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Abstract

While most motile bacteria propel themselves with flagella, other mechanisms have
been described including retraction of surface-attached pili, secretion of polysaccharides, or
movement of motors along surface protein tracks. These have been referred to collectively
as forms of "gliding" motility. Despite being simultaneously one of the smallest and simplest
of all known cells, Mycoplasma pneumoniae builds a surprisingly large and complex cell
extension known as the attachment organelle that enables it to glide. Here, three-dimensional
images of the attachment organelle were produced with unprecedented clarity and
authenticity using state-of-the-art electron cryotomography. The attachment organelle was
seen to contain a multi-subunit, jointed, dynamic motor much larger than a flagellar basal
body and comparable in complexity. A new model for its function is proposed wherein
inchworm-like conformational changes of its electron-dense core are leveraged against a

cytoplasmic anchor and transmitted to the surface through layered adhesion proteins.

The hallmark of eukaryotic cells is their segregation of key biological functions into discrete,
membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been
difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of
conventional electron microscopy. Here we explored the potential of the emerging technology
electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-
native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton
with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to
yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle,

yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi



bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the
nucleus was seen to open long before mitosis, and while one microtubule (or two in some
predivisional cells) were consistently present, no mitotic spindle was ever observed, prompting

speculation that a single microtubule might be sufficient to segregate multiple chromosomes.
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