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ABSTRACT

When atmospheric storms sweep across the sea surface they excite near-inertial waves (NIWs)
whose frequency sits close to the local Coriolis frequency. By generating shear-driven mix-
ing in the upper ocean, NIWs mediate the storm–ocean coupling and, in turn, influence
climate. Oceanographers have long known that the fate of wind-generated NIWs hinges on
how they interact with the background circulation – especially with mesoscale eddies – but
observations show that this interaction ranges from negligible to dominant depending on lo-
cation. Those regional contrasts matter: eddy-modified NIWs can dramatically reshape the
pattern and intensity of mixing. My thesis uses a mix of theory, observations, and numerical
modelling to better understand the dynamics that governs NIW-mesoscale interactions.
In trying to understand how NIWs behave in the presence of mesoscale eddies, the work of
theoreticians culminated in the YBJ (Young and Ben-Jelloul) equation which describes the
evolution of NIWs, including the physics of advection and refraction of NIWs by mesoscale
eddies. I test whether this equation, subject to observations of the wind stress, stratification
and mesoscale eddy field, can capture the observed dynamics of NIWs. Simulations of the
YBJ equation can be compared to observations from a mooring array in the North Atlantic.
The simulation reproduces the amplitude, phase, and across-array structure of the waves,
and it reveals strong concentration of NIWs in anticyclones. In contrast, the traditional slab
model – lacking mesoscale interaction physics – performs poorly. Potential energy budget
diagnostics further show that, in this region, the net NIW–eddy energy exchange is small
compared to other terms in the mesoscale energy budget.
Given the utility of the YBJ equation in understanding observations, I next try to understand
theoretically what governs the impact that mesoscale eddies have on NIWs. This analysis
heavily leverages the connection between the YBJ equation and the Schrödinger equation
of quantum mechanics. The key governing parameter in the YBJ equation is the wave dis-
persiveness which quantifies the ratio of wave dispersion to wave refraction. Analytical cal-
culations of the eigenmodes of the YBJ equation show that strongly dispersive waves are
marginally affected by the eddies. However, eddies strongly imprint onto weakly dispersive
NIWs. In the weak dispersion limit, the ray-tracing equations emerge from the YBJ equation,
resolving some controversies regarding the applicability of ray-tracing to NIWs.
Finally, I try to understand how these different regimes may be distributed throughout the
ocean. Observations from the Global Drifter Program can be used to calculate NIW spectra.
Separating these spectra by vorticity reveals the impact of NIW-mesoscale interactions. NIW
frequency shifts correlate strongly with vorticity, signalling weakly dispersive dynamics.
Only a patch of the North Pacific shows a muted impact of mesoscale eddies. In high energy
regions, such as western boundary currents and the Antarctic Circumpolar Current, NIWs
exhibit a net negative frequency shift – a potential sign of strongly dispersive waves. The
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true NIW signal is composed of many wave modes, each with a different dispersiveness, and
each contributing to the observations. Idealised simulations of the YBJ equation are able to
replicate the observed spectra from drifters well. The eigenmode approach is also useful in
understanding the underlying physics that results in the observed spectral characteristics.
The drifters confirm that trapping in anticyclones is common, but not universal.



vii
PUBLISHED CONTENT AND CONTRIBUTIONS

Conn, S., Fitzgerald, J., and Callies, J., 2024: Interpreting Observed Interactions between
Near-Inertial Waves and Mesoscale Eddies. Journal of Physical Oceanography, 54 (2),
485-502, doi:10.1175/JPO-D-23-0139.1.
All authors conceived the study. S.C. performed the data analysis and simulations. S.C.
wrote the paper, and all authors contributed to the editing.

Conn, S., Callies, J., and Lawrence, A., 2025: Regimes of Near-Inertial Wave Dynamics.
Journal of Fluid Mechanics, 1002, A22, doi:10.1017/jfm.2024.1175.
All authors conceived the study. S.C. performed most of the calculations, J.C. per-
formed the calculations of the invariant tori. S.C. wrote the paper, and all authors con-
tributed to the editing.

https://doi.org/10.1175/JPO-D-23-0139.1
https://doi.org/10.1017/jfm.2024.1175


viii
TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Published Content and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Chapter I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter II: Interpreting Observed Interactions between Near-Inertial Waves and Me-

soscale Eddies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Appendix A: YBJ kinetic energy Budget . . . . . . . . . . . . . . . . . . . 30
2.9 Appendix B: YBJ Upper Boundary Condition . . . . . . . . . . . . . . . . 31
2.10 Appendix C: YBJ Potential Energy Budget . . . . . . . . . . . . . . . . . . 32

Chapter III: Regimes of Near-Inertial Wave Dynamics . . . . . . . . . . . . . . . . . 33
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 The YBJ equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 The strong-dispersion limit . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 The weak-dispersion limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Relation to the ray tracing equations . . . . . . . . . . . . . . . . . . . . . . 57
3.7 Near-inertial wind work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8 Limitations of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.10 Appendix A: Calculating the wave dispersiveness . . . . . . . . . . . . . . 66
3.11 Appendix B: Numerical solutions to the eigenvalue problem . . . . . . . . . 66
3.12 Appendix C: Analytical solutions to shear flow WKB integrals . . . . . . . 67
3.13 Appendix D: Further Details about the EBK Method . . . . . . . . . . . . . 68
3.14 Appendix E: Estimating the decorrelation time of wind stress . . . . . . . . 69

Chapter IV: Global Near-Inertial Wave Spectra Shaped by Mesoscale Eddies . . . . . 70
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Drifter Observations of NIWs . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Idealized Simulations of NIWs . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 NIWs in an Idealized Vortex Dipole . . . . . . . . . . . . . . . . . . . . . . 88
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.8 Appendix A: Least-Squares Fit . . . . . . . . . . . . . . . . . . . . . . . . 95



ix
4.9 Appendix B: Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . 95
4.10 Supplemental Information: Confidence Intervals . . . . . . . . . . . . . . . 95

Chapter V: Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



1
C h a p t e r 1

INTRODUCTION

“Physics has found no straight lines. Instead, the physical universe consists of only waves
undulating back and forth allowing for corrections and balance.”

-R. Buckminster Fuller

Humans have long been aware of an inextricable link between the winds and the waves. Over
2000 years ago, in his famous treatise on meteorology, Meteorologica, Aristotle hypothe-
sised that the “winds are the causes of waves.”1 Although science has progressed enormously
since the Meteorologica, his depiction of an ocean driven by the winds remains fundamen-
tally correct. Some of Earth’s strongest winds can be found over the ocean, where, unbridled
by the constraints of surface friction, they can reach extraordinary speeds. On land we asso-
ciate such winds with destruction, but over the sea they play a different role, engendering an
energetic ocean circulation. Indeed, the winds are the ultimate source of the vast majority of
kinetic energy in the ocean 2. The global wind work has been estimated at 64 TW (Huang,
2004), with variability across a wide range of spatial and temporal scales. While most of
this power ultimately fuels surface waves/turbulence, ∼4 TW gives rise to internal waves
and the general circulation (Flexas et al., 2019).
Much as a trained opera singer can shatter glass by matching its natural frequency, vari-
ability in the winds excites vigorous internal motions when it resonates with the ocean’s
natural (Coriolis) frequency 𝑓 . A power spectrum of the winds shows nothing remarkable
at this frequency, yet a spectrum of the ocean velocity shows a peak at 𝑓 , towering above
the background of other waves (Figure 1.1). This peak is the hallmark of near-inertial waves
(NIWs). Ubiquitous throughout the ocean, NIWs influence climate on both regional and
global scales. This thesis aims to understand how NIWs interact with the rest of the turbu-
lent ocean, motivated by a desire to understand the life-cycle of NIWs – from generation to
dissipation – and the effects they have along the way.
NIWs are internal waves with a frequency close to 𝑓 and represent a significant fraction of
the high-frequency variability of the ocean. The strongest NIWs can reach up to ∼1 m s−1.
NIWs are circularly polarised, which arises from a balance between inertial and Coriolis
terms in the momentum equation. NIWs are also associated with strong vertical shear, more
so than other internal waves (see e.g., Pinkel, 2008). By virtue of being wind-generated,

1Aristotle almost certainly had no concept of internal waves, which will be the topic of this thesis. We’ll
give him a pass.

2A small but non-negligible portion of the ocean’s kinetic energy is derived from the lunisolar tides (Wunsch
and Ferrari, 2004).
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Figure 1.1: Figure showing the power spectrum of the ocean current velocity (solid blue) compared
to the power spectrum of the wind velocity (dashed green). The black dotted line shows the location
of the Coriolis frequency 𝑓 . Data is taken from the mooring at Ocean Station Papa in the North
Pacific (50.1◦N). The data is provided at hourly resolution from 2007 to 2025, and split into 42 day
segments to calculate the spectra.

NIWs show up as an intermittent signal in observations. These unique features of NIWs
lead to important impacts on the climate but also make them hard to observe.
Previous work has highlighted a myriad of important roles that NIWs play in the global cli-
mate system. The strong vertical shear of NIWs can generate shear instabilities. As a result,
NIWs deepen the mixed-layer, especially in the wake of atmospheric storms (Plueddemann
and Farrar, 2006; Alford, 2020). Improperly representing NIWs in a model can result in
biases in sea-surface temperature, precipitation and atmospheric winds due to biases in the
mixed-layer depth (Jochum et al., 2013). In the Arctic, NIWs have been implicated in the
mixing of heat from the deeper, warmer Atlantic water into the surface (Fer, 2014). Near
30◦, the diurnal frequency corresponds with the local Coriolis frequency and strong NIWs
can be generated by the diurnal breeze. These strong NIWs and their interactions with cur-
rents have been shown to influence the ventilation of deeper waters (Qu et al., 2022) and
phytoplankton dynamics (Lucas et al., 2014). NIWs are also an important feature of the
ocean’s response to tropical cyclones. The strong winds associated with tropical cyclones
can excite strong NIWs which can then contribute to enhanced vertical mixing (see e.g.,
Gutiérrez Brizuela et al., 2023; Yuan et al., 2024; Lazaneo et al., 2024).
Unfortunately, NIWs are hard to observe and we are consequently lacking a clear global pic-
ture of their dynamics. NIWs have no leading-order signal in sea-surface height (recall that
the primary balance for NIWs does not involve the pressure gradient term) and so NIWs are
invisible to satellite altimetry. Therefore, it remains unclear where or how much energy is
entering and leaving the NIW band in a global sense. We are left with local in-situ measure-



3
ments and modelling to understand the dynamics of NIWs. Therefore, to fully understand
the impacts of NIWs on the global climate we need to fully leverage available observations
and theory to help us understand the propagation and dynamics of NIWs.
Wind-generated NIWs do not propagate through a quiescent ocean; instead they are forced
into an already turbulent ocean. This flow consists of large-scale, mesoscale, and submeso-
scale motions as well as tides and other internal waves. In the past few decades it has become
clear that interactions with the mesoscale can strongly govern the evolution of NIWs. Obser-
vational studies reveal that the importance of the mesoscale to NIW dynamics likely varies
spatially in the ocean. Some observational studies show NIWs whose evolution is strongly
constrained by the presence of mesoscale eddies (see e.g., Thomas et al., 2020). These stud-
ies highlight the rich dynamics of NIW-mesoscale interactions. A symptom of this inter-
action is that NIWs may become concentrated into regions of anticyclonic vorticity. This
provides an efficient route for NIWs to propagate out of the mixed-layer 3 in a phenomenon
that has been termed the inertial chimney (Lee and Niiler, 1998) or drainpipe (Asselin and
Young, 2020). Other observational studies show a more muted role of NIW-mesoscale inter-
actions in the evolution of NIWs (see e.g., D’Asaro et al., 1995). While these observational
studies are crucial to understanding the dynamics of NIWs, their interpretation has been
greatly aided by progress in our theoretical understanding of NIW-mesoscale interactions.
Theoretical progress relies on making approximations to the equations of motion. Early stud-
ies of NIWs were based on simple slab mixed-layer models (Pollard and Millard Jr, 1970).
These models retain the inertial, Coriolis and wind-stress terms in the horizontal momen-
tum equations. All of the physics that results in propagation of NIWs out of the mixed-layer
is then parametrised in the model as a linear decay. This is a drastic simplification of NIW
dynamics, yet the slab mixed-layer model remains a popular tool to simulate NIWs given
the practicality of running such models across the entire globe (Alford, 2001). Kunze (1985)
developed a theory that tried to better resolve the physics of the interaction. By assuming the
waves are propagating through a slowly-varying background flow, ray-tracing can be used
to calculate the path of NIW packets through a balanced background field. To perform ray-
tracing calculations, Kunze (1985) derived a dispersion relation for NIWs in the presence
of a background field 4:

𝜔 = 𝑓 + 1
2
𝜁 + 𝑁2𝐾2

2𝑓0𝑚2
+ 𝒌 ⋅ 𝑈, (1.1)

where 𝜔 is the wave frequency, 𝑼 = (𝑈, 𝑉 )𝑇 is the background velocity, 𝜁 = 𝜕𝑥𝑉 − 𝜕𝑦𝑈 is
the background vorticity, 𝑁2 is the stratification, 𝒌 = (𝑘, 𝑙, 𝑚)𝑇 is the wavevector, and 𝐾 =
√

𝑘2 + 𝑙2 is the horizontal wavenumber. The ray-tracing approach has come under criticism
for its spatial-scale separation assumption. In particular, if NIWs are forced by large-scale

3The vertical group velocity of NIWs scales as the horizontal wavenumber squared. Concentration into
anticyclones reduces the lateral scale of the NIWs and hence increases the vertical group velocity.

4The equation shown here is simplified by assuming a barotropic mean flow. The full dispersion relation
can be found in Kunze (1985) - Equation 6.
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atmospheric storms, they would be propagating through a quickly varying medium. Young
and Ben-Jelloul (1997, from hereon YBJ) developed a theory to explain NIW propagation
through a mesoscale eddy field that relies only on the temporal scale separation between
the fast waves and the slowly evolving mesoscale flow. The YBJ equation is an evolution
equation for the NIW field 5:

𝜕3𝑀
𝜕2𝑧𝜕𝑡

+ 𝐽
(

𝜓, 𝜕
2𝑀
𝜕2𝑧

)

+ 𝑖𝑁2

2𝑓
∇2𝑀 +

𝑖𝜁
2
𝜕2𝑀
𝜕2𝑧

= 0, (1.2)

where 𝒖 = (𝑢, 𝑣)𝑇 is the NIW horizontal velocity, 𝜕𝑧𝑀 = (𝑢 + 𝑖𝑣)𝑒𝑖𝑓0𝑡 is the back-rotated
and complexified NIW velocity, 𝐽 (𝑎, 𝑏) = 𝜕𝑥𝑎 ⋅ 𝜕𝑦𝑏− 𝜕𝑥𝑏 ⋅ 𝜕𝑦𝑎 is the Jacobian operator, and
𝜓 is the mesoscale streamfunction. In this equation, the NIW-mesoscale interaction shows
up in the advection term as well as in the term involving 𝜁 = ∇2𝜓 . Xie and Vanneste (2015,
from hereon XV) extended the YBJ theory to include the back-reaction of the NIWs on the
mesoscale eddy field. The XV model predicts that NIW potential energy should be gener-
ated at the expense of mesoscale kinetic energy in a process known as stimulated generation.
The YBJ/XV models represent the most complete theoretical models of NIW-mesoscale in-
teractions that we have. However, they still require input from observations/high-resolution
numerical models to quantify the relative importance of the various physical processes that
they predict. In Chapter 2 of my thesis I use these models to better understand the processes
that govern NIW evolution in the real ocean and how they may manifest themselves in ob-
servations.
The YBJ equation 1.2 is a complicated 3D partial differential equation. Given that we are
assuming a barotropic background flow, we can obtain a simplification by decomposing the
solution into the vertical baroclinic modes. Writing the NIW velocity for a single baroclinic
mode as [𝑢𝑤(𝑥, 𝑦, 𝑡), 𝑣𝑤(𝑥, 𝑦, 𝑡)]𝑔(𝑧), with 𝑔(𝑧) being the baroclinic mode structure, we can
define a back-rotated velocity as 𝜙 = (𝑢𝑤 + 𝑖𝑣𝑤)𝑒𝑖𝑓 𝑡. The YBJ equation then becomes

𝜕𝜙
𝜕𝑡

+ 𝐽 (𝜓, 𝜙) +
𝑖𝜁
2
𝜙 −

𝑖𝑓𝜆2

2
∇2𝜙 = 0, (1.3)

where 𝜆 is the deformation radius associated with the baroclinic mode. There is one non-
dimensional number associated with this equation known as the wave dispersiveness. If Ψ
is the scale of the streamfunction then the wave dispersiveness 𝜀2 = 𝑓𝜆2∕Ψ. It represents
the ratio of the strength of dispersion to the strength of refraction. Thomas et al. (2024a)
argued that differences in the wave dispersiveness were partially responsible for the different
importance of mesoscale eddies to the evolution of NIWs in different regions of the ocean. In
Chapter 3 of my thesis, I apply techniques from quantum mechanics to this form of the YBJ
equation to understand how NIWs behave in these different regimes. Using this framework,
I will also show how the ray-tracing framework of Kunze (1985) relates to the YBJ equation.

5We again show the equation for a barotropic mean flow. We also set the planetary vorticity gradient 𝛽 to
zero. The full equation can be found in Young and Ben-Jelloul (1997) - Equation 4.7.
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Compared to these theoretical models, NIWs in the real ocean display a great deal of com-
plexity. Differences in the properties of the atmospheric winds and the structure of the mixed
layer influence the amount and vertical structure of near-inertial energy forced by the winds.
Differences in the local stratification and mesoscale eddy field will influence the subsequent
propagation and dissipation of NIWs. The variability of NIW dynamics, and in particular
the variability in the interaction between NIWs and mesoscale eddies, has not been well-
mapped at a global scale. Such a mapping is essential to understand the role of NIWs in
the climate system, as many of their impacts depend sensitively on the details of how the
NIWs evolve, which in turn depends on the characteristics of the NIW-mesoscale interac-
tion. Using data from the Global Drifter Program, Elipot et al. (2010) found evidence that
NIW spectral properties are modulated by mesoscale eddies globally. When averaging over
all drifter observations, they showed that the frequency of the NIW peak is shifted by ∼ 0.4𝜁
– close to the ray-tracing prediction of 𝜁∕2. However, such a global mean cannot provide any
information about how the characteristics of the NIW-mesoscale interactions are distributed
throughout the ocean. In Chapter 4 of my thesis, I diagnose NIW spectral characteristics 6

and their dependence on the mesoscale eddy field with global resolution. I show how these
characteristics are expected from the YBJ model and explain the underlying physics that
gives rise to them.

6The stated motivation focuses on understanding the role of NIWs in the climate system. However, this is
also a pure physics question. If we claim to understand the dynamics of NIWs, then we should be able to explain
what sets the difference in their spectral properties throughout the ocean.
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C h a p t e r 2

INTERPRETING OBSERVED INTERACTIONS BETWEEN NEAR-INERTIAL
WAVES AND MESOSCALE EDDIES

This chapter is reproduced from the published article:
Conn, S., Fitzgerald, J., and Callies, J., 2024: Interpreting Observed Interactions between
Near-Inertial Waves and Mesoscale Eddies. Journal of Physical Oceanography, 54 (2), 485-
502, doi:10.1175/JPO-D-23-0139.1.© American Meteorological Society. Used with permis-
sion.
As a self-contained work, some notation may differ from conventions used elsewhere in this
thesis.

2.1 Abstract
The evolution of wind-generated near-inertial waves (NIWs) is known to be influenced by
the mesoscale eddy field, yet it remains a challenge to disentangle the effects of this interac-
tion in observations. Here, the model of Young and Ben Jelloul (YBJ), which describes NIW
evolution in the presence of slowly evolving mesoscale eddies, is compared to observations
from a mooring array in the Northeast Atlantic Ocean. The model captures the evolution of
both the observed NIW amplitude and phase much more accurately than a slab mixed layer
model. The YBJ model allows for the identification of specific physical processes that drive
the observed evolution. It reveals that differences in the NIW amplitude across the mooring
array are caused by the refractive concentration of NIWs into anticyclones. Advection and
wave dispersion also make important contributions to the observed wave evolution. Stim-
ulated generation, a process by which mesoscale kinetic energy acts as a source of NIW
potential energy, is estimated to be 20 µWm−2 in the region of the mooring array, which is
two orders of magnitude smaller than the global average input to mesoscale kinetic energy
and likely not an important contribution to the mesoscale kinetic energy budget in this re-
gion. Overall, the results show that the YBJ model is a quantitatively useful tool to interpret
observations of NIWs.

2.2 Introduction
Near-inertial waves (NIWs), internal waves with a frequency close to the inertial frequency 𝑓 ,
are resonantly excited by atmospheric winds exerting a stress on the ocean’s surface. It has
long been recognized that these waves can interact with mesoscale eddies and that this inter-
action may be important in the life cycle of wind-generated NIWs. Observational evidence of
NIW–mesoscale interactions is accumulating, but interpreting the observed NIW evolution
in the presence of mesoscale eddies remains challenging. Here, we employ the theoretical

https://doi.org/10.1175/JPO-D-23-0139.1
https://www.ametsoc.org/PUBSCopyrightPolicy
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framework of Young and Ben-Jelloul (1997, from hereon YBJ) to identify and interpret such
interactions in mooring observations in the Northeast Atlantic Ocean.
NIWs are associated with a large vertical shear, which can result in shear instabilities and ver-
tical mixing (for a review, see Alford et al., 2016). These shear instabilities are a key mech-
anism by which atmospheric storms can cause the surface mixed layer to deepen. Jochum
et al. (2013) showed that an improved representation of NIWs in a climate model led to a
deepening of the mixed layer on average, which in turn resulted in significant changes in sea
surface temperatures, winds, and precipitation.
The amount of NIW shear in the upper ocean, and as a consequence the amount of mixed
layer deepening, depends on both the energy input into the NIW band and how rapidly NIWs
propagate to depth. The vertical propagation originally presented a paradox. The vertical
group velocity of NIWs varies as 𝜅2, where 𝜅 is the horizontal wavenumber. The atmo-
spheric storms that generate NIWs are typically 𝑂(1000 km) in size and generate NIWs
with a similar scale. Estimates of the vertical group velocity based on this horizontal scale
are much too slow to explain the observed decay of NIWs in the mixed layer and propagation
to depth (D’Asaro et al., 1995). A reduction in the horizontal scale of the waves is required
to obtain a group velocity that matches observations. There are two possible mechanisms by
which this is thought to occur: (i) meridional variations in 𝑓 cause an increase in the merid-
ional wavenumber (𝛽-refraction; Gill, 1984), or (ii) interactions with the mesoscale circula-
tion can imprint structure onto the wave field at the scale of mesoscale eddies (𝜁 -refraction;
YBJ; Kunze, 1985). The presence of the former alone is enough to cause propagation of
NIWs out of the mixed layer, with the NIW kinetic energy in the mixed layer decaying as
𝑡−3∕2 (Moehlis and Smith, 2001). The latter process causes concentration of NIW energy
into anticyclones and subsequent downward propagation in inertial “chimneys” (Lee and
Niiler, 1998) or “drainpipes” (Asselin and Young, 2020).
There is a long history of NIW observations from in situ measurements. The Ocean Storms
Experiment (D’Asaro et al., 1995) was a groundbreaking observational campaign to study
the life cycle of wind-generated NIWs. The experiment tracked the response of the sur-
face ocean to strong wind forcing in a region with weak mesoscale eddies. It was found
that 𝛽-refraction was the dominant process driving the observed evolution of the meridional
wavenumber of the waves. The process of 𝜁 -refraction was found to have much less of an
effect than expected (D’Asaro, 1995), which YBJ argued was due to strong dispersion in
a weak eddy field. More recently, Thomas et al. (2020) used ship-based observations of
NIWs in a strong dipole vortex to estimate the rate of change in time of the NIW horizontal
wavenumbers. Here, the expected change in horizontal wavenumbers from 𝜁 -refraction was
consistent with the data. The observations further showed a NIW beam at depth, indicating
that the scale reduction had allowed the NIWs to propagate vertically out of the mixed layer.
Essink et al. (2022) studied typhoon-forced NIWs in the Kuroshio Current. They observed
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the trapping of NIWs in a region of anticyclonic vorticity, followed by downward propa-
gation. They also measured the vertical structure of turbulence and showed how this was
influenced by NIW dynamics. Yu et al. (2022a) investigated the interaction of NIWs and
mesoscale eddies in observational data of NIWs from the Northeast Atlantic (the same data
as we will use below). They showed that regions of elevated NIW kinetic energy are statis-
tically associated with mesoscale anticyclones and that the submesoscale vorticity exerted
little control on the horizontal concentration of NIWs and the subsequent propagation to
depth. These studies, however, often focus on a single physical process (usually refraction)
and many make assumptions about the NIW dynamics that may not be universally justified.
Here, we propose that the YBJ model is a general theoretical framework that, when applied
to observations, allows us to understand the multiple physical processes that govern NIW
evolution.
It has also been proposed that NIWs not only react to the presence of mesoscale eddies but
feed back on the eddies and affect their evolution. Approximately 80% of the ocean’s kinetic
energy exists as mesoscale motions (Ferrari and Wunsch, 2009). The geostrophic constraint
on mesoscale eddies traps energy at large scales, and it is not entirely clear how the energy
input into mesoscale motion is balanced by dissipation (Müller et al., 2011). A number
of mechanisms by which mesoscale eddies lose energy are known, including dissipation
in bottom boundary layers (e.g., Arbic and Flierl, 2004), the generation of dissipative lee
waves (e.g., Nikurashin et al., 2013), energy loss near western boundaries (e.g., Zhai et al.,
2010), and the top drag arising from the current dependence of the wind stress (e.g., Dewar
and Flierl, 1987; Renault et al., 2016). The extraction of energy from mesoscale eddies by
NIWs presents another possibility (Xie and Vanneste, 2015; Rocha et al., 2018). Given the
great importance of mesoscale eddies to the transport of heat and carbon (e.g., Jayne and
Marotzke, 2002; Gnanadesikan et al., 2015), even small changes (see discussion in Asselin
and Young, 2020) to the mesoscale eddy field caused by NIWs may be significant to the
impact of the ocean on climate.
To understand the propagation of NIWs and by extension the role they play in upper-ocean
mixing, we need to understand the dynamics governing their evolution. Slab mixed layer
models (Pollard and Millard Jr, 1970, from hereon PM) are a commonly used tool to model
NIW evolution (e.g., D’Asaro, 1985; Alford, 2001, 2020; Guan et al., 2014). PM showed
that a slab model can reproduce key features of the NIW evolution observed by moorings.
With the horizontal NIW velocity denoted by (𝑢, 𝑣)T, the PM model can be written as:

𝜕𝑡𝑢 − 𝑓𝑣 = −𝑟𝑢 + 𝜏𝑥

𝜌𝑤𝐻𝑚
, (2.1a)

𝜕𝑡𝑣 + 𝑓𝑢 = −𝑟𝑣 + 𝜏𝑦

𝜌𝑤𝐻𝑚
, (2.1b)

where 𝑟−1 is a decay timescale, 𝜌𝑤 is the density of water,𝐻𝑚 is the mixed layer depth, and 𝝉
is the wind stress. This model does not explicitly represent any physical processes affecting
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the evolution of NIWs other than the wind forcing and Coriolis effect. All other processes
are subsumed in the linear drag, which can be thought of as a parameterization primarily for
the propagation of NIWs out of the mixed layer. Observations indicate that this process is
slow relative to the inertial frequency (e.g., D’Asaro et al., 1995), and so we require 𝑟 ≪ 𝑓 .
Other than this restriction, 𝑟 is a tunable parameter.
Despite its successes in capturing some aspects of the observed NIW signal, the PM model
cannot explain the propagation of NIWs out of the mixed layer. If the NIW field is initially
uniform, it will remain so. The model captures neither 𝛽-refraction nor the interaction with
mesoscale eddies.
A more general framework to understand the evolution of NIWs was devised by YBJ by
assuming a time scale separation between the fast waves and the slowly evolving mesoscale
flow. In the YBJ framework, the horizontal NIW velocity is first complexified (written as
𝑢+ 𝑖𝑣). Since NIWs have a frequency close to 𝑓 , it is convenient to write this complexified
velocity as 𝑢+ 𝑖𝑣 = 𝑒−𝑖𝑓 𝑡𝜕𝑧𝑀(𝑥, 𝑦, 𝑧, 𝑡). The function 𝜕𝑧𝑀 describes the slow evolution of
the envelope that modulates the NIW phase and amplitude. The YBJ equation describes how
𝜕𝑧𝑀 evolves in the presence of prescribed geostrophic mesoscale eddies. On an 𝑓 -plane,
the equation reads

𝜕𝑧𝑧𝑡𝑀 + 𝐽 (𝜓, 𝜕𝑧𝑧𝑀) + 𝑖𝑁2

2𝑓
∇2𝑀 +

𝑖𝜁
2
𝜕𝑧𝑧𝑀 = 𝜕𝑧𝑧 − 𝜈∇4𝜕𝑧𝑧𝑀, (2.2)

where 𝜓 is the geostrophic streamfunction, ∇2 = 𝜕2𝑥 + 𝜕
2
𝑦 is the horizontal Laplacian oper-

ator, 𝜁 = ∇2𝜓 is the geostrophic vorticity, 𝑁2 is the stratification,  is a forcing term that
represents the momentum flux due to the surface wind stress, and 𝜈 is a hyper-diffusivity
included for numerical stability (see Section 2.4). In (2.2) and throughout this paper, we
assume the geostrophic flow to be barotropic (i.e., 𝜓 is independent of depth), although
baroclinicity in the geostrophic eddy field can also be taken into account. Unlike the PM
model, the YBJ equation does not have a tuneable parameter.
The second term in (2.2) represents advection of NIWs by the mesoscale flow. The third term
represents changes in the NIW field due to dispersion. The presence of the dispersion term
means that an initially localized wave packet will spread out as time progresses. The fourth
term is responsible for the process of 𝜁 -refraction. This term sets into motion the imprinting
of mesoscale structure onto an initially horizontally uniform wave field. This 𝜁 -refraction
shifts the phase of the NIWs, which we can see by neglecting all other terms in the YBJ
equation:

𝜕𝑧𝑧𝑡𝑀 = −
𝑖𝜁
2
𝜕𝑧𝑧𝑀. (2.3)

Assuming a steady vorticity field yields solutions of the form 𝜕𝑧𝑧𝑀 = 𝐶(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜁𝑡∕2.
Spatial heterogeneities in the mesoscale vorticity will result in spatial heterogeneities in the
NIW phase. The dispersion term in the full YBJ equation (2.2) then acts on these phase
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gradients and fluxes energy into anticyclones and out of cyclones. This can be seen from the
YBJ kinetic energy budget (Appendix A):

𝜕𝑡 + 𝐽 (𝜓,) + ∇ ⋅ 𝐅 + 𝜕𝑧𝐺 = 𝛾𝐹 + 𝑑, (2.4)

where is the NIW kinetic energy density,𝐅 and𝐺 are the horizontal and vertical energy
fluxes due to dispersion, 𝛾𝐹 is the energy input by the forcing, and 𝑑 is the dissipation due
to the hyperviscosity term. The horizontal energy flux 𝐅 can be expressed in terms of
gradients of the phase Θ of 𝑀 (Rocha et al., 2018):

𝐅 =
𝑁2

|𝑀|

2

2𝑓
∇Θ. (2.5)

The spatial heterogeneities that the mesoscale vorticity 𝜁 induces in the NIW phase thus
cause a transfer of NIW energy in the horizontal. Once this 𝜁 -refraction has imprinted the
horizontal structure of eddies onto an initially uniform NIW field, advection will also act
on the resulting gradients and stir the NIW field. Dispersion remains important and helps
waves escape straining regions (Rocha et al., 2018). The scale reduction also accelerates
the propagation of NIWs out of the mixed layer. This is represented in the YBJ energy
budget (2.4) through the vertical flux 𝐺, which requires horizontal gradients in the NIW
field to produce energy fluxes to depth (Appendix A).
The energy input into the NIW band by the winds 𝛾𝐹 is known as the NIW wind work. The
difference between the NIW wind work and the NIW kinetic energy that propagates out of
the surface layer is the energy that is available for NIW mixing in the surface ocean. Both
processes therefore influence the mixed layer depth. There has been extensive effort to es-
timate the NIW wind work. It can be calculated directly from concurrent observations of
winds and NIW surface currents, but this is possible in a few locations only. Slab models
have been used to obtain global estimates of the NIW wind work (Alford, 2001) but these are
suspected to be overestimates, primarily because these models poorly represent the various
processes that cause NIWs to leave the mixed layer. This can include the vertical propaga-
tion discussed above, but the employed models often also do not represent dissipation of
NIWs by conversion to turbulent kinetic energy, which would reduce the projection of the
wind stress onto the waves (Plueddemann and Farrar, 2006; Alford, 2020). High-resolution
ocean models can also be used to estimate the wind work, but here problems can arise from
limitations in the reanalysis data used to force the models. For example, Flexas et al. (2019)
showed that the NIW wind work was poorly represented in a high-resolution ocean model
due to the wind forcing missing variability on scales less than 6 hours and 15 km. The power
input is larger in high-resolution coupled simulations but still substantially lower than ob-
servational estimates from slab models (von Storch and Lüschow, 2023).
The mesoscale can act as a source of wave potential energy in a process known as stimulated
generation. In unforced and inviscid YBJ dynamics, the wave kinetic energy is conserved
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but NIWs can gain or lose potential energy through interactions with the mesoscale. In the
YBJ framework, the domain-integrated potential energy is not conserved (Appendix B):

𝜕𝑡⟨⟩ = Γ𝑅 + Γ𝐴 + , (2.6)

where  is the potential energy density, Γ𝑅 is the production of potential energy by refrac-
tion, Γ𝐴 is the production of potential energy by advection, and  is the potential energy
dissipation by hyperviscosity. The formation of horizontal structure in an initially uniform
NIW causes an increase in NIW potential energy via Γ𝑅 and Γ𝐴 . In the first phase of in-
teraction, Γ𝑅 dominates as the waves have the mesoscale structure imprinted on them. At
later times, Γ𝐴 becomes the most important term. An extension of YBJ describing the cou-
pled evolution of NIWs and a quasi-geostrophic mesoscale field was derived by Xie and
Vanneste (2015) (see also Wagner and Young, 2016). This extension shows that the refrac-
tive and advective sources of potential energy to the NIWs appear as sinks in the mesoscale
energy budget. This allows us to interpret Γ𝑅 and Γ𝐴 as energy transfers from the mesoscale,
despite the fact that we impose the mesoscale field in the simulations described below. The-
oretical and numerical studies (Xie and Vanneste, 2015; Rocha et al., 2018; Asselin and
Young, 2020) have investigated the process of stimulated generation, yet its importance in
the real ocean remains poorly constrained.
Several attempts have been made to reconcile available observations with our theoretical un-
derstanding of NIW–mesoscale interactions. Work on the NIW–mesoscale interaction prior
to YBJ had been based on ray tracing theory, which additionally assumes that the waves have
much shorter spatial scales than the background mesoscale flow (Kunze, 1985). Ray tracing
predicts the NIW frequency to be shifted by 1

2𝜁 . This prediction, however, applies only in
regions of the ocean where the WKB limit of ray tracing is appropriate. YBJ argued that this
was not the case for the Ocean Storms Experiment, suggesting that the observations were
taken in a region where the waves are instead in the so-called strong-dispersion limit. In
this limit, refraction of the large-scale wave field is strongly opposed by dispersion, and the
frequency shift is much smaller than predicted by WKB theory. This provides a compelling
potential explanation of D’Asaro’s (1995) observation that the NIW frequency shift was at
least five times smaller than 1

2𝜁 during Ocean Storms.
This interpretation of the Ocean Storms Experiment was pursued further by Balmforth et al.
(1998), who ran spin-down simulations of the YBJ equation. NIWs were initialized in the
mixed layer and evolved in the presence of an idealized, barotropic mesoscale eddy field.
Qualitative comparisons between the simulations and observations showed that YBJ dy-
namics were not inconsistent with the observed time for NIWs to escape the mixed layer.
Balmforth and Young (1999) showed that including the 𝛽-effect improved the agreement
with observations. Because an idealized eddy field was used, however, no quantitative con-
clusions could be drawn about the ability of YBJ to capture the observed evolution.
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More recently, Asselin and Young (2020) investigated the fate of NIWs as they propagate
into a baroclinic mesoscale eddy field using numerical simulations of the extended YBJ
system that also accounts for the effect of the waves on the mesoscale. They observed the
initially horizontally uniform NIWs undergoing scale reduction by 𝜁 -refraction and then
propagate downwards in anticyclones. The vertical wave propagation terminated at depth
due to the decay of the baroclinic vorticity away from the surface. For strong NIWs, they
also found that the mesoscale eddy field was weakened due to stimulated generation. While
this work was motivated by observations, it again employed an idealized setup that made
direct comparisons to observations difficult.
In this study, we aim to bridge the gap between theory and observations by using the YBJ
framework to interpret the observed evolution of NIWs in the Northeast Atlantic Ocean.
We use an array of nine moorings to capture some of the mesoscale variations in the NIW
field. The YBJ framework allows us to attribute the observed NIW evolution to a set of
well-defined physical processes. We integrate the three-dimensional YBJ equation using
observational inputs for the wind forcing, mesoscale streamfunction, and stratification, and
we compare these simulations to simpler slab models. We show that the YBJ model offers
significant improvements in modeling NIW evolution, without the need for any tuning. We
use the YBJ energy budgets to provide a dynamical interpretation of spatial and temporal
variations in the NIW field and quantify the relative importance of the various physical
processes involved. We also provide an estimate for the importance of stimulated generation
in this region.

2.3 Observations
2.3.1 NIW Data
We extract observations of NIWs from data collected for the Ocean Surface Mixing, Ocean
Submesoscale Interaction Study (OSMOSIS; Buckingham et al., 2016). As part of the study,
measurements were taken from nine moorings anchored over the Porcupine Abyssal Plain
in the northeastern part of the Atlantic Ocean from September 2012 to September 2013. The
moorings were all distributed less than 10 km from a central mooring located at (48.6875◦N,
−16.1875◦E) (Fig. 2.1a,b). In this study, we focus on observations from the central mooring
and the four outermost moorings. Each mooring took measurements of the horizontal veloc-
ity once every ten minutes using an acoustic current meter (ACM). On the central mooring,
there were 13 ACMs spaced nominally between 50 m and 500 m depth. On the outer moor-
ings there were five ACMs nominally spaced over the same depth range. The deepest ACM
failed on the outer northeast (ONE) mooring, and so measurements are only available to a
depth of 361 m.
The NIW signal is extracted using a Gaussian filter in frequency space. At this latitude,
the near-inertial frequency (0.40 h−1) is close to the frequency of the M2 tidal constituent
(0.50 h−1), and so we choose a filter width which corresponds to 11% of 𝑓 to exclude the
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Figure 2.1: (a) Location of the OSMOSIS mooring array (yellow square) overlaid on a map of the
bathymetry. (b) Geometry of the mooring array that consists of a central mooring (C) surrounded
by an inner and an outer group of moorings. The inner moorings are labeled with an “I” followed
by the cardinal direction of the mooring in relation to the central mooring. The outer moorings are
labeled in a similar way but with an “O” identifier. (c) Time-series of NIW amplitude extracted
from the OSMOSIS mooring observations from September 2012 to September 2013. The solid line
indicates the observations at the central mooring while the orange ribbon represents the range across
the mooring array. The gray shading indicates the five NIW events discussed in the text. To illustrate
the process of extracting the NIW signal, the inset shows the raw velocity (top) and NIW velocity
(bottom) during event 5. The amplitude of the envelope modulating the NIW velocity is |𝜕𝑧𝑀|.

sizable tidal motion from the filtered time series. The conclusions we draw below are not
sensitive to the filter width so long as the filter does not include the M2 peak. We identify
five events in the year-long time series where strong NIWs were forced relatively coherently
across the mooring array (Fig. 2.1c).
The actual depth of the instruments varied in time due to drag exerted by the flow on the
moorings. Over the course of the year, there were several times where the moorings ex-
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perienced knockdown by up to 200 m (Callies et al., 2020). We flag these events if the
knockdown on the central mooring is more than 10 m when averaged with a 1-day running
mean. Outside of these knockdown events the variations in mooring depth about the nomi-
nal depth is ∼2 m. The interpretation of the observed NIW signal during these knockdown
events is complicated because the filter we use to extract the NIW signal does not commute
with evaluating the signal along the trajectory of the ACMs. We do not attempt to explain
the observations during the knockdown periods.

2.3.2 Stratification and mixed layer Depth
We need the stratification and mixed layer depth as observational inputs to the numerical
YBJ simulations. The stratification influences the dispersion term in the YBJ equation and
the mixed layer depth informs us about what depth range to force the waves over. Two ocean
gliders sampled across the mooring array during the OSMOSIS study period (Damerell
et al., 2016; Thompson et al., 2016). The gliders measured temperature and salinity in the
upper 200 m of the water column approximately once every two hours. Following Damerell
et al. (2020), we calculate the mixed layer depth 𝐻𝑚 from the glider observations as the
depth at which either the potential density 𝜌 or the temperature 𝑇 has changed more than
a given threshold from the value at 5 m depth. These thresholds are Δ𝜌 = 0.03 kg m−3

for density and Δ𝑇 = 0.2 K for temperature. The final mixed layer depth is taken as the
shallowest of the two estimates.
The stratification 𝑁2 is calculated using:

𝑁2 = −
𝑔
𝜌
𝜕𝜌
𝜕𝑧
, (2.7)

where 𝑔 is the acceleration due to gravity. The stratification is then averaged over a given
event and the glider trajectories to result in a single spatially and temporally averaged profile
used for simulations.

2.3.3 Wind Data
For the wind forcing, we use the European Centre for Medium-Range Weather Forecasting
ERA-5 reanalysis (Hersbach et al., 2018). We extract time series of the 10 m zonal (𝑢𝑤) and
meridional (𝑣𝑤) winds with hourly resolution at the grid point that contained the mooring
array. Following Pollard and Millard Jr (1970) we convert this to a wind stress using a bulk
aerodynamic drag formulation. In terms of the complexified wind velocity (𝑤 = 𝑢𝑤+𝑖𝑣𝑤),
the complexified wind stress 𝜏𝑤 is given by:

𝜏𝑤 = 𝜌𝑎𝐶𝐷|𝑤|𝑤, (2.8)

where 𝜌𝑎 is the density of air and 𝐶𝐷 is the drag coefficient, which we calculate using the
speed-dependent formulation of Large and Pond (1981).
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2.3.4 Altimetry
To characterize the mesoscale eddy field, we use observations of the sea surface height
(SSH) from the Data Unification and Altimeter Combination System’s (DUACS) delayed-
time (DT) 2018 release (Taburet et al., 2019). The DUACS DT2018 SSH maps are provided
at a nominal (1∕4)◦ and daily resolution. We convert these measurements to a geostrophic
streamfunction using 𝜓 = 𝑔ℎ∕𝑓 , where ℎ is the SSH and 𝑓 is the latitude-dependent Cori-
olis parameter.

2.4 Models
2.4.1 The PM Model
We begin by writing the PM model in the language of YBJ. Adding (2.1a) to 𝑖 × (2.1b) and
multiplying by 𝑒−𝑖𝑓 𝑡 yields

𝜕𝑡𝑧𝑀 = −𝑟𝜕𝑧𝑀 + 𝜏
𝜌𝑤𝐻𝑚

, (2.9)

where 𝜏 = 𝑒−𝑖𝑓 𝑡𝜏𝑤 is the back-rotated, complexified wind-stress. For each NIW event, we
solve the PM equation using the reanalysis wind stress and the mixed layer depth from the
gliders. In order to better understand the role of 𝜁 -refraction in the life cycle of wind-forced
NIWs, we perform a second run of the PM model (denoted by PM+𝜁 ) augmented by the
refraction term from the YBJ equation:

𝜕𝑡𝑧𝑀 = −𝑟𝜕𝑧𝑀 −
𝑖𝜁
2
𝜕𝑧𝑀 + 𝜏

𝜌𝑤𝐻𝑚
. (2.10)

This shifts the NIW phase and hence changes the phasing of the NIWs relative to the wind.
It does not, however, capture the horizontal energy transfers induced by 𝜁 -refraction be-
cause these transfers require horizontal structure in the wave field, which is absent from the
horizontally uniform PM model.
For each event, we use a constant mixed layer depth that is an average of the time-varying
mixed layer depth over duration of the event. Since the events are relatively short, the error in
this approximation is minimal for most events. We make this choice of a constant mixed layer
depth to avoid complications that arise otherwise, especially in the YBJ model discussed
below.
The parameter 𝑟 is intended to account for all of the processes that decrease the wave ampli-
tude in the region of interest. This is primarily thought of as vertical propagation of NIWs
out of the mixed layer, but other processes such as advection and dissipation may also cause
the NIW amplitude to decrease. Treating all of these processes as a Rayleigh drag term with
a single decay parameter represents a drastic simplification in the PM model. It also intro-
duces a free parameter. Previous studies have chosen 𝑟 such that the resulting solutions fit
observations as closely as possible. The original PM paper used both 𝑟−1 = 4 days and
𝑟−1 = 8 days.
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Alford (2001) used a damping that would correspond to about 𝑟−1 = 4 days at the latitude of
the OSMOSIS mooring array. Yu et al. (2022a) used 𝑟−1 = 16.7 days to estimate the NIW
wind work during the OSMOSIS experiment using the PM model. We speculate that they
had to use very weak damping because their wind data was taken from ERA-interim reanal-
ysis, which has 6-hourly analysis steps with forecasts used to increase the time resolution to
3 hours, which may suppress the wind power at frequencies important for NIW generation.
A similarly weak damping is likely unsuitable here, given that ERA-5 reanalysis winds have
more power in the near-inertial band (see discussion in Flexas et al., 2019). Nevertheless,
we vary 𝑟−1 between 4 and 16 days.
For the PM+𝜁 model, we calculate the vorticity using the streamfunction from altimetry.
The data processing is as described below for the YBJ model, and we select the vorticity
value at the grid point nearest to the center of the mooring array.
We initialize the simulations with no waves and then allow the model to spin up before the
main forcing period for each event. We choose the initial time to be when the observations
show relatively little waves. This is done by eye. These initial times are followed by a strong
forcing event and so the NIW signal is dominated by the newly generated waves, implying
that the error from using an initial condition with no waves is relatively small. This discus-
sion also applies to the YBJ simulations we run. We integrate both of the models (PM and
PM+𝜁 ) using a Crank–Nicolson scheme.

2.4.2 The YBJ Model
The YBJ equation is a three-dimensional partial differential equation, making it substan-
tially more computationally expensive to integrate than the PM model. We solve the YBJ
equation using the pseudospectral solver Dedalus (Burns et al., 2020) with a mixed explicit
and implicit diagonal RK2 scheme. As discussed above, we start the simulations with no
waves. We use a domain that is 400 km×400 km in the horizontal (centered on the mooring
array) and 4 km deep. Each dimension is discretized with 128 modes. The vertical dimen-
sion is finite and represented using Chebyshev polynomials. The horizontal dimensions are
made periodic and represented using Fourier modes. The stratification and the wind forc-
ing are taken to be horizontally uniform, capturing the forcing at a scale much larger than
the mesoscale. Smaller-scale structure in the wind stress can generate smaller-scale NIWs,
but the energy input tends to be strongly dominated by the large-scale winds (Rama et al.,
2022b). To construct the mesoscale streamfunction used in the simulations, we take 𝜓 from
observations and calculate the vorticity by taking the finite-difference Laplacian of 𝜓 on the
sphere. We then interpolate this vorticity onto the Cartesian simulation grid centered on the
location of the central mooring. We apply a taper to the vorticity, such that it goes to zero
on the domain boundaries. We invert this tapered vorticity field for the streamfunction on
the periodic domain, making the resulting streamfunction periodic as well. Our conclusions
are neither sensitive to the form nor width of the taper. For the results shown below, we use
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the following form of the taper:

 (𝑥, 𝑦) = cos2 𝜋𝑥
𝐿𝑥

cos2
𝜋𝑦
𝐿𝑦
, (2.11)

where 𝐿𝑥 and 𝐿𝑦 are the 𝑥 and 𝑦 lengths of the domain, respectively.
The YBJ equation can be formulated on a 𝛽-plane by making the substitution 𝜁∕2 → 𝜁∕2+
𝛽𝑦. We perform all of our analysis on an 𝑓 -plane (i.e., 𝛽 = 0) for two reasons: (i) We
focus our analysis on a region in the Northeast Atlantic Ocean where 𝛽𝐿 ≪ 𝜁∕2 with 𝐿 a
typical meridional scale of the waves. This relative scaling varies regionally in the ocean. For
example, Thomas et al. (2020) studied a region that was similarly dominated by the vorticity
and found that the 𝜁 -refraction process was more important to the NIW evolution there
than 𝛽-refraction, whereas 𝛽-refraction appeared to be important for Ocean Storms (D’Asaro
et al., 1995). (ii) The 𝛽 term adds difficulty in simulating the YBJ equation numerically (see
Balmforth and Young, 1999).
For the forcing, we need to prescribe a vertical profile that determines at what depths the
momentum is deposited. We specify the profile for the body force 𝜕𝑧 such that it is constant
in the forcing layer and then decays rapidly to zero below:

𝜕𝑧 = 𝛼𝜏
𝐻𝑚 [𝛼 + ln(2 cosh 𝛼)]

[

1 + tanh
(

𝛼
𝑧 +𝐻𝑚

𝐻𝑚

)]

, (2.12)

where 𝛼 is a parameter determining the steepness with which the body force falls off below
the forcing layer. We use 𝛼 = 2 in all the simulations presented below. The prefactor ensures
that  = 𝜏 at 𝑧 = 0.
When the winds blow on the ocean surface, they generate turbulence that mixes momentum
downwards. If a mixed layer already exists and is not too deep, the momentum input from the
wind will be rapidly homogenized within the mixed layer (Pollard and Millard Jr, 1970; Kato
and Phillips, 1969). For some events at the OSMOSIS site, the mixed layer was up to a few
hundred meters deep. These deep mixed layers are likely the result of convection driven by
buoyancy forcing rather than the mechanical wind forcing (Thompson et al., 2016). In these
cases, it is unlikely that the momentum is uniform across the mixed layer, especially if the
buoyancy forcing has ceased. The depth structure of NIWs obtained from the OSMOSIS
mooring confirms this picture. The waves are initially forced over a layer that is thinner
than the mixed layer before they propagate to depth. To avoid forcing over an unrealistically
large depth, we cap the forcing layer at 80 m. This value is guided by the observations and
represents an average depth over which waves are forced when the mixed layer is deep. We
discuss possible ways to improve this representation below.
In order to solve the YBJ equation, we must further specify vertical boundary conditions.
The requirement that the vertical velocity is zero on the top and bottom of the domain trans-
lates to the requirement that 𝑀 be horizontally uniform at the top and bottom boundaries
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Figure 2.2: (a) Snapshot of mesoscale vorticity field in the inner quarter of the simulation domain on
2012-10-18 which was the peak of event 1. The stars show the locations of three specific moorings.
The red star denotes the ONE mooring which is in a region of cyclonic vorticity, the black star denotes
the central mooring and the blue star denotes the OSW mooring which is in an anti-cyclonic region.
(b) Time series of the vorticity during event 1 at each of the three moorings denoted by the stars
above. During the main forcing period the vorticity changes sign across the mooring array while at
later times the entire mooring array transitions to being in a region of cyclonic vorticity.

(Young and Ben-Jelloul, 1997). Since 𝑀 is determined by 𝜕𝑧𝑀 up to an arbitrary horizon-
tal function, without loss of generality we specify 𝑀(𝑥, 𝑦,−𝐻, 𝑡) = 0. The top boundary
condition can be found by vertically integrating the YBJ equation twice and requiring that
𝑀 be horizontally uniform at 𝑧 = 0 (Appendix B). The result is

𝜕𝑡𝑀(𝑥, 𝑦, 0, 𝑡) =  , (2.13)

which we integrate a priori and then use as a Dirichlet boundary condition on 𝑀 .

2.5 Results
2.5.1 Case Study: Fall Event
We begin with a detailed analysis of the simulation results for event 1, which occurred in the
fall (Fig. 2.1c). This event is by far the most energetic NIW event observed throughout the
year. The main forcing for event 1 occurred when the mooring array straddled a dipole in the
mesoscale vorticity (Fig. 2.2), making it a good candidate to see the effect of 𝜁 -refraction.

NIW Amplitude and Phase

The observed NIW amplitude begins increasing around Oct. 14 and reaches a maximum
value on Oct. 20 before returning to background levels by the end of our simulation period
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Figure 2.3: (a) NIW amplitude in the PM model compared to observations at the central mooring
(dashed black line). The PM model was run with a range of difference values for the damping param-
eter 𝑟. Solid lines indicate the results of the PM model without refraction and dotted lines indicate the
results with the refractive term added. The gray shaded region is a period of mooring knockdown. (b)
As in (a) but for the NIW phase. (c) NIW amplitude in the YBJ simulation (solid lines) compared to
observations (dashed lines) at the central mooring (black) as well as the ONE (red) and OSW (blue)
moorings. (d) As in (c) but for the NIW phase.

on Nov. 10 (Fig. 2.3a). There are large variations in the peak amplitude over the mooring
array, although these differences disappear by the end of the event (Fig. 2.3c). The phase in-
creases sharply near the beginning of the forcing period as it aligns with the wind (Fig. 2.3b).
Following this, it slowly increases for most of the event and is relatively homogeneous across
the mooring array except for a period following the initial forcing (Fig. 2.3d).
The PM model has trouble capturing the NIW evolution during this event (Fig. 2.3a,b). Us-
ing a value of the damping parameter 𝑟−1 = 4 days results in a peak amplitude close to that of
the observed NIW peak amplitude in the central mooring, but such a relatively strong damp-
ing causes the NIW amplitude to drop off much too quickly compared to the observations.
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A more realistic amplitude decay is achieved when weaker damping is applied (especially
with 𝑟−1 = 16 days), but then the peak NIW amplitude is overestimated substantially. The
simulated phase bears little resemblance to the observed phase, with the simulated phase
being offset by up to 𝜋∕2 during the initial forcing period, and the simulated phase remains
close to constant around 𝜋 as long as substantial amplitude remains, missing the gradual
increase in the observed phase.
The addition of the refractive term does little to change the simulated NIW amplitude in the
PM model during most of the event (Fig. 2.3a,b), indicating that the phase shifts introduced
by refraction are unable to substantially change the relative alignment between the NIWs
and the winds. At later times the effect of adding refraction is more pronounced in the runs
with lower damping as there is more time for refraction to act on the waves before they are
dissipated. Refraction seems to dominate the phase evolution at all three damping values,
but the phase trends in the opposite direction from what is observed. The phase tendency is
also larger in magnitude than what is observed.
While the PM model may be able to capture some qualitative features of the NIW observa-
tions, it seems clear that: (i) the physical processes that cause the NIWs amplitude to decay
cannot be accurately captured using a simple linear drag formulation, and (ii) if refraction
is important to NIW evolution, its effect is not simply to change the phase of the NIWs but
must involve horizontal processes.
The YBJ model captures the observed amplitude and phase evolution much better than the
PM model (Fig. 2.3c,d). At the central mooring, the YBJ simulation agrees with observations
in terms of peak amplitude and decay timescale. Similarly, the phase evolution is much closer
to observations than the PM results, in terms of both its value after the forcing and its trend
afterward. Again, we emphasize that, unlike the PM models, there is no tunable parameter
in the YBJ simulations.
The YBJ model also captures observed lateral variations of the NIW signal across the moor-
ing array (Fig. 2.3c,d). At the OSW mooring, which at the start of the event is in a region
of anti-cyclonic vorticity (Fig. 2.2), the YBJ simulation successfully predicts a substantial
enhancement in the NIW amplitude compared to the central mooring. At the ONE mooring,
which at the start of the event is in a cyclonic region (Fig. 2.2), the YBJ simulation success-
fully shows a reduction in the NIW amplitude compared to the central mooring. The YBJ
model also captures that the NIW phase is much more uniform across the mooring array
than the amplitude.

NIW kinetic energy Budget

The observations show a higher NIW amplitude at the mooring in the anticyclone than at
the mooring in the cyclone (Fig. 2.3c,d). This is suggestive of 𝜁 -refraction concentrating
NIW kinetic energy in anticyclones. It is hard to draw this conclusion from the observations
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Figure 2.4: (a) NIW kinetic energy budget terms. The kinetic energy tendency (dashed line) is de-
composed into the 5 processes in the model which can change the kinetic energy: advection (blue),
horizontal flux divergence (orange), vertical flux divergence (green), hyperviscosity (brown) and
wind forcing (pink). The budgets are evaluated at the horizontal position of the moorings and at
fixed depth of 25 m. (b) As in (a) but for the ONE mooring. To better visualize the terms we only
plot the budget for the first 3/4 of the event.

alone, however, because other factors could give rise to the observed amplitude differences.
For example, the current meters were located at slightly different depths (between 𝑧 = −44m
and 𝑧 = −62 m).
With the YBJ simulations capturing the observed differences between the moorings, we can
use the YBJ framework to identify the processes giving rise to these lateral variations. We
construct a point-wise kinetic energy budget (2.4) at the OSW (anticyclonic region) and
ONE (cyclonic region) moorings, which allows us to separate the kinetic energy tendency
into advection, dispersive flux divergence, dissipation, and forcing (Fig. 2.4). During the
initial forcing period (up to Oct. 20), the tendency due to wind forcing is similar for both
moorings. At both locations, there is a small positive advective tendency that turns slightly
negative toward the end of the forcing period. The vertical flux divergence is also similar at
the two locations and smaller in magnitude than the advective tendency. Dissipation is neg-
ligible. The most notable difference between the two mooring locations is in the horizontal
flux divergence term. There is horizontal flux convergence at the OSW mooring and flux
divergence at the OSE mooring. This causes the total tendency to be larger than the wind
forcing at the OSW mooring and smaller than the wind forcing at the ONE mooring.
At these early times, 𝜁 -refraction is the primary driver of the horizontal energy flux and
causes concentration of NIW kinetic energy into anticyclonic regions. During the peak of the
event, the horizontal energy flux is directed from cyclonic to anticyclonic regions (Fig. 2.5a).
This arises from an interplay of the refraction and dispersion terms in the YBJ dynamics: re-
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Figure 2.5: (a) Color map of vorticity (normalized by 𝑓 ) at the peak of event 1. Arrows indicate the
horizontal energy flux field at 𝑧 = −25 m, showing a flux of NIW kinetic energy out of cyclones and
into anticyclones. (b) Horizontal sections of NIW amplitude at a depth of 25 m and three different
times. Sections show the inner half of the simulation domain. There is no horizontal structure to the
forcing and hence the NIWs are initially forced uniformly throughout the domain. Refraction is the
only process which can impose structure on a uniform NIW field in the YBJ framework. NIWs begin
to be concentrated into anticyclones. Brighter regions in the Oct. 20 plot correlate with anticyclonic
regions in the altimetry. Once refraction creates horizontal structure other processes can act. Disper-
sion will eventually counteract concentration into anticyclones. Advection by the mesoscale eddies
will also stir horizontal structure created by refraction. A signal of advective stirring is clearly visible
in the upper right quadrant of the Oct. 27 plot.
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fraction sets up phase gradients, which cause a dispersive energy flux as described by (2.5).
As horizontal structure develops, advection can also become important as it stirs the exist-
ing horizontal structure. This sequence of events was described by Rocha et al. (2018) and
captures the early evolution during this event (Fig. 2.5b).
We again emphasize that the PM model, even if the refractive term is included, cannot cap-
ture these dynamics because lateral energy transport originating from the dispersion term in
the YBJ equation is crucial. Once dispersion is included, the YBJ model captures observed
lateral variations in the NIW amplitude between anticyclonic and cyclonic regions and offers
a clear dynamical explanation.

NIW potential energy Budget

The NIW potential energy budget is of interest because it provides insight into the energy
exchange with mesoscale eddies (Xie and Vanneste, 2015; Rocha et al., 2018). While we
prescribe the mesoscale eddy field using altimetry rather than evolving a coupled system,
we still interpret the sources of NIW potential energy as estimates of the energy transfer
from mesoscale eddies facilitated by NIW refraction and advection.
The vertically integrated and domain-averaged budget for event 1 shows that NIW potential
energy is generated by both refraction and advection (Fig. 2.6). The potential energy ten-
dency rises sharply from zero to a peak value after the main forcing period of the event,
lagging the peak in the kinetic energy tendency by a few days. At these early times, almost
all of the NIW potential energy is created by refractive production. As horizontal structure is
created, advective production ramps up. The refractive production term decreases through-
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Figure 2.7: Wind-work as estimated from observations at the central mooring (dashed black), PM
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amplitude.

out the rest of the event and by the end is overwhelmed by advective production. The initial
dominance of refractive production followed by an increase in advective production is very
similar to the succession of events Rocha et al. (2018) described for stimulated generation
in idealized simulations that included the full coupling with the mesoscale dynamics.
The potential energy production—and presumed sink of mesoscale energy—peaks at about
20 µWm−2. To put this number in context, a global input of 1 TW into the mesoscale eddy
field (Wunsch and Ferrari, 2004) corresponds to about 3mWm−2 on average. For stimulated
generation to be important in the global energy budget of mesoscale eddies, it must be much
stronger elsewhere.

NIW Wind Work

The interaction between NIWs and mesoscale eddies also affects the wind work in the near-
inertial band (Fig. 2.7). The PM and PM+𝜁 models with 𝑟−1 = 4 days best match the peak
amplitude in the NIW evolution (Fig. 2.3a) but overestimate the wind work at the location
of the central mooring by a factor of more than two. We could also tune 𝑟 to match the wind
work estimated directly from observations integrated over the event. This is achieved with
𝑟−1 = 0.576 days, but this means that the peak NIW amplitude is underestimated by a factor
of three and violates 𝑟 ≪ 𝑓 . The effect of refraction in the PM model is to slightly increase
the wind work. In the YBJ model, in contrast, the wind work matches the observations well.
This is a consequence of the YBJ model’s ability to closely reproduce the observed NIW
evolution. While differences in the wind work between the YBJ and PM models appear
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substantial, we stress that this event is unlikely to be representative of a time and space
average. We intend to discuss this difference further in a subsequent publication.

2.5.2 Further Events in the Time Series
Simulations of the remainder of the NIW events (Fig. 2.8) confirm that the YBJ model
better captures the observed NIW amplitude and phase evolution than the PM model does
(Fig. 2.8). Event 4 is different from the others in that it consists of a double peak in NIW
amplitude without a decay to background levels in between. The mixed layer depth was
much more variable than during other events, especially towards the end of the event. For
that reason, we simulate event 4 in two parts (events 4a and 4b) in order to minimize the
variations in the mixed layer depth over a simulation period.
In general, we see that the YBJ model performs better than the slab models in reproducing
the observed evolution of the NIW amplitude and phase. In event 2, the YBJ model captures
the slow rise of the NIW amplitude as well as the decrease at late times. The PM models
are not able to capture this behavior as well (Fig. 2.8a). All of the models, however, have
substantial errors in the phase at early times. This could be due to pre-existing NIWs that we
do not capture because we initialize the models at rest. The notable exception to the trend
that YBJ performs better than the PM models is event 3 (Fig. 2.8b), where the YBJ model
not only overestimates the peak but also the decay time of the waves. YBJ does, however,
capture the slow evolution of the phase better than the PM models. We discuss some of the
potential reasons for these disagreements below. For event 4a, all models predict a double
peak in the amplitude that is not seen in observations (Fig. 2.8c). The YBJ model does better
at later times in both amplitude and phase. In event 4b, the YBJ model does rather well in
predicting the complete evolution of both the NIW amplitude and phase (Fig. 2.8d). The
YBJ model predicts the timing of the peak better than the PM models in event 5, but the
waves persist for longer than observed (Fig. 2.8e).

2.6 Discussion
The YBJ model does well in reproducing the mooring observations of NIWs. There are
still differences between the model and the observations, however, as well as a couple of
events where the YBJ model does less well. Given the observational inputs to the model, it
would be surprising if this were not the case. One major limitation is the use of altimetry
for the mesoscale streamfunction. As mentioned previously, the altimetry data are a heavily
smoothed version of the real field. We suggested above that some of the discrepancies be-
tween the YBJ model and the observations were due to this smoothing. We also interpolated
the mesoscale vorticity onto a smaller simulation grid. The resolution of the altimetry prod-
uct is 0.25◦×0.25◦, which is larger than the size of the mooring array. Differences across the
mooring array come from the interpolation between neighboring altimetry grid cells, which
will have introduced interpolation errors.
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Figure 2.8: NIW amplitude (left column) and NIW phase (right column) in observations at the central
mooring (dashed black line) as compared to PM (solid green) PM+𝜁 (dotted green) and YBJ (solid
black) for (a) event 2, (b) event 3, (c) event 4a, (d) event 4b and (e) event 5.
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Furthermore, we assumed that the mesoscale eddy field was barotropic. This is a reasonable
assumption if the vertical scale of the waves is much smaller than the vertical scale of the
eddies. There are certainly errors in the YBJ evolution, however, that arise from neglecting
the baroclinicity of mesoscale eddies. These effects could be investigated in the future by
running similar simulations using an in-situ data set that resolves the vertical structure of
one or more eddies.
In event 1, the vorticity has large variations across the mooring array (Fig. 2.2a). This is
reflected in the NIW observations as large differences in the amplitude across the mooring
array. However, this need not be the case for all events. Event 3, by contrast, shows weak
variations in the vorticity (as diagnosed from altimetry) across the mooring array. The result
is that the YBJ simulations also show weak variations in the NIW field across the mooring
array region. The altimetry vorticity field is a heavily smoothed representation of the real
vorticity field of the ocean; smaller scale vorticity features are invisible to measurements
from altimetry. If there is little variation in the larger-scale vorticity across the mooring ar-
ray, then these smaller-scale vorticity features may play a more important role in governing
the variations in 𝜕𝑧𝑀 . While we do not have a spatial map of smaller-scale vorticity features,
we can estimate their magnitude at the mooring array by calculating the vorticity by apply-
ing Stokes’ theorem to the area bounded by the outer moorings (Buckingham et al., 2016).
The velocity that we use in Stokes’ theorem is low-pass filtered to estimate the balanced
signal. This vorticity agrees in general with the vorticity calculated from SSH but shows
more high-frequency variability (Fig. 2.9). Event 3 shows the biggest disagreement between
the two estimates of all the events. The mooring estimate shows cyclonic vorticity, whereas
the altimetry estimate shows anticyclonic vorticity. This likely explains why we see the am-
plitude decay much quicker in observations compared to simulations because there would
have been a horizontal energy flux out of the region while the simulations have a flux into
the region, which acts to maintain the amplitude. The other events show better agreement
between the two vorticity estimates, although there are times where the deviation is larger.
Events 1 and 2 specifically show two anticyclonic periods that are not captured by altimetry.
These may explain some of the mismatch between simulations and observations. For exam-
ple, the anticyclonic excursion in event 1 probably explains why the YBJ simulation results
decay more quickly than observations. For event 2, the excursion occurs primarily near the
start of the event, where the NIW amplitude is weak, so its effect is tempered. Many of these
anomalies are short in duration, which limits the error in using the altimetric vorticity.
The vorticity error for event 4a is minimal (Figure 2.9). We suspect the mismatch between the
YBJ model and the observations in this event is due to the forcing. The reanalysis product
used is not the exact wind-forcing felt at the OSMOSIS site. Both YBJ and PM show an
initial peak in the NIW amplitude that is not seen in the observations, indicating that the
wind-stress may be wrong at this point. The forcing event seen in observations then has to
destroy these waves before forcing new ones, which causes the lower amplitude of the NIW
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Figure 2.9: Comparison of the vorticity as calculated from Stokes’ theorem applied to the outer
moorings (orange) and from altimetry (blue). The velocities used in the Stokes’ theorem calculation
were obtained by low-pass filtering with a second order Butterworth filter and a cutoff frequency
corresponding to a period of approximately 5 days. The blue ribbon shows the spread in the vorticity
when interpolated onto the outer mooring positions.

peak in the YBJ simulation compared to observations.
Notwithstanding the caveats above, it is significant that the YBJ model can reproduce much
of the NIW evolution with only the mesoscale vorticity as derived from altimetry. One may
expect the larger-magnitude submesoscale vorticity to be at least as important for the NIW
evolution. But the dispersion term in the YBJ equation depends on the Laplacian of 𝑀 and
hence in spectral space scales as 𝜅2. This means that the refractive generation of small-scale
structure in the wave field will be opposed by increasingly strong dispersion. Our results
therefore suggest that, at the location of the mooring array, dispersion indeed outpaces re-
fraction at submesoscales and mesoscale refraction is more important for the NIW evolution
(cf., Yu et al., 2022a).
Using a time-averaged stratification profile likely also contributes to differences between
the observations and simulations, despite our attempts to keep simulation times as short as
possible to avoid this effect. The assumption that the stratification does not vary in time is
inherent in the YBJ scaling assumptions. Related to this is the question of what depth to
force the model over. We used a fixed forcing depth, although this certainly varied over the
simulation periods. This problem could be side-stepped by representing the wind forcing as
a surface stress and adding a parameterized turbulent vertical momentum flux to the YBJ
equation to transfer momentum from the wind downwards.
The YBJ equation contains no term to represent the breaking of NIWs. The scaling 𝐻∗ =
𝑢∗∕

√

𝑁∗𝑓 , where 𝑢∗ = √

𝜏∕𝜌0 is the friction velocity and𝑁∗ is the stratification at the base
of the mixed layer, indicates the depth to which wind-driven turbulence could deepen the
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mixed layer (Pollard et al., 1973). If the mixed layer depth is shallower than 𝐻∗, the effect
of NIW dissipation would be important as there is potential for mixed layer deepening by
breaking of NIWs (Plueddemann and Farrar, 2006). During the OSMOSIS study, Yu et al.
(2022a) showed that the mixed layer was generally deeper than 𝐻∗. This is especially true
outside of summer and during the events we consider here. This is due to strong surface
buoyancy forcing deepening the mixed layer by convection to a depth beyond what the winds
alone could do. While one could include a critical Richardson number criterion to add NIW
breaking to the YBJ equation, we believe that it is justifiable to ignore dissipation of NIWs
in the surface layer in this study.
In event 1, the wind work predicted by YBJ agreed well with that calculated by observations.
The PM model greatly overestimated the wind-work. The YBJ and PM models also disagree
on the wind work for all the other events (not shown). If mesoscale interactions change the
alignment of the NIWs with the winds, then this results in a very different wind work. The
difference in wind work between the YBJ and PM models depends on the degree to which
the mesoscale changes the alignment of the waves with the wind and the power of the winds
at different frequencies. The differences in wind work can be large for individual events but
the five events we simulated are not enough to estimate what the average difference might
be when averaged over many events. Nonetheless, this may provide motivation to revisit
previous estimates of the NIW wind work in order to determine whether the mesoscale may
modulate wind work into the NIW band globally.

2.7 Conclusion
The evolution of the NIW field at the OSMOSIS site in the Northeast Atlantic Ocean is
strongly modulated by mesoscale eddies. The observed evolution can be captured by the
YBJ model, which includes NIW refraction, advection, and dispersion. If these processes
are omitted as in the PM model, the observations cannot be reproduced as well, even if the
parameterized damping rate is tuned.
The YBJ model provides a powerful interpretive framework for understanding observations
of NIWs in the upper ocean. It allows us to attribute the observed evolution to specific physi-
cal processes. Lateral differences in the NIW amplitude across the mooring array are caused
by 𝜁 -refraction, which causes NIW kinetic energy to be fluxed into anticyclonic regions.
While correlations between NIW amplitudes and mesoscale vorticity can be diagnosed from
the observations alone (e.g., Yu et al., 2022a), the YBJ framework produces a quantitative
prediction for the NIW amplitudes that matches observations and provides a physical inter-
pretation.
The YBJ model also allows us to calculate changes in the NIW potential energy, which are
expected to arise from transfers of balanced mesoscale energy (Xie and Vanneste, 2015;
Rocha et al., 2018). For the strongest NIW event observed during the OSMOSIS campaign,
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the NIW potential energy gain is at least two orders of magnitude smaller than the global
average energy input into mesoscale kinetic energy. Stimulated generation therefore does
not appear to have a major impact on the mesoscale eddy field in this part of the ocean.
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2.8 Appendix A: YBJ kinetic energy Budget
The YBJ kinetic energy budget may be formed by multiplying (2.2) by −𝑀∗∕2 and adding
the complex conjugate. Using integration by parts, the resulting kinetic energy budget can
be written as

𝜕𝑡 + 𝐽 (𝜓,) + ∇ ⋅ 𝑭 ′
 + 𝜕𝑧𝐺′

 = 𝑑 + 𝛾𝐹 , (2.14)
where

 = 1
2
|𝜕𝑧𝑀|

2, (2.15a)

𝑭 ′
 = 𝑖𝑁2

4𝑓
(

𝑀∇𝑀∗ −𝑀∗∇𝑀
)

, (2.15b)

𝐺′
 = −𝑀

∗

2𝑓

(

𝜕𝑧𝑡𝑀 + 𝐽 (𝜓, 𝜕𝑧𝑀) +
𝑖𝜁
2
𝜕𝑧𝑀 + 𝜈∇4𝜕𝑧𝑀 − 𝜕𝑧

)

+ c.c. , (2.15c)
𝑑 = 𝜈

2
(

𝜕𝑧𝑀
∗∇4𝜕𝑧𝑀 + 𝜕𝑧𝑀∇4𝜕𝑧𝑀

∗) , (2.15d)
𝛾𝐹 = 1

2
(

𝜕𝑧𝑀
∗𝜕𝑧 + 𝜕𝑧𝑀𝜕𝑧∗) . (2.15e)

In this form, however, the vertical flux does not vanish on the boundaries at 𝑧 = 0 and
𝑧 = −𝐻 . In order to meaningfully separate horizontal and vertical fluxes, we redefine the
3D kinetic energy flux vector 𝐇′ = [𝐅′, 𝐺′]T, taking advantage of the fact that only its diver-
gence appears in (2.14). The kinetic energy budget is thus invariant under the transformation
𝐇′ → 𝐇 = 𝐇′ + ∇3 × 𝝌 with some vector field 𝝌 . We propose to pick a 𝝌 such that the
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transformed𝐺 is zero on both boundaries. To determine 𝝌 , we first integrate (2.2) from −𝐻
to 𝑧 and then introduce a new field𝐴 such that 𝜕𝑧𝐴 = 𝑁2𝑀∕𝑓 2, which allows us to evaluate
the integral of the dispersion term. The resulting equation is

𝜕𝑧𝑡𝑀 + 𝐽 (𝜓, 𝜕𝑧𝑀) +
𝑖𝑓
2
∇2𝐴 +

𝑖𝜁
2
𝜕𝑧𝑀 − 𝜕𝑧 + 𝜈∇4𝜕𝑧𝑀 =  (2.16)

with

(𝑥, 𝑦, 𝑡) = 𝜕𝑧𝑡𝑀+𝐽 (𝜓, 𝜕𝑧𝑀)+
𝑖𝑓
2
∇2𝐴+

𝑖𝜁
2
𝜕𝑧𝑀−𝜕𝑧+𝜈∇4𝜕𝑧𝑀 at 𝑧 = −𝐻. (2.17)

We are free to choose  as a boundary condition on the new field 𝐴, i.e., we can choose
𝐴 at 𝑧 = −𝐻 as the solution of (2.17) for some specified . A sensible choice for the
transformation is thus setting  = 0 and

𝝌 =
𝑖𝑓
4

⎛

⎜

⎜

⎜

⎝

𝑀∗𝜕𝑦𝐴 −𝑀𝜕𝑦𝐴∗

−𝑀∗𝜕𝑥𝐴 +𝑀𝜕𝑥𝐴∗

0

⎞

⎟

⎟

⎟

⎠

. (2.18)

Under this transformation, the kinetic energy budget becomes (2.4), with the horizontal and
vertical fluxes given by

𝐅 =
𝑖𝑓
4

(

𝜕𝑧𝑀
∗∇𝐴 − 𝜕𝑧𝑀∇𝐴∗) , (2.19a)

𝐺 =
𝑖𝑓
4

(

∇𝑀 ⋅ ∇𝐴∗ − ∇𝑀∗ ⋅ ∇𝐴
)

. (2.19b)

It is clear that the vertical flux 𝐺 vanishes at the boundaries, as desired, because ∇𝑀 = 0
there.
The divergence of the flux terms vanishes when the budget is integrated over the entire
domain, and the only terms that can alter the domain-integrated kinetic energy are the wind
work and dissipation:

𝜕𝑡⟨⟩ =  + Γ𝐹, (2.20)
where  = ⟨𝑑⟩ and Γ𝐹 = ⟨𝛾𝐹⟩.

2.9 Appendix B: YBJ Upper Boundary Condition
Beginning from (2.16) with the choice  = 0, we can vertically integrate from 𝑧 = −𝐻 to
𝑧 = 0 and use 𝑀 = 0 at 𝑧 = −𝐻 to arrive at

[

𝜕𝑡𝑀 + 𝐽 (𝜓,𝑀) +
𝑖𝜁
2
𝑀 −  + 𝜈∇4𝑀

]

𝑧=0
= −

𝑖𝑓
2
∇2

∫

0

−𝐻
𝐴𝑑𝑧. (2.21)

The no-normal flow condition is imposed by requiring ∇𝑀 = 0 at 𝑧 = 0 (Young and Ben-
Jelloul, 1997), which eliminates the advection and dissipation terms. We then horizontally
average (denoted by ⋅ ) equation (2.21). Because 𝑀(𝑥, 𝑦, 0, 𝑡) has no horizontal structure,
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it is equal to its horizontal average. On a horizontally periodic domain, all but two terms
vanish in the averaged equation:

𝜕𝑡𝑀(𝑥, 𝑦, 0, 𝑡) =  (0, 𝑡). (2.22)
Because the forcing is horizontally uniform in all of our simulations, this reduces to (2.13).
Note that subtracting (2.22) from (2.21) yields a condition on the integral of 𝐴:

𝑖𝑓
2
∇2

∫

0

−𝐻
𝐴𝑑𝑧 =  ′ −

𝑖𝜁
2
𝑀(𝑥, 𝑦, 0, 𝑡), (2.23)

where  ′ =  −  . Note that unlike in YBJ where the integral in left-hand side of Equa-
tion 2.23 is set to zero which eliminates the barotropic mode, our boundary conditions allows
for a barotropic mode.

2.10 Appendix C: YBJ Potential Energy Budget
The YBJ potential energy budget can be formed by multiplying (2.2) by 𝑖𝜕𝑡𝑀∗∕2𝑓 and
adding the complex conjugate. However, a more transparent derivation begins with dotting
the gradient of (2.16) with −∇𝐴∗∕4 and adding the complex conjugate (setting  = 0 as
before). The resulting potential energy budget is:

𝜕𝑡 + 𝐽 (𝜓,) + ∇ ⋅ 𝐅 + 𝜕𝑧𝐺 = 𝑑 + 𝛾𝐹 + 𝛾𝑅 + 𝛾𝐴 , (2.24)
where

 = 𝑁2

4𝑓 2
|∇𝑀|

2, (2.25a)

𝐅 =
𝑖𝑓
8

[

(∇2𝐴∗)∇𝐴 − (∇2𝐴)∇𝐴∗] , (2.25b)
𝐺 = −1

4
[

∇𝐴∗ ⋅
(

𝜕𝑡∇𝑀 + 𝐽 (𝜓,∇𝑀)
)

+ c.c.] , (2.25c)
𝑑 = 𝜈

4
[

∇𝐴∗ ⋅ ∇4∇𝜕𝑧𝑀 + ∇𝐴 ⋅ ∇4∇𝜕𝑧𝑀∗] , (2.25d)
𝛾𝐹 = −1

4
[

∇𝐴∗ ⋅ ∇𝜕𝑧 + ∇𝐴 ⋅ ∇𝜕𝑧∗] , (2.25e)
𝛾𝑅 = 𝑖

8
[

∇𝐴∗ ⋅ ∇(𝜁𝜕𝑧𝑀) − ∇𝐴 ⋅ ∇(𝜁𝜕𝑧𝑀∗)
]

, (2.25f)
𝛾𝐴 = 1

4
[

∇𝐴∗ ⋅ 𝐽 (∇𝜓, 𝜕𝑧𝑀) + ∇𝐴 ⋅ 𝐽 (∇𝜓, 𝜕𝑧𝑀∗)
]

. (2.25g)
By making a plane wave ansatz in the vertical and using integration by parts, this energy
budget can be brought into the same form as the potential energy budget in Rocha et al.
(2018). In this paper we are primarily concerned with the domain-integrated potential energy
budget. Under domain integration terms which differ by a divergence are the same and hence
the interpretation of terms also remains the same. The domain-integrated potential energy
budget is (2.6), where again  = ⟨𝑑⟩ and Γ𝑖 = ⟨𝛾 𝑖⟩. In the case of horizontally uniform
forcing, there is no generation of potential energy by the winds and hence 𝛾𝐹 = 0.
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C h a p t e r 3

REGIMES OF NEAR-INERTIAL WAVE DYNAMICS

This chapter is reproduced from the published article:
Conn, S., Callies, J., and Lawrence, A., 2025: Regimes of Near-Inertial Wave Dynamics.
Journal of Fluid Mechanics, 1002, A22, doi:10.1017/jfm.2024.1175.
As a self-contained work, some notation may differ from conventions used elsewhere in this
thesis.

3.1 Abstract
When atmospheric storms pass over the ocean, they resonantly force near-inertial waves
(NIWs), internal waves with a frequency close to the local Coriolis frequency 𝑓 . It has
long been recognised that the evolution of NIWs is modulated by the ocean’s mesoscale
eddy field. This can result in NIWs being concentrated into anticyclones and provide an
efficient pathway for their propagation to depth. We here analyse the eigenmodes of NIWs
in the presence of mesoscale eddies and heavily draw on parallels with quantum mechanics.
Whether the eddies are effective at modulating the behaviour of NIWs depends on the wave
dispersiveness 𝜀2 = 𝑓𝜆2∕Ψ, where 𝜆 is the deformation radius and Ψ is a scaling for the
eddy streamfunction. If 𝜀 ≫ 1, NIWs are strongly dispersive, and the waves are only weakly
affected by the eddies. We calculate the perturbations away from a uniform wave field and
the frequency shift away from 𝑓 . If 𝜀 ≪ 1, NIWs are weakly dispersive, and the wave
evolution is strongly modulated by the eddy field. In this weakly dispersive limit, the WKB
approximation, from which ray tracing emerges, is a valid description of the NIW evolution
even if the large-scale atmospheric forcing apparently violates the requisite assumption of
a scale separation between the waves and the eddies. The large-scale forcing excites many
wave modes, each of which varies on a short spatial scale and is amenable to asymptotic
analysis analogous to the semi-classical analysis of quantum systems. The strong modulation
of weakly dispersive NIWs by eddies has the potential to modulate the energy input into
NIWs from the wind, but we find that this effect should be small under oceanic conditions.

3.2 Introduction
Near-inertial waves (NIWs) play an important role in the global climate system. Being asso-
ciated with strong vertical shears, they are prone to shear instabilities, which are an important
driver of upper ocean mixing (for a review, see Alford et al., 2016). As such, the generation
of NIWs is one of the primary mechanisms by which atmospheric storms induce a deep-
ening of the surface mixed layer. This deepening requires mixing with water from below,
implicating NIWs in the surface ocean heat budget (Jochum et al., 2013). In the interior of

https://doi.org/10.1017/jfm.2024.1175
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the ocean, NIWs make up a major fraction of the internal wave kinetic energy (Ferrari and
Wunsch, 2009; Alford et al., 2016), and it has been hypothesised that NIW kinetic energy
may provide a source of mixing in the deep ocean (Munk and Wunsch, 1998). NIWs might
also extract energy from mesoscale eddies (Xie and Vanneste, 2015; Rocha et al., 2018) and
hence play a role in the mesoscale energy budget.
In-situ observations of NIWs usually lack significant spatial resolution. The spatial structure
of NIWs can generally only be resolved through dedicated field campaigns, for example the
Ocean Storms Experiment (D’Asaro, 1985) or the NISKINe field campaign (Voet et al.,
2024). Despite this, it has become clear that NIW evolution can be strongly modulated by
the presence of mesoscale eddies (e.g., Thomas et al., 2020; Conn et al., 2024). Given the
sparsity of NIW observations, theoretical progress has been important in understanding the
dynamics of NIWs in the upper ocean.
Early work on NIW–eddy interactions was based on ray tracing theory. Kunze (1985) de-
rived a dispersion relation for NIWs in the presence of a geostrophic background flow.
Throughout this paper, we will make the assumption of a barotropic (depth-independent)
background flow. The ray tracing equations for a single (flat-bottom) baroclinic mode prop-
agating through such a background flow are

d𝒙
d𝜏

= 𝜕𝜔
𝜕𝒌
, d𝒌

d𝜏
= −𝜕𝜔

𝜕𝒙
, 𝜔 =

𝑓𝜆2|𝒌|2

2
+ 𝒖 ⋅ 𝒌 +

𝜁
2
, (3.1)

where 𝒙 = (𝑥, 𝑦) is the ray position, 𝜏 is time, 𝒌 is the horizontal wavevector, 𝒖 is the
background velocity, 𝜁 = 𝜕𝑥𝑣 − 𝜕𝑦𝑢 is the background vorticity, and 𝜆 is the deformation
radius. Here, and throughout the rest of this paper, 𝜔 refers to the frequency shift of an NIW
away from the local inertial frequency 𝑓 such that the true frequency is 𝑓 + 𝜔.
Based on these equations, Kunze (1985) argued that NIWs would be trapped in regions of
anticyclonic vorticity where the effective frequency is less than the local 𝑓 . This trapping
arises from the refraction of rays by the background vorticity, i.e., from changes in the wave-
number vector due to spatial gradients of the 𝜁

2 term in the dispersion relation. Concentration
of NIW energy into anticyclones has indeed been observed in the ocean (e.g., Perkins, 1976;
Kunze and Sanford, 1984; Thomas et al., 2020; Yu et al., 2022a).
Ray tracing is based on the assumption that the NIWs are propagating through a slowly
varying medium. This means that the horizontal scale of the waves has to be much smaller
than the scale of the background mesoscale eddy field. Young and Ben-Jelloul (1997, from
hereon YBJ) criticised this spatial scale assumption based on the argument that NIWs are
forced by large-scale storms and so, at least initially, the waves have a much larger scale than
mesoscale eddies. As a remedy, YBJ developed a theory of NIW–eddy interactions that does
not rely on the assumption of a spatial scale separation. This was also partly motivated by a
desire to explain observations from the Ocean Storms Experiment (D’Asaro et al., 1995), a
field campaign that studied the evolution of NIWs in the wake of a large storm in the North
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Pacific. A key result of this campaign was that the effect of the mesoscale vorticity on the
wave evolution was in clear contradiction with predictions from ray tracing (D’Asaro, 1995).
The YBJ equation describes the evolution of NIWs in the presence of a prescribed geo-
strophic eddy field while only assuming a temporal scale separation between the inertial pe-
riod and the characteristic timescale of the eddies. For the barotropic background flow con-
sidered throughout this paper, the wave evolution can be split into baroclinic modes that do
not interact, so we consider a single baroclinic mode with NIW velocity [𝑢𝑤(𝑥, 𝑦, 𝑡), 𝑣𝑤(𝑥, 𝑦, 𝑡)]𝑔(𝑧),
where 𝑔(𝑧) is the baroclinic mode structure. The YBJ equation is cast in terms of the vari-
able 𝜙 = (𝑢𝑤 + 𝑖𝑣𝑤)𝑒𝑖𝑓 𝑡, where the factor 𝑒𝑖𝑓 𝑡 removes oscillations at the inertial frequency
and leaves 𝜙 to describe the slow evolution of the envelope that modulates the NIWs. For a
single mode propagating through a barotropic background flow, the equation becomes:

𝜕𝜙
𝜕𝑡

+ J(𝜓, 𝜙) +
𝑖𝜁
2
𝜙 −

𝑖𝑓𝜆2

2
∇2𝜙 = 0, (3.2)

where 𝜓 is the background streamfunction, 𝜁 = ∇2𝜓 is the background vorticity, and
J(𝑎, 𝑏) = 𝜕𝑥𝑎 𝜕𝑦𝑏− 𝜕𝑦𝑎 𝜕𝑥𝑏 is the Jacobian operator. The second term describes advection of
the NIW field by the background flow. The third term is known as the 𝜁 -refraction term and
describes refraction of the NIW field by the background vorticity. This term is necessary to
obtain concentration of NIWs into regions of anticyclonic vorticity. The last term is respon-
sible for wave dispersion. Here and throughout this paper, we set the meridional gradient of
planetary vorticity 𝛽 = 0. The YBJ equation can be modified to include 𝛽 by replacing 𝜁∕2
with 𝜁∕2+𝛽𝑦 in the refraction term. The 𝛽-effect has been proposed to explain the observed
equatorward propagation of NIWs in the ocean (Anderson and Gill, 1979; Garrett, 2001;
Yu et al., 2022a), and it can dominate the overall NIW evolution in regions with weak me-
soscale eddies (e.g., D’Asaro et al., 1995). Because mesoscale vorticity gradients typically
dominate over 𝛽, however, we here restrict ourselves to 𝛽 = 0 for simplicity.
Despite both ray tracing and the YBJ equation being used in the NIW literature, it remains
unclear how they relate to each other. Ray tracing has been one of the most widely used tools
to interpret observations of NIWs. Ray tracing has had qualitative success in describing ob-
served features of NIW evolution, however, we are not aware of any rigorous comparisons
between ray tracing predictions and observations. Ray tracing has revealed aspects of NIW
dynamics such as trapping in anticyclones along with an associated propagation to depth
(Jaimes and Shay, 2010), stalling in cyclones (Oey et al., 2008), and the interplay between
NIWs and turbulent dissipation (Kunze et al., 1995; Essink et al., 2022). Non-standard prop-
agation patterns of NIWs in observations have also been explained using ray tracing (e.g.,
Byun et al., 2010; Chen et al., 2013). The YBJ equation has been used primarily as a tool
in theoretical and numerical studies, although there has been some attempt to make connec-
tions with observations. Asselin and Young (2020) used simulations of the YBJ equation
coupled to a quasi-geostrophic mesoscale eddy field to investigate the sequence of events
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that lead to the downward propagation of wind-forced NIWs. Thomas et al. (2020) calcu-
lated the NIW wavevector using an expression based on the YBJ equation. The predictions
from YBJ were broadly in agreement with observations. Conn et al. (2024) directly used the
YBJ equation to interpret NIW observations on a mooring array, showing that it successfully
captured the amplitude and phase evolution, including differences across the mooring array
caused by mesoscale vorticity gradients. Any comparison of the results of these disparate
studies is complicated by the different methods used. A better understanding of the relation-
ship between ray tracing and YBJ would clarify the physical similarities and differences.
Further complicating the picture, observations reveal a varied picture of the importance of
the mesoscale vorticity on NIW evolution. During the Ocean Storms Experiment, mesoscale
eddies had a muted impact on the NIW field (D’Asaro, 1995), whereas other observational
studies found a strong imprint of mesoscale eddies onto the NIW field. For example, Thomas
et al. (2020) demonstrated that the evolution of the NIW wavevector was driven by gradients
in the mesoscale vorticity during the NISKINe experiment in the North Atlantic. Extending
the original argument by YBJ, Thomas et al. (2024a) argued that these differences in the
impact of mesoscale vorticity could be explained primarily by differences in the strength of
wave dispersion. The stronger dispersion in the Ocean Storms Experiment, they argued, was
the result of the forcing projecting onto lower baroclinic modes, a stronger stratification, and
weaker eddies. As a result, the effect of refraction by mesoscale vorticity was suppressed in
the Ocean Storms Experiment, whereas it was more pronounced in NISKINe.
In this paper, we aim to clarify how ray tracing relates to YBJ dynamics. Given the widespread
use of ray tracing in the literature, we aim to understand the conditions under which results
from ray tracing are accurate. To this end, we consider the YBJ equation in both a strong
and weak-dispersion regime. We begin by providing a simplified treatment of the strong-
dispersion regime. Next, we show that the ray tracing equations emerge asymptotically from
the YBJ equation in the limit of weak dispersion. Our analysis shows that the WKB ap-
proximation and thus ray tracing can be valid even in the presence of a large-scale forcing,
despite the YBJ critique. The forcing decomposes into several modes that themselves ex-
hibit small-scale structure. We find the existence of isotropic and anisotropic modes. The
isotropic modes are characterised by fast variations along streamlines, while the anisotropic
modes have weak variations along streamlines. We discuss the physical processes important
in both classes. Finally, we consider how these regimes might modulate the energy injection
into the NIW band by the winds, finding that such a modulation is likely weak under oceanic
conditions.
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Figure 3.1: Wave dispersiveness 𝜀2 = |𝑓 |𝜆2∕Ψ plotted throughout the ocean for the first four baro-
clinic modes, with the deformation radius 𝜆 estimated from hydrography and the streamfunction
magnitude Ψ from altimetry. The equatorial band is blocked out because the mean flow amplitude
cannot be estimated with confidence there.

3.3 The YBJ equation
3.3.1 Decomposition into horizontal modes
We begin by non-dimensionalising the YBJ equation. Given the scalings 𝑥, 𝑦 ∼ 𝐿, 𝜓 ∼ Ψ
and 𝑡 ∼ 𝐿2∕Ψ, we obtain the following non-dimensional form of the YBJ equation:

𝜕𝜙
𝜕𝑡

+ J(𝜓, 𝜙) +
𝑖𝜁
2
𝜙 − 𝑖𝜀2

2
∇2𝜙 = 0, (3.3)

where 𝜀2 = 𝑓𝜆2∕Ψ is the wave dispersiveness (assuming 𝑓 > 0). For readers familiar
with Young and Ben-Jelloul (1997), our 𝜀2 is equivalent to their Υ−1. We remind the reader
that we have assumed a single baroclinic mode, but 𝜀 does vary among baroclinic modes
through 𝜆. The wave dispersiveness also varies spatially throughout the ocean (Fig. 3.1).
We calculate 𝜀 for the first four baroclinic modes from observations as described in Ap-
pendix 3.10. Except for the high latitudes, the first and second baroclinic modes are almost
entirely in the strongly dispersive regime (𝜀 ≫ 1). Higher baroclinic modes are to be more
weakly dispersive, with 𝜀 < 1 almost everywhere for mode 4. For a given baroclinic mode,
low-latitude regions are more strongly dispersive, while higher latitudes and western bound-
ary currents are more weakly dispersive.
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Note that (3.3) is a Schrödinger equation. This parallel is made clear if we write (3.3) as

𝑖
𝜕𝜙
𝜕𝑡

= 𝐻𝜙, 𝐻 = −𝜀
2

2
∇2 − 𝑖 J(𝜓, ⋅ ) +

𝜁
2
. (3.4)

The operator𝐻 is known as the Hamiltonian operator. While the presence of first derivatives
in the Hamiltonian stemming from advection may be unfamiliar to some, such terms arise in
quantum mechanics when describing a charged particle in a magnetic field. This analogy to
quantum mechanics was pointed out by Balmforth et al. (1998), and we will here exploit it
extensively. Rocha et al. (2018) also used this analogy to derive the equivalent of Ehrenfest’s
theorem for NIWs, while Danioux et al. (2015) explained the concentration of NIWs into
anticyclones via the analogue of quantum conservation laws. While we are setting 𝛽 = 0
in this paper, we note that the quantum analogue to 𝛽 ≠ 0 is known as the “Wannier–Stark
ladder,” where the potential due to the mesoscale vorticity modulates a linear ramp due to 𝛽
(Balmforth and Young, 1999).
The operator 𝐻 is Hermitian, i.e.,

∫ 𝜑∗𝐻𝜙 d2𝒙 = ∫ (𝐻𝜑)∗𝜙 d2𝒙 (3.5)

for sufficiently regular functions 𝜑 and 𝜙 so it has real eigenvalues. We also assume 𝐻 is
compact so that the eigenmodes form a complete orthonormal basis. Let 𝝁 label the eigen-
modes 𝜙̂𝝁(𝑥, 𝑦) and associated eigenvalues 𝜔𝝁 of the operator 𝐻 ,

𝐻𝜙̂𝝁 = 𝜔𝝁𝜙̂𝝁. (3.6)
The field 𝜙 can then be expanded in the eigenmode basis as

𝜙(𝑥, 𝑦, 𝑡) =
∑

𝝁
𝑎𝝁(𝑡)𝜙̂𝝁(𝑥, 𝑦), (3.7)

where 𝑎𝝁(𝑡) is the projection of 𝜙 onto the eigenmode 𝜙̂𝝁. The coefficients 𝑎𝝁(𝑡) then evolve
according to

d𝑎𝝁
d𝑡

= −𝑖𝜔𝝁𝑎𝝁, so 𝑎𝝁(𝑡) = 𝑎𝝁(0)𝑒−𝑖𝜔𝝁𝑡. (3.8)
Therefore, the eigenvalue 𝜔𝝁 represents the frequency shift of the mode away from 𝑓 . The
total dimensional NIW frequency is hence given by 𝑓 (1 + Ro𝜔𝝁), where Ro = Ψ∕𝑓𝐿2

is the Rossby number. Furthermore, because the eigenvalues are real and the modes are
orthogonal, the kinetic energy of the waves is conserved.
We will consider this problem on a doubly periodic domain with size 2𝜋 × 2𝜋. This is
intended to represent a local view of an ocean that is filled with a random sea of eddies.
The solutions we calculate are perfectly periodic and extend across all eddies. In reality, of
course, the background field is not perfectly periodic and this causes the solutions to become
localised in certain regions. Therefore, the solutions we calculate on the 2𝜋 × 2𝜋 should be
thought of similarly.
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Figure 3.2: Dipole vorticity with an anticyclone in the upper left corner and a cyclone in the lower
right corner. The contours depict the streamfunction with positive values denoted by solid lines and
negative values denoted by dashed lines.

As a key example in this paper, we will consider a 2𝜋 × 2𝜋 domain that contains a dipole
vortex given by (figure 3.2; cf., Asselin et al., 2020)

𝜓 = 1
2
(sin 𝑥 − sin 𝑦) . (3.9)

The analysis below is general, however, and can be applied to more general background
flows.

3.3.2 Numerical calculation of eigenvalues and eigenmodes
For most choices of the background flow 𝜓 , analytical solutions for the eigenfunctions of𝐻
do not exist and numerical solutions are required. Solving the eigenvalue equation numeri-
cally requires us to discretise the operator 𝐻 . The discrete eigenfunction is expressed as a
vector, and the problem reduces to finding the eigenvalues of a finite matrix. The operator
𝐻 is Hermitian, and so it is desirable for any discrete representation of 𝐻 to also be Her-
mitian. A fourth-order central finite difference scheme for the Laplacian term preserves this
property. More care is required for the advection operator, for which we use the enstrophy-
conserving scheme from Arakawa (1966) to preserve the Hermitian nature of the operator
and guarantee that the eigenvalues of the matrix are real. Having real eigenvalues ensures
that the conservation of NIW kinetic energy is respected in the discrete system. The exact
method of numerically solving the eigenvalue problem is detailed in Appendix 3.11.

3.4 The strong-dispersion limit
The limit 𝜀 ≫ 1 is known as the strong-dispersion limit. YBJ showed that in this limit,
the solution to the YBJ equation becomes proportional to the streamfunction 𝜓 . They addi-
tionally showed that frequency shifts away from 𝑓 are proportional to the domain-averaged
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kinetic energy of the mesoscale flow. These same results can be derived by considering the
eigenvalue problem posed above; see (3.17) and (3.20) for the result. In our framework, we
can additionally derive information about the next-order perturbations to the NIW field; see
(3.24) and (3.25) below.
When 𝜀 is large, we split the operator 𝐻 into two parts

𝐻 = 𝜀2𝐻 (0) +𝐻 (1), (3.10)

where𝐻 (0) = −1
2∇

2 and𝐻 (1) = 1
2𝜁 − 𝑖 J(𝜓, ⋅). Because 𝜀2 ≫ 1, this implies𝐻 (1) is a small

correction to 𝜀2𝐻 (0), and perturbation theory can be used to solve this system. We expand
both 𝜙̂𝝁 and 𝜔𝝁 in powers of 𝜀−2:

𝜙̂𝝁 =
∞
∑

𝑛=0
𝜀−2𝑛𝜙̂(𝑛)

𝝁 , 𝜔𝝁 = 𝜀2
∞
∑

𝑛=0
𝜀−2𝑛𝜔(𝑛)

𝝁 . (3.11)

At 𝑂(𝜀2) the eigenvalue problem is

𝐻 (0)𝜙̂(0)
𝝁 = 𝜔(0)

𝝁 𝜙̂
(0)
𝝁 , (3.12)

where 𝜙̂(0)
𝝁 is the eigenfunction of the unperturbed problem with eigenvalue𝜔(0)

𝝁 . We assume
the domain is doubly periodic and goes from 0 to 2𝜋 in 𝑥 and 𝑦. The solution is

𝜙̂(0)
𝝁 = 𝑒𝑖𝝁⋅𝒙, 𝜔(0)

𝝁 =
|𝝁|2

2
, (3.13)

where 𝝁 is a two-dimensional vector with integer components, such that the eigenfunctions
are plane waves in 𝑥 and 𝑦.

3.4.1 The leading-order mode
NIWs are forced by atmospheric storms, which have a much larger horizontal scale than
mesoscale eddies and can be idealised as a uniform forcing. We assume that the result of
this forcing is the excitation of a constant non-zero 𝜙. The projection of this initial condition
onto a given mode can thus be found by integrating that mode across the domain. For plane
waves, a domain integral will vanish unless 𝝁 = 0, such that a uniform forcing will only
project onto the 𝝁 = 0 mode in the unperturbed case. We begin by focusing on that case to
obtain expressions for the perturbations to its spatial structure as well as its frequency shift.
A small part of the forcing, however, projects onto modes with 𝝁 ≠ 0, and we will return to
these higher modes below.
The leading-order solution for 𝝁 = 0 is 𝜙̂(0)

0 = 1 and 𝜔(0)
0 = 0, and there is no modulation

of the waves by the mesoscale eddy field. To obtain this modulation, we must go to higher
order. At 𝑂(𝜀0), the eigenvalue problem is

𝐻 (0)𝜙̂(1)
0 +𝐻 (1)𝜙̂(0)

0 = 𝜔(0)
0 𝜙̂

(1)
0 + 𝜔(1)

0 𝜙̂
(0)
0 . (3.14)
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With 𝜔(0)

0 = 0 and the advection term in 𝐻 (1) vanishing when acting on 𝜙̂(0)
0 = 1, this

reduces to
−1
2
∇2𝜙̂(1)

0 +
𝜁
2
= 𝜔(1)

0 . (3.15)
The two terms on the left vanish when integrated over the doubly periodic domain, so we
conclude that 𝜔(1)

0 = 0.
There is, however, a correction to the eigenfunction at this order, determined by

∇2𝜙̂(1)
0 = ∇2𝜓. (3.16)

With periodic boundary conditions, the solution to this is

𝜙̂(1)
0 = 𝜓, (3.17)

where we have assumed that 𝜓 is defined such that it has zero domain average. This recovers
the expression for 𝜙̂ from YBJ. The structure of the mesoscale eddy field is imprinted onto
the waves by the 𝜀−2𝜙̂(1)

0 term. Because the modulation is by the real streamfunction 𝜓 ,
only the NIW amplitude is modulated by mesoscale eddies. The NIW field remains in phase
across the domain.
We now also seek the leading non-zero correction to the eigenvalue, for which we go up
another order. The eigenvalue equation at 𝑂(𝜀−2) is

𝐻 (0)𝜙̂(2)
0 +𝐻 (1)𝜙̂(1)

0 = 𝜔(0)
0 𝜙̂

(2)
0 + 𝜔(1)

0 𝜙̂
(1)
0 + 𝜔(2)

0 𝜙̂
(0)
0 . (3.18)

With 𝜔(0)
0 = 𝜔(1)

0 = 0 and J(𝜓,𝜓) = 0, this simplifies to

−1
2
∇2𝜙̂(2)

0 + 1
2
𝜓∇2𝜓 = 𝜔(2)

0 . (3.19)

The first term on the left vanishes under domain integration. Integrating the second term on
the left by parts yields

𝜔(2)
0 = −1

2
∫ |∇𝜓|2 d2𝒙

∫ d2𝒙
. (3.20)

The leading-order frequency shift is 𝜀−2𝜔(2)
0 . Given that 𝜀−2 ≪ 1, the frequency shift away

from 𝑓 is suppressed substantially, even compared to the small frequency shift assumed
from the outset. Re-dimensionalising the expression results in

𝜔(2)
0 = − 1

2𝑓0𝜆2
∫ |∇𝜓|2 d2𝒙

∫ d2𝒙
. (3.21)

This agrees with the YBJ result for the dispersion relation in the strong-dispersion regime,
indicating that the frequency shift is proportional to the average kinetic energy of the eddy
field.
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3.4.2 Higher-order modes
We now return to the higher modes with 𝝁 ≠ 0. These modes are degenerate to leading
order. For example, the modes (1, 0), (−1, 0), (0, 1) and (0,−1) all have𝜔(0)

𝝁 = 1
2
. Degenerate

perturbation theory is necessary to calculate the first-order corrections to the eigenvalues
and eigenfunctions (e.g., Sakurai and Napolitano, 2020). To obtain these corrections, we
will proceed naively with the calculation. We will run into a contradiction that motivates us
to choose a different basis set than was chosen in (3.13). To those familiar with degenerate
perturbation theory, this may seem unnecessary, but we believe it to be more pedagogical.
We again start from the 𝑂(𝜀0) equation, which now reads

𝐻0𝜙̂
(1)
𝝁 +𝐻1𝜙̂

(0)
𝝁 = 𝜔(0)

𝝁 𝜙̂
(1)
𝝁 + 𝜔(1)

𝝁 𝜙̂
(0)
𝝁 . (3.22)

Multiplying this equation by 𝜙̂(0)∗
𝝂 , with both 𝝂 and 𝝁 labelling one of the modes in the

degenerate group, and integrating over the domain results in

∫ 𝜙̂(0)∗
𝝂

(

𝐻0 − 𝜔(0)
𝝁

)

𝜙̂(1)
𝝁 d2𝒙 = 𝜔(1)

𝝁 ∫ 𝜙̂(0)∗
𝝂 𝜙̂(0)

𝝁 d2𝒙 − ∫ 𝜙̂(0)∗
𝝂 𝐻1𝜙̂

(0)
𝝁 d2𝒙. (3.23)

Using integration by parts, the𝐻0 on the left can be swapped for𝜔(0)
𝝂 . Because the modes are

degenerate to this order, the left-hand side vanishes. Furthermore, using the orthonormality
of the eigenfunctions, the corrections to the eigenvalues are determined by

𝜔(1)
𝝁 𝛿𝝂𝝁 = 1

4𝜋2 ∫
𝜙̂(0)∗
𝝂 𝐻1𝜙̂

(0)
𝝁 d2𝒙. (3.24)

We have now arrived at our contradiction. The left-hand side of this equation is diagonal,
whereas the right-hand side is not necessarily so. In (3.13), we chose a basis for the unper-
turbed eigenfunctions: {𝑒𝑖𝑥, 𝑒−𝑖𝑥, 𝑒𝑖𝑦, 𝑒−𝑖𝑦} for |𝝁| = 1. The key to degenerate perturbation
theory is to choose a basis of the degenerate space to avoid this contradiction. It is clear that
the correct basis must diagonalise 𝐻1, which our original choice does not.
To proceed, we calculate the right-hand side of (3.24) in the original basis. This results in a
4 × 4 matrix. We diagonalise this matrix and find the corresponding linear combination of
the original basis functions that diagonalises 𝐻1. The corresponding eigenfunction correc-
tions can be found by solving the screened Poisson equation obtained from the first-order
equation (3.22).

(

𝐻0 − 𝜔(0)
𝝁

)

𝜙̂(1)
𝝁 =

(

𝜔(1)
𝝁 −𝐻1

)

𝜙̂(0)
𝝁 , (3.25)

where the 𝜙̂(0)
𝝁 should be in the basis diagonalising 𝐻1. If 𝐻1 identically vanishes in this

subspace, the degeneracy must be lifted at the next order, as in the example below.
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3.4.3 Dipole flow solutions
We now consider the specific example of the dipole flow (3.9). Numerical solutions for
𝜀 = 2 show that a uniform initial condition projects strongly (98.5% of the energy) onto the
𝜙̂0 mode (figure 3.3). There is a small but negative frequency shift of 𝜔0 = −0.03104. This
agrees excellently with the predicted frequency shift from (3.20) of 𝜀−2𝜔(2)

0 = 1
32 = −0.03125.

Additionally, there is weak horizontal structure that aligns with the streamfunction as ex-
pected. The root-mean-squared error between the numerical eigenmode and the analytical
eigenmode 𝜙̂(0)

0 + 𝜀−2𝜙̂(1)
0 = 1 + 𝜀−2𝜓 is 1%. The agreement is excellent despite 𝜀 not being

particularly large.
For the dipole flow, the right-hand side of (3.24) is zero for all combinations of basis func-
tions of the 𝜔(0)

𝝁 = 1
2 subspace. Therefore, there are no first-order frequency shifts, 𝜔(1)

𝝁 = 0,
and the degeneracy is not lifted at this order. Performing the same procedure that led to (3.24)
on the second-order equation yields

𝜔(2)
𝝁 𝛿𝝂𝝁 = 1

4𝜋2 ∫
𝜙̂(0)∗
𝝂 𝐻1𝜙̂

(1)
𝝁 d2𝒙. (3.26)

For our trial basis consisting of the four plane waves, we solve the screened Poisson equa-
tion (3.25) for the corresponding 𝜙̂(1)

𝝁 . This is tedious but doable because the right-hand side
is just a sum of sines and cosines. The equation for the second-order frequency shift can
be diagonalised, and this time the eigenvalues are not zero and the degeneracy is lifted. We
find for 𝜔(2)

𝝁 the values − 1
96 , − 7

96 , −49
96 , and −55

96 , only the first of which corresponds to an
eigenfunction that the forcing projects onto at this order. The leading-order eigenfunction of
that mode is 𝜙̂(0)

𝝁 = −𝜓 (figure 3.3). The eigenvalue 𝜀2𝜔(0)
𝜇 + 𝜀−2𝜔(2)

𝝁 = 1.99739 is again in
excellent agreement with the numerical eigenvalue of 1.99729.
In this regime, horizontal structure in the waves primarily arises due to 𝜙̂(1)

0 , which is sup-
pressed by𝑂(𝜀−2). There is also horizontal structure due to modes with 𝝁 ≠ 0, but these are
projected onto weakly; the fraction of the variance accounted for by such a mode is 𝑂(𝜀−4)
(Sakurai and Napolitano, 2020). As such, the wave potential energy, which depends on hori-
zontal gradients in the wave field, is also suppressed. Xie and Vanneste (2015) associated the
generation of wave potential energy with a sink of the background eddy kinetic energy in a
process known as stimulated generation. Given the weak generation of horizontal structure,
stimulated generation is weak in the strong-dispersion regime.

3.5 The weak-dispersion limit
The limit 𝜀 ≪ 1 is known as the weak-dispersion limit. Because 𝜀2 multiplies the highest-
order derivative in the eigenvalue equation, the limit 𝜀 → 0 is a singular perturbation prob-
lem. Before addressing the general problem, we build intuition with two simple examples.
These examples suggest that there are two classes of modes. One class is characterised by
waves that vary slowly along the streamlines of the background flow and more rapidly across
streamlines; they are captured by an anisotropic scaling of the wavenumber with 𝜀. The other
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NIW velocities.

class has even faster variations in both directions and requires an isotropic scaling. We de-
velop a uniformly valid approximation that captures both of these classes.

3.5.1 Parallel shear flow
We begin with an example of a parallel shear flow in which the streamfunction𝜓 is a function
of 𝑥 only. The symmetry in 𝑦 means the problem reduces to a one-dimensional eigenvalue
problem. Balmforth et al. (1998) considered this problem for a specific example of a shear
flow that can be solved in closed form. Zhang and Xie (2023) considered the limits of strong
and weak dispersion for the same mean flow. Here, we address how the weak-dispersion limit
can be analysed for a general parallel shear flow and apply the procedure to the example flow
from Balmforth et al. (1998). Our goal is to calculate the structure of the eigenmodes and
their corresponding eigenvalues. We begin by introducing the WKB method from which
the two scalings arise. For the anisotropic scaling, the key result is (3.34); for the isotropic
scaling, the equivalent result is (3.38).
We assume that the streamfunction 𝜓(𝑥) is periodic on the domain [−𝜋, 𝜋]. The eigenvalue
problem (3.6) reduces to

−𝜀
2

2
∇2𝜙̂ − 𝑖𝑣

𝜕𝜙̂
𝜕𝑦

+
𝜁
2
𝜙̂ = 𝜔𝜙̂, (3.27)

where 𝜁 = ∇2𝜓 and 𝑣 = 𝜕𝑥𝜓 are both functions of 𝑥 only, and we have suppressed the
label on the eigenmode. The coefficients are independent of 𝑦, which motivates the ansatz
𝜙̂ = Φ(𝑥)𝑒𝑖𝑚𝑦. Given that the domain has width 2𝜋 in 𝑦, the wavenumber 𝑚 must be an
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integer. With this ansatz, we are left with the one-dimensional eigenvalue problem

−𝜀
2

2
d2Φ
d𝑥2

+
(

𝜀2𝑚2

2
+ 𝑚𝑣 +

𝜁
2

)

Φ = 𝜔Φ. (3.28)

This is the Schrödinger equation of a particle in one-dimensional potential, with the brack-
eted term playing the role of the potential (Balmforth et al., 1998).
As 𝜀 is small, WKB analysis can be used to find approximations to the eigenvalues and
eigenfunctions (e.g., Bender and Orszag, 1999). In WKB theory, the field Φ is expanded as

Φ(𝑥) = exp 1
𝛿

∞
∑

𝑗=0
𝛿𝑗𝑆𝑗(𝑥), (3.29)

where 𝛿 ≪ 1 is a scaling parameter that we are yet to determine. Substituting this into (3.28)
yields

−𝜀
2

2

⎡

⎢

⎢

⎣

1
𝛿2

( ∞
∑

𝑗=0
𝛿𝑗
d𝑆𝑗
d𝑥

)2

+ 1
𝛿

∞
∑

𝑗=0
𝛿𝑗
d2𝑆𝑗
d𝑥2

⎤

⎥

⎥

⎦

+ 𝜀2𝑚2

2
+ 𝑚𝑣 +

𝜁
2
= 𝜔. (3.30)

If we assume 𝑚 ∼ 𝑂(1), both the refraction term and the advection terms are 𝑂(1), and
they must be balanced by a dispersion term of the same order. Requiring the lowest-order
dispersion term to be 𝑂(1) implies 𝛿 = 𝜀, and the 𝑂(1) equation becomes

−1
2

(

d𝑆0
d𝑥

)2

+ 𝑚𝑣 +
𝜁
2
= 𝜔. (3.31)

By writing 𝜀−1d𝑆0∕d𝑥 = 𝑖𝑘, this equation is analogous to the dispersion relation (3.1)
specialised to this parallel shear flow. The function 𝑆0 is found to be

𝑆0(𝑥) = ±
√

2𝑖∫

𝑥
√

𝜔 − 𝑚𝑣(𝑥′) −
𝜁 (𝑥′)
2

d𝑥′ (3.32)

and determines the leading-order phase variations of the solution. One can additionally show
(Bender and Orszag, 1999, equation 10.1.12) that the next-order solution is

𝑆1(𝑥) = −1
4
ln
(

𝜔 − 𝑚𝑣 −
𝜁
2

)

, (3.33)

which determines the leading-order amplitude modulation of the solution.
This asymptotic expansion is valid away from regions where the integrand above is zero.
These are known as turning points of the problem and exist if 𝜔 < max(𝑚𝑣 + 𝜁∕2). The
associated eigenfunctions are referred to as bound states. Near turning points, 𝜔−𝑚𝑣− 𝜁∕2
can be approximated by a linear function of 𝑥, and solutions to (3.31) are given by Airy
functions. The Airy function solutions must be asymptotically matched to the solutions away
from the turning points. This yields an integral constraint from which the eigenvalues 𝜔 can
be determined. The problem as formulated above is the classic two-turning point problem,
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and the asymptotic matching procedure is well documented (e.g., Bender and Orszag, 1999,
equation 10.5.6). The resulting condition for 𝜔, often referred to as a quantisation condition,
is

√

2
𝜀 ∫

𝑥1

𝑥0

√

𝜔 − 𝑚𝑣(𝑥) −
𝜁 (𝑥)
2

d𝑥 =
(

𝑛 + 1
2

)

𝜋, with 𝑛 = 0, 1,… , (3.34)
where 𝑥0 and 𝑥1 are the turning points. The projection of a uniform forcing onto these modes
can also be calculated asymptotically. The domain integral of a mode is dominated by con-
tributions from the turning points (e.g., Bender and Orszag, 1999, equation 10.4.24).
If 𝜔 > max(𝜁∕2 +𝑚𝑣) then there are no turning points. The corresponding eigenmodes are
referred to as free states, and the quantisation condition is replaced by

√

2
𝜀 ∫

𝜋

−𝜋

√

𝜔 − 𝑚𝑣(𝑥) −
𝜁 (𝑥)
2

d𝑥 = 2𝑛𝜋, with 𝑛 = 0, 1,… (3.35)
Note the lack of a half-integer shift that for bound states arises from the Airy behaviour
near turning points. The lack of turning points in the free states also means (3.32) is valid
across the entire domain. Because the eigenfunctions of these free states are oscillatory in
the entire domain, a uniform forcing projects only weakly onto them, and we do not discuss
them any further. We also note that the discretisation of the free states is due to the periodic
domain; they would be replaced by a continuum of modes in an infinite domain, while the
bound states would remain discrete.
Under this scaling, the WKB modes are anisotropic. We assumed 𝑚 ∼ 𝑂(1), which means
that the modes’ phase varies in 𝑦 on a length scale𝑂(1). In contrast, the leading-order phase
variations in 𝑥 come from 𝜀−1𝑆0 and therefore occur on a scale𝑂(𝜀). The phase varies slowly
along streamlines and rapidly across streamlines. This makes refraction and advection come
in at the same order as cross-streamline dispersion.
An alternative would be to choose the scaling 𝑚 ∼ 𝑂(𝜀−2). Repeating the WKB ansatz
requires a choice of 𝛿 = 𝜀2 and 𝜔 ∼ 𝑂(𝜀−2) in order to end up with an equation of a similar
form to (3.31):

−1
2

(

d𝑆0
d𝑥

)2

+ 𝜀4𝑚2

2
+ 𝜀2𝑚𝑣 = 𝜀2𝜔. (3.36)

With the scaling given above, each term is 𝑂(1). We can solve for 𝑆0 and the corresponding
quantisation condition for bound modes:

𝑆0(𝑥) = ±
√

2𝑖𝜀∫

𝑥
√

𝜔 − 𝜀2𝑚2

2
− 𝑚𝑣(𝑥′) d𝑥′, (3.37)

√

2
𝜀 ∫

𝑥1

𝑥0

√

𝜔 − 𝜀2𝑚2

2
− 𝑚𝑣(𝑥) d𝑥 =

(

𝑛 + 1
2

)

𝜋. (3.38)

These modes are isotropic. The phase variations in 𝑦 occur on a scale 𝑂(𝜀2), which is the
same as in 𝑥 because phase variations in 𝑥 now come from 𝜀−2𝑆0. This makes advection and
along-streamline dispersion come in at the same order, and it makes refraction negligible.
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Despite the different characteristics of the two scalings, they lead to similar quantisation con-
ditions that differ only by what terms are included. We can combine them into a uniformly
valid quantisation condition:

√

2
𝜀 ∫

𝑥1

𝑥0

√

𝜔 − 𝜀2𝑚2

2
− 𝑚𝑣(𝑥) −

𝜁 (𝑥)
2

d𝑥 =
(

𝑛 + 1
2

)

𝜋. (3.39)

The “potential” governing the wave evolution is therefore

𝑉 (𝑥) = 𝜀2𝑚2

2
+ 𝑚𝑣(𝑥) +

𝜁 (𝑥)
2
. (3.40)

Under the anisotropic scaling 𝑚 ∼ 𝑂(1), the along-streamline dispersion term is suppressed
by a factor 𝜀2, leaving the 𝑂(1) refraction and advection terms to dominate. Under the
isotropic scaling 𝑚 ∼ 𝑂(𝜀−2), the advection and along-streamline dispersion terms are en-
hanced by a factor 𝜀−2 and dominate over a now negligible refraction term. In both cases,
the general equation is obtained by retaining a term that is of higher order, which is allowed
in an asymptotic theory. A uniform forcing only projects onto modes with 𝑚 = 0, so all the
modes projected onto are of the anisotropic variety.
We now consider a specific example of a parallel shear flow that varies sinusoidally in 𝑥:

𝜓 = cos 𝑥. (3.41)
This shear flow has a region of anticyclonic vorticity at the centre of the domain and cyclonic
vorticity centred on 𝑥 = ±𝜋 (figure 3.4a,b). This is a rare example in which the eigenvalue
problem (3.28) can be solved exactly using Mathieu functions (Balmforth et al., 1998). The
generally applicable WKB theory described above accurately predicts the eigenvalues, even
for a modestly small 𝜀 = 1

4
(figure 3.4c). We provide the analytical solutions to the WKB

integrals in Appendix 3.12. We also note that the symmetry of the problem means that a
uniform wind forcing only projects onto modes with even 𝑛.
For 𝑚 = 0, the eigenmodes are shaped by the potential 𝑉 = 𝜁

2 (figure 3.5a). Where 𝜔 > 𝑉 ,
𝑆0 is imaginary and the solutions are oscillatory; where 𝜔 < 𝑉 , 𝑆0 is real and the solutions
are decaying (figure 3.5a). Near the anticyclonic centre of the flow, the potential is at its
lowest and all the modes are oscillatory. Moving further out into the cyclonic region, more
and more of the modes become evanescent.
The dependence of the potential on the vorticity 𝜁 leads to trapping of NIW in anticyclones.
The trapping arises from the dephasing of the modes that make up the initial condition. This
is analogous to the argument in Gill (1984) regarding the vertical propagation of NIWs due to
the 𝛽-effect. The evolution occurs in three phases (figure 3.5b). First, refraction imprints the
mesoscale vorticity onto the initially uniform wave phase, leaving the amplitude unchanged
(cf., Asselin et al., 2020). Second, once these phase gradients are sufficiently pronounced,
cross-streamline dispersion becomes important and concentrates the wave energy into the



48

x
− 𝜋 − 𝜋/2 0 𝜋/2 𝜋

y

− 𝜋

− 𝜋/2

0

𝜋/2

𝜋

Streamfunction 𝜓
− 1.0 − 0.5 0.0 0.5 1.0

x
− 𝜋/2 0 𝜋/2

Vorticity 𝜁
− 1.0 − 0.5 0.0 0.5 1.0

Integer Wavenumber m
0 10 20 30

F
re

q
u
en

cy
 S

h
if
t

𝜔

− 8

− 6

− 4

− 2

0

2

4

(a)         (b)     

(c)     

Exact
WKB

Figure 3.4: (a) Streamfunction and flow vectors for the shear flow example. (b) Vorticity, showing the
anticyclonic vorticity concentrated in the centre of the domain and cyclonic vorticity on the outside.
(c) Eigenvalues𝜔 as a function of the integer wavenumber𝑚 for 𝜀 = 1

4 . The results from WKB theory
(orange crosses) are shown along with the exact eigenvalues found from numerical solutions (black
circles). The WKB results agree remarkably well with the numerical results, although there are some
spurious eigenvalues near the boundary between free and bound modes. The purple shading indicates
the region where free modes exist, which are not shown here.
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Figure 3.5: (a) The potential 𝑉 = 𝜁
2 (black line) of the parallel shear flow for the 𝑚 = 0 mode. The

dashed lines show the level of each eigenvalue 𝜔 for 𝜀 = 1
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scaled representation of each eigenfunction corresponding to a given eigenvalue, as identified by the
colours. (b) Time evolution of the NIW amplitude |𝜙| for the parallel shear flow example with 𝜀 = 1

4 ,
starting by a uniform field.
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centre of the anticyclone, and the wave field assumes a spatial scale 𝑂(𝜀). Third, the ampli-
tude remains elevated on average within the anticyclonic region but is more spread-out than
during the initial concentration. It is this long-time behaviour that corresponds to the fully
dephased eigenmodes. The time it takes for this dephasing to occur depends inversely on the
spacing of the eigenvalues 𝜔. As 𝜀 decreases, the eigenvalues become more finely spaced.
The 𝑚 = 0 modes have a spacing 𝑂(𝜀), so it takes 𝑡 ∼ 𝑂(𝜀−1) for them to dephase. Another
way to think of this is that as 𝜀 decreases, dispersion becomes weaker, and it takes longer
for phase gradients to build up to a level where dispersion is important.
Finally, we note that Asselin et al. (2020) discussed solutions to the YBJ equation for which
phase lines are aligned with streamlines and straining is ineffective in driving a decrease in
the spatial scale of the wave. That analysis sets the dispersion term to zero, however, and so
only captures the initial phase in which refraction dominates. The WKB theory presented
above shows that cross-streamline dispersion is of leading order and should not be dropped
if the long-term evolution is of interest (cf., figure 3.5b). Our 𝑚 = 0 anisotropic modes
can thus be understood as a generalisation of Asselin et al.’s solution. The ineffectiveness
of straining due to the alignment of the wave phase with streamlines remains apparent, but
cross-streamline dispersion is now taken into account such that the solution remains valid at
late times. We further note that our anisotropic modes also allow for slow variations of the
wave field along streamlines, such that advection assumes the same importance as refraction
and cross-streamline dispersion. These anisotropic modes with 𝑚 > 0 may be excited by a
non-uniform forcing, such as a passing atmospheric front (cf., Thomas et al., 2017).

3.5.2 Axisymmetric flow
We now consider a streamfunction with axial symmetry, such that 𝜓 = 𝜓(𝑟), where 𝑟 is
the radial distance from the origin. Llewellyn Smith (1999) studied NIWs with azimuthal
wavenumber zero in an axisymmetric vortex and provided asymptotic expressions for the
frequency of the lowest radial mode. Kafiabad et al. (2021) studied a similar case but also
considered the impact of NIWs back on the vortex. Using WKB theory, we consider NIWs
with an arbitrary azimuthal wavenumber and provide a transcendental equation that can be
solved for their frequency as for the parallel shear flows above.
We make the ansatz 𝜙̂ = 𝐴(𝑟)𝑒𝑖𝑚𝜃, where 𝜃 is the azimuthal angle, and again we drop the
mode label. In polar coordinates, (3.6) then reduces to

−𝜀
2

2

(

d2𝐴
d𝑟2

+ 1
𝑟
d𝐴
d𝑟

)

+
(

𝜀2𝑚2

2𝑟2
+ 𝑚𝑣

𝑟
+
𝜁
2

)

𝐴 = 𝜔𝐴, (3.42)

where 𝑣 = 𝜕𝑟𝜓 denotes the azimuthal velocity. There are some subtleties involved in ap-
plying WKB theory to this equation. For modes with 𝑚 > 0, the potential diverges at the
origin. This issue has long been noted in the quantum mechanics literature and can be ad-
dressed by performing a so-called Langer transform on the equation. For 𝑚 = 0, there is no
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divergence of the potential, but there is a phase shift at the origin. As pointed out by Berry
and Ozorio de Almeida (1973), both cases turn out to give the same quantisation condition:

√

2
𝜀 ∫

𝑟1

𝑟0

√

𝜔 − 𝑉 (𝑟) d𝑟 =
(

𝑛 + 1
2

)

𝜋, with 𝑛 = 0, 1, 2,… , (3.43)

where the potential is
𝑉 (𝑟) = 𝜀2𝑚2

2𝑟2
+ 𝑚𝑣

𝑟
+
𝜁
2
. (3.44)

If𝑚 > 0, the integration bounds 𝑟0 and 𝑟1 are the two zeros of the integrand; if𝑚 = 0, 𝑟0 = 0
and 𝑟1 is the one zero of the integrand. As in the case of a parallel shear flow, this expression
is uniformly valid in the sense that it works for both 𝑚 ∼ 𝑂(1) and 𝑚 ∼ 𝑂(𝜀−2). These again
correspond to anisotropic and isotropic modes, respectively, with refraction, advection, and
dispersion along and across streamlines playing the same roles as before. The only difference
is that the streamlines are now circular.
We consider the concrete example of an isolated Gaussian vortex on an infinite domain:

𝜓(𝑟) = 𝑒−
𝑟2
4 . (3.45)

This corresponds to an anticyclone in the centre of the domain that is surrounded by a halo
of cyclonic vorticity (figure 3.6a,b). Again, the WKB calculation for 𝜀 = 1

4
yields eigen-

values that agree extremely well with the exact eigenvalues (figure 3.6c). The structure of
the first few modes is shown in figure 3.7. For 𝑚 = 0, the modes are concentrated in the
anticyclone. For 𝑚 > 0, there is a repulsion from the very centre of the anticyclone due to
the advection and dispersion terms in 𝑉 (𝑟). This repulsion increases with 𝑚, but the modes
remain primarily concentrated in the region of anticyclonic vorticity. The modes become
more isotropic as 𝑚 is increased. Note that again, a uniform forcing only projects onto the
𝑚 = 0 mode due to the symmetry of the vorticity field. We also note that only the bound
states form a discrete spectrum in an infinite domain, there will also be a continuum of free
modes.

3.5.3 General case
Based on the intuition gained above, we wish to construct a uniformly valid asymptotic
expansion for a general two-dimensional background flow. We again make a WKB ansatz
that leads to (3.49). This equation can be solved by the method of characteristics and recovers
Kunze’s ray tracing. The quantisation condition for the general case is (3.53).
In analogy with the isotropic scaling, we begin by assuming a solution of the form

𝜙̂(𝑥, 𝑦) = exp

[

1
𝜀2

∞
∑

𝑗=0
𝜀2𝑗𝑆𝑗(𝑥, 𝑦)

]

, (3.46)
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Figure 3.6: (a) Streamfunction and flow vectors for the axisymmetric flow example. (b) Vorticity
field showing the anticyclonic vorticity concentrated in the centre of the domain, which is flanked by
a halo of cyclonic vorticity. (c) Eigenvalues 𝜔 as a function of azimuthal wavenumber 𝑚 for 𝜀 = 1

4 .
The results from WKB theory (orange crosses) are shown along with the exact eigenvalues found
from numerical solutions (black circles). The WKB approximation agrees remarkably well with the
numerical results.
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again dropping the mode label. Substituting this into (3.6) yields

− 1
2𝜀2

|

|

|

|

|

|

∞
∑

𝑗=0
𝜀2𝑗∇𝑆𝑗

|

|

|

|

|

|

2

− 1
2

∞
∑

𝑗=0
𝜀2𝑗∇2𝑆𝑗 −

𝑖
𝜀2

∞
∑

𝑗=0
𝜀2𝑗 J(𝜓, 𝑆𝑗) +

𝜁
2
= 𝜔. (3.47)

Assuming 𝜔 ∼ 𝑂(𝜀−2) and collecting leading-order terms, we obtain

−1
2
|∇𝑆0|

2 − 𝑖 J(𝜓, 𝑆0) = 𝜀2𝜔. (3.48)

In the simple examples discussed above, we obtained a uniformly valid approximation by
retaining the higher-order refraction term in the leading-order equation arising from an
isotropic scaling. We do so again here:

−1
2
|∇𝑆0|

2 − 𝑖 J(𝜓, 𝑆0) +
𝜀2𝜁
2

= 𝜀2𝜔. (3.49)

We anticipate that the order of these terms again changes for anisotropic modes. If the phase
varies slowly along streamlines, the advection term is reduced by a factor 𝑂(𝜀2), and cross-
streamline dispersion, acting on spatial variations on a scale of 𝑂(𝜀) rather than 𝑂(𝜀2), will
attain the same order, whereas along-streamline dispersion becomes negligible. The equa-
tion (3.49) can therefore capture both isotropic and anisotropic modes.
We now introduce the wavenumber vector𝒌 by writing 𝜀−2𝜕𝑆0∕𝜕𝒙 = 𝑖𝒌. The equation (3.49)
can be solved using the method of characteristics:

d𝒙
d𝜏

= 𝜀2𝒌 + 𝒖, d𝒌
d𝜏

= − 𝜕
𝜕𝒙

(

𝒖 ⋅ 𝒌 +
𝜁
2

)

, 𝜔 =
𝜀2|𝒌|2

2
+ 𝒖 ⋅ 𝒌 +

𝜁
2
. (3.50)

These are the non-dimensionalised ray tracing equations of Kunze (1985). We further elab-
orate on this connection between YBJ and Kunze’s ray tracing below.
Numerical solutions for the dipole flow show that the majority of a uniform forcing projects
onto anisotropic modes that show little structure along streamlines and vary more rapidly
across streamlines (figure 3.8). With 𝜀 = 1

4
there is also some projection onto modes that

show more characteristics of isotropic phase variations. The variations are more rapid, as
emerges from the isotropic scaling discussed above.
Finally, we show how approximations to the eigenvalues can be obtained in the weak-dispersion
limit when the flow problem is not separable, as it was in the cases of a parallel shear flow
or axisymmetric flow. To this end, we utilise results from the quantum mechanics litera-
ture. Recall that the YBJ equation is equivalent to the Schrödinger equation, with the YBJ
operator

𝐻 = −𝜀
2

2
∇2 − 𝑖𝒖 ⋅ ∇ +

𝜁
2

(3.51)
playing the role of the Hamiltonian. The weak-dispersion limit corresponds to the classi-
cal limit of the equivalent quantum system, and the ray tracing equations are the analogue



55

y

0

𝜋

2𝜋
𝜔 = − 0.379 0.174 𝜔 = − 0.154 0.224 𝜔 = 0.029 0.289 𝜔 = 0.144 0.011

x
0 𝜋 2𝜋

y

0

𝜋

2𝜋
𝜔 = 0.198 0.13

x
0 𝜋 2𝜋

𝜔 = 0.351 0.108

x
0 𝜋 2𝜋

𝜔 = 0.464 0.008

x
0 𝜋 2𝜋

𝜔 = 0.489 0.028

Real part of eigenfunction 𝜙
− 3 − 2 − 1 0 1 2 3

Figure 3.8: Real part of the eigenfunctions of the dipole flow with 𝜀 = 1
4 . Together, these eight

eigenfunctions represent over 97% of the energy excited by a uniform impulsive forcing. They are
the eight modes with the strongest projection and are then ordered by eigenvalue 𝜔. The eigenvalues
are shown in the top left corner, and the projections of a uniform forcing onto the eigenfunction
(energy fraction) are shown in the top right corner.

of the classical Hamiltonian dynamics. The classical Hamiltonian is obtained from 𝐻 by
making the substitution ∇ → 𝑖𝒌, yielding the dispersion relation in (3.50). The Hamiltonian
dynamics are then

d𝒙
d𝜏

= 𝜕𝜔
𝜕𝒌

and d𝒌
d𝜏

= −𝜕𝜔
𝜕𝒙
, (3.52)

the ray tracing equations stated in (3.50). The connection with the Schrödinger equation is
most easily seen in the Hamilton–Jacobi description of classical mechanics (e.g., Sakurai
and Napolitano, 2020; Bühler, 2006).
The quantisation conditions derived above for separable problems, from which we obtained
good approximations of the frequency shifts 𝜔, can be generalised to some extent to non-
separable problems like the dipole flow (figure 4.11). This semi-classical analysis of a quan-
tum system was developed by Einstein (1917), Brillouin (1926), and Keller (1958), extend-
ing the Bohr–Sommerfeld quantum theory. The resulting approach is referred to as the EBK
method (see also Keller, 1985; Berry and Mount, 1972; Percival, 1977). The starting point is
that the rays (classical trajectories in the quantum problem), being constrained by the invari-
ant 𝜔 (energy in the quantum problem), trace out invariant tori in the phase space spanned
by 𝒙 and 𝒌. A ray starting on such a torus will remain on it forever. The quantisation con-
dition selects invariant tori that correspond to allowed bound states by insisting that phase
increments along closed loops on the invariant torus integrate to multiples of 2𝜋. Recalling
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Figure 3.9: (a) Example of a trajectory tracing out an invariant torus for the dipole case. This torus
corresponds to 𝑛 = 2, 𝑚 = 0 for 𝜀 = 1

4 . The background colours show the vorticity field. The black
line shows a finite-time trajectory on the torus. The green and magenta lines represent a choice for
the two invariant curves on the torus. They are independent because no continuous deformation of
one can transform it into the other. (b) Different initial conditions result in different trajectories. This
example is not bound to an invariant torus but is instead an example of a chaotic trajectory.

that 𝜀−2𝑆0 = 𝑖𝒌, so 𝒌 is the spatial gradient of the phase, and 𝒌 ⋅ d𝒙 is a phase increment,
the quantisation conditions read

∮1
𝒌 ⋅ d𝒙 = 2𝜋

(

𝑛 + 1
2

)

, ∮2
𝒌 ⋅ d𝒙 = 2𝜋𝑚, (3.53)

where 𝑛 and 𝑚 are integers. The contours 1 and 2 are topologically independent closed
curves on the invariant torus (figure 3.9a). In our example, the curve 1 passes through the
hole of the phase space torus, whereas the curve 2 goes around the hole. The two curves are
independent in the sense that neither one can be continuously deformed into the other. There
is a half-integer phase shift in the quantisation condition arising from the integral along the
curve 1 because this curve passes through two caustics, the generalisation of a turning
point, where additional phase shifts are incurred (Brillouin, 1926; Keller, 1958; Maslov,
1972). The curve 2 encounters no caustics. The integer wavenumbers 𝑛 and𝑚 correspond to
the cross- and along-streamline variations, respectively. These EBK quantisation conditions
are entirely analogous to the WKB quantisation conditions derived above for the separable
parallel shear flow and axisymmetric flow.
We apply the EBK quantisation to the dipole flow with 𝜀 = 1

4 . Our procedure closely fol-
lows Percival and Pomphrey (1976): we find the invariant tori satisfying the quantisation
condition by writing the Hamiltonian equations in action–angle variables and employing
Newton’s method. See Appendix 3.13 for details. All eigenvalues calculated by this EBK
method show excellent agreement with the numerical values (figure 3.10).
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Figure 3.10: Numerical eigenvalues (black circles) and EBK eigenvalues (orange crosses) calculated
for the dipole flow with 𝜀 = 1

4 . EBK calculations are only shown for the sufficiently confined modes
where the invariant tori are easy to calculate. The EBK values agree with the numerical values to
𝑂(10−3).

As foretold by Einstein (1917), not all modes are accessible by the EBK approach. If the
system is non-integrable, trajectories in phase space can become chaotic instead of tracing
out an invariant torus (figure 3.9b). States corresponding to such chaotic trajectories are
not amenable to the EBK method. This “quantum chaos” has received much attention in
the physics literature and has connections to random matrix theory (e.g., Gutzwiller, 1992;
Stone, 2005). Methods exist to estimate eigenvalues as well as their statistics (e.g., Edelman
and Rao, 2005; Edelman and Sutton, 2007). We do not pursue these issues any further here,
in part because a uniform forcing projects most strongly onto the regular modes accessible
with the EBK method (figure 3.8).

3.6 Relation to the ray tracing equations
The previous section made clear that the ray tracing equations of Kunze (1985) are closely
related to the YBJ dynamics. In the same way that Hamiltonian dynamics emerge in the
classical limit of the Schrödinger equation, the ray tracing equations emerge in the weak-
dispersion limit of the YBJ equation. YBJ criticised Kunze’s assumption that the waves
have a smaller spatial scale than the background flow, insisting that atmospheric forcing
produces near-inertial waves at larger—not smaller—scales than mesoscale eddies, calling
into question Kunze’s ray-theoretical description in general. The analysis above clarifies that
the spatial scale of the forcing is not what determines the applicability of WKB . Instead, the
scale on which dynamical modes vary determines whether WKB analysis can be applied,
and this spatial scale is set by how strongly dispersive the waves are. An initially uniform
wave field can be thought of as consisting of a superposition of several modes, all varying on
a small scale but combining into a uniform field. The distinct frequencies 𝜔 of these modes
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make them dephase over time, and the superposition develops the small scales of the modes.
Our analysis also provides some additional insight into the evolution of weakly dispersive
NIWs. The isotropic and anisotropic scalings show that refraction is not always of leading-
order importance. The refraction term is significant only for the anisotropic modes. For
isotropic modes, the refraction term is asymptotically weak and the dispersion relation is
dominated by advection and dispersion. A large-scale forcing, however, will project primar-
ily onto the anisotropic modes, as can be seen in the specific solutions for the dipole case
(figure 3.8). More generally, the large values of the along-streamline wavenumber 𝑚 in the
isotropic case produce rapid variations that lead to strong cancellations when calculating
the projection of a uniform forcing onto these modes. As such, only a weak projection can
remain.
To help interpret observations from the NISKINe study, Thomas et al. (2020) performed a
simplified ray tracing calculation, which predicted a rapid strain-driven growth in the wave-
number that stood in stark contrast to the data. In this region of the North Atlantic, the waves
are weakly dispersive (Thomas et al., 2024a), so one may worry that this result contradicts
our conclusion that ray tracing can be deployed gainfully in the weak-dispersion regime.
Thomas et al. (2020) approximated the full wavevector evolution by assuming a uniform
and time-independent vorticity gradient, as well as a strain field with strain rate 𝛼 and its
principal axis aligned with the vorticity gradient. In that setup, the wavenumber compo-
nent 𝑘⟂ that is aligned with the vorticity gradient, i.e., perpendicular to vorticity contours,
evolves according to

d𝑘⟂
d𝜏

= −
|∇𝜁 |
2

+ 𝛼𝑘⟂, so 𝑘⟂ = −
|∇𝜁 |
2𝛼

(𝑒𝛼𝜏 − 1) (3.54)

if 𝑘⟂ = 0 at time 𝜏 = 0, approximating large-scale wind forcing. The exponential growth
predicted by this equation does not match the data. Our analysis suggests, however, that a
large-scale forcing primarily excites modes whose phase is aligned with streamlines. In this
configuration, the strain is ineffective, and the initial wavenumber evolution is dominated
by refraction:

d𝑘⟂
d𝜏

= −
|∇𝜁 |
2
, so 𝑘⟂ = −

|∇𝜁 |
2
𝜏. (3.55)

This recovers the Asselin et al. (2020) solution that Thomas et al. (2020) showed roughly
matches the data. Our analysis therefore suggests that it was not ray tracing per se that caused
the mismatch with the data but the assumptions that went into the simplified solution.1

Kunze (1985) considered three-dimensional ray tracing, which allows for both baroclinicity
in the mean flow and a vertical wavenumber for the NIWs that corresponds to propagation

1It should be noted that a pure strain field does not produce a compact operator𝐻 , so the machinery based on
a discrete set of eigenmodes does not apply. Instead, one should view the pure strain field as the local behaviour
of some more complicated background flow that is described by a compact operator 𝐻 . Because ray tracing is
inherently local, the behaviour detailed above would still apply.
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of the waves in the vertical. In this paper, we have restricted our attention to a barotropic
mean flow and considered the propagation of a single baroclinic mode, such that the problem
reduces to two-dimensional ray tracing. Exploring how the three-dimensional ray tracing is
related to the full YBJ equation that also allows for baroclinicity in the background flow is
left to future work.

3.7 Near-inertial wind work
One may speculate that the frequency shifts in the weak-dispersion limit could impact the
energy input into NIWs by the winds. To study this, we need to consider a forced version
of the YBJ equation. So far, we have focused on the problem with a horizontally uniform
initial condition. This was to represent the NIW field excited by the passage of a large-
scale atmospheric storm, and we studied the evolution of this NIW field in the absence of
any further forcing. Real NIWs, in contrast, are continually forced by the winds, which we
now represent by including a horizontally uniform forcing term in the modal YBJ equation.
If we include sources of NIW energy, then we must also include the sinks, such that the
wave energy can equilibrate. In the real ocean, NIW energy is primarily dissipated through
mixing. Mechanisms of NIW dissipation are complicated and depend, among other factors,
on the local stratification (e.g., Kunze et al., 1995; Qu et al., 2021) and the mesoscale eddy
field (Sanford et al., 2021; Essink et al., 2022; Thomas et al., 2024b). For simplicity, we
model these processes as a linear drag. In mixed-layer models, a linear drag is often used
to model NIW propagation out of the mixed-layer (see e.g., Pollard and Millard Jr, 1970),
but in our model vertical propagation is already accounted for by the decomposition into
baroclinic modes. The linear drag in our model therefore represents the irreversible sink of
NIW kinetic energy due to mixing. With these alterations, the modal YBJ equation reads

d𝑎𝑡 =
(

−𝑖𝜔𝑎𝑡 − 𝑟𝑎𝑡 + 𝐹𝑡𝑒𝑖𝑓 𝑡
)

d𝑡, (3.56)

where 𝑎𝑡 denotes the modal amplitude at time 𝑡, 𝑟 is the linear drag coefficient, and 𝐹𝑡 the
wind forcing projected onto the mode under consideration. We suppress the mode index 𝝁
for now but keep in mind that this equation must be solved for each mode. Note also that
we have re-dimensionalised the equation here. The factor of 𝑒𝑖𝑓 𝑡 back-rotates the forcing to
match the back-rotated description of the NIW evolution by the YBJ equation. To proceed,
we describe the wind by an Ornstein–Uhlenbeck process which satisfies

d𝐹𝑡 = −𝑐𝐹𝑡 d𝑡 + 𝜎 d𝑊𝑡 (3.57)

where 𝑐−1 is the decorrelation timescale of the wind forcing, 𝜎 is the amplitude of the
stochastic excitation and 𝑊𝑡 is a Wiener process. The power spectrum of the process 𝐹𝑡
is

𝑆(𝜔) = 2
𝜋

𝑐
𝑐2 + 𝜔2

. (3.58)
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For 𝜔 ≫ 𝑐 the power falls off with frequency as 𝜔−2, i.e., the spectrum is red. We find that
this is a good model of the power spectrum of the wind stress from reanalysis, especially
over the ocean (see Appendix 3.14 for more details).
We consider the system spun up from 𝑡 = −∞, such that it has statistically equilibrated for
all 𝑡. This results in the formal solution for the forcing

𝐹𝑡 = 𝜎 ∫

𝑡

−∞
𝑒−𝑐(𝑡−𝑡

′) d𝑊𝑡′ , (3.59)

and the formal solution for the mode amplitude 𝑎 is given by

𝑎𝑡 = 𝑒−(𝑖𝜔+𝑟)𝑡 ∫

𝑡

−∞
𝑒[𝑖(𝑓+𝜔)+𝑟]𝑡

′
𝐹𝑡′ d𝑡′. (3.60)

The NIW kinetic-energy equation can be obtained in the usual way by multiplying (3.56)
with 𝑎∗𝑡 and adding the complex conjugate. This is allowed because it is the integral of a
Wiener process that appears in (3.56), and not the Wiener process itself. The wind work Γ𝑡
arises as

Γ𝑡 =
1
2
(

𝑎∗𝑡 𝑒
𝑖𝑓 𝑡𝐹𝑡 + c.c.) . (3.61)

We are interested in the average of Γ𝑡 over an ensemble of many realisations of the wind-
forcing. Let ⟨ ⋅ ⟩ denote such the ensemble average. Hence, the ensemble average wind work
is

⟨Γ𝑡⟩ =
1
2

(

𝑒[𝑖(𝑓+𝜔)−𝑟]𝑡 ∫

𝑡

−∞
𝑒[−𝑖(𝑓+𝜔)+𝑟]𝑡

′
⟨𝐹 ∗

𝑡′𝐹𝑡⟩ d𝑡
′ + c.c.

)

. (3.62)
The covariance function of the Ornstein–Uhlenbeck process 𝐹𝑡 is

⟨𝐹 ∗
𝑡′𝐹𝑡⟩ =

𝜎2

2𝑐
𝑒−𝑐|𝑡−𝑡

′
|, (3.63)

so the ensemble average of Γ𝑡 reduces to

⟨Γ𝑡⟩ =
𝜎2

2𝑐
𝑐 + 𝑟

(𝑐 + 𝑟)2 + (𝑓 + 𝜔)2
. (3.64)

As expected, given the initialisation at 𝑡 = −∞, the power input is independent of time 𝑡.
This equilibrated wind work is balanced by the linear drag, such that the ensemble averaged
kinetic energy in a given mode is finite. From this expression, we can furthermore see that
⟨Γ𝑡⟩ is smaller for 𝜔 > 0 than for 𝜔 < 0. This is because the wind forcing has more power
at low frequencies.
We now define 𝑄 as the ratio between the equilibrium wind work in the presence of a me-
soscale eddy field to the equivalent wind work in the absence of mesoscale eddies. Without
mesoscale eddies, 𝜓 = 0 and there are no frequency shifts, so 𝜔 = 0 for the uniform mode
excited by the wind. The wind work is simply

⟨Γ𝑡⟩ =
𝜎2

2𝑐
𝑐 + 𝑟

(𝑐 + 𝑟)2 + 𝑓 2
. (3.65)
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We calculate 𝑄 as a weighted sum of the ratio over individual modes, where the weighting
is given by the projection 𝐹𝝁 of the forcing onto a given mode 𝝁:

𝑄 =
∑

𝝁
|𝐹𝝁|

2 (𝑐 + 𝑟)2 + 𝑓 2

(𝑐 + 𝑟)2 + (𝑓 + 𝜔𝝁)2
, (3.66)

where we restored the subscripts for the modes. This expression depends on the wave disper-
siveness 𝜀2 through 𝐹𝝁 and 𝜔𝝁. If we make the assumption that the 𝑟 ≪ 𝑐, meaning that the
timescale of NIW dissipation is much longer than the memory of the winds, this expression
reduces to

𝑄 =
∑

𝝁
|𝐹𝝁|

2 𝑐2 + 𝑓 2

𝑐2 + (𝑓 + 𝜔𝝁)2
. (3.67)

We use this reduced expression in the following analysis because 𝑟 ≪ 𝑐 appears reasonable
and because 𝑟 would be difficult to estimate.
Modulation of the NIW wind work by mesoscale eddies occurs only for 𝜀 ≲ 1. Using the
dipole flow as an example, we calculate𝑄 from (3.67) as a function of 𝑐 and 𝜀 (figure 3.11).
For large 𝜀, 𝑄 quickly approaches unity, regardless of the value of 𝑐. For small 𝜀, the con-
tours of 𝑄 become horizontal and there is little dependence of 𝑄 on 𝜀. The dependence is
primarily on 𝑐 with a lower value of 𝑐 resulting in a higher value of𝑄, i.e., a more substantial
enhancement of the wind work.
Our framework provides physical motivation for why mesoscale eddies can modulate the
wind work in the weak-dispersion case. Assuming 𝑐 ≪ 𝑓 , which is generally the case for
the wind stress over the ocean, we see that the inertial frequency 𝑓 is in the 𝜔−2 part of the
wind power spectrum. Any process that shifts the frequency of NIWs will modulate the wind
power felt by the waves. Because the wind power spectrum falls off like 𝜔−2, a shift to lower
frequencies will raise the wind power felt by the waves, and a shift to higher frequencies will
lower it. This is the essence of (3.67). As we have shown above, frequency shifts are small
in the strong-dispersion limit, and so the waves should feel similar wind power regardless
of the presence of mesoscale eddies. As such, 𝑄 is close to unity in the strong-dispersion
limit. In the weak-dispersion limit, in contrast, there can be significant frequency shifts. A
uniform forcing will project onto many modes with a range of frequency shifts. Due to the
curvature of the wind power spectrum, going like 𝜔−2, the fractional increase in power for
negative frequency shifts will be greater than the fractional decrease in power for positive
frequency shifts of the same magnitude. As a result, there will be a net increase in NIW
wind work when summing over all modes (see figure 3.11b for a schematic). The question
remains whether this will be an appreciable effect in the ocean.
We estimate 𝑄 from observations. For each location in the ocean, we estimate 𝜀 from the
deformation radius and satellite altimetry observations of the eddy field (see Appendix 3.10),
and we estimate 𝑐 from atmospheric reanalysis (see Appendix 3.14). We calculate the modes
of the dipole flow for a range of 𝜀, which gives us 𝜔𝝁 and |𝐹𝝁|2, and we re-dimensionalise
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Figure 3.11: (a) Ratio 𝑄 of NIW wind work in the presence of mesoscale eddies to that without as
a function of the wave dispersiveness 𝜀2 and the wind stress memory parameter 𝑐∕𝑓 . Modulation
of the NIW wind work by the mesoscale eddy field appears only for low 𝜀 and 𝑐∕𝑓 . These values
correspond to a re-dimensionalisation of 𝜔 by Ro = 0.5. (b) Schematic illustrating the enhancement
of NIW wind work in the weak-dispersion regime. The solid black curve illustrates the wind stress
power as a function of frequency on a log-log plot. At the inertial frequency, the power is rapidly
falling off. The circles indicate the modes that a uniform initial condition projects onto. In the strong-
dispersion case, the forcing projects onto a single mode with a small frequency shift. In the weak-
dispersion case, the forcing projects onto a wide variety of modes with large frequency shifts.
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𝜔𝝁 using the Rossby number Ro = 𝜁∕𝑓 calculated from satellite altimetry. We use the
spatial structure of the vortex dipole as a stand-in for the real eddy structure. This provides
an (admittedly crude) estimate of the combined effect of an anti-cyclone and a cyclone. We
calculate 𝑄 by using (3.67) and then interpolating onto the correct 𝜀.
Our estimate reveals that deviations of 𝑄 from unity are weak, at most 5%. This effect is
entirely concentrated in the western boundary current regions. This is because the dimen-
sional frequency shift scales with Ro. Over most of the ocean Ro is far too weak to produce
any modulation of the NIW wind work. While this mechanism may be important for indi-
vidual NIW events (Conn et al., 2024), it is clear that on average there is not a significant
modulation of the NIW wind work by mesoscale eddies. The maximum modulation of 5% is
significantly smaller than current uncertainties in the NIW wind work (Alford, 2020). That
being said, our approximation of the wind stress as an Ornstein–Uhlenbeck process is highly
simplified. The real forcing is dominated by intermittent atmospheric cyclones. The linear
drag is also an extremely crude representation of NIW dissipation and should be thought of
as nothing more than a stand-in for a more realistic representation.

3.8 Limitations of the model
All the limitations of the YBJ model are inherent in our analysis above. Specifically, there
is no feedback of the waves onto the background flow. Xie and Vanneste (2015) extended
the YBJ model by coupling it to a quasi-geostrophic model for the background flow that
included wave feedbacks. These wave feedbacks can significantly alter the characteristics
of the background flow (Xie and Vanneste, 2015; Wagner and Young, 2016; Rocha et al.,
2018). Kafiabad et al. (2021) showed that this wave feedback can cause frequency shifts in
the near-inertial waves. Furthermore, Kafiabad et al. (2021) also noticed that strong wave
feedbacks can generate instabilities which cause small-scale structure in the vorticity field.
The scaling assumptions of the original YBJ equation should be kept in mind in the con-
text of the asymptotic expansions performed above. The Rossby number is Ro = Ψ∕𝑓𝐿2,
and the Burger number is Bu = 𝜆2∕𝐿2, such that 𝜀2 = Bu∕Ro. The YBJ equations arises
asymptotically in the limit whereBu → 0whileBu∕Ro is kept fixed (see Asselin and Young,
2019), so 𝜀 ≪ 1 and 𝜀 ≫ 1 do not violate the YBJ scaling.
Thomas et al. (2017) conducted a detailed study of the evolution of NIWs in different scaling
regimes. They considered a “very weak–dispersion regime” whereBu ∼ Ro2 which is equiv-
alent to 𝜀2 ∼ Ro. An additional term arises compared to the YBJ equation, but they found
the YBJ equation to still work well in simulations. They also considered a “strong-dispersion
regime” where Bu ∼ 1. In this regime they found a leading-order uniform NIW solution,
but also with the excitation of super-inertial frequencies that are not captured by YBJ. The
frequency shift of the uniform mode is as predicted by YBJ. Another way to improve on the
YBJ model is the YBJ+ scheme of Asselin and Young (2019). It has a dispersion relation
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that remains accurate over a wider range of Bu, and it has desirable numerical properties.
The YBJ+ equation is not a Schrödinger equation any more, however, and we do not pursue
its analysis here.
Throughout this paper, we have dealt with the case in which the background flow does not
evolve. In the ray tracing framework, the background flow could be allowed to evolve. The
Hamiltonian operator would be time-dependent, but the equations can still be integrated
along rays. For our analysis of eigenmodes to be applicable to the time-dependent case, the
evolution of the background flow should be adiabatic, i.e., it should be slow compared to the
wave evolution. The time for eigenmodes to dephase depends on the difference between their
frequencies. In the strong-dispersion case, the frequency difference between the leading-
order eigenmode and the higher eigenmodes is 𝑂(𝜀2), meaning that the time to dephase
should be small relative to the timescale for evolution of the background flow. In the weak-
dispersion limit, the eigenvalues become ever-closely packed, meaning the timescale for
dephasing can become large. For the adiabatic assumption to hold, an invariant torus should
deform much more slowly than the time it takes a particle to traverse the torus. If the time
taken to traverse the torus is given by the advective timescale, then these two timescales
are formally the same order. The adiabatic assumption will only hold if there is a symmetry
which causes the torus to persist for a longer timescale. The dipole vortex is an extreme
example of this where the tori never deform, yet the advective timescale is finite. In the
ocean, eddies often persist as coherent features for times much longer than the advective
timescale. As such, we expect that the weak-dispersion results to continue to provide insight
even in the time-dependent case.
We have also assumed that the background flow is barotropic. This allows the YBJ equation
to be expanded into the baroclinic normal modes. If the background flow is baroclinic, such
a decomposition is not possible and the modes become coupled. This coupling of the modes
means that the YBJ equation no longer reduces to the Schrödinger equation. This does not
necessarily destroy the quantum analogy, as the techniques employed here may still be ap-
plicable with some modifications. We leave an exploration of these issues to future work.
Finally, we note that in the real ocean, vorticity variance increases at smaller scales. One
may worry that the frequency shifts would diverge with increasing resolution. While a de-
tailed discussion of this issue is beyond the scope of this paper, dispersion should have a
regularising effect on small-scale vorticity, which leaves the problem well-posed.

3.9 Conclusions
In the YBJ framework, the evolution of NIWs in the presence of a mesoscale eddy field is
governed by the wave dispersiveness 𝜀2 = 𝑓𝜆2∕Ψ. The limit of 𝜀 ≫ 1 corresponds to the
strong-dispersion limit and 𝜀 ≪ 1 corresponds to the weak-dispersion limit. Both of these
limits are relevant for the ocean, as the wave dispersiveness decreases with vertical mode
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number and the strength of mesoscale eddies.
The YBJ equation is a Schrödinger equation, with the YBJ operator playing the role of the
Hamiltonian operator in quantum mechanics. As is conventional in quantum mechanics,
the evolution of NIWs can be described using the eigenmodes of the YBJ operator and
their eigenvalues, which determine the frequency shift away from the inertial frequency.
Perturbation methods from quantum mechanics yield insight into YBJ dynamics and its
relationship to the ray tracing equations of Kunze (1985).
In the strong-dispersion regime 𝜀 ≫ 1, perturbation theory yields closed-form expressions
for the NIW modes. To leading order, a spatially uniform forcing excites a spatially uniform
NIW mode. This mode is modulated by an order 𝜀−2 perturbation proportional to the stream-
function of the eddy field. The frequency shift is also of order 𝜀−2 and proportional to the
average kinetic energy of the eddies. Both of these results recover predictions from Young
and Ben-Jelloul (1997) through an alternative approach. The same approach also yields ex-
pressions for the modes that are not spatially uniform to leading order. The degeneracy of
these modes at leading order is lifted at higher order, and the frequency shifts and spatial
structures can be determined. Wind patterns associated with sharp atmospheric fronts may
excite these modes more strongly than the uniform forcing assumed throughout this work
(e.g., Thomas, 2017).
In the weak-dispersion regime 𝜀 ≪ 1, the YBJ equation is amenable to WKB analysis. In
simple (separable) background flow geometries, this allows the straightforward calculation
of eigenmodes and their frequency shifts, which are excellent approximations of the exact
frequency shifts even for modestly small 𝜀. More generally, the weak-dispersion limit of the
YBJ equation corresponds to the classical limit of quantum mechanics. The YBJ equation
reduces to the ray equations of Kunze (1985), the equivalent to the corresponding classical
Hamiltonian dynamics. The semi-classical EBK analysis allows the calculation of frequency
shift for non-separable background flows for the regular part of the spectrum, which again
are in excellent agreement with the full shifts. The emergence of the ray equations in the
classical limit furthermore suggests that they can be applied if dispersion is weak, whether
or not the forcing has a large horizontal scale. The spatial-scale separation underlying the
ray equations emerges because a uniform initial condition projects onto many modes, and
these modes exhibit small-scale structure.
The frequency shift of NIW modes away from the inertial frequency implies that the NIW
wind work can be modulated by mesoscale eddies. We quantify this using 𝑄 which mea-
sures the ratio of the NIW wind work in the presence of mesoscale eddies to that without
mesoscale eddies. This modulation arises due to the curvature of the wind power spectrum,
which enhances the power input into modes with a shift to lower frequencies more than it
suppresses the power input into modes with a shift to higher frequencies. On average, this
effect is weak in the ocean, however, with the modulations always being less than 5%.
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3.10 Appendix A: Calculating the wave dispersiveness
Here, we describe the calculations used to estimate the wave dispersiveness 𝜀2 = 𝑓𝜆2∕Ψ
from observations. At each location, we estimate the set of deformation radii 𝜆 from hydrog-
raphy and the characteristic strength of the streamfunction Ψ from altimetry.
Following Smith (2007), we calculate 𝜆 by solving the baroclinic eigenvalue equation using
finite differences. We perform this calculation using the climatology from the Estimating the
Circulation and Climate of the Ocean (ECCO) state estimate version 4 release 4 (Fukumori
et al., 2020; Forget et al., 2015). We solve the baroclinic eigenvalue equation at each hori-
zontal grid cell on the ECCO grid to obtain maps of the deformation radii. We display 𝜀2 for
the lowest four baroclinic modes only, for which the numerical approximation has a minimal
effect.
To calculate Ψ, we use sea surface height (SSH) observations from the Data Unification and
Altimeter Combination System’s (DUACS) delayed-time (DT) 2018 release Taburet et al.
(2019). The SSH is provided at a (nominal) (1∕4)◦ and daily resolution. We calculate a
geostrophic streamfunction using 𝜓 = 𝑔𝜂∕𝑓 , where 𝜂 is the SSH and 𝑓 is the (now latitude-
dependent) Coriolis frequency. We take observations from 2007 to 2022 and estimate Ψ as
the RMS 𝜓 over that period. Again, we are assuming that the streamfunction is barotropic.

3.11 Appendix B: Numerical solutions to the eigenvalue problem
To numerically solve the eigenvalue problem (3.6), we discretise the Hamiltonian oper-
ator 𝐻 using finite differences. We use a fourth-order central difference scheme for the
Laplacian operator in the dispersion term. For the advection term, we employ the fourth-
order enstrophy-conserving scheme of Arakawa (1966), which preserves the Hermitian na-
ture of the operator and translates into energy conservation in this context. In the nota-
tion of Arakawa (1966), we employ 2𝐽1 − 𝐽2, where 𝐽1 = 1

3 (𝐽
++ + 𝐽+× + 𝐽×+) and

𝐽2 =
1
3 (𝐽

×× + 𝐽×+ + 𝐽+×). For the refraction term, we evaluate 𝜁 analytically at each point,

https://github.com/joernc/ybjmodes
https://doi.org/10.48670/moi-00148
https://doi.org/0.24381/cds.adbb2d47
https://doi.org/10.5067/ECG5D-ODE44
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although in general it could be calculated from the streamfunction using finite differences
as well.
We use a spatial resolution of up to 1024× 1024 points and solve for the lowest eigenvalues
using Lanczos iteration. The resolution is chosen by checking the convergence of the eigen-
values. The number of eigenvalues solved for depends on the value of 𝜀, which controls how
densely packed the eigenvalues are and thus how many must be computed to find all eigen-
modes that a uniform forcing projects onto substantially. We ensure a large enough number
of eigenvalues are computed by summing the square of the projection coefficients.

3.12 Appendix C: Analytical solutions to shear flow WKB integrals
Here, we provide analytical solutions to the WKB problem with the sinusoidal shear flow.
First we rewrite the potential as

𝑉 (𝑥) = 𝐴𝑚 cos (𝑥 + 𝛿𝑚) +
𝜀2𝑚2

2
, where 𝐴𝑚 =

√

𝑚2 + 1
4

and tan 𝛿𝑚 = −2𝑚.
(3.68)

If 𝑚 > 0 and arctan corresponds to the principal value, then it follows that 𝛿𝑚 = 𝜋 +
arctan (−2𝑚). Because the domain is periodic, we can consider any interval of length 2𝜋.
For convenience, we choose [−𝜋 − arctan(−2𝑚), 𝜋 − arctan(−2𝑚)]. We can now make the
change of variable 𝑥′ = 𝑥 + arctan(−2𝑚). The transformed potential is

𝑉 (𝑥′) = 𝜀2𝑚2

2
− 𝐴𝑚 cos(𝑥′). (3.69)

With the potential in this form, the WKB integral (3.32) can be evaluated in terms of the
elliptic integral of the second kind 𝐸(𝜑|𝑘2):

𝑆0 = ±2
√

2𝑖𝜀
√

𝜔 − 𝜀2𝑚2

2
+ 𝐴𝑚 𝐸

⎛

⎜

⎜

⎝

𝑥′

2

|

|

|

|

|

2𝐴𝑚
𝜔 − 𝜀2𝑚2

2 + 𝐴𝑚

⎞

⎟

⎟

⎠

. (3.70)

We can obtain an equation for the eigenvalues from (3.39). Letting 𝑥′1 denote the positive
turning point given by

𝑥′1 = 𝜋 − arccos
⎛

⎜

⎜

⎝

𝜔 − 𝜀2𝑚2

2
𝐴𝑚

⎞

⎟

⎟

⎠

, (3.71)

we obtain

𝐸(𝜑|𝑘2) =
𝜀𝜋

(

𝑛 + 1
2

)

4
√

2
(

𝜔 − 𝜀2𝑚2

2 + 𝐴𝑚
)

, where 𝜑 =
𝑥′1
2

and 𝑘2 =
2𝐴𝑚

𝜔 − 𝜀2𝑚2∕2 + 𝐴𝑚
.

(3.72)
This is a transcendental equation that can be solved numerically for the eigenvalues 𝜔.
The eigenvectors can be normalised by requiring

∫

𝜋

−𝜋
[𝜙̂𝑛(𝑥)]2𝑑𝑥 = 2𝜋. (3.73)
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Letting 𝐶 be the normalisation constant, we obtain

8𝐶2
√

𝜔 − 𝜀2𝑚2

2
+ 𝐴𝑚

𝐹 (𝜑|𝑘2) = 2𝜋, (3.74)

where 𝐹 (𝜑|𝑘2) is the elliptic integral of the first kind (see Bender and Orszag, 1999).
The projection of a uniform forcing onto a given mode with even symmetry about the bottom
of the potential is

𝑎𝑛 =
1
2𝜋 ∫

𝜋

−𝜋
𝜙̂𝑛(𝑥)𝑑𝑥. (3.75)

This integral can be evaluated (again see Bender and Orszag, 1999) as
|𝑎𝑛|

2 = 1
√

𝐴𝑚 − 𝜔 + 𝜀2𝑚2

2

𝜀
√

2𝐹 (𝜑|𝑘2)
. (3.76)

3.13 Appendix D: Further Details about the EBK Method
We principally follow Percival and Pomphrey (1976) to calculate the invariant tori satisfy-
ing quantisation conditions and the associated EBK predictions for the eigenvalues 𝜔. We
write the angle Hamilton equations, which are partial differential equations that describe the
invariant torus:

𝜈 𝜕𝑥
𝜕𝜃

+ 𝜇 𝜕𝑥
𝜕𝜑

= 𝜀2𝑘 + 𝑢, (3.77)

𝜈
𝜕𝑦
𝜕𝜃

+ 𝜇
𝜕𝑦
𝜕𝜑

= 𝜀2𝑙 + 𝑣, (3.78)

𝜈 𝜕𝑘
𝜕𝜃

+ 𝜇 𝜕𝑘
𝜕𝜑

= −
(

𝑘𝜕𝑢
𝜕𝑥

+ 𝑙 𝜕𝑣
𝜕𝑥

+ 1
2
𝜕𝜁
𝜕𝑥

)

, (3.79)

𝜈 𝜕𝑙
𝜕𝜃

+ 𝜇 𝜕𝑙
𝜕𝜑

= −
(

𝑘𝜕𝑢
𝜕𝑦

+ 𝑙 𝜕𝑣
𝜕𝑦

+ 1
2
𝜕𝜁
𝜕𝑦

)

. (3.80)
The quantization conditions can then be written as integrals over the angles 𝜃 and 𝜑:

∫

(

𝑘𝜕𝑥
𝜕𝜃

+ 𝑙
𝜕𝑦
𝜕𝜃

)

d𝜃 = 2𝜋𝑚, ∫

(

𝑘 𝜕𝑥
𝜕𝜑

+ 𝑙
𝜕𝑦
𝜕𝜑

)

d𝜑 = 2𝜋(2𝑛 + 1 + 𝑚). (3.81)
The integration along 𝜃 passes around the hole of the torus (like contour 2 in figure 3.9).
The integration along 𝜑 passes through the hole twice and also around the hole once, so we
double the radial phase increment 2𝜋(𝑛+ 1

2 ) and add the azimuthal phase increment 2𝜋𝑚 in
the second quantization condition. We average these numerical integrals over the respective
other coordinate to increase the accuracy.
We discretise the above equations by dividing the [0, 2𝜋] intervals that the angles 𝜃 and 𝜑
vary over using 64 points and approximate derivatives using an eighth-order finite difference
scheme. We initialise the calculation with 𝜃 = −1

2 , 𝜑 = 1
10 ,

𝑥 = 1
2
(1+cos𝜑) cos 𝜃, 𝑦 = 1

2
(1+cos𝜑) sin 𝜃, 𝑘 = −𝜀−1 sin𝜑 cos 𝜃, 𝑙 = −𝜀−1 sin𝜑 sin 𝜃

(3.82)
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for the (𝑛, 𝑚) = (0, 0) torus and apply Newton iteration to satisfy the above equations. We
determine𝜔 by applying the dispersion relation at each point of the torus and averaging over
all grid points. We then change the quantum numbers to other values and start the Newton
iteration from the previously found torus, using iterations at intermediate values if needed.

3.14 Appendix E: Estimating the decorrelation time of wind stress
Here, we describe the calculations used to estimate the decorrelation time 𝑐−1 of the wind
stress. For the wind forcing, we use the European Centre for Medium-Range Weather Fore-
casting ERA-5 reanalysis (Hersbach et al., 2018). For the calculations below, we use data
from 2015 to 2020. At each grid cell, we use the 10 m zonal (𝑢𝑤) and meridional (𝑣𝑤) winds
with hourly resolution. Following Pollard and Millard Jr (1970) we convert this to a wind
stress using a bulk aerodynamic drag formulation. The time series at each location is used
to calculate a power spectrum of the wind stress. The decorrelation timescale is obtained by
fitting the following model to the estimated spectrum:

𝑆(𝜔) = 𝐴

1 +
(

𝜔
𝑐

)𝑠 , (3.83)

where 𝐴 and 𝑠 are additional fitted parameters that we do not use here. Over the ocean 𝑠 = 2
is a reasonable approximation, which motivates our use of the Ornstein–Uhlenbeck process
above.
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C h a p t e r 4

GLOBAL NEAR-INERTIAL WAVE SPECTRA SHAPED BY MESOSCALE
EDDIES

This chapter has been submitted to the Journal of Physical Oceanography. As a self-contained
work, some notation may differ from conventions used elsewhere in this thesis.

4.1 Abstract
Wind-forced near-inertial waves (NIWs) propagate through a sea of mesoscale eddies, which
can fundamentally alter their evolution. The nature of this NIW–mesoscale interaction de-
pends on how dispersive the waves are. For weakly dispersive waves, ray tracing suggests
that the NIW frequency should be shifted by 1

2𝜁 , where 𝜁 is the mesoscale vorticity, and that
the waves are refracted into anticyclones. Strongly dispersive waves, in contrast, retain the
large-scale structure of the wind forcing and exhibit a small negative frequency shift. Previ-
ous in situ observational studies have indeed revealed varying degrees of NIW–mesoscale
interaction. Here, observations of NIWs from drifters are used to map the geography of
NIW–mesoscale interactions globally, and idealized simulations and a simple model are
used to identify the underlying physical processes. Almost everywhere in the ocean, with
the notable exception of the Northeast Pacific, the NIW frequency is strongly modulated
by the mesoscale vorticity, with the slope of the frequency shift vs. vorticity taking values
of approximately 0.4. Concentration of NIW energy into anticyclones is a common fea-
ture throughout the ocean. Other aspects of the observations, however, show signatures of
strongly dispersive waves: a negative frequency shift and weaker concentration into anticy-
clones in regions with strong eddies as well as weak modulation of the NIW frequency by
mesoscale eddies in the Northeast Pacific. The signatures of both weakly and strongly dis-
persive NIW behavior can be rationalized by the geography of the wave dispersiveness and
the fact that wind forcing excites multiple vertical modes with different wave dispersiveness.

4.2 Introduction
Near-inertial waves (NIWs) excited by atmospheric storms substantially influence upper-
ocean dynamics through their role in small-scale mixing (e.g., Alford et al., 2016). They are
characterized by strong vertical shear that can trigger shear instabilities, causing turbulence
and mixing. This process deepens the surface mixed-layer in the aftermath of a storm, and
a significant fraction of NIW energy is dissipated in the upper ocean (Alford, 2001; Plued-
demann and Farrar, 2006; Alford, 2020). Ultimately, NIW-induced mixing influences the
ocean’s surface heat budget, impacting atmospheric circulation and precipitation patterns
(Jochum et al., 2013).
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The evolution of NIWs can be strongly influenced by interactions with mesoscale eddies. If
the waves are weakly dispersive, they can be described by ray tracing (Kunze, 1985; Conn
et al., 2025), and one expects them to be refracted toward anticyclonic vorticity. There is
now substantial observational evidence for such 𝜁 refraction and the resulting concentration
of NIW energy into anticyclones (Elipot et al., 2010; Thomas et al., 2020; Yu et al., 2022b;
Conn et al., 2024). This refraction also increases the speed at which NIWs propagate to
depth (Lee and Niiler, 1998; Asselin and Young, 2020), which in turn impacts where in the
upper ocean NIWs generate mixing (e.g., Essink et al., 2022; Alford et al., 2025).
The recent evidence of 𝜁 refraction from field campaigns in the North Atlantic (Thomas
et al., 2020; Yu et al., 2022a; Conn et al., 2024) stands in contrast to the pioneering Ocean
Storms Experiment in the Northeast Pacific (D’Asaro et al., 1995), where the NIW–mesoscale
interaction was found to be weak. Studying the scale reduction of the NIW field after the pas-
sage of a storm, D’Asaro et al. (1995) could explain the evolution as driven by the 𝛽 effect,
so-called 𝛽 refraction (Munk and Phillips, 1968; Gill, 1984), with mesoscale eddies playing
no discernible role (D’Asaro, 1995). Young and Ben-Jelloul (1997, hereafter YBJ) argued
that the lack of NIW–mesoscale interaction during Ocean Storms was due to a breakdown
of the scale separation assumption of ray tracing, showing that strongly dispersive waves
remain largely uniform in the presence of eddies. Indeed, Thomas et al. (2024a) showed that
the differences in NIW behavior between Ocean Storms and the NISKINe experiment in the
North Atlantic could be attributed to differences in how dispersive the waves were in these
two regions.
Given these drastic differences in NIW behavior, the goal of this paper is to characterize the
geography of NIW–mesoscale interaction globally. We use YBJ’s description of the NIW
evolution in the presence of a mesoscale eddy field both as a guide in the analysis and as
our main interpretive framework. Throughout the paper, we consider the YBJ equation for a
single vertical mode, which requires assuming a barotropic eddy field. For a vertical mode
with structure 𝑔(𝑧), the NIW velocity can be expressed as (𝑢𝑤(𝑥, 𝑦, 𝑡), 𝑣𝑤(𝑥, 𝑦, 𝑡))𝑔(𝑧). The
YBJ equation is then formulated as an evolution equation for 𝜙 = (𝑢𝑤+ 𝑖𝑣𝑤)𝑒𝑖𝑓 𝑡, where 𝑓 is
the inertial frequency and here assumed constant (i.e., we neglect the 𝛽 effect). Under these
assumptions, the YBJ equation can be written as

𝜕𝜙
𝜕𝑡

+ J(𝜓, 𝜙) +
𝑖𝜁
2
𝜙 −

𝑖𝑓𝜆2

2
∇2𝜙 = 0, (4.1)

where 𝜓 is the prescribed streamfunction of mesoscale eddies, 𝜁 = ∇2𝜓 is the associ-
ated vorticity, 𝜆 is the deformation radius of the vertical mode under consideration, and
J(𝑎, 𝑏) = 𝜕𝑥𝑎 𝜕𝑦𝑏− 𝜕𝑦𝑎 𝜕𝑥𝑏 is the Jacobian operator. The second term in (4.1) represents the
advection of NIWs by mesoscale eddies, the third term represents refraction by mesoscale
vorticity, and the fourth term represents dispersion. The relative importance of dispersion
versus refraction is captured by the wave dispersiveness 𝜀2 = 𝑓𝜆2∕Ψ, where Ψ is an appro-
priate scale for the mesoscale streamfunction.
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The wave dispersiveness 𝜀2 governs the extent to which NIW–mesoscale interactions influ-
ence the evolution of the waves (Fig. 4.1). When 𝜀 ≫ 1, dispersion dominates and mesoscale
effects are limited. When 𝜀 ≪ 1, dispersion is weak and the mesoscale strongly modulates
NIW behavior. Kunze (1985) used ray-tracing to describe how NIWs interact with meso-
scale eddies, proposing that the eddies act to shift the local inertial frequency to an effective
value 𝑓 + 𝜁∕2. This ray-tracing framework applies in the weak-dispersion limit, 𝜀 ≪ 1,
when the scale separation assumption is appropriate, even when the atmospheric forcing
is large-scale (Conn et al., 2025), providing a useful prediction for how mesoscale eddies
should modulate the NIW frequency. This frequency shift also sets up phase gradients in the
NIWs. Dispersion, which is weak but non-zero, acts to flux energy down these phase gra-
dients, resulting in the concentration of NIW energy into anticyclones, although advective
straining can complicate this process (Rocha et al., 2018; Conn et al., 2025). If dispersion is
strong, in contrast, the waves only take on weak horizontal structure that is proportional to
the streamfunction 𝜓 and suppressed by a factor of order 𝜀−2 compared to the leading-order
uniform structure (Young and Ben-Jelloul, 1997; Conn et al., 2025). Similarly, the NIW fre-
quency in this regime is negatively shifted by a factor of order 𝜀−2 compared to the scale
of 𝜁 and proportional to the area-averaged mesoscale kinetic energy rather than 𝜁 (Young
and Ben-Jelloul, 1997; Conn et al., 2025):

Δ𝜔 = − 1
𝑓𝜆2

∫ 1
2 |∇𝜓|

2 d2𝑥

∫ d2𝑥
. (4.2)

Conn et al. (2025) showed that a horizontally uniform wind forcing primarily projects onto
a single mode, meaning the spectrum of the NIW should be strongly peaked in this strong-
dispersion case.
The global availability of surface drifters and satellite altimetry provides an opportunity to
assess the importance of NIW–mesoscale interactions across the world ocean. In situ field
campaigns offer detailed spatial information over limited regions but cannot achieve global
coverage. Altimetry by itself is blind to NIWs, as they produce no leading-order pressure
signal, but it can be used to characterize the mesoscale eddy field. Drifters often exhibit
easily discernible inertial circles (e.g., D’Asaro et al., 1995; ber), and frequency spectra uni-
versally exhibit a distinct near-inertial peak (Yu et al., 2019). The drifter observations’ La-
grangian nature means that they capture the waves’ intrinsic frequencies and are not affected
by Doppler shifts.
Elipot et al. (2010) previously characterized the global spectral properties of NIWs using
drifter data. Averaged globally, they found that the frequency of the NIW peak roughly fol-
lowed 0.4𝜁 , close to the 𝜁∕2 prediction from Kunze (1985). They identified wind forcing as
the primary driver of NIW amplitude variations but also found 𝜁 to modulate the amplitude,
consistent with ray tracing and YBJ theory. Elipot et al. (2010) further linked variations in
the width of the NIW peak to the Laplacian of 𝜁 , based on theoretical arguments by Klein
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Figure 4.1: Geography of the wave dispersiveness 𝜀2 of the first four vertical modes, showing a tran-
sition from strongly dispersive low modes to more weakly dispersive high modes. Note the weaker
dispersion in major current systems. Figure adapted from Conn et al. (2025). These maps represent
annual averages, with the streamfunction magnitude Ψ coming from altimetry measurements (Tabu-
ret et al., 2019) and the deformation radius 𝜆 being calculated from the climatological density profiles
from the Estimating the Circulation and Climate of the Ocean (ECCO) state estimate version 4 re-
lease 4 (Fukumori et al., 2020; Forget et al., 2015).

et al. (2004). Park et al. (2005) also studied the amplitude of NIWs globally using the drifter
dataset, while Park et al. (2009) used the YBJ model in the absence of a background flow
(but retaining 𝛽 refraction) to investigate the decay timescales of NIWs in the drifter data.
The strength of mesoscale eddies, the inertial frequency, the deformation radius, and the pro-
jection of wind forcing onto vertical modes all vary substantially across the world ocean. Be-
cause these quantities shape the characteristics of NIW–mesoscale interactions, one should
expect substantial regional differences as exemplified by the dichotomy between Ocean
Storms and NISKINe (Thomas et al., 2024a). These regional differences can be obscured
in a global mean, so we leverage the expanded drifter dataset available since Elipot et al.
(2010) to explore this geography.
This analysis shows that mesoscale eddies modulate the NIW frequency nearly everywhere,
with the notable exception of the Northeast Pacific. In highly energetic regions, we also
find evidence for the excitation of strongly dispersive waves. We interpret these results em-
phasizing the role of the wave dispersiveness in modulating NIW–mesoscale interactions.
Idealized simulations and a simple model of this interaction reproduce key spectral features
observed in the drifter data. Together, these results show how NIW–mesoscale interactions
have a major organizing influence on the global structure of near-inertial energy.
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Figure 4.2: Availability of drifter data. (a) Number of hourly drifter observations available per year.
Blue refers to the full set of GPS-tracked drifters, while yellow represents only those observations
for which the drifter’s drogue is still attached. (b) Distribution of drifter observations, shown as
the number of spectrograms per unit area in a given grid cell. The pattern reflects the large-scale
convergence and divergence in the ocean as well as a northern-hemisphere and Atlantic bias.

4.3 Drifter Observations of NIWs
To characterize NIWs globally, we use observations from the Global Drifter Program. This
dataset provides hourly records of both position and horizontal velocity for 19 396 drifters
spanning the period 2007–2023. We restrict our analysis to drifters with GPS-tracked posi-
tions. Each drifter is initially drogued, such that its velocity reflects the current at 15m depth;
however, the drogue can be lost over the course of a drifter’s lifetime. Observations made
while the drogue is still attached account for approximately 49% of the dataset (Fig. 4.2a).
We discard all measurements following drogue loss. The distribution of drifters across the
ocean is non-uniform and reflects large-scale patterns of horizontal convergence and diver-
gence as well as preferential deployment, for example in the North Atlantic (Fig. 4.2b).
To calculate NIW spectra, we first divide the drifter trajectories into overlapping 20-day
segments and compute the spectrogram of 𝑢+ 𝑖𝑣 for each segment. These spectrograms are
calculated using a Lanczos window and subsequently binned based on the mean position
of each segment, also determined using the same window. A defining feature of NIWs is
their circular polarization. In the Northern Hemisphere (where 𝑓 > 0), NIWs exhibit clock-
wise polarization, so we retain only the clockwise component of the power spectrum; in
the Southern Hemisphere (where 𝑓 < 0), we retain only the counterclockwise component.
The 20-day segment results in a spectral resolution of 3.6× 10−6 s−1. Spectral estimates are
calculated as averages over geographical bins (bins with less than 10 such 20-day segments
are dismissed). The grid spacing of the binning is 5◦ zonally and variable in the meridional
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Figure 4.3: Example spectral estimate (black, with 95% confidence interval in gray) and the associ-
ated least-squares fit of the model spectrum (purple). This example shows peaks corresponding to
NIWs as well as the semidiurnal tide. There is little power associated with the diurnal tide in this
example. The fitted model has a low-frequency component with a slope of −3.13, a NIW peak at
1.00𝑓0 with a width of 0.08𝑓0, and a semidiurnal peak at 1∕38𝑓0 with a width of 0.05𝑓0.

direction. The meridional grid spacing is capped at 5◦ and decreases toward the equator to
ensure that the variation in 𝑓 across each grid cell remains smaller than the spectral resolu-
tion, rendering the impact of 𝑓 variations on the spectral estimates negligible.
The spectra show evidence of low-frequency balanced motion, NIWs, diurnal/semi-diurnal
tides, and high-frequency internal waves. We perform a spectral fit to isolate the NIW signal.
The model spectrum consists of a low-frequency component and Gaussian peaks for the
NIWs and tides. We perform the fit in linear space, and we do not include a term for the
internal wave continuum as its amplitude is orders of magnitude smaller than the other terms.
The spectral model is

𝑆(𝜔) =
𝐴𝐿

1 + ( 𝜔
𝜔𝐿

)𝑠
+ 𝐴𝐼𝑒

− (𝜔−𝑓−𝜔𝐼 )
2

2𝜎2𝐼 + 𝐴𝐷𝑒
− (𝜔−𝜔𝐷)2

2𝜎2𝐷 + 𝐴𝑆𝑒
− (𝜔−𝜔𝑆 )2

2𝜎2𝑆 , (4.3)

where𝐴𝐿, 𝐴𝐼 , 𝐴𝐷, 𝐴𝑆 are the amplitudes of the low-frequency motion, NIWs, diurnal tides,
and semi-diurnal tides, respectively, 𝜔𝐿 is the transition frequency of the low-frequency
model, 𝑠 is the spectral slope of the low-frequency model, 𝜔𝐼 is the NIW frequency shift,
𝜎𝐼 is the NIW spectral width, 𝜔𝐷 is the frequency of the diurnal tides, 𝜎𝐷 is the width of
the peak at 𝜔𝐷, 𝜔𝑆 is the frequency of the semi-diurnal tides, and 𝜎𝑆 is the width of the
peak at 𝜔𝑆 . As we consider either the clockwise or counterclockwise components of the
power spectrum alone, we take the frequencies to be positive. With this convention 𝜔𝐼 > 0
corresponds to a shift of the NIWs to frequencies higher than 𝑓 (i.e., superinertial frequen-
cies), while 𝜔𝐼 < 0 corresponds to a shift to frequencies lower than 𝑓 (i.e., subinertial
frequencies).
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Figure 4.4: Characteristics of the NIW peak: (a) the frequency shift 𝜔𝐼∕𝑓 , (b) the spectral width 𝜎𝐼 ,
and (c) the NIW kinetic energy 𝐾 . All estimates are calculated from averages over all available
spectrograms in a given geographical bin. 95% confidence intervals are shown in Suppl. Fig. 1.

Given a spectral estimate 𝑆̂, we fit the model spectrum to this estimate using the least
squares method (Appendix A). We fix the tidal frequencies and determine all other param-
eters through the fit (see Fig. 4.3 for an example). The NIW kinetic energy can be obtained
from the fit by integrating the NIW part of the model spectrum across all frequencies:

𝐾 =
√

2𝜋𝐴𝐼𝜎𝐼 . (4.4)

Each spectral estimate 𝑆̂ is obtained by averaging over all available spectrograms in the
respective bin. The spectral estimate 𝑆̂ follows a 𝜒2 distribution, where the number of de-
grees of freedom is equal to twice the number of spectrograms that are averaged to obtain 𝑆̂.
We draw random samples from this distribution and perform the fitting procedure on each
sample to obtain an empirical distribution for the fitted parameters.
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First, we apply the fitting procedure to spectral estimates obtained by averaging all spectra
within a given spatial bin. We exclude regions near the equator, where NIWs merge with
low-frequency tropical wave modes, and around the turning latitudes of the diurnal tides,
where NIWs cannot be distinguished from tidal signals. In these regions, the spectral diag-
nostics are dominated by changes in the relative position of the tidal frequency and 𝑓 , with
any mesoscale signal not being observable. Equatorward of 30◦, the mean frequency shift𝜔𝐼
is generally positive (Fig. 4.4a). Elipot et al. (2010) attributed this to the equatorward prop-
agation of NIWs—a plausible explanation that we revisit in the discussion (Section 4.6).
Poleward of 30◦, we observe regions with both positive and negative frequency shifts. Neg-
ative shifts occur primarily in energetic regions such as western boundary currents and the
Antarctic Circumpolar Current (ACC). We hypothesize that these shifts result from the ex-
citation of strongly dispersive NIWs, which produce a negative frequency shift as described
by (4.2). We explore this hypothesis in more detail below. It is useful to note here that the
winds excite multiple NIW modes, and so while we hypothesize that these negative shifts
come from strongly dispersive waves, we also expect weakly dispersive waves to be present
too. In other regions, the frequency shift is weakly positive.
One potential concern is that the observed frequency shifts may be influenced by a vorticity
sampling bias inherent to the drifter data. Drifters preferentially sample regions of conver-
gent flow, which are often associated with cyclonic structures (Middleton and Garrett, 1986;
Elipot et al., 2010). If weakly dispersive NIWs are present, ray-tracing predicts a positive
frequency shift in such regions, potentially introducing a net positive bias. However, we will
show below that the spatial patterns in the frequency shift persist even when this bias is
taken into account.
The width 𝜎𝐼 of the NIW peak is remarkably uniform across most of the ocean but is elevated
in western boundary currents and the ACC (Fig. 4.4b). This suggests an influence of meso-
scale eddies, but strongly dispersive waves should be narrowly peaked and the ray-tracing
framework for weakly dispersive waves does not provide predictions for spectral width. In
the following sections, we use the YBJ model to examine the physical mechanisms respon-
sible for the increased spectral width in high-energy regions.
The NIW kinetic energy is elevated beneath the mid-latitude storm tracks in the North Pa-
cific, North Atlantic, and Southern Ocean, with a notable maximum in NIW kinetic energy
in the North Pacific (Fig. 4.4c). This pattern broadly reflects the large-scale distribution of
wind energy input into the near-inertial band (Flexas et al., 2019; Alford, 2020; von Storch
and Lüschow, 2023). Models suggest some asymmetry in wind work magnitude between
the North Pacific and North Atlantic, although the dynamics governing NIW propagation to
depth likely also influence the kinetic energy generated by a given wind forcing. We explore
these dynamical differences further below.
The patterns of the NIW frequency shift 𝜔𝐼 and peak width 𝜎𝐼 show structure that is spa-
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tially aligned with regions of energetic mesoscale turbulence, suggesting that interactions
with mesoscale eddies influence the NIW spectral properties. To investigate this influence,
we characterize the mesoscale eddy field using satellite altimetry measurements of sea sur-
face height (SSH). We use the delayed-time (DT) 2018 release of the Data Unification and
Altimeter Combination System (DUACS) product (Taburet et al., 2019). The mesoscale
streamfunction 𝜓 is defined as 𝜓 = 𝑔ℎ∕𝑓 , where 𝑔 is the gravitational acceleration and
ℎ is the SSH. We then compute the mesoscale vorticity 𝜁 = ∇2𝜓 and interpolate it onto
all drifter trajectories to obtain concurrent estimates of NIW velocity and mesoscale vortic-
ity. We note that the DUACS product may have inaccuracies near the coast, but drifters in
coastal regions make up a very small fraction of the total dataset.
The influence of mesoscale eddies on NIW spectra can be assessed by evaluating NIW
spectral properties as a function of 𝜁 . Within each spatial bin, we subdivide the spectro-
grams based on the mean vorticity along each trajectory, calculated using the same Lanczos
window as above. For each vorticity bin, we compute the spectral estimate and extract the
spectral fit parameters defined in (4.3).
The spectral properties of NIWs, when averaged globally, show strong evidence of mod-
ulation by mesoscale eddies (Fig. 4.5). To quantify this modulation, we perform a linear
regression (weighted by the uncertainty on each data point) of 𝜔𝐼 and 𝐾 to 𝜁 :

𝜔𝐼 (𝜁 )
𝑓

= 𝑎 + 𝑏
𝜁
𝑓
, (4.5)

𝐾(𝜁 ) = 𝑐 + 𝑑
𝜁
𝑓
. (4.6)

We find that the frequency shift (Fig. 4.5a) varies with 𝜁 with a slope of 0.39 (95% CI:
0.36 to 0.42) and an intercept of 0.000 (95% CI: −0.001 to 0.001). This slope is in excellent
agreement with the values reported by Elipot et al. (2010), although our estimated intercept
is lower. The dependence of the spectral width on vorticity (Fig.4.5b) also resembles the
findings of Elipot et al. (2010); however, large uncertainties in high-vorticity bins make it
difficult to determine whether there is a robust relationship. Globally averaged, we observe
a clear concentration of NIW kinetic energy into anticyclonic regions (Fig. 4.5c). The slope
of the linear fit is 0.0011 m2 s−2 (95% CI: 0.0009 to 0.0012 m2 s−2), and the intercept is
0.0043 m2 s−2 (95% CI: 0.0042 to 0.0044 m2 s−2). While a linear fit is not a good model
for 𝐾(𝜁 ) at high vorticity, the slope provides a useful summary metric for quantifying the
preferential concentration into anticyclones.
Caution is warranted when interpreting global averages of spectral properties. For exam-
ple, the spectral width is elevated in western boundary currents and the Antarctic Circum-
polar Current (ACC), where vorticity is also strong (Fig. 4.4b). The upward curvature in
the width–vorticity relationship may therefore reflect a coincidental spatial correlation be-
tween broader spectra and larger vorticity, rather than arising from underlying dynamical
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processes. Similarly, the enhancement of NIW kinetic energy in regions of strong vorticity
may influence the global average, although comparisons between strong cyclonic and anti-
cyclonic vorticity remain robust. More generally, interpreting global averages requires care,
as they conflate diverse dynamical regimes.
Furthermore, we note that wind forcing typically excites a range of vertical modes (e.g., Gill,
1984; Thomas et al., 2024a), each with different degrees of wave dispersiveness (Fig. 4.1).
The drifters feel the combination of these modes and may exhibit, even in a given region, be-
haviour that is a mix of strongly dispersive low modes and weakly dispersive higher modes.
The spectra estimated from the drifters may reflect that mix. The strength of the imprint
of strongly vs. weakly dispersive waves depends on their relative amplitudes, and a given
diagnostic may be more sensitive to strongly or weakly dispersive waves, requiring nuance
in the interpretation.
With these cautionary notes in mind, we calculate linear fits for 𝜔𝐼 and 𝐾 across the globe.
To improve the statistics, we compute 𝜔𝐼 (𝜁 ) within each spatial bin and then average these
curves to obtain a uniform 5◦×5◦ discretization. A linear fit is then applied to the mean𝜔𝐼 (𝜁 )
curve within each 5◦×5◦ bin. The resulting intercept 𝑎 exhibits significant spatial structure
(Fig. 4.6a). Because of the lack of a strong preference for cyclonic vs. anticyclonic vorticity
at the mesoscale (Chelton et al., 2011), the intercept 𝑎 can be interpreted as the mean fre-
quency shift with any bias in drifter locations toward cyclones removed. Notably, the spatial
structure of 𝑎 (Fig. 4.6a) closely resembles that of the mean 𝜔𝐼 (Fig. 4.4a), suggesting that
these patterns are not an artifact of sampling bias. Strong negative intercepts are observed
in regions of high eddy kinetic energy, such as western boundary currents and the Antarctic
Circumpolar Current. As shown in (4.2), strongly dispersive NIWs are expected to exhibit
negative frequency shifts proportional to mesoscale kinetic energy. These negative intercepts
may therefore signal the excitation of strongly dispersive NIWs. Positive frequency shifts,
on the other hand, are likely due to equatorward propagation of NIWs, although we show
below that weakly dispersive waves interacting with mesoscale eddies are also expected to
produce positive shifts.
Negative frequency shifts associated with strongly dispersive waves may explain the nega-
tive values of the intercept 𝑎 observed in western boundary currents in the drifter data. A
fraction of the near-inertial wind work excites strongly dispersive low modes (e.g., Thomas
et al., 2024a), which are associated with a negative frequency shift proportional to the local
mesoscale kinetic energy. Whether the full NIW signal also exhibits a negative frequency
shift depends on the extent to which the wind excites these modes and the magnitude of
their individual frequency shifts. The close spatial alignment between regions of high me-
soscale kinetic energy and negative 𝑎 values leads us to hypothesize that large mesoscale
kinetic energy is driving large negative frequency shifts in strongly dispersive waves, which
are then expressed in the full signal. To test this idea, we compare the magnitude of the neg-
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Figure 4.6: Geography of the vorticity dependence of NIW spectral properties. (a) Intercept and
(b) slope of the linear fit to the NIW frequency shift 𝜔𝐼∕𝑓 as a function of vorticity 𝜁 . The black
boxes in (a) outline the two regions to be investigated further in Fig. 4.8. (c) Intercept and (d) slope of
the linear fit to the NIW kinetic energy 𝐾 as a function of vorticity 𝜁 . Note that we show the slope 𝑑
normalized by the intercept 𝑐 because otherwise it primarily reflects the patterns seen in panel (c).
95% confidence intervals are shown in Suppl. Fig. 2.
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ative intercepts with the prediction from (4.2) for strongly dispersive waves. To estimate this
prediction from observations, we require both the mesoscale kinetic energy and the defor-
mation radius. Using the streamfunction from altimetry, we calculate the mesoscale kinetic
energy as 1

2
|∇𝜓|2. The deformation radius is obtained by solving the baroclinic eigenvalue

equation (Smith, 2007) using climatological data from the Estimating the Circulation and
Climate of the Ocean (ECCO) state estimate version 4 release 4 (Fukumori et al., 2020; For-
get et al., 2015). We perform this calculation for the first two baroclinic modes, which are
generally strongly dispersive (Fig. 4.1). The measured 𝑎 from the drifter data reflects a mix-
ture of frequency shifts from all baroclinic modes, as well as possible contributions from
the 𝛽-effect, so a one-to-one correspondence is not expected. Nonetheless, we can assess
whether the magnitude of the predicted shifts for strongly dispersive waves are consistent
with the observed 𝑎. The observed 𝑎 generally lies between the values predicted for the first
and second baroclinic modes (Fig. 4.7). It is therefore plausible that the negative values of 𝑎
result from the presence of strongly dispersive waves.
The slope 𝑏, while somewhat noisy, exhibits little spatial variability (Fig. 4.6b). With few
exceptions, its value remains close to the global mean. The drifter data thus provides evi-
dence that mesoscale eddies modulate NIW spectra across most of the ocean. The Northeast
Pacific stands out as the only region where the slope 𝑏 is consistently weaker. This region
was the site of the Ocean Storms Experiment, whose results similarly indicated weak meso-
scale modulation—consistent with our findings. In Section 4.4, we show that, theoretically,
the slope is expected to asymptote to a constant value in the weak-dispersion regime, which
helps explain the limited spatial structure in 𝑏.
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The intercept 𝑐 (Fig. 4.6c) closely mirrors the spatial distribution of NIW kinetic energy in
the ocean (cf., Fig. 4.4c), and the associated NIW wind work. The slope 𝑑, while somewhat
noisy, is predominantly negative (Fig. 4.6d), indicating that the concentration of NIWs into
anticyclones is a widespread feature of the global ocean. That said, there are notable regions
where the slope 𝑑 weakens. In particular, the Gulf Stream region exhibits a very modestly
negative slope, indicating weakened concentration into anticyclones, despite the presence
of strong eddies. In regions with strong eddies, which have relatively weaker wave disper-
sion (Fig. 4.1), the tendency of waves to concentrate in anticyclones may be disrupted by
advective straining (Rocha et al., 2018), or regions of wave concentration may be shifted
from the anticyclones by baroclinicity in the mean flow (Whitt and Thomas, 2013). While
this map shows that anticyclonic concentration is a common aspect of NIW dynamics, it
also highlights that the effect depends on wave dispersiveness in complex ways.
As the slope 𝑏 is somewhat noisy, and to better understand the behavior of the spectral
width, we average the spectra over two representative regional domains (shown as black
boxes in Fig. 4.6a). These two regions differ markedly in the characteristics of their me-
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soscale eddy fields, and are chosen to highlight characteristics of the two different wave
regimes. In the Northeast Pacific box, eddies are weak, while the Northwest Atlantic box
encompasses the energetic Gulf Stream rings. In the Northeast Pacific, we observe smaller
slopes and a positive frequency shift; in the Northwest Atlantic, we find steeper slopes and
a negative frequency shift. The regional averages support this distinction (Fig. 4.8a). The
spectral width is greater in the Northwest Atlantic than in the Northeast Pacific (Fig. 4.8b).
The weak slope observed in the Northeast Pacific appears to be uncommon across the global
ocean, with the possible exception of a few regions in the Southern Ocean, although the sta-
tistical uncertainty is higher there. The weak eddy field in the Northeast Pacific corresponds
to higher wave dispersiveness overall, favoring strongly dispersive waves and reducing me-
soscale modulation. In the Northwest Atlantic, we see the negative frequency shift indicative
of strongly dispersive waves, but also clear modulation of the frequency shift by mesoscale
vorticity, consistent with weakly dispersive wave behavior. Once again, we observe a com-
plex picture in which the winds excite multiple vertical modes, each with a different degree
of dispersiveness. The spectral characteristics reflect the aggregate influence of all these
modes.
We have identified several characteristic properties of NIW spectra on a global scale that
appear linked to interactions with mesoscale eddies. Regions of negative frequency shift
are collocated with energetic western boundary currents and the ACC. Additionally, the
slope of the frequency shift with vorticity shows remarkably little variation across the ocean,
typically remaining close to the global average of ∼0.4. In a few localized regions, the slope
flattens to near zero. Finally, the spectral width is elevated in energetic regions. To more
quantitatively investigate the physical origins of these patterns, we examine the spectral
properties of NIWs in an idealized model of NIW–mesoscale interactions.

4.4 Idealized Simulations of NIWs
Simulations of the YBJ equation provide an idealized framework for investigating the im-
pact of mesoscale interactions on NIW spectral properties across different regimes, and for
assessing the extent to which NIW–mesoscale interactions shape the observed NIW spectra
from drifters. Xie and Vanneste (2015, hereafter XV) proposed a model that couples the YBJ
equation to a quasi-geostrophic (QG) flow. We simulate the XV model across a range of wave
dispersiveness values. Using these simulations, we advect Lagrangian particles through the
NIW field to generate synthetic drifter observations. These synthetic trajectories can then
be used to calculate NIW spectral properties under controlled conditions.
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Following Rocha et al. (2018), the XV model for a given vertical mode is:

𝜕𝜙
𝜕𝑡

+ J(𝜓, 𝜙) +
𝑖𝜁
2
𝜙 −

𝑖𝑓𝜆2

2
∇2𝜙 = −𝜈𝜙∇4𝜙, (4.7)

𝜕𝑞
𝜕𝑡

+ J(𝜓, 𝑞) = −𝜅𝑞∇4𝑞, (4.8)
𝑞 = ∇2𝜓 + 𝑞𝑤, 𝑞𝑤 = 1

𝑓0

[1
4
∇2

|𝜙|2 + 𝑖
2
J(𝜙∗, 𝜙)

]

, (4.9)

where 𝑞 is the potential vorticity (PV), ∇4 = ∇2∇2 is the biharmonic operator, 𝜈𝜙 is the
hyper-diffusivity for NIWs, and 𝜅𝑞 is the hyper-diffusivity for the QG flow. The biharmonic
terms are included for numerical stability. This formulation represents a 2D version of the
XV model in which the mesoscale flow is assumed to be barotropic, and the NIW velocity
has been expanded in vertical baroclinic modes. The term 𝑞𝑤 represents the effects of the
back reaction that the waves have on the mean flow; it can be thought of a wave-induced po-
tential vorticity. These equations are solved on a doubly periodic domain using the Dedalus
pseudospectral solver (Burns et al., 2020). We also note that these are spin-down, unforced
turbulence simulations. The parameters used are provided in Appendix B. We vary 𝜀2 in
the simulations by varying the deformation radius 𝜆, given the same 𝑓 and streamfunction
magnitude Ψ.
We begin by evolving the QG flow for 25 days without waves (i.e., 𝜙 = 0). After this spin-up
period, we introduce a horizontally uniform NIW field with magnitude 𝑈𝑤. The waves are
then allowed to evolve for an additional 60 days. We repeat the simulations for various values
of wave dispersiveness. The qualitative structure of the wave field varies significantly with
dispersiveness. For 𝜀 ≫ 1, the waves exhibit large-scale structure resembling the stream-
function (Fig. 4.9a). For 𝜀 ≪ 1, in contrast, the waves take on smaller-scale features more
akin to the vorticity (Fig. 4.9b).
For each experiment, we advect Lagrangian particles to mimic the drifters. Particles are
seeded in the model domain with a spacing of 25 km and advected forward and backward
for 10 days, yielding a total 20-day trajectory per particle. New particles are reseeded every
10 days. We use the Ocean Parcels package (Delandmeter and Van Sebille, 2019) to perform
the Lagrangian advection. The advection velocity is derived from 𝜓 , which represents the
Lagrangian-mean streamfunction that transports tracers (Wagner and Young, 2015). Parti-
cles sample the NIW velocity 𝜙𝑒−𝑖𝑓 𝑡 at hourly intervals.
The dependence of the frequency shift and spectral width on vorticity varies markedly with
𝜀. In the strong-dispersion regime (𝜀 ≫ 1), there is no modulation of either the shift or the
width by vorticity. In contrast, in the weak-dispersion regime (𝜀 ≪ 1), both quantities show
clear modulation with vorticity (Fig. 4.10a,b): the frequency shift exhibits a positive slope
with vorticity, while the width is enhanced in cyclonic regions. The intercept 𝑎 is negative
in the strong-dispersion regime and variable but generally positive in the weak-dispersion
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Figure 4.9: Idealized XV simulations of NIW–mesoscale interaction. (a) Snapshot of the stream-
function 𝜓 in the simulations with 𝜀 = 2 at 𝑡 = 4 days. (b) Snapshot of the corresponding vorticity.
(c) Snapshot of the corresponding NIW kinetic energy density. Note that the structure resembles the
streamfunction in panel (a). (d) Same but for 𝜀 = 1∕2. Note that there is more small-scale structure
that resembles the vorticity field. (At this early stage, the vorticity looks the same for 𝜀 = 2 and 1∕2.
The impact of 𝑞𝑤 on the QG flow has not yet had a chance to cause the two simulations to drift apart.
As such, we only show the vorticity for 𝜀 = 2.)
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Figure 4.10: Spectral characteristics of the NIW peak in the XV simulations. (a) NIW frequency
shift 𝜔𝐼∕𝑓 as a function of vorticity 𝜁 for 𝜀 = 1∕2 (weak dispersion, blue), 𝜀 = 1 (transition case,
yellow), and 𝜀 = 2 (strong dispersion, purple). The 𝜁∕2 line is shown in black. (b) Same but for the
NIW spectral width 𝜎𝐼 . (c) Intercept 𝑎 of the linear fit as a function of 𝜀. (d) Same but for the slope 𝑏.
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regime (Fig. 4.10c). The slope approaches zero in the strong-dispersion limit and asymptotes
to a value of ∼0.4 in the weak-dispersion limit (Fig. 4.10d).
These XV simulations produce spectra that exhibit many of the salient features observed in
the NIW spectra from drifters, supporting the idea that these features arise from NIW–mesoscale
interactions. While idealized, however, the simulations are still complicated, making it dif-
ficult to isolate the physics responsible for the imprint of mesoscale eddies on NIW spectra.
To better illuminate these dynamics, we turn to a much simpler example: NIWs interacting
with a single vortex dipole.

4.5 NIWs in an Idealized Vortex Dipole
The goal of this section is to understand the physics of NIW–mesoscale interactions and
their effect on NIW spectra in the simplest possible context. Conn et al. (2025) adopted a
spectral approach to solving the YBJ equation, calculating the eigenvalues and eigenvec-
tors of the YBJ operator—a useful method for studying NIW spectra. We begin by non-
dimensionalising the YBJ equation and rewriting it as

𝑖
𝜕𝜙̃
𝜕𝑡

= 𝐻𝜙̃ = −𝜀
2

2
∇2𝜙̃ − 𝑖 J(𝜓̃ , 𝜙̃) +

𝜁
2
𝜙̃, (4.10)

where 𝐻 is the YBJ operator, the tildes indicate non-dimensionalized fields, and the oper-
ators are understood to take derivatives with respect to the non-dimensional variables. We
then consider the spectrum of the operator 𝐻 by solving for the eigenvalues and eigenfunc-
tions of 𝐻 ,

𝐻𝜙̃𝑛 = 𝜔̃𝑛𝜙̃𝑛, (4.11)
where 𝜙̃𝑛 is an eigenfunction, 𝜔̃𝑛 is the associated eigenvalue, and 𝑛 is a label for the eigen-
function. Throughout this section, we consider a simple vortex dipole (Fig. 4.11a Asselin
et al., 2020; Conn et al., 2025),

𝜓̃ = 1
2
(sin 𝑥̃ − sin 𝑦̃) , (4.12)

consisting of a cyclone and anticyclone on a doubly periodic domain with side length 2𝜋.
In the strong-dispersion limit 𝜀 ≫ 1, the nearly uniform mode dominates and results in a
strongly peaked spectrum at a weakly shifted frequency as described by (4.2). Therefore,
we here focus our attention on the weak-dispersion limit. For the moment, let us ignore
advection and write the eigenvalue equation as

−𝜀
2

2
∇̃2𝜙̃𝑛 =

(

𝜔̃𝑛 −
𝜁
2

)

𝜙̃𝑛. (4.13)

From this equation, one can see that 𝜁 acts like a potential in the Schrödinger equation, and
for a given mode with eigenvalue 𝜔̃𝑛, the eigenfunction is oscillatory where 𝜔̃𝑛 > 𝜁∕2 and
evanescent where 𝜔̃𝑛 < 𝜁∕2. In other words, lower-frequency modes are screened out in
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Figure 4.11: NIW spectral characteristics for progressively idealized simulations. (a) Vorticity of
the dipole flow. (b) Modal amplitude as a function of vorticity for each eigenmode of the dipole
flow. (c) NIW frequency shift 𝜔𝐼 as a function of 𝜁 for the simulations with the XV coupling turned
off (blue), with the streamfunction evolution turned off (green), and for the dipole flow (pink). The
𝜁∕2 line is shown in black. (d) Same but for the NIW spectral width 𝜎𝐼 . Note that we have re-
dimensionalized the dipole flow with a streamfunction magnitude Ψ that matches the XV simulations
and a domain length of 80 km. Furthermore, the dipole lines come from YBJ simulations with the
dipole as the background field. We also calculated these lines from the eigenmodes described above
and found that the two methods agree.
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regions of higher vorticity. At a given vorticity 𝜁 , one should thus see only modes that have
a frequency of 𝜁∕2 or greater. While a number of modes contribute to the NIW frequency
spectrum at low vorticities, a large-scale wind forcing, here modeled as a uniform forcing,
projects most strongly onto the low modes. As a result, the NIW frequency increases mono-
tonically with 𝜁 , with a slope of the frequency–vorticity curve close to 1∕2. This argument
is admittedly hand-wavy and neglects advection, but the more rigorous treatment in Conn
et al. (2025) supports this intuition.
To give a concrete example—now including advection—we compute the eigenfunctions and
eigenvalues for the dipole flow. The numerical procedure is described in Conn et al. (2025).
We also compute the projection coefficient of a uniform initial condition onto each mode,
and we define the modal amplitude as the mean, taken along contours of constant vorticity, of
the modulus squared of each eigenmode multiplied by its projection coefficient. The results
clearly illustrate the screening of modes with 𝜔̃𝑛 less than the local 𝜁∕2 (Fig. 4.11b). The
strong projection onto the lowest eigenmodes ensures that the mean frequency remains close
to the 𝜁∕2 line, even in the core of the anticyclone (Fig. 4.11c).
The dipole calculation therefore provides a physical explanation for the observed modula-
tion of the frequency shift by vorticity. This modulation occurs across much of the ocean
(Fig. 4.6b), implying the near-universal presence of weakly dispersive wave modes that are
refracted by mesoscale vorticity. The dipole calculation also predicts, however, that the spec-
tral width should be elevated in anticyclones (Fig. 4.11b,d), whereas the simulations and,
to a lesser extent, the observations show the opposite. To investigate this discrepancy, we
return to the XV model from Section 4.4, running it with varying levels of complexity.
First, we disable the influence of NIWs on the mesoscale by setting 𝑞𝑤 = 0 in the XV equa-
tions. The QG flow continues to evolve, but there is no feedback from the waves. Next, we
run a simulation in which we turn off the time evolution of the QG flow altogether: the initial
condition is the same as before, but the flow is held fixed in time after the spin-up. Finally,
we perform a simulation in which we replace the initial condition with the dipole flow (re-
dimensionalized to have Ro = 0.1). This is a stationary solution to the QG equations and
therefore does not evolve in time. These three simulations form a hierarchy of complexity,
ranging from the simplest dipole case to the full XV model.
Setting 𝑞𝑤 = 0 has minimal impact on the results compared to the full XV simulation,
leading only to a slight increase in the spectral width (Fig. 4.11c,d). The 𝜕𝑡𝑞 simulation also
leaves the frequency–vorticity relation largely unchanged, except that there is a drop in the
frequency shift at positive 𝜁 (Fig. 4.11c). It shows similar spectral width as the XV and
𝑞𝑤 = 0 simulations. The dipole simulation recovers a frequency–vorticity relation with a
slope close to 1∕2, but it has a markedly decreased spectral width and no increase with 𝜁
(Fig. 4.11d). Instead, as expected from the modal picture, the spectral width is greatest at
negative 𝜁 .
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It appears that the key complexity required to produce spectra that qualitatively resemble
the drifter observations is the presence of a sea of eddies of varying amplitude. Even when
the eddies are stationary—just one step up in complexity from the dipole simulations—
we observe behavior in both the frequency shift and the spectral width that resembles the
observations. In the dipole flow, averaging over vorticity amounts to averaging within a
single eddy, whereas in the turbulent QG flow, the averaging spans multiple eddies with
varying structures. In a sea of eddies, a given cyclone may have stronger cyclones nearby,
meaning it is no longer necessarily at the top of the 𝜁∕2 landscape that acts like a potential.
Eigenmodes with frequencies higher than that of the local cyclone can be excited and felt
within it, thereby increasing the spectral width. The same does not hold for anticyclones,
because modes with energy lower than the local 𝜁∕2 are screened. The result is an asymmetry
in spectral width between cyclones and anticyclones as observed in the simulations. The
behavior of the spectral width, therefore, is not governed solely by NIWs interacting with
isolated eddies, but instead emerges from interactions within a sea of eddies.

4.6 Discussion
The drifter observations, interpreted in the context of NIW–mesoscale interactions, reveal
a complex picture of NIW behavior. Spatial variability in the mesoscale flow is clearly im-
printed onto the NIW spectral properties. Even within a single region, however, we observe
signatures of both weakly and strongly dispersive waves. This arises from the wind forcing
exciting multiple vertical modes, each characterized by a different degree of wave disper-
siveness. The drifters sample a combination of these modes and their associated behaviors.
While it is beyond the scope of this manuscript to determine which vertical modes are ex-
cited in each region and how dispersive they are, this remains a key factor in the evolution of
NIWs. Thomas et al. (2024a) performed such a projection in regions of the North Atlantic
and North Pacific, and Conn et al. (2025) calculated climatological wave dispersiveness for
the first four baroclinic modes (see Fig. 4.1). Extending Thomas et al.’s calculations to a
global scale would provide valuable insight into how the structure of wind forcing and back-
ground stratification influence the spectral characteristics of NIWs.
Elipot et al. (2010) attributed the positive shift in NIW frequency equatorward of 30◦ latitude
to be due to the 𝛽-effect, which causes equatorward propagation of NIWs and therefore
produces a positive shift. However, we also saw that a positive shift could be generated
by weakly dispersive waves (Figures 4.10, 4.11). The global pattern and the increasingly
positive shifts toward the equator, where 𝛽 is larger, support the equatorward propagation
mechanism. Garrett (2001) calculated the meridional distance that NIWs propagate in the
time it takes them to reflect off the seafloor and return to the surface, finding ∼400 km except
for very close to the equator and pole. The associated frequency shift, normalized by 𝑓 ,
increases markedly toward the equator and is of order 0.1. The observed frequency shift is
somewhat smaller but has the right order of magnitude and pattern. The distance is not large
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enough for NIWs generated under mid-latitude storm tracks to contribute substantially to
subtropical NIW energy, but it is plausible that the subtropical NIW peak consists of a mix
of NIWs generated locally and up to a few degrees poleward (cf., e.g., Raja et al., 2022). The
origin of these frequency shifts should be further investigated using realistic simulations or
in-situ field campaigns, which are better suited than surface drifters to distinguish the sources
of NIW energy.

4.6.1 Caveats and Sources of Uncertainty
In this study, we have considered time means of all spectral quantities and have therefore
ignored any potential seasonality in the NIW spectral properties. Seasonal variations in me-
soscale eddies and the deformation radius are generally weak over much of the ocean (cf.,
e.g., Chelton et al., 1998) and so these are unlikely to significantly alter these results. How-
ever, both the wind forcing and stratification exhibit substantial seasonal variability (cf., e.g.,
Alford and Whitmont, 2007; Sallée et al., 2021). This seasonal variability could impact the
projection of the wind forcing onto the different modes, changing the overall properties of
the NIW spectra. A global-scale analysis of the seasonality of NIW spectral characteris-
tics—similar to the approach taken in this paper—would likely be difficult at present due to
the limited number of observations across much of the ocean. Regional analyses may prove
feasible.
Strictly, the decomposition of NIWs into vertical modes is only valid under the assumption
of a barotropic background flow. This assumption is clearly violated in the ocean, where me-
soscale eddies often exhibit significant vertical structure. Interestingly, however, accounting
for baroclinicity in the mean flow does not appear necessary to explain the spectral char-
acteristics observed by the drifters over much of the ocean, at least qualitatively. There are
however some regions where baroclinicity may impact the results. In particular, the lack of
strong concentration into anticyclones in the Gulf Stream could arise from the strongly baro-
clinic eddies in the region. As explained by Whitt and Thomas (2013), the picture of NIW
concentration into anticyclones breaks down in the presence of strongly baroclinic eddies. In
such a scenario, the locations of minimum NIW frequency can be shifted from locations of
minimum vorticity by strong lateral density gradients, which can lead to concentration into
the periphery of eddies. More work is needed to understand the spectral properties expected
for NIWs interacting with a strongly baroclinic mean flow.
In the real ocean, vorticity is a multiscale field, which we characterize using the heavily
smoothed altimetry product. This vorticity field is further averaged along drifter trajecto-
ries. One might worry that substantial submesoscale vorticity is being missed and could be
influencing the NIWs. We argue that this may be so, but dispersion acts as a natural filter for
vorticity. In spectral space, dispersion scales like 𝑘2, where 𝑘 is the wavenumber. Thus, while
vorticity tends to be stronger at smaller scales, so is dispersion. There must exist a scale be-
low which dispersion is sufficient to balance refraction. The fact that we observe such large



93
slopes in the frequency shift as a function of the mesoscale 𝜁 suggests that this relevant scale
is by and large resolved by the altimetry. Indeed, shortening the length of drifter trajectory
chunks reduces the slope; for example, using 6 day chunks lowers the slope to ∼0.25 (not
shown). This implies that, on average, NIWs are not responding to local, small-scale vortic-
ity features. We add the caveat that in regions with a small deformation radius, it is likely
that scales relevant to the NIW evolution are not full resolved by altimetry, although data
from SWOT may prove useful in this regard (e.g. Rolland et al., 2025).

4.6.2 Other Implications
The observed spectral characteristics of NIWs have implications for filtering NIWs from raw
signals that contain multiple types of motion. Rama et al. (2022a) recently proposed using
an adaptive filter in which the effective frequency 𝑓+𝜁∕2 serves as a lower bound on a high-
pass filter to separate NIWs from other flows. Our results suggest that this approach may not
always be appropriate. This expression for the lower frequency limit is derived from ray-
tracing, which is valid only in the weakly dispersive limit. Our results show clear evidence of
strongly dispersive waves as well, for which there is no comparable modulation of the NIW
frequency. Applying such an adaptive filter would introduce a cyclonic–anticyclonic bias
when extracting strongly dispersive NIWs. Moreover, even for weakly dispersive waves, the
𝜁∕2 scaling is not universal. The drifter observations typically exhibit a slope closer to ∼0.4,
with non-negligible NIW variance below the 𝑓 +𝜁∕2 cut-off. Using this cut-off would result
in severe underestimation of NIW energy in cyclonic regions compared to anticyclonic ones.
Small-scale vorticity, as discussed above, further complicates this approach. An adaptive
approach that first locates and characterizes the NIW peak seems more promising.
Finally, we note that these results have implications for NIW-induced mixing on a global
scale. Numerous observational studies have shown that the concentration of NIWs into anti-
cyclones can lead to enhanced NIW-induced mixing at depth (e.g., Kawaguchi et al., 2016;
Martínez-Marrero et al., 2019; Sanford et al., 2021). Our results indicate that this concen-
tration is fairly ubiquitous across the ocean. Therefore, in regions of high NIW energy, the
interaction between mesoscale eddies and NIWs may play a significant role in shaping pat-
terns of upper-ocean mixing. Future work should aim to quantify the magnitude of this
effect.

4.7 Conclusions
Using observations of near-inertial waves from the global array of drifters, we have mapped
the geography of NIW–mesoscale interactions across the world ocean. Our results indicate
that mesoscale eddies influence the spectral characteristics of NIWs nearly everywhere. We
also found that the YBJ equation, which describes the evolution of NIWs in a background
mesoscale eddy field, explains much of the observed phenomenology of NIW spectra. Ad-
ditionally, we observed evidence of both weakly and strongly dispersive NIWs, suggesting
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that wind forcing excites vertical modes for which dispersion has varying importance.
To quantify the modulation of NIWs by mesoscale eddies, we considered a linear fit to
the relationship between the NIW frequency shift and the vorticity. The slope of this fit is
∼0.4 in the global mean and takes a similar value across much of the ocean—except in the
Northeast Pacific and possibly some regions of the Southern Ocean, where the slopes are
close to zero. Typical slopes are close to the 0.5 value predicted by ray-tracing, although
the XV simulations showed that the slope should asymptote to a somewhat smaller constant
value in the weak-dispersion limit, offering an explanation for the lack of spatial variability in
the slope on a global scale. Additionally, the dipole flow demonstrated that this slope arises
from the screening of eigenmodes of the YBJ equation in regions in which the eigenvalue is
less than 𝜁∕2.
In contrast to the slope, the intercept exhibited much greater spatial structure when mapped
globally. In highly energetic regions such as the western boundary currents and the ACC, the
intercept was negative, while elsewhere it was weakly positive. This close spatial collocation
led us to consider strongly dispersive waves as a possible explanation for the negative fre-
quency shifts. Theoretical predictions for the frequency shift in the strong-dispersion limit
were found to be of similar magnitude as the observed shifts, acknowledging that a one-to-
one correspondence is not expected. The pattern of positive shifts pointed to the 𝛽-effect
as a likely source, although weakly dispersive waves are also expected to produce positive
shifts.
The NIW spectral width also showed a striking correspondence with the highly energetic
western boundary currents and the ACC, where the width was elevated. This can be un-
derstood by considering the eigenfunctions of the YBJ equation. In a stronger eddy field,
the potential wells are deeper, allowing more modes to be excited and thereby increasing
the spectral width. The width typically increases with vorticity, a behavior that is expected
for a turbulent field of eddies of varying size and reproduced by idealized XV and YBJ
simulations.
Finally, we also considered how NIW kinetic energy depends on vorticity. The global mean
showed a clear concentration into anticyclones, while the global distribution of mean NIW
kinetic energy reflected the patterns of large-scale forcing. Examining the slope of NIW ki-
netic energy versus vorticity across the globe, we found that anticyclonic concentration is
typical throughout much of the ocean. However, a few notable regions—the Gulf Stream re-
gion, in particular—exhibited a weak dependence of kinetic energy on vorticity, despite be-
ing highly energetic. This suggests that while concentration into anticyclones is widespread,
strong advection or baroclinicity can disrupt this tendency.
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Parameter Value
Domain length 𝐿 4𝜋 × 105m
Number of modes 𝑁 1024
Coriolis frequency 𝑓 10−4 s−1
NIW speed 𝑈𝑤 0.1 m s−1
Eddy speed 𝑈𝑒 0.05 m s−1
Eddy wavenumber 𝑘𝑒 16𝜋 × 10−6m−1

Biharmonic viscosity 𝜈𝑤 5 × 106 m4 s−1
Biharmonic diffusivity 𝜅𝑒 5 × 106 m4 s−1
Timestep Δ𝑡 25 s
Simulation run time 𝑇 5.184 × 106 s

Table 4.1: Parameters for the XV simulation

4.8 Appendix A: Least-Squares Fit
Given some spectral estimate 𝑆̂, we wish to find the parameters in Equation 4.3 that mini-
mize the residuals between 𝑆̂ and the model. Writing the model as 𝑆(𝜔, 𝑝), where 𝑝 repre-
sents the set of model parameters, the residuals are defined as

𝑅(𝑝) =
∑

𝑛

[

𝑆̂𝑛 − 𝑆(𝜔𝑛, 𝑝)
]2 , (4.14)

where𝜔𝑛 are the discrete frequencies resolved by the data. We use the Levenberg–Marquardt
algorithm to find the set of parameters 𝑝∗ which minimizes 𝑅(𝑝).

4.9 Appendix B: Simulation Parameters
For most of the simulation parameters, we follow Rocha et al. (2018). These can be found
in Table 4.1. We also follow Rocha et al. (2018) in initializing the QG flow by specifying
the Fourier transform of 𝜓 as

𝜓̂(𝒌) = 𝐶
√

|𝒌|
[

1 +
(

|𝒌|
𝑘𝑒

)4
]

, (4.15)

where the hat indicates the Fourier transform, |𝒌| is the magnitude of the wavevector, 𝑘𝑒 is
an eddy wavenumber, and 𝐶 is a normalization constant. The value of 𝐶 is chosen such that
the domain-average kinetic energy density of the simulation is 𝑈 2

𝑒 ∕2.
The value of 𝜀 is varied by changing the deformation radius 𝜆. We choose 𝜆 based on the
RMS value of the streamfunction and 𝑓 to give the desired value of 𝜀 according to 𝜀2 =
𝑓𝜆2∕Ψ.

4.10 Supplemental Information: Confidence Intervals
The spectral estimates, generated from multiple spectrograms, follow a 𝜒2 distribution. The
fitted parameters are a complicated non-linear function of the spectral estimate and so we
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do not have an analytical form for their probability distributions. However, we can draw
random samples from the distribution of the spectral estimate, put these through the fitting
procedure, and build empirical distribution functions for the fitted parameters. Here we show
the 95% confidence interval half widths for the globally mapped parameters.
When using all spectrograms in a given box, the confidence intervals are generally quite
narrow (Suppl. Fig. 1). The exception is near the equator and in coastal regions where the
confidence intervals can become large.
When binning the spectrograms by vorticity too, we necessarily have less spectrograms be-
ing averaged to get a spectral estimate. As a result, the confidence intervals are wider for
properties that depend on the vorticity (Suppl. Fig. 2). In general, the intercepts have a rel-
atively narrow confidence interval, but the interval can be come large for the slopes. These
plots reflect the distribution of drifter numbers, with the statistics being much better in the
Atlantic where we have more drifter observations. For the frequency slope, the values are
quite uncertain equatorward of 30◦, and in much of the Southern Ocean. The same is gen-
erally true for the KE slope.
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Figure 4.12: 95% confidence interval half width for the characteristics of the NIW peak: (a) the
frequency shift 𝜔𝐼∕𝑓 , (b) the spectral width 𝜎𝐼 , and (c) the NIW kinetic energy 𝐾 .
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Figure 4.13: 95% confidence interval half width for the geography of the vorticity dependence of
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C h a p t e r 5

CONCLUSIONS

The beauty of the YBJ equation lies not in its theoretical elegance, but in its ability to help us
understand how NIWs behave in the real world. For instance, consider how the YBJ equation
allowed us to ascribe the observed evolution of NIWs to specific physical processes. Trying
to glean such information from the observations alone, without the theoretical scaffolding
of the YBJ equation, would have been much more difficult. Similarly, the observed NIW
spectra from drifters are messy, showing a great deal of variability in their properties across
the ocean. The YBJ equation reduces this complexity to a few key parameters, and provides
concrete, physically interpretable mechanisms behind this variability. In all, this thesis rep-
resents an effort to use theoretical tools to understand the great complexity of NIWs in the
real ocean.
Perhaps the most frustrating aspect of NIWs is the difficulty in observing them. Satellite
oceanography, which has revolutionised our understanding of mesoscale eddies and tides,
is unable to provide similar benefits to our understanding of NIWs. Much of this thesis has
been dedicated to using theoretical tools to bridge the gaps in our observations of NIWs.
While our understanding of NIW dynamics matures, we still have much to learn about the
impacts of this dynamics. For example, we have no observational estimates of the NIW-
generated mixing in the upper ocean 1. In essence, the propagation and death of NIWs remain
challengingly elusive. Future work must connect the phenomenology of NIW dynamics to
their impacts on the global climate system.
Notably lacking in this thesis was a consideration of the roles of baroclinicity in mesoscale
eddies, and submesoscale features in the evolution of NIWs. Assuming barotropic eddies
was surprisingly fruitful in understanding NIW dynamics in the upper ocean. The YBJ
equation was able to capture the OSMOSIS observations even without knowledge of the
baroclinicity of the mesoscale eddy field. Similarly, baroclinicity did not seem necessary to
understand the drifter observations. However, when considering the propagation of NIWs
to depth, and the roles they can play in the deep ocean, baroclinicity gives rise to a wide
variety of new phenomena. In the future, theoretical progress should be made by relaxing
the assumption of a barotropic mean flow. Similarly, the heavily smoothed mesoscale eddy
field from vorticity seemed adequate to capture the main effects of NIW-mesoscale interac-
tions. But one could imagine circumstances where interaction with smaller-scale vorticity
features, down to the submesoscale, could become important. For these scales we have no

1Of course, this can be estimated from models but sources of uncertainty are numerous. Regardless, without
an observational baseline for comparison, trusting such model estimates is difficult.
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such unified theoretical understanding as with the mesoscale. Again, this likely opens up the
possibility for new dynamics.
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