,y,p). Then u‘(x,y,p) = Rg[(-l +i)y]+Rg[-(1+i)y]. Evaluating

this expression gives
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—L ZV0 -Yx
u (x,y,p) = ———Z—Yy sin YxeY + O(p
P

W=

) . (1.81)

The lowest mode contribution to ;(X,y,p) is calculated the
same way., Starting withthe secondof(1.64), Roll\so(p)/l is expanded
using the same approximations as were used to calculate RO1 (so(p))

The only new approximations needed are

I ( Y +0 %)
v SO,Y,P) = =i s SO(P) (P ’

(1. 82)
1.2 & 4
JA8g,¥,p) = ik _s5(p) b + Op )
The lowest mode contribution, ;L(x,y,p), is
—L Yo -y x
v (X,¥,p) = —2(cos yx + sin Yx)eY + O(p) . (1. 83)
p

Contribution of the Complex Segments of the Higher Branches

For the higher modes, sj(p) = §j, jz1 where 'éj is a com-

plex constant satisfying (1.22). For §J. to be a pole, Re (’éJ.) must be

negative. Let

B & «Eg (1. 84)
J J J
where §§{ and '§§ are real, positive numbers. It can easily be shown

that
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u. A
R.1
J (SJ) Kj(y) ii’élx —§Rx
el M (1. 85)
RVi (§j)

where, for a given mode §j, KJ-(Y) is only a function of y. So the
higher modes give edge waves that decay exponentially with x. From
Hillman and Salzer, [10], the smallest 's‘? is 'él} = 3.7488/h. So the
decay of the higher modes contribution is quite rapid and they may be neg-
lectedfor x/h greater than aboutone. Their contributionis quite impor-
tant, however, for x small where they supply the difference between the
near field asymptotic solution and the lowest mode contribution.

Since the higher modes will not contribute for x/h> 1, in this

region, from (1.63), (1.81) and (1.83) we have that

— ZVO 2 -%
U(x,y,p) = —3 Yysinyxe ' +O(p 2 ,
P .
(1.86)
_— VO -VX
v(x,y,p) = - (cos yx + sin yx)e S | + O(p)
p

From the second of (1.2),

- 2
0yy(x,y,p) = [(k -Z)ux(x,y,p) + k vy(x.y,p)]

Differentiating (1.86) gives, to lowest order in p,
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2v
— _ 0 2 : -Yx
ux(X:Y»P) Y Y (cos yx - sin yx)e

p

(1.87)

;Y(x,y,p) = %{O(p) terms in _\_r(x,y,p) in (1. 86)}

Now the O(p) terms in ;(x,y,p) are of two types. First there are the
terms that come from retaining more terms in the approximations that

were used for fA(sO,p), fB(sO,p), fc(so,p), fo(so,p) and

oL
Os

there are the terms that come from retaining additional terms in the

-1
. These terms will be independent of y. Secondly,
S = So(p) .

approximations for Iv(so,y,p) and Jv(so,y,p). Some of these terms
will come from keeping the second term in the expansions for coshay
and cosh By. The first of (1.71) shows that these terms will be propor-

tional to yz. Therefore

Vy(x, y,p) =y O(p)

Now, from the boundary conditions gyy(x, +h,p) = 0. Since Eyy(x,y,p)

is linear in y, it must be zero everywhere. Therefore, using (1.87),
it can be shown that
2

o k“-2\ —
vy(x,y,p):-( 2)uX(X.y,p) (1.88)

k

to lowest order in p, i.e., O(—é) Keeping the next highest order
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terms gives, for p small,
o X,V, = O(1 . 1.8
(x,y,p) (1) ( 9)

From the first of (1.2)

G v, P) = u{kza‘xm,y,p) + (kz-zr&y(x,y.p)]

Substituting from (1.87) and (1.88) gives

8v. v 2 :
0 k™-1 . -
UXX(X,Y,P) = ) u( 2>y(00s vyx - sin yx)e Yx+O(1)

(1.90)

Similarly

oxy(x,y,p) = u[uy(x,y,p) + vx(x,y,p)J

From (1.86), to lowest order in p, Ey(x,y,p) = -Vx(x,y,p). So the

3
O(p ?) terms cancel. Keeping the next order terms gives

” ““"'

Exy(x,y,p) =0(p %) . (1.91)

As (1.89) through (1.91) show, oxx(x,y,t) will be the dominant stress

for long-time provided -E— > 1.
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Inversion of the Time Transform

X

h

transformed displacements for the residual problem are given by (1. 86)

Behind the body wave fronts, but for > 1, the time Laplace

and the transformed stresses by (1.89) through (1.91). To obtain the

v
solution to the original problem, the term —g must be added to

p

;(x,y,p) in (1.86). The displacements and stresses are then inverted
using the tables in Abromowitz and Stegun, [11]. This gives, for t

large

. 1
u(x,y,t) = 4v0y \/%prg |:s1n & %n(l—ZCZ(A)>:|+ O(7t=>

(1.92)
v(x,y,t) = -2vt {szm)+n s A+A[l - ZCZ(A)]}+ o) ,
2Vl Y
0
O (X ¥st) = =7 i [1 - ZCZ(A)] ,
P g
Oyy(x,y,t) =0 , (1.93)
1
GXY(X,Y:t) =0 ﬁ- o

Here CZ(A) and SZ(A) are the Frenel integrals defined by

A
£ 3 cOs z
A) === | £282 g4,
Cz()ﬁ?fﬁ Sl
0

(cont.)
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A
S.(8) = =] 224 (1.94)
ARG e = Bk
i o V7
and
2
. S
A=%4crt °
P g
(1.95)
X
n= Jeme r t
P g
4
The displacement at the centerline, — v(x, 0,t), andthe stress
0
4 h
aty=h,— o (x,3,t), were calculated for two times t = 100t, and
Vou o xx 2 h

t =400 th where th: h/cd. The displacements are graphed in Fig. 4
and the stresses in Fig. 5. Observing the stresses in Fig. 5, it is seen
that the shortest wavelength (highest frequency) waves lead in the disturb-
ance, progressively becoming longer and longer as x decreases for a
given time. Butsince the solutionis validonly for low frequency, the large
X response in these curves is inadmissable. For t = 100 th’ the re-
gion x> § 100 has arbitrarily been ruled out. Since (1.92) and (1.93)
are not valid for x < h, the solutions graphed in Figs. 4 and 5 only hold

in the region h<x <&, for t =100t . Similarly, for t = 400t

h

the solutions hold in the region h< x< x It is clear, therefore,

400°
that as time increases the solution is valid for larger and larger x.
As was mentioned earlier (see discussion following (1.34)), the

problem can be solved approximately using Euler-Bernoulli approxi-

mate theory. When this is done, (1.92) results for the displacements



"93e[d 9ITUTJUI-TWISS 9y} IO ‘(3°Q ‘X)a ‘juawade[dsig 2UI[IaUd) F 319

0G| G2l 00| il G G G 0
I T T = 22 _N 00—

56

| |

00
'y

00¢

0]0) ~




"9je[d 93TUTFUI-TWISS ¥Y] I0] Z/Yy = £ je 3.>‘NVNND ssax3s ¢ 317

Y/ X
0G| G2 001 GJ 0S 62 0
| I | |
l“|
WANAR
< \ i
9
vA)
(VA
y _ 7' =
} 001 = N
Y 00b =} —
12
Cnx
de




58

and (1.93) for the stresses except that the order terms are missing.

So for long-time in the region x> h, the Euler-Bernoulli approximate
theory gives the dominant terms in the solution. In the region

0 < x< h, the exact solution differs from the approximate solution by a
series of terms that decay exponentially with x. At the base, x =0,
the Euler-Bernoulli approximate theory gives the total moment and the
net shear force to lowest order in t. However, it must be emphasized
that it gives no information at all about the important singularities at

the corners y = xh, x = 0.
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II. THE FINITE PLATE

1. Formulation, Formal Solution and Entirety Condition

Once the semi-infinite cantilevered plate problem has been
solved, the problem of a similar finite cantilevered plate, built-in atthe
base (x = 0) and stress free at the other end (x = f), can be solved for
the long-time response. The plate is depicted in Fig. 6. The problem
is formulated in exactly the same way that the semi-infinite plate prob-
lem was, i.e., with the displacement quuations of motion, (1.1), the
stress-strain relations, (l.2), the initial conditions, (1.3), and the
same boundary conditions at the base (x = 0) and on the plate faces
(y =+ h), (1.4). The only changes are that the radiation conditions,

(1.5), are replaced by

= = - 2.
Oxxu’y’t) Oxy(f,y,t) 0 for h<y<h, t<0 |, (2.1)

and that
ulx,v.t) =vix,v,t) =0 for x>4 ~hegy<h t20 , (2.2)

In the work that follows, it will be assumed that the length of the plate,
2, 1is greater than the width, 2h.
As before, the problem is decomposed into a rigid body motion and a

residual problem. The residual problem will still satisfy the initial and

boundary conditions, (1.7) and (1.8), but now the radiation condition,
(1.9), is replaced by (2,1).
To derive the formal solution, first use the one-sided Laplace

transform with respect to t, parameter p. Transforming the
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displacement equations of motion, (1.1), gives

s B s — P
k uXX(X’ Y, P) F: (k '1) xy(x’ Yy, P) 3 uyy,(X: Y, P) = kS u(x’ Yy, P) »
(2.3)

<

(¢]
n NO

- 3 2— B
VXX(X’ Y, p) + (k -l)u(x’ Y, P) + k VYY(X: Yy, P) = kS V(X,Y,P) +

<
(@)

where the — term comes from the non-zero initial condition in (1.7).
s

C

Noting (2. 2), introduce the one-sided finite Laplace transform with re-

spect to x, parameter s, defined by
{

a(s,y,p) =I u(x,y,ple dx
0
(2.4)

-8SX

= == — — = [
ux(s,y,p) = su(s,y,p) - {u(O,y,p) -u(4y,p)e - :,, etc.
Transforming (2.3) gives

2= o
d 2 dv 2 2  2\==
g(S;Y:p) + (k 'l)sdy(er:p)+(k S 'ks)u(s:)’:p) =g(s,y,p) ’

dy
(2.5)
i Ro. 1Y d 5%k
S 3 (s,y.p) + sS%(s,y,p) +[—-2 |3(s, v, p) = hs.y,p)
dy kZ dy $ 2 kz S,y,P) = S,Y,P ’

where
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2F — — -
gls,y,p) = k [su(O.y,p) 7+ ux(O,Y,p)] + (kz—l)vy<0.y.p)

2 — - 7.-s2 2. — =T
= 2 - (k- =
T sualhy,p) +u (Ly,p) |77 (KS1)V (Ly,p)e .

(2.6)
1 | = - 2 - Yo
h(s,y, p) =—5 |sv(0,y,p) + vX(O,y,p) t (k-1)u (0,y,p) +—>
k y sc
S
I J= = 2 - v -

5 [sV(Ly,p) + ¥ _(4y,p) + (K-1)u _(4y,p) + —%|e75*
k y sc
S

Equation (2.5) has exactly the same form as (9) in [5]. Solving this
equation once again yields (1.10) through (1.12) for the formal solution
where g(s,y,p) and h(s,y,p) are now given by (2.6).

In [12], Widder proves that the function

b

f(s):f e-Stdoz(t) , 0<a<b<«<o
a

is entire, Comparing with the first of (2. 4) shows that lsl‘(s,y,p) and
3(s,y,p) can have no poles in the s- plane.

For the semi-infinite waveguide it was only necessary to rule out
the poles in the right half s- plane, i.e. for Re[sj(p)]> 0 where sj(p)
was defined by (1.13). Now if sj(p) satisfies (1.13), so do Ej(p), —sj(p)
and -Ej(p). Two of these will have real parts greater than zero and two
will have negative real parts. For the finite waveguide it is necessary
to set the residue of all four of these roots equal to zero. This gener-

ates an entirety condition which finally will determine the transformed
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edge unknowns. So (l.14) now must hold for sj(p) and for -sj(p) and
their conjugates. This gives four coupled integral equations for the edge
unknowns at x = 0 and x = {. These allow four of the edge unknowns,
two at each end, to be calculated. The boundary conditions on the ends
of the plate can now be used to completely determine the rest of the

transformed edge unknowns and hence the formal solution.

2. Forms for the Edge Unknowns from FEuler-Bernoulli Approximate

Theory

In the theme of the earlier work by Miklowitz and Sinclair, [4]
and [5], representations will be set down here for the transformed edge
unknowns. They will be found from the Euler-Bernoulli theory since
then they would be expected to be at least a part of the total representa-
tions for the edge unknowns for long-time.

To solve the entirety equations, it is necessary to assume forms
for the edge unknowns at x = 0 and at x = £. The same representa-
tions for the unknown strains at the base will be used as were used for
the semi-infinite plate problem. Sinclair and Miklowitz showed in [5]
that, for an antisymmetric plate with both stresses prescribed on the
end, the edge unknowns agreed to lowest order in time with the forms V
found for them using Euler-Bernoulli approximate theory. It seems
reasonable to expect similar behavior for the edge unknowns at x = [
for the present problem.

The Euler-Bernoulli approximation to the present problem is

formulated in the usual way. The governing equations are
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otvix,t) , 1 8%v(x,t) _ .
4 2 2 2 a ’
0x cr ot
p g
Ll(X, Y,t) = -Yéyg(—i'ﬁ »
2 (2.7)

M(x,t) = -2h czr2 dv(x,t) ;

P g 8x2

3
Q(x,t) = —thzrzg——v—%ﬁ ,
PE py

where Mi(x,t) and Q(x,t) are the net moment and the net shear force
at x, respectively (see (1.31) and (1.33)). Initial and boundary condi-

tions are

v(x,0) = v,(x,00 = 0 for x>0 |, (2. 8)

and
vt(O,t) = VOH(’C) .
VX(O,t) =0 |, r for t=0 . {2.9)

M4, t) = QL4 t) =0,

J

After Laplace transforming with respect to time and using the initial

conditions, (2.8), the first of (2.7) becomes



4-— 2
d v(x,p) , P

e 5 Z'V(X,p) =0 . (2.10)
dx c_r
P g

Next, after finite Laplace transforming with respect to x as in (2.4),

(2.10) becomes

2
4 ~ = - 2 3=
S +—'£L2— V(S,P):VXXX(O,P)+SVXX(0,P)+S Vx(or P)+S V(Orp)
cr
b g

(2.11)

— — 2= 3— -s!
'[Vxxx(l’ p)+ svxx(ﬂ, p)+s qu’ p)+s” v(4, p):le

Using the boundary conditions and the last two of (2.7) reduces (2.11) to

-1

2
~ 4 —— I
v(s,p) = |s ER - S v (0,p) + s (0, p)
Cgrz XXX XX

(2.12)

V.S

2— 3— -s/
it gz ‘[S VX(E’ p) + s V(I’ P):le S

To obtain the doubly transformed solution, the edge unknowns,
;xxx(o’p)’ VXX(O,p), —x(l,p) and _\;(ﬂ,p), must be found. Now, as was
explained earlier, ?/(s,p) must be an entire function of s. Therefore

the numerator of (2.12) must be zero whenever the denominator equals

zero, Now the denominator of (2.12) has zeros at s = = (1%i)v,
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V= /—R—-—ZC - Substituting into the numerator gives the following four equa-
p g

tions for the edge unknowns:

v (0,P)+(14) YV (0, p) +[—21 YZVX(Q, p)+2(1-1) y> 34, p):le_(l+i) YL _

3
oY
2 ’
p

v

2(1-1i)

Va0 PV E (-1 YV, (0, p) + [Zi YZVX(LP) +2(14) v V(s p)]e-(l-i) v _

3..
oY
2 »
P

v
2(1+1)

(2.13)

v
XXX

3
VoY
2 »
p

-2(1-1)

(0,p) - (1-1) Y;x};(O, p) +[Zi YZ;X(L p) - 2(1+i) y3_\;(l,p)]e(l_i) YL _

V3
oY
2
P

-2(1+i)

Solving (2.13) for the edge unknowns yields

e Yo E(p)
v (0, p) = —5—5— SAPL
o e rgv PR (cont.)

2
P
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v

_ 0 F(p)
VXX(O’p) - cr p D(p) » (2. 14)
P g
v
= 0 G(p)
v _(L,p) = i
X r D
B TP Y (p)
(2.15)
2
;(f,P) - _19 E(P_)
2 D(p) ’
P
where
D(p) = c0sh2y£ + coszyl 5
E(p) = cosh y£sinhy{+ cos y£siny!? ,
2 2
F(p) = cosh y£ - cos v{ |, (2.16)

G(p) = sinh y4 cos y£ - cosh y£sin y{ ,

H(p) = cosh vy £ cos y [

The edge unknowns obtained here are for the original problem where the
base of the plate has a constant velocity (see (1.4a)). The residual
problem is found by subtracting a rigid body motion wv(x,t) = vot from

the original problem. So to obtain the edge unknowns for the residual

2
problem Vo/p must be subtracted from v(f,p). This gives

A%
V{4, p) = — [%i% - 1} . (2.17)
p

Using the first of (2.15) and the second of (2.7) shows that
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vy
L. ¢ (2.18)

ally 7 p) = v
o D
pTeP ¥ (p)

3. Solution of the Entirety Equations

The estimates for —J(ﬂ,y,p) and ;(ﬁ,y,p) in (2.17) and (2.18)
will be called GEB(ﬂ,y,p) and ;Ee(.é,y,p) where the &8 superscripts
show how ti.e terms were found. To these estimates will be added a
supplementary set of edge unknowns — distinguished by the superscript

a — to account for the difference between the exact and Euler-Bernoulli

theories. The exact theory forms for the edge unknowns are

—__EB

= ol
u (Ly,p)tu (Ly,p) ,

1

(4, y,p)
(2.19)

__EB e, K
v (Ly,p)t+tv (4y,p) ,

1]

v(L,y,p)

where GA(f,y,p) and ;A(Ly,p) are two additional unknowns functions
of y and p. Each will be represented by a Fourier series in y with
the p dependence incorporated into the series coefficients. Now from
the symmetry of the problem GA(Ly,p) will be odd in y and hence will
be represented by a Fourier sine series while ;A(ﬂ,y,p) will be even
and represented by a cosine series. Quarter range Fourier series,
similar to those used for the semi-infinite plate (see (1.16)), will be
used. Thus

foe)
A
u (L y,p) = E cn(p) sin£121hX ,

n=1

(cont.)
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(0 0]

B .

v (4y,p) = dy(p) + ) d_(p) cos TL (2. 20)
n=1

Later it will be shown that only the n even terms are needed to rep-

resent the edge unknowns.

Differentiating u(4y,p) and v(f,y,p) with respect to y gives

M ® . T y
— _ 0 G(p ' nm nmw
uy(ﬂ,y,p) - cprgp v D(p) * z 1 2h Cn(p) CO8 Th ’
n =

(2.21)

(00}
n s
v,(4y,p) = =) 3Ed (p) sin 5P
A=l

Now use is made of the boundary conditions at x = £. From (l1.2) and

(2.1)

O by, p) =0 =u[iFT (hy,p) + (P-2)T Ly | L 2.22)

Therefore

2 Q0
- _[k7=2} T nmw . n
ux(f,Y:P) = (--kz > >_ lz—h dn(p) sm—zlhX ; (2. 23)
n =

Similarly, the other boundary condition,

— 3 _ ,r— - &
Oy (6¥,P) = 0 =0T Ly, p) + ¥, (hy,p) | (2.24)
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implies that

v

(00
;X(L Y P) = Y G(p; = -5. Ul

nm nTT!
c r pY D(p L Zh Cn(P) COs 2h . (2. 25)
P g n=1

The boundary conditions at y = h, from (1.8b) and (1.2), are

-

— NP2 - 2—
7y (50, p) = 0 =] (K7-2) 0 (x, b, p) + k vy(x,h,p)_} . (2.26)

Letting x -» ¢ and combining (2.22) and (2.26) shows that

Lh,p)=0 . (2.27)

;y(f, h,p) =
This corner condition suggests that only the n even terms be used for
the series in (2.23) and in the second of (2. 20) and (2.21). The other
boundary condition at y = h does not restrict Gy(l,h,p) or —X(ﬂ,h,p).
Therefore, the series may contribute at y = h and so the n even
terms should be used in the Fourier series for these edge unknowns.

In summary, the following forms will be assumed for the edge

unknowns

u(0,y,p) = Gy(o,y,p) = v(0,y, p) =$y<0,y,p) =0

Q0
1 -1 1
u (0,y,p) = bo(p)[:(l—y/h)"—’--(1+y/h) £+ 2 4y/h} +$ b_(p) sin 5,

12
neven

(cont.)
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(0 0]

. _ ’ nim

v (0,y,p) =ag(p) +) a (p) cos TL
n =
neven

Vol Gp) . T n
P 4 Z cn(p) gin b

U(E,Y:p) = “c r Py D(p) A 2h »
p g neven
v (0 0]
s _ 0 G(p) 2
uy(LY:P) = e rpvy D(p) +n;2 h cn(p) cos >h ,
néven
kz 2 & n n
ey - T » v
Uy, p) = <—2“ ), 5 e sin T (2.28)
neven
Vo |2H(p) %
s ntm
V(Ly,p) =—5 |“BB - 1| + dg(e) + ) 2 d_(p) cos T,
P B

2h 2h 4
n =2
neven
Q
v
= 0 G(p) ' nT
VX(E;er) crpy D(p) z o Cn(p) cOs 2h
g n=2
neven

The unknown coefficients ao(p), an(p), bo(p) and bn(p) here will differ
from the values found for them for the semi-infinite plate case.

The edge unknowns from (2.28) are substituted into (2.6) to give
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g(s,y,p) and h(s,y,p). Substituting these into the entirety equations,

(1.14), and integrating using (1.17) yields the following infinite set of

algebraic equations:

QO
Re 0 n 0
{I m} ao(p)MJ. (sj.p) + 2 an(p)Mj (sj,p) & bo(p)NJ. (sj,p)

n=2
n even
(2.29)
fee) -g. 4 @
+z b (p)N. (s.,p) + d. (p) P.(s.,p)e J+Z[c (p) O. (s., p)
n 0 j n J
n:Z n==2
neven n even
" —sjﬁ -sjl
+d P.(s., ] + Q.(s:, + R.(s., =0
o (P) J(sJ pl |& J(sJ p) J(sJ p)e

0
plus a similar set with Sj(P) replaced by 'Sj(P)- In (2.29), MJ (sj,p),
n 0 n
Mj (s.,p),s Nj (sj,p), Nj (sj,p) and Qj(sj,p) are exactly the same as in
J

(1.19) while

/2
(-11""“ 20 s.Y.(s.,p) (.2
O;'(s;,p) = Yo awe (k '1)(k2+29§) ’

| | - 2 . wl 2 2 d
Frre (s

0 s
J(s.,p) = -2 Y.(s.,p) . (2.30)
PJ (SJ p) 52' J(SJ p)

J

-1/ Y.(s.,p) |(2_; daCg=

Pn(SJ,p) > 2 ( 2 ) 1 nZ - k ’

(ﬁ_] +9n> K <O/ +Qn> (cont.)



2v, vy 2(k"-1) s
“a° )
. kZ_2)h ) 2vg Y;{s,,P)Hip)
K2 cZB‘.Z D(p)
s ]

where Yj(sj,p) is as in (1.14).
Equations (2.30) are approximated for p small, just as was

done for the semi-infinite plate. For the lowest mode, sO(p) is given

by (1.21), i.e., so(p) ok (lEl)y, ¥ = /ELI'— . Approximating
v p g

(1.19) and (2.30) for s = so(p) and p small yields (1.23) for
Mo(s pP) Mn(s p) No(s p) Nn(s p) and Q. (s ) while for the
piegr Pz SgiBpe B NplBge Bis NGB g 0'%0’ P

other terms the following results:

2 4s 'h
2k -1 0 2
OO(so,p) = = ("l)n/ 7 ) 2 o O(p ) s
k k8
3.3
2 s h 5
0 4 [k -1 0 3
PO(So’p) =4 (—kz—) kz + O(p®) ,

(cont.)
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»

3
2 ) 45 h &
21k™-1 0 =
PS(SO,P) = (-l)n/ ("{(‘7‘) —— + 0(p®)
n

(2.31)

ZVOh 1
R (sq,P)=——— |=5 G(p) + 5= H(p)| + O(1)
cdD(p) o 0

For the higher modes sj(p) = éj, j=1, where éj satisfies (1.22).
. . : 0 .« n, . 0:/n
Approximating now gives (1. 24) for Mj (Sj' p), Mj (sj, p), Nj (sj,p),

N?(éj, p) and Qj(éj, p) while for the other terms the following results:

-1P/2 (1) ené. ban, 8.5 ,
5 L +o(p") ,
4( 2 AZ)
k'{p ~-s.
n""j

o;‘éj.p) = -

4
2/\2 + O(p ) »

~ 2 ~
P(.)(s.,p) _P _tan s h
J ) o g
d”j
(-1)“/2(1<2-1)4§J.2 eitan 2 b

—1 + 0% .
(o2 - 5%)
n J

n ~
P.(s., =
J( ; p)

(cont.)
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N 2v, vy 2 2 tan s.h 2
R (s;,P) = 0_ G(p) (k -1> b (k“-2)h

2~2 D(p) 2 a 2
Cdsj k j k
(2.32)
2v_tan s.h
0 H(p) 2
+ +0
z . D OFP)

To solve this infinite set of algebraic equations, assume that the

unknown coefficients are of the form

D(p) ’
b (p) = Elp) (2.33)
n'?’ =5 D(p) '
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where AO, An' BO’ Bn’ Cn’ DO and Dn are independent of p and

D(p), E(p) and F(p) are defined in (2.16). Substituting into the four

equations obtained from s = so(p) = #(1+i) v and neglecting all but the

lowest order terms in p yields

Substituting the four roots so(p) into (2. 34) and multiplying both sides

of the resulting equations by cg/hc;rz gives the following equations:

V.Y
+ 2(1-1)Y3(_20 %%%ﬂ exp [ -(141) y £] = 2(1-i) 9
(4

2v v
+ Z(l+1)y3(——§- %%%%) exp [—(l—i)y 2] = 2(1+41) 02 .
P p
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D (p p- D)
(2.35)
3(%% Hip) voy’
~2(1-i)y (—7 3(%)) exp [ (1+i)y £] = -2(1-1) 02 ,
p P

where

foe} L
ks > 2B
= -2 = BO+ (-1) , and
L, nm
n even
2
cs
b ==~
cr
P g

(cont.)
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2, h E(p) _ =
Mk 8 p D(p) = Vxx(oyp) ’
ZyvO Glo) =
_ 2.36

> By = Vx(bP) HeHE)
P

2v

_0 Hp) _3

p2 —[T(% = V(LP)

Substituting the solution of (2. 13) for ;X(lf_,p) and ;(ﬂ,p) from (2.15)
shows that the last two of (2.36) are satisfied identically. This shows
that, for long-time, the dominant terms in the edge u.nkhowns at x =1
will be in agreement with those given by the Euler-Bernoulli approxi-
mate theory. The first two of (2.36) are not satisfied identically be-
cause of the singularities at the corners. Substituting (2.14) into the

first two of (2.36) gives

So the four equations coming from the lowest mode have been reduced
to two, which it should be noted are identical to the first two bounded-
ness equations for the semi-infinite plate, (1.29).

For the higher modes, s = sj(p) = §j, j =21, where §j is a
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A

constant which satisfies (1.22). Now, if §j is a root, then -§J., -sj
and -—§‘j will also be roots where EJ is the complex conjugate of §J..

Since we are setting both the real and imaginary parts of (2.29) equal

to zero, it is only necessary to use two of these roots, éj and -§j.

Consider a root §J. in the first quadrant, i.e.

5. =87 =88+ 48" | (2.38)
J J J J
where §? and §j are real, positive numbers., Then, for this root,

using (2.33) for the unknown coefficients and retaining only the lowest
order terms in p, the entirety equations become the following set of

algebraic equations:

Im
n even
{2.39)
S F. a4 on 1§;§f 58y
+Z LnOJ( ,p)+Dn (s ,p)]e e =i
n=2
neven
where Mr.l(éf,p), Np(éf,p) and Nr,l(éf,p) are as in (1.24) and Or.l(éi.'.,p)
J ) J ) J 3 d 3
and P;l(é;,p) are given by (2.32).
Next use sj(p) = —é; in the entirety equations. This will gener-

ate another set of algebraic equations. Using (2.33) for the unknown co-

efficients, retaining only the lowest order terms in p, and multiplying
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at
-s. [/

the resulting equations by e gives the following set of algebraic

equations:

(2.40)

As was mentioned earlier, the smallest 's‘f{ is §171{ = 3.7488 h.

-5,/
Since {/h>2, e J will be small. Neglecting the terms in (2.39)

-s. /1
that are multiplied by e J shows that (2.39) reduces to the last of

(1.29). Therefore, the coefficients An’ BO

Table I. Equations (2.40) can now be reduced to

and Bn are given by

Re o T'c On(,\+ ) D Pn(,‘+ )]_
IZ:ZL - J Sj,P ™ J Sj’p =

Im
neven (2 41)
@ - -1§J¥z -ng‘z
-Z ZAnMJ. (sJ,p)e e
n=2
neven

where the right hand side is known. The coefficients Cn and Dn can

be determined from (2.41). Since the right hand side becomes small as
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g%y

e J , so will Cn and Dn. So the Fourier series parts of the edge
unknowns at x = { are small corrections to the Euler-Bernoulli terms.
Once the edge unknowns have been found, g(s,y,p) and h(s,y,p)
can be calculated from (2.6). Any term that is multiplied by the shift
operator, e © E, will not contribute to the solution for x<{. So, for
0 <x< !, thedoublytransformed displacements are once again given by
(1.35)through (1.39) where the coefficients are now given by (2.33).
Since the terms multiplied by g " . will not contribute for
0 < x< {, the doubly transformed displacements will still have poles
for x in this region. So the s-x Laplace transform can still be in-
verted by residue theory. The contribution of the pole at s =0 is un-
changed from (1.63). The contribution of the lowest mode is calculated
in exactly the same way as it was in Chapter I giving (1.81)for Rg(so(p)).

Then using (2.33) and (2.35) gives, for a root so(p),

2 3
u B VO SO(P) —E—:—(m SO(P) _F;(R)_ SO(P)X _é_

All four of the lowest mode roots will contribute to the solution. Sum-

ming the residues for each of the so(p) gives

VoYY
ut (x,y,p) = OYZ (1+£El]§-();%m) sin yx+(l- —g—%—;—) Ccos yXx e
2p

(2.43)

+[(1_§£§3PT)§7€£RI> sin v x - (l-%g%) cos yx} el ¥ +O(p-%).
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Similarly, the lowest mode contribution to ;/-(x,y,p) and to the stresses

is given by

v
el -_0 E(p) E(p)tF(p) -y x
v (x,y,Pp) sz K1+D(p)> cos yx+( B(p) ) sin yx }

(2.44)

+|:(1-—E—(m) cos yx+(E(D)(_p];_‘( )) sin yx -2}+O(p .

c_ r p(l-v) D(p)

VALY
OLX (x,y,p) = g KE(p)+F(p)) CcOs yX - (1 +£(§-)-) sin yx] e V¥
P g

fe) oo

(2.45)

o' (x,v,p)

. o(1) ,

1

- =
o;y(x.y,p) O(p *)

4

The higher mode roots with R e(§j) < 0 will once again give
edge waves of the same form as (1.85). On the other hand, for the
roots with R e(éj) > 0, exponentially increasing waves will result. Cal-

culating the residues for these roots shows that

R}l(s;) f(;l(y) o9}
- _Ep) 05t A M
v, .+ pD(p) . {BONJ (SJ ’ P) +n§; [ (S » P)
Ry (8;) K; () neven

Al AR

S. X S . X
+ B N‘?(éip)] ed e J +o00) ,
njj
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where f(;l(y) and f{;’(y) are, for a given j, a function only of vy.

Using (2.39) we have

R{(3) . K () o
__Fp n, .+
Vv, .t PD(P) A 3_2 [Cno_]( ; )
RJ( J) Kj (v) géven
(2.46)
A ~R
18 (£-x) -s. (£-x)
$ D DS ,p):le e 3 +0(1)

So the contribution of these terms will decay exponentially away from
x =[. At x ={, summing up all of the residues should just give the
Fourier series terms in G(l,y,p) and ;(f,y,p) in (2.28). Since Cn
and Dn are small (see discussion after (2.41)) these terms will be ne-

glected.

—i— > 1, the transformed displacements and stresses are

So, for
given by (2.43) through (2.45). In the next two sections, these will be

inverted in two different ways. The first method will show the solution

as traveling waves while the second will bring out the vibrational form.

4. Inversion of the Time Transform-Traveling Wave Form

For the region away from the base but behind the body wave-
fronts the transformed displacements and stresses are given by (2.43)

through (2.45). Of these, only v(x,y,p) and the dominant stress

oxx(x,y, p) will be inverted here. u(x,y,p) can be inverted in the same

way that v(x,y,p) will be while the other two stresses vanish for
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long-time.
The traveling wave form of the solution is found by using the bi-

nomial series expansion

(-1) A N VN I (2.47)

to expand the denominator of the transformed solution until a form is
obtained that can be inverted directly. Observing (2.44) and (2.45) we

see that ;(x,y,p) has pZD(p) in its denominator while Exx(x,y,p)

has pD(p). So it is necessary to expand 31(5 which, from the first of
(2.15), is
1 _ 1
D(p)

coshzyf + coszyl

Now by Lerch's Theorem, p can be required to be real and positive.

2
Then v { will also be real and positive; hence -CO—S-ZY—I < 1. Using
cosh™ vy £
1 o . £
(2.47) to expand —— with A =22 Y= yields
Bip) cosh2 £
Y
X 2 m
1 y m ( {
= ~1y._(cos v ) 2.48
o) - /) (2. 48)
P} -0 (cosh” y ™t

Using the binomial series expansion, (2.47), two more times gives
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(0.0] fo6) j k+1
1 :zz(_l)k - Zylz ( 1)_]< 4y1’)
cosh v/ k=0 j=0
This series can be reduced to
fo'}
— L =4 ¥ -yl RS (2. 49)
cosh v/ k=1
Substituting this into (2.48) yields
= © m+1
__Dl( ) -y (-l)m(coszyl)m<4 ) fod e Mg e . (2.50)
p m:O k'—'l
-2k(m+1) v £

The terms in (2. 50) decay as e so for any given value of

v £ only a finite number of terms will be needed to calculate the solu-
tion to a given level of accuracy. Note that as v { gets smaller and
smaller, corresponding to longer and longer time, more terms will be

needed.

Evaluating the first few terms in (2. 50) gives

1

1 4{e"2”-(4+2c05 25 e T (17 5 Vo con 29142 coe Ay P 1Y

D(p)
(2.51)

-(80+96 cos 2vL+24 cos4yL+2 cos 6v£)e_8V£}+O(e'loYf)

Using (2.51) in (2.44) shows that v(x,y,p) has the form
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fo'e}
‘—f'(x»y’ p) = VO }‘ _T-j(X:Y: p) ’
j=0
where
TO(X,}’,P) =-1—2{[cos vx+ sinyx] e—yx_l} s
P
TI(X; Y, P) = LZ [2 cos yx+cos vy (24-x) - sin v (Zf—x)] e"\/ (24-x) )
: P
(2.52)
Tz(x,y, p) = -—lz- [2cosvx+4sin vx-2siny (2£-x)+ cos vy (24+x)
P
+siny (204x)] & Y (2EE)
T3(x,y,p) = ——12— [8cosyx+23inyx+6c05y(2£-x)-4siny(2£-x)
P
+ 2 cos vy (24+x) + cos v (42-x) - sin v (4£-X)] e"\/(4f-x) )
T4(X: Y, p) = O(e-Y(4£+X)> N etc.

Inspection of (2.52) shows that To(x,y, p) is exactly the same as the

second of (1.89), i,e., TO is just v for the semi-infinite plate. So
TO will be a wave traveling in the positive x-direction.
Tl(x, y, p) is proportional to e Y (Zf-x).

So Tl represents a
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wave traveling in the negative x-direction. This wave is the reflection
of —’fo from the boundary at x = £. Similarly _'fz is the reflection of
’_I‘—l from the boundary x = 0 and is a wave traveling in the positive
x-direction. The other —T-J.'s represent further reflections from the
ends of the plate.

At the base of the plate we have that TO(O,y,p) = 0 and
T,(0,y,p) = -T,(0,y,p), Tf3(0,y‘,p) = -T4(o,y,p), etc. So the dis-
placement changes sign when it reflects from the built-in end which is,
of course, required by the boundary condition.

The transformed normal stress, Exx(x,y,p), can also be writ-

ten as a series of traveling waves. Using (2.51) in the first of (2.45)

yields
o
O, y2P) = v ) Tilx,y,p) (2.53)
j=0
where
T ___2uy i -y x
Uo(X’Y)p) (1-\))C r p [COS Y X mnyx]e 3
P g
U, (x,v,p) :-—Z&Y——[—Zsinvx+ cos y (24-x)
| R (l-\))cprgp

+sin vy (Zf—x)] e ¥ (2£-x)

2y

Uz(x,y,p) = (l-v)Cprgp [-4cos yx+2sinyx-2cosvy(2l-x)

] e—‘Y (2£+X)

- cos v (24+x) + sin y (24+x) 5 (cont.)



88

U (e_y(4£_x)) , etc.

U3(x, y,p) = O

Note that ﬁo(x, y,P) is, once again, just the normal stress for the
semi-infinite plate, (1.90). Now we have that at the end x =4,
—ﬁO(E,y,p) = -ﬁl(f,y,p), ﬁz(f, v,p) = -33(.0,y,p), etc. which gives zero
normal stress at the end as required by the boundary condition.
Equations (2.52) and (2.53) can be inverted by. using the tables

in Abramowitz and Stegun, [ll]. This gives

oo .
Vi 7 ) = Yo y Tj(x,y,t) .
j=o

(2.54)

8

]

| Uj(x,y,t) s

GX.X(X’ Y’t) = VO o

J

i

where the outgoing wave is given by

-

To(x,y,t) = -2t !:SZ(AO) +t—=2— sin A+ A0<1-2C2(A0)>'J .

A/Z-rrcprgt 0

2

2
X

A0 - 4c r t

| S
Here CZ(AO) and SZ(AO) are the Frenel integrals which were defined
in (1.94). Inverting —’fl(x,y,p) and ﬁl(x,y,p) shows that the first re-

flected wave is given by
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Tl(x,y,t) = -2t rCZ(Al)_I_ﬂ'_}SL cos Al- % - AI(I-ZSZ(A1)>1|

l_ J2me r t
p g
1 2 2 ..
+2Re{4 [(ZE-X) -X - 21x(2£—x{] erfc z
Cprg 1

2t 2(4-x) ix(24-x%)
- z) eXP|-5 1 epr:—-—————4C e + terfc zy .
P g p g

AJTT

~2uy N zsz(all) - 2Im(erfczl)_! : (2.56)

U (x,y,t) = -
i R l-y)ec r o g
(\))pg

where

2

A _ (24-%)
1 4cr t

P g

_ (24-x)-ix

! A8c T t
p g

’

and erfc is the complementary error function. Inverting the other
_”.[_‘J.(x,y,p) and ﬁj(x,y,p) yields terms that are similar to Tl(x,y,t)
and Ul(x,y,t).

v(x,0,t) is shown in Fig. 7 for the case -fi—l =20 and t =700 th

where th: ci . The outgoing wave and the first four reflections are
d

shown. As can be seen, the fourth reflection is quite small so the fifth
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and succeeding reflections will not contribute very much to the solution.
The total displacement of the plate, which was obtained by adding up the
outgoing wave and the four reflections is also shown. The stress,
oxx(x, -123, t), is graphed in Fig. 8. The outgoing wave, the first three

reflections and the total stress are shown.

5. Inversion of the Time Transform-Vibrational Form

The Laplace transformed displacements and stresses, given by
(2.43) through (2.45) for the region h< x <, can also be inverted by
means of a contour integration and residue theory. As shown by
Miklowitz in [9], for example, the long-time behavior of the solution is
determined by the singularities of the transformed solution closest to the
Bromwich contour.

Observing (2.43) through (2.45), we see that the transformed

solution has a branch point at p = 0 and poles wherever
D(p) = cOshzyﬂ + coszyf =0 . (2.57)

Using 1'Hopital's rule shows that p = 0 is not a pole of (2.43) through
(2.45). A branch cut is made along the negative real axis and the branch
is chosen so that ,/p will be real and positive when p is.

It can be shown that (2.57) does not have any roots in the half
plane Re p> 0. Singularities in the half plane Re p< 0 will decay
with time and can be neglected for long-time. Integrating over a small
circle around the branch point at p = 0 shows that it also does not con-

tribute to the solution. The contributions of the integrals along the
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branch cut will also decay with time. So it is only necessary to con-
sider the roots of (2.57) on the imaginary axis.

Setting p =iw and substituting into (2.57) gives
. _ [{}) =
D(iw) = cosh £ /—‘LC — cos 4 /C ==k Ll (2.58)
p g p g

Equation (2. 58) has an infinite number of roots corresponding to the nat-

ural frequencies of vibration of the plate. Note that if § is a root of
(2.58), -® will be also.
The first ten roots of (2.58) were calculated numerically. The
TC

frequency was nondimensionalized by dividing by w, = —2—5 . The result-

ing values for Q) = wi are given in Table 2.
S

The solution given by (2. 43) through (2.45) is only valid for p
small. Comparing the exact Rayleigh-Lamb frequency spectrum with
the small p approximations, (1.21) and (1.22), that we are using, shows
that the latter are valid for at least 0 < (0 < 0.10. Selecting Q =0.10 as
the highest admissible frequency, we see from Table 2 that for a given
% ratio only a limited number of roots can be used. Note that the num-
ber of allowable roots increases as _f{ gets larger.

The contribution of a pole at p =i to v(x,y,t) and oxx(x,y, t)

is given by

R (1&)) ;(X,Y,P)
(p-id) e
R (id) 0, (%, v, P) , (2.59)

pt
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TABLE 2

Natural Frequencies of Vibration for the Plate

mC

Q:wu;— o % ZhS
<=5 4 =10 £ =20
Q, 0.084 0.021 0.005
Q, 0.526 0.131 0.032
Q, 1.474 0.368 0.092
Q, 2.889 0.722 0.180
Q, 4.777 1.194 0.298
Q, 7.136 1.784 0.446
o 9.966 2.491 0.622
Ey 13. 269 3,317 0.829
Qg 17. 043 4.260 1.065
fis 21.290 5.322 1.330
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where ;(x,y,p) and Exx(x,y,p) are given by (2.44) and (2.45) respec-

tively. Substituting p = i@ into (2.16) gives

BElid) = (1’2“) |:sinh 2r cos 2r + cosh 2r sin erl ,
F(®) =i sinh 2r sin 2r (2.60)
SD( ) 2 gt l:sinh 2r cos 2r - cosh 2r sin Zr} "

p p=id w

where

ot [

T 2Ncr

P g

Using (2.59) and (2.60) to calculate the residue yields

-1
v
v A 0 [0D
RY(id) == |5p .
4 p=i®

{iF(iG)) (COShzzx - cOs ij)

a o B . iQ
={1=1) E(iw)(smh jx - sin %)}elwt

Combining this with the residue from the pole at p = -i® shows that the
part of the displacement associated with the frequency @® can be written

as

vPix,y,t) = Vix,y,®) sin {t

Here V(x,y,®) is the mode shape which is given by
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A~y 0 2r x 2r x ; 2r x . %
V(X’Y’W)_&rd(r) f(r) (cosh 7 - cOos 7 )-e(r)<s1nh7—-—s1n 7 ) .

where (2.62)
d(r) = sinh 2r cos 2r - cosh 2r sin 2r ,
e(r) = sinh 2r cos 2r + cosh 2r sin 2r ,
f(r) = sinh 2r sin 2r
Similarly
O& (x,y,t) = Z(x,y,®) sin @t , (2.63)
XX
where

4v uh
Z(X’ Y;'B) = - 29 f(r) (COSh sz + cos ZEX)
(1-v) £ prd(r)

-e(r) sinhﬂ + sin Zix)

£

The lowest mode shape for the displacement, V(x, d,wl), is
shown in Fig. 9 for the the case % =5 while Z(x,%,wl) is shown in
Fig. 10. These mode shapes agree with those found by Den Hartog in

[13] using Euler-Bernoulli approximate theory.

The near-field asymptotic solution, valid as x - 0, is obtained

exactly as it was in Chapter I with the transformed displacements being

given by (1.55), i.e.,
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N
1
W=

oo}
o s
u(x,y,p) = bo(p) (1—%) -<1+¥1—> + 2 4-{-1- +Zz bn(p) sin Gny x
n even

k™ - :
+ Z a_(p) <——21> 5 2 sin eny * O(x3) s

H =2 k
neven
(0.0) 1V
v(x,y,p) = ao(p)+z a (p) cos 8 y x+§——(2)
n=2 Cs
neven

(09)
=¥ b e)%-1) 6 cos 8yl x"+0(x)

n
n even

ol

The coefficients aO(p), an(p), bO(p) and bn(p) are now given by (2.32).

Calculating the strains at the base of the plate shows that they are the

base strains for the semi-infinite plate multiplied by a reflection func-

tion, i.e.,

= sl F(p)
uX(O, Y, p) =u (Y) E'(%S ’
(2.64)
sl iy} F(p)
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where u: (y) and v:: (y) represent the y dependence of the strains for

the semi-infinite plate and are shown in Figs. 2 and 3 respectively.

The transformed strains, (2.64), can be inverted by using the

same methods as in the last two sections.

uX(O,y,t)

X(0,y,t)

sl
u_ (y)
1
ot 2Tmi
Ve (y)

Br
p

Formally, we have that

COShZB /-—E—— - cos“y =P — eptdp
2c r 2¢ T
P g P g
coshzﬂ /——E——- ek I s - M- o)
2e T 2c_r
. b g P g
(2.65)

As (2.65) shows, the strains at the base, including the singular term,

will be time dependent for the finite plate instead of constant as was the

case for the semi-infinite plate.
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