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ABSTRACT 

This work describes theoretical and experimental studies of 

GaAs-GaAlAs distributed feedback and distributed Bragg reflector 

lasers. These lasers are strong candidates as the light source 

in integrated optical circuits and optical communication systems. 

A coupled-mode formalism is used to study the propagation of 

electromagnetic waves in a dielectric waveguide with periodic surface 

corrugation. The reflection and transmission characteristics of 

both passive and active periodic waveguides are found as a function 

of wavelength. 

These results are used to derive the oscillation conditions of 

two different laser structures: (l) the distributed feedback laser -

where a corrugated active waveguide section is the basic structure, 

(2) the distributed Bragg reflector laser - where an active region is 

flanked by two sections of passive periodic waveguides. 

The procedure of determining the lasing wavelength is outlined. 

The merits and disadvantages of various laser structures are compared 

and discussed. 

Experimental results on fabrication and measurements of GaAs­

GaAlAs distributed feedback and distributed Bragg reflector lasers 

are presented and compared with the theory. Various fabrication and 

measurement techniques developed during the course of the investigation 

are described in some detail. 



-v-
TABLE OF CONTENTS 

Page 

CHAPTER 1 ~ INTRODUCTION 1 

1-1 Integrated Optics and Optical Communications l 

1-2 GaAs -GaAlAs System for Monolithic Integrated Optics 4 

1-3 Distributed Feedback and Distributed Bragg 

Reflector Lasers 

1-4 Experimental Techniques 

6 

10 

Chapter l References 11 

CHAPTER 2 - COUPLED~MODE THEORY IN PERIODIC WAVEGUIDES 13 

2-1 Introduction 

2-2 Coupled-Mode Formalism 

2-3 The Coupling Constant 

2-4 Solutions of the Coupled-Mode Equations 

2-5 Reflection and Transmission Characteristics of 

a Periodic Waveguide 

2-6 Periodic Waveguide with External Reflector 

Chapter 2 References 

CHAPTER 3 - DISTRIBUTED FEEDBACK LASERS 

3-1 Introduction 

3-2 Amplification and Oscillation in Periodic 

Waveguides 

3-3 Alternative Derivation of the Oscillation 

Condition 

13 

20 

23 

36 

42 

46 

51 

52 

52 

57 

63 



-vi-
Page 

3-4 Determination of the Lasing Frequency and the 66 

Threshold Gain 

3-5 The Effect of Distributed Feedback on Spontaneous 

Emission Spectrum 72 

3-6 Comparison of GaAs Distributed Feedback Lasers 

and Fabry-Perot Lasers 77 

3-7 Design Factors in GaAs Distributed Feedback Lasers 80 

3-8 Optically Pumped GaAs Distributed Feedback Lasers 83 

3-9 GaAs-GaAlAs Distributed feedback Injection Lasers 98 

Chapter 3 References 107 

CHAPTER 4 DISTRIBUTED BRAGG REFLECTOR LASERS 110 

4-1 Introduction 110 

4-2 Distributed Bragg Reflector Laser with Lossless 

Reflect ors 112 

4-3 Determination of Mode Structure 117 

4-4 The Effect of Lossy Reflectors 118 

4-5 Comparison of Distributed Feedback and 

Distributed Bragg Reflector Lasers 

4-6 Experiments with Optically Pumped GaAs 

Distributed Bragg Reflector Lasers 

Chapter 4 References 

128 

130 

138 



-vii-

CHAPTER 5 - EXPERIMENTAL TECHNIQUES 

5-1 Introduction 

5-2 Liquid Phase Epitaxy in GaAs-GaAlAs System 

5-3 Grating Fabr ication by Holographic Photo-

lithography 

5-4 Ion Beam Milling and Chemical Etching of GaAs 

Gratings 

5-5 Optical Measurements 

Chapter 5 References 

Page 

140 

140 

141 

149 

157 

167 

179 



-1-

CHAPTER l 

INTRODUCTION 

1-1 Integrated Optics and Optical Communications 

From the beginning of radio communications i t has been the goal 

of electrical engineers to explore higher carrier frequency ranges 

for better signal quality and larger information capability. The 

evolution started with AM radio in the KHz range, proceeded to FM 

transmission in MHz range, and on to microwaves in the GHz range. 

It was not until about 1960 with the advent of lasers that communica­

tions in the optical frequency regime began to be considered seriously . 

Some of the potential advantages of optical communication systems 

are : (a) extremely large bandwidth and therefore high data rates , 

(b) very wide spectral ranges , (c) small system components. Optical 

communication , however, did not receive serious attention since 

propagation throµgh the atmosphere involves high transmission losses 

and low loss optical waveguides did not exist. 

During the last few years the situation has changed radically . 

Techniques for fabricating very low loss waveguide- optical fibers 

were developed, and transmission losses as low as 2 db/km at near 

infrared wavelengths were achieved(l). This technological breakthrough 

stimulated once again the interest in optical communications, in 

particular the communications through optical fibers . 

Besides their large bandwidth potential , the fiber communication 

system has the merits of small size and light weight , no ground 

loop problem exists, and the channels are essentially free of any 
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interference and pick-up problems. It is expected that fiber channels 

will provide both short range and long range high data density 

communication. For these applications we will need terminals at 

both ends and repeaters along the line to complete the system. 

Fig. 1-1 shows a simplified diagram of such a link. At the terminals 

signals are either generated and modulated for launching or detected, 

amplified and demodulated for processing. In repeaters the signals 

are detected , amplified, and used to modulate another source for 

relaunching. These terminals and repeaters should be reliable and 

have dimensions comparable to ~hose of the fibers. While most of 

the conventional optical systems in use today are bulky and extremely 

sensitive to alignment, it is essential that a new kind of technology 

be developed for this purpose. /\.nd this is where 11 Integrated 

Optics '1 (
2) comes in. 

The technology of integrated opt i cs centered around the study 

of optical dielectric waveguides and devices made using such wave­

guides. These devices include grating filters, Bragg reflectors, 

grating couplers, taper couplers, lenses, prisms, directional 

couplers , lasers, modulators, polarizers and detectors, all in planar 

form. It is thus conceivable that one could fabricate on a common 

substrate all the necessary components which \!Jill be interconnected 

by waveguides to form a small, rugged integrated optical circuit in 

very much the same way as electronic integrated circuits. Most of 

the work done so far in the area of integrated optics, however , 

involves the demonstration of individual components and the 

technology of integration is only in its very beginning . There is 
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no apparent obstacle, however, for achieving such an integration 

in the near future. There remains the difficult problem of inter­

connecting the fibers and the optical circuits which will be 

addressed in Chapter 4. 

1-2 GaAs-GaAlAs System for Monolithic Integrated Optical Circuits 

Many different materials were used in fabricating optical 

components during the past few years. Each particular device 

requires the optimization of certain parameters which dictate the 

choice of material . In the integration process one could use the 

'
1hybrid 1

: approach, in which several different materials are incor­

porated in one circuit so that each individual component performance 

can be optimized . In practice this approach poses a major problem, 

which is that of interfacing different components. The coupling 

efficiency between components of different material is usually low 

unless some precautions are taken in designing and manufacturing. 

This process can become very complicated even for a simple circuit . 

Hence it is important to search for materials suitable for monolithic 

optical circuits for simplicity and reliability . 

First let us examine some of the basic functions to be 

performed by an optical circuit. These include (a) light generation , 

(b) light detection, (c) modulation and swi t ching , (d) waveguiding , 

(e) coupling. The versatility of GaAs in terms of electrical and 

optical properties makes it a very strong candidate for the basic 

material of integrated optics( 3,4) . Let us examine GaAs against the 

basic requirements listed above : (a) GaAs is the only material to 
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date from which small size cw lasers that operate at room temperature 

can be made. (b) A reverse ly biased p-n junction or an ion implanted 

region in GaAs are known to be reasonably good detectors( 5,5). 

(c) GaAs possesses one of the largest electro-optic and acousto-optic 

figures of merit and has been used in making efficient modulators(?). 

(d) GaAs can be alloyed with AlAs to form Ga1 Al As . The index of .-x X 

refraction of this material varies with x, the mole fraction of Al. 

The larger x the smaller the index of refraction. Hence it is 

convenient to form dielectric waveguides with layers of GaAs and 

Ga 1_i\As. (e) Directional couplers __ (B), grating couplers( 9) 

and taper couplers(lO) have been fabricated with high quality in GaAs. 

Moreover GaAs technology such as liquid phase, vapor phase , and 

molecular beam(ll) epitaxial crystal growth, ion implantation , ion 

beam etching, chemical etching, diffusion , doping , ohmic contacting 

Schottky barriers , etc. are being pursued and developed to a very 

high technical quality necessary for making optical circuits. 

Another important factor that favors GaAs is that GaAs injection 

lasers emit light with wavelength in the region of 0.8 - 0.9 µm 

which coincides with the low loss window of the fiber transmission 

spectrum(l) . 

Recently several new techniques in liquid phase epitaxy have 

been developed. These include the growth of tapered waveguides(lO) 

and the selective growth through masks( 12 •13 ). These two techniques 

are essential to the integration of components . It is the author's 

opinion that the successive selective epitaxial growth is going to 

play a vital role in integrated optics as the selective diffusion 
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does in electronic integrated circuits. 

1-3 Distributed Feedback and Distributed Bragg Reflector Lasers 

The most important component in a transmitting terminal or a 

repeater of the fiber communication system is the light source. The 

conventional miniature light source is the GaAs-GaAlAs injection laser. 

The reflection feedback in these lasers is usually obtained by 

cleaving the crystal along a pair of parallel crystal planes. 

Because of the dielectric constant difference between GaAs and the 

air finite reflectivity is achieved on both ends. This fabrication 

process is discrete and therefore not compatible with the planar 

technology. A novel 11 mirror-less 11 laser structure was suggested by 

Kogelnik and Shank(l 4) which utilizes the spatial periodic modulation 

of the properties of the lasing medium to cause coupling between 

waves going in opposite directions. Such a feedback mechanism is 

not localized but rather distributed along the length of the medium 

and is referred to as distributed feedback . 

A periodic surface corrugation of a waveguide can be viewed as 

a periodic modulation of the waveguideis effective index of refraction . 

If a wave propagates in the waveguide with a guide wavelength 

Ag= 2A then the backward scattered wave from the corrugations will 

add up in phase as depicted in Fig . 1-2. We shall call this phenomenon 

backward Bragg scattering (or reflection) and the condition A= Ag/2, 

the Bragg condition since it is analogous to x-ray scattering by 

crystal planes. A section of a waveguide which is corrugated can 

thus be used as a mirror (Bragg reflector) with reflectivity which is 
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a strong function of the frequency of the incident wave. 

If this type of periodic structure is incorporated into a 

conventional GaAs injection laser it results in reflection feedback 

without a need for cleaved end mirrors. Two approaches to achieve 

this feedback are shown in Fig. 1-3. In (a) the corrugation (or 

grating) extends over the whole length of the active region. This 

structure is called distributed feedback (DFB) laser . In (b) the 

corrugations are present on both sides of the active region and 

serve as mirrors . Such a structure is referred to as the distributed 

Bragg reflector (DBR) laser(l 5). 

The advantages of using DFB and DBR lasers are four-fold: 

(a) The fabrication process is compatible with planar technology. 

(b) Better laser longitudinal and transverse mode control(l 4,l 5) 

result from the frequency selective nature of the feedback . 

(c) Better frequency stability against temperature variation(l?) . 

(d) The presence of the gratings makes possible new schemes of 

coupling laser output into fibers(lB) or other optical circuits. 

There is still the reliability (operating lifetime) problem which 

needs to be solved before any practical applications of these lasers 

are possible. 

In Chapters 2, 3, and 4 we will describe the theoretical and 

experimental studies of DFB and DBR l asers and their potential 

applications in integrated optical circuits . 
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p-GaAs 

n -Ga As Substrate 

-GaAs 

-GaAs 

n-Ga,.xAlxAs 

n -GaAs Substrate 

Fig. 1-3 Schematic diagram of doubl e-heterostructure 

GaAs lasers. (a) Distributed feedback laser 

(b) Distributed Bragg reflector laser. 
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1-4 Experimental Techniques 

Because of the small dimensions of the optical circuits and 

because of the strict requirement of edge smoothness of certain 

components special fabrication techniques are needed. In order to 

produce reliable long- life, low loss devices it is important that one 

knows the limitations of each technique. In Chapter 5 we will 

describe some of the techniques used during the course of studying 

GaAs-GaAlAs DFB and DBR lasers . . These include: 

(a) Liquid phase epitaxial crystal growth -- probably the 

most important single technique - in fabricating GaAs lasers, 

waveguides, and other related components . 

(b) Grating fabrication -- for use in DFB and DBR lasers , 

wire -grid polarizers , couplers, and filters. Grating period 

ranges from 0.1 µm to l µm. 

(c) Ion beam etching and sputtering -- combined with photo­

lithography is capable of fabricat in g complex circuits on a 

single substrate. 

(d) Optical measurements -- photoluminescence measurements, 

laser spectroscopy, and waveguide parameter measurements are 

used for sample and device characterization. 

(e) Other device fabrication techniques such as diffusion , 

ohmic contact fo rmation , chemical etching, etc . 
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CHAPTER 2 

COUPLED-MODE THEORY IN PERIODIC WAVEGUIDES 

2-1 Introduction 

The name 11 periodic waveguide'' refers to a waveguide with 

parameters which are periodically modulated along the length of the 

guide. Before treating periodic waveguides let us review some of the 

basic properties of an ordinary slab waveguide as shown in Fig. 2-l(a). 

The waveguide consists of a thin layer of thickness t and an 
' index of refraction n2 sandwiched between two media of indices of 

refraction n1 and n3. Assuming that there is no ~ariation in the 

y-dimension, i.e. a/ay = 0, one can show that(l) such a structure can 

guide a finite number of confined TE modes with field components Ey , 

Hx, H
2 

and TM modes with components Hy, Ex, and E
2

• There is also a 

continuum of radiation modes associated with this structure. These 

radiation modes are referred to as unguided modes because they are not 

confined to the inner layer. We shall disregard the radiation modes for 

the time being and proceed with the discussions on guided modes. 

Let us consider TE modes first. The field component EY(x,z,t) 

obeys the wave equation 
2 2 

2 n. a E 
9 E = 1 y 

Y c2 at2 
where i = l ,2,3 indicates the three different regions with indices 

n1, n2, and n3 respectively. We take EY(x,z,t) in the form 

( 2- l) 

(2-la) 
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The transverse function ~y(x) is taken as 

C exp(-qx) 0 $ X < 00 

?'Y (x) = C[cos(hx) (q/h)sin(hx)J -t $ X < 0 

C[cos(ht) + (q/h)sin(ht)Jexp[P(x+t)J - oo $ X $ -t 

Substituting (2-la) and (2-lb) in (2-1) for regions 1 ,2,3 yields 

h = (n22k2 - 82)1/2 

q = (B2 _ nl2k2)1/2 

p = (B2 _ n
3
2k2)1/2 

where k = w/c. 

(2-lb) 

(2- lc) 

The solutions for ~y (x) and J(
2

(x) =(i/wµ) 3 ~Y(x)/3x must be 

continuous at both x = 0 and x = -t. By imposing these continuity 

conditions we get from (2 -lb ) 

tan(ht) = ~(p+g) 
h - pq 

(2-ld) 

At a given frequency (i.e. a given k), the eigenvalue equation 

(2-ld) can be satisfied only at a finite number of B values. For each 

such B we solve using (2-lc) for the corresponding p, q and hand 

therefore for the field components in (2-lb). Each field configuration 

resulting from a given eigenvalue B corresponds to a guided mode of 

the waveguide. The arbitrary constant C appearing in Equation (2-lb) 

can be defined such that the field ~y(x) corresponds to a power flow 

of one watt (per unit width in they-direction) in the mode. A mode 

for which Ey = A~y(x) will thus correspond to a power flow of 

!Ai 2 Watts/m. 



-15-

For TM modes the field components are 

Hy(x,z,t) = jfy(x)ei(wt-Sz) 

. aH 
Ex(x,z,t) = -

1 _y_ 
uE az 

. aH 
E

2
(x,z,t) = - -1 _y_ ws ax 

where the function J (x) is taken as y 

-C[~ cos(ht) + sin(ht)Jexp[p(x+t)J 

1(y(x) = C[- ~ cos(hx) + sin(hx) J 

X < -t 

< -t $ X 0 

h 
C(- q)exp(-qx) x > 0 

The continuity of HY and E
2 

at x = 0 and x = -t requires that 

where 

tan(ht) = h(p + g) 
2 --h - pq 

2 2 
- n2 - n2 
p = - p and q = - 2 q 

n 2 
3 nl 

(2-2) 

(2-2a) 

(2-2b) 

(2-2c) 

The normalization constant C is chosen so that the field ~(x) 

represents, as in the case of TE roodes, a power flow of one watt (per 

unit width in they-direction) in the mode. The constants C for TM 

mode and TE mode are different . 

In an ideal waveguide, that is one with homogeneous media and 

smooth boundaries, the guided modes once launched will propagate down 

the guide independently of each other. In other words there will be 

no energy transfer among the guided modes. The situation is quite 
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different once a perturbation is introduced. The perturbation 

in general will cause scattering or coupling of the original guided 

modes to the other guided modes and (or) the unguided radiation modes . 

If the perturbation is introduced along the guide and arranged in such 

a way that the scattering or coupling effect adds up coherently, then 

such a waveguide section acts as reflector or coupler . This situation 

is possible when the perturbation is periodic. The perturbation can 

consist of a periodic variation of the index of refraction or the gain 

(or loss) coefficient( 2) of the guiding structure, or of the waveguide 

height. In our study we will confine. ourselves to the latter case. 

In a real device this is achieved by a periodic corrugation of one 

of the waveguide interfaces as shown in Fig. 2-l(b). 

If we define the dielectric function of the unperturbed wave­

guide [Fig. 2-l(a)J as 

£1 X > 0 

£(r) = £2 0 > X > -t 

£3 -t > X 

then the dielectric function of the perturbed waveguide 

[Fig. 2-l(b)] can be written as 

where (for a square wave corrugation) 



X=O 
(CA.) 

'X=-t 

(b) a-=O 

?( = 0 -----1-. 

1\=-0..---- -. --•• 

-17 -

n. ( e,) 

n2 t E2) 

n 3 <~J) 

J= L 
I 
I 
I 

• 

n,. ( E2) 
7(=-t-----------------

Fig. 2-1 Schematic diagrams of (a) perfect slab 

waveguide (b) slab waveguide with 

square wave corrugation. 
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. £TI srn-
n/ exp(i 2

~£ z) 

X > 0 

0 > X > -a 

X < -a 

and A is the period of the corrugation perturbation . 

To study the properties of wave propagation in the structure 

described above we can use the coupled-mode formalism( 3) which leads 

to a set of coupled differential equations which describe the rate 

of change of the amplitudes of the modes involved. In most of our 

analysis we are interested in the interaction of two waves ; one is the 

forward going wave and the other is the backward going wave of the same 

mode number. Let 

and 

-i s z 
E~(r) = B(z) ~~(x)e m 

m m i Smz 
Er(r) = A(z) ~y(x)e 

be these two waves , where e,~(x) is the normalized m-th TE mode of the 

unperturbed waveguide and A(z) and B(z) are the complex mode ampli­

tudes. The coupled-mode equations 

dA _ . B -i2L'IBz 
dz - 1 K e 

dB _ . A i 2L'l 8z dz- - l K e 

can be derived th rough a perturbation onalysis(Z, 3) where 

(2-3) 

(2-4) 
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According to equation (2-3) the rate of change of A along z is 

proportional to the value of Batz and vice versa. The proportional 

constant K is called the 11 coupling coefficient." In general K depends 

on the shape of the periodic surface corrugation and the modes E~(z) 

and E;(z). It can be calculated from the overlap integral 

-oo 

where m designates them-th waveguide mode and£ denotes the i-th 

order harmonic of the corrugation function that is responsib1e for 

the coupling. Hence K is the quantity that measures the strength of 

interaction between the two opposite going waves. 

One can solve equation (2-3) with the proper boundary conditions 

to obtain Ei(z) and Er(z). It can be shown that when a waveguide 

mode with 68 = 0, i.e., the mode with wavelength Ag= 2A (twice the 

corrugation period) propagates down the guide and enters the corrugated 

section it will be strongly coupled to the backward going mode. So 

the incident wave will evanesce as it propagates down the waveguide. 

At the same time there is a build-up of the reflected wave. Thus 

effectively a corrugated waveguide section acts as a 11 reflector 11 or 

"mirror" whose reflectivity can be varied by adjusting the corrugation 

height and length. This behavior of periodic waveguide makes 

possible the realization of DFB and DBR semiconductor lasers. 

It should be noted that the gratings not only couple the forward 

going guided modes to the backward going guided modes but also couple 

the guided modes to the radiation modes. This will be regarded as 
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radiation loss( 4) if the periodic waveguide is used as a reflector or 

laser. If the periodic waveguide is used as an input-output coupler(S,6) 

the coupling between guided and radiation modes is a useful phenomenon. 

In this chapter we shall study the properties of the coupled­

mode equations, derive the coupling constant for waveguides with 

periodic surface corrugation and apply the coupled-mode formalism to 

study the reflection and transmission characteristics of a section of 

periodic waveguide. 

2-2 Coupled-mode Formalism 

The problem of electromagnetic wave propagation in periodic 

structures has been studied extensively(?). One of the most common 

methods used in deriving useful analytical expressions is the coupled­

mode formalism. We shall outline the procedures in obtaining the 

coupled mode equations and the overlap integral, equation (2-4), that 

determines the coupling constant K for a periodic waveguide. 

Fig. 2-l(a) shows a regular slab waveguide with dielectric 

constants s1, s2, and s3 in three different regions. We define 

X > 0 

E ( r) = 0 > X > -t 

-t > X 

(2-5) 

as the dielectric function of this unperturbed waveguide. Fig. 2-l(b) 

shows a slab waveguide with square wave perturbation at the x = 0 

boundary . If we let 
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0 X > 0 

0 > X > -a (2-6) 

0 -a > X 

where a is the height of the square wave perturbation , then the dielec­

tric function of the pertu~bed waveguide is given by 

Now the field vector D(r,t) becomes 

where 

and 

B(r,t) = €'(r)E(r,t) 

= [€(r) + 6£(r)JE(r,t) 

= €
0
E(r,t) + P(r,t) 

= £
0
E(r,t) + P

0
(r,t) + 6P(r,t) 

r
0
(r,t) = [€(r) - £

0
JE(r,t) 

6P(r,t) = 6€(r)E(r,t) 

Equation (2-8) is then used in the wave equation 

to obtain 

(2-7) 

( 2 .-8) 

(2-9) 

This is the wave equation that describes the propagation of electro­

magnetic waves in a slab waveguide with boundary perturbation 

represented by 6P(r,t) which is given by equation (2-6) and (2-8). 
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The field E(r,t) of the periodic waveguide can be expanded in 

terms of the modes of the unperturbed smooth waveguide. Consider, 

as an example the case of TE modes. They-component of E(r,t) can be 

written as 

l i(wt-Smz) 
EY(r,t) = 2 I Am(z) ~m(x)e + complex conjugate 

m Y 
(2-10) 

(m) i(wt-smz) 
where ~Y (x)e is they component of the electric field of 

them-th eigenmode of the unperturbed waveguide. We substitute 

equation (2-10) into (2-9), and with the help of (2-6) and (2-8), and 

limiting ourselves to the case of coupling between the positive and 

negative going m-th mode we obtain 

where 

-co 

.R:rr 
i'.\S = Sm - A = Sm - So 

and i is the order of the corrugation (or grating) harmonics 

responsible for the coupling. 

(2-11) 

(2-12) 

The electric fields associated with the coupled incident and 

reflected modes are 
i(wt-S z) 

E~(r) = Bm(z)~;(x)e m 
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and i(wt+s z) 
E~(r) = Am(z)~;(x)e m 

respectively. A simple calculation using equation (2-11) shows that 

This is merely a description of the conservation of power since the 

waveguide is assumed to be lossless and 1Bm1 2, 1Am1 2 are proportional 

to the power (per unit width) carried by the forward and backward 

going waves respectively. 

2-3 The Coupling Constant 

Equation (2-12) defines the coupling constant K which appears 

in the coupled-mode equation (2-11). In a square wave corrugation 

6E:(r) is 

0 X > 0 

t::.dx) = n 2 n 2 
l 2 Q > X > -a 

0 -a> X 

So the integral reduces to 

K = 

-a 
Using the eigenmode function of them-th TE mode(B) we have 

2 . £TT 2 2 2 0 
k sin 2 hm (n2 -n1 ) J q 

K = $TT£ 2 2 [cos(hmx) - hm sin(h x)]2dx 
teff(hm +qm )ra m m 

If we carry out the actual integration K becomes 
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K = sin ;i a 2 2 2 sin 2hma 2 2 qm 
nismteff {2 (n2 -n, )k + ---.4"""h_m __ (hm -qm) + 2 (1-cos 2hma)} 

(2-13) 
where p, q, h, 8 are given by equations (2-lc), (2-ld), and teff = 

t + 1/pm + 1/qm is the effective waveguide thickness for them-th 

mode of the unperturbed waveguide. If a<< t we can find an 

approximate expression for K to first order in a as 
2 

!Kl = 
hm a 

t = 1 ,3,5, ... (2-14) 
nt8mteff 

It is seen that K is different for different transverse modes m. 

In Fig. 2-2 we plot IKI as a function of waveguide thickness t for 

several transverse modes. We see that for each m, K reaches a maximum 

fort slightly above its cutoff value and then decreases rapidly as t 

increases. In a thick waveguide higher order modes have larger coupling 

constants than the lower order modes as evident from the figure. 

Equation (2-14) is valid only in the case of square wave 

corrugation where the x and z dependence of 6E(x,z) are separable . In 

corrugations with shapes other than squarewave we have to expand 6E(x,z) 

in a Fourier series with x dependent coefficients and then use the 

and pick out the proper term corresponding to the t -th order grating 

operation. The details of this procedure have been worked out by 

Streifer et al( 9). 

Up to this point we limited our discussion to TE modes. The 
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m=0 

m= I 
m=2 

n1 = I i 0 

Ln..J7..n.I'Ta=I000A 
n2=3.59 T 
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0 0.2 0.4 0.6 0 .8 1.0 1.2 1.4 1.6 1.8 2.0 t (,um) 

Fig. 2-2 Coupling constant versus waveguide thickness for 

different transverse TE modes. 
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procedure for finding Kin the case of TM modes is similar except the 

calculation of the integral is considerably more complicated(lO)_ 

In the rest of this section we will introduce a different 

approach to derive the coupling constants which will help us understand 

better the origin of the coupling. From the coupled-mode equation 

(2-11), if set 6S = 0 then 

so physically K is the amplitude reflection coefficient per unit 

interaction length. Let us apply this simple idea to the case of wave 

propagation through an infinite periodic dielectric medium whose index 

of refraction is described by the function n(z) as 

2TT n(z) = n + n1cos A z (2-15) 

We are not going to solve this problem directly but rather consider 

the special case shown in Fig. 2-3. The medium consists of alternating 

layers of index of refraction n-n1 and n+n 1 with a period A. An 

incident wave with propagation constant S = 2TTn/\ = TT/A will undergo 

a reflection at each boundary between the n-n1 and n+n1 layers 

given by (n+n1) - (n-n1) n1 r - ~-~~-~ 'v -- (n+n1) + (n-n 1) '\., n 

where we have assumed that n1 << n. 

Within each period we have two reflections, one is in the inter­

face between the n+n1 and n-n1 medium, the other is between the n-n1 

medium and the n+n 1 medium. Although these two reflection coefficients 

have opposite sign, the wave propagation phase delay between these two 

reflected waves is exactly TT at the Bragg wavelength, hence they add 



-1.A. 
4 

-27-

0 
I I I I > 

-SA ·3A -A .A. 3A. 5./L 7.A.. 'l.A. II.A. 
4 4 4 4 4 4 4 4 4 

n{z) - n + 

N=O +1 +2 ---------
. j - , - I 

Fig . 2-3 An infinite periodic medium consists of 

layers of index of refraction n-n 1 and 

n+n1 interlaced with a period A. 
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up in phase. The coupling constant K is thus given by 

2r 2n, 
K =-, =-A 

1. n 
\ Since A= 2n we can rewrite K as 

4n 1 
Ksquare = T (2-16) 

This is the coupling constant of a medium with square wave index 

of refraction modulation under fundamental operation. The index of 

refraction of such a medium can be described as 

n(z) = n + Lin(z) 

n, { 4N- l).A < z < 
( 4N+ l}.A. 

4 4 
Lin(z) = N = 0 ,± l ,±2, • • • 

-nl 
( 4N+ 1 }.A. < z < {4N+3}A 

4 4 

so n(z) can be expanded in a Fourier series. Let us pick out the 

fundamental harmonic term 

4nl 2n 
n (z) = n + ----;- cos A z 

4n1/n can be regarded as the effective sinusoidal modulation amplitude 

of the square wave modulation. So to find the coupling constant in 

a medium with an index of refraction n(z) given by equation (2-15) 

all we have to do is multiply Ksquare by n/4, or 

4n 1 n nn 1 
Ksinusoidal = ->-- x 4 = - \-

This is identical to the result given by Kogelnik and Shank( 2). 

(2 -17) 

Next we shall apply this method to a periodic waveguide . Again 

we consider a square wave corrugation first . The surface corrugation 
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on a waveguide is effectively a modulation of the waveguide height. 

Each discontinuity along the guide will cause a partial i~eflection of 

the incident wave. Fig. 2-4 shows a step discontinuity of waveguide 

thickness from t to t+a. For our purpose here we choose z =Oat the 

discontinuity point. The waveguide at z < 0 with thickness tis 

referred to as waveguide l, the one at z > 0 with thickness t+a as 
... ; 81 z i 81 z 

waveguide 2. Let E1(x)e be the incident wav~ and rE 1(x)e 
-18 z 

be the reflected wave in waveguide l and tE2(x)e 2 be the transmitted 

wave in waveguide 2. Neglecting radiation losses, we can write down 

the field continuity equations at z = 0 as 

and 

(l+r)E1(x) = TE2(x) 

81(1-r)E1(x) = 82TE2(x) 

(2-18) 

(2-19) 

where rand Tare the amplitude reflection and transmission coefficients 

respectively. Taking the ratio of (2-18) and (2-19) we find 

or 

(2-20) 

If we define 82-81 = 88 then 

_ -68 -08 ( 08) 
r - 28 +08 ~ ~ l - ~ l · µl 281 

where 68 is due to a small step change 11 a 11 in waveguide height t. 

The next task is to find a relation between 68 and a. This is done by 

taking the implicit derivative of equation (2-ld)with respect tot. 

We can rewrite equation (2-ld) for TE modes as 
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as _ h 
at - ~t +cos2ht f'(S) 

n 

f•(s) = S(p+g)(~2+g2)(h2+p2) 
hpq(h -pq)2 

After simplification we have 

and 

S(t+a) can be expanded into a Taylor''s series as 

:. 6S = S(t+a) 

After substituting this result into equation (2-21) we have 

2 
r _ h a 

- - 2 
2S teff 

= f( B) 

For a periodic waveguide with square wave corrugation the coupling 

constant can be found as 

(2-23) 
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The first order term (in a) is 

This is identical to equation (2~14) with 1 = l. 

The effective sinusoidal modulation coefficient of the square 

wave surface corrugation with height a can be found to be 

2a 21r n cos A z 

Hence a sinusoidal surface corru~ation with peak to peak height 

"a: ' will have a coupling constant 

The extension of this method to corrugations of arbitrary profiles 

is obvious. All we need to do is to calculate the appropriate Fourier 

coefficient and compare with that of the square wave corrugation. 

Then the coupling constant is given by 

1 
Carb 
1 

Csquare 
1 = 1,3,5, ... (2-25) 

where c!rb is the amplitude of the 1-th Fourier co~ponent of the 

arbitrary corrugation and c!quare is that of the square wave corrugation. 

For 1 even this method fails because there are no even Fourier 

components in a square wave. But we can always approximate an arbitrary 

tooth shape by a series of step functions and obtain the reflectivity 

r of one period A and calculate K from the ratio r/A. As an example let 

us calculate the first order (1=1) and second order (1=2) coupling 
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constants of a corrugation as shown in Fig. 2-5(a). For first order 

coupling 

or 

8/1. = 1T 

Refer to Fig. 2-S(b), the reflectivity summed up at z = 0 for one 

period (from z = 0 to z = A) is 

where 

and 

1T 3n -i - -i 2 r = r1 + r2e 2 + (-r2)e-in + (-r1)e 

= 8 t - B t+a 2 
rl B t + B t+a/2 

r = B(t+a 2) - B(t+a 
2 B t+a/2 + B t+a 

2S(t+ a/2) [S(t+a) - S(t)J 
= [S(t) + B(t+a/2)][S(t+a/2) + S(t+a)J !::, 

where _ h2a 
oS = S(t+a) - S(t) 

- 8teff 

2 , I I.A. = /2 h a 
" K ,Q,=l 2s2t A 

eff 

It is educational to double check this result by finding the 

fundamental Fourier coefficient of this corrugation 

[

A/8 3/1./8 j 
A 4 J 2n f a 211 _ 12a c1 = A 

O 

a cos A zdz + 2 cos --;1 zdz - -T1-

A/8 
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Using equation (2-25) we obtain 

A- h2a /2 a TI h2a 
I KI £=1 = 1rSte·f-f x rr x 2a = 

12 1rSteff 

We thus tested the validity of this 11 reflectivity summing" procedure. 

For second order coupling between the same forward and backward modes 

we double the length of the period, i.e., 

SA= 21r 

Referring to Fig. 2-5(b) the phase shift associated with each step is 

double that of the first order case and the sum reflectivity at z = O 

is 

and 

The tooth shape shown in Fig. 2-5(a) can be taken as a very rough 

approximation of either a symmetrical triangular or a sinusoidal 

corrugation. For these functions the second order coupling constants 

have been found(
9

) to have the functional dependence a2. This is also 
A seen in the expression for jKj£=2. Hence the results of this method 

are at least qualitatively correct . To obtain quantitatively correct 

results we have to increase the number of step functions which are 

used to approximate the true function. 

The method described above can be applied to TM modes as well 

because equation (2-20) holds also for TM modes. The only 
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modification is that the characteristic equation is now 

ht= p + § 
tan h (l- ~) 

h 

where n 2 
- 2 p=-2-P, 

n3 

One can easily show that 

where 

( as) _ 
at TM -

n 2 
2 -y-

n3 p 

is the effective waveguide thickness for TM modes. 
2 • I I - h a 

• • K TM - TI8t~ff (2-26) 

for a square wave corrugation in first order (t =l) operation. Equation 

(2-26) and (2-24) are identical in form except we have to use the 
2 respective values of h , S, and teff for TE and TM modes. 

2-4 Solutions of the Coupled-mode Equations 

The coupled-mode equations (2-11) are reproduced here: 

dA . Be-i26Sz 
dz=- lK 

dB_ . A i26Sz dz - -1K e 

(2 - 27) 

Let us look at the special case 6S = 0 first. The equations reduce to 
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dA dz = i K B 

(2-28) 
dB dz = -iK A 

whose solutions are 

A(z) = c1sinh KZ + c2cosh KZ 

B(z) = -i(C
1
cosh KZ + c2sinh KZ) 

Let us consider an infinitely long waveguide with a corrugated section 

between z = 0 and z = L. The boundary conditions are Er(L) = 0 and 

Ei(O) = l. Since 

and 

E.(z) = B(z)e-iSz 
l 

then conditions on A and Bare A(L) = 0 and B(O) = l. Under these 

conditions the solution becomes 

A(z) = -i sinh K(L-z) 
cosh KL 

B(z) = cosh K(L~z) 
cosh KL 

Note that 1Ei(z)l 2 
= IB(z)l 2 and 1Er(z)l 2 

= IA(z)i 2. If we carry out 

the calculation we will find 

which is a constant independent of z. This means that the net power 

flowing in the waveguide is the same everywhere. The behavior of 

IEi(z)l 2 and 1Er(z)l 2 is plotted in Fig. 2-6 for two values of KL, 

KL= 4.0 and 1.0. A large KL represents strong coupling and the decay 
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waveguide 

L/4 L/2 

KL= 1.0 

3L/4 

z= L 
I 

I 

L 
I 
I 

KL= 4.0 I 
I 

I 
I 
I 
I 
I 
I 
I 

z 

llEi (L)l 2 

0 L/4 L/2 3L/4 L z 

1- i q. ? -6 Tile l;ehavior of JEi(z)J
2 

and 1Er(z) !
2 

in ,, periodic 

waveguide with KL= 1.0 and 4.0 (66= 0). 
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rate of the incident wave is fast. This is evident from the figure. 

We can rewrite E.(z) as 
l 

= cash K(L-z) -i Bz 
cash KL e 

- i f3Z 
= e [eK(L-z) + e-K(L-z)J 

2cosh KL 

eKL [e- KZe-isz + e-2KLeKZe-isz] 
2cosh KL = 

Hence the dominant behavior of IE;(z)l 2 is 

I ( ) 1
2 eKL 2 -2KZ 

E. z ~ 2 h L e l COS K 

We define Leff as the effective length of the corrugation :-: uch that 
l KLeff = l or Leff= K At z = Leff the intensity of the incident 

-2 wave drops down to~ e of its original value. 

The reflectivity of a section of periodic waveguide at the 

exact Bragg condition (6S = 0) is given by 

Er(O) 2 2 
IRl

2 
= -~ t h L E. (0) = an K 

l 

(2-30) 

2 It can be shown that IRI (6S=O) is the maximum reflectivity a periodic 

waveguide section can provide. Fig. 2-7 is a plot of equation (2~30) 

which shows that lr1 2 rises very fast from zero to unity for KL between 

0 and 3. 

Suppose 6(3 f Owe have to solve equation (2-27) with the same 

boundary condition A(L) = O, B(O) = l to obtain 

( ) = ( ) -i Sz Ei z - B z e 
-is z 

= [i6Ssinhy(L-z) + ycoshy(L-z)Je 0 

i6SsinhyL + ycoshyL 
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1.0 ------------::..,;;;;a,,,---------
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IRl 2 = tan h2KL 

(6/3 = 0) 
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Fi g. 2- 7 Maximum reflectivity from a periodic waveguide IRl 2 

plotted as a function of KL. 

KL 
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where 

E (z) = A(z)eiSz r 
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= 

is z 
-iKsinhy(L~z)e 0 

i6Ssinhyl + ycoshyl 

S - TT 

o = Ji ' 6S = S - S 

2 2 2 
y = K - 6S 

0 
and 

Again we can find the reflection coefficient as 

Er(O) -iKsinhyL 
R = Ei(O) = i6Ssinhyl + ycoshyl 

and the transmission coefficient 

-iS L 
e o 

= itSsin1yL+ycoshyL 

( 2-32) 

(2-33) 

(2-34) 

Since 6S = S-S = w n n 6S is directly related to the 
0 C eff - A' 

frequency w once neff is known. neff = cS/w will be assumed as given 

since we can always solve the waveguide characteristic equation to 

determines. Both Rand Tare thus frequency dependent complex 

numbers and can be written as 

(2-35) 

(2-36) 



-42-

2-5 Reflection and Transmission Characteristics of a Periodic 

W~veguide 

By straightforward calculation one can show that 

l 1/2 
r(w) == ---2~.--

l + 2 2 
K sinh yL 

cp ( w) == ; + tan- 1 (~f3 tanhyL) + mTT 

and 

{ 

l ~l/2 t(w) - 2 
l + K . 2 

y2 srnh yl 

iµ(w) ::: S
0
L + tan-l (66 tanhyL) + m,r y 

where m is an integer 

2 l /2 
m == 0 I 6f3 I $ [(;L) + (K)2] 

We note first of all that both rand tare even functions of is, 

i.e. , r(6S) == r(-6f3), t(6S) == t(-M3). Also 

(2-37) 

(2-38) 

( 2-39) 

(2-40) 

for all 6f3. This again is a statement of the conservation of energy. 
-

The behavior of r(w) can be seen from equation (2-37). When 

6f3 < K, y is real. So r(w) is always larger than zero and approaches 

unity when KL is large . As a matter of fact r(w) reaches a maximum 
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value of tanhKL at 6S = 0 as described earlier. When 6S > K, y 

is imaginary. \~e can replace y by ir then r(w) becomes 

r(w) =f, 1 2 } 1/2 
+ . r 

K2sin2rL 
The denominator of r(w) becomes infinite whenever sinfl = O. Hence 

the zeros of r(w) appear at 

6S =-;!: [/ + (~)2]1/2 

The location of local maxima of r(w) is determined by finding the 

minima of r L 2 
f(rl) = ( ·rL) 

sin 

The first few roots of f 1 (x) = 0 are x = 4.493, 7.725, 10.904, 14.066, 

17.221, etc. The corresponding 

6S = t G2 + 

values of 6S 

X i71/2 
(r) J 

are calculated from 

Reflectivity plots are shown in Fig. 2-8, where we plotted r2(w) 

and ¢(w) for KL= 2.0 and KL= 5.0. It is seen that as K increases 

the central high reflectivity band also widens. The curve of t 2(w) 
2 can be determined by computing 1 - r (w). 

Let us go back to equation (2-31) and (2-32) and factor out the 

z-dependence of Ei(z) and Er(z). We will find that they consist of 

waves with propagation constant 

(2-41) 

so that in the case of an incident wave with frequency w such that 
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tiB(w) = ~ n - :I. < K c eff A 
' ,· 

the effective propagation constant _is a complex number. The 

range of frequencies where B' is complex is called the "stop band" 

or 11 forbidden region. 11 For frequencies in this region the wave 

will have evanescent behavior in the periodic waveguide as shown 

earlier in Fig. 2-6. The stop band will correspond to the high 

reflectivity part of Fig. 2-8. The width of this stop band is 

6w = 2KC/neff and the maximum value of the imaginary part of B' is 

K as derivable from equation (2-41) directly. 

We find that a section of periodic waveguide can be used as a 

'
1band rejection H filter or a reflector with frequency sensitive 

reflectivity. Also, because of the coupling between two opposite 

traveling waves inside such a structure, if enough gain is provided 

oscillation can occur. This is the principle of distributed feedback 

lasers and will be discussed in more detail in Chapter 3. We can also 

use two sections of periodic waveguide to form a very high Q optical 

resonator . The laser based on this configuration is called a 

distributed Bragg reflector laser and will be treated in Chapter 4. 
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2-6 Periodic Waveguide with External Reflector 

So far in solving the coupled-mode equations we have been using 

the boundary condition A(L) = 0. This is true only if the region beyond 

z =Lis of infinite extension and, except for the corrugation, similar 

to the periodic waveguide. In most real situations we have nonzero 

reflection at z = L. Regardless of the origin of this reflection we 

can represent it by an equivalent reflection coefficient pat the 

z = L plane looking to the right. The boundary condition instead of 

using the condition Er(L) = 0 we now have 

Er(L) 
Ei(L) 

= p 

If this condition is used together with Ei(O) = 1 to solve equation 

(2-27), one obtains the reflectivity as 

-i2f3 L 
-iKsinhyL + pe O (ycoshyL-i6f3sinhyL) 

(i6f3sinhyL+ycoshyL) + (iKsinhyL)pe-i 2f3oL 

If there are integral number of periods in L, i.e. 

-i2· :i!_ ,NA -i2Nn 
A = e = 1 = e 

The above expression reduces to 

-iKsinh cosh L-i6Ssinh L R I = ~----e---,----~.....,_.--_.__......,...---'--,,......,..--,,...,......__.. 
i6Ssinhy +ycos yl + p iKsinhyL (2-42) 

It may be instructive to solve the same problem by a different 

approach. As shown ~n Fig. 2-9, we can treat the whole problem as a 

periodic waveguide with no external reflector plus a discrete reflector. 

The periodic waveguide has a reflection coefficient Rand a transmis­

sion coefficient T as given by equations (2-33) and (2-34), and the 



-47-

Z=Q Z=L 

R,T 

e 

e 

1 T 
R 

er2 t'T 
eRT 

()2RT2 e2RT 
(>2R2T 

e3 R~T2 P3
R

2
T 

• p3R3T 
• . . 

Fig. 2-9 Model used in solving the problem of periodic 

waveguide with external reflector. 
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discrete reflector has reflectivity p. Assume that the incident wave 

has unity amplitude, then there will be a reflected wave of amplitude 

Ratz= 0 and a transmitted wave of amplitude Tat z = L due to the 

periodic waveguide. The wave Tat z =Lis then reflected by the 

reflector and becomes a left-going incident wave of amplitude pT 

at z = L. This wave in turn will have a reflected wave pRT at z = L 

and a transmitted wave pT2 at z = 0. If we continue this process we 

will end up with infinite partial waves at z = 0 and z = L. The 

reflectivity is then found by summing up the amplitude of the partial 

waves going to the left at z = 0. Hence 

R' = R + pT2 + p2RT2 + p3R2T2 + 

= R + pT2(1+ R+p2R2+p3R3+ · ··) 

= R + ~ = R + p(T2-R2) 
l-pR l - pR 

Substituting the expressions for Rand T we have 

2 - i2S L 2 . h2 L .. h L + (Ye o +K sin y) 
R' = -lKSln Y P i6SsinhyL+ycoshyL 

(i6Ssinhyl+ycoshyl) + p(i KsinhyL) 

Again if L = NA, e-i 2Sol= l and 

R' = -i Ksinh L + -i6Ssinh L+ cash L 
i6SsinhyL+ycoshyL + p i KsinhyL 

(2-43) 

This is identical to equation (2 -42) which was obtained by solving the 

boundary value problem. 

When we put p = 0 in (2 -43} i.e. no reflection, R' reduces to R 

as it should. Also when R = 0 (i.e. !Tl= l) IR'! 2 = !r:i \2. In Fig. 

2-10 we plotted !R' !2 as a function of 6BL for KL= 2.0 and 
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-in p = 0.5 e It is evident that R~ is no longer a symmetrical 

function of frequency . The maximum of IR'·J2 is shifted to 6SL ~ -0.6 

with a value of ~ 0.962 (as compared to 0.93 at 6SL = 0 for p = 0). 

For 6SL > 0 the sidelobes oscillation amplitude is bounded by IPl2 
= 

0.25 while for 6SL < 0, we have a lower bound for IR' 1
2 at 0.25. 

This behavior is a direct consequence of the sign of p. If we use 

p = 0.5 instead, then the side lobe oscillation will have a lower bound 

for 6S > 0 and an upper bound for 6S < 0. 
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CHAPTER 3 

DISTRIBUTED FEEDBACK LASERS 

A conventional laser oscillator, as shown in Fig. 3-l(a), 

consists of two major parts: the optical resonator and the laser 

medium. The laser medium which is pumped by some external agent pro­

vides the gain. The resonator is usually formed by two (or more) 

mirrors, outside the gain medium, which provide the necessary feedback. 

This type of feedback is localized at the two mirrors and is completely 

separated from the gain medium. 

In 1971 Kogelnik and Shank(l) suggested and demonstrated a 

new type of laser structure called the "distributed feedback" laser 

in which the feedback mechanism is distributed along the length of the 

laser and integrated with the gain medi um as illustrated in Fig. 3-l(b). 

It utilizes the backward Bragg scattering of the optical waves in a 

periodic structure as the feedback mechanism . A simplified picture of 

this phenomena is illustrated in Fig. 3-2. In Fig. 3-2(a) we show an 

incident wave which travels at an angle e to the normal of the periodic 

planes. When the 11 Bragg condition 11 211.cose = m\ (m = 1,2,3 ... ) is 

satisfied there will be a constructive reflection of the incident wave . 

\ is the wavelength and A is the period of the spatial modulation. 

Fig. 3-2(b) shows the special case when e = 0, i.e., normal incidence. 

The Bragg condition now becomes A= m\/2 and constructive backward 

scattering or reflection results without the benefit of external 

reflectors. If we introduce a periodic modulation of the parameters 

of the lasing medium and provide sufficient gain , laser oscillation 
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Fig . 3 -l Schematic diagrams of (a) a conventional laser 

(b) a distributed feedback laser . 
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Bragg Condition 2 Acose = m A 

A. 

Bragg Condition : 2 A= m >-.. 

Fig. 3-2 A simplified picture showing the Bragg reflection 

for (a) incident with an angle e (b) normal 

incidence. 
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is possible in this kind of st ructure. But because of the frequency 

sensitivity of the Bragg reflection process, laser oscillation is 

limited to a very narrow spectral range centered around 

w
0 

= mnc/Aneff (m = 1 ,2,3, .. . ). 

A coupled-wave analysis of one dimensional distributed feedback 

lasers was first given by Kogelnik and Shank( 2). They derived the 

oscillation condition and determined the mode structure. Their results 

were later extended to multi-layer dielectric waveguide configurations 

by several researchers( 3-5)_ Also the effect of external reflectors on 

the longitudinal mode structure was discussed( 6,7). And schemes of 

transverse mode control in this kind of laser were suggested(S). 

Because of the possibility of longitudinal and transverse mode 

control, the lasing frequency stabilization by the period of modulation, 

and the compatibility of fabrication process with planar technology , 

the distributed feedback laser has attracted a great deal of interest 

in the field of integrated optics. Researchers are striving to realize 

a practical distributed feedback laser as the light source for 

integrated optical circuits . 

Distributed feedback laser oscillation was first observed i n 

organic thin films doped with Rhodamine 6G dye where a periodic spatial 

gain modulation was created by pumping the film by the interference 

pattern produced by two laser be ams{l) . It is possible to chan9e the 

angle of the two incident beams and vary the period of the modulation 
(9-11) to achieve tuning in this ki nd of laser . 

It was pointed out that a periodic corrugation of a waveguide 

surface is in effect a periodic modulation of the effective refractive 
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index of the waveguide modes. Laser oscillation was demonstrated in 

both liquid dye(l 2) and organic thin films doped with dye(l 3) on 

corrugated substrates. Similarly one can also corrugate the surface 

of a GaAs waveguide and achieve distributed feedback oscillation. A 

series of experiments(l 4-l 5) were carried out at Caltech which clearly 

demonstrated the feasibility of GaAs distributed feedback laser for the 

first time. A theoretical analysis by Nakamura and Yariv(lB) 

indicated that GaAs heterostructure injection lasers with corrugation 

feedback can be fabricated with thresholds comparable to those in 

ordinary injection lasers . Since then ·GaAs distributed feedback 

injection lasers of various structure have been demonstrated at low 

temperatures(l 9-2l). It is not until the adoption of separate 

confinement double heterostructure that room temperature cw operation 

was possible( 22 ,23 ). There remain, however, additional problems to be 

solved before these lasers can be used as practical devices. Among 

them is the reliability (operating lifetime) problem. 

In this chapter we will apply the coupled-mode fonnalism esta­

blished in the previous chapter to study the characteristics of an 

amplifying periodic waveguide. The distributed feedback laser 

oscillation condition is derived by two different approaches. The 

general properties of distributed feedback lasers and Fabry Perot lasers 

are compared . Also we describe the design of GaAs distributed feed -

back lasers. Finally exper imental results on GaAs lasers are given and 

compared with theory . 
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3-2 Amplification and Oscillation in Periodic Waveguides 

The propagation properties of a periodically corrugated 

passive optical waveguide were considered in Chapter 2. We found 

that in the Bragg regime (A% A/2) the behavior of the waveguide is 

characterized by strong evanescence of the incident wave due to 

backward coherent scattering (reflection). In this section we shall 

consider the propagation of waves in an amplifying periodic wave­

guide. 

Assume that the total field inside the guide is given by 

E(z) = E.(z) + E (z) = A(z)eiSz-az + B(z)e-isz+az 
l r 

where a is the amplitude gain coefficient of the uniform waveguide. 

If we follow a procedure similar to that leading to equation (2-11) 

we obtain the coupled-mode equations 

dA _ iKBe-i2(6S+ia)z 
dz-

dB _ -iKAei2(6S+ia) z 
dz-

(3-1) 

These equations are of a form identical to that of equation (2-27) 

provided we perform the substitution 

68 ➔ 66 + ia 

With this substitution we can then use (2-31) and (2-32) to obtain the 

solutions for the incident wave E.(z) = B(z)e-isz+az and the reflected 
l 

wave E (z) = A(z)ei Gz-az within a section of waveguide of length Las r 
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-is z 
= Ei(O) [(a-i6S)sinhy(L-z) - ycoshy{L-z)Je 0 

(a-i6S)sinhyl - ycoshyl 

is z 
= E (O) iKsinhy(L-z)e 0 

i (a-i6S)sinhyl - ycoshyl 

2 2 ( • )2 y = K + a-16S 

(3-2) 

(3-3) 

Fig. 3-3 shows the behavior of IE.(z)l 2 and IE (z)i 2 for KL= 1.0, 
1 . r 

al= 1.0 and 6SL = 0. We see that the incident wave no longer 

decays along the whole length but after a certain distance it starts 

to grow exponentially. Also the reflected wave grows more rapidly 

and exceeds the incident wave at z = 0 so that the device acts as an 

amplifier. This is fundamentally different from that of a passive 

waveguide which is also shown for comparison. 

We can define, as before, the amplitude reflection and 

transmission coefficient as 

R=-Er_(~O-) =~-----i_K_s_in_h~y_L_~_ 
Ei(O) (a-i6S)sinhyl - ycoshyl 

E
1
.(L) -iS L -ye o 

T = Ei(O) = (a-i6S)sinhyl - ycoshyl 

If the condition 
(a-i6S)sinhyl = ycoshyl 

(3-4) 

(3-5) 

is satisfied, it follows from equation (3~4) and (3-5) that both R 

and T become infinite. The device acts as an oscillator since it 

yields finite output fields E (0) and E.(L) with no input field r 1 
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KL= 1.0 

al= 1.0 

L/2 3L/4 

KL= 1.0 
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Fig . 3-3 The behavior of !E.(z)i 2 and IE (z)l 2 in a periodic 
1 r 

waveguide (a) with gain al= 1 .0 (b) without gain 

<1L = 0 . 
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(Ei(O) = 0) . Hence equation (3 ~6) is the oscillation condition of a 

distributed feedback laser . 

For frequencies very near the Bragg frequency (w
0 

= nc/Aneff)' 

where condition (3~6) can be nearly satisfied with small gain 

coefficient a the device acts as a high gain amplifier. The 

amplified output is available either in reflection with amplitude gain 

R or in transmission with amplitude gain T. In Fig. 3-4 and 3-5 we 

plot the intensity reflection gain 1~r(O)/Ei(O)l 2 and the transmission 

gain IEi(L)/Ei(O)l 2 as functions of 6SL and al for KL= 0.4. Each plot 

contains four infinite gain singularities at which the condition (3-6) 

is satisfied. The plots are symmetrical with respect to 6SL. 

The coordinates of the singularities correspond to the oscillation 

frequency and threshold for different longitudinal modes of the laser 

as will be discussed in more detail in Section 3-4. 

It should be noted that Fig. 3-4 and 3-5 were plotted using 

linear analysis which means that saturation effects were not taken 

into consideration. In a real device the maximum amplification is 

always limited by saturation . It can be treated by a nonlinear 

analysis with numerical computation as was done by Hill and Watanabe( 24 )_ 
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3-3 Alternative Derivation of the Oscillation Condition 

In an ordinary laser oscillator the oscillation condition is 

determined by following a wave generated inside the cavity for one 

complete round trip. By setting this round trip gain equal to 

unity one can obtain the condition for oscillation . In this section 

we shall use this recipe in a distributed feedback laser . As shown 

in Fig . 3-6 the periodic waveguide section with gain a extending 

from z = 0 to z = L. Let us pick a random reference plane, say z = t , 

and find the reflection coefficients at this plane looking into the 

two divided waveguide sections. Denote them by R(t) and R(L-t) 

respectively . Using equation (3-4) we can write R( £) and R(L-£) 

directly as 

R( £) = iKsinhyt 
(a- i6S)sinhy£ -ycoshyt 

and 

And the round trip gain in the periodic waveguide is 

R(£)R(L- t ) = l 

Substituting the expressions for R(i) and R(L-£) we have 

[ 
i Ksinh £ [ iKsinhy(L-£) ] = 

a-i 6S sinhyt - ycoshyi L(a-i6S)sinhy{L-t) - ycoshy{L-t)j 
1 

After simplification it becomes 

(a-i 6S )sinhyL - ycoshyl = O 

This is the same as relation (3-6) obtained earlier . Note that the 

oscillation condition is independent of the choice of £ as it should 

be. As a matter of fact we can take t to be infinites i mally small, 
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Oscillation Condition: RCl)R{L-l)=l 

Fi'g. 3-6 Schematic drawing shows the derivation of the 

distributed feedback laser oscillation condition. 
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.Q,=E, and write 

~!~ R( E)R(L~E) = l 

Since!!~ R(E) + 0 and~!~ R(L-E) + R(L) we must have R(L) = oo. This is 

the condition used to derive equation (3-6). As a special case 1 let us 

take .Q, = L/2, then the oscillation condition can be expressed as 

where 

L L -i¢(~) 
R(2) = r(2)e = ±1 (3-7) 

where 

y = [K2+(a-i6B)2J112 = y + iy . r l 

When 68 = 0, yi = 0 and ¢(L/2) reduces to TT/2 so equation (3-7) cannot 

be sat4sfied. This means no laser oscillation is possible at the exact 

Bragg frequency. 

If the laser is connected to other circuit components there will 

be some external effect that cannot be neglected. But we can always 
\ 

represent these outside effects as an external reflector and calculate 

the composite reflectivity as was done in section 2-6 . Then the 

oscillation condition is derived with the new reflection coefficients. 
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Let us assume that the external reflectivity at z = 0 is pl and at 

z =Lis p2. (Refer to Fig. 3-6.) Then the composite reflectivities 

are 
-[p1(a-i6S)-iK]sinhy£ -p1ycoshy£ 

= ......----:---..----c,----~.--~-.,.--
[ ( a-i 6S) -i p 1 K]s i nhy£ -ycoshy£ 

and 

RI (L-£) 
-[p2(a-i6S)-iK]sinhy{L-£)-p2ycoshy(L-£) 

= -r---~--~-......-......... .----~'--T-

[ (a-i~S) ~i p2KJS inhy ( L-£ )-ycoshy ( L-£) 

Then the oscillation condition 

becomes 

Again this condition is independent of£ and it reduces to equation 

(3-6) when both pl and p2 vanish. Note that if either pl or p2 is 

zero the equation can be greatly simplified. The effect of external 

reflectors on the dsitributed feedback laser mode structure is very 

complicated and we must resort to numerical examples to see what is 

going on. A special case of pl= p2 was treated by Chinn(6) and the 

more general case pl; p2 was calculated by Streifer et al(?). 

3-4 Determination of the Lasing Frequency and the Threshold Gain 

The oscillation condition of a uniform distributed feedback 

laser with no external reflectors was found to be 

(a-i6S)sinhYL = ycoshyL 
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where y

2 = K2 
+ (a-i6S) 2. In general y is a complex number 

y = y + iy. where r l 

and 

So the oscillation condition 

(a-i6S)sinh(y +iy.)L = (y +iy.)cosh(y +iy.)L r , r 1 r , 
becomes 

F(a,6S) 

= 0 (3-10) 

This is the eigenvalue equation of the distributed feedback 

laser which can be solved numerically or graphically to obtain an 

infinite set of eigenvalue pairs (6Sn, gn). Each such pair determines 

the oscillation frequency 6Sn and the threshold gain gn of then-th 

longitudinal mode of the laser. It can be shown easily that F(a,6S) = 

F(a,-6S) which means that the location of the longitudinal modes are 

symmetric about the Bragg frequency (6S=0). Also simple physical 

reasoning requires that a be positive. In Fig. 3-7 we plot the solu­

tions of F(a,6S) = 0 for various values of KL. It is evident from 

the figure that the laser always oscillates outside the stop band, 

i.e., ltsnl > K for all n. The dependence of al on KL can be seen 
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from the dotted curves in Fig. 3-7 for different longitudinal modes. 

We can also derive the dependence of threshold gain a on the laser 

length L for a fixed KL. This result is shown in Fig. 3-8. 

In general the process of solving for the eigenvalues is tedious. 

It is desirable to obtain some approximate analytic solutions instead. 

Let us look into the case when K is small and 68 is large. Recall 

the expression for yr (3-9) 

If K is small and 68 is large, the laser will need a large gain to 

oscillate. Under these conditions Yr becomes 

a( l+o) 

and consequently 

y i = - a~8 ~ - M3 ll 
r L 

where 

The oscillation condition (3-6) can be written as 

y - a-i68 2yL = -l 
y + a-i68. e 

Use (3-11) and (3-12) in (3-13), we have 

(a+i68 2[a(l+o)]L e-i268(1-o)L = _1 2 . e 
a.-168 

( 3-11) 

(3-13) 

( 3,. 14) 
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Fig. 3~8 A plot of threshold gain a vs. length of the laser L 
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Equating the phases of both sides of (3-14) we have 

where n = 0,±l ,±2,±3, ... 

If an >> 6Sn the oscillation frequencies will be given approxi­

mately by 

and the frequency 

S c ( S +6B ) - n - o n c = w + (n + }) TTc L 
wn - neff - neff O neff 

(3-15) 

Once again we see that no laser oscillation can exist at w = w
0 

(6Sn = 0). The longitudinal mode spacing in this limiting case is 

TIC 
6w = wn+l - wn = n L 

eff 

This result is identical to that of a Fabry-Perot laser with a length L. 

Once 6Sn is found we can write 

or 

Hence 
(3-16) 

where 
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Thus each longitudinal mode is represented by a straight line with 

slope l/2A n in the neff-A plane. We can also plot the waveguide 

dispersion curve 
n (A)= A8(A) 
eff 2TT 

on the same plane as shown in Fig. 3-9. The intersections of this 

curve with the family of lines represented by equation (3-16) give the 

lasing wavelengths of the different longitudinal modes. 

If the waveguide can support several transverse modes the 

sitaution is more complicated. As discussed in Chapter 2, different 

transverse modes experience different coupling constants so that for 

each transverse mode we have a different dispersion curve and a 

different set of lines like equation (3-16) to detennine the lasing 

wavelengths. 

3-5 The Effect of Distributed Feedback on Spontaneous Emission 

Spectrum 

In this section we study the spectral properties of a distri­

buted feedback laser operating below threshold. This problem is 

treated by using multi-reflection approach to calculate the output 

of spontaneous emission from a section of amplifying periodic wave­

guide. As depicted in Fig. 3-10 the waveguide has a length L with 

amplitude gain coefficient a. We pick an arbitrary plane z
0 

and 

consider a small volume of the medium. Because of the spontaneous 

emission process this small volume emits electromagnetic wave of 

amplitude E isotropically. We are interested in the direction 

perpendicular to the periodic planes {parallel to the z-axis). 
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Fisi 3-9 Graphical method for determining the lasing wavelength 

of a distributed feedback laser. 
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Fig. 3-10 A schematic drawing shows the processes of amplified 

spontaneous emission in an amplifying periodic 
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We could follow the radiation emitted from the differential volume 

to the output and then sum the contributions from the rest of the 

volume to find the total output at z = L. 

The section of the waveguide to the right of the z = z
0 

plane 

with length L - z
0 

is characterized by the transmission and reflection 

parameters T and R. And the other section with length z
0 

is 

characterized by T1 and R1
• We sum up the partial waves due to the 

repeated reflections and obtain 

(l+R)RlTE 
Eout =TE+ l~RR ~ 

= (l+R')TE 
1 ... RR 1 

Expressions for R,R 1 ,T,T 1 can be obtained by slight modification of 

equation (3-4) and (3-5). It can be shown by direct substitution that 

2 l
ycoshyz

0
-[ a-i(6B-K)]sinhyz0 

2 

IE I 2 - j E j out - ycoshyl - (a-i 6B )sinh yl 

The intensity output at z =Lis obtained by integrating 

jEoutl 2 over z
0 

(we sum the intensities since spontaneous emissions 

from different sections are assumed to be incoherent). 
L 

I(z=L) = f jEouti
2

dz 0 

0 

( 3-17) 

Equation (3- 17) is plotted in Fig . 3-11 as a function of 

frequency for various values of al and KL= 0.4. Spectral narrowing 

is evident from the curves . For KL= 0.4 the lowest order longitudinal 

mode of this device will oscillate at 6BL = ±2.2 when al= 2.9 . 

The absolute output powers at ASL= 2.2 and 6SL = -2.2 are plotted as 

a function of the gain coeffi cient al in Fig . 3-l2(a) . At each of 
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these two 6BL values the output power increases rapidly as the 

threshold (al= 2.9) is approached. Although these two modes have 

equal threshold gains their output powers are not identical. A plot 

of the spectral width of the peak (6B = -2.2) below threshold as a 

function of 1/Pout is shown in Fig. 3-l2(b). It is almost a straight 

line, implying 
l 

a: --

pout 
cS (6B) 

a relation common to all amplified spontaneous emission processes. 

Similar results were also obtained by Chinn and Kelley( 25 ). 

If the waveguide gain coefficient exceeds the threshold of 

oscillation the above analysis is not valid. A nonlinear analysis 

should be used to include saturation effects. 

3-6 Comparison of GaAs Distributed Feedback Lasers and Fabry-Perot 

Lasers 

As discussed in section 3-4 the lowest order longitudinal mode 

of distributed feedback lasers with large KL lase at 66 ~ ±K. And 
-1 since B0 = TT/A is of the order of 30 µm in GaAs, while typical 

value of K is ~10-2µm- 1, so generally speaking a distributed feedback 

laser oscillates at a frequency 
B

0
c 

w~w =--= 
~ 0 neff 

or 
(3-18) 

where neff is the effective index of refraction of the laser mode in 

the waveguide . If the £-th order corrugation is used for the 

feedback equation (3-18) is modified to 
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(3-19) 

This is a very simple expression which determines roughly the 

lasing wavelength once neff and A are known. And it is obvious that 

one can design a waveguide structure with known neff' and select a 

proper A for a desired wavelength~. This is not true in general 

for ordinary injection lasers. The gain spectrum of GaAs usually 

spans several hundred angstroms, the cavity is formed by two 

parallel cleaved crystal planes which provide almost uniform reflecti­

vity over a large frequency range. Hence there is no strong mechanism 

to provide longitudinal mode discrimination. Usually several modes 

oscillate simultaneously with comparable thresholds and span typically 

a spectral region of ~30A or more. This nonmonochromatic radiation 

presents a problem in fiber communication systems. In distributed 

feedback lasers we have a built-in longitudinal mode discrimination so 

it is not difficult to obtain single mode operation with linewidths 

less than one angstrom. 

Another advantage of distributed feedback lasers over Fabry~ 

Perot GaAs lasers is that the temperature stability of lasing wave­

length is improved. The temperature variation of lasing wavelength 

in distributed feedback lasers is due to the change of the effective 

index of refraction (neff) with temperature as evident from equation 

(3-18). Hence 

aneff 
aT 



an ff -4 (26) aneff d>. 
If we use a~ ~ 3 x 10 /deg and neff - >- a>. ~ 4.5, dT turns 

out to be~ 0.58i/deg. In ordinary GaAs lasers the band gap energy 

varies with temperature thus causing both the spontaneous emission 

spectrum and the laser wavelength to shift with temperature. This 
0 

shift has a rate of~ 2A/deg which is about 4 times that of distributed 

feedback lasers. There is, however, a penalty which accompanies 

this improved wavelength stability. An ordinary laser can operate at 

any temperature if threshold is attainable. But in distributed feed­

back lasers the choice of A 11 clamps 11 the lasing wavelength for a certain 

temperature and since the temperature coefficients of >-DFB and the 

center of gain spectrum are different at some temperatures ADFB 

falls outside the gain spectrum co~pletely and no oscillation is poss­

ible. 

3-7 Design Factors in GaAs Distributed Feedback Lasers 

In this section we address ourselves to the problem of designing 

a GaAs distributed feedback laser. We treat the problem in a general 

way without going into details of specific structures. First of all 

we have to specify the desired lasing wavelength A and the operating 

temperature T. Next we choose a proper waveguide structure which can 

be either a homojunction structure, or single heterostructure, or 

double heterostructure, etc. From the given structure we can calculate 

the number of guided transverse modes and their respective effective 

indices of refraction. In order to obtain single mode operation, 

however, it is desirable to use a single mode waveguide with definite 
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neff at A, The necessary corrugation period A is calculated through 

the equation A= A/2neff for fundamental Bragg coupling and 

A= iA/2neff for the i-th order coupling. The choice of A has to 

be such that at the particular operating temperature the medium can 

provide sufficiently large gain at that wavelength. The typical 
0 

photoluminescence spectrum of GaAs is about 150-200A wide. At 77°K 

the peak occurs at ~8450A and at 300°K it shifts to 8900A . For 

temperatures in between, the luminescence peak can be estimated 

roughly by the formula 
0 

A(T) ~ [8450 + 2x(T~77)]A 

The luminescence spectrum will change slightly by varying 

carrier concentrations and dopants. It can also be varied by 

incorporating into the active region a small amount of Al. As a 

matter of fact checking the luminescence spectrum is one of the methods 

of obtaining a rough estimate of the amount of Al in a GaAlAs layer, 

For example in GaAs typical numbers at 77°K are\= 8450~, 

n ~ 3.59, then A= 1177A is required for i = l fundamental operation. 

This small period is difficult to fabricate and i = 3 is used in most 
0 

of our experiments, which results in A= 3531A. The corrugation 

height can be measured by using SEM (scanni~g electron microscope) 

pictures. This quantity is then used to calculate the coupling 

coefficient. From a curve similar to those in Fig. 3-8 we can obtain, 

given K, an optimal length for our laser. The laser oscillation 

threshold can be estimated from 
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where a~h(K,L) is that found by solving the eigenvalue equation (3-10) 

F(a,6S) = 0 and a.bulk is the bulk material loss coefficient at the 

lasing wavelength. 

If a third order corrugation is used there exist losses due 

to the coupling of the guided laser mode to the unguided radiation 

modes through the first and the second order Bragg scattering 

processes. These losses can be represented by a distributed loss 

coefficient arad( 27 ,2a) which must be added to the other losses in the 

medium . The laser threshold condition in this case becomes 

(3-21) 

Typical value of a.rad for a third order corrugation with tooth height 
'ii -1 500A is ~lQcm . 

In most of our optical pumping experiments we start out with 

slabs of GaAs-GaAlAs waveguides. Through photoluminescence 

measurements we determine the peak of the gain spectrum. By making 

Fabry-Perot lasers from part of the sample and measuring the longi­

tudinal mode spacings we obtain a good estimate of neff' The corruga­

tion period A is then determined from the condition 

A - ;\ 
- 2neff 

where;\ corresponds to the central wavelength of the luminescence 

spectrum. 



3-8 Optically Pumped GaAs Distributed Feedback Lasers 

Optical excitation is a very convenient way and a very powerful 

tool for studying the spontaneous and stimulated emission processes in 

semiconductors. This method of pumping obviates the need for electrical 

contacts which greatly simplifies the sample preparation and makes it 

possible to explore new materials and structures without first solving 

the contact problem. Furthermore, it is nondestructive in the sense that 

sample surface will not be damaged unless excessive optical power density 

is used. In this section we shall describe some of the experiments on 

optically pumped GaAs distributed feedback lasers. 

The first attempt to demonstrate distributed feedback lasing action 

in GaAs was done by optically pumping a slab of a GaAs crystal with 

periodic surface corrugation. A schematic drawing of the laser is shown 

in Fig. 3-13. The GaAs \'1afer was n-type (Si doped) with a carrier con­

centration of about 1018cm- 3. The top surface (100 plane) was polished 

and chemically etched. The corrugation was produced by ion milling 

through a photoresist mask generated by holographic photolithography as 

will be described in Chapter 5. The heiqht of the grooves was estimated 

from the SEM picture to be around 5ooE. The period A was 0.35 µm 

which corresponds to t = 3 in the Bragg condition 2B where 

s is the propagation constant of the guided mode. 

The experimental set-up is shown in Fig. 3-14. The gain was pro­

vided by optical pumping using a Q-switched ruby laser (A ~ 0.6943 µm). 

Each individual pumping pulse had a duration of ~20 nsec and the peak 

power was attenuated to ~10 KW. A cylindrical lens was used to pump a 
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rectangular strip of 3x0.5 mm. Samples were attached to a copper block 

heat sink with vacuum grease and mounted inside a liquid nitrogen dewar. 

Special care was taken to make sure that the pumping beam did not fall 

across the whole length of the sample . Also the output face of the 

crystal was lapped so that it was not parallel to the grooves and to 

the other ·end face. This was done to minimize the reflection feedback . 

The system was carefully aligned with a He-Ne laser. The pumping beam 

passed through the front window of the dewar and struck the sample sur­

face perpendicularly. The output from the GaAs sample passed through 

the side window and was collected by a lens and fed into a monochromator . 

The signal was subsequently amplified by a photomultiplier (S-1) and 

displayed on a memory scope. The pumping pulse was also monitored on 

the scope. 

The oscillation threshold of such lasers at 77 °K was found to be 

~2 xl05W/cm2. A typical emission spectrum of a sample excited above 

threshold is shown in Fig. 3-15. Stimulated emission is indicated by 

the narrow resolution limited peak. Also shown in the same figure is 

the spectrum of a sample without corrugation under simililr pumping con­

ditions . This sample displays only the broad (~180~) spontaneous 

emission feature. The stimulated emission peak at \ = 0.832 µm cor­

responds, using equation (3-19), to an index of refraction n = 3.6 at 

77 °K for GaAs . 

Figure 3-16 shows plots of the emission power as a function of the 

pumping intensity for a corrugated and an uncorrugated sample . The 

"break" in the curve of the corrugated sample near 2.5 x 105w;cm2 coin ­

cides well with the first appearance of the narrow spectral peak in 

• 
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Fig. 3-15 The emission spectrum of a corrugated and an 

uncorrugated sample. Pumping intensity is 

5 X 10
5 vJ/cm2. 
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Fig . 3-16 Emission power as a function of pumping in t ensi ty 

at A = 0.832 µm . 
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Fig . 3-15. The characteristics of the uncorrugated sample, however, 

remain linear up to the highest pumping power employed . For pumping 

power exceeding 106W/cm2 surface damage was found on both corrugated 

and uncorrugated samples. 

This very first experiment demonstrated that a GaAs crystal with 

surface corrugation can be made to lase if enough gain is provided. The 

threshold, however, was very high. This is largely due to poor optical 

confinement. In a bulk crystal the optical confinement comes from the 

"inverted layer" which is not a strong effect. The threshold pumping 

level is expected, as in the case of injection lasers, to depend strongly 

on the optical confinement. Realizing this we repeated the experiment 

with epitaxial GaAs dielectric waveguides. Two different types of 

dielectric waveguides, illustrated by Fig. 3-17, were used in the ex­

periment. The first structure consisted of an epitaxial GaAs layer 

which in different experiments varied between 1 and 3 µmin thickness 
16 -3 with a carrier concentration of n ~ 6 x 10 cm . The substrate was a 

GaAs crystal with n ~ 2 x 1018cm- 3. Due to the carrier concentration 

difference the epitaxial layer has a larger index of refraction than the 

substrate and the condition for dielectric waveguiding are thus satis­

fied. The second structure consisted of GaAs and Ga 0_7Al 0.3As double 

layers on a GaAs substrate. The larger the Al concentration, the 

smaller the index of refraction of the layer. The surface corrugations 

were produced as described above. Due to the improved confinement, the 

pumping threshold intensity was reduced by lOX and a different pumping 

source could be used. This is shown in Fig. 3-18. A repetitively pulsed 
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Ga As epitaxial layer ( n "'1016 cm-3) 

Ga As substrate (n"' 1018cm-3) 

Ga As epitaxial layer 

Gao_7Alo_3As epitaxial layer 

GaAs substrate 

Fig. 3-17 Cross sections of GaAs waveguide structure distributed 

feedback lasers. 



D
e

w
a

r 

C
op

pe
r 

b
lo

ck
 

<
¢.

>
 

,,, ,,, Il
l 

-
-
~

 
-- I 

S
p

e
ct

ro
m

e
te

r I
"
' ~ L

- P
h

o
to

­
m

u
lt

ip
lie

r 

C
yl

in
d

ri
ca

l 
le

n
se

s 

A
d

ju
st

a
b

le
 

s
li
t 

B
o

xc
a

r 
In

te
-

g
ra

to
r 

A
m

pl
ifi

er
 

F
ilt

e
r 

-
·
-

B
ea

m
 

li
m

it
e

r 
' 

lb
_

 I 

x
-y

 
re

co
rd

e
 r 

-

(v
 

N
2 

L
a

se
r 

O
sc

 i 1
1 o

sc
op

e 

D
ye

 
L

as
er

 

F
ig

. 
3-

18
 

Th
e 

op
ti

ca
l 

pu
m

pi
ng

 
se

t-
up

 
us

in
g 

an
 

N
?-

la
se

r 
pu

m
pe

d 
dy

e 
la

se
r.

 
L

 

I \.
,:

) 
-
-
' 

I 



-92-

nitrogen laser pumped a dye laser (Rhodamine B) whose output tuned to 

~o.63 µm was used to pump the GaAs dielectric waveguide . Each indivi­

dual pumping pulse had a duration of ~7 nsec and a peak power of up to 

2 KW . Cylindrical lenses and an adjustable slit were used to pump a 

rectangular strip 0,3 mm wide and of a variable length . The output was 

collected by a lens and guided into a spectrometer whose acceptance 

wavelength was scanned to record the emission spectrum. 

When the first sample was pumped the output power from the corru­

gated region was about two orders of magnitude smaller than that from 

the uncorruqated region of the same wafer. It was found that ion mill­

ing introduced defects in the GaAs layer which reduces the carrier re­

combination efficiency drastically. Since the laser emission was re­

stricted by dielectric waveguiding to the vicinity of the surface the 

effect of this damage on threshold was severe. Annealing in a hydrogen 

atmosphere at 450°C for ~30 min removed most of the defects and made 

lasing possible at threshold pumping intensity ~104w;cm2, A 

typical output spectrum from these waveguide lasers is shown in Fig . 

3- 19 displaying both the spontaneous and the stimulated emission peaks . 

The stimulated emission peak was found to be stable against excitation 

level while the spontaneous emission peak moved toward longer wavelength 

as the excitation level was increased. 

A number of waveguides were prepared with different corrugation 

periods . The measured oscillation wavelengths were .plotted against the 

corrugation period A in Fig . 3-20. The straiqht line is a theoretical 

plot of the equation 
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with neff = 3.59 , It is seen that a tuning range of 45R was spanned 

by varying the corrugation period from 345oE to 347G~. This is a 

clear indi cation t hat the laser feedback is indeed caused by the corru­

gation. And the corruqation acts as a built-in grating filter leading 

to a stabili zation of the output wavelength. 

As a chec k on the theory we calculated the coupling constant K for 

one of the samples and determined it to be ~1 .93 cm-l. The laser 

threshold was measu red for various pumping lengths of the same wave­

guide. The result is shown in Fiq. 3-27. The solid curve is a plot of 

equation (3-21) using the data of this sample with abulk+ arad ~ 

15 cm-l as determined by experiments . This aspect of the experiment 

is described in Chapter 5. The fair agreement between the experimental 

results and the theoretical curve in Fig. 3-21 lends support to the 

existence of distributed feedback action in this sample. 

GaAs waveguides with a corrugation period of 0. 115 wm were fabri­

cated and pumped optically. This period corresponds to the fundamental 

( 9, = l) Bragg reflection in equation (3-19) . Single mode as well as 

multi - longitudinal mode oscillation were observed at different pumping 

levels and pumping lengths as shown in Fig. 3-22. In (b) the measured 

longitudinal mode spacing 6\ is ~ 1R which agrees with the theoreti­

cal value calculated from 

( 8n) 2L n - \ a\ 

where \ is the vacuum oscillation wavelength and L is the laser 
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length~ 700 µmin our example. The use of fundamental corrugation 

was expected to reduce the radiation loss and to increase the magni­

tude of coupling constant (as compared to the 3rd order corrugation 

with the same corrugation height) . The expected reduction in thresh­

old was not realized, however, in our experiment . The threshold 

pumping intensity was comparable to that obtained with a 3rd order 

grating . This is believed to be due to the fact that the quality of 

the 0.115 µm corrugation was not as good as that of the 0.35 µm corru­

gation . In fact it was founrl difficult to produce a 0.115 µm corruga­

tion with tooth height larger than ?ooE while for 0,35 µm corrugation 

we can easily fabricate tooth heights larger than 1500~. This point 

will be considered further in Chapter 5. 

3-9 GaAs-GaAlAs Distributed Feedback Injection Lasers 

Although optical pumping is convenient in laboratory studies, it 

is not practical in actual applications . Since the technology of 

ordinary GaAs injection lasers has been very successful it was felt 

that GaAs distributed feedback lasers with electrical injection could 

also be fabricated . A theoretical analysis by Nakamura and Yariv(lB) 

of GaAs injection lasers with a corrugated interface indicated the 

possibility of a large reduction of the threshold current density as 

well as of frequency and mode discrimination. We thus started experi ­

menting with the fabrication of a double heterostructure distributed 

feedback laser diode. 

Figure 3-23 shows a schematic drawing of a double-heterostructure 

GaAs laser with internal corrugations. The fabrication process went as 
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follows. An n-Ga 0_7Al 0_3As layer ('v 4 µm) doped with Sn and a p-GaAs 

active layer ('v 1.5 µm) doped with Ge were grown on an n-GaAs substrate 

by liquid phase epitaxy . The process is then interrupted for the fab­

rication of corrugations . The thickness of the active layer was 

etched down to 0.5-1 .3 µm before fabricating corrugations with a 

period of 'v0, 34 µm and a depth of 'v900~. Next a p-Ga0_7Al 0_3As layer 

('v 3 µm) and a p-GaAs layer ('v l µm), both doped with Ge, were grown on 

the corrugated surface of the p-GaAs layer by liquid phase epitaxy. 

Special care was taken in this step to prevent the meltback of the cor­

rugated surface during the epitaxial growth to be described in Chapter 

5. The laser had a mesa-stripe geometry so that the current injection 

was limited to a rectangular region . The width of the stripe was 'v5Qµm. 

Meta 11 i c con tacts to the di odes were made by evaporating Cr and Au on 

the p-side and Au-Ge-Ni on then-side. The length of the Au-Cr contact 

was varied from 150 to 700 µm. A lossy unpumped waveguide with a length 

2.5-3 mm was contiguous to the current injecting area . This was done 

in order to minimize the optical feedback from the end face . The output 

was taken f rom the front face as indicated in Fig. 3-23. 

A pulser which provided current pulses of 'v50 nsec duration with 

variable repetition rates was used . The diode characteristics were 

measured under var ious temperatures. A typical spectrum from these 
0 

lasers is shown in Fig . 3-24. The corrugation period is 3416A and the 

threshold current density is 9 KA/cm2. The output spectrum consists of 

two main components . The spontaneous emission, which has a broad peak 

centered around 8135g and, at injection current above threshold (2.6A), 
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a narrow peak at s112E due to stimulated emission. The line width of 

the stimulated emission is usually less than 1E. From the lasing 

wavelength and the period we calculated the effective index of refrac­

tion for the lasing mode in our diode structure to be ~3.56. The inset 

of Fig. 3-24 shows the detail of the stimulated emission peak. It 

shows that the diode lased in a single longitudinal mode whose wave­

length was stable against the change of excitation level. The laser 

output was polarized with the electric field parallel to the junction 

plane. 

Lasers in which the length of the unexcited waveguide section 
-

was less than 1 mm long exhibited the coexistence of two types of laser 

oscillation. In one of these , the feedback was due to the corrugation. 

In the other the feedback was due to the two end faces. These two 

oscillation spectra are separable by their temperature dependence as 

was discussed in section 3-6. When the unexcited waveguide length ex­

ceeded 2 mm no effect of the end face was observed and the laser spec­

trum became very simple. 

The lowest threshold obtained in this kind of laser was 

~ 2.5 kA/cm2 at 80°K . It was found that the surface damage caused by 

ion -milling severely reduced the radiative recombination efficiency of 

the carriers in the active region. This caused the threshold of this 

type of laser to become too high for oscillation at the higher tempera­

tures. This problem was alleviated somewhat by using chemical etching 

for fabricating rather than ion etching the corrugations. We were then 

able to operate lasers at lower thresholds and at temperatures up to 
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~ 145°K. Figure 3-25 shows the lasing wavelength as a function of 

temperature for both distributed feedback and Fabry-Perot lasers. It 

is seen that the distributed feedback lasing wavelength shifts at a 

rate of 0.5~/degree and that of the Fabry-Perot lasers shifts 

~ 2A/degree which agrees well with the results given in section 3-6. 

The improvements in laser performance which resulted from chemi­

cal etching were not sufficient to obtain room temperature operation. 

This is believed due to the large number of nonradiative recombination 

centers introduced by the etching. This problem was solved, partially, 

by adopting a separate-confinement heterostructure (SCH). A schematic 

drawing of the cross section of a laser diode is shown in Fig. 3-26. 

The first two layers were grown in a manner similar to that of double­

heterostructure. The gratings were not fabricated on the p-GaAs layer, 

instead two additional layers were grown directly, one was a 

p-Ga0_83A1 0_07As layer(~ 0. 1 µm) and the other is a p-Ga0_93Ala.O?As 

layer(~ 0.2 µm). The corrugation was fabricated on the last mentioned 

layer. This was followed by a layer of p-Ga0_7Al 0_3As layer(~ 2 µm) 

and a layer of p~GaAs (~ l µm). In this structure the electrons 

injected from the n-Ga0_7A1 0_3As layer 11 see 11 a potential barrier 

presented by the p-Ga0_83A1 0_17As layer and thus are prevented 

from reaching the corrugated region where nonradiative recombination 

centers exist . The thickness (~ 0.1 µm) of this layer is too 

small, however, to affect the confinement so that the wave extends and 

11 sees 11 the corrugation. The optical mode confinement is sketched on the 

left side of Fig . 3-26. The need for the p-Ga0_93A1 0_07As layer is due 

to the fact that the p-Ga0_83A1 0_17As layer oxidizes when exposed to air 
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and subsequent epitaxial growth is impossible. The corrugations are 

thus fabricated on the oxidation resistant p-Ga0_93Al 0_07As layer. 

Diodes with this structure were found to lase with extremely low 

thresholds. For example, one of the lasers with length L = 500 µm, 

A= 36ooE lased with threshold current density Jth = 500A/cm2 at 

80°K. Another laser with L = 500 µm, A= 3770E has Jth ~ 3 KA/cm2 

at 300°K. This value is low enough for CW operation if proper heat 

sinking is provided as reported by Nakamura et al _( 23 ) 

So far most of the experiments in GaAs distributed feedback 

lasers have been limited to third order corrugations for which the 

radiation loss is not negligible. Hopefully some day we will have con­

venient CW UV source with wavelength less than 2000R so that corrugations 

with period around 0.1 µm can easily be made and used in GaAs lasers to 

further reduce the threshold. With the room temperature GaAs distri­

buted feedback lasers available the next question is how to incorporate 

the laser with other optical circuit components. This is an interesting 

current research area because the result could lead to the first mono­

lithic integrated optical circuit. Meanwhile an equally important 

problem that has to be solved is the laser lifetime. The lifetime of 

the laboratory GaAs distributed feedback lasers ranged from ten minutes 

to twenty or thirty hours . In order to be a practical device, lifetime 

on the order of 106 hours is necessary. So there remains a lot of re­

search to be done in this area. 
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Chapter 4 

Distributed Bragg Reflector Lasers 

4-1 Introduction 

As described in Chapter 3 the GaAs-GaAlAs distributed feedback 

laser has attracted a great deal of interest in the field of integrated 

optics. This is due, in part, to the frequency selective nature of the 

feedback which makes possible longitudinal and transverse mode control. 

Another important advantage is the compatibility of the fabrication 

process with planar technology. 

One disadvantage revealed in the course of experiments on such 

lasers(l) is the degradation of the recombination efficiency in the 

active region by the steps used to obtain the corrugation. Another un­

resolved problem is the effect of the corrugation on the laser operating 

lifetime. These problems can be alleviated somewhat by schemes such as 

separate optical and carrier confinement in which the recombining car­

riers are kept away from the corrugati on as described in the previous 

chapter . 

An alternative to the distributed feedback laser is one where the 

Bragg coupling between the laser forward and backward waves is achieved 

in two corrugated waveguide sections which are contiguous with the ac­

tive (amplifying) region . It has been suggested theoretically( 2,3) and 

. (4-6) h t h' h demonstrated experimentally that sue sections can ac as 19 re-

flectance "mirrors" for waveguide modes at frequencies within the "stop 

band" where the Bragg condition is nearly satisfied. Such Bragg 

reflector lasers are expected to possess the main advantages of the 
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distributed feedback lasers, i.e . , frequency and mode selectivity 

while avoiding the problem of degradation of the recombination effi­

ciency . 

The theoretical analyses of distributed Braqg reflector (DBR) 

lasers to date( 2, 3) employ a generalization of the analysis of the 

distributed feedback laser(?) and are consequently complicated and 

not easily amenable to intuitive physical interpretation. In addi­

tion, a variation of the basic configuration from that of the original 

model requires that the complicated boundary value problems be solved 

anew. 

In this chapter we present a formally equivalent solution of the 

distributed Bragg reflector laser. In this approach we replace, in 

the analysis, the Bragg reflectors; i .e., the physically corrugated 

sections of the waveguide adjacent to the amplifying region, by fic­

titious reflectors with complex reflectances r1,2(w)exp[-i~1 ,2(w)J. 

The complex reflectance of each reflector (denoted by subscript l or 

2) is obtained from the solutions of Bragg reflectors and is assumed 

known . The derivation of the laser oscillation condition now becomes 

identical to that of a conventional two-reflector laser. It is ob­

tained by requiring that the round-trip complex gain of the laser field 

amplitude including two reflections be equal to unity. 

The oscillation condition can then be solved numerically or 

graphically to determine the lasing frequency and threshold. It is 

shown that distributed Bragg reflector lasers have similar frequency 

and modal control as the distributed feedback lasers. The effect of 
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reflector losses, which include bulk absorption loss and radiation 

loss, on the lasinq characteristics is also treated. The losses in the 

periodic section are found to have little effect on the lasing frequency 

but can cause the threshold to go up considerably. Experimental results 

on optically pumped GaAs waveguide distributed Bragg reflector lasers 

were given at the end of the chapter. Lasing characteristics were de­

termined and compared with theory. Also some potential applications of 

this kind of laser in fiber communication systems are discussed. 

4-2 Distributed Bragg Reflector Laser with Lossless Reflectors 

We have shown in Chapter 2 that a section of lossless periodic 

waveguide behaves as a band rejection filter or reflector. In general, 

the reflectivity of such a device can be expressed as a complex quantity 

R(w) = ( 4- l ) 

The spectral behavior of r2(w) for a lossless waveguide has been shown 

in Fig. 2 - 8(0.). When 2 
.6.S < K , r ( w) is large , and for KL > 3. 0 is 

close to unity . When .6.S > K, r2(w) has several side lobes with pro­

gressively decreasing reflectivities . 

Figure 4- l(o.) shows a schematic drawing of a distributed Bragg re­

flector waveguide laser . It consists of an amplifying region of length 

L2 flanked on each side by corrugated sections of length L1 and L3• 

We use the equivalent reflectors method described in the last two chap­

ters to obtain the equivalent laser shown in Fig. 4-1 (b). The corrugation s 

are replaced , at their respective input planes , by two conventional 

mirrors with properly assigned complex reflectivities. The laser 
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Fig. 4-1 (a) Schematic diagram of a distributed Bragg 
reflector laser. 

(b) Equivalent cavtty of a distributed Bragg 

reflector laser, 
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cavity is of length L2 and consists of a medium with net gain g 

at the wavelength region of interest. The oscillation condition is 

then obtained by setting the round trip complex gain equal to unity , 

i . e. ' 

= (4-2) 

After using equations(2-33) and (4-1) the last equation becomes 

(4-3) 

where y2 = K2- 682 , 8 is the propagation constant of the laser mode 

and 68 ~ 8 - ~ . Equation (4-3) is the eigenvalue equation of a 

distributed Bragg reflector laser a~d it can be solved numerically or 

graphically to obtain an infinite set of eigenvalues (68n,gn). Each 

such set gives the oscillation 11 frequency 11 M3 and the threshold 
n 

gain gn of the nth longitudinal mode of the laser. The extension 

of equation (4-3) to the case of two different corrugated sections 

(i .e. , Kl f K2, 681 f 682, etc.) is obvious . 

Equation (4-2) can be written as 

2gl2 -i(¢1+ ¢2 + 268Lz + 28ol2) 
r1(w) r2(w) e e = 1 

Hence the oscillation frequency (i.e. , 68 at oscillation) and thresh­

old gain are obtained by equating the phase and amplitude on both 

sides of the last equation 

(4-4a) 
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(4-4b) 

where n = 0 ,± l ,±2, • .. . 

In a given distributed Bragg reflector structure we can use 

equation (2-32) to find r1, r2, ¢1 and ¢2 as functions of 66 . The 

round trip phase delay 

can thus be plotted as a function of 6S . The intersections of this 

curve with the horizontal lines ¢ = 2nTT determine the set of oscil-

lation frequencies 6Sn . The corresponding r1 (6Sn) and r2(6Sn) 

are then used in equation (4-4a) to find the corresponding values of 

the threshold gain gn . This procedure is illustrated in Fig. 4-2 

for the special case L1= L3= L, L2= 2L, KL= 3,0 and s
0
L2= 2NTT. 

Under these conditions equations (4-4a) and (4-4b) reduce to 

l 1 
g = 2[ in r (4-4c) 

(4-4d) 

¢ = ¢ + 26SL and ¢ = nTT are plotted in Fig. 4-2(~) The intersec­

tions are at 6SL = ±0,67, ±2.00, ±3,22, ±4.14, etc. The correspond­

ing reflectivities are obtained from Fig. 4-2(b) and used in equation 

(4-4c) to calculate the threshold gains 2gl = 0,0050, 0.0127, 0.0830, 

and 1 .2629, etc. It is seen that although the effective reflectivity 

of the modes at 6SL = ±2,00 (0 .974) is only slightly smaller than 

that of the modes at 6SL= ±0.67 (0.989) the threshold for the modes 

at 6SL= ±2.00 is more than twice as big as that of the modes at 



(a) 

(b) 

-116-

KL=3.0 

-5 -4 -3 -2 

5 6/3L 

-21r 

-3rr 

KL=3.0 1.0 

0.5 

-6 -5 -4 -3 -2 -I 0 2 3 4 5 6 

Fig. 4-2 Graphical method of determining oscillation 

condition of a distributed Bragg reflector laser. 
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68 = ±0,67. This clearly illustrates the longitudinal mode selecti­

vity of distributed Bragg reflector lasers. 

4-3 Determination of Mode Structure 

To obtain the actual oscillation wavelength from the solutions 

of 6Sn we recall that 

M3 = B - B n o 

therefore 

(4-5) 

So each longitudinal mode is represented by a straight line with slope 

2i- in the neff-A plane. We can also plot the waveguide mode dis-
n 

persion relation 

= 

on the same diagram. The intersections of this curve with the lines 

represented by equation (4-5) give the oscillation wavelengths of 

different longitudinal modes. This procedure is very similar to that 

described in section 3-4 for distributed feedback lasers. The longi­

tudinal mode spacing of distributed Bragg reflector lasers, as expected , 

in the limit of L2 » L1 ,L 3 is inversely proportional to L2 as in 

the Fabry-Perot lasers. 

Bragg reflectors can determine the longitudinal wave vector of 

the laser but do not affect directly the propagation vectors in the 

other two dimensions . This could result in oscillation of more than 
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one transverse mode. Control of modes whose transverse K vectors lie 

in the plane of the junction can be achieved by controlling the width 

of the pumped area . The quenching of transverse modes (k vectors 

normal to the junction plane) can be obtained by controlling the height 

of the laser waveguide. For small enough heights the effect of mode 

dispersion causes the wavelength at which the Bragg condition is satis­

fied by a higher order transverse mode to be appreciably shorter than 

that of the fundamental transverse mode. It can thus be shifted far 

enough from the peak of the gain profile so as to exercise a substan­

tially lower gain. To obtain the oscillation frequencies and threshold 

gains of a given transverse mode we repeat the procedure described above 

but use the appropriate dispersion neff(\) curve of the mode in equa­

tion (4-5) and recall that, in general, the coupling constant will be 

different for different modes. 

We have described above how a judicious choice of the thickness 

of the active layer and the corrugation period could be used to obtain 

a single transverse mode operation. By carefully choosing the corru­

gation period we can cause the oscillation wavelength of the lowest 

order longitudinal mode to occur near the peak of the gain profile. 

Since this mode was found to possess the lowest threshold gain gn , 

it is clear that the external pumping threshold for this mode will be 

lowest and one can obtain single mode operation . This kind of modal 

control is also similar to that of distributed feedback lasers. 

4-4 The Effect of Lossy Reflectors 

Up to this po int we have considered lossless reflectors only. 
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In many real applications the reflector sections are made of the same 

material as the active region but are unpumped. As a result the re­

flectors are lossy. In this section we are going to examine the 

property of a section of lossy periodic waveguide and its effect on 

the lasing characteristics of a laser with Bragg reflectors made out 

of this kind of lossy waveguide . 

We start with equations (3-1) 

dA . B -i2(6°+ia)z = l K e µ dz 

dB . A i2(6B+ia)z dz = -lK e 

These are the coupled-mode equations describing propagation in an amp­

lifying periodic waveguide with amplitude gain a. Now if we replace 

a by -a so that a represents the amplitude loss coefficient we ob­

tain 

dA = i KB e-i2(6B-ia)z 
dz 

dB . A i2( 6°- i a)z = - 1 K e µ dz 

(4-6a) 

(4-6b) 

The solutions of equation (4-6) can be obtained from equations (3-2) 

and (3-3) if we replace a by -a. They are 

and 

E ( ) = B(z) e- iBz - az i z 

E ( z) r 

-i B z 
= E.(O)[(a+i6B)sinhy(L-z) +ycoshy(L-z)]e 0 

1 (a+i 6B ) sinhyl + ycoshyl 

= A(z) ; Bz+az 
e 

i B z 
-i Ksinhy(L-z)e 0 

= Ei(O) (a+i lB )sinhYL + YcoshYL 

(4- 7) 

(4-8) 
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For 6S = 0 , we have 

IE (z)l2 = lasinhy(L-z) + ycoshy(L-z) 12 
i asinhy[ + ycoshyl (4-9) 

and 

2 I Ksinhy{L-z) 1
2 

I Er(z) I = asinhy[ + ycoshy[ ( 4-10) 

Equation (4-9) and (4-10) are plotted in Fig, 4-3 for KL= 8.0, 

al= 0 and al= 2 . We see that the power distribution along the 

i,,rnveguide carried by the incident wave does not vary much for 

K >> a from that in the lossless (a=0) case. The reflected wave, on 

the other hand, is seen to undergo attenuation. The intensity re­

flectivity in this case is reduced from~, .0 at a=0 to roughly 

l
.......!:S....1

2 . For KL= 8.0, al= 2.0 the reflectivity is down to ~0.64. a+K 
The effective distance penetrated by the wave into the waveguide 

taken as the l/e2 point of the forward power is ~L/8 for our lossy 

waveguide. This is due to the strong coupling rather than the attenu­

ation. (Note that } =~) . . In Fig . 4-4 we plot 1Ei(z)l 2, 1Er(z)l 2 

for KL= 2.0 with al= 0 and al= 2.0 . Since now KL and al 

are comparable we would expect the effective penetration depth to be 

L ~ l = 0,354 L 
eff ✓ 2 2 

K + a 

This is easily verified from the figure . Also, the maximum intensity 

reflectivity is reduced to around 

K 2 
--.... ---_ ----'1 = 0. 172 

/ 2 2 a +\K + a 
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( 2 2 Fig. 4~3 Plots of IE; z)I and !Er(z)I for KL= 8.0 and 

( a ) ,JL = 0 ( b ) etl = 2 . 0 . 
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Fig. 4-4 Plots of IE 1(z)l 2 and 1Er(z)l 2 for KL= 2. 0 and 

(a) , d_ :c: 0 ( b) ,'i l = 2 . 0. 
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The third case a>> K is plotted in Fig . 4-5 with KL= 0.5 and 

al= 0 and 2.0. The maximum reflectivity is now 

2 
~ li:I = 0.016 

The effective penetration length is 

L ~ 
1 0.5L - = eff a 

For the general case of 6S r O, we can write the reflectivity as 

-iKsinhyL -i¢ 
(a+i6S)sinhyl + ycoshy[ = re ( 4- 11 ) 

A plot of r2 for KL= 3.0, al= 1.0 is shown in Fig. 4-6(0..) We 

also plot the curve with al= 0 for comparison . The magnitude of 

the reflectivity in the presence of waveguide loss is substantially 

lower than that of the loss-free case. In addition, the sidelobe 

"oscillation" is smoothed out. In this case the reflectivity is 

still a strong function of the incident wave frequency. The loss not 

only changes the magnitude of the reflectivity r but also changes 

the phase ¢ This is shown in Fig . 4-6Cb). For al = l the behavior 

of ¢ is such that it almost follows the curve for al= 0 when 6SL 

is sma 11 . As 6SL increases, ~ 'l'al=l gradually falls off the 

al= 0 curve and stays nearly constant. 

Now consider the case where two lossy sections serve as the re­

flectors of a laser. The oscillation condition (4-3) is modified to 
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2 2(g-iS)L2 -Ke = [(a+i68) + ycothyL1J[(a+i68) + ycothyL3] (4-12) 

where y2 = (a+i6S) 2 + K2. Let us consider, as an example, the special 

case L1 = L3= L, L2 = 2L, KL= 3.0, S
0
L2 = 2NTT considered previously, 

but take al= l .0. The phase shift diagram is shown in Fig. 4-7(~). 

The lasing frequencies are at 68L = ±0.67, ±2.00, ±3.36, ±4,85, etc. 

We note that as compared to the lossless case described in section 4-2 

the lasing frequencies of the lower order modes hardly change . Because 

of the substantial reduction of the reflectivities, the thresholds 

however, are much higher. They are 2gl = 0.3367, 0.4077, 0.6813, 

1.0814, etc. 

In a GaAs distributed Bragg reflector laser the unpumped corru­

gated sections will absorb laser radiation. Also, if we use higher 
;\ order corrugations to provide the feedback (A=~ 2n , ~=2,3,···) 
eff 

there will exist radiation loss due to the coupling between the 

guided modes and the radiation modes through the lower harmonics of 

the corrugation. Theoretically, the use of fundamental mode 

(A= 2n:\ ) should make it impossible to couple to radiation modes. 
eff 

Deviations from perfect periodicity, however, will always introduce 

some scattering loss. We can account for these losses in the analysis 

by a distributed loss coefficient arad so the loss factor a that 

appears in equation (4-11) consists of two parts 

IV - IV + a "" - ""bulk rad 
-1 A typical value of a as estimated in our experiments is'\, 15 cm . 

• 
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Fig. 4-7 Graphical method of determining oscillation condition 
of a distributed Bragg reflector laser with lossy reflectors 
(al = l. 0). 
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4-5 Comparison of Distributed Feedback and Distributed Bragg 

Reflector Lasers 

The distributed Bragg reflector lasers and the distributed 

feedback lasers are very similar in several respects. They both 

utilize corrugations to provide the feedback and thus have the same 

degree of modal control as discussed earlier. The main difference 

between them is that in distributed feedback lasers the gain and the 

feedback region are not separated while in the distributed Bragg 

reflector lasers the gain and the feedback regions can be separated. 

One important consequence is that in distributed Bragg reflector 

lasers it is possible to have oscillation at or very near the center 

of the '1stop band 11 where the reflectivity is maximum leading to very 

low threshold. While in distributed feedback lasers no oscillation 

can occur for l6SI < K. For 6S outside the stop band the reflectivity 

is lower. Therefore distributed feedback lasers possess higher 

thresholds. 

The threshold gain of a distributed Bragg reflector laser, 

from equation (4-4a), is 

and the loss coefficient that is used to obtain r1 and r2 is 

It is clear that the effect of radiation loss 

in this kind of laser can be reduced by making L2 large, i.e . , to use 

a longer active region. This is to be, compared with the threshold 

of a distributed feedback laser [equation (3-21)] 
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DFB = a.th a~h (K,L) + ao + a.rad 

h th ff t f • t • DFB b t 1 were e e ec o a.rad 1s o increase a.th y an amoun equa to 

a.rad to compensate for the radiation loss . 

Another major advantage of distributed Bragg reflector lasers 

over distributed feedback lasers is that the corrugations are 

separated from the active region so that there will be no degradation 

of the carrier recombination efficiency as observed in distributed 

feedback lasers. And as described in section 3-9 the fabrication of 

GaAs-GaAlAs distributed feedback laser diodes requires that the 

liquid phase epitaxy process be interrupted in order to make the 

corrugation. And then the second growth process is carried out on 

the corrugated surface, which is a difficult procedure. In 

distributed Bragg reflector lasers, on the other hand, it is possible 

to perform liquid phase epitaxial growth in one step as in the fabri­

cation of ordinary injection lasers. A disadvantage of distributed 

Bragg mirror lasers is that in order to have the corrugation close 

to the optical wave we need to etch the wafer so that a mesa structure 

is obtained as shown in Fig. l-3(b). The corrugations are then 

fabricated on both sides of the mesa. It is more difficult to obtain 

a high quality corrugation on this kind of 11 nonsmooth 11 surface 

especially at the region immediately next to the mesa. 
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4-6 Experiments with Optically Pumped GaAs Distributed Bragg Reflector 

Lasers 

Fig. 4-8 shows the cross section of a typical optically pumped 

GaAs waveguide distributed Bragg reflector laser used in our 

experiment . Two layers of GaAlAs and GaAs were grown on an n-GaAs 

substrate by liquid phase epitaxy to form a waveguide structure . 

Photoresist grating mask was then laid over the whole surface 

of the wafer by holographic photolithography. Part of the grating 

was covered by a stripe mask so that subsequent chemical etching 

through the photoresist grating resulted in a gap of length L2 
between the two corrugated end sections. Third order gratings 

A= 3\ /2neff were used. The wafers were then saw-cut at one end for 

access to the laser output. Typical dimensions are L1 ~ 250 µm, 

L2 ~ 500 µm, L3 ~ 3 mm and L4 ~ 3 mm. The relatively large lengths 

of sections L3 and L4 which are lossy at the laser wavelength is to 

ensure that there is only negligible reflection from the far face of 

the sample . 

Samples were cooled to liquid nitrogen temperature (77°K) and 

pumped optically by a repetitively pulsed dye laser tuned to ~6300~ . 

The pumping beam was focused by a cylindrical lens onto the sample . 

During the pumping the corrugations could be totally or partially 

covered in order to study the effect of lossy reflectors . It was 

found that with the corrugations pumped the laser threshold 

decreased by a factor of 2-3 while the spectrum did not change 

significantly. Both observations are in agreement with the theory. 
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Fig. 4~9 is a spectrum from one of the lasers which shows single 

mode operation up to two times the threshold pumping intensity. In 

this case the corrugations were not pumped. In waveguides of larger 

height the mode selectivity, dtscussed in section 4-3, decreases and 

it is possible to have several transverse modes oscillating 

simultaneously. An example of 'such a spectrum is shown in Fig. 4~10. 

Three peaks are shown which belong to different transverse modes. They 

are separated by 12~ and 24A, and have TE polarization (electric field 

parallel to the junction plane). In some lasers, with a somewhat 
0 

thinner top layer, transverse mode spacings as large as 40A were 

observed. 

Because of the coexistence of several transverse modes in our 

laser there is a possibility of intermode coupling leading to hybrid 

laser modes(B, 9). For example, the right~going m=O mode can couple 

to the left-going m=l mode and vice versa. This kind of hybrid mode 

will oscillate at a wavelength roughly halfway between the m=O and 

m=l mode wavelength. Fig. 4-ll shows one example of this phenomena 

where we have m=O, m=l, m=2 modes and the hybrid mode between m=O 

and m=2 designated as (0,2). 

The distributed Bragg reflector structure also offers a 

possible solution to the difficult problem of coupling a waveguide 

laser output into fibers. It is suggested that one can fabricate a 

Bragg reflector laser with fundamental grating on one side of the 

active region and a second order grating on the opposite side. It 

is well known that a second order grating couples light in first order 

in a direction perpendicular to the grating plane(lO,ll ,l 2). We 
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Fig. 4-9 Single mode oscillation spectrum of an optically 

pumped GaAs distributed Bragg reflector laser. 
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Fig. 4-10 Multi-transverse mode oscillation spectrum of a GaAs waveguide 

distributed Bragg reflector laser. 
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distributed Bragg reflector laser. 
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can fix one end of a fiber to the grating and thus couple the laser 

light into the fiber as illustrated in Fig. 4-12. The coupling 

eff iciency can be made large by adjusting the corrugation depth so as 

to obtain an effective radiating aperture with cross sectional 

dimensions which approximate those of the fiber. A modulator section 

can be inserted between the grating and the active region to modulate 

the output intensity . 

Some preliminary experimental results on this scheme were 

obtained . This was done by fabricating lasers with one cleaved end 

face and one second order Bragg reflector, optically pumped at both 

77°K and 300°K. One end of the fiber was held against the corrugation 

next to the pumped region , the other end was held against the entrance 

slit of a spectrometer. Although the measured output power f rom the 

fiber was low , it demonstrated the feasibility of this scheme. More 

work on the optimal design of this type of structure is needed to 

improve the coupling efficiency . 
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5-1 Introduction 

CHAPTER 5 

EXPERIMENTAL TECHNIQUES 

Due to the short wavelength and the small size of optical fibers, 

the dimensions of the optical circuit components which need to inter­

face with them are typically on the order of a few microns. The 

requirements on the precision and definition of devices are thus very 

strict. For example~ in fabricating a dielectric waveguide, the 

smoothness of the sidewalls and the uniformity of the guiding layer 

thickness will determine whether the guide is lossy or not. This 

is due to the fact that the nonuniformity of the waveguide structure 

causes mode scattering, radiation losses, and other undesirable 

consequences(l). Generally speaking - the tolerance on the waveguide 

sidewall smoothness should be much smaller than the guided wavelength. 

Another example is the fabrication of optical gratings for filters( 2,3), 

polarizers( 4), Bragg reflectors etc . where the period can be as small 

as 0.1 µm and is required to be uniform across a considerable length. 

Conventional photolithography is not suitable for this purpose. 

Hence new technique had to be developed to meet these requirements. 

Another requirement regarding the fabrication of optical circuits 

is that the fabrication processes be canpatible with planar technology. 

This will be important in integrating several optical components 

on one common substrate. 

In this chapter we describe some of the important techniques 

used and developed during the course of studying GaAs distributed 

feedback and distributed Bragg reflector lasers. These include 
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liquid phase epitaxial crystal growth, holographic photolithography, 

chemical and ion beam etching of GaAs crystals, and some optical 

measurements. 

5-2 Liguid Phase Epitaxy in GaAs~GaAlAs System 

Liquid phase epitaxy (LPE) by definition, is the precipitation 

from a liquid phase of a crystalline layer onto a parent substrate 

where the crystallographic orientation of the layer is determined 

by that of the parent substrate. It is a very common method of growing 

semiconductor thin films for optical·, acoustical, and microwave 

devices. The basic principle is described as follows. The solution 

and the substrate are kept apart in the growth apparatus (a graphite 

boat) prior to the growth. The solution is saturated with the growth 

material and heated up to a prescribed temperature. Then the solution 

is brought into contact with the substrate surface and allowed to 

cool down at a constant rate for an appropriate length ·of time 

depending on the thickness of the layer desired. If the substrate 

is single crystalline and the lattice constant of the precipitating 

material is the same or nearly the same as that of the substrate, the 

precipitating material forms a layer on the substrate surface which 

is an extension of the single crystal body of the substrate. For 

example in the GaAs-GaAlAs system a GaAs single crystal wafer is 

used as substrate and layers of GaAs or Ga1_xA1xAs are grown on it. 

Because of the close match of the lattice constants between AlAs 

and GaAs, it is possible to grow layers of Ga 1 Al As on GaAs 
-X X 
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and vice versa with relatively low defect density. 

A typical liquid phase epitaxial growth set-up is shown in 

Fig . 5- l(a), which consists of three major parts ; a furnace, a 

quartz tube, and a graphite boat . The graphite boat consists of a 

housing unit and a slide. There are recessed areas in the slide for 

holding the substrates . In the housing unit there are several wells 

for the different melts . As an example, to fabricate a GaAs-GaAlAs 

double heterostructure injection laser as shown in Fig. 5-l(b) we 

have to grow four layers successively on an n-GaAs substrate. The 

wells in the graphite boat are filled with melt materials in the 

following sequence. Well no. l contains Ga, GaAs seeds, Al, and Sn. 

Well no. 2 contains Ga, GaAs, and Ge. Well no. 3 contains Ga, GaAs, 

Al and Ge. Well no. 4 contains essentially the same materials as 

well no . 2 except for a larger quantity of Ge. The amount of each 

element in the wells depends on the composition and the carrier 

concentration of the layer grown from it. Before the growth, the 

boat is assembled, the substrate and the melt materials are loaded. 

The boat is then inserted inside the quartz tube roughly at the 

center of the furnace. A quartz "pushing rod" is connected to the 

slide so that the latter can be moved from the outside. After 

purging the tube thoroughly with hydrogen the furnace is turned on 

and heated up to around 825°C. A constant flow of hydrogen is 

maintained through the tube at all times . As the temperature 

stabilizes and the melts are in thermal equilibrium states a biasing 

circuit is turned on to slowly lower the temperature of the boat 
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(which is monitored by a thermocouple placed underneath the graphite 

boat). The cooling rate ranges from a few tenth of a degree per 

minute to a few degrees per minute . As the temperature drops to a 

prescribed value, for instance 820°C, (this is called the contact 

temperature) the substrate is pulled into position under the first 

melt. It is kept there for a period of time appropriate for the 

thickness of the first layer to be grown and then is moved to the next 

solution, and so on until the multilayer structure is grown. The 

substrate is then moved away from the last melt and the boat is cooled 

down to room temperature. 

One of the main difficulties involved in crystal growth is 

keeping oxygen out of the growth system when the heating stage begins . 

At high temperatures the surface of the melts and the substrate can 

be easily oxidized which would prevent the growth. Also the 

preparation of the substrate and the melt materials has to be done 

carefully . Any undesirable impurity will degrade the growth. 

Successful crystal growth is probably the main key to the fabrication 

of long life cw GaAs injection lasers and other electronic devices 

based on GaAs epitaxy . 

To fabricate a double heterostructure distributed feedback 

injection laser as shown in Fig. 3-23 we have to corrugate the 

surface of the p~GaAs active layer before growing the p-GaAlAs layer 

and the p-GaAs top layer . This involves the challenging problem of 

growing an epitaxial layer over a corrugated surface without 

destroying the corrugations. It has been pointed out that during 

epitaxial growth there is always some meltback of the substrate . 
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This presents a serious problem if growth over shallow corrugations 

is desired. We thus carried out a series of experiments by growing 

a layer of GaAlAs on corrugated GaAs substrates with different 

growth temperatures and cooling rates to determine the dependence 

of the amount of meltback on the growth conditions. After growth, 

part of the GaAlAs layer was etched away by HF and the GaAs substrate 

surface was examined by using scanning electron microscope (SEM) 

and by laser beam diffraction experiment to see whether the 

corrugation survived the growth. The results are summarized in 

Table 5-1. It was found that the epitaxial GaAlAs layer grown above 

700°C on the corrugated substrate had a mirrorlike finish. A great 

deal of improvement in reducing the amount of meltback was achieved 

by lowering the contact temperature from 820°C to 700°C. A small 

improvement was also obtained by increasing the cooling rate from l 

to 5°C/min . The depth of the corrugation can be directly measured 

from the SEM pictures . It can also be estimated by measuring the 

relative intensity of the various orders of diffracted light from 

the corrugation after removing the epitaxial layer . In our work a 

He-Ne (6328A) laser was used for this purpose . The diffraction 

efficiency, i.e., the ratio of the first order diffraction intensity 

to that of the input intensity in a number of samples grown under 

varying conditions is listed in Table 5-1 . Fig . 5-2 is an SEM 

picture of sample A-5 after partial removal of the GaAlAs layer . 

The corrugation survived almost intact with only minimal meltback . 

The irregular edge and the small holes were caused by the penetration 

of HF through imperfect photoresist mask. Fig . 5-3 shows the 
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Fig. 5-2 An SEM picture of sample A~5 with the top 

GaAlAs layer partially etched away. 
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p-GaAs 

p-GaAlAs 

p-GaAs 
( active region) 

n-GaAlAs 

n-GaAs 
substrate 

Fig. 5~3 Cross section of a double heterostructure QaAs~qaAlAs 

distributed feedback laser grown by LPE, 
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cross section of a completed double heterostructure distributed 

feedback injection laser which shows excellent growth interfaces. 

5-3 Grating Fabrication by Holographic Photolithography 

Small period (<l µm) gratings have been widely used in 

integrated optics as couplers, filters, and reflectors. For these 

applications the grating period ranges from ~0.1 µm to~, µm. 

It is difficult for ordinary _photolithography to fabricate this 

kind of pattern because of the tight spacing. Hence a maskless 

exposure process--holographic photolit~6graphy( 5) was developed for 

this purpose and is described in what follows. 

Two plane waves of the same frequency and of amplitudes E1 
and E2 are incident upon a smooth surface at an angle 28 as shown in 

Fig. 5-4. Taking the complex amplitudes of the waves across the 

surface as 

E _ Ae-ik(xsine-ycose) 
l -

E = RAe""ik(-xsine-ycose)-i¢ 
2 

respectively we find that the intensity on the surface is 

IE 1+E 21
2 = IAl 2{(1-R)2 + 4R cos2(kxsine-¢)} 
y=O 

= IAl 2 {l + R2 + 2R cos2rkxsin8-¢]} (5-1) 

The intensity is thus modulated in the x direction with a period 

2TI A 
A= 2ksine = =2h-s-i~n~e 
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where n is the index of refraction of the medium in which the waves 

meet over the surface and A is the vacuum wavelength of the waves. 

Equation (5- l) shows that as long as¢, the phase difference between 

E1 and E2 is constant (not a function of time) the interference 

pattern will remain stationary in space . Furthermore if R = l, i.e., 

E1 and E2 have equal intensities, then 

\ 

This means that the intensity modulation is 100%. If Rt 1 there 
.. 

will be a lift-up of the nodes plus a reduction of the peak to valley 

intensity difference. Fig. 5-4(b) shows the intensity distribution 

of the interference pattern with different values of R. If we place 

a sample coated with photoresist at they= 0 plane, the photoresist 

will be exposed by the interference fringes whose intensity is shown 

in Fig . 5-4(b) . The intensity distribution associated with R = 1 is 

ideal for this purpose. After developing the exposed photoresist 

we obtain a grating pattern . 

So far we have not considered the effect of the substrate. 

Most of the substrates used in practice are highly reflective. 

As a result we have to consider the total field of two incident waves 

and their reflected waves . Assuming the substrate has 100% 

reflectivity, for incident waves with electric field polarized in 

the z direction the total intensity is given by( 6) 

I . 2(2TTncosey) 2(2TTncosex) a sin A cos A 



(a) 

Cb> 

y 

-3 -2. -1 0 2 

X 

--R= 1.0 

·-·-·-· R = o.s 
-- - - - - - - - - --4.0 

3 4 <pm) 

Fig. 5-4 (a) The coordinate system that describes the 
interference of two plane waves. 

(b) Plots of intensity distribution IE1+E2[!=o 
along x. The parameters are taken as 

¢ = 0, e = 11°, ~ = 0. 4416 µm, and !Al = 1. 
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Which consists of a standing wave in they-direction, in addition 

to that in the x direction, with a period 

A 
2ncose 

This periodic intensity variation in they-direction has an important 

effect on the exposure time of the photoresist. If the photoresist 

5urface is close to one of the nodal planes, there will be no fringes 

recorded on the surface of the photoresist. The subsequent develop­

ment will not give a grating pattern. Ideally the photoresist 

thickness should never exceed 

Otherwise it is difficult to develop the photoresist down to the 

substrate surface. 

Fig. 5-5 is a schematic diagram of the experimental set-up 

used to fabricate the gratings. The output of a He-Cd laser is 

divided into two beams by a dielectric beam splitter. Each beam is 

reflected from a mirror and passes through a spatial filter. The 

mirrors are set so that the laser beams intersect at an angle 20 

at the sample holder. A spatial filter is inserted after each mirror. 

The spatial filter consists of a quartz lens and a 12.5 µm diameter 

pinhole . The beam is focused by the lens and made to pass through the 

pinhole which is located at the focal point of the lens . The purpose 

of the spatial filters is to ensure that the beams coming out of the 

pinholes possess a high degree of spatial coherence. (This is achieved 

by limiting the transmission to essentially the lowest order Gaussian 
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He-Cd 
Laser 
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Fig. 5.5 A schematic diagram of the grating exposure set-up. 
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transverse component). The beams emerging from the pinholes are 

divergent. In most experimental situations the distance between the 

pinholes and the sample is large and the sample area is small so that 

at the sample surface the beams have essentially planar wavefronts. 

The advantage of this arrangement is that it does not require very 

high quality mirrors since mirror defects are 11 cleaned up 11 by the 

spatial filters . This is especially important at shorter laser 

wavelengths where high quality mirrors do not exist. A drawback, 

however, is that each time that the angle 28 is changed the spatial 

filters need to be realigned. If spatial filters are placed in front 

of the mirrors the problem of angle changes is alleviated but high 

quality mirrors must be used. 

The key for obtaining high quality grating patterns is good 

optical alignment (i.e . equal incidence angles for both beams). 

This can be checked by putting a highly reflective test sample in the 

sample holder. If the system is well aligned, the reflected beam 

of one of the incident beams from the test sample will coincide with 

the other incident beam and vice versa. 
0 

As an example, to make a grating of A= 3500A the angle e is 

determined from equation (5~2). If we use the blue output of an 

He-Cd laser A is 4416~ hence e = 39.1°. Theoretically the smallest 

grating period that can be made by this interference method is 

A = ½· when 8 = 90°. 

The shortest wavelength cw laser available to date is A= 
0 0 

3250A from an He-Cd laser. Thus the smallest A obtainable is 1625A. 

In section 3~7 we showed that for the first order distributed feedback 



oscillation in GaAs a period A= 0.1184 µmis required. The shortest 

obtainable period A= 0.1625 µm is thus too big for our purpose. 

However the above limitation exists only for exposures performed in 

air (or vacuum). If one uses a medium with an index n then the shortest 

A is A/2n. For example one can use a quartz block or a bath of high 

index liquid( 7,3,9). Fig. 5-6(a) shows a configuration in which a 

quartz block is used for producing 0.11 µm period grating. The quartz 

prism is attached to the sample with the help of some index matching 

fluid (immersion oil, xylene, etc) so that the light can couple out 

of the prism. The index of refraction of the quartz n ~ 1.5. " q ~ 

Using A= 3250~, e = 70° we have A= 1153A. A variation of this method 

is shown in Fig. 5-6(b). Here the sample is immersed in a tank 

filled with xylene (n ~ 1.5). The tank has two low loss optical flats, 

one on each side, for the access of the incident beams. 

Before depositing the grating photoresist mask on GaAs wafers 

we first have to thoroughly clean the surface of the GaAs samples. 

This is usually done by rinsing in warm trichloroethylene (TCE) 

acetone, 2-propanol, and deionized water. The samples are subsequently 

etched slightly in H2so4:H20:H2o2(4:l :1) solution. After dry blowing 

the samples are kept in a dust free dish and baked in an oven (90°C) 

for about 10 minutes. 

Shipley photoresist (AZ 1350B) ·ts diluted (one part photo­

resist to two parts thinner) and coated on the samples by spinning. 

The thickness of the photoresist layer is estimated to be ~1500A. 

The photoresist~coated samples are then prebaked for about 10 minutes 

at 90°C. In our exposure system the typical optical intensity at 
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Quartz prism 

n ~ 1.s 

Xylene 

n ~ 1.s 

He-Cd laser 

3250A 

Sample 

He-Cd laser 

Sample 

Fig. 5-G Experimental configurations for producin~ ~ratings 

~,ith periods from O. 1 µm to O. 16 JJnl. 
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the sample is ~4 mw per beam. The exposure time is around 15 seconds. 

The developing time is fixed at 10 seconds. In some cases the photo­

resist gratings are slightly over-exposed in order to develop the 

fringe patterns all the way to the substrate surface. This leads to 

better result during the subsequent chemical etching or ion beam 

etching. Grating quality can be determined by visual inspection of 

the film color or by measuring the efficiency as a diffraction grating. 

5-4 Ion Beam Milling and Chemical Etching of GaAs Gratings 

We employed two methods of transferring a photoresist grating 

onto a GaAs substrate. One is a dry process while the other is a wet 

process. In the dry process ion beJm etching(S,lO,ll •12 ) is used and 

in the wet process chemical etching is used. The basic principle of 

ion beam etching is as follows. An inert gas (e.g. Argon) is fed into 

a high vacuum chamber and ionized through an electrical discharge. 

These heavy ions are collimated and accelerated to impinge on the 

sample surface. The high energy (typically 0.5 keV - 5 keV) particles 

cause sputtering ejection of the sample material. The samples can be 

masked to allow the etching of different patterns. If the masking 

material has a lower etching rate than the substrate material, patterns 

can be transferred from the mask to the substrate. 

The relative etching rates of photoresist and GaAs have been 

studied by several investigators(lO,ll,l 2). Typical values reported 

are around a 1 to 3 ratio. With this differential etching rate it is 

possible to etch patterns into GaAs using photoresist as a mask. 
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Photoresist masks are usually baked prior to the etching process to 

increase their strength. The samples are mounted on a stainless steel 

plate using Ni clips or vacuum grease. During etching, a motor is 

used to provide a translational motion of the samples across the ion 

beam for uniform etching. With an ion current density of "vl mA/cm2 

and an accelerating voltage of "vQ.7 kv the typical etching time for 

GaAs gratings is 3-5 minutes. 

The photoresist mask subjected to the ion beam etching some­

times becomes very hard and difficult to dissolve by the conventional 

immersion in acetone. However, it can _be removed by scrubbing with 

a swab soaked with acetone or by immersing in a mixture of AZ-303 

developer (~20 c.c.) and KOH (a few drops). 

Typical SEM photographs of GaAs gratings fabricated by ion 

milling through photoresist masks are shown in Fig. 5-7 and 5-8. 

Fig. 5-7 shows a surface corrugation with a period "vQ.35 µm. It has 

well defined patterns with a corrugation depth estimated to be around 
0 

700A. In Fig. 5~8 we show a grating with a period "vQ.115 µm produced 

by ion milling through a photoresist mask. The poor surface quality 

is probably due to the nonuniformity in the photoresist mask after 

development. 

In general, the results of ion beam etched gratings are quite 

satisfactory. There are some methods that one can use to increase 

the depth of the corrugation. For example one can "shadow'' the 

photoresist grating by evaporating a thin film of some low etching rate 

metal at a shallow angle. This can increase the endurance time of the 

mask. 
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Fig . 5~7 An SEM picture of a GaAs surface corrugation produced by ion beam 

etching through a photoresist mask. The period is~ 0!35 µm, 
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In ion milling the removal of material is achieved by bombardment 

with energetic particles. As a result the process introduces a high 

density of defects in the samples. These defects cause an increase 

in the threshold current of the GaAs double heterostructure distri-

buted feedback lasers as described tn Chapter 3. As an alternative 

approach we investigated the possibility of using chemical etching. 

The selective chemical etching properties of GaAs crystal have been 

studied extensively(l 3 ,l 4). It has been found that the Br
2

-cH30H 

(1:1000 in volume) system gives good results in preferential etching 
I 

of GaAs. If a slot mask is deposited on a GaAs crystal {100} plane 

and aligned parallel to one of the two cleavage faces ({0lf} or {Oii}) 

the etched pattern can have one of two different types of groove profiles 

depending on the orientation of the mask. This is illustrated in 

Fig. 5-9(a) . In these two types of grooves the side walls are all 

A{lll} crystal planes of GaAs . This is because the etching rate of 

this plane is much lower than any other low Miller indices planes. As 

a result the v-shaped groove is essentially self-terminating while 

the other kind of groove diverges. For the purpose of grating 

fabrication we prefer the v-groove profile(l 5). The direction of the 

mask slots for this groove can usually be determined by etching a 

1jcross 11 pattern in a small part of the sample . The A{lll} planes make 

an angle of 54°44 1 with the {100} planes. Hence in making gratings by 

chemical etching the maximum depth achievable is roughly 

or 
h = i tan 54 ° 44' 

h = 0. 711\. 
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{oTT} 

• I 
I 

i 

,. / 54°44' 
·-·-·-

Fig. 5-9 (a) The preferential etching patterns on the {100} 

face of a GaAs crystal. 

(b) A schematic diagram shows the relation between the 
grating period A and the V-shaped groove maximum 

depth hmax· 
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For A= 0,35 µm, this comes out to be ~2500A and for A= 0.11 µm, 

hmax is ~780~ as illustrated in Fig. 5-9(b). This is based on the 

assumption that we can get a symmetrical triangular profile. Some of 

the corrugations fabricated by this method are shown in Fig. 5-10 

and 5-11. Fig. 5-10 is an SEM picture of a GaAs grating with a period 

of ~o.345 µm and depth of ~0.18 µm. It shows clearly the crystal 

planes and the etched v-shaped profile. Fig. 5-11 is a picture of a 

grating with period ~0.11 µm which shows good surface quality as 

compared to the ion-milled grating {Fig. 5-8). The depth of this 

grating is estimated to be ~500~. Alt~ough Br2-cH30H system attackes 

photoresist, it is still possible to etch gratings into GaAs with 

deep grooves without a special treatment. One can also shadow the 

photoresist for better results(l 5). Other etching solutions that 

do not attack photoresist can also be used. 

Regardless of the etching method employed it is important that 

the photoresist grating mask be developed down to the surface of the 

sample for best result. It has been .explained in section 5-3 that 

because of the large index of refraction of GaAs the standing wave 

pattern in they-direction [see Fig. 5-4{a)] has a minimum at the 

surface of the substrate. As a result the photoresist cannot be 

developed away completely and a thin film is left between fringes as 

illustrated in Fig. 5-12(a). If the grating period is large (e.g. 

A~ 3500A) we can over develop the photoresist slightly to obtain a 

mask as shown in Fig. 5-12(b). In fabricating the very short 0.11 µm 

gratings this procedure is difficult to control. However we can use 

ion beam milling to shape the photoresist grating prior to chemical 
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((U Original Photo resist Grdting ( 0. 3 1:,1m) 

lb) Fu rt her Development 

. C'\ C'\ C'\ C'\ C'\ 

(Cl Original Photoresist Grating ( 0.1 1:,1m} 

Cd) After Ion Milling 

0, ,,. ,0 ,,. Ct, c:::,. 0, t::) t:) c:,, 

Fig. 5-12 Schemes of shaping photoresist gratings mask 

for chemical etching. 
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etching. This is illustrated in Fig. 5-12 (c) and (d). 

5-5 Optical Measurements 

In this section we describe a few important measuring techniques 

used in our study of GaAs distributed feedback and distributed Bragg 

reflector lasers. These include the characterization of GaAs epitaxial 

layers as an active device material, the determination of the aluminum 

content in a GaAlAs layer, the detennination of GaAs distributed feed­

back laser parameters, and the measurement of grating period by laser 

beam diffraction. 

Photoluminescence measurement is a very common technique for 

material characterization in semiconductors. By measuring the spectral 

location of the luminescence peak we can obtain information concerning 

the energy band structure of the sample. Since the bandgap energy of 

GaAlAs is a function of the mole fraction of Al in the material we can 

thus apply the luminescence measurement results to obtain an estimate 

of the amount of Al in the material. This process is important because 

a precise control of the Al content in an epitaxial layer is difficult. 

An example of detennining the composition of a multi-layer structure 

is shown in Fig . 5-l3(a) . We first etch a small part of the sample 

so as to obtain a "staircase'' as in Fig. 5.-13(b). Each step corresponds 

to one of the layers. We next measure the photoluminescence spectrum 

from each step in a system similar to that shown in Fig. 3.-18 . 

The pumping beam is focused by a convex lens to a small spot on the 

sample surface which is tilted at an angle of ~45° with respect to the 

pumping beam. The output from the surface of the sample is collected 
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GaAs Substrate 

< b) 

ij ~ Pumping Beam 
a-----------'--~ 

n 
GaAs Substrate 

CC> 

f-Pumping Beam 

' · ..... ......... GaAs Substrate 

8
·:..... 

_____________ __,J ________ ......... 

Fig. 5--13 Schematic diagrams showing two different ways of 

preparing samples for photoluminescence measurement. 



by a lens and guided into a spectrometer. If the composition 

profile of each layer is needed we can perform angle lapping of the 

sample so that the thickness of the layer is "amplified'' by a factor 

of 1/sine where e is the angle of lapping. This is illustrated in 

Fig. 5 ... 13(c). The small pumping spot is scanned from z = 0 to z = L 

and the corresponding luminescence spectra are used to obtain the con~ 

centration of Al as a function of z. This information is then used to 

obtain the profile of Al content withtn each layer. The dependence 

of peak luminescence wavelength on the mole fraction of Al is given(l 6) 

in Fig. 5-14. 

As mentioned in section 3~7, given a GaAs waveguide prior to 

fabricating a distributed feedback laser we need first to take a 

luminescence measurement in order to locate the center of the gain 

spectrum. At the same time, by measuring the magnitude of the 

luminescence output intensity we obtain an indication of the relative 

internal quantum efficiency of the sample . A low radiative 

recombination efficiency usually means that the sample contains a 

high density of defects which act as traps of the carriers. Thus by 

scanning the pumping spot across the surface of a sample we can 

map the relative defect density of the sample. 

In the next paragraph we will describe how the optical pumping 

method can be used to determine some distributed feedback laser 

parameters. 

Recall in section 3-7 that we gave the threshold gain of a 

distributed feedback laser as 
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where a~h{K,L) is the intrinsic threshold gain of a distributed 

feedback laser, abulk and arad are the amplitude absorption and 

radiation coefficients respectively. In an experiment we measure ath 

as the ''true 11 threshold of our laser. In order to compare with the 

theory we have to know abulk and arad {at the lasing wavelength). 

As shown in Fig. 5-lS{a) we optically pump a corrugated GaAs waveguide 

with a beam of constant width and of fixed length £
0

. We then measure 

the output power Pas a function of£, the distance between the 

crystal edge and the pumped region. The output power is related to 

the internally generated power P
0 

through the relation 

-2a £ P = P
0
e corr 

where acorr is the overall amplitude loss coefficient of a corrugated 

waveguide and can be expressed as 

- a + a acorr - bulk rad {5-3) 

The magnitude of abulk is estimated in a similar manner except that 

an uncorrugated region is used so that arad = 0. This is shown 

in Fig. 5-lS{b) . Another method of determining abulk is by manufacturing 

GaAs Fabry-Perot lasers of various lengths from the same waveguide and 

measuring their threshold pumping intensity. Since in a Fabry Perot 

laser the threshold gain is given by 

1 1 
<
1 th = abulk + [ in R 

where Lis the length of the laser and R is the intensity reflectivity 

of the cleaved mirrors. If we plot ath as a function of 1/L we obtain 
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a straight line with slope £n ~ and an intercept with the ath axis 

gives abulk as illustrated in Fig. 5-l5(c). Once abulk is found we 

can use it in equation (5-3) to determine a d" These methods are ra 
only practical with optical excitation where the changes in the 

excitation conditions are easily affected. 

It is very important to determine accurately the period of the 

grating in a distributed feedback laser. This can be appreciated from 

the lasing wavelength equation 

0 

where 2neff ~7.2. A. change of lOA in the grating period, say, will 

result in a shift of the lasing wavelength by nearly 72~. Such a 

big shift can easily move the lasing wavelength from the center of the 

gain spectrum to the tail where the gain is low, thus increasing 

the threshold beyond any practical pumping level. Hence we need to 

determine whether the holographic exposure system is set to give the 

required period before exposing the GaAs samples. This is accomplished 

by first exposing a test sample and using a laser beam diffraction to 

measure its period . The sample is mounted on a rota ry table and a 

laser beam is directed to pass through the rotating axis of the table 

as shown in Fig . 5-16(a) . A reference angle e
0 

is detennined by 

letting the inci:dent beam and the reflected beam coincide at normal 

incidence. The grating is then rotated until the Littrow reflection 

takes place~ that is when the diffracted beam and the incident 

beam directions coincide. This occurs when the condition 
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2/1. sine= "A (5-4) 

is satisfied, where e is as indicated in Fig. 5-16(a). If the angular 

reading at this point is e1, then e = Je 1-e
0

J. Let us calculate the 

sens i ti vi ty of fl.with respect to a sma 11 change in e 

~~ = - fl.cote (5-5) 

Equations (5-4) and (5-5) are plotted in Fig. 5-l6(b). The dependence 

of d/1./de on eis such that it approaches infinity when the angle is 

small and decreases to zero when e is near 90°. As a typical 

example consider a grating with a period of 3500~ using the blue line 
0 

of an He-Cd laser (4416A). The required e can be determined from 

Fig. 5-l6(b) to be 39.11°. At this angle d/1./de is ~75.13A/degree 

hence an error of l minute in reading the angle will result in an error 

of l.25~ in fl. which is easily tolerated. A good rotary table can 

yield angular accuracies considerably in excess of the l minute figure 

used above. 

The measurement of fundamental gratings is not as straight­

forward. For a grating with a period fl.~ O.ll µm we cannot observe 
0 

diffraction using "A= 3250A in air. Thus we have to pass the UV laser 

beam through a quartz prism first as shown in Fig. 5-17(a). The prism 

which has a rectangular base with index of refraction n is mounted 

on a rotary table. A sample with 0.11 µm grating is attached to one 

of the prism faces with xylene or immersion oil. The prism is first 

set so that the incident beam incident on one of the prism faces is 

reflected backward retracing the incident beam direction. The 
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angular reading at this position is denoted as e
0

. The prism is then 

rotated until the diffracted beam from the grating retraces the incid~nt 

beam direction. Let the corresponding angular reading be e1, which 

means that the prism is rotated an angle of e= I e1-e 
O 
I . Using the 

geometry shown in Fig. 5-17(a) we can find the period of the grating as 

" /1. = ----

21n2-sin2e 
(5-6) 

0 

If >- = 3250A is used we have 

fl.= 1625 (~) 

/n2 .. sin2e 

where e is the measured angle of rotation. In this formula the index 

of refraction of the prism n enters, so we have to known as accurately 

as possible. A rough estimate of n can be obtained by a simple laser 

beam refraction experiment . A more accurate value is obtained by using 
0 

a grating with a larger period (A > 1700A) which is measurable in 

air using>-= 3250~. This same grating is then attached to the prism 

and one looks for its diffraction in higher orders. For example 
0 

if fl.= 2771A is measured in air, using the rough estimate of 

n ~ 1.5 we find that the Littrow reflection angles inside the prism 

will be¢~ 61.5° for the first order beam and¢~ 17.4° for the 

second order beam. The first order reflected beam is not observable 

in the forward direction because 

Sino= nsin¢ > l 
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However we will be able to see the second order reflected beam. 

Assume, for example, that the measured angle e is 35°27 1
, the index 

of refraction is then determined to very high precision as n = 1.54415 

(at ~ = 3250A). This n is used in equation (5-6) to calculate the 

grating periods with A smaller than 0,16 µm. The grating period 

measured by this method is less sensitive to the accuracy of angular 

readings than the previous method. This is seen from 

Equation (5-7) and equation (5~6) are plotted in Fig. 5-17(b) for 

n = 1.54415. 
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