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ABSTRACT

In the first part of this thesis a purely electronic mechanism by
which ~ 20 eV excitations in condensed non-metallic phases relax to
lower energy states is described. The mechanism utilizes an ""energy
fission" process whereby an ionic or excitonic state splits into two
lower energy states, at least one being of the Frenkel exciton variety.
These relaxation processes should be important in the pre-chemical
stage in the radiation chemistry of condensed phases. The mechanism
explains not only the known rapidity of such processes but also suggests
an explanation for the proportionation of the chemistry between ionic
and electronically excited states.

In the second part of this thesis, Green's functions are used to
discuss the time and frequency dependence of light scattering and
fluorescence from model systems. In the first section of this part,
time-dependent scattering from a single resonance using an uncertainty-
limited light pulse is described. Three terms occur in the time
dependence--one which decays as the resonance, one which decays
like the 1i§ht source and a beat term between them which beats at the
frequency difference between the exciting pulse and the resonance.

In the next section the model is extended to scattering from a
two-level system. The frequency dependence of the Rayleigh and
Raman scattering is described, again using excitation from an uncer-
tainty-limited light pulse.

The effects ofthe two-photon states, which lead to the antireso-

nance terms in time-independent light scattering, have been evaluated



for time-dependent light scattering in the next section. Thus a unified
theory is obtained for time-dependent light scattering of an uncertainty-
limited pulse from far off-resonance into the resonance region. The
theory reduces to the conventional Kramers-Heisenberg second-order
results if a monochromatic light source is used. The two-photon states’
contribution to the scattering cross section has the same time depen-
dence as the light source while the zero-photon state has the time-
dependence previously calculated for near-resonance light scattering.

In the next section excitation profiles for Rayleigh and Raman
cross sections have been calculated using the formalism of the
previous section for an actual diatomic molecule from over 8000 cm™
off resonance into the resonance region. Several interference effects
are discussed. Thé usual formula for the scattering cross sections is
shown to lead to errors off resonance if the basis set is truncated.

Finally, a new method of calculating the zero-order density
function directly from the absorption spectrum has been found and
applied to the origin region of naphthalene's second excited singlet
state. Results are in good agreement with previous trial-and-error
methods.

Mathematical appendices are given which derive the key formulae

needed in the second part of this thesis.
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PART 1

THE RADIATIONLESS RELAXATION OF HIGH-ENERGY STATES
IN THE RADIATION CHEMISTRY OF CONDENSED PHASES



INTRODUCTION

In radiation chemistry a high-energy particle or photon is shot
into the system. A high-energy photon loses most of its energy to the
electrons in the system by the photoelectric effect or by Compton

1,2

scattering. The photoelectric effect dominates for photon energies

below about 20 keV; Compton scattering dominates above 40 keV, 2
The main effect of these two processes is to produce high-energy
electrons, Thus in studying radiation chemistry one can limit oneself
to the discussion of the interaction of high-energy particles with
matter. These particles lose energy mainly to the electrons in the

medium creating ionizations and electronic excitations. 1,2

In con-
densed systems these excited states cannot, in general, be considered
states of single, isolated molecules, due to the overlap (non-
orthogonality) of the wavefunctions of neighboring molecules. In
general, the higher the energy of the excitation, the larger the spatial
extent of the excited electron's wavefunction and thus the larger the
overlap of its wavefunctions with that of neighboring molecules. A
large proportion of energy losses fall in the 10-30 eV3’4 range and
for this range non-localized states will , at least initially, play a very
iniportant role. 9,0

The excited electronic states that are important in the radiation
chemistry of condensed systems are plasmons, excitons and ioniza-

6-8

tions (conduction band states). Plasmons are collective longitudinal

density excitations of free electrons. These excitations have been

9

extensively studied in metals, ” where they are well-defined, relatively

long-lived and easily excited by high-energy charged particles. In



insulators the concept of a plasmon is not well-defined since the
electrons cannot behave as if they were free as they can in metals.
Although peaks around 20 eV in the energy loss spectra of high-
energy electrons passing through thin films of insulators have often

8,10-12

been assigned as plasmons, they are more likely to be

oscillations of single electrons having frequencies different from that
of the isolated molecule due to the interactions between molecules.ls’l‘1
Even if the peaks in the energy loss spectra were plasmons, their
widths are several eV's wide implying that the lifetime of these states
is on the order of 107° to 107" seconds. They would decay into single
particle excitations--excitons and conduction band states--in this
period of time. 6,8 Thus we can consider the states initially formed
in the radiation chemistry of condensed materials to be excitons and
conduction band states.

Excitons are electron-hole pairs which migrate through a
crystal with well-defined momenta (due to the periodicity of the
crystal). The two extreme types are Frenkel excitons where the hole
and electron are always on the same site and Wannier excitons where
the electron is in a large-radius orbit around the hole and feels the
hole's Coulomb attraction modified by the dielectric constant of the
medium. ta Naturally, intermediate states between these two limits
also exist--for instance, ion-pair states. In organic molecular
crystals and rare gas crystals the lowest excited states are in the
Frenkel limit while the higher ones are of the intermediate kind or

15,16

even in the Wannier limit. This is due to the larger spread of

higher energy wavefunctions and their non-orthogonality.
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An important problem in the radiation chemistry of condensed
inaterials is how these initially formed conduction band and exciton
states having energies in the 10 eV to 30 eV range electronically relax.
The time scale of interest is 107'*~107'¢ seconds, before the nuclei
have time to respond to the changing fields since vibrational times
3 6,7,17

are on the order of 10"**~107' seconds.” It has been suggested

that an exciton fission process should be an important electronic

relaxation process. Voltz6 1

and Klein and Voltz" considered the
fission of a high-energy Frenkel exciton to form two Frenkel excitons
on neighboring sites. However, as discussed above, a Frenkel
exciton is only one possibility for the initial state.

The relaxation of a conduction band state and of a general
exciton state will be discussed in sections A and B respectively.
In both cases an energy fission process was found which yielded a
Frenkel exciton and a conduction band state in the former case and a
Frenkel exciton and a general exciton of the same type as the initial
exciton in the latter case. These relaxation processes should be
important in the pre-chemical stage of the radiation chemistry of

condensed materials and show that the energy can relax very effi-

ciently on this time scale.
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Radiationless transition theoryl’ 2 has been applied successfully

to various aspects of ordinary photochemistry, which usually involves
the lowest lying excited electronic states of a system. Little effort,
however, has been made so far to apply these concepts to higher
electronic states--those which are inevitably involved in radiation
chemistry and radiation biology from ionizing radiation.

Because of the possibility of the existence of rather extensive
energy relaxation in a condensed phase, as compared with the gaseous
phase, one might guess that lower energy, more specific processes

would tend to dominate the former and make it simpler to interpret. T

TThis seemingly antithetical idea is analogous to that which applies
to the transfer of low-energy electronic excitation. In a crystalline
solid, particularly at very low temperatures, molecules have more
uniform environments than in the gas phase, and energy relaxation
tends to follow a better defined path, leading to fewer quantum states
involved in the initial processes. To some extent this could also be
true for certain types of mixed crystals. Experimental data seem to

support this idea. S

For example, in the X-irradiation of mixed
crystals of various rare gases at 4.2°K diluted with a small amount
of molecular N,, transfer of excitation from the rare gas to the N,
appears to occur from the lowest exciton band of the rare gas since
only in neon is the band-energy sufficiently high to excite the C°H
state of N, at ~11 eV. The other process that leads to N, light

emission in this system occurs in all the rare gases and is also



In addition, because radiation biology is a condensed phase problem,
it seems not only more reasonable but also more important to direct
attention to solid state radiation chemistry in searching for a better
understanding of this seemingly complex phenomenon.

In this communication we will suggest a scheme for relaxation
and localization of energy in solid state radiation chemistry. The
concepts may also be applied to the liquid state. Our model is physi-
cally a simple one and is relevant to the pre-chemical relaxation stage*
of radiation chemistry, taking place roughly in the time domain
107'°- 107" sec. It is conceivable that an understanding of this
realm could allow some external control over the chemical pathways
taken by the system in radiation chemistry or radiation biology
experiments. Thus our preliminary results seem worth reporting at

this time.

interesting from a radiation chemistry point of view. This process
excites only v < 6 quanta of vibration in the A’Z7 state of N,. Since
nc higher quanta can be observed, it is implied that the energy trans-
fer process occurs cleanly from the v = 0 vibrational level of the B:"IIg
state, which is approximately isoenergetic with v = 6 of ASE:;. Thus,
even though the complexity of states in this mixed crystal system
defies enumeration, the energy relaxation paths appear simple and

well defined.

*We would prefer to call this the ""physicochemical'' stage, but that

4

term has been used for the time interval 107 -107"° sec® where

chemistry is already taking place.
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Even though the high energies of the exciting particles used in
radiation chemistry are mind-boggling to the photochemist, a simpli-
fying feature is the fact that most of the energy loss occurs near a few
relatively low-energy (S 40 eV) "'resonances' in the energy

spectrum, o

For systems containing only first-row elements and
hydrogen, these resonances must arise through promotion of electrons
having 2s and 2p parentage. Molecular ionization limits in gaseous
molecules become the conduction bands (CB's) of the condensed phase.
Because of the dielectric constant of the medium, these CB's may lie
at very low energies, perhaps as low as half the ionization potential
of the free molecule. L0 Other gross changes occur in the condensed
phase, For instance, most Rydberg states of the gas are thoughtlo’ 11
to be embedded in and strongly mixed with the CB's of the solid, losing
their identity except in rare cases where the lowest energy ones
appear as Wannier exciton states12 of the solid. However, excited
valence states of molecules are better able to retain their identity in
the condensed phase and often appear as sharp, localized, relatively

long-lived Frenkel exciton sta.tes13

of the solid.
Energy loss resulting from the passage of high energy (2 500eV)
primary and secondary particles through the medium may excite any

9-9 show

of the states in the condensed phase, but experimental data
that most of the loss occurs at energies above that of the first CB.

The generation of charge carriers in the solid is most probably not a
"one-step' process, but rather more like an autoionization where the

original excitation is relatively localized but mixes very strongly with
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wavefunctions on neighboring sites. 18

The most intense energy loss peak for condensed systems of

9-9

first-row atoms (plus hydrogen) occurs around 20 eV and has been

5,8, 14

attributed by some workers to the plasma frequency of collec-

tive electron oscillations. We do not concur with this description for
systems that are basically insulators, * but would rather attribute this
loss peak to ionization or to excitation of single electrons of relatively

deep valence levels having substantially 2s + 2p parentage. For

9 8

instance, both in ice” and liquid water” there is a broad energy loss

peak centered at approximately 22 eV with no further maxima in the

valence electron region at higher energy. Energy loss is proportional

-1

to €,(e? + €.)™", where ¢, and ¢, are the real and imaginary parts,

15-17

respectively, of the dielectric constant function ¢(w). The

condition for the existence of a plasmon is that ¢, and ¢, be very

*R. L. Platzman's comments following the paper by W. Brandt and
R. H. Ritchie (Ref. 14) are relevant to this point: '"Metals are very
different from the systems we are interested in here. I do not believe
there is good evidence for collective oscillations in many of the .
systems we are concerned with...No, I do not [think that the peak
found in liquid water is caused by collective oscillations]. I think
that your single oscillator model is too simple and is very misleading
for these systems. I just picture what is found as the typical oscilla-
tion of single electrons in a Coulomb field with an effective charge

somewhat greater than one so the loss will be 20 to 25 eV. "
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18 The 22 eV8 peak has been assigned to a plasmon for liquid

water but not for ice, owing to differences of opinion8’ 9

small,
as to whether
€; and ¢, are sufficiently small in the region of the peak. For liquid
water there is a peak in the absorption cross section

ocwyxwl[-¢ + JZTZE]% near 20 V. Similar results would be
expected for ice due to the similarity in the plots of ¢, and ¢, as a

function of w for ice and water. 8,9

If the loss peak were assigned as
a plasmon for water, then o (w) would have a minimum near 20 eV
rather than the maximum that is observed. Thus the plasmon idea
seems unnecessary for water and probably for most other insulating
systems as well, ¥

Even though ionic states may be responsible for the major
energy loss peak in low molecular weight solids, it is known that they
play only a partial role in radiation chemistry. The low-lying excited
electronic states of the system also substantially contribute to the

chemistry, 20,21

in fact of the same order of importance as the ionic
ones. Clearly there must be relaxation mechanisms that create these
excited states from the initially formed states. More important, the
relaxation process must be fast in order to compete efficiently with
the chemistry from initially formed ionized states. Experimental

evidence22 suggests that this latter process can be extremely fast

T Even if the original state were a plasmon, it would decay in 107"°

to 107" seconds into single particle states having the same energy. 19

These latter states are the ones we will consider in this paper.
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(< 10~ sec). It would be unreasonable to expect a pure electron-

phonon mechanism to be able to explain such a fast relaxation. *
A better model for relaxation between the conduction band
and the low-lying excited states of a condensed medium is an energy

fission processlg’ AR

24,25

analogous to exciton fission in organic
crystals, but different from it because here we are dealing
with CB states of the system with energies quite a bit higher than
those energies.

As we mentioned above, the initial state to consider has an
excited ion, that is,one having a hole in a relatively deep orbital,
and an excited electron in the CB. This excited ion can relax to
give some of its energy to another electron, forming either another

hole and a CB electron, a charge transfer state or an excited molecule

(exciton). The most general way of writing this process is
A*Y*BCD — ABTC'D, (1)

where A, B, C, and D schematically stand for sites and any of the
final species may be in an excited state, the asterisk standing for a
state of higher excitation. However, our calculations, which will be
outlined below, show that the most likely process involves only two

sites,

*For a CB at 20 eV and an excited state at 6 eV, 14 eV must be con-
verted into lattice energy. The process then corresponds to well over
1000 phonons and, assuming 107" sec per relaxation step, would take

longer than 107° sec to complete.
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AY*B — AYB*, 2)

Figure 1 gives an example of process (2). If the system is solid
water, the 22 eV energy loss corresponds to ionization of an electron
from the deep valence level 2a, = ¢, at site A producing a hole in
¢, and an excited electron in ?cB (Fig. 1b). The final state pro-
duced by the '"fission' process must conserve energy. One possi-
bility (Fig. 1c¢) promotes the hole from ¢, to ¢, (=1b,) at site A
while simultaneously promoting an electron from ¢, (=1b,) to

¢, (=4a,) at site B. Processes (1) and (2) are intended to be
schematic; in a crystal the eigenfunctions must satisfy Bloch's

theorem26

and thus are linear combinations of the states given above.
Even if the energy were not exactly conserved in the purely electronic
process, creation of a small number of phonons or vibrons could
complete the energy conservation process.

The part of the Hamiltonian that connects these orbital con-

2
figurations is the electron-electron interaction term 3 E

1 j r;- I
Here i and j sum over all electrons and i #j. Assuming the orb1ta1s
to be real and orthonormal and neglecting spin and Bloch's theorem, *
the matrix element between the initial and final states for process (1)

is

*To be more rigorous, since molecular orbitals on neighboring sites

21

are not strictly orthogonal, Wannier functions™" can be used. This

has no qualitative effect on our arguments. Neither do the neglect of

spin and translational symmetry. 28
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Figure 1. (a) Filled localized valence bands in the vicinity of sites
A and B. (b) Arrow indicates creation of deep hole in
the ®o orbital at A by the primary energy loss mechanism.
(c) Spontaneous inter-valence-band Auger process,
indicated by the two arrows, excites hole at site A to ¢
at site A simultaneously creating tightly bound exciton
at site B. This process is analogous to "exciton fission"

in the organic solid state.






17

e2

(Poa (1) Yp(T2) ll——_—r—l| ?1p(r) Py a(L2)) -
(3)
(Poa (1) 24 | ——| @y () 9y 5(x2))
| I, - ,I:2| -

where again A, B, C, D represent sites and c,oj G=0,1...) have a
similar meaning as in Fig. 1; the second term is an exchange term
arising from antisymmetrization. For an insulator, the valence band
orbitals, Poar P1p and ¢g c» are localized around their respective
sites, The argument below will show that this matrix element will be
largest when 4n is also localized and more particularly when it is
localized around one of the sites that has a hole, thus forming an
exciton or excited state rather than an ion and a CB electron,

The first matrix element in (3) represents the Coulomb inter-
action of the charge cloud YA 1B with the cloud YapP3c- This
term is very small unless the overlaps of PoA with “18 and of 4D
with @30 are large. Now, due to the localization of the valence band
orbitals, site A must be equal to site B and 4D must be reasonably
well localized around site C. Thus the process that is most likely to
occur is (2), and the system is left with a shallow hole at the original
site and an exciton state (or localized excited state) at another site,
as in Fig. 1. (For the exchange term to be large it would be
necessary to interchange the holes in the final state.)

The energy of the first excited state in water is around 8 eV, 23

but the other energies in Fig. 1 are not known and are thus only
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approximate, The ionization potentials of the valence orbitals in
water vapor are 36 eV (2a,), 18 eV (1b,), 15 eV (3a,), and 13 eV
(lbl).30 X-ray photoelectron spectroscopy data (XPS) of ice30
indicate that the 2a, ionization limit moves down to about 27 eV and
that the other limits also move down, but how far seems uncertain
because there are several possibly extraneous peaks in the valence
electron region below 18 eV. Also, one must know the work function
for ice to determine the CB energy levels. However, XPS might be
an unreliable way of measuring ionization energies. of the bulk
material anyway because it samples only the surface regions,

The ionized electron will be left in the CB. It could, ina
separate interaction, pair with the hole to form a charge-transfer
complex or a more weakly bound exciton, the remaining energy going

to phonons. s

These processes are much more likely to happen in a
non-polar solid where the electron-hole interaction is stronger, while
the inverse processes may be expected to occur in ionic or highly
polar solids leading to qualitatively different excitations.

The relaxation process described in this paper is applicable to
any molecular solid or liquid. It requires only the conservation of
energy and a localized final state. If the final state ion does not have
sufficient energy to repeat the process (as in Fig. 1) then the net
result is one ion and one excited state giving a possible explanation
for the nearly equal distribution of chemistry between ions and

excitations in some systems.

The above process whereby an excited ion goes to an ion having
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a lower degree of excitation plus an additional neutral excited state
should be very rapid, requiring as it does only a purely electronic
relaxation process together with at most a low-order phonon process
for detailed energy conservation. Due to the form of the matrix
element, the exciton or excited state will most likely form near the
original ion. Equation (3) also predicts that the excited state formed
by the relaxation process will be the one that carries the most
oscillator strength, not necessarily the lowest excited state. This
is easily seen by expanding the matrix element of € (| r, - r,[)™" in

multipoles and retaining the leading dipole term,

'II%—];I‘; <(/)OA|e£|¢1A><¢4BIe£|¢BB> ’
where A - B stands for the distance between the sites A and B. These
higher lying states, with greater oscillator strength, may perform
different chemistry than the lowest excited state. Thus ultraviolet
excitation into lower excited states may produce different products
than ionizing radiation excitation, even if one neglects the products
formed from ionic states.

Throughout this paper we have assumed that the initial state is
an jonic one., However, the general relaxation process discussed is
applicable also if the initial state is an exciton having a hole in a deep

28

valence level. Naturally in this case neither the initial nor the

final state is ionic.
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In summary then, the mechanism by which an initial formed
~ 20 eV ionic state of a solid splits by a purely electronic mechanism
into a lower energy ionic state plus a localized excited state can
explain not only the rapidity of the energy relaxation process in
radiation chemistry but also the proportionation of the energy into

partly ionic and partly excited states.
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Section B

THE RELAXATION OF A HIGH ENERGY EXCITON
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In the last section, the relaxation of a conduction band (CB) state
was considered. The key steps in the determination of the states into
which the CB state would decay were shown. In this section a more
detailed calculation for the relaxation of a high-energy exciton will be
given. The model that will be used is that of a perfect crystal having
one molecule per unit cell with each molecule contributing a pair of
electrons to each filled band. All wavefunctions for this model must

satisfy Bloch's theorem1

for a periodic lattice with periodic boundary
conditions.

Two basic approximations will be made. The first is the static
lattice approximation which says that the electrons move in the poten-
tial given by the equilibrium position of the nuclei. This approximation
is certainly valid for the time scale of interest--10"'*-107'¢ seconds
(see Part I, Introduction)--during which the nuclei do not move. The

other approximation is the one electron approximation which states

that the wavefunction for the electrons can be written as

y(r) = a%({l)%({z) ooy (1) )

N "~N

where  is the antisymmetrizer, the Y;'s are spin orbitals for one
electron and ry represents the spatial and spin coordinates for the ith
electron. To say that eq. (1) is valid is equivalent to stating that the
total potential is the sum of one-electron potentials, where somehow
these one-electron potentials take into account self-consistently the
potential due to all the other electrons as well as the nuclei. This

approximation is obviously poorer for the valence electrons than for
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the core electrons since it omits the instantaneous correlations due to
the other electrons which is most important for the valence or outer
electrons. Thus, in reality, wavefunctions of the form (1) will not
be exact solutions of the Schridinger equation, but will be coupled
together by electron-electron interaction terms.

The one-electron wavefunctions that will be used in this section
are Wannier functions anR( £i)’ where n is a band index and R repre-
sents the position of a moll\ecular site. These functions are defined

py2s3

2p(x) = N‘%‘ZI} e R gy @)
where N is the number of cells in the periodic parallelpiped, k is a
reciprocal lattice vector and the ”Dkn(ﬁi) 's are Bloch functions for the
nth band which are eigenfunctions gf the one-electron Hamiltonian
(kinetic energy plus one electron self-consistent potential). The
Wannier functions anR( }:i) are localized around the molecule at R, L
ones.centered ondifferlt\ent sites R are orthogonal, and ones for different
bands are also orthogonal.

The ground-state wavefunction can be represented by2

o B o a
(1) =dam'§31(fr~1) am'Bl(/r@) am"ljl(£3)' aMR Zom) ®m ‘R, (Lopge1) -

afﬂRz(14M)"‘ aﬁm (Xonmt) (3)

where M represents the number of filled bands (each molecule is

assumed to have 2M electrons) and « and B are the spin projections
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s and -3 respectively. /( r) can be shown to satisfy Bloch's theorem

with k = 0.
The wavefunction for a general exciton can be written asz’ 3
1pmnv(K) - E UmnuK(B) (I)mn(K B) (4)
where
<I>fn(;, (K,B) = N2 % e#’g'ga a?ngl‘ .. afng az:13+§. .. afnR

(5)

where an electron from a mR with spin -0 has been placed in anR+B

with spin ¢, B represents the electron-hole separation,

K is the wavevector of the excitation, and v is some new quantum

o~

number. For Wannier excitons UmnuK (B) is a hydrogenic-like

2,3 2

wavefunction; for Frenkel exmtons UmnuK (B) is zero for B = 0.

Both kinds of excitons, as well as intermediate ones, can be excited

8,9 '

by high-energy electrons. (K) satisfies Bloch's theorem,

Ymmn
has a wavevector K, and is assumed to be an eigenfunction of the total
Hamiltonian. In reality, these wavefunctions never are eigenfunctions
of the total Hamiltonian since only two bands m and n have been

included and because U B) is generally calculated by omitting

mnvK (
several terms from the totaf Hamiltonian, .

The final states of interest to us in considering the relaxation
of a high-energy exciton are double excitation states having two holes
and two excited electrons. A state of this form that satisfies Bloch's

theorem is



ww' ! ’ 2 okl ',1: a B w (.0’
‘!/m:n:mu l’l” (Ro yZ? Y ) K) = N ?I'} e ﬂ ale ale am’T an,,T+Z
’
n n B
. aml,I+Bo an,/I+7I co e aan

(6)
where the holes are R, apart and the electrons are located y and
y' from one of the holes, y-R, and y"-R, from the other hole, and
¥ = Z’ from each other. To get the eigenfunctions of the total

Hamiltonian, one must take linear combinations of the wavefunctions

given by Eq. (6) as follows:

S, Mg SM , ww'nn’
"Dm’n'm”n”v' (IS) = 2’ Gm'r?’m” l'l”V' (Bo ,Z;Z ’ I,S) \Um’n'm”n" (BO’Z’ Zl7 ,IS)
%Y, Ry

(7)
where S is the total spin and Mg is the spin projection, both being
functions of w,w’, nand 5’. No one has ever tried to diagonalize the
Hamiltonian in order to solve for the G's in a general case. The
case of two Frenkel excitons (Y =0and y’ =R, or vice versa) has

been treated. 10-13

Also the binding energy of two Wannier excitons
to form a biexciton has also been extensively discussed in the
literature but the form of Eq. (7) was restricted to a particular
function having only a few parameters. 14-16
What we wish to find out is into which two excitons (what form
for G) a high-energy exciton of the form of Eq. (4) would fission

with the highest probability. The part of the Hamiltonian which
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couples states of the form (7) with states of the form (4) is the

electron-electron potential energy term 2 e’/ rij , where rij is the
i<j

separation between the ith electron and the jth electron. Only states
having the same K will be coupled. One electron terms of the
Hamiltonian cannot couple these states and still conserve energy.

For simplicity, the initial state that will be considered here is a

triplet exciton (S = 1) having M =1, that is, having o = o' =a in

Eq. (4). There are three possible final spin states having S = 1 and

M, = 1. One orthonormal set of spin states satisfying S =1 and M, = 1
is {2~ P ao(ap - Ba), 2 3 (@B - Ba)aa, and i(aa(aB + Ba) - (@B + Ba)aa)}.
However, other linear combinations of these states can be found which

are also orthonormal.

The matrix element of interest is

S=1,M =1
(¥t oyt ) | E | Yoy ®)) - (8)
This equals
T %Y, R, ww'ny R
Z}; UmnvI§ @)} fﬂa;oél e a:ne)l‘ atleo’;"fz Tt a;::’,, T+R, a; nT+'y
by D S Qalp ...9mp dnppecedg €2 )

mRN i<j Tij
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where d°r means integration over all the coordinates of all the
electrons and the prime over the spin summation restricts the sum
to states having M, = land S =1. In order to conserve energy,
one must change two electrons, as mentioned previously. Thus

either m # m’ and m = m” or n= n’ and n = n”. Using this and

expanding Eq. (9) one gets

A(K){(a‘n’ T+'yan"T+7 lgl:°"nR+B anr{’T+R ? S 6RT wo %' a® nao 773 5773 ‘o)

'(a’n"}}'y . n" T+y’ |g|a m"T+R, nR+B> Omn’ GRT 6woz O (Gnozaw'B 51]3 %'

+(a 'T+'ya n" T+y’ Igla‘m "T nR+B> O mm” 6R T+R, naan’a( wa wB 5coﬁ S'a)

'<an’I+7an”T+'y IglanR+B m’ T>6mm” 5R T+R051;a6wa( wa® B~ w36 ‘o)

+<“]‘mRa n” T+y' lglam 'T m”T+R )Gnn T+Y, R+B6w a wa(anﬁbn'a na n’B)

“<amRa " T+y’ lg|am”T+R m T> Onn’ T+'>/,R+B6w aéna ( wﬂan'a_éwaon'ﬁ)
+(amlj an’I+ylg|am"I+130 am'I> O pn” 5,’{‘+'y', R+B 617'01517a( wp O%'a” wa w B)

'<amR an’T+'ylg|am' T2m” ,'I:J“Bo} Onn” 6E‘+'y', R+B 6n'oz Ovar (6 Baw'a na O B)}
(10)
where A(K) is the expression in braces in Eq. (9) and g = €%/ |£1 - ¥, | :
Since Wannier functions are very localized ones, 3 some of the

sums in Eq. (10) can be approximated by single terms. In particular
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by

since (aJR Aper gIaLUaMV> represents the Coulomb interaction

* * . .
between AIR3ALU and gy this term will be very small unless
R=U and T =V (so that the charge clouds overlap). Thus

(aypagrlelapyayy) = @rpagrlela  gay) Spydry: @D

Using Eq. (11), Eq. (10) becomes

aa(ap-Ba)x*

R.p mn'm“n” (R B, Ry, K) UmnuK(If%)<an’B‘an"R0 I g[a‘nB m” Ro>

5 a(Ba-ap)ox

"o n (EO’ 13\0’ ,B\,I,S)U a
Bon B

mn’ m”n mnylfg (E) <an,EO n”’E | g | am"Bo a.nE)

iK-R, . (aB-Ba)aaox
+ RZ;B e~ RO Gmlnlmnn (BO’ Q’,R\O-l' E’,IS) Umnvlg(sz) <an19 an”Bo'l'E Ig Iam,’Q a.nB +,B>
Ao’l\ '

iK-R, aaaB-faaa*
REB © ' mn” (Ro,Ry+B,0, K) Uy x B) <an"Ro+Ban"0 IglanRo+Bam’ o

ao(Ba-ap)x*
R%,)B m/nm”n” or 2y Ro» I,S) UmnvI,g(,Bi) (a'mQ anugolg | am,g am"Bo )

iK‘R. Baaa-aaaf*
= 5 'Be ~ ~O G‘m'nm”n” (BO’B +§,Q,I§) UmnVI’S(E) (amlzoan,,glglam,,%am?)

A0S

D eiIE'l}\o G(Ba-aB)aa*
R B m’'n’'m”n

~00R

BO’Q ’Bo’*’l}al,{\) Umnylg (1,3) (amRo an’Q |g l am"goam’2>

Pas

o (aB-Ba)ax
R B m'n’m’n  BoResB:K) Umnvg (B) <am9 an’golglam'g a’m”§0>

(12)

where a for instance, is the mth Wannier function at the site

mo0’
R = 0 (the origin). Since the final wavefunction must be normalized,

Ead o~
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each term in Eq. (12) will have its greatest magnitude when the G's
represent one "'Frenkel-like” exciton (either y =0, :}:’ =0, y=R, or
Z’ = R,) and a distribution for the other electron of roughly the same
spatial extent as UmnuK(E)‘ This will maximize the terms because
in this case the G's wilf not waste their amplitude in places that won't
increase the values of the sums in Eq. (12). Thus the final state will
have a "Frenkel-like" exciton and a general exciton of roughly the
same spatial extent as the initial exciton. It would be an actual
Frenkel exciton if the two excitations did not interact at all. Figure 1
in section A shows roughly what the process will look like if one of the
last four terms dominates, that is, if the excited electron remains in
the same orbital. The above equations demonstrate that the most
efficient relaxation process for a general high-energy exciton in an
insulator is to ''fission'' into a Frenkel exciton and an exciton of the
same type as the initial one. Naturally energy must be conserved in
this process. This final result rests almost entirely on the approxi-
mation given by Eq. (11). However, this approximation should be a
very good one for any orthonormal set of functions which represent an
insulator. It should be especially good for the holes, that is, for the
charge clouds azR agrp where ¢ and ¢’ equal m, m’ or m”.

In order to generalize this result to any insulating condensed
material only a couple of changes would have to be made. (1) K would
no longer be a valid wavevector so states of different K would have
matrix elements connecting them. (2) Wannier functions could not be

used but another set of localized orthonormal functions could be found
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by some kind of orthogonalization procedure (see for example
Lowdinl7). Thus the result obtained here does apply to any insulating
condensed material and the conclusion that the most efficient relaxa-
tion process is an ""exciton fission" or "energy fission'' process
leading to one localized excitation (in the Frenkel exciton sense) and

one excitation which has roughly the same delocalization as the initial

state is still valid.
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INTRODUCTION

A problem of major interest to spectroscopists within the last
few years is the nature of resonance Raman and Rayleigh scattering
and the difference between these scattering processes and fluorescence.
This problem has arisen due to the change in experimental techniques
of the last few years.

In a traditional off-resonance Raman scattering experiment, the
experimentalist used to excite the system with a very narrow light
source (mathematically a delta function in frequency). Then by
observing the light coming out from the system at frequencies dis-
placed from this original frequency, the experimentalist obtained
information about the ground state of the molecule. No time in.forina-
tion was obtained, however. On the other hand, in a traditional reso-
nance fluorescence experiment a broad-banded light source that turned
on and off very quickly (mathematically a delta function in time) was
used to prepare the system in an excited state. Then by observing the
fluorescence decay, the lifetime of the excited state was measured.

Now, however, with the advent of lasers that are relatively
narrow in frequency (on the order of tens of wavenumbers or less) and
also relatively narrow in time (as fast as 5 picoseconds), experiments
can be done with excitation having a narrow frequency bandwidth and
with time resolution as well. Also, by using pulsed tunable dye lasers,
excitation over wide ranges in the visible and ultraviolet can be
obtained.

1
In an experiment on I,, Williams, Rousseau and Dworetsky
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observed that when they excited exactly on resonance and looked at the
time decay of the light displaced from their incoming light by a vibra-
tional quantum of the ground state, they saw an exponential decay with
a lifetime 7. This was exactly like previous fluorescence experiments.
However, if they moved their exciting line slightly off resonance, they
saw two different decay times--a fast one that looked like their light
source and a slow one with the same lifetime 7. They did not, how-
ever, have a good explanation of their results.

To explain their results, a simple model of a primary state
having all the oscillator strength and interacting with a continuum
of states was used. The primary state represented the excited state
of I, they were exciting and the continuum represented states
having the molecule in any vibronic level of its ground electronic state
and having a photon of any frequency present. The exciting light
source was modelled as an uncertainty-limited pulse having width in
both time and frequency. The solution of this problem using Green's
functions is given in section A.

An extension of this work to include two vibronic levels of the
excited electronic state is discussed in section B. Naturally, a model
containing two primary states with oscillator strength was used.

However, a one-photon light source interacts with a molecule
in its ground vibronic state to form not only the molecule in its excited
state and no photons present but also the molecule in its excited state
with two photons present. These so-called two-photon terms contri-

bute to the Rayleigh and Raman cross sections, especially off-
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resonance. A model having many states with oscillator strength which
do not interact with each other but do interact with the continuum of
one-photon states was used in section C to discuss the contribution of
these two-photon states. This same model was used to discuss excita-
tion profiles for Rayleigh and Raman scattering from a diatomic mole-
cule in section D.

The one-resonance model of section A can also be used to
discuss radiationless transitions. _ In this case the continuum states
can be not only the states of the radiation field but can also be vibra-
tional levels of other electronic states which carry no oscillator
strength. If these latter states interact strongly with the primary
state, then the peaks of the absorption spectrum in the neighborhood
of the primary state will not occur at the positions of the zero-order
states. A method was found, however, of extracting the positions of
the zero-order states directly from the absorption spectrum. This
method is given in section E and is shown to give good results for
naphthalene.

The key formulae needed in this part of the thesis will be proven

in the mathematical appendices.
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I. INTRODUCTION

Whole new classes of optical and spectroscopic experiments are
being made possible with the development of narrow line tunable dye
lasers, and in the near future the availability of tunable “'uncertainty-

limited width' pulses is expected. “

The latter will afford the experi-
mentalist with the best combined frequency and temporal resolution

consistent with the limitations imposed by the uncertainty principle.

One question that naturally arises from these types of experiments
concerns the temporal characteristics of excitation by a pulse as it is
tuned through an atomic or molecular resonance. This question was
specifically raised by Williams M.s in a time-resolved scattering
experiment on the I, molecule.

A theory to infinite order in perturbation theory describing the
resonance or near resonance interaction of an excitation source of
general shape with an atomic line of general shape has recently been
developed. While the general problem requires numerical solution,4
an analytical result is possible for uncertainty-limited excitation
pulses which have Lorentzian frequency shapes providing the radiation
field for spontaneous emission can be adequately approximated as a
uniform continuum over the range of the resonance. This model is
relevant to resonance or near resonance scattering and to absorption
of white radiation followed by re-emission of light. We shall first
outline a more general theory and then apply it to this special case.
Afterwards, the case of two resonances will be considered, from which

resonance Raman scattering formulas can be derived.
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II. GENERAL SOLUTION FOR A SINGLE RESONANCE

The time evolutionfor t = 0 of a state (pp prepared at t =0 by a

delta function pulse is

o(t) = Ut) Pp 1)
where the time-evolution operator

Tt} = o 0 @)
is expressed in terms of the exact hamiltonian,

3 = Hatom * Hyag + Hint» (3) |

for the atom interacting with the radiation continuum [ref, 5, ch. 3,
section 13], For a non-delta function pulse S(t) of intensity
sufficiently weak that one may ignore the effects of stimulated

emission and n # 1 photon transitions, the time-development of the

state (pp is
¢ -ige (t-t)
yit) = [ e S(t')qop dt’. (4)

Note that /(t) satisfies the time-dependent Schrédinger equation
because the operators are retarded, giving no contribution beyond the
observational time t. S(t’) can be thought of as an envelope of 8(t')
pulses, each of which is supposed to prepare the state (pp instanta-
neously. Though each pulse is infinitely broad in frequency space,

interference among them gives rise to a pulse of finite bandwidth.
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y(t) is thus the coherent superposition of the decays of the prepared
state attimes t’ over the range -« <t’ < t. Eq. (4) is thus the
generalization of eq. (1) for non-delta function excitation pulses.
S(t’) has the transform

+ 0

. 14
st) = @)™ [ e sy, (5)
- 0O
where S()\) describes the frequency shape of the excitation pulse.

From Cauchy's theorem,

t -ix(t-t") &,

vt = @)™ [ dt'sE) $S—aP o) (6)

- 0

where the path of 93 must enclose the poles of 3¢ (a branch cut along
the real axis). A suitable contour runs from +« to -« just above
the real axis and then into the lower half-plane around a semicircle

of radius R — «, The probability amplitude squared at time t is thus,

-+ oo

-ix(t-t") 2
[ dxe Gpp®) I, (7)

- CO

ot
Koplw @D1° = |5 J swar

where G = (\-3)7".

6 where there

In the physically artificial, but illuminating, case
is but a single resonance, that is, where the state <pp carries all the

oscillator strength,

Gpp® = [x-2g-T)]" (8)
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with
+ |V [*ple,) de
ro) = [ Bk Kk 9)
- 00 A - Gk

where for the present problem Vpk is the matrix element of H. ot
between the zero-order atomic level with frequency ), and a radiation
continuum level at frequency ¢, ; p(e)) is the density of such
continuum levels,

In the neighborhood of the resonance, it is a good approximation
to consider leklzp(ek) constant. Denote this constant by 7'y, in
which case ImI'(d) = -y, and the Cauchy principal value of eq. (9)

gives ReI'(A) = 0. Thus,
Gpp®) = [( - 2,) - i1/l - 2)% + 721, (10)

This Green function, as is well-known, leads to a Lorentzian-shaped
absorption line, which has half-width ¥ at half-height, centered at
X =g

The simple Lorentzian lineshape problem is described here
only because it leads to an analytical expression for the time depen-
dence. If |Vpk|2 ple,) is nonuniform, even of arbitrary shape
containing maxima and minima, a dispersion relation from eqgs. (8)

and (9) allows G__.(\) to be obtained for the near resonance problem

4

pp

by numerical methods from the absorption spectrum, © which is

proportional to ImG__(x). In such cases, ReI'(A), a frequency-

pp
dependent ''level-shift' term, is nonzero and plays an important
role. 1 The limit of narrow, 'shapeless' resonances often used in
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the physics literature®??

is avoided.

Continuing now with eq. (10) and letting the excitation pulse S())
also be a Lorentzian a?/(@%+ )®) in the frequency variable ), for
convenience centered at ) = 0 with half-width a at half-height, one
has,

s) = tae | (11)

a cusp function. The intensity of the excitation pulse is [S()|?, a
Lorentzian squared. The shape of S(A), and thus S(t’), was chosen
for several reasons: (1) it yields an analytic solution; (2) neither S())
nor S(t’) have physically unreasonable discontinuities such as arise
for instantaneous turn-ons; and (3) both S(\) and S(t") have only one
maximum, consistent with the way pulses generally look. A gaussian
S()) yields a gaussian S(t") but does not lead to analytical expressions
as in egs. (12) below. A pulse S(A) =1/(\ + ia) (which yields a
Lorentzian in intensity) has a Fourier transform S(t’) which is zero
for t' < 0 and -ie 2’ for t' > 0 and thus does not satisfy criterion
(2); while square pulses, even with finite rise and fall times, do not
meet criterion (3). The cusp function S(t") in eq. (11) does resemble
the subpicosecond pulses recently developed. 2

Using egs. (10) and (11) in (7) and evaluating the elementary

integrals yields,

](cpplzp(t» |2 = {4[(v + 2)% + Aﬁ]}_laz ezat, t<0; (12a)
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Kol )7 = L6 - 27 4 21y + 27 + 21}
x a*{a%e™ " 4 [y + )" 4 22 o770t
- ae—(}d"a)t[('y +a)cosr,t - A simp,t]}, t=0. (12b)

Egs. (12a) and (12b) give the probability that the state p is occupied at
time t; the total intensity of light emitted or scattered at time t is
proportional to this probability. It should be stressed that these
results are for uncertainty-limited excitation pulses, where S(\) and
S(t’) are Fourier transforms of one another; all the ramifications of
the uncertainty principle are built in automatically. Both l(gophp(t)) ‘2
and its first derivative with respect to time are continuous at t = 0,
although eq. (11) has a cusp there.

It is important to note that the decay is dependent only upon the
half-widths 5 and a, and is independent of the frequency separation
between the atomic resonance and the excitation pulse. The frequency
separation ), occurs in an oscillatory part of the time evolution.

This result is not in agreement with the statements of Williams g’g_@_l_.,?’
""As the incident frequency is moved only slightly away from resonance,
the lifetime (At) for the re-emission is expected to be limited by the
frequency difference (Aw) between the excited state and the incident
frequency, and should be given approximately by an uncertainty
relationship, At = 1/Aw", and ""As the laser frequency is tuned away
from resonance with a discrete transition, both the re-emission

intensity and lifetime must continuously decrease'. Eq. (12b) shows
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that as ), increases, the term decaying as g~ 2al

(light-source decay)
increases in intensity relative to the other terms, but there is no
change in the two exponents. Thus as the light source moves off
resonance one must look in the low intensity portion of the overall
decay curve in order to pick out the temporal component characteristic
of the resonance. This can be confirmed by looking at the experimen-
tal results of Williams et al. ,3 although their resonance was Doppler
broadened. This would tend to cause an incoherent superposition of
the oscillatory decays and average them out.

When the exciting light is purely monochromatic, a = 0, S({t’) is
infinitely broad, and the time evolution reaches a steady state having
the Breit-Wignerlo form,

I 2

|<(Pplw(t)> = Lat(y?+23)7. (13)

This is equivalent to Heitler's formula [ref. 5, pp. 201-203] for the
intensity of ''resonance fluorescence'' excited by a sharp line. It is
also of course the same as near-resonance '"Rayleigh scattering
formulas. Off resonance, the theory describes the interaction of the
imposed exciting light pulse with the ''tail" of an atomic resonance.
The resonance and its tail in this case arise from the natural width
for spontaneous emission, i.e., an atom interacting with the radiation
field as in eq. (3). There is no need to bring in "virtual state"
language, since the tail of the resonance corresponds to actual states
of 3C.

In the opposing limit where excitation is by white light, S(t’) is

a single delta function, a — «, and eq. (12b) tends towards exponential
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decay proportional to e 2Vt

This is the limit of absorption and re-
emission by the atomic system. It is important to note that to effect
absorption and re-emission from an atomic state, one must excite the
entire state, not just part of it. This requires broad-banded excitation.
In this limit for a Lorentzian line, real and imaginary parts of G
contribute equal exponentially decaying parts to the time evolution of
the excited state. On the other hand, if the pulse used is narrow-
banded, the process excites a mixture of the atomic state and radiation
field states [Ref. 5, pp. 201-203]. Real and imaginary parts of G contrib-
ute unequally. The contribution from the real part is small in the
vicinity of resonance but falls off less strongly than does the imaginary
part as (x» - ) increases. Thus, narrow-line excitation, even for

(A - %,) approaching zero, is physically different from absorption into
and reemission from the atomic state. It perhaps is more properly
called scattering, either of the resonance or nonresonance variety.
However, if one wants to go to the trouble, it is perfectly possible for
any tybe of excitation interacting with a Lorentzian resonance to

extract out a component having equal contributions from real and

imaginary G, which could be called the ""absorptive part' of the process.

III. TWO RESONANCES

11 for the

Exact Green function matrix elements are also known
case of two atomic levels interacting with the radiation continuum.

With the level corresponding to <pp placed at ), and that corresponding

to Po’ at )\,
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A=2- T
Gpp - (14)
- = F - 4 - 4 - ; V& ’
A=2 - -2 -T) (Vpp + A)(Vp p* A)

le+A

o T TP e
A= Ao ™ A-)\O-I‘)—(pp,+A)( p'p )
where I' is as before and,
V.,V p(€)
A= [—REPE g, (16)

X-Ek

F,, A’, Gprpl ’ and Gpp

ately substituting p for p’, ), for »;, and vice versa. If the uniform

+.can be obtained from the above by appropri-

continuum approximation is again made, |Vpk|2p(ek) =7 'y and
IVp,klz =g 'y’', then I = -iy and T'' = -iy’ in egs. (14) and (15).
Now if one excites a state X = (<pp + f% G’ Y/ @+ f)% where f
is the ratio of the squared matrix element of Hint between the ground
state and ¢ o divided by that of gop , then the time evolution of this
state is given by eq. (6) with qop replaced by x. Since G is retarded,
the integral over dx in eq. (7) is zero if t <t’, and substitution of
eq. (5) into eq. (6) then yields

400

q/(t):i.; [ se ™ gn)xda . (17

- 0O

To obtain the total scattering intensity in the time-independent regime,

we suppose that S(\) = 6(x - 1), in which case
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[x Ty 1= 2oL+ 917 Gy 00 + 16 ) P12 Gy )+ Gy 7 .

(18)
Eq. (18) should be compared with the usual perturbation

expression for Rayleigh and Raman scattering near a resonance. *

If summations over multiple resonances and vibrational quantum

numbers are not considered, the perturbation result can be obtained

from eq. (18) by way of the following approximations: (1) neglect of

G.,.»; (2) neglect of (Vp'p + A) and (Vpp, + A') in the denominators of

pp
G G,... and G o' (3) neglect of A and A’ in the numerators of

pp’ "p'p p
Gp,p and Gpp, ; (4) setting (X -2,-T') equal to (n,-2rg). Approxima-
tion (1) and the trivial approximation (4) are valid near the resonance
S Xo- Approximation (3) is the neglect of indirect interaction of cpp
with <pp, through the radiation continuum in comparison with the direct
interaction. Since natural linewidths are usually small compared with
the magnitude of the direct (interelectronic or vibronic) coupling,
approximation (3) is undoubtedly valid in most cases. Approximation
(2), however, which neglects the effect of carrying the perturbation
expansion to infinite order, is questionable when X -, is small
compared with V.

pp
dominant in the resonance region, but cause only a spectral shift.

, Vp,p/ (x-2l) . Infact, the neglected terms are

To obtain the time dependence in the two-resonance problem for
an "uncertainty-limited' excitation pulse of general shape, one may
perform the integrations in eq. (7) or (17) numerically. This problem

has not yet been investigated in detail,

*See egs. (15) in ref, 12,
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ADDENDUM

After this paper was finished, a paper by Friedman and
Hochstrasser was submitted for publication in Chemical Physics. i
A major difference between the two papers is in the shape of the
excitation pulse, but a number of minor differences exist as well.
Both papers support the idea that the temporal behavior following the
interaction of light sources with resonances depends crucially on the
nature of the light source, * and furthermore that these results can be
calculated quantitatively not only for limiting cases but for inter-
mediate ones as well. It is these intermediate cases that may prove
to be the most interesting. It should also be noted here that another
paper. entitled ""Radiationless Transitions'" by J. Jortner and

S. Mukamel in preprint form was received by the authors more
recently. A portion of this paper deals with similar subject matter

as presented here and reaches similar conclusions. It is fair to say

that there is apparently considerable activity in this area.

*This idea was stressed in an early paper by Rhodes et al. 14

See also a recent paper by Rhodes. 15
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I. INTRODUCTION

In the usual theories of Raman and Rayleigh scattering, ™%

the
light source is considered to be a delta function in frequency. In a
previous paper, 9 the interaction of a light source having widths in both
time and frequency with a single resonance was discussed. In this
paper the model will be extended to include two vibronic levels of an

excited electronic state in order to be more realistic for near reso-

nance Raman scattering.

II. MODEL AND FORMALISM

The total Hamiltonian of the system is
3 =Hy+V (1)

where H; contains the molecular Hamiltonian and the radiation field
Hamiltonian and V contains the molecule-radiation field interaction.
The model system used consisted of a ground (g) and a single excited
electronic state (e) lying 20,000 cm ™' above the ground state. Each
of these electronic states was given two vibrational levels v = 0 and
v = 1 with vibrational spacing 1200 cm™ and 1000 cm™ for the ground
and excited states respectively. The two vibrational levels of the
upper state (|p) = |e0) and |p’) = |el)) were considered as
discrete, and interactions between these two levels were neglected.
The two vibrational levels of the ground state plus the radiation
continuum were modeled as two continua (|a) + |b)) having zero-

order energies £y = Eg + hw and €} = eg + €vg + hw, respectively,
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where hw is a photon energy, e__ is the ground vibrational spacing

veg
and € o is the energy of the ground vibrational level of the g state.
From now on €g will be set equal to zero; Vaars Vi » 3nd V) were
also neglected.
The light source excited X = (|p) + £2|p’)) —L— where
1+1£)2
i+ (g0]v|p)
f2 = ——oo—
(g0|V[p)

ground state). Therefore the wavefunction of this system at time t is
5-8

(this assumes that at t = -« the molecule is in the

given by

—. - ’
o iat-t"

t 0
t) = — [ dt’ s’ da 2
v = 5 [ se) [ BEo— @

where the limit n — 0" is taken after the integrations and S(t’') is the
amplitude of an uncertainty-limited pulse at time t’ whose frequency

spectrum is S(w), that is

SE') = -

L 7 o shaw. 3)

V25 e
To calculate the intensity of emitted/scattered light, one needs
to know the probability that one ends up at t = «» in each Ia) state and

each Ib) state. The total intensity I(w) at a given photon frequency

w 1is proportional to

1(w) « wo@){ |[{alwt =) |*+ [(blyt ==} @

_ € €p _ Evg

p(w) is the density of photon states at frequency w. Now

+ w (same photon emitted) and
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. t X s ’ 1
[alven "= l5 — [ ase) [ ae ™ Da m+foyonl

(5)
from Eq. (2) where G(\) = (\ - 3¢ + in)'l. The matrix elements Gap

and G,. can be easily calculated from Dyson's equationg’ 10 to be

p

\
Gap@) = - ap . (6)
(A -ea+in)(a-ep+iy)

and similarly for Gap’ (1), where ¢ p is the zero-order energy of the
|p) state (20,000 cm™). The approximatiods made in Eq, (6) are the
neglect of the coupling through the continuum of |p) to |p’ ) and the
assumption that |Vap|2p(ea) and ]prlzp(eb) , Where p(e,) is the

density of ""a'' states at zero-order energy e¢_, are independent of €

a’
and €1 respectively. This latter assumption leads to Lorentzian

a

lineshapes for |p) and |p’).

If S(w) is a Lorentzian®

Slw) = —it (7
A+ (W - wg)?

with full width at half maximum of 2A and centered at w =w,, then

S(t’) from Eq. (3) becomes

1 ’ . ’
St) = () pem A8 gt (8)

a cusp function. This assumes that the pulse is transform-limited.
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Now if one evaluates the integrals in Eq. (5) using Eqs. (6) and
10

(8) following the method of Srivastava and Fontana, "~ one gets
: 1 2 A% - (wi-w,)”
(Pt==9) |* = 1+ 1~ %o
| v 1 1 4f A2+(wi—w0)2 A2+(wi—(.oo)2

2 2 = 2
x{ lVipI ) fIVip' | . 2f2 VipVip,[(wi—wp) (wi-wp,)+')/ ] }
< (wi-wp)2+y2 (wi—wpr)2+'y2 [(wi—wp)2+‘}/2][(wi—wp,)2+72]

(9)
where i is a or b and y was set equal to v’ for convenience,
To calculate actual spectra from Eqs. (4) and (9), the usual
dipole approximation for the matrix elements Vip was used and the
electronic transition dipole was assumed independent of vibrational

coordinates. That is,

(g0]ulei) ~ (gluled(golej), (10)

where {g0|ej) is a Franck-Condon factor, and y is the dipole
moment operator. The following values for the Franck-Condon

integrals were assumed,

(g0]e0) = —‘[Zi (g0lel) = -3
(g1le0) = 3 gllel) =+ X3

such that the usual conditions of completeness and orthogonality

2: (gjlei) (eilgk) = &, (11)
i ]

are obeyed.
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III. RESULTS

A representative spectrum calculated from Eq. (4) is shown in
Fig. 1. The values of the parameters chosen for Fig. 1 are A = 20 cm™,
y =10 em™, and w, = 15,000 cm™, The ordinate is the relative
intensity (since no value was assigned to (g|u|e)). The dominant
peak in Fig. 1 occurs at w,, the peak of the exciting light, and is thus
what is normally called the Rayleigh peak. The second largest peak
occurs at w, - €vg /fi and thus is the Raman peak. The four small
peaks at higher energy correspond to the ''off-resonance fluorescence"
peaks. Energy conservation has not been violated because of the
presence of the high-energy wing of the light source,

The relative heights of the ""Rayleigh' vs. the "'fluorescence’
peaks are governed by the relative intensities of the wings of the light
source and resonance. The widths and shapes of the Rayleigh and
Raman peaks are almost exactly those of the light source (the wings of
the resonances only distort them slightly). Similarly the fluorescence
peaks have approximately the shapes of the resonances. On-resonance
the shape of the emission peak is the product of the light source shape

and the resonance shape.

IV. DISCUSSION

The right-hand side of Eq. (10) is the first term in a Herzberg-

Teller expansion (see, for instance, Albrechtl)

u(Q)=uo+(g-%)oQ+--- (12)
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Figure 1. A semilog plot of the relative emission intensity

calculated from Eq. (4) when the excitation frequency

1

(w,) is at 15,000 cm ™.
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where Q is a normal coordinate. The second term (the vibronic
coupling term) of this expansion is responsible for the usual Av = +1
selection rule for the Raman effect. 1 However, Fig. 1 shows that
Raman-like intensity occurs even in the absence of the vibronic
coupling term. The reason for this is that the electronic energy
spacing relative to the exciting line is not so large that vibrational
spacings can be ignored in Eq. (9). Because of Eq. (11), only Rayleigh
scattering can occur in the limit of excitation very far from the
vibronic levels without the vibronic coupling term. However, as the
energy of the exciting line approaches that of the electronic resonance,
an imbalance in favor of the lower vibrational levels of the upper elec-
tronic state occurs, and the scattering becomes modified by Franck-
Condon factors., Infact, in a real case where there are many vibra-
tional levels, an entire Franck-Condon envelope of lines will begin to
emerge as resonance is approached. This fact has been confirmed
experimentally. LL-13
The spectroscopist would ordinarily think of a line displaced
from the exciting line by a vibrational frequency of the ground state as
a Raman line, However, since this line occurs without the vibronic
coupling term, it may better be thought of as a Franck-Condon addition
to Rayleigh scattering. The intensity ratio of the Rayleigh-like line to
the Raman-like line as a function of off-resonance energy for the above
simple model [Eqs. (4), (9) and (10)] is shown in Fig. 2. Again
A=20cm™ and y =10 cm™. Unfortunately, little experimental
data is available to check this. The only system for which we could

14

find Rayleigh/Raman cross sections was benzene,~ ~ and their
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Figure 2. The ratio of the Rayleigh to Raman peak intensities
as a function of the energy displacement of the
excitation frequency (w,) from the 0 — 0 transition

frequency.
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excitation was so far from resonance that the contributions from many
excited states would be nearly equal; thus our simple model would not
hold.

The relative intensities of the contributions of the first two terms
in Eq. (12) to Rayleigh-Raman scattering depend upon the nearness to
resonance, the magnitudes of the dipole derivatives (9u/9Q), for
various normal coordinates, the Franck-Condon factors, and the
manner by which the wings of the resonance and light source decrease
with frequency. All this information is contained in the absorption
spectrum and/or the emission spectrum of the molecule, and in fact
the formalism given in Eq. (2) allows one to calculate scattering
intensities directly from an absorption spectrum in a way previously
outlined for another problem. ha A word of warning, which is fairly
obvious, is that in a real molecular problem, not only is there an
entire set of vibrational levels associated with each electronic state,
but many electronic states may contribute to the scattering. This
presents a particularly troublesome problem when the exciting line is
far away from any one resonance, and the wings of all the various
resonances are contributing in a complicated way, with weight often
being in favor of intense, but distant, ones. Such overlapping of
contributions will tend to smear out to some extent the effects dis-
cussed here. Inclusion of distant resonances is possible using the

16 17

methods of Mower™ "~ and of Hong.

Time dependence associated with the scattering process can be
obtained from Eq. (2) and, as mentioned in a previous paper, ®

consists of more than a single component. In general there is
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expected to be a decay term (not necessarily exponential) associated
with each isolated peak of a resonance, * a decay term associated with
the light source, and beat terms among them. For very complicated
multipeaked resonances the decay is complicated with its own maxima
and minima, and no simple statements can be made about it. See,

however, Delory and Tric, L&

where a simplified approach is used to
obtain some interesting properties of multipeaked resonances. In
general, however, one must simply solve Eq. (2) in all its glory from

a knowledge of S(t) and G(w).

V. CONCLUSION

Raman scattering, Rayleigh scattering, and the absorption and
reemission of light on-, near-, or off-resonance are all one and the
same phenomenon from a theoretical point of view. This paper out-
lines ideas and methods unifying the theory of such effects,

The major point of the paper is that molecular or atomic
resonances are considered in a higher order of approximation than in

the conventional theories of the interaction of radiation and matter,

*This part and the molecular beat terms are the "most important"
parts if one is interested primarily in the molecule. The approximate

approach of Delory and Tric18

utilizes this fact, but the neglect of the
light source and the treatment of the compound resonance as a super-
position of simple resonances are not expected to provide an adequate
theoretical description for the response to transform-limited light

sources in the subnanosecond region.
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the radiative continuum for spontaneous emission together with non-
radiative continua being included to infinite order in perturbation
theory at the outset. The resulting '"resonances' have widths and
shapes depending upon the density of states in these continua and
the strength of the interactions with them.

The exciting light source is looked upon as an added per-
turbation to which the system instantaneously responds. While
further theoretical elaboration is possible, in the present paper
the light source is considered only as a means of '"preparing"
states belonging to the resonance. In this context the scattering
of light from a narrow-banded source interacting far out on the
wings of a resonance can be loosely thought of as an absorption
and reemission process from these wings. The '"virtual state"
language of the traditional perturbation theory is unnecessary.
The absorption intensity as a function of frequency over the entire
resonance, including the fantastically weak wings, is therefore a
quantity of importance. In polyatomic molecules, where smooth
and structured continua from many sources may play a role,
conventional theories of light scattering, which in effect assume a
particular type of simplified lineshape, will undoubtedly be found
wanting when compared with measured scattering amplitudes over
a wide range of light-source frequencies.

In the near-resonance region the conventional theories also

fail, requiring higher- and higher-order perturbation theory on
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the one extreme, or the inclusion of an artificial damping term on the
other. The present theory smoothly bridges the gap from far off-
resonance right into the resonance region, with the added advantage

of flexibility in the light source function and the resonance shapes.

The theory applies equally well to narrow-banded excitation, tradition-
ally thought by the experimentalist to constitute a scattering experi-
ment, right through to broad-banded excitation, the traditional ab-

sorption and reemission experiment.

The time dependence of these scattering problems also
reveals itself in a transparent way, being composed of, besides
quantum beat terms, light source parts and molecular parts whose
relative intensities vary, among other things, with the off-resonance
energy (wa—wo). The off-resonance energy also affects the Franck-
Condon factors in the scattering process. Very far off-resonance,
the vibrational levels in a given electronic state can, to a good
approximation, be treated as equienergetic, giving rise to the
traditional selection rules Av = 0 in the absence of vibronic coupling
or Av =0, +1 in the presence of first-order vibronic coupling.
Nearer resonance, the vibrational energy levels closest to the
light source frequency have greater weight, and Franck-Condon
factors begin to evolve. As resonance with a single vibrational
level is reached, this level strongly dominates all the others giving
rise to the familiar Franck-Condon envelope in absorption and

re-emission processes.
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I. INTRODUCTION

1-3

In previous papers, a time-dependent theory of near-

resonance scattering/fluorescence was outlined. In this theory the

¥

effect of interactions' of the discrete molecular energy levels with
neighboring continua are, in principle, carried to infinite order of
perturbation theory. The continuum due to the decay photon field4
is particularly important, but continua, say, from the vibrational
density of states in a sufficiently complex molecule may also have

to be included. 5,6

The scattering process is then viewed as the
interaction of another field, the externally imposed exciting light
source field, with the resulting resonance profiles, near a maximum
for near-resonance scattering or far out on the '"wings' of a resonance
for off-resonance scattering. The time dependence is described by
the time evolution of system states in the resonance profiles
"prepared by the exciting light source.

To describe accurately light scattering excited fairly far from
an intensity maximum of a resonance profile, it is necessary to
include the effects of two-photon components in the composition of the
system states. These components yield the so-called antiresonance
terms in second-order perturbation theory. Contributions of these
components to the resonance profile and participation of them in the

time evolution process are essential for a complete theory of

TWe used the word interaction here in the spectroscopist's context.
The interactions occur, of course, between the particles comprising

the system, not the states.
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scattering/fluorescence. Our earlier papersz’3

dealt mainly with
near-resonance excitation, where the two-photon contributions are
unimportant. The present paper shows how two-photon terms can be
included, if coupling between them is not allowed, in this resonance
profile theory. Three and more photon contributions and relativistic
effects will not be included. Formulas will be derived for time-
dependent scattering/fluorescence for a weak exciting light, of
arbitrary frequency composition and having variable position from
far off-resonance into the resonance region. This formalism thus
unifies the perturbation theory results for time-independent off-
resonance scattering with the recent time-dependent theories for

1-3,7-9

near-resonance scattering. In addition it yields the time-

dependencies of the antiresonance terms, which have not been given

before.

II. INTERACTION SCHEME

The total Hamiltonian of the system is given by
H = Hpop + Hfjelqg + Hint - ()

The radiation-matter-interaction Hamiltonian in the non-relativistic

approximation iS10T

2

Hig = 2 {- == [A05,0 0]+ 555 Amp0 A} @

TWe shall use Gaussian unrationalized units throughout.
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where the summation is over the molecular electrons, p; is the

linear momentum of the ith

electron, and é(xi,t) is the vector poten-
tial of the field at the position of the i electron. In (2) the term

p; é(xi,t) has been set equal to é(xi,t) - p;, since the field is trans-
verse., The field operators é(xi,t) in (2) are linear combinétions of
creation and annihilation operators. kd Thus the é(xi,t) " s term
changes the photon occupation number by +1 and at the same time
gives rise to off-diagonal matrix elements between molecular zero-
order components. The é(xi, t) - é(xi,t) term in (2) changes the
photon occupation number by 0,+2. Fig. 1 shows the interaction
scheme in terms of the eigenstates of H o1 * Hejelqe Which, as in the
conventional approach, form a convenient zero-order basis for the
problem.

To illustrate the method, the ground vibronic level (g0), an
excited vibrational level (gv”) in the molecular ground electronic state,
and an excited vibronic level (ev’) of the molecule need be considered.
To reproduce a resonance profile theory that contains as a special
case the conventional second-order perturbation result, one need
retain (Fig. 1) the zero-order zero-photon state |ev’;0) and those of
the type |g0;w’fe\' ; lgv”;w”g”) and lev’;w’fe\’,w"/g" ). The molecule
is assumed to be initially in its vibronic ground state and a one-photon
wavepacket [dwS(w) lw/e\ ) (in the interaction representation) is
assumed to be present, where S(w) is the amplitude of the packet at
frequency w and ¢ is the polarization vector of the packet. All zero-

order states except |ev’;0> are continuous. For later comparison,

the conventional second-order perturbation results will now be given,
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Figure 1. The eigenstates of H o1 * Hjelas Also shown are the
interactions between some of the states due to Hint'
For clarity some interactions were omitted, but all the
various types of interactions considered in this paper

are shown.,
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III. CONVENTIONAL SECOND-ORDER PERTURBATION THEORY

In conventional second-order perturbation theory the incoming
photon is considered to be monochromatic. The differential scattering
cross section (using the dipole approximation in the conventional

Kramers-Heisenberg theory) from an initial state IgO;w'£’> to a final
12

n_n

state |gv";w €”) is given by

do _ (¢ 1
dn mec2 m s

. w” ’ "
) ( 7)l60v”(§'£)'
e v

, +
E(ev') - E(g0) -hw’ E(ev’) - E(g0) + hw”

)

[ (gv" |p- €”|ev')(ev' |[p- ¢'|g0)  (gv"|p- € |ev'Xev|p- ﬁ"|g0)]' ’
x Pl o~ s ~ ~

(3)
where the factor Oyr means that the first term in Eq. (3) can lead
only to Rayleigh scattering. The summations involving the other sets
of terms (the so-called resonance and anti-resonance terms) are only
over the vibronic components ev’ since we have considered just a
single excited state of the molecule.

In this formula, the two-photon states give rise to the third set

of terms, the antiresonance terms. Note that the energy denominator

for the antiresonance terms is (hw, +Hw"”), where fw, = E(ev’) - E(g0),
while for the resonance terms it is (hw, - hiw’). The only other

difference in the resonance and antiresonance contributions are an

*Sakurai's formula has been multiplied by the factor 47 to convert his

Heavyside-Lorentz rationalized units to the Gaussian units used in this

paper.
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interchange of ¢’ and ¢”, the summations being over an identical set
of molecular excited levels.

An important point to be learned from these well-known facts is
that a two-photon component |ev’ ;w'e’,w"e"”) with energy

[E(ev’) - E(g0) + iw’ + hw”] behaves as if it were a distant resonance

interacting with a single decay photon ''state" |gv” s /e\”) through the
annihilation operator for (w’e’) photons. This two-photon component
is thus totally analogous with that part of the zero-photon component
|ev’;0) destined to decay into a particular lgv";w"g" ).

Eq. (3) clearly fails to give reasonable results on resonance
since the first term in brackets blows up. It also does not apply for
time-dependent scattering, since its derivation depends on the light
source being turned on at t = 0 and left on forever. A more general
theory, which encompasses these results and corrects their defects,

will now be given,

IV. TIME-DEPENDENT THEORY

The cross section By i for a transition from a state |a.) to a
state |b> is defined as the transition probability per unit time (Wb
divided by the flux, 13> 14

which is ¢/V for a one-photon wavepacket,

where V is the volume of the system. That is,

Opeal = = Wpea) - )

The transition probability per unit time (for one molecule) is given

by15



19

l 2

Yp—-a®

< [ely o) (52)

(bly m»* S ®lye) +c.C. (5b)

where (t) is the wavefunction of the system at time t, C. C. means
complex conjugate and at t = -« the system was in the state |a> .
The case of interest here is where |a) = [S() dw IgO;wg) (in the
interaction representation), as mentioned in section II, and (b| =
(gv";0"¢"|.

For transform-limited light source output,> the amplitude
function S(t) in the time regime is related to S(w) in the frequency

regime through the Fourier transform,

1 e
st) = en)2 [ e sw)de . (6)

=00

Using the time development operator U(t,-«) in the interaction

16,17

representation one gets

e’ | f dweiHJc/}i e_th/ﬁ S

(Mly ) = (gv" ;0" ()

x [1+H,; G(tiw)] |g0;we) (7)

where the zero-order Hamiltonian H, is the sum of the first two terms
on the right-hand side of Eq. (1). Then'?

i(E~ +w”)t -jwt

—((ii—t (blxp(t)) = -i/ﬁ(gv”;w”/e\”l fdwe v/h e S(w)

T|g0;we) (8)
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where Ey» + hw” and fiw are the zero-order energies of the states

lgv" ;" €”) and |20 ;we ), respectively and T is the transition matrix

which is defined as?%r 14,17
T|g0;we) = (Mt + Hypp GO0)H, L) |g0;we) (9)
where Gfiw) is the Green's function (iw - H) ™. Similar1y14
(bly ¢) =
. iEyyg + 0N ot
(gv";w”g" | fdw e e S((.U)Tl go;w£> (10)

hw - Ev” -hw” +1n

if one does not look head-on at one's light beam.

In a Rayleigh or Raman experiment, one counts all photons
which come out in a range of frequencies at least as broad as one's
light source. So if one puts Eqgs. (8), (10) and (5b) into Eq. (4) and

integrates over w” one gets

2 n '’ -1 t

Opyeg ) =f%r—éy—l(gv”;w €’ |fde(w)e 1 TlgO;wg)Ipr"dQ
(11)

where dQ signifies a solid angle and the density of photon states at

at energy hw” is given by18

"2
prdo = V242 (12)
(2re) n
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Equation (11) depends upon a knowledge of the experimental
excitation function S(w) in addition to G(hw). G@iw) may be obtained
semi-empirically from the absorption spectrum and a dispersion

relation. 1,5,19

It may also be calculated analytically for certain
models. The integration must usually be carried out numerically.
One can see from Eq, (11) that the greatest relative contribution to
the cross section for the transition comes from that part of the
frequency spectrum where there is good overlap between S(w) and
G(hw). G@w) of course is large near the center of a resonance but

small on the wings of a resonance. Naturally, if one excites more

than one resonance, there will be interferences between them.

V. TWO-PHOTON STATES IN THE TIME-DEPENDENT THEORY

The results of the previous section are exact. Now in order to apply

the formalism to the problem at hand, several approximations will

(2)
nt

term in Eq. (2)] except the ones directly coupling the initial and

have to be made: (1) neglect all matrix elements of H, [the second
final states, (2) keep only the two photon states lev’ ;we,w”e”), and
(3) neglect all couplings amongst the two-photon states or between the
two-photon states and the zero-photon state. With these approxima-

tions Eq. (11) becomes [using Eq. (9)]
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do.

b+a _ 2r V cw”e” -iwt
O 7 F o Pwr[(eviene"| [ave s (w)
1
tIgO we) +H IeV = 0) (ev';0|H 0;we)
ot f(w-wy) - T, | mtlg -
(1) . 1
lnt|ev’ we,w"e” (ev'; we,w" € ”letlgO we)]l

h (" +wy) + T
(13)

where Hint(-l) is the first term in Eq. (2). In Eq. (13) the matrix
elements of G were derived from the two-resonance model, 2,13,20

These matrix elements are

’, /. . 1
(ev';0|G(aw)|ev’;0) = o) T, (14a)

(ev';we,w"€ ”|G(ﬁw)|ev ;we,w"e") = . (14Db)

li(w" + W) + T

where hw, is the zero-order energy of the lev’;0) state and the T''s

are the level shift operators
/

+° v (€)?
0 = | Mde, (15)

=0 A=E

where A is now a complex energy variable, p(e) is the density of
continuum states as a function of the (real) energy €; and Vi(e),
assumed real, is the energy-dependent interaction matrix element

between the zero- or the two-photon state with states in the decay
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photon continuum at energy €. Thus the light source prepares |ev’ ;0)
and states of the form |ev';we,w”¢e”) for all w. If the frequency

dependence of the matrix elements of Hint can be ignored, Eq. (13)

becomes
do "2
b+a Vw (2 _
F) 2 e ., n_n . .
do L 2r)° c*n’ Kev;w 5 |Hmt|g0,w£)S(t) V21 8
-iwt
" _n (1) dwe S(w) (1)
+{gv";w"€"|H, . |ev’; 0) (ev;0]H. ,|g0:%¢)
» R 1 Wint fﬁ(w—wo)-I‘o int A

(1) - - (1
- (gv”;w"g" IHintleV, ;wﬁwn£n><evl;w£wn£ﬂ lHlntlgO;af\)

( . S V)| (16)

Alwy+w") + |
where w signifies an average frequency of S(w), and S(t) is given by
Eq. (6). Thus, within the approximations made, the first and third
terms have time dependencies exactly following the light source,
while the term involving the zero-photon resonance will yield three
types of terms--ones following the light source, ones decaying as
exp[ImI,t], where ImI; is the imaginary part of I and is negative,
and beat terms between them--as has been previously discussed in

2,3,7-9

theories of near-resonance light scattering. The two-photon

states show no intrinsic time dependence of their own even if they
have structure and width from Lsrss The reason for this is that the
part of the light source having a frequency w interacts with the
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resonance that is Aw” + hw, higher in energy. Thus, the light source
can never get close enough to the resonance in order to '"see'" its

structure.

If one neglects Hint(Z) and the two-photon terms in Eq. (16),

then Eq. (16) reduces to t‘he same results as the recent theories of
near-resonance light scattering. 2,3,7-9 For near-resonance light
scattering the second set of terms in Eq. (16) is much larger than the
third set (the antiresonance terms) due to the denominators. However,
the contribution of the first term to Rayleigh scattering can be com-

# Off-resonance, in a

parable to that of the second set of terms.
calculation on a model diatomic molecule, 21 the antiresonance terms
accounted for nearly half the scattering cross section for excitations

below resonance with the 0-0 transition by more than 7000 cm ™.

VI. REDUCTION TO THE RESULTS OF SECOND-ORDER PERTUR-
BATION THEORY

The conventional second-order perturbation results [Eq. (3)]
for light scattering uses a very narrow-banded exciting line. For
comparison with that result we can assume in Eq. (16) a delta function

form for S(w),

Sw) = 6(w - w') 17)

centered at frequency w’. This yields a time-independent cross section
since Egs. (6) and (17) imply constant |S(t)|®. If one now neglects

the level shift operators I in Eq. (16) and uses the matrix elements

22

of Hint given by Heitler,”“then Eq. (16) reduces to Eq. (3).
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Eq. (3) can also be derived from a second-order perturbation

expansion of T in the equation for monochromatic excitation 3> 23
2 " n_un ) ir ‘
%ba = —ﬁl % [{ev";w"e" | T|g0;0' e’ |* 6(E v+ Hiw” - Bw")

(18)
as has been done by Bandrauk. 24

The level shift terms, I, and L, » are generally small for
off-resonance scattering. Near resonance, however, the imaginary
part of I, forms the damping term and must be included. It is

generally introduced in an ad hoc fashion in theories of resonance
25

scattering and line breadth, ™ but such a procedure may not adequately
take into account the effects of detailed lineshape on the scattering
cross section. The real part of I, is also not small for a state inter-

acting with a bumpy molecular continuum. 5,19,26

VII. CONCLUSION

Inclusion of the two-photon states in the resonance profile
theory shows that they always behave as a distant resonance, exhibiting
no intrinsic time dependence of their own, but always building up and
decaying with the light source. The two-photon states have been in-
cluded under the assumption that they do not interact with each other
nor with the zero-photon state--that is, that all these states behave
as isolated resonances interacting only with the one-photon states of
the decay photon continuum. For time-independent scattering from a
monochromatic light source, the resonance profile theory yields both

the resonance and antiresonance terms found in conventional second-
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order perturbation theory results. Eq. (16) is thus a generalization
of previous theories of near-resonance, time-dependent light
scattering to include the "antiresonance terms' which are very im-
portant off resonance. Therefore it can be used for time-dependent
(or time-independent) light scattering regardless of whether the

excitation is on, near, or far from resonance,
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I. INTRODUCTION

There has been a lot of interest lately, both experimentally and
theoretically, in the excitation frequency dependence of resonant and

near-resonant light scattering. . Most experimental pa.persz"7

have

tried to fit their excitation profiles with a few parameters to the theo-
ries of either Albrecht®? or Peticolas et al. ,10 thereby neglecting the
vibrational structure in the excited state. A few experimental excita-

tion profiles have been fitted to either a two-vibrational-level model11

or a displaced harmonic oscillator mode112-14

to include this vibra-
tional structure. However, the interference effects between the reso-
nances have been blurred out in these papers due to the large widths
assigned to the states., This was also true in the theoretical paper of
Shorygin, 15 who used the displaced harmonic oscillator model but
applied it to a model system where again the widths were too broad.
The only papers to discuss interference effects between resonances
have been ones which used models with only two states. 16-18
This paper combines the resolution of the two-state model with
the on resonance interference effects due to many levels in the dis-
placed harmonic oscillator model and discusses Rayleigh' and Raman
scattering from a diatomic molecule. In contrast to the use of harmonic
oscillator models in these previous papers, data for an actual molecule
will be used as the basis of the discussion here. However, rotational
levels will not be included. In addition, a formula for the scattering

cross section other than that usually used by Raman spectroscopists,

is shown to be more accurate if a truncated basis set is used.
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The only other paper to carry out a detailed theoretical
examination of resonance Raman scattering from a diatomic is the

very recent paper by Rousseau and Williams. 12

However, they did
not calculate excitation profiles but instead calculated what Raman
spectra they should expect to see upon excitation into the dissociative
continuum for L,.

The assumptions and simplifications used in this paper will
be discussed in section II. In section III a comparison of our
formalism and the usual perturbation formalism will be given.

Sections IV and V will give the results, a discussion of the inter-

ference effects and the effect of relaxing some of the assumptions.

II. MODEL AND ASSUMPTIONS

The model to be used in this paper is a generalization of the

20 which allows the inclusion of more

model used in our last paper,
than one excited level. The molecule will be assumed to have two
electronic states, a ground and excited state, each having a full set of
vibrational levels. Rotational levels will be neglected. Thus the model
could apply to a dilute matrix of the molecuie in a rare gas at low
temperature. Alternatively, the rotational effects could be added in
later, as has been done by Rousseau and Williams, L6 Each of the
zero-photon excited state vibronic levels lev’ :0) , where the 0 stands
for the vacuum level of the radiation field, will be allowed to interact
with all states of the form |gv”;w”€e”), where gv” is the v” level of the

ground electronic state and w”¢" stands for a one-photon state having

frequency w” and polarization vector ¢”. In addition, the two-photon
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excited state levels |ev';w’e’,w"€”) will also be included and allowed
to interact with the one-photon ground state levels having one of the

same photons present.

III. FORMALISM
The initial state considered here is a = |g0;w’e’), which
assumes that the light source is a delta function in frequency. The

complications arising from relaxing this restriction have been

20

previously discussed. The cross section for scattering from this

state to a state b = Igv”;w"/e\") is given by20

dob__

"

a et w"lﬁ6 ',
W —p | By p € " E
aQ h*c* m V,

+ 2 B {(gv'[p- ¢"ev)(ev;0GEw) ev;0)(ev'|p- ¢’ g0)
: P P

+(gv"[p-¢’lev ev';0'e’ ,w"e" |GlHw') [ev';w'e’ e eV |p-€” [gO)}]*
1)

where 2 denotes a solid angle, p is the momentum operator and
G(hw’) is the Green's function operator given by (Hw’ - H)™', where
H is the total Hamiltonian of the system. The approximations in
Eq. (1) are (1) the inclusion of only two-photon states having both
the initial and final photons present, (2) the neglect of interactions
amongst the excited state levels and (3) a neglect of interactions due
to the A% term in the photon-molecule interaction Hamiltonian except

for the term which directly couples the initial and final states and leads
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to the first term in Eq. (1). As mentioned in a previous paper, 20
these assumptions are equivalent to those made in second-order
perturbation theory.

With the assumptions given above, the problem reduces to
that of a set of isolated levels interacting separately with a series of
continua (the Igv”;wg ) continua). In a manner analogous to one state
interacting with several continua the matrix elements of the Green's

function are then given by21 » 22

1
(ev';0|G(Hw’)|ev';0) = = ’ (2a)
ﬁw = (Eevl - Ego) = PVI (ﬁw )
<evl;wl£r’ w”/E\" lG(ﬁw') | ev';w'g’,w”g”)
- " -1 14 (2b)
hw” + (Eev' = Ego) T rvlwlw" (ﬁw )
where E__, is the zero-order energy of the |ev’;0) state
v'2
o H. . (€)p(e)de
no_ int
I, (hw') = ) {O o e (2c)

- v, . . .
and similarly for T, / » (Aw’) where H;  is the interaction matrix

element of the |ev’, 0) state with the continuum states having zero-
order energy € and p(e) is the density of these continuum states.
For a large molecule one would have to include molecular continua

due to other electronic states, as has been done previously. oy 2l
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However, for a diatomic molecule, the only continua that need to be
included are those of the one-photon ground-state levels. If one then

2
assumes that H;’nt (€) p(e) is independent of ¢, one gets

I‘V, (Hw') = -ia (3)

where a is a positive constant. This last approximation thus results
in a neglect of the real part of the level shift operator I and assumes
that the imaginary part is a constant. I‘v,’ L will be neglected
entirely since the denominator is so large already that it will not
make a difference.

With these last approximations the cross section from Eq. (1)
20,25

reduces to the usual Kramers-Heisenberg formula with a
"damping'' coefficient inserted.
d0pen et " | B, -
T 32 4 r T " o€ €
dQ h°c® w m V,
5 h (gv"|p-¢”|ev')(ev'[p-¢ [20)
® ’ 2 { = ? = .
v m hw' - (Eev,—Eg0)+ ia
(gv"|p-¢'ev')(ev'|p-¢”|g0) L "
ho’ + (Eqy - Ego)
If one now uses the well-known relationship
p == [tH-H] (5)

one gets



do-b“a _ e* w” l h ’ "
= — b6 v € €
dQ h’c? o’ m VvV, 0~ =

.5 Bev - Bgyr) ey - Bgg) (gv"|r - ¢"|ev')ev'| r - €' |0)
’ -
v h hw'- (B - Ego) + ia

(gv" |z ¢'lev')(ev|r - ¢r- ¢ 80 (6)
n °
The formula usually used by Raman SpectrOSCOpiStsl’ 8 is

Cora __e' e |3 g gv" |z " la")e" |z ¢'lg0)
dQ h2c? a” hw' - (E » - Ego) + ia

a

<gvlll£'§\'|a”><a”]£°f\”lg0>
Hw"+ (E,all -E )

HI (1)
g0

where the sum over a” is over a complete set of states (electronic
and vibrational). Resonance Raman spectroscopists generally truncate
the sum in Eq., (7) to include only one or two electronic states. L8
Equation (7) can be derived from Eq. (6)26 if one extends the sum in
Eq. (6) to a complete set of states, uses the commutation relations
between r and D, and neglects a small term coming from the ia in the
denominator. However, Eq. (7) cannot be as accurate as Eq. (6) if

one does not use a complete set of states since its derivation depends
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crucially on having a complete set. A comparison of the results
obtained from Eq. (7) and Eq. (8) will be given in section IV.
Since for a diatomic molecule the vibration is totally

symmetric, one can make the approximation of Eq. (8b)
@v"|r-¢'lev') = (gv'(g|r.¢'|e) ev') (82)

~ (gv"|ev' ) (g|r - ¢'|e) (8b)

where the first factor in Eq. (8b) is a Franck-Condon overlap and the
second factor is the purely electronic dipole matrix element. This
approximation leads to the terms generally referred to as the Albrecht

A terms. 8

For a more accurate calculation the true dependence of
the inner matrix element on the right-hand side of Eq. (8a) (which is
integrated only over electronic coordinates) as a function of inter-
nuclear distance over a wide range of internuclear distance would

8

be given. This leads to the Albrecht B terms.~ However, very few

of these calculations have been done over a wide enough range of inter-

nuclear dista,nce27

so the approximation of Eq. (8b) had to be made
here,
If one substitutes Eq. (8b) into Eq. (6) and assumes the

wavefunctions are real, one gets
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do, _ 4 \
dbga =ﬁ(:c4 (<g|£’£'|e>) ((glﬁ-f\"leﬂz

1 1 2
X{ ’ % - ” } I . (9)
Bo'-Eey-Exp)+ia  Hw"+ By -Ey)

IV. RESULTS

QOur calculations were performed for the diatomic molecule
BaO using as the state e its A'S excited state., This molecule is one
of a list of awkward choices of diatomic molecules having relatively
discrete absorption bands in the visible region. Literature values for
the constants w,, w X,, @y, and weZ628,29 for this state and the

ground state were inputted into the RKR procedure of Demtrdoder,

McClintock and Zare30

which was used to calculate turning points for
each vibrational level. Wavefunctions for each level were then
obtained by integrating the splined turning point data by the finite
difference method. = The average value for the electronic transition
moment, [(g|r- ¢’|e)|?, is one-third of R, the value of the transi-

tion moment in the molecular frame. This latter value was taken as
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1,39 x 10™" cm?.32 The 0-0 energy was taken as 16,722.3 cm™*.28,29

For all the calculations the a's for each state were assumed to
be 10 ecm™ . This was done for plotting convenience only; in actuality
the lifetime widths in a solid would be much less than this and the
linewidths would be governed by inhomogeneous broadening. Setting
the widths equal to 10 ecm™ affects only the peak heights on resonance
and of course the state widths. It does not affect the interference
effects that will be discussed later.

Twenty upper vibrational levels were included in the v’ sum.
Although the énergies and the Franck-Condon overlaps for the higher
states will not be as accurate as the ones for the lower levels due to
inaccuracies in the potential, truncating the sum at eleven or twelve
states led to significant errors off resonance for the Raman overtones.

Figure 1 shows the absorption cross section as a function of

frequency in wavenumbers. This was calculated in two different ways.

One way is froml'7
Oaps (@) = - ;—Z Im(gO;w£|T|g0;w£> v (10)
where Im signifies the imaginary part, T = Hmt* HthHmt’ H; ot
is the photon-molecule interaction, and V is the volume of the system.
Using the matrix elements of Hintzo’ &3 and G20 one gets
> @ o 1ol eV'>|

V' [fiw - (E go)]
1)
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The absorption cross section in cm” is plotted on a log
scale versus the exciting frequency in wavenumbers.

The solid line is the calculation from Eq. (11) and the
dashed line shows the calculation from Eq. (12) where

it differs from the solid line.
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The other formula for the absorption cross section is given by

Harri534

,  (12)

2 ” 0lev) 2a
@ = 412 |gls- glorf* T 1

o
Al V' [Bw - (Egy -Eyq)]*+2°

g

where Harris' formula has been divided by two to give agreement
with Eq. (11) for on resonance excitation with an isolated resonance.
Since Harris derived his formula using the semiclassical

H. i+ =-u° E, where p is the dipole moment and E is the electric

int ~
field, rather than the quantum mechanical Hints

to be more accurate than Eq. (12). The semiclassical H, + cannot

one expects Eq. (11)

take spontaneous emission into account and thus cannot treat properly
the loss of photons from a beam due to scattering processes.

From Fig. 1, one can see that on resonance and between the
resonances, the cross section calculated from Eq. (11) and that
calculated from Eq. (12) are superposable. However, off-resonance
the two formulae lead to different results -- Eq. (11) leads to a greater
cross section than Eq. (12) below resonance.

The parallel polarized (¢’ - ¢” = 1) Rayleigh ’cross section is
shown as a function of incoming photon frequency in Fig. 2. It was
calculated from Eq., (9). Note that the cross section is essentially
constant, only varying right near a resonance. This is due to the
fact that the first term in Eq. (9), which does not vary with frequency,

dominates except near a resonance.
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Figure 2. The parallel polarized (¢’ ¢” =1) Rayleigh cross section
calculated from Eq. (9) is plotted on a log scale in units

of cm” versus the exciting frequency in wavenumbers.
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The perpendicularly polarized (¢’- ¢” = 0) Rayleigh cross
section calculated in three different ways is shown in Fig. 3. These
calculations are from (1) Eq. (9), (2) Eq. (7), and (3) Eq. (9) without
the antiresonance term (the second term in braces). On resonance
and between the resonances calculations (1) and (3) are almost identi-
cal, with calculation (3) differing only slightly from it (not enough to
see in the figure). However, far off resonance (7000-8000 cm ™) the
antiresonance terms account for nearly half of the perpendicularly
polarized Rayleigh intensity. Also off resonance the calculated cross
section using the normal w* dependent formula [Eq. (7)] and the
truncated basis set leads to more than an order of magnitude error
for excitations off resonance by more than 6000 cm ™.

The excitation profile for the normal Raman process
(v =0 — v =1) calculated in the same three ways as the perpendicu-
larly polarized Rayleigh scattering is shown in Fig. 4. The three
calculations lead to very different results off resonance--Eq. (7) is
unable to predict the off-resonance interference effect, which will be
discussed in the next section, and omitting the antiresonance terms

shifts its position by over 1000 cm ™,

Note that the Raman cross
section even 8000 cm™" off resonance is only three orders of magnitude
less intense than the perpendicularly polarized Rayleigh intensity.

It is also important to stress35

again that one can get Raman intensity
reasonably far off resonance even with the approximation made in
Eq. (8b). Thus the Albrecht A term can lead to appreciable Raman

intensity off resonance.
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The perpendicularly polarized (¢’ ¢” = 0) Rayleigh cross
section calculated in three ways is plotted on a log scale
in units of cm?® versus the exciting frequency in wave-
numbers. The solid line is the calculation using Eq. (9),
the dashed line is the calculation from Eq. (7) and the
dotted line is the calculation from Eq, (9) without the

antiresonance term (the second term in braces).
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Figure 4.
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The calculated Raman cross section in cm” is plotted on a
log scale versus the exciting frequency in wavenumbers.
The solid line is the calculation using Eq. (9), the dashed
line is the calculation from Eq. (7) and the dotted line is
the calculation from Eq. (9) without the antiresonance

term (the second term in braces).
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Excitation profiles for the first through fourth overtones of
the Raman spectrum are shown in Figs, 5-8. Note that the cross
sections for the Raman overtones 8000 cm ™" off resonance are more
than two orders of magnitude lower than the Raman fundamental. This
is in agreement with off resonance experiments where Raman overtones

19

are not observed. For the second, third and fourth overtones, the

antiresonance terms account for nearly half the cross section 8000 cm™
off resonance and the calculation using Eq. (7) differs from that using
Eq. (9) by more than an order of magnitude for excitations that far

off resonance. For the first Raman overtone the errors are small

due to a mutual cancellation in each of the sum terms.

V. DISCUSSION

There are three kinds of interferences shown in Figs. 2-7.
The first kind is the destructive interference between each of the
resonances in Fig. 3. This kind of interference is also shown between
most of the resonances in Figs. 4-8. This vibrational level inter-
ference is caused by a partial cancellation of the two largest terms
(the ones coming from the two resonances on each side) due to their
opposite signs between the resonances. These destructive inter-
ferences occur only between resonances whose products of Franck-
Condon overlaps in Eq. (9) have the same sign. If these overlaps
have opposite signs one gets constructive interference between them
as, for example, between the fifth and sixth resonances in Fig. 4,
and between the second and third and between the sixth and seventh

resonances in Fig. 6. These interference effects have been discussed



Figure 5,
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The cross section for the first overtone of Raman in em?
is plotted on a log scale versus the exciting frequency in
wavenumbers. The solid line is the calculation using
Eq. (9), the dashed line is the calculation from Eq. (7)
and the dotted line is the calculation from Eq. (9) without

the antiresonance term (the second term in braces).
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Figure 6.
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The cross section for the second overtone of Raman in cm?

is plotted on a log scale versus the exciting frequency in
wavenumbers. The solid line is the calculation using
Eq. (9), the dashed line is the calculation from Eq. (7)
and the dotted line is the calculation from Eq. (9) without

the antiresonance term (the second term in braces).
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Figure 7.
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The cross section for the third overtone of Raman in cm?
is plotted on a log scale versus the exciting frequency in
wavenumbers. The solid line is the calculation using
Eq. (9), the dashed line is the calculation from Eq. (7)
and the dotted line is the calculation from Eq. (9) without

the antiresonance term (the second term in braces).
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Figure 8. The cross section for the fourth overtone of Raman in cm?®
is plotted on a log scale versus the exciting frequency in
wavenumbers. The solid line is the calculation using
Eq. (9), the dashed line is the calculation from Eq. (7)
and the dotted line is the calculation from Eq. (9) without

the antiresonance term (the second term in braces).
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in the two-state model in references 16 and 18,

The second type of interference effect is on resonance
resulting in a peak that is not nearly as high as the surrounding ones,
as for instance in Fig, 4 at the sixth resonance. This is caused by
the small Franck-Condon overlaps (ev’ lgv") in Eq. (9) for certain
vibrational levels, 12,15

The third type of interference is the off resonance interference,
as in Figs, 4 and 7. This interference effect is caused by a near
complete cancellation of the summation. Due to the near equal
participation of all of the terms, this type of interference effect is
extremely sensitive to the number of terms included in the summation.
Even if a complete set of states were included in Eq. (9) or Eq. (7)
(which would then be equivalent to each other), such a cancellation
could occur. The exact position of such an interference effect is
impossible to predict from such a limited calculation,

The resonances in the scattering cross sections sometimes
occur a few wavenumbers from the position of the excited state level,
but still within the linewidth (2a) of the level. This happens because
exactly on the excited state position the real part of the dominant term
goes to zero and so the cross terms in the absolute value squared are
small since the other terms have much larger real parts than
imaginary parts. Thus, even within a few wavenumbers of resonance,
the cross terms still make a large contribution, not individually, but
because of their number. This effect was also noticed by

0. S. Mortensen for a two-state model. 16
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Including other electronic states in the sums in Eq. (9) and
Eq. (7) would cause a general increase in the background level,
especially since the X's — A'Z transition is fairly weak. This would
cause the interference effects between the levels and possibly the
resonances themselves not to be as noticeable. Off resonance it
would still be possible to get some interference effects in fortuitous
cases.

Throughout this paper it has been assumed that all the mole-
cules are originally in their lowest vibrational level which implies a
low temperature. At higher temperature one would have more
excitation profiles, for example, for the Raman process from v =1
to v = 2, and also the anti-Stokes line, from v=1to v =0.
However, everything mentioned above would still hold.

The inclusion of rotations would make the actual Raman
spectra more complicated and one would have to add up many nearly
degenerate contributions to Raman intensity having a particular out-

going photon.
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VI. CONCLUSION

This paper has discussed Raman and Rayleigh scattering from
a diatomic molecule. Several interference effects occur even in this
simple case. The formulae for the scattering cross sections from

our previous paper20

reduce to the Kramers-Heisenberg second-
order perturbation theory results with a damping term included. If
resonances having shapes other than the simple Lorentzians assumed
here occur, one would have to go back to Eq. (1) and put in a correct
I'. The usual formula used by most resonance Raman spectroscopists
leads to errors of several orders of magnitude, more than 6000 cm™
off resonance for BaO, due to the truncated basis set. The anti-
resonance terms also contribute nearly 50% of the intensity that far

off resonance.
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I. INTRODUCTION

Recently Langhoff and Robinson1 used a trial-and-error method

to obtain a zero-order density function for the origin region of naphtha-
lene's second excited singlet state., Much of the structure in the zero-
order density function could be assigned to vibrational levels of the
lowest excited singlet state of naphthalene. There were, however,
several problems in the procedure they used to get the zero-order
density function. First, their procedure was a tedious trial-and-error
one where they first guessed a density function, then computed an
absorption spectrum from it. They then compared this absorption spec-

trum to the experimental one given by Wessel,2

readjusted the density
function and so forth until they obtained reasonable agreement between
the observed spectrum and the calculated one (40 or more iterations).
Second, there was no systematic way to change the peak heights, widths
and interactions to converge on a solution. Finally, nothing in their pro-
cedure showed that the zero-orderdensity functionthey had found was unique.

More recently, Hong3 found a systematic way of finding the
zero-order density function. However, this method is as time-
consuming as Langhoff and Robinson's trial-and-error procedure.

A new, very simple method of calculating the zero-order
density function directly from the absorption spectrum has been
discovered which shortens both Hong's and Langhoff and Robinson's
procedure. The method also demonstrates tl}at the density function

is unique. The purpose of this paper is to describe this method.

The results for the density function of naphthalene in the origin region
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of its second excited singlet state will be given and shown to be in

close agreement with those of Langhoff and Robinson. %

II. METHOD FOR OBTAINING THE DENSITY FUNCTION

The model that Langhoff and Robinsonl’ %

used, and the one

that will be used here, consists of a primary state p which carries
all the oscillator strength and which interacts with a continuum of
states K carrying no oscillator strength.® The above states are eigen-
states of some zero-order Hamiltonian 3G, having zero-order eigen-

values €p and €x respectively. The total Hamiltonian 3C is given

by
3 =3, +V 1)

where V contains the interactions between the zero-order states.

It is furthermore assumed that

Vpp = VKK' = 03 VpK = VKp = fK (fK , real), (2)
The Green's function at energy )\ is defined as
GO = (-3)7" . (3)

For this model, the real and imaginary parts of the matrix element

Gpp have been given by Zumino5 as

3

*Hong used a multiple resonance model so his results are not

directly comparable.
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A-€.~-Rel'())

ReG_(\) = p
P -y Rer I+ [ £ p I° .
£2(0) p ()
ImG_ (\) = hd 5 4b
PP Do ey - Rer P + [ £ (0o W] )
) fz j d
ro) - J (ex) p (eg) dege )

= QO A"'GK

where p(eK) is the density of K states at energy ¢ Thus the zero-

K
order weighted density of states is obtained by simply combining egs.

(42) and (4b),

ImG
£ Wp0) = - mg o ; - (®)
(G, 0)]1* + [ReG,, (1]

Equation (5) shows that the density function for a given G oD is unique.

The absorption cross section o (w) at frequency w for this

model is given by6

ow) = - 219 Kol Z-&lp)|* ma (6)
C

where 0| - €|p) is the transition dipole matrix element from the
ground state to the p state and c is the speed of light. There exists a
dispersion relationship between the real and imaginary parts of the

matrix elements of G()\)'7
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ReG, () = — [ 2GRN )
pp m - o A'-A

where P signifies the principal value.

Thus the procedure to calculate the zero-order density function
from the absorption cross section has just three steps. First, obtain
ImGpp from o (w) using eq. (6). Second, calculate Rerp from eq. (7).
Finally calculate 7 (\) p (A\) from eq. (5). Since we care only about
the relative value of the density function as a function of energy and we
don't know the value of |[(0|f - &|p)|? we can neglect the constants

in eq. (6) and obtain ImGpp()\) by dividing the absorption cross section

by w. One can then calculate ReI" fromeq. (4c) and €p from

e S Re-szp(A) 2
[Rerp(J\)] + [ImGpp(x)]

(8)

keeping in mind that the whole right side of eq. (8) has been multiplied

by (%ﬂ 0|1 - &|p)|»™ from eq. (6). Thus ratios of (A - ¢ ) at

p

different A's yield e_and [{0|f - &|p)|?. Using this method the

p
results for naphthalene's second excited singlet state are given in

the next section.
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III. RESULTS

The model described in the last section applies very well to
naphthalene for a short axis polarized absorption spectrum in the
origin region of its second excited singlet state ('B,y,) 12 por
this polarization only the origin of leu has any oscillator strength
in this region. The states of the lower excited singlet (lBau) having
one quantum of a b1g vibration plus quanta of ag vibrations borrow
oscillator strength from the leu state. Note in general that the
results of Langhoff and Robinson1 have conclusively shown that
symmetry selection rules apply to mixing of vibronic states, even in
large molecules in a crystalline environment. Thus the zero-order
weighted density function should have peaks where these '"allowed"
states occur. Other peaks in the density function could correspond to

phonon additions of the proper symmetry to the 1B311 state.

The zero-order density function for the S, origin region of
naphthalene-h, in p-xylene is given in fig. 1. Also given are
Langhoff and Robinson's density function1 and Wessel's absorption

spectrum? for the same region. *

Our density function was calculated
from Wessel's spectrum after subtracting out his linearly increasing
baseline (see fig, 1a). If one instead assumes a flat baseline, the

density function peak positions do not change by more than 1 cm™,

*Hong's density function3 was not reproduced since he did not try
to maximize his fit of the absorption spectrum but only used Langhoff

and Robinson's parameters.



Figure 1,
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(a) The observed absorption spectrum from Wessel's

~ plotted versus the energy in cm™ above the first

thesis
singlet excited state. The dashed line is his linearly
increasing baseline. (b) Langhoff and Robinson's
weighted density function. L (c) Our weighted density
function calculated from eqs. (5), (6), and (7) and
Wessel's spectrum. The y-axis is scaled in arbitrary

units for all three curves.
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but the relative peak heights do change. It is apparent from fig. 1

that, as noticed by Langhoff and Robinson, 1

the peaks in the density
function in the perturbed region correspond to valleys in the absorp-
tion spectrum and vice versa.

Table 1 gives the values of the frequencies of the b,g and g
modes of naphthalene-hg in p-xylene. Slight adjustments were made

in the frequencies from the values given in ref. (1) in order to fit the
data better. Table 2 lists the values and assignments (if possible) of
most peaks and shoulders in the density function and compares them

to the calculated values using Table 1 and to Langhoff and Robinson's
peak values. It is apparent from Table 2 that the results of the

method described here are in reasonable agreement with the Langhoff
and Robinson results. Peaks and shoulders were assigned if they
agreed to within + 3 cm™" with the calculated values. Fifty-nine

percent of the peaks and shoulders could be assigned. More impor-
tantly, out of the possible 45 peaks (with one quantum of a b,g mode
plus quanta of ag modes) that could appear in this region, 36 occurred.
An additional three of the possible peaks would have appeared within
eight em™ of the edges, where, as discussed below, our density
function is less accurate. Most of the other possible peak positions fall
near visible asymmetries in the density function peaks. These were not
assigned as shoulders due to the imprecision involved in establishing
the position of the underlying peak. The 1B2u origin (ep) was calculated
from eq. (8) to be at 2430 cm™', while Langhoff and Robinson put it at
2433 cm™. |<0|% - €p) |2 could not be calculated since Wessel did not

give 0(w) in any absolute units.
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Table 1

Frequencies of the a_ and b1g modes of the lowest excited singlet state

g2
of naphthalene-hg in p-xylene

ag (cm™) big (em™)
1 - - - -
9 - —
3 1495 (0) 1624 (0)
4 1424 (+2) - -
5 1397 (0) 1236 (+1)
6 1142 (-2) 1053 (+1)
Vi 996 (-1) 903 (0)
8 707 (0) 424 (0)
9 502 (0) e

Numbers in parentheses are our values minus the values given by (1).
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Table 2

Positions and assignments of peaks in our zero-order density function
for naphthalene-h; in p-xylene in the origin region of its second singlet

excited state

Assignment(b) Calculated(c) Langhoff-Robinson(d)

Position(a) 1

b;g, ag freq. (cm™) peak

2135 8, 8+2x%9 2135 - -
2138 }

2144 (sh)
2151 - - = = s
2162 (br)
2178 o e = & - -

2191 - = . - -
2198 6
2208 (W, br) - - - - - -
2218 (W) - - - - -
2223 - - - - 2222
2231 (sh) 5,7 2232 s
2240 5, 2X9 2240 - -
2252 “ - - I
2260 6, 8+9 2261 - 2262
2270 8, 6+8 2273 2273
2286 - e - -

2297 } 7,5 2300 2301
9303 (sh)

2318 7, 2X8 2317 - -



Table 2 (continued)
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Position( ) Assignment(b) Calculat'ed(c) Langhoff—Roiainson(
blg,ag freq. (cm™) peak
2342 8, 2x8+9 2340 2343
2347 (sh) — - - .-
2351 (w) 8, 4+9 2350 2353
9355 (sh) e - - {
2362 - - -- 2364
23170 -~ - - 2372
9378 (sh) }
2381 5, 6 2378 2379
2390 - - - - 2389
2396 7, 3 2398 } 2399
2404 7, T+9 2401
2409 7, 349 2409 24017
9414 8, 2x 17 2416 2415
2431 8, 4X 9 2432 2434
2442 5, 849 2445 9444
2449 6, 5 2450 2449
2468 6, 2x8 2467 2464
24177 6, 4 24177 2477
2488 - - - - 2486
2492 o - - 2
2500 - s . »
2508 = - - 2505

d)



Table 2 (continued)
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esition@ Assignment®  calculated®  Langhoff-Robinson@

big. 2, freq. (cm™) peak!
2516 (sh) o - - 2519
2528 8, 5+8 2528 2528
2538 - = - - 2538
2543 (sh) 8, 3x8 2545 2545
2545 7, 649 2547

6, 3 2548
2548

6 T+9 2551 2552
2557 6 3x9 2559 2560
2564 8, 6417 2562 2565
2572 8, 6+2X9 2570 2571
25178 - - - 2580
2585 - - - - 2587
2595 (sh) o . 2597
2605 7, T+8 2606 2608
2621 (w) 3, 7 2620 2619
2629-31 (br) [ 8, 3+8 2626 } 2629

3, 2x9 2628

8, T+8+9 2629 2634

5, 5 2633 }
2640 (sh,br) 8, 8+3x9 2637 2640

a)In cm™ above the origin of the first excited singlet state ('B,y).
sh = shoulder, br = broad, w = weak.
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Table 2 (foonotes continued)

b)Assigned within + 3 em ™, 59% of our peaks could be assigned.
c)Calculated from table 1.
d)Peaks given if assigned same way as our peak; if not assigned then

if within + 3 em™" of ours.
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Errors in the results come mainly from two sources. First,
the spectrum of Wessel's2 used in eq. (6) was a copy from his
thesis. The pen lines were 1-2 cm™ wide. Thus digitization of this
spectrum was accurate to only 2 cm™ or so. Second, instead of
integrating from -« to +< in eq. (7), integration was only over the
region of the absorption spectrum. The true spectrum could not be
used beyond this region since ag additions to the S, origin start
absorbing and the model breaks down. It was felt unknown errors
would be introduced by trying to extrapolate the spectrum for the
model as a Gaussian or Lorentzian outside this region., Integration
only over a finite interval leads to an imderestimate of the density
function near the end points but gives very good results away from the
edges. This was ascertained by applying the method to a Lorentzian

ImGpp which should lead to a completely constant density function.

IV. CONCLUSION

A procedure for obtaining the zero-order density function
directly from an absorption spectrum has been found. This method
should greatly aid experimentalists in untangling complicated vibronic
spectra and should further help to simplify and illuminate the relation-
ship between spectral shape and radiationless transitions in complex

polyatomic molecules,
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MATHEMATICAL APPENDICES

The key formulae and equations needed in sections A through E
are (1) the formula for the cross section for a transition in terms of
the T matrix, which is used in sections C and D, (2) the formula for
the absorption cross section in terms of the T matrix, which is used
in section D, (3) the dispersion relation between the real and imaginary
parts of G, ﬁsed in section E, (4) Dyson's equation, which is used to
derive the matrix elements of G in all five sections, and (5) the
formula for the probability of being in the excited state as a function
of time when a light source having width in time and frequency is used
to excite the system, which is used in sections A and B. The proofs
of these formulae will be given in appendices one through five

respectively.
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APPENDIX 1 (condensed from reference 1)

Define S¢;, which is the transition amplitude for the system which

is in state i at t = - © to make a transition to state f at t = =, as

Sti = (g [vi) (1-1)

where lp,: satisfy the Lippmann-Schwinger equations

+ " 1 +
= @ F I eee—— . (1-2)
Ya ::177_.0Jr E, -Hytin int Ya
The total Hamiltonian is
H = Hy +Hy, , (1-3)

and & B and zj/; are eigenfunctions respectively of H, and H with the

same eigenvalue E_ . That is,

H,®, = an’a (1-4)

and

Hyp = By v 1-5)

The Lippmann-Schwinger equations can be proven using Eqgs. (1-3) to

(1-5). w; can also be shown to satisfy

o : 1
v, = ¢, + lim — H. . & . (1-6)
a a ne0* E, -Hz in int “a

The T matrix or transition matrix is defined by

Sg; = 05 - 2116 (B, - E) Ty . 1-7)
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Now if one defines

72 memgyn

T _ y (1-8
S = Ty /B [ e )
/2
one can show that
Se. = lim Sp 1-9
g = B Sy (1-9)
T = o
using
76 (x) = lim S“}‘{XT (1-10)
T =00
and
5@x) = a7 5 (x). (1-11)

The transition amplitude per unit time (W fom i) can be defined as

T |2
[s%
We_; = lim (1-12)
T~
Then one can show
_ .
Wiy = = | Tyl 6 (B - Ep (1-13)
using
sin?
76(® = lim % (1-14)
T—~w TX

The cross section is given by
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Weei

Uf"i = (1—15)

F

where F is the flux in units of particles (or photons) per cross sectional
area per unit time. For a one-photon wavepacket this flux is ¢/V,
where c is the speed of light and V is the volume of the system.

Now if one uses Egs. (1-1) and (1-6) one can show

s L (1-16)

_ =]
Sg; = (&g [y7) + Y
e R

If one then uses Eq. (1-2) and the further definition

16X = lim —1— (1-17)
-G A EE
one gets
Sg; = O - 2mi6(E; - B (,[H, |yl . (1-18)

Comparing this formula with Eq. (1-7) shows

Ty = (@g|Hy 0]) . (1-19)
Using Eq. (1-6) again one gets

T = Hypg + Hypt G Hypy {-30)
where the Green's function G is defined as

G=(E-H+inp , (1-21)
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and it is understood that T must be evaluated between eigenstates of

H, and that the E in Eq. (1-21) is the zero-order energy of the eigen-

state on which it acts.
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APPENDIX 2 (condensed from reference 1)
The absorption cross section from a state a is given by

a

Yaps = %; “b~a - @~1)
Using Eqgs. (1-13) and (1-15) one gets
a 27V 2

abs T Fo %‘J }Tab| 6(E, - Ep). (2-2)

Since the states ng form an orthonormal set (this can be proven
using Eq. (1-2) and the orthonormality of the states ®,) one can show

that

oo |
(SS )ab = By (2-3)
where Sﬁb is the Hermitian conjugate of S,y that is
I ox
Sab = Spa - (2-4)

Equation (2-3) proves that S is unitary. Now one can show us ing

Eqgs. (2-3) and (1-7)

16 (E, - E)(T,y,- sz) = 21;%) 5(E, - E.)8(E,-E) Ty, Tib.

(2-5)
By the properties of the delta function this is equivalent to
i6(E, - E)(T.p.- T4 ) = 276 (B, - E.)2 6(E - E) T, T+
a” Tp/'tab” tap/ T AT T Byl c” b’ tac “cb”

(2-6)
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Canceling the equivalent delta functions on both sides and letting a = b

b

one gets
Im Ty, = -1 20 [T, " 6(E, - By (2-7)
where Im means the imaginary part. Therefore from Eq. (2-2)

REFERENCE

1. P. Roman, Advanced Quantum Theory (Addison-Wesley, Reading,

Mass., 1965) pp. 334-336.
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APPENDIX 3 (basic steps taken from reference 1)

From the well-known formulal’ 2

1
w +in

= PUI F in 6 (w) (3-1)

where P stands for the principal value, 7 is a small positive number

and the limit n—0 is understood, one can show

’ 7 2 4 7
¢ Gw)dw” _ P f dw’'G(w") + irG) , (3-2)
w-w’-in o w-w'

where G(w) is defined by Eq. (1-21). In Eq. (3-2) the Cauchy integral
goes along the real axis and closes in the upper half plane. However
by Cauchy's theorem this contour integral is zero since the integrand

has no poles in the upper half plane'. Therefore

00 ’ ’ o0 ’ "
irRe G) -7 Im G(w) = -P [ dw ReG,(w) -iP [ dw ImG’(w)
; - 00 w=-w - 60 w - W

(3-3)
where Re and Im stand for the real and imaginary parts, Equating

imaginary parts of Eq. (3-3) one gets

[ o)

ReG(O)) _ _E f dw’ Im G(w,) . (3—4)
T <

’
. w' - w
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APPENDIX 4

From the definition of H (1-3), one can write

A-H'*"in:A_Ho’*'in-Hint- (4—1)

Multiplying on the left by (» - H, + i77)'l = G,, one gets

G, -H+in) =1 - G,H (4-2)

int *
Now multiplying on the right by (\ - H + in)'1 = G, and rearranging

one gets Dyson's equation

G = G, + Gy Hy ;G . (4-3)
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APPENDIX 5 (from references 1, 2 and 3)

The time evolution operator in the interaction representation is

given byl’2
i/AHE - t-t') -i/BH.t'
U(t,t'):e/ﬁ ot o i/RH( i i/AH, . (5-1)
.2
One can define
0 t,
Ut,-) = lim_ e [ et ug,t)yat’. (5-2)

e—~0 -0

Putting (5-1) into (5-2) and using (1-4), one gets

i/RHt -i/nHt ° 4 i/pHt’ -V/RE,t’
U(i;,_oo)|q)a)=e/li LIPS / lim ¢ f o€t el/ﬁ e & dt'|<1)a>
€-’0+ -0
(5-3)
Now, performing the integral, Eq. (5-3) becomes
i/AHt -i/fHt i
Ut,-=)|®,) = e lim —1_|g) (5-4)

]m .
where n =he . Rearranging this equation one gets

. o E - H
i/fAHt . 1/ﬁHt[1 _ %im a

Ult,-=)|& ) =e e S
2 a n—-0" Eg-H+in

lle,). (5-5)

Now if one uses Eqs. (1-3) and (1-4), Eq. (5-5) becomes

i/hH t -i .
i/hH, . 1/1th[1+ lim 1

Uk, -w0)|3.) = e _1
)| a T)—>0+ Ea'—H+iT]

Hint ] |‘I’a>- (5'6)

But from Eq. (1-6)
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H.
[1 +-:E_a%{77] I‘I’a> = |1P;> (5-7)

SO

i/nHt e—l/ﬁEat[l . lim 1

—_— H. . ]|® ).

U, -=) ltI)a) =e

(5-8)
This is essentially the equation given in reference 1,
If the initial state at t = -« is given by a one-photon wavepacket
with amplitude S(w) at frequency w and the molecule in its ground state

(g0), then

[8,) = [ dwS©)]g0,0). (5-9)
So the wavefunction of this system at time t is

Y ) = Ut,-<)|8,) =

- T Mt [y e s (0) (60,0 + GlINGH,|60,0))
‘ (5-10)
where the sum over j is over a complete set of states. For the model
used in section A of this thesis, only the state p has oscillator
strength. So the probability of being in state |p,0), where 0 signifies
the vacuum state of the field, is

(p,0ly @)1 = | [ dwe ™ 8@) G @Kp,0[Hylg0,w)[*.  (-11)

- 00

Using the definition

S(w) = [ - eiwt’S(t’) dt’ (5-12)

- OO
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Eq. (5-11) becomes

“iw t-t)

pp(@) <0, 0 [80,0) 7.

Ko,oly@)[*=| [ at'se) [ doe
(5-13)

But since the poles of G___(w) are only in the lower half plane the

pp
w integral is zero unless t >t’. Therefore

t - o
@, 0ly@ =1 [ arse) J awe ™)

Gpp@) {p, 0] Hype [0, @) |7,
(5-14)
This equation is exactly equal to Eq. (7) of section A except for
factors of 27 and the presence of the H,  matrix element, If this
matrix element does not depend on w (as is usually assumedl), then

the time-dependences from the two equations are equal.
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ProEos ition 1

MOLECULAR DYNAMICS STUDY OF THE INFINITE
DILUTION CONDUCTANCE OF AN ION IN WATER
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There is as of now no accurate theory predicting the infinite

dilution conductances of small ions in water. 1,2

3

The best attempt so
far is Zwanzig's® theory of dielectric friction which seems to show the
right trends but gives conductances that are too low. One effect which

has not yet been consideredl’ 2,4

is the effect of dielectric saturation
on the force of the ion, but no one has been able to say what the true
force should be. The above theories all use a continuum or hydro-
dynamic approach.

On the other hand, various groups have done molecular dynamics

5-T on water with an ion present8 and on a dia-

studies on pure water,
tomic polar liquid with an ion present. g In these studies, various
potentials for the interactions between two water molecules and
between a water molecule (or other polar molecule) and an ion have

been used. The Ben-Naim-Stillinger ®

potential seems to give fairly
accurate diffusion constants and other properties for water, which
implies that the potential is reasonably good.

It is proposedthereforetouse molecular dynamics and the Ben-

10 model for water to study the conductances of ions in

Naim-Stillinger
water at infinite dilution. In particular one would hope to gain insight
into the environment of the ion and the real force acting on it, as well
as the effects of the ion's charge and size.

Most theories on ionic conductances at infinite dilution start with

Stokes ikl law for the force on a spherical particle moving through a

viscous medium

F = 6117]\73. (1)
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where F is the viscous drag force on the particle, 7 is the viscosity
coefficient, v is the velocity of the particle and a is its radius. One
assumption that Stokes used in deriving Eq. (1) was that the particle
was much larger than the molecules of the medium and hence there
was no relative motion at the surface of the particle with respect to the
medium (a ''stick’ boundary condition). Clearly this assumption is not
valid for the motion of an ion in water. Basset12 recomputed Stokes'
law for a "'slip" boundary condition. For total slip at the surface of
the particle the 67’ in Eq. (1) would be changed to a 47",

13 and Zwanzig3’ 14

Boyd derived the additional force on the ion
due to dielectric friction from the rotating dipoles in the vicinity of the

ion. Zwanzig's3 final result was

F = "4g"qyva + (B/a%)v 2)
where

B =37Z%€%[(g, - €4)/ (4e, (¢, + 1))]7 (3)

for the slip boundary condition where ¢, is the static dielectric
constant of the medium, ¢,, is the high frequency dielectric constant,
Ze is the charge on the ion, and 7 is the dielectric relaxation time.
The 47 is in quotation marks because it could be as high as 67
depending on the slip at the surface of the ion.

Now the equivalent conductance is defined® to be
A = 10V/(a®)(A) (4)

where I is the current of ions, ¢ is the length of the cell, V is the
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volume per equivalent of charge of the ion, A & is the difference in
electric potential between the terminals and A is the cross-sectional

area of the plates. Now

Ag =V (5)
if the cell contains one equivalent of the ion. Also

1= Fv/t (6)

where 7 is the Faraday (the charge on a mole of electrons). Putting

Eqgs. (5) and (6) into Eq. (4) one gets
A=Fvi/(a®) . (7)

But the force on the ion at infinite dilution is traditionally given as
7e A®/(. At equilibrium this force must be equal to the viscous drag

as given by Eq. (2) giving
Ze A®/4 = Ze Fv/A, = "4r''nva + (B/a®)v (8)

where A, is the equivalent conductance at infinite dilution. Finally

solving for A, one gets

A, =Ze ;’/("%"na + B/a%). (9)

If one uses Zwanzig's3 value for B and Basset's12

"4 slip factor the
maximum conductance predicted by Eq. (9) is still only 46 cm”/ohm-

equivalent for Z =1. For comparison Table 1 gives the crystal radii,
experimental A 's, computed A,'s from Eq. (9) and the computed A;'s

for B = 0 (just Stokes' law). Figure 1 plots A, versus ion size for the
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Table 1

Ion a (in A) A, (ohm™" cm?/ equivalent) at 25° C
crystal16 experimental17 from (9) Zwanzig3 B=0
Lir 0. 60 38.6 3.6 227
Na* 0.95 50, 1 13 144
Agt 1,26 61.9 25 108
Kt 1.33 3.5 28 103
Rb* 1.48 7.8 34 93
cs*t 1.69 7. 2 40 81
F~ 1.36 55, 4 29 101
- 1.81 76.4 43 76
Br~ 1.95 78.1 44 70
I 2.16 76. 8 46 63
Mg™? 0.65 53.0 2.1 420
Ca™? 0.99 59.5 7.5 2176
sr*? 1,13 59. 4 11 243
Ba*? 1.35 63.6 18 203




Figure 1.

160

The infinite dilution conductances of ions in ohm™"
cm?®/equivalent are plotted as a function of ion crystal
radius in A. The crosses and circles are the experimental
points for Z =1 and Z = -1, respectively. The dotted line
is the calculation from Eq. (9) with B=0and Z =1, The
full line is the calculation from Eq. (9) with B = 8,43°

and Z =1, All values are for a temperature of 25° C.
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3 value for B and for

experimental values, for Eq. (9) with Zwanzig's
B = 0. Clearly the B = 0 curve shows the wrong trend for small ions--
A, decreasing with increasing ion size. The curve for Eq. (9) with
Zwanzig’s3 value for B shows the right trend but the values are all too
low.

One explanation for the discrepancies is that the moving units
are not the bare ions, but rather hydrated ions and are therefore
larger, at least for the small positive ions. 18 This would tend to
increase the agreement between the calculated and experimental

3 B value curves for the small

values for both the B = 0 and Zwanzig's
positive ions. However for the large negative ions (Br~ and I") to get
agreement with the B = 0 curve, a smaller radius than the actual
crystal radius would be needed. Also the Zwanzig3 B value curve
never gets above 46 cm®/ ohm-equivalent, so no size change would help
for these larger ions.

Another reason for the discrepancies in Fig. 1 is that the field
on the ion is not the average potential gradient, but rather is greater.
This is due to the decrease in the dielectric constant in the vicinity of

1,2,4 This would have the effect

the ion caused by the field of the ion.
of increasing the left and center parts of Eq. (8) and thus increasing
the A,'s calculated by Eq. (9).

One possible way to determine the field on the ion and the size
of the moving unit is to use molecular dynamics. Molecular dynamics
is a method of simulating a molecular system., One assumes a poten-

tial or force between particles, gives oneself an initial condition for

the positions and velocities of the particles and then uses the force or
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potential to determine the motions of the particles with time. Adjust-
ments may have to be made to get the system to the correct tempera-

ture if the initial condition did not do this, 9558

Various properties of
the system can be calculated by molecular dynamics. These include
pair correlation functions, average interaction energies and diffusion
coefficients. =9 These can then be compared to experimentally deter-
mined values to give a check on the assumed force or potential.

5,6

Rahman and Stillinger have done this for pure liquid water

10a

using the effective potential given by Ben-Naim and Stillinger nd

have gotten reasonably good agreement for various properties. Thus

the effective potential Rahman and Stillingers’ 6

used gives a reason-
able description of pure liquid water and possibly will give a good
description of the forces between two water molecules even in a
solution with other particles.

The Ben-Naim-Stillinger!®

potential for water is the sum of a
Lennard-Jones type potential and a potential based on a four-point
charge model for water, where the point charges are tetrahedrally
located. Two are positive to simulate the protons and the other two
are negative to simulate the lone pairs of electrons on the oxygen atom.
The potential between the point charges is Coulombic with a cut-off to
avoid any two point charges from being at the same point.

To study the conductance of an ion in water is a slightly harder
problem and several new forces will have to be considered. First of
all, an applied field (D) would have to be given to get a conductance

[see Eq. (4)]. This applied field would act on all the particles.

Second, one would need to decide what ion-water molecule potential



164

to use. One obvious choice would be a Coulomb potential between the
point charges given by the Ben-Naim-Stillinger model and the ion in

question, with a cut-off at the crystal radius of the ion, plus a repul-
sive potential possibly of the Lennard-Jones type between the oxygen

8 The

nucleus (or center of mass of the water molecule) and the ion.
main problem with this kind of potential is the lack of consideration

of the ion-water polarizability term. This would add a term -

- aZ?e%/(2R%)'? to the potential, where o is the polarizability of the
water molecule and R is the ion-water molecule separation.

The problems with the above choice are that it is for an
orientationally averaged interaction and it considers the water mole-
cule to be a point particle. Nevertheless, it could be used as a
starting approximation for the interaction. Another possibility to use
for the potential between the ion and the water molecule is the energy
surfaces calculated by Kistenmacher et al. &0 for a water molecule in
the field of an ion. The problem is that they did energy surfaces for
only certain relative orientations, and one would really need a con-
tinuous set of orientations. Possibly their results could be used to
correct and modify the potential given above.

To do the actual molecular dynamics calculation one would want
a cubical box of water molecules with the ion at the center and periodic
boundary conditions for the water molecules (to keep the density in the
box constant). One would compute the force on the ion due to all the
water molecules in the box and the external field, while the force on
each water molecule would be computed from the ion, the external

field and the water molecules within a given radius (Rahman and
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Stillinger® used 9.2 &). Possibly a cut-off radius smaller than the size
of the box could be used for the ion as well. (Those water molecules
within a certain distance would be used to calculated the force on the
ion, the ones outside would not be.) One could consider more water

molecules than Rahman and Stillinger?> 8

21

did due to a recently developed
computational method.
The box would have to be moved to keep the ion at the center of
the box to avoid having the periodic boundary conditions introduce
another ion close to the edge of the box--there should be no other ion
in the system. To measure the ion's velocity a master reference
system would be used. The average velocity would be used in Eq. (7)
to calculate the conductance and the average field would be calculated

from

A®/1 = E = D/¢g (10)

where €, is the dielectric constant of water, E is the average field and
D is the applied field (of say 100 volts/cm). (A preliminary calculation

10

should be made with the Ben-Naim-Stillinger™ "~ model for water and an

applied D field to see that the average field inside is really D/ 60.7’ S0
If not, it may require a modification of their model.) Then Eq. (7)
can be used to calculate the conductance.

If this conductance for a given ion (given crystal radius and Z)
does-not agree with experiment, the potential will have to be adjusted.
If the conductance is too low, the magnitude of the water molecule-ion

interaction was probably overstated and vice versa if the conductance

is too high. Once the conductance agrees with experiment, other ions
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could be used. Hopefully, all this will help one to see what the
environment of the ion is, what the size of the moving unit is, and
what the average force on the ion is and how all these vary with Z

and a. This will certainly help to increase our knowledge of electro-

lyte solutions.
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Progos ition 2

CLUSTERING OF THYMINE DIMERS IN
UV IRRADIATED POLY(dA)-POLY (dT)
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It is well known that pyrimidine dimers are a major photoproduct
of UV irradiated DNA and that their presence correlates with biological

inactivation. 1,2 3-5

It has also been suggested that pyrimidine dimers
should form more easily near other pyrimidine dimers or other photo-
products. The reason given for this is that the structure of DNA in
the neighborhood of the dimer is probably locally denatured making it

easier for another dimer to form nearby. %

Pyrimidine dimers form
between adjacent pyrimidines in the same strand of DNA. 6 Two
adjacent pyrimidines on the same strand of DNA are separated by a
vertical distance of 3.4 A and a rotation of 36°. | Thus, when a dimer
forms, it must distort the structure of DNA in its immediate vicinity.

Experiments on denatured (single-stranded) DNA show about a
factor of two greater dimer formation over native DNA. 8,9 Similarly,
experiments on poly dU show a factor of two to three greater dimer
formation over poly dU-poly dA. 3 These experiments suggest that
dimer formation in the vicinity of another dimer in double-stranded
polynucleotides should be enhanced if the polynucleotide is locally
denatured. If, in addition to enhanced formation of dimers in these
areas, long-range energy migration also took place in the polynucleo-
tides, then one would see clustering of dimers in the double-stranded
polynucleotides leading to a greater density of dimers than in the
single-stranded polynucleotides.

In experiments on DNA, Shafranovskaya gt_a_1_.3 and Brunklo
thought they saw evidence for the clustering of thymine dimers in DNA.

However, later experiments by Rahn and Stafford11 and Jonker and
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12

Blok™ ™ revealed an error in the experiments of Shafranovskaya et al. ,3

and Birnboirn13 was unable to confirm Brunk's10

5

experiments. On the
other hand, Pearson and Johns“ found, upon analyzing products of
irradiated poly dU-poly dA, the product having two dimers next to each
other in reasonably large amounts.

There are several possible reasons for the inability of the above
experiments in DNA to show dimer clustering: (1) perhaps dimers do
not form more easily in the neighborhood of another dimer, (2)
perhaps there were no other sites for dimer formation in the vicinity
of a formed dimer, and (3) perhaps long-range energy transfer does
not take place in DNA.

There is considerable evidence for reason number (3) above
in DNA. The four bases of DNA have singlet and triplet energies

2,14

which differ by hundreds of wavenumbers, which would make

energy transfer difficult. Also various experiments on sensitization

of dye fluorescence by DNA15

16

and quenching of phosphorescence by
paramagnetic ions™ = have shown no evidence for energy transfer in
DNA beyond ten or so base pairs. However, in poly dA at low
temperatures, one paramagnetic ion quenched the phosphorescence
of a hundred base pairs, showing that long-range energy transfer
occurs.l'7

Thus, to demonstrate conclusively whether or not dimer forma-
tion is easier in the vicinity of another dimer, experiments should be
done on the double-stranded polynucleotide poly dA-poly dT. These

experiments would also serve to test the theoretical work of Vologodskii
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et a1.4 on clustering of dimers due to long-range energy transfer.

They used a simple model which forced a dimer to form if the excita-
tion migrated to a site where there was already a dimer. They then
calculated a distribution function for the length of the undamaged
regions as a function of dosage for both poly dA-poly dT and for DNA,

Thymine dimers are detected by liquid phase chromatography in
the following way. The thymine is labeled radioactively by either °H
or "“C. After irradiation the DNA is hydrolyzed in acid (converted to
individual bases plus acid-stable photoproducts) and then chromato-
graphed. See R. O. Ra.hn18 for a more complete description of the
procedure. Thymine dimers are stable under this procedure.

One method for measuring defect regions is the kinetic formalde-

19,20

hyde method. This method is based on the fact that the initial

rate of denaturation of DNA by formaldehyde is dependent upon the
number and length of denatured regions present in the DNA (including
the ends of the DNA). The method has been calibrated to give the
absolute number of defects and their length, 11s 19520
Another way of measuring clustering of dimers is to use an
endonuclease which makes a single strand break next to a

r, 11,21-24 1 o the resultant DNA can be denatured and the

21-24

dime

resultant fragment lengths determined by sedimentation. This

21,23 Alternatively,

endonuclease also works on poly dA-poly dT.
the endonuclease can just be used to make a break in the DNA and the
resultant DNA can be analyzed by the kinetic formaldehyde method

since formaldehyde denatures regions having a single strand break
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faster than it does those with only a lecally denatured region. il

Thus, the experiments proposed here are to irradiate poly dT
and poly dT-poly dA with UV radiation (for example, from a mercury
lamp - 254 nm) and measure the number of dimers formed in each by
the above-described chromatography techniques. Then, the number of
defects or the length of the segments between breaks generated by
endonuclease should be measured for poly dT-poly dA. If the distri-
bution of dimers formed in poly dT-poly dA is non-uniform (or the
number of defects and the number of dimers is not the same--they
should be the same in poly dT), then it implies that dimers form more
easily in the neighborhood of another dimer. Also if the density of
dimers in the defect regions in poly dA- poly dT is greater than the
density in poly dT (which should be uniform), then long-range energy
migration must be present and an estimate of its extent can be

obtained.
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Progos ition 3

APPLICATION OF A TWO-LEVEL MODEL TO
THE UNTANGLING OF ABSORPTION SPECTRA
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In part II, section E of this thesis, a method was given for
extracting vibrational information from a tangled spectrum under the
assumption that only one state had any oscillator strength in that
region of the spectrum. This assumption was a good one for the
origin region of naphthalene's second singlet state and will hold true
for many other systems as well. However, there will also be many
systems for which more than one vibronic level will have oscillator
strength.

It is therefore proposed to study a two-level system with the
simplifying assumption of no direct or indirect interaction between
the two states to determine what information can be obtained from the
absorption spectrum. This work would have two parts. First,try out
the m :thod proposed below on a model system. Second, apply the
method to a real system--for instance naphthalene including another
400 wavenumbers or so of its absorption spectrum where the first a g
addition to the origin has its absorption peak.

In a two-level system with no interactions between the states the

absorption cross section is proportional to1
62 62 ’
P : 2 EAPONE
o) = 2 [(0ly- ¢[p)*mG @)+ B-[0lp- [p) 1m Gy @)

1)
where the two primary states are p and p’ with zero-order energies

€,. and €p' respectively, and Where,?‘

p
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[w- €p-Re LW+ [zt ()p,(@)]*

Im G (@) = (2a)

ReG. () W - €= Re I (w) (2b)
w) =
PP [w-ep-Re D @)]° + [ @)p,@)]°

and

o0 fi ] d
L = [ P dex 2c)

- OO w-—ek

One can use the absorption spectrum (times w) to get

PEAImGpp+BImGp,p, where A:e;l(0|&-i|p>|2 and

B = e;, 0| L* € |p’y|%. Using the dispersion relation® between the

real and imaginary parts of G, one can get R = A Re Gpp + BRe Gp,p, .

Taking the quotient Q = one can show easily that it reduces to

f; () p; (@)
A
much larger than the denominator for the p state and A is not too

R+ P?

if the denominator for the p’ state in Eq. (2a) is very

much smaller than B, This says that if one is close to one state, then
the procedure given in section E yields correct results, even if another
state has about the same amount of oscillator strength. One would
have to check whether the principal value integral for ReI; is sensi-
tive to £ p, values far from where it is being evaluated. If not, then
one could obtain €p in the same manner as in section E.

The above procedure assumes that one knows roughly where ep
and Ep’ are. This may not always be true. If not, one could try the

procedure in section E for calculating ) - € p using the principal value
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integral of Q for Re I" and substituting R for the Re Gpp, etc. If the
principal value integral was insensitive to Q values far from the point
at which it was being evaluated, then in the neighborhood of € , one

p

should get a straight line for ) - € _ calculated this way. Hopefully,

p

one would get only two places where Re Q + = S yielded a

R*+ P2

straight line with a positive slope which crossed the x-axis, These

places would then be €p and € -

A model on which this procedure could be tried is taking f p,
to be several Gaussians or Lorentzians in the neighborhood of a given
€p and similarly for fzp2 and €p’ - One should eventually let the
regions of fip1 and fip2 overlap. From this, one would calculate the
absorption spectrum from Eq. (1) and then calculate R from the
dispersion relation. Finally one would calculate Q and S. A plot of S
as a function of w would hopefully give €p and €y’ as the only two
intercepts of positively sloped regions of S. If this checked out
correctly, then Q in the vicinity of these points would be -fifk and
—fi’-zl%- . Between ep and ep’ the peaks in Q may also correspond to
peaks in £ p, and £p, .

The above procedure, although necessarily sketchy, represents
the first attempt to untangle an absorption spectrum using a model
having more than one state with the inclusion of the real line shape.

It seems obvious that the unsolved problems of SO, and NO, will

require the investigation of models of this type.
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EEoposIion

THE VARIATION OF THE TRANSITION MOMENT
WITH INTERNUCLEAR DISTANCE AND ITS
EFFECT ON RAMAN CROSS SE CTIONS
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In conventional Raman theory the term that leads to Raman
intensity far off resonance comes from the linear term in the expansion

of the transition dipole in terms of the vibrational coordinate Q1

(Xeyt Q(De@, Q| 1| ¢, @, Q)  (@)q

q Xgv

(Xey (Q[Me (@ Xy @)

I

(Xey @ Xgyr Q)M Q= Q)

+

ev' Q1QlXgyr (@)

G ® v om 1)

In Eq. (1), M, (Q) is the integration over q in the top expression, Q,
is the equilibrium position of the ground state, and qbi(q, Q) Xiv(Q) is
the Born-Oppenheimer wavefunction for the iv state. In Part II,
Sections B and D of this thesis, only the M,(Q=Q,) term was included
in calculations of Raman intensity. The reason for this assumption
was a lack of calculations on the magnitude of the higher terms over a
wide enough range of internuclear distance.

It is therefore proposed to calculate M, (Q) over a wide range of
internuclear distance for a diatomic molecule, Then one should use
this Me(Q) to calculate Raman excitation profiles as was done previ-
ously. Also the Raman profiles from just the M ,(Q=Q,) term should
be calculated so as to assess the importance of the higher order
terms and to determine how close to resonance they need to be

included.



183

Probably one of the most efficient procedures for calculating
Me(Q) is the equations-of-motion method of Rowe2 and McKoy and

coworkers. 3-5

The advantage of this method is that the matrix
elements one needs in order to calculate excitation energies and
transition moments are less sensitive to the inaccuracies of the ground
state wavefunction used to evaluate them than in the usual procedures
of solving for the wavefunctions of each state separately. A brief
description of this method will now be given (condensed from Refs.
2-5).

The ground state wavefunction is approximated by (using the
notation of refs. 3-5)

o) = |gF) + 2 2 ™8 Chy Ch cs C |HF) 1)

¥<8 m<n Y90 Y

where |HF) is the Hartree-Fock ground state, the c's are creation
and annihilation operators, m and n are particle states and 6 and y are
hole states. The approximation in Eq. (1) is that the C's are small
compared to unity; if this breaks down one must go to the open shell
equations -of-motion treatment

The equation
+
o, [0) = ) )
defines the excitation operator O; which creates the excited state

| A) from the true ground state lO) . If one expands O; in single

particle-hole operators
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then we can derive the equation

A B Y(x D O Y(x
* = o) ™ @
-B* -A* Z()) 0 D Z())
where A, B and D are matrices and depend on the C's of Eq. (1) and
w()) is the excitation energy of the state | x). Finally from the
equation

0A|0> =0 ()

for the hermitian conjugate of O+, one can show
my = ng My ,nd Yné(h) (6)

where the C’ 's are closely related to the C's, (Actually everything
depends on spin as well, but this has been suppressed here.) The
procedure for solving these equations is to guess a set of C's,
calculate the matrix elements of A, B and D (the actual form for them
is given in Ref, 3), solve the matrix equations for Y, Z and Wy and
then find a new set of C's from Eq. (6) until the solutions are self-
consistent. The transition moment from |0) — |A ) depends on the
me(x) 's, Zmy( A)'s and the C's.4
To calculate the transition moment as a function of Q or inter-

nuclear distance for a diatomic molecule, one must first use a basis

set to do a Hartree-Fock calculation at each value of the internuclear
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distance. °

After calculating M, (Q) as discussed above, one would fit
M e(Q) to some analytic form so as to be able to calculate

<Xev' (Q) |Me(Q) | ng" (Q)) which will be needed to calculate the Raman
cross section. 1 The vibrational wavefunctions can be calculated as
was done in Part II, section D of this thesis.

One possible molecule on which to do this calculation is BeO,
which has its B'Z state at around 21, 000 R L —,
have too many electrons, so the calculation will take less time. Its
ground state configuration is (10)? (20)? (30)% (40)? ('r™)2 ('r7)°.

A possible basis set of Slater-type orbitals has been given by
Schaefer, »

By doing this calculation for a diatomic molecule, one could
find the dependence of the Raman cross section as a function of
excitation energy using both the true M s (Q) and the first term of

Eq. (1)--M,(Q,). This would help in our understanding of the Raman

process,
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Proposition 5

MEASUREMENT OF EXCITED STATE VIBRATIONAL FREQUENCIES
USING NANOSECOND OR PICOSECOND RESONANCE RAMAN
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Although resonance Raman has been used extensively to give
accurate vibrational constants for the ground state of molecules, by
it has not been used for excited states. However, with the advent of
time resolution of a few nanoseconds or less, experiments applying
this technique to the excited state can now be tried. It is therefore
proposed to obtain an excited state Raman spectrum of anthracene.

3_ 29,660 cm™) would

A nitrogen laser (with output at 33714
excite anthracene from its ground state to its first excited singlet
state (whose 0-0 position in hexane is at 26,700 cm™"). 4 The nitrogen
laser would also pump a dye laser (using rhodamine 6 G) to give output
at around 16,700 cm™, which is where anthracene's S, state absorbs® ™"
The dye laser output would yield a resonance Raman spectrum of the
excited state as well as a normal Raman spectrum of the ground state
and the solvent.

A pulsed nitrogen laser provides pulses of 1 MW peak power
with 2 FWHM of 2-10 nsec.® One can split off part of its output with
a beam splitter and use it to pump the sample. The other part of the
beam can pump the dye laser. The dye pulses have about 100 kW of
peak power, a FWHM in time of 2-10 nsec and a FWHM in frequency

of .3 cm™ or less.® This spectral bandwidth can easily be reduced

by an order of magnitude using an etalon.3

For maximum resonance Raman from S, of anthracene, the
pump pulse and the dye laser pulse should reach the cell at roughly
the same time or the dye laser pulse should get there 1nsec or so

later than the pump pulse. The reason for this is that the lifetime of



189

S, for anthracene is only a few nanoseconds. :

To maximize the signal
from the excited state Raman, the two beams should enter the cell
collinearly from the same direction. In this way there will be the
largest overlap of the two beams.

Alternatively, one could use a picosecond pulsed dye laser
(operating with rhodamine 6G)? instead of the nitrogen laser. The
second harmonic of an amplified single pulse could excite anthracene
to its S, state and the fundamental would excite the resonance Raman
from there. The picosecond pulsed dye laser has pulses of peak power
1 GW, FWHM in time of less than 5 psec, and a FWHM in frequency of
about 10 cm ™. 9 The advantage of this method of excitation is that one
could delay the resonance Raman exciting pulse by 50-100 psec and
still not worry about relaxation out of S; during this time. An obvious
disadvantage is the large spectral bandwidth which would cause
resolution problems if the excited state frequency did not shift by
more than 20 ecm ™ from its ground state value.

For either excitation process, the Raman signal can be gathered
at 90°, the exciting line can be filtered out using a dielectric coating,
a spectrograph can be used for frequency resolution and an ISIT
(intensified silicon intensified target) vidicon tube for detection. This
vidicon tube yields practically single-photon counting detection and
will allow gathering of large parts of the spectrum at one time, The
vidicon can be gated so as to turn on when the dye laser pulse is
exciting the resonance Raman. By delaying the latter pulse 10 nsec

or so with respect to the exciting pulse, one can ascertain whether
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or not the new lines in the Raman spectrum arise from the S, state,
The fluorescence of anthracene from the S, state occurs at much

7

shorter wavelengths than the Raman from S, so it will not interfere

with this experiment,
Since anthracene forms a photodimer at high concentrations, 10
the solution must be kept reasonably dilute. Possible solvents are
hexane, ethanol, methanol, chloroform and carbon tetrachloride. L1
The advantage of using one of the latter three is that they have less
vibrations to interfere with the spectrum. One should go to low
temperatures so that one can resolve ground and excited state
vibrations. The best solvent for these studies can be found by just
looking -at the Raman spectrum of the ground state (without the pump
pulse) and getting the best possible spectrum in the various solvents.
Obviously some of these solvents can be used at lower temperatures
without forming a glass, which would probably scatter the light more.
It thus seems possible to obtain a resonance Raman spectrum
from the S, state of anthracene using these methods. If picosecond
dye laser excitation were used, one could probably use resonance
Raman to measure vibrational relaxation in the excited state,
analogously to the way vibrational relaxation times in the ground state

12
are now measured.
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