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ABSTRACT

This work describes theoretical and experimental studies of
GaAs-GaAlAs distributed feedback and distributed Bragg reflector
lasers. These lasers are strong candidates as the Tight source
in integrated optical circuits and optical communication systems.

A coupled-mode formalism is used to study the propagation of
electromagnetic waves in a dielectric waveguide with periodic surface
corrugation. The reflection and transmission characteristics of
both passive and active periodic waveguides are found aé a function
of wavelength.

These results are used to derive the oscillation conditions of
two different laser structures: (1) the distributed feedback laser -
where a corrugated active waveguide section is the basic structure,
(2) the distributed Bragg reflector laser - where an active region is
flanked by two sections of passive periodic waveguides.

The procedure of determining the lasing wavelength is outlined.
The merits and disadvantages of various laser structures are compared
and discussed.

Experimental results on fabrication and measurements of GaAs-
GaAlAs distributed feedback and distributed Bragg reflector lasers
are presented and compared with the theory. Various fabrication and
measurement techniques developed during the course of the investigation

are described in some detail.
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CHAPTER 1
INTRODUCTION

1-1 Integrated Optics and Optical Communications

From the beginning of radio communications it has been the goal
of electrical engineers to explore higher carrier frequency ranges
for better signal quality and larger information capability. The
evolution started with AM radio in the KHz range, proceeded to FM
transmission in MHz range, and on to microwaves in the GHz range.

It was not until about 1960 with the advent of lasers that communica-
tions in the optical frequency regime began to be considered seriously.
Some of the potential advantages of optical communication systems

are: (a) extremely large bandwidth and therefore high data rates,

(b) very wide spectral ranges, (c) small system components, Optical
communication, however, did not receive serious attention since
propagation through the atmosphere involves high transmission losses
and low loss optical waveguides did not exist.

During the last few years the situation has changed radically.
Techniques for fabricating very low loss waveguide—optical fibers
were developed, and transmission losses as low as 2 db/km at near
infrared wavelengths were achieved(1). This technological breakthrough
stimulated once again the interest in optical communications, in
particular the communications through optical fibers.

Besides their large bandwidth potential, the fiber communication
system has the merits of small size and light weight, no ground

Toop problem exists, and the channels are essentially free of any
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interference and pick-up problems. It is expected that fiber channels
will provide both short range and long range high data density
communication. For these applications we will need terminals at

both ends and repeaters along the 1ine to complete the system.

Fig. 1-1 shows a simplified diagram of such a link. At the terminals
signa]s_are either generated and modulated for launching or detected,
amplified and demodulated for processing. In repeaters the signals
are detected, amplified, and used to modulate another source for
relaunching. These terminals and repeaters should be reliable and
have dimensions comparable to those of the fibers. While most of

the conventional optical systems in use today are bulky and extremely
sensitive to alignment, it is essential that a new kind of technology
be developed for this purpose. And this is where "Integrated

(2)

Optics” comes in.

The technology of integrated optics centered around the study
of optical dielectric waveguides and devices made using such wave-
guides. These devices include grating filters, Bragg reflectors,
grating couplers, taper couplers, lenses, prisms, directional
couplers, lasers, modulators, polarizers and detectors, all in planar
form. It is thus conceivable that one could fabricate on a common
substrate all the necessary components which will be interconnected
by waveguides to form a small, rugged integrated optical circuit in
very much the same way as electronic integrated circuits. Most of
the work done so far in the area of integrated optics, however,

involves the demonstration of individual components and the

technology of integration is only in its very beginning. There is
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no apparent obstacle, however, for achieving such an integration
in the near future. There remains the difficult problem of inter-
connecting the fibers and the optical circuits which will be

addressed in Chapter 4.

1-2 GaAs-GaAlAs System for Monolithic Integrated Optical Circuits

Many different materials were used in fabricating optical
components during the past few years. Each particular device
requires the optimization of certain parameters which dictate the
choice of material. In the integration process one could use the
"hybrid" approach, in which several different materials are incor-
porated in one circuit so that each individual component performance
can be optimized. In practice this approach posés a major problem,
which is that of interfacing different components. The coupling
efficiency between components of different material is usually Tow
unless some precautions are taken in designing and manufacturing.
This process can become very complicated even for a simple circuit.
Hence it is important to search for materials suitable for monolithic
optical circuits for simplicity and reliability.

First Tet us examine some of the basic functions to be
performed by an optical circuit. These include (a) 1ight generation,
(b) 1ight detection, (c) modulation and switching, (d) waveguiding,
(e) coupling. The versatility of GaAs in terms of electrical and
optical properties makes it a very strong candidate for the basic

(3,4)

material of integrated optics Let us examine GaAs against the

basic requirements listed above: (a) GaAs is the only material to
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date from which small size cw lasers that operate at room temperature
can be made. (b) A reversely biased p-n junction or an ion implanted
region in GaAs are known to be reasonably good detectors(5’6).

(c) GaAs possesses one of the largest electro-optic and acousto-optic
figures of merit and has been used in making efficient modu]ators(7).

(d) GaAs can be alloyed with AlAs to form Ga _XA]XAS. The index of

1
refraction of this material varies with x, the mole fraction of Al.
The Targer x the smaller the index of refraction. Hence it is
convenient to form dielectric wavequides with layers of GaAs and

(9)

Ga;_ AT As. (e) Directional coup]er;KB), grating couplers

X
(10)

and taper couplers have been fabricated with high quality in GaAs.

Moreover GaAs technology such as liquid phase, vapor phase, and

(11)

molecular beam epitaxial crystal growth, ion implantation, ion
beam etching, chemical etching, diffusion, doping, ohmic contacting
Schottky barriers, etc. are being pursued and developed to a very
high technical quality necessary for making optical circuits.

Another important factor that favors GaAs is that GaAs injection
lasers emit Tight with wavelength in the region of 0.8 - 0.9 um
which coincides with the Tow loss window of the fiber transmission
spectrum(]).

Recently several new techniques in 1iquid phase epitaxy have

been developed. These include the growth of tapered waveguides(]o)

and the selective growth through masks(]2’13).

These two techniques
are essential to the integration of components. It is the author's
opinion that the successive selective epitaxial growth is going to

play a vital role in integrated optics as the selective diffusion
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does in electronic integrated circuits.

1-3 Distributed Feedback and Distributed Bragg Reflector Lasers

The most important component in a transmitting terminal or a
repeater of the fiber communication system is the Tight source. The
conventional miniature 1light source is the GaAs-GaAlAs injection laser.
The reflection feedback in these lasers is usually obtained by
cleaving the crystal along a pair of parallel crystal planes.

Because of the dielectric constant difference between GaAs and the
air finite reflectivity is achieved on both ends. This fabrication
process is discrete and therefore not compatible with the planar

technology. A novel "mirror-less" laser structure was suggested by

KogeTnik and Shank(]4)

which utilizes the spatial periodic modulation
of the properties of the lasing medium to cause coupling between
waves going in opposite directions. Such a feedback mechanism is
not localized but rather distributed along the length of the medium
and is referred to as distributed feedback.

A periodic surface corrugation of a waveguide can be viewed as
a periodic modulation of the waveguide's effective index of refraction.
If a wave propagates in the waveguide with a guide wavelength
kg = 2\ then the backward scattered wave from the corrugations will
add up in phase as depicted in Fig. 1-2. We shall call this phenomenon
backward Bragg scattering (or reflection) and the condition A = xg/2,
the Bragg condition since it is analogous to x-ray scattering by

crystal planes. A section of a waveguide which is corrugated can

thus be used as a mirror (Bragg reflector) with reflectivity which is
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a strong function of the frequency of the incident wave.

If this type of periodic structure is incorporated into a
conventional GaAs injection laser it results in reflection feedback
without a need for cleaved end mirrors. Two approaches to achieve
this feedback are shown in Fig. 1-3. 1In (a) the corrugation (or
grating) extends over thé whole length of the active region. This
structure is called distributed feedback (DFB) laser. In (b) the
corrugations are present on both sides of the active region and
serve as mirrors. Such a structure is referred to as the distributed
Bragg reflector (DBR) 1aser(]5).

The advantages of using DFB and DBR lasers are four-fold:

(a) The fabrication process is compatible with planar technology.

(b) Better laser longitudinal and transverse mode contro1(]4’16)
result from the frequency selective nature of the feedback.
(c) Better frequency stability against temperature variation(]7).
(d) The presence of the gratings makes possible new schemes of

coupling laser output into fibers(]B)

or other optical circuits.
There is still the reliability (operating 1ifetime) problem which
needs to be solved before any practical applications of these lasers
are possible.

In Chapters 2, 3, and 4 we will describe the theoretical and

experimental studies of DFB and DBR lasers and their potential

applications in integrated optical circuits.
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p-GaAs
p-Ga,AlAs

"1_J"L_J—1__{;E]ﬂ;;Esg'T__r_l_J"L_J"-L_I"

n-Ga, Al As

(a)

n-GaAs Substrate

p-GaAs

p-Ga, ,AlAs
LML b_GaAs Egliglp

( b) n-Ga,. Al As

n -GaAs Substrate

Fig. 1-3 Schematic diagram of double-heterostructure
GahAs lasers. (a) Distributed feedback laser

(b) Distributed Bragg reflector laser.
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1-4 Experimental Techniques

Because of the small dimensions of the optical circuits and
because of the strict requirement of edge smoothness of certain
components special fabrication techniques are needed. In order to
produce reliable Tong-life, low loss devices it is important that one
knows the Timitations of each technique. In Chapter 5 we will
describe some of the techniques used during the course of studying
GaAs-GaAlAs DFB and DBR lasers.  These include:

(a) Liquid phase epitaxial crystal growth -- probably the

most important single technique in fabricating GaAs lasers,

waveguides, and other related components.

(b) Grating fabrication -- for use in DFB and DBR lasers,

wire-grid polarizers, couplers, and filters. Grating period

ranges from 0.1 um to 1 um.

(c) Ion beam etching and sputtering -- combined with photo-

lithography is capable of fabricating comp]ex'circuits on a

single substrate.

(d) Optical measurements -- photoluminescence measurements,

laser spectroscopy, and waveguide parameter measurements are

used for sample and device characterization.

(e) Other device fabrication techniques such as diffusion,

ohmic contact formation, chemical etching,etc.
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CHAPTER 2
COUPLED-MODE THEORY IN PERIODIC WAVEGUIDES

2-1 Introduction

The name "periodic waveguide" refers to a waveguide with
parameters which are periodically modulated along the length of the
guide. Before treating periodic waveguides Tet us review some of the
basic properties of an ordinary slab waveguide as shown in Fig. 2-1(a).

The waveguide consists of a thin layer of thickness t and an
index of refraction n, sandwiched between two media of indices of
refraction N and nj. Assuming that there is no variation in the
y-dimension, i.e. 3/3y = 0, one can show that(]) such a structure can
guide a finite number of confined TE modes with field components Ey,
Hx’ HZ and TM modes with components Hy, Ex’ and EZ. There is also a
continuum of radiation modes associated with this structure. These
radiation modes are referred to as unguided modes because they are not
confined to the inner layer. We shall disregard the radiation modes for
the time being and proceed with the discussions on guided modes.

Let us consider TE modes first. The field component Ey(x,z,t)

obeys the wave equation

n 2 82E
2c -4y .
VEy—Ez—atz (2-1)

where i = 1,2,3 indicates the three different regions with indices

Nys Nos and nq respectively. We take Ey(x,z,t) in the form

Ey(x,z,t) ==g§(x)e1(wt_82) (2-1a)
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The transverse function S;y(x) is taken as

C exp(-gx) ‘ 0§ x<w
{:fyu) = ) CLcos(hx) - (q/h)sin(hx)] -t xS0 (2-1b)
CLcos(ht) + (g/h)sin(ht)]exp[P(x+t)] -« S x S -t

Substituting (2-1a) and (2-1b) in (2-1) for regions 1,2,3 yields

h = (n22k2 _ )12
q = (8° - n12k2)”2 (2-1c)
b= (g2 - n32k2)1/2

where k = w/c.
The solutions for 6§(x) and J(Z(x) =(i/wp) 3 E%(x)/ax must be
continuous at both x = 0 and x = -t. By imposing these continuity

conditions we get from (2-1b)

tan(ht) = —giﬂiﬂl- (2-1d)
h® - pq

At a given frequency (i.e. a given k), the eigenvalue equation
(2-1d) can be satisfied only at a finite number of B values. For each
such B we solve using (2-1c) for the corresponding p, q and h and
therefore for the field components in (2-1b). Each field configuration
resulting from a given eigenvalue B corresponds to a guided mode of
the waveguide. The arbitrary constant C appearing in Equation (2-1b)
can be defined such that the field Eéy(x) corresponds to a power flow
of one watt (per unit width in the y-direction) in the mode. A mode
for which Ey = l\ﬁgy(x) will thus correspond to a power flow of
|A|2 Watts/m.
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For TM modes the field components are

Hy(X,Z,t) = ;ﬁ@(x)ei(wt'gz)
j oH
E (x,2,t) = 55-5;1 (2-2)

. oH

=...,-]————l
Ez(x,z,t) WE 9X

where the function j(y(x) is taken as

—C[%—cos(ht) + sin(ht)Jexplp(x+t)] X < -t
1(y(x) ={ C[- %—cos(hx) + sin(hx) ] LEExSD (2-2a)

c(- gﬁexp(—qx) x>0

The continuity of Hy and EZ at x = 0 and x = -t requires that

tan(nt) = 2L+ 4) (2-2b)
h™ - pq
where ) n22 ) n22
p=—5pand qg=—59q (2-2c)
ns n

The normalization constant C is chosen so that the field j{;(x)
represents, as in the case of TE modes, a power flow of one watt (per
unit width in the y-direction) in the mode. The constants C for TM
mode and TE mode are different.

In an ideal waveguide, that is one with homogeneous media and
smooth boundaries, the guided modes once Tlaunched will propagate down
the guide independently of each other. In other words there will be

no energy transfer among the guided modes. The situation is quite
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different once a perturbation is introduced. The perturbation

in general will cause scattering or coupling of the original guided
modes to the other guided modes and (or) the unguided radiation modes.
If the perturbation is introduced along the guide and arranged in such
a way that the scattering or coupling effect adds up coherently, then
such a waveguide section acts as reflector or coupler. This situation
is possible when the perturbation is periodic. The perturbation can
consist of a periodic variation of the index of refraction or the gain

(2)

(or Toss) coefficient of the guiding structure, or of the waveguide
height. In our study we will confine ourselves to the latter case.

In a real device this is achieved by a periodic corrugation of one

of the waveguide interfaces as shown in Fig. 2-1(b).

If we define the dielectric function of the unperturbed wave-

guide [Fig. 2-1(a)] as

€1 x>0
e(r) = €0 0>x> -t
=t >
€4 X

then the dielectric function of the perturbed waveguide

[Fig. 2-1(b)] can be written as

e'(F) = e(r) + Ae(F)

where (for a square wave corrugation)
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x
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Fig. 2-1 Schematic diagrams of (a) perfect slab
waveguide (b) slab waveguide with

square wave corrugation.
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0 x>0
. Am
©  sinYy
Ae(r) = (81-82) %—+Rz_w ——Ezg-exp(i g%&-z) 0>x> -a
2#0
0 ] X < -a

and A is the period of the corrugation perturbation.

To study the properties of wave propagation in the structure
described above we can use the coupled-mode forma]ism(s) which Tleads
to a set of coupled differential equations which describe the rate
of change of the amplitudes of the modes involved. In most of our
analysis we are 1ntere§ted in the interaction of two waves; one is the
forward going wave and the other is the backward going wave of the same

mode number. Let

rm
3
—
=51
~
1
(we]
—
N
~
a1
=
—
x
~
M
3

and

m
3
1
~
n
=
—
N
~
N
<& B
—
>
@
=3

be these two waves, where E%?(x) is the normalized m-th TE mode of the
unperturbed waveguide and A(z) and B(z) are the complex mode ampli-

tudes. The coupled-mode equations

dA _ . , -i2ABz
'a'z—"lKBe
(2-3)
dB _ . ,.i2ABz
e -ikAe
; ; < 4253)
can be derived through a perturbation analysis where
il
Q- =g -1 -4
BB ~8 =B~y (2-4)
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According to equation (2-3) the rate of change of A along z is
proportional to the value of B at z and vice versa. The proportional
constant « is called the "coupling coefficient." In general « depends
on the shape of the periodic surface corrugation and the modes ET(Z)
and E?(z). It can be calculated from the overlap integral

. TR
we -
Osm 5

2l (o) €000 1P

=00

= 3

where m designates the m-th waveguide mode and % denotes the 2-th
order harmonic of the corrugation function that is responsible for
the coupling. Hence k is the quantity that measures the strength of
interaction between the two opposite going waves.

One can solve equation (2-3) with the proper boundary conditions
to obtain Ei(z) and Er(z). It can be shown that when a waveguide
mode with AR = 0, i.e., the mode with wavelength Ag = 2\ (twice the
corrugation period) propagates down the guide and enters the corrugated
section it will be strongly coupled to the backward going mode. So
the incident wave will evanesce as it propagates down the waveguide.
At the same time there is a build-up of the reflected wave. Thus
effectively a corrugated waveguide section acts as a "reflector" or
"mirror" whose reflectivity can be varied by adjusting the corrugation
height and length. This behavior of periodic waveguide makes
possible the realization of DFB and DBR semiconductor lasers.

It should be noted that the gratings not only couple the forward

going guided modes to the backward going guided modes but also couple

the guided modes to the radiation modes. This will be regarded as
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radiation 1055(4) if the periodic waveguide is used as a reflector or

laser. If the periodic waveguide is used as an input-output coup]er(s’s)

the coupling between guided and radiation modes is a useful phenomenon.
In this chapter we shall study the properties of the coupled-

mode equations, derive the coupling constant for waveguides with

periodic surface corrugation and apply the coupled-mode formalism to

study the reflection and transmission characteristics of a section of

periodic waveguide.

2-2 Coupled-mode Formalism

The problem of electromagnetic wave propagation in periodic
structures has been studied extensive]y(7). One of the most common
methods used in deriving useful analytical expressions is the coupled-
mode formalism. We shall outline the procedures in obtaining the
coupled mode equations and the overlap integral, equation (2-4), that
determines the coupling constant « for a periodic waveguide.

Fig. 2-1(a) shows a regular slab waveguide with dielectric

constants €15 €95 and €q in three different regions. We define

€ x>0
e(r) = €5 0 >x> -t (2-5)
&:3 -t > X

as the dielectric function of this unperturbed waveguide. Fig. 2-1(b)
shows a slab waveguide with square wave perturbation at the x = 0

boundary. If we Tet
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x>0
. TR
= ] @ S1n_“’ . 2
Ae(r) =< (81—82){§-+22_w WQZ exp (i KE'QZ)} 0>x> -a (2-6)
270
.0 -a > X

where a is the height of the square wave perturbation, then the dielec-

tric function of the perturbed waveguide is given by
e'(r) = Ae(F) + (r) (Z2-7)

Now the field vector 5(F,t) becomes

-

B(F.t) = ' (F)E(F,t)
= [e(r) + ae(r)IE(r,t)
= g E(F.t) + P(F,t)
= e E(F,t) + 5O(F,t) + AP(F,t)
where - - -
Po(Fst) = [e(F) - e JE(F,t)
and o o
AP(r,t) = Ae(r)E(r,t) (2-8)
Equation (2-8) is then used in the wave equation
2z 25 (=
VZE('}:,t) - ]JEO ) E(Y’ét) + ) P(;,t)
ot ot
to obtain
- 2c - 2,7 =
VPE(F.t) - pelF) QWElggE_.= " Q_é;iggil. (2-9)
ot ot ;

This is the wave equation that describes the propagation of electro-
magnetic waves in a slab waveguide with boundary perturbation

represented by AP(F,t) which is given by equation (2-6) and (2-8).
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The field E(F,t) of the periodic waveguide can be expanded in
terms of the modes of the unperturbed smooth waveguide. Consider,

as an example the case of TE modes. The y-component of E(r,t) can be

written as
Ey(r,t) = —2—2 Am(z)f;y(x)e + complex conjugate (2-10)
m
i(wt-B._2z)
where %(/m)(x)e M7 is the y component of the electric field of

the m-th eigenmode of the unperturbed waveguide. We substitute
equation (2-10) into (2-9), and with the help of (2-6) and (2-8), and
Timiting ourselves to the case of coupling between the positive and

negative going m-th mode we obtain

dA

a—im = 'iKBme_iZABZ
(2-11)
dB .
'a‘z—m = —'iK_Ame12ABZ
where
R '
~we, Sin 5
_ 0 2 m 2 912
= ot [ setarghonrex (2-12)
AR = By - %¥'= B ~ Bo

and & is the order of the corrugation (or grating) harmonics
responsible for the coupling.
The electric fields associated with the coupled incident and

reflected modes are

i(wt-B_2)
EN(F) = By () P00e T



-23-

and .
i(wttp z)
ER(F) = A ()€ D(x)e W

respectively. A simple calculation using equation (2-11) shows that

d e 2
E (|Bml = IAmI ) = 0

This is merely a description of the conservation of power since the

waveguide is assumed to be Tossless and leIZ, |A |2 are proportional

m
to the power (per unit width) carried by the forward and backward

going waves respectively.

2-3 The Coupling Constant

Equation (2-12) defines the coupling constant x which appears

in the coupled-mode equation (2-11). In a square wave corrugation

Ae(r) is
x>0
Ae(x) = n12 - nz2 0>x>-a
0 -a > X
- So the integral reduces to
. Am O
we sin 73—
_ 0 2 2 2 m 2
PP et J (n,2-n )& M(x) 12
~a
Using the eigenmode function of the m-th TE mode(8) we have
' 0
. kzsin §I- hmz(nzz-nlz) q, 5
K = - 7 5 J [COS(th) = E—-sin(hmx)] dx
teff(hm +qm ),_a m

If we carry out the actual integration « becomes



DA

TR

sin 57— sin 2h_a
- 2 a2 2,2 'm 2 2y, 9
KT 1Bt {E'(nz Ny KT A —p— (h G, J * Qm-(1—cos 2h )}
m eff m
(2-13)
where p, q, h, B are given by equations (2-1c), (2-1d), and bopp =

t + 1/pm + 1/qm is the effective waveguide thickness for the m-th
mode of the unperturbed waveguide. If a << t we can find an

approximate expression for k to first order in a as

2
hm a
Bnters

It is seen that k is different for different transverse modes m.

|kl =

L= 15385004 (2-14)

In Fig. 2-2 we plot |k| as a function of waveguide thickness t for
several transverse modes. We see that for each m, k reaches a maximum
for t slightly above its cutoff value and then decreases rapidly as t
increases. In a thick waveguide higher order modes have larger coupling
constants than the Tower order modes as evident from the figure.

Equation (2-14) is valid only in the case of square wave
corrugation where the x and z dependence of Ae(x,z) are separable. In
corrugations Q}th shapes other than squarewave we have to expand Ae(x,z)
in a Fourier series with x dependent coefficients and then use the
series in the following integral

2 2 o
k “h,

é

Ae(x,z)[(‘f,';(x)]zdx

B( +qm2)t

g eff

and pick out the proper term corresponding to the %-th order grating
operation. The details of this procedure have been worked out by
(9)

Streifer et al .

Up to this point we limited our discussion to TE modes. The
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Fig. 2-2 Coupling constant versus waveguide thickness for

different transverse TE modes.
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procedure for finding « in the case of TM modes is similar except the
(10)

.

calculation of the integral is considerably more complicated

In the rest of this section we will introduce a different
approach to derive the coupling constants which will help us understand
better the origin of the coupling. From the coupled-mode equation
(2-11), if set AB = 0 then

LA
IK| i IB J

so physically x is the amplitude reflection coefficient per unit
interaction length., Let us apply this simple idea to the case of wave
propagation through an infinite periodic dielectric medium whose index

of refraction is described by the function n(z) as

] 2n
n(z) =n+ nicos = z (2-15)

We are not going to solve this problem directly but rather consider

the special case shown in Fig. 2-3. The medium consists of alternating
layers of index of refraction n-ny and n+n, with a period A. An
incident wave with propagation constant g = 2mn/A = n/A will undergo
a reflection at each boundary between the n-n, and n+n, layers

given by

(ntny) - (n-ny)
" (n+n]) + (n'n])

n
1
v

where we have assumed that nq <<n.

Within each period we have two reflections, one is in the inter-
face between the ntn, and n-n, medium, the other is between the n-nj
medium and the n+n, medium. Although these two reflection coefficients
have opposite sign, the wave propagation phase delay between these two

reflected waves is exactly m at the Bragg wavelength, hence they add



n-n,{ n+n,| n-n,| n+n,}| n=n,| n+n, | n—n, | n4n,| n—n,

27 =
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Fig. 2-3 An infinite periodic medium consists of
layers of index of refraction n-ny and

n+ny interlaced with a period A.
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up in phase. The coupling constant k is thus given by

N

1

KX T

s A .
Since A= o we can rewrite k as

4n]

Ksquare - % (2-16)

This is the coupling constant of a medium with square wave index
of refractionmodulation under fundamental operation. The index of

refraction of such a medium can be described as

n(z) = n + An(z)

N, (4N;1)A.< 5 & (4NZ])JL

an(z) = N = 0,%1,22,.-

(AN+1)A AN+3) A
iy ez e 7

so n(z) can be expanded in a Fourier series. Let us pick out the

fundamental harmonic term

n(z) =n+ ﬂfl-co gE—z
m SA

4n]/ﬂ can be regarded as the effective sinusoidal modulation amplitude
of the square wave modulation. So to find the coupling constant in

a medium with an index of refraction n(z) given by equation (2-15)

all we have to do is multiply quuare by =/4, or
4n1 o ﬂn] (2-17)
“sinusoidal = A ~ & A -

This is identical to the result given'by Kogelnik and Shank(z).

Next we shall apply this method to a periodic waveguide. Again

we consider a square wave corrugation first. The surface corrugation
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on a waveguide is effectively a modulation of the waveguide height.
Each discontinuity along the guide will cause a partial reflection of
the incident wave. Fig. 2-4 shows a step discontinuity of waveguide
thickness from t to t+a. For our purpose here we choose z = 0 at the
discontinuity point. The waveguide at z < O with thickness t is
referred to as waveguide ], the one at z > 0 with thickness t+a as
waveguide 2. Let E](x)eﬂB]Z be the incident wave and rE](x)e”B]Z

1B,z
be the reflected wave in waveguide 1 and th(x)e 2 be the transmitted
wave in waveguide 2. Neglecting radiation losses, we can write down

the field continuity equations at z = 0 as

(1+r)E](x) = TEZ(x) (2-18)

e By (1-r)E1 (x) = 8,TE, (x) (2-19)

where r and T are the amplitude reflection and transmission coefficients

respectively. Taking the ratio of (2-18) and {2-19) we find

1+r_ B
or 1T-r Ba
By - B
1 ?
r = —m— (2"20)
B1 % B
If we define 82-81 = 68 then
P oamSB o 0B (7 . 8B (2-21)

= n, -
2B 6B v 28, 284

where 88 is due to a small step change "a" in waveguide height t.

The next task is to find a relation between 88 and a. This is done by

taking the implicit derivative of equation (2-1d)with respect to t.

We can rewrite equation (2-1d) for TE modes as
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22002 , 2,2)1/2 2,1/2
ran(n. 22-g2) /2 [(8%n 22 /2 + (820, 2k8) /2 (n, 21262 V/
g K- - 2 1/2 = f(p)
(ny"k"-87) = (B=~ny"k") " “(8%-n,%Kk%)
Hence
9B _ h
and b st +cos’ht f'(g)

ft(B) - B(p+Q) (h2+q
2 2
hpq(h®-pq)

After simplification we have

2
38 h? h
%6 - - (2-22)
gt L+ ) Blegs
and P 9
2% _ ag{; 3, _h h A, i}
2 ot| t 2 T o2 - |

B(t+a) can be expanded into a Taylor's series as

2 .2
Mﬁﬂ=mw+a%+Li%+m
ot
" 88 = B(t+a) - B(t) = a §§-$1- : [:3 L2 L l_{}s
N R N

After substituting this result into equation (2-21) we have

1 he(p3+q3)] , a
T+313-733 ()
P°Q t e Ceff

h2a

2
26 Lo pp

r= -

For a periodic waveguide with square wave corrugation the coupling

constant can be found as

_2|r] _ 28lr] _ h’a . _EXEE_QE) 2.23
le| = & Saaed LA 33 \2-E3)
T Teff eff P q t s
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The first order term (in a) is

|| = .le_.a__._ (2-24)
TBters

This is identical to equation (2-14) with 2 = 1.
The effective sinusoidal modulation coefficient of the square

wave surface corrugation with height a can be found to be

2a 2T
F— COS -—A- VA

Hence a sinusoidal surface corrugation with peak to peak height

“a" will have a coupling constant

8

] 4 [Klsquare

sinusoidal ~
The extension of this method to corrugations of arbitrary profiles

is obvious. A1l we need to do is to calculate the appropriate Fourier
coefficient and compare with that of the square wave torrugation.

Then the coupling constant is given by

square ?
square

| k| k| 2 =1,3,5,... (2-25)

arb.

where Cirb is the amplitude of the 2~th Fourier component of the

4

arbitrary corrugation and quuare

is that of the square wave corrugation.
For 2 even this method fails because there are no even Fourier

components in a square wave. But we can always approximate an arbitrary
tooth shape by a series of step functions and obtain the reflectivity

r of one period A and calculate « from the ratio r/A. As an example let

us calculate the first order (2=1) and second order (2=2) coupling
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constants of a corrugation as shown in Fig. 2-5(a). For first order

coupling
_2m
28 = T
or
BA =T

Refer to Fig. 2-5(b), the reflectivity summed up at z = 0 for one

period (from z = 0 to z= A) is

T 3m

-1 2 ~im -1
r=ry+re + (—rz)e + (-r1)e

= (r]+r2)(]'1)

IS
-'- |K|Q,=] = |%| = ‘/2-

where

r. = B(t) - B(t+a/2) p, = B(tta/2) - B(t+a)
1 g(t) + sB(t+a/2) 2~ B(tta/2) + g(t+a)

and

. 28(t+a/2) [B(t+a) - B(t)] . OB
" "2 T TRT) T B(tra/2) B(t+a/2) + B(t+a) ] 28

where h2

x ]J\- _ /2 hla _ __h%a

. ]
4=1 " =2
287t peh V2 Bt g

It is educational to double check this result by finding the
fundamental Fourier coefficient of this corrugation

& A/ 8 g 30/8 " .
= m a m _ vea
= f a cos K—-zdz + f §-cos K-zdz T

0 A/ 8
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Fig. 2-5 Schematic diagram of a periodic wavequide with

surface corrugations being represented by step

functions.
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Using equation (2-25) we obtain

e ha X/? a | ha
/?-ﬂBte

li] poy = =i § s =
=1  mRt T 23
eff £

We thus tested the validity of this "reflectivity summing" procedure.
For second order coupling between the same forward and backward modes

we double the length of the period, i.e.,
BA = 27

Referring to Fig. 2-5(b) the phase shift associated with each step is

double that of the first order case and the sum reflectivity at z = 0

is . . "
r = r] 3 rze"'l'ﬂ' + (_rz)e-TZTT + (_r])e"13'ﬁ
= 2(r]-r2)
2.2
o r:Z(y‘_r)/\,_._:iu._._
12/~ 882t2
eff
and
L & 3h2a2
9=2
16n8teff

The tooth shape shown in Fig. 2-5(a) can be taken as a very rough
approximation of either a symmetrical triangular or a sinusoidal
corrugation. For these functions the second order coupling constants
have been found(g) to have the functional dependence a2. This is also
seen in the expression for ]K|;:2. Hence the results of this method
are at Teast qualitatively correct. To obtain quantitatively correct
results we have to increase the number of step functions which are
used to approximate the true function.

The method described above can be applied to TM modes as well

because equation (2-20) holds also for TM modes. The only
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modification is that the characteristic equation is now

h
where _ n22 - n22
PP q==-%q
i3 M
One can easily show that
(%) i
ot‘TM Bteff
where
2 2
2, 2 n 2,2 n
V- h™+q 2 h™+p 2
eff ~ vt 22 *

h™+q n12q he+p? n32p

is the effective waveguide thickness for TM modes.

K| = h2a
™ ﬂBtéff (2-26)

.
L)

for a square wave corrugation in first order (2=1) operation. Equation
(2-26) and (2-24) are identical in form except we have to use the

respective values of h2, B, and teff for TE and TM modes.

2-4 Solutions of the Coupled-mode Equations

The coupled-mode equations (2-11) are reproduced here:

Z -
B _ . 12ABz
E = Sk he

Let us look at the special case AR = 0 first. The equations reduce to
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-gig— = ik B
(2-28)
%[23— = ~ik A
whose solutions are
A(z) = C1sinh kz + Cycosh kz
(2-29)

B(z) = -1(C1cosh KZ + Czsinh Kz)
Let us consider an infinitely long waveguide with a corrugated section
between z = 0 and z = L. The boundary conditions are Er(L) = 0 and
Ei(O) = 1. Since
B(z)e'iBZ

m
—
N
~
i}

and .
E (z) = A(z)e'P?

then conditions on A and B are A(L) = 0 and B(0) = 1. Under these

conditions the solution becomes

_ =i sinh k(L-2)
Alz) = cosh kL

B(z) = cosh k(L-z)

cosh kL

Note that |E1.(z)|2 = |B(z)|2 and IEr(z)l2 = IA(z)]Z. If we carry out
the calculation we will find

E;(2)]% - [E(2)]? = (sp)
which is a constant independent of z. This means that the net power
flowing in the waveguide is the same everywhere. The behavior of
|E1-(z)|2 and |Er(z)|2 is plotted in Fig. 2-6 for two values of «L,

kL = 4,0 and 1.0. A large «L represents strong coupling and the decay
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waveguide
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Fig. 2-6 The behavior of }Ei(zH2 and 1Er(z)[‘ in a periodic

waveguide with «L = 1.0 and 4.0 (ag= 0).
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rate of the incident wave is fast. This is evident from the figure.

We can rewrite Ei(z) as

Ei(z) _ cosh k(L-z) e-iBz

cosh kL

-iBz
_ e k(L~2) ~k(L-2)
Scosh vl L€ te ]
kL ; :
= &  r.-Kkz -1z -2xL kz ~iBz
Jcosh WL L& e te"ee 7]
Hence the dominant behavior of |E1.(z)|2 is
L
2 e -2xz
!Ei(z)' " [Zcoshel

We define L g @S the effective length of the corrugation such that

1

KLeff =1 or Leff B o At z = Leff the intensity of the incident

wave drops down to ~ e"2 of its original value.
The reflectivity of a section of periodic waveguide at the
exact Bragg condition (AR = 0) is given by

£ 0) 7

E.(0)

i

2:

IR| = tanh®«L (2-30)

It can be shown that IRIZ(AB=O) is the maximum reflectivity a periodic
waveguide section can provide. Fig. 2-7 is a plot of equation (2-30)
which shows that ]r]2 rises very fast from zero to unity for kL between
0 and 3.

Suppose AR # O we have to solve equation (2—27) with the same

boundary condition A(L) = 0, B(0) = 1 to obtain

E.(z) = B(z)e P2
4 -1802
_ [iagsinhy(L-z) + ycoshy(L-z)]e (2-31)

iABsinhyL + ycoshyL
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Fig. 2-7 Maximum reflectivity from a periodic waveguide |R|2

~40-

IR|2 = tan h2«kL
(AR =0)

plotted as a function of «L.
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and
Er(z) = /\(z)eiBZ
iB z
_ _-iksinhy(L-z)e
iABsinhyL + ycoshyl (2-32)

where -

80:7\‘, AB=B"BO and

Y2 - KZ _ ABZ

Again we can find the reflection coefficient as

oo o0 igsinm (523
E1(0) iABsinhyL + ycoshyL
and the transmission coefficient
E. (L) =18l
T = i = o (2-34)
Ei(O) jAgsinhyL+ycoshyL '

Since AB

i

= & 15 ; ;
B-B, = e Neff ~ 1 AR is directly related to the

frequency w once Negg 18 known . Nafs = cB/w will be assumed as given
since we can always solve the waveguide characteristic equation to
determine B. Both R and T are thus frequency dependent complex

numbers and can be written as

- r(w)e” o) (2-35)

=
|

t(w)e'iw(“) | (2-36)

—
I
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2-5 Reflection and Transmission Characteristics of a Periodic

Waveguide
By straightforward calculation one can show that
1 172
Y‘(w) = 5 (2"37)
1+l
k-sinh~yL
b(w) = F+ tan”' ($~B— tanhyL) + mm (2-38)
and 1 1/2
t(w) = 5 (2-39)
T+ sinhyL
Y
W(w) = 8L + tan”' (%ﬁtanhyL)+ - (2-40)
where m is an integer
. 2 5 1/2
m=0 lag] = [(zp) + (x)7]

=
!

2 1/2 2 1/2
i {[-———(Zgi”“l + <.<)2} < |ag| {[—2—(22’[] I (K)z}

We note first of all that both r and t are even functions of AB,

i.e., r(ag) = r(-aB), t(AB) = t(-AB). Also

r2(w) + t2(w) = 1

for all AB. This again is a statement of the conservation of energy.
The behavior of r(w) can be seen from equation (2-37). When
AR < k, y is real. So r(w) is always larger than zero and approaches

unity when kL is large. As a matter of fact r(w) reaches a maximum
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value of tanhkL at AR = 0 as described earlier. When AB > k, ¥

is imaginary. We can replace y by iI' then r(w) becomes

( 1 1/2

Flw) = 5
1]+_.2____F___

k-sinTL
The denominator of r(w) becomes infinite whenever sinTL = 0. Hence

the zeros of r(w) appear at

1/2

AR =t [k + (E*

The location of local maxima of r(w) is determined by finding the

minima of F(rL) TL 2
Ll s (sinl‘L>

The first few roots of f'(x) = 0 are x = 4.493, 7.725, 10.904, 14.066,

17.221, etc. The corresponding values of AB are calculated from

1/2
As=t@2+()ﬂg

Reflectivity plots are shown in Fig. 2-8, where we plotted rz(w)

—|x

and ¢(w) for «L = 2.0 and «L = 5.0. It is seen that as k increases
the central high reflectivity band also widens. The curve of tz(w)
can be determined by computing 1 - rz(m).

Let us go back to equation (2-31) and (2-32) and factor out the
z-dependence of Ei(z) and Er(z). We will find that they consist of

waves with propagation constant

Vo « f2 2 . N
8 7 b ¥ WiSag® = T wi A - (g1 )2 (2-41)

so that in the case of an incident wave with frequency w such that
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Fig. 2-8 Plots of reflectivity R = re"1q> of two periodic waveguides
with different «L. (a) Intensity reflectivity 2 as a
function of ABL. (b) Phase ¢ as a function of ABL.




.
AR(w) = %neff = %K K

the effective propagation constant is a complex number. The
range of frequencies where g' is complex is called the "stop band"
or "forbidden region." For frequencies in this region the wave
will have evanescent behavior in the periodic waveguide as shown
earlier in Fig. 2-6. The stop band will correspond to the high
reflectivity part of Fig. 2-8. The width of this stop band is
Aw = ZKC/neff and the maximum value of the imaginary part of B' is
k as derivable from equation (2-41) directly.

We find that a section of beriodic waveguide can be used as a
"band rejection” filter or a reflector with frequency sensitive
reflectivity. Also, because of the coupling between two opposite
traveling waves inside such a structure, if enough gain is provided
oscillation can occur. This is the principle of distributed feedback
lasers and will be discussed in more detail in Chapter 3. We can also
use two sections of periodic waveguide to form a very high Q optical
resonator. The laser based on this configuration is called a

distributed Bragg reflector laser and will be treated in Chapter 4.
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2-6 Periodic Waveguide with External Reflector

So far in solving the coupled-mode equations we have been using
the boundary condition A(L) = 0. This is true only if the region beyond
z = L is of infinite extension and, except for the corrugation, similar
to the periodic waveguide. 1In most real situations we have nonzero
reflection at z = L. Regardless of the origin of this reflection we
can represent it by an equivalent reflection coefficient p at the
z = L plane looking to the right. The boundary condition instead of

using the condition Er(L) = 0 we now have

If this condition is used together with Ei(O) = 1 to solve equation

(2-27), one obtains the reflectivity as

R' = T _ _-iksinhylL + pe (YcoshyL-iABsir_\hyL)
E1(0) " (4agsinhyL+vcoshyl) + (isinhyL)pe™ 2Fol
If there are integral number of periods in L, i.e.
. . ™ "
-i2g L ) =12+ oNA _ -T2NT
e = e
The above expression reduces to
R! = -iksinhyL + p(ycoshyL-iABsinhyL) (2-42)

- (iaBsinhyL+ycoshyL) + p(iksinhylL)

It may be instructive to solve the same problem by a different
approach. As shown in Fig. 2-9, we can treat the whole problem as a
periodic waveguide with no external reflector plus a discrete reflector.
The periodic waveguide has a reflection coefficient R and a transmis-

sion coefficient T as given by equations (2-33) and (2-34), and the
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Fig, 2-9 Model used in solving the problem of periodic

waveguide with external reflector.
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discrete reflector has reflectivity p. Assume that the incident wave
has unity amplitude, then there will be a reflected wave of amplitude
R at z = 0 and a transmitted wave of amplitude T at z = L due to the
periodic waveguide. The wave T at z = L is then reflected by the
reflector and becomes a left-going incident wave of amplitude pT

at z = L. This wave in turn will have a reflected wave pRT at z = L
and a transmitted wave pT2 at z = 0. If we continue this process we
will end up with infinite partial waves at z = 0 and z = L. The
reflectivity is then found by summing up the amplitude of the partial
waves going to the left at z = 0. Hence

R' = R + pT® + o?RT? + oRETZ + ...

R + oT2(1+ Rep2R24p5 R+ «++)

(2-43)

Substituting the expressions for R and T we have

2 -i2g L 2 . 2
s e '“Po -+ sinhyL
. iksinhyL + p(iAgsjnhyL+YCOShYL )

(iagsinhyL+ycoshyL) + p(iksinhyL)

Again if L = NA, e 12Bol= 1 ang

Rt =_iksinhyl + o(~iABsinhyL+ycoshyl)
(iABsinhyL+ycoshyL) + p(iksinhyL)

This is identical to equation (2-42) which was obtained by solving the

boundary value problem.
When we put p = 0 in (2-43) i.e. no reflection, R' reduces to R
y . 2 .
as it should. Also when R =0 (i.e. |T| = 1) |R'|2 = |p|°. In Fig.

2-10 we plotted |R'|2 as a function of ABL for kL = 2.0 and
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Fig. 2-1C Reflectivity spectrum of a periodic waveguide (kL = 2.0)
with some external reflector (p = 0.5 ¢™'").
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o =0.5 e—iﬂ. It is evident that R" is no longer a symmetrical
function of frequency. The maximum of |R"|2 is shifted to ABL ) -0.6
with a value of ~ 0.962 (as compared to 0.93 at ABL = d for o = 0).

For ABL > O the sidelobes oscillation amplitude is bounded by |p]2 =
0.25 while for ABL < 0, we have a lower bound for |R'|2 at 0.25.

This behavior is a direct consequence of the sign of p. If we use

o = 0.5 instead, then the side lobe oscillation will have a lower bound

for AR > 0 and an upper bound for AR < 0.
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CHAPTER 3
DISTRIBUTED FEEDBACK LASERS

3-1 Introduction

A conventional laser oscillator, as shown in Fig. 3-1(a),
consists of two major parts: the optical resonator and the laser
medium, The laser medium which is pumped by some external agent pro-
vides the gain. The resonator is usually formed by two (or more)
mirrors, outside the gain medium, which provide the necessary feedback.
This type of feedback is localized at the two mirrors and is completely
separated from the gain medium. |

In 1971 Kogelnik and Shank(1) suggested and demonstrated a
new type of laser structure called the "distributed feedback" 1éser
in which the feedback mechanism is distributed along the length of the
laser and integrated with the gain medium as illustrated in Fig. 3-1(b).
It utilizes the backward Bragg scattering of the optical waves in a
periodic structure as the feedback mechanism. A simplified picture of
this phenomena is illustrated in Fig. 3-2. 1In Fig. 3-2(a) we show an
incident wave which travels at an angle 6 to the normal of the periodic
planes. When the "Bragg condition" 2Acos® = mx (m = 1,2,3...) is
satisfied there will be a constructive reflection of the incident wave.
A is the wavelength and A is the period of the spatial modulation.

Fig. 3-2(b) shows the special case when 6 = 0, i.e., normal incidence.
The Bragg condition now becomes A = mA/2 and constructive backward
scattering or reflection results without the benefit of external
reflectors, If we introduce a periodic modulation of the parameters

of the lasing medium and provide sufficient gain, laser oscillation



(a)

Output €Z2

{

"

Excitation

g ¢ ¢

Laser Medium

Mirror |

Output<za

Fig. 3.1 Schematic diagrams of (a) a conventional laser

S 4 I

Excitation

ol p e

J\-Lcser

medium
Substrate

(b) a distributed feedback Tlaser.

Zp

Mirror 2



)

Bragg Condition :

(b)

Bragg Condition :

Fig. 3-2 A simplified picture showing the Bragg reflection

\
/

P —
——p

Bl

(—.
—

=

for (a) incident with an angle 6 (b)

incidence.

2 ACOSe =m A

normal




-55-

is possible in this kind of structure. But because of the frequency
sensitivity of the Bragg reflection process, laser oscillation is
limited to a very narrow spectral range centered around

w, = mre/An e (m=1,2,3,...).

A coupled-wave analysis of one dimensional distributed feedback
lasers was first given by Kogelnik and Shank(z). They derived the
oscillation condition and determined the mode structure. Their results
were later extended to multi-layer dielectric waveguide configurations

(3-5).

by several researchers Also the effect of external reflectors on

<6’7). And schemes of

the Tongitudinal mode structure was discussed
transverse mode control in this kind of laser were suggested(s).

Because of the possibility of Tongitudinal and transverse mode
control, the lasing frequency stabilization by the period of modulation,
and the compatibility of fabrication process with planar technology,
the distributed feedback laser has attracted a great deal of interest
in the field of integrated optics. Researchers are striving to realize
a practical distributed feedback laser as the 1light source for
integrated optical circuits.

Distributed feedback laser oscillation was first observed in
organic thin films doped with Rhodamine 6G dye where a periodic spatial
gain modulation was created by pumping the film by the interference
pattern produced by two laser beams(]). It is possible to change the
angle of the two incident beams and vary the period of the modulation
to achieve tuning in this kind of 1aser(9']]).

It was pointed out that a periodic corrugation of a waveguide

surface is in effect a periodic modulation of the effective refractive
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index of the waveguide modes. Laser oscillation was demonstrated in
both Tiquid dye(]z) and organic thin films doped with dye(]3) on
corrugated substrates. Similarly one can also corrugate the surface
of a GaAs wavegquide and achieve distributed feedback oscillation. A

(14-16)

series of experiments were carried out at Caltech which clearly

demonstrated the feasibility of GaAs distributed feedback laser for the
first time. A theoretical analysis by Nakamura and Yariv(]S)
indicated that GaAs heterostructure injection lasers with corrugation
feedback can be fabricated with thresholds comparable to those in
ordinary injection lasers. Since then GaAs distributed feedback
injection lasers of various structure have been demonstrated at Tow

(19-21)‘

temperatures It is not until the adoption of separate

confinement double heterostructure that room temperature cw operation

was possib]e(22’23).

There remain, however, additional problems to be
solved before these lasers can be used as practical devices. Among
them is the reliability (operating 1ifetime) problem.

In this chapter we will apply the coupled-mode formalism esta-
blished in the previous chapter to study the characteristics of an
amplifying periodic waveguide. The distributed feedback Taser
oscillation condition is derived by two different approaches. The
general properties of distributed feedback lasers and Fabry Perot lasers
are compared. Also we describe the design of GaAs distributed feed-

back lasers. Finally experimental results on GaAs lasers are given and

compared with theory.
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3-2 Amplification and Oscillation in Periodic Waveguides

The propagation properties of a periodically corrugated
passive optical waveguide were considered in Chapter 2. We found
that in the Bragg regime (A & A/2) the behavior of the waveguide is
characterized by strong evanescence of the incident wave due to
backward coherent scattering (reflection). In this section we shall
consider the propagation of waves in an amplifying periodic wave-
guide.

Assume that the total field inside the guide is given by

E(z) = Ei(Z) 3 Er(Z) = A(z)emz"o‘Z + B(Z)e-182+az

where o is the amplitude gain coefficient of the uniform waveguide.
If we follow a procedure similar to that leading to equation (2-11)

we obtain the coupled-mode equations

dA _ . po-i2(ABtia)z

dB _iKAe12(AB+1u) 2

These equations are of a form identical to that of equation (2-27)

provided we perform the substitution
AR -+ AR + ia

With this substitution we can then use (2-31) and (2-32) to obtain the

-iBztoz

solutions for the incident wave Ei(z) = B(z)e and the reflected

A(Z)e.iBZ"C{,Z

wave Er(z) = within a section of waveguide of length L as
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Ei(z) = B(z)e'iBzmZ
) —iBoz
- £.(0) [(o~iAB)sinhy(L-2z) ~ ycoshy(L-z)Je (3-2)
L (a~iAB)sinhyL - ycoshyl
Er(z) = A(z)eiBz'o‘Z
(L-2) 1802
- iksinhy(L~z)e
E;(0) {o~1AB)sinhyL - ycoshyL (3-3)
where
¥e = 2+ (a-ing)?
Fig. 3-3 shows the behavior of |E1.(z)|2 and IEr(Z)IZ for «L = 1.0,

oL = 1.0 and ABL = 0. We see that the incident wave no longer
decays along the whole length but after a certain distance it starts
to grow exponentially. Also the reflected wave grows more rapidly
and exceeds the incident wave at z = 0 so that the device acts as an
amplifier. This is fundamentally different from that of a passive
waveguide which is also shown for comparison.

We can define, as before, the amplitude reflection and

transmission coefficient as

o Ep(0) iksinhyL (3-2)
Ei(Oj (a-iAB)sinhyL - ycoshylL
E.(L) -ig L
T = 1 = n —X? g (3'5)
Ei(O) (a=iAB)sinhyL - ycoshyL
If the condition
(a~iaB)sinhyL = ycoshyL (3-6)

is satisfied, it follows from equation (3-4) and (3-5) that both R
and T become infinite. The device acts as an oscillator since it

yields finite output fields E_(0) and Ei(L) with no input field
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Fig. 3-3 The behavior of !Ei(z)]2 and ]Er(z)l2 in a periodic
waveguide (a) with gain oL = 1.0 (b) without gain

al = 0.
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(Ei(O) = 0). Hence equation (3-6) is the oscillation condition of a
distributed feedback laser.

For frequencies very near the Bragg fréquency (wo = nc/Aneff),
where condition (3-6) can be nearly satisfied with small gain
coefficient o, the device acts as a high gain amplifier. The
amplified output is available either in reflection with amplitude gain
R or in transmission with amplitude gain T. In Fig. 3-4 and 3-5 we
plot the intensity reflection gain I'Er(O)/Ei(0)|2 and the transmission
gain |E1(L)/Ei(0)|2 as functions of ABL and oL for «L = 0.4. Each plot
contains four infinite gain singularities at which the condition (3-6)
is satisfied. The plots are symmetrical with respect to ABL.

The coordinates of the singularities correspond to the oscillation
frequency and threshold for different longitudinal modes of the laser
as will be discussed in more detail in Section 3-4.

It should be noted that Fig. 3-4 and 3-5 were plotted using
linear analysis which means that saturation effects were not taken
into consideration. In a real device the maximum amplification is
always limited by saturation. It can be treated by a nonlinear

(24)

analysis with numerical computation as was done by Hill and Watanabe



“$°0 = 7> 40} TO pue gy 40 uoL3dun} B Se uLeb uoLlod|4d4 Yyl p-£ °bL4

¢l 2l I

Ol

i

\Ill]
VOOmN

~009+

0006
0002

3 ///Ill\\

\

00000I |
OOOV

//

0002

]

000}

¢Auu4¥




-62-

‘0 = T 404 O pue gy 40 uoL3duny e se uLeb uoLssLwsueal 3yl G-¢ ‘HL4

gv
bl € 2 1 o 6 8 L .9 S b ¢ 2 _ 0
- 0
v e
_
02 02— _
08 T — 002 /
002 )l\\\.l./{.\\moo_// 7 o%\?ﬁ// \ ¢
= 009
oos T~ 00 7000 (0) /)
000I4—" 0081, 00Q ( \MUJ 00002 \ Joi¢ ~"
1\ ( G | v
- Y\ 000! S/ I
0005255534 N ~000089 —]
000! AT T el |
-
_—o00z2— __los— Loz .
0 =" (0)!3




-63-

3-3 Alternative Derijvation of the Oscillation Condition

In an ordinary laser oscillator the oscillation condition is
determined by following a wave generated inside the cavity for one
complete round trip. By setting this round trip gain equal to
unity one can obtain the condition for oscillation. In this section
we shall use this recipe in a distributed feedback laser. As shown
in Fig. 3-6 the periodic waveguide section with gain o extending
fromz = 0 to z = L. Let us pick a random reference plane, say z = &,
and find the reflection coefficients at this plane looking into the
two divided waveguide sections. Denote them by R(2) and R(L-%)
respectively. Using equation (3-4) we can write R(2) and R(L-%)

directly as

R(2) = iksinhy®
(0-1AB)sinhy2 -ycoshy%

and

iksinhy(L-2)

R(L-2) = (a-728B)sinhy(L-2) - ycoshy(L-2)

And the round trip gain in the periodic waveguide is
R(2)R(L-2) = 1

Substituting the expressions for R(%) and R(L-%) we have

jksinhy jksinhy(L-2) =1
(a-iAR)sinhys - Ycoshy%} (a=iAR)sinhy(L-2) - ycoshy(L-2)
After simplification it becomes

(a-iAR)sinhyL - ycoshyL = 0

This is the same as relation (3-6) obtained earlier. Note that the
oscillation condition is independent of the choice of £ as it should

be. As a matter of fact we can take £ to be infinitesimally small,



-64 -

z=(0 z=\ z=L
! :  Waveguide i
N SR S I ——
Bl i
i “—E=RCL- 1) E
L EsR(D— i

Oscillation Condition: R(UV R(L-1)=1

Fig. 3-6 Schematic drawing shows the derivation of the

distributed feedback laser oscillation condition.
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2=e, and write
1im
e R(e)R(L-e) =
; Tim i
Since _.n R(e) > 0 and llg R(L-€) > R(L) we must have R(L) = ». This is
the condition used to derive equation (3-6). As a special case, let us

take 2 =L/2, then the oscillation condition can be expressed as

¢ 7L
L _ .l: '1¢('2") e
e R(3) = r(z)e +] (3-7)

L KZ[COSthL - cosyiL] 1/2
r(z) = G oSl Ll aE s Yl o (i
Y tY; ¥y Y;-ov,)sinhy L-(o B 'Yr’Yi)cosYiL
. - (v ABtay; )siny;L
_ YrL YiL _ YiL er YiL YiL
L i -1 s1nh———-{ABcos—§—-+y s1n——~J+cosh———{Yicos 5 ~asin 5 ]
#(z) = 7 + tan VL Vil Vil VL viL A
—s1nh—~—-[acos >~ +y;sin 2 ]+cosh—-—{yrcos 5 =0Bsin—— 2 ——]
- tan"](cotthLtanyiL) + mm
where

= [P+(o-i08)712 =y + iy

When A8 = 0, v; = 0 and ¢(L/2) reduces to m/2 so equation (3-7) cannot
be sat#sfied. This means no laser oscillation is possible at the exact
Bragg frequency.

If the laser is connected to other circuit components there will
be some external effect that cannot be neglected. But we can always
represent these outsihe effects as an external reflector and calculate
the composite reflectivity as was done in section 2-6. Then the

oscillation condition is derived with the new reflection coefficients.



-66-

Let us assume that the external reflectivity at z = 0 is o and at

z =1L 1s Pp- (Refer to Fig. 3-6.) Then the composite reflectivities

are
O] = -[p1(a~iAB)—1K]Sinhyﬂ ~pyYcoshys
[(a-iAB)—ip]K]sinhyz ~ycoshy®
and
—[pz(a—iAB)-iK]sinhy(L—z)-pzycoshy(L—z)
R*(L-2) =

[{a-1a8)~Tp,k]sinhy(L-2]~ycoshy(L-2)

Then the oscillation condition

RY(2)R*(L~2)

i
—

becomes

(T-pqpp)ycoshyl = [(1+p4p,) (anifg) ~ fk(oy+o,)Isinhyl (3-8)

Again this condition is independent of % and it reduces to equation
(3-6) when both f and Po vanish. Note that if either Py Or o, is
zero the equation can be greatly simplified. The effect of external
reflectors on the dsitributed feedback laser mode structure is very
complicated and we must resort to numerical examples to see what is
going on. A special case of Py = Py Was treated by Chinn(6) and the

more general case Py # Py Was calculated by Streifer et a](7).

3-4 Determination of the Lasing Frequency and the Threshold Gain
The oscillation condition of a uniform distributed feedback

laser with no external reflectors was found to be

(a-iAB)sinhyL = ycoshyL
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where YZ = K2 e (a—iAB)Z. In general vy is a complex number
s + iyi where

g 1/2
% {(<PraP-0p2) + [(<Prol-2g2)2+002np211/2) (3-9)

2
1]

\\,
and

_ 20MB
i Y

r

So the oscillation condition

(a—1AB)sinh(yr+iyi)L = (yr+iyi)cosh(yr+iY1)L
becomes

2. 2

2 2 2..,2 2
(o"+AB Y+ )coshZYrL - (a“+AB .

F(a,AB) -Yiz)c052Y1L

+ 2(A8yi-ayr)sinh2er - 2(YrA8+ayi)sin2YiL

= 0 (3-10)

This is the eigenvalue equation of the distributed feedback
1aser which can be solved numerically or graphically to obtain an
infinite set of eigenvalue pairs (ABn, gn). Each such pair determines
the oscillation frequency Asn and the threshold gain 9 of the n-th
longitudinal mode of the laser. It can be shown easily that F(o,AB) =
F(a,-AB) which means that the location of the longitudinal modes are
symmetric about the Bragg frequency (AB=0). Also simple physical
reasoning requires that o be positive. In Fig. 3-7 we plot the solu-
tions of F(a,AB) = 0 for various values of kL. It is evident from
the figure that the laser always oscillates outside the stop band,

i.e., |ag.| > « for all n. The dependence of ol on kL can be seen
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from the dotted curves in Fig. 3-7 for different longitudinal modes.

We can also derive the dependence of threshold gain a on the laser
length L for a fixed kL. This result is shown in Fig. 3-8.

In general the process of solving for the eigenvalues is tedious.
It is desirable to obtain some approximate analytic solutions instead.
Let us Took into the case when k is small and AB is large. Recall
the expression for v, (3-9)

1/2
{(K2+GZ-A82) + [(K2+02-A82)2 + 4a2A82]]/2}

¥, =

If k is small and AB is large, the laser will need a large gain to

oscillate. Under these conditions Yy becomes

25 2 sl
= AB%) ”
Y oaoall+ & (o } = o1+6) (3-11)
oL 4OL2(OL2+A82)
and consequently »
aAB KZ(aZ-ABZl_
Ty = AB[} s N } = -AB(1-6) (3-12)
Ty L 40" (o+A%)
where
L) 2 yof
§ =SR] oy
802 (o2 +08%)

The oscillation condition (3-6) can be written as

ety ¢ ) (13

Use (3-11) and (3-12) in (3-13), we have

Z(Zi:is e2[a(]+6)]L e-'iZAB(]-(S)L = o (3-14)
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Equating the phases of both sides of (3-14) we have

1 08, KernL(unz—Aan)
2 tan~ T " ZABnL + 5 5 5
n 20, “ (o “*08, ")

= (2n+1)mw

where n = 0,£1,+2,+3,..
If a, >> ABn the oscillation frequencies will be given approxi-

mately by 1
ABnL = (n + —2—)TT

and the frequency

- BnC =< B0+A6n
neff neff

w
n

1, T7c
> c=w_+ (n+ 7) (3-15)
0 2 neffL

Once again we see that no laser oscillation can exist at w = Wy

(ABn = 0). The longitudinal mode spacing in this 1limiting case is

Aw = wpyp -0y = nTrC L
eff

This result is identical to that of a Fabry-Perot laser with a length L.

Once ABn is found we can write

. |
By = By 4B, = T * 48,

n 0 n
or
2m _ T
3 Meff - n T 28,
Hence
AB
s e Ay = A 3-16
nerf =7 (1t T )“2An (3-16)
where
AB
1.1, ™
Rt T



oy
Thus each longitudinal mode is represented by a straight line with

slope 1/2An in the Nape) plane. We can also plot the waveguide

dispersion curve

neff(x) B Aﬁi&l

2T
on the same plane as shown in Fig. 3-9. The intersections of this

curve with the family of lines represented by equation (3-16) give the
lasing wavelengths of the different longitudinal modes.

If the waveguide can support several transverse modes the
sitaution is more complicated. As discussed in Chapter 2, different
transverse modes experience different coupling constants so that for
each transverse mode we have a different dispersion curve and a
different set of lines like equation (3-16) to determine the lasing

wavelengths.

3-5 The Effect of Distributed Feedback on Spontaneous Emission

Spectrum

In this section we study the spectral properties of a distri-
buted feedback Taser operating below threshold. This problem is
treated by using multi-reflection approach to calculate the output
of spontaneous emission from a section of amplifying periodic wave-
guide. As depicted in Fig. 3-10 the waveguide has a length L with
amplitude gain coefficient «o. MWe pick an arbitrary plane Z, and
consider a small volume of the medium. Because gf the spontaneous
emission process this small volume emits electromagnetic wave of

amplitude E isotropically. We are interested in the direction

perpendicular to the periodic planes (parallel to the z-axis).
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Fig. 3-10 A schematic drawing shows the processes of amplified
spontaneous emission in an amplifying periodic

waveguide.
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We could follow the radiation emitted from the differential volume
to the output and then sum the contributions from the rest of the
volume to find the total output at z = L.

The section of the waveguide to the right of the z = z, plane
with length L - z, is characterized by the transmission and reflection
parameters T and R. And the other section with length z, is
characterized by T' and R'. We sum up the partial waves due to the

repeated reflections and obtain

i (1+R)R'TE _ (1+R')TE
Eout = TE* " TRR™ ° " T-RR

Expressions for R,R',T,T' can be obtained by slight modification of

equation (3-4) and (3-5). It can be shown by direct substitution that
5 ” Ycoshyzo-[ a-1(AB-k)]sinhyz, 2
|Eout1 = |E] ycoshyL - (o~iAR)sinh yL

The intensity output at z = L is obtained by integrating
|E0uti2 over z, (we sum the intensities since spontaneous emissions

from different sections are assumed to be incoherent).
L

I{z=L) = J |E0ut|2dzo (3-17)
0
Equation (3-17) is plotted in Fig. 3-11 as a function of
frequency for various values of oL and kL = 0.4. Spectral narrowing
is evident fromthe curves. For «L = 0.4 the lowest order longitudinal
mode of this device will oscillate at ABL = +2.2 when oL = 2.9.
The absolute output powers at ABL = 2.2 and ABL = -2.2 are plotted as

a function of the gain coefficient oL in Fig. 3-12(a). At each of
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these two ABL values the output power increases rapidly as the
threshold (oL = 2.9) is approached. Although these two modes have
equal threshold gains their output powers are not identical. A plot
of the spectral width of the peak (AR = -2.2) below threshold as a
function of 1/Pout is shown in Fig. 3-12(b). It is almost a straight

line, implying
1

out

§(48) = 5

a relation common to all amplified spontaneous emission processes.
Similar results were also obtained by Chinn and Ke]]ey(ZS).

If the waveguide gain coefficient exceeds the threshold of
oscillation the above analysis is not valid. A nonlinear analysis

should be used to include saturation effects.

3-6 Comparison of GaAs Distributed Feedback Lasers and Fabry-Perot

Lasers

As discussed in section 3-4 the lowest order longitudinal mode
of distributed feedback lasers with large xL Tase at AB v #k. And
since By = m/A is of the order of 30 um_1 in GaAs, while typical

1

value of k is m]O'zum' , S0 generally speaking a distributed feedback

laser oscillates at a frequency

W % . = 8OC = me
VO Meger Mepgh
or
-18
A A zneffA (3-18)

where Mgz is the effective index of refraction of the laser mode in
the waveguide. If the 2-th order corrugation is used for the

feedback equation (3-18) is modified to
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Fig. 3-12 Plots of (a) The dependence of output power on gain
(b) The relation between spectral width and the reciprocal
of the output power.



A
v “eff o (3-19)

This is a very simple expression which determines roughly the
lasing wavelength once Nasf and A are known. And it is obvious that
one can design a waveguide structure with known Naff and select a
proper A for a desired wavelength A. This is not true in general
for ordinary injection lasers. The gain spectrum of GaAs usually
spans several hundred angstroms, the cavity is formed by two
parallel cleaved crystal planes which provide almost uniform reflecti-
vity over a large frequency range. Hence there is no strong mechanism
to provide 1ongitud1na1 mode discrimination. Usually several modes
oscillate simultaneously with comparable thresholds and span typically
a spectral region of ~308 or more. This nonmonochromatic radiation
presents a problem in fiber communication systems. In distributed
feedback lasers we have a built-in Tongitudinal mode discrimination so
it is not difficult to obtain single mode operation with Tinewidths
less than one angstrom.

Another advantage of distributed feedback lasers over Fabry-
Perot GaAs lasers is that the temperature stability of Tasing wave-
length is improved. The temperature variation of lasing wavelength
in distributed feedback lasers is due to the change of the effective
index of refraction (neff) with temperature as evident from equation
(3-18). Hence

a - A anEff (3-20)

(n i Bneff ol
eff = A 8

(=%

Q.



~-80-~

an an .
eff -4 (26) eff d)
If we use Y 3 x 10 "/deg and Naff ™ A Y 4.5, ar turns

out to be v 0.58ﬂ/deg. In ordinary GaAs lasers the band gap energy

varies with temperature thus causing both the spontaneous emission
spectrum and the laser wavelength to shift with temperature. This

shift has a rate of ~ ZR/deg which is about 4 times that of distributed
feedback Tasers. There is, however, a penalty which accompanies

this improved wavelength stability. An ordinary laser can operate at
any temperature if threshold is attainable. But in distributed feed-
back Tasers the choice of A "clamps" the lasing wavelength for a certain
temperature and since the temperature coefficients of ADFB and the
center of gain spectrum are different at some temperatures XDFB

falls outside the gain spectrum completely and no oscillation is poss-

ible.

3-7 Design Factors in GaAs Distributed Feedback Lasers

In this section we address ourselves to the problem of designing
a GaAs distributed feedback laser. We treat the problem in a general
way without going into details of specific structures. First of all
we have to specify the desired lasing wavelength X and the operating
temperature T. Next we choose a proper waveguide structure which can
be ejther a homojunction structure, or single heterostructure, or
double heterostructure, etc. From the given structure we can calculate
the number of guided transverse modes and their respective effective
indices of refraction. In order to obtain single mode operation,

however, it is desirable to use a single mode waveguide with definite
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Naff at A. The necessary corrugation period A is calculated through
the equatiqn A= A/Zneff for fundamental Bragg coupling and

A= M/Zneff for the 2-th order coupling. The choice of A has to
be such that at the particular operating temperature the medjum can
provide sufficiently large gain at that wavelength. The typical
photoluminescence spectrum of GaAs is about 150-2003 wide. At 77°K
the peak occurs at 84508 and at 300°K it shifts to 8900R. For
temperatures in between, the Tuminescence peak can be estimated

roughly by the formula
A(T) ~ [8450 + 2x(T-~77)1R

The Tuminescence spectrum will change slightly by varying
carrier concentrations and dopants. It can also be varied by
incorporating into the active region a small amount of Al. As a
matter of fact checking the luminescence spectrum is one of the methods
of obtaining a rough estimate of the amount of Al in a GaAlAs Tlayer,

For example in GaAs typical numbers at 77°K are X = 84508 ,
n~ 3.59, then A = 11778 s required for ¢ = 1 fundamental operation.
This small period is difficult to fabricate and 2 = 3 is used in most
of our experiments, which results in A = 35313. The corrugation
height can be measured by using SEM (scanning electron microscope)
pictures. This quantity is then used to calculate the coupling
coefficient. From a curve similar to those in Fig. 3-8 we can obtain,
given k, an optimal length for our laser. The Taser oscillation
threshold can be estimated from

_ 0
%p = Cen (L) + oy
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where agh(K,L) is that found by solving the eigenvalue equation (3-10)
F(a,AB) = 0 and o1k 1S the bulk material loss coefficient at the
lasing wavelength,

If a third order corrugation is used there exist losses due
to the coupling of the guided laser mode to the unguided radiation
modes through the first and the second order Bragg scattering
processes. These Tosses can be represented by a distributed loss

(27,28)

coefficient Opad which must be added to the other losses in the

medium. The laser threshold condition in this case becomes

_ 0 .
Ay = ogplol) +oap g+ oy (3-21)

Typical value of Cnad for a third order corrugation with tooth height
5008 is ~10cm .

In most of our optical pumping experiments we start out with
slabs of GaAs-GaAlAs waveguides. Through photoluminescence
measurements we determine the peak of the gain spectrum. By making
Fabry-Perot lasers from part of the sample and measuring the Tongi-

tudinal mode spacings we obtain a good estimate of Naffe The corruga-

tion period A is then determined from the condition

N o=t
Nerf

where A corresponds to the central wavelength of the Tuminescence

spectrum.
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3-8 Optically Pumped GaAs Distributed Feedback Lasers

Optical excitation is a very convenient way and a very powerful
tool for studying the spontaneous and stimulated emission processes in
semiconductors. This method of pumping obviates the need for electrical
contacts which greatly simplifies the sample preparation and makes it
possible to explore new materials and structures without first solving
the contact problem. Furthermore, it is nondestructive in the sense that
sample surface will not be damaged unless excessive optical power density
is used. In this section we shall describe some of the experiments on
optically pumped GaAs distributed feedback lasers.

The first attempt to demonstrate distributed feedback lasing action
in GaAs was done by optically pumping_a slab of a GaAs crystal with
periodi; surface corrugation. A schematic drawing of the laser is shown
in Fig. 3-13. The GaAs wafer was n-type (Si doped) with a carrier con-
centration of about 10]8cm'3. The top surface (100 plane) was polished
and chemically etched. The corrugation was produced by ion milling
through a photoresist mask generated by holographic photolithography as
will be described in Chapter 5. The height of the grooves was estimated
from the SEM picture to be around SOOR. The period A was 0.35 um
which corresponds to 2 = 3 in the Bragg condition 28 = & %% where
B 1is the propagation constant of the guided mode.

The experimental set-up is shown in Fig. 3-14. The gain was pro-
vided by optical pumping using a Q-switched ruby laser (x ~ 0.6943 um).

Each individual pumping pulse had a duration of 20 nsec and the peak

power was attenuated to 10 KW, A cylindrical lens was used to pump a
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rectangular strip of 3x0.5 mm. Samples were attached to a copper block
heat sink with vacuum grease and mounted inside a liquid nitrogen dewar.
Special care was taken to make sure that the pumping beam did not fall
across the whole length of the sample. Also the output face of the
crystal was lapped so that it was not parallel to the grooves and to
the other-end face. This was done to minimize the reflection feedback.
The system was carefully aligned with a He-Ne Taser. The pumping beam
passed through the front window of the dewar and struck the sample sur-
face perpendicularly. The output from the GaAs sample passed through
the side window and was collected by a lTens and fed into a monochromator.
The signal was subsequently amplified by a photomultiplier (S-1) and
displayed on a memory scope. The pumping pulse was also monitored on
the scope.

The oscillation threshold of such lasers at 77°K was found to be
2 x105w/cm2. A typical emission spectrum of a sample excited above
threshold is shown in Fig. 3-15. Stimulated emission is indicated by
the narrow resolution limited peak. Also shown in the same figure is
the spectrum of a sample without corrugation under similar pumping con-
ditions. This sample displays only the broad (v180R) spontaneous
emission feature. The stimulated emission peak at A = 0.832 um cor-
responds, using equation (3-19), to an index of refraction n = 3.6 at
77°K for GaAs.

Figure 3-16 shows plots of the emission power as a function of the
pumping intensity for a corrugated and an uncorrugated sample. The

2

"break" in the curve of the corrugated sample near 2.5 x105w/cm coin-

cides well with the first appearance of the narrow spectral peak in
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Fig. 3-15 The emission spectrum of a corrugated and an
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Fig. 3-16 Emission power as a function of pumping intensity

at A = 0.832 pm.
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Fig. 3-15. The characteristics of the uncorrugated sample, however,
remain linear up to the highest pumping power employed. For pumping

power exceeding 106w/cm2

surface damage was found on both corrugated
and uncorrugated samples.

This very first experiment demonstrated that a GaAs crystal with
surface corrugation can be made to lase if enough gain is provided. The
threshold, however, was very high. This is largely due to poor optical
confinement. In a bulk crystal the optical confinement comes from the
"inverted Tayer" which is not a strong effect. The threshold pumping
level is expected, as in the case of injection lasers, to depend strongly
on the optical confinement. Realizing this we repeated the experiment
with epitaxial GaAs dielectric waveguides. Two different types of
dielectric waveguides, illustrated by Fig. 3-17, were used in the ex-
periment. The first structure consisted of an epitaxial GaAs layer
which in different experiments varied between 1 and 3 um in thickness

with a carrier concentration of n ~ 6 x lO]Gcm'3.

]8cm—3.

The substrate was a
GaAs crystal with n~ 2 x 10 Due to the carrier concentration
difference the epitaxial layer has a larger index of refraction than the
substrate and the condition for dielectric waveguiding are thus satis-
fied. The second structure consisted of GaAs and Ga0_7A10_3As double
layers on a GaAs substrate. The larger the Al concentration, the
smaller the index of refraction of the layer. The surface corrugations
were produced as described above. Due to the improved confinement, the

pumping threshold intensity was reduced by 10X and a different pumping

source could be used. This is shown in Fig. 3-18. A repetitively pulsed
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GaAs epitaxial layer (n~10!6 cm™3)

GaAs substrate (n~10'8cm3)

GaAs epitaxial layer

7////////////////// Gagp7Alg3As epitaxial layer

GaAs substrate

Fig. 3-17 Cross sections of GaAs waveguide structure distributed

feedback lasers.
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nitrogen laser pumped a dye laser (Rhodamine B) whose output tuned to
0,63 um was used to pump the GaAs dielectric wavequide. Each indivi-
dual pumping pulse had a duration of 7 nsec and a peak power of up to
2 KW. Cylindrical Tenses and an adjustable s1it were used to pump a
rectangular strip 0.3 mm wide and of a variable length. The output was
collected by a Tens and guided into a spectrometer whose acceptance
wavelength was scanned to record the emission spectrum.

When the first sample was pumped the output power from the corru-
gated region was about two orders of magnitude smaller than that from
the uncorrugated region of the same wafer. It was found that ion mill-
ing introduced defects in the GaAs layer which reduces the carrier re-
combination efficiency drastically. Since the laser emission was re-
stricted by dielectric waveqguiding to the vicinity of the surface the
effect of this damage on threshold was severe. Annealing in a hydrogen
atmosphere at 450°C for 30 min removed most of the defects and made
lasing possible at threshold pumping intensity %104W/cm2- A
typical output spectrum from these waveguide lasers is shown in Fig.
3-19 displaying both the spontaneous and the stimulated emission peaks.
The stimulated emission peak was found to be stable against excitation
level while the spontaneous emission peak moved toward longer wavelength
as the excitation level was increased.

A number of waveguides were prepared with different corrugation
periods., The measured oscillation wavelengths were plotted against the
corrugation period A in Fig. 3-20. The straight line is a theoretical

plot of the equation
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Fig. 3-19 Emission spectrum of an optically pumped waveguide

laser with surface corrugation.
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Fig. 3-20 Oscillation wavelength ys, period of corrugation.
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A ® %'neff &
with Noff = 3.59. It is seen that a tuning range of 4SR was spanned
by varying the corrugation period from 34508 to 34768. This is a
clear indication that <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>