Energy Efficient On-Chip Neural Feature Extraction for
Brain-Computer-Interfaces

Thesis by
Steven Patrick Bulfer

In Partial Fulfillment of the Requirements for the
Degree of
Doctor of Philosophy

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2026
Defended September 51 2025

© 2026

Steven Patrick Bulfer
ORCID: 0000-0001-9942-1195

Some rights reserved. This thesis is distributed under a Creative Commons
Attribution-NonCommercial-ShareAlike License

11

iii
To my wonderful parents, Joyce and Patrick,
For your support, love, sacrifice, and belief in me.
To my Aunt Mary,
For your constant care packages and messages that cheer me on.
To my friends and loved ones,

For helping me up when I get knocked down and keeping me laughing.

iv

ACKNOWLEDGEMENTS

My journey at Caltech has shaped me personally in ways I never even imagined
possible. Each trial and tribulation presented an opportunity for growth made pos-
sible by the immense academic generosity of the Caltech community. My research
experience showed me who I am and what I am capable of. The support of my

wonderful friends, family, and advisor gave me the strength to never give up.

I am deeply grateful to my advisor, Professor Azita Emami, for pushing me to do
my best in every aspect of my work. From early in my career, I came to understand
how easy it is to become overwhelmed and adrift in the sea of human knowledge.
She showed me the importance of breaking down problems into tractable pieces
and testing them rigorously. She is also someone who I know cares deeply for
her students, not just academically but personally, teaching me the importance of

patience and empathy in research and mentorship.

I am very thankful for the opportunity to work with my collaborators, Professor
Richard A. Anderson and his lab, including Dr. Tyson Afflalo, Dr. Spencer Kel-
lis, Dr. Abraham Betancourt Vera, and Nikos Mynhier. He and his lab gave me an
abundance of help understanding the neuroscience behind brain-machine interfaces,
and provided resources in every necessary aspect to help me complete my work. I
would like to especially thank Dr. Jorge Gdmez de Leon for his unwavering support
and advice. He helped me through some of the most difficult hurdles in my Ph.D.
and I will forever be thankful for his mentorship. I would also like to thank JJ for
his participation in our experiments, persistent faith in our success, and infectious

optimism. His enthusiasm for our work is truly what makes it all worthwhile.

I am very honored to have Professor Volnei Pedroni, Professor Alireza Marandi,
and Professor Ali Hajimiri as members of my candidacy and defense committee.
Professor Volnei Pedroni helped me refine my scientific communication skills, and
provided invaluable technical direction for digital architecture design. He helped
me organize ideas stuck in the ether of my mind into concrete design descriptions,
which is essential for scientific communication and the interrogation of those ideas

for improvement. Both Professor Ali Hajimiri and Alireza Marandi provided essen-

v

tial support in helping me navigate the trials of a Ph.D. and I will be forever grateful
for their advice. I have always felt welcomed by those from whom I seek help, which

really accentuates what a privilege it has been to be a part of this community.

It is hard to put into words how much the people of the MICS lab mean to me. I
truly could not have done this without them. It has been such a honor to work with
and befriend Dr. Arian Hashemi, Dr. Fatemeh Aghlmand, Dr. Saransh Sharma,
Dr. Benyamin Haghi, Lin Ma, Shawn Sheng, Ting-Yu Cheng, Hayward Melton,
Dr. Ziyi Chang, Dr. Loai Danial, Mohamadamin Panahandeh, Shengsheng Wang,
Johan Razavi, and Mohammaderfan Ramesh, and everyone else who has touched
this lab. Their community, support, and scientific expertise shaped me as much as
a scientist as it did as a person. I would also like to thank Michelle Chen for her

constant vigilance to make this lab run smoothly.

Last, but certainly not least, I would like to thank the broader Caltech community
and the people I met along my journey. I would like to give a special thanks to Mauro
Ferreira Santos for his personal mentorship and guidance. The most important thing
I learned during my time here is that despite everything that happens around you,
or to you, community is how we endure. Science is about people as much as it is
about knowledge, and what makes Caltech the success that it is, are the wonderful
people who constitute its community. I have no doubt that despite the uncertainty
of what is to come, Caltech will endure not because of its resources or accolades,

but because of its people and what they care about: truth, integrity, and each other.

vi

ABSTRACT

Neural interfaces are entering an era where what once was science fiction is be-
coming a reality. As neural interfaces move out of the lab and into people’s lives,
the stability of neural decoding algorithms becomes ever more pressing. It is an
unfortunate reality that neural implants degrade from long-term exposure to the neu-
rological environment, however prior work has shown enhanced decoding stability
in the application of 1D convolutional neural networks to neural feature extrac-
tion. However, these algorithms have high memory and processing requirements,
prohibiting them from meeting the low area and power restrictions of implantable

brain-machine interface decoding pipelines.

This dissertation addresses the difficulties of implementing these algorithms on
streamed neural data with high parallelism and low area and power costs. We
address the unique dataflow characteristics of the feature extraction workload by
designing a tailored processing element that reduces the memory access require-
ments by 2X. We further reduce system memory requirements through efficient
process scheduling and memory partitioning. We then address the model complex-
ity through retraining and analysis of the effect of various system parameters on the

accuracy of kinematic decoding and hardware performance.

Results show that these design choices were able to successfully implement these in-
tensive but performant algorithms within the power and area budgets of implantable
devices. The architecture supports 192 channels that achieve state-of-the-art decod-
ing stability at 1.8 uW and 12801 um? per channel in 65 nm CMOS technology.
The device is a fully configurable, scalable, area and power efficient solution that
supports models with 2-8 feature layers and a total kernel length of up to 256. This
architecture reduces caching requirements by 5X over conventional computation
schemes. We show our hardware optimized models maintain superior stability over
time using recorded data from tetraplegic human participants with spinal cord in-
jury. The models and hardware were validated in real time with a human subject
in online closed-loop center-out cursor control experiments with micro-electrode
arrays that were implanted for 6 years. Decoders using features generated with this
work substantially improve the viability of long-term neural implants compared to

other feature extraction methods currently present in low-power BMI hardware.

Vil

PUBLISHED CONTENT AND CONTRIBUTIONS

S. Bulfer, J. Gdmez, A. Yan-Huang, B. Haghi, V. Pedroni, R. A. Andersen, A. Emami
“A 192-Channel 1D CNN-Based Neural Feature Extractor in 65Snm CMOS for
Brain-Machine Interfaces”, In: /EEE Transactions on Biomedical Circuits and
Systems (In Revision)

SB participated in conceiving the ideas and was lead designer of the CMOS chip,
optimized FENet models for implementation, built the validation system and helped

perform online experiments, analyzed results, and wrote the manuscript.

Figure 2.1 reprinted with permission from the copyright holder, Lorenzo Martini et

al., under a creative commons license.

Figure 2.3 reprinted with permission from the copyright holder, The Institute of

Electrical and Electronics Engineers

Figure 2.5 reprinted with permission from the copyright holder, The Institute of
Electrical and Electronics Engineers

Figure 2.7 reprinted with permission from the copyright holder, Springer Nature BV

Figure 2.11 reprinted with permission from the copyright holder, The Institute of

Electrical and Electronics Engineers

Figure 2.12 reprinted with permission from the copyright holder, The Institute of
Electrical and Electronics Engineers

viil

CONTENTS
Acknowledgements Lo v
Abstract vi
Published Content and Contributions vii
Contents e vii
Listof Figures X
Listof Tables XV
Chapter I: Introduction Lo 1
1.1 Brain-Machine Interfaces 1
1.2 Streaming Processors 4
1.3 Contribution L 5
1.4 Organizationt 6
Chapter II: Background and Prior Art 8
2.1 Neural Information L. 8
2.2 FENet Algorithm 18
2.3 CNN Accelerators L 21
Chapter III: System Architecture and Design 26
3.1 Overview oL e 26
3.2 Processing Element Architecture 30
3.3 Channel Block Macro 45
34 Control Hardware 54
3.5 Processing Element Control 63
3.6 Datalnterface 65
Chapter IV: Algorithm Optimization and Validation 69
4.1 Complexity Analysis 69
4.2 Model Reduction and Retraining 73
4.3 Model Validation 79
Chapter V: Hardware Measurement and Analysis 86
5.1 Hardware Validation Server 87
5.2 Static Power Characterization 89
5.3 Dynamic Power Characterization 91
5.4 Implementation Analysis. 102
Chapter VI: Conclusion o 106
6.1 Current State of the Project 107
6.2 Future Directions 107
6.3 System Improvements 108
6.4 LessonsLearned 112

Bibliography 116

Number

1.1

1.2
1.3

2.1

2.2
2.3

2.4

2.5

2.6

2.7

2.8

29

2.10

2.11

X

LIST OF FIGURES

Page
General components of a brain-machine interface: (A) High-level
system schematic. (B) Components of a tissue interface. 2
An overview of the spectrum of brain-machine interfaces. 3
Representation of the difference between processing in batches vs.
SLIEAIMS. « .« v v v e e e e e e e e e e e e e 4
Depiction of the phase of a neural spike. 1) Ion pumps maintain
membrane voltage and ion gradients to their resting potentials. 2)
Initial stimulus initiates a perturbation of the neural membrane po-
tential. A threshold is reached that initiates the opening of sodium
channels causing depolarization of the membrane. 3) Sodium chan-
nels deactivate and the slower calcium channels open, repolarizing
the membrane potential. 4) The calcium pumps over-correct the
membrane voltage, putting it in a hyper-polarized state[36]. 9
Pipeline for neural decoding. 11
System of [68]: (A) System overview of calibration free spike de-
tector. (B) System performance (red) compared to systems using
other thresholding techniques (blue and yellow) and non-adaptive
thresholding techniques (gray-dashed). 13
Simplified example pipeline for spike sorting. 14
Spike sorting architecture developed in [12]. 15
Count of neural spiking units with SNR greater than 4. LOESS fit
shows the average trend spiking unit quality. 16
Representation of spikes within the 300-1000 Hz band from [40]. (A)
Frequency spectrum of two averaged neural spikes. (B) Simulated
neural activity with spiking band power overlaid in blue. 17
Feature extraction and decoding pipeline used with FENet models. . . 18

FENet algorithmic flow: (Left) Multi-layer data flow for FENet on a
single neural channel. (Right) Internal computation within each layer. 19
Design octagon for deep neural network processing architectures.
Qualitative merits for FENet workload indicated with blue shaded area. 21

Common network types for CNN processors [13]. 23

2.12

3.1

32

33

34

3.5

3.6
3.7

3.8

39

Taxonomy of common deep neural network accelerators. Act means
activation and different shades of the same color are used to represent
different values of the same type of data.
Functional representation of ASIC system architecture showing their
logical connections. Various buses are color coded: Interface data
bus (red), algorithm and mac control (black), data available (orange),
feature out (green), and channel enable (blue).
Architecture for one neural channel. Two arithmetic units simultane-
ously process the traversal and feature generating data paths. Inter-
mediate values are passed to pooling accumulation register blocks,
selected by amultiplexer.
Effect of fixed point quantization of weights, inputs, and intermediate
activations on the decoding performance of neural data. Dotted line
in purple is the reference performance with no quantization applied. .
Fixed point representation chosen for the activation and weights of
the FENetdataflow.
Comparison of two MAC architectures with normalized area and
power tradeoffs. (A) Typical single cycle MAC unit. (B) Word-
Serial MAC Unit.
Architecture of single data path processor.
Processing element computation flow: (A) Data format and bit type
key for 9b sign-magnitude activation and weight data as well as the
16b two’s complement accumulator format. (B) Depiction of the
addition of a single partial sum to the accumulation register at the
start of multiplication phase 4.
Accumulator Clamping Scenarios: (A) Accumulator soft overflows
but returns to valid range. No clamping occurs. (B) Accumulator
soft overflows but does not return to valid range. Value clamped
to maximum magnitude, in this case, negative. (C) Accumulator
overflows and value rolls over. Clamping is performed such that
the clamped value is clamped to maximum magnitude of the first
overflowboundary. L L
Clamping effect on performance of FENet-66 model on 30 kSps
neural data: (A) Performance of FENet-66 clamped vs. unclamped.

(B) Average performance over all sessions.

3.10

3.11

3.12

3.13
3.14

3.15

3.16

3.17
3.18

3.19

3.20

Architecture of pooling block including the 22b register, shift and
insert hardware, and feature shift register.
Fused pooling-LLReLU sequence for positive (right) and negative (left)
signs of the final convolution accumulation value. LReLLU « parame-
ter for this example is 2, meaning the accumulation register is shifted
by 2 bits before addition to the pooling register.
Layout of processing element with each major component group
identified.
Effect of threshold voltage on the delay of maximum path over VDD.
Schematic overview of a single channel block focusing on the as-
sociations of a set of channels and their SRAM. Division of power
domains are depicted with shaded boxes with green shading indicat-
ing the higher voltage MEM power domain, and the purple shading
indicating the low voltage processing element domain.
Comparison of the memory spaces for conventional SRAM partition-
ing schemes and those using local partial sum accumulators in their
processing elements. Lo
Range of SRAM aspect ratios depicting the physical difference be-
tween narrow-deep SRAM and wide-shallow SRAM and how the
memory spaces would be distributed within a single SRAM instance.
A, D, and Q are the address, input, and output ports of the SRAM,
respectively.
SRAM power for the FENet workload with respect to aspect ratio. . .
Schematic Diagram of asynchronous queue. Write and read pointers
are synchronized before used in handler logic.
Depiction of feed-through buffers in relation to the logic that are
driven by them. The control signals are gated with the feed-through
enable signal which is asserted if any channels in the street above this
block areenabled. L.
Skew Distribution of Control Feed-through Signals: (A) Processing
element (MAC) clock domain. (B) System clock domain.

X1

45

47

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

4.1

4.2

xii
Depiction of the hardware defining the control finite state machines
and their relation to one another. Each layer has a dedicated finite state
machine which is also dependent on the states of the other layers to
determine if it is their turn to change state or not. Control signals are
generated from these state machines and synchronized to the rising
edge of the clock before they are broadcast to the processing hardware. 55
Control behavior for 3 layers of the CNN depicting the 3 padding
state behaviors: (a) Startup Padding (b) Steady State Convolution (c)
Conclusional Padding. 56
Diagram of the scheduling algorithm for activation and weight SRAM
ACCESS. .« o e 59
(Effect of zero padding on decoding performance: (A) Feature Power
as a single spike is offset within a neural data bin. (B) Effect of
padding over 48 sessions. (C) Average R? performance of padded
and non-padded models. 60
Padding Behavior: (A) Behavior of system as a new bin of neural
data is streamed into and the system. (B) Behavior of the system as
the streamed data reaches the end of a convolution bin. 62
Time-multiplexed phases of multiply-accumulate operation within
the period of a single system clock cycle. 63
FSM control of the PE. Each colored path corresponds to a different
control path depending on the state of the CNN control FSM. 64
Schematic depicting the various components of the validation data
interface. The ports on the top left are IO ports on the ASIC, while
the ports on the bottom interface with the ASIC system. 66
Decoding performance from limiting the number of channels with
hardware implemented FENet-66 features: (A) Average performance
of each year based on a sweep of top channels. (B) Scatter plot of
each day as the top channels are enabled sequentially. Color indicates
the date the session. L 76
Model Parameter Exploration: (A) Cycle count for models with
various hyperparameters. Solid lines denote the total cycle count,
dashed lines indicate padding cycles. Kernel sizes are constant for
all layers. Bin size: 150. (B) Effect of the number of feature layers
on decoding performance with a constant kernel size and stride of 40

and 2, respectively. R? from 10 days of training dataonly. 78

4.3

4.4

4.5
4.6

5.1

5.2

53

54

55

Xiii
Cross-validated decoder R? performance over four years post-implantation.
Locally Estimated Scatterplot Smoothing (LOESS) fits and confi-
dence intervals are shown for each feature type. 81
Cross-validated decoder R? performance of FENet models versus
sampling rate. The average R”> performance of other features from
Figure 4.3 is shown as starred points for reference. 82
Data flow for neural data retrieved during an online session. 84
Performance of online decoding session completing a center-out kine-
matic control task:(A) Research participant controlling a cursor uti-
lizing ASIC for kinematic decoding in a center out task. (B) Online
closed-loop decoding session using FENet ASIC in loop. Boxes
represent the target where the height is the size of the target in its
represented dimension, and the width represents the time it took to
reach the target; color corresponds to the x and y dimension of the
cursor control. (C) Time-to-target plot for all 63 targets with a mean
time-to-target of 1.00 (seconds). 85
(Fabricated ASIC in 65 nm LP CMOS process: (A) Dye graph of
ASIC with various components labeled. The processing elements
(purple) are tightly coupled with activation SRAM (light blue). The
validation interface (red) broadcasts neural data to each street in
between each activation SRAM. (B) Picture of ASIC fabricated in
65nm LPOM CMOS. 86
Simplified schematic diagram of offline validation system showing
CONNECLIONS. .« .« . v v v v v et et et e e e e e e e e 87
Offline validation setup with highlighted components. (A) FENet
ASIC, (B) Validation Server, (C) USB-Server, (D) Ethernet-GPIB
Adapter, (E) Oscilloscope, (F) Ethernet switch. 88
Leakage power characterization: (A) Leakage power with all 192
channels and 7 layers enabled. (B) Leakage power per channel with
MAC and MEM VDD at 0.65 V and 0.9V, respectively. The 0" layer
index indicates the leakage power of a disabled channel. 90
Power and efficiency scaling by the number of channels enabled.
Number of channels is scaled linearly, such that each street is filled
sequentially. Operating conditions: Model: FENet-66; Sampling
Rate: 5 kSps; Clock Frequency: Sys. 0.188 MHz, MAC 3.948 M Hz,
Intf. 6 MHz; VDD: MEM 09 V,MAC0.63V 91

5.6 Power parameter extraction procedure: Operating conditions: VDD:

5.7

5.8

59

MEM 0.95 V, MAC 0.70 V, Frequency: System 0.182 M Hz, MAC
4.37 M Hz, Interface 24 M Hz Packet Rate: 33.7 kSps (unbound) (A)
(Step 1) Difference between adjacent channels in the MEM power.
(B) (Step 2) Difference between adjacent blocks in MEM power.
Reconstruction of power model using only the k parameter (dashed
blue line). Actual MEM power is the solid blue line. (C) (Step 3)
Difference between adjacent streets in MEM power. Reconstruction
of power model using both the « and 8 parameters (dashed blue line).
Actual MEM power is the solid blue line. (D) (Step 4) Difference
between model using only components, and the actual power. Recon-
struction of power model using the «, 8 and o parameters (dashed

blue line). Actual MEM power is the solid blue line. Final model is

shown as the dashed orange line.

Probability distribution function of clock power error for both the

MEM and MAC power domains.

Power and efficiency characterization: Operating conditions: Model:

FENet-66; Sampling Rate: 5 kSps; Clock Frequency: Sys. 0.188 MHz,

MAC3.948 MHz, Intf. 6 MHz; VDD: MEM 0.9 V, MAC 0.63 V (A)
Power breakdown of a single channel separated by VDD domain. (B)
System power and latency at different operating frequencies. MAC
voltage is scaled so R? maintains 98.8% performance. Bar graph de-
notes the power with top and bottom bars denoting MAC and MEM
domains, respectively. (C) Efficiency in GOPS/W plotted as the bar
graph and throughput plotted as lines in kilo Feature Sets per Second

(kFSps) of variousmodels.

Voltage-Performance Characterization: (A) VDD scaling effect on
feature quality. Solid lines denote R?, while dashed lines denote
MSE of the features. First session of offline data is used for analysis
on effect. (B) Maximum processing element frequency scaling with
voltage. Memory VDD is fixed at 1.2 V. (C) Spatial distribution of

Xiv

minimum operating voltages across one ASIC sample. 100

Number

3.1
3.2
4.1
4.2

5.1
5.2
53
54

XV

LIST OF TABLES

Page
Data Interface Control Commands/States 66
Configuration Command BitFields 68
Selected hardware-optimized models. 74
Latency and minimum system clock frequencies required to achieve
33 FPS feature generation. 77
System requirements for validation server 89
Component parameter extraction of clock distribution power. 95
Power of various configurations using FENet-66. 98

Comparison with other state-of-the-art neural feature extraction ICs. . 105

Chapter 1

INTRODUCTION

As we enter this era of neuroscience and engineering, our ever-curious minds have
begun to not only probe the inner workings of our own thoughts, but also endeavor
to communicate with the very mechanisms from which these thoughts are derived.
Neural electronic interfaces promise insight and control over the symphonic chaos
of such biological neural circuits. In the past few decades, successes in neural engi-
neering have allowed those afflicted with serious spinal cord injuries new avenues
to regain control over the physical world by decoding kinematic intent from the cor-
tex directly [39]. Devices that interpret the complex encoding of the human brain
into information that computers and actuators understand are colloquially known as

brain-machine interfaces.

1.1 Brain-Machine Interfaces

A brain-machine interface is our endeavor as scientists and engineers to bypass the
frailty of biological periphery. This includes any device that attempts to decode an
underlying neural state by measuring signals directly from the brain. Ascertaining
internal neural states allows automated systems for both the treatment, and miti-
gation of neurological ailments such as paralysis, seizure disorders, Parkinson’s,
Alzheimer’s, and depression. As we develop higher-fidelity decoding systems and
integrate Al into their decoding pipelines, even more complex interfacing systems
are becoming possible such as direct speech decoding [16] and neuro-rehabilitation,
where damaged neural circuits are retrained using closed loop stimulation [29]. The
decoding of neural activity has been utilized to control a wide breadth of actuators,
including wheelchairs [43, 38], drones [28], robotic limbs [10], digital communi-
cation systems [6, 1], and computer cursors [10, 48, 31, 62, 20]. These interfaces
have also been coupled to muscle stimulation devices, allowing patients to once
again control their own muscles [5]. The general components of a brain-machine

interface system are shown in Figure 1.1 A.

Digitization H Feature Extraction H Decoder }——

Neural Probe

Head Stage Tissue Interface

Low Noise Amplifier

v Actuator

oo 0 O Q e
— O O
Targé O O O
‘ C),
(_J |
(A) (B)

Figure 1.1: General components of a brain-machine interface: (A) High-level
system schematic. (B) Components of a tissue interface.

A brain machine interface system is broadly composed of a tissue interface, amplifier,
digitization system, feature extraction, decoding, and actuators. The neural tissue
interface is composed of electrodes, antennas, or ultrasonic transducers which are
the first step in transforming or transporting some indicator of neural activity into
signals to be processed. Within this work, we focus on recordings from a type
of multi-electrode array known as a Utah array as depicted in Figure 1.1 B. This
tissue interface is designed to physically penetrate the neural tissue to record the
local electrical environment close to live neurons. Once the electrical signals are
sensed by the probes, they must be amplified and digitized for further processing to
concentrate information through various methods of filtering and feature extraction.
Decoding is performed on these concentrated metrics by relating where neural
activity is recorded to neural states of the brain. These states can then be used to
interface a person’s brain with a plethora of physical and virtual actuators that the

implanted person can interact with using only their mind.

3

Brain-machine interfaces experience a tradeoff between the resolution of the mea-
surement [30], and the invasive nature of such systems, as shown in Figure 1.2.
The finer the resolution of neural activity that is required for a particular recording
system, the more intrusive recording equipment needs to be in order to distinguish
activity. On the least invasive end of the spectrum, Electroencephalograms (EEG),
can discern only broad strokes of brain activity from ultra-weak remnants of electric
field that escape the skull. As of now, the highest resolution neural probes require

direct contact with the region of the brain of interest.

Least Informative Most Informative

ECOG Intracortical
Recordings

Least Invasive Most Invasive

Figure 1.2: An overview of the spectrum of brain-machine interfaces.

Neural implants face a challenge of high processing demand, small power and area
budgets, nonstationary neuro-physiological dynamics, high noise, and biological
environments that are corrosive to electrodes [55, 50, 53, 4, 47, 26]. Area budgets
are constrained by the necessity to share physical die space with analog front ends
which capture, filter, and digitize neural streams. The ability to co-locate digital
processors with digitizers reduces power by minimizing the capacitance signals must
travel through between data generators and processors. Deep learning algorithms
designed to improve neural decoding performance, however, have large memory and
algorithmic complexity, posing significant challenges to their integration within the

neural decoding environment.

1.2 Streaming Processors

FENet [22] is a deep neural network algorithm which has been shown to be an
excellent neural data transformer which provides improved performance over non-
tailored transforms. Designing an efficient architecture for deep neural network
processors with application to neural interfaces first requires an understanding of
the unique form in which neural data is received. Neural data are streamed from
recording front ends, meaning that each sample is received in sequential order.
However, neural data transformers operate on bins of data, which require a history
of neural recordings to be stored during computation. Most deep neural network
hardware architectures are designed for batch processing. Batch processing can
take advantage of spatially unrolling computations and activation reuse. While these
systems can have very high computational efficiencies since processing elements can
locally pass activations between each other, the memory required to cache all of the
activations before starting the computation quickly degrades any power reduction
made during computation. Streaming processors, on the other hand, tailor their
execution model to ameliorate the difficulties of processing temporally structured
data. An abstract example of the differences between batch and stream processing

is shown in Figure 1.3.

% Batch Processing

Stream Processing

u]]

Figure 1.3: Representation of the difference between processing in batches vs.
streams.

5

In this toy example, the object of the system is to relay water from a source (the leaky
faucet), to its destination (a classic southern California garden). If the source were
unrestricted, the most efficient solution for transporting water from one destination
to the other would be to use a single large bucket to make as few trips as possible.
Unfortunately, due to drought, the water source is constrained on the rate at which it
can provide water. In this case, batch processing represents the system with a large
bucket. This system requires heavy duty conveyor cables and a larger drive motor to
provide higher impulse power, which all sit idle while the bucket spends time filling
with water. A streaming processor, on the other hand, saves on materials and power

by closely matching the system requirements to the temporal nature of its workload.

Overall, streaming processors trade generality for efficiency: by aligning the hard-
ware’s execution model with the temporal structure of the data, they deliver high
throughput per watt and predictable latency. These properties are essential for

processing deep neural networks at the edge and in real-time neural systems.

1.3 Contribution

In this dissertation, I present novelty to neural feature extraction hardware and CNN
accelerators through hardware-software co-design and optimization to implement
the FENet algorithm at low area and power. This is accomplished in part through
an efficient task scheduler for 1D convolutional layers operating on streamed inputs,
with flexibility to implement a breadth of filter lengths and strides. The scheduling
algorithm allows direct reduction of the number of required memory elements from
O(L log[N-1]), to O(L) where N is the length of samples in the input data bin and L is
the sum total of kernel lengths of all layers. This architecture combines stride-aware
streaming and control sequencing that tailors this dataflow to the FENet workload

specifically for high channel counts using minimal memory resources.

A novel processing element is designed to ameliorate the requirements of the FENet
dataflow. The element contains dual convolution paths on each neural data stream
with multiple output modes, one path that generates the output neural features and
another that generates activations for subsequent layers. Other CNN architectures
are not designed for this multi-modal dataflow and would require two separate read-
processes-write operations for each channel. The wide bandwidth data network is
optimized for the high-channel count nature of neural signal processing, maximizing

processing element utilization.

6

To minimize area requirements for each channel while taking advantage of the
relaxed timing constraints gained by processing neural data sequentially, the pro-
cessing hardware is minimized to use a single 8-bit adder and two 16-bit barrel
shifters to compute all of the operations of the FENet workload by subdividing each
operation into simpler shift-and-add steps. Furthermore, word-serial processing
allows controls to be gated based on individual weight bits of kernels; taking advan-
tage of the bit-sparsity of the FENet weights. This feature extraction system has a
wide bandwidth data write bus that enables simultaneous streaming of data writes
from individual sources. To minimize leakage power, which can become significant
in highly optimized feature extraction tasks, channel-and-layer-level power gating
is used over the entire device. This architecture is a first of its kind for implement-
ing the FENet workload within the tight power and area constraints of implantable

neural devices.

We fabricated this architecture in 65 nm CMOS and fully verified the system and
hardware optimized FENet models through offline validation and closed-loop kine-
matic decoding with a human subject. We showed efficient feature extraction that
enabled accurate cursor control in a patient with an implant that has been in place
for 6 years. These features allow high-quality kinematic decoding after traditional

feature extraction hardware has lost viability.

1.4 Organization

This thesis is organized by the various disciplines covered throughout the hardware-
software co-design of an architecture which can efficiently implement the FENet
workload. Chapter 2 begins the journey by reviewing the various methods of neural
feature extraction, and prior architectures developed to implement them. These
methods have their uses within the neural decoding environment, however they fall
short when decoding kinematic intent from chronically implanted neural probes.
We introduce prior work utilizing the convolutional neural network model ’FENet’
to address those deficiencies in chronic implant decoding stability. Following the
review of this algorithmic solution, we take a look at the various techniques in
present literature for hardware implementation of convolutional neural networks,
and assess their viability for the FENet workload. Through these explorations, we
uncover what abstract architectural design requirements are necessary for efficient
implementation.

Chapter 3 provides an overview of the hardware architecture and design methodology

for major components of the CMOS chip with a special focus on the custom design

7

of the processing element. We assess the viability of various design approaches and
determine the necessity of safeguards such as overflow clamping, granular power
gating, and zero padding. We introduce the convolution scheduling algorithm
designed to optimize memory resources, and a zero-padding scheme which avoids
unnecessary MAC operations for the padding-heavy FENet workload. The time-
domain-multiplexed computational tasks and their behavior are described to fully
illustrate the inner workings of the processing element. The parameters of the
FENet model and their effect on both the performance, and hardware requirements
are analyzed in Chapter 4. Using this analysis, the model is optimized to reduce the
computational complexity on the hardware implementation. Finally, these models
are validated and compared with other feature extraction techniques implemented in
hardware using neural recording data. The hardware is then fully validated online
with a human participant in loop with the feature extraction system.

The architecture is fabricated in 65 nm CMOS and measured in Chapter 5. Both
the static and dynamic power requirements of the system are characterized with
various configurations of the system to build a power model for power-performance
optimization. The effectiveness of implementing the FENet algorithm within the
constraints of the neural decoding environment is analyzed with regards to the area
costs, power efficiency, and scalability to even higher channel-count BMIs. The
VDD sensitivity of the chip is assessed and potential performance improvements
are suggested. Finally, this feature extraction ASIC is compared with other state-
of-the-art neural feature extraction hardware. Chapter 6 concludes this work, and
provides a number of future directions to improve the architecture for area and

power, as well as mitigate undesirable behavior.

Chapter 2

BACKGROUND AND PRIOR ART

This chapter will provide an introduction to the various fields that are vital to the
implementation of brain-machine interfaces in hardware. We will begin with an
introduction into the way neural information is represented in the brain and various
techniques that are used to enhance and extract the presence of this information
in intracortical recordings. However, these methods struggle to decode kinematics
from probes that have been implanted for long periods of time. Chronic exposure to
the neural environment causes degradation of neural probes and scarring of neural
tissue, leading to a significant decrease in neural signal-to-noise ratios. To address
these noise issues, a data-driven algorithm called FENet was designed to improve
kinematic control through the use of a convolutional neural network. Once we are
familiar with the decoding problem and the algorithm we are using to solve it, we
will then introduce ourselves to the various processor architectures and techniques
used for edge-ML processing so that we understand the design framework necessary
to implement this algorithm at low area and power, suitable for implantable devices.
Using this framework, the hardware architecture will be custom-tailored to efficiently

implement the FENet workload.

2.1 Neural Information

To understand how to extract information from neural data, we must first understand
how neural activity is biologically encoded. All neural activity, from the simplest
neural circuits found in nematodes, to the stupendous complexity of thought capable
of the human brain, is mediated through state transfers between neurons, referred
to as neural spikes. The diagram in Figure 2.1 depicts the cycle of a neuron’s
firing sequence. The complex behavior of a neuron is driven by ion concentration
gradients across its cell membrane. Sodium and potassium ion pumps embedded in
the membrane spend energy to sustain these gradients, inducing both an electrical
and chemical potential in steady state. A resting neuron will drive and excess of
sodium and a deficiency of potassium inside the cell. Due to the difference in pump
energy, there is approximately a -70 mV voltage potential that is built during cell
quiescence. This resting membrane potential is modulated by signals received from

neighboring neurons through junctions called synapses.

r

K* channel Na*/K* ATPase Na* channel 1 4 ‘K+
» 4 'y
ax o % 4 > i e b © e 4 a v
! e 4 @ e °
= S) ° e @ oNa' Jo []
(5\ \ 3
Depolarization +40)| Retractory period. Repolarization
¢ Na*and K* voltage- o Na* g :
gated channels open ol @ @ Na* channels inactivate

and K* channels stay open

Uonezuejoday

e Na*inward current >

Threshold
K* outward current

T L e e K*outward current > Na*
N\ Resting state inward current
T
@ Stimulus

@ e The membrane potential
Hyperpolarization moves to Eys (_75 mV)
I I 1 I I T T T T

o
O1

N
o

e The membrane
potential approaches
Ena+ (+55 mV)

Membrane potential (mV)

Time (ms) K"'
' @@m
N s Lo @ b, ‘“'WP I'S 0@. 0! o@.
@ !
Resting state Hyperpolarization

e Na*are inactive, K* channels are partly inactive ¢ More K* channels open

e The membrane resting potential ¢ The membrane potential approaches Ei (-75 mV)

Figure 2.1: Depiction of the phase of a neural spike.

1) Ion pumps maintain membrane voltage and ion gradients to their resting poten-
tials. 2) Initial stimulus initiates a perturbation of the neural membrane potential.
A threshold is reached that initiates the opening of sodium channels causing depo-
larization of the membrane. 3) Sodium channels deactivate and the slower calcium
channels open, repolarizing the membrane potential. 4) The calcium pumps over-
correct the membrane voltage, putting it in a hyper-polarized state[36].

These synapses are the fundamental computational unit of biological neural circuits
because that information exchange can be gated through complex chemical processes
which tune their coupling strength between neurons. The activation of a synapse will
either increase or decrease the cell membrane potential depending on each synapse’s
chemical tuning. These gated connections allow for a plethora of complex emergent
behavior in biology that we are still trying to fully understand.

10

The primary enabler to a spiking event are the voltage sensitive ion gates which lie
within a neuron’s cell membrane. Designed through millions of years of evolution,
these ion gates react to the current state of the cell membrane’s voltage potential.
As depicted in Figure 2.1, a cell membrane voltage threshold crossing event will
first trigger the sodium gates, allowing the release of the stored chemical gradient
of sodium ions. The inrush of sodium depolarizes the cell membrane to become
significantly more positive than the resting membrane potential, resulting in the
activation of the potassium gates; quickly counteracting the flood of sodium ions
to re-polarize and reset the system. As the sodium pumps deactivate and the
potassium pumps work to place the membrane potential back to equilibrium, the
neuron eventually becomes hyper-polarized to prevent dangerous feedback loops

from causing the neuron to continuously fire.

The spiking event occurs throughout the entire neuron, and is passed to neighboring
neurons, again through synapses. Information in neural circuits is encoded in the
timing and number of these binary spiking events. Most neural decoding aims to
extract these spike occurrences and relate them to the activity of neural circuits, and

therefore determine various neural states of interest.

Neural Data Transforms

BMI technologies are rapidly evolving to require higher channel counts to perform
increasingly complex tasks with higher precision. These systems benefit from
being fully implantable, however, fully implantable systems are constrained by
wireless bandwidth and power budgets [55, 50]. Feature extraction aims to reduce
the information bandwidth before data transmission or decoding by transforming
neural electrical recordings into information-rich features. Long-term exposure
to the neural environment on Multi-Electrode Array (MEA) implants can degrade
the spike Signal to Noise Ratio (SNR) due to gliation and electrode degradation
[53, 4, 47, 26]. This signal degradation undermines the accuracy and stability of
many state-of-the-art feature extraction methods[18]. Implementing robust feature
extraction methods that can operate reliably on degraded neural signals with low area
and power cost is critical for the long-term viability of implanted BMI systems. The
current state of implantable feature extraction from intracortical neural recordings
can be categorized into three main methods: spike detection, spike sorting, and

compression through broadband feature extraction [50].

11

The task of translating neural electrical recordings to understand the underlying neu-
ral states involves processing hundreds to thousands of channels of streamed neural
data. To make such a task tractable, several methods have been developed to trans-
form raw electrical recordings into information-rich features that are used directly
in decoding as shown in Figure 2.2. Feature extraction focuses on transforming the
1 dimensional neural stream of each channel individually into some quantity which
is representative of the neural behavior for this stream. This leaves only the task of

decoding intended behavior from the neural activity at each channel’s site.

([Tissue) (Recording) [Feature) [Kinematic)
Interface and Extraction Decoding
Filtering

L
.{»T;awhq@%:.ﬂ
| ’l)

High Activity
FO
F6 F1
&
F5 2
- FI.40w Acti\i:[tsy -
FO b
F6 F1 ~
ZW%@ @ | Center-Out
F5 F2 Task
\ y, Fa F3 \ y,

Figure 2.2: Pipeline for neural decoding.

-

Spike Detection

Spike detection is one such transform that aims to recognize individual spiking
events often through identifying a threshold crossing of some quality of the neural
electrical recording. Various qualities include raw amplitude, standard deviation
from baseline noise, nonlinear energy operator, wavelet decomposition, ect. Real
intracortical neural recordings are rife with noise and non-stationary dynamics. This

makes spike detection in chronic implants without noise contamination difficult.

State-of-the-art spike detection has three main vectors of optimization. The first is
robust detection of real spiking events while rejecting noise-induced false spiking
events. The second is adapting to the non-stationary recording artifacts generally
present in neural recording and digitization front ends. Lastly, is the power and
area efficiency in hardware implementation techniques. The robustness of a neural
decoding pipeline is significantly influenced by the spike detection algorithm used

to identify the spiking event.

12

A naive approach to detecting neural spikes can be realized by simply setting a
threshold on the voltage amplitude and recording every instance that the voltage
crosses this threshold. This approach is incredibly unstable, since the noise power
and gain can drift over time and between channels. Many spike detectors first use an
emphasizer to magnify qualities in a spiking waveform out of the noise. Emphasizers
often focus on the highly non-linear nature of spiking events, resulting in large spikes
in high-frequency energy. The Non-linear Energy Operator and its variants (NEO)
[15, 49, 67, 33], Amplitude Slope Operator (ASO) [67], and Energy of Derivative
(ED) [33] emphasizers have been developed to magnify these characteristics, and
are all relatively cheap to implement in hardware with their digital approximations
shown in (2.1).

WNEO[n] = x[n]* —x[n—1]x[n+1]

WASO|[n] =x[n](x[n] —x[n-1]) 2.1)

YED[n] = (x[n] - x[n - 1])?

Due to their relatively low complexity, these techniques have been used extensively in
the spike detection step of neural data transforms with very low power and hardware
requirements. Unfortunately, these emphasizers still suffer from the nonstationary
nature of implantable neural probes. As probes degrade and move, the root mean
square of noise as well as the SNR of the spike change. As a result, spike detection
thresholds need to be adapted to levels that allow discrimination of the spiking event
from noise. The architecture of [68] introduces a calibration-free and hardware-
efficient method of spike detection. The architecture they derived is shown in 2.3 A,
with the performance metrics in 2.3 B. This system uses an absolute difference filter
as an emphasizer, and dynamically sets its threshold to target a heuristic firing rate
determined by the expected neurophysiology of the implant. The system has a power
and area cost of 6760 um? and 0.038 uW per channel, respectively, and showed
maintained detection accuracy for 200 days. However, chronically implanted neural
probes used in our study have mean noise levels of 89% six years after implant,

which is much higher than the 20% tested in their work.

Cho | Ch1 I Ch2 |

|Ch 125 |Ch 126 l Ch127

RAMout

Input
i

RAM

RAMin

EEmanl

ef fw

—-| Input Bufferl I

Channel Counter

13

In

Filter

This work
10 [— — — Previous work
STD thresholding

205
S I Average peak amplitude

D o . . .)
Q\E” Y 0 20 40 60 8 100 120 140 160 180 200

In 09 Time since implementation (days)

Figure 2.3: System of [68]:

(A) System overview of calibration free spike detector. (B) System performance
(red) compared to systems using other thresholding techniques (blue and yellow)
and non-adaptive thresholding techniques (gray-dashed).

ploysaiyL uondsiaq é1n0JeJ|u
ike rate(Hz)

Spike amplitude(mV)

Spike Sorting

While detecting a spike gives you information that a neural firing event has occurred,
a single shank of a Utah multi-electrode array may receive neural spikes from 0-
4 neurons [19]. These neurons may have different purposes, and so identifying
which spiking event came from which neuron is of use to neuroscientists and neuro-
engineers who want to decode the underlying neural state. The neural spike that we
record on an electrical probe is a byproduct of the movement of ions in and around
cell membranes to accommodate the spiking event. The spiking waveform received
by a neural probe will therefore be affected heavily by the local neural environment.
For this reason, a spiking waveform from one neuron may have a slightly different
spiking waveform shape when observed by separate probes/locations in the neural
medium. This phenomenon is used to isolate the spiking activity of individual
neurons from each other, as well as separate real spiking events from noise. These

techniques are colloquially known as spike sorting.

14

There are as many different spike sorting methods as there are calls in the forest,
all with different nuances and tradeoffs, however they all primarily share a similar
processing pipeline as depicted in Figure 2.4. Once a detected spike is identified
through spike detection, a small bin of neural data is captured around the spiking
event. Features of the waveform are extracted to project the neural event into a
feature space. Spiking events are then grouped into different categories depending
on their placement in this feature space. Some systems which experience high levels
of inter-channel spike correlations, then cluster these groups based on correlations
between the timing of different spike events. The additional complexity to the neural
data transform process increases hardware requirements.

Spike Detection Transform to Clustering

Feature Space
e L Neuron Label:
Ok"\ S 3 1 | 2 | Noise
— e [] []
| I A
Threshold S| f y
Feature 1

Figure 2.4: Simplified example pipeline for spike sorting.

Spike sorting can be very computationally taxing; however, several attempts have
been made to implement spike sorting algorithms in hardware given at low area
and power. The architecture in [12] explores the use of geometry-aware OSort
algorithms to reduce spike sorting complexity, allowing the system to sort spikes of
high-density neural probes with an average spike detection accuracy of 93.6%, and
a clustering accuracy of 97.7%. This system only consumed 1.78 uW of power and
1300 um? of are per channel in 22nm FDSOI technology. Figure 2.5 depicts their
system architecture with the three distinct steps of spike sorting: spike detection
(CSD), spike feature extraction, followed by clustering. The major downside of spike
sorting in the context of chronically implanted neural implants is in the reliance on
spike detection in the first stage of neural processing, leading to poor performance

several years after the neural probe is implanted [53, 47, 26, 4].

.
! scL i 11 11 '
j=2Ts Address Ts Clustering Merging H
o Inpuit Buffer Decoaerl 7 Cio Memory Memory E
= 9
26x18x12 90x12 N
I T 3 :
| Band- NEO-Based a K H
: lobal Peak FSDE 18 [
i |Pass IR Crossing FDwan Memory Data Interface 10
Filter Detection (GP) Searching| Operator = E
: ISDa
e % 12 Xij wee S0um, << Spike A55|gnment OR _ H
P2 % Ll Max | *, £D, FOwax |S Dy 18 ClusterMergmg Decision 2 H
=5 % 3 X8, 17, "\ sp, 3 N
Kl 12 il T8 3 O'—'T[:]
Vaxib 384x12b 12Jf Psewe |FIFO | D1y Update & diy Calculation i 1
' 14 TRGex T8 7 H
H C, Spike Channel ID (CH CH '
: L n B (Cisexc) Sl Geometry Target Clusters o :
s CLK | Channel ID (Cip) 8 ad Geometry memory address 9 Memory i Geo-Screening M
[+ &TimesStep T T '
Te v iTi SPIKE
H 1 (Ts) Counter Is R Te< [Global Instant | Tsr< Tspne IContro\ H Merging Counter | H
: 7 7 Mapping § o7 L 27 CI T R
: Central Spike Detection (CSD) Peak-FSDE Feature Extraction Geo-OSort Clustering :
L) .
1] .

Online Spike Sorting Chip

Figure 2.5: Spike sorting architecture developed in [12].

Probe Degradation

The instability of neural implants is mainly driven by corrosion of implanted neural
probes from exposure to the neural electrochemical environment [53, 4, 26], and
the neural immune response which causes glial bodies to encase foreign objects.
Multi-electrode arrays designed for intracortical neural recordings are subject to
degradation over the long lifetime of an array [47]. Neural signal processing algo-
rithms that use spike detection as a basis to their transform are likewise sensitive to
the spike SNR, and even state-of-the-art spike detection and sorting algorithms show
significant false positive rates at low spike SNR [7]. The SNR of our implanted
arrays is quantified in (2.2)

SNR, ke = |max(Spike Wave form)| 2.2)

Ohbaseline

where the spike waveform is the wavelet identified by spike detection and o gserine

is the standard deviation of the baseline non-spiking data.

Using the same spike-sorting analysis as [64], spikes were detected and sorted based
on 2-4 PCA components of the spike waveform. Based on these extractions, the
maximum SNR of the spikes were determined using equation (2.2) over 50 open-
loop sessions from 2019-2022. The count of spiking units with SNR greater than
4 (the threshold for spiking units that are considered good enough for spike sorting
[64]) over time is shown in Figure 2.6. It is evident that the quality of neural
recordings degrades rapidly years after the multi-electrode array is implanted. Such
noisy neural recordings prove difficult for stable and accurate kinematic decoding
with conventional feature extraction methodologies which rely on spike detection
and sorting.

16

Seperable Single Unit Activity Over Time
2019 2020 2021 2022

A —

201

=
w
L

Count of Separable Neurons
=

w
L

© XX X0
10 20 30 40 50
Session

P S S
S g S S

Figure 2.6: Count of neural spiking units with SNR greater than 4. LOESS fit shows
the average trend spiking unit quality.

Broadband Feature Extraction

As the neural environment degrades the interface between electronics and the neural
circuits, spike detection methods belie their frailty. The inherent non-linear nature
of transforming continuous electrical activity to event-based encoding causes neu-
ral spiking events that are long lost to noise to be discarded entirely. Therefore,
chronically implanted systems benefit from a more linear approach; either simply
compressing the neural waveform for complete analysis by external computation
hardware, or linearly relating features to a ’total neural activity’ which aggregates
the presence of neural features without threshold discrimination. Broadband fea-
ture extraction focuses on efficient summarization of ensembles of neural activity
rather than prioritizing the discrimination of activity between neural units. This has
been found to be significantly more robust to probe degradation and therefore more

relevant for long-term BMI applications [23, 24].

17

One of the simplest examples of broadband feature extraction is to summarize the
band power most associated with neural spikes, referred to as spiking band power [3,
54, 40]. Spiking band power has remarkable simplicity as it only requires taking the
mean absolute value of the neural signal to recover a neural feature. The work in [40]
showed that this feature extraction method can aggregate the spiking activity of very
low-amplitude spike waveforms buried within the noise. An example of spiking
band power feature extraction is shown in 2.7. Without applying thresholding,
the spiking band power is aggregated to create a feature which is correlated with
spike firing rate, but does not miss noise dominated spiking activity. This feature,
however is still sensitive to noise, as it does little to reject non-spiking activity from

corrupting the feature space.

o

Normalized signal
;
k.
E 4
E— dq
-
b

Voltage (pV)

o
o
o
o
\

\

0.5 1.0 15 0.5 T~._ 075 1.00
Time (ms) = Time (s) TR

[1-300 Hz: 4.2% 8.4%

@ Raw W True spike occurrence SBP

5| []0.3-1kHz: 26.3% |42.1%

€ | [1-15kHz: 69.4% | 49.6% \'4 \4 v v v

[}

E

©

@

N

T

E

o

=

10° 10 10° 10° 10* 0.38 0.43 0.48 053
Frequency (Hz) Time (s)

Figure 2.7: Representation of spikes within the 300-1000 Hz band from [40]. (A)
Frequency spectrum of two averaged neural spikes. (B) Simulated neural activity
with spiking band power overlaid in blue.

18
2.2 FENet Algorithm

To address the difficulties of extracting neural features in the highly noisy environ-
ment of chronically implanted neural interfaces, FENet [22] adopts a seven-layer
architecture inspired by the Daubechies-20 (db20) wavelet transform, with additional
non-linearity and accumulation components. Accumulating the wavelet power of
data-driven kernels enables the summarization of low-amplitude spiking activity,
while rejecting the noise inherent to spiking band power features. Tailoring this
transform to neural data improves the performance of feature extraction and allows
end-to-end training of the neural decoding pipeline. The resulting features have
demonstrated state-of-the-art performance in high-noise recordings from chroni-
cally implanted multi-electrode arrays. We show the full data processing pipeline

in Figure 2.8.

Gain 1 Feature

I
Filteri ' e
ilterin CAR | in
30 mS bin 9 onfine ! Normalization! Extraction PLSR o Dfewet by
chc Validation ! : [C] Channels —p Oy

System ! X

Fo-mmmmm s I

I

I

I

Cerebus Neural : Offline Validation
Signal Processor | Signal Preprocessing

s |

Figure 2.8: Feature extraction and decoding pipeline used with FENet models.

This pipeline describes the digital signal processing steps used to transform digital
recordings of Utah arrays into decoded kinematic intent. The electrical recordings
are first filtered using bandpass filters with cutoff frequencies of 0.3-5 kHz. To
remove common-mode noise, the recordings are common-average-referenced by
subtracting a common average across probes from each timestep. The mismatch in
signal gain caused by different digitization hardware for each site can be removed
by gain normalization. FENet feature extraction is then used on these processed
signals to concentrate important information in the neural recordings. Using these
concentrated representations of neural activity, the neural state is finally decoded.
This dissertation focuses on the implementation of the FENet feature extraction step
in hardware and is the only step in the decoding pipeline implemented in ASIC

hardware.

19

The data conditioning steps preceding feature extraction follow standard practices in
BMIs and are already demonstrated in existing hardware systems [35, 3, 32]. Partial
Least Squares Regression (PLSR) is used to reduce the number of output feature
dimensions, preventing overfitting of the decoder. PLSR is trained per channel
on data from a single day, then model parameters are averaged across all channels
to generate a single transform used for all subsequent days, and is general to all

channels.

The FENet algorithm is shown in Figure 2.9. The construction of the algorithm
is different from most convolutional neural networks. Its topology is similar to a
discrete wavelet transform with the addition of leaky ReLLU nonlinearities, pooling,
and data-driven kernels. Each layer has two sets of outputs with the first set of
outputs passed to the next layer without any additional non-linearity in between, and

the second set of outputs pooled within each layer to generate features.

[Lay‘e‘rO]
y "—> Feature 0 [Convolution] [Convolution]
| Layer1 | | l,
v L—> Feature 1
|[Quantize] [RelLU],
[Layer 2 J | l’ |
y =—> Feature 2 / ; !
(Layer3) : |__Pooling ’j:
§ L—> Feature 3| |
[Layer 4] ' [Divide].
J T—> Feature 4, l' :
([Layers) | (_Quantize J'
y L= Feature 5 .
(Layer6) ' !
| |
vy '—> Feature 6 ~ Activation Feature
([Layer7) [N+1] [N]

ke Feature 7

Figure 2.9: FENet algorithmic flow: (Left) Multi-layer data flow for FENet on a
single neural channel. (Right) Internal computation within each layer.

20

Each layer performs two separate 1D convolutions on its input stream with the
traversal and feature-generating kernels. The traversal path (left) generates an inter-
mediate output passed to the next layer. The feature-generating path (right) applies
a Leaky Rectified Linear Unit (LReLU) non-linearity followed by global average
pooling through accumulation and subsequent normalization through division. This
architecture allows summarization of kernel power at different levels of resolution,
providing information about highly local wave shapes at the lower levels with di-
minishing degrees of locality as the number of layers increase. The output feature
computation is defined in (2.3):
&1 K
Zizé LReLU Zjio Xspiej - W[

Ji= D (2.3)

where f; is the output feature from the /™ layer. Each layer receives a bin of B
samples, which is convolved with kernel weights w f; of width K; and stride ;. The
LReL.U output is accumulated and quasi-normalized using a division factor D. The
leak factor of the leaky ReLU nonlinearity is a trainable hyperparameter with values
constrained to the set of negative integer powers of two as defined in (2.4)
-1
2—11

(neZ|0<x<22} (2.4)

. The traversal path computation, defined in (2.5):

K;
X1 = ZxSl*i—j Wi (2.5)

j=0
produces the intermediate activation X7, for the next layer, using traversal weights
wt ;. Kernel sizes are matched across both computation paths to reduce complexity.
The overall structure of the hardware-implemented algorithm has a single continuous
stack of successive convolutions, lateral convolutions in each layer which extract

features at successively larger resolution scales.

21

This algorithm requires constant processing of neural streams, with many thousands
of multiplications per feature. While the success of FENet makes this algorithm
alluring, implementing it within the low power and area constraints of implantable
devices is a significant challenge. This thesis explores the requirements of the algo-
rithm, reduces its complexity, and implements it in 65 nm CMOS with a conscience
towards minimizing power and area. While this is the first implementation of 1D
CNN feature extraction for neural interfaces, other general purpose architectures
have been developed for their own purposes. In the next section, the space of CNN
accelerators will be explored to understand what gaps exist in this space which need
to be filled to efficiently implement the FENet workload.

2.3 CNN Accelerators

Convolutional neural networks have shown prowess in identification and catego-
rization. Their viability in these assignments has spurred diverse development in
architectures designed to efficiently and performantly compute these algorithms.
CNN ASIC implementations must balance a plethora of merits to best fit their ap-
plication. Show in Figure 2.10 is a representation of these merits reminiscent of
the design octagon of analog amplifiers introduced by Behzad Razavi [44]. This
diagram highlights the design priorities for the FENet workload within the context
of brain machine interfaces, and provides motivation for many of the design choices

discussed within this dissertation.

Low Power

High Bandwidth

Low

Flexibility R
N\ Area

FENet Workload ':-.{:

Precision Scalability

on-Chip
Memory

P-E Connectivity

Figure 2.10: Design octagon for deep neural network processing architectures.
Qualitative merits for FENet workload indicated with blue shaded area.

22

Like in the case of amplifiers, the ’best’ architecture for a particular system is the
one that maximizes fitness to the needs of the intended workload. Processing neural
data has a fitness profile that is significantly different than the multitude of CNN
ASIC processors in the current literature. These differences stem from both the
physical nature of the recording systems and the statistical properties of the signals

themselves.

Designing a CNN processor for neural data requires careful attention to the unique
demands of this domain. First, neural signal processors must support extreme scal-
ability to accommodate the ever-growing number of recording channels in modern
neural interfaces. Since these systems are intended for implantable devices, where
thermal and energy budgets are tightly constrained, low absolute power budgets are
a necessity. Further, to support integration near the data sources, the processor
must also maintain a small silicon footprint, minimizing both die area and cost for

commercial viability.

Specific to the FENet workload, each feature set has very little activation reuse
between channels. This highlights the importance of one-to-one channel parallelism,
where each channel’s data is processed independently and in real time as it arrives.
Processing data in time as opposed to in batches, reduces or eliminates the need for
large memory caches and enables computation of streamed data while minimizing

the on-chip memory footprint.

Unlike general-purpose CNN accelerators that aim for broad model support, the
design here requires algorithmic flexibility within the FENet archetype, allowing
for hardware specialization without full generalization to other CNN models. Sim-
ilarly, numeric precision must be finely tuned: low enough to save power, but high
enough to preserve kinematic decoding accuracy, striking a delicate balance be-
tween efficiency and fidelity. In terms of throughput, while the absolute number of
operations per second may be lower than that of image-oriented CNN applications,
the opportunity for activation reuse between channels is zero and minimal within
channels, meaning computation cannot benefit from activation reuse as is typical
for 2D CNNs. Finally, biological neural signals are highly non-stationary. A large
proportion of channels often contain only noise or irrelevant features at any given
time. For this reason, a neural CNN processor must proportionally scale its power
with the number of informative channels it processes, ideally reducing total power
by depowering uninformative channels. In this work, the processing element, cache,

and data network connectivity are optimized to efficiently implement FENet.

23

Data Networks

An architecture’s network design is one of the most important factors in determining
the utilization of processing elements and memory access power. On one end of
the design space, highly interconnected processing elements and memory channels
allow for significant reuse of activations at the expense of overhead and increased
complexity, which leads to scaling difficulty. On the other end, each processing
element has its own dedicated memory channel, which constitutes a high-bandwidth,
low connectivity architecture. For image processing, the former is ideal since each
activation can have hundreds of reuse opportunities. FENet, on the other hand,
has orders of magnitude lower reuse opportunities for each activation, with high
batch parallelism. For this workload, high bandwidth is a priority to allow 100%

utilization of each processing channel.

Figure 2.11 depicts the various types of networks for deep neural network processors.
The network topology of a deep neural network processor defines two key aspects
of an architecture: the bandwidth, and the processing element inter-connectivity. If
the hardware resources for networking are kept constant, then these merits become
antagonistic where increasing the performance in one aspect, reduces the perfor-
mance in the other. Figure 2.11 shows the spectrum of network connectivity that
a deep neural network processor can utilize with high bandwidth, low connectivity
topologies on the left, and high connectivity, low bandwidth topologies on the right.
For the FENet dataflow, the parallel processing of many independent channels indi-
cate that the same operation will be repeated at large scales with little opportunity
for reuse. In the following section, the workload for different deep learning models
will be presented with discussion on the benefits each network topology brings to
various forms of dataflow. For reasons that will be elucidated in detail within this

section, the network topology of this ASIC was chosen to be a unicast.

High Bandwidth, Low Spatial Reuse Low Bandwidth, High Spatial Reuse

EEET
[acapa e

={re {re fre] [ee]
=[rele{relufre] <]
=ee [fee |ufre] [re]

Unicast Networks

Global Buffer

s
S
3
@
®
2
°
Q

Global Buffer
Global Buffer

Figure 2.11: Common network types for CNN processors [13].

24
Dataflow Types

A dataflow type in the context of deep neural network processing is an architectural
characteristic that defines how data flows through the processor. Since the objective
of low power deep processing is to reduce the amount of data movement as much
as possible, these characteristics are named after which computational component
is held locally near processing resources. The taxonomy of deep neural network
processing topologies are shown in Figure 2.12. These topologies represent the
general way in which operations can be mapped onto data and include input sta-
tionary, weight stationary, output stationary. A given workload will have an optimal
dataflow type which implements it, and each dataflow type is better suited with
certain network topologies and bandwidth requirements. If the system is intended
for a single workload requirement, designing the architecture to best accommodate
its dependency graph will primarily determine the system’s efficiency. Hybrid tax-
onomies such as row stationary look to combine the benefits of each topology at
the cost of hardware complexity. The following section will provide detail to which
topologies are appropriate for a given workload and which data networks are optimal

for each topology.

Act

Psum
S0 [®0] [@D] BT [B0] [0
"
Weight

(a) Weight stationary

L emem]

B
Bz

Aty ¥ 'y Y Y b ¥ Weishe
R | KD [XD | RE| | KB | KD [RP]| | ®P
| Po || P1 | P2 |igl P3 gl P+ |gl s Il P I PE
Psum (b) Output stationary
Weight
g Psum
XD | (XD | XD | XD [RKD| | XD | [D] | XD
MO | IEE | | | I [| e

(c) Input stationary

Figure 2.12: Taxonomy of common deep neural network accelerators. Act means
activation and different shades of the same color are used to represent different
values of the same type of data.

25

Input stationary architectures like [42] keep inputs local to processing elements as
weight filters are streamed in and partial sums streamed out and generally employ
a high-bandwidth (unicast) weight distribution networks with systolic transport of
partial sums. This dataflow type is optimal for workloads with a high number
of filters compared to input channels. Architectures with weight stationary flows
such as [61] store weight filters locally, and are optimal for workloads which use
the same filters over a high number of input channels. Weight stationary flows
benefit most from systolic networks as partial sums from one processing element
are pipelined immediately to its neighbor. Output stationary architectures [17,
52] store partial sums locally, benefiting workloads which have a high number of
independent channels in which partial sum caching would become onerous. As such,
output stationary flows pair well with unicast data networks since each processing

element can access its own channel of memory.

Hybrid dataflow approaches try to minimize data movement along multiple tensor
dimensions. The well-known Eyeriss V1 [14] architecture adapts a row stationary
dataflow which locally caches the row of both inputs and weights. This architecture
generally employs 1D multicast networks for broadcasting rows of both weight and
activations. Although highly efficient for large 2D CNN workloads like AlexNet,
these additional complexities greatly increase resource requirements, and sacrifice

processing element utilization for highly batch parallel workloads.

Many of these architectures struggle to efficiently map a workload like FENet onto
their processing resources because of its minimal activation reuse [13] and the high
batch parallelism necessary to neural decoding. The solution is to customize both
the dataflow and network to best serve the FENet workload while minimizing the
excess hardware and power consumption to make it suitable for implantable brain-
machine interfaces. A unicast input activation network is selected to maximize
the utilization of processing elements since each channel is independent from its
neighbors. Weights are broadcast globally since they are shared among all chan-
nels. A novel dataflow is constructed to hold each layer’s feature stationary to the
processing element, while generating intermediate activations and writing them to

a nearby SRAM channel, reducing data movement.

26
Chapter 3

SYSTEM ARCHITECTURE AND DESIGN

This chapter delves into the specific architectural design process of the FENet ASIC.
Exploration of this architecture begins with a system overview and then zeros in
on each major component of the design. The design of this architecture balances
the three design goals of low area and power without compromising decoding

performance.

3.1 Overview

The proposed 1D-CNN stream-oriented processor is designed to extract features
from high-bandwidth neural data streams in a scalable and configurable manner. The
system is a broadband feature extractor which outputs 2-8 values per channel that
represent the aggregate presence of learned feature kernels in the neural data. Like
other broadband feature extractions, these features are able to represent the presence
of low-amplitude neural activity from highly noisy signals that would otherwise
be lost to spike detection and spike sorting feature extractors. The architecture is
optimized for stream processing with minimal activation caching since it schedules
operations based on the availability of input data and completes each convolution
in a piecewise manner between slowly arriving neural samples. This allows scaling
from very few, to hundreds of neural channels to be processed in real-time with

minimal control and memory overhead.

The ASIC hardware components can be classified into two main groups: the CNN
solver hardware under test, and the validation system. The former consists of
the channel block macro, algorithm control finite state machine (FSM), processor
control FSM, and configuration registers. The latter is the custom serial data

interface, which exchanges data with the external validation system.

27

The system diagram is shown in Figure 3.1, which illustrates the data flow of
the system and channel architectures. The blocks on the left denote the centralized
control hardware which generate control signals that are broadcast the the processing
hardware. At the top left is the data interface hardware which accepts data and
configurations and imports them into the computational system. Below this block
are the configuration registers that store configurations and influence the control
sequences generated by the algorithm and processing element (PE) control finite state
machines, which generate control signals to modify the behavior of the processing
elements to match the desired model configuration. Control signals and data are
broadcast globally to all processing hardware and are color coded based on function.
The interface data bus in red writes input data to the asynchronous queue of each
enabled channel. Configurations like channel and layer enable are distributed to

each channel from the configuration registers (colored blue).

~ Processing Street (6x)
SPI Data Interface | Ty
with Flow Control b PE ... |PE |PE I
) 31 17 |16
N -
Configuration 1] il
Registers AQ .4[AQAQ
Y, 31 17|16
) EEEEE— Tt f f TmT t f f [t (AT [E[If
Algorithm | 9b x 8 x 256 SRAM
Control FSM] Block 3 Block 2
: : Block 0 Block 1
N PE Control
FSM] s e s e e o B I Y A A A A
. olo|a|a ol VU Y YU U U Y
| Weight SRAM AR AR AR AK A A R e e e e e e a]
9-bit x 2 x 256
PE |PE|... PE
0|1 15
A A
<

{ Weight Writing Queue T

.

Figure 3.1: Functional representation of ASIC system architecture showing their
logical connections. Various buses are color coded: Interface data bus (red),
algorithm and mac control (black), data available (orange), feature out (green), and
channel enable (blue).

28

Controls, denoted with double black lines, are generated from the two finite state
machines and broadcast to each processing street. Each block depicts a different
aspect of signal distribution. Block 0 shows how data arrives at the write port of
the SRAM circuit. Outputs generated by the processing elements (PE), and level
shifted to the memory voltage domain. The data source is selected between the
asynchronous queue (AQ) for writing neural data and the output of the processing
elements when writing intermediate outputs. Block 1 depicts the generation of a
global data available signal in orange from the data available flag generated at each
channel. The inverse of the channel enable signal is or’ed with the data available
signal of each channel. This disables its dependency when the channel is not enabled.
A globally reduced buffer full signal is generated in a similar way to indicate when
data loading must be stalled. Block 2 indicates how control signals are buffered
from one block to another using skew-optimized AND gates. If the blocks above
these buffers are not enabled, the buffers are disabled to reduce switching power.
Features generated by processing elements are exported via a single bit scan chain

in green. Disabled channels are skipped in this scan chain with a multiplexer.

Processors that share a common SRAM memory are grouped into channel blocks,
and channel blocks that share a buffer chain and activation bus are further organized
into streets. The data interface serves as the primary access point for configuring
registers, loading weight memory, and streaming neural activations into the system.
Multiple clock and voltage domains, as well as channel and layer level power gating

are used to minimize power.

We enable a high degree of parallelism without excessive area overhead by utilizing
word-serial processing between each system clock cycle. The use of separate clock
networks allows the high speed processing element clock (MAC clk in Figure 3.6) to
be constrained to a lower VDD domain, reducing switching power. The processing
element (PE) control FSM synchronizes control signals to the rising edge of each
system cycle, and does not begin a new control sequence until the next rising edge of
the system clock, preventing control misalignment. The frequency ratio is adjusted

for model parameters that require more MAC cycles.

29

The system utilizes a third asynchronous interface clock for IO to emulate data from
independently timed sources. Neural data is distributed to each channel via the data
interface by a shared bus. Although the data interface is utilized to compensate for
the limited off-chip IO of the validation ASIC, the interface data bus is intended
to be replaced by parallel data sources within a full chip BMI decoding system.
For this reason, each channel is equipped with a 4 element Asynchronous Queue
(AQ in Figure 3.1), to allow for neural data caching while the SRAM is in use
for computation. These asynchronous queues indicate their fullness state with
data-available flags (orange) which are reductively ANDed together to indicate the

system’s readiness for processing.

The presence of data in all enabled channels signals the central FSM to trigger
the load operation of the first layer. This operation transfers neural data from the
asynchronous queue into the first layer’s SRAM space. Once a stride of data is
loaded within a layer’s memory space, higher-order dependencies are satisfied, and
the processing element becomes available, data within a layer’s SRAM space is read

back and presented to the processing element for computation.

At the completion of feature generation, the pooling register value is reduced to 9
bits, rounded, and added to the feature shifting register (Feature SR). At this point,
the processor begins a new computation, while the feature is shifted out of the
processing element. Each channel is equipped with an always-on skip multiplexer
that allows its position in the feature scan chain to be skipped in the event the channel
is powered down. The features are shifted out, and returned to the data interface for

exporting off the chip.

The proposed architecture is designed to efficiently map a wide range of FENet
models. Kernel size, stride, LReLU leak slope, and pooling parameters are all
configurable through the CNN control FSM sequence. Up to 8 features can be
generated from 7 feature-generating layers and one terminal traversal layer. Kernel
size is limited only by the depth of the weight SRAM (256 elements) such that the
sum total of traversal kernel weights must be less than 256 (the total number of
kernel weights is 2 traversal weights). Bin sizes are defined by multiplying the first
layer stride with a programmable cycle counter, allowing maximum bin lengths up
to 2048 strides. These options provide a wide hyperparameter space for optimizing

power, performance, and decoding stability.

30

To support system scalability, the processing hardware and activation/feature caching
are integrated into a modular channel block macro. Each channel block contains 8
processing elements , each with their own asynchronous data queue, gated control-
signal buffers, and power-domain level shifters. All processing elements share a
customized TSMC 72-bit X 256-element low-leakage single-port SRAM macro. To
accommodate the higher voltage headroom requirements of the proprietary SRAM,
we separate the memory and processing element VDD domains. Shown in Block
0, outputs from each processing element are level shifted from the processing
element domain (MAC VDD) to the SRAM (MEM VDD) domain. Single-port
SRAM macros are used for compactness and power efficiency, with write access

multiplexed between asynchronous activation queues and processing elements.

3.2 Processing Element Architecture

The processing element is the heart of any CNN processor. The following section
will detail the plethora of design considerations that went into tailoring this pro-
cessing element to the FENet dataflow, while reusing every component as much
as possible and maintaining full configurability of the FENet algorithm. Control
signals and weight data are broadcast globally by a centralized FSM, orchestrating

synchronized computation across all processing elements.

Channel Architecture Overview

To provide context for processing element design, this section starts with the overall
architecture, and a brief synopses for what the intention is for each sub-component.
The following subsections elaborate on the reasoning behind each choice. As shown
in Figure 3.2, each channel contains two fused MAC data paths, the feature path,
which writes partial sums to one of the seven pooling blocks, and the traversal path,
which handles intermediate feature computation between layers. For lower-order
layers, traversal partial sums are written back to SRAM to serve as inputs for higher-
order layers. For the highest-order layer, the traversal output is instead accumulated
into the final pooling block, producing the last feature output. Data read from the
SRAM is operated on in the data path blocks. The outputs from the data path are
shifted and added into the pooling layer shift registers depending on the active layer.
The feature shift register within each layer latches the output feature for shifting out

of the processing element while a new computation commences.

31

Traversal e '
Intermediate 1 00 I
Activation 9b Data Path
‘ # Layer 7

E e e e e e e - -
| |
- R |
Activations ?bl 1 Pool SR 22b 3 | 0 |
— ayer
Weight & Sign 25, Output Feature '
FESM Control 3 - |
> Data Path 9 7% ™ :
=
]
c k= pPool SR 22b | '
? Layer 6 |
2 y
pSum Shift In 9b I
7 |
| I
|
|
|
|
|
|
|

Figure 3.2: Architecture for one neural channel. Two arithmetic units simultaneously
process the traversal and feature generating data paths. Intermediate values are
passed to pooling accumulation register blocks, selected by a multiplexer.

Each processing element is designed to meet strict area and power constraints
critical for large-scale neural decoding systems. To minimize the hardware footprint,
multiplication is performed using a word-serial approach, allowing an 8-bit adder
to be reused across all CNN operations. This design choice significantly reduces
the area cost and enables scalable integration of hundreds of channels, at the cost of

some increase in switching power relative to parallel logic architectures.

To ensure robustness during long accumulation sequences, overflow handling is
incorporated. An auxiliary overflow bit allows temporary excursions beyond the
nominal accumulator range without immediate clamping. Final clamping is applied

only if the terminal convolution result remains out of bounds.

The processing element clock frequency is configured relative to the system clock
to guarantee that all multiply-accumulate, nonlinearity, and global average pooling
operations finish within each system clock interval. This clock ratio is tunable across

models to optimize performance and power efficiency.

32
Data Representation
The first step in scoping the design of an arithmetic system is to define the rep-
resentation and resolution constraints of the data path. For this system, a fixed
point format was determined to be ideal as it allows systematic discarding of least
significant bits, maintaining a low bit-width requirement on the data path, without
the overhead of floating point arithmetic. To determine the optimal resolution for
the system, the FENet algorithm was quantized using QTorch [66], then simulated

and validated for R? decoder performance. The results of this experiment are shown

in Figure 3.3.

Effect of Quantization on Decoding Performance

Word Length
— 8

—_— 9
0601 — 10
=== No Quantization

Average Decoder R?
&

5
Fractional Length

Figure 3.3: Effect of fixed point quantization of weights, inputs, and intermediate
activations on the decoding performance of neural data. Dotted line in purple is the
reference performance with no quantization applied.

The optimal values for the integer and fractional components of the system were
determined to be 3 integer bits integer, and 6 fraction bits as depicted in Figure 3.4.
Lastly, sign magnitude representation was used to reduce the switching activity of
read and write operations in SRAM [11].

Quantization: wl = 9, f1 = 6

min: -4.0 max: 3.984375
0 1 o . 0 1 1 o0 /|1 O
Sign Bit

Fractional Length =6

Word Length =9

Figure 3.4: Fixed point representation chosen for the activation and weights of the
FENet dataflow.

33
MAC Architecture

When choosing the architecture of an arithmetic unit, both power, and area are
important considerations. While separate multiply and accumulation hardware
allows word-level processing of multiplications in a single cycle, it comes at a
significant cost of hardware. These architectures are depicted in Figure 3.5. The
tradeoff between area and power is listed below. While the power performance
of the MAC unit is decreased by 37%, the area tradeoff allows for improved area
efficiency. Furthermore, the serialized MAC can incorporate bit-wise gating for
zero-value weight bits. Analysis of the FENet weights showed many near-zero
weights making the word-serial MAC architecture ideal for the system. Ultimately,
the fused word-serial architecture was chosen since it also allowed for integration of
word-serial accumulations of the pooling registers, reducing routing requirements
and overhead. This decision, however, does come at the expense of an increased

power consumption of the MAC.

Activation ~ Weight Weight Activation

Bit Select 17

_/Truncate

> Shift > >
!

Accumulation Register Accumulation Register
A (B)
Typical MAC Fused Word-Serial MAC
Normalized Area: 1 Normalized Area: 0.58
Normalized Power: 1 Normalized Power: 1.37

Figure 3.5: Comparison of two MAC architectures with normalized area and power
tradeoffs. (A) Typical single cycle MAC unit. (B) Word-Serial MAC Unit.

34

A block diagram of the fully integrated MAC architecture is shown in Figure 3.6.
At the center of the design is a single 8-bit adder shown in purple. This one block
handles all arithmetic operations in the processing element, making it the centroid
of the design. Starting on the left side of the datapath, the first operand to the adder
comes either from the SRAM read port or from the shift-out port of the pooling block.
The turquoise logic around it handles operand negation for subtraction during signed
multiplication and sign adjustment during the leaky RelLU operation. On the right
side, we have the shift-and-insert circuitry in green, paired with the output shifter
of the accumulation register in yellow. Together, these decide which part of the
accumulator feeds into the adder as the second operand. Looking at the output, the
accumulation sum can either be added to one of the 7 pooling blocks, or written back
to SRAM for higher order layers. The 8-bit adder is reused across multiplication,
leaky ReL.U application, rounding, overflow handling, and pooling accumulation.

Pooling division is efficiently implemented through bit-shift operations.

| Neural Activations (Magnitude) ‘ ¥

[7:0]
(Shift and Insert < (

y

Overflow Clamp

MAC clk ‘
_b 16-bit Accumulation Reg

|
 Add Enable

I
Pooling Reg Shift In [7:0]

Subtract Enable

Shift =>
| |
Output

Overflow Bit

Truncate

|

|

|

|

|

|

|

! \ 4
C Bit Select

: arry bl elec v

: 8-bit Adder

| L

|

|

|

|

|

{15,7:0}
Intermediate Sys CIk!
| Feature Re T
| !
I Pooling Register Traversal Data |
| o __ Shift Output [7:0]y _ _ _ _ _ ¥y Output[8:0] _

Figure 3.6: Architecture of single data path processor.

35

For more context on how this works, the flow of data is shown in Figure 3.7, with
colors corresponding to hardware in Figure 3.6. In this computational phase, the 4th
weight bit is currently selected, which shifts the active range of the accumulator by
3 bits. These 8 bits of the activation are added to the current accumulator, starting at
the 4th bit place. The carry out bit is saved and added to the next phase, where the
active window is shifted by 8 bits to complete the 16 bit addition. Partial sums are
latched in a shifted window of the accumulator, and carry propagation is handled in

subsequent phases.

(A)

Sign and Activation Format |1|0|0|0|0|1|0|0|1| |:| Sign
9b Fixed Point Sigh Magnitude |:| |nteger

[a[aJaJafaaaafo 2o a1 o 1 o] [] Fraction

Accumulator Format
16b Fixed Point Two's Complement

....... : (8)
weight |1[ofofo|of1[o]o[1]
Bit 3 Select window shifted by 3
Data |0|1|o|1|0|0|1|1|o\ |1|1|1|1|£|1|1|1|0|1|o|1|1|§0|1|o\

Accumulator Select

NewCarry |O|O|O|O|l|0|0|l|

£ Shift and Insert <<

Figure 3.7: Processing element computation flow: (A) Data format and bit type
key for 9b sign-magnitude activation and weight data as well as the 16b two’s
complement accumulator format. (B) Depiction of the addition of a single partial
sum to the accumulation register at the start of multiplication phase 4.

36

The data path depicted in 3.7 shows how weights and activations flow through the
system. Two weight bits (one for the output and another for the intermediate feature
generating paths), are read from the centralized weight SRAM, are broadcast to all
processing elements. At the same time, shift control signals are similarly broadcast
to instruct the accumulator select, and shift and insert multiplexers to select the
current active region of bits which correspond to the bit position of the weight bit.
The adder is then enabled if and only if the corresponding weight bit is 1. This adds
the activation to the accumulator within its current shifted position. The adder then
finishes its addition, to carry the remaining bits. When the weight and activation
are of opposite sign, the activation is inverted, and a bit is added into the carry-in to

enable subtraction of the activation value.

At the completion of a convolution kernel, the accumulation register is reduced
to bits 6 through 13. Rounding is completed by adding bit 5 to the remaining 9
bits, which helps alleviate some error from quantization. For the traversal path,
the accumulation value is written to the Intermediate Feature Register. The
value within the Intermediate Feature Register is written back to SRAM on
the next system clock cycle. For the output feature generating path, and the traversal
path when the last layer is active, the accumulation value is instead accumulated in
an associated pooling block, which is selected based on the CNN Control signals.
During pooling, the activation is instead multiplexed with the 8 least significant bits
of the currently active pooling register. The output of the adder arithmetic is then
redirected into the shift port of the pooling register, such that the sum is shifted into

most significant bits of the pooling register.

Overflow Clamping

37

A well-designed processing element must gracefully mitigate the effect of its limited

dynamic range. A naive approach is to incorporate as long of a bit width as necessary

to never overflow your arithmetic operations. This approach quickly balloons the

hardware requirements of your system, without significant benefit from the increased

resolution. The overflow clamping has two stages as depicted in Figure 3.8. The first

stage is a soft-overflow, where guard bits are used to allow for momentary overflow

into an unrepresentable range. During soft overflow, three things can happen, either

the accumulator value returns within an representable range (Figure 3.8 A), the

accumulator does not overflow, but still remains outside of the representable range

of values (Figure 3.8 B), or the accumulator completely overflows (Figure 3.8 C).

Overflow

Guard Bit Range

Valid Range

Overflow

Steps

Overflow

Guard Bit Range

/ia/di?\/

Overflow

Clamped

Steps

Pre-Overflow

Overflow

Pre-Overflow

Overflow

(A)

Guard Bit Range

Overflow

(B)

Overflow

Clamped

Valid Range

Steps

Pre-Overflow

Overflow

©)

Figure 3.8: Accumulator Clamping Scenarios:

(A) Accumulator soft overflows but returns to valid range. No clamping occurs.
(B) Accumulator soft overflows but does not return to valid range. Value clamped
to maximum magnitude, in this case, negative. (C) Accumulator overflows and
value rolls over. Clamping is performed such that the clamped value is clamped to
maximum magnitude of the first overflow boundary.

38

The first scenario is ideal and means the guard bits prevented unnecessary clamping,
and still allows for full representation of operation.The second situation is nominal,
easily detectable with the values of the guard bits, sign, and carry values. The third
situation is catastrophic if not properly handled as it could introduce an error equal
to the entire bit range of the accumulator, which if it occurs within the first layer’s

traversal feature, may propagate to affect all features.

Since values from the accumulation register propagate through the entire network,
a single overflow can vastly influence output features. In Figure 3.9, we show the
simulated performance of FENet-66 operating on 30 kSps data with and without
clamping. It is evident that without proper mitigation of overflow, the performance
of the system is significantly degraded on average by 5.7%, with some days having

a discrepancy of 17.5%.

Offline Decoding Performance Over Time .
2019 2020 2021 2022 Average Decoding Performance

Clamped FENet 66
Un-Clamped FENet 66

0.9 0.9

0.8 0.8

0.7 0.7

o
0.6 o 06

[}
& 05 o5

-5.7%

[
0.4 Z 04

0.3 03

0.2 0.2

0.1 0.1

0.0

T T u + y T T 0.0
0 5 10 15 20 25 30 35 40 45 Clamped FENet 66 Un-Clamped FENet 66

Session Feature Type

(A) (B)

Figure 3.9: Clamping effect on performance of FENet-66 model on 30 kSps neural
data: (A) Performance of FENet-66 clamped vs. unclamped. (B) Average perfor-
mance over all sessions.

39

Pooling Architecture

The pooling block is responsible for storing the global average of each layer. Figure
3.10 details the pooling block architecture. To reduce the routing complexity of
the processing element and reutilize the MAC hardware for the pooling register
accumulator, as well as LReLU, and final accumulator division, the pooling block is
implemented as a twenty-two-bit multi-precision-shift shift register. The shift hard-
ware is equipt with multiple precision shift widths to allow a given operation both
the flexibility to shift entire words, half words, or single bits to reduce the number
of MAC clock cycles necessary to complete the pooling tasks while maintaining
alignment precision. This is accomplished using the shift and insert hardware de-
picted in Figure 3.10 which shifts in the value in the pool reg shift in port based on
the shift control.

The pooling block is also responsible for latching and exporting feature data such
that the pooling register is free to begin the next computation while the feature value
is exported. Upon the assertion of the capture feature signal, the last 9 bits of the
pooling register are latched to the feature register. The control FSM ensures clock
domain crossing safety by enforcing a full system clock cycle between any updates of
the pooling register and latching of feature date. The feature shifting is accomplished
through chaining the scan ports of active channels together. Inactivated channels or

layers are multiplexed out of the scan chain.

[}
'MAC Clock

I
I
IClear Pool Reg_|._ 22b Pooling Register :
| 1 Q 1
: Truncate {8,0} I Pool Reg Shift Out [7:0] !
:Feature Shift In Feature Shift Out
System Clock IS i =5
ICapture Feature
Capture

|Feature Shift Enable
{RESETN

IPool Reg Shift In [7:0]

. |

'Shift Control [1:0] \ Right Shift and Insert
| / {Shift In, {>> 1,4,8}}

. 9b Feature SR

NCLR

Figure 3.10: Architecture of pooling block including the 22b register, shift and
insert hardware, and feature shift register.

40
LReLU Sequence

The center left branch of the processing element FSM is depicted in Figure 3.11
starting at the LReLLU state and ending at the DONE state. To fuse the LReLU
and pooling states, extra shifting cycles are added to the pooling shift and add
sequence to allow channels individual shifting behavior dependent on the sign of
their accumulator. Bit-precise shifting control is required to allow channels with
either conditions to receive the same shift sequence, while performing separate
behaviors. At the same time, performing the entire shift and add sequence one bit
at a time incurs significant processing cycles which would increase the minimum
processor clock frequency. To remedy this, variable shift and add capability is added
to both the data path, and the pooling blocks. This minimal increase in complexity

offers significant fused LReLLU-pooling performance.

To reduce algorithmic complexity, the bottom half of the fractional bits are discarded
by starting the accumulation sequence offset by six bits from the Isb. At the start
of the ADD POOL state, negative channels are stalled by two bits, matching the
number of bits configured in the model configuration registers. This allows positive
channels to add their accumulation registers in full. Once the accumulator bits are
skipped, both negative and positive channels continue with the pooling operation.
During this phase, low bit precision is necessary, and the shift and add step is
increased to a full word (8 bits). The LATCH POOL STALL state toggles the
stall state of each channel such that the positive channels, which have finished their

pooling operations, can stall pooling while the negative channels finish.

41

Bit Key [biscarded Fraction | [peLuc=2
D Pool Reg Stall \:\ Kept Fraction asx: x < 0 a=-2"
] cany [mteger o ={"0130 Stz

Negative ReLU-Pooling Sequence State Positive ReLU-Pooling Sequence

AT PEREBDROORDE Rew [oTofo]
Rectify u

Shift Stall Carry

[o] [oloJolafo[22 el ofalolol2]a]0] e [0 [o] [oJofo[afolx]xTo]x e aTelol]al0] it
Pooling Register [0]0]ooJo]o]o]oJoJe[2][2]a]1]o]2]oJe2]o]e]1] Ceonditions ADD POOL [o]o]o]o]o]oJo]o]o]o]2]2]1]2]o]1]o]o]2]e]o]1] Conditons
Addend A Addend B-—'
[o] [ofefo[z[o]z[1]o 1JoJo]1][2]0] single Add [0] [o] [efofolafela]x]o] 1[o[o[1]1]0] single Add
[o]ooeelo]olololol1]1[1]1]o]t]o]o]z]olo]x] statled APPPOOL 1[oJoJofoJofoJoloole2]22]2 o 2]e]o]2]00] shit
Addend A Addend B—
[o] [ofelo[x[olz[a]c2o]aelol2]2]0] single Add © [0] [ofole[alo[z]z]c 1[oJo[1]1]o] single add
[oJofoJo]ofofofefoofa]s]2]2]ofa]e]o]1]oo]a] staled ADD POOL 1/1[ofoJefofofofefolofolx]z]a]x]o]a]olo]ale] swir
...........] — el oo A —— el el
[0] [o] :[oJoo[2]o[1]1]olaTo o o a]a]0] ebadd [0] [o] :[o[oJo[a]ola]1 o] e a]o]ol2]2]0] sbAdd
ADD POOL R e St g o
of1fo1]1[1]1]1ToJo[o[ofolo o o o o aal2]a] shit 1[1[a]o[1]ofofo[x]1[o]ofolofolofolo o oaa] g
Addend A U Addend A ——— AtdendB ———

[0] [o] [ofoJo[x]o[z[2o[2e]z]o]o]x[z]0] s&bAdd
o]o[0[0]1[1[1]1]0]1[0[1]1[1[1]1 Shift

i [[o] [ofeTo[zolx[z o 2o]a[o[o]1[Z]0] Single Add [©] [o] [oofo[a]o[1[x]o]1[o[1[o]0[L]]0] Single Add
" [eleleloleiizlz[e[i[ols[s[a[s[z[oo]olels] shit APPFO* o[o[e[oo[ole[a[sla[s[a e[z olelolz i olole] ~Shit
[o] [o] [ofefolzJolz[a o a e a]o o]z 0] single Add [e] [o] [ofoTofaTela]x]olzo a]ofolz 0] single add
[ofofolofefolx[[[1 o1 ol x]s[s[1[1 olcloa] ~shif [ololololo[olelola]1[1[1]1[o]z[o]olo[1[1[0[n] Shif

[o] [o] [ofoJo[x]o]2]2]o]2]e[z]o]o]z]1]0] Single Add [©] [o] [ofolo]ale[a]1]o]1]o[1]olola]a]0] Single Add
LATCH POOL

“[o]oleleolo ez [z [z o[z][1[Z]1[e]o]o shift STALL [oTeJoJoJe]ole[oe[z[1]z]z]2]o]2]o oo 1]1]o] shitt
Addend B-—'

[o] [o] [ofoJo[xTe 2 1]o]z]o[z]olo]x[2]0] sbAdd
(] G C3 1 E1 1 EY EVEN EN BN [F 9 161 ENEY Y 1 Qe

ADD POOL *

ADD POOL ~

Addend B—

B 6 EREEEEE I CEREERES] shaed (6] (elelelzlelzlz ol olEIelelZ[Tla] Single Add

FINISH

"[olololololololo[ilalalalola[o[a[a[2[a[1[ol0] Shif pook . [oolofolofo[ofo[oloz[z[]i]z[o]z[o[ofo]1]z] stated
Addend A Addend B—' d A ‘Addend B-—
[o] [o] [ofofo[z[o[2[2]o[2e[2 o 0[2[2]0] Single Add [o] [ofofo[2lo[2]z[ol1[o[z[o]0[2[1]0] Single Add
! FINISH
ofo[ofoJolofofo o2 aaaTo a0 a a1 a0] Shif POOL oJoJo[ole]olofofefol1[z]z]2]2]o[1[o]olo]1][L] Staled
Addend B— Addend B—

[o] [0l [ofoTola[elx a e 2 oz o o aTaTa]

" lolelolelolelo oo A Ao EEEETE]

[e] [ol [ofofefTela[z o 2 oz e olx]1 e]

" Glole[olelolelo[elo[s sz s [a e xlelolel1]z]

Finished DONE Finished

Figure 3.11: Fused pooling-LReL.U sequence for positive (right) and negative (left)
signs of the final convolution accumulation value. LReLU «a parameter for this
example is 2, meaning the accumulation register is shifted by 2 bits before addition
to the pooling register.

42

Layout Considerations

In many cases of digital ASIC design, it is preferable to allow automatic place
and route layout large swaths of the design so it can take advantage of large scale
modeling for optimizations of logic placement, and sizing. However, with this
system, granular channel and layer level gating of power was a high priority. As such,
the layout needs careful customization to create the complex power delivery system.
The primary layout constraint was the width of the processing element, which was
constrained to %th the width of the SRAM, which worked out to be 50.8 um wide.
The second constraint was that the pin layout for all processing element IO is to
be on the top edge of the design so that the centralized control signals could be
distributed from an always on domain (located above the processing element). The
processing element layout is depicted in Figure 3.12. The MAC data paths are the
most active components of the processing element, so they are placed as close as
possible to the 10 ports of the MACRO. In a similar fashion, each layer is situated

such that the most active layer is closer to the MACs.

AMARREIYYYVYYYYVHIYWOYY VUTUIRUIIOOOOOOYY 4V

@ Traveral EsEs
: MAC s

=@ | ayer 7 Pooling Block s 1l

|
[

Isolation and MUX

B S TR

Layer O
Pooling Block

Layer 1
Pooling Block

Layer 2
Pooling Block

Layer 3
Pooling Block

Layer 4
Pooling Block

Layer 5
Pooling Block

Layer 6
Pooling Block

|
<

50.6 um

N
~1

Y

wn Ty

43

Figure 3.12: Layout of processing element with each major component group

identified.

44

Power Gating

Power switches run the spine of the processing element. Each processing element
is power switchable such that inactive processing elements can be de-powered to
maximize efficiency when few channels are needed for a given task. Furthermore,
models with fewer layers leave these blocks unused. The static power draw of each
channel can be up to 30% the total power consumed by the processing element,
especially when operating with small models at low frequencies. Mitigating these
costs allows for high linearity in the power scaling of the system. Incorporating such
a complex power distribution system allows the architecture to shed the static power
costs incurred by the hardware needed to support larger models, when processing

models with fewer layers.

One important consideration to make when implementing power gating is the voltage
headroom of the incorporated logic. All of the processing element logic is chosen to
be LVT such that its minimum operating voltage can be pushed as low as possible,
thus conserving dynamic power. Using HVT power gating cells is common because
they provide the lowest leakage when the cells are turned off. When designing a
system which is intended to operate near the threshold of the CMOS logic, HVT
power gating cells will enter the linear operation regime at a higher voltage than LVT
cells, increasing the required VDD of the system overall. Figure 3.13 shows the delay
of the maximum path of the processing element versus VDD. For a delay margin
of 5 nS, the minimum operating voltage is shown to increase by .05V when using
HVT power gating cells. To mitigate this, standard cell power gating transistors
were modified to use LVT transistors, improving the minimum operating voltage of

the processing element by .05V.

PE Max Path vs. VDD

401 —— HVTPG
354 — LVT PG
30
2 254
& 20+
©
0 151
101
51
ol AVDD 0.05V
06 07 08 09 10 11 12
VDD (V)

Figure 3.13: Effect of threshold voltage on the delay of maximum path over VDD.

45

This modification comes at the cost of 200X increased leakage current when the
channel is powered off. That said, this off-state leakage current was simulated to
only increase from 10 nW to 2 uW over the entire chip. This cost is far outweighed
by the reduction in VDD, since the total change processing element power going
from 0.63 V to 0.68 V can exceed 50 uW (measured using FENet 240 at 400 kHz).
See Section 5.2 for the implementation results.

3.3 Channel Block Macro

This section details the architectural design of the channel block macro. First, the
overall composition of the block will be discussed, which is then followed by the
architecture and design decisions made for several important components of the

block such as the SRAM, asynchronous queues, and signal feed-through buffers.

Channel Block Overview

Figure 3.14 provides a schematic overview of the channel block with a focus on
the association of channels with their memory, and the division of power domains.
Each channel is associated with an eighth of the SRAM bandwidth. Input data is
temporarily cached in an asynchronous FIFO before being written into the first layer
of SRAM. The memory (MEM) and processing element (PE) voltage domains are
interfaced with level shifters.

,,,,,,,,,,,,,,,,,,,,, NeuralData

Memory 9b x 8 X 256 SRAM :
(MEM) | .
VDD 1 :
A I S S N S E—
i AQ AQ AQ AQ AQ AQ AQ AQ |

Channe'A E I I | - | - | - | - | - :
Ready A & e |l [||& /M =y
: A AL AL AN LA A oA
e O Y B P B O B P B
Processor | :
(MAC) I pE PE PE PE PE PE PE PE |
VDD 0 1 2 3 4 5 6 7|
Domain | :

Figure 3.14: Schematic overview of a single channel block focusing on the associa-
tions of a set of channels and their SRAM. Division of power domains are depicted
with shaded boxes with green shading indicating the higher voltage MEM power
domain, and the purple shading indicating the low voltage processing element do-
main.

46

To support system scalability, the processing hardware and activation/feature caching
are integrated into a modular channel block macro. Each channel block contains
8 processing elements (PEs), each with their own asynchronous data queue, gated
control-signal buffers, and power-domain level shifters. All PEs share a customized
TSMC 72-bit X 256-element low-leakage single-port SRAM macro.

To accommodate the higher-voltage headroom requirements of the proprietary
SRAM, we separate the memory and processing element VDD domains. Level
shifters, shown in Figure 3.1 Block 0, are inserted only where necessary—specifically
at the interface between the 9-bit intermediate feature outputs and the SRAM write

port multiplexer.

We designed the physical layout to ensure that each PE occupies one-eighth the
width of the SRAM macro, minimizing wire length between memory and compute
units. This tight spatial coupling reduces energy consumption and facilitates tiling

of multiple channel blocks across the die for scalable expansion.

Control signals and weight data, originating from centralized FSMs, are buffered
using balanced AND gates. These buffers are deliberately timed to create a small
positive skew relative to the system clock, preventing hold violations as the chain of
channel blocks grows. Buffer placement and sizing are optimized to minimize both
inter-signal skew and clock-relative skew, maintaining signal integrity even in large

system configurations.

Each channel includes an asynchronous queue that interfaces with the validation data
stream. The asynchronous design allows data generators to operate on independent
clocks relative to the system and processor element, significantly relaxing timing

requirements on upstream acquisition hardware and improving system scalability.

Activation Memory

In deep learning processors, data movement and storage consumes the majority of
power for the system. At a simple glance, it may seem that all one needs to do is pick
the amount of SRAM needed for a task, and compile an SRAM block which meets
those specifications. However, there are far more factors to consider. One such factor
is how data is organized and partitioned within SRAM, and can significantly affect
the mapping of processing elements onto the workload. Another factor is where the
data will need to travel after it is read from the SRAM. If SRAM is significantly
separated far from processors, efficiency will be lost to power necessary to buffer

these signals.

47

To optimize an architecture for the streaming FENet workload, the partitioning
method was considered in detail to reduce the necessary SRAM size in bits. Once
a minimum SRAM requirement was determined, the sizing of each SRAM was
explored to determine the optimal aspect ratio to minimize power required from the

system.

Partitioning

The memory partitioning was designed with the worst case requirements as deter-
mined by the algorithmic exploration discussed in Section 4. These requirements
were derived from the largest necessary model (FENet-240) with the largest nec-
essary data bin (900 samples). Conventional architectures require all data for a
workload are present during processing such that activation reuse can be optimal,
resulting in the partitioning scheme depicted on the left side of Figure 3.15. In
the neural decoding environment, however, data is streamed slowly as it is recorded
from the multi-electrode array. Conventional architectures and mapping schemes
would therefore require caching of an entire bin of neural data. With 900 (9 bit)
samples per channels and 192 channels, caching the activations alone would require
1.56 Mb of SRAM without even accounting for the space required for intermediate

activation scratch space.

Conventioinal SRAM Partitioning SRAM Partitioning with Multi-Layer Output Accumulation

Neural Recordings Neural Recordings Local PE

Accumulator
Bank

Neural Inputs

——"Lvl. 0 Computation:

Neural Inputs Lvl. O Int. Out

T om F—=Lvi. 1 Computation:

Lvl. O Feat. Out

Lvl. O Int. Out

Lvl. 1 Feat. Out

Lvl. 1 Int. Out

Figure 3.15: Comparison of the memory spaces for conventional SRAM partitioning
schemes and those using local partial sum accumulators in their processing elements.

48

To mitigate this requirement, the partitioning scheme shown on the right of Figure

3.15 was devised to take advantage of the streaming nature of the neural data. Since
1 sample
33.3 us

in-between each sample’s arrival. The minimum number of SRAM elements for a

each sample arrives at a relatively slow rate (x

), computations are scheduled

given model therefore reduces to the maximum "history’ needed for any computation,
which becomes possible after any 1 sample is received. This worst-case scenario
occurs when the arriving sample triggers convolutions for all layers. The maximum
SRAM depth is therefore just the sum total of all pass kernel weights. Since SRAM
is optimally addressed in powers of two, a max kernel depth of 256 was chosen so
that it can fit the largest FENet models. Notably, this does not fit the model from
[22], however, results from model reduction in retraining in Section 4.1 showed that
the negligible difference in decoding performance would not ameliorate the increase

in complexity, power and area.

SRAM Sizing

Figure 3.16 depicts the range of shapes and sizes of which memory can take, ranging
from a single SRAM block that contains all necessary memory space that supports
only one read/write port for all processing channels, to very shallow memory with
individual ports for each channel. The ratio between the depths (in number of
elements) and width (number of supporting channels) is known as the aspect ratio.
The aspect ratio of the memory has a significant impact on access power. Deep,
narrow memories both require more accesses to curry data to and from processors,
and have much a large bit line capacitance. However, when these activations can
be reused, the additional power from SRAM access can be outweighed by fewer

independent data channels that pass activations in-between processing elements.

To optimize the memory structure for FENet, two criteria were considered. The first
is the reuse nature of the FENet workload, and the second is the energy for each
access. To understand the optimal aspect ratio a system architect must determine
which aspect ratio best suits their data network. Workloads with large levels of reuse
are able to locally pass activations to neighboring processing elements. FENet,
however, has very little activation reuse, therefore, this architecture reduces data
travel by tightly coupling SRAM with processing elements. Using a minimal
SRAM partitioning scheme informs the memory layout design by determining the

minimum block size necessary for a given channel.

49

Deep-Narrow SRAM

Channel 7

Channel 6

Channel 5

Channel 4

Channel 3 smaller

Aspect
Channel 2 Ratio
Channel 1 Shallow-Wide SRAM

Channel 0 Channel 0 | Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 | Channel 7
T UL T UL UL T

579 5: G 5. O 5. 6 5 Gs 5. 6 5. G 5. G 5, G

Figure 3.16: Range of SRAM aspect ratios depicting the physical difference between
narrow-deep SRAM and wide-shallow SRAM and how the memory spaces would
be distributed within a single SRAM instance. A, D, and Q are the address, input,
and output ports of the SRAM, respectively.

For the FENet memory requirements (256 elements X 9 bits X 192 channels), the

SRAM power is estimated using the relation in equation (3.1):

Nsgan :{Total Wordsw
W xD
AR P
(W X Nsgram) (3.1
Faccess :L
Nspam X W

Pspam = Nsram X ((Pr X Nr + Pw X NR) X Fyccess X FPS + Pr)

where Total Words defines the total number of words required for the FENet
system, W and D are the width and depth of an individual SRAM block in number
of words. These parameters are used to determine the total number of individual
SRAM blocks required to fit the entire workload (Nsganm)-

50

For a given choice of SRAM size, the total aspect ratio of the memory system (AR)
is then calculated. The bandwidth (W X Nggapn) then determines the number of
accesses for a given block necessary for all transfers (F,cces5). Ng and Ny are
the number of SRAM reads and writes for a given workload and are related to the

number of MACs and pooling operations, defined by equations 3.2:

Np, M[
Np=> 2L

=0 2

. (3.2)
Ny = Z B;

[=0

where Ny is the number of layers, M; is the number of MACs per layer, and By, is the
bin length for each layer. Specifically, Ng will be half the number of non-padding

macs, and Ny will be the size of each layers inputs.

The SRAM read, write, and leakage power (Pg, Pw, Pr) are then determined from
SRAM data sheets for various combinations of W and D which are used to finally
estimate SRAM power (Psgan). Using SRAM access activity for FENet-66 with
150 sample bin sizes (5 kSps with 30 ms bins), the SRAM power with respect to the
aspect ratio is plotted in Figure 3.17. With this simulation, it becomes obvious that
minimal SRAM power is achieved with the smallest aspect ratio. These observations
resulted in the selection of 24 SRAM blocks sized at 256 elements deep and 8 words

wide, informing the total block size of the channel block macro.

System SRAM Power vs. Aspect Ratio

280

260 ~

240

wer (UW)
N N
o N
o o

SRAM Po
2 » ®
S & ©

=y

N

o
L

0 2 4 6 8 10 12
Aspect Ratio

Figure 3.17: SRAM power for the FENet workload with respect to aspect ratio.

51

Asynchronous Queues

Asynchronous input queues are included for each channel to provide storage for
activations when SRAM is busy with processing and to buffer data while all channels
are being filled. Crossing asynchronous clock domains is challenging because data
edges can coincide with the receiving register’s clock edge, increasing metastability
risk. To enable reliable transfer, we implement queues in which write events to
a first-in, first-out (FIFO) buffer in the write-clock domain are registered into the
read-clock domain with synchronizers. The read domain then uses these events to
determine when it is safe to capture data from the FIFO. The FIFO architecture used
in our design is shown in Figure 3.18. To ensure correct operation across domains,
the read and write pointers use gray code and are timed to meet a maximum path
delay equal to the fastest clock period. An extra bit in the gray-coded address
prevents the write pointer from overrunning the read pointer when the buffer is
full. These buffers interact with both the write and read domains through full and
data-available flags, respectively. These queue signals are depicted as the signals
color coded orange in Figure 3.1 Block 1 and are aggregated across channels using

simple reductive logic to nullify the affect of de-powered channels.

Asynchronous Queue

FIFO
Write Data ’7 Read DatAa
> >
WEnN
» REN
> 0|11(2]3
_> T T T T
1 1 1 1
|
Binary Binary
Write Address Read Address
write read
Write Enable Write Pointer gray code gray code Read Pointer Read Enable
Full Handler Handler Data Available
welk /l\ rclk
wreset_n | | | rreset_n

Figure 3.18: Schematic Diagram of asynchronous queue. Write and read pointers
are synchronized before used in handler logic.

52
Control Feed-through Buffers

The feed through buffers serve to broadcast the control signals from the control
finite state machines, or the prior channel block in the street, to the next block in the
sequence. Each buffer is composed with a skew-optimized AND gate, commonly
used within clock gate structures. The logical position of the feed-through buffers

in relation to the objects they drive is shown in Figure 3.19.

SRAM
Feedthrough Enable
i1,
— D
— D
—'+D
j PE Control Signals
PEO PE 1 PE 2 PE 3 PE 4 PE 5 PE 6

PE 7 ‘

Figure 3.19: Depiction of feed-through buffers in relation to the logic that are driven
by them. The control signals are gated with the feed-through enable signal which is
asserted if any channels in the street above this block are enabled.

Effectively broadcasting control signals to large numbers of processors is non-trivial
as signal skew accumulates between control and clock signals. To mitigate these
issues, signal buffers were implemented with skew-balanced clock buffers, and
timed such that distributed signals have a minimal, defined skew, which is longer
than those for the system and mac clocks to prevent hold violations. The buffers are
also co-located within a tightly defined region within the channel block macro to
minimize spatial variation. These measures ensure that only positive clock skew is
imparted from one channel block to another. Figure 3.20 displays the distribution
of skews for each clock domain which is fed-through the channel block MACRO.
The processing element has the tightest timing constraints, and so its skew will
have the largest influence on the maximum operating frequency. Even in the worst
case, skew is only 0.7 ns per block. For a 4 block chain (supporting 32 channels),
this only imparts a skew of 2.1 ns, which is acceptable for the expected operation
frequency. Since clock and signal distribution is a large portion of the system power
consumption, feed-through buffers are implemented as AND gates; enabling the

mitigation of switching power when entire blocks in the chain are disabled.

53

. Feedthrough Skew (MAC Clock Domain) Feedthrough Skew (System Clock Domain
Corner Corner
25 1V 'ss 20 1V ss
WVTT WVTT
€20 1V FF € 151 1V FF
3 1.2V TT 3 1.2V TT
O 15 1.2V'SS O 1.2V SS
5 1.2V FF 5199 1.2V FF
a 10 o

(9]

o
o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Skew (ns) Skew (ns)
(A) (B)

Figure 3.20: Skew Distribution of Control Feed-through Signals:
(A) Processing element (MAC) clock domain. (B) System clock domain.

Level-Shifters

The use of low leakage SRAM enables high efficiencies of memory-intensive al-
gorithms at low speeds by mitigating leakage power, but inherently increases the
operating voltage of the memory domain. Separating the processing element VDD
domain allows low-power operation, however requires level shifting of data from the
low voltage processing domain to the high voltage memory domain. This is achieved

with low-to-high level shifters embedded within each asynchronous queue.

54

3.4 Control Hardware

This section will discuss the algorithm design of the control hardware which directs
the operation of the processing hardware. These blocks were designed as finite state
machines and shared globally among all of the processing components. Responsi-
bilities of these control blocks range from generating SRAM addresses for reading
and writing into the SRAM storage cache, to generating control signals that are

consumed by the processing elements to enable certain functionality.

An overview of the hardware used to generate the control signals and state behavior is
shown im Figure 3.21. Each layer has a dedicated state machine defining which state
the layer is currently occupying. Using this state information, the scheduler updates
pointers for memory control, which in turn update the layer’s state information. The
processing element finite state machine is also influenced by the state of the active
FSM state. This state indicates which operation necessary for this control cycle. For
instance, during the convolution CNN control state, the processing element FSM
will generate a control sequence for the processing element that results in a multiply-
accumulate operation, while during the update state, the processing element FSM
will instead generate the controls which result in the addition of the accumulation
register to the active layer’s pooling register. The following sections provide more

detail about the behavior of the control finite state machine behavior.

55

Configuration Registers |

Buffer Status
State J
Pointers [Lvi. 0 State
CNN FSM
State LV| 1 <]
Pointers |-) State
CNN FSM
State LVI > <
. Pointers [) State
Pointer CNN FSM)
@ > 2_
Scheduler S_tate =~ vl.3] - 5> 2
Pointers CNNEsSM E2Slcombinationalf > 5 Processing
. Fo=> =
State g - Logic g} o Street
. =
Pointers [State | Q. E
CNN FSM O] 2
State VL5 |)
Pointers [) State
CNN FSM
State
— Lvl. 6 e
ointers
= CNNFsM [P
State
P_ > Lvl. 7 <
ointers
CNN FSM |22
Active PE
Layer FSM
Info State
- PE
FSM

Figure 3.21: Depiction of the hardware defining the control finite state machines
and their relation to one another. Each layer has a dedicated finite state machine
which is also dependent on the states of the other layers to determine if it is their
turn to change state or not. Control signals are generated from these state machines
and synchronized to the rising edge of the clock before they are broadcast to the
processing hardware.

CNN Control

Operating on streamed neural data imposes unique constraints on CNN architectures.
At 5 kSps sampling, new activations arrive every 200 ps, meaning that only a
fraction of the data needed for a full convolution layer is available at any given
time. In contrast, conventional CNN accelerators, particularly those designed for
2D image processing, typically assume that input data can be accessed from local
memory when needed. For streaming neural interfaces, caching the entire activation
history would be impractical in terms of memory and resource cost, motivating an

architecture that processes data in time as it arrives.

56

We implemented a streaming-oriented CNN control FSM to generate SRAM ad-
dresses and sequence layer operations so that higher-order layers only compute once
sufficient data (one stride) is available and processing element resources are free.
The algorithm also manages efficient zero-padding by dynamically adjusting kernel
width: growing at startup, maintaining a constant size during steady-state process-
ing, and shrinking at completion as the active window exits the kernel. Figure 3.22
illustrates this control across three layers during startup, steady-state, and comple-
tion phases. It also depicts the interaction between states of each layer. These
interactions include the triggering of the loading state of higher-order layers by
the completion of a lower-order layer’s convolution and higher-order layer’s priority
over MAC resources to free up their memory spaces for new intermediate activations

from lower-order layers.

The stall data signal in Figure 3.22 indicates when the asynchronous queue (AQ) is
full and to apply back-pressure on the data sources. During the conclusional padding
state (Figure 3.22 C), memory resources become busy, preventing the loading of
new data. By optimizing the system frequency to consume data at the optimal rate

for a given model, back pressure is minimized or eliminated altogether.

(a) Startup Padding

LayerZ‘ I I " Data Arrives

Layer1 | I B 1 1% | |
Stall Data
e[|l I NI IZ?

0 bLE
(b) Steady State Convolution
I LoAD DATA
Layer 2
aver ‘ I | tl wair muLT
werr[[R I | ncowoue
7 B uPDATE

WAIT FOR RESULT

B WAIT FOR FORMAT

(c) Conclusional Padding B FiNisH
Layer 2 | I |
Layer1 | | I iz

Figure 3.22: Control behavior for 3 layers of the CNN depicting the 3 padding
state behaviors: (a) Startup Padding (b) Steady State Convolution (c) Conclusional
Padding.

57

The CNN sequence is directed by a group of centralized FSMs (one for each layer),
which ensure that the states of each layer are compatible with each other to prevent
resource contention. Each layer will wait in the IDLE state while higher order
layers complete their computations, which frees up memory within the higher order
layer’s partition. The LOAD DATA state writes activations to a layer’s partition, and
is triggered either by partition space becoming available (layer 0), or a lower order
layer finishing a convolution (layers 1-6). On the completion of loading a full stride
of activations into a layer’s partition, the layer enters the CONVOLVE state, on the
condition that memory space is available in the higher-order layer and processing
element resources are available. If neither one of those two criteria are met, this layer
is stalled by waiting in the WAIT MULT state. Following the convolution, the UPDATE
state adjusts the convolution pointers for the next convolution. In the WAIT FOR
RESULT state, LReLLU is applied and partial sums are either added to the pooling
register (when generating an output feature), or to the higher order layer’s SRAM
partition (traversal path for layers lower than the last layer). Finally, the WAIT FOR
FORMAT state normalizes and rounds the feature in the pooling register to 9 bits.
The FINISH state waits for higher order layers to finish their padding computations

before commencing a new sequence.

58

Scheduling

Efficiently mapping resources to a given CNN algorithm determines the utilization
of hardware resources, and as a result, the efficiency and performance of the system.
Furthermore, in order to allow full flexibility to all FENet model architectures while
using all memory resources as efficiently as possible, the scheduler should allow for
arbitrary kernel widths for each layer. Efficiently processing stream data requires
algorithms built to process data as it is received. The recursive pyramid algorithm
was developed for processing discrete wavelet transforms and avoids processing data
bins in batches [59], reducing the required memory space for a processing bin of N
elements from O(L Log[N-1]) to just O(L), where L is the total length of the wavelet
filter. We apply this algorithm to the processing of streaming convolutional neural
networks to make similar memory utilization improvements where the required
memory space is reduced to the total sum of all kernel widths. An overview of the

implemented scheduling algorithm is depicted in Figure 3.23.

The figure depicts the various memory pointers used within a given layer’s memory
space, and the corresponding decision tree that determines how the pointers should
be updated. The dark teal boxes on the left represent individual memory addresses
within SRAM for a given layer. The boxes above and below are the N + 1 and
N - 1 layers, respectively. Each layer has a dedicated set of pointers which mark
important boundaries within a memory space. Colored pink, the stand and end
boundary pointers define the boundaries which the layer’s SRAM extends within
the entire SRAM block. These pointers are bound by the values defined within
the configuration registers, however they grow and shrink at the start and end of
convolutions as is discussed the the next subsection about the padding algorithm.
The convolution pointer in black defines the current memory address. The blue
pointer defines the start and end points of the convolution sequence. A convolution
sequence will start at the front pointer, and wrap around at the boundary pointers
until they reach the front pointer once again. The decision tree on the left defines
how these pointers are updated based of the various states of the CNN finite state

machines.

Activation Memory

Layer N + 1

Act. End Boundary Pointer N
‘7

Act. Conv Pointer N
<7

Layer N Update?

Act. Front Pointer N

‘7
Act. Start Boundary Pointer N Last
‘7
Layer?

No

Layer N -1

[No Change} [Reset Pomter]
to Front

Weight Memory

Layer N + 1

W. End Boundary Pointer N
4—

W. Conv Pointer N
‘_

Layer N Update?

W. Start Boundary Pointer N

‘—
. W. Front Pointer N

Layer N -1

No Change

No No Change
Write
Activation? -
Reset Pointer
Yes to Front
No Increment
Boundary
End?
Reset to Start
Yes of Boundal
Yes
No No Change
Write
Activation? -
Reset Pointer
Yes to Front
No Increment
Boundary
End?
Reset to Start
Yes

of Boundal

59

Figure 3.23: Diagram of the scheduling algorithm for activation and weight SRAM

Access.

60
Padding Algorithm

Padding in convolutional neural networks helps preserve information that is present
at the edges of sample bins. Without padding, the feature extraction will develop
blind spots where it is unable to extract neural data at these indices [2]. Unfortunately,
padding also introduces extra complexity. In Figure 3.24, the performance of FENet-
66 operating on 5 kSps data is shown with and without zero padding. Figure 3.24
A shows a single neural spike waveform set in noise. As the spike approaches the
edges of the sample bin, the model without padding is unable to detect it. This leads

to a 16.7% reduction in feature performance as is observed in Figure 3.24 B and C.

Effect of Padding on the Feature Power of Spikes Near Bin Edges

S 1.0 1 1 1 .
o . | —— FENet-66 - Padding
g H —— FENet-66 - No Padding
Q0.8+ i i
o | :
E 1
@ 0.6 1 !
() 1
(TR 1
T 0.4+ |
[} I 1
= | :
© J
g 0.2 ! !
f [} 1
o 1 1
2001 = : R | — : :
-30 -20 -10 0 10 20 30
Temporal Shift of Sample Bin (ms)
Offline Decoding Performance Over Time .
1o 2019 2020 2021 2022 1o Average Decoding Performance
| I ; N
09 i E FENet 66 - Padding . 09
i | FENet 66 - No Padding
0.8 ! h t 0.8
i i |
i i i
0.7 1 1 I 0.7
i i i
06 ! ! ! & o6
| 1 1 [
& 05 H 1 i Qos
™y | | 5
04 T'. e, i Z 04
* +
0.3 : 1 beo 0.3
i { |
0.2 i i : 0.2
i i |
i i i
0.1 1 1 1 0.1
i | |
i i i
0.0 T T T 4 T + T T 0.0
0 5 10 15 20 25 30 35 40 45 FENet 66 - Padding FENet 66 - No Padding
Session Feature Type

Figure 3.24: (Effect of zero padding on decoding performance: (A) Feature Power
as a single spike is offset within a neural data bin. (B) Effect of padding over 48
sessions. (C) Average R? performance of padded and non-padded models.

61

A rough estimate of the number of padding convolution cycles is shown in equation
(3.3):

(3.3)

K;p-S
Padding Cycles = {#w
St

where K; and S; are the kernel width and stride of the L layer, respectively.
Somewhat troubling is the fact that each of these padding cycles themselves produce
an intermediate output which is passed to the L + 1 layer. The conclusional padding,
therefore, does not start until the lower-order layers finishes its entire padding
sequence. A naive approach to this design challenge is to simply fill the activation
memory space with zeros, and carry on with computation as normal. However,
with large FENet models like FENet-240, zero padding can comprise nearly 27%
of the total required MAC operations, and therefore it is paramount that an efficient

algorithm be developed to skip these unnecessary zero multiply operations.

The solution developed for this design challenge was to introduce finite state ma-
chines for each CNN layer and were briefly mentioned in Figure 3.22 and Section
3.4. These state machines take one of 4 states: Startup Padding, Steady State

Convolution, and Conclusional Padding, and Finished Padding.

Startup Padding

The padding during the initial stage of computation requires the weight vector start
and end pointers to grow as more non-padded neural data is streamed into the system.
A single step in padding is depicted in Figure 3.25 A. A new convolution does not
begin until a full stride of data is received. At this point, a convolution commences,
with the only the non-zero-padded regions computed. The start address for weight
retrieval is decremented until it reaches the bottom most address of the kernel’s

memory field, at which point the system enters steady state operation.

Conclusional Padding

Once a full bin of neural data is received, the layers enter the conclusional padding
state. In this state, the end pointer of the weight vector is decremented until the full
kernel is covered. Each layer only enters its conclusional padding state once the
previous layer has finished its own conclusional padding. This sequence is depicted
in Figure 3.25 B and shows how the active kernel region shrinks to facilitate zero

padding without actually completing the zero multiply operations.

62

Startup Padding Conclusional Padding
Data Bin: 0012(3|4|5[6/|7|8|9/|10{11|12|14|15 .. Data Bin: . sss ss 587 838 889 890 591592 893 594 895 596 897 898 599
Kernel : 7 X Kernel : s 5 nn Convolution
Convolution
Step 450
Partial Sum : 0 Step 1 Partial Sum : 49
. \ 1 Stride u "\ 1 Stride

1]2|s[a]5[6|7 . A I ENERR! Convolution

[o[+[2[=]4] S [sefs]z] o] onvolut

(]
1 Step 2 450 P

Figure 3.25: Padding Behavior:

(A) Behavior of system as a new bin of neural data is streamed into and the system.
(B) Behavior of the system as the streamed data reaches the end of a convolution
bin.

Edge Case Behavior

A special edge case occurs in padding when a layer (often higher-order layers) does
not receive enough data to exit the startup padding state. In this case, both the start
boundary and the end boundary pointers are decremented until the patch of valid

neural data is fully convolved across the entire kernel.

Model Flexibility

This architecture maps a wide range of 1D CNNs by modifying only the FSM
sequence (kernel, stride, LReLLU «, and bin width), avoiding hardware redesign or
multi-step data remapping. It can generate 2—8 features from up to seven feature-
producing layers plus one terminal traversal feature. Kernel width is limited only by
the 256-element weight SRAM (e.g., one 256-tap layer or two 128-tap layers). Stride
is unconstrained within that depth. LReLLU leak parameter (@) is a configurable right
shift of 0-32 bits. Similarly, the pooling-register division can be configured with a
1-32-bit shift. Bin width is set by the product of the first-layer stride and a cycle-
count parameter, which has a maximum value of up to 2048 cycles. To ease timing,
a start delay of up to 32 MAC clock cycles after the system-clock rising edge is
configurable. Together, these settings expose a large hyperparameter space for 1D

CNN applications while keeping hardware mapping straightforward.

63

3.5 Processing Element Control

The design ethos of this processing element was to minimize overhead, while still
handling all the tasks of the FENet workload. In a conventional design, the multiply-
accumulate or MAC unit is synthesized directly with full multipliers and adders.
This allows each operation to finish in a single clock cycle, which is great for
high-throughput systems. Neural data on the other hand doesn’t arrive that fast —
it comes as a slow stream. So all of that extra circuitry for one-cycle execution
becomes overkill. Instead, this architecture takes advantage of the long periods
between data arrivals. Rather than doing everything in one step, I can break the
operations into smaller pieces, spread across several cycles using much simpler

hardware.

Figure 3.26 depicts how a single multiply-accumulate operation is broken up into
sub-phases of the system clock. Each shift of the activation data is accompanied with
a single bit of each weight for both the traversal and feature generating paths. Each bit
receives two processing element clock periods to allow all 16 bits of the accumulation
register to complete their addition. All operations that the processing element is
responsible for are broken down into elementary shift and add components, and fit

into a single system clock period.

System
Clock

Activation
Shift 08192103114125136 14 7 15

Traversal
Weight Bit

Outp. Feat.
Weight Bit

Processing
Element
Clock

Figure 3.26: Time-multiplexed phases of multiply-accumulate operation within the
period of a single system clock cycle.

64

Generation of control signals for the processing element for each of these processing
phases is performed with a finite state machine with the behavior depicted in Figure
3.27. The functions of these control signals include directing the barrel shifters to
align data for the 8 bit adder, directing the negation of the operands to the adder,
controlling the shifting of the pooling registers during pooling, global approximate
averaging, LReLLU, rounding, and quantizing, as well as serializing the weight. To
save power and area, the state value was encoded as one-hot, such that the state value
requires little decoding when interpreted by channel logic, and control signals were

latched while weight bits are 0 to reduce switching activity.

The FSM state is mainly determined by the state of two other minor state machines.
One of these state machines is the accumulator barrel shift control, determining
the size and offset of the active region, and the pooling register shift count, which
keeps track of how many bits the pooling register has shifted. These minor state
machines have behavior that depends on the state of this FSM, which in turn waits
for those minor state machines to finish their sequence before continuing with its
own sequence. This set of tasks are accomplished using thirteen states with the state

relations and responsibilities shown in Figure 3.27.

IDLE |WAIT FOR FORMAT (Div. = 0) [

WAIT FOR FORMAT
(Div. > 0)

DIVIDE POOL

Shift Division
CONVOLVE Done

SHIFT POOL

Shift Fraction
Done

Rectify
Done

ADD POOL

Offset Shift & ADD
Done

Leaky RelLU
Parameter = -1

START ROUND & QUANTIZE

!

[LATCH POOL STALL] [FINSH ROUND & QUANTIZE]:)T

Concurrent Shift & ADD Rounding
Done Done

FINISH POOL

[RESTORE POOLJ5

Realignement
Shift & ADD
Done

Realignment
Done

DONE
7

Figure 3.27: FSM control of the PE. Each colored path corresponds to a different
control path depending on the state of the CNN control FSM.

65

During each system clock cycle, the processing element modifies its objective de-
pending on the current state of the CNN control hardware as shown in Figure 3.27.
During the CONVOLVE CNN state, the blue path is taken, where the processing
element word-serially multiplies and accumulates activations in the accumulation
register within the ADD MAC state. During the Update CNN state, the partial sum is
added to the pooling register of the current active layer. The pooling accumulation
and LReLU occur simultaneously by first rectifying the accumulation register in
the LReLU MAC state, then shifting and adding this value to the pooling register.
If the LReLU parameter is greater than 0, the pooling register of channels with
negative accumulation values are stalled during shifting, such that the accumulator
value is effectively divided by the parameter’s set number of bits within the LATCH
POOL STALL and FINISH POOL states. During the Wait For Format CNN state,
the pooling register is normalized by bit shifting (DIVIDE POOL, SHIFT POOL),
rounded (START ROUND & QUANTIZE, FINISH ROUND & QUANTIZE), and shifted
back into place (RESTORE POOL). During the WAIT FOR FORMAT CNN state, a 9
bit partition of the pooling register is written to the feature shift register for export.

3.6 Data Interface

In some cases, the peripherals of a design can be as much work as the core of the
system. Multiple clock domain transfers, complex command interpretation, and
high data through put requirements, all made this block the biggest headache of the
entire design. Unfortunately, this data interface became much more complex than
necessary, wasting much effort and time. Although it more than meets the design
requirements for the neural system, it became a limiting factor in being able to fully
characterize the device at high data throughput rates. As a result, the maximum
throughput of the core computational architecture was limited by this system, and
not the core itself. As a word of advice: If your IO is causing you a huge headache,
start over simpler.. If there is ever a design where you think you need to create your
own bus interface/IO architecture, please consider using existing standards like AXI
or AHB. With that word of caution out of the way, the system as it is designed is
described in the following section.

66

Data Interface Design

To facilitate data transfer into and out of the system at high enough speeds suit-
able for online validation of the architecture with a human in the loop, a custom
flow-controlled data interface was constructed. This interface is also charged with
decoding commands to properly interpret data packets. The interface commands
are listed in Table 3.1 and concern both configuration and operation modes of the

system.

Table 3.1: Data Interface Control Commands/States

Command Code (3b) Description
Load Weights 0x2 Configure weight SRAM
Run FENet 0x4 Enter running state of system
Soft Reset 0x5 Reset core without resetting configurations
Configure FENet 0x6 Update model parameters within configuration registers

The schematic of data interface is depicted in Figure 3.28. The flow control incor-
porates receive and transmission stall signals so that the system can adapt to a wide
variety of transmission and system clock rates. The system needs to cross between
the interface and system clock domain to retrieve feature data, as well as write
configuration registers. This is accomplished with asynchronous queues which field
the data, while state machines on the receiving end react to the presence of data on

their queues.

CS —«(Positive Reset Global to Block)

SDO SDO Shift Register

SDO En.

3b
SDIﬁ : Data In Shift Register '
sansriana|isun| f3un] fana]fian
| Feature
! | 1 Shift

Shift Enable Data In (15b) M?c?\liene

[Write Config Feature
Stall «—— Interface State Machine 1 Available

9b

Load Feature
Shift Enable

Extgln;ﬂ — Configuration ;;r?éﬁ:gn(gﬂts
Ly Aynchronous Queue
Truncate [14:5] Queue
Write Featt
Data Bus (9b) E—
>

Config. Data Street Sel,

Aval\ab\el { (15b) l Shift En.

c
©
£
o
] - "
= | % Configuration Feature 9b
= 5 o State Return
g . by O Machine State
1 (I=105) 2 £ Machine
S| gl & g ot Feature Shift Registers (9b)
=l I £ &
3| 5 2 g
2| a £ £
zl 3= - it | Rliditiieififietiedieli il Rfied niiails Sl niitts Rl nitiieiadind
Sl & 8 4 .
e a Finished Feature Shift Out
To Data Queues System Configs (From Controls) (From Each Street)

Figure 3.28: Schematic depicting the various components of the validation data
interface. The ports on the top left are 10 ports on the ASIC, while the ports on the
bottom interface with the ASIC system.

67

The physical schematic of Figure 3.28 shows all the components of the data interface
starting at the top left with the input shift register which de-serializes the SDI
words. Below and to the left the shift register is the state machine which directs
the inputs received by the interface to their respective destinations based on the
interface command. If the data is destined for input channels or weight memory, it
is latched to the data bus and the corresponding load input signal is pulsed so that
the data is loaded into the correct channel queue. A configuration command directs
the interface to load the input value into the configuration asynchronous queues
which synchronize them with the system clock domain and writes the corresponding
configuration data into the configuration registers. The configuration code decoding
and write steps are directed by the configuration state machine located in the bottom-
center of the schematic. The transmit components of the data interface are located
on the right side of the schematic. Each street has its own feature shift out port.
These features are de-serialized using a shift register, and then loaded into the feature
out asynchronous queue to synchronize their values to the interface clock domain.
The values in this queue are consumed by the feature shift state machine, which
loads the values into the SDO shift register and shifted out of the ASIC.

There are 3 serial data in pins, and 1 serial data out pin. These pins follow a similar
scheme to SPI where the output is driven on the falling edge of SCK, while the
input is clocked in on the rising edge of SDK. This is to allow large skew ranges
for the IO drivers. A chip select (CS) pin acts as an active high reset for the serial
interface system. When CS is pulled low, the next 15 bits are interpreted as the
data packet header with the first 3 bits corresponding the code located in Table 3.1.
Following this code contains a data-field specific to the configuration command. and
shown in Table 3.2. These commands allow the configuration of the FENet model,
creating high flexibility in the FENet model shape and size which the architecture

can implement.

Serial data is shifted in 3 bit increments through the SDI ports. Two stall signals
control the flow of data depending on both the availability of data from the validation
interface and the state of asynchronous queues in the receptive data destinations.
These flow control signals were instantiated to allow for fine adjustment in the
system and processing element clocks, while maintaining the same data flow rate of

neural data.

68
Table 3.2: Configuration Command Bit Fields

Name ConFigure Code (3b) Description

Kernel Width 0x0 Kernel width of each layer (starting at layer 0)
Stride 0x1 Stride for each layer
Divide 0x2 Divide normalization parameter for each layer
RELU 0x3 LReLU « parameter for each layer

Num. Cycles 0x4 Bin size in number of first layer strides

Num. Layers 0x5 Number of layers enabled (-1)

Channel En 0x6 One-hot encoded enable vector for channels
MAC Delay 0x7 Number of synchronization cycles for MAC sequence

Data Interface Performance and Limitations

Since this system is not intended only for validation purposes, its power domain is
kept separate from the system. The validation system delivers the input data serially
at a limited effective bandwidth of approximately 2.25 Mb/MHz as a result of dead
time in the protocol caused by data caching cycles and stall checks, which can
constrain the maximum achievable feature rate for models with high computational
loads and high channel counts. However, this parasitic limitation is a function of
the validation system interface, and not the processor architecture. The 10 skew
was measured to be a maximum 30 nS. With de-skew hardware implemented in the
FPGA, the maximum clock frequency achieved with this validation interface was 42
MHz, maxing out the validation interface’s bandwidth at 94.5 Mb/S which is 1.82x
the maximum necessary rate for neural data (30 kSps X 9b x 192 channels). The
power consumption of this data interface was measured at 0.9 V to be 6.14u W/MHz.
Furthermore, the validation interface is designed with the assumption that it will
always operate at a frequency faster than the system clock. With this in mind, the
hardware dataflow used to export the features does not have feature export flow
control, resulting in the requirement that the validation interface must be faster
(= 9x) than the system clock to properly export features from all streets. Reducing
the number of streets relaxes this requirement, but puts constraints on the operating

frequency ranges of the interface clock, and therefore the power performance.

69
Chapter 4

ALGORITHM OPTIMIZATION AND VALIDATION

This chapter presents the necessary explorations to trim the fat of the FENet model
designed in [22] while maintaining performance. First, we take a look at how
different configurations of the FENet model (kernel size, stride, number of layers)
affect the minimum number of multiplications required for each feature set. In
Section 4.2, FENet models are trained using automated design space exploration
to identify new models which have lower complexity requirements, with similar
performance. Section 4.3 compares the performance of the optimized FENet models
to other commonly used feature extraction techniques, then the ASIC system is fully
verified online with human subjects in the loop. To further reduce power, the FENet
model’s tolerance to lower neural data sampling rates, and the affect of gating
neural channels on decoder performance. Finally, we explore how various model

parameters affect the performance of the hardware architecture.

4.1 Complexity Analysis

This section presents the analytical methods to determine the algorithmic complexity
of a given FENet model. This analysis is used to optimize models for improved
power and latency performance. The following sections will first mathematically
define the number of operations and resources necessary for the FENet workload
based on model parameters. This is followed by simulation of the latency incurred

from the padding operation.

70

Operation Complexity

The neural decoding environment requires high power efficiency and precision.
FENet demonstrates superior feature extraction robustness since it does not depend
on spike detection which becomes unreliable at low SNRs, yet feature generation
from broadband neural data does not benefit from the sparsity of event-based pro-
cessing. To mitigate this trade-off, the complexity of the FENet architecture is
scrutinized to minimize power and hardware costs. While [22] mentions rough
estimations for the number of MAC operations for a given FENet model, precise
derivations for the number of non-zero-padding (NZP) MACs were not derived.
These equations allow for the construction of a more accurate model the power con-
sumption of a given model on this architecture. Therefore, it was necessary to derive
these equations as are shown below. The majority of computational power of FENet
is spent during the convolution which requires numerous multiply-accumulation
(MAC) operations and significant memory access. The number of convolution

operations for a given layer is shown in (4.1):

min(K; -1, B
Co :{ (K z)|
Sy

B, =max(B; = S;Csp; , 0)

B) =max(K; - S;+ (B))modS;, 0)

~

BI
Cos1 = {S—l’ (4.1)

Bl B
Crot =15, St =5,

Bryi = Cspl + Cyg1 + Cfpl

where B; and By, is the input and output bin size for a given layer, respectively.

71

The C;p1, Cyg, and Cyp; terms define the number of convolution cycles contributed
by the start-padding, steady-state, and finish-padding phases of the CNN for a given
layer ’;’. Similarly, the number of MACs that those convolutions evoke are given in
(4.2):

My = §1Csp(Cyp + 1)

Mgy = 2 % chss
“4.2)

=
=,
|

= 2% Cyp(BymodS)) + SlC}p(C}p +1)

M, = Mspl + Mg + prl
where M,;, My, and My, define the MAC operations attributed to the start-
padding, steady-state, and finished-padding phases of the computation for each

layer.

For a given input bin length By, increasing the stride of the lowest order layers has an
exponential effect on reducing the complexity of the model as it reduces the number
of activations to higher order layers. Kernel size, on the other hand, does not have
as dramatic an effect on the number of MACs but does significantly increase the

size of padding since the number of padding activations is aggregated across layers.

Padding and Latency

Since most of the convolution computations occur in between the arrival of neu-
ral data, the latency between the arrival of the last sample of neural data within
a bin and the completed feature is entirely dependent of the model’s number of
conclusional padding cycles. The number of MACs are well defined based on the
model parameters using equations (4.1) and (4.2). Since different kernel length and
stride combinations lead to the conclusional padding sequences to begin at different
stages convolution, there does not exist a closed relationship between the number
of non-zero-padding macs and model shapes, and the number of cycles required
for conclusional padding. To define this behavior more precisely, a cycle-accurate
simulator of the FENet architecture operating without IO limitation from the valida-
tion interface was build in Python. A Monte-Carlo simulation was run with various
combinations of model parameters, and an estimator was constructed and tested for
its prediction capabilities. The parameters were limited such that the kernel is at

least as large as the stride to avoid edge cases.

72

Using the Monte-Carlo simulations, a closed form estimator was devised to help
analytically determine the number of latency cycles. The hypothesized estimator
uses the difference between the number of non-zero-padding multiply-accumulate
operations including, and excluding the conclusional padding cycles. The number

of NZP-MACs without conclusional padding is defined in equations (4.3):

min(K; -1, By, ,,)
Coplugp = 5,
;nfp =max(By,;, = SiCspl,;, » 0)
B;rl_fp = max(Kl - Sl + (B;nfp)mOdSl B 0)
B; ;
_ nfp
Csslnfp - \‘ Sl | (43)

BL+lnfp = Cspl,,fp + Csslnfp

Msplnfp = Slepnfp(Cspnfp + 1)
MSSlan; = 2 * chssnfp

M, = M + Mgy

nfp Plnfp nfp

where the variables carry the same meaning those in equations (4.1) and (4.2), but do
not include the finish padding components, and so carry the *, . * subscript. Using
the NZP-MAC computations from (4.2) and (4.3), we can construct an estimator for
the number of MACs that occur after the last input is received using equation (4.4):
S Ml B Mlnfp
Latency Cycles ~ y X # 4.4)
1=0
where 7 is a scalar value which compensates for loading, and formatting overhead

cycles. Using the Monte-Carlo simulations, 30000 models were generated.

73

We found an y value of 1.136 estimates the latency cycles with an average error
of 39.9%. Unfortunately, simulation remains the best estimator of latency for this
architecture. The simulation, however, revealed the same « coefficient when using
the actual number of MAC operations which occurred after the last input than those
calculated in (4.3), indicating that y is a good estimator for padding overhead due

to overhead caused by loading cycles in the control sequence.

4.2 Model Reduction and Retraining

This section details the methods and conclusions of parameter optimization of the
FENet model. This section begins by introducing the automated hyperparameter
optimization using the wandb framework with several choice models demonstrating
a breadth of models and their use cases. Explorations into the number of necessary
channels for decoding are shown, and their effect on decoding accuracy is reported.
This is followed by a generalized analysis of how different model parameters affect

latency and accuracy.

74

Model Retraining

To explore the design space of FENet models, a parameter sweep was performed
across all configurable hyperparameters of the FENet model using the wandb training
framework with Bayesian optimization. These explorations resulted in significant
reductions in computational complexity were selected and evaluated based on feature
R? and expected power usage. Each model was trained on a 10-day dataset using
7-fold cross-validation. The selected models, shown in Table 4.1, were chosen to

span a range of qualities that are useful for different feature extraction scenarios.

Table 4.1: Selected hardware-optimized models.

Model [22] || FENet-240 | FENet-66 | FENet-15
Ko 40 40 36 10
So 2 2 2 3
LReLU Leak Slope -1 -1 -1 =)
K 40 40 14 5
S1 2 2 2 3
LReLU Leak Slope -1 -1 -1 —1 /64
K> 40 40 16
S» 2 2 2 -
LReLU Leak Slope -1 -1 -1
K3 40 40
S3 2 2 - -
LReLU Leak Slope -1 -1
K4 40 40
Sa 2 2 - -
LReL.U Leak Slope -1 -1
Ks 40 40
Ss 2 2 - -
LReL.U Leak Slope -1 -1
K¢ 40
Se 2 - - -
LReLU Leak Slope -1
Total Weights 560 480 132 30
Total MACs 30240 27120 9136 1250
NZP-MACs 19560 17960 7520 1176
Pooling OPs 417 379 210 91
SRAM Writes 528 489 327 222
PE Clock Multiplier - 21 21 26
Cycle Count/Feature - 11908 5449 1636

75

Operation costs are calculated assuming a bin size of 150 samples, corresponding to a
30 ms window at a 5 kSps sampling rate. Non-Padding-MACs (NP-MACs) refers to
the number of multiply-accumulate operations that do not include the multiplications
by zeros as a result of padding. Total MACs include padding and are performed in
software implementations. Each pooling operation includes the LReLLU activation,

rounding, quantization, and accumulation into the pooling register.

Convolution padding is important for mitigating aliasing artifacts that result from
binning neural data into fixed-length chunks. However, padding introduces addi-
tional multiply operations that affect the latency of computation. For FENet-66 and
a bin size of 150, zero-multiply padding operations account for 12.6% of the total
MAC:s. These operations are avoided altogether by trimming the convolution kernel
size at the beginning and end of the feature computation. Each model was selected

to represent different optimization goals:

FENet-240 shows the highest overall decoding performance, but has a high model

complexity.

FENet-15 is the most efficient in terms of complexity and power, and still performs

better than non-CNN-based feature extraction methods.
FENet-66 balances decoding performance and computational cost.

These three models demonstrate the flexibility of the architecture to support a range
of power-performance trade-offs depending on system requirements. FENet-66
is chosen for its power efficiency while maintaining the majority of the feature

extraction capabilities of larger models.

Channel Gating

Neural activity related to kinematic decoding is spatiotemporally distributed within
the motor cortex of primates [45] meaning that channels with information for a given
decoding task are sometimes highly local, and remaining channels can be redundant.
Additionally, each electrode may either be non-functional due to probe degeneration,
functional, but uncorrelated with the desired decoding task, or functional, and rele-
vant to the decoding task. The spatial maps of relevant channels are learned during
the decoder training process, and are subject to change in medium-term time scales
akin to hours and days due to the gradual immune response and micro-movements
of the electrodes themselves. To take advantage of the sparse channel relevancy
of neural recordings, the proposed architecture is granularly power-switchable to

flexibly reduce power consumption of channels that are not highly informative.

76

We analyzed the performance of the kinematic decoding system as a function of the
number of channels used after sorting each channel for its single channel decoding
performance. The results of this analysis are shown in Figures 4.1 A and B. In the
particular use case of kinematic decoding of thumb movement, decoder performance
plateaus quickly at ~ 64 channels. This highlights the benefit of being able to
selectively power down channels within a decoding pipeline, allowing power to be

spent selectively on channels that are only useful to ascertain a specific neural state.

Performance by Number of Channels Performance by Number of Channels

0.60 1 T 065
0.60
0.55

0.50

2022-02
0.55 4

0.50 1 2021-07

0.45 ©
045 ®
0.407 0.40 2021-01 2
8 0354 o 2
o fr 0.35 5
030 2
0.30 2020-06
0.25 1 3
2019+ SD o =
0201 —_— + /
0207 8 201912
0.15 —— 2020+ SD 0.15
0.10 —— 2021+SD 010 ¥
! 2019-05
0.05 4 —— 2022 +SD 0.05
0 20 40 60 8 100 120 140 160 180 200 0 20 40 60 8 100 120 140 160 180 200
Number of Channels Number of Channels

Figure 4.1: Decoding performance from limiting the number of channels with
hardware implemented FENet-66 features:

(A) Average performance of each year based on a sweep of top channels. (B) Scatter
plot of each day as the top channels are enabled sequentially. Color indicates the
date the session.

Hyper-Parameter Exploration

The FENet architecture differs from conventional CNN accelerators by processing
time-series neural data as it arrives, without requiring large activation caches. As
a result, 3 distinct timing metrics impact system performance: the time to process
incoming data streams, the latency incurred during the padding phases of convo-
lution, and the time required for the validation system to deliver input data to the
asynchronous queues. In this work, those timing metrics combine to affect the fea-
ture rate defined as the speed at which the system can generate complete feature sets
from streamed input data at a given set of clock frequencies. Feature rate depends

on both data availability and the computational latency of the processor.

7

Table 4.2: Latency and minimum system clock frequencies required to achieve 33
FPS feature generation.

Model FENet-240 | FENet-66 | FENet-15

Padding Clock Cycles 7038 1135 111

30 kSps | System Clock [MHz] 1.60 0.980 0.310
Latency (ms) 4.4 1.2 0.4

10 kSps | System Clock [MHz] 0.664 0.345 0.105
Latency (ms) 10.6 33 1.1

5 kSps | System Clock [MHz] 0.556 0.188 0.054
Latency (ms) 12.6 6.0 2.1

Accurately modeling the performance, and clock rate requirements for a given set of
model parameters, and neural data rates allows closed-loop optimization of FENet
model design and hardware. To this end, a cycle-accurate model simulator was built
to estimate the number of cycles required to extract each feature set, and how many

of those cycles are spent on conclusional padding.

Intrinsic processing latency in the ASIC is dominated by the final padding phase,
when no new input data is available for the current bin. Data that is not streamed
during padding must either be externally cached or discarded, however, this issue
would be mitigated through modification of the control FSM, to allow caching into
the SRAM of the first layer during the conclusional padding phase. Because new
data cannot be streamed during padding, optimizing the number of MAC operations

during this phase is critical.

The number of clock cycles required to process the padding phase for each model is
summarized in Table 4.2 along with the padding latency incurred while operating
at the minimum frequency to achieve a feature rate of 33 FPS. Since all other
computations are completed in-between the arrival of data-samples, the number of
clock cycles of latency is constant and determined by the number of padding cycles

for a given FENet model, regardless of the number of channels.

FENet-66 requires 6.2x fewer padding cycles than FENet-240, enabling feature
generation at 33 FPS while operating the system clock at only 188 kHz with 5 kSps
neural data and a padding latency of 6 ms. In contrast, FENet-240 requires a
2.9x higher system clock to meet the same feature rate due to its larger model
complexity. These improvements in padding efficiency directly translate to lower

operating frequencies and reduced dynamic power.

78

In Figure 4.2 A, we show the tradeoffs between the number of features, the total
number of cycles required for each feature (solid line) and the number of those cycles
that are necessary for padding (dashed lines). The minimum operating frequency of

the system is related to the cycle count by equation (4.5):

fsys = Nfeatures * Ncycles (45)

where fj,, 18 the minimum operating frequency, Nyeqrures 18 the desired number
of features per second, and N¢ycjes 18 the minimum number of cycles required of
the model. Using this frequency, we can roughly determine the power and latency
tradeoffs for a given feature rate.

While the effect of kernel size on accuracy is highly non-linear, the number of
layers can in some degree be related to decoder accuracy. We explore this effect in
Figure 4.2 B. We trained 51 models and held the kernel width and stride constant
at 40 and 2, respectively, to tease out only the effect of the number of layers. We
notice that there is a quasi-logarithmic effect on the number of layers to decoding
accuracy, which reflects that the majority of neural information is captured in the
lowest feature layers, with diminishing, but extant returns on performance as the

number of layers is increased.

Cycles by Number of Features Performance by Number of Layers
12000

Kernel Size 0.50
o 100004 —— 9 0.48
%’ — 18 0.46
6 8000 — 36 0.44
S e000{ e & 042
g 0.40
£ 4000 0.38

=}
Z 2000 036
0.34
0.32

2 3 4 5 6 7 8
Number of Features Number of Layers

A ®B)

Figure 4.2: Model Parameter Exploration:

(A) Cycle count for models with various hyperparameters. Solid lines denote the
total cycle count, dashed lines indicate padding cycles. Kernel sizes are constant
for all layers. Bin size: 150. (B) Effect of the number of feature layers on decoding
performance with a constant kernel size and stride of 40 and 2, respectively. R>
from 10 days of training data only.

79
4.3 Model Validation

Validation of this architecture both offline, and with patients in loop with the feature
extraction architecture ensures that incorporating the architecture into a larger BMI
SOC will perform with the expected benefits of the FENet algorithm. Two forms
of validation are conducted with this system: offline validation, where a large data
set of recorded neural data is processed with the ASIC to be tested for decoding
performance, and online validation, where neural data from a patient is directly
streamed from an FDA approved neural data collection system (Cerebus) into the
ASIC, where features can be processed in real time. This validation allows verifi-
cation of the system within closed-loop human control, where confounding factors
such as extraction latency and quantization have the potential to disrupt the quality

of kinematic extraction.

Offline Validation

Offline validation allows large datasets to be tested with the hardware without the
constraints inherent to online testing with humans in the loop. This allows a wide
range of voltages and frequencies to be tested with the system to find the optimal
operation points, as well as determine the sensitivity of the system to various sources
of error like quantization, and error caused by undervolting various components.
Furthermore, it allows comparison with standard feature extraction methods imple-
mented in hardware so that the benefits of this hardware system can be assessed.

It is important to note that unlike spike detection and spike sorting methods, broad-
band feature extraction does not detect and classify spikes, but captures aggregate
neural activity within broadband data, which makes direct comparison with these
methods inapplicable. Therefore, to evaluate performance, we followed the cross-
validated linear decoding methodology established in [22]. Features were generated
from neural recordings and used to train and test a linear decoder. Decoder perfor-

mance is measured by the coefficient of determination (R?), described in (4.6):

(4.6)

Rl%x|vy _ (2 (i —_?)(fi j ;);)2
VI i = 92X (i - $)?

which quantifies the correlation between the decoded and intended target velocities.

Given the 2 degrees of freedom in center-out tasks (X and Y velocity), R? values

for each dimension are combined into a single score via the root mean square, as
shown in (4.7).

1
R = (R (R)2 (“.7)

80

Offline open-loop decoding analysis validates the ASIC feature performance across
a large set of prerecorded data. Data from 48 center-out sessions [22] were used
for benchmarking. Raw neural signals were first preprocessed by removing the first
2 Prinicpal Component Analysis (PCA) components of each array (for PCA-based
CAR), followed by an 8th-order elliptical high-pass filter (80 Hz cutoff, 0.01 dB
passband ripple, 40 dB stopband attenuation) and batch normalization.

Hardware-generated features were reduced from N to one feature per channel using
a PLSR model. To mitigate overfitting, a single averaged PLSR model was trained
offline on one session, then applied across all 48 sessions. A linear least-mean-
squares regression decoder was trained with 10-fold cross-validation for each session

to compensate for non-stationary effects of the implant due to micro-movements.

Chronic Stability and Feature Comparison

Feature performance was compared against established feature extraction methods
in the literature including wavelet transform broadband feature extraction, spiking-
band power[3, 8], threshold crossings, and multi-unit activity. Wavelet transform
features were generated by loading our ASIC with the hardware-friendly Haar
wavelet transform which has 3 layers with kernel size 2, totaling 4 output features.
We use the same number of layers as FENet-66 to keep the decoding dimensions the
same. We also used the same sampling rate as the target rate of FENet-66 (5 kSps)
such that only the effects of using trained kernels are compared. Spiking-band power
features were generated by first filtering the neural data at 1 kHz, and downsampling
to 2 kSps, then averaging the magnitude of neural recordings within the 30 mS
time bin. Threshold crossing features were generated by counting crossings over
an adaptive threshold set at —3.5X the root mean square of the neural signal in 30
mS bins. Multi-unit activity features were generated by spike sorting the threshold

crossing events utilizing the sorting and clustering algorithms used in [64].

Chronic performance stability is illustrated in Figure 4.3. Notably, threshold crossing
performance degrades sharply by year three after implant (session 35), coinciding
with the loss of separable single-unit activity (SUA) on the 2 arrays. FENet-66
consistently maintains a higher average decoding performance after the loss of
single-unit activity in the fourth year (sessions 35-48) of 0.404 compared to wavelet
transform (0.370), spiking-band power (0.315), multi-unit activity (0.134), and
threshold crossings (0.083).

81

The Normalized Performance Retention (NPR) show in (4.8):

2
ith year

2
first year

NPR = (4.8)
provides a measure of the stability in performance for each feature extraction method.
Comparing the first-year average R> (FENet-66: 0.605, wavelet transform:0.578,
spiking-band power:0.552, multi-unit activity: 0.552, threshold crossings: 0.509)
to the fourth, the NPR for FNet-66 is 0.66, whereas the other methods have a NPR
of 0.64, 0.57, 0.48, and 0.16, respectively. This highlights the benefit of the FENet

hardware in maintaining decoder stability over long implant lifetimes.

Offline Decoding Performance Over Time
2019 2020 2021 . 2022
i i FENet 66
| | WT

1 1

| : SBP

i : - MUA
i |
1 |
1 I
; |
I
1

[]
0 5 10 15 20 25 30 35 40 45
Session

Figure 4.3: Cross-validated decoder R? performance over four years post-
implantation. Locally Estimated Scatterplot Smoothing (LOESS) fits and confi-
dence intervals are shown for each feature type.

Sample Rate Reduction

FENet software was previously tested at 30 kSps [22], consistent with other tech-
niques in the literature [41, 69, 25, 21]. This rate was originally used because it
is the maximum sampling rate provided by the FDA-approved Blackrock Cerebus
system. To test robustness to lower sampling rates, data sampled at 30 kSps were
reduced by integer factors while adjusting bin sizes to maintain an output feature rate
of 33 Features-Per-Second (FPS). Downsampling was performed by first filtering
the data by % the downsampled rate with a low pass anti-aliasing filter followed by

decimation.

82

In Figure 4.4, we explore the effect of sampling rate on the average decoding per-
formance over 48 neural recording sessions spanning 4 years. We observed high
stability in performance for FENet 66 and 240 versus sampling rate down to 5 kSps.
This is a result of the fact that a typical neural spike sampled at 30 kSps has a wave-
form that occupies approximately 40 samples, which is similar to the kernel width
of the first layer of FENet 66 and 240. Their ability to accentuate real neural spikes
from noise is related to the kernel’s similarity to the average neural spiking shape.
Furthermore, models with more layers are able to maintain their feature extraction
ability at lower sampling frequencies because the power of neural spiking shapes is
redistributed to higher-order layers.

FENet 15, has first layer kernel size of 10, which at 30 kSps is unable to fit an entire
waveform into a single convolution; this explains why it performs worse at 30, kSps,
and better when the size of a typical neural spike after downsampling is similar in
length to the first kernel. However, since it has the least number of layers of all
the models, less power is able to be redistributed to higher order layers when the

sampling rate is reduced further from its optimal value.

We compare the robustness of models FENet-240, FENet-66, and FENet-15 to lower
sampling rates in Figure 4.4. For comparison, the session-averaged R? performance
of wavelet transform, spiking-band power, multi-unit activity, and threshold crossing

features are shown as stars for reference as shown in Figure 4.4.

o6 Comparison of Model Performance

0.5

N
| *
BP
IMUA

*

I
~

Average R?

TC

0.2 1
—— FENet-240

011 —— FENet-66
—— FENet-15

0.0 T T T T T
30 10 5 3p3 2

Sampling Rate kSps

Figure 4.4: Cross-validated decoder R? performance of FENet models versus sam-
pling rate. The average R? performance of other features from Figure 4.3 is shown
as starred points for reference.

83

At 5 kSps, FENet-66 achieves an average R? of 0.46, maintaining 98.7% of the
cross-validated offline performance of FENet-240 while requiring 2.6x fewer MAC
operations. FENet-66 also outperforms wavelet transform (10%), spiking-band
power (18%), threshold crossings (38%) and multi-unit activity (41%), achieving
a total average R? of 0.382, 0.282, and 0.275, respectively. To fairly compare
spiking-band power to FENet, we also measured the performance of FENet-66 on
2 kSps data and found the average R” to be 0.411, which is still 8% better than
spiking-band power. This performance is attained while only consuming 346 uW
over all 192 channels (1.8uW per channel). FENet-15, although lower in decoding
performance, still outperforms all other hardware implemented methods at 5 kSps,
while also minimizing power consumption to 219 W (1.14 W per channel). The
4 layer Haar wavelet transform does remarkably well for its simplicity, achieving
90% the performance of our trained kernels, while requiring 177 uW (0.92 uW per

channel).

Online Validation

Offline validation allows analysis of a broad set of system parameters, whereas
real-time closed-loop analysis ensures generalization of offline results within a real-
world setting that has a number of confounding variables such as latency between
feature generation and kinematic prediction. We tested the feature extraction system
by decoding kinematic intent using ASIC-generated features and returning visual
feedback to the patient by updating the position of a cursor on screen within a

center-out task.

Our participant (JJ) was implanted with two 96-channel MEA Utah devices in their
motor and peripheral parietal cortices six years before this online evaluation. All
procedures were approved by Caltech’s Institutional Review Board (IR20-0983). An
initial decoder was trained in an open-loop trial where the participant (JJ) imagined
tracking an on-screen cursor with his thumb without feedback. ASIC-extracted
features from this trial were used to train a linear decoder. In subsequent closed-
loop trials, the cursor position was updated in real time based on decoded kinematics.
The decoder was fine-tuned through successive trials, gradually reducing assistance,

ultimately achieving fully autonomous control.

84

The online setup is depicted in Figure 4.5. The neural data is collected with the
Blackrock Neural Systems amplifier which initially digitizes the electrical signals
measured from the implanted array with integrated first order Butterworth filters
with band cutoff frequencies of 0.3 Hz and 7.5 kHz. These digital signals are then
streamed via an optical link at 30 kSps to the Cerebus neural signal processor, which
further filters the digital signals with a second order Butterworth filter with cutoff
frequencies of 250 Hz and 5 kHz. These streams were then broadcast onto a local
Ethernet network where they are received by the validation server. The validation
server preprocessed the streams by common average referencing them, and forwards
the referenced neural streams to the FENet ASIC for feature extraction. The extracted
features are subsequently returned to the validation server for broadcasting onto
the Ethernet network where they are received by a separate computer running the
decoding experiment. Data were sent to the FPGA-based validation server where
CAR was applied before being forwarded to the ASIC for feature extraction. Features

were transmitted back to the trial computer for real-time decoding and cursor control.

Blackrock Blackrock
Ch.0 AFE & NSP
° Digitizer
‘HighPass :[| fighPass :
° » 1st Order : Optlgal . 2nd Order
o IBW: 0.3 Hz : |-Coupling f- g\ o5 Hz:
" LowPass " LowPass
Ch. 191 . 3rd Order . 2nd Order
:BW: 7.5 KHz! :BW: 5 KHz
| Ethernet
Ethernet Switch
| Ethernet [Ethernet
Validation Server Experiment Computer
Tx Threads f Matlab Framework
Simple CAR : freennes A R :
16b int 9b SM * PLSR :: Linear :: Exp :

e] : *Decoder : : Smooth:

FPGA : [Emulated :

Interface ;| ASIC
| SPI |HDM™I
Screen lo)
FENet Oo O%CUI‘SOY
ASIC Target—+O ~ O

Figure 4.5: Data flow for neural data retrieved during an online session.

85

The decoding pipeline was implemented in Matlab on the experiment computer.
Features were dimensionally reduced using PLSR, then decoded to kinematics with
a linear decoder, exponentially smoothed [37], and displayed as cursor position to
the patient.

The linear decoder was first trained using an open-loop trial and had a combined x-y
R? performance of 0.71. The neural data for this open-loop trial was later processed
using the software-FENet implementation of [22], which yielded a cross-validated
R? of 0.70. This shows that the hardware implementation maintains open-loop
decoding performance similar to software-bound implementations even six years
after implant. Spike analysis of this neural data yielded no detectable single neurons
and a total of 119 non-separable spike channels with a mean and median SNR of
1.12 and 0.94, respectively. There were only two channels with an SNR greater
than 3 (maximum 5.25). The ability of our hardware to generate usable features for
kinematic decoding from such noisy signals exemplifies the importance of stable
decoding hardware for implantable devices. Utilizing the spike activity filtered from
noise, we performed open-loop decoding which yielded a cross-validated multi-unit
activity R? performance of 0.43.

We show the closed loop kinematic decoding trial utilizing FENet-66 processing
10 kSps neural data streams in Figure 4.6. The FENet ASIC generated 33 FPS for
all 192 channels. The mean time-to-target is measured at 1.00 seconds, with an R?
of 0.66. All 192 channels were used in decoding without gain normalization on the

validation server.

20

Cursor Position
Lo
Time to Target (s)
>

Session Time (s)

(A) (B) (©)

Figure 4.6: Performance of online decoding session completing a center-out kine-
matic control task:(A) Research participant controlling a cursor utilizing ASIC for
kinematic decoding in a center out task. (B) Online closed-loop decoding session
using FENet ASIC in loop. Boxes represent the target where the height is the size
of the target in its represented dimension, and the width represents the time it took
to reach the target; color corresponds to the x and y dimension of the cursor control.
(C) Time-to-target plot for all 63 targets with a mean time-to-target of 1.00 (sec-
onds).

86
Chapter 5

HARDWARE MEASUREMENT AND ANALYSIS

This chapter presents the characterization of the architecture as well as measurements
of the system in operation in offline and online neural decoding environments. It
further shows results characterizing the difficulty of the neural decoding problem and
the FENet workload. The successful implementation of FENet with low power and
area was confirmed both offline and online. The measurement results show that our
architecture is capable of implementing the FENet workload with minimum SRAM
memory requirements at a reasonable power consumption, which contributes to its

viability in the area constrained neural decoding pipeline.

The FENet ASIC was fabricated in 65 nm LP CMOS with the dye graph shown
in Figure 5.1. The dye graph depicts the spatial allocation of hardware for the
FENet ASIC. SRAM (highlighted in turquoise) is tightly packed with processors,
and arranged in a ribbed fashion. A small portion of the ASIC is used for control

hardware and the data interface, and is distributed along the spine of the ASIC.

Single Channel afl Weight SRAM R N o ot A L LT s sy
L R [‘?V ' = 1'
P:rOCGSSfOI"S FControl FSM ‘ N !h : : “
3 & . !
. : * ;
‘ -as
| | i
! /S mmmn e
1.7 mm
(A) (B)

Figure 5.1: (Fabricated ASIC in 65 nm LP CMOS process:

(A) Dye graph of ASIC with various components labeled. The processing elements
(purple) are tightly coupled with activation SRAM (light blue). The validation
interface (red) broadcasts neural data to each street in between each activation
SRAM. (B) Picture of ASIC fabricated in 65 nm LP 9M CMOS.

87

5.1 Hardware Validation Server

Online validation of brain-machine interface algorithms is vital to ensuring that
processing metrics such as latency, quantization error, and data flow jitter do not
significantly diminish closed-loop kinematic decoding. To enable the online val-
idation of our feature extraction system, the fabricated chip was integrated into a
Linux environment, capable of buffering, preprocessing, and routing neural data
into the fabricated feature extractor. This system must also handle data retrieval and
broadcasting of the processed features to the task computer dedicated to running the

BMI experiment.

System Overview

A schematic overview of the offline validation system is depicted in Figure 5.2
with a picture of the system in Figure 5.3. This system is built around an AMD
Zynq UltraScale+ MPSOC ZCU106 evaluation board. The SOC-FPGA chip that
this board supports, is charged with hosting the validation server software which
communicates with the custom communication interface built to ferry data into and
out of the ASIC.

Trial Agilent FENet Keithley
Computer —'Vc')ss(gi'lféscoozg‘reA ASIC |=1. 2400 SMU .
Raspb _ Prologix
|:| as%i e | II:” Keithley Ethernet
B — 2400 SMU to
USB Server JTAG Xilinx GPIB
UART ZCU106 Agilent E3646A
MPSOC Power Supply
Ethernet Switch

Figure 5.2: Simplified schematic diagram of offline validation system showing
connections.

Supporting equipment used for power source and measurement is controlled re-
motely by the task computer via a local Ethernet connection. This is to facilitate
numerous trials with different system configurations remotely. The memory and
processing element core voltages are measured using two separate Keithley 2400
source measurement units (SMU), while the interface domain was powered using
an Agilent 3464 power supply. The power supplies were connected to the local
Ethernet network using a Prologix Ethernet-GPIB server. The UART and JTAG

connections were facilitated through USB ports on the Zynq board.

88

Figure 5.3: Offline validation setup with highlighted components. (A) FENet
ASIC, (B) Validation Server, (C) USB-Server, (D) Ethernet-GPIB Adapter, (E)
Oscilloscope, (F) Ethernet switch.

The USB port on the task computer USB port was discovered to sporadically de-
power the power its USB ports when idle, which would brick the USB connection
until the port was manually disconnected and reconnected. To resolve this issue,
a Raspberry Pi 4 board is utilized as a USB server. An emulated replica of the
ASIC logic was implemented on the FPGA to verify ASIC outputs in real time.
The ASIC was powered with separate voltage domains for the validation interface,
processing elements, and memory. Power measurements were collected after a
30-second stabilization period to ensure steady-state conditions. 10 and validation

system power were excluded from all reported values.

89

System Requirements

To be viable for online testing, this system must meet throughput and latency re-
quirements to facilitate responsive online cursor control with system requirements
listed in Table 5.1. In addition to the listed requirements, this system must integrate
with the Cerebus FDA-Approved neural acquisition system provided by Blackrock
Microsystems which is used to interface the patient with our experimental setup.
This entails decoding the proprietary Ethernet packet structure of the Cerebus sys-
tem and repackaging the contained data into a format compatible with the ASIC.
Furthermore, it must allow for remote configuration of algorithm configuration
parameters (weights, kernel size, stride, division coefficients, leaky ReLU slope,
number of channels enabled), and system parameters like the frequency of each of

the three clocks driving the system.

Table 5.1: System requirements for validation server

Maximum Neural Packet Rate || 60000 Packets per Second
Maximum Neural Data Rate 11.52 MB/s
Ethernet Protocol Support UDP and TCP

5.2 Static Power Characterization

Efficiency in operations per watt does not belie all the important power metrics
necessary in determining if an architecture is optimal for a particular workload
and operation environment. For instance, an architecture utilizing fully parallel
arithmetic units can lower dynamic power since they require fewer clock cycles to
complete the computation and can utilize low-power multiplier topologies like the
modified Booth-Wallace tree. However, these parallelized systems require more
gates and therefore more static power than their more compact serial counterparts.
In the specific use case of the FENet workload where the number of multiplications
per model is relatively lower than most CNNSs, this static power becomes particularly

wasteful as the multiplier spends most of its time idle between clock cycles.

90

Power Gating

The leakage power of this architecture with all channels and levels enabled is
shown in Figure 5.4 A. Figure 5.4 B shows the leakage power with different layer
configurations. The processing element (MAC VDD) and memory (MEM VDD)
domains have typical operating voltage of 0.65 V and 0.9 V, respectively, when
processing FENet workloads. The leakage power of each domain under these
operating conditions is 64.4 uW and 12.7 uW, respectively, totaling 77.1 uW over
the whole device. The total switching power of a functional system can range from
100-2000 uW depending on the model and sampling rate of the FENet workload.
Since highly power-optimized models can operate at the low end of that spectrum,
leakage power can account for up to 40% the total power of the system. Fine-
grained control of layer power distribution allows conservation of leakage power
in smaller models while maintaining model flexibility. Channel-wise power gating
further allows ultra-low-power workloads to operate with minimal waste by unused
processing channels. As shown in Figure 4.1 Section 4.2, shortly after an array
is implanted, the number of channels for high performance can be very low (x 64
channels). For example, FENet-66 operating on top-64 channels with 5 kSps data
on recordings can achieve 99% decoding performance while needing only 140 uW.

Without channel-wise gating, this would increase by 40% to 197 uW.

Leakage Power Characterization Layer Gating of Leakage Power
6001 —— MAC VDD Leakage 400
> 500/ — MEM VDD Leakage =
3 IS
o o 3001
= 400 =
& g
S 300 5 2001
(@)} (o))
g 200 g
@© ©]
@ 400 ol 100
I I A B
0 0
0.6 0.7 0.8 0.9 1.0 1.1 1.2 0 1 2 3 4 5 6 7
VDD Number of Enabled Layers
(A) (B)

Figure 5.4: Leakage power characterization: (A) Leakage power with all 192
channels and 7 layers enabled. (B) Leakage power per channel with MAC and
MEM VDD at 0.65 V and 0.9V, respectively. The 0" layer index indicates the
leakage power of a disabled channel.

91

5.3 Dynamic Power Characterization

This section characterizes the chip architecture under various operating conditions
and work loads. This allows a deeper understanding of the power consumption of
various components and provides insight into which components could benefit from
optimization in future iterations of the design. As a result of the highly granular
power switching capability of the system, it is possible to directly determine the

power consumption with similar granularity.

Power Characterization Methodology

To accurately measure the dynamic power, the measurements from the prior section
measuring the static power are first subtracted from any power measurements. Since
our dynamic power measurements use voltage and channel enable sweeps to improve
accuracy, a voltage-dependent model was created to accurately predict the leakage
current to remove. FENet-66 is used for all dynamic power measurements, so the

leakage current model has 3 layers enabled.

Taking advantage of the highly configurable nature of this architecture, the various
components of power consumption can be finely ascertained to build a dynamic
power model which can predict power consumption based on a set of configurations
and model parameters. This is accomplished by first setting an operating condition
(frequency, model, packet rate, VDD, ect.), then modulating the number of channels
and observing the change in power. Doing so with the FENet ASIC architecture

results in a curve as seen in Figure 5.5.

Impact of Channel Scaling on
Power and Performance

300 350

250 300

)
S
3

Power (uW)
Efficiency GOPs/W

=]
3

a
3

@

3

1 16 32 48 64 80 96 112 128 144 160 176 192
Number of Channels

Figure 5.5: Power and efficiency scaling by the number of channels enabled. Number
of channels is scaled linearly, such that each street is filled sequentially.

Operating conditions: Model: FENet-66; Sampling Rate: 5 kSps; Clock Frequency:
Sys. 0.188 MHz, MAC 3.948 MHz, Intf. 6 MHz; VDD: MEM 0.9 V, MAC 0.63 V

92

As observed, the power and efficiency scaling is nearly linear, with small point-wise
nonlinearities at intervals of 8, and larger point wise nonlinearities at intervals of
16. This corresponds to blocks becoming enabled in the case of the former, and
entire streets (along with the street clock buffers), becoming enabled in the later.
These non nonlinearities allow for the dissection of the power consumption of each
of the components under various work loads. We can model this behavior using the

equation in (5.1):
System Power (,UW) = @ + K * Nchanneis + B * NBiocks + 0 * Nsreets (5.1)

where « is the baseline power of the system and «, 8, and o are the scaling
factors for the number of channels, blocks, and streets enabled, respectively. These
parameters are all functions of the operating conditions mentioned earlier. Teasing
out the relation of these parameters to different operating conditions defines the
characteristic power behavior of this architecture, allowing for deep analysis on the

system, and which components and methods are ripe for optimization.

The a parameter corresponds to the baseline power of the system, which includes
the leakage power of the entire chip and the always-on components of the system
which include the weight SRAM, control finite state machines and scheduler. It
further includes the clocking architecture which distributes clock signals to each of
the gated clock buffers at the beginning of each street. The « parameter corresponds
to the power that can be gated with granularity, which includes the FENet module,
its leakage power, the asynchronous queue, and the switching activity of the SRAM
channel that is modulated. The § parameter defines the switching activity for each
block’s control signals, while the x parameter primarily corresponds to the switching

power required to drive each street’s clock and control signals.

93

To extract parameters, the number of channels is swept up to 64, allowing for 64
measurements of the delta from increasing channels, 8 from increasing blocks, and
2 from increasing streets. These parameter extractions are accomplished with the

following steps:

Step 1 («): Find the difference in power between each channel as they are enabled
so that the difference in power comes only from this additional channel (Figure 5.6
A). Filter the differences that require enabling additional block or streets (indexes
are multiples of 8). Find the mean of differences, removing outliers if necessary to

find a best fit parameter.

Step 2 (5): Project the power of the system by number of channels using the param-
eter found in Step 1 (Figure 5.6 B). Subtract this projection from the total power.
The remaining function will be a stepped function, where each step corresponds to
the increase in power from blocks and streets. Subtract each of these levels from
each other, filtering the levels which correspond to an increase in streets. Find the

average difference as before.

Step 3 (0): Project the power of the system by the number of channels and blocks
using the parameters from Steps 1 and 2 (Figure 5.6 C). Again, subtract this projec-
tion from the power. The remaining step function has a single step that corresponds

only to the power difference as a result of the increase in the number of streets.

Step 4 (@): Finally, project the power of the system by number of channels, blocks
and streets from the above steps (Figure 5.6 D). The remainder corresponds to the

baseline power of the system.

94

Difference in Power Between Difference in Power Between
Adjacent Channels (Step 1) Adjacent Blocks (Step 2)
12
35.0
10 150
- =325 B
3 3 2
28 2 -
- 5 300 100
3 3 S
S 6 5275 o
' o =
< < '50 B
4 25.0 - A Power 5 ©
25 — Total Power
2 : - Reconstruction
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of Channels Number of Channels
Difference in Power Between Difference in Power Between
Adjacent Streets (Step 3) Compoenets and Base (Step 4)
2 , 12.6
— 150 = . 150=
g S S 5
EF - = =
[
] 100 = 8 122 100 2
3 5 3 S
O 24 o o b o
o © o 12.0 —— A Power ©
< - A Power] < 1= —— Total Power 50 |2
22 ~ Total Power s ---Reconstruction
- Reconstruction 0 R =g -=--Final Model
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of Channels Number of Channels

Figure 5.6: Power parameter extraction procedure:

Operating conditions: VDD: MEM 0.95 V, MAC 0.70 V, Frequency: System
0.182 MHz, MAC 4.37 M Hz, Interface 24 M Hz Packet Rate: 33.7 kSps (unbound)
(A) (Step 1) Difference between adjacent channels in the MEM power. (B) (Step
2) Difference between adjacent blocks in MEM power. Reconstruction of power
model using only the k parameter (dashed blue line). Actual MEM power is the
solid blue line. (C) (Step 3) Difference between adjacent streets in MEM power.
Reconstruction of power model using both the x and 5 parameters (dashed blue line).
Actual MEM power is the solid blue line. (D) (Step 4) Difference between model
using only components, and the actual power. Reconstruction of power model using
the «, § and o parameters (dashed blue line). Actual MEM power is the solid blue
line. Final model is shown as the dashed orange line.

95

Clock Distribution Power

Clock distribution is the baseline for dynamic power characterization. Measuring
clock distribution power provides an important baseline to compare against when
the workload is introduced. Table 5.2 provides «, «, 8, and o components for each
clock measured at 1 V, separated by MEM and MAC VDD domains. Since the clock
networks of pooling layers are also configurable, the layer-dependent component for

affected parameters is indicated with the subscript "1’

Table 5.2: Component parameter extraction of clock distribution power.

Clock MEM Power (--£7—) MAC Power (127 —)
Name Amem AL mem Kmem Brmem Tmem Tmac Kmac KLmac Pmac Omac
System 3.242 -0.274 0.077 0.765 0.011 0.005
MAC 0.314 0.081 0.097 0.005 0.501
Interface 0.125 0.106 0.337

As an example the channel power parameter ;4 ¢ for the processing element domain
is calculated with the equation (5.2):

KMAC = Kmac + KLmac X (NL - 1) (52)

where Ny is the number of enabled layers (which is one less than the number of

output features).

To verify the model accuracy, the error was measured for the 5847 measurements
taken to derive the clock power model. Figure 5.7 depicts the probability distribution
of error for this model that shows good agreement with the measured values with
a slight bias towards underestimation of power, but in total the model estimates the

power to within 10% error.

Leakage and Clock Power Model Error

Domain
1754 MEM
MAC

Probability
o o = =
g & 8 B

oS
N
&

=4
=
S}

B T T
% Error

Figure 5.7: Probability distribution function of clock power error for both the MEM
and MAC power domains.

96

One interesting observation is the negative relationship between the number of layers
enabled and the baseline power consumed. This particular quirk in the design was
ultimately traced back to gating logic which controls the clock of the padding state

machine. Disabled layers of this state machine were left to continuously update with

nW
MHzV?

unimportant fact of the architecture, it highlights the sensitivity of this method of

the default value, evidently wasting 274 of power per layer. While this is an
analysis to interrogate which architectural components can be improved upon.

More importantly, this analysis belies an unusually high power consumption by the
distribution of the validation interface while no data is present. Further investigation
shows that each clock gate within an asynchronous queue is preceded by a clock
buffer. Given that the validation interface only interacts with each channel once
every load cycle, a system with all channels enabled will ultimately require 191
clock network cycles more than necessary. Thankfully, if this system were fully
integrated into a neural decoding pipeline, parallel data sources would only need
to interact with the asynchronous queues at the rate of data arrival, removing these
erroneous cycles entirely. However, it is worth noting that the true power of the

architecture is augmented by an amount estimated in equation (5.3):

Nep — 1
MEMp, . = N, X (kmem X Nen. +omem X Nsi) X Fiup. X Viggy (5.3)

Where N¢j,. is the number of channels, kygy and oy gy are the memory domain
channel and street parameters, respectively, Fy,; . is the interface clock frequency

in megahertz, and Vs 1s the memory domain voltage.

Power Efficiency

The following subsections analyze the system power under computational load. The
breakdown of power for the components of each channel is shown in Figure 5.8
A and is estimated by post-place and route simulation at 1 V and 1.2 V and was
observed to be relatively consistent across voltages within each respective domain.
The total power ratio was measured directly with a MEM and MAC voltage of 0.9 V
and 0.63 V, respectively.

The decoder was trained using the FPGA features and validated with those gener-
ated by the undervolted ASIC. For this performance, the feature extraction ASIC
consumed 346.2 uW to generate features for all 192 channels at an efficiency of
335 GOPS/W where a MAC operation is two OPS with a padding latency of 6 mS.
The processing element consumes 179 uW (52%) of the total power. These power

results exclude the power contributions of the validation interface and IO.

97

I SRAM I Arithmetic I MAC VDD Power and Latency VS.
1AQ I Pool Regs. B MEM VDD 1500 System Clock Frequency
I Lvl. Shifters 0 Buffers FENet-15
1250 W FENet-66 L
1 Buffers . FENet-240 151‘,;
< 1000 g
2 g
5 750)
= S
o 50 s §
250
0 r0
3.9% 1.3% 04 08 12 16 20
MEM MAC Total Power System Frequency (MHz)
(A) (B)

0 Efficiency and Throughput vs. Frequency

FENet-15 70000
. FENet-66
800 FENet-240
760 L 60000
m
(% 600 L 50000 (3
. i
Q@ S0 40000 =
Q.
& 400 1 <
S -30000 3
S 300 o
= =
W 200 L 20000
100 ~ L 10000
ol -4 .

0.4 0.8 12 16 2.0
System Frequency (MHz)

©

Figure 5.8: Power and efficiency characterization:

Operating conditions: Model: FENet-66; Sampling Rate: 5 kSps; Clock Frequency:
Sys. 0.188 MHz, MAC 3.948 MHz, Intf. 6 MHz; VDD: MEM 0.9 V, MAC 0.63 V
(A) Power breakdown of a single channel separated by VDD domain. (B) System
power and latency at different operating frequencies. MAC voltage is scaled so R>
maintains 98.8% performance. Bar graph denotes the power with top and bottom
bars denoting MAC and MEM domains, respectively. (C) Efficiency in GOPS/W
plotted as the bar graph and throughput plotted as lines in kilo Feature Sets per
Second (kFSps) of various models.

98

The power consumed in various device configurations is shown in Table 5.3. Power
was not measured directly during the online test, but the power draw for the same
number of channels and sampling rate was measured to be 586 uW (3.05 uW per
channel). In a highly optimized case, where only top-64 most informative channels
are used streaming neural data at a 5 kSps sampling rate, the feature extraction power
was reduced to 140 uW (2.2 uW per channel), while maintaining an average R? of
0.354 over all 48 sessions. Alternatively, all 192 channels can be operated at 2 kSps
with 178 uW (0.93 uW per channel), with an average R?> of 0.41. Reducing the
device to 1 channel shows a minimal operating power of 25.2 uW, demonstrating
the operation floor of this device.

Table 5.3: Power of various configurations using FENet-66.

Channel | S. Rate | Freq. (MHz) Voltage Total Ch.
Count | (kSps) | System//MAC | MEM//MAC | (uW) (UW)
192 2 0.095//2.0 0.90//0.63 178 0.93

64 5 0.188//3.984 0.90//0.63 140.0 2.2

192 5 0.188//3.984 0.90//0.63 346.2 1.8
192 10 0.345//7.25 0.93//0.65 586.4 3.05
192 30 0.980//20.58 0.98//0.67 | 1584.0 8.25

Gray highlighting denotes sampling rate used in online testing.

The FENet ASIC running the FENet-66 model substantially cuts the data rate
necessary for transmission by 37.5x when operating on 5 kSps neural streams and
225x when operating on 30 kSps neural streams. Features are successfully generated

at a rate of 33 FPS, which is sufficient for rapid, fine motor control.

We explore the power requirements of different models at various system clock
frequencies in Figure 5.8 B. The MAC clock was maintained at a multiple of the
system, consistent with the PE clock multiplier listed in Table 4.1. The data interface
frequency was maintained at 9 — 14 the system frequency. We further limited the
neural data packet rate to 5 kSps, regardless of the maximum throughput of the ASIC,
so that our system generates 33 FPS over the entire range of operating frequencies
to match realistic data rates. MAC VDD was scaled so that R?> performance is
maintained above 98%. Since the interface speed was limited, MEM VDD was

maintained at 0.9V across all frequencies.

99

We also measured the performance of the system using each model over the same
system frequency range, without constraining the neural data rate. In this case,
we optimized the interface clock frequency to the minimum frequency at which
the processor can remain computationally limited, maximizing efficiency. The
throughput and efficiency at various system frequencies are shown in Figure 5.8 C.
FENet-15, FENet-66, and FENet-240 were measured to each require a minimum
energy of 24 nJ, 42 nJ, and 82 nJ, respectively, for each feature set per channel.
Noting the values in Table 4.1, we calculate the max efficiency to be 104 GOPS/W,
424 GOPS/W, and 661 GOPS/W, respectively (1 MAC =2 OPs). This range in
efficiencies correlates to the ratio of MAC operations, to the total number of cycles

each feature set requires.

Voltage Sensitivity

Two core voltage levels are used to minimize processing power (MAC VDD) while
maintaining the voltage headroom necessary for low leakage SRAM (MEM VDD).
The voltage sensitivity of the ASIC is depicted in Figure 5.9 A. The measured
sensitivity is consistent for system clock frequencies less than 700 kHz, which is fast
enough to operate FENet-66 with a padding latency of only 1.62 ms. No errors were
observed for MAC VDDs greater than 0.65V within this operating range. The mean
squared error (MSE) between the ASIC and FPGA-reference generated features are
plotted alongside the cross-validated decoder R? using data from the first session
of the offline data also used in Figure 4.3. The decoder features show robustness to
total MSE values less than 100 such that the R? performance maintains 98.8% of
its value. As such, the minimum voltage values for the MAC and MEM VDDs are
chosen to be 0.63 V and 0.90 V, respectively.

To better understand the voltage-delay relationship of this architecture, the maximum
operating frequency was determined for a range of operating processing element
voltages as shown in Figure 5.9 B. The maximum operating frequency was deter-
mined by sweeping the voltage until no discrepancies are observed between the
features produced by the embedded architectural duplicate and the ASIC. This data
shows a nearly linear relationship between the VDD and the switching speed. Since
the construction of the validation system is designed for the relatively slow operating
rates of neural signal processing, the measurement of this ASIC is IO limited and

the processing element clock is limited to 100 MHz.

100
Effect of VDD on Performance

Processing Element MAX Frequency
0611 100
1 300
0.5
'll Operating Points 250 N8
s
0414 —— RE-MEMVDD [200 %
L c 60
~N 1)
X o03{ ! R2-MAC VDD 450% L
| A MSE -MEM VDD £ 0
0274 i MSE -MAC VDD | 100 <
1 N
0.1 i \\ 50 20
1 S
L e Ju Nt D A Lo
0.0 T : : 0
06 0.8 1.0 12 0625 0650 0675 0700 0725 0750 0.775 0.800
VDD MAC Voltage (V)
(A) B)
Distribution of Minimum Voltages Over ASIC "
0.66
0.64
0620’
g
DGDg
£
=]
E
0.58 "
g
0.56
0.54
0.52

©

Figure 5.9: Voltage-Performance Characterization:

(A) VDD scaling effect on feature quality. Solid lines denote R?, while dashed lines
denote MSE of the features. First session of offline data is used for analysis on effect.
(B) Maximum processing element frequency scaling with voltage. Memory VDD

1s fixed at 1.2 V. (C) Spatial distribution of minimum operating voltages across one
ASIC sample.

The memory voltage was also swept with respect to system clock and interface
clock frequency and showed no affect on VDD within the operating frequencies
supported by the maximum processing clock of 100 MHz, and the IO limitations
of the interface clock frequency (system frequency < 4 MHz, interface frequency
< 42 MHz). This is due to the error becoming dominated by the low leakage

SRAM headroom requirements, and not because of the switching limitations of the
relatively slow system clock and interface clocks.

101

Finally, to ascertain the effects of the data and control distribution networks, the spa-
tial voltage sensitivity was mapped across the chip. In this experiment, an optimal
clock configuration was used with the FENet-66 workload, which means the inter-
face clock was set to the minimum speed which does not bottleneck computational
throughput (system clock: 0.4 MHz, processing element clock: 8.4 MHz, interface
clock: 12 MHz). The memory domain VDD was fixed at 1.2 V as the processing
element VDD was swept. The minimum voltage is determined when the rate of

mismatch of a channel to the embedded architectural duplicate becomes 0.

The spatial distribution of minimum voltages under these operating conditions is
mapped in Figure 5.9 C. Although it is important to note that the specific mapping
is sensitive to process variation, certain architectural trends can still be observed.
One particular trend is the fact that minimum voltage drops dramatically by ~ 0.1 V
at the boundary between blocks 1 and 2 of each street, denoted as S, B and S, B3,
respectively. This is likely a result of the extra long routing required to make the
bend between block 1 and 2. Upon reflection, the centralized controls did not have
a real need to be in the center of the design. Instead, placing the controls on one
of the two sides of the ASIC would alleviate this routing issue. Furthermore, these
results are indicative of the limitations of chaining these blocks far apart across a
fully integrated SOC. Special care should be taken to re-optimize the signal integrity
of blocks that require extra inter-block routing.

The architecture was tested using only half the channels in each street, and showed
successful computation of features with a decoding R? 98% the original value while
operating with a minimum MAC VDD of 0.56 V and a MEM VDD of 0.85 with
a 0.4 MHz system frequency consumes 197.4 uW. These low operating voltages
increased the GOPS/W efficiency of the FENet-66 workload from 424 GOPS/W
to 621 GOPS/W while generating 69.9 frames per second, allowing processing of
features from all channels within the same amount of computation time. FENet-240
with 0.8 MHz system clock frequency can produce 64.5 features per second requires
only 353.9 uW to operate at these voltages effectively, pushing its efficiency from
661 GOPS/W to 949 GOPS/W. Adjusting the power consumption by removing the
unnecessary interface clock power with equation (5.3), we get an estimated power
of 294 uW, which would put the architectures theoretical maximum efficiency at

1141 GOPS/W if corrections were made to the interface clock and buffer scheme.

102

5.4 Implementation Analysis

This section analyzes the architectural efficacy in the context of its application in
brain-machine interfaces. The area and scalability of the architecture are important
factors to consider when determining the viability of an architecture intended for
implantable neural signal processing. These factors determine how well an archi-
tecture is able to integrate into a complete processing system on a chip, as well as
how easily the system can be modified to support the increasing number of neural
recording channels in modern brain-machine interface systems. This section is con-
cluded with a comparison of the FENet ASIC feature extraction hardware with the

prior state-of-the-art.

Area Costs

The ASIC supports up to 192 neural streaming channels and occupies a total core
area of 2.62 mm?. Each channel occupies 12801 um of area with the processing
element requiring 7165 um? (1447 gates), and the 4 element asynchronous queue
and level shifters further consume 1144 ,um2 (121 gates), which is 56% and 9% the
total area per channel, respectively. The 256-element SRAM consumes 3790 um?
which is 30% the channel area, the remainder being used for buffering and signal
gating. The control logic and weight SRAM occupy an area of 31626 um? (2423
gates) and 100082 um?, respectively.

Architecture Scaling

Our architecture completes all possible computations at the same rate as data arrival.
Conclusional padding cycles, defined only by the model, delineates the latency and
therefore remains constant when scaling the system. All controls for the system are
centralized and broadcast to each channel, with each channel block designed to be
self-contained. Adding additional streets requires only buffering the control signals
from the central FSM. As a result, the area of our system scales linearly, with a
projected 1024 channel system requiring an additional 5.59 mm?. Furthermore,
each channel has an individual neural data port. With our validation system limited
by 10, our channel count is ultimately constrained by the design specifications of
the data interface. Integrating this FENet MACRO into an SOC with independent

data sources would allow each channel to accept neural streams in parallel.

103

Power Scaling

One major consideration in this design is the scalability of power efficiency. Power
scaling is especially important in chronically implanted high-channel-count neural
systems, since probes can degrade to the point they no longer provide useful in-
formation to the decoder. With the models derived in 5.3, we can extrapolate the
power scaling of the system. Targeting the minimum energy point for implementing
FENet-66 at 5 kSps, the projected feature extraction system with 1024 channels, we
would simply increase the number of streets (32 channels and 4 blocks per street)

from 6 to 32. This predicts our system power to be around 1.67 mW.

Comparison With Other BMI ASICs

There is currently a surge in the development of processors targeting low-power
edge applications [34, 27, 63, 65]. Our feature extraction chip is a domain-specific
architecture optimized to implement FENet in the neural decoding environment.
To the best of our knowledge, this is the first system which integrates multi-level
global average pooling accumulators and dual mode convolutional data paths for
each channel. Our dual mode processing elements generate intermediate activations
for higher order layers, while simultaneously computing output features. With an
8 layer output stationary processing element, we entirely avoid re-fetching inter-
mediate activations to generate the output features. Through intensive hardware
reuse, channel-level-power scaling granularity, and unique data streaming structure,
we optimized this architecture for the neural decoding environment, where other
conventional CNN processors can be too bulky or memory intensive for the FENet
workload. We optimized the data flow for FENet feature generation to achieve high
kinematic decoding accuracy and stability with long implant lifetimes. Table 5.4
compares the proposed FENet architecture with existing hardware implementations
of neural feature extractors.

The FENet algorithm is trained on data from Utah arrays with large probe spacing
(0.4 mm) and therefore does not see significant inter-channel correlations of spike
signals from the same neuron [9], however, training of FENet with presence of
inter-channel correlations is an interesting topic for future investigations. Spike
detectors and spike sorters like those found in [68, 69, 57, 63] are able to distinctly
identify neural sources, and firing patterns, which is well suited for systems with
high inter-channel correlations, but require high SNR for accurate detection and

sorting.

104

The calibration free SD system in [68] has a power and area cost of 6760 um? and
0.038 uW per channel, respectively. Their system employs adaptive thresholding
techniques, which showed maintained detection accuracy for 200 days. However,
chronically implanted neural probes used in our study have mean noise levels of 89%
six years after implant, which is much higher than the 20% tested in [68]. Even with
our most advanced adaptive thresholding techniques, FENet features outperform SD
(TC features) by 487% after 4 years.

SPB calculated in [3] has remarkably low complexity in relation to its performance,
achieving 3.68 uW and a scaled area of 2370 um per channel. Spiking band power
features further reduce each bin of neural data down to a single feature. For a 30
ms time bin sampled at 2 kSps, this reduces the dimensionality of the neural data
60x. The simplicity of this algorithm accentuates its utility when power and area
constraints are high and decoding precision is less pertinent.

Other neural interface modalities employ signal compression such that low data rate
representations of the neural data can be transmitted then reconstructed with little
or no loss. The system in [58], utilizes an Autoencoder (AE) to compress local
field potentials (LFP) at 0.076 uW and 0.02 um? per channel with a compression
ratio of 19.2. The compression system is designed specifically for LFP as it relies
on the spatially correlated nature of these signals. The system allows for lossy
reconstruction of the original signal with a signal-to-noise distortion ratio of 15-19
dB.

While our system primarily focuses on feature extraction, the systems in [3, 51, 63],
incorporate on-chip decoders to fully integrate the decoding pipeline. The system
in [3] achieved an average cross validated correlation of 0.29-0.49 with 1D, and 2D
kinematic decoding trials, respectively, using a steady state Kalman filter. In [51],
a decoder using distinctive neural codes and a linear discriminant analysis classifier
were able to achieve 31-class handwriting classifications at 1 classification a second
with 91.3% accuracy. This system was able to achieve this while only consuming
0.44 uW and 1500 um? per channel.

105

Table 5.4: Comparison with other state-of-the-art neural feature extraction ICs.

Metric This Work TBCAS22[3] | TBCAS19[57] | TBCAS24[58] | TBCAS22[63] | TBCAS23[68] JNE25(69]
Process 65 180 32 180 22 65 65
Implementation Digital ASIC Digital ASIC Digital Sim. Digital Sim. Digital ASIC Digital Sim. Digital Sim.
Number of Channels 192 93 1 96 16 128 8
Channel Area pm? 12801 28443* 2570000 20000 14000 6760 6450
Scaled Area? um? 12801 2370% 8481000 1667 92394 6760 6450
Channel Power uW 1.8 3.68 2.78 0.076 2.79 0.038 0.532
Resolution (bits) 9 16 6 10 8 1 1
Sampling rate (kHz) 5-30 2 24 24 20 7 24
Feature Type FENet SBP MUA LFP MUA TC TC
Algorithm” CNN MAV SS OSort AE SS SD NEO SD TEO & SWT
Avg. Feature R? 0.446 0.382 0.275 - 0.275 0.282 0.282
Feature NPR 0.66 0.57 0.48 - 0.48 0.16 0.16
Feature Rate FPS 33 20 Async. - Async. Async. Async.
Bin Size (samples) 1508 100 64 - 64 16 80
Supply Voltage (V) 0.63//0.98 0.625 1.16 1.8 0.63 1.8 1.2
Clock (MHz) 0.1889 0.068" 0.024 0.004 0.400 0.896 0.200
Latency (ms) 6.0 0.5 1.3 - 0.07 - 0.05
Validation Model Human Primate Synthetic Primate Rat Synthetic Primate

*Calculated from feature extraction hardware only.

B Configured for sampling rate of 5 kSps with FENet-66.
4 System clock frequency. Mac frequency for FENet-66 is 21x the system clock frequency.
TSpiking band power feature extraction unit runnning at 2.9 MHz.
#Scaled to 65 nm process using methods in [56]
YMean Abolute Value (MAV); Auto Encoder (AE); Nonlinear Energy Operator (NEO); Teager Energy Operator (TEO);
Stationary Wavelet Transform (SWT)

106
Chapter 6

CONCLUSION

Neural interfaces are a burgeoning frontier that provides opportunities to alleviate
suffering caused by injury or illness to the brain or nervous system. As these systems
become a reality and move away from purely an academic setting, the longevity of
these systems becomes extremely important. This dissertation presents the devel-
opment of a scalable, low power 1D CNN-based feature extraction ASIC optimized
to process broadband neural data streams with low power and area overhead. The
architecture memory and scheduling scheme is optimized to implement the FENet
algorithm on hundreds of continuous streams of data, which reduced memory re-
quirements by 5X over conventional architectures, while the processing element
further reduces memory access by 2x through a unique dataflow construction tai-
lor built for the FENet workload. Through retraining and optimizing the FENet
algorithm, the complexity requirements of the model implemented by this hard-
ware was reduced to require half the number of multiply accumulate operations,
while still generating neural features with state-of-the-art stability even six years
post-implantation, where the maximum SNR of the multi-electrode arrays over all
196 channels was 5.25, with a with a mean and median SNR of 1.12 and 0.94, re-
spectively. We validated the hardware-optimized FENet models and the ASIC that

implemented them online through closed-loop cursor control with a human subject.

The power consumption of the ASIC was 341.2 uW (5kSps) to generate neural
features at 33 FPS for all 192 channels at a latency of 6 ms, fast enough for accurate
and responsive kinematic decoding. The feature extraction hardware is highly
power-scalable, providing flexibility to the decoding system. While the system
does not dynamically re-configure itself, the models, and channel counts could be
updated by a central control system of a more complex SOC that integrates the
FENet hardware into its neural decoding pipeline. Early in an implant’s life-cycle,
when only few informative channels are necessary, power can be optimized to
achieve quality decoding performance with low drain on system power. Later in an
implant’s life-cycle, when noise is high, more channels can be enabled to maintain

performance at a linear expense in power.

107

Brain-machine interfaces have evolved expeditiously over the past few years. This
work provides one important block of the neural decoding pipeline that significantly
reduces the bandwidth of downstream decoding components, while maintaining

much of the important information found in broadband neural data.

6.1 Current State of the Project

This work is a contribution for a larger ambition project to construct a neural brain
processing system on a chip, complete with analog front end, signal preprocessing,
and kinematic decoding. The current state of the ASIC implementation of the
decoding pipeline covers the FENet feature extraction. Additional developments
should include the analog front end and recording, followed by digital filtering and
common average referencing, with the signals generated by this hardware then ready
to interface with the FENet processors built in this dissertation. Following feature
extraction, the features should be dimensionally reduced with PLSR, which can be
done with matrix multiplication built into the existing FENet hardware protocol.
To accomplish this, a modification to the processing element data path must be
made to allow the features stored in the pooling registers to be accessed as inputs
to the processing element. Additionally, the ability to subtract bias values should
be incorporated into the processing data-path. Finally, a decoder can be integrated
into the system. Since data is streamed, it is important that the FENet hardware is
quickly made available to processing the next batch of neural activations. For this
reason, I believe a decoder should be build into separate hardware that implements
any variety of decoding algorithms, from a simple linear decoder, to another deep

learning algorithm such as a transformer or recurrent neural network.

6.2 Future Directions

While FENet shows its promise for use in neural feature extraction, I believe there is
much more fruitful research in the space of combining simplified wavelet decompo-
sition (like that of an 8 layer Haar transform) with a recurrent neural network. This
combination enjoys the data compressive benefits of multi-resolution analysis in the
Haar layer with data-driven feature extraction in the recurrent layer. Furthermore,
this architecture would seamlessly integrate with the computational specialties of

spiking neural networks and event-based processing.

108

At the writing of this manuscript, direct-digitization front-ends are showing promise
in their ability to provide resource-efficient data conversion. Therefore, it will be
advantageous to design feature extraction and neural processing algorithms that
are capable of seamlessly accepting and processing the time-based spike encoding

schemes generated by these front ends.

6.3 System Improvements

The system developed in this dissertation sets the framework for more complex
neural decoding systems. Not only is the feature extraction hardware ready for
integration into such an SOC, but the testing infrastructure for fully validating
the system with human subjects will provide a significant head start for future BMI
endeavors. The FENet ASIC has several areas that have opportunity for optimization
which could reduce power, improve latency, or mitigate the drawbacks of the final

padding cycles on the flow of the system.

SOC Integration

This architecture is designed for efficient implementation of the FENet dataflow at
the edge of data collection. As such, its benefits are fully realized when integrated
into a neural decoding system on a chip (SOC). This includes integration of analog
front ends and signal preconditioning, as well as back end digital decoding. The
FENet architecture benefits from this integration since it is able to accept independent
data streams for each channel. Since the current FENet architecture is straddled with
IO limitations, the ability to independently load data in parallel, reduces the interface
clock rate by N times (where N is the number of channels). Since the interface clock
distribution was measured to be up to 30% the total power, system integration would

entirely reduce this glutenous source of power consumption.

Furthermore, SOC integration allows for advanced reduction in transmission band-
width down to only the kinematic extraction values. As the field of neuromodulation
continues to advance, complex edge-decoding techniques can be introduced into the
decoding pipeline [46] to provide even better kinematic decoding performance. A
more advanced system redesign can allow for the reuse of the FENet processing
elements for these 2D workloads. The major modification of the system architecture
would be in the data network. The addition of a configurable network between the
MACs and SRAM would allow the processing elements to exploit reuse opportuni-

ties within the 2D workflow.

109
Read-Write Pipelining

The FSMs generating read and write addresses have one cycle delay before initi-
ating a read or write command. Furthermore, each MAC requires 2 cycles after
each SRAM read cycle to finish processing the last element, and apply LReLU,
quantization, and rounding to the accumulation register. As a result, the SRAM is

inactive for 15% of the FENet sequence.

Two approaches can help mitigate this inefficiency. The first approach would be to
pipeline the address generation segments of the FSM to remove the dead time before
write operations. The second approach is to pipeline addresses for the following
convolution cycle. During the final two computational cycles, the data for the next
computational cycle can be read from SRAM, and cached locally. During the write
back cycles, the processing are then free to process the already cached data for
the next sequence, increasing overall utilization of both memory and processing

resources.

SRAM optimization

One key design consideration was the choice of SRAM used for activations. While
the sizing of the SRAM is optimal for this dataflow, the choice of SRAM speed is
also worth considering. Since the SRAM compiler was sourced from TSMC, there
was no way to validate the SRAM with analog simulators since no analog models
are provided. As such, the decision to use the low leakage SRAM was made based
on the power of the SRAM within the specified operating range (1.2 V *10%), as
this range is the only range guaranteed by TSMC. However, our measurements show
that the SRAM is fully capable of operating at-least 25% below its nominal voltage.
For this reason, the use of the high-speed SRAM which has higher leakage but uses
IO peripherals with lower threshold voltages and therefore larger headroom should
be explored as to remove the need for dual VDD rails, and level shifters across the
entire design as well as allowing the system voltage to be scaled potentially to the

same voltage as the processing elements.

Moreover, the system was designed with the constraint that it must fit large models
such as FENet 240, however, it is evident that much smaller models are capable of
similar performance with much lower memory requirements. This memory space
can be reclaimed to reduce area and power, or put to use for different aspects of the

neural decoding pipeline.

110

MAC Parallelism

The RTL design of this system was made with the ability to instantiate multi-
ple MACs at a time without substantially changing the system. This ability was
originally designed to allow the processing of multiple layers at a time to improve
performance. There were a few factors that introduced impetus to the full adaptation
of this feature including the low overall processing requirements and the fact that
dual-port SRAM requires higher power per access, and the fact that any intermediate
caching scheme would put restrictions on the stride length. Ultimately, flexibility
and compact area were chosen over power efficiency and performance due to a lack

of certainty on what the most efficient FENet algorithm would ultimately become.

Sacrificing configurability in the stride length, an activation reuse mechanism could
cache one stride of activations locally, and use those activations to process the
next convolution in parallel with the first. Each layer of MAC parallelism would
reduce the number of activations and latency by this factor. Since the abstract
structure of the system is already setup for such parallelism, implementation of
this improvement would take minimal effort and has the potential for the largest
improvement in efficiency. Another potential instance of MAC parallelism is the

potential to use unused SRAM space to store multiple channels of neural data.

Minimum VDD Reduction

While often used to save area, standard cell gates which support more than 2
inputs increases the headroom of the subsequent processor. Removing these gates
all together will push the minimum operating voltage even lower, saving power
[52]. Furthermore, as discussed in Section 5.3, the minimum operating voltage
for processing elements further in the street chain can benefit significantly from
improved buffer optimization and skew management. Either channel blocks can be
kept tightly coupled together, or driving buffers can be placed between long routing

stretches.

111
Conclusional Padding Stall Mitigation

Integration of this hardware into a full decoding pipeline necessitates the storage
of samples during the conclusional padding phase of the algorithm. The current
control architecture devotes all resources to finishing the padding as fast as possible.
However, this results in the first layer of SRAM to become opaque to new neural
activations, when in reality this SRAM goes untouched during the majority of
the conclusional padding phase. New activations writes could easily be written
into SRAM as they arrive. With modification to the control sequence, a separate
counter could keep track of how much of the first layer’s SRAM contains valid
data. Startup padding would additionally benefit from this scheme since the initially
sparse computations can immediately commence rather than be stuck waiting for

data to arrive.

Control Micro-Coding

The CNN control algorithm has several areas that could improve the efficiency of the
algorithm. When the system clock is properly tuned to the data rate, MAC utilization
is maximized. However, in situations that require low latency, the MACs spend a
lot of time waiting for data. A configurable control would allow the system to adjust
to these different scenarios and allow convolutions to commence with data already
present, even before a full stride of data has arrived, improving the overall utilization
of the architecture. Updates to the overall algorithmic performance like this, the stall
effect mitigation discussed in the prior section, and others, all are unobtainable with
the current architecture since its behavior is hard-coded into finite-state machines.
While this choice was made to reduce the minimum power of low-channel count
situations, improving the flexibility of the control system would not only allow for
algorithmic improvements, but improve the generalization of the system to other
workloads.

Replacing the generation of controls from hard-coded FSM with a small micro
controller or ARM core, would allow implementation of not just FENet, but PLSR
and linear decoding without major redesign of the system. Moreover, integrating
this system into an SOC would almost certainly require a central processing core.

Therefore, the ’additional’ overhead would be minimal.

112
Model Optimization and Reapplication

There are a nearly uncountable number of FENet model configurations supported
by the ASIC architecture designed in this dissertation with widely varying levels
of power demands. Expanding the search of the FENet model space may show
improved accuracy and latency on existing hardware without sacrificing decoding
accuracy. The power models presented in this dissertation offer a higher accuracy
estimation of the power demands for a given model, allowing the model hyperparam-
eters to be tuned with concrete understanding of how each parameter adjustment will
affect the power requirements of the system. These estimations can be integrated
into the wandb optimization framework to track the power as model parameters are
explored. Adding this metric into the wandb framework would allow automated

model accuracy-power optimization.

Additionally, these models were only ever trained within the context of brain-
machine interfaces. Ultrasound signal processing is another 1D massively parallel
signal processing workload that may find benefit in application of FENet models.
Radar and sonar systems have already shown that discrete wavelet transform power
for characterizations of echoes, clutter, and Doppler shift can improve performance
[60]. Using the data-driven methods of FENet, may prove beneficial to systems that
want to incorporate end-to-end machine-learning for a given application to maxi-
mize performance. This hardware architecture provides a basis for these decoding

pipelines.

6.4 Lessons Learned

Throughout this journey, [was fortunate to take an algorithmic concept and build it
from the ground up to ultimately integrating my architecture into a real-time neural
decoding pipeline. There were many skills that I needed to develop to ensure the
success of this project including a range of technical and non-technical adaptations
to the needs of the situation. On the technical side, I learned not only how to
take a concept from an abstract idea to an architecture, layout, and ultimately a
fully integrated system, but also how to learn independently how to digest technical
literature, datasheet, scour forums and documentation, and decipher the foreign
languages of error logs. Learning how to learn and problem solve on my own was

the most fruitful experience I could have asked for from my PhD.

113

Resilience

Multi-year projects are the staple of a dissertation. Within each technical hurdle
and project timeline exists a number of opportunities to hone the skills of project
management. Of these opportunities, I learned how to estimate the potential pitfalls
and hurdles that a project could potentially encounter, and I learned ways to plan
ahead for these pitfalls. When a pitfall was not foreseen, for instance, when I placed
by 10 pads far too close together for the wire-bonder to reliably bond to pads without
creating shorts, I found ways to mitigate its challenges. In this case, I laser-machined
chip-carriers with trace patterns to allow independent bonds to be made with one
perpendicular with the pad and the trace, and another connecting the trace to the
breakout pin. This experience showed me that with any road bump in a project,
clever solutions can be manifest by isolating the root cause of an issue and thinking

creatively.

Besides the tool usage, system design, and experience, this project also gave me the
opportunity to learn resilience in the face of failure. Above all, it showed me that
I am capable of doing what feels like the impossible. While at the beginning of
this endeavor, I felt there was no way I would be able to learn everything I needed
to know to bring the system together. 1 would feel a deep anxiety when I needed
to start a new phase of the project that I knew nothing about. This caused me to
procrastinate on the phase, hiding in the realm of the known for as long as possible.
I now know how to forge into unknown waters. The state of confusion that this

brings is no longer freight full, but comforting, as it is a sign of new skills to come.

Communication

Most importantly, I have learned how to be a better communicator of my ideas. Prior
to this journey, I often felt overwhelmed with what I felt I needed to communicate.
What my experience taught me was the importance of breaking down ideas into
abstract components that are much easier to digest by my audience, then dissecting
these ideas into their constituents. I still have more to learn in this department, but
with every passing experience, I am becoming more and more able to communicate
the ideas that I learn.

114

Literature Review

Literature review is one of the most important skills one develops as a PhD student,
but what they don’t tell you is that not everyone is the same in the way they learn
and absorb information. Don’t try and force yourself to learn the way you expect
you should. For instance, early in my career, when I would try to read papers, I
would go to the library, sit down with a paper, and try to understand every single
sentence that was written. Often this would lead to countless rabbit holes chasing
concepts outside my field that were entirely unimportant for me to understand the
paper. Furthermore, this would take a huge amount of time and effort, by the time
I would reach the conclusion section, I would be so burned out, I would barely

understand the section I was reading.

What I have learned is that the best way to approach learning a new subject on my
own is to start by learning the higher order concepts, hierarchically. This means
starting with the most general concepts of the topic, and avoid worrying about the
details until you have fully grasped the hierarchy above it. This is where review
papers come in. Review papers to a remarkable job of breaking concepts into general
groups, and highlighting the important information of those groups. Once you have
an idea of what is generally going on, and the motivation of all the different prior
art that is trying to address your problem, then, and only then is it a good idea to

read the individual papers that are most relevant to your issue.

Burnout

You are going to get burned out, it’s a fact of life in a PhD. What is important is
recognizing the burnout, and know when you might be too exhausted to continue
working on a particular area. When you are burned out, you will find yourself
thinking only of finishing the project, and not what will help you later on. Sometimes
the complexity you know you need to add to your design to make it shine might
feel like it will endlessly delay your project, but it is better to push through these
worries, rather than opt for simplicity just because it will finish the project.

115
Criticism: It Is There to Make You Better

Itis unfortunate that graduate school occurs before you have fully formed as a person,
with a complete understanding of yourself and others. Sometimes, the pressures of
a PhD are what help refine your personality. The difficulties of research provide the
grit and tribulations which demand that you polish out the rough edges of who you
are. In my case, I took criticism far too personally. Sometimes it is hard not too,
but what one needs to always remember is that criticism is not there to say you are
bad, it is there to say you have an opportunity to do better. There will always be
things you can do better, without criticism, you won’t always know what it is you

are missing.

Don’t panic, don’t be afraid. These reactions get you no where. Ask for help early,
ask for help often. If you receive criticism that you feel is unfair, don’t respond
defensively, don’t ignore it later. Ask for what you believe can be done to improve.
It’s not about you, really, it is about finding areas in your life where you can learn

everywhere.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

116
BIBLIOGRAPHY

Faraz Akram, Hee Sok Han, and Tae Seong Kim. “A P300-based brain
computer interface system for words typing.” In: Computers in Biology and
Medicine 45.1 (Feb. 2014), pp. 118-125. 1ssn: 00104825. por: 10.1016/j .
compbiomed.2013.12.001.

Bilal Alsallakh et al. “Mind the Pad — CNNs can Develop Blind Spots.” In:
(Oct. 2020). urL: http://arxiv.org/abs/2010.02178.

Hyochan An et al. “A Power-Efficient Brain-Machine Interface System with a
Sub-mw Feature Extraction and Decoding ASIC Demonstrated in Nonhuman
Primates.” In: IEEE Transactions on Biomedical Circuits and Systems 16.3
(June 2022), pp. 395-408. 1ssn: 19409990. por: 10.1109/TBCAS. 2022.
3175926.

David A. Bjénes et al. “Quantifying physical degradation alongside recording
and stimulation performance of 980 intracortical microelectrodes chronically
implanted in three humans for 956-2130 days.” In: Acta Biomaterialia 198
(May 2025), pp. 188-206. 1ssn: 18787568. por: 10.1016/j.actbio.2025.
02.030.

Chad E. Bouton et al. “Restoring cortical control of functional movement in
a human with quadriplegia.” In: Nature 533 (Apr. 2016), pp. 247-250. 1ssN:
14764687. por: 10.1038/naturel7435.

Peter Brunner et al. “Rapid communication with a "P300" matrix speller
using electrocorticographic signals (ecog).” In: Frontiers in Neuroscience
FEB (2011). 1ssn: 16624548. por: 10.3389/fnins.2011.00005.

Alessio P. Buccino et al. “Spikeinterface, a unified framework for spike sort-
ing.” In: eLife 9 (Oct. 2020), pp. 1-24. 1ssn: 2050084X. por: 10 . 7554/
eLife.61834.

Autumn J. Bullard et al. “Design and testing of a 96-channel neural inter-
face module for the Networked Neuroprosthesis system.” In: Bioelectronic
Medicine 5.1 (Dec. 2019). por: 10.1186/s42234-019-0019-x.

Gyorgy Buzsdki. “Large-scale recording of neuronal ensembles.” In: Nature
Neuroscience 7.5 (May 2004), pp. 446—451. 1ssn: 10976256. por: 10.1038/
nnl233.

Jose M. Carmena et al. “Learning to control a brain-machine interface for
reaching and grasping by primates.” In: PLoS Biology 1.2 (2003). 1ssN:
15449173. por: 10.1371/journal .pbio.0000042.

Anantha P. Chandrakasan. Ultra Low Power Digital Signal Processing. Tech.
rep. Bangalore, Jan. 1996. por: 10.1109/ICVD.1996.489634.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

117

Yingping Chen et al. “An Online-Spike-Sorting IC Using Unsupervised
Geometry-Aware OSort Clustering for Efficient Embedded Neural-Signal
Processing.” In: IEEE Journal of Solid-State Circuits 58.11 (Nov. 2023),
pp- 2990-3002. 1ssn: 1558173X. por: 10.1109/3SSC.2023.3303675.

Yu Hsin Chen et al. “Eyeriss v2: A Flexible Accelerator for Emerging Deep
Neural Networks on Mobile Devices.” In: IEEE Journal on Emerging and
Selected Topics in Circuits and Systems 9.2 (June 2019), pp. 292-308. 1ssN:
21563365. por: 10.1109/JETCAS.2019.2910232.

Yu Hsin Chen et al. “Eyeriss: An Energy-Efficient Reconfigurable Accelerator
for Deep Convolutional Neural Networks.” In: IEEE Journal of Solid-State
Circuits 52.1 (Jan. 2017), pp. 127-138. 1ssn: 00189200. por: 10 . 1109/
JSSC.2016.2616357.

Joon Hwan Choi, Hae Kyung Jung, and Taejeong Kim. “A new action poten-
tial detector using the MTEO and its effects on spike sorting systems at low
signal-to-noise ratios.” In: IEEE Transactions on Biomedical Engineering
53.4 (Apr. 2006), pp. 738—746. 1ssNn: 00189294. por: 10.1109/TBME. 2006.
870239.

Alexandre Défossez et al. “Decoding speech perception from non-invasive
brainrecordings.” In: Nature Machine Intelligence 5.10 (Oct. 2023), pp. 1097—
1107. 1ssN: 25225839. por: 10.1038/s42256-023-00714-5.

Zidong Du et al. “ShiDianNao: Shifting vision processing closer to the sen-
sor.” In: Proceedings - International Symposium on Computer Architecture.
Vol. 13-17-June-2015. Institute of Electrical and Electronics Engineers Inc.,
June 2015, pp. 92-104. 1sBn: 9781450334020. por: 10.1145/2749469 .
2750389.

Morgan Ferguson et al. “A Critical Review of Microelectrode Arrays and
Strategies for Improving Neural Interfaces.” In: Advanced Healthcare Mate-
rials 8.19 (Oct. 2019). 1ssN: 21922659. por: 10.1002/adhm.201900558.

George W. Fraser et al. “Control of a brain-computer interface without spike
sorting.” In: Journal of Neural Engineering 6.5 (2009). 1ssn: 17412560. por:
10.1088/1741-2560/6/5/055004.

Karunesh Ganguly and Jose M. Carmena. “Emergence of a stable cortical
map for neuroprosthetic control.” In: PLoS Biology 7.7 (July 2009). 1ssN:
15449173. por: 10.1371/journal .pbio. 1000153.

Sarah Gibson, Jack W. Judy, and Dejan Markovi¢. “Technology-aware al-
gorithm design for neural spike detection, feature extraction, and dimen-
sionality reduction.” In: IEEE Transactions on Neural Systems and Reha-
bilitation Engineering 18.5 (Oct. 2010), pp. 469-478. 1ssn: 15344320. por:
10.1109/TNSRE.2010.2051683.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

118

Benyamin Haghi et al. “Enhanced control of a brain—computer interface by
tetraplegic participants via neural-network-mediated feature extraction.” In:
Nature Biomedical Engineering (2024). 1ssn: 2157846X. por: 10 . 1038/
s41551-024-01297-1.

Leigh R. Hochberg et al. “Neuronal ensemble control of prosthetic devices
by a human with tetraplegia.” In: Nature 442.7099 (July 2006), pp. 164-171.
1ssN: 00280836. por: 10.1038/nature®4970.

Leigh R. Hochberg et al. “Reach and grasp by people with tetraplegia using a
neurally controlled robotic arm.” In: Nature 485.7398 (May 2012), pp. 372—-
375. 1ssN: 00280836. por: 10.1038/naturel1076.

Zichen Hu, Zhining Zhou, and Hongming Lyu. “A Microwatt/Channel Neural
Signal Processor for High-Channel-Count Spike Detection and Sorting.” In:
Proceedings - IEEE International Symposium on Circuits and Systems. Insti-
tute of Electrical and Electronics Engineers Inc., 2024. 1sBN: 9798350330991.
por: 10.1109/ISCAS58744.2024.10558215.

Leonardo Iannucci et al. “Changes Over Time in the Electrode/Brain Inter-
face Impedance: An Ex-Vivo Study.” In: IEEE Transactions on Biomedical
Circuits and Systems 17.3 (June 2023), pp. 495-506. 1ssn: 19409990. por:
10.1109/TBCAS.2023.3284691.

Vikram Jain et al. “TinyVers: A Tiny Versatile System-on-Chip with State-
Retentive eMRAM for ML Inference at the Extreme Edge.” In: IEEE Journal
of Solid-State Circuits 58.8 (Aug. 2023), pp. 2360-2371. 1ssn: 1558173X.
por: 10.1109/1SSC.2023.3236566.

Byung Hyung Kim, Minho Kim, and Sungho Jo. “Quadcopter flight con-
trol using a low-cost hybrid interface with EEG-based classification and eye
tracking.” In: Computers in Biology and Medicine 51 (Aug. 2014), pp. 82-92.
1ssN: 18790534. por: 10.1016/j . compbiomed.2014.04.020.

Mikhail A Lebedev and Miguel A L Nicolelis. “BRAIN MACHINE IN-
TERFACES: FROM BASIC SCIENCE TO NEUROPROSTHESES AND
NEUROREHABILITATION.” In: Physiol Rev 97 (2017), pp. 767-837. por:
10.1152/physrev.00027.2016.-Brain-machine. URL: WWW.prv.org.

Mikhail A. Lebedev and Miguel A.L. Nicolelis. Brain machine interfaces:
past, present and future. Sept. 2006. por: 10.1016/j.tins.2006.07.004.

Mikhail A. Lebedev et al. “Cortical ensemble adaptation to represent velocity
of an artificial actuator controlled by a brain-machine interface.” In: Journal
of Neuroscience 25.19 (May 2005), pp. 4681-4693. 1ssn: 02706474. por:
10.1523/INEUROSCI.4088-04.2005.

Han Sol Lee et al. “A Multi-Channel Neural Recording System With Neural
Spike Scan and Adaptive Electrode Selection for High-Density Neural Inter-
face.” In: IEEE Transactions on Circuits and Systems I: Regular Papers 70.7

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

119

(July 2023), pp. 2844-2857. 1ssn: 15580806. por: 10.1109/TCSI.2023.
3268686.

Yang-Guo Lietal. Ultra Low Power High Sensitivity Spike Detectors Based on
Modified Nonlinear Energy Operator. IEEE, May 2013.1sBN: 9781467357623.
por: 10.1109/ISCAS.2013.6571801.

Johnson Loh and Tobias Gemmeke. “Dataflow Optimizations in a Sub-
uW Data-Driven TCN Accelerator for Continuous ECG Monitoring.” In:
2022 IEEE Nordic Circuits and Systems Conference, NORCAS 2022 - Pro-
ceedings. Institute of Electrical and Electronics Engineers Inc., 2022. 1sBN:
9798350345506. por: 10.1109/NorCAS57515.2022.9934591.

Kip A. Ludwig et al. “Using a common average reference to improve cortical
neuron recordings from microelectrode arrays.” In: Journal of Neurophysiol-
ogy 101.3 (Mar. 2009), pp. 1679-1689. 1ssn: 00223077. por: 10.1152/jn.
90989.2008.

Lorenzo Martini et al. “Neuronal Spike Shapes (NSS): A straightforward
approach to investigate heterogeneity in neuronal excitability states.” In:
Computers in Biology and Medicine 168 (Jan. 2024). 1ssn: 18790534. por:
10.1016/j.compbiomed.2023.107783.

Nicolas Y. Masse et al. “Non-causal spike filtering improves decoding of
movement intention for intracortical BCIs.” In: Journal of Neuroscience
Methods 236 (Oct. 2014), pp. 58—67. 1ssn: 1872678X. por: 10.1016/j .
jneumeth.2014.08.004.

Melody M. Moore. “Real-world applications for brain-computer interface
technology.” In: IEEE Transactions on Neural Systems and Rehabilitation
Engineering 11.2 (June 2003), pp. 162—-165. 1ssn: 15344320. por: 10.1109/
TNSRE.2003.814433.

Sam Musallam et al. Cognitive Control Signals for Neural Prosthetics. Tech.
rep. 9. 2002, p. 1. URL: www.sciencemag.org/cgi/content/full/305/
5681/254/.

Samuel R. Nason et al. “A low-power band of neuronal spiking activity
dominated by local single units improves the performance of brain—-machine
interfaces.” In: Nature Biomedical Engineering 4.10 (Oct. 2020), pp. 973—
983. 1ssN: 2157846X. por: 10.1038/s41551-020-0591-0.

Mahdi Nekoui and Amir M. Sodagar. “Spike Compression through Selective
Downsampling and Piecewise Curve Fitting Dedicated to Neural Recording
Brain Implants.” In: BioCAS 2022 - IEEE Biomedical Circuits and Systems
Conference: Intelligent Biomedical Systems for a Better Future, Proceedings.
Institute of Electrical and Electronics Engineers Inc., 2022, pp. 50-54. 1sBN:
9781665469173. por: 10.1109/BioCAS54905.2022.9948580.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

120

Angshuman Parashar et al. “SCNN: An accelerator for compressed-sparse
convolutional neural networks.” In: Proceedings - International Symposium
on Computer Architecture. Vol. Part F128643. Institute of Electrical and
Electronics Engineers Inc., June 2017, pp. 27-40. 1sBN: 9781450348928.
por: 10.1145/3079856.3080254.

Sankaranarayani Rajangam et al. “Wireless cortical brain-machine interface
for whole-body navigation in primates.” In: Scientific Reports 6 (2016). 1ssN:
20452322. por: 10.1038/srep22170.

Behzad Razavi. Design of analog CMOS integrated circuits. McGraw Hill
Education, 2017.

Adam G. Rouse and Marc H. Schieber. “Spatiotemporal distribution of lo-
cation and object effects in primary motor cortex neurons during reach-to-
grasp.” In: Journal of Neuroscience 36.41 (Oct. 2016), pp. 10640-10653.
1ssN: 15292401. por: 10.1523/INEUROSCI.1716-16.2016.

Muhammad Tariq Sadiq et al. “Exploiting pretrained CNN models for the
development of an EEG-based robust BCI framework.” In: Computers in
Biology and Medicine 143 (Apr. 2022). 1ssn: 18790534. por: 10.1016/7 .
compbiomed.2022.105242.

Joseph W. Salatino et al. “Glial responses to implanted electrodes in the
brain.” In: Nature Biomedical Engineering 1.11 (Nov. 2017), pp. 862-877.
1ssN: 2157846X. por: 10.1038/s41551-017-0154-1.

Gopal Santhanam et al. “A high-performance brain-computer interface.” In:
Nature 442.7099 (July 2006), pp. 195-198. 1ssn: 14764687. por: 10.1038/
nature04968.

Hicham Semmaoui et al. “Setting adaptive spike detection threshold for
smoothed TEO based on robust statistics theory.” In: IEEE Transactions
on Biomedical Engineering 59.2 (Feb. 2012), pp. 474-482. 1ssn: 00189294.
por: 10.1109/TBME.2011.2174992.

Mohammad Ali Shaeri and Amir M. Sodagar. “Data Transformation in the
Processing of Neuronal Signals: A Powerful Tool to Illuminate Informative
Contents.” In: IEEE Reviews in Biomedical Engineering 16 (2023), pp. 611—
626. 1ssn: 19411189. por: 10.1109/RBME. 2022.3151340.

Mohammad Ali Shaeri et al. “A 2.46-mm?2 Miniaturized Brain-Machine
Interface (MiBMI) Enabling 31-Class Brain-to-Text Decoding.” In: IEEE
Journal of Solid-State Circuits 59.11 (2024), pp. 3566-3579.1ssn: 1558173X.
por: 10.1109/1SSC.2024.3443254.

Jaehyeong Sim, Somin Lee, and Lee Sup Kim. “An Energy-Efficient Deep
Convolutional Neural Network Inference Processor with Enhanced Out-
put Stationary Dataflow in 65-nm CMOS.” In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 28.1 (Jan. 2020), pp. 87-100. 1ssn:
15579999. por: 10.1109/TVLSI.2019.2935251.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

121

Caleb Sponheim et al. “Longevity and reliability of chronic unit recordings
using the Utah, intracortical multi-electrode arrays.” In: Journal of Neural
Engineering 18.6 (Dec. 2021). 1ssN: 17412552. por: 10.1088/1741-2552/
ac3eaf.

Eran Stark and Moshe Abeles. “Predicting movement from multiunit activ-
ity.” In: Journal of Neuroscience 27.31 (Aug. 2007), pp. 8387-8394. 1ssN:
02706474. por: 10.1523/INEUROSCI.1321-07.2007.

Ian H. Stevenson and Konrad P. Kording. “How advances in neural recording
affect data analysis.” In: Nature Neuroscience. Vol. 14. 2. Feb. 2011, pp. 139-
142. por: 10.1038/nn.2731.

Aaron Stillmaker, Zhibin Xiao, and Bevan Baas. Toward More Accurate
Scaling Estimates of CMOS Circuits from 180 nm to 22 nm. Tech. rep. VLSI
Computation Lab, ECE Department, University of California, Davis, Dec.
2011. urL: http://www.ece.ucdavis.edu/cerl/techreports/2011-
4/.

Daniel Valencia and Amirhossein Alimohammad. “A Real-Time Spike Sort-
ing System Using Parallel OSort Clustering.” In: IEEE Transactions on
Biomedical Circuits and Systems 13.6 (Dec. 2019), pp. 1700-1713. 1ssn:
19409990. por: 10.1109/TBCAS.2019.2947618.

Daniel Valencia, Patrick P. Mercier, and Amir Alimohammad. “Efficient
in Vivo Neural Signal Compression Using an Autoencoder-Based Neural
Network.” In: IEEE Transactions on Biomedical Circuits and Systems 18.3
(June 2024), pp. 691-701. 1ssn: 19409990. por: 10.1109/TBCAS . 2024 .
3359994.

Mohan Vishwanath. The Recursive Pyramid Algorithm for the Discrete Wavelet
Transform. Tech. rep. 3. IEEE, Mar. 1994, pp. 1603—-1611. por: 10.1109/
78.277863.

Marta Walenczykowska, Adam Kawalec, and Ksawery Krenc. “An Appli-
cation of Analytic Wavelet Transform and Convolutional Neural Network
for Radar Intrapulse Modulation Recognition.” In: Sensors 23.4 (Feb. 2023).
1ssN: 14248220. por: 10.3390/s23041986.

Chengxuan Wang et al. “EWS: An Energy-Efficient CNN Accelerator with
Enhanced Weight Stationary Dataflow.” In: IEEE Transactions on Circuits
and Systems I1: Express Briefs 71.7 (2024), pp. 3478-3482. 1ssn: 15583791.
por: 10.1109/TCSII.2024.3359511.

Jonathan R Wolpaw and Dennis J Mcfarland. Control of a two-dimensional
movement signal by a noninvasive brain-computer interface in humans. Tech.
rep. 2004. URL: www.pnas.orgcgidoil®.1073pnas.0403504101.

122

[63] Seyed Mohammad Ali Zeinolabedin et al. “A 16-Channel Fully Configurable
Neural SoC With 1.52 uW/Ch Signal Acquisition, 2.79 uW/Ch Real-Time
Spike Classifier, and 1.79 TOPS/W Deep Neural Network Accelerator in 22
nm FDSOL.” In: IEEE Transactions on Biomedical Circuits and Systems 16.1
(Feb. 2022), pp. 94-107. 1ssN: 19409990. por: 10. 1109 /TBCAS . 2022.
3142987.

[64] Carey Y. Zhang et al. “Partially Mixed Selectivity in Human Posterior Pari-
etal Association Cortex.” In: Neuron 95.3 (Aug. 2017), pp. 697-708. 1ssN:
10974199. por: 10.1016/j .neuron.2017.06.040.

[65] Chen Zhang et al. “An Energy-Efficient Configurable 1-D CNN-Based Multi-
Lead ECG Classification Coprocessor for Wearable Cardiac Monitoring De-
vices.” In: IEEE Transactions on Biomedical Circuits and Systems 19.2 (Apr.
2025), pp- 317-331. 1ssn: 19409990. por: 10.1109/TBCAS . 2025.3530790.

[66] TianyiZhangetal. QPyTorch: A Low-Precision Arithmetic Simulation Frame-
work. 2019. arXiv: 1910.04540 [cs.LG].

[67] Zheng Zhang and Timothy G. Constandinou. “Adaptive spike detection and
hardware optimization towards autonomous, high-channel-count BMIs.” In:
Journal of Neuroscience Methods 354 (Apr. 2021). 1ssn: 1872678X. por:
10.1016/j. jneumeth.2021.109103.

[68] Zheng Zhang et al. “Calibration-Free and Hardware-Efficient Neural Spike
Detection for Brain Machine Interfaces.” In: IEEE Transactions on Biomed-
ical Circuits and Systems 17.4 (Aug. 2023), pp. 725-740. 1ssn: 19409990.
por: 10.1109/TBCAS.2023.3278531.

[69] Zhining Zhou, Zichen Hu, and Hongming Lyu. “A 0.53-uW/channel calibration-
free spike detection IC with 98.8-%-accuracy based on stationary wavelet

transforms and Teager energy operators.” In: Journal of Neural Engineering
22.2 (Apr. 2025). 1ssn: 17412552. por: 10.1088/1741-2552/adb5c4.

123

