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ABSTRACT 

This research is concerned with the response of a two-dimen­

sional, isotropic, homogeneous, elastic, cantilevered plate subjected 

to a step transverse velocity at the base . The investigation uses a 

method by Miklowitz which is based on a double Laplace transform and 

a boundedness condition on the solution. 

The case of a semi-infinite plate is solved, for long-time, to 

find the shear and normal stresses at the base. The solution in the in­

terior of the plate is shown to agree with that obtained by the 

Bernoulli-Euler approximate theory. The solution is then extended to 

the case of the finite length plate, with traveling wave and vibrational 

forms of the solution being found for the interior of the plate. 

At the base of the plate the investigation shows that the normal 

stress is singular at the corners while the shear stress is non-singular. 
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INTRODUCTION 

Analysis of semi-infinite waveguides based on the equations of 

motion for a linear elastic , homogeneous , isotropic medium is a sub­

ject of long standing interest . Recently a method has been developed 

by Miklowitz for solving nonseparable elastic wave g uide problems in­

volving nonmixed edge or end conditions. For the semi - infinite wave -

guide, the method uses a Laplace transform on the propagation coordi ­

nate, and a related boundedness condition on the solution which gener­

ates integral equations for the edge unknowns (displacements and 

strains). Solution of these integral equations determines the formal 

solution to a problem. The first problem solved by Miklowitz [ 1] was 

a symmetrically loaded waveguide with nonmixed displacement end con ­

ditions, i.e. a cantilevered semi-infinite plate. Further details may 

be found in Miklowitz [z], [3]. Sinclair and Miklowitz [4] extended the 

method to non-mixed symmetric stress end conditions. More recently , 

they have also extended the technique to antisymmetric stress end con ­

ditions [ 5] . They found the solution to the problem of the semi-infinite 

plate under a sudden end moment and zero end shear stress . Long-time 

information for the near and far field was obtained. References for oth­

er work on plates with non-mixed edge conditions are given by Miklowitz 

in [ 1] . 

In the current work, the foregoing general ideas have been ex­

tended to the finite waveguide. Here the essential differences are that a 

finite Laplace transform on the propagation coordinate replaces the one­

sided Laplace transform for the semi -infinite waveguide, and a related 
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entirety condition on the transformed solution replaces the above-men­

tioned boundedness condition. 

To solve the problem of the cantilevered finite length plate, the 

solution of the problem for a similar semi-infinite plate is needed. So 

the first case solved here is the problem of a cantilevered semi-infinite 

plate, subjected to a step transverse velocity at the base where the nor­

mal displacement is assumed to be zero. The integral equations re­

sulting from the boundedness condition were solved for long-time to 

yield the shear and normal strains at the base, with the latter becoming 

singular at the corners. The exact theory solution and the Euler­

Bernoulli approximate theory solution are shown to agree for the long­

time-near-field region away from the base. 

For the finite length cantilevered plate, the solution obtained 

from the Euler- Bernoulli approximate theory is used to reduce the en­

tirety condition to the same set of equations that resulted from the 

boundedness condition for the semi-infinite plate. The strains at the 

base are shown to be the strains at the base for the semi-infinite plate 

multiplied by a reflection function. The traveling wave and vibrational 

forms of the solution are found for the interior of the plate, away from 

the base. 
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I. THE SEMI-INFINITE PLATE 

1 . Statement of the Problem 

To solve the finite cantilevered plate problem, it is first neces­

sary to find the solution of the semi-infinite cantilevered plate. This 

problem is shown in Fig. 1. A homogeneous, isotropic, linear elastic 

plate in plane strain of width 2h is built into a rigid base, and sudden­

ly this base is given a uniform velocity in the width direction. The 

problem is formulated as a standard plane strain elastodynamic bound­

ary value problem. Displacements u and v are taken to be in the x 

and y directions, respectively. The governing equations are 

2 (2 2) 2 cdu (x,y,t) + cd-c v (x,y,t) + c u (x,y,t) = 
xx s xy s yy 

( 1. 1) 

( 1. 2) 

a (x,y,t) = ulv (x,y,t)+u (x,y,t)J 
xy • L X y .. 

for x > O, -h < y<h, t > O. 
2 A+2µ 

Here c = 
d p 

and c
2 =_g_ are, respec­
s p 

tively, the dilational and equivoluminal body wave speeds, A and µ 
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y 

O"yy = O"xy =O 

u = 0 
h 

h 
X 

Fig. 1 Coordinates, Displacements and Boundary Conditions 
for the Semi-Infinite Plate in Plane Strain. 
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2 2 2 
are the Lanie' constants, p is the mass density and k = cd/ cs. Sub-

scripts in this work, when associated with displacements, indicate dif­

ferentiation; but when associated with stresses identify the component 

in the usual way. 

Initial and boundary conditions are 

u(x,y,O) = ut(x,y,O)=v(x,y,O)=vt(x,y,O) for x>O, -h:5:y:5:h, 

and 

u(O,y,t)=O 

-h :s;; y :s;; h, t ::: 0 

a (x, ±h, t) = o (x, ±h, t) = 0 for x > 0, t 2: 0 
yy xy 

The radiation conditions are 

limit {u, ux, etc .}-- 0 for -h :s;; y :s;; h, t 2: 0 
X .,.00 

v, v , etc. 
X 

( 1. 3) 

( 1. 4a) 

( 1. 4b) 

. (1. 5) 

The problem is an antisymmetric (flexural) one with respect to the 

midplane y = 0. It models a very tall building whose rigid base (ground) 

suddenly moves horizontally but not vertically. The problem is one of 

wave radiation into the plate, and no interaction with the base , except 

for wave reflection there. 

2. Formal Solution 

Tlw problem is dc•composed into a rigid body n1otion and a resid­

ual probl<>m. Tlw rigid body motion is 
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u(.x, y, t) 

for x :::c: O, -h s y :5: h, t:::c:O ( 1.6 ) 

v(x,y,t) 

The residual problem must satisfy the following initial and boundary 

conditions 

u(x, y, 0) = u/x, y, 0) = v(x, y, 0) = 0 

for X > 0, -h :,:; y :,:; h ,(1.7) 

vt(x,y,O) = -VQ 

u(O,y,t) = v(O,y,t) = 0 for -h ~ y sh, t::::: O ( 1. Sa) 

a (x,±h,t) = a (x,±h,t) = 0 for x> 0, t z 0 yy xy ( 1. Sb) 

The radiation conditions now are 

V - -V limit { }- t 
x-oo 0 

u, u , etc. 
X 

for - h s y :,:; h, t :;,,: 0 ( 1. 9) 

limit 
x-oo 

V x' etc . 
. - 0 

The residual problem has the same form as the ones considered 

in [ 5). The formal solution can be obtained in exactly the same manner 

a s was don e in the fir s t p a rt o f that pape r. This give s (s ee Eq. (19) of 

I s I) 
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1 J - Pt u(x, y, t) = Z1ri u(x, y, p)e dp 
Br 

p 

v{x,y,t) - 1 r ~(x,y,p)eptdp 
21ri .. i Br 

p 
(1. 10) 

u(x,y,p) 
1 r ""' sx - 21ri u(s,y,p)e ds 

J Br 
s 

~(x, y, p) 
1 r ""' sx - 21ri J Br 

v(s,y,p)e ds 

s 

where Br and Br are the Bromwich contours in the p- and s-
p s 

planes, respectively, and 

""' =c ""'P u(s,y,p) = u (s,y,p) + u (s,y,p) 

:::,. - ""'C ""'P v( S, y, p) - V ( S, y, p) + V ( S, y, p) 
(1.lla) 

""'C 
u (s, y, p) = c 1 (s, p) sinh a, y + c

2
(s, p) sinh j3 y 

(l.llb) 
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~(s,y,p) = :;J: {t: sinhc,,(y-y')+~ sinh ~(y-y'~g(s,y'. p) 

+k 
2 

s [ cosh Cl/ (y-y' )-cosh ~ (y-y')}(s, y', p)} dy' 

(l. llc ) 

~p (s, y, p) = :! .r: {[" sinh Cl/ (y-y')+ ~Z sinh ~ (y-yf (s, y'. p) 

+ :z [cosh a, (y-y')-cosh ~ (y-y'Dg(s, y', p} dy' , 

C(s p) = - (s ) rk
2
(zs

2
-k

2
)coshf3h• I(s,p)+2s f3sinhf3h•J(s,p~ , 

1 ' L s,p L s J 
(1.lld) 

Cz(s,p) = -L(-s~p) [zk
2
sa,coshc,h• I(s,p)-(zs

2
-k!)sinhc,h• J(s,p~ , 



9 

l Jh{ s ~ 2 2) sinh ai (h-y) A • ] ( ) I(s, p) = 2 2 2s -k ---'---'-----~ + 21-' srnh 13 (h-y) g s, y, p 
k O k s Ci 

s 

+ [(zs 
2 

- k!) cosh a, (h-y )- 2s 
2 

cosh ~ (h-y 1] h( s, y, pi} dy 

k -2 -
( 

2 .) 
+ 7 u(O,h,p) 

(1. lle) 

J(s, p) = :; (ff• 2 
cosh a, (h-yl-( 2s 

2 -k;) cosh ~ (h-y~ g(s, y, p) 

- v(O, h, p) 

2r - - ] 2 -g(s,y,p) = k Lsu(O,y,p)+u)O,y,p) +(k -l)vy(O,y,p) 

( 1. 11£) 

VO 1 [ - - 2 - ] h(~,y,p) =-2 + 2 sv(O,y,p)+v)O,y,p)+(k -l)uy<O,y,p) , 
scd k 

(1.12) 

k = ..E_ and p and s are 
S C 

s 

the transform paran1eters for the time and x Laplace transforms, 
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respectively. A bar over a quantity indicates that it has been Laplace 

transformed with respect to t while a tilda indicates that it has been 

Laplace transformed with respect to x. It should be noted that the 

first term in h(s, y, p) comes from the nonzero initial condition, 

which is the second of (1.7), and hence is not present in [5]. 

L(s, p) is the generalized Rayleigh- Lamb frequency equa­

tion for antisymmetric harmonic waves. Define s. (p) as the roots of 
J 

L[s. (p),p] = 0 
J 

Then, as shown in [1], [5], g(s,y,p) and h(s,y,p) must, for 

(1. 13) 

Re[s. (p)] > 0, satisfy the following boundedness condition (see pp. 8-12 
J 

in [1] and (22) in [5]). 

2 cosh f3 .y] 
- 2s. h A .h h(s ., y, p) 

JCOS t-'· J 
J 

s. 
,_L_ 
- 2 

k O!. 
J 

(
k

2
-2)- _ } + 7 u(0,h,p) + Y/sj'p)v(0,h,p) , 

(zi-k2
) -2s.f3. 

YJ_(sJ_,p) = 2 s tanh CY.h = 2 ( k 1 z) tanh {3.h 
2k s.0/. J k 2s.-k J 

J J J s 

( 1. 14) 
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The first of ( 1. 14) are two coupled integral equations fo r 

g(s,y,p) and h(s,y,p). Solving these equations completes the formal 

solution of the problem. 

3. Solution of the Boundedness Equations 

Using the boundary conditions at x = 0, (1. 1 lf) reduces to 

g(s,y,p) 

h(s,y,p) 

2-= k u (0,y,p) 
X 

( 1. 15 ) 

The unknown Laplace transformed edge strains u (0, y, p) and v (0, y, p) 
X X 

are found by assuming for them representations with unknown coefficients. 

The representations consist of a singular term which corresponds to the 

behavior of the strains at the corners y = ±h plus a Fourier series. 

If the singularity at the corner is the same as the assumed singular 

form, then the Fourier series only has to represent a regular function 

of y. The unknown coefficients in the Fourier series will decay as 1 /n 2 

or faster as n, the number of the term in the series, becomes large. 

It should be noted that calculation of the values of the edge unknowns, to 

a given level of accuracy, requires only a finite number of terms in the 

series because of this two part representation. 

In [ 1], Miklowitz found that a dynamically loaded elastic wave­

guide that was built-in at the base had the same types of singularities 
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at the corners as did a similar statically loaded waveguide. The types 

of singularities in the present problem should also be calculable from 

statics. Since the present problem does not have a static limit, the 

singularities of a static right-angled wedge with one edge built-in and 

the other edge free will be used. 

The possible stress (and strain) singularities of a static right­

angled wedge are known from the work of Knein [ 6], Williams [ 7] and 

Uflyand [ 8]. As these works show, the dominant stresses are, near 

the corner, proportional to 
-q 

r where r is the distance from the cor-

ner and q is a real positive number. ·For a fixed corner angle, q de­

pends only on Pois son I s ratio. In the remainder of this work, v will 

be set equal to 0. 2433 which makes q very close to 1/4. 

Forms for the Edge Unknowns 

It is necessary to assume forms for the unknown edge strains 

u {O,y,p) and; (O,y,p). From the antisymmetry of the problem, u 
X X X 

will be odd in y and ; will be even. So u will be represented by 
X X 

an antisymmetrized singular term plus a Fourier sine series while V 
X 

will be represented by a symmetrized singular term plus a Fourier co-

sine series. 

In order that the Fourier series converge rapidly, it is neces­

sary to choose the correct singular forms for the edge unknowns. 

Based on the results of the right angled wedge problem, any singular-
i 

ities that are present are expected to be of the r - 4 type. However, 

since the present problem has two corners which will interact, one or 

both of the strains may not be singular at the corners. Various 
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combinations of strain singularities were tried. These were, both 

strains singular, both strains nonsingular, and one strain singular and 

one nonsingular. For each assumed form of the edge strains, g(s, y, p) 

and h(s, y, p) were calculated from (1 . 15 ), substituted into the bounded­

ness equations ( 1. 14) and the resulting simple integrations were per­

formed. This gave an infinite set of algebraic equations which were 

then approximated for long-time. The equations were solved numeri­

cally using the method of reduction to see if the unknown coefficients 

could be determined. This procedure will be shown in more detail for 

the case that solved the boundedness equations. 

The boundedness equations were solved by assuming that u 
X 

was singular and that ~ was not. This gives the following forms for 
X 

the unknown edge strains: 

00 

u (O,y,p) 
X 

= bo(p{(l-y/h)-¼-(l+y/h)-¼+z-¼y/h ]+; 
n=2 

00 

~ (0, y, p) 
X 

= ao(p) + ~ 
n = 2 
n even 

( ) n1ry 
an p cos Zh 

neven 

b ( ) . n1ry 
n P srn 2h 

(1. 16) 

a
0

(p) , an(p), b
0

(p) and bn(p) are the unknown coefficients, functions 

of the Laplace transform parameter p. 

Substitute (L 16) into (1.15) to get g(s,y,p) and h(s,y,p) and 

in turn these into the boundedness equations, ( 1. 14). The latter equa­

tions are then integrated with the aid of the following integrals: 
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h 1 

J
f sin h a. y (1 +y / h) - 4 dy = 
0 J 

T 
Q'. 

J 

, 

h J cosh ex .y cos~? dy 
0 J 

I 2 a . s inh cv . h 
n J J =(-l) 2 2 

(ex.+ e ) 
J n 

rh 
s inh ex .y sin n

2
1rhy dy = 

Jo J 

6 sinh a .h 
n J 

(a ~+e 2) 
J n 

(1. 17) 

n even 

n even 

n,r 
where Sn= 2h, and another analogous set of integrals with a,. re­

J 

placed by !3 .. 
J 

Then the boundedness equations become an infinite set 

of algebraic equations: 

00 

fRe} f a
0

(p)M?(s.,p)+ \ 
llm ~ J J ,_ 

n = 2 

n 0 
a (p)M. (s ,p)+b

0
(p)N. (s.,p) 

n J j J J 

n even 

( 1. 18) 

00 
\ + .I 

n-;, 2 
b (p)tfl(s.,p)+Q.(s ., p)} = 0 

n J J J J 

neven 

where 



0 
M.(s.,p) 

J J 

n 
M . (s.,p) 

J J 

0 
N.(s.,p) 

J J 

n 
N.(s.,p) 

J J 

2 
= s.Y.(s . ,p)/13. 

J J J J 

15 

n/2 
(-1) s.Y . (s.,p) 

- - ___ ___.,_J___.1.._ .... 1 _ 

(13f + e!) 

2 2 
Q. ( S. , p) = v

0 
Y. ( S,, p) / C j3. 

J J J J s J 

and Y. ( s . , p) is as in ( 1 . 14) . 
J J 

( 1. 19) 

Equations ( 1. 18) can be solved for the unknown coefficients 

a
0

(p), an (p), b
0 

(p) and b n (p). That is, for a certain number of unknowns, 

a
0

(p),a
2

(p),a
4

(p), . , b
0

(p),b
2

(p),b
4

(p), ... , matching numbers 

of s . (p) (which are infinite in number; see [ 1]) are available to give a 
J 

sufficient numbe r of equations from (1. 18) to solve for these unknowns. 

To proceed further, a representation for the 

The lon g -time solution will be considered here . 

s. (p) is needed. 
J 
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Long-time Approximation to the Boundedness Equations 

The long-time solution can be derived from the first two of ( 1. 10) 

by using Watson's Lemma. This gives (see Sec. 5.10. 2.4 of [9]) 

[

u(x, y, t~ 

v(x, y, t~ 
t >> 1 

1 
21ri 

r r u(x, y' p ~ ept dp 

JBr l~(x,y,p}j 
p p ~ 1 

( 1. 20) 

For p small, the roots s.(p) of L{s,p) are,forthelowestmode, 
J 

.. 

s O ( p ) = ± ( 1 ±i ) y (1.21) 

where y = / 2 cP r , c = ~ is the "plate" wave speed and 
' pg p ✓ p(l-v2 ) 

h 
r = -- is the radius of gyration for the plate section. For the higher 

g J3 
modes, s.(p) = s.,j ~ 1, where s. 1s a complex constant satisfying 

J J J 

f(s.) = sin 2s.h 2s.h = 0 
J J J 

{1.22) 

Equation ( 1. 21) is the generalized frequency-wave number relation for 

the Euler-Bernoulli approximate theory. f(s) is a well known function 

in the analysis of two dimensional elastostatic layer problems, hence 

its occurrence here is not surprising. The zeros of f(s) are an or­

dered infinite set, corresponding to the piercing points of L (s, p) in the 

plane p = O (cf.( 1], Fig. 8 for corresponding symmetric wave pierc-

ing points). Hillman and Salzer, [ 10], give the first ten roots to six 
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decimal places. 

The Euler-Bernoulli approximate theory frequency-wave num­

ber relation is known to be a good approximation to the lowest mode of 

the antisymmetric Rayleigh- Lamb frequency equation for a range of p 

small but greater than zero. Furthermore, as Sinclair and Miklowitz 

show in (70) of [ 5], for the higher modes ) = 0 limit { -ds. (pJ 
p-t0 dp -

It follows that the zeros of f( s) are a good approximation to the 

s .(p), j ::::>: 1, for p small. This shows that the long-tirne approximation 
J 

will be valid for t large but not neces _ _sarily infinite. 

It remains to approximate (1. 19) for p small with s.(p) as in 
J 

(1.21) and (1. 22) and with Re[ s/p)] > 0. For the lowest mode, s
0

(p), 

this gives, for p .... 0 

h 
-- + O(p) 

k2 

Nno(so,P) = (-It/2(l+i)2h2~ + O(p~) 
nTT 2c r • p g 

V h 
- (- l+i)-0-

2 
Zed 

~ 
,f-~_g + 0(1) 

(1. 23) 
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Approximating ( 1. 19) for the higher modes, 

(-1t
12

s. tan s.h [(k2 l) 2s~ n 1 J - J M.(s.,p)=- 2 2 2 -2- 2 2 
J J k ( 9 - s. ) k (8 - §. ) 

n J n J 

s. ( p), j ~ 1, gives 
J 

- 1 ) 9 tan s . k l s . 2 ( n /2 ,., h ~ 2 2"' 2 ] 
N~(S.,p) c ( 2 .nz) l 1---y-)~ 2J ,.,2)+ 1 + O(p ) 

J J e -s. \ k e -s. 
n J n J 

Q.(s., p) = -v
0 

tan s.h/cd
2

s~ + O(p
2

) 
J J J J 

where 

h 1 

J l. ,., l. -4 H,., = h cos s.y(l- h) dy , 
sj O J 

( 1. 24) 

( 1. 25) 

(cont.) 
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The coefficients in (1 . 23) and (1. 24) a r e split into their real and 

imaginary parts and the order in p of each of the terms is determined . 

Substituting the order of each term into (1. 18) gives 

3 

O(p½) O(p½) 0( 1) O(p~) 

1 1 
O(p) O(p) O(p 2) O(p2) . . 

0( 1) 0( I) ... 0( 1) 0( 1) 

0( 1) 0( 1) 0( 1) 0( 1) 

Using Cramer's rule on (1. 26) gives that 

1 
ao(p) = O(p -2) 

-1 a (p) = bo(p) = b (p) = O(p ) 
n n 

1 

ao(p) O(p -2) 

_1-. 
a2(p) O(p 2) 

= (1. 26) 
bO(p) 0(1) 

b2(p) 0( 1) 

( 1. 27) 

( 1. 2 7) shows that the unknown edge strains, 

are constant for long-time. Define 

u (0 ,y,t ) and v (0,y,t), 
X X 
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( 1. 28) 

a (p) 
n 

A 
n 

p 

B 
n b (p) = 

n p 

where A
0

, An' B
0 

and Bn are independent of p. Substituting (1. 23), 

(1. 24) and (1. 28) into (1. 18), retaining only the lowest order terms in 

p, and simplifying gives the following set of simultaneous equations: 

l. (X) 

-2- 4 2 B + \ 
7 0 /._ 

n 2B 
(-1/ n = 

n= 2 
neven 

nTT 

Re • "n "n "0 f 
(X) [ ~ } ir } l \' A M . (z.)+B N. (z.) + B 0N. {z.) = o 

• m n{ 2 n J J n J J J J 
n even 

where j goes from 1 to infinity and 

" n 
n/2 

(-1) 4z.tanz. 
M. {z.) 

J J 
______ _.._ __ _.,_ 

( 1. 2 9) 

(cont.) 
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,.. n 
N. (z.) 

J J 

(-1t
12

2mr tan z.~(k2_ 1) 8z~ + 
1
] 

= ( 2 2 2) 2 ( 2 2 2) ' n TT -4zj k n TT -4zj 

r. 1 1 
R~ = r cos z.r(l+r)- 4 dr 

J .io J 

rl 1 

S'. = , sin z. r ( 1 - r) - 4 d r 
J "o J 

,1 . 1 
T~ = ' sin z.r(l+rf 4 dr 

J .io J 

where z . is obtained from 
J 

sin 2z. = 2z. 
J J 

(1.30) 

The first two of ( 1. 29) have important physical meanings. The 

net shear force at the base is given by 
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rh 
Q(O,t) = 1 a (O,y,t)dy 

.,_h xy 
(1.31) 

Using ( 1. 2) , substituting for v (O, y, p) fr om ( 1 . 16) a n d in te g r a ting 
X 

gives 

Substituting for a
0

(p) from (1. 28) and the first of (1 . 29) and inverting 

gives 

( 1. 32) 

which goes to zero for long-time. The net moment at the b a se is given by 

h 
M(O,t) =J a (O,y,t)ydy 

-h xx 

Us,ing (1. 2), (1. 16), (l. 28) and integrating gives 

M(O , p) 
{ 

B h 2 LO n 
2 _1,. 5 0 " 2 = 2µk 2 4 - -- - ) (-1) 

7 p n~2 
neven 

Substituting from the second of (1 . 29) and inve r t ing gives 

M(O , t) = 2vohp c r H(t ) 
p g 

which is constant for long-time. 

The problem can also be solved approximately using 

( 1. 33) 

(1. 34 ) 
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Euler-Bernoulli approximate theory for the quantities Q(0, t) and 

M(0, t). When the shear force and moment are calculated, ( 1. 3 2) and 

(1. 34) result. So the approximate solution has the same net shear 

force and net moment at the base as does the exact solution for long­

time. It should be emphasized however that the exact theory governs 

the important singularity in u (0, y, t). The following section assesses 
X 

this important contribution to the problem. 

Numerical Solution of the Boundedness Equations 

Equations (1. 29) were solved nymerically using Fortran IV. 

The method of reduction was used to calculate the solution. The values 

of the unknowns were calculated using more and more unknowns until 

convergence to the final value of each unknown was reached. Conver­

gence should be obtained for a relatively small number of unknowns 

since the Fourier series in (1. 16) are not being called upon to repre­

sent the singularities at y = ±h. 

Values of the unknown coefficients for v = 0.2433 are shown in 

Table I. As can be seen, the coefficients converge for 30 through 38 

2 
unknowns. The coefficients also decay faster than 1 /n for large n. 

Therefore, the coefficients in Table I are a solution to (1. 29) and hence 

( 1 . 16) is a solution to the boundedness condition for long-time. 

A similar procedure was carried out for each of the other pos­

sible singular forms for the unknown base strains. For all of these 

cases, the unknown coefficients failed to converge by the time fifty un­

knowns were used. This indicates that the other singular terms do not 
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TABLE I 

Coefficients A and B 
n n 

( V = 0. 243 3 ) 

Coeffi Number of Unknowns Used 

cients 
20 24 28 30 32 34 38 42 

A2 0.5165 0.5165 0.5166 0.5166 0.5166 0.5166 0.5167 0.5167 

A4 -0.2397 -0.2398 -0.2399 -0.23 99 -0.2399 -0.2399 -0.2399 -0.2400 

A6 0. 1529 0. 153 2 0. 1533 0. 153 3 0.1533 0. 1534 o. 1534 0. 1534 

AS -0.1111 -0.1118 -0.1121 -0.1122 -0.1123 -0.1123 -0.1124 -0.1124 

AlO 0.0859 0.0875 0.0882 0 . 0883 0.0884 0.0885 0.0886 0.0887 

Al2 -0.0674 -0.0710 -0.0722 -0.0725 -0.0728 -0.0729 -0.0731 -0.0732 

Al4 0.0505 0.0586 0.0610 0.0616 0.0620 0.0623 0. 06 26 0.0628 

Al6 -0.0271 -0.04 70 -0.0517 -0.0527 -0.053 5 -0.0539 -0.0545 -0.0548 

BO 0.7151 0.7136 0.7129 0 . 7127 0.7127 0.7125 0.7126 0.7128 

B2 0.2936 0.2950 0.2956 0.2958 0.2958 0.2959 0.2958 0.2956 

B4 -0.0970 -0.0978 -0.0981 -0.0982 -0.0982 -0.0983 -0.0982 -0.0981 

B6 0.0469 0.0475 0.0477 0.0478 0.0478 0 . 0478 0.0478 0.0477 

BS -0.026 5 -0.02 71 -0.0273 -0.0274 -0.0274 -0.0274 -0.0274 -0.0273 

BIO 0.0161 0.0168 0.0171 0.0171 0.0171 0.0172 0.0172 0.0171 

Bl2 -0.0097 -0.0108 -0.0111 -0.0112 -0.0112 -0.0113 -0.0113 -0.0112 

Bl4 0.0049 0.0069 0.0075 0.0076 0.0077 0.0077 0.0078 0.0077 

Bl6 0.0011 -0.003 7 -0.0048 -0.0050 -0.0051 -0.0052 -0.0053 -0.0053 
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represent the base strains correctly. 

The coefficients from Table I were used to calculate the strains 

at the base. Graphs of these strains are shown in Figs. 2 and 3. 

The normal strain, u (0,y,t), becomes infinite as the corners y=±h 
X 

are approached indicating that there is restraint in the x direction. 

On the other hand, the shear strain, v (0,y,t), does not become in­
x 

finite for long-time, probably because the motion in the direction is re­

strained to a lesser degree since the motion the base of the plate wants 

to make in the thickness direction is the same as is given by the bound­

ary condition. Note that the shear strain may be singular at the cor­

ners for short-time. 

4. Derivation of the Formal Long-Time Solution 

Once the transformed edge unknowns, ~ (0, y, p) and -; (0, y, p), 
X X 

have been determined for small p, the formal long-time solution can be 

calculated from ( 1. 11). g(s, y, p} and h( s, y, p) are found by substituting 

the hase strains from (1.16) into (1.15). The integrandsin(l.ll)arenow 

known and the indicated integrations are performed. The resulting forms 

for the doubly transformed solutions are 

4 

u(s,y,p) = ) u.(s,y,p) 
-- J 

j = 1 

(1.35) 

4 
v(s, y, p) \ c.-,.- ( ) = ,, v. s,y,p 

.' 1 J J = 

where 
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I (s,y,p) u 
L(s, p) 

ii3 (s,y,p) = -:~ b0 (p)r°'z sinh<>y(H"-R°') + ~ sinh~y(H~-R~)], 

s 

(1. 36) 

::,. 

v
1
(s,y,p) = fA(s,p) • 

I (s,y,p) 
V 

L(s, p) 

(1. 37a) 
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(1.37b) 

(1. 37c) 

~( 
2 ) 2 ~ } 

k -1 2s s 2 
---:-T" ( 2 2) + 1 + 2 a (p) ~2 

k CY +e k n CY +8 • 
n n 

( 1. 37d) 

(1. 37e) 

+ ~ ~osh ~y ~~-T~)-sinh ~y (H~-R~}z+r;(:~ + 1)} , 
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( 1. 37 f) 

(1. 37g) 

- sinh 13 y ( s;-T;)+ cosh 13 y (H;-R~)+ z-¼(+- +),l , 
. a h 13 h j 

fH(s,y,p) 

(l.37i) 

I u ( s , y, p) = - k 
2 

s [ ( 2 s 
2 

- k ! ) cos h p h s inh c, y + 2 c, p cos h c, h s inh p y] 

(cont.) 
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(1.38) 

I v(s, y, p) = -k
2

" ~ 2s
2 
-k!) cosh Ph cosh "y - 2s

2 
cosh "h cosh pj , 

L(s, p) is the Rayleigh-Lamb frequency equation as in (1. 12 ), S and 
Ct 

T are as in the first two of ( 1. 17) with a. replaced by 0t and 
ry J 

( 1. 39) 
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Eouations ( 1. 35) through ( 1. 39) have resulted from the form of 

the edge unknowns assumed in ( 1 . 16), i.e . they are not directly de­

pendent on the assumption of small p. For use in the long-time solu­

tion, however, they will have to be approx imated for p small to be 

consistent with the approximations that were used to determine the un­

known coefficients a
0

(p), an (p) , b
0

(p) and bn (p) t~at they contain. 

The doubly transformed solution will now be inverted, using ap­

prox imations that give the solution for two different regions of the plate. 

First, the asymptotics of the Laplace transform will be used to find the 

solution as x -+ 0. In the following section the doubly transformed solu­

tion is inverted by residue theory. This solution is valid in a region 

away from the base, x = 0, but behind the body wave fronts. Since p 

must be small, information about the wave fronts cannot be obtained. 

a. Near-field Asymptotic Solution for x - 0 

The near-field asymptotic solution, valid as x .... 0, will be ob­

tained in the same manner as it was by Miklowitz in [ 1] and [ 2]. Ap­

plying Watson I s Lemma to the present case gives (see Sec. 5. 10. 2. 3 of 

{

u(x , y , PJ = --4 
_ 2TT1 
v(x,y,p) 

X..,. 0 
L 

s 
{

~ (s, y, p)} sxd e s 
:=.. 

v(s, y, p) 
ls\ ... ro 

( 1. 40) 

Since p must be small , ( 1. 35) through ( 1.39) will be expanded with 

I sh I>> 1 and 
2 2 ik /s l<< l. s 

This gives 
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(1.41) 

It should be noted that since large here is necessarily on Br , 
s 

(1.41) shows, assuming again that p is real, that the real parts of et 

and f3 are large through the value of Im s while the imaginary parts 

remain constant. Note that for very large Is I, et = f3 = Im s. In the 

work that follows s is chosen on the upper half of Br s. However, 

since ~ and ~ are even in a and f3, it follows that the large I sh I 

approximation holds all over Br in the usual way. 
s 

Because of the singular terms in (1. 16), y = h must be given 

special consideration. For the ''interior" solution, 0 ~ y < h, the 

following approximations are valid: 

1 s2k2 (k
2 -1) e-2ish L(s,p) = 

2 s k2 

I (s,y,p)= i s 2k 2 (k 2 -l)(h-y)e-is(h+y) 
u 4 s 

J ( ) 1 2k2 (k
2 

- 1) (h ) -is(h+y) s y p ""' - s -- -y e 
u ' ' 4 s k2 

( ) 1 2 1 2 (I 2 l)(I ) -is(h+y) I s, y, p ·~ - - s <: <: - 1-y e 
V 4 S 

(1. 42) 

(cont.) 



34 

Now S and T may be written in the form 
Ct 0/ 

For large a these become 

Make the variable change y = h-r . Then 

s = 
Ct 

ah e 
2 J

h 1 

e - ar (h/ r )4 dr 
0 

( 1. 4 3) 

( 1. 44) 

Since a is a real , positive, large parameter in ( 1 . 44) , according to 

(1. 41), these integrals may be approximated by Watson's Lemma, with 

the r<'sults 



3 5 

( 1. 4 5) 

with an equivalent set for s
13 

and T /3. Equations ( 1 . 45) can now be 

used to approximate f A (s, p) and f 8 (s, p) in ( 1. 37) with the results 

f,(s,p) = -b0 (p)i:: . - Zish[T'(¾)hl (-is)-¾+o(f)] 

s 

( 1. 46) 

Similarly , the integrals H and R are written as 
Ct CY 

( 1. 4 7) 

Approximating these integrals gives 

(1.48) 

(cont.) 
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~3(s,y,p) and ';
3

(s,y,p) in (1.36) are now approximated for !sh! 

large with the aid of ( 1. 48), yielding 

= bO(p) e -is(h+y) o(.!.) 
4k2 s 

s 
( 1. 49) 

Also, for I sh I large 

( 1. 50) 

Combining terms from (1. 42) through (1. 50) together gives 

~ I (s, Y, p) • -h
0

(p) 
4
:~ (h-y) e -is(h+y) [r ( ¾ ) h ¼ (-is)¾+ o(¾ )}+ o(¾is(h-yl), 

s 

~
2
(s, Y, p) = h

0
(p) 

4
:: (h-y) e -is(h+y) ~ ( ¾ )h¼ (-is)¾+ o(¾)] +o(¾ i•(h-yl), 

s 

(cont . ) 
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= b (p)£ e -is(h+y) O fJ.....) + o(.!.eis(h-y)) 
0 4 k2 \s3 s 

s 

(1. 51) 

~ 
1 
(s, y, p) = -h

0
(p) ~~: (h-y) e -is (h+y+ ( ¾ )h¾ (-isf¾+ o(¾)] + oC eis(h-y)), 

s 

Adding u
1

, u
2 

and u
3

, v
1

, v
2 

and v
3

, it is easily seen that the low­

-is(h+y) 
est order terms containing e cancel each other. This cancel-

lation appears to occur for all orders in . s. The terms of o(¾eis(h-y)) 

will be exponentially small for y<'h. Therefore, u
1

, u
2

, u
3

, v
1

, v
2

, 

and ';
3 

will not contribute to the solution as x - 0. 
:::,. :::,. 

It remains to approximate u
4 

and v 
4

. Integrating f E (s, y, p) 

and f G (s, y, p) by parts and approximating yields 

(1. 52) 
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The other terms can easily be approximated to give 

( 1. 53) 

From ( 1. 51) through ( 1. 5 3), it follows that 

~(s,y,p) 0 y} -
1 

n 2 
s 

neven 

(cont. ) 



~(s,y,p) 

co 

- I 
n=2 
neven 

neven 

a (p) cos 
n 

39 

J 1 fa e Y -+ -n 2 2 
S C 

s 

2 
b (p )(k - 1) 8 cos 

n n 

The s-x Laplace transform can now be easily inverted, giving 

-;(x, y, p) 

co ( 2 ) x
2
e + ) a (p) .!s......:._! __ n 

n'·--=: 2 n k2 2 
sin 3 

8 y + O(x ) 
n 

.p.even 

cos 

+..!.( l+y/hfi -2-¼J _ ~ b (p)(k
2 

-1) 8 cos 
4 L 2 n n 

n= 
neven 

( 1. 54) 
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Differentiating with respect to x, (1. 55) yields the same Laplace 

transformed strains at the base as were assumed in ( 1. 16 ). The co­

efficients a (p), a (p), b
0

(p) and b (p) are givenby(l.28)andTableI. 
O n n 

Substituting these into (1. 55) and inverting gives 

u(x,y,t) 

v(x,y,t) 

00 

+~ 
,: _ .) 

n=2 
n even 

A X cos 
n 

neven 

2 
B (k -1)8 cos 

n n 

B sin 
n 

for x small and t large. Substituting the displacements from (1.56) 

into (1 . 1), it is easily seen that they satisfy the displacement equations 

of motion to lowest order in x. 

The near field solution is not singular for x > 0 when y = h. 

This is clear from (1.37) if it is noted that fE(s,y,p) and f 0 (s,y,p), 

:::,. ""' 
and hence u

4 
and v 

4
, involve only integrable singularities. Since for 

y = h, Hy= H, Ry= R , etc., fE(s,y,p) and fG(s,y,p) can be 
Q' Q' Q' Q' 
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approximated using (1. 45) and (1. 48), giving 

( 1. 57) 

Also, 

( 1. 58) 

~ n/2 [an(p) 2 
fH(s,h,p) = L (-1) - 2- - bn(p)(k -1) 

n=2 s 
neven 

while f K (s,h,p) is given by the last of (1. 53). From (1. 57), (1. 58) 

it follows that 

( 1. 59) 

00 -I (-l)n/lbn(p){k
2
-1)8n-\-

n =2 s 
neven 

Substituting for the coefficients a 0 (p), an(p), b0 (p) and bn(p) from 
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( 1 . 28) and inverting yields 

u(x, h , t) 

(1.60) 

v(x , h,t) = ~ ( - 1t12 1A x-B (k:-l ) 
J.-;;z Ln n 
neven 

If (1-y/h) gets small at the same rate as x does , the b e h avi or 

of ( 1. 60) is in agreement with that of ( 1. 56 ) . The singular te r m s in 

(1. 56), of course, get large as y ~ h which is not consistent with thei r 

absence at y = h. As Miklowitz shows in [ 2], through furthe r 

parts integrations of fE (s,y,p) and fG(s , y,p), a series of sing ular 

n n-~ 
terms (valid for small x) of the form x /(1-y/h) 4 are obtained for 

""' ""' u 
4 

and v 
4

. These terms alternate in sign (cf .(54) in [ 2]) and must 

cancel the singular term in ( 1. 56 ). It follows then , that for the leadin g 

singular term in ( 1. 56) to represent u, x must vanish at a f aste r r a te 
1 

than ( 1- y/ h) 4 does , i.e., the asymptotic solution , ( 1. 56) is limited t o 

smaller and smaller x values as the corner at y = h is appr oache d. 

Otherwise the use of additional terms involving 
3 5 

X , X , . . . ' will be 

needed, which will still have limitations as y gets closer and close r to 

h. 

b. Inversion by Residue Theory for the Domain h< x<< est 

::,. ""' 
The doubly transformed displacements u(s, y, p) and v(s, y, p) 

are even functions of a, and /3; thus they have no branch points in the 

s-plane, and as a result they can be inverted solely by residue theory . 
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s .(p) is defined as the roots of 
J 

L[s.(p),p] = 0 
J 

Then the poles of ~(s,y,p) and ~(s,y , p) are 

and 
s = 0 

s=s.(p) 
J 

(1. 6 1) 

where, as a result of the boundedness condition, ( 1. 14), Re[ s. (p)] < 0. 
J 

This gives 

u. ~ u. ( ) 
u.(x,y,p) = R 

1
(0) + /_, R. 1 s.(p) 

1 • 0 J J 
J = 

V. CO V 

v.(x,y,p)=R 1 (0)+ \ R.i(s.(p)) 
1 L J J .. 

j = 0 

"" sx and v.(s,y,p) e , respectively, at the pole s.(p). 
1 J 

(1.62) 

Now ~
3

(s,y,p), ~
3
(s,y,p) and ~

4
(s,y,p) have no poles in the 

s -plane and the only pole of ~ 
4 

( s, y, p) comes from the pole of 

fK(s,y,p) ats=O. Therefore 

(1.63) 
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On the other hand, the othe r doubly transformed displacements 

do not have a pole at s = 0. They do, however, have an infinite numbe r 

of poles at the modes s = s.(p) , Re[s.(p)] < 0. 
J J 

Lowest Mode Contribution 

First consider the contribution of the lowest mode to the solu­

tion. From (1. 21), for p small, the lowest mode is given by 

y -~ - yz;-;-
p g 

Of these, only the roots s
0

(p) = -(l±i) y will have non-zero residues. 

By definition 

= limit ( s - so(p)) 
S-+s

0
(p) \ 

Expanding R:i(s 0 (p)) gives 

~.(s,y,p) 
1 

~.(s,y,p) 
1 

sx 
e 

Expa nd L(s, p) rn a Taylor s e ri e s about s = s 0 (p). Then, since 

( 1. 64) 
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Along a mode of the Rayleigh- Lamb frequency e quation, 

Therefore 

dL -- ~Ls d oL d 0 u s + op P = 

(1. 65) 

L(s, p) = 0. 

( 1. 66) 

After a considerable amount of algebra, it can be shown that 

(1.67) 

(1.68) 

Combining (1. 66) through (1. 68) gives 

( 1. 69) 

Write 

" f A(s,p) = fA(s,p) + r A(s,p) 

where (cont.) 
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cosh CY h(S -T ) + 2 f3 cosh f3h(SA-T )} 
CY CY ~ f3 

( 1. 70) 

Then the following approximations are valid for s = s
0

(p) and p small 

{

cosh CY y} -· 2 
= 1 + O(p) y 

coshf3y 

(1. 71) 

{

sinh CY Y} 3 3 
. = is

0
(p) y + O(p~) y 

srnh f3 y 

(1. 72) 

Equations (1. 69), (1. 70) and (1. 72) are now used to give 

( 1. 73) 
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was. First let 

where (1.74) 

f, (s, p) = - :~ h 0 (p) {zs 
2 

sinh a, h (Sa, -T) - ( 2s
2 

-k!) sinh ~ h (S~-T ~)} , 

s 

Approximating gives 

fc(s 0 ,p) = -n!Z [(-J/'/2bn(p)( + an(p)O(p½)] 

neven 
(1. 75) 

Combining all these yields 
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n even 

1 1 
+ O( 1) + a

0 
(p) O(p2 ) + an (p) O(p1: ) + b

0
(p) O(p) (1. 76) 

The total contribution of the pole at s
0 

(p) to u(x, y, p) can be found by 

adding R:
1
(s

0
(p)) from (1. 73) to R:

2
(s 0 (p)) from (1. 76). Set the sum 

of the last term in (1. 73) plus the last term in (1. 76) equal to ¾~ 0 (p)) , 

i.e . , 

( 1. 77) 

Approx imating R~(s
0

(p)) g ives, after a great deal of algebra, 

( 1. 78) 

Then from (1. 73), (1. 76) and (1. 78), 
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{ 

oo } 2 3 u - .!. 5 k s (p) s ( ) x 
Ro(so(p)) = -2 4 7 bo(p) + \ (- l)n/2 b (p).3_ o hy e o P 

L n n1r 4 k2 
n::: 2 
n even s 

(1. 79) 

Now we substitute the coefficients a 0 (p), an(p), b 0 (p) and bn(p) from 

( 1. 28) into ( 1. 79). Then, from the boundedness equations (the first and 

second equations of ( 1. 29)), the following equations hold: 

ao(p) 
AO VO 

= = --2-
,./p cs y 

00 n 
2b -¼ 5 +l (-1) 2 n(p) VO 

Ak
2

~1 -v) 
-2 - b (p) = - --7 0 

n=2 
n1r cdp 

neven 

Using these relations, (1. 79) reduces to 

( 1. 80) 

Define the contribution to u(x, y, p) by the lowest mode by 

~l(x,y,p). Then uL(x,y,p) = R~[(-1 +i)y]+R~[-(l+i)y]. Evaluating 

this expression gives 
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-L 
u (x,y,p) (l.81 ) 

The lowest mode contribution to v (x, y, p) is calculated the 

vi I \ 
same way. Starting with the second of ( 1. 64), R 0 \ s 0 (p) ) is expanded 

using the same approximations as were used to calculate 

The only new approximations needed are 

The lowest mode contribution, ~L(x,y,p) , is 

-L VQ y 
v (x,y,p) = 2 (cosyx+sinyx)e- x + O(p). 

p 

Contribution of the Complex Segments of the Higher Branches 

(1. 82) 

(1. 83) 

For the higher modes, s.(p) == s., j 2 1 where s. is a com-
J J J 

plexconstantsatisfying(l.22). For s. to be a pole, Re(s.) must be 
J J 

negative. Let 

A 

s. 
J 

(1. 84) 

where 
,.R ,.J 
s. and s. are real, positive numbers. 

J J 
It can easily be shown 

that 
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R~'i (s.) 
J J 

K.(y) ±."I ... Rx 1··· 1s.x -s. 
= p e J e J (1. 85) 

where, for a given mode s., K. (y) is only a function of y. So the 
J J 

higher modes give edge waves that decay exponentially with x. From 

Hillman and Salzer, [lo], the smallest sf is st = 3. 7488/h. So the 

decay of the higher modes contribution is quite rapid and they may be neg­

lected for x/ h greater than about one. Their contribution is quite impor­

tant, however, for x small where they supply the difference between the 

near field asymptotic solution and the lowest mode contribution. 

Since the higher modes will not contribute for x/h > 1, in this 

region, from (1. 63), (1. 81) and (1. 83) we have that 

u(x,y,p) 
2v 1 0 -yx -~ = - 2- y y sin y x e + O(p ) 
p 

( 1. 86) 

From the second of ( 1. 2), 

cr (x,y,p) = µ (k -2)u (x,y,p) + k v (x,y,p) 
[ 

2 - 2- ~ 
yy X y 

Differentiating (1. 86) gives, to lowest order in p, 
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u (x,y,p) 
X 

2vo 2 = -y y y (cos yx - sin yx)e-yx 
p 

( 1. 87) 

Now the O(p) terms in v(x, y, p) are of two types. First there are the 

terms that come from retaining more terms in the approximations that 

wereusedfor £A(s
0
,p), f 8 (s

0
,p), fc(s

0
,p), f 0 (s

0
,p) and 

[
oL I ( )]- l These terms will be _independent of y. Secondly, os s = so p • 

there are the terms that come from retaining additional terms in the 

approximations for I)s
0
,y,p) and J)s

0
,y,p). Some of these terms 

will come from keeping the second term in the expansions for cosh o- y 

and cosh f3y. 

. 1 2 tiona to y 

The first of ( 1. 71) shows that these terms will be propor­

The refore 

v (x, y, p) = y O(p) 
y 

Now, from the boundary conditions a (x, ±h, p) = 0. Since o (x, y, p) 
yy yy 

is linear in y, it must be zero everywhere. Therefore, using (1. 87), 

it can be shown that 

v (x,y,p) 
y 

(1. 88) 

to lowest order in p, i.e., o(½). Keeping the next highest order 
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terms gives, for p small, 

cr (x, y, p) = 0( 1) 
yy 

From the first of ( 1, 2) 

Substituting from (1.87) and (1.88) gives 

Similarly 

a (x,y,p) = µ[u (x,y,p) + V (x,y,p)l 
xy y X j 

( 1. 89) 

( 1. 90) 

From (1.86), to lowest order in p, u (x,y,p) = -v (x,y,p). So the 
y X 

3 

O(p-~) terms cancel. Keeping the next order terms gives 

1. 

ax/x, y, p) = O(p-r:) (1.91) 

As (1. 89) through (1. 91) show, 

for long-time provided f > 1. 

o (x,y,t) will be the dominant stress 
xx 
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Inversion of the Time Transform 

X 
Behind the body wave fronts, but for h > 1, the time Laplace 

transformed displacements for the residual problem are given by (1. 86) 

and the transformed stresses by (1. 89) through (1. 91). To obtain the 

VQ 
solution to the original problem, the term 2 must be added to 

p 

v(x, y, p) in ( 1. 86). The displacements and stresses are then inverted 

using the tables in Abramowitz and Stegun, [ 11]. This gives, for t 

large 

U(x Y t) - 4v Y I t 
' ' - 0 y2TTC r 

p g 

CT (x, y, t) = 0 yy 

-· 

~in t, + %'1 (1-2C2 (t>) )} o(¾) 

Here C
2

('6) and S
2

('6) are the Frenel integrals defined by 

( 1. 92) 

( 1. 93) 

(cont.) 
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D. 

s2 (<'>) = }z:. Jo ";.-z dz ( 1. 94) 

2 
X 

D. = 4c r t 
p g 

X 

Tl = J2rrc r t 
p g 

The displacement at the centerline, 

( 1. 95) 

Cd 
-- v(x, 0, t), and the stress 
v

0
h 

Cd h 
at Y = h, v Ou o x)x, 2, t), we re calculated for two times t = 100 th and 

t = 400th where th= h/cd. The displacements are graphed in Fig. 4 

and the stresses in Fig. 5. Observing the stresses in Fig. 5, it is seen 

that the shortest wavelength (highest frequency) waves lead in the disturb­

ance, progressively becoming longer and longer as x decreases for a 

given time. But since the solution is valid only for low frequency, the large 

x response in these curves is inadmissable. For t = 100 th, the re­

gion x>s 100 has arbitrarily been ruled out. Since (1.92) and (1.93) 

are not valid for x < h, the solutions graphed in Figs. 4 and 5 only hold 

' in the region h < x < !;, 100 for t = 100 th. Similarly, for t = 400 th, 

the solutions hold in the region h < x < x
400

. It is clear, therefore, 

that as time increases the solution is valid for larger and larger x. 

As was mentioned earlier (see discussion following (1. 34)), the 

problem can be solved approxin1ately using Euler- Bernoulli approxi-

mate theory. When this is done, (1. 92) results for the displacements 
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and (1. 93) for the stresses except that the order terms are missing. 

So for long-time in the region x > h, the Euler-Bernoulli approximate 

theory gives the dominant terms in the solution. In the region 

0 ~ x < h, the exact solution differs from the approximate solution by a 

series of terms that decay exponentially with x. At the base, x = 0, 

the Euler-Bernoulli approximate theory gives the total moment and the 

net shear force to lowest order in t. However, it must be emphasized 

that it gives no information at all about the important singularities at 

the corners y = ±h, x = 0. 
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II. THE FINITE PLATE 

1. Formulation, Formal Solution and Entirety Condition 

Once the semi-infinite cantilevered plate problem has been 

solved, the problem of a similar finite cantilevered plate, built-in at the 

base (x = 0) and stress free at the other end (x = £), can be solved for 

the long-time response. The plate is depicted in Fig. 6. The problem 

is formulated in exactly the same way that the semi-infinite plate prob­

lem was, i.e., with the displacement equations of motion, (1.1), the 

stress-strain relations, (1. 2), the initial conditions, (1. 3), and the 

same boundary conditions at the base (x = 0) and on the plate faces 

(y = ± h), (1. 4). The only changes are that the radiation conditions, 

( 1. 5), are replaced by 

a (£,y,t) = a (£,y,t) = 0 for -h ~ y ~ h, t ~ 0 
xx xy 

( 2. 1) 

and that 

u(x, y, t) = v(x, y, t) = 0 for x > £, -h < y ~ h, t ~ 0 (2. 2) 

In the work that follows, it will be assumed that the length of the plate, 

£, is greater than the width, 2h. 

As before, the problem is decomposed into a rigid body motion and a 

residual problem. The residual problem will still satisfy the initial and 

boundary conditions, (1. 7) and (1. 8), but now the radiation condition, 

(1.9), is replaced by (2.1). 

To derive the formal solution, first use the one-sided Laplace 

transform with respect to t, parameter p. Transforming the 
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displacement equations of motion, (1. 1), gives 

2- 2 - - 2-
k u (x, y, p) + (k - 1) v (x, y, p) + u (x, y, p) = ks u(x, y, p) 

xx xy yy 

(2. 3) 

2 - 2- 2- VO 
v (x, y, p) + (k - 1) u(x, y, p) + k v (x, y, p) = k v(x, y, p) + - 2 XX yy S C 

s 

VO 
where the 2 term comes from the non-zero initial condition in ( 1. 7). 

C 
s 

Noting (2. 2), introduce the one-sided finite Laplace transform with re-

spect to x, parameter s, defined by 

p_ 

';;'(s, y, p) = J u(x, y, p) e -sxdx 
0 

Transforming (2. 3) gives 

d
2

';;' 2 d~ ~ 2 2 2)= - 2 (s,y,p) + (k -l)sdy(s,y,p) + ks -ks u(s,y,p) = g(s,y,p) 
dy 

d v k - 1 a';;' s - ks """ 
dyz (s,y,p) + (-;;z-)•dy(s,y,p) + kz v(s,y,p) = h(s,y,p) 

2:::,,. 2 ~ 2 2) 

where 

(2. 4) 

(2. 5) 
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1 [-h(s, y,p) = k 2 sv(O,y,p) +-; (O,y,p) + 
X 

2 - VO] (k-l)u (0 , y ,p)+-2 y SC 
s 

1 [- - 2 --2 sv(£,y,p) + v (£, y,p) +(k -l)u (£,y ,p) 
k X y 

( 2 . 6) 

Equation (2. 5) has exactly the same form as (9) in [ 5]. Solving thi s 

equation once again yields (1. 10) through (1. 12) for the formal solution 

where g(s,y,p) and h(s,y,p) are now given by (2.6). 

In [ 12], Widder proves that the function 

b 

I - st 
f(s)= e da(t) 

a 

is entire . Comparing with the first of (2. 4) shows that ~(s, y, p) and 

~(s, y, p) can have no poles in the s- plane . 

For the semi-infinite waveguide it was only necessary to rule out 

the poles in the right half s- plane , i.e. for Re[ s /P)] > 0 whe re 

was defined by (1.13). Now if s.(p) satisfies (1.13) , so do s'.(p), 
J J 

s. (p) 
J 

-s .(p) 
J 

and -s'.(p). Two of these will have real parts greater than zero and two 
J 

will have negative real parts. For the finite waveguide it is necessary 

to set the residue of all four of these roots equal to zero. This gener­

ates an entirety condition which finally will determine the transformed 
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their conjugates. 
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So ( 1. 14) now must hold for s .(p) and for - s .(p) and 
J J 

This gives four coupled integral equations for the edge 

unknowns at x = 0 and x = £. These allow four of the edge unknowns, 

two at each end, to be calculated. The boundary conditions on the ends 

of the plate can now be used to completely determine the rest of the 

transformed edge unknowns and hence the formal solutiop. 

2. Forms for the Edge Unknowns from Euler-Bernoulli Approximate 

Theory 

In the theme of the earlier work. by Miklowitz and Sinclair, [4] 

and [ 5], representations will be set down here for the transformed edge 

unknowns. They will be found from the Euler-Bernoulli theory since 

then they would be expected to be at least a part of the total representa­

tions for the edge unknowns for long-time. 

To solve the entirety equations, it is necessary to assume forms 

for the edge unknowns at x = 0 and at x = £. The same representa­

tions for the unknown strains at the base will be used as were used for 

the semi-infinite plate problem. Sinclair and Miklowitz showed in [ 5] 

that, for an antisymmetric plate with both stresses prescribed on the 

end, the edge unknowns agreed to lowest order in time with the forms 

found for them '.Ising Euler-Bernoulli approximate theory. It seems 

reasonable to expect similar behavior for the edge unknowns at x = .R.. 

for the present problem. 

The Euler-Bernoulli approximation to the present problem is 

forn,ulated in the usual way. The governing equations are 
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4 2 
8 v(x, t) + _l_ 8 v(x, t) 

n 4 2 2 n 2 ux c r ut 
p g 

8v(x, t) 
u(x, y, t) = -y Bx 

= 0 

2 
M(x, t) = -2h c 2 r 2 8 v(x, t) 

p g ax2 

Q(x, t) 

(2. 7) 

where M(x, t) and Q(x, t) are the net moment and the net shear force 

at x, respectively (see (1.31) and (1.33)). Initial and boundary condi-

tions are 

and 

v(x, O) = vt(x, 0) = 0 for x > 0 

v(O , t)=O 
X 

M(i, t) = Q(£, t) = 0 

for t ~ 0 

(2. 8) 

(2. 9) 

After Laplace transforming with respect to time and using the initial 

conditions, (2. 8), the first of (2. 7) becomes 



4- 2 
d v(x, p) + ____e__ -( ) = 0 4 2 2 V X , p 

dx c r 
(2. 10) 

p g 

Next, after finite Laplace transforming with respect to x as in (2. 4), 

(2 . 10) becomes 

[ 
2 ~ 4 ""' - - 2- 3-

s +-1:__2 2 v(s,p)=v (0,p)+sv (0,p)+s v (0,p)+s v(O,p) 
XXX XX X 

C r 
p g 

(2. 11) 

-[-;; (£, p) + s-;; (£, p) ·+ s 2 -;; (£, p) + s 3 -;;(£, p)]e -s£ 
XXX XX X 

Using the boundary conditions and the last two of (2. 7) reduces (2. 11) to 

""" v( s, p) -; (0,p) + s-; (0,p) • 
XXX XX 

(2 . 12) 

1,2- 3- 7 -s£ -r V )£, p) + S v(£, p)J e 

To obtain the doubly transformed solution, the edge unknowns, 

-;; (0,p),-;; (0,p),-;; (£,p) and -;;(£,p), must be found. Now, as was 
XXX XX X 

explained earlier, ~(s, p) must be an entire function of s. Therefore 

the numerator of (2. 12) must be zero whenever the denominator equals 

zero. Now the denominator of (2. 12) has zeros at s = ± (l±i)Y, 
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Y = J2t r Substituting into the nwnerator gives the following four equa-
p g 

tions for the edge unknowns: 

- - E 2- 3- ] -(l+i)y.e v (O,p)+(l+i)yv (O,p)+ -2i y v (£,p)+2(1-i)y v(£,p) e = 
XXX XX X 

3 
voy 

2(1-i)-2- , 
p 

- - [ 2- 3- ] -(l-i)y£ v {O , p)+(l-i)yv (O,p)+ 2i y v (£,p)+2(l+i)y v(£,p) e = 
XXX XX X . 

3 
Vy . 

2(l+i) ~ , 
p 

(2. 13) 

- - [ 2- 3- J (l+i)y£ v (O,p)-(l+i)yv (O,p)+ -2iy v (£,p)-2(1-i)y v(£,p) e = 
XXX XX X 

3 
voy 

-2(1-i) --2- , 
p 

- - • [ 2- 3- J {l-i)y£ v (O,p)-(1-i)yv (O,p)+ 2i y v (£,p)-2(l+i)y v(£,p) e = 
XXX XX X 

3 
voy 

-2(l+i) - 2-
p 

Solving (2. 13) for the edge unknowns yields 

~ 
D(p) 

(cont.) 
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Vo F1(n )1 
-;; (O,p)= ~ 

xx c r p D(p) 
p g 

-;;(£,p) = 
X 

2v 
- __ 0 H(p) 
v(f, p) - 2 D( ) 

p p 

2 2 
D(p) = cosh y P. + cos y P. 

E(p) = cosh y P. sinh y P. + cos y P. sin y £ 

2 2 
F(p) = cosh y £ - cos v £ 

G(p) = sinh y £ cos y £ - cosh y £ sin y £ 

H(p) = co sh y £ cos y £ 

(2. 14) 

(2. 15) 

(2. 16) 

The edge unknowns obtained here are for the original problem where the 

base of the plate has a constant velocity (see ( 1. 4a)). The residual 

problem is found by subtracting a rigid body motion v(x, t) = v
0

t from 

the original problem. So to obtain the edge unknowns for the residual 

2 
problem v 0 /p must be subtracted from v(.£, p). This gives 

- _ ___Q 2H(e) _ V [ ] v(i., p) - p2 D(p) 1 (2.17) 

Using the first of (2 . 15) and the second of (2. 7) shows that 
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voy 2i.E.l 
c r p y D(p) 

p g 

Solution of the Entirety Equations 

(2. 18 ) 

The estimates for u(f,y,p) and v (f,y,p) in (2.17) and (2.18) 
_ EB _ EB 

will be called u (£,y,p) and v (e,y,p) where the EB superscripts 

show how ti,e terms were found. To these estimates will be added a 

supplementary set of edge unknowns - distinguished by the superscript 

A - to account for the difference between the exact and Euler-Bernoulli 

theories. The exact theory forms for the edge unknowns are 

_EB _ A 

u(£,y,p) = u (£,y,p) + u (£,y,p) 

(2.19) 
_EB _ A 

v(.R,y,p) == V (£,y,p) + V (£,y,p) 

_A A 

where u (£, y, p) and v (£, y, p) are two additional unknowns functions 

of y and p. Each will be r e pre sented by a Fourier series in y with 

the p d e pendence incorporated into the s e ri e s coefficients. Now from 
_A 

the symmetry of the problem u (£, y, p) will be odd in y and hence will 
_A 

be represented by a Fourier sine series while v (£, y, p) will be even 

and represented by a cosine series . Quarter range Fourier series, 

similar to those used for the semi-infinite plate (see (1. 16)), will be 

used. Thus 

_A 

u ( £, y, p) 

co 
, ( ) . mry 

= ) c p sin Zh 
L - n 

n = 1 

(cont.) 
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00 

; \11, y, p) = do(p) + { dn (p) cos ~~y (2. 20) 

n = 1 

Later it will be shown that only the n even terms are needed to rep­

resent the edge unknowns. 

Differentiating u(£,y,p) and ;(.R.,y,p) withrespectto y gives 

(2. 21) 

00 

v (£, y, p) = - \ ~~ d (p) sin ~~y 
y l 

1 
n 

n= 

Now use is made of the boundary conditions at x = P.. From ( 1. 2) and 

( 2. 1) 

- [ 2- 2 - l 0 (£, y, p) = 0 = µ k u (£, y, p) + (k - 2) v (£, y, p) . 
XX X y ., 

(2.22) 

Therefore 

- (k
2 

- 2) 
00

1
-. nTT n ux(£, y, p) = -2- . 2h d (p) sin 2TThY 

k n -~ 1 n 
( 2. 23) 

Similarly, the other boundary condition, 

cr (£,y,p) = 0 = u[u (£,y,p) +; (£,y,p)-, 
xy _ y X j 

( 2. 24) 
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implies that 

00 

-:;;. (1, y, p) = v O G((p)) _ ) mr c (p) cos nrry 
x c r p y D p ,__ 2 h n 2h 

P g n = l 
(2. 25) 

The boundary conditions at y = h, from ( 1. 8b) and ( 1. 2), are 

(2. 26) 

Letting x .... £ and combining (2. 2 2) and (2. 2 6) shows that 

v (£,h,p) = ;- (P.,h,p) = 0 . 
y X 

(2. 27) 

This corner condition suggests that only the n even terms be used for 

the series in (2. 23) and in the second of (2. 20) and (2. 21). The other 

boundary condition at y = h does not restrict ;- (.£, h, p) or -:;;. (£, h, p). 
y X 

Therefore, the series may contribute at y = h and so the n even 

terms should be used in the Fourier series for these edge unknowns. 

In summary, the following forms will be assumed for the edge 

unknowns 

;-(0,y,p) = ;- (0,y,p) = -:;;.(O,y,p) =-:;;. (0,y,p) = 0 
y y 

0) 

;-x(0,y,p) = b
0

(p{(l-y/hf¼-(l+y/hf¼+ 2-¼y/h] +J=
2 

bn(p) sin n2rrhy 

neven 

(cont..) 
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CX) 

;)O,y,p) = ao(p) + I an(p) cos ~rr: 

n=2 
n even 

co 

~(1!, y, p) = VoY .QJEJ_ l ( ) . nrry 
D( ) + en p srn 2h 

cpr gp y p n = 2 

~ (£, y' p) = y 
VO _gJpj_ 

c r p y D(p) 
p g 

n even 

CX) 

\ nrr ( ) nrry 
+ l 2h en p cos 2h 
n=2 
n even 

;:;y, y • p) = ~k:22) I 2 ~~ dn (p) sin ~nhy 

VQ 
;(1,y,p)=z 

p 

n even 

l2H(p) _ J 
L D(p) J 

CX) 

+ I dn (p) cos ~rrhy 

n=2 
n even 

; (£, y, p) 
y 

\' nrr d ( ) s1'n · mry 
= - )_ 2h n p 2h 

n=2 
n even 

.Qi.el 
D(p) 

co 
_ \' nrr ( ) nrry 

l 2h c n p cos 2h 
n=2 
n even 

(2. 28) 

The unknown coefficients a
0

(p), an(p), b
0

(p) and bn(p) here will differ 

from the values found for them for the semi-infinite plate case. 

The ecige unknowns from (2. 28) are substituted into (2. 6) to give 



72 

g(s,y,p) and h(s,y,p). Substituting these into the entirety equations, 

(1. 14), and integrating using (1. 17) yields the following infinite set of 

algebraic equations: 

00 

a
0

(p)M?(s.,p) + )' a (p)M1:(s . ,p) + b
0

(p)N?(s.,p) 
J J n~2 n J J J J 

n even 

oo -s.£ 00 

+ \ b (p) N1:1(s., p) + d
0

(p) P?(s., p)e J + \ [c (p) 01:(s., p) 
n~2 n J J J J n~2 n J J 
n even n even 

-s.£ -s.£ 
n ] J J + d (p)P. (s.,p) e + Q.(s.,p) + R.(s.,p)e 

n J J JJ JJ 
= 0 

(2. 29) 

0 
plus a similar set with sJ.(p) replaced by -s.(p). In (2. 29), M. (s., p), 

J J J 

n O n 
M. (s.,p), N. (s . ,p), N. (s.,p) and Q.(s.,p) are exactly the same as in 

J J J J J J JJ 

( 1. 1 9) while 

n O.(s.,p)--
J J 

p/2 
(-lJ 28 s.Y.(s.,p) 

n J J J 

k2 
0 s 

P. (s.,p) = - 2 Y.(s.,p) 
J J r3. J J 

J 

(2.30) 

( cont. ) 
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R.(s.,p) 
J J 

_g_{_p_)[2(k
2
-l)s. 

D(p) /3~ 
J 

Y.(s . , p) 
J J 

where Y.(s.,p) is as in (1.14). 
J J 

Y.(s.,p)H(p) 
J J 

D(p) 

Equations (2. 30) are approximated for p small, just as was 

done for the semi-infinite plate. For1;,he lowest mode, s
0

(p) is given 

by ( 1. 2 1), i. e. , s 0 ( p) = ± ( 1 ±i) y, y = /zc Pr . Approximating 
' p g 

( 1. 1 9) and ( 2 . 3 0) for s = s 
O 

( p) and p s m all y i e 1 d s ( 1. 2 3 ) for 

0 n O n 
M 0 (s

0
, p), M

0
(s

0
, p), N

0
(s

0
, p), N

0
(s

0
, p) and Q

0
(s

0
, p) while for the 

other terms the following results: 

3h3 so 5 
+ O(p~) 

7 

(cont.) 
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5 

+ O(p2) 

(2.31) 

For the higher modes s. (p) 
J 

,.. 
= s . ' 

J 
j ~ 1, where s. satisfies (1. 22). 

" J 

Approximating now gives (1. 24) for M?(s., p), M~(s ., p), N?(s ., p), 
J J J J J J 

N~(s., p) and Q.(§., p) while for the other terms the following results: 
J J J J 

/2 2 " " 
,.. ( - l f1 ( k - l) 8 s. tan s. h 

01:" ( s . , P) = - n 2 + 0 ( p 2 ) 
J J 4( 2 ,.. 2) 

0 ,.. 
P. (s. , p) 

J J 

k fl -s. 
n J 

p/2 2 ,..2 2 
(-1 J (k - 1) 4s. 8 tan 

n " n 
P.(s ., p)= 2 

J J 4( 2 "2) k 9 - s. 
n J 

;,h 2 
+ O(p ) 

(cont.) 



A 

R.(s.,p) 
J J 

2v
0 

tan ;_h 

+ 2 
C 

s 
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2 tan s.h 
A 

s. 
J 

(2.32) 

.!iLE2. + 0 ( 2 ) 
D(p) p 

To solve this infinite set of algebraic equations, assume that the 

unknown coefficients are of the form 

B 
b - _Q_ !1el 

O(p) - p D(p) 

B 
b ( ) _ _E_EJ.El 

n p - p D(p) 

C (p) 
n 

= en !1el 
p D(p) 

D 
d (p) = _Q_ B..e.l 

0 p D(p) 

D 
d () =-E.B..e.l 

n p p D(p) 

(2.33) 
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where A 0 , An, B 0 , Bn, Cn, D 0 and Dn are independent of p and 

D(p), E(p) and F(p) are defined in (2. 16). Substituting into the fo u r 

equations obtained from s = s
0

(p) = ±(l±i) y and neglecting all but the 

lowest order terms in p yields 

(2 . 34) 

Substituting the four roots s
0

(p) into (2. 34) and multiplying both sides 

of the resulting equations by cd
2 

/hc
2

r
2 

gives the following equations: 
p g 

+ [-2· 2 ~2yv0 G(p)~ 1 Y 2 D(p) 
p 

3 
voy 

= 2(1-i)-2-

P 

(_ 6 AO E(p)\ + ( 1-i) (Mk2 6 ~ !:..(£)_) + [2i 2 (2yv O 9iP.2.) 
\ Jp D(p)/ y \ p D(p) y p2 D(p) 

( cont. ) 
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-2( l+i) y
3 c:o ~~~:)] exp [( 1-i) y i] 

[
2 • 2(

2
Yvo Qil?.l) 1 y 2 D(p) 
p 

3 
. voy 

= -2(1-1)-2-

P 

+ [2 • 2(
2

yv o ~) 
i y 2 D(p) 

' p 

3 
vo y 

= -2(1+i)-
2
-

p 

00 n 2B 
_ -1_ 5 \ (-l)2 n 

M = -2 4 7 BO+ nf 2 mr , and 

n even 

2 
C 

s 
6 = 22 

C r 
p g 

(2. 3 5) 

Comparing (2. 3 5) with (2. 13) shows tha t they are identical provided 

A 
- o_Q ED((p)) =v (O,p) , 

.jp p XXX 

(cont.) 
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2v O H(p) 
-2 D(p) = v(£, p) 
p 

(2. 36) 

Substituting the solution of (2. 13) for v (£, p) and v(.£, p) from (2. 15) 
X 

shows that the last two of (2.36) are satisfied identically. This shows 

that, for long-time, the dominant terms in the edge unknowns at x = £ 

will be in agreement with those given by the Euler-Bernoulli approxi­

mate theory. The first two of (2. 36) are not satisfied identically be­

cause of the singularities at the corners . Substituting (2. 14) into the 

first two of (2. 36) gives 

A = 0 

00 n 
_ .1. 5 \' 

-2 4 _7 B + ) 
0 L 

n=2 

2 2B v / 2 (-l) n = 0 _,,, __ 
mr cd 'v3k

2
(1-v) 

neven 

So the four equations coming from the lowest mode have been reduced 

to two, which it should be noted are identical to the first two bounded­

ness equations for the semi-infinite plate, (1.29). 

For the higher mode s, s = s.(p) = s., j ~ 1, where s. is a 
J J J 
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constant which satisfies (1. 22). Now, if s. 
J 

is a root, then I., -s. 
J J 

and -I. will also be roots where I. is the 
J J 

complex conjugate of s .. 
J 

Since we are setting both the real and imaginary parts of (2. 29) equal 

to zero, it is only necessary to use two of these roots, 

Consider a root s. in the first quadrant, i.e. 

s. and -s . . 
J J 

J . 

,. ,.+ 
s. = s. 

J J 
,. R + . ,.I = S. 1 S. 
J J 

(2. 38) 

-h ,.R d ,.I w ere s. an s. 
J J 

are real, positive numbers. Then, for this root, 

using (2. 33) for the unknown coefficients and retaining only the lowest 

order terms in p, the entirety equations become the following set of 

algebraic equations: 

00 

(,. + 
s. , 

J 
p) + \ ~ A M1: ( s: , p) + B N1: ( s:, p) ] 

/~ 
2 

,_ n J J n J J 
n= 
n even 

(2. 39) 

oo • ,.I ,.Rn} r + + -1s.£-s. x 
+ \ · C 01: ( s . , p) + D ef.1 ( s . , p)] e J e J = 0 

L L n J J n J J 
n=2 
n even 

where M~(s':,p), N?(s":,p) and N~(s':,p) are as rn (1.24) and d:(s':,p) 
J J JJ J J J J 

and P1:(s":, p) are given by (2. 32). 
J J 

N e xt use s.(p) = -s": in the entirety equations. This will gener-
J J 

a te another set of algebraic e quations. Usin g (2. 33) for the unknown co-

efficients, retaining only the lowest order terms in p, and multiplying 
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,.+ n 
- s . ,t 

the resulting equations by e J gives the following set of algebraic 

equations: 

{R 
}{~ 

oo ~ • ,.In ,.R e O + + + - 1 s. x - s . P. 
- BON . ( s . , p) + ) ~A M1: ( s . , p) - B N1: ( s . , p 1 e J e J 

I J J ... • 
2 

n J J n J J 
m n= 

n even 
( 2. 40) 

00 \ r n ,.+ +L LC 0 . (s. , p) -
n~2 n J J 
n even 

As was mentioned earlier, the smallest s:l is 
J 

-s~ £ 

,.R 
s 1 = 3. 7488 h. 

Since P./h :::=>: 2, e J will be small. Neglecting the terms in (2 . 39) 

that are multiplied by e 
-s~ £ 

J shows that (2.39) reduces to the last of 

( 1. 29). Therefore, the coefficients An, B
0 

and Bn are given by 

Table I. Equations (2. 40) can now be reduced to 

oo • ,.I ,.R } - n + -1s.P. -s. P. 
-) 2AM.(s . ,p)e J e J 

-~ n J J 
n=2 
n even 

(2. 41) 

whe re the right hand side is known. The coefficients C and D can 
n n 

be dete rmin e d from (2 .4 1). Since the right hand side b e comes small as 



AR n 
-S . X 
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e J so will C and D . So the Fourier series parts of the edge 
n n 

unknowns at x = £ are small corrections to the Euler-Bernoulli terms. 

Once the edge unknowns have been found, g(s, y, p) and h{s, y, p) 

can be calculated from (2. 6). Any term that is multiplied by the shift 

operator, 
- s P. e , will not contribute to the solution for x< £. So, for 

0 ~ x< £, the doubly transformed displacements are once again given by 

( 1. 3 5) through ( 1. 39) where the coefficients are now given by (2. 33). 

Since the terms multiplied by e-s £ will not contribute for 

0 $'. x < £, the doubly transformed displacements will still have poles 

for x in this region. So the s-x Laplace transform can still be in­

verted by residue theory. The contribution of the pole at s = 0 is un­

changed from ( 1. 63). The contribution of the lowest mode is calculated 

in exactly the same way as it was in Chapter I giving ( 1. 81) for R~(s
0

(p)). 

Then using (2.33) and (2.35) gives, for a root s
0

(p), 

u( ) vo t s~(p) lliEl s;(p) F(p)l so(p)x -i 
RO sO(p) = -2 -sO(p) +-- D(p) - --3 D(p) ye + O(p ) 

I 4p y 2 y 

All four of the lowest mode roots will contribute to the solution. Sum­

ming the residues for each of the s
0

(p) gives 

;,t (x, y, p) = :: ~ {[(l+ ZEg,;;r(p)) sin y x + (1 - ~rnn cos y+-y x 

(2. 43) 

y x] ey j + O(p-i). +ii(l - 2E(p)- F(p)) 
~ D(p) 

sin y X - (1- !J.E.l) D(p) 
cos 
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Similarly, the lowest mode contribution to v(x, y, p) and to the stresses 

i~ given by 

?(x y p) = v O {1/1 +~) cos y x + /E(p)+F(p)) sin y x]e -y x 
' ' Zp2 ~ D(p) \ D(p) 

(2. 44) 

- [( E(15(:,(p)) cos y x - ~ - ~~~:) sin y x] e Y x}+ 0( I) 

(2. 45) 

0 L (x, y, p) = Q( 1) 
yy 

The higher mode roots with Re(s.) < 0 will once again give 
J 

edge waves of the same form as (1. 85). On the other hand, for the 

roots with Re(§.)> 0, exponentially increasing waves will result. Cal­
J 

culating the residues for these roots shows that 

- F(p) 
- pD(p) 

,.. u 
K. (y) 

J 

"'V 
K. (y) 

J 

00 

{ 
0 ,.. + • \ [A Mn ( "+ ) B

0
N. (s. , p) + / . s., p 

J J -- n J J 
n=2 
n even 

]} 
s~x s1:'x 

+ B N1: ( s :, p) e J e J 
n J J 

+ 0( 1) 
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Au "V 
where K. (y) and K. (y) are, for a given J, a function only of y. 

J J 

Using (2. 39) we have 

= 
F(p) 

pD(p) 

"u 
K. (y) oo 

J \ [ n + 
1 c o. (s. , p) 

n=2 n J J 
n even 

(2.46) 

+ -i s.
1
(£-x) -s:Z(.e-x) 

+ D P1:1 ( s . , p ) ] e J e J + 0 ( 1 ) 
n J J 

So the contribution of these terms will decay exponentially away from 

x = f. At x = f, summing up all of the residues should just give the 

Fourier series terms in u(£, y, p) and ~(£, y, p) in (2. 28). Since C 
n 

and D are small (see discussion after (2. 41)) these terms will be ne­
n 

glected. 

X 
So, for h > 1, the transformed displacements and stresses are 

given by (2. 43) through (2. 45). In the next two sections, these will be 

inverted in two different ways. The first method will show the solution 

as traveling waves while the second will bring out the vibrational form. 

4. Inversion of the Time Transform-Traveling Wave Form 

For the region away from the b2se but behind the body wave­

fronts the transformed displacements and stresses are given by (2. 43) 

through (2. 45). Of these, only ~(x, y, p) and the dominant stress 

a (x, y, p) will be inverted here. ~(x, y, p) can be inverted in the same 
xx 

way that ~(x, y, p) will be while the other two stresses vanish for 
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long-time. 

The traveling wave form of the solution is found by using the bi ­

nomial series expansion 

00 

= ) (-l)m 6 m (2. 47) 
~ ·=o 

to expand the denominator of the transformed solutia.n until a form i s 

obtained that can be inverted directly. Observing (2. 44) and (2. 45) we 

see that ~(x, y, p) has p
2

D(p) in its denominator while a (x, y, p) xx 

has pD(p). So it is necessary to expand D~p) which, from the first of 

(2. 15), is 

1 1 
D(p) = --2.,-------2-=---­

cosh y£+cos y£ 

Now by Lerch's Theorem, p can be required to be real and positive. 

2 
h 

cos y £ 
Then y £ will also be real and positive; ence 

2 
cosh y £ 

1 
(2. 4 7) to expand D(p) with t::. 

2 
cos y £ 

= 2 
cosh y £ 

yields 

< 1. Using 

(2. 48) 

Using the binomial series expansion, (2. 47), two more times gives 



1 
2 

cosh y P. 

This series can be reduced to 

Substituting this into (2. 48) yields 

1 
D(p) 

85 

(2 . 49 ) 

(2 . 50) 

. . -2k(m+l)v£ . 
The terms rn (2. 50) decay as e so for any given value of 

y £ only a finite number of terms will be needed to calculate the solu­

tion to a given level of accuracy. Note that as y P. gets smaller and 

smaller, corresponding to longer and longer time, more terms will be 

needed. 

Evaluating the first few terms in (2. 50) gives 

1 = 4{e- 2 Y1-(4+2cos 2yf)e- 4 Y1+(17+ 16cos 2 y £+2 cos 4 v f)e-b y £ 
D(p) 

(2 . 51) 

-(80+96 cos 2vl+24 cos4yl+2 cos 6yl)e-Svl }+O(e-!O y l) 

Using (2. 51) m (2. 44) shows that ~(x, y, p) has the form 



where 

-;(x, y, p) 

d::, 

= v O ~ T. (x, y, p) 
. L O J 
J = 

86 

- 1 [ ] - y (2i-x) T 1 ( X, y , p) = 2 2 CO s y X + CO s y ( 2.£- X) - sin y ( 2.£- X) e 
p 

(2. 52) 

T
2
(x,y,p) = -~ [2cos v x+4sin y x-2sin y (2.£-x)+cosy(21'+x) 

p 

+ sin y (2£+x)] e- Y ( 2 f+x) 

T
3

(x,y,p) = -~ [8cosyx+2sinyx+6cos y (2.£-x)-4siny(2i-x) 
p 

] - y (41'-x) 
+ 2 cos y (21'+x) +cos y (4£-x) - sin y (4£-x) e 

- = o(e- y (41'+x)) T
4

(x,y,p) etc. 

Inspection of (2. 52) shows that T 
O

(x, y, p) is exactly the same as the 

second of (1 . 89), i.e., T
O 

is just -; for the semi-infinite plate. So 

T
O 

will be a wave traveling in the positive x-direction. 

- - y (2£-x) 
T 

1 
(x, y, p) is proportional to e . So T 

1 
represents a 
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wave traveling in the negative x-direction. This wave is the reflection 

of T
O 

from the boundary at x == £. Similarly T 
2 

is the reflection of 

T 1 from the boundary x == 0 and is a wave traveling in the positive 

x-direction. The other T. 1 s represent further reflections from the 
J 

ends of the plate. 

At the base of the plate we have that T
0
{0,y,p):: 0 and 

T 
1
(0,y,p):: -T

2
(0,y,p), T

3
(0,y,p):: -T

4
(0,y,p), etc. So the dis­

placement changes sign when it reflects from the built-in end which is, 

of course, required by the boundary condition. 

The transformed normal stress, cr (x, y, p), xx 
can also be writ-

ten as a series of traveling waves. Using (2. 51) in the first of (2.45) 

yields 

cr (x,y,p) xx 

where 

(X) 

:: Vol U.(x,y,p) 
• 0 J J :: 

== Zuy [cosyx-sinyx]e-yx 
(1-v)c r p 

p g 

(l
2 µ{ [-2sinvx+cosy(2£-x) 
-V Cr p 

p g 

] -y (2£-x) + sin y (2£-x) e 

= ( 1 
2

) Y [ -4 cosy x + 2 sin y x - 2 cos v (2£-x) 
-v cprgp 

. ] -y (2£+x) 
- cos v (2£+x) + srn y (2£+x) e 

(2. 53) 

(cont.) 
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- = o(e-y (4f-x)) U3 (x, Y, p) etc. 

Note that U0 (x, y, p) is, once again, just the normal stress for the 

semi-infinite plate, (1. 90). Now we have that at the end x = P., 

normal stress at the end as required by the boundary condition. 

Equations (2. 52) and (2. 53) can be inverted by using the tables 

in Abramowitz and Stegun, [ 11] . This gives 

v(x,y,t) 

(X) 

=Vo) T.(x,y,t) 
. - ·o J J = 

(X) 

CT {x,y,t) = Vo j U.(x,y,t) 
xx · - o J 

J = 

where the outgoing wave is given by 

2 
6 = __ x __ 

0 4 C r t 
p g 

(2. 54) 

(2.55) 

Here C (6 ) and S (6 ) are the Frenel integrals which were defined 
2 0 2 0 

in (1.94). Inverting T
1
(x,y,p) and U

1
(x,y,p) shows that the first re-

flected wave is given by 
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= - 2t[C2(L~l)+ (2£-x) 
J2rrc r t 

p g 

+ 2 R e{4 c~r g [(2l- x)
2 

- x
2 

- 2i x (21-xJerfc z 1 

2t 
- - z 

Ji I 

U
1
(x,y,t) = 

(1- v ) c r 
2uy (2. 56) 

where 

p g 

2 
6 = (2£-x) 

1 4c r t 
p g 

Z = (2£-x)-i X 

1 
v 8c r t 

p g 

and erfc 1s the complementary error function. Inverting the other 

T/x,y,p) and D/x,y , p) yields terms that are similar to T 1(x,y,t) 

and U 
1 

(x, y, t). 

v{x, 0, t) is shown in Fig. 7 for the case f = 20 and t = 700 th 

where The outgoing wave and the first four reflections are 

shown. As can be seen, the fourth reflection is quite small so the fifth 
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and succeeding reflections will not contribute very much to the solution. 

The total displacement of the plate, which was obtained by adding up the 

outgoing wave and the four reflections is also shown. The stress, 

h 
CJ (x, -2 , t), is graphed in Fig. 8. The outgoing wave, the first three xx 

reflections and the total stress are shown. 

5 . Inversion of the Time Transform-Vibrational Form 

The Laplace transformed displacements and stresses, given by 

(2. 43) through (2. 45) for the region h < x < P. , can also be inverted by 

means of a contour integration and residue theory. As shown by 

Miklowitz in [ 9], for example, the long-time behavior of the solution is 

determined by the singularities of the transformed solution closest to the 

Bromwich contour. 

Observing (2. 43) through (2. 4 5), we see that the transformed 

solution has a branch point at p = 0 and poles wherever 

D(p) 
2 2 = cosh y P. + cos y P. = 0 (2. 57) 

Using l 'Hopital' s rule shows that p = 0 is not a pole of (2. 43) through 

(2. 45). A branch cut is made along the negative real axis and the branch 

1s chosen so that jp will be real and positive when p is. 

It can be shown that (2. 57) does not have any roots rn the half 

plane Re p > 0. Singularities in the half plane Re p < 0 will decay 

with time and can be neglected for long-time. Integrating over a small 

circle around the branch point at p = 0 shows that it also does not con­

tribute to the solution. The contributions of the integrals along the 
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branch cut will also decay with time. So it is only necessary to con­

sider the roots of (2 . 57) on the imaginary axis. 

Setting p = iw and substituting into (2 . 57) gives 

D(iw) = co sh P. j W cos P. J w + 1 = O c r c r (2. 58) 
p g p g 

Equation (2. 58) has an infinite number of roots corresponding to the nat­

ural frequencies of vibration of the plate . Note that if w is a root of 

(2 . 58), -w will be also. 

The first ten roots of (2. 58) were calculated numerically . The 

TTC 
s frequency was nondimensionalized by dividing by ws = 

2
h 

ing values for O = J&... are given in Table 2. 
ws 

The result -

The solution given by (2. 43) through (2. 45) is only valid for p 

small. Comparing the exact Rayleigh-Lamb frequency spectrum with 

the small p approximations, (1. 21) and (1. 22), that we are using, shows 

that the latter are valid for at least O ~ O ~ 0. 10. Selecting O = 0 . 10 as 

the highest admissible frequency, we see from Table 2 that for a given 

! ratio only a limited number of roots can be used. Note that the num ­

ber of allowable roots increases as ~ gets larger. 

The contribution of a pole at p = i w 
is given by 

to v(x, y, t) and a (x, y, t) xx 

v(x,y,p) 
limit 
p-+ i w (p- i w) 

a (x,y,p) 
xx 

pt 
e 

(2.59) 
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TABLE 2 

Natural Frequencies of Vibration for the Plate 

01 

02 

03 

04 

05 

06 

0.7 

08 

°'9 

O 10 

P. 
h 

w o =w 
s 

= 5 

0.084 

0.526 

1. 474 

2.889 

4.777 

7. 136 

9.966 

13.269 

17.043 

21. 290 

TT C 
s w = s 2h 

P. 
11 = 10 

0.021 

0. 131 

0.368 

0.722 

1. 194 

1. 784 

2.491 

3.317 

4.260 

5. 3 22 

P. 
h = 20 

0.005 

0. 032 

0.092 

o. 180 

0.298 

0.446 

0.622 

0.829 

1. 065 

1. 330 
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where v(x, y, p) and 0 (x, y, p) are given by (2. 44) and (2 . 45) respec­
xx 

tively. Substituting p = i1v into (2. 16) gives 

where 

E(i(J)) = (l;i) rinh 2r cos 2r + cosh 2r srn 2r] 

F(iw) = i sinh 2r sin 2r 

oD(p) 
op 

p=iw 

p_~ 
r =z.J~ 

p g 

i r 
= -..-

w [ sinh 2r cos 2r - cosh 2r sin 2r] 

Using (2.59) and (2.60) to calculate the residue yields 

[ J

-1 
V 

v.,.. 0 aD .. ,.. 2rx 2rx 
R (1 w) = -2 a I . A ll F(1 w) (cosh-p_- - cos -p_-) 

4w P p=1 cu 

( 1 ") E(" ") ( • • h 2rx • 2rx)} iwt - -1 1 w sin -- - sin -- e 
p_ p_ 

(2.60) 

(2.61) 

Combining this with the residue from the pole at p = -i w shows that the 

part of the displacement associated with the frequency w can be written 

as 

A 

vw(x, y, t) = V (x, y, w) sin wt 

He re V(x, y, w) is the mode shape which is given by 
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where (2.62) 

Similarly 

where 

d(r) -- sinh 2r cos 2r - cosh 2r sin 2r 

e(r) = sinh 2r cos 2r + cosh 2r sin 2r 

f(r) = sinh 2r sin 2r 

w a (x,y,t)=L(x,y,w)sinwt 
xx 

4vd1h 
L(x, y, ,~) = - 2 

(1-v) P. wrd(r) [ 

{. . 2r x 2r x) f(r) \cosh-P. - +cos-£-

( )( 
• • h2rx • 2rx)] -e r sin -£ - + sin-£-

' 

(2.63) 

The lowest mode shape for the 

shown in Fig. 9 for the the case ~ = 5 

displacement, V(x, 0, w1 ), is 

h 
while I:(x, 2 , w

1
) is shown in 

Fig. 10. These mode shapes agree with those found by Den Hartog in 

[ 13] using Euler- Bernoulli approximate theory. 

The near-field asymptotic solution, valid as x-+ 0, is obtained 

exactly as it was in Chapter I with the transformed displacements being 

given by ( 1. 5 5), i. e . , 
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+n !2 an (p) ~k: ;/) x:0 n sin 0nY + O(x3) 

n even 

O'.) 

-I bn(p)(k
2
-l) encos 

n = 2 
n even 

The coefficients a
0

(p), an(p), b
0

(p) and bn(p) are now given by (2. 32). 

Calculating the strains at the base of the plate shows that they are the 

base strains for the semi-infinite plate multiplied by a reflection func-

tion, i.e., 

- (0 ) = US! ( ) F(p) 
u X , y, p X y p D( p) 

- SI F(p) 
v (O,y,p) := v (y) () 

X X p D p 

(2. 64) 
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where u
31 

(y) and v 51 (y) represent the y dependence of the strains for 
X X 

the semi-infinite plate and are shown in Figs. 2 and 3 respectively. 

The transformed strains, (2. 64), can be inverted by using the 

s a.me methods as in the last two sections. Formally, we have that 

USI (y) 

L cosh2£ J2cp r - cos2£ J2c pr eptdp X 

1 p g p g = 
2TTi 

cosh2£ J2cp r +cos2.eJ2; r (0, y, t) vs' (y) p 
X X p 

p g p g 

(2. 65) 

As (2. 6 5) shows, the strains at the base, including the singular term, 

will be time dependent for the finite plate instead of constant as was the 

case for the semi-infinite plate. 



101 

REFERENCES 

[ 1] J. Miklowitz, "Analysis of Elastic Wavegui des Involving an 
Edge 11

, in Wave Propagation in Solids , ASME Publications , 
New York, 1969. 

[ 2] J. Miklowitz, 11 On Solving Elastic Waveguide Problems Involving 
Non-Mixed Edge Conditions", ONR Technical Report No . 5 , 
Contract Nonr-220 (57), NR-064-487, California Institute of 
Technology, Pasadena , California, August, 1967 . 

[ 3] J. Miklowitz, "Pulse Propagation in an Elastic Plate with a 
Built-in Edge", ONR Technical Report No . 7 , Contract Nonr- 220 
(57), NR-064-487, California Institute of Technology, Pasadena , 
California, May, 1968. 

[4] G. B. Sinclair and J. Miklowitz, -"Two Nonmixed Symmetric End­
Loadings of an Elastic Waveguide", International Journal of 
Solids and Structures,v. 11, 1975, pp. 275-294 . 

[ 5] G. B. Sinclair and J. Miklowitz, "On the Semi-infinite Elastic 
Waveguide with Nonmixed Antisymmetric End- Loads 11

, Proceed­
ings, Fourth Canadian Congress of Applied Mechanics, CANCAM 
73, c/o Division de Me'canique Applique', Ecole Polytechnique de 
Montre'al, C. P . 501, Snowdon, Montre'al, 1973. 

[ 6] M. Knein, "Der Spannungszustand bei Ebener Formanderung und 
Vollkommen Verhinderter Querdehnung", Abh. Aerodyn . Inst. 
Techn. Hochschule Aachen 7, 1927, pp . 43-62. 

[7] M. L. Williams, "Stress Singularities Resulting From Various 
Boundary Conditions in Angular Corners of Plates in Extension" , 
Journal of Applied Mechanics , 19 , 1952, 526-528 . 

[ 8] Ya S. Uflyand, "Survey of Articles on the Applications of Integral 
Transforms in the Theory of Elasticity", translated by 
W.J.A. Whyte, edited by I.N. Sneddon, North Carolina State 
University at Raleigh, Department of Mathematics, Applied Math­
ematics Research Group, Technical Report No . AF OSR-65-1556 , 
October 1, 1965 , pp. 126-156. 

[ 9] J . Miklowitz, The Theory of Elastic Waves a:rid Waveguides, 
North Holland Publishing Co., Amsterdam, 1977. 

[ 10] A . P. Hillman and H. E. Salzer, 11 Roots of sin z = z 1
', Philosophi­

cal Magazine,(?), v. 34, 1943, p. 575 . 



102 

[ 11] M. Abramowitz and I. A. Ste gun , Editors, Handbook of Mathemat­
ical Functions , National Bureau of Standards, Applied Mathemat­
ics Series, No. 55, 1964. 

[ 12) D. V. Widder, The Laplace Transform, Princeton University 
Press, Princeton, 1941, p. 57. 

[ 13] J.P. Den Hartog, Mechanical Vibrations, McGraw-Hill Book 
Company, Inc., New York, 1940. 




