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ABSTRACT 

In the first part of this thesis a purely electronic mechanism by 
,·,; .. 

which ~ 20 ev excitations in condensed non-metallic phases relax to 

lower energy states is described. The mechanism utilizes an "energy 

fission" process whereby an ionic or excitonic state splits into two 

lower energy states, at least one being of the Frenkel exciton variety. 

These relaxation processes should be important in the pre-chemical 

stage in the radiation chemistry of condensed phases. The mechanism 

explains not only the known rapidity of such processes but also suggests 

an explanation for the proportionation of the chemistry between ionic 

and electronically excited states. 

In the second part of this thesis, Green's functions are used to 

discuss the time and frequency dependence of light scattering and 

fluorescence from model systems. In the first section of this part, 

time-dependent scattering from a single resonance using an uncertainty­

limited light pulse is described. Three terms occur in the time 

dependence--one which decays as the resonance, one which decays 

like the light source and a beat term between them which beats at the 

frequency difference between the exciting pulse and the resonance. 

In the next section the model is extended to scattering from a 

two-level system. The frequency dependence of the Rayleigh and 

Raman scattering is described, again using excitation from an uncer­

tainty-limited light pulse. 

The effects of the two-photon states , which lead to the antireso­

nance terms in time-independent light scattering, have been evaluated 
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for time-dependent light scattering in the next section. Thus a unified 

theory is obtained for time-dependent light scattering of an uncertainty­

limited pulse from far off-resonance into the resonance region. The 

theory reduces to the conventional Kramers-Heisenberg second-order 

results if a monochromatic light source is used. The two-photon states' 

contribution to the scattering cross section has the same time depen­

dence as the light source while the zero-photon state has the time­

dependence previously calculated for near-resonance light scattering. 

In the next section excitation profiles for Rayleigh and Raman 

cross sections have been calculated using the formalism of the 

previous section for an actual diatomic molecule from over 8000 cm -i 

off resonance into the resonance region. Several interference effects 

are discussed. The usual formula for the scattering cross sections is 

shown to lead to errors off resonance if the basis set is truncated. 

Finally, a new method of calculating the zero-order density 

function directly from the absorption spectrum has been found and 

applied to the origin region of naphthalene's second excited singlet 

state. Results are in good agreement with previous trial-and-error 

methods. 

Mathematical appendices are given which derive the key formulae 

needed in the second part of this thesis. 
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PART I 

THE RADIATIONLESS RELAXATION OF HIGH-ENERGY STATES 

IN THE RADIATION CHEMISTRY OF CONDENSED PHASES 
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INTRODUCTION 

In radiation chemistry a high-energy particle or photon is shot 

into the system. A high-energy photon loses most of its energy to the 

electrons in the system by the photoelectric effect or by Compton 

scattering. l, 2 The photoelectric effect dominates for photon energies 

below about 20 keV; Compton scattering dominates above 40 keVo 2 

The main effect of these two processes is to produce high-energy 

electrons. Thus in studying radiation chemistry one can limit oneself 

to the discussion of the interaction of high-energy particles with 

matter 0 These particles lose energy mainly to the electrons in the 

medium creating ionizations and electronic excitations. l, 2 In con­

densed systems these excited states cannot, in general, be considered 

states of single, isolated molecules, due to the overlap (non­

orthogonality) of the wavefunctions of neighboring molecules. In 

general, the higher the energy of the excitation, the larger the spatial 

extent of the excited electron's wavefunction and thus the larger the 

overlap of its wavefunctions with that of neighboring molecules. A 

large proportion of energy losses fall in the 10-30 e v3' 4 range and 

for this range non-localized states will, at least initially, play a very 

important role. 3 ' 5 

The excited electronic states that are important in the radiation 

chemistry of condensed systems are plasmons, excitons and ioniza.:. 

tions (conduction band states). 6- 8 Plasmons are collective longitudinal 

density excitations of free electrons. These excitations have been 

extensively studied in metals, 9 where they are well-defined, relatively 

long-lived and easily excited by high-energy charged particles. In 
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insulators the concept of a plasmon is not well-defined since the 

electrons cannot behave as if they were free as they can in metals. 

Although peaks around 20 ev in the energy loss spectra of high­

energy electrons passing through thin films of insulators have often 

been assigned as plasmons, 8, lO-l2 they are more likely to be 

oscillations of single electrons having frequencies different from that 

of the isolated molecule due to the interactions between molecules .13 ,14 

Even if the peaks in the energy loss spectra were plasmons, their 

widths are several eV's wide implying that the lifetime of these states 

is on the order of 10-15 to 10-16 seconds. They would decay into single 

particle excitations--excitons and conduction band states--in this 

period of time. 6, 8 Thus we can consider the states initially formed 

in the radiation chemistry of condensed materials to be excitons and 

conduction band states. 

Excitons are electron-hole pairs which migrate through a 

crystal with well-defined momenta (due to the periodicity of the 

crystal). The two extreme types are Frenkel excitons where the hole 

and electron are always on the same site and Wannier excitons where 

the electron is in a large-radius orbit around the hole and feels the 

hole's Coulomb attraction modified by the dielectric constant of the 

medium. 15 Naturally, intermediate states between these two limits 

also exist--for instance, ion-pair states. In organic molecular 

crystals and rare gas crystals the lowest excited states are in the 

Frenkel limit while the higher ones are of the intermediate kind or 

even in the Wannier limit. 15 , 16 This is due to the larger spread of 

higher energy wavefunctions and their non-orthogonality. 
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An important problem in the radiation chemistry of condensed 

materials is how these initially formed conduction band and exciton 

states having energies in the 10 ev to 30 eV range electronically relax. 

The time scale of interest is 10-14-10-16 seconds, before the nuclei 

have time to respond to the changing fields since vibrational times 

are on the order of 10-13 -10-14 seconds. 3 It has been suggested6, 7' 17 

that an exciton fission process should be an important electronic 

relaxation process. Vo1tz6 and Klein and Voltz 7 considered the 

fission of a high-energy Frenkel exciton to form two Frenkel excitons 

on neighboring sites. However, as discussed above, a Frenkel 

exciton is only one possibility for the initial state. 

The relaxation of a conduction band state and of a general 

exciton state will be discussed in sections A and B respectively. 

In both cases an energy fission process was found which yielded a 

Frenkel exciton and a conduction band state in the former case and a 

Frenkel exciton and a general exciton of the same type as the initial 

exciton in the latter case. These relaxation processes should be 

important in the pre-chemical stage of the radiation chemistry of 

condensed materials and show that the energy can relax very effi­

ciently on this time scale. 
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Section A 
~ 

AN APPROACH TO THE UNDERSTANDING OF RADIATION 

CHEMISTRY IN THE CONDENSED PHASE* 

JACQUELINE 0. BERG and G. WILSE ROBINSON 

Arthur Amos Noyes Laboratory of Chemical Physics, t 
California Institute of Technology 

*Chemical Physics Letters~' 211 (1975) . 

t Contribution No. 5069. 



8 

Radiationless transition theory1 ' 2 has been applied successfully 

to various aspects of ordinary photochemistry, which usually involves 

the lowest lying excited electronic states of a system. Little effort, 

however, has been made so far to apply these concepts to higher 

electronic states--those which are inevitably involved in radiation 

chemistry and radiation biology from ionizing radiation. 

Because of the possibility of the existence of rather extensive 

energy relaxation in a condensed phase, as compared with the gaseous 

phase, one might guess that lower energy, more specific processes 

would tend to dominate the former and make it simpler to interpret. t 

t This seemingly antithetical idea is analogous to that which applies 

to the transfer of low-energy electronic excitation. In a crystalline 

solid, particularly at very low temperatures, molecules have more 

uniform environments than in the gas phase, and energy relaxation 

tends to follow a better defined path, leading to fewer quantum states 

involved in the initial processes. To some extent this could also be 

true for certain types of mixed crystals. Experimental data seem to 

support this idea. 3 For example, in the X-irradiation of mixed 

crystals of various rare gases at 4. 2 ° K diluted with a small amount 

of molecular N2 , transfer of excitation from the rare gas to the N2 

appears to occur from the lowest exciton band of the rare gas since 

only in neon is the band-energy sufficiently high to excite the C3 Ilu 

state of N2 at ~ 11 e V. The other process that leads to N2 light 

emission in this system occurs in all the rare gases and is also 
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In addition, because radiation biology is a condensed phase problem, 

it seems not only more reasonable but also more important to direct 

attention to solid state radiation chemistry in searching-for a better 

understanding of this seemingly complex phenomenon. 

In this communication we will suggest a scheme for relaxation 

and localization of energy in solid state radiation chemistry. The 

concepts may also be applied to the liquid state. Our model is physi­

cally a simple one and is relevant to the pre-chemical relaxation stage* 

of radiation chemistry, taking place roughly in the time domain 

10-16 
- 10-12 sec. It is conceivable that an understanding of this 

realm could allow some external control over the chemical pathways 

taken hy the system in radiation chemistry or radiation biology 

experiments . Thus our preliminary results seem worth reporting at 

this time. 

interesting from a radiation chemistry point of view. This process 

excites only u ~ 6 quanta of vibration in the A3
~~ state of N2 • Since 

ne: higher quanta can be observed, it is implied that the energy trans­

fer process occurs cleanly from the u = 0 vibrational level of the B3 Ilg 

state, which is approximately isoenergetic with u = 6 of A 3 ~~ . Thus, 

even though the complexity of states in this mixed crystal system 

defies enumeration, the energy relaxation paths appear simple and 

well defined. 

* We would prefer to call this the "physicochemical" stage, but that 

term has been used for the time interval 10-13 
- 10-10 sec4 where 

chemistry is already taking place . 



10 

Even though the high energies of the exciting particles used in 

radiation chemistry are mind-boggling to the photochemist, a simpli­

fying feature is the fact that most of the energy loss occurs near a few 

relatively low-energy ($ 40 eV) "resonances" in the energy 

spectrum. 5- 9 For systems containing only first-row elements and 

hydrogen, these resonances must arise through promotion of electrons 

having 2s and 2p parentage. Molecular ionization limits in gaseous 

molecules become the conduction bands (CB's) of the condensed phase. 

Because of the dielectric constant of the medium, these CB's may lie 

at very low energies, perhaps as low as half the ionization potential 

of the free molecule. lO Other gross changes occur in the condensed 

phase. For instance, most Rydberg states of the gas are thought10 , 11 

to be embedded in and strongly mixed with the CB 's of the solid, losing 

their identity except in rare cases where the lowest energy ones 

appear as Wannier exciton states12 of the solid. However, excited 

valence states of molecules are better able to retain their identity in 

the condensed phase and often appear as sharp, localized, relatively 

long-lived Frenkel exciton states13 of the solid. 

Energy loss resulting from the passage of high energy ( ~ 500 eV) 

primary and secondary particles through the medium may excite any 
5-9 of the states in the condensed phase, but experimental data show 

that most of the loss occurs at energies above that of the first CB. 

The generation of charge carriers in the solid is most probably not a 

"one-step" process, but rather more like an autoionization where the 

original excitation is relatively localized but mixes very strongly with 
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wavefunctions on neighboring sites. lO 

The most intense energy loss peak for condensed systems of 

first-row atoms (plus hydrogen) occurs around 20 ev5- 9 and has been 

attributed by some workers 5' 8, 14 to the plasma frequency of collec­

tive electron oscillations. We do not concur with this description for 

systems that are basically insulators,* but would rather attribute this 

loss peak to ionization or to excitation of single electrons of relatively 

deep valence levels having substantially 2s + 2p parentage. For 

instance, both in ice9 and liquid water8 there is a broad energy loss 

peak centered at approximately 22 eV with no further maxima in the 

valence electron region at higher energy. Energy loss is proportional 

to E2 (E~ + E!f1, where E1 and E2 are the real and imaginary parts, 

respectively, of the dielectric constant function E(w). 15-17 The 

condition for the existence of a plasmon is that E1 and E2 be very 

*R. L. Platzman 's comments following the paper by W. Brandt and 

R. H. Ritchie (Ref. 14) are relevant to this point: ''Metals are very 

different from the systems we are interested in here. I do not believe 

there is good evidence for collective oscillations in many of the . 

systems we are concerned with ... No, I do not [think that the peak 

found in liquid water is caused by collective oscillations] . I think 

that your single oscillator model is too simple and is very misleading 

for these systems. I just picture what is found as the typical oscilla­

tion of single electrons in a Coulomb field with an effective charge 

somewhat greater than one so the loss will be 20 to 25 eV." 
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small. 18 The 22 ev8 peak has been assigned to a plasmon for liquid 

water but not for ice, owing to differences of opinion 8, 9 as to whether 

E1 and E2 are sufficiently small in the region of the peak. For liquid 

water there is a peak in the absorption cross section 
1 

a (w) a: w [ - E1 + ✓ Ei + e:~ ] 2 near 20 eV. 8 Similar results would be 

expected for ice due to the similarity in the plots of e: 1 and e: 2 as a 

function of w for ice and water. 8, 9 If the loss peak were assigned as 

a plasm on for water, then a (w) would have a minimum near 20 e V 

rather than the maximum that is observed. Thus the plasmon idea 

seems unnecessary for water and probably for most other insulating 

systems as well. t 
Even though ionic states may be responsible for the major 

energy loss peak in low molecular weight solids, it is known that they 

play only a partial role in radiation chemistry. The low-lying excited 

electronic states of the system also substantially contribute to the 

chemistry, 20 ' 21 in fact of the same order of importance as the ionic 

ones. Clearly there must be relaxation mechanisms that create these 

excited states from the initially formed states. More important, the 

relaxation process must be fast in order to compete efficiently with 

the chemistry from initially formed ionized states. Experimental 

evidence22 suggests that this latter process can be extremely fast 

t Even if the original state were a plasmon, it would decay in 10-15 

to 10-16 seconds into single particle states having the same energy. 19 

These latter states are the ones we will consider in this paper. 
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1 -11 ) ( < 0 sec . It would be unreasonable to expect a pure electron-

phonon mechanism to be able to explain such a fast relaxation. * 

A better model for relaxation between the conduction band 

and the low-lying excited states of a condensed medium is an energy 

f • • 19,23 1 t ·t f" • . • 1Ss10n process ana ogous o exc1 on 1Ss1on m orgamc 

crystals, 24 , 25 but different from it because here we are dealing 

with CB states of the system with energies quite a bit higher than 

those energies. 

As we mentioned above, the initial state to consider has an 

excited ion, that is, one having a hole in a relatively deep orbital, 

and an excited electron in the CB. This excited ion can relax to 

give some of its energy to another electron, forming either another 

hole and a CB electron, a charge transfer state or an excited molecule 

(exciton). The most general way of writing this process is 

(1) 

where A, B, C, and D schematically stand for sites and any of the 

final species may be in an excited state, the asterisk standing for a 

state of higher excitation. However, our calculations, which will be 

outlined below, show that the most likely process involves only two 

sites, 

*For a CB at 20 ev and an excited state at 6 eV, 14 eV must be con­

verted into lattice energy. The process then corresponds to well over 

1000 phonons and, assuming 10-12 sec per relaxation step, would take 

longer than 10-9 sec to complete . 
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(2) 

Figure 1 gives an example of process (2). If the system is solid 

water, the 22 ev energy loss corresponds to ionization of an electron 

from the deep valence level 2a1 = <p0 at site A producing a hole in 

<p0 and an excited electron in <p CB (Fig. lb). The final state pro­

duced by the "fission" process must conserve energy. One possi­

bility (Fig. 1 c) promotes the hole from <p O to <p 1 ( = 1 b2 ) at site A 

while simultaneously promoting an electron from <p3 ( = lb1 ) to 

<p 4 (=4a1) at site B. Processes (1) and (2) are intended to be 

schematic; in a crystal the eigenfunctions must satisfy Bloch's 

theorem 26 and thus are linear combinations of the states given above. 

Even if the energy were not exactly conserved in the purely electronic 

process, creation of a small number of phonons or vibrons could 

complete the energy conservation process. 

The part of the Hamiltonian that connects these orbital con-
~' 2 

figurations is the electron-electron interaction term ½ f-1. I e I . 
1,J r.-r. 

,-...1 "-] 

Here i and j sum over all electrons and i ~ j. Assuming the orbitals 

to be real and orthonormal and neglecting spin and Bloch's theorem,* 

the matrix element between the initial and final states for process (1) 

is 

*To be more rigorous, since molecular orbitals on neighboring sites 

are not strictly orthogonal, Wannier functions 27 can be used. This 

has no qualitative effect on our arguments. Neither do the neglect of 

spin and translational symmetry. 28 
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Figure 1. (a) Filled localized valence bands in the vicinity of sites 

A and B. (b) Arrow indicates creation of deep hole in 

the cp0 orbital at A by the primary energy loss mechanism. 

(c) Spontaneous inter-valence-band Auger process, 

indicated by the two arrows, excites hole at site A to cp1 

at site A simultaneously creating tightly bound exciton 

at site B. This process is analogous to "exciton fission" 

in the organic solid state. 
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(3) 

where again A, B, C, D represent sites and cpj (j = 0, 1. .. ) have a 

similar meaning as in Fig. 1; the second term is an exchange term 

arising from antisymmetrization. For an insulator, the valence band 

orbitals, <PoA, cplB' and cp3C, are localized around their respective 

sites. The argument below will show that this matrix element will be 

largest when cp4D is also localized and more particularly when it is 

localized around one of the sites that has a hole, thus forming an 

exciton or excited state rather than an ion and a CB electron. 

The first matrix element in (3) represents the Coulomb inter­

action of the charge cloud <PoA <PtB with the cloud cp4n<P3c. This 

term is very small unless the overlaps of <PoA with <PiB and of cp4D 

with cp3C are large. Now, due to the localization of the valence band 

orbitals, site A must be equal to site Band cp4D must be reasonably 

well localized around site C. Thus the process that is most likely to 

occur is (2), and the system is left with a shallow hole at the original 

site and an exciton state (or localized excited state) at another site, 

as in Fig. 1. (For the exchange term to be large it would be 

necessary to interchange the holes in the final state.) 

The energy of the first excited state in water is around 8 eV, 29 

but the other energies in Fig. 1 are not known and are thus only 
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approximate. The ionization potentials of the valence orbitals in 

water vapor are 36 ev (2a1), 18 ev (1 b2), 15 ev (3a1), and 13 ev 

(lb1). 
30 X-ray photoelectron spectroscopy data (XPS) of ice30 

indicate that the 2a1 ionization limit moves down to about 27 eV and 

that the other limits also move down, but how far seems uncertain 

because there are several possibly extraneous peaks in the valence 

electron region below 18 eV. Also, one must know the work function 

for ice to determine the CB energy levels. However, XPS might be 

an unreliable way of measuring ionization energies of the bulk 

material anyway because it samples only the surface regions. 

The ionized electron will be left in the CB. rt could, in a 

separate interaction, pair with the hole to form a charge-transfer 

complex or a more weakly bound exciton, the remaining energy going 

to phonons. 31 These processes are much more likely to happen in a 

non-polar solid where the electron-hole interaction is stronger, while 

the inverse processes may be expected to occur in ionic or highly 

polar solids leading to qualitatively different excitations. 

The relaxation proe:ess described in this paper is applicable to 

any molecular solid or liquid. It requires only the conservation of 

energy and a localized final state. If the final state ion does not have 

sufficient energy to repeat the process (as in Fig. 1) then the net 

result is one ion and one excited state giving a possible explanation 

for the nearly equal distribution of chemistry between ions and 

excitations in some systems. 

The above process whereby an excited ion goes to an ion having 
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a lower degree of excitation plus an additional neutral excited state 

should be very rapid, requiring as it does only a purely electronic 

relaxation process together with at most a low-order phonon process 

for detailed energy conservation. Due to the form of the matrix 

element, the exciton or excited state will most likely form near the 

original ion. Equation (3) also predicts that the excited state formed 

by the relaxation process will be the one that carries the most 

oscillator strength, not necessarily the lowest excited state. This 

is easily seen by expanding the matrix element of e2 (I r 1 - r 2 1)-1 in 
"' "' 

multipoles and retaining the leading dipole term, 

where A - B stands for the distance between the sites A and B. These 

higher lying states, with greater oscillator strength, may perform 

different chemistry than the lowest excited state. Thus ultraviolet 

excitation into lower excited states may produce different products 

than ionizing radiation excitation, even if one neglects the products 

formed from ionic states. 

Throughout this paper we have assumed that the initial state is 

an ionic one. However, the general relaxation process discussed is 

applicable also if the initial state is an exciton having a hole in a deep 

valence level. 28 Naturally in this case neither the initial nor the 

final state is ionic. 
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In summary then, the mechanism by which an initial formed 

~ 20 eV ionic state of a solid splits by a purely electronic mechanism 

into a lower energy ionic state plus a localized excited state can 

explain not only the rapidity of the energy relaxation process in 

radiation chemistry but also the proportionation of the energy into 

partly ionic and partly excited states. 
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Section B 
~ 

THE RELAXATION OF A HIGH ENERGY EXCITON 
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In the last section, the relaxation of a conduction band (CB) state 

was considered. The key steps in the determination of the states into 

which the CB state would decay were shown. In this section a more 

detailed calculation for the relaxation of a high-energy exciton will be 

given. The model that will be used is that of a perfect crystal having 

one molecule per unit cell with each molecule contributing a pair of 

electrons to each filled band. All wavefunctions for this model must 

satisfy Bloch's theorem 1 for a periodic lattice with periodic boundary 

conditions. 

Two basic approximations will be made. The first is the static 

lattice approximation which says that the electrons move in the poten­

tial given by the equilibrium position of the nuclei. This approximation 

is certainly valid for the time scale of interest--10- 14-10-16 seconds 

(see Part I, Introduction)--during which the nuclei do not move. The 

other approximation is the one electron approximation which states 

that the wavefunction for the electrons can be written as 

(1) 

where Cl is the antisymmetrizer, the 1/li 's are spin orbitals for one 

electron and r. represents the spatial and spin coordinates for the ith 
"'l 

electron. To say that eq. (1) is valid is equivalent to stating that the 

total potential is the sum of one-electron potentials, where somehow 

these one-electron potentials take into account self-consistently the 

potential due to all the other electrons as well as the nuclei. This 

approximation is obviously poorer for the valence electrons than for 
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the core electrons since it omits the instantaneous correlations due to 

the other electrons which is most important for the valence or outer 

electrons. Thus, in reality, wavefunctions of the form (1) will not 

be exact solutions of the Schrodinger equation, but will be coupled 

together by electron-electron interaction terms. 

The one-electron wavefunctions that will be used in this section 

are Wannier functions anR(r.), where n is a band index and R repre-.,..._1 .,..._ 

sents the position of a molecular site. These functions are defined 

by2, 3 

(2) 

where N is the number of cells in the periodic parallelpiped, k is a .,..._ 

reciprocal lattice vector and the Vlk ( r.) 's are Bloch functions for the n .r..l 

nth band which are eigenfunctions of the one-electron Hamiltonian 

(kinetic energy plus one electron self-consistent potential). The 

Wannier functions anR(r.) are localized around the molecule at R, 3- 7 
~ .,..._ 

ones centered ondifferent sites R are orthogonal, and ones for different .,..._ 

bands are also orthogonal. 

The ground-state wavefunction can be represented by2 

(3) 

where M represents the number of filled bands (each molecule is 

assumed to have 2M electrons) and a and {3 are the spin projections 
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½ and -½ respectively. tJ;( r) can be shown to satisfy Bloch's theorem ,... 

with k = 0. ,... 

The wavefunction for a general exciton can be written as2' 3 

(4) 

where 

(5) 

where an electron from amR with spin -a has been placed in anR+B 
_,___ ,... ,... 

with spin a', B represents the electron-hole separation, 
_,___ . 

K is the wavevector of the excitation, and v is some new quantum 
_,___ 

number. For Wannier excitons U K (B) is a hydrogenic-like mnv _,___ 

wavefunction;2' 3 for Frenkel excitons _,___ U K (B) is zero for B ~ 0. 2 
mnv _,___ _,___ 

Both kinds of excitons, as well as intermediate ones, can be excited 
8 9 aa' 

by high-energy electrons. ' tJ; (K) satisfies Bloch's theorem, mnv _,___ 

has a wavevector ~' and is assumed to be an eigenfunction of the total 

Hamiltonian. In reality, these wavefunctions never are eigenfunctions 

of the total Hamiltonian since only two bands m and n have been 

included and because UmnvK (~) is generally calculated by omitting 

several terms from the total Hamiltonian. 2 

The final states of interest to us in considering the relaxation 

of a high-energy exciton are double excitation states having two holes 

and two excited electrons. A state of this form that satisfies Bloch's 

theorem is 
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WW
1

TJ7J
1 

, ) l/1 , , 11 11 (R0 , Y, Y , K m nm n .,.._ .,... ,..,_ .,.._ 
_.!. "' iK • T Ol . /3 w w I = N 2 u e ,..,_ .,.._a a a a a 

T m~l m~/ • O m'r n'J+x 
,..,_ 

1J 
• • • am"T+R .,.._ ,..,_o 

'TJI (3 
an11 T +y' • • • amR 

.,.... .,...._ .,.... N 

(6) 

where the holes are ~o apart and the electrons are located :r_ and 

XI from one of the holes' r -~o and r..' - !!o from the other hole' and 

y - y' from each other. To get the eigenfunctions of the total ,..,_ ,..,_ 

Hamiltonian, one must take linear combinations of the wavefunctions 

given by Eq. (6) as follows: 

SMs , ww' 1J7J
1 

G , , 11 11, (R0 ,Y,Y,K)l/lm'n'm"n11(R0 ,'Y,Y1,K) mnmnv ,..,_ ,..,_,..,_ ,..,_ .,.._ ,..,_.,.._,..,_ 

(7) 

where S is the total spin and Ms is the spin projection, both being 

functions of w, w', 1J and r,'. No one has ever tried to diagonalize the 

Hamiltonian in order to solve for the G's in a general case. The 

case of two Frenkel excitons (! = .Q_ and r_' = ~o or vice versa) has 

been treated. lO-l3 Also the binding energy of two Wannier excitons 

to form a biexciton has also been extensively discussed in the 

literature but the form of Eq. (7) was restricted to a particular 

function having only a few parameters. 14- 16 

What we wish to find out is into which two excitons (what form 

for G) a high-energy exciton of the form of Eq. (4) would fission 

with the highest probability. The part of the Hamiltonian which 
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couples states of the form (7) with states of the form (4) is the 

electron-electron potential energy term 6 e2/r .. , where r .. is the 
i < j l] l] 

separation between the ith electron and the jth electron. Only states 

having the same K will be coupled. One electron terms of the .,.,_ 

Hamiltonian cannot couple these states and still conserve energy. 

For simplicity, the initial state that will be considered here is a 

triplet exciton (S = 1) having Ms = 1, that is, having a = a' = a in 

Eq. (4). There are three possible final spin states having S = 1 and 

Ms = 1. One orthonormal set of spin states satisfying S = 1 and Ms = 1 
1 1 

is{2-2 aa(a(3 - (3a), 2-2 (a(3 - (3a)aa, and ½(aa(a(3 + (3a) - (a/3+ (3a)aa)}. 

However, other linear combinations of these states can be found which 

are also orthonormal. 

The matrix element of interest is 

S=l,M =1 
s I 6 _£ I aa 

( '¥ m' n' m" n" v' (~) . < . r. . t/1 mnv (!f) > 
1 J lJ 

(8) 

This equals 

* '°' -iK • T ~ "' SMs °" iK. R 
{N-1L..Je.,.,_.,.... LJ Li Gm'n'm"n"v'(~o,'Y,'Y',K)L.Je.,.,_ .,.,_ 

T ' R ww' '1"1'1"1
1 

.,.,.. "' "" R .,.... ~r,.,....o .,., -" 

" J a * a * w * w' *11 * 77' L1 U K (B)} amR ... am'T a , T ... a ,, T R a ,, T , B mnv.,.... "" .,.... 1 "' n .,.,..+! m .,.,..+~ n .,....+Y 

(9) 
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where d3 r means integration over all the coordinates of all the .,.._ 

electrons and the prime over the spin summation restricts the sum 

to states having Ms = 1 and S = 1. In order to conserve energy, 

one must change two electrons, as mentioned previously. Thus 

either m ;,= m' and m ;,= m" or n .c n' and n .c n". Using this and 

expanding Eq. (9) one gets 

(10) 

where A(K) is the expression in braces in Eq. (9) and g = e2
/ l;:1 - _!2 I . .,.._ 

Since Wannier functions are very localized ones, 3 some of the 

sums in Eq. (10) can be approximated by single terms. In particular 
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' 
since (aJRaKTlglaLU~v> represents the Coulomb interaction 

between ajR aLU and afT 3Mv, this term will be very small unless 

R = U and T = V (so that the charge clouds overlap). Thus 

Using Eq. (11), Eq. (10) becomes 

6 aa(a{3-{3a)* ( I I ) 
!!o, ~ Gmn'm"n" (!!o, ~' !!o,!9 Umnv~(~) an'!ran"!!o g an~ am,,~0 

a ({3a -a{3)a * 
- !!~ ~ Gmn' m"n" (!!o, !!o, ~' !f) Umnz,,!f (:~)(an'!!o an"~ I g I am"!!o an~) 

iK•R (J3a-a{3)aa* I I 
+ ~ e .,..,_ .,..,_O G I ' II (Ro,o ,Ro+B,K) umnz,,K (B)(amR an'O g am"R am'o> R B m n m n .,..,_ .,..,_ .,..,_ .,..,_ .,..,_ .,..,_ .,..,_ .,..,.o .,..,_ . .,..,_o .,..,_ 

.,..,_o, .,..,_ 

(12) 

where amO , for instance, is the mth Wannier function at the site 
.,..,_ 

R = 0 (the origin) . Since the final wavefunction must be normalized, .,..,_ .,..,_ 
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each term in Eq. (12) will have its greatest magnitude when the G's 

represent one "Frenkel-like" exciton (either y = 0, y' = 0, y = R
0 

or 
~ .,.... -" .,.... .,,.... .,,.... 

y' = R0 ) and a distribution for the other electron of roughly the same .,.._ .,.._ 

spatial extent as UmnvK(~). This will maximize the terms because 
.,.._ 

in this case the G's will not waste their amplitude in places that won't 

increase the values of the sums in Eq. (12). Thus the final state will 

have a "Frenkel-like" exciton and a general exciton of roughly the 

same spatial extent as the initial exciton. It would be an actual 

Frenkel exciton if the two excitations did not interact at all. Figure 1 

in section A shows roughly what the process will look like if one of the 

last four terms dominates, that is, if the excited electron remains in 

the same orbital. The above equations demonstrate that the most 

efficient relaxation process for a general high-energy exciton in an 

insulator is to "fission" into a Frenkel exciton and an exciton of the 

same type as the initial one. Naturally energy must be conserved in 

this process. This final result rests almost entirely on the approxi­

mation given by Eq. (11). However, this approximation should be a 

very good one for any orthonormal set of functions which represent an 

insulator. It should be especially good for the holes, that is, for the 

charge clouds a;R a_fT where £ and £' equal m, m' or m". 

In order to generalize this result to any insulating condensed 

material only a couple of changes would have to be made. (1) K would .,.._ 

no longer be a valid wavevector so states of different ~ would have 

matrix elements connecting them. (2) Wannier functions could not be 

used but another set of localized orthonormal functions could be found 
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by some kind of orthogonalization procedure (see for example 

Lowdin1 7). Thus the result obtained here does apply to any insulating 

condensed material and the conclusion that the most efficient relaxa­

tion process is an "exciton fission" or "energy fission" process 

leading to one localized excitation (in the Frenkel exciton sense) and 

one excitation which has roughly the same delocalization as the initial 

state is still valid. 
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PART II 

USE OF GREEN'S FUNCTIONS TO STUDY RADIATIONLESS 

TRANSITIONS, LIGHT SCATTERING AND 

FLUORESCENCE IN MODEL SYSTEMS 



36 

INTRODUCTION 

A problem of major interest to spectroscopists within the last 

few years is the nature of resonance Raman and Rayleigh scattering 

and the difference between these scattering processes and fluorescence. 

This problem has arisen due to the change in experimental techniques 

of the last few years. 

In a traditional off-resonance Raman scattering experiment, the 

experimentalist used to excite the system with a very narrow light 

source (mathematically a delta function in frequency). Then by 

observing the light coming out from the system at frequencies dis­

placed from this original frequency, the experimentalist obtained 

information about the ground state of the molecule. No time informa­

tion was obtained, however. On the other hand, in a traditional reso­

nance fluorescence experiment a broad-banded light source that turned 

on and off very quickly (mathematically a delta function in time) was 

used to prepare the system in an excited state. Then by observing the 

fluorescence decay, the lifetime of the excited state was measured. 

Now, however, with the advent of lasers that are relatively 

narrow in frequency (on the order of tens of wavenumbers or less) and 

also relatively narrow in time (as fast as 5 picoseconds), experiments 

can be done with excitation having a narrow frequency bandwidth and 

with time resolution as well. Also, by using pulsed tunable dye lasers, 

excitation over wide ranges in the visible and ultraviolet can be 

obtained. 

In an experiment on I2 , Williams, Rousseau and Dworetsky
1 
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observed that when they excited exactly on resonance and looked at the 

time decay of the light displaced from their incoming light by a vibra­

tional quantum of the ground state, they saw an exponential decay with 

a lifetime T • This was exactly like previous fluorescence experiments. 

However, if they moved their exciting line slightly off resonance, they 

saw two different decay times--a fast one that looked like their light 

source and a slow one with the same lifetime T. They did not, how­

ever, have a good explanation of their results. 

To explain their results, a simple model of a primary state 

having all the oscillator strength and interacting with a continuum 

of states was used. The primary state represented the excited state 

of J2 they were exciting and the continuum represented states 

having the molecule in any vibronic level of its ground electronic state 

and having a photon of any frequency present. The exciting light 

source was modelled as an uncertainty-limited pulse having width in 

both time and frequency. The solution of this problem using Green's 

functions is given in section A. 

An extension of this work to include two vibronic levels of the 

excited electronic state is discussed in section B. Naturally, a model 

containing two primary states with oscillator strength was used. 

However, a one-photon light source interacts with a molecule 

in its ground vibronic state to form not only the molecule in its excited 

state and no photons present but also the molecule in its excited state 

with two photons present. These so-called two-photon terms contri­

bute to the Rayleigh and Raman cross sections, especially off-
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resonance. A model having many states with oscillator strength which 

do not interact with each other but do interact with the continuum of 

one-photon states was used in section C to discuss the contribution of 

these two-photon states. This same model was used to discuss excita­

tion profiles for Rayleigh and Raman scattering from a diatomic mole­

cule in section D. 

The one-resonance model of section A can also be used to 

discuss radiationless transitions. 2 In this case the continuum states 

can be not only the states of the radiation field but can also be vibra­

tional levels of other electronic states which carry no oscillator 

strength. If these latter states interact strongly with the primary 

state, then the peaks of the absorption spectrum in the neighborhood 

of the primary state will not occur at the positions of the zero-order 

states. A method was found, however, of extracting the positions of 

the zero-order states directly from the absorption spectrum. This 

method is given in section E and is shown to give good results for 

naphthalene. 

The key formulae needed in this part of the thesis will be proven 

in the mathematical appendices. 
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I. INTRODUCTION 

Whole new classes of optical and spectroscopic experiments are 

being made possible with the development of narrow line tunable dye 

lasers, 1 and in the near future the availability of tunable "uncertainty­

limited width" pulses is expected. 2 The latter will afford the experi­

mentalist with the best combined frequency and temporal resolution 

consistent with the limitations imposed by the uncertainty principle. 

One question that naturally arises from these types of experiments 

concerns the temporal characteristics of excitation by a pulse as it is 

tuned through an atomic or molecular resonance. This question was 

specifically raised by Williams et al.3 in a time-resolved scattering 

experiment on the 12 molecule. 

A theory to infinite order in perturbation theory describing the 

resonance or near resonance interaction of an excitation source of 

general shape with an atomic line of general shape has recently been 

developed. While the general problem requires numerical solution, 4 

an analytical result is possible for uncertainty-limited excitation 

pulses which have Lorentzian frequency shapes providing the radiation 

field for spontaneous emission can be adequately approximated as a 

uniform continuum over the range of the resonance. This model is 

relevant to resonance or near resonance scattering and to absorption 

of white radiation followed by re-emission of light. We shall first 

outline a more general theory and then apply it to this special case. 

Afterwards, the case of two resonances will be considered, from which 

resonance Raman scattering formulas can be derived. 
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II. GENERAL SOLUTION FOR A SINGLE RESONANCE 

The time evolution fort ;,:: 0 of a state <Pp prepared at t = O by a 

delta function pulse is 

0 (t) = U (t) cp p , 

where the time-evolution operator 

U(t) = e-iJCt 

is expressed in terms of the exact hamiltonian, 

for the atom interacting with the radiation continuum [ ref. 5, ch. 3, 

section 13]. For a non-delta function pulse S(t) of intensity 

sufficiently weak that one may ignore the effects of stimulated 

emission and n ~ 1 photon transitions, the time-development of the 

state <Pp is 

t 
l/)(t) = f e -iJC (t-t') S (t') cpp dt' . 

- 00 

(1) 

(2) 

(3) 

(4) 

Note that l/)(t) satisfies the time-de~ndent Schrodinger equation 

because the operators are retarded, giving no contribution beyond the 

observational time t. S(t') can be thought of as an envelope of o(t') 

pulses, each of which is supposed to prepare the state cpp instanta­

neously. Though each pulse is infinitely broad in frequency space, 

interference among them gives rise to a pulse of finite bandwidth. 
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l/l(t) is thus the coherent superposition of the decays of the prepared 

state at times t' over the range - oo ~ t' ~ t. Eq. (4) is thus the 

generalization of eq. (1) for non-delta function excitation pulses. 

S(t') has the transform 

+oo 

S(t') = (21rf1 J e-i11.t'S(11.)dA, 
- 00 

where S(A) describes the frequency shape of the excitation pulse. 

From Cauchy's theorem, 

- 00 

(5) 

(6) 

where the path of p must enclose the poles of JC (a branch cut along 

the real axis). A suitable contour runs from + oo to - •10 just above 

the real axis and then into the lower half-plane around a semicircle 

of radius R - oo. The probability amplitude squared at time t is thus, 

t + 00 

i(<Ppil/l(t))l 2 = I¼ j
00 

S(t')dt' -~ dAe-iA(t-t')Gpp(11.)l
2

, (7) 

where G = (11. -JCf1. 

In the physically artificial, but illuminating, case6 where there 

is but a single resonance, that is, where the state <Pp carries all the 

oscillator strength, 

(8) 
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+ 00 

r(A) = f 
- 00 
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IV pk I 2 p(Ek) d Ek 

A - Ek 
(9) 

where for the present problem V pk is the matrix element of Hint 

between the zero-order atomic level with frequency Ao and a radiation 

continuum level at frequency Ek; p(Ek) is the density of such 

continuum levels. 

In the neighborhood of the resonance, it is a good approximation 

to consider I Vpkl 2 p(Ek) constant. Denote this constant by 1r-
1 y, in 

which case Imr(A) = -y, and the Cauchy principal value of eq. (9) 

gives Rer(A) = Oo Thus, 

(10) 

This Green function, as is well-known, leads to a Lorentzian-shaped 

absorption line, which has half-width y at half-height, centered at 

A= A0 • 

The simple Lorentzian lineshape problem is described here 

only because it leads to an analytical expression for the time depen­

dence. If IV pk I 2 p(Ek) is nonuniform, even of arbitrary shape 

containing maxima and minima, a dispersion relation from eqs. (8) 

and (9) allows Gpp (X) to be obtained for the near resonance problem 

by numerical methods from the absorption spectrum, 4 which is 

proportional to ImGPP(A). In such cases, Rer(A), a frequency­

dependent "level-shift" term, is nonzero and plays an important 

role. 7 The limit of narrow, "shapeless" resonances often used in 



45 

the physics literature 8, 9 is avoided. 

Continuing now with eq. (10) and letting the excitation pulse S(J\.) 

also be a Lorentzian a 2 

/ (a2 + "- 2

) in the frequency variable "-, for 

convenience centered at "- = 0 with half-width a at half-height, one 

has, 

S(t') = ½ a e -1 at' I (11) 

a cusp function. The intensity of the excitation pulse is IS (J\.) I 2, a 

Lorentzian squaredo The shape of S(J\.), and thus S(t'), was chosen 

for several reasons: (1) it yields an analytic solution; (2) neither S(J\.) 

nor S(t') have physically unreasonable discontinuities such as arise 

for instantaneous turn-ans; and (3) both S(J\.) and S(t') have only one 

maximum, consistent with the way pulses generally look. A gaussian 

S(J\.) yields a gaussian S(t') but does not lead to analytical expressions 

as in eqs. (12) below. A pulse S(J\.) = 1/(J\. + ia) (which yields a 

Lorentzian in intensity) has a Fourier transform S (t') which is zero 

for t' < 0 and -ie -at' for t' ~ 0 and thus does not satisfy criterion 

(2); while square pulses, even with finite rise and fall times, do not 

meet criterion (3). The cusp function S(t') in eqo (11) does resemble 

the subpicosecond pulses recently developed. 2 

Using eqso (10) and (11) in (7) and evaluating the elementary 

integrals yields, 

(12a) 
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J(cppll/J(t))l
2 

= {[(y - a)2 + i\~][(y + a)2 + i\~]}-
1 

Eqs. (12a) and (12b) give the probability that the state p is occupied at 

time t; the total intensity of light emitted or scattered at time t is 

proportional to this probability. It should be stressed that these 

results are for uncertainty-limited excitation pulses, where S (i\) and 

S(t') are Fourier transforms of one another; all the ramifications of 

the uncertainty principle are built in automatically. Both I (cpp I l/J(t)) I 2 

and its first derivative with respect to time are continuous at t = 0, 

although eq. (11) has a cusp there. 

It is important to note that the decay is dependent only upon the 

half-widths y and a, and is independent of the frequency separation 

between the atomic resonance and the excitation pulse. The frequency 

separation i\0 occurs in an oscillatory part of the time evolution. 

This result is not in agreement with the statements of Williams et al.,3 

"As the incident frequency is moved only slightly away from resonance, 

the lifetime (.~t) for the re-emission is expected to be limited by the 

frequency difference (Aw) between the excited state and the incident 

frequency, and should be given approximately by an uncertainty 

relationship, At = 1/ Aw", and "As the laser frequency is tuned away 

from resonance with a discrete transition, both the re-emission 

intensity and lifetime must continuously decrease". Eq. (12b) shows 
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that as Ao increases, the term decaying as e-2at (light-source decay) 

increases in intensity relative to the other terms, but there is no 

change in the two exponents. Thus as the light source moves off 

resonance one must look in the low intensity portion of the overall 

decay curve in order to pick out the temporal component characteristic 

of the resonance. This can be confirmed by looking at the experimen­

tal results of Williams et al. , 3 although their resonance was Doppler 

broadened. This would tend to cause an incoherent superposition of 

the oscillatory decays and average them out. 

When the exciting light is purely monochromatic, a - 0, S(t') is 

infinitely broad, and the time evolution reaches a steady state having 

the Breit-Wigner10 form, 

(13) 

This is equivalent to Heitler's formula [ref. 5, pp. 201-203] for the 

intensity of "resonance fluorescence" excited by a sharp line. It is 

also of course the same as near-resonance "Rayleigh scattering" 

formulas. Off resonance, the theory describes the interaction of the 

imposed exciting light pulse with the "tail" of an atomic resonance. 

The resonance and its tail in this case arise from the natural width 

for spontaneous emission, i.e. , an atom interacting with the radiation 

field as in eq. (3)o There is no need to bring in "virtual state" 

language, since the tail of the resonance corresponds to actual states 

of JC. 

In the opposing limit where excitation is by white light, S(t') is 

a single delta function, a - oo, and eq. (12b) tends towards exponential 
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decay proportional to e-zyt . This is the limit of absorption and re­

emission by the atomic system. It is important to note that to effect 

absorption and re-emission from an atomic state, one must excite the 

entire state, not just part of it . This requires broad-banded excitation. 

In this limit for a Lorentzian line, real and imaginary parts of G 

contribute equal exponentially decaying parts to the time evolution of 

the excited state. On the other hand, if the pulse used is narrow­

banded, the process excites a mixture of the atomic state and radiation 

field states [Ref. 5, pp. 2 01-203]. Real and imaginary parts of G contrib -

ute unequally. The contribution from the real part is small in the 

vicinity of resonance but falls off less strongly than does the imaginary 

part as (A - A0 ) increases. Thus, narrow-line excitation, even for 

(A. - Ao) approaching zero, is physically different from absorption into 

and reemission from the atomic state. It perhaps is more properly 

called scattering, either of the resonance or nonresonance variety. 

However, if one wants to go to the trouble, it is perfectly possible for 

any type of excitation interacting with a Lorentzian resonance to 

extract out a component having equal contributions from real and 

imaginary G, which could be called the "absorptive part" of the process . 

III. TWO RESONANCES 

Exact Green function matr ix elements are also known11 for the 

case of two atomic levels interacting with the radiation continuum. 

With the level corresponding to <Pp placed at Ao and that corresponding 

to <Pp' at ~, 



where r is as before and, 

49 

A - 11.' - r' 0 
(14) 

(15) 

(16) 

r', tf, Gp'p', and Gpp' , can be obtained from the above by appropri­

ately substituting p for p', "-o for "-~, and vice versa. If the uniform 

continuum approximation is again made, I Vpk l
2 

p(Ek) = 1T-
1
y and 

lvp'kl
2 

=1r-
1
y', then r = -iy and r' = -iy' in eqs. (14) and (15). 

l l 

Now if one excites a state x = ( <pp + f2 <Pp' )/ (1 + f) 2 where f 

is the ratio of the squared matrix element of Hint between the ground 

state and <pp, divided by that of <pp , then the time evolution of this 

state is given by eq. (6) with <pp replaced by x. Since G is retarded, 

the integral over d11. in eq. (7) is zero if t < t', and substitution of 

eq. (5) into eq. (6) then yields 

+oo 
l/)(t) = i'TT f S (11.) e -i11.t G (11.) Xd"- . 

- 00 

(17) 

To obtain the total scattering intensity in the time-independent regime, 

we suppose that S (A) = o (11. - I), in which case 
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l<x I tf;(t) > I 2 = [21r(l + f)] -
2 I GPP(i\) + fGp'p' (i\) + f½ Gpp' (i\) +f½ Gp'p(~) I 2 • 

(18) 

Eq. (18) should be compared with the usual perturbation 

expression for Rayleigh and Raman scattering near a resonance.* 

If summations over multiple resonances and vibrational quantum 

numbers are not considered, the perturbation result can be obtained 

from eq. (18) by way of the following approximations: (1) neglect of 

Gp'p'; (2) neglect of (Vp'p + ~) and (Vpp' + tl) in the denominators of 

Gpp, Gp'p and Gpp' ; (3) neglect of ~ and t1 in the numerators of 

Gp'p and Gpp' ; (4) setting (~ - i\~ - r') equal to (i\0 - i\~). Approxima­

tion (1) and the trivial approximation (4) are valid near the resonance 

i\ ~ i\0 o Approximation (3) is the neglect of indirect interaction of <Pp 

with <Pp' through the radiation continuum in comparison with the direct 

interaction. Since natural linewidths are usually small compared with 

the magnitude of the direct (interelectronic or vibronic) coupling, 

approximation (3) is undoubtedly valid in most cases. Approximation 

(2), however, which neglects the effect of carrying the perturbation 

expansion to infinite order, is questionable when i - i\0 is small 

compared with Vpp' Vp'p/(i\- i\~) 0 In fact, the neglected terms are 

dominant in the resonance region, but cause only a spectral shift. 

To obtain the time dependence in the two- resonance problem for 

an "uncertainty-limited" excitation pulse of general shape, one may 

perform the integrations in eq. (7) or (17) numerically. This problem 

has not yet been investigated in detailo 

*see eqs . (15) in ref. 12. 
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ADDENDUM 

After this paper was finished, a paper by Friedman and 

Hochstrasser was submitted for publication in Chemical Physics. 13 

A major difference between the two papers is in the shape of the 

excitation pulse, but a number of minor differences exist as well . 

Both papers support the idea that the temporal behavior following the 

interaction of light sources with resonances depends crucially on the 

nature of the light source, * and furthermore that these results can be 

calculated quantitatively not only for limiting cases but for inter­

mediate ones as well. It is these intermediate cases that may prove 

to be the most interesting. It should also be noted here that another 

paper entitled "Radiationless Transitions" by J. Jortner and 

S. Mukamel in preprint form was received by the authors more 

recently. A portion of this paper deals with similar subject matter 

as presented here and reaches similar conclusions . It is fair to say 

that there is apparently considerable activity in this area. 

*This idea was stressed in an early paper by Rhodes et al. 14 

See also a recent paper by Rhodes. 15 
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L INTRODUCTION 

In the usual theories of Raman and Rayleigh scattering, l-4 the 

light source is considered to be a delta function in frequency. In a 

previous paper, 5 the interaction of a light source having widths in both 

time and frequency with a single resonance was discussed. In this 

paper the model will be extended to include two vibronic levels of an 

excited electronic state in order to be more realistic for near reso­

nance Raman scattering. 

II. MODEL AND FORMALISM 

The total Hamiltonian of the system is 

JC = H0 + V (1) 

where H0 contains the molecular Hamiltonian and the radiation field 

Hamiltonian and V contains the molecule-radiation field interaction. 

The model system used consisted of a ground (g) and a single excited 

electronic state (e) lying 20,000 cm -l above the ground state. Each 

of these electronic states was given two vibrational levels v = 0 and 

v = 1 with vibrational spacing 1200 cm -l and 1000 cm -l for the ground 

and excited states respectively. The two vibrational levels of the 

upper state (Ip) = leo) and IP') = lel)) were considered as 

discrete, and interactions between these two levels were neglected. 

The two vibrational levels of the ground state plus the radiation 

continuum were modeled as two continua ( la ) + lb)) having zero-

order energies E = E + n.w and Eb = E + E + tiw, respectively, a g g vg 
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where tiw is a photon energy, Evg is the ground vibrational spacing 

and Eg is the energy of the ground vibrational level of the g state. 

From now on Eg will be set equal to zero; Vaa', Vbb', and Vab were 

also neglected. 

The light source excited X = (Ip) + f½ Ip') ) 1 where 

1 (golv lp') (l+f)
2 

f2 = - I I (this assumes that at t = - oo the molecule is in the 
( g O V p) 

ground state). Therefore the wavefunction of this system at time t is 

given by5- 8 

i 
27T 

t 00 

f dt' S(t') f 
-oo 

dA e -iA(t - t') 

A -JC+ i17 
X ' (2) 

where the limit 17 - o+ is taken after the integrations and S (t') is the 

amplitude of an uncertainty-limited pulse at time t' whose frequency 

spectrum is S(w), that is 

00 

S(t') = __!_ f 
127T -00 

-iwt' 
e S(w)dw. (3) 

To calculate the intensity of emitted/scattered light, one needs 

to know the probability that one ends up at t = oo in each I a) state and 

each lb) state. The total intensity I(w) at a given photon frequency 

w is proportional to 

Ea Eb Evg 
where wa = - = w, wb = - = -- + w (same photon emitted) and 

ti ti ti 
p(w) is the density of photon states at frequency w. Now 
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t 00 • I l 

l(al\/)(t) )l
2 

= I 2i7T 
1 J dt'S(t') J d:>te-IA(t-t \G (A)+f2 G ,(A))l

2 

(1 + f) 2 - oo - oo a p a P 

(5) 

from Eq. (2) where G(A) = (A - JC + ir7 )-
1

• The matrix elements Gap 

and Gap' can be easily calculated from Dyson's equation9' lO to be 

(6) 

and similarly for Gap'(A), where Ep is the zero-order energy of the 

Ip) state (20,000 cm -l). The approximations made in Eqo (6) are the 

neglect of the coupling through the continuum of Ip) to I p' ) and the 

assumption that I Yap I 2 p(Ea) and I Vbp I 2 p(Eb), where p(Ea) is the 

density of "a" states at zero-order energy Ea, are independent of Ea 

and Eb, respectively. This latter assumption leads to Lorentzian 

line shapes for I p) and Ip' ) . 

If S(w) is a Lorentzian5 

A2 S(w) = _2 ___ _ 

A + (w -w0 )2 

with full width at half maximum of 2A and centered at w = w 0 , thm 

S (t') from Eq. (3) becomes 

S(t') = (; )½ Ae-lAt' I e-iw 0t', 

a cusp function. This assumes that the pulse is transform-limited. 

(7) 

(8) 
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Now if one evaluates the integrals in Eq. (5) using Eqs. (6) and 

(8) following the method of Srivastava and Fontana, lO one gets 

where i is a or b and y was set equal to y' for convenience. 

To calculate actual spectra from Eqs. (4) and (9), the usual 

dipole approximation for the matrix elements Vip was used and the 

electronic transition dipole was assumed independent of vibrational 

coordinates. That is, 

(9) 

(10) 

where ( g 0 I e j) is a Franck-Condon factor, and µ is the dipole 

moment operator. The following values for the Franck-Condon 

integrals were assumed, 

(go I e o > = {3 
2 

(g 1 I e o> = ½ 

(golel) = -½ 

(g 1 I e 1 > {3 
=+-

2 

such that the usual conditions of completeness and orthogonality 

are obeyed. 

(11) 
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III. RESULTS 

A representative spectrum calculated from Eq. (4) is shown in 

Fig. 1. The values of the parameters chosen for Fig. 1 are A = 20 cm-1
, 

y = 10 cm-1, and w0 = 15,000 cm-1
• The ordinate is the relative 

intensity (since no value was assigned to ( g Iµ I e)). The dominant 

peak in Fig. 1 occurs at w0 , the peak of the exciting light, and is thus 

what is normally called the Rayleigh peak. The second largest peak 

occurs at w0 - Evg/1i and thus is the Raman peak. The four small 

peaks at higher energy correspond to the "off-resonance fluorescence" 

peaks. Energy conservation has not been violated because of the 

presence of the high-energy wing of the light source. 

The relative heights of the "Rayleigh" vs. the "fluorescence" 

peaks are governed by the relative intensities of the wings of the light 

source and resonance. The widths and shapes of the Rayleigh and 

Raman peaks are almost exactly those of the light source (the wings of 

the resonances only distort them slightly). Similarly the fluorescence 

peaks have approximately the shapes of the resonances. On-resonance 

the shape of the emission peak is the product of the light source shape 

and the resonance shape. 

IV. DISCUSSION 

The right-hand side of Eq. (10) is the first term in a Herzberg­

Teller expansion (see, for instance, Albrecht1) 

µ (Q) = µ + ( £1!_ ) Q + •• • 
o aQ o 

(12) 
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Figure 1. A semilog plot of the relative emission intensity 

calculated from Eq. (4) when the excitation frequency 

(w 0 ) is at 15,000 cm-1
• 
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where Q is a normal coordinate. The second term (the vibronic 

coupling term) of this expansion is responsible for the usual fl.v = ± 1 

selection rule for the Raman effect. 1 However, Fig. 1 shows that 

Raman-like intensity occurs even in the absence of the vibronic 

coupling term. The reason for this is that the electronic energy 

spacing relative to the exciting line is not so large that vibrational 

spacings can be ignored in Eqo (9). Because of Eq. (11), only Rayleigh 

scattering can occur in the limit of excitation very far from the 

vibronic levels without the vibronic coupling term. However, as the 

energy of the exciting line approaches that of the electronic resonance, 

an imbalance in favor of the lower vibrational levels of the upper elec­

tronic state occurs, and the scattering becomes modified by Franck­

Condon factors. In fact, in a real case where there are many vibra­

tional levels, an entire Franck-Condon envelope of lines will begin to 

emerge as resonance is approached. This fact has been confirmed 

. t 11 11-13 experimen a y. 

The spectrosc_opist would ordinarily think of a line displaced 

from the exciting line by a vibrational frequency of the ground state as 

a Raman line. However, since this line occurs without the vibronic 

coupling term, it may better be thought of as a Franck-Condon addition 

to Rayleigh scattering. The intensity ratio of the Rayleigh-like line to 

the Raman-like line as a function of off-resonance energy for the above 

simple model [Eqs. (4), (9) and (10)] is shown in Fig. 2. Again 

A = 20 cm -l and y = 10 cm - 1
. Unfortunately, little experimental 

data is available to check this. The only system for which we could 

find Rayleigh/Raman cr oss sections was benzene, 14 and their 
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Figure 2o The ratio of the Rayleigh to Raman peak intensities 

as a function of the energy displacement of the 

excitation frequency (w0 ) from the O - 0 transition 

frequency. 
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excitation was so far from resonance that the contributions from many 

excited states would be nearly equal ; thus our simple model would not 

hold. 

The relative intensities of the contributions of the first two terms 

in Eq. (12) to Rayleigh-Raman scattering depend upon the nearness to 

resonance, the magnitudes of the dipole derivatives (aµ/aQ )0 for 

various normal coordinates, the Franck- Condon factors, and the 

manner by which the wings of the resonance and light source decrease 

with frequency. All this information is contained in the absorption 

spectrum and/ or the emission spectrum of the molecule, and in fact 

the formalism given in Eq. (2) allows one to calculate scattering 

intensities directly from an absorption spectrum in a way previously 

outlined for another problem. 15 A word of warning, which is fairly 

obvious, is that in a real molecular problem, not only is there an 

entire set of vibrational levels associated with each electronic state, 

but many electronic states may contribute to the scattering. This 

presents a particularly troublesome problem when the exciting line is 

far away from any one resonance, and the wings of all the various 

resonances are contributing in a complicated way, with weight often 

being in favor of intense, but distant, ones. Such overlapping of 

contributions will tend to smear out to some extent the effects dis­

cussed here. Inclusion of distant resonances is possible using the 

methods of Mower16 and of Hong. 17 

Time dependence associated with the scattering process can be 

obtained from Eq. (2) and, as mentioned in a previous paper, 5 

consists of more than a single component. In general there is 
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expected to be a decay term (not necessarily exponential) associated 

with each isolated peak of a resonance, * a decay term associated with 

the light source, and beat terms among them. For very complicated 

multipeaked resonances the decay is complicated with its own maxima 

and minima, and no simple statements can be made about it . See, 

however, Delory and Tric, 18 where a simplified approach is used to 

obtain some interesting properties of multipeaked resonances. In 

general, however, one must simply solve Eq. (2) in all its glory from 

a knowledge of S(t) and G( w). 

V. CONCLUSION 

Raman scattering, Rayleigh scattering, and the absorption and 

reemission of light on-, near-, or off-resonance are all one and the 

same phenomenon from a theoretical point of view. This paper out­

lines ideas and methods unifying the theory of such effects. 

The major point of the paper is that molecular or atomic 

resonances are considered in a higher order of approximation than in 

the conventional theories of the interaction of radiation and matter, 

*This part and the molecular beat terms are the "most important" 

parts if one is interested primarily in the molecule. The approximate 

approach of Delory and Tric18 utilizes this fact, but the neglect of the 

light source and the treatment of the compound resonance as a super­

position of simple resonances are not expected to provide an adequate 

theoretical description for the response to transform-limited light 

sources in the subnanosecond region. 
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the radiative continuum for spontaneous emission together with non­

radiative continua being included to infinite order in perturbation 

theory at the outset. The resulting "resonances" have widths and 

shapes depending upon the density of states in these continua and 

the strength of the interactions with them. 

The exciting light source is looked upon as an added per­

turbation to which the system instantaneously responds. While 

further theoretical elaboration is possible, in the present paper 

the light source is considered only as a means of "preparing" 

states belonging to the resonance. In this context the scattering 

of light from a narrow-banded source interacting far out on the 

wings of a resonance can be loosely thought of as an absorption 

and reemission process from these wings. The "virtual state" 

language of the traditional perturbation theory is unnecessary. 

The absorption intensity as a function of frequency over the entire 

resonance, including the fantastically weak wings, is therefore a 

quantity of importance. In polyatomic molecules, where smooth 

and structured continua from many sources may play a role, 

conventional theories of light scattering, which in effect assume a 

particular type of simplified lineshape, will undoubtedly be found 

wanting when compared with measured scattering amplitudes over 

a wide range of light-source frequencies. 

In the near-resonance region the conventional theories also 

fail, requiring higher- and higher-or der perturbation theory on 
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the one extreme, or the inclusion of an artificial damping term on the 

other. The present theory smoothly bridges the gap from far off­

resonance right into the resonance region, with the added advantage 

of flexibility in the light source function and the resonance shapes. 

The theory applies equally well to narrow-banded excitation, tradition­

ally thought by the experimentalist to constitute a scattering experi­

ment, right through to broad-banded excitation, the traditional ab­

sorption and reemission experiment. 

The time dependence of these scattering problems also 

reveals itself in a transparent way, being composed of, besides 

quantum beat terms, light source parts and molecular parts whose 

relative intensities vary, among other things, with the off-resonance 

energy (wa - w0 ). The off-resonance energy also affects the Franck­

Condon factors in the scattering process. Very far off-resonance, 

the vibrational levels in a given electronic state can, to a good 

approximation, be treated as equienergetic, giving rise to the 

traditional selection rules I!!.. v = 0 in the absence of vibronic coupling 

or ll.v = O, ± 1 in the presence of first-order vibronic coopling. 

Nearer resonance, the vibrational energy levels closest to the 

light source frequency have greater weight, and Franck-Condon 

factors begin to evolve. As resonance with a single vibrational 

level is reached, this level s t rongly dominates all the others giving 

rise to the familiar Franck-Condon envelope in absorption and 

re-emission processes. 
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I. INTRODUCTION 

In previous papers, l-3 a time-dependent theory of near­

resonance scattering/fluorescence was outlined. In this theory the 

effect of interactions t of the discrete molecular energy levels with 

neighboring continua are, in principle, carried to infinite order of 

perturbation theory. The continuum due to the decay photon field4 

is particularly important, but continua, say, from the vibrational 

density of states in a sufficiently complex molecule may also have 

to be included. 5, 6 The scattering process is then viewed as the 

interaction of another field, the externally imposed exciting light 

source field, with the resulting resonance profiles, near a maximum 

for near-resonance scattering or far out on the "wings" of a resonance 

for off-resonance scattering. The time dependence is described by 

the time evolution of system states in the resonance profiles 

"prepared" by the exciting light source. 

To describe accurately light scattering excited fairly far from 

an intensity maximum of a resonance profile, it is necessary to 

include the effects of two-photon components in the composition of the 

system states. These components yield the so-called antiresonance 

terms in second-order perturbation theory. Contributions of these 

components to the resonance profile and participation of them in the 

time evolution process are essential for a complete theory of 

twe used the word interaction here in the spectroscopist 's context. 

The interactions occur, of course, between the particles comprising 

the system, not the states. 
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scattering/ fluorescence. Our earlier papers 2, 3 dealt mainly with 

near-resonance excitation, where the two-photon contributions are 

unimportant. The present paper shows how two-photon terms can be 

included, if coupling between them is not allowed, in this resonance 

profile theory. Three and more photon contributions and relativistic 

effects will not be included. Formulas will be derived for time­

dependent scattering/ fluorescence for a weak exciting light, of 

arbitrary frequency composition and having variable position from 

far off-resonance into the resonance region. This formalism thus 

unifies the perturbation theory results for time-independent off­

resonance scattering with the recent time-dependent theories for 

near-resonance scattering. l-3, 7- 9 In addition it yields the time­

dependencies of the antiresonance terms, which have not been given 

before. 

II. INTERACTION SCHEME 

The total Hamiltonian of the system is given by 

(1) 

The radiation-matter-interaction Hamiltonian in the non-relativistic 

approximation is10t 

2 

H- t= E{--e-[A(x.,t)·p.l+ e A(x.,t)·A(x.,t)} (2) m i me ,..,_ I ,..,_1 2mc2 ,..,_ 1 ,..,_ I 

twe shall use Gaussian unrationalized units throughout. 
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where the summation is over the molecular electrons, ~i is the 

linear momentum of the lh electron, and A(x., t) is the vector paten-
,..._ 1 

tial of the field at the pas ition of the /h electron. In (2) the term 

p
1
• • A(x

1
.,t) has been set equal to A(x.,t). p., since the field is trans-,..... .,...._ .,...._ 1 .,...._l 

verse. The field operators A(x., t) in (2) are linear combinations of .,...._ 1 

creation and annihilation operators. 11 Thus the A(x., t). p. term 
.,...._ 1 .,...._l 

changes the photon occupation number by ± 1 and at the same time 

gives rise to off-diagonal matrix elements between molecular zero­

order components. The A(x.,t) • A(x.,t) term in (2) changes the 
.,...._ 1 .,...._ 1 

photon occupation number by 0, ±2. Fig. 1 shows the interaction 

scheme in terms of the eigenstates of Hmol + Hfield' which, as in the 

conventional approach, form a convenient zero-order basis for the 

problem. 

To illustrate the method, the ground vibronic level (gO), an 

excited vibrational level (gv") in the molecular ground electronic state, 

and an excited vibronic level (ev') of the molecule need be considered . 

To reproduce a resonance profile theory that contains as a special 

case the conventional second-order perturbation result, one need 

retain (Fig. 1) the zero-order zero-photon state I ev' ;O) and those of 

the type I gO • w' E') I gv" • w" E") and I ev' • w 'E 1 w" E") . The molecule ' .,,...._ ' ' "' ' .,...,_, .,...,_ 

is assumed to be initially in its vibronic ground state and a one-photon 

wavepacket J dwS(w) lw~) (in the interaction representation) is 

assumed to be present, where S (w) is the amplitude of the packet at 

frequency w and € is the polarization vector of the packet. All zero-.,...._ 

order states except I ev' ; O) are continuous. For later comparison, 

the conventional second-order perturbation results will now be given. 
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Figure 1. The eigenstates of Hmol + Hfield" Also shown are the 

interactions between some of the states due to Hint· 

For clarity some interactions were omitted, but all the 

various types of interactions considered in this paper 

are shown. 
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III. CONVENTIONAL SECOND-ORDER PERTURBATION TIIEORY 

In conventional second-order perturbation theory the incoming 

photon is considered to be monochromatic. The differential scattering 

cross section (using the dipole approximation in the conventional 

Kramers-Heisenberg theory) from an initial state I g0; w' ~,) to a final 

state I gv11
; w11 

~
11

) is given by12 * 

da e2 2 w" I , 11 1 "" - = (-) ( ~) 00v11 ( E • E ) - - Li 
da m c2 w .,... .,... m v' 

x [ (gv" I~. ~"I ev' > (ev' 1.£. ~' I g0) + (gv'' IR· i I ev')(ev' IR.~" I g0} )', 

E(ev') - E(g0) - liw' E(ev') - E(g0) + tiw" 

(3) 

where the factor Bov" means that the first term in Eq. (3) can lead 

only to Rayleigh scattering. The summations involving the other sets 

of terms (the so-called resonance and anti-resonance terms) are only 

over the vibronic components ev' since we have considered just a 

single excited state of the molecule. 

In this formula, the two-photon states give rise to the third set 

of terms, the antiresonance terms. Note that the energy denominator 

for the antiresonance terms is (tiw 0 + liw 11
), where tiw 0 = E(ev') - E (g0), 

while for the resonance terms it is (ti.w 0 - ti.w'). The only other 

difference in the resonance and antiresonance contributions are an 

*Sakurai 's formula has been multiplied by the factor 41T to convert his 

Heavyside-Lorentz rationalized units to the Gaussian units used in this 

paper. 
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interchange of E' and E", the summations being over an identical set 
,.,_ "' 

of molecular excited levels. 

An important point to be learned from these well-known facts is 

that a two-photon component J ev'; w' E', w" E") with energy 
,.,_ "' 

[E(ev') - E(gO) +tiw' +tiw"] behaves as if it were a distant resonance 

interacting with a single decay photon "state" J gv"; w" E") through the 
"' 

annihilation operator for (w' E') photons. This two-photon component ,.,_ 

is thus totally analogous with that part of the zero-photon component 

J ev'; 0) destined to decay into a particular J gv"; w" E") . ,.,_ 

Eq. (3) clearly fails to give reasonable results on resonance 

since the first term in brackets blows up. It also does not apply for 

time-dependent scattering, since its derivation depends on the light 

source being turned on at t = 0 and left on forever. A more general 

theory, which encompasses these results and corrects their defects, 

will now be given. 

IV. TIME-DEPENDENT TIIEORY 

The cross section ab-a for a transition from a state J a) to a 

state Jb) is defined as the transition probability per unit time (Wb-a) 

divided by the flux, 13 , 14 which is c/V for a one-photon wavepacket, 

where V is the volume of the system. That is, 

The transition probability per unit time (for one molecule) is given 

byl5 

(4) 
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(5a) 

(5b) 

where tJl(t) is the wavefunction of the system at time t, C. C. means 

complex conjugate and at t = - oo the system was in the state I a) . 

The case of interest here is where la)= Js(w) dw jgO;w~) (in the 

interaction representation), as mentioned in section II, and (b I = 

(gv";w"E" I . .,.._ 

For transform-limited light source output, 3 the amplitude 

function S(t) in the time regime is related to S(w) in the frequency 

regime through the Fourier transf arm, 

S(t) 
1 +oo . t 

= (211f2 f e-lW S(w)dw (6) 
-oo 

Using the time development operator U(t, - 00 ) in the interaction 

representation16, 7 one gets 

I I Jdwe iHotln e-iHt/n S(w) (b \JI (t)) = (gv" ;w" ~,, 

x [1 + Hint G(tiw )] I gO; w~) (7) 

where the zero-order Hamiltonian H0 is the sum of the first two terms 

on the right-hand side of Eq. (1). Then14 

d i(E '1/li +w")t -iwt 
- (b I tJl(t)) = -i/ti (gv"; w" E" I f dwe v e S(w) 
dt .,.._ 

Tl gO;wE) 
-" 

(8) 



80 

where Ev" + liw" and nw are the zero-order energies of the states 

I gv" ; w" E" ) and I g0; WE ) , respectively and T is the trans it ion matrix .,..._ .,..._ 

which is defined as13 , 14, 17 

(9) 

where G(nw) is the Green's function (liw - Hf1
. Similarly14 

. i(Ev'1/ti + w")t -iwt 
(gv"·w"E"lf ctw e e S(w)T.I g0;wE) (10) 

' .,.._ tiw - E ,, - tiw " + iTJ .,..._ 
V 

if one does not look head-on at one's light beam. 

In a Rayleigh or Raman experiment, one counts all photons 

which come out in a range of frequencies at least as broad as one's 

light source. So if one puts Eqs. (8), (10) and (5b) into Eq. (4) and 

integrates over w" one gets 

ab (t) = _!1rV I (gv"; w" E" If dw S (w) e-iwt TI g0; WE) I 2 pw· ,,d n -a nc .,..._ .,.._ 
(11) 

where ctn signifies a solid angle and the density of photon states at 

at energy tiw" is given by18 

(12) 
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Equation (11) depends upon a knowledge of the experimental 

excitation function S(w) in addition to G(tiw). G$w) may be obtained 

semi-empirically from the absorption spectrum and a dispersion 

relation. l, 5' 19 It may also be calculated analytically for certain 

models. The integration must usually be carried out numerically. 

One can see from Eq. (11) that the greatest relative contribution to 

the cross section for the transition comes from that part of the 

frequency spectrum where there is good overlap between S(w) and 

G (tiw). G ~1w) of course is large near the center of a resonance but 

small on the wings of a resonance. Naturally, if one excites more 

than one resonance, there will be interferences between them. 

V. TWO-PHOTON STATES IN THE TIME-DEPENDENT THEORY 

The results of the previous section are exact. Now in order to apply 

the formalism to the problem at hand, several approximations will 

have to be made: (1) neglect all matrix elements of Hint<2
> [the second 

term in Eq. (2)] except the ones directly coupling the initial and 

final states, (2) keep only the two photon states I ev'; w~, w" ~,,) , and 

(3) neglect all couplings amongst the two-photon states or between the 

two-photon states and the zero-photon state. With these approxima-

tions Eq. (11) becomes [using Eq. (9)] 
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[ 
(2 > I < 1 > I i < 1 > 

Hint gO; Wf) + Hint ev'; 0) ----- (ev'; O I Hint I gO; w~) 
li(w -w0)- r

0 

H (l)I v' I/") 1 < I (1>1 12 - int e ; w~, w ~ ------ ev'; we, w11 
£

11 H. t gO; we)] 
ll (w"+Wo) + r II -"- -"- lil -"-

W W 

where H. U> is the first term in Eq. (2). In Eq. (13) the matrix mt 

(13) 

elements of G were derived from the two-resonance model. 2, 13 , 20 

These matrix elements are 

(14a) 

(ev';wE,w"E" jG(liw)lev';wE,w"E 11
) = -

1 
-"- -"- ,.._ -"- ( II ) 

(14b) 
1i W + W 0 + r 11 

WW 

where liw0 is the zero-order energy of the I ev'; 0) state and the r's 

are the level shift operators 
/ 

+00 

ri(A) = f 
\'i(E)2p(€) 
----dE, 

-ao A - E 

where A is now a complex energy variable, p(E) is the density of 

continuum states as a function of the (real) energy E; and V/E), 

assumed real, is the energy-dependent interaction matrix element 

between the zer o- or the two-photon state with states in the decay 

(15) 
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photon continuum at energy E. Thus the light source prepares I ev' ;O) 

and states of the form I ev'; Wf, w" ~") for all w. If the frequency 

dependence of the matrix elements of Hint can be ignored, Eq. (13) 

becomes 

I <u I - <1> 
- (gv";w"€" H1·nt ev';wEW 11 €")(ev';wEW 11 E11 IH. tlgO·wE) 

..-. ..-. " .,....,_ "" lll ' .,...._ 

( l S(t) v'2ti)l 2 

li(w + w") + r -0 w"w 
(16) 

where w signifies an average frequency of S(w), and S(t) is given by 

Eq. (6). Thus, within the approximations made, the first and third 

terms have time dependencies exactly following the light source, 

while the term involving the zero-photon resonance will yield three 

types of terms--ones following the light source, ones decaying as 

exp[Imr0 t], where Imr0 is the imaginary part of r 0 and is negative, 

and beat terms between them--as has been previously discussed in 

theories of near-resonance light scattering. 2, 3, 7-9 The two-photon 

states show no intrinsic time dependence of their own even if they 

have structure and width from rw"w. The reason for this is that the 

part of the light source having a frequency w interacts with the 
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resonance that is liw" + n.w0 higher in energy. Thus, the light source 

can never get close enough to the resonance in order to "see'' its 

structure. 

If one neglects Hint< 2 > and the two-photon terms in Eq. (16), 

then Eq. (16) reduces to the same results as the recent theories of 

near-resonance light scattering. 2, 3, 7- 9 For near-resonance light 

scattering the second set of terms in Eq. (16) is much larger than the 

third set (the antiresonance terms) due to the denominators. However, 

the contribution of the first term to Rayleigh scattering can be com­

parable to that of the second set of terms. 21 Off-resonance, in a 

calculation on a model diatomic molecule, 21 the antiresonance terms 

accounted for nearly half the scattering cross section for excitations 

below resonance with the 0-0 transition by more than 7000 cm -
1

. 

VI. REDUCTION TO THE RESULTS OF SECOND-ORDER PERTUR­

BATION THEORY 

The conventional second-order perturbation results [Eq. (3)] 

for light scattering uses a very narrow-banded exciting line. For 

comparison with that result we can assume in Eq. (16) a delta function 

form for S (w), 

S(w) = o(w - w') (17) 

centered at frequency w'. This yields a time-independent cross section 

since Eqs. (6) and (17) imply constant ls(t) 12
• If one now neglects 

the level shift operators r in Eq. (16) and uses the matrix elements 

of H. t given by Heitler ,22 then Eq. (16) reduces to Eq. (3). 
1n 
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Eq. (3) can also be derived from a second-order perturbation 

expansion of T in the equation for monochromatic excitation13 , 23 

(18) 

as has been done by Bandrauk. 24 

The level shift terms, r0 and r w"w , are generally small for 

off-resonance scattering. Near resonance, however, the imaginary 

part of r0 forms the damping term and must be included. It is 

generally introduced in an ad hoc fashion in theories of resonance 

scattering and line breadth, 25 but such a procedure may not adequately 

take into account the effects of detailed lineshape on the scattering 

cross section. The real part of r0 is also not small for a state inter­

acting with a bumpy molecular continuum. 5, 19, 26 

VII. CONCLUSION 

Inclusion of the two-photon states in the resonance profile 

theory shows that they always behave as a distant resonance, exhibiting 

no intrinsic time dependence of their own, but always building up and 

decaying with the light source. The two-photon states have been in­

cluded under the assumption that they do not interact with each other 

nor with the zero-photon state- -that is, that all these states behave 

as isolated resonances interacting only with the one-photon states of 

the decay photon continuum. For time-independent scattering from a 

monochromatic light source, the resonance profile theory yields both 

the resonance and antiresonance terms found in conventional second-
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order perturbation theory results. Eq. (16) is thus a generalization 

of previous theories of near-resonance, time-dependent light 

scattering to include the "antiresonance terms" which are very im­

portant off resonance. Therefore it can be used for time-dependent 

(or time-independent) light scattering regardless of whether the 

excitation is on, near, or far from resonance. 
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I. INTRODUCTION 

There has been a lot of interest lately, both experimentally and 

theoretically, in the excitation frequency dependence of resonant and 

near-resonant light scattering. 1 Most experimental papers2- 7 have 

tried to fit their excitation profiles with a few parameters to the theo­

ries of either Albrecht8, 9 or Peticolas et al. ,10 thereby neglecting the 

vibrational structure in the excited state. A few experimental excita­

tion profiles have been fitted to either a two-vibrational-level mode111 

or a displaced harmonic oscillator mode112 -14 to include this vibra­

tional structure. However, the interference effects between the reso­

nances have been blurred out in these papers due to the large widths 

assigned to the states. This was also true in the theoretical paper of 

Shorygin, 15 who used the displaced harmonic oscillator model but 

applied it to a model system where again the widths were too broad. 

The only papers to discuss interference effects between resonances 

have been ones which used models with only two states. 16- 18 

This paper combines the resolution of the two-state model with 

the on resonance interference effects due to many levels in the dis­

placed harmonic oscillator model and discusses Rayleigh and Raman 

scattering from a diatomic molecule. In contrast to the use of harmonic 

oscillator models in these previous papers, data for an actual molecule 

will be used as the basis of the discussion here. However, rotational 

levels will not be included. In addition, a formula for the scattering 

cross section other than that usually used by Raman spectroscopists, 

is shown to be more accurate if a truncated basis set is used. 
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The only other paper to carry out a detailed theoretical 

examination of resonance Raman scattering from a diatomic is the 

very recent paper by Rousseau and Williams. 19 However, they did 

not calculate excitation profiles but instead calculated what Raman 

spectra they should expect to see upon excitation into the dissociative 

continuum for I2 • 

The assumptions and simplifications used in this paper will 

be discussed in section II. In section III a comparison of our 

formalism and the usual perturbation formalism will be given. 

Sections IV and V will give the results, a discussion of the inter­

ference effects and the effect of relaxing some of the assumptions. 

IIo MODEL AND ASSUMPTIONS 

The model to be used in this paper is a generalization of the 

model used in our last paper, 20 which allows the inclusion of more 

than one excited level. The molecule will be assumed to have two 

electronic states, a ground and excited state, each having a full set of 

vibrational levels. Rotational levels will be neglected. Thus the model 

could apply to a dilute matrix of the molecule in a rare gas at low 

temperature. Alternatively, the rotational effects could be added in 

later, as has been done by Rousseau and Williams. 19 Each of the 

zero-photon excited state vibronic levels I ev' ;O), where the O stands 

for the vacuum level of the radiation field, will be allowed to interact 

with all states of the form I gv"; w" ~") , where gv" is the v" level of the 

ground electronic state and w" E" stands for a one-photon state having ....-. 

frequency w" and polarization vector E". In addition, the two-photon 
r... 
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excited state levels I ev'; w' E', w" E") will also be included and allowed .,.... .,.... 

to interact with the one-photon ground state levels having one of the 

same photons present. 

III. FORMALISM 

The initial state considered here is a = I g0; w' .f) , which 

assumes that the light source is a delta function in frequency. The 

complications arising from relaxing this restriction have been 

previously discussed. 20 The cross section for scattering from this 

state to a state b = I gv"; w" E") is given by20 .,.... 

e4 w" -----ti2 c4 w' 
ti 

OV" 0 E
1 

• E" m ' .,.... .,.... 

+ 6 ti 2 { ( gv'' Ip • E" I ev') ( ev'; 0 I G(ti w') I ev'; 0) ( ev' Ip· E' I g0) v' m .,.... .,.... .,.... .,.... 

+ ( gv" I p • 5-.' I ev' ) ( ev' ; w '~' , w "5-." I G (ti w') I ev' ; w '5..1 
, w" E") ( ev' I p • ~" I g0)} I 2 

.,.... .,.... 

(1) 

where n denotes a solid angle, pis the momentum operator and 
.,.... 

G (liw') is the Green's function operator given by (ti w' - H )-1
, where 

H is the total Hamiltonian of the system. The approximations in 

Eq. (1) are (1) the inclusion of only two-photon states having both 

the initial and final photons present, (2) the neglect of interactions 

amongst the excited state levels and (3) a neglect of interactions due 

to the A2 term in the photon-molecule interaction Hamiltonian except 

for the term which directly couples the initial and final states and leads 
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to the first term in Eq. (1 ). As mentioned in a previous paper, 20 

these assumptions are equivalent to those made in second-order 

perturbation theory. 

With the assumptions given above, the problem reduces to 

that of a set of isolated levels interacting separately with a series of 

continua (the J gv'' ; WE) continua). In a manner analogous to one state .,..._ 

interacting with several continua the matrix elements of the Green's 

function are then given by21 , 22 

(2a) 

(ev'·w'E' w"E" JG(tiw')Jev'·w'E' w"E·" ) 
' " ' "' ' "" ' J"'-

-1 =-------------- (2b) 

where E ev' is the zero-order energy of the J ev' ; 0) state 

00 

rv' (tiw') = J 
-00 

v'2 
Hint (E) p(E) dE 

tiw' - E 
(2c) 

. I 

and similarly for r. , , ,, (tiw') where HY t is the interaction matrix vw w m 
element of the J ev', 0 ) state with the continuum states having zero-

order energy E and p(E) is the density of these continuum states. 

For a large molecule one would have to include molecular continua 
. 23 24 due to other electronic states, as has been done prev10usly. ' 
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However, for a diatomic molecule, the only continua that need to be 

included are those of the one-photon ground-state levels. If one then 
v'2 

assumes that Hint (E) p(E) is independent of E, one gets 

r v' ( nw ') = -i a (3) 

where a is a positive constant. This last approximation thus results 

in a neglect of the real part of the level shift operator r and assumes 

that the imaginary part is a constant. r.v' , ,, will be neglected ,w ,w 
entirely since the denominator is so large already that it will not 

make a difference. 

With these last approximations the cross section from Eq. (1) 

reduces to the usual Kramers-Heisenberg formula 2°, 25 with a 

11damping11 coefficient inserted. 

e4 w" 
- 1i2 c4 w' 

1i s:. ' " -uno€•€ m v, .,... .,... 

~ 1i (gv'' I p • t" I ev' ) ( ev' I p • t' I gO) 
+Li-{ .,... .,... 

v' m2 nw' - (E , - E 0) + ia ev g 

If one now uses the well-known relationship 

p = ~ [rH-Hr] .,... 11i .,... .,... 

one gets 

(4) 

(5) 
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e4 w" = 
li2 c4 w' 

,::. I fl 

uv" O E • E ' .,.,_ .,.,_ 

(Eev' - Egv") (Eev' - Ego) { (gv"I ! • 5-" I ev')(ev' I! • 5-' I gO) 

Ii tiw' - (E I - E o) + ia ev g 

(6) 

The formula usually used by Raman spectroscopists1' 8 is 

(7) 

where the sum over a" is over a complete set of states (electronic 

and vibrational). Resonance Raman spectroscopists generally truncate 

the sum in Eq. (7) to include only one or two electronic states. l, 8 

Equation (7) can be derived from Eq. (6)26 if one extends the sum in 

Eq. (6) to a complete set of states, uses the commutation relations 

between r and p, and neglects a small term coming from the ia in the 
-" -" 

denominator. However, Eq. (7) cannot be as accurate as Eq. (6) if 

one does not use a complete set of states since its derivation depends 
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crucially on having a complete set. A comparison of the results 

obtained from Eq. (7) and Eq. (8) will be given in section IV. 

Since for a diatomic molecule the vibration is totally 

symmetric, one can make the approximation of Eq. (8b) 

(8b) 

where the first factor in Eq. (8b) is a Franck-Condon overlap and the 

second factor is the purely electronic dipole matrix element. This 

approximation leads to the terms generally referred to as the Albrecht 

A terms. 8 For a more accurate calculation the true dependence of 

the inner matrix element on the right-hand side of Eq. (Sa) (which is 

integrated only over electronic coordinates) as a function of inter­

nuclear distance over a wide range of internuclear distance would 

be given. This leads to the Albrecht B terms. 8 However, very few 

of these calculations have been done over a wide enough range of inter­

nuclear distance27 so the approximation of Eq. (8b) had to be made 

here. 

If one substitutes Eq. (8b) into Eq. (6) and assumes the 

wa vefunctions are real, one gets 
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s:. I If 

vv" of • f 

(9) 

IV. RESULTS 

Our calculations were performed for the diatomic molecule 

BaO using as the state e its A
1

"'i:, excited state. This molecule is one 

of a list of awkward choices of diatomic molecules having relatively 

discrete absorption bands in the visible region. Literature values for 

the constants we, wexe, we Ye and weze 28, 29 for this state and the 

ground state were inputted into the RKR procedure of Demtroder, 

McClintock and Zare30 which was used to calculate turning points for 

each vibrational leveL Wavefunctions for each level were then 

obtained by integrating the splined turning point data by the finite 

difference method. 31 The average value for the electronic transition 

moment, l(g Ir· E' I e) I 2, is one-third of R2 
, the value of the transi-,,__ ,,__ e 

tion moment in the molecular frame. This latter value was taken as 
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17 2 32 -1 28 29 lo 39 x 10- cm . The 0-0 energy was taken as 16,722.3 cm . ' 

For all the calculations the a 's for each state were assumed to 

be 10 cm -
1

• This was done for plotting convenience only; in actuality 

the lifetime widths in a solid would be much less than this and the 

linewidths would be governed by inhomogeneous broadening. Setting 

the widths equal to 10 cm -l affects only the peak heights on resonance 

and of course the state widths. It does not affect the interference 

effects that will be discussed later. 

Twenty upper vibrational levels were included in the v' sum. 

Although the energies and the Franck-Condon overlaps for the higher 

states will not be as accurate as the ones for the lower levels due to 

inaccuracies in the potential, truncating the sum at eleven or twelve 

states led to significant errors off resonance for the Raman overtones. 

Figure 1 shows the absorption cross section as a function of 

frequency in wavenumbers. This was calculated in two different ways. 

One way is from 17 

(10) 

where Im signifies the imaginary part, T =Hint+ Hint G Hint' Hint 

is the photon-molecule interaction, and Vis the volume of the system. 

Using the matrix elements of Hint 20, 33 and a20 one gets 

4rr e2 I ( I j ) 12 1 ~ (E ev' - E gO) 2 I (gO I ev') I 2 a 
a (w) = -- g r • E e - LJ 
abs c .,.._ .,.._ !i2w v' [tiw - (E ' - E o)] 2 + a2 

ev g 

(11) 
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Figure 1. The absorption cross section in cm2 is plotted on a log 

scale versus the exciting frequency in wavenumbers. 

The solid line is the calculation from Eq. (11) and the 

dashed line shows the calculation from Eq. (12) where 

it differs from the solid line. 
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The other formula for the absorption cross section is given by 

H 
. 34 arrIB 

ab (w) = 41re2 l(glr• ele)l2 w~ --------, 
a s c .,... .,... v' [ ( )] 2 2 ti.w - E , - E O + a 

(12) 

ev g 

where Harris' formula has been divided by two to give agreement 

with Eq. (11) for on resonance excitation with an isolated resonance. 

Since Harris derived his formula using the semiclassical 

Hint = - ~ • ~, where !!:. is the dipole moment and ~ is the electric 

field, rather than the quantum mechanical Hint' one expects Eq. (11) 

to be more accurate than Eq. (12). The semiclassical Hint cannot 

take spontaneous emission into account and thus cannot treat properly 

the loss of photons from a beam due to scattering processes. 

From Fig. 1, one can see that on resonance and between the 

resonances, the cross section calculated from Eq. (11) and that 

calculated from Eq. (12) are superposable. However, off-resonance 

the two formulae lead to different results -- Eq. (11) leads to a greater 

cross secti~n than Eq. (12) below resonance. 

The parallel polarized (e' • E" = 1) Rayleigh cross section is 
" "-

shown as a function of incoming photon frequency in Fig. 2. It was 

calculated from Eq. (9). Note that the cross section is essentially 

constant, only varying right near a resonance. This is due to the 

fact that the first term in Eq. (9), which does not vary with frequency, 

dominates except near a resonance. 
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Figure 2. The parallel polarized ( E' • E" = 1) Rayleigh cross section 
"' "' 

calculated from Eq. (9) is plotted on a log scale in units 

of cm2 versus the exciting frequency in wavenumbers. 
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The perpendicularly polarized ( E' • E" = 0) Rayleigh cross .,..._ .,.._ 

section calculated in three different ways is shown in Fig. 3. These 

calculations are from (1) Eq. (9), (2) Eq. (7), and (3) Eq. (9) without 

the antiresonance term (the second term in braces). On res,onance 

and between the resonances calculations (1) and (3) are almost identi­

cal, with calculation (3) differing only slightly from it (not enough to 

see in the figure). However, far off resonance (7000-8000 cm - 1
) the 

antiresonance terms account for nearly half of the perpendicularly 

polarized Rayleigh intensity. Also off resonance the calculated cross 

section using the normal w4 dependent formula [Eq. (7)] and the 

truncated bas is set leads to more than an order of magnitude error 

for excitations off resonance by more than 6000 cm -l. 

The excitation profile for the normal Raman process 

(v = 0 -- v = 1) calculated in the same three ways as the perpendicu­

larly polarized Rayleigh scattering is shown in Fig. 4. The three 

calculations lead to very different results off resonance--Eq. (7) is 

unable to predict the off-resonance interference effect, which will be 

discussed in the next section, and omitting the antiresonance terms 

shifts its position by over 1000 cm - 1
• Note that the Raman cross 

section even 8000 cm-
1 

off resonance is only three orders of magnitude 

less intense than the perpendicularly polarized Rayleigh intensity. 

It is also important to stress35 again that one can get Raman intensity 

reasonably far off resonance even with the approximation made in 

Eq. (8b). Thus the Albrecht A term can lead to appreciable Raman 

intensity off resonance. 



Figure 3. 
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The perpendicularly polarized ( E' • E" = 0) Rayleigh cross .,..._ .,... 

section calculated in three ways is plotted on a log scale 

in units of cm2 versus the exciting frequency in wave­

numbers. The solid line is the calculation using Eq. (9), 

the dashed line is the calculation from Eq. (7) and the 

dotted line is the calculation from Eq. (9) without the 

antiresonance term (the second term in braces). 
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Figure 4. The calculated Raman cross section in cm
2 

is plotted on a 

log scale versus the exciting frequency in wave numbers. 

The solid line is the calculation using Eq. (9), the dashed 

line is the calculation from Eq. (7) and the dotted line is 

the calculation from Eq. (9) without the antiresonance 

term (the second term in braces). 
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Excitation profiles for the first through fourth overtones of 

the Raman spectrum are shown in Figs. 5-8. Note that the cross 

sections for the Raman overtones 8000 cm -i off resonance are more 

than two orders of magnitude lower than the Raman fundamental. This 

is in agreement with off resonance experiments where Raman overtones 

are not observed. 19 For the second, third and fourth overtones, the 

antiresonance terms account for nearly half the cross section 8000 cm-1 

off resonance and the calculation using Eq. (7) differs from that using 

Eqo (9) by more than an order of magnitude for excitations that far 

off resonance. For the first Raman overtone the errors are small 

due to a mutual cancellation in each of the sum terms. 

V. DISCUSSION 

There are three kinds of interferences shown in Figs. 2-7. 

The first kind is the destructive interference between each of the 

resonances in Fig. 3. This kind of interference is also shown between 

most of the resonances in Figs. 4-8. This vibrational level inter­

ference is caused by a partial cancellation of the two largest terms 

(the ones coming from the two resonances on each side) due to their 

opposite signs between the resonances. These destructive inter­

ferences occur only between resonances whose products of Franck­

Condon overlaps in Eq. (9) have the same sign. If these overlaps 

have opposite signs one gets constructive interference between them 

as, for example, between the fifth and sixth resonances in Fig. 4, 

and between the second and third and between the sixth and seventh 

resonances in Fig. 6. These inter fe r ence effects have been discussed 



110 

Figure 5. The cross section for the first overtone of Raman in cm2 

is plotted on a log scale versus the exciting frequency in 

wave numbers. The solid line is the calculation using 

Eq. (9), the dashed line is the calculation from Eq. (7) 

and the dotted line is the calculation from Eq. (9) without 

the antiresonance term (the second term in braces) . 
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Figure 6. The cross section for the second overtone of Raman in cm2 

is plotted on a log scale versus the exciting frequency in 

wavenumbers. The solid line is the calculation using 

Eq. (9), the dashed line is the calculation from Eq. (7) 

and the dotted line is the calculation from Eq. (9) without 

the antiresonance term (the second term in braces). 
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Figure 7. The cross section for the third overtone of Raman in cm2 

is plotted on a log scale versus the exciting frequency in 

wavenumbers. The solid line is the calculation using 

Eq. (9), the dashed line is the calculation from Eq. (7) 

and the dotted line is the calculation from Eq. (9) without 

the antiresonance term (the second term in braces). 



~ 
\ 

115 

\· . 
\ ·. 

\ •• .. 
\ •• ... 

\ 

\: 
:"\ 
: \ 

... \ 
: \ 
: \ 
; \. 

: ' • ' : ...... ..._ 

I 
I 

/ 

--:_..., 
---

0 
0 
0 
r0 
N 

0 
0 
0 
CX) 

0 
0 
0 
r0 

0 
0 LO-----C\Jf'-.......____(j)._____._ __ r0.____LO......____f'-."--"---m......___...____.____r0......_____.LO 0 

C\J C\J r<) r<) r<) r<) r<) ~ ~ ~(X) 

o b b b b b o o b o b 
(2~~) 3N01~3AO N~~~~ 

O~IHl .:10 NOl1~3S sso~~ 

--
I 

~ 
0 --
>-
0 
z 
w 
:::> 
0 w 
0:::: 
LL 

(9 

z -
t-
0 
X 
w 



116 

Figure 8. The cross section for the fourth overtone of Raman in cm2 

is plotted on a log scale versus the exciting frequency in 

wavenumbers. The solid line is the calculation using 

Eq. (9), the dashed line is the calculation from Eq. (7) 

and the dotted line is the calculation from Eq. (9) without 

the antiresonance term (the second term in braces). 
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in the two-state model in references 16 and 18. 

The second type of interference effect is on resonance 

resulting in a peak that is not nearly as high as the surrounding ones, 

as for instance in Fig. 4 at the sixth resonance. This is caused by 

the small Franck-Condon overlaps (ev' I gv") in Eq. (9) for certain 

vibrational levels. 12 , 15 

The third type of interference is the off resonance interference, 

as in Figs. 4 and 7. This interference effect is caused by a near 

complete cancellation of the summation. Due to the near equal 

participation of all of the terms, this type of interference effect is 

extremely sensitive to the number of terms included in the summation. 

Even if a complete set of states were included in Eq. (9) or Eq. (7) 

(which would then be equivalent to each other), such a cancellation 

could occur. The exact position of such an interference effect is 

impossible to predict from such a limited calculation. 

The resonances in the scattering cross sections sometimes 

occur a few wavenumbers from the position of the excited state level, 

but still within the linewidth (2a) of the level. This happens because 

exactly on the excited state position the real part of the dominant term 

goes to zero and so the cross terms in the absolute value squared are 

small since the other terms have much larger real parts than 

imaginary parts. Thus, even within a few wavenumbers of resonance, 

the cross terms still make a large contribution, not individually, but 

because of their number. This effect was also noticed by 
16 

O. So Mortensen for a two-state model. 



119 

Including other electronic states in the sums in Eqo (9) and 

Eq. (7) would cause a general increase in the background level, 

especially since the X1
~ - A 

1
~ transition is fairly weak. This would 

cause the interference effects between the levels and possibly the 

resonances themselves not to be as noticeable. Off resonance it 

would still be possible to get some interference effects in fortuitous 

cases. 

Throughout this paper it has been assumed that all the mole­

cules are originally in their lowest vibrational level which implies a 

low temperature. At higher temperature one would have more 

excitation profiles, for example, for the Raman process from v = 1 

to v = 2, and also the anti-Stokes line, from v = 1 to v = 0. 

However, everything mentioned above would still hold. 

The inclusion of rotations would make the actual Raman 

spectra more complicated and one would have to add up many nearly 

degenerate contributions to Raman intensity having a particular out­

going photon. 
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VI. CONCLUSION 

This paper has discussed Raman and Rayleigh scattering from 

a diatomic molecule. Several interference effects occur even in this 

simple case. The formulae for the scattering cross sections from 

our previous paper20 reduce to the Kramers-Heisenberg second­

order perturbation theory results with a damping term included. If 

resonances having shapes other than the simple Lorentzians assumed 

here occur, one would have to go back to Eq. (1) and put in a correct 

r. The usual formula used by most resonance Raman spectroscopists 

leads to errors of several orders of magnitude, more than 6000 cm -i 

off resonance for Bao, due to the truncated basis set. The anti­

resonance terms also contribute nearly 50% of the intensity that far 

off resonance. 
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I. INTRODUCTION 

Recently Langhoff and Robinson1 used a trial-and-error method 

to obtain a zero-order density function for the origin region of naphtha­

lene's second excited singlet state. Much of the structure in the zero­

order density function could be assigned to vibrational levels of the 

lowest excited singlet state of naphthalene. There were, however, 

several problems in the procedure .they used to get the zero-order 

density function. First, their procedure was a tedious trial-and-error 

one where they first guessed a density function, then computed an 

absorption spectrum from it. They then compared this absorption spec­

trum to the experimental one given by Wessel, 2 readjusted the density 

function and so forth until they obtained reasonable agreement between 

the observed spectrum and the calculated one (40 or more iterations). 

Second, there was no systematic way to change the peak heights, widths 

and interactions to converge on a solution. Finally, nothing in their pro­

cedure showed that the zero-order density function they had found was unique . 

More recently, Hong3 found a systematic way of finding the 

zero-order density function. However, this method is as time­

consuming as Langhoff and Robinson's trial-and-error procedure. 

A new, very simple method of calculating the zero-order 

density function directly from the absorption spectrum has been 

discovered which shortens both Hong's and Langhoff and Robinson's 

procedure. The method also demonstrates that the density function 

is unique. The purpose of this paper is to describe this method. 

The results for the density function of naphthalene in the origin region 
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of its second excited singlet state will be given and shown to be in 

close agreement with those of Langhoff and Robinson. 1 

II. METHOD FOR OBTAINING THE DENSITY FUNCTION 

The model that Langhoff and Robinson1' 4 used, and the one 

that will be used here, consists of a primary state p which carries • 

all the oscillator strength and which interacts with a continuum of 

states K carrying no oscillator strength.* The above states are eigen­

states of some zero-order Hamiltonian ¾ having zero-order eigen­

values Ep and EK, respectively. The total Hamiltonian ~ is given 

by 

~ = ~o + V 

where V contains the interactions between the zero-order states. 

It is furthermore assumed that 

(fK, real). 

The Green's function at energy A is defined as 

(1) 

(2) 

(3) 

For this model, the real and imaginary parts of the matrix element 

Gpp have been given by Zumino5 as • 

*Hong3 used a multiple resonance model so his results are not 

directly comparable. 
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ReGPP(x) = 
A - Ep - Rer (X) 

(4a) 
[:.\ - Ep - Rer(:.\)]

2 
+ [1rr (:.\)p{:.\)] 2 

ImGPP(:.\) 
-,r f 2 (X) p (:.\) 

{4b) = 
[x - EP - Rer (x) J2 + [1r f (:.\) P (:.\)] 2 

00 

r (:.\) = f 
f (EK) p ~EK) dEK 

• (4c) 
-oo A - EK 

where p(EK) is the density of K states at energy EK. Thus the zero­

order weighted density of states is obtained by simply combining eqs. 

(4a) and (4b), 

(5) 

Equation (5) shows that the density function for a given Gpp is unique. 

The absorption cross section a (w) at frequency w for this 

model is given by6 

a(w) = - 4
1TW I ( 0 Iµ. e Ip) I 2 ImG 

C pp 
(6) 

where (ol µ•el p) is the transition dipole matrix element from the 

ground state to the p state and c is the speed of lighL There exists a 

dispersion relationship between the real and imaginary parts of the 

matrix elements of G(x)7 
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(7) 

where P signifies the principal value. 

Thus the procedure to calculate the zero-order density function 

from the absorption cross section has just three step.s. First, obtain 

ImGPP from a (w) using eq. (6). Second, calculate ReGPP from eq. (7). 

Finally calculate rr f2 (A) p (:X) from eq. (5). Since we care only about 

the relative value of the density function as a function of energy and we 

don't know the value of I (0 Iµ • e Ip) I 
2
, we can neglect the constants 

in eq. (6) and obtain ImGpp(A) by dividing the absorption cross section 

by w. One can then calculate Rer from eq. (4c) and ep from 

(8) 

keeping in mind that the whole right side of eq. (8) has been multiplied 

by (
4t l<olµ. elp)l 2

)-
1 from eq. (6). Thus ratios of (A - Ep) at 

different A's yield Ep and l<o Iµ. el p) 1
2

• Using this method the 

results for naphthalene's second excited singlet state are given in 

the next sectiono 
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III. RESULTS 

The model described in the last section applies very well to 

naphthalene for a short axis polarized absorption spectrum in the 

origin region of its second excited singlet state ( 1B2u). l, 2 For 

this polarization only the origin of 1B2u has any oscillator strength 

in this region. The states of the lower excited singlet ( 1B3u) having 

one quantum of a b1g vibration plus quanta of ag vibrations borrow 

oscillator strength from the 1 B2u state. Note in general that the 

results of Langhoff and Robinson1 have conclusively shown that 

symmetry selection rules apply to mixing of vibronic states, even in 

large molecules in a crystalline environment. Thus the zero-order 

weighted density function should have peaks where these "allowed" 

states occur. Other peaks in the density function could correspond to 
1 

phonon additions of the proper symmetry to the B~u state. 

The zero-order density function for the S2 origin region of 

naphthalene-h8 in p-xylene is given in fig. 1. Also given are 

Langhoff and Robinson's density function1 and Wessel 's absorption 

spectrum 2 for the same region. * Our density function was calculated 

from Wessel 's spectrum after subtracting out his linearly increasing 

baseline (see fig , la). If one instead assumes a flat baseline, the 

density function peak positions do not change by more than 1 cm -i, 

*Hong's density function3 was not reproduced since he did not try 

to maximize his fit of the absorption spectrum but only used Langhoff 

and Robinson's parameters. 
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Figure 1. (a) The observed absorption spectrum from Wessel 's 

thesis2 plotted versus the energy in cm-1 above the first 

singlet excited state. The dashed line is his linearly 

increasing baseline. (b) Langhoff and Robinson's 

weighted density function. 1 (c) Our weighted density 

function calculated from eqs. (5), (6), and (7) and 

Wessel 's spectrum. The y-axis is scaled in arbitrary 

units for all three curves. 
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but the relative peak heights do change. It is apparent from fig. 1 

that, as noticed by Langhoff and Robinson, 1 the peaks in the density 

function in the perturbed region correspond to valleys in the absorp­

tion spectrum and vice versa. 

Table 1 gives the values of the frequencies of the b1g and ag 

modes of naphthalene-h8 in p-xylene. Slight adjustments were made 

in the frequencies from the values given in ref. (1) in order to fit the 

data better. Table 2 lists the values and assignments (if possible) of 

most peaks and shoulders in the density function and compares them 

to the calculated values using Table 1 and to Langhoff and Robinson's 

peak values. It is apparent from Table 2 that the results of the 

method described here are in reasonable agreement with the Langhoff 

and Robinson results. Peaks and shoulders were assigned if they 

agreed to within± 3 cm -i with the calculated values. Fifty-nine 

percent of the peaks and shoulders could be assigned. More impor­

tantly, out of the possible 45 peaks (with one quantum of a b1g mode 

plus quanta of ag modes) that could appear in this region, 36 occurred . 

An additional three of the possible peaks would have appeared within 

eight cm -i of the edges, where, as discussed below, our density 

function is less accurate. Most of the other possible peak positions fall 

near visible asymmetries in the density function peaks. These were not 

assigned as shoulders due to the imprecision involved in establishing 

the position of the underlying peak. The 
1
B2u origin (Ep) was calculated 

from eq. (8) to be at 2430 cm-1
, while Langhoff and Robinson put it at 

2433 cm-1
• I {O Iii· eip) j

2 
could not be calculated since Wessel did not 

give a(w) in any absolute units. 
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Table 1 

Frequencies of the ag and b1g modes of the lowest excited singlet state 

of naphthalene-he in p-xylene 

1 

2 

3 

4 

5 

6 

7 

8 

9 

ag (cm-
1
) 

1495 (0) 

1424 (+2) 

1397 (0) 

1142 (-2) 

996 (-1) 

707 (0) 

502 (0) 

1624 (0) 

1236 (+1) 

1053 (+1) 

903 (0) 

424 (0) 

Numbers in parentheses are our values minus the values given by (1). 
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Table 2 

Positions and assignments of peaks in our zero-order density function 

for naphthalene-h8 in p-xylene in the origin region of its second singlet 

excited state 

Position (a) 

2135 

2138 } 
2144 (sh) 

2151 

2162 (br) 

2178 

2191 

2198 

2208 (w, br) 

2218 (w) 

2223 

2231 (sh) 

2240 

2252 

2260 

2270 

2286 

2297 l 
2303 (sh) s 

2318 

Assignment(b) 

8, 8 + 2 X 9 

6, 6 

5,7 

5, 2X 9 

6, 8 + 9 

8, 6 + 8 

7, 5 

7, 2X8 

Calculatei c) 

freq. (cm-1) 

2135 

2195 

2232 

2240 

2261 

2273 

2300 

2317 

Langhoff-Robinson (d) 

1 peak 

2194 

2222 

2262 

2273 

2301 
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Table 2 (continued) 

Position(a) 
Assignment (b) Calculated ( c) Langhoff-Robinson(d) 

b1g,ag freq. (cm -i) peak1 

2342 8, 2X8+9 2340 2343 

2347 (sh) 

2351 (w) 8, 4+9 2350 { 2353 

2355 (sh) 

2362 2364 

2370 - .- 2372 

2378 (sh) } 

2381 5, 6 2378 2379 

2390 2389 

2396 7, 3 2398 

J 
2399 

2404 7, 7 + 9 2401 

2409 7, 3 + 9 2409 2407 

2414 8, 2X 7 2416 2415 

2431 8, 4X 9 2432 2434 

2442 5, 8+9 2445 2444 

2449 6, 5 2450 2449 

2468 6, 2x 8 2467 2464 

2477 6, 4 2477 2477 

2488 2486 

2492 

2500 

2508 
{ 

2505 

2511 
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Table 2 ( continued) 

Position(a) 
Assignment (b) Calculated ( c) Langhoff-Robinson(d) 

b1g , ag freq. (cm - 1
) peak1 

2516 (sh) 2519 

2528 8, 5 + 8 2528 2528 

2538 2538 

2543 (sh) 8, 3x8 2545 2545 

2545 7, 6+9 2547 

6, 3 2548 

2548 

6 7+9 2551 2552 

2557 6 3X 9 2559 2560 

2564 8, 6+7 2562 2565 

2572 8, 6+2X9 2570 2571 

2578 2580 

2585 2587 

2595 (sh) 2597 

2605 7, 7+8 2606 2608 

2621 (w) 3, 7 2620 2619 

2629-31 (br) 8, 3+8 2626 } 2629 

3 , 2x9 2628 

8, 7+8+9 2629 } 2634 

5, 5 2633 

2640 (sh, br) 8, 8+3x 9 2637 2640 

a)In cm -i above the origin of the first excited singlet state (1B3u). 

sh = shoulder, br = broad, w = weak. 
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Table 2 (foonotes continued) 

b) Assigned within ± 3 cm -l, 59% of our peaks could be assigned . 

c)Calculated from table 1. 

d)Peaks given if assigned same way as our peak; if not assigned then 

if within ± 3 cm -l of ours. 
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Errors in the results come mainly from two sources. First, 

the spectrum of Wessel 's 2 used in eq. (6) was a copy from his 

thesis o The pen lines were 1-2 cm-1 wide O Thus digitization of this 
-1 

spectrum was accurate to only 2 cm or so. Second, instead of 

integrating from - oo to + 00 in eq. (7), integration was only over the 

region of the absorption spectrum. The true spectrum could not be 

used beyond this region since ag additions to the S2 origin start 

absorbing and the model breaks down. It was felt unknown errors 

would be introduced by trying to extrapolate the spectrum for the 

model as a Gaussian or Lorentzian outside this regiono Integration 

only over a finite interval leads to an underestimate of the density 

function near the end points but gives very good results away from the 

edges. This was ascertained by applying the method to a Lorentzian 

ImGPP which should lead to a completely constant density function. 

IV. CONCLUSION 

A procedure for obtaining the zero-order density function 

directly from an absorption spectrum has been found. This method 

should greatly aid experimentalists in untangling complicated vibronic 

spectra and should further help to simplify and illuminate the relation­

ship between spectral shape and radiationless transitions in complex 

polyatomic molecules . 
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MATHEMATICAL APPENDICES 

The key formulae and equations needed in sections A through E 

are (1) the formula for the cross section for a transition in terms of 

the T matrix, which is used in sections C and D, (2) the formula for 

the absorption cross section in terms of the T matrix, which is used 

in section D, (3) the dispersion relation between the real and imaginary 

parts of G, used in section E, (4) Dyson's equation, which is used to 

derive the matrix elements of G in all five sections, and (5) the 

formula for the probability of being in the excited state as a function 

of time when a light source having width in time and frequency is used 

to excite the system, which is used in sections A and B. The proofs 

of these formulae will be given in appendices one through five 

respectively. 
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APPENDIX 1 (condensed from reference 1) 

Define Sfi, which is the transition amplitude for the system which 

is in state i at t = - 00 to make a transition to state f at t = oo, as 

(1-1) 

where l/1: satisfy the Lippmann-Schwinger equations 

(1-2) 

The total Hamiltonian is 

(1-3) 

and <I> a and l/J: are eigenfunctions respectively of H0 and H with the 

same eigenvalue Ea. That is, 

(1-4) 

and 

(l-5) 

The Lippmann-Schwinger equations can be proven using Eqs. (l-3) to 

(1-5). l/1: can also be shown to satisfy 

l/1: = <I> a + lim 
1 

Hint <I> a • 
1J - 0+ Ea - H ± i17 

(l-6) 

The T matrix or trans it ion matrix is defined by 

(l-7) 
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Now if one defines 

T/2 i(E.-Ef)t/n 
= -T fi i/ti f e 

1 
dt 

-T/2 

one can show that 

using 

and 

1r o (x) = lim 
sinxT 

X 

o (ax) = a -l o (x) . 

(1-8) 

(1-9) 

(1-10) 

(1-11) 

The trans it ion amplitude per unit time (W f- i) can be defined as 

lsiil 2 

Wf . = lim 
- -1 T 

Then one can show 

wf . = 211' I Tf. I 2 
o (E. - Ef) 

-1 ti 1 1 

using 

1r o (x) = lim 
T -oo 

The cross section is given by 

sin2 TX 

T X2 

(1-12) 

(1-13) 

(1-14) 
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wf • -1 (1-15) 
F 

where F is the flux in units of particles (or photons) per cross sectional 

area per unit time. For a one-photon wavepacket this flux is c/V, 

where c is the speed of light and Vis the volume of the system. 

Now if one uses Eqs. (1-1) and (1-6) one can show 

(1-16) 

If one then uses Eqo (1-2) and the further definition 

1T o (x) = lim 77 
,,,- 0 rf+"j2 

(1-17) 

one gets 

(1-18) 

Comparing this formula with Eq. (1-7) shows 

(1-19) 

Using Eq. (1-6) again one gets 

T = Hint+ Hint G Hint (1-20) 

where the Green's function G is defined as 

~1 
G = (E - H + i17) , (1-21) 
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and it is understood that T must be evaluated between eigenstates of 

H
0 

and that the E in Eq. (1-21) is the zero-order energy of the eigen­

state on which it acts. 

REFERENCES 

1. P. Roman, Advanced Quantum Theory (Addison-Wesley, Reading, 

Mass., 1965) pp. 282-302. 
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APPENDIX 2 (condensed from reference 1) 

The absorption cross section from a state a is given by 

(2-1) 

Using Eqs. (1-13) and (1-15) one gets 

(2-2) 

Since the states tf;; form an orthonormal set (this can be proven 

using Eq. (1-2) and the orthonormality of the states 4.>a) one can show 

that 

where s!b is the Hermitian conjugate of Sab' that is 

Equation (2-3) proves that S is unitary o Now one can show using 

Eqs o (2-3) and (1-7) 

(2-3) 

(2-4) 

i 6 (Ea - Eb)(Tab - T!b) = 27T f o(Ea - EC) o(Ec - Eb) Tac T~b. 

(2-5) 

By the properties of the delta function this is equivalent to 

io (Ea - Eb)(Tab- T!b) = 27ro (Ea - Eb)I) o(Ec - Eb) Tac T~b. 
C 

(2-6) 
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canceling the equivalent delta functions on both sides and letting a = b, 

one gets 

(2-7) 

where Im means the imaginary part. Therefore from Eq. (2-2) 

a - 2V Im T 0 abs = cfi aa • (2-8) 

REFERENCE 

1. P. Roman, Advanced Quantum Theory (Addison-Wesley, Reading, 

Mass., 1965) pp. 334-336. 
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APPENDIX 3 (basic steps taken from reference 1) 

From the well-known formula 1, 2 

1 

w±h7 
= P _!_ =F= bro (w) 

w 
(3-1) 

where P stands for the principal value, T/ is a small positive number 

and the limit T/ - 0 is understood, one can show 

00 

if> G(w'?d~' = p f 
W- W - lTJ - oo 

dw' G(w') + i7r G(w) , 
w -w' 

(3-2) 

where G(w) is defined by Eq. (1-21). In Eq. (3-2) the Cauchy integral 

goes along the real axis and closes in the upper half plane. However 

by Cauchy's theorem this contour integral is zero since the integrand 

has no poles in the upper half plane. Therefore 

00 

brRe G(w) - 1r Im G(w) = -P f 
- 00 

00 

dw' Re ~(w') _ i P J dw' Im G(w') 
W - w' w-w -00 

(3-3) 

where Re and Im stand for the real and imaginary parts . Equating 

imaginary parts of Eq. (3-3) one gets 

00 

ReG(w) = __!:_ J 
1T - 00 

dw' Im G(w') 
w' - w 

(3 -4) 



149 

REFERENCES 

1. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle 

Systems (McGraw-Hill, New York, 1971) p. 79. 

2. P. Roman, Advanced Quantum Theory (Addison-Wesley, Reading, 

Mass., 1965) pp. 716-719. 



150 

APPENDIX 4 

From the definition of H (1-3), one can write 

(4-1) 

Multiplying on the left by (A - H0 + h7)-
1 = G0 , one gets 

(4-2) 

Now multiplying on the right by (A - H + i77r
1 = G, and rearranging 

one gets Dyson 's equation 

(4-3) 
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APPENDIX 5 (from references 1, 2 and 3) 

The time evolution operator in the interaction representation is 

. b 1, 2 given y 

, i/n H0t -i /Ii H (t-t') -i/li H
0
t' 

U (t, t ) = e e e • (5-1) 

One can define2 

0 ' 
U(t,- 00 )= lim+ € f eEt U(t,t')dt'. 

E-0 -oo 

(5-2) 

Putting (5-1) into (5-2) and using (1-4), one gets 

( ) I ) 
i/tiHot -i/liHt 1· Jo Et' i/nHt' -i/nEat' , I ) 

U t, -oo q, = e e rm E e e e dt q,a 
a E-o+ 

-00 

(5-3) 

Now, performing the integral, Eq. (5-3) becomes 

(5-4) 

where 77 = ti E • Rearranging this equation one gets 

Now if one uses Eqs. (1-3) and (1-4), Eq. (5-5) becomes 

But from Eq. (1-6) 
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[ 1 + Hint . ] I <I> ) = I i/1 + ) 
Ea -H+117 a a 

(5-7) 

so 

I i/nH t -i/tiE t . 1 
U(t,-oo) <I> ) = e O e a [1+ hm . HID. t]l<I>a ) . 

a 17 _ o+ Ea - H + 117 

(5-8) 

This is essentially the equation given in reference 1. 

If the initial state at t = -oo is given by a one-photon wavepacket 

with amplitude S(w) at frequency w and the molecule in its ground state 

(gO), then 

(5-9) 

So the wavefunction of this system at time t is 

i/1 (t) = u (t , - oo) I <I> a > = 

" i/nH t f - iwt I I . I I = ~ e O dwe S(w) ( gO,w)+ G j)(j Hint gO,w)) 
J 

(5-10) 

where the sum over j is over a complete set of states. For the model 

used in section A of this thesis, only the state p has oscillator 

strength. So the probability of being in state Ip, 0), where O signifies 

the vacuum state of the field, is 

00 . 

l<P,OliJ;(t))l
2 =If dwe-iwtS(w)GPP(w)(p,ol~ntlgo,w)l

2
• 

-00 

(5-11) 

Using the definition 

00 

S (w) = f eiwt' S (t') dt' (5-12) 
-00 
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Eq. (5-11) becomes 

(5-13) 

But since the poles of Gpp(w) are only in the lower half plane the 

w integral is zero unless t > t'. Therefore 

l<P,Oltt;(t))l 2 = I J dt'S(t') f" dwe-iw(t-t')GPP(w)(p,OIHintlgO,w)l
2

• 

-00 -00 

(5-14) 

This equation is exactly equal to Eq. (7) of section A except for 

factors of 2rr and the presence of the Hint matrix elemenL If this 

matrix element does not depend on w (as is usually assumed1), then 

the time-dependences from the two equations are equal. 
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PROPOSITIONS 
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MOLECULAR DYNAMICS STUDY OF THE INFINITE 

DILUTION CONDUCTANCE OF AN ION IN WATER 
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There is as of now no accurate theory predicting the infinite 

dilution conductances of small ions in water. l, 2 The best attempt so 

far is Zwanzig's3 theory of dielectric friction which seems to show the 

right trends but gives conductances that are too low. One effect which 

has not yet been considered1' 2' 4 is the effect of dielectric saturation 

on the force of the ion, but no one has been able to say what the true 

force should be. The above theories all use a continuum or hydro­

dynamic approach. 

On the other hand, various groups have done molecular dynamics 

studies on pure water, 5- 7 on water with an ion present8 and on a dia­

tomic polar liquid with an ion present. 9 In these studies, various 

potentials for the interactions between two water molecules and 

between a water molecule (or other polar molecule) and an ion have 

been used. The Ben-Naim-Stillinger10 potential seems to give fairly 

accurate diffusion constants and other properties for water, which 

implies that the potential is reasonably good. 

It is proposed therefore to use molecular dynamics and the Ben­

Naim-Stillinger10 model for water to study the conductances of ions in 

water at infinite dilution. In particular one would hope to gain insight 

into the environment of the ion and the real force acting on it, as well 

as the effects of the ion's charge and size. 

Most theories on ionic conductances at infinite dilution start with 

Stokes ,ll law for the force on a spherical particle moving through a 

viscous medium 

(1) 
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where F is the viscous drag force on the particle, rJ is the viscosity 

coefficient, v is the velocity of the particle and a is its radius. One 

assumption that Stokes used in deriving Eq. (1) was that the particle 

was much larger than the molecules of the medium and hence there 

was no relative motion at the surface of the particle with respect to the 

medium (a ''stick" boundary condition). Clearly this assumption is not 

valid for the motion of an ion in water. Basset12 recomputed Stokes' 

law for a ''slip" boundary condition. For total slip at the surface of 

the particle the "61r" in Eq. (1) would be changed to a "4 7T ". 

Boyd13 and Zwanzig3, 14 derived the additional force on the ion 

due to dielectric friction frorp. the rotating dipoles in the vicinity of the 

ion. Zwanzig 1s 3 final result was 

F = "41r" TJ va + (B/a3) v (2) 

where 

(3) 

for the slip boundary condition where E 0 is the static dielectric 

constant of the medium, E_00 is the high frequency dielectric constant , 

Ze is the charge on the ion, and T is the dielectric relaxation time. 

The 41r is in quotation marks because it could be as high as 6rr 

depending on the slip at the surface of the ion. 

Now the equivalent conductance is defined15 to be 

(4) 

~ where I is the current of ions, f. is the length of the cell, V is the 
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volume per equivalent of charge of the ion, A er is the difference in 

electric potential between the terminals and A is the cross-sectional 

area of the plates. Now 

~ A£= V (5) 

if the cell contains one equivalent of the ion. Also 

-I= :/v/£ (6) 

-where ~ is the Faraday (the charge on a mole of electrons). Putting 

Eqs. (5) and (6) into Eq. (4) one gets 

(7) 

But the force on the ion at infinite dilution is traditionally given as 

Ze a<P/ f. At equilibrium this force must be equal to the viscous drag 

as given by Eq. (2) giving 

-Ze a<P/ f_ = Ze Jv/ A0 = "%" 7Jva + (B/a3
) v (8) 

where A0 is the equivalent conductance at infinite dilution. Finally 

solving for A0 one gets 

-A0 = Ze '7/ ("%" 7Ja + B/a3
). (9) 

If one uses Zwanzig's3 value for Band Basset 1s 12 "41T" slip factor the 

maximum conductance predicted by Eq. (9) is still only 46 cm
2
/ohm­

equivalent for Z = 1. For comparison Table 1 gives the crystal radii, 

experimental A0 's, computed A0 's from Eq. (9) and the computed A0 's 

for B = 0 Gust Stokes' law). Figure 1 plots A0 versus ion size for the 
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Table 1 

a (in A) A0 (ohm 
-1 

cm2/equivalent) at 25 ° C Ion 

crysta116 experimental 17 
from (9) Z . 3 wanz1g B=0 

Li+ 0.60 38. 6 3.6 227 

Na+ 0.95 5001 13 144 

Ag+ L26 61.9 25 108 

K+ 1. 33 7305 28 103 

Rb+ 1. 48 77.8 34 93 

cs+ 1. 69 7702 40 81 

F - 1.36 5504 29 101 

Cl 1. 81 76.4 43 76 

Br 1095 78.1 44 70 

I 2.16 76.8 46 63 

Mg+2 0.65 53.0 2.1 420 

ea+2 0.99 59.5 7.5 276 

Sr+2 1013 59.4 11 243 

Ba+2 1.35 63.6 18 203 
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Figure 1. The infinite dilution conductances of ions in ohm -i 

cm2 / equivalent are plotted as a function of ion crystal 

radius in A. The crosses and circles are the experimental 

points for Z = 1 and Z = -1, respectively. The dotted line 

is the calculation from Eq. (9) with B = 0 and Z = 1. The 

full line is the calculation from Eq. (9) with B = 8. 43 3 

and Z = 1. All values are for a tern perature of 2 5 ° C. 
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experimental values, for Eq. (9) with Zwanzig's3 value for Band for 

B = O. Clearly the B = 0 curve shows the wrong trend for small ions-­

A0 decreasing with increasing ion size. The curve for Eq. (9) with 

Zwanzig 's 3 value for B shows the right trend but the values are all too 

low. 

One explanation for the discrepancies is that the moving units 

are not the bare ions, but rather hydrated ions and are therefore 

larger, at least for the small positive ions. 18 This would tend to 

increase the agreement between the calculated and experimental 

values for both the B = 0 and Zwanzig 's 3 B value curves for the small 

positive ions. However for the large negative ions (Br- and C) to get 

agreement with the B = 0 curve, a smaller radius than the actual 

crystal radius would be needed. Also the Zwanzig3 B value curve 

never gets above 46 cm2/ohm-equivalent, so no size change would help 

for these larger ions. 

Another reason for the discrepancies in Fig. 1 is that the field 

on the ion is not the average potential gradient, but rather is greater. 

This is due to the decrease in the dielectric constant in the vicinity of 

the ion caused by the field of the ion. l, 2' 4 This would have the effect 

of increasing the left and center parts of Eq. (8) and thus increasing 

the A0 's calculated by Eq. (9) . 

One possible way to determine the field on the ion and the size 

of the moving unit is to use molecular dynamics . Molecular dynamics 

is a method of simulating a molecular system. One assumes a poten­

tial or force between particles , gives oneself an initial condition for 

the positions and velocities of the particles and then uses the force or 
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potential to determine the motions of the particles with time. Adjust­

ments may have to be made to get the system to the correct tempera­

ture if the initial condition did not do this. 5, 6, 8 various properties of 

the system can be calculated by molecular dynamics. These include 

pair correlation functions, average interaction energies and diffusion 

coefficients. 5- 9 These can then be compared to experimentally deter­

mined values to give a check on the assumed force or potential. 

Rahman and Stillinger5' 6 have done this for pure liquid water 

using the effective potential given by Ben-Nairn and Stillinger10 and 

have gotten reasonably good agreement for various properties. Thus 

the effective potential Rahman and Stillinger5 ' 6 used gives a reason­

able description of pure liquid water and possibly will give a good 

description of the forces between two water molecules even in a 

solution with other particles. 

The Ben-Naim-Stillinger10 potential for water is the sum of a 

Lennard-Jones type potential and a potential based on a four-point 

charge model for water, where the point charges are tetrahedrally 

located. TWo are positive to simulate the protons and the other two 

are negative to simulate the lone pairs of electrons on the oxygen atom. 

The potential between the point charges is Coulombic with a cut- off to 

avoid any two point charges from being at the same point. 

To study the conductance of an ion in water is a slightly harder 

problem and several new forces will have to be considered. First of 

all, an applied field (D) would have to be given to get a conductance 

[ see Eq. (4)]. This applied field would act on all the particles. 

Second, one would need to decide what ion-water molecule potential 
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to use. One obvious choice would be a Coulomb potential between the 

point charges given by the Ben-Nairn-Stillinger model and the ion in 

question, with a cut-off at the crystal radius of the ion, plus a repul­

sive potential possibly of the Lennard-Jones type between the oxygen 

nucleus (or center of mass of the water molecule) and the ion. 8 The 

main problem with this kind of potential is the lack of consideration 

of the ion-water polarizability termo This would add a term . 

- a Z
2 

e2
/ (2R4

/ 
9 to the potential, where a is the polarizability of the 

water molecule and R is the ion-water molecule separation. 

The problems with the above choice are that it is for an 

orientationally averaged interaction and it considers the water mole­

cule to be a point particle. Nevertheless, it could be used as a 

starting approximation for the interaction. Another possibility to use 

for the potential between the ion and the water molecule is the energy 

surfaces calculated by Kistenmacher et al. 20 for a water molecule in 

the field of an iono The problem is that they did energy surfaces for 

only certain relative orientations, and one would really need a con­

tinuous set of orientations. Possibly their results could be used to 

correct and modify the potential given above. 

To do the actual molecular dynamics calculation one would want 

a cubical box of water molecules with the ion at the center and periodic 

boundary conditions for the water molecules (to keep the density in the 

box constant). One would compute the force on the ion due to all the 

water molecules in the box and the external field, while the force on 

each water molecule would be computed from the ion, the external 

field and the water molecules within a given radius (Rahman and 
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Stillinger5 used 9. 2 A). Possibly a cut-off radius smaller than the size 

of the box could be used for the ion as well. (Those water molecules 

within a certain distance would be used to calculated the force on the 

ion, the ones outs.ide would not be.) One could consider more water 

molecules than Rahman and Stillinger5 ' 6 did due to a recently developed 

computational method. 21 

The box would have to be moved to keep the ion at the center of 

the box to avoid having the periodic boundary conditions introduce 

another ion close to the edge of the box--there should be no other ion 

in the system. To measure the ion's velocity a master reference 

system would be used. The average velocity would be used in Eq. (7) 

to calculate the conductance and the average field would be calculated 

from 

(10) 

where E 0 is the dielectric constant of water, E is the average field and 

Dis the applied field (of say 100 volts/cm). (A preliminary calculation 

should be made with the Ben-Naim-Stillinger10 model for water and an 

applied D field to see that the average field inside is really D/ E0 •
7, 22 , 23 

If not, it may require a modification of their model.) Then Eq. (7) 

can be used to calculate the conductance. 

If this conductance for a given ion (given crystal radius and Z) 

does· not agree with experiment, the potential will have to be adjusted. 

If the conductance is too low, the magnitude of the water molecule-ion 

interaction was probably overstated and vice versa if the conductance 

is too high. Once the conductance agrees with experiment, other ions 
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could be used. Hopefully, all this will help one to see what the 

environment of the ion is, what the size of the moving unit is, and 

what the average force on the ion is and how all these vary with Z 

and a. This will certainly help to increase our knowledge of electro­

lyte solutions. 
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CLUSTERING OF THYMINE DIMERS IN 

UV IRRADIATED POLY(dA)-POLY(dT) 
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It is well known that pyrimidine dimers are a major photoproduct 

of UV irradiated DNA and that their presence correlates with biological 

inactivation. l, 2 It has also been suggested3- 5 that pyrimidine dimers 

should form more easily near other pyrimidine dimers or other photo­

products. The reason given for this is that the structure of DNA in 

the neighborhood of the dimer is probably locally denatured making it 

easier for another dimer to form nearby. 3 ' 5 Pyrimidine dimers form 

between adjacent pyrimidines in the same strand of DNA. 6 Two 

adjacent pyrimidines on the same strand of DNA are separated by a 

vertical distance of 3 0 4 A and a rotation of 36 ° 0 

7 Thus, when a dimer 

forms, it must distort the structure of DNA in its immediate vicinity. 

Experiments on denatured (single-stranded) DNA show about a 

factor of two greater dimer formation over native DNA. 8, 9 Similarly, 

experiments on poly dU show a factor of two to three greater dimer 

formation over poly dU-poly dA. 5 These experiments suggest that 

dimer formation in the vicinity of another dimer in double-stranded 

polynucleotides should be enhanced if the polynucleotide is locally 

denatured. If, in addition to enhanced formation of dimers in these 

areas, long-range energy migration also took place in the poly nucleo­

tides, then one would see clustering of dimers in the double-stranded 

polynucleotides leading to a greater density of dimers than in the 

single-stranded polynucleotides . 
3 10 In experiments on DNA, Shafranovskaya et al. and Brunk 

thought they saw evidence for the clustering of thymine dimers in DNA. 

However, later experiments by Rahn and Stafford11 and Jonker and 
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Blok12 revealed an error in the experiments of Shafranovskaya et al. ,3 

and Birnboim13 was unable to confirm Brunk's10 experiments. On the 

other hand, Pearson and Johns5 found, upon analyzing products of 

irradiated poly dU-poly dA, the product having two dimers next to each 

other in reasonably large amounts. 

There are se.veral possible reasons for the inability of the above 

experiments in DNA to show dimer clustering: (1) perhaps dimers do 

not form more easily in the neighborhood of another dimer, (2) 

perhaps there were no other sites for dimer formation in the vicinity 

of a formed dimer, and (3) perhaps long-range energy transfer does 

not take place in DNAo 

There is considerable evidence for reason number (3) above 

in DNA. The four bases of DNA have singlet and triplet energies 

which differ by hundreds of wavenumbers, 2, 14 which would make 

energy transfer difficulL Also various experiments on sensitization 

of dye fluorescence by DNA15 and quenching of phosphorescence by 

paramagnetic ions16 have shown no evidence for energy transfer in 

DNA beyond ten or so base pairs O However, in poly dA at low 

temperatures, one paramagnetic ion quenched the phosphorescence 

of a hundred base pairs, showing that long-range energy transfer 

occurs. 17 

Thus, to demonstrate conclusively whether or not dimer forma­

tion is easier in the vicinity of another dimer, experiments should be 

done on the double-stranded polynucleotide poly dA-poly dTo These 

experiments would also serve to test the theoretical work of Vologodskii 
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et al.4 on clustering of dimers due to long-range energy transfer. 

They used a simple model which forced a dimer to form if the excita­

tion migrated to a site where there was already a dimer. They then 

calculated a distribution function for the length of the undamaged 

regions as a function of dosage for both poly dA-poly dT and for DNAo 

Thymine dimers are detected by liquid phase · chromatography in 

the following way. The thymine is labeled radioactively by either 3H 

or 14C. After irradiation the DNA is hydrolyzed in acid (converted to 

individual bases plus acid-stable photoproducts) and then chromato­

graphed. See R. O. Rahn18 for a more complete description of the 

procedure. Thymine dimers are stable under this procedure. 

One method for measuring defect regions is the kinetic formalde­

hyde method. 19 , 20 This method is based on the fact that the initial 

rate of denaturation of DNA by formaldehyde is dependent upon the 

number and length of denatured regions present in the DNA (including 

the ends of the DNA)o The method has been calibrated to give the 

absolute number of defects and their length. 11 , 19, 20 

Another way of measuring clustering of dimers is to use an 

endonuclease which makes a single strand break next to a 

dimer. 11 , 21 - 24 Then the resultant DNA can be denatured and the 

resultant fragment lengths determined by sedimentation. 21 - 24 This 
21 23 ·. . 

endonuclease also works on poly dA-poly dT o ' Alternatively, 

the endonuclease can just be used to make a break in the DNA and the 

resultant DNA can be analyzed by the kinetic formaldehyde method 

since formaldehyde denatures regions having a single strand break 
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faster than it does those with only a l©cally denatured region. 11 

Thus, the experiments proposed here are to irradiate poly dT 

and poly dT-poly dA with UV radiation (for example, from a mercury 

lamp - 2 54 nm) and measure the number of dimers formed in each by 

the above-described chromatography techniques. Then, the number of 

defects or the length of the segments between breaks generated by 

endonuclease should be measured for poly dT-poly dA. If the distri­

bution of dimers formed in poly dT-poly dA is non-uniform (or the 

number of defects and the number of dimers is not the same--they 

should be the same in poly dT), then it implies that dimers form more 

easily in the neighborhood of another dimer. Also if the density of 

dimers in the defect regions in poly dA- poly dT is greater than the 

density in poly dT (which should be uniform), then long-range energy 

migration must be present and an estimate of its extent can be 

obtained. 
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~ 

APPLICATION OF A TWO-LEVEL MODEL TO 

THE UNTANGLING OF ABSORPTION SPECTRA 
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In part II, section E of this thesis, a method was given for 

extracting vibr ational information from a tangled spectrum under the 

assumption that only one state had any oscillator strength in that 

region of the spectrum. This assumption was a good one for the 

origin region of naphthalene's second singlet state and will hold true 

for many other systems as well. However, there will also be many 

systems fur which more than one vibronic level will have oscillator 

strength. 

It is therefore proposed to study a two-level system with the 

simplifying assumption of no direct or indirect interaction between 

the two states to determine what information can be obtained from the 

absorption spectrum. This work would have two parts. First,try out 

the m ~thod proposed below on a model system. Second, apply the 

method to a real system--for instance naphthalene including another 

400 wavenumbers or so of its absorption spectr um where the first ag 

addition to the origin has its absorption peak. 

In a two-level system with no interactions between the states the 

abs orption cross section is proportional to1 

2 2 

a(w) ex ~ l<ol!: 0 ~IP>l
2
ImGPP(w)+ EE, l<ol!:: ~ ~jp')l

2

ImGp'p'(w) 

(1) 

where the two primary states are p and p' with zero-order ener gies 

Ep and Ep' , respectively, and where, 2 
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-1r t'i (w) P1 (w) 
Im G (w) = -------------

pp [w-Ep-Rer1 (w)] 2 + [1r~(w)p
1
(w)] 2 

and 

One can use the absorption spectrum (times w) to get 

P = A Im Gpp + B Im Gp, p' where A = E~ I ( 0 I ~·~Ip) 1
2 

and 

B = €~, l<o I!!'.·~ Ip') I 2. Using the dispersion relation3 between the 

(2a) 

(2b) 

(2c) 

real and imaginary parts of G, one can get R = A Re G + B Re G , , . pp pp 

Taking the quotient Q = P one can show easily that it reduces to 
R2+ p2 

t'i(w)p1 (w) 

A 
if the denominator for the p' state in Eq. (2a) is very 

much larger than the denominator for the p state and A is not too 

much smaller than B. This says that if one is close to one state, then 

the procedure given in section E yields correct results, even if another 

state has about the same amount of oscillator strength. One would 

have to check whether the principal value integral for Re r 1 is sensi­

tive to f~ p1 values far from where it is being evaluated. If not, then 

one could obtain Ep in the same manner as in section E. 

The above procedure assumes that one knows roughly where Ep 

and Ep' are. This may not always be true. If not, one could try the 

procedure in section E for calculating A - Ep using the principal value 
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integral of Q for Re r and substituting R for the Re GPP' etc. If the 

principal value integral was insensitive to Q values far from the point 

at which it was being evaluated, then in the neighborhood of E , one p 

should get a straight line for A - Ep calculated this way. Hopefully, 

one would get only two places where Re Q + R = S yielded a 
R2+ p2 

straight line with a positive slope which crossed the x-axis. These 

places would then be Ep and Ep' . 

A model on which this procedure could be tried is taking ~ p1 

to be several Gaussians or Lorentzians in the neighborhood of a given 

Ep and similarly for ~ p2 and Ep' . One should eventually let the 

regions of ~ p1 and ~ p2 overlap. From this, one would calculate the 

absorption spectrum from Eq. (1) and then calculate R from the 

dispersion relation. Finally one would calculate Q and S. A plot of S 

as a function of w would hopefully give Ep and Ep' as the only two 

intercepts of positively sloped regions of S. If this checked out 

correctly, then Q in the vicinity of these points would be ¾ f1 and 

¾ P2 • Between E and E , the peaks in Q may also correspond to 
B p p 

peaks in f;_ p1 and ~ p2 • 

The above procedure, although necessarily sketchy, represents 

the first attempt to untangle an absorption spectrum using a model 

having more than one state with the inclusion of the real line shape. 

It seems obvious that the unsolved problems of S02 and N02 will 

require the investigation of models of this type. 
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THE VARIATION OF THE TRANSITION MOMENT 

WITH INTERNUCLEAR DISTANCE AND ITS 

EFFECT ON RAMAN CROSS SECTIONS 
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In conventional Raman theory the term that leads to Raman 

intensity far off resonance comes from the linear term in the expansion 

of the transition dipole in terms of the vibrational coordinate Q
1 

(Xev' (Q) (cp e (q, Q) I µ I <Pg (q, Q) > q Xgv" (Q) > Q 

= ( Xev' (Q) I Me (Q) I Xgv" (Q) > Q 

= ( Xev' (Q) I Xgv" (Q)) Q Me (Q = ~) 

+ :~e / Q=Qi ( xev' (Q) I QI Xgv" (Q)) 

+ (1) 

In Eq. (1), Me(Q) is the integration over q in the top expression, ~ 

is the equilibrium position of the ground state, and <Pi(q, Q) Xiv(Q) is 

the Born-Oppenheimer wa vefunction for the iv state. In Part II, 

Sections B and D of this thesis, only the Me (Q = ~) term was included 

in calculations of Raman intensity. The reason for this assumption 

was a lack of calculations on the magnitude of the higher terms over a 

wide enough range of internuclear distance. 

It is therefore proposed to calculate Me (Q) over a wide range of 

internuclear distance for a diatomic molecule. Then one should use 

this Me(Q) to calculate Raman excitation profiles as was done previ­

ously. Also the Raman profiles from just the Me(Q=Q
0

) term should 

be calculated so as to assess the importance of the higher order 

terms and to determine how close to resonance they need to be 

included . 
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Probably one of the most efficient procedures for calculating 

Me(Q) is the equations-of-motion method of Rowe2 and McKoy and 

coworkers. 3- 5 The advantage of this method is that the matrix 

elements one needs in order to calculate excitation energies and 

transition moments are less sensitive to the inaccuracies of the ground 

state wa vefunction used to evaluate them than in the usual procedures 

of solving for the wavefunctions of each state separately. A brief 

description of this method will now be given (condensed from Refs. 

2-5). 

The ground state wavefunction is approximated by (using the 

notation of refs. 3-5) 

where I HF) is the Hartree-Fock ground state, the c 's are creation 

and annihilation operators, m and n are particle states and o and y are 

hole states. The approximation in Eq. (1) is that the C's are small 

compared to unity; if this breaks down one must go to the open shell 

equations -of-motion treatment 

The equation 

+ 
defines the excitation operator OA which creates the excited state 

I A) from the true ground state IO) . If one expands o: in single 

particle-hole operators 

(2) 
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o+ = E [Y , , 
A m'y' m Y 

c+ c , - Z , , 
m y my 

(3) 

then we can derive the equation 

(4) 

where A, Band Dare matrices and depend on the C's of Eq. (1) and 

w (:x) is the excitation energy of the state J 11.). Finally from the 

equation 

(5) 

for the hermitian conjugate of o:, one can show 

(6) 

where the C' 's are closely related to the C's. (Actually everything 

depends on spin as well, but this has been suppressed here.) The 

procedure for solving these equations is to guess a set of C's, 

calculate the matrix elements of A, Band D (the actual form for them 

is given in Ref. 3), solve the matrix equations for Y, Z and wA, and 

then find a new set of C's from Eq. (6) until the solutions are self­

consistent. The transition moment from JO) - J 11.) depends on the 

Y ( :x) 's, Z ( A) 's and the C's. 4 
my my 

To calculate the transition moment as a function of Q or inter-

nuclear distance for a diatomic molecule, one must first use a basis 

set to do a Hartree-Fock calculation at each value of the internuclear 
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distance. 5 After calculating Me (Q) as discussed above, one would fit 

Me (Q) to some analytic form so as to be able to calculate 

< Xev' (Q) I Me (Q) I Xgv" (Q)) which will be needed to calculate the Raman 

cross section. 7 The vibrational wavefunctions can be calculated as 

was done in Part II, section D of this thesis. 

One possible molecule on which to do this calculation is BeO, 

which has • its B1 L state at around 21, 000 cm -i 
8 

and which does not 

have too many electrons, so the calculation will take less time. Its 

ground state configuration is (lo )2 (2o)2 (3o) 2 (4a )2 (11r +)2 (11r -)2
• 

A possible basis set of Slater-type orbitals has been given by 

Schaefer. 9 

By doing this calculation for a diatomic molecule, one could 

find the dependence of the Raman cross section as a function of 

excitation energy using both the true Me (Q) and the first term of 

Eq. (1) --Me(Q 0 ). This would help in our understanding of the Raman 

process. 
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MEASUREMENT OF EXCITED STATE VIBRATIONAL FREQUENCIES 

USING NANOSECOND OR PICOSECOND RESONANCE RAMAN 
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Although resonance Raman has been used extensively to give 

accurate vibrational constants for the ground state of molecules, l, 2 

it has not been used for excited states. However, with the advent of 

time resolution of a few nanoseconds or less, experiments applying 

this technique to the excited state can now be tried. rt is therefore 

proposed to obtain an excited state Raman spectrum of anthracene. 

A nitrogen laser (with output at 3371.A 3 = 29,660 cm -
1
) would 

excite anthracene from its ground state to its first excited singlet 

state (whose 0-0 position in hexane is at 26, 700 cm - 1). 4 The nitrogen 

laser would also pump a dye laser (using rhodamine 6 G) to give output 

at around 16,700 cm-1
, which is where anthracene's S1 state absorbs.5- 7 

The dye laser output would yield a resonance Raman spectrum of the 

excited state as well as a normal Raman spectrum of the ground state 

and the solvent. 

A pulsed nitrogen laser provides pulses of 1 MW peak power 

with a FWHM of 2-10 nsec. 3 One can split off part of its output with 

a beam splitter and use it to pump the sample. The other part of the 

beam can pump the dye laser. The dye pulses have about 100 kW of 

peak power, a FWHM in time of 2-10 nsec and a FWHM in frequency 

of . 3 cm-1 or less. 3 This spectral bandwidth can easily be reduced 

by an order of magnitude using an etalon. 3 

For maximum resonance Raman from S1 of anthracene, the 

pump pulse and the dye laser pulse should reach the cell at roughly 

the same time or the dye laser pulse should get there lnsec or so 

later than the pump pulse . The reason for this is that the lifetime of 
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S1 for anthracene is only a few nanoseconds. 8 To maximize the signal 

from the excited state Raman, the two beams should enter the cell 

collinearly from the same direction. In this way there will be the 

largest overlap of the two beams. 

Alternatively, one could use a picosecond pulsed dye laser 

(operating with rhodamine 6 G) 9 instead of the nitrogen laser. The 

second harmonic of an amplified single pulse could excite anthracene 

to its S1 state and the fundamental would excite the resonance Raman 

from there. The picosecond pulsed dye laser has pulses of peak power 

1 GW, FWHM in time of less than 5 psec, and a FWHM in frequency of 

about 10 cm -i. 
9 The advantage of this method of excitation is that one 

could delay the resonance Raman exciting pulse by 50-100 psec and 

still not worry about relaxation out of S1 during this time. An obyious 

disadvantage is the large spectral bandwidth which would cause 

resolution problems if the excited state frequency did not shift by 

more than 20 cm-1 from its ground state value. 

For either excitation process, the Raman signal can be gathered 

at 90 °, the exciting line can be filtered out using a dielectric coating, 

a spectrograph can be used for frequency resolution and an ISIT 

(intensified silicon intensified target) vidicon tube for detection. This 

vidicon tube yields practically single-photon counting detection and 

will allow gathering of large parts of the spectrum at one time. The 

vidicon can be gated so as to turn on when the dye laser pulse is 

exciting the resonance Raman. By delaying the latter pulse 10 nsec 

or so with respect to the exciting pulse, one can ascertain whether 
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or not the new lines in the Raman spectrum arise from the S1 state. 

The fluorescence of anthracene from the S1 state occurs at much 

shorter wavelengths than the Raman from S1 
7 so it will not interfere 

with this experiment. 

Since anthracene forms a photodimer at high concentrations, lO 

the solution must be kept reasonably dilute. Possible solvents are 

hexane, ethanol, methanol, chloroform and carbon tetrachloride. 11 

The advantage of using one of the latter three is that they have less 

vibrations to interfere with the spectrum. One should go to low 

temperatures so that one can resolve ground and excited state 

vibrations. The best solvent for these studies can be found by just 

looking at the Raman spectrum of the ground state (without the pump 

pulse) and getting the best possible spectrum in the various solvents. 

Obviously some of these solvents can be used at lower temperatures 

without forming a glass, which would probably scatter the light more. 

It thus seems possible to obtain a resonance Raman spectrum 

from the S1 state of anthracene using these methods. If picosecond 

dye laser excitation were used, one could probably use resonance 

Raman to measure vibrational relaxation in the excited state, 

analogously to the way vibrational relaxation times in the ground state 
12 are now measured. 
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