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ABSTRACT

Although control algorithms have been conceived for industrial chemical
systems. their acceptance by industry has been slow due to a lack of direct
experimental evidence of their effectiveness and to volumes of conflicting, or at
least incompatible, recommendations on control structure design. This thesis
provides the basis for a concerted theoretical and experimental program in mul-
tivariable process control structure design for packed bed chemical reactors by
presenting an in-depth control analysis of a practical, multivariable, distributed
parameter system-—the heat conduction problem defined by the simple diffusion
equation—using both frequency-domain and time-domain analyses and the for-
rmulation, numerical solution, and analysis of a detailed model for packed bed
reactors, along with reduction to a low-order state-space representation suitabie

for on-line process control.

The study of the heat conduction system allowed for consideration of vari-
ous control design techniques and the relation between measurement structure
and control system design. This study shows that the choice of measurements
and their locations sighiﬁcantly affects the optimal control design and the use-
fulness of the different design techniques and the importance of an accurate
process model and the necessity of model reduction to a low-order state-space

representation for control structure design and implementation.

The second portion of this study provides a detailed mathematical modeling
analysis of packed bed catalytic reactors that significantly extends previous stu-
dies'in the detail of the model and in the consideration of all aspects of the

model development and reduction to a state-space control representation. The
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general view that modeling simplifications are desired since they lead to a
reduction in numerical solution effort is contested, and it is shown that many
simplifications are no longer necessary with today's advanced computational
capabilities. A unified approach to dynamic reactor modeling is developed and
its importance in the accurate description of dynamic and steady state reactor
behavior, in the investigation of reactor start-up or the effects of process distur-
bances, and in the development of an accurate reduced state-space model for
the design of control structures to stabilize the reactor under various distur-

bances or to provide optimal system recovery from input changes is shown.
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NOTATION
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£

AH .

xii
state matrix
collocation weights for first and second derivative
control matrix
concentration, g-moles/cm?
element ij of measurement matrix C
heat capacity, cal/g °K
measurement matrix
disturbance vector
radial collocation weights
bulk molecular diffusivity, cm?/sec
activation energy, cal/g-mole
pressure dependence constants for steam-shift reaction rate
element ij of inner-loop compensator F
inner-loop compensator
element of process transfer function G,
controller transfer function
interaction compensator transfer function
process transfer function
set point compensator transfer function
heat transfer coefficient between phase i and j, cal/sec em °K

heat of reaction, cal/g-mole
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J* molar flux relative to molar average velocity
k thermal conductivity
kg reaction rate constant
ky, Blake-Kozeny constant
ky diagonal gain element of K
ke, ke radial (axial) thermal conductivity, cal/sec cm °K
K diagonal proportional gain matrix |
K, K methanation reaction rate constants, atm™!
K. Ku low and high frequency compensators
Kp equilibrium constants, atm™ for methanation
L Lagrangian polynomials
L reactor length, cm
I controllability matrix
M, molecular weight of gas, g/g-mole
N molar flux with respect to stationary coordinates
P 'i)ressure. atm
P total pressure neglecting mole change, atm
Pe closed-loop characteristic polynomial
P; partial pressure of species i, atm
Po open-loop characteristic polynomial

Pe dimensionless Peclet number
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open-loop transfer function

radial coordinate, cm

normalized radial coordinate, r/R,
radial collocation point
reaction rate, g-mole/sec cm®

closed-loop transfer function

radius of thermal well and outer wall, respectively, cm
normalized reaction rate

universal gas constant, 1,987 cal/g-mole “K

time, sec

normalized time for heat conduction problem

absolute temperature, °K

control vector

contro] inputs to heat conduction system

interstitial velocity of gas, cm/sec

internal energy

overall heat transfer coefficient between phase i and j, cal/sec °K

normalized fluid velocity, u,/ g,

volume, cm®
weighting functions

state vector



X

Yo

Jya

Y

21, 2

XV

mole fraction of species i, g-mole i/ g-mole total

normalized temperature distribution for heat conduction problem
output vector

normalized temperature distribution at t=0

desired normalized temperature distribution

normalized mole fraction, £;/%&

axial coordinate, cm

normalized space coordinate for heat conduction problem

outputs for heat conduction system
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Greek Letters

a dimensionless axial dispersion, x Pe,!

B dimensionless radial dispersion, x Pe,

6 moles CO reacted in methanation per total inlet moles
£ void fraction of bed

n dimensionless heat capacity

¥ dimensionless heat transfer coefficient, « St
[ dimensionless heat generation parameters
A eigenvalues

Aijk Biot numbers

A diagonal matrix of eigenvalues

M viscosily

© constants from radial collocation

%o normalized radius of therma well, Ro/R,

#1 P2 dimensionless heats of reaction

P density, g/cm®
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0 normalized time, (t -G, )/L
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normalized axial coordinate, z/L
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Subscripts and Superscripts

0 value at inlet

b reactor bed

I value at nutlet

E gas
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m mass

M methanation reaction
r radial

8 solid catalyst
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w cooling wall

z axial
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deviation variable



Chapter 1

INTRODUCTION



-2.

1.1 OBJECTIVES OF CURRENT WORK

One of the major difficulties in the application of advanced process control
theories to industrial chemical processes is the lack of complete understanding
of the chemical process and the inability to predict system behavior in the pres-
ence of unknown and uncharacterized disturbances. This difficulty is com-
pounded by physical and chemical interactions or nonlinear coupling of the pro-
cess variables. Although complex control algorithms have been conceived for
industrial chemical systems, their acceptance by industry has been slow due to
a lack of direct experimental evidence of their effectiveness and to volumes of
conflicting, or at least incompatible, recommendations on control structure
design. Significant research efforts are necessary in duplicating industrial
processes in a research setting and providing a unified approach to the

mathematical modeling and control structure design.

This thesis provides the basis for a concerted theoretical and experimental
program in multivariable process control structure design for packed bed reac-
tor systems. Along with the detailed design and construction of both a kinetics
and pilot-scale control reactor (Strand, 1984), this work presents the necessary
prerequisites to a substantial effort in the study of the applicability of process
control theory to a laboratory- or pilot-scale industrial chemical process. In

view of these objectives, this thesis is divided into two major sections:

— an in-depth analysis of a practical, multivariable, distributed parame-
ter system--the well-defined heat conduction process defined by the
simple diffusion equation--using both frequency-domain and time-

domain analyses and

—the formulation, numerical solution, and analysis of a “detailed

dynamic model for packed bed reactors, along with reduction to a low-
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order state-space representation suitable for on-line process control.

The first section of this work, the analysis of the heat conduction problem,
is presented in Chapter 2 and is a self-contained presentation of many of the
control aspects of a multivariable, distributed parameter system (Khanna and
Seinfeld, 1982). Although this heat conduction system is much simpler than the
packed bed reactor, a considerable amount of insight inte control structure
design can be obtained from this process since the control aspects are not lost
in the complexity of the mathematical system as they may be in an initial
detailed control study of the experimental packed bed reactor. In particular, an
analysis of a number of multivariable process control strategies, including non-
interacting control, optimal control, inverse Nygquist array, and characteristic
locus techniques, is carried out theoretically on a one-dimensional, two-input
heat conduction system. The potential improvements in control performance
through the usc of cxtra measurements and through the appropriate selection
of measurement locations is assessed and a new non-interacting control stra-

tegy, termed inner-loop decoupling, is developed.

The remainder of this thesis centers on the complete dynamic modeling
analysis of a packed bed reactor, along with reduction to an accurate low-order
state-space representation suitable for control studies. According to Jutan et al.

(1977), this is

"one of the more complicated processes to model in chemi-
cal engineering. Because of this, it is essential when deriving
a process model to keep in mind the purpose for which the
model is to be used. If, for example, the model is to be used
as the basis for on-line regulatory control of the reactor,
large simplifications to most of the models proposed in the
literature must be made. Although most of the models tend
to be somewhat complex and, in general, unsuitable for con-
trol, by examining the formulation of these models some
insight into the important effects occurring within a reactor
may be gained, and ideas for simplifying the models for the
purpose of the control may be found."”



-d -

In view of these comments, this study allows accurate description of dynamic
and steady state reactor behavior for process optimization and design, for the
investigation of reactor start-up or the effects of process disturbances, and for
the analysis and design of control structures. Various common assumptions
and model structures are considered, and the appropriate numerical solution
techniques are discussed. This analysis is not intended to be specific to any par-
ticular packed bed reactor system but rather to present a detailed study of
modeling techniques, assumptions, and solutions and to develop a unified
approach to dynamic reactor modeling and control model development. The
work significantly extends previous studies in the detail of the mathematical
model and in the systematic consideration of all aspects of the model develop-

ment and the reduction to a state-space control representation.
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1.2 INDUSTRIAL CONTROL CONSIDERATIONS

Until only recently, the process control industry has been dominated by
applications to mechanical or electrical processes where systems are generally
well-defined and numerically simple due to minimal nonlinearities and relatively
simple physical characteristics. Even so-called 'modern’ control theories
developed in the 1960's have only played an important role in fields such as
robotics and the space program. Their applicability to complex industrial chem-
ical processes which are inherently burdened by nonlinearities, large time
delays, and distributed parameter behavior has been extremely limited in spite
of an enormous effort by researchers. Although significant theoretical efforts
have been made by many research groups in the development of control algo-
rithms for ill-defined distributed parameter systerns as are common in the
chemical industry, these efforts have not found wide application in actual indus-
trial problems. Thus during the past twenty years, a significant control 'gap’ has
developed between process control theory and practice (Foss, 1973, Seborg and

Edgar, 1982).

Due largely to increased costs for energy, increased governmental safety
and environmental restrictions, and increased foreign competition, significant
efforts are now being made by industry to modernize and automate production
facilities with a major emphasis on integrating energy requirements and improv-
ing throughputs and system performance (Ray, 1981). Additionally with the
major improvements and general acceptance of computers suitable for on-line
control, attempts at applying sophisticated control theories are only now begin-
ning. One of the conclusions of the discussion on the problem of the control
'gap’ between academic theories and practice is that there exists a pressing
need for careful, systematic studies of the design and implementation of control

systems for pilot-scale industrial processes, thus providing the prime motivation
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behind the current theoretical and experimental program for which this thesis

provides a basis.

Several steps are necessary prior to developing and testing control stra-
tegies. These include the design and construction of a pilot-scale system pos-
sessing much of the modeling characteristics and control difficulties of the
actual industrial process, the development of an accurate mathematical model
for process design and analysis, and the reduction of the full model to one suit-
able for control structure design and on-line control. The first of these steps
was performed by Strand (1984), and the latter two steps are the concern of this
current work. A packed bed nonadiabatic chemical reactor was selected as the
chemical process to be studied due to its complexity and inherent control
difficulties and its extensive industrial importance for carrying out exothermic,

gas phase reactions,

Upon completion of these preliminary research efforts, the elements of the

control structure:
« the measured variables,
» the manipulated variables,

» the control configuration connecting the measured and manipulated

variables, and

» the control logic governing the behavior of the manipulated variables
can be considered. In particular, it is important to determine control struc-
tures that make optimal use of the available measurements in the chemical pro-
cess. Although in general there may be quite a few measured variables available,
they may not be the variables of most concern, and these variables may need to
be reconstructed using the process model. An example of this is the measure-

ment of the outlet gas temperature in the packed bed reactor from which the
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outlet concentrations may need to be estimated. Further problems with meas-
urements result from various random and systematic errors or noise in the
measurements and long delays due to the complexity of the chemical or physi-
cal analyses.! The use of an accurate process model can in many cases minimize
these difficulties by allowing prediction of some unavailable measurements, by
improving the knowledge of the system performance through simulations, and

by allowing design improvements to the process.

Thus the central role played by dynamic and steady state models in the
design and optimization of chemical processes and in the development and
application of control strategies justifies considerable effort in their develop-

ment. The philosophy of this modeling work is presented by Foss (1873),

'Forms of the models range from sets of nonlinear
differential equations to empirically or experimentally
derived transfer functions. The forms of the models may
not be selected arbitrarily; they are determined in part by
the control objectives and the type of control analysis to be
pursued. In short, process modeling is a substantial and
crucial task, and by no means routine. ... The operation of
control systems of modern design also requires estimates of
the process states used for control. This requires a process
model, perhaps different than that used for design calcula-
tions, and a means of rapid solution of the model equa-
tions."

The work presented in this thesis is intended to minimize the difficulties associ-
ated with process modeling by providing an accurate unified approach to the

model development for packed bed chemical reactors.

1. Such as using & chromatograph to measure outlet concentrations from a reactor.
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1.3 REVIEW OF EXPERIMENTAL CONTROL STUDIES

Several experimental laboratory-scale packed bed reactor systems have
been studied in terms of control considerations. Table 1.2-1 outlines some of
the work done by several groups that have made significant contributions in this
area. Their work is by no means the extent of control applications for chemical
processes (there is much published work on the control of separation processes
and other reactor configurations) but is the major extent of published experi-

mental application of control techniques to packed bed reactors.

The Denmark group (Clement and Jorgensen, 1981; Clement et al., 1980;
Hallager and Jorgensen, 1981; Sorensen, 1977; Sorensen et al., 1980) considered
an adiabatic pilot-plant chemical reactor with the reaction between oxygen and
hydrogen over an alumina supported platinum catalyst. Initial dynamic model-
ing and experimental studies were carried out by Hansen and Jorgensen (1974,
1978ab) and by Sorensen (1976). The group considered various reactor and
control models and investigated control strategies based on optimal control,

direct Nyquist arrays, and the self-tuning regulator.

The Berkeley group (Foss et al., 1980; Michelsen et al., 1973; Silva et al.,
1979; Vakil et al., 1973; Wallman et al., 1979) studied the same hydrogen/oxygen
systemn but used a two-bed reactor structure with an interstage quench stream.
Again the beds were taken as adiabatic, and various control strategies were de-
vised. The first control studies by Silva et al. (1979) and Wallman et al. {1979)
considered the control of the quench flowrate and temperature using tempera-
ture measurements and a product concentration estimator using the stochastic
linear quadratic regulator and multivariable integral control. The latter work
by Foss et al. (1980) uses the flowrate and temperature of the quen;:h stream

and the feed temperature to regulate the product concentration and tempera-
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ture using the characteristic locus method of control system analysis. A major
significance of their work was the consideration of the large number of available

measurements and the appropriate choice of control configuations.

The McMaster group (Jutan et al.,, 1977; MacGregor and Wong, 1978; Wright
and Schryer, 1978) considered the hydrogenolysis of butane carried out over a
nickel on silica gel catalyst in a nonadiabatic packed bed reactor. The work by
Jutan et al. (1977) provides an excellent foundation for packed bed reactor
modeling and control studies for multiple reaction systems by specifically con-
sidering the state-space model development, the parameter estimation and sto-
chastic disturbance identification, and on-line linear quadratic control. The ear-
lier work by MacGregor and Wong (1978) and Wright and Schryer (1978) deviated
from the mechanistic approach to reactor modeling taken by most studies
where models are developed by careful consideration of the important chemical
and physical phenomena occurring within the process. They considered the use
of statistical methods to identify process transfer functions from empirical
input/output process data. They then applied a model reference adaptive con-

troller and a state-space stochastic linear quadratic regulator.

Finally, the dynamic behavior of an autothermal reactor with internal
countercurrent heat exchange using the steam-shift reaction was modeled by
Bonvin (1980) and Bonvin et al. (1979, 1980). Modal control using state feed-
| back was found appropriate for stabilizing the reactor around an unstable

steady state.
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Chapter 2

MULTIVARIABLE, CONTROL STRUCTURE DESIGN FOR

A HEAT CONDUCTION SYSTEM
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2.1 INTRODUCTION

Classical process control techniques were largely developed on a trial and
error basis, with the theoretical concepts developed later to substantiate the
empirical results. The classical controller was based on a single-input, single-
output {SISO) system with three types of possible control action—proportional,
integral, and derivative—-based on the feedback error. Although design tech-
niques such as root-loci, Bode diagrams, and Nyquist plots led to empirical rules
for setting the appropriate amounts of control action, these methods were lim-
ited to SISO systems. Since most processes have multiple inputs and outputs,
additional considerations became necessary, due to the failure of single-loop
analysis for interacting loops. Since frequency-domain methods dominated con-
trol system design in the scalar case and led to relatively simple controllers, it is
not surprising that considerable effort went into extending these methods to the
multivariable case. However, direct extension of scalar frequency-domain pro-
cedures was not possible, and major modifications of the existing theories were
necessary to meet the design objectives. Furthermore, design complexities were
often enhanced due to the additional objective of noninteraction. Nevertheless,
several excellent frequency response procedures were developed in the late 60's

and 70's, led by the work of Rosenbrock, MacFarlane, and Kouvaritakis.

At the same time, "modern” control techniques were developed. These
methods rely on an exact knowledge of the system state, which is reconstructed
from a finite number of measurements using current theories in optimal filter-
ing, smoothing, and estimation. The ideas have been extended to account for
medeling and measurement uncertainties and inaccuracies. Although these
"modern” methods, which rely heavily on variational calculus and dynamic pro-
gramming, generally lead to a more complex control structure, they are less

heuristic than the frequency-domain methods and allow for more precise
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control objectives, such as the minimization of the variance in the state vector.

This chapter describes an in-depth analysis of a practical, multivariable,
distributed parameler system using both frequency-domain and time-domain
analysis. As a typical distributed system, a one-dimensional, heat conduction

problem is considered. The process is described by the diffusion equation

Fy(zt) _ dy(zt)
7 i v . {2.1-1)

where the temperature distribution, y(z,t), is dependent on the space coordinate
2z, which is normalized (0.0 < z < 1.0) with respect to the thickness of the sys-
tem, and on time, which is normalized so that the coefficient corresponding to
the thermal diffusivity is unity. For simplicity, the controls u,(t) and uy(t) are
taken to be the heat fluxes at z = 0 and z = 1. Thus the initial and boundary

conditions are

¥(2.0) = yo(2) (2.1-2)
Qyéz_.ﬁ_ =ou(y . HER -y, (2.1-3)
2 a=0 0z #=1

Although this heat conduction process is a relatively simple control prob-
lem due to the simplicity of the model and ease of obtaining rneasurements, the
analysis leads to conclusions that can be extended to general, multivariable con-
trol theory. Actually the system is an excellent choice, since Equations (2.1-1) -
(2.1-3) can be solved analytically to give the temperature distribution for any
control action. Thus model reduction and control design techniques can be
applied to the reduced system and compared with the actual process model.
Additionally, the heat conduction system is a highly interacting process with

implicit transportation lags.

Due to the simplicity of the model, both distributed and lumped analyses
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can be performed. Since most frequency-response techniques require a low-
order, lumped, state-space representation, model reduction is an important
step in the analysis. Section 2.2 discusses the model lumping and reduction
using exact techniques. Additionally, an analysis of output and system control-
lability, along with a multivariable root-loci analysis, is presented. Much insight

can be obtained from these preliminary considerations.

Section 2.3 discusses the time-domain analysis of both the lumped and dis-
tributed models of the system. Both optimal feedback control and modal tech-
niques are discussed in detail, along with derivations of the control schemes.
Since much work has been published on the application of optimal control
theory to the single-input, one-dimensional heat conduction problem and since
little additional complexity is introduced in the optimal analysis by adding

another control, this aspect is not dealt with in detail.

Section 2.4 considers non-interacting control. Since a major difficulty in
multivariable, feedback control design arises from the steady state and dynamic
interactions that occur between the various input and output variables, it is
usually desirable to reduce these interactions. If they can be reduced
sufficiently, single-loop control theories can be applied directly to each of the
non-interacting loops. The technique of perfect, non-interacting compensation
is attempted for this purpose. However since such compensation is in many
cases impractical or excessively complicated, other methods that only eliminate
steady state interactions are also considered. Finally, a new method, that uses a
relatively simple control structure to eliminate all steady state and dynamic
interactions, is considered. This procedure, called inner-loop decoupling, makes

use of extra available measurements through an inner-loop structure.

Several methods at the forefront of current multivariable frequency-
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‘ response analysis are also studied. Section 2.5 discusses the application of
Rosenbrock's (1962) inverse Nyquist array technique, which is an extension of
the classical Nyquist stability criterion. Section 2.6 analyzes the heat conduc-
tion system using the characteristic locus method. The analysis is based on the
latest refinements of the technique originally introduced by Belletrutti and
MacFarlane (1971). The current work provides a systematic approach for
designing a proportional-integral controller with the best compromise of system

stability, interaction, integrity, and accuracy.

Section 2.7 presents an overall analysis of the control system performance.
Using computer simnulations of the responses of both the lumped model and the
actual system to step input changes, the effectiveness of the various control
designs are compared. This analysis leads to conclusions about the model

reduction and design techniques that can be extended to general, multivariable

feedback control.
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2.2 PRELIMINARY ANALYSIS

Difficulties arise in the control system design of distributed parameter sys-
tems because of state variations in both time and space. The thrust of many of
the feedback control design techniques for distributed systems is to reduce the
system to a lumped one and then to take advantage of the many theories avail-
able for lumped parameter control design. However, problems arise in that all
of the analysis performed on the lumped system is dependent on the method
and accuracy of the reduction. Although considerable model reduction is neces-
sary to reduce computational complexities in the design procedures, excessive
or inaccurate reduction can lead to a system whose behavior is quite different

from that of the original process.

2.2.1 Nodel Reduction

To obtain the lumped parameter model for a system described by partial
differential equations, many efficient techniques are described in the literature.
In particular, much work has been published on various lumping strategies for
linear diffusion equations. A particularly useful means of treating both linear
and nonlinear partial differential equation systems is the method of weighted
residuals along with other pseudo-modal techniques, such as finite element
methods (Norrie and DeVries, 1973) or the use of spline functions (Finlayson,
1972). The method of weighted residuals is comprised of the following basic
techniques, depending on the choice of the weighting function (Prabhu and

McCausland, 1970; Ray, 1981):

a. Galerkin's Method (Lynn and Zahradnik, 1970; Newman and Sen,

1972: Prabhu and McCausland, 1970)
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b. Method of Subdivisions
¢. Method of Moments
d. Method of Collocation (Finlayson, 1972)

e. least Squares Method.
Although these techniques are quite powerful, Mahapatra (1977) peints out that
solutions using the method of weighted residuals often require considerable
effort to determine the set of orthogonal coordinate functions and a high-order
lumped model for accurate results. To eliminate these difficulties, spatial
discretization techniques (Leden, 1976; Mahapatra, 1977) are often quite useful
for linear diffusion systems, since they retain the physical characteristics of the

system. However, they too often lead to high-order lumped models.

Thus to improve the accuracy and reduce the order of the model, it may be
best to use an exact reduction technique. Since the heat equation is governed
by a parabolic equation, exact lumping can be performed using a Laplace
transform in time or through a modal analysis. The latter, which is simply an
application of the separation of variable solution procedure, is quite attractive
for systems which can be made self-adjoint, since the technique leads directly to
the eigenvalues and eigenfunctions (modes) of the system. If the eigenvalues
are real, discrete and well spaced, the modal representation is a convenient
method to reduce the order of the system, since only the dominant modes need

be retained for design purposes.

Both the Laplace transform and modal analysis techniques were applied to
the one-dimensional heat conduction problem. Other techniques have been dis-
cussed in detail in the literature. Although the methods can be shown to lead to
equivalent results, the modal analysis leads directly to a lumped, state-space

representation. Disadvantages of the separation of variable technique were
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cited by Prabhu and McCausland (1970), but the technique is well suited to the
linear diffusion problem because time and space variables are easily separated

and an analytic sclution is possible.

Consider the system described by Equation (2.1-1), scaled so that yo(z)=0.

Taking the Laplace transform with respect to time gives:

2
sy(zs) = S¥{zs) (2.2-1)

dz#®
which has the solution
y(z,s) = Asinh~5z + coshVsz . (2.2-2)

After application of the boundary conditions

Q.‘Lé%_s_)_: ~uy(s) 21((1%3)_= () (2.2-8)

the solution in the laplace domain is

y(z.s) = Gi(zs)us) , (2.2-4)
where
uT(s)={u1(s) , uz(s)] (2.2-5)
[ -
= o) e < [ SRLEDE k| o)

Thus a distributed transfer function representation is obtained, from which a
simple feedback control strategy can be envisioned (Figure 2.2-1). The closed-

loop distributed transfer function is

L = 1+ Gy (20)Guls)] " Gylz)Guls) (227)

However In general, measurements will only be available as discrete points. 1If

these points are 2z,, ..., zy, the appropriate block diagram structure is shown in
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Figures 2.2-2 and 2.2-3 with
AT = |6(z—2,), 6(z—23), ..., 6(z—zN)} . (2.2-8)

Note that Figure 2.2-3 is equivalent to Figure 2.2-1 with G.(z,5) = G.(s)A

Using contour integration to invert Equations (2.2-4)-{(2.2-8), the time-
domain representation of the selution can be obtained. The inverse of g;(z.s) is
the sum of the residues of e®g;(z,s). Each g;(zs) has an infinite number of sim-
ple poles at s, = -n®n%, n =1, 2, 3, ... and a pole at s; = 0.0. Simple expansions of
the numerator and denominator of e®g,(2,5) about 5 = 0.0 lead to a residue of
1.0 at sg. The residues at s, are obtained by Taylor expanding sinh Vs about s,

and applying residue theory. This results in

gi(zt) = 1.0+ 3 2.0(—1)"cos nm(1 ~z) o7
n=1

- (2.2-9)
gz(z.t) = 1.0+ ) 2.0{—1)"cosnnz g o
n=t

Then using convolution theory, the time-domain behavior is directly related to

the contrel action:
Yz = [ Gat-nu(nar  Glat) = [g(z0). gazt)] . (22-10)

Since the time-domain results are obtained as an infinite series of exponen-
tials with eigenvalues A, = n®n? the Laplace-domain behavior can also be
represented as an infinite series with y(z,s) being described by Equation (2.2-4)

along with the following:

S 2(~1)Pcosnm(l-z) 1 & 2(~1)"cosnnmz )
by S—An eI T, (2.2-11)

Gl(zs) = -‘é—-+

n=1

Then if the series can be truncated after the first few terms without excessive

inacecuracy, normal multivariable design techniques can be applied directly.
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However since separation of variables for the one-dimensional heat conduce-
tion systemn leads to a self-adjoint operator with real, discrete eigenvalues,
modal decomposition is attractive for this system. The problem can be

redefined using the Dirac delta function:

6y€(’i't> = 6ag(zg-t) + 8(z-0)uy (t) + 6(z~1)ug(t)

z2=0", z=1* QXK—-Laz't =0 . (#28)
Z

It can be proven that this change is rigorous by integrating Equation (2.2-12)

across the infinitesimal intervals 1" < z < 1* and 0~ < z < 0*. For example:

j;+vé%dz= '/;+§i~[%ﬂdz+ A * s(z—0)u, (t)dz + j:fa(z—nuz(t)dz (2.2-13)

Thus

ot
+ Ux(t)
o~

= Oy
0 oz

But %2—30 at z = 07 ; therefore %%—=—-ul(t) at z = 0*. Thus formulation
(2.2-12) is equivalent to that described by Equations (2.1-1) - (2.1-3).

The space and time variables can then be separated by assuming a solution

of the form

y(z.t) = i‘ an(t)¢n(z)

n=0

” (2.2-14)
6(z—0)u, (t) +8(z—1)up(t) = Z;,o bp(t)@n(z) .

After substituling into (2.2-12) and simplifying, the equations become
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3
1 dap(t) _ by(t) = 1 de?’n(z)
an(t) dt an(t) ﬁpn(z) dz®
n=01,2 .. . (2.2-15)
~ den(z) _ - dyp(z) _
=0 4 0, =1 dz 0
7
By choosing the separation constant as -A,,
d?pn(2)
“‘“&“‘Z’}‘g—‘“*" Angn = 0
dag(t) n=0 1,2, .. . (2.2-186)

at + Anan(t) = by(t)

Clearly (2.2-16a) is a self-adjoint differential equation that can be solved to yield
¢n(z) = Apcos Viqz A =nfn%, n=0,1,2, .. (2.2-17)

after application of the boundary conditions from (2.2-15). Because (2.2-16a) is
a homogeneous, self-adjoint differential equation with homogeneous boundary
conditions, the eigenfunctions, Equation (2.2-17), are orthogonal. It is con-
venient to choose the arbitrary constant A; so as to make the eigenfunctions

orthonormal, i.e.,
1
fo ¢2(z)dz =10 . (2.2-18)
The appropriate choice of A, leads to

1.0 n=0
n=1

¢nl2z) = {\@cos nnz 2 (2.2-19)

Then by application of the orthogonality of the eigenfunctions

1
an(t) = [ ¢a(2)y(zt)dz | (2.2-20)

or in particular for yo(z) = 0, a,(0) = 0. Similarly the coefficients b,(t) are given

by
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ba() = [, ¢a(2)[8(z-00us(V) + 8(z—1)up(t) | dz

= gn(0)u,(t) +@n(1)up(t) . (2.2-21)
Thus
ul(t) +u2(t) n=0
Ball) = VBuy(t) + (-1 VBug(t) n=1,2, .. (2.2-2R)

Since the eigenvalues, A\, = nn?, increase rapidly with increasing n, the sys-
tem can be accurately represented by the first few eigenfunctions,n =0, 1, ..., N.
The process model can then be obtained as an Nth-order lumped state-space

representation with the N+1 states ag, ..., ay.
x(t) = Ax(t) + Bu(t) , y(zt) = Cx(t), (2.2-23)
where

2 = [ao). .. an(t)]

Ve VR
A = diag(~n®n®) , B= ,
L\fé (—=1)NVE

€ = [po(7). ¢:(2). ... on(7)] |

The resulting feedback control system can be drawn in block diagram form (Fig-

ure 2.2-4)

In theory, the control scheme of Figure 2.2-4 (and of Figure 2.2-1) requires
the complete temperature profile, y(zt), of the system. However, Ray (1981)

points out several means of eircumventing this problem. He suggests:
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i. measuring y(#.,t) at many points @i = 1, 2, ..., M and using an optimal

smoothing technique to approximate y{z,t),

ii. measuring y(z;,t) at a few points and using a state estimator to esti-

mate y(zt),
iii, or measuring y(z;t) an N+1 spatial points and letting

y'() = [y(z0t). y(z2t), ... Y(zwer,t)]

wo(z1) ... en(z1)
C= . (2.2-24)
¢0(ZlN+1) S S"N(Z-NH)
Then y(t) = Cx(t) or x(t) = C 'y(t) as long as 2, , ..., ZN+, are selected to
keep C nonsingular.
Actually it is possible to control the system by taking measurements at M points,
where M < N+1. For this case, the systemn should be controlled by using set

points on the outputs rather than on the states, since the N+1th-order state

vector x(t) cannot be obtained uniquely with M < N+1 measurements.

Regardless of the technique for estimating y(z,t), the appropriate transfer
function representation can be obtained by converting to the laplace domain.
With yo (2) = 0,

x(s) = (sI-A)'Bu(s). y(zs) = Cx(s), (2.2-25)
or with measurements at M distinct points:

[ wolzi) ... ex(z))

ys)=Cx(s) . C=| . . (2.2-26)

Soo(‘zn) ... en{Zn)
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Thus the lumped parameter system process transfer function is given by
Gy(s) = C(sI-A)'B . (2.2-27)
2.2.2 Controllability

The distributed system has been lumped through an N eigenfunction
decomposition. Before attermnpting to design a control strategy for the lumped

system, an analysis of system and output controllability is necessary.

Although the concept of controllability is formally defined in many refer-
ences (Brockett, 1970; Douglas, 1972; Lee and Marcus, 1967; Ray, 1981), it is con-
venient to consider a system completely controllable if some control action
exists that will take the system from any given initial state to any”speciﬁed final
state in finite time. The necessary and suflicient condition for complete control-
lability of the system described by (2.2-23) with N-1 states and two controls is

that the controllability matrix L

1. = [BlAB| Bl ... | A¥-1B] (2.2-2B)
IR 0 0 ‘
VB B o (—mNVE ~(—n?E
L= . : .
VN (RNE (s

has rank N-1. Since I has full rank for all N, the system is completely controll-

able. Thus the two controls u, and up are capable of influencing all of the states.

However, the lumped analysis will be based on k measurements. Thus a
meore important concept is that of cutput controllability, i.e., the controls must

be able to influence all k outputs. The output controllability matrix
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L' = [CB/CABI ...| cAN-1B] (2.2-29)

‘must have rank k for the system to be output controllable. It can easily be
shown that, for the heat conduction systemn, output controllability 1s assured if

no two measurements are taken at the same point.

It can be concluded that, for k distinct measurements, the lumped, one-
dimensional heat conduction system is completely controllable with heat flux
control at z = 0 and z = 1. Thus multivariable lumped parameter control theory
can be applied to the state-space representation of the system. However, it
should be recalled that this analysis of controllability is dependent on the accu-
racy of the model reduction and lumping. Although the approximate lumped
parameter system has been shown to be completely controllable, the actual dis-
tributed system may indeed be only partially controllable. Additionally, care
must be taken in making conclusions from this type of analysis, since no con-

sideration of the physical constraints of the system have been made.

2.2.3 Root-locus

The concept of root-locus analysis is basic to classical control system
design for single-input, single-output processes. The root-locus diagram is
advantageous since it describes the character of the response as the gain of the
controller is continuously changed, by allowing rapid determination of the roots
of the characteristic equation. Although scalar root-locus techniques are well-
known, the multivariable root-locus problem is relatively new, Kouvaritakis
(1978), Kouvaritakis and MacFarlane (1978ab), and Kouvaritakis and Shaked

(1978) describe the technique and discuss the analysis of system zeros.

The objective of the reoot-locus method is to investigate the behavior of the

closed-loop characteristic frequencies when the feedback gain matrix has the
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form G, = kI. For the modal-lumped representation of the heat conduction sys-
tem, the process transfer function was shown to be G, = C(sI-A)™'B. The

characteristic equation is then (Hsu and Chen, 1968)

Pc(s)
Po(s)

1+kG,| = (2.2-30)

where P, (s) is the open-loop characteristic polynomial and P, (s) is the closed-
loop characteristic polynomial. Then if we define

sl-A -B
z(s) = . (2.2-31)

the n-m-d closed-loop characteristic frequencies! will tend toward the roots of
z(s) = 0 as k increases. These roots are the finite zeros of the process. For the
two-control, 3rd-order, heat conduction system, there is one finite zero and two
infinite zeros if CB has full rank. If CB has lost rank, all three zeros will be

infinite. This occurs for the following choices of measurement locations:
Z 020 0.33 0.40 0.60 0.67 0.80
Zp 0.60 0.67 0.80 0.20 0.33 0.40

Thus for any combination of outputs other than these, there will be one finite

zero given by z(s) = 0. The solution to this is

_ 4m®(c—a) .
" ~B(ad-be)+(a—c) (2.2-32)

1. whcé‘ﬁ n is the order of the lumped model, m is the number of inputs, and d is the rank deficiency
of
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a=pi(z;) b=paz;)) c=pi(z2) d=gpalzz)

This root is finite for all 2, and z» other than those listed above, since the

denominator of Equation (2.2-32) is then nonzero.

The root-loci for the system are the loci of the roots of the characteristic

equation

0 =l1+kGy| =Is1-Al [1+k Gyl = s(s+n?)(s+4n?) +k[[(2+VE(a—c)
+v2(b+d)]s® +[10n%+4vBr?(a—c) +mVE(b+d)+2VBk(a—c)

+4k(ad-bc)]s + Bn*V2k(a—c)+Bn*] (2.2-33)

as k varies from 0 to =. Obviously, the poles (k = Q) of the system are at s = 0,
-n® and -4n® independent of the measurements. As k approaches infinity, (2.2-

33) reduces to
VZ(ad-be)s + (a—c)s + 4nm%(a—) = 0 (2.2-34)
which is equivalent to (2.2-32) above.

Figure 2.2-5 shows the root-loci for various measurement locations. Both
symmetric and unsymmetric cases were studied. For the symmetric cases, the
root-loci remain stable (in the left-half plane) at high gains for z; = 0.33;
whereas, the loci become unstable at high gains for 0.33 < z; < 0.50 . This is
expected due to the large lag time between the control action at z; = 0 and its
effect on the output. The symmetric cases with z; and zp reversed, i.e,, 2; > 0.50
and zz < 0.50 (not shown), lead to root-loci identical to those in Figure 2.2-5
except that the locus beginning at -7° approaches +w rather than -=. Thus

such a system is less stable.® Additionally from the root-loci analysis, the

2. Thisis also a result of the large lag times.
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responses for the (0.2,0.8) case are expected to be non-oscillatory; whereas, for

all other cases, oscillations are expected at moderate to high gains.

It can be concluded that, for symmetric measurements with z;, < 0.33 or
for the unsymmetric case (0.4,0.8), system stability is insured even for high
gains. Thus a proportional controller may provide adequate control action.
Since the other cases lead to instability at high gains, more complicated control

schemes should be considered.
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Figure 2.2-1
Distributed Feedback Control Design
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Feedback Control Strategy with N Discrete Measurements
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Nth-Order Lumped Feedback Control Design
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2.3 TIME-DOMAIN ANALYSLS

The time-domain approach for control system analysis utilizes the
differential or difference equations directly rather than using transfer functions,
as in the frequency-domain analysis. Although the time-domain technique is
actually older than frequency response techniques, its development was slow
due to the difficulty of making calculations in the differential domain. The
emergence of digital computation as a widely accepted tool led to a resurgence
of interest in time-domain analysis. In particular, the techniques of state esti-
mation, optimal contrel, modal control, and adaptive control rose to the fore-
front of research. Although these methods have a strong theoretical basis, they
only became practical with the development of small and reliable digital com-
puters capable of high-speed information processing. Consideration of ideas for
which frequency-domain techniques were inappropriate, such as simultaneous
control of several interacting variables, and the application of different types of
controller objectives, such as the minimization of energy consumption, became

practical.

0Of the many time-domain procedures, optimal control and modal control
are the most common techniques and thus have been studied extensively for
both lumped and distributed parameter systems. The one-dimensional diffusion
equation has often been used to illustrate the application of these methods.
Due to the many studies of these theories and on their application to heat con-
duction systems, only a cursory examination of the techniques will be
presented. Additionally, other methods such as adaptive control and state esti-
mation will not be considered in this theoretical analysis of the heat conduction

process, although they may be quite useful in practical applications.
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2.3.1 Optimal Cantrol

Optimal control methods can be divided into two schemes—open- and
closed-loop. When an excellent mathematical model of the system is available in
terms of differential equations, open-loop contrel schemes can be useful for
start-up, shut down, and other transient conditions. However in practice, most
models contain some error; therefore, closed-loop schemes are often necessary
for satisfactory controller performance. since they involve feedback of process
measurements. Regardless of whether open or closed-loop control is to be used,
the technique involves the selection of an index which measures the perfor-
mance of the system, from which the optimal control strategy is selected as that
which minimizes this index. A major difficulty in the design of an optimal con-
trol system is the establishment of the criteria for optimality. The optimal con-
trol procedure is in contrast to the other techniques that try to obtain satisfac-
tory responses in terms of offset, gain margin or decay ratios, since once the cri-

{eria is selected a unique solution is obtained.

As previously mentioned, much work has been published concerning
optimal control of parabolic systems such as that described by the heat equa-
tion. McCausland (1970), Prabhu and McCausland (1970), and Mahapatra (1977)
studied time-optimal control of the linear diffusion process. For such contro],
the objective is to force the system to reach the desired design conditions in
minimum time. Others (Betts and Citron, 1972; Sakawa, 1964, Sheirah and
Hamza, 1974) treated the problem of optimal control of the heat conduction
problem by minimizing the deviation of the temperature distribution from the
desired distribution throughout time. Additionally much literature is available

on the general problem of optimal control of distributed parameter systems.

An important special case of the optimal control problem is linear-
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iquadratic control, which leads to an optimal, state-feedback control law.
Numerous papers have been written on this problem, including sevr::ral on its
application to parabolic systems (Ahmed and Teo, 1981; Matsumoto and Ito,
1970, Wang, 1975). This technique uses a quadratic penalty function to control a
system at a set point without excessive control action and not exceeding accept-
able levels of state. The method is readily applicable to either a lumped model

of the system or to the original distributed model.

For the heat conduction system, the lumped parameter model is described

by the linear differential equation

x=Ax+Bu, y=Cx, (2.3-1)
with A, B, and C defined by Equations (2.2-23) and (2.2-26). The objective of this
technique is to obtain the feedback law which minimizes the performance index

R . | 1 r'Fg T .
I= szpxtF+2j;°[xe+uEu]dt , (2.3-2)

where Sp, F(t), and E(t) are symmetric, positive definite weighting matrices
which describe the relative importance of reaching the desired set point x4 = 0,
using small levels of the state and using little control action. If the desired set
point is nonzero, then deviation variables can be used to convert the problem to
the above form. Thus let x4 and uy be the desired steady state values. Then let-
ting

X=x—-%, wW=u-—uy (2.3-3)
and recognizing that at steady state Ax; + Buy = 0, Equation (2.3-1) becomes

¥ = AX + Bw’ (2.3-4)

with the performance index:
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J = S~(x—%q)"Sp( X“"Xd) + = f (x—-%4)TF(x-x3) + (u—ug) B(u—ug4)]dt (2.3-5)

m‘»—*

Then from quadratic feedback control theory (Bryson and Ho, 1989; Ray, 1981),

the feedback control law is
u(t) = ug — K(t)(x - xq) (2.3-6)
where K(t) is given by
K(t) = E-1BTS(t) (2.3-7)
and S(t) is found by solving the Ricatti equation backward from tg:
S(t) = -SA —ATS + SBE'HIS - F,  S(tp) = Sp. (2.3-8)

Thus a proportional feedback controller with time-varying gain has been
designed to control the system while minimizing the index given by Equation
(2.3-5). This control structure is quite useful because the time-varying gain K(t)
can be determined off-line since it does not depend on x{t) or u(t). Then if ty -

= and A, B, F, and E are constant, S(t) becomes constant. It is the solution to
SBE'B'S-SA-ATS-F=0 (2.3-9)
In this case, the controller is simply a constant gain proportional controller.

The linear-quadratic problem can also be applied to the distributed param-
eter system described by Equations (2.1-1) - (2.1-3). The objective is then to

minimize the index

§= %—fol[y’(z.tp)}"’sr dz + -21- /; * j;lF[y“(z.t)]g dzdt
+ %“_/;W[Eo[uﬁ(t)]z+El[u’2(t)]2]dt . (2.3-10)

where y” and u” are deviation variables with y4(z) being the desired temperature
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pfoﬁle. The derivation of the optimal control law is carried out using the pro-

cedure described by Ray (1981). The results are:
1
u,ft) = wEo"l'/; S(0,s,t)y(s,t)ds
1
up(t) = -t f S(1.s.t)y(s.t) ds

where S(r,s,t) can be computed off-line from

Si(r.s.t) = —Sss ~ Spr + S(r,0,t)Ey'S(0,s,t)

+ 3(r,1.t)E{!S(1,5,t) — Fé(r—s)

with the boundary conditions
Se(r.1,t) = Se(r.0t) = S(0,5,t) =S, (1,st) =0
and terminal condition

S(r.s.tr) = Sp(r.s) = Spé(r-s)

(2.3-11)

(2.3-12)

(2.3-13)

(2.3-14)

Thus linear-quadratic optimal control can readily be applied to the heat

conduction system to obtain the feedback control law using either the lumped

or distributed parameter model. However several problems exist with the

optimal control technique. MacFarlane (1972) points out that optimal controll-

ers provide gain margins far in excess of those required for stability, are often

difficult to tune on-line and may be of low integrity to transducer failures. Addi-

tionally there are several other major concerns:

i. Optimal control design requires an accurate model of the system. This can

lead to difficulties in the lumped parameter design due to errors intro-

duced by meodel reduction. Even in the distributed parameter design,

model inaccuracies could be quite large due to heat losses or inefficiencies

in the controls.
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ii. Optimal control design requires all of the system states to be accessible.
Thus for the lumped model, the technique is restricted to the case where
the number of measurements equals the order of the mnodel and the meas-
urement rnatrix is nonsingular. Only then are the states accessible from

the measurements:
x=Cly (2.3-15)

For the distributed parameter design. the entire temperature profile y(z.t)
is needed. Considerable effort has been directed at overcoming this
difficulty by using observers or Kalman-Bucy filters to recover the inacces-
sible states. Much literature has been published on combining such tech-

niques with optimal linear quadratic control.

iii. Optimal contrel design requires a selection of the weighting matrices Sg, F,
and E. Unfortunately, in many chemical engineering applications, the
choice of the weighting matrices may be quite difficult. For the heat con-
duction systemn, no easy criterion is available for selecting the weights.
Consequently, much of the literature dealing with optimal control of
diffusion systems considers simple minimization of the time needed to
reach the desired state or the deviation of the system from the desired

state.

2.3.2 Hodal Contro}

Farly work in modal control was dominated by Rosenbrock (1962) and
Gould and Murray-Lasso (1966), with many others {Bradshaw and Porter, 1972;
Davison, 1970; Ellis and White, 1965abc; Fisher and Denn, 1978, Porter and
Bradshaw, 1972) extending the basic theories. Much work has also been pub-
1ishéd on the application of modal techniques to various systems ranging from

linear diffusion problems (Balas, 1979; McGlothin, 1974, Porter and Bradshaw,
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1972, Wang, 1972) to large chemical plants (Davison and Chadha, 1972).
Although many texts discuss the concepts of modal analysis, Gould {1969) pro-
vides a detailed discussion of the use of the method for distributed systems and
for lumped systems with an arbitrary number of states, controls, and measure-
ments. This latter situation is of great interest for the heat conduction prob-
lern, since the order of the model may be much larger than the number of con-

trols and measurements.

Modal analysis is based on the postulate that the transient behavior of a
process is primarily governed by the modes associated with the smallest eigen-
values and that the response of the system can be improved by using a control
design to increase these eigenvalues. Additionally, the method suggests that it is
possible to approximate a complicated, high-order system by a lower-order sys-
tern whose slow modes are the same as the original system. This technique was
used in the modal lumping of the previous section to obtain the Nth-order
lumped model for the heat conduction system. However several references
(Douglas, 1972; Gould, 1969; Ray, 1981) point out that disturbances affect the
different modes differently; therefore, the reduced model may not be satisfac-
tory if the disturbances have their greatest effect on the neglected faster modes.
Additionally, although Rosenbrock's (1962) approach implied the possibility of
altering each eigenvalue separately without limit, this is often impractical owing

to limitations on the number of controls and measurements and their locations.

The ideal case for lumped modal analysis is when the number of controls
and number of measurements equal the order of the model. For the system

described in Equation (2.2-23):
x=Ax+Ba y=Cx ‘ (2.3-18)

the modal technique calls for the selection of C = L, where Lis the matrix of left
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eigenvectors of matrix A. The controller is then designed as a simple propor-

tional controller with
G. = B 'RK (2.3-17)

where R is the matrix of right eigenvectors of A and Kis a diagonal proportional

gain matrix with diagonal elements k;. With these selections,

x=RA-Klx, y=(A-K)y (R.3-18)

where A is a diagonal matrix of the eigenvalues. Thus the outputs have no
interaction, and the eigenvalues have been shifted by k;. Since A is a diagonal
matrix for the heat conduction system, A = A and the matrices R and L can be
simply taken as identity matrices. Thus the technique calls for the selection of
the measurement matrix as an identity matrix. Therefore, an appropriate com-
bination of the temperatures should be used so that the system states are actu-

ally measured.!

However in most practical systems, the number of states will exceed the
number of controls. Consider the heat conduction process with two controls
and N states and measurements. Gould (1969) shows that, if B and C can be
chosen arbitrarily, the two lowest eigenvalues can be made as large and negative
as desired while leaving the others and all the eigenvectors unchanged. As shown
above, the restrictions on C can be accommodated by measuring a combination
of the temperatures. However for the heat conduction system, B is fixed due to
the a priori selection of the controls. By slight modification of the analysis,
modal control is still applicable. Consider adding both a compensator G, to

adjust for the fixed B and a diagonal proportional control matrix K:

1. Thus the compensator C! should be included after the process and set points or after the
difference junction.
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u = —G.Ky with set point y3=0.

(2.3-19)

Note that previously when B had dimension N? G, was selected as G, = B'R.

However in this case, B can not be inverted. Thus
x = (A - BGK)x

with A= A and Cselected as € = L.3 Then the choice of

leads to

0 kz 0. ..

“"\Ekl D O e
0 -k 0

BGK = | s, 0 o0...

. ’ ’ "}

(2.3-20)

(2.3-21)

(2.3-22)

Thus the first two eigenvalues can be altered by arbitrary selection of k; and k;

without affecting the higher N-2 eigenvalues; however, the first two eigenvectors

have also been altered slightly. Thus a disturbance in either of the first two

modes will cause a disturbance in the higher modes. Since they decay rapidly,

little difficulty should result. The appropriate block diagram is shown in

Figure 2.3-1.

Gould (1969) also presents a detailed discussion of the situation where the

number of measurements is less than the dimension of the process. This would

2. Bwasinvertible.
3. Note that Lis taken as the identity matrix.
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'obviously lead to difficulties in the modal analysis since the system state cannot
be obtained from the measurements. An appropriate control sche;ne can be
designed but will lead to considerable interaction between the control leops.
Because of the complexity of the resulting conirol scheme and the ease of
obtaining temperature measurements for a heat conduction process, it is
recommended that sufficient measurements be taken so that the state vector
can be constructed. Balas (1979) discusses the introduction of a Luenberger

observer for this purpose.

Additionally, modal control can be applied directly to the distributed
parameter system. Gould and Murray-Lasso (1966) and Gould (1969) present a
detailed discussion of modal control for linear, distributed systems, However,
using these techniques and considering the limitations imposed by taking only a
finite number of discrete measurements and by manipulating only two controls,
the analysis becomes equivalent to using modal lumping and applying lumped

modal analysis.

Although modal analysis leads to exact placing of the poles, the procedure
leads to a simple proportional controller and can not give any guidance as to
the selection of additional control action. More importantly, the technique uses
no information concerning the zeros of the transfer functions. Problems can
easily arise if the zeros of the closed-loop transmittances move into the right-
half plane. Furthermore, the method gives the best results only if all the states
of the system are accessible. Although this does not cause any difficulty for the

heat conduction process, it is not practical for most systems.
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2.4 NON-INTERACTING CONTROL

A major difficulty in multivariable, feedback control design arises from the
steady state and dynamic interactions which occur between the various input
and output variables. In most systems, it is desired that one specific output
yi{s) responds to input u;(s), while all other outputs remain unchanged. The
term interaction can then be used to refer to the effects that a particular input
u;(s) has on the output y;(s), 7 # i. Thus low interaction is usually desirable. In
fact if it is possible to eliminate all the coupling between variables, and if the
number of controllable inputs and outputs is equal, the multivariable system
can be treated as a combination of single-loop systermns, and classical techniques
can be used to tune each loop. Unfortunately, most multivariable systems have
considerable interaction; thus, several techniques have been devised to elim-

inate or at least reduce the interaction to an acceptable level.

For the heat conduction process, analysis of the system transfer function
G; = C(sI-A)"'B shows that interaction is high and cannot be eliminated by sim-
ple selection of the measurement locations. Thus compensators that reduce or
eliminate interéction may be useful. Several design techniques including per-
fect non-interacting compensation, steady state decoupling, and set point com-
pensation are available for this purpose. The application of these methods to
the heat conduction problem is discussed. Additionally, a new technique is
presented that eliminates interaction by using extra measurements within an

inner loop, leading to a relatively simple control strategy.

2.4.1 Perfect Dynamic Compensation

. Consider the third-order model for the heat conduction system with two

controls and measurements. The Laplace-domain representation of the system
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is

y=Gu . G, = C(sI-A)"'B (2.4-1)
with
0
A=| -n? (2.4-2)
-4
1 1
B=|VE 2 (2.4-3)
VB VB
1 ¢z 13 1 VBeosmz, VBcos2nz,
|1 ez cas 1 VBcosmz; VBcos2mzg (2.4-4)
The process transfer function Gy is
1, VRcpp Veeig 1 YRy Veeys ‘
s + e +
s  s+n®  s+4n® s s+nt  s+4nt 0
Gp - L+ \2022 + \é023 q;”- '\5022 '\éng ( 4’5)
s s+m  s+4n® S5 s+nm? s+4n°

As mentioned earlier, the off-diagonal terms are significant and cannot be elim-

inated with the selection of the measurement locations z; and zs.

Consider the feedback control system (Figure 2.4-1) consisting of single-
loop controllers, represented by a diagonal transfer function matrix G., and a
non-interaction compensator G proceeding the process. The closed-loop

response for this scheme is

y = (I + GpGiGc) ' GpGrGe Ya = Geiya- (2.4-6)

The compensator Gy should be designed to eliminate as much interaction as pos-
sible. Ideally Gy should be selected to make Gy diagong%f and to drive Gy - I for
s=0(t » =). Note that such analysis is only applicable to systems with square
transfer function matrices. If there are more controls than outputs, then a sub-

set of controls may be chosen for decoupling, while if there are more outputs
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than controls, only partial decoupling is possible (Ray, 1981).

If G, is diagonal, a sufficient criterion for Gy to be diagonal and Gy(0) - I as

the controller gains increase is to select
G=G; diag Gp(s) . (2.4-7)

where diag Gp(s) is a diagonal matrix of the diagonal elements of Gy(s). If this

decoupling is performed perfectly, the closed-loop response will obey

Bey (5)8p,(5) yals) +

1+gc“(s)gp“(s) 4 igd‘j (s)dy(s) . (R.4-B)

1+g¢ﬂ S)gp“ 5) j

yi(s) =

where d;(s) are the disturbances and g%(s). g4 (s), and gy (s) are the elements
of the disturbance, controller, and process transfer function matrices, respec-
tively. This selection of Gy leads to a total decoupling for set point changes and,
even though each disturbance can influence all the outputs, its effect on output

y; is damped by a single controller g (s) (Ray, 1981).

Although this method is simple and seemningly eliminates all the complica-
tions inherent in multivariable, feedback control design, it has several major
disadvantages. Perfect compensation requires a gerfect transfer function
model. Though the model is well-known for the heat conduction process,
approximations such as finite lumping can lead to badly behaving or even
unstable control schemes. Furthermore, MacFarlane (1972) and Ray (1981)
point out that another potential disadvantage is that a great deal of control
flexibility is used up in making G,GiG; diagonal, often by sacrificing closed-loop
dynamic performance. In many cases some interaction may actually improve
dynamic performance. Finally, the technique possibly leads to an unnecessarily
complicated compensator and fails if the determinant of G, has right-half plane
zeros or if the transfer functions are not square. Thus other techniques may

lead to a simpler control scheme which is easier to tune on-line and less
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sensitive to model inaccuracies.

2.4.2 Steady State Decoupling

Although perfect compensation may be impossible or merely impractical,
steady state decoupling is usually quite useful and can be@i%mplemented before
applying other design technigues such as inverse Nyquist array or the charac-

teristic locus method. Steady state decoupling uses a compensator
G = lim [G;(s) diag Gy(s)] (2.4-9)

to eliminate steady state interaction. However, it cannot improve dynamic
behavior. Unfortunately, due to the perfect symmetry of the heat conduction
system, even this method leads to difficulty. For the third-order heat conduc-

tion system, the appropriate compensator is singular:

2 2
RVE(ciz—Cz2) 2VR(cip—Cgp)
G = 2 2 . (2.4-10)
2V2(c1z—czz) RVR(c1z—cep) |

Introduction of this compensator into the control loop leads to dependent con-
trol action and is therefore not advisable, since it will lead to excessive dynamic

interaction and poor closed-loop performance.

2.4.3 Set Point Compensation

Steady state interaction arises because a change in the set point of one
controlled variable affects all the system outputs. A means of eliminating steady
state interaction could be to simultaneously alter all the other set points in
such a way as to cancel the effect of the original change. This idea is the basis

for set point compensation, which is used to eliminate or minimize steady state
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offset due to set point adjustments.

Consider the control scheme of Figure 2.4-2, where y4 is the actual set
point desired, G; is a diagonal controller matrix, and G, is the get point compen-

sation matrix. The overall closed-loop transfer function is
Ger = (I + G,G.) "G, GG, (2.4-11)

The objective is to select Gg so that G is diagonal at stteaki%%2 state. Using the

theory of Laplace transforms,

G, = Lim [(1+GpGo) " GpGe] ™ = (GuG) ! +1 (2.4-12)
where
G, = g:;(;,, (2.4-13)

For the heat conduction system,

1+ ol nt
RVE(ci2—cz2)ee,, RVE(cig—ce2)ee,,
G = 2 2 (R4-14)
- n 1+ T
RVR(c12C22)8ep, RV2(c12~C20)Eey, j

Note that ¢,z # cgg if z; # zz. Although this compensator is realizable and does
not lead to dependent control, it cannot improve the response to a disturbance

in the system since it does not appear in the feedback loop.

2.4.4 Inover-Loop Decoupling

Several recent studies (Foss et al., 1980; Kouvaritakis et al., 1979) discuss
squaring down extra measurements in an inner loop to obtain a system that
shows better control properties from the viewpoint of the outer loop. Usually
the inner loop is used to adjust the poles of the system, and then other fre-

quency response techniques are used to design the outer-loop control for the
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improved process. However, the method presented here uses the additional
degrees of freedom inherent in adding an inner loop to eliminate or minimize
the interaction, with only simple proportional gain compensators and without

severely limiting the design freedom available for the outer loop.

Consider the process shewn in Figure 2.4-3, with an outer loop consisting of
two outputs and two controls. This is identical to the system used by the previ-
ous methods. Using the third-order model for the process, a third independent
measurement can be made. The three measurements are denoted by yy. The

following relationships describe the control scheme,

y=1Cx=Cx ., y =Fox=Fx (2.4-15a)
1 ¢1(21) @2(z1)
100 _ |
L=101 o] C=|1 ¢1(22) walza) (R.4-15b)

1 ¢i(zs) palzs)

let "G,, be the transfer function from w to y, or essentially the transfer function
of the process seen by the outer loop. The objective of the technique is to select.
the elements of F to reduce or eliminate interactions, i.e., select F so that G;, has

small ofi-diagonal elements.

The overall closed-loop transfer function for the inner loop is

G, = C(sI-A)"'B[1 + F(sI-A)"'B]™! (R.4-18)
If Fis taken as
-
fll flz flﬂ]
F - [fal faz faﬂ ' (2.4‘”17)

then

_ g81(21.22.f21.f22.f28) B2(Z1.2Z2.011.012.813)
= (2.4-18)

ga(21.22.10;.T20.f28) 84(Z;.22.811.012.513)

To eliminate interaction, there are eight degrees of freedom available-the
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locations of the two major measurements and the six elements of the squaring
down compensator F. The location of the final measurement can be left to the
discretion of the designer since it will only aqoct the components of F once F is
specified. Obviously, zz must be selected dif;erent from z; and zp so that C is
nonsingular. For the third-order model of the heat conduction system, the
measurement locations and the elements of F should be selected so that the
(1,2) and (2,1) terms of G, are identically zero. Since the model is third order, it
takes three degrees of [reedom to make each term identically zero. Thus of the
eight available degrees of freedom, six are used to eliminate interaction, and the
remaining two can be used to improve the performance (move the poles) of each

non-interacting loop. Further analysis shows that

To eliminate term (1,2):

1
Cig = Cip— %"
2

™
fiz = cpofyy — ‘é““\“&"‘“

V2l —c,of
fls = c12f11 ~\f2‘n'2 + mlz 1

VRepe
To eliminate term (2,1):
- 1

Cgg = —Cgg — @“

2

il
faa = ceafz + P
\éﬂe'Fngfm

fpg = ~Cgpfo, — VB2 —
23 R2+21 '\/éczz

The additional relations:

cjz = V8cosmz,  c 3 = VRcosBnz

Cgp = V2ceos g Cpg = VBeos Rz, (2.4*19)
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lead to the requirements that z; = 0.2 or 0.6 and z; = 0.4 or 0.B. Note that the
elements of F are all simply constants. Thus the following situatic..s are allow-

able for decoupling of the loops

Zy Zz

02 0.4 Case I cjp=~eyg, C13=Cpp

06 0. (2.4-20)
0.8 0.4

Case II: cqp=—Cgp, c13=0
02 08 12=—Cgz, C13=Cey

These rules lead to considerable simplification in the transfer functions:

Mcm 0
- S+2\/2012fu
Casel Gy = 2vBc,s (.4-21)
a+2\féclgle
2@012 0
. S+2\/§012f11
CaseIl: G, = 2Bors (2.4-22)
s+2\/§131(8~2\/§012)

Thus, not only has interaction been eliminated by using simple gain in an inner
loop, the new process is quite simple, and two degrees of freedom, along with the
location of zg, remain at the disposal of the designer. The selection of f,, and {5,

can easily be used to move the poles of each decoupled loop.

The final design then involves a squaring down compensator ¥ which

together with the measurement matrix C leads to the desired F:
2 Vend—ct
m 12i11
f11 erefn sug Cwln—verm Bore

F =
2 VB2 +cg,t
1 2 22021
f t £ "\E R ——
21 Cgelz;t ] —Cz2iz m o

(R.4-23)
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The fact that F is a constant matrix is of great importance. If more degrees of
freedom are desired than the two available with this technique, F can be

designed as a function of s. For instance, té‘rm (1,2) could also be eliminated by

letting

1
4Cq28

[(1 "\écla'f"\éclg)sz + (2\/'2-flg-2\}2c12f11+4013f13+51r2

fia =

—~4m?VRe 1+ eV e g)s + 42 + BBl . —Bn*VEeof ] (2.4-24)

with no restriction on f;; or z;. However, this leads to an unnecessarily compli-

cated feedback compensator for the third-order heat conduction system.

Inner-loop decoupling is an improvement over the perfect, non-interacting
control scheme for the heat conductions system. Although all of the techniques
can be easily applied, the inner-loop decoupling strategy may lead to a very sim-
ple control structure for processes where extra measurements can readily be
obtained while leaving considerable design freedom available for tuning the
dynamic behavior of the overall system. The only restriction on the extra meas-
urements is that all outputs must be linearly independent. Additionally, the
method still suffers from the apparent necessity of an accurate process model.
However, as we will show in Section 2.7, although the design is conducted on the
approximate, third-order model for the heat conduction process, interaction is
still nearly eliminated for the actual system. In fact, simulations also show low
sensitivity to the measurement locations. Thus the inner-loop scheme may be

superior to conventional non-interacting control methods.

Further analysis shows that an inner loop with constant feedback gains

cannot be designed to decouple the heat conduction system in the absence of
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extra measurements. However for such a case, a feedback compensator that is
a function of s can decouple the system but is of the same complicated compli-
caled form as that designed by the perfect, non-interacting control scheme.
Thus without extra measurements, inner-loop decoupling has no advantage over

conventional techniques.

Inner-loop decoupling still suffers from some of the inherent problems
associated with the field of non-interacting control. A non-interacting system
may not be desirable for chemical processes, since the major objective in such
processes is often the reduction of the effects of disturbances on the system.
Although non-interacting analyses can lead to simplifications that allow comple-
tion of the design using single-loop approaches, there is no intrinsic reason for
non-interaction to improve control. Actually, exploitation of the interaction
among the variables may be useful. Furthermore, the determinant of the pro-
cess transfer function matrix for multivariable chemical processes often has
right half plane zeros, which lead to poor or unstable control performance with

the non-interacting techniques.
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2.5 INVERSE NYQUIST ARRAY

Since classical frequency methods have proven extremely useful for design-
ing single-loop control systems, much work has been devoted to extending these
techniques to multivariable systems. The Nyquist diagram, which is a polar plot
of the information presented in a Bode diagram, is an excellent classical method
for determining systern stability criteria for single-loop processes, since both
the magnitude and phase information appear in a single curve. Using the
Nyquist representation, it is fairly simple to determine the process stability
characteristics and the closed-loop dynamics from the graph for the open-loop

process.

The inverse Nyquist array (I.N.A.) technique, introduced by Rosenbrock
(1969), is a useful extension of scalar Nyquist array methods to the design of
multivariable control systems. It allows for considerable flexibility, is insensitive
to model inaccuracies, and reduces to traditional methods in the single-loop
case. Also, the technique is able to handle models specified only in terms of a
limited amount of directly obtained experimental data (MacFarlane, 1972) and

can be easily incorporated into a computer-aided design package.
Assumning that the open-loop transfer function Q(s) = Gy(s)Gc(s) is nonsingu-

lar, which is necessary for output controllability, the inverse of the closed-loop

transfer function is
R!'=R=1+Q (2.5-1)
The notation 6 = Q' has been used for convenience, since in general

qq;'(s) # §ij(s), where qy and & denote the elements of matrices Q and @,

respectively. Thus the elements of R can easily be found from the elements of
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fuls) = Guls)+1.0
i,5=1,2 ...m, (2.5-2)

Fij(s) = Gy(s)
where m is the number of controls and outputs. Furthermore if the kth feed-
back loop is opened, frg(s) = Gu(s). Then the LN.A. is the set of m® diagrams
representing the loci in the complex plane corresponding to the elements of
6(jw). In terms of frequency-response plots, the LN.A. allows easy determina-

tion of the elements of ﬁ(jw), whether the feedback loops are open or closed.

The basis of the ILNA design technique is Rosenbrock's stability
theorem (Rosenbrock, 1969):
Let D be a contour in the complex plane consisting of the imaginary axis
from -ja to +ja and a semicircle of radius a in the right-half plane. where
o is sufficiently large to insure that all finite poles and zeros of IQl, IR/,
qiyj. Qy. ry, and f; lying in the open right-half plane are within D and
those on the imaginary axis lie on D. Then a feedback system will be
closed-loop stable if the system is open-loop stable and if Gg(s) is
designed such that
i) the inverse Nyquist mapping, [';, of each diagonal element §;(jw)
of the LN.A. for Q(jw) encircles the point (-1.0,0.0) the same
number of times in the same direction as it encircles the origin.
ii) fori= 1,2, ..., mand forallsonD
lga(s)l > 3 lgys)! (2.5-8)
j@%jﬁi
iii) for each loop j which is closed and for all s on D

fu(s)l > 5 Igy(s)l (2.5-4)
j=lgei

The conditions (ii) and (iii) lead to diagonal dominance and thus insure that
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interactions are sufficiently small to allow stability (condition (i)) to be deduced

from the diagonal elements of §;; alone.

For the lumped model of the two-control, heat conduction process, the cri-
teria for diagonal dominance are that

1§, > 12! lg, +11> 1§,

Geel > 1621) gz +11> Ige,! (2.5-6)

for all s on D. These conditions can be represented graphically (MacFarlane,
1972) as in Figure 2.56-1. Thus diagonal dominance is insured if the origin and
the point (-1.0,0.0) are not within or on any of the circles. Closed-loop stability
can then be checked from the two diagonal entries of 6(jw). The system is stable

if I'; and I'; satisfy the encirclement criteria.

The 1.N.A. design method involves adding controllers to make the system's
open-loop transfer functions diagonally dominant. The remainder of the design
is completed on the basis of a set of individual single loops using conventional
single-loop inverse Nyquist techniques. The 1.N.A. method thus leads to a stable
system which has high integrity and low interaction, when diageonal dominance is

imposed.

The third-order model of the heat conduction process was analyzed using
the ILN.A. procedure with various measurement locations (Table 2.5-1). Both the
symmetric (Group I) and the unsymmetric (Group II) cases were considered with
z; < 0.50. For the situation where z, > 0.50, a permutation matrix should be

used to interchange the inputs and outputs.

Due to the symmetry of the system for Group 1, only the §,(s) and §;z(s)
elements of the IN.A. are needed since §p3(s) and §,(s) are identical. Addition-
ally to aid in the design procedure, logarithmic plots of lqnt 1+ (iul, and 1§zl

versus the frequency were also used. These are easier to use to check for
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Group I Group II

L4} 2z A Zy

0.10 ©0.90 | 0.40 0.70
020 080 ] 0.30 0.80
025 0.75 | 040 0.80

0.30 0.70
0.33 0.87
040 0.60
Table 2.6-1

Measurement locations

diagonal dominance than the type shown in Figure 2.5-1. Although all of the
cases in Group | were analyzed, only two need to be considered in detail since
the others are similar. Figures 2.5-2 and 2.5-3 show the LN.A. plots for measure-
ment locations (0.3,0.7) and (0.4,0.6). These cases were considered since the
root-locus analysis showed that the (0.3,0.7) case is stable while the (0.4,0.6)
case becomes unstable for gains above about 33.0. The I.N.A. analysis for the
cases in Group | verify the root-locus results that stability is insured at high
gains for the symmetric case if 2; < 0.33. Note that the LN.A plols are only

drawn for s = wj with w = 0 » =, since s = -wj simply gives the reflection.

For the cases with 2; < b.SB (z; = 0.3 in particular), the conditions for diag-
onal dominance are satisfled for all s on D except at s = 0. At this point,
1y = Q12 = 21 = §gz. Further analysis shows that the problem that arises at
s = 0 is due to the pole which is at the origin in our process model. With these
problems at s = 0 eliminated, the cases for 2, < 0.33 would be diagonally dom-
inant, and the system would be stable since the encirclement criterion is

satisfied.

One method of analysis is suggested by MacFarlane and Postlethwaite

(1977). They show that when a pole occurs on the imaginary axis, the modified



- B2 ~

Nyquist contour, D°, shown in Figure 2.5-4 should be used. Then the conditions

for diagonal dominance must be examined in the regions:

a) s=wj ) = =00 > —¢

b) s=ze? ﬂz--g——'-’-rz— where R+»= and £+ 0.
= =,

c) s=Re!? 8= 5%

Mathematical calculations for these regions indicate that the conditions for
diagonal dominance are satisfled for z, < 0.33 with zz = 1.0 - z,. Then since the
encirclement criterion is also satisfled, stability is assured. The LN.A. technique
then concludes that elimination of interaction is unnecessary since arbitrary
high gains can be applied to each of the two principal loops without instability

and will lead to a system with little interaction.

Figure 2.5-3 shows that the (0.4,0.6) case does not satisly conditions (ii) and
(iii) of Rosenbrock's theorem (1962), sincel§;,! is larger than|§;,l and!§,, + 1/tor
some values of w. Although conditipn (i) seems to show closed-loop instability
for this process, no conclusion can be drawn since the stability criterion is a

sufficient condition and only becomes necessary if (ii) and (iii) are satisfied.

The problem then is to’ design a compensator, G.(s), so that the system's
open-loop transfer function Q(s) is diagonally dominant when 0.33 < z; < 0.50.
Using a general 2 x 2 compensator, the restrictions on the elements of G.(s) can
be derived. Specifically consider the case (0.4,0.6). Using the modified Nyquist
contour, it can be shown that s = 0 presents no difficulty. Figure 2.5-3 then
shows that conditions (ii) and (iii) are satisfied at low o but fail at high w. Using
the restrictions on the elements of G¢(s), it can be shown that, owing to the sym-
metry of the system, it is not possible to design a nonsingular constant matrix

G.(s) to make the system diagonally dominant for all s on the modified Nyquist
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contour. However, the analysis also shows that a compensator with the following

properties will lead to diagonal dominance:

A0 Gs) g
[Alad 5) - 1 '
so 11
(R.5-8)
¢ 3
s G s o
- o §) * .
© Sy
After many controllers were tried, the best results were obtained with
50 s
s+50 s+5.0
G()=| s 50 |- (2:5-7)
s+5.0 s+5.0

Figure 2.5-5 shows the ILN.A. plots with this compensator. The controller has
indeed made the system diagonally dominant for all s on D", however, the encir-
clement criterion shows that the system becomes unstable for moderate gains.
This was verified using root-locus and characteristic locus analyses for the sys-
tem wilh this compensator. Attempts at eliminating the instability were futile,
and further analysis showed that the stability problems arise from an unstable
finite zero. Unfortunately, it can be shown that dependent control action is
necessary to move this zero to the left-half plane. 1.N.A. analysis using the

dependent controllers!

1 1) 14s —1-s
1 ~1 ] s 8 ]
Ge(s) = |1 q)or| 1 1|9F|-1-s 14s (2.5-8)
] s 5 s

verifies system stability. However dependent control leads to very bad closed-
loop response and is thus not desirable. Therefore the best that can be
obtained is a simple control scheme designed to ensure a diagonally dominant

system for which single-loop theory can be applied to two loops that remain

1. Dependent control results from a singular compensator matrix,
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stable only for moderate gains.

Table 2.5-2 summarizes the results for assuring diagonal dominance with
symmetric measurement placement. Since the conditions for stability and diag-
onal dominance are satisfled for z; < 0.33, arbitrarily high gains can be applied
in each of the two principal loops without instability. This is equivalent to the
results found in analyzing the multivariable root-loci. There it was shown that
for z; < 0.33 high gains would not lead to instability; however, using the I.N.A.
method it is also shown that no attempt to eliminate interaction is necessary,
since large gains will lead to a system with little interaction. This can be seen by
considering the transfer functions of the process with a diagonal gain con-
troller, G.(s) = diag (k;). The eflect of applying a gain k; is to multiply §;, and
sz by ki'. Ask, and k; are increased, the system approximates over an increas-
ingly wide band to a diagonal system. The transfer function between y4 and y;

when the jth (j # 1) loop is closed with gain k; and the ith loop is open leads to

Q1282
ra'(s) =Qa~——— (2.5-9)
Y k4,
As k; and kp become large, the interaction effect is small and
rit(s) = dn rgd(s) =dz - (2.5-10)

The design can then be carried out using the fy(s) as though they were inverse

Nyquist diagrams for separate loops.

Finally it is instructive to consider the case where the measurements are
not placed symmetrically, i.e, 2z # 1. - z,. The LN.A. then consists of the four
diagrams representing Gy (jw). Several cases were considered using the modified
Nyquist contour. Figure 2.5-8 shows the L.N.A. diagrams for the case (0.4,0.8),
which is diagonally dominant and stable. Thus arbitrarily high gains can be

applied, leading to a system with small interaction. Other cases that were
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0.00 ¢ 5 <0.33 diagonal dominance and stability
assured without cospensation

0.33 ¢ 5, < 0.5 sdd compensator to get diagonal
dominance and atteapt to control
unatable single loops

0.5 < s, <1.00 add permutation compensator
01
cc * ll 0
to interchange the msasurements
and design as above

Table 2.5-2

LN.A. Results for Symmetric Measurement Placement

considered are (0.4,0.7) and (0.3,0.8). Only the first of these requires compensa-

tion.
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Figure 2.5-4
Modified Nyquist Contour
System with a Pole at the Origin
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2.6 CHARACTERISTIC LOCUS METHOD

The characteristic locus method (C.L.M.) is an extension of classical Bode-
Nyquist frequency-response theories and state-space techniques for the design
of general, multivariable feedback control schemes. The method combines the
essential features of both approaches by using the properties of linear vector
spaces defined over base fields of complex functions. As in the LN.A. technique,
the C.L.M. requires the use of a computer-aided graphic display and can be
incorporated into a computer-aided design package. Although the 1.N.A. tech-
nique defines approximate conditions for stability using bands on inverse
Nyguist plots, the C.LLM. gives an exact indication of stability and a systematic
technique for choosing the best controller matrix in terms of system stability,
integrity, interaction, and accuracy, rather than simply stressing diagonal domi-
nance and single-loop design. The original method, developed by MacFarlane
and Belletrutti (Belletrutti and MacFarlane, 1971; MacFarlane and Belletrutti,
1973), has been refined and systematized through the late 70’'s (Edmunds and
Kouvaritakis, 1979, MacFarlane and Kouvaritakis, 1977) and has been experi-
mentally tested on an automatic flight control system (Kouvaritakis et al., 1979)

and a two-bed reactor process (Foss et al., 1980).

The C.LLM.. uses the frequency dependent properties of the eigenvalues and
eigenvectors of the open-loop transfer function Q(s) = G,(s)Gc(s) to assess the
closed-loop properties of the system. The design technique attermpts to compen-
sate and modify the system'’s response by adjusting the eigenproperties of Q(s).
The basis for this use of the open-loop trangfer function in the analysis of the
feedback system is the congruence of the closed- and open-loop eigenframes.
This relation can easily be seen from the dyadic expansions of Q(s) and R(s) for

unity feedback systems (MacFarlane and Belletrutti, 1973):
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%) = £ aom @) (2.6-12)
R = [1+Qe)]7) = £ 2 monl(e) (26-1b)

where g;(s) are the eigenvalues of Q(s) and w;(s) and ¥ are the corresponding
eigenvectors and dual eigenvectors. Obviously, the characteristic functions are
the same for both the closed- and open-loop systems and the eigenvalues are

directly related.

The analysis for multivariable systems leads to the following criteria for
achieving a compromise between the basic objectives of stability, integrity,
interaction, and accuracy (MacFarlane and Belletrutti, 1873). The basis of the
technique is the use of the characteristic loci, which are the paths in the com-
plex plane drawn by the eigenvalues of Q(s) as s traverses the standard Nyquist

contour.

Stability
Closed-loop stability can be assured by selecting the compensator
G(s) such that the net sum of the counterclockwise encirclements of
the critical point (-1.0,0.0) by the characteristic loci is equal to the

n‘,.‘ 2-602

where m is the number of inputs and outputs of the syétem and is
thus the number of loci needed for complete description of the
system's eigenproperties. It should be noted that the direction along
the characteristic loci is taken as that which corresponds to a clock-
wise traversal of the Nyquist contour. For the third-order, lumped

model of the heat conduction process, the open-loop characteristic
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equation is s(s+ n?)(s+4nr?). Since the poles are al 0, -n%, and -4n2,

po =0, and the encirclement criterion reduces to

Integrity
A multivariable feedback system is of high integrity if it remains
stable under all types of failure conditioné. The major probable
difficulties include output transducer, error-monitoring channel, and
actuator failures. For practical systems, the control design must
obviously take into consideration such component breakdowns.
Integrity against transducer and error-monitoring channel failures in
all possible combinations of the loops can be assured if the charac-
teristic loci of all the principal submatrices of Q(s) satisfy the encir-
clement criterion. For integrity against actuator failures, similar con-

siderations apply to the matrix G.(s)Gy(s).

Interaction
Reduction of interaction in a multivariable system is usually desired
to improve closed;loop dynamic response and is often necessary to
assure stability. At low frequencies, interaction can be suppressed by
imposing high gains, i.e., lg;(jw)! > > 1.0. Then the dyadic ‘expansion of
R(s).

R(jo) - ﬁ w (Vo) =1 | (2.6-4)

shows that the closed-loop system becomes essentially non-
interacting. However, this restriction cannot always be achieved

because stability conditions usually require that the characteristic
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gains have small moduli at high frequency. Since the eigenvalues of
G(s) satisfy lg;(jw)| < < 1.0 at high frequency,

R(jo) » 3 qio)m(io)vi(e) = Qo) .  (269)

[£°31

and therefore the cross-couplings in R{jw) are carried over from Q(jw).
Thus to suppress interaction at high frequency, G.(s) should be
selected so that the eigenvectors of Q(s) are nearly as possible aligned
with the standard base set. If the measure of alignment is taken as
the angles between the eigenvectors w;(jw) and the base vectors g; for
i= 1,2 {since m = 2 for the heat conduction system), the objective is
to reduce the misalignment angles. MacFarlane and Belletrutti (1973)
show that, although these criteria lead to a reduction in interaction,
they do not necessarily result in a Q(s) which is nearly diagonal or
diagonally dominant, and thus a feedback system can be made nearly

non-interacting without imposing diagonal dominance.

Accuracy
A system has high accuracy if the actual system output closely follows
the desired output. In general, system accuracy will be high provided

that the characteristic loci have large moduli at low frequency.

The objective of the characteristic locus method is then to select a con-
troller G.(s) so that the characteristic loci of Q(s) satisfy the stability criterion
and have high gains at low frequencies and low rnisalignment angles at high fre-
quencies. Additionally, G.(s) should be selected so that its elements are rational
functions of s, so that |G.(s)! is nonsingular and has no right half plane zeros,

and so that all the poles of G.(s) are in the open left half complex plane.
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MacFarlane and Kouvaritakis (1977) present a systematic approach for

using the C.LLM.. In particular, a means of manipulating the characteristic loci

and characteristic directions is developed so that the phase of the loci can be

adjusted to achieve acceptable stability and integrity and so that the directions

can be aligned and the gains balanced to reduce interaction. As outlined in

several publications, a procedure for optimal alignment of a given complex

plane with a real frame according to a misalignment measure can be incor-

porated into a computer algorithm.! The design procedure can then be split into

two distinct parts:

1.

L

il

High-Frequency Controller Performance

At high frequencies, it is desirable to reduce the misalignment angles
between the compensated system's characteristic direction set and
the standard basis vectors. This can be accomplished by designing a
real compensator Ky that approximates the complex frame of Gy (jw)
at some high frequency wy,. A prograrn ALIH which was written for this
purpose uses the routine ALIGN to perform the actual alignment. A
listing of the program is presented in Appendix 1. The signs of the
columns of Ky are arbitrary and are selected so that the eigenvalues
of CBKy are‘po’sitive. real. The compensated system then has infinite

zeros with asymptotes on the negative real axis.

Low-Frequency Controller Performance
At low frequencies, the encirclement criterion should be satisfied and
the moduli of the characteristic loci should be large. This can be

accomplished by manipulating the loci with an appropriate approxi-

Thisg algorithm [ALIGN), which is a basis for high frequency alignment and low frequency manipu-
lations, was written specifically for this project and is included in the programs ALIH and ALIL
discussed below and listed in Appendix 1. It should not to be confused with the program ALIGN
referred to by other authors, although their structures should be sirnilar.
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mately commutative controlier K;, where K; = Al'(s)B with A and B
being the real frame matrices that approximate the complex frame of
the eigenvector matrix W(jw) and dual eigenvector matrix V{jw). Again
the routine ALIGN is incorporated into a program ALIL for this pur-
pose. This program is also listed in Appendix 1. The elements of the
diagonal matrix I'y(s) are then chosen on the assumption that g; =
gk where q; and g; are the eigenvalues of the compensated and
uncompensated system and k; are the elements of I\ (s). The comi)en-
sator K is thus used to insure stability and integrity and to adjust the
gains at low frequency to reduce interaction.

The effect of Ky and K, must be combined in such a manner so that each

operates in the appropriate frequency range without significantly altering the

effect of the other in its appropriate range. This is achieved by using the low-

frequency controller as matrix-integral control:
G(s) = 3K + Ky (2.6-6)

where o is a constant chosen to achieve a suitable transition from the low-

frequency to high-frequency behavior of Gy(s).

Although the CLM. is séemingly complicated, it is actually a simnple design
technique once the appropriate computer facilities and programs are available.
The major programs are ALIH and ALIL, while other programs were used to cal-
culate and graphically display the characteristic loci and misalignment angles.
All programs were tested on the automatic flight control system (Kouvaritakis et
al., 1979) and gave results equivalent to those published. Then for the heat con-
duction process, the design was performed using the third-order, lumped model
with two controls and outputs and then with an extra measurement, which was

squared down in an inner loop.
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2.6.1 Basic System Analysis

For the uncompensated system, characteristic locus plots were drawn for
the cases that were considered in the I.N.A. design (Table 2.5-1). Figures 2.6-1 -
2.6-3 show the loci with the measurement locations (0.3,0.7), (0.4,0.6) aﬁd
(0.4.0.8).a For the symmetric cases with z; < 0.33, the encirclement criterion is
satisfied for all gains. As was also shown using root-loci and 1.N.A. analyses,
these cases will remain stable with increasing gain. Also as expected, high gains
lead to instability for 0.33 < z; < 0.50. In particular, a maximum gain of 32.0
would be allowed before the critical point is encircled for z; = 0.4. Thus, for the
symmetric cases, compensation is required for stability of the system at high
gains when 0.33 < z; < 0.50. Additionally, regardless of the measurement loca-
tion, one eigenvalue has large magnitude at low frequencies while the second has
very small magnitude, and the misalignment angles are both 45° at high fre-
quencies. Thus some compensation is desired for all the cases to improve
integrity, interaction, and accuracy of the system. Although the unsymmetric
case (0.4,0.8) is also stable for all gains, compensation is desired to improve its
closed-loop response. Since the cases (0.3,0.7), (0.4,0.8), and (0.4,0.8) are

representative of the problem, they will be analyzed in detail using the C.L.M..

26.1.1 Casel' Measuremenis z; = 0.3, 2z =07

As discussed above, this case satisfies the stability criterion for all gains.
The objective of the control action is thus to improve dynamic system perfor-
mance by aligning the characteristic directions at high frequency, balancing the
gains of the characteristic loci at low frequency, and injecting gain into the

overall system, while maintaining stability. An analysis of the integrity against

2. Note that the vertical axis in the figures of !qjl versus frequency are defined in terms of
dB=201log g¢(j w)!.
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all types of failures leads to the conclusion that the system is of high integrity,
since the characteristic loci of the principal submatrices of G(s) also satisfy the

encirclement criterion.

Preliminary analysis shows that the compensator

Ge(s) =

: __;’] | (2.67)

balances the gains perfectly and significantly reduces misalignment, but further
analysis shows that such a compensator leads to system instability. Therefore
rather than trying to guess the appropriate control structure, it is best to per-

form the systematic alignment procedure discussed previously.

The first step involves designing Ky to reduce the misalignment angles. For
the third-order model of the heat conduction with symmetric measurements,

the matrix of eigenvectors is approximately®

1.0+0i ~1.0+02
1.0+0i 1.0+404

(2.6-8)

throughout the frequency range 10™ to 10% Figures 2.6-1 and 2.6-2 show that as
expected the angles between the standard base vectors and the characteristic
direction set are about 45° . The alignment is attemnpted using ALIH at several
frequencies in the range wy = 1 » 100, but unfortunately the analysis of many
possible compensators K;, leads to the conclusion that no real matrix can ade-
quately reduce misalignment angles at high frequencies for symmetric measure-
ments without leading to system instability. This problem results from the
eigenvector matrix W being nearly real and having off-diagonal terms identical in
magnitude to the diagonal terms. Although it seems plausible to select & com-

plex compensator Ky = G™'(jwy,), the resulting controller is not physically realiz-

3. The imaginary parts are of 0(1071% at = 107* and 0(107%) at & = 10%),
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able. Thus Ky should merely be selected as the identity matrix. If instead Ky is
selected as the zero matrix, G, = ~:—‘-KL and as s approaches infinity, G
approaches zero. This could lead to problems.

At low frequencies, ALIL is designed to calculate real matrices A and B which
approximate the eigenvector and dual eigenvector matrices; however, this leads
to numerical difficulties with symmetric measurement placement. The problem
is actually trivial since W is approximately real at all frequencies (especially at
low frequencies), Thus with the selection of A= Wand B =V, K. = WA,V. The

gains were then balanced at the frequencies wy, = 1.0, 0.1, 0.01, and 0.001 by

selecting
_|r 0 lq, (jer)!
A= [0 7] . wherey= wla) (2.6-9)

Furthermore since G.(s) = ‘(‘SX“KL + 1, the values of a can be adjusted to give the

best response. After consideration of many combinations of a and wy, the best

balance at low and moderate gains was obtained with

_ 10| 64 54 10 '
Figure 2.6-4 shows that this compensator leads to a stable system with nearly
identical gains at w = 1.0 and high gains throughout the range @ < 1.0. However,

the misalignment angles have not been reduced. The final step in the design is

to increase the moduli by injecting gain into the compensated system.

2.6.1.2 Casell: Measurements z; = 0.4,z = 0.8

Since this case is stable only for gains less than 32.0, the major concern of

the compensator should be to insure stability for higher gains. Attempts are
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 made to design such a high frequency compensator. However even by using ALIH
and selecting the compensators so that the eigenvalues of CBKy are positive, the
’overall systern remains unstable. This is explainable since the condition that
the eigenvalues of CBKy are positive is necessary for stability but is not
sufficient. In addition to the two infinite zeros, there is a finite zero at approxi-
mately +63.0, according to the root-loci analysis. In designing Ky, there are only
two degrees of of freedom available for selecting the appropriate signs, so only
the two infinite zeros can be placed. Further analysis shows that dependent
control action is necessary to move the finite zero into the left half plane.* The
problem essentially reduces to a single-input, double-output system. However
since dependent control leads to very bad closed-loop response,® the best that
can be accomplished is to reduce interaction and increase accuracy without

eliminating the instability for high gains.

Using ALIH and ALIL, the best design for balancing gains and reducing

misalighment angles is

1.0 [ 11.8 «10.6]

0 -1
Ge(s) = <~|-108 118 *‘[—1. o] : (2.6-11)

The characteristic loci for the system with this compensator is shown in Figure
2.6-0. Unfortunately, this system is unstable for all gains and is therefore not
desirable. Thus a better control strategy is necessary for the heat conduction

system with measurement locations {0.4,0.6).

2.6.1.3 Case Ill: Measurements z, = 0.4,2z; = 0.8

Though this case is stable for all gains without compensation, Figure 2.6-3

shows that a compensator may be quite useful to balance the magnitudes of the

4. The same conclusion was reached uging the LN.A. design procedure,
6. This is shown in the simulations in Section 2.7.
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loci at low frequency and to reduce misalignment angles at high frequency.
Whereas the misalignment angles were always 45° and could not be reduced in
the symmetric cases without causing instability, high frequency compensation is
useful for this unsymmetric case. Considerable analysis using ALIH and ALIL at
various frequencies along with adjusting a leads to an excellent C.L.M. design.

With the compensator

08 4348 —4348) (1.0 -0.371
Ge(s) = = 4348 4348] *| 0 0.929] - (2.6-12)

the characteristic loci (Figure 2.6-6) have nearly identical moduli at low fre-
quency, and the misalignment angles are quite small at high frequency. Thus
the C.L.M. seemningly leads to a stable systemn with high integrity, low interaction
and high acecuracy. Furthermore, the method concludes that this design has the
best compromise between these qualities, since the compensators were designed
using approximately commutative theories. The final step in the design is to

inject gain into the compensated system.

Thus the CLM. provides a systematic approach for designing a system
which best satisfies the criteria of stability, large moduli of the characteristic
loci at low frequencies and small misalignment angles at high frequency. Simu-
lations are necessary to sbov;r the actual extent of the improvement obtained by
using this design technique, but it is apparent that the designs for the sym-
metric cases do not adequately satisfy the C.LLM. criteria. Only for the (0.4,0.8)
case is an excellent design obtained. Thus it may be advantageous to use extra
temperature measurements within an inner loop to improve the system, for

which the C.L.M. will be used to design the outer-loop controller.



2.6.2 Inner-Loop Analysis

The use of easily available measurements in excess of the commanded out-
puts6 is considered, so as to make more efficient use of the gain. The proce_adure
involves squaring down the extra measurements within an inner loop, in order
to form a new set of outputs equal in number to the number of inputs. Instead
of using the extra degrees of freedom to reduce interaction as was done in Sec-
tion 2.4, the objective is to use the inner loop to suitably place the poles of the
outer loop so that the C.LM. (or 1.N.A. method) can be applied to a 'better' sys-
tem as seen Irom a control point of view. The inner-loop design is based on the
placement of the finite zeros and the manipulation of the root-loci asymptotes
for the inner loop so that by finally setting the inner-loop gain at a suitable
value, the poles of the outer loop are pulled into better locations in the complex

frequency plane,

Consider the process shown in Figure 2.6-7. The ocuter loop consists of two
measurements and two controls. However, three measurements are actually
taken and squared down in an inner loop using the compensator F. The system

is described by the following relationships, where L and C were defined in Section

2.4
y = 10x = Cx yr = Fx = FCx
x = {sI-A)"'Bu & = G[ya—¥] (2.6-13)
u = Ki(a—yr)

The method involves designing F, from which F can be calculated if € is non-
singular. Using the above description of the process, the inner-loop closed-loop

response is

yr = (1+ GK)'GK a where G =F(sI-A)"'B. (2.6-14)

8. The commanded outputs are those directly needed for comparison with the set points.
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The characteristic equation for the inner loop is
ls1-All1+GX /=0 |, (2.8-15)

from which the root loci are obtained by letting K; = kI. Then the overall closed-

loop respoﬁse is given by
y = [1+ G K (1+GiKD) "' Ge] ™' GpKi (1+GiK) "' Geya (2.6-186)

with G, given by Equation (2.2-27), and the characteristic equation for the

overall system is
Is1-Al- 1+ G -1+ G (I+GEK) G [ = 0 (2.6-17)

Using G.(s) = k'L, the poles of the outer system are given by k’ = 0 and are thus

described by the solutions to
ls1-AllT+GXK =0 . (2.6-18)

Since Equations (2.6-15) and (2.6-18) are equivalent, the poles of the outer sys-
tem are described by the root-loci of the inner system. Thus the inner-loop

design can be used to place the outer-loop poles by selecting k.

Consider the case with F = C.? Then since G; = G, the root-loci for the inner
loop are identical to those obtained in Section 2.2 for the outer loop. Thus if the
root-loci of the original syste;m without an inner loop show good characteristics-
-zeros well into the left half plane and little oscillation--then extra measure-
ments may not be needed. The outer-loop poles can be shifted simply by imbed-
ding an inner loop with sufficient gain. This is similar to the ideas of modal con-

trol.

The desired characteristics of the inner root-loci are that the infinite zeros
are along the negative real axis and that the finite zeros are well into the left

half plane. Obviously, many possible F matrices can lead to such root-loci. In

7. One possibility would be to take no additional measurements.
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the following analysis, we consider only four such matrices.

Remembering that the root-loci of the original system with z; < 0.33 and z,
= 1.0 - 2, salisfy the desired criteria, the inner-loop compensator can be taken
as F = C(z,,2p), where C(z,,2,) is the C matrix obtained with the points z, and z;. ¢

The cases that were considered are F,, Fg, and Fe shown in Table 2.6-1,

1.000 0.83 <0.47%7 .
F = = C(.3,.8) k= B,0
A 11,000 -1.am 0.437
10000 Ooaﬁ "'Ouu’)?
- = C(.3,+7) k= 6,0
10000 "Otam '00“37
1,000  1.184 0,437
l‘c " = 0(.2,.8) k= 10.0
1.000 "1.1““ 00“37
2'000 10“ "00"1“
F.= k=40
D 12,000 -1.000 -0.414

Table 2.8-1
Inner-Loop Compensators

For F # C, the criteria necessary to have infinite zeros along the negative
real axis (i.e., FB has all positive, real eigenvalues) and the finite zero well into

the left half plane are

8. Note that the Z, and Zg have no relation to the actual measurement locations for this immer-loop
problem. This structure of F is only used for convenience since we know that the T matrices
with 2; < 0.33 and 23 = 1.Q - Z; have root-loci with the desired features. The actual measure-
ments define C, from which F is determined.



-92 -

B.) f11 + '\’2f12 + '\éflg >0
b) (fiafai~fuify,,) + VR(fastia~tfaalis) > 0

) faifie —fnfee >> 0 .

Although the elements of F should be selected to satisfy these conditions, there
are still an infinite number of possibilities available. However, consider

- { 1 1 ] - [0‘ fxz] a =, +VRt s

B= Ve - B fzz B =1z +V§f23 (2'6-19)

and specify that Q = FB = FB should have all real, positive eigenvalues. Then
with the further restriction that the rate of divergence to the infinite zeros is
the same for all corresponding root-loci, F must be of the form F = yB™!. After
trying various values of 7, f;;, and fz,;, the best inner-loop design using this tech-

nique was found to be Fp shown in Table 2.6-1.

The second stage of the design procedure, the outer-loop design, consists of
the application of the C.LM. to the system with the inner loop in place. Again
the design is considered for commanded ocutputs (0.3,0.7), (0.4,0.6), and
(0.4,0.8). Since the inner loop has been designed and since only z, and z; are
needed for the outer loop, zg can be selected arbitrarily as long as C remains
nensingular. This restriction is satisfied if zg is not equal to z; or zz. Then
although the best C.LLM. design for the system without an inner loop was unable

to reduce misalignment angles, it may be possible to improve on that design.

2.6.2.1 C(Casel Measurements z; = 0.3, 7z = 0.7

Although the outer-loop design was performed using all the inner-loop com-
pensators shown in Table 2.6-1, only the analysis with F, will be discussed since

all the cases lead to similar loci and since Fy leads to the best overall design. A
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preliminary examination of the characteristic loci for this case without outer-
loop compensation (Figure 2.6-8) establishes the need for such compensation
due to the disparity of the characteristic gains and the high misalignment

between the characteristic directions of Q(jw) and the basis vectors.

The C.LM. is then performed using slightly modified versions of the pro-
grams previously discussed. Although ALIH can be used to calculate Ky, unfor-
tunately it cannot be used to soive the inherent sign ambiguity. Previousiy this
was possible since the infinite zeros were along the negative real axis if CBKyz had
positive, real eigenvalues. However, the analysis with the inner loop in place
shows a much more complicated result. If F, C, and B were square matrices, the

simpler result could be derived.

With the inner-loop structure, it is possible to change the misalignment
angles by designing an appropriate Ky. However whenever one of the misalign-
ment angles is reduced at high frequency, the other is increased by about the
same amount. Thus Ky = 1 still provides the best compromise. Low-frequency
compensation is then designed using ALIL at several frequencies, and « is

adjusted to give the best balance between the low and high effects. The final

overall design is

o (10 0831 -0.437
K =diag(80) F=| 4 1144 0437

(2.6-20)

100 | 1267 —0287] {10
G(s) = "‘g‘""‘[——o.we 1.457) * [0 1

The characteristic loci with this design are shown in Figure £.6-9. They obviously
indicate that this design is better than that without an inner loop. In particular,
the loci are much better balanced, and although the misalignment angles were

immobile without an inner loop, they are greatly reduced for moderate frequen-
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cies with this design. Unfortunately, they are still 45° at very high frequency

(w> 100).

2.6.22 Cuasell: Measurements z, = 0.4, 23 = 0.6

Previously this case was found to be unstable for high gains due to an
unstable finite zero, and it was shown that only dependent control would lead to
stability since such control action was necessary to move the finite zero. Unfor-
tunately, simple algebraic calculations show that an inner loop has no effect on
the finite zeros of the system, and therefore the stability arguments are
unchanged. Nevertheless, a compensator can be designed to improve the sys-
tem by reducing interaction and increasing accuracy, if the values of the gain

are restricted so as to assure stability.

Figure 2.6-10 shows characteristic loci for the best overall design that was

obtained using the C.LLM.. The design consists of

o {10 0831 -0.437
K =diag(80) F=1,4 5144 0437

01
-1 0) -

This system has a good balance of gains at low frequencies and low misalign-

(2.621)

10
m[ .

s (01

Gc(s) =

ment angles at high frequencies but will be unstable for outer-loop gains greater
than 3.1. Since this is an overall gain of 24.8,° it is not much lower than the sta-

bility limit for the uncompensated system.

9. The overall gain is the product of the outer-loop gain and the irmer-loop gain.
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2.6.2.3 Caselll: Maasuremenis z; = 0.4, 2, = 0.8

Since the C.LLM. design for this case without an inner loop led te a compen-
sator that perfectly balanced the gain at low frequency and significantly
reduced the misalignment angles at high frequency, there seems to be little or
no need to add an inner loop. Nevertheless, such an analysis was performed

leading to the following design.

s _ 1.0 0.B31 -0.437
K =diag(80) F=|,45 1144 0437

(2.8-22)

080 -0.212 0
G(s) = 122 [1 . ]+ [é 1] :

s |0.091 0747

The corresponding root-loci are shown in Figure 2.8-11. This design does not
appear to be as good as that without an inner loop. Further refinement could

lead to a slightly better system.

2.6.3 Modified Inner Loop Analysis

Finally, another outer-loop design suggested by Kouvaritakis et al. (1979)
was considered (Figure 2.6-12). Since the purpose of the inner loop is to
improve systemn dynamics by making use of all available measurements, while
the overall objective is to exercise control over two of the measured variables,
some minor modifications are made so that the inner loop operates only on the
extra measurement. The new configuration makes more efficient use of gain

since it closes the loops around 2z, and z; only once.

The design consists of

00
1, = [é X 0] Lo =(00 1) (2.6-23)

while Fo is 2 x 1 and F, is 2 x 2. However using this design, the inner-loop root-
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| loci for the previous system (Figure 2.8-8) do not describe the behavior of the
poles for the outer loop of the new system. Only with G; = I are the resulting
root-loci for varying k identical to those obtained before rearrangement. Apply-
ing the C.L.M. to the new inner-loop system results in similar characteristic loci
to those obtained previously, but the new configuration makes more efficient

use of the gain.

Finally it can be concluded that, although the inner loop is often beneficial,
it does not always improve the overall design. If the criteria for a good C.LM.
design can be satisfied without an inner loop, then further analysis may not be
necessary. However, if the misalighment angles cannot be reduced or the gains

balanced without an inner loop, the inner loop may be useful.
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Figure 2.6-1
Characteristic Loci Diagrams for Outputs z;=0.3, z;=0.7

a. CL.M. Plots b. Magnitude vs. Log Frequency
¢. Misalignment Angles vs. Log Frequency
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Characteristic Loci Diagrams for Outputs z,=0.4, 2,=0.6

a. C.L.M. Plots b. Magnitude vs. Log Frequency
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Characteristic Loci Diagrams for Qutputs 2,=0.4, ze=0.8

a. C.L.M. Plots b. Magnitude vs. Log Frequency
c. Misalignment Angles vs. Log Frequency
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Characteristic Loci Diagrams for Outputs z,=0.4, z,=0.8
Compensator Given by Equation (2.6-11)

a. CLM. Plots b. Magnitude vs. Log Frequency
c. Misalignment Angles vs. Log Frequency
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2.7 CONTROL SYSTEM PERFORMANCE

The control structure analysis for the heat conduction system was per-
formed on the third-order, lumped model using various frequency-response
techniques. These include non-interacting control methods, root-loci analysis,
inverse Nyquist array, and the characteristic locus method. Additionally, the
time-domain techniques of optimal and modal control were applied to both the
lumped and distributed models. Since all of the schemes provide a design for
the control structure, a comparison among the system responses is needed to
determine the extent of improvement in the closed-loop behavior of the overall
process. Additionally since most of the designs were performed using the third-
order lumped model, simulations of the actual system are necessary to assess
the effectiveness of the designed controllers. Computer simulations of the sys-
tem responses to various set point changes were performed for the different
control system structures. Simulations of the optimal control strategies were
not performed, since such simulations could not easily be compared to those
using frequency-response designs due to the necessity of defining the conditions
of optimality. In practice, these conditions are usually selected to minimize
energy costs or to increase profit margins, rather than simply to reduce
response times or interactioﬁ. Responses of the heat conduction system with an
optimal controller to set point changes and system disturbances are shown in

literature (Betts and Citron, 1972; Sakawa, 1964).

Simulations of the heat conduction process can easily be performed using
the modal or Laplace models derived in Section 2.2. Since both of these were
shown to be equivalent, either model can be used; however, since the frequency-
response designs were performed on the lumped, state-space representation
obtained from the modal-lumping procedure, the simulations used the following

results:
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¥(zt) = 3 an(t)pn(z) (2.7-1)

n=0

1.0

n=0
¢n(z) = VBcosnnz n=1,2 .. (2.7-2)
with aj(t) given by
dan(t
adg ) + Apan(t) = ba(t) (2.7-3)
1
a(0) = [, ¢n(2)yo(2)dz |,
where A, = n°s? and
- U1(t) + Ue(t) n=0
Balt) = | VBu,(t) + (~1)"VBug(t) B =12 .. . (2.7-4)
Then if yo(z) = 0,
a(t) = ™ fo‘bn(t)e"n‘dt . (2.7-5)

The closed-loop response y(z,t) can then be obtained by applying a discrete time
analysis to the control structure and feedback information. Although the actual
distributed system is described by the infinite-order model (Equation 2.7-1),
simulations show that a tenth-order analysis accurately describes the actual
process. Thus system responses for the various control strategies were caicu-

lated using both third- and tenth-order lumped process models.

The first control structure to be considered is proportional feedback con-
trol. Although such control may seem excessively elementary, it has the advan-
tage of simple implementation and is the method of control recommended by
several of the design techniques. For stable, diagonally dominant systems, the
conclusion of an IN.A analysis is that no attempt should be made to reduce
interactions by using more complicated compensation. Instead, large gains

should be used in each feedback loop, leading to a stable system with little
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interaction. The root-locus analysis, C.LLM., and ILN.A. methods show that the
symmetric cases with z;, < 0.33 and the unsymmetric cases (0.3,0.8) and
(0.4,0.8) are diagonally dominant and stable. However since these conclusions
were based on the third-order lumped model, proportional control should be

attempted on the actual system.

In general, the simulations show that the exact process behaves qualita-
tively similarly to the third-order model and that high gain significantly reduces
interaction for certain cases. However, proportional control leads to consider-
able offset. Even if only one of the two set points is changed, there is offset in
both outputs. This is obviously a result of the steady state interactions in the
system. Although steady state decoupling would seem beneficial, previous
analysis showed that such compensation leads to a dependent control system:.
Thus although the root-loci and 1.N.A. analyses showed that arbitrarily high
gains would reduce interaction without leading to instability in certain cases,
very high gains are often needed to sufficiently reduce the offset and (nterac-
tion. Such high gains may be impractical or may lead to large overshoot, and
even when steady state interactions are reduced by high gains, considerable

dynamic interaction may still be present.

Thus although simple introduction of high gain into both control loops may
be adequate, the control structure can often be improved by a slightly more
complicated compensator. From classical theory, it is obvious that some form
of integral action should be introduced to eliminate the offset. The C.LLM. deter-
mined the best compensator of the proportional-integral (PI) form to reduce
interaction, to increase systern integrity and accuracy, and to insure stability.
However, simple analysis shows that, due te the integral action, the closed-loop
responses become oscillatory. Simulations were performed using the C.L.M.

designs with and without the inner loop. They show that systermn responses can



- 122 -

be improved with integral action and that appropriate design of the inner loop

can eliminate the oscillations.

Obviously in a heat conduction problem, ancther difficulty in designing a
control scheme is the lag time between a control action and the response of the
outputs. For the heat conduction process, this lag leads to large overshoot
when the feedback loop has high gains but will not lead to instability as long as
the measurements are placed within the first and last third of the system. If the
measurements are very near the edges of the system, even high gains will not
lead to overshoot, whereas, high gains leads to system instability if the measure-
ments are within the center third of the system. Thus it would seem appropri-
ate to add some sort of anticipatory control, i.e., add some derivative action.
This should reduce oscillations and keep the system stable up to higher gain.
None of the common multivariable control design techniques incorporates the
use of derivative action, since it is often difficult to physically incorporate into
the process and can lead to difficulties for step input changes and for noisy sys-
tems. Nevertheless, the application of derivative action is considered for the

(0.4,0.8) case.

Additionally, the inner-loop decoupling control strategy was considered.
Theoretically, it led to a perfectly non-interacting system for several measure-
ment locations, but the design was based on the third-order model and could be
useless for the exact system. However, simulations show that it is an excellent
control scheme for the heat conduction process, even when the measurement
locations are not those specified by the technique. With inner-loop decoupling,

it was shown that
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2\QC12 0
= _ S*z%clgf“
G, = oo, (2.7-6)

s+2V2I,, (2-2vVBc,) J

with the measurement locations (0.2,0.8) or (0.6,0.4) and arbitrary f,, and fj;.
Using additional proportional control with gain k; in the ith loop, the response

to a set point change is

vilt) =Cil1—e™) t20 , (2.7-7)
where
_ kA _
“ = Thea T T A,
1 1
A = Cyp = T e 2.7-8
1 12 fll 71 Z%ngtl) ( )
AZ = ...“...mi..-.-_.-.... vy = 1
f21(2—2VRc)y) 27 2Bty (2-2V3c)g)

Consider the first loop. The offset is obviously 1.0-C, = Thus no offset

11
futk
occurs if f;; = 0 or as k; »=. However if f,, is negative, y(t) is unstable.! The
simulations verify these results. The application of integral action to eliminate

the offset is also considered.

Finally, perfect non-interacting compensation and steady state decoupling
are considered. The latter is obviously undesirabie since it leads to dependent
control. Additionally, perfect compensation sacrifices closed-loop performance
to non-interaction and thus leads to poor dynamic behavior. Simulations using

the perfect, non-interacting compensator led to numerical difficulties,

Simulations of the closed-loop responses were performed for step changes

with various measurement locations. For the system with symmetric outputs

1. Note that )3 is positive for the cases of interest.
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and control action, both outputs respond identically to a set point change of
(1,1),? and the responses for (0,1) are reversed from that for (1,0). Simulations

were performed using both the third- and tenth-order process models.?

2.7.1 Casel: Measurementsz; = 0.2, z; = 0.8

Previous analysis showed that this case is stable and diagonally dominant.
Thus high gains should reduce offset, interaction, and response time. Figure
2.7-1 shows the third-order response to a step change (0,1) with feedback gains
1.0 and 50.0. Although interaction is small at a gain of 50.0, such gain is quite

high, and steady state offset is still about 5%.*

This case was one shpwn to be applicable to inner-loop decoupling. Using
extra measurements and an appropriate inner-loop compensator, the third-
order model was shown to reduce to a completely non-interacting system for
which classical methods could be used to complete the design. Third-order
simulations (Figure 2.7-2) verify the results predicted from the model. Interac-
tion is completely eliminated and the response is non-oscillatory. Additionally
with f,; =5, =0, proportional control does not result in steady state offset. As
f,; and {3, increase, offset increases, and as the gain increases, offset decreases.

Negative values for f;, and {3, lead to instability.

Even the tenth-order model acts qualitatively as expected. Simulations
(Figure 2.7-3) show that high gain leads to overshoot and eventually to instabil-
ity. Nevertheless for moderate gain, there is only a very small amount of
interaction. Thus even though the gain is somewhat limited, offset can be elim-

inated and interactions greatly reduced while still having excellent response

2. This notation means that the set points are Y4, = 1.0 and yq,=1.0 for t= 0 with yg =yq,=0.0
fort < 0.

3. Note that the tenth-order model is taken to represent the exact process.

4. In comparing the simulations, note that the time axes vary significantly.
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time. For example, with a gain of 20.0, the response time is about 0.08 and
there is negligible interaction, With simple proportional control, even with a
gain of 50.0, the response time is 50% more, while interaction and offset are
significant. Finally, integral action can be added but is not necessary since
f,1=13, =0 leads to a response with no offset. Also as shown in Figure 2.7-3,

offset increases if f;; and fz; are greater than zero.

272 Casell: Measurements z; = 0.3, z; = 0.7

This case is similar to the previous in that high gains should reduce
response times, offset, and interaction, without leading to instability. The simu-
lations {Figures 2.7-4 and 2.7-5) for proportional control behave as expected.
For low gains, considerable interaction and offset are present along with long
response times. For high gains, interaction is reduced and the system becom~s
oscillatory. However even for very high gains, the overshoot is only about 107%
with a large decay ratio, and thus the response times are short. Additionally,
the simulations show that the qualitative behavior of the responses for the
tenth-order system are identical to those for the third-order model, though

some qualitative differences are apparent at high gains.

Figure 2.7-6 shows the responses of the system with the addition of the
compensator that was designed using the characteristic locus method. At a gain
of 1.0, the third- and tenth-order responses are similar (only the tenth-order
responses are shown). The addition of the compensator has eliminated offset
and steady state interactions while adding some overshoot. However dynamic
interactions are still significant for t < 3.2. Increasing the gain reduces the
response times and interaction but increases the overshoot. At the extremely

high gain of 200.0, the tenth-order model (not shown) shows that the system is
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unstable, although the third-order model shows a good response. Nevertheless,

short response times and little interaction can be obtained at much lower gain.

The C.LM. procedure predicted a dramatic improvement with the addition
of an inner leop. Third- and tenth-order simulations were performed using the
design obtained in Section 2.4. The responses for the system with an inner loob
and with only proportional control in the outer loop showed considerable offset
even for step changes of (1,1). However, the responses (Figure 2.7-7) for the sys-
tem with the inner-loop compensator Fj and the designed outer-loop compensa-
tor G, given by Equation 2.6-20 show tremendous improvement. Although the
{0.1) and (1,0) step changes no longer give identical results, the responses are so
similar that only one is shown. For gains below B.0, both the third- and tenth-
order models show no oscillation (again only the tenth-order responses are
shown). The third-order model also shows an elimination of not only the offset
but almost all the interaction. Even though the actual system is unstable for
very high gain, the inner-loop design is excellent, since even at a relatively low
overall gain of 20.0,° oscillations and interaction are minor and response times

are short,

27.3 Caselll: Measurementsz, = 0.4, 2; = 0.6

All of the design techniques showed that this case becomes unstable at high
gain (above ™~32.0). The responses (Figure 2.7-8) verify these expectations. For
low gain, the system has high interaction, large offset and long response times.
As the gain increases, the oscillations increase while the response times and
offset decrease. Nevertheless, interactions remain high at short times—t < 0.5.

Slight differences between the third- and tenth-order models are apparent at

5. The overall gain equals outer-loop gain—2.5~times the inner-loop gain —8.0.
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higher gain. Although the third-order system is unstable at a gain of 35.0, the

actual system remains stable up to a higher gain (745.0).

Both the LN.A. technique and C.LM. showed that the only compensator
capable of insuring system stability at high gain is a dependent controller. How-
ever as previously discussed, the use of such a controller has serious disadvan-
tages. For a set point change of (0,1) or for unsymmetric dependent control
with (1,1), the closed-loop behavior shows very high offset (Figure 2.7-9), and for
symmetric dependent control, a set point change of (1,1) has no effect on the

systemn--the output remains unchanged.

Even by squaring down extra measurements through an inner loop, stability
cannot be assured at high gain. However with the inner- and outer-loop con-
trollers that were designed using the C.LM., the responses (Figure 2.7-10) at
moderate gain have no offset, but at the expense of increased oscillation and

response time. High overall gain (> 40.0) doeés indeed lead to instability.

Thus a good design has not been found for the heat conduction system with
measurements at (0.4,0.6). Obviously good feedback information is not available
dué to excessive transportation lag. Thus a PD or PID controller may be useful.
If a slight amount of derivative action is added, both the third-order model at a
gain of 35.0 and the actual system at a gain of 50.0 are stable (Figure 2.7-11).
The system has a very short response time but shows some slight offset. By
further introduction of some integral action (PID control), the offset can be
eliminated. At higher gains, it becomes necessary to increase the derivative
action to insure stability; however, high gains and increased derivative action
cause numerical difficulties due to a small downward oscillation in the initial
response (t < 0.2). Since such a downward 'blip" is not physically explainable,

it must be a consequence of the model reduction. This is proven in Figure 2.7-



- 128 -

12. The region t < 0.064 is enlarged, and it is obvious that the 'blip" gets
smaller as the order of the model is increased. Finally, Figure 2.7-12 shows the
response with derivative action with the ‘'blip” artificially removed. This
response is physically reasonable due to the transportation lag between the
inputs and the outputs. However, although this technique allows higher gain,
derivative action is still not advisable due to problems with immplementation and

process disturbances.

Finally the case (0.6,0.4) was shown to be applicable to inner-loop decou-
pling. Thus with the measurements at (0.4,0.8), a permutation matrix could be
used to convert the system to that necessary for use of this technique. How-
ever, the tenth-order response for the system with the permutation matrix and
inner-loop decoupling shows instability at moderate gain due to the excessive
transportation lag with the outputs at a distance of 0.6 from the inputs. The
inner-loop structure designed for the (0.6,0.4) case is applied directly to the
(0.4,0.8) case. Surprisingly the results (Figure 2.7-13) are excellent! Although
the interactions are not completely eliminated, they are small and may be
reduced further by improving the outer-loop design with the C.LM.. The choice
f;; = fp, = 0 eliminates offset, and even moderate gain leads to little interaction
and small response time. Uﬁfortunately. the systern is still unstable at high

gains.

2.7.4 CaselV: Measurementsz; = 0.4, z; = 0.8

This case gives further insight into the system since the outputs are not
symmetric and since the root-loci have vertical asymptotes for the third-order
model. Due to the lack of symmetry, simulations are considered for the set

point changes (1,1), (1,0), and (0,1). As expected, the responses of the two out-
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puts are not identical, and the measurement at z, = 0.8 responds faster than
that at z; = 0.4. Although the third- and tenth-order models show similar
responses for low gain, they differ considerably at higher gains. The actual case
shows much worse behavior than the third-order model predicts. For propor-
tional control (Figure 2.7-14), the offset is reduced as the gain increases. How-
ever even at a gain of 50.0, the responses are quite bad. The actual system
shows a high degree of oscillation and a long response time. The output at zz =
0.8 has an overshoot of 30%, while the other has an overshoot of B80% for a set
point change (1,1). The effects of interaction are clearly illustrated by the set
point change (0,1). The measurernent at zz, whose set point was changed, has a
fast response while the other output, whose set point remained unchanged
shows significant oscillation and long response time. If instead the set point
change (1,0) is considered, the measurement at zp is only slightly affected. Obvi-

ously the output at z; = 0.8 is much more stable than that at z,.

For a gain of 100.0, the third-order response is stable and shows shorter
response times. However for all of the set point changes, the response of the
output at z, is unstable while that at z; remains stable. Even when only the set
point at zp is changed, the interactions cause the other output to become
unstable. The instability of the tenth-order model can be explained through a
root-locus analysis, since the tenth-order model has additional poles and zeros

which can cause the vertical asymptotes to curve into the right half plane.

Since high gains are desired to reduce offset and interaction and since very
high gains lead to an unstable response at z;, it seems best to impose high gains
in the feedback loop on z; and moderate gains on the output at z,. Figure 2.7-15
shows the responses with gains 25.0 and 100.0 imposed on the two outputs. The
output at zz responds quickly and is only slightly affected by interaction, while

the other responds more slowly.
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The precompensator that was designed using the C.L.M. is then added to the
system. The C.LL.M. showed that the compensator should reduce tnteraction and
lead to a stable system with high accuracy and integrity. The responses
(Figure 2.7-18) show that though offset has been eliminated, dynamic interac-
tion is only slightly reduced. Again it is evident that the output at z, has too
much transportation lag. Its reponse is highly oscillatory and becomes unstable
at very high gains, even though the third-order model predicts stability. Thus
although the C.LLM. leads to a compensator that reduces interaction, the insta-
bility problem is still present. As in the (0.4,0.8) case, some derivative action
may be useful if very high gains are desirable. Finally even if an inner loop is

added, the C.1.M. showed that little improvement is obtainable. This is verified

using system simulations.
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2.8 DISCUSSION OF CONTROL ANALYSIS

Although much of the analysis and design in this project is an application
of published results, the work provides an insight into the current state of mul-
tivariable, feedback control theory. Unlike a review paper that compares the
theoretical bases of the design techniques, this project performed a complete
analysis of a distributed control problem using various currently available
methods. In particular, an extensive study of time-domain analysis, frequency-
domain design, and non-interacting control has been conducted for a two-input,
heat conduction system. Although heat conduction systems have previously
been studied in relation to optimal and meodal control, the multiple-input prob-

lem has been relatively neglected.

Additionally, the role of the number of measurements and their location
was studied. Due to the ease of taking temperature measurements for the heat
conduction problem, outputs can be obtained as needed by the control system.
Thus the complete system state could easily be approximated using many meas-
urements and optimal smoothing or fewer measurements and state estimation.
However, since such flexibility is not available in many practical, distributed sys-
tems, the control scheme mgst.work on a limited amount of output information.
Thus the analysis of the heat conduction system was performed with a finite
number of measurements, leading to the problems of measurement placement
and feedback loop interaction and instability. Since most design techniques
require feedback of outputs equal in number to the inputs, analysis of the use
of 'extra’ measurements for improving system response, by reducing interaction
or moving system poles, was performed. This work led to the new technique of
inner-loop decoupling, which shows excellent results for the highly-interacting,

highly-symmetric. heat conduction system.
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Although the problem that was studied is a relatively simple heat conduc-
tion process with two heat-flux controls, the results lead to conclusions that can
be extended to general, multivariable control theory. The choice of the particu-
lar gystem is actually quite good since many difficulties arise in the feedback
design, due to excessive transportation lags and high interaction between the
outputs. In particular, the classical means of steady state decoupling and per-
fect, non-interacting control are not useful for this system, and thus more com-
plicated design methods are necessary. Therefore, though this project leads to
results specific to the heat conduction problem, the major contribution of the

work is in the general area of feedback control theory.

The study clearly showed that, although excessive model lumping and
reduction can lead to significant inaccuracies, a high degree of model reduction
is usually needed so that the various techniques of control design can be con-
sidered. Most methods require a low-order, state-space representation of the
process for practical and efficient control structure design. Although the exact
lumping techniques of modal analysis and Laplace transform were easily appli-
cable to the heat conduction system, many other efficient techniques are avail-
able and are necessary for processes described by more complicated differential
equations. These methods 'include space discretization techniques and the
method of weighted residuals, along with other pseudo-modal procedures.
Before attempting any control design strategy, an accurate system meodel is
required. However regardless of the accuracy of the model, its usefulness is lim-
ited unless accurate model reduction can be performed. For the heat conduc-
tion process, modal lumping led to simple model reduction by directly specifying
the system eigenvalues. Since they were shown teo increase rapidly.‘only the first
few dominant modes needed to be retained to accurately represent the system.

The simulations showed that the qualitative behavior of the third-order model is
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similar to that of the actual system, but the differences are magnified at high

gain and often lead to quite different behavior.

The project also allows for an excellent comparison of the currently avail-
able design techniques. Overall, the best technique that was studied in this proj-
ect is the characteristic locus method. Both with and without an inner loop, this
scheme provides a systematic, computer-aided design strategy in terms of high
and low frequency compensation that leads to an excellent, proportional-
integral controller. Actually at the specific frequencies used in the design, the
technique determines the best possible controller to insure stability, reduce
interaction, and increase integity and accuracy, by calculating the compensator
that best aligns the real and complex frames. The methed is based on manipu-
lating the characteristic loci and characteristic directions of the system to meet
the necessary objectives. Once the appropriate computer programs and plotting
facilities are available, the final design can readily be obtained by considering

various high and low frequencies at which the alignment is applied.

The inverse Nyquist array analysis can also easily be performed with the
appropriate computer facilities but does not lead to as good a control design.
The procedure involves making the system stable and diagonally dominant.
Then a high amount of proportional gain can be used to reduce interactions.
However such high gain is often impractical and leads to excessive oscillations.
Additionally due to the lack of integral action, offset is a significant problem at
low gain and can only be reduced by increasing the gain substantially. The
major advantage of this technique over simple multivariable root-loci analysis is
that, although both can be used to check stability, the inverse Nyquist method
also insures diagonal dominance. However, the characteristic locus analysis

shows that diagonal dominance is not a necessary condition® for reduction of

1. However it is sufficient.
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interaction at high gain.

Non-interaction control methods were also considered for the heat conduc-
tion system. Although perfect, non-interacting control and steady state decou-
pling have little use for this particular system, they may in general be applica-
ble. Whereas non-interacting control usually leads to an excessively complicated
controller and requires an accurate system model, steady state decoupling is
usually very simple and an excellent technique to perform in conjunction with
other control schemes. Furthermore, the inner-loop decoupling strategy. that
uses extra measurements to eliminate or reduce the interactions, seems to be
quite promising. Though further analysis of the method for a more complicated
system is necessary, it seems to be quite insensitive to model inaccuracies and

leads to a very simple feedback system with little interaction.

Other conclusions pertaining to general multivariable, feedback control can
be made. In particular, it was shown that none of the currently available design
techniques allow for derivative action. Though such control action may be use-
ful in many processes where transportation lags are significant, it is impractical
to physically incorporate into the system and leads to problems with step

changes and noisy processes by requiring excessive control action.

Additionally, the project showed that the use of extra measurements may
drastically improve the control design or may have little or no effect, depending
on the placement of the commanded outputs. The extra outputs can be used
for inner-loop decoupling or for adjusting the poles of the process so that an
improved characteristic locus design can be obtained. In cases where extra out-
puts are available or easily accessible, they should be considered and may sim-
plify the control structure significantly. However, since a simple inner loop can-

not move system zeros, stability problems due to unstable finite zeros cannot
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easily be eliminated with extra measurements. Unfortunately, no good tech-

nique is currently available to insure stability of such systems.

Finally the role of measurement location has been considered. Each choice
of measurement location leads to a completely different optimal design and
significantly affects the usefulness of each design technique, since the locations
determine the extent of interaction and system symmetry. As expected, prob-
lems are minimized with measurements near the edges of the system, since

interaction and transportation lags are reduced.

Thus though the two-control, heat conduction process has been analyzed in
detail, further analysis could lead to additional insight. In particular, the trans-
portation lag problem should be further studied, especially in regard to current
work on computer-aided, multivariable control design for systems with time
delays {Ogunnaike and Ray, 1979). More importantly, an analysis of the stachas-
tic problem needs to be performed, along with an analysis of heat losses and
other disturbances. Finally, several computer-aided design packages should be
tried to further verify the results and spatial-discretization lumping procedures

and adaptive control techniques should be considered.
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Chapter 3

MATHEMATICAL MODEIL OF A

PACKED BED CATALYTIC REACTOR
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3.1 INTRODUCTION

The central role played by dynamic and steady state models in the design
and optimization of chemical processes and in the development and application
of control strategies justifies considerable effort in their development. The area
of packed bed reactor modeling has been the emphasis of a considerable
amount of research effort during the past twenty years and has really been at
the forefront of modeling research since the early 1970's with the acceptance of
new mathematical techniques for the solution of the systems of partial
differential equations encountered througheout the chemical industry. Still one
of the most challenging problems is that of packed bed catalytic reactor model-
ing.

Packed bed catalytic reactors are extensively used for carrying out exo-
thermic, gas-phase reactions. The complexities of the simultaneous heat and
mass transfer processes in such reactors have led to considerable effort in their
mathematical modeling. A major concern has been in the amount of detail
necessary for accurate description of the dynamic and steady state behavior of
these reactors (Hoiberg et al., 1971). Although it is obvious that insufficient
detail can lead to a model incapable of accurately representing the physical sys-
tem, model complexity has often been limited by computational considerations.
Many authors have concluded that, although the mathematical treatment of
every aspect of the reactor system may be intellectually fulfilling, a model based
on such detail could be impractical since the resulting system of partial
differential equations would be computationally intractable. For these reasons,
much work has been directed at determining the processes that are of minor

importance and can safely be neglected in the models.

Such work has led to the extensive use of pseudo-homogeneous models--
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those that de not distinguish between the conditions within the fluid and those
on the solid catalyst. For highly exothermic reactions, a pseudo-homogeneous
description is often inaccurate due to the large temperature gradients that
exist between the solid and fluid phases. A more detailed two-phase model, in
which the exchange of energy and mass between the two phases is explicitly
described, is then necessary. Furthermore, in order to limit the complexity of
the heterogeneous model, radial concentration and temperature gradients, axial
dispersion and the variation of physical properties are frequently neglected

(Carberry, 1976; Finlayson, 1971; Hoiberg et al., 1971; Jutan et al., 1977).

Advances over the past decade in computational techniques for the solution
of partial differential equations—the orthogonal collocation method, in
particular—-have made extensive simplifications of packed bed reactor models
unnecessary. Thus the formulation and solution of accurate dynamic models of

chemical packed bed reactors is now possible, allowing

— accurate description of dynamic and steady state reactor behavior

for process optimization, design and safety considerations,

—  investigation of reactor start-up or the effects of system distur-

bances, and

— the analysis and design of control structures to stabilize the reac-
tor under various disturbances or to provide optimal system

recovery from input changes.

As a basis for a concerted effort in multivarible control system design, the
present study provides a mathematical modeling analysis of packed bed cata-
lytic reactors that significantly extends previous studies in the detail of the
mathematical model and systematic consideration of all aspects of the model

development and the reduction to a state-space control representation. This
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| analysis is not intended to be specific to any particular packed bed system,
although our experimental methanation reactor is used throughout most of the
discussions, but rather to present a detailed study of modeling techniques,
assumptions, and solutions and to develop a unified approach to dynamic reac-
tor modeling. We feel that the modeling approach and the conclusions concern-
ing the model development and the importance of model simplifications
presented in this thesis should carry over to other similar catalytic packed bed

systems.!

In particular, this thesis provides a complete modeling analysis of a packed
bed chemical reactor based on currently available computational procedures.
Various common assumptions, model structures, and numerical solution tech-
niques are discussed. Although some simplifying model assumptions are con-
sidered, their necessity and effect on the resulting system simulations are

rigorously analyzed.

After providing a cursory review of packed bed reactor modeling, the for-
mulation and nurnerical selution of a dynamic model, incorporating all of the
mechanisms necessary for an accurate description of the physical and chemical
phenomena occurring in industrial reactors, is presented for a packed bed reac-
tor in Section 3.3, The model accounts for axial and radial dispersion of mass
and energy, for mole changes that occur along the bed due to reaction, and for
temperature, pressure and mole dependencies of gas velocity, density, average
molecular weight, heat capacity, reaction rate constants, and heats of reaction.
Additionally, a central axial thermal well is included in the study to provide an

accurate representation of many industrial reactors, where the well is often

1. In line with this reasoning, all computer programs developed in this work for the reactor model
are modular and allow for simple modification to study various packed bed reactors with varying
degrees of model complexity. Furthermore, the analysis presented is for the general packed bed
system with a cooling jacket and axial thermal well. The model and computer programs are set
up for congideration of simpler systems, such as adiabatic reactors and those without a thermal
well. These are merely subsets of the more general case.
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used to obtain the temperature measurements necessary for process control.
Finally, the model is based on a three-dimensional--time, axial, and radial--

heterogeneous analysis and incorporates the effects of axial pressure gradients.

The model can then be used to study the steady state and dynamic
behavior of the methanation reactor, the effects of reactor operating conditions,
and the overall effects of various common modeling simplifications. The gen-
erality of the analysis also allows for studies of simnilar systems under adiabatic
operation and without axial thermal wells. These extended analyses are

presented in Section 3.4.

Unfortunately, the numerical scolution procedures used throughout the
early portions of the analysis may be inappropriate for reactors with very steep
axial concentration or temperature gradients due to numerical difficulties
inherent in the model discretization. Section 3.5 considers such conditions and
presents an extended numerical solution procedure using orthogonal colloca-
tion on finite elements that remains stable even under the worst of these simu-

lations.

The analysis of the mathematical relationships describing the chemical and
physical processes within the reactor and the numerical approximation
methods leads to a computational technique for simulating the steady state and
dynamic behavior of the packed bed reactor. However, computing facilities gen-
erally available for on-line control cannot perform the necessary calculations
rapidly enough for practical control applications with the full, nonlinear model.
Furthermore, solution times for dynamic simulations with this model even make
detailed parameter studies and process optimization impractical. Thus a
simplified lower-order model is desired for on-line multivariable control and for

process studies and is developed in Section 3.6.



~171 -

Finally, a major difficulty in accurate packed bed modeling is that of exces-
sive model dimensionality. Incorporation of all of the physical information
available into an accurate description of the reactor can lead to numerical
models of very high dimensionality. An analysis of the effect of the model
discretization on model dimensionality and techniques for accurate reduction of

the size of the model are presented in Section 3.7,

Before control studies can be performed using the model developed in this
work and even before extensive simulations are used for system design and
optimization, parameter estimation for the system of interest is necessary.
Although many of the parameters needed for the mathematical description of
the reactor system can be calculated directly from physical considerations, the
reaction and heat transfer parameters must be measured directly for the exper-
imental system. This step, outlined in Section 4.2, is by no means trivial and
may require considerable experimentation to obtain kinetic data, including con-
sideration of transient kinetics, and to obtain heat transfer and energy and

mass dispersion parameters.
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3.2 REVIEW OF PACKED BED REACTOR MODELING

The area of packed bed reactor modeling was the emphasis of considerable
amount of research effort into the early 1970's. Many specific aspects of the
models were investigated, and well defined techniques for packed bed reactor
models were developed (Carberry, 1976, Froment, 1972; Hlavacek, 1970, Karanth

and Hughes, 1974a; Paris and Stevens, 1970; Smith, 1970).

Conclusions based on careful analyses of each specific aspect of the reactor
design led to modeling simplifications that were necessary duc to limitations of
the available numerical solution techniques and computational equipment, The
use of pseudo-homogeneous models, the elimination of dispersion effects, and
the assumption of constant physical properties werc often necessary and
became standard modeling practice. Steady state analyses dominated the
modeling efforts, since computational techniques for dynamic simulations were
not well-developed. However, these steady state models were able to provide

fairly accurate results for most investigations.

Advances over the past decade in.computational techniques for the solution
of partial differential equations such as those describing a packed bed catalytic
reactor have made extensive simplifications of the analysis unnecessary. In par-
ticular, a drastic reduction in computer time has been achieved by application
of the orthogonal collocation method, which is ideally suited to boundary value
problems of the typé encountered in catalytic reactor modeling. In the colloca-
tion procedure, the solution is approximated by a series of known functions with
unknown coefficients, which are then determined by satisfying the differential
equations at a number of collocation points. As developed by Villadsen and
Stewart (1967), the technique uses orthogonal polynomials as the expansion

functions and the roots of these polynomials as the collocation points. The
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method has been applied to various problems including the non-symmetric axial
diffusion for a tubular reactor (Fan et al., 1971), the steady state solution for a
nonadiabatic packed bed reactor (Finlayson, 1971), the sirnulation of a
simplified adiabatic packed bed reactor {Karanth and Hughes, 1974b), and the
modeling of a nonadiabatic packed bed reactor using a pseudo-homogeneous

approach (Jutan et al., 1977).

Obviously, we cannot attempt to provide a detailed review of packed bed
reactor modeling in this thesis since entire books or major portions of reaction
engineering textbooks (Carberry, 1976, Karanth and Hughes, 1974a; Smith,
1970) are devoted to this subject. Instead, we wish simply to outline some of the
major advances in this area and to show the wide disparity in modeling tech-
niques and thus the importance of a unifying study such as that presented here.
Table 3.2-1 shows a brief summary of several published nonisothermal, nonadia-
batic packed bed reactor models developed during the past twenty years. This
table is not intended to present all of the models used throughout this period or
even present the major modeling techniques, but instead to describe represen-
tative models that exemplify the progress of this field during the period. The
table shows the continuous increase in model complexity due to computational
improvements and the generality of the present work in comparison to previous

studies.



Solution

Dispersion

Reference System Technique Heterogeneous  Dynamic Thermal Mass
Current Methanation gﬁﬁ Zga?i:ari Yes Yes R?é?;l R?ciia;l
Jutan et al. (1977) g;z;;_e nolysis gf; g; Zﬁi&ﬁ No Yes Radial  Radial
Valstar et al. (1975) g;‘;’fh*‘egfsme e e No No Radial  Radial
Hoiberg et al. (1971) Hy + O Yes”ééfl':gl i) Yes Radial  Radial
De Wasch and Froment (1971) A+B - C e e Yes No Radial  Radial
Finlayson (1871) orihogonal No No Radial  Radial
Hlavacek (1870) A+ B e e No No Radial  Radial
Carberry and White (1969) gigi‘:gﬁfne e e No No Radial  Radial
Carberry and Wendel (1063) ¢ & S batic D o No No Axial  Axial

Table 3.2-1

Summary of Nonisothermal, Nonadiabatic Packed Bed Modeling

- LT -
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Carberry and Wendel (1963) considered the influence of inter-intraphase
transport phenomena yield for consecutive reactions in an adiabatic packed bed
catalytic reactor. A simple digital computer model was developed with simple
extensions to the nonisothermal, nonadiabatic case in the absence of radial gra-
dients (quasi-adiabatic analysis). This study was extended by Carberry and
White {1969) to the steady state modeling of a packed bed catalytic reactor for
the highly exothermic oxidation of naphthalene over Vz0s. Their numerical
simulations demonstrate the necessity of a two-dimensional, axial and radial,
description of the temperature distribution and the adequacy of a one-
dimensional mass continuity description. Detailed computations further
showed the existence of significant interphase concentration and temperature

differences, even at steady state, for the highly exothermic reaction.

Hlavacek (1970) provided a unified review of the design of packed catalytic
reactors, including the formulation of modeling equations governing heat and
mass transfer in packed bed reactors and consideralions of heal transfer
simplifications in packed beds and numerical solution methods for the resulting
set of nonlinear partial differential equations. Hlavacek describes both one- and
two-dimensional modeling of a packed bed reactor for a simple A » B reaction.
As with most packed bed analﬁes. he assumes a homogeneous reaction system,
in contradiction to the real heterogeneous structure of the packed bed. His
resulting system of nonlinear elliptic partial differential equations is reduced to
a set of parabolic equations by omitting the effects of axial mixing. Finally,
steady state solution of the equations is performed using finite differences. The
rajor contribution of his work is really in unifying the approach to packed bed
reactor design by showing the necessity and use of accurate reactor models in

studying design considerations.
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| Major advancements in packed bed reactor modeling were published in
1971. Finlayson (1971) presented the first orthogonal collocation solution for
packed bed reactor analysis. Although he showed the method to be much faster
and more accurate than finite difference calculations and easily applicable to
two-dimensional models with both radial temperature and concentration gra-
dients, the finite difference technique remained the generally accepted pro-
cedure for packed bed reactor meodel solution until about 1977 when the
analysis by Jutan et al. (1977) of a complex butane hydrogenolysis reactor

showed the real potential of the coliocation procedure.

Also in 1971, De Wasch and Froment (1971) and Hoiberg et al. (1971) pub-
lished the first two-dimensional packed bed reactor models that distinguished
between conditions in the fluid and on the solid. The basic emphasis of the work
by De Wasch and Froment (1971) was the comparison of simple homogeneous
and heterogeneous solutions and the relationships between ‘lumped’ heat
transfer parameters (wall heat transfer coefficient and thermal conductivity)
and the 'effective’ parameters in the gas and solid phases. Hoiberg et al. (1971)
presented the first detailed, two-dimensional, heterogeneous dynamic modeling
analysis (a homogeneous analysis was used for steady state calculations). This
work considered the amount of detail necessary in dynamic models through a
comparison of experimental and calculated results for a packed bed reactor in
which the highly exothermic reaction between hydrogen and oxygen occurred on
a platinum catalyst. The major limitation of this work was the amount of detail

possible for nurnerical solution using the finite difference solution scheme.

The work by Valstar et al. (1975) provided the first real experimental com-
parisons between two-dimensional packed bed calculations and radial measure-
ments. Although their model was somewhat simple, especially for as late as

1975 (four years after the detailed modeling work by Hoiberg et al. {1971) was
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| published), their experimental radial temperature measurements provided the

basis for the generally used assumption of quadratic radial temperature

profiles,

Finally, a significant advance in packed bed reactor modeling and control
model development was published by Jutan et al. (1977). They used the orthogo-
nal collocation discretization technique to reduce an accurate dynamic three-
dimensional--time, axial, and radial—partial differential equation model for the
multiple butane hydrogenolysis reactions in a packed bed catalytic reactor to a

state-space representation suitable for on-line control studies.

Other recent work by MacGregor and Wong (1978) and Wright and Schryer
(1978) deviated from the mechanistic approach taken by most studies where
models are developed by properly including the major phenomena occurring
within the system through the application of the basic physical and chemical
laws governing such systems. They considered the use of statistical methods to
identify process transfer functions from empirical input/output process data.
The advantages of this statistical approach include rapid implementation
without the necessity of any specific knowledge of the process. However, these
empirical models are only Vali_d within a very narrow region about the operating
conditions for which they have been derived and are only practical in cases
where very low-order models will suffice. With such complex systems as packed
bed reactors, such low-order models may be insufficient to accurately describe
the dynamic behavior of the process. Thus, these models cannot in general be
safely used for process optimization and design or the investigation of start-up

procedures and the effects of major system disturbances.

The current work presented in this thesis uses these past studies as a basis

to develop a unified general approach to packed bed reactor modeling and con-
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trol model development. This approach includes detailed heterogeneous
dynamic modeling with complete axial and radial, mass and temperature con-
siderations and gas and solid property variations with minimum a priori

simplifications.
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3.3 HODEL DEVELOPMENT FOR PACKED BED CATALYTIC REACTORS

3.3.1 Reactor System

Due to the need for careful, systematic studies of the model development
and the design and implementation of control processes, a fully automated,
completely instrumented, non-adiabatic, tubular, catalytic reactor was designed
and built (Strand, 1984). The reactor system was constructed, not specifically
for any particular reaction mechanism, but rather Lo include various heat and
mass transfer mechanisms of interest in control studies and is versatile enough
for multivariable computer control studies of a variety of catalytic reactions.
Figure 3.3-1 shows a detailed schematic of the experimental system. The pri-
mary reaction process chosen for the initial studies is the methanation reac-

tion, discussed in Section 3.3.2.

Because of the difficulties in heat removal from a packed bed, exothermic,
catalytic reactor and the subsequent problems with temperature and concen-
tration control, various reactor designs have been used to permit easier heat
removal. A common approach is thal of using mulliple adiabatic reactor beds
with interstage quench cooling. In such systems, careful control of the tempera-
ture and concentration is necessary to assure that the adiabatic temperature
rise across the bed is not too large. Control of such a system was studied by

Foss et al. (1980), Silva (1978), Silva et al. (1979), and Wallman et al. (1979).

Another approach is to remove the heat of reaction through the reactor
walls into an outer jacket filled with a cooling fluid. This approach is especially
useful for highly exothermic systems, since heat is removed continuously along
the reactor bed, but requires small reactor diameters due to ‘radial heat

transfer limitations. Nonadiabatic reactors for highly exothermic systems are
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then typically built with a large number of tubes in a cooling oil shell. Our reac-
tor is designed to simulate one of these tubes. Due to the high radial thermal

gradients in such tubes, detailed radial modeling is necessary.

The cooling system for the experimental reactor consists of a high tempera-
ture oil (Dowtherm) circulating between the reactor jacket and condenser by
natural convection. Continuous temperature measurements of the oil are avail-
able, and its boiling temperature can be controlled by adjusting the pressure of
nitrogen within the condenser. At normal operating conditions, the cooling fluid
will boil’ in the jacket leading to a countercurrent flow of the oil through the
outer jacket, and the reactor wall temperature will be nearly independent ot
length along the reactor. The coolant system was sized based on expected heat
loads of the reactor. A computer-controlled immersion heater is located in the
Dowtherm reservoir so that the Dowtherm can also be used to heat up the reac-
tor during start-up, since low operating temperatures can lead to undesired side

reactions.

The experimental system is designed for both feed-effluent heat exchange
and cold gas recycle that can lead to steady state multiplicities and instabilities
and are of great interest in control system design. The cold gas recycle can
actually be used to damp the highly exothermie methanation reaction by dilut-
ing the feed concentration, inhibiting the forward reaction by the introduction
of methane and by increasing the heat capacity of the feed mixture due to the
large specific heat of the methane product. A double-acting. reciprocating
piston-type compressor is used for the recycle, requiring an upstream water

knockout drum to remove the condensing water in the reactor effluent.

In addilion to the feed-effluent heat exchanger, an electric preheater is

1. The normal boiling point of Nowtherm s 257° C.
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available for controlling the inlet gas temperature to the reactor. Thus the con-
trol configuration can consider the complete control of the inlet feed tempera-

ture or simply feed-effiuent heat exchange.

The actual reactor bed consists of a 1.194 cm radius stainless steel tube,
through the center of which runs a 0.159 cm radius thermal well containing
thermocouples at various axial positions® The reactor chamber is about 30 cm
long and packed with finely ground® nickel on alumina catalyst particles.
Because of the cooling jacket, radially mounted thermal wells are impractical, so
all internal temperature measurements are made within the thermal well, as is

common in many industrial reactors.

All feed gases to the reactor are supplied by standard gas cylinders. Each
stream is controlled by a mass flow controller and is equipped with a regulator,
an oxygen absorber/catalyst, a filter /drier, a moisture indicator and a solenoid
shutoff valve. Under normal operations for the methanation process, nitrogen,

hydrogen and carbon monoxide are used as the inlet streams.

The computer system used for measurements and control is a Digital Equip-
ment (DEC) LSI 11/23 to which all control valves, thermocouples, heaters, and
solenoid valves are connected. Concentration measurements are obtained
periodically using a gas chromatograph with a thermal conductivity delector.

An on-line CO/CO; detector will be installed for future control studies.

This experimental system is advantageous for multivariable computer con-
trol studies due to its flexibility, the large number of available of measurements,
feed-effluent heat exchange, the possibility of product recycle, and the inherent
time delays. The reactor can actually be used to study a large number of

processes simply by changing the inlet gases and the catalyst.

2. The thermal well is designed to contain up to 24 thermocouples.
3. 0.8~ 1.0 mm average diameter
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3.3.2 Reaction Kinetics

Alhough a large variety of reaction processes could be studied in this exper-
imental packed bed reactor, the methanation reaction was chosen for the initial
studies since methanation is highly exothermic and the temperature and con-
centration control of exothermic packed bed systems has traditionally been
difficult, since methanation is a reaction of great industrial importance and
since methanation has been well-characterized in the literature. Methanation is
one of a more general class of Fischer-Tropsch processes where carbon monox-
ide and carbon dioxide are hydrogenated to form various light hydrocarbons
and water. When using specific selective catalysts, the resulting product is pri-
marily methane. The catalyst used in our studies is Girdler catalyst G-85, a
nickel on alumina catalyst used industrially to specifically promote methanation
without the excessive formation of other hydrocarbons. Another advantage in
using methanation for the initial control studies is that by simply replacing the
catalyst, higher-order Fischer-Tropsch processes with additional control

difficulties can be studied.

Although the primary reaction on this catalyst is the methanation of car-
bon monoxide, appreciable side reactions can occur in the methanation system.
These are shown in Table 3.3-1 and include carbon dioxide methanation. steam-
shift, carbon deposition, nickel carbony! formation and other Fischer-Tropsch
processes. By operating at Hp;:CO ratios of about 3:1 and temperatures above
200° C, most side reactions are suppressed and only the CO methanation, CO;
methanation, and steam-shift reactions should be significant. Of these three
reactions, only two are independent. In light of the discussion below on CO,
methanation, the CO methanation and steam-shift reactions are taken as the
independent reactions. These reactions have been studied extensively and

kinetic information is available.
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CO Methanation: CO +3H; = CH, + Hz0
CO; Methanation: CO; + 4H; = CHy + 2HR0
Steam-Shift: CO + HeO = COp + Hp
Carbon Deposition: 2CO -» CO; +C

Nickel Carbonyl Formation: Ni +4C0 - Ni(CO),
Fischer-Tropsche: nCo + 2nHp = (CHg), + nHz0
Table 3.3-1

Reactions in Methanation Systems
(Source: Strand, 1984)

A gencral rate expression for CO methanation over a nickel catalyst is given
by lee (1973) and Vatcha {1978). They report that a Langmuir-Hinshelwood

equation of the form

koe ™ Peo(Py,)°3(1-0)

Ry = T+K,Pp, + KePor, (3.3-1)
PeyPuo ¢
where wv= Pog (PHa)s K. (3.3-2)

is superior to simmple power law relationships. These reaction kinetics (Equations
3.3-1 and 3.3-2) are based on experimental data taken by Lee (1973) in a cata-
lytic CSTR under conditions of ideal mixing for CO methanation over a Harshaw
Ni-0104T nickel-Kieselguhr catalyst and extensions by Vatcha (1978) to include
the factor (1-v) to reduce the rate to zero at equilibrium. The range of validity
for this expression is given in Table 3.3-2, and empirical values for the rate con-
stants are given in Table 3.3-3. Vatcha reports that the low activation energy
indicates that the above rate expression describes the global rate, thus incor-
porating any mass transfer limitations. Gas phase concentrations can then be

used in the reaction analysis. This use of gas phase concentrations in the



analysis does not limit the generality of the model, since the mass transfer
effects are simply included in the rate expressions and since the interparticle

mass transfer limitations are often minimal for packed bed reactors where the
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gases flow rapidly over solid catalyst particles (Jutan et al., 1977).

As far as side reactions, Vatcha (1978) concludes that

'the presence of CO strongly inhibits the methanation of
COz, but COp barely influences the methanation of CO in
their mixtures. Thus, in a reactor CO; would remain uncon-
verted until the CO became depleted to a very low concen-
tration (typically 200 ppm on nickel) and only then would
the CO; begin to get methanated.”

Total Pressure 1-89atm
Temperature 547 - 766° K
¥Yeed Las Composition

Hz:CO > 2.85

H;0 < 5%

COg < 20%

Na < 50%

HoS8 < 0.5ppm

Table 3.3-2

Validity Range of Methanation Rate Expression

(Source: Yatcha, 1976)

Methanation Steam-Shift
mole CO
ko, | 0075 —DleCO__ |}, | 17815 -
u sec g cat atm" atm® g cat sec
eal cal
e E 18900, s

Eay | 6944 g-mole oS g-mole
K, 1.47 atm™ £y 0.83 atm
Ko 0.73 atm ™! fo 0.17

Table 3.3-3

Empirical Constants for Equations (3.3-1) and (3.3-3)

- Although Vatcha also shows that literature surveys on the steam-shift reac-

tion are inconclugive, we have included this side reaction in our modeling
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analysis. This allows consideration of multiple reactions in the control model
development. A complete analysis of the steam-shift reaction is provided by Moe
(1962). Based on correlations of experimental data, he reports a rate expression

of the form

XCOXHu0

T
Rs = kyp e S’y Xco,XH, ~
S 2 4 Kps

(3.3-3)

which should be appropriate over a wide range of operating conditions. The

pregssure dependence of the steam-shift reaction rate
RS(P) = Rsmm) (f; + 1,P) (3.3-4)
is also derived from empirical results (Moe, 1962).

Finally, the equilibrium constants K,,}l and KPs are taken as functions of

temperature as given by van't Hoff's equation:

Kpue

anPu = Kpm"' T
3.3-5)
Koss (
In Kps = Kpg, + T

The necessity of these relationships and values for the parameters in these

expressions are presented in Section 3.4.

The empirical rate expressions given in Equations (3.3-1) and (3.3-3) were
used for initial simulations. Actual rate expressions for our specific catalyst,
reactor bed and expected operating conditions were determined in preliminary
experiments using a Kinetics reactor (Strand, 1984) built specifically for these
studies. Preliminary results show that the kinetics for our catalyst are actually
much different than those predicted by the above expressions. The dependence
of the rate on the specific concentrations of carbon monoxide, h&drogen. and

methane are significantly different, and the activation energy is much higher. In
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particular, the reaction was much more sensitive to cperating conditions and
especially to the temperature, leading to much steeper gradients in the axial
concentration and temperature profiles. These new methanation kinetics are of
the form (Strand, 1984)

k oue—E'n/R'T POOPHa
(1 + K\Pco + KoPy,)?

Ru —at (3.3-6)

with the rate constants shown in Table 3.3-4. The final term, e™, in the rate
expression is an empirical catalyst deactivation term. The steam-shift reaction
was found to be negligible with the nickel on alumina catalyst under the prelim-

inary experimental conditions.

ko, 128xi04 —moleCO _
sgg gr cat atm'
Eoyu 37000 —=—
K, 110. atm™!
Ko 2.32 atm™
a 0.3 hr!
Table 3.3-4

Rate Constants for Methanation Reaction
Kinetics Given By Equation (3.3-6)

This rate expression differs significantly from that proposed by Vatcha
(1976). The new expression does not include any terms explicitly for the equili-
brium (i.e., a term like 1-v in Vatcha's expression). This term was not found to
be needed under the limited planned operating conditions (relatively low tem-
peratures and concentrations), since at these conditions the equilibrium con-
stant K;, is approximately 10° and the reaction therefore goes to nearly 100%
completion. Furthermore, experimental results showed a very high activation
energy and rapid deactivation of the catalyst. The rate expression includes an

empirical deactivation term, although the activity remains nearly constant dur-
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ing most control experiments of reasonable duration (3-5 hours) after an initial

deactivation period of about 100 hours.

Significant insight into the mathematical modeling of packed bed reactors
can then be obtained by completely modeling the experimental reactor using
both reaction rate expressions for methanation. Because of the preliminary
nature of the new Kkinetic expression (Equation 3.3-8), much of the analysis
presented in this thesis is performed using the methanation kinetics expression
given by Equation {3.3-1). Conclusions in this modeling work were verified with
the new reaction kinetics, thus allowing consideration of various kinetic models
in the modeling analysis. The only major effect of the new kinetics on the

modeling work is discussed in Section 3.5.

As pointed out in this section, global reaction kinetics are used in this
analysis. These kinetics must then account for the the adsorption/desorption
on the calalyst surface and the intraparticle (iiffusion. However, most available
kinetic information is based on steady state data. A rnajor concern is then the
importance of the transient behavior of the adsorption/desorption processes
and the characteristic times for the intraparticle diffusion dynamics. Although
the intraparticle diffusion can be shown to be generally insignificant in the reac-
tor dynamics,* experimental efforts are needed to gain further information on

the dynamics of the adsorption/desorption processes.

8.3.3 Formation of Complete Hathematical Model

A two-dimensional, two-phase mathematical representation of the experi-

mental packed bed reactor is developed in this section. This mathematical

4. The time constants for the temperature and concentration profiles in the pellet to change are at
least an order of magnitude faster than the time constants for the temperature and concentra-
tion profiles in the reactor bed.
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model significantly extends previcus packed bed modeling studies through a
reduction in a priori simplifications. Detailed consideration of the common
simplifications is then possible, and the validity of certain assumptions can be
assessed in 1ight of the combined effect of multiple assumptions and of the
overall benefits of the assumptions. The general view that modeling
simplifications will lead to a reduction in numerical solution effort and are
therefore desirable or in many cases necessary is shown to not be universally
correct with today's new computational capabilties. Furthermore, most previ-
ous modeling studies have been restricted to specific systems due to the appli-
cabiltly of the chosen assumptions for each individual case. The approach
taken in this work was to minimize these assumptions so as to develop a general
packed bed reactor model that could be transported to other systems with

minimal effort.®

The heterogeneous packed bed reactor consisting of solid, nonspherical
catalyst particles and reacting gas is treated as two phases with the assumption
that the packed bed may be treated as a continuum insofar as changes occur
'smoothly and continuously within each phase throughout the bed. This assump-
tion is generally valid for most industrial reactors and should be valid under the
conditions of this analysis (Carberry and Wendel, 1963; Hlavacek, 1970; Stewart,
1967), since the ratio of bed diameter to particle diameter for the experimental
reactor is aboul 25 and the axial aspect ratio is very large (200 - 300). The heat
and mass fluxes can then be treated in a form analogous to Fourier and Fick

laws, respectively.

Previous investigations have often assumed that the difference between the

catalyst and gas temperatures are negligible in tubular reactors for fast flowing

5. Although this current modeling is for a general, nonadiabatic packed bed reactor with an axial
thermal well, the analysis easily extends to the consideration of adiabatic reactors and those
without a thermal well. These are merely subsets of the more general case.
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gas-solid systems. Industrial experience and experimental studies (Froment,
1974; Gould, 1969; Hoiberg et al, 1871; Jutan et al, 1877) have verified that
there is essentially no temperature difference {< 5° K) between the catalyst and
gas at steady state. Purthermore, this assumption has also often been defended
by the argument that it is difficult in practice to measure separately the gas and
solid temperatures. However, for control studies, the two-phase representation
is necessary since considerable (> 10° K) differences can exist between gas and
solid temperatures during dynamic conditions, and for control applications, the
dynamic situation is of major importance. The measurement problems can and
often are in practice reduced by measuring temperatures within an internal
thermal well rather than in either the gas or catalyst. Modeling of the thermal

well in the system is then necessary to perform accurate dynamic control.

A variety of assumptions is often made concerning the axial and radial
dispersion of mass and energy. These assumptions are based on a significant
amount of supporting literature and for most systems involve neglecting axial
and radial mase diffusion and axial energy diffusion, depending on the aspect
ratios of the reactor bed. Although these assumptions have often been neces-
sary in the past due to limitations of the computational techniques available for
numerical solutions Qf the model and in particular the second derivative
diffusion terms, current techniques do nqt require such assumptions and may

indeed be hindered by them.

The present analysis begine by incorporating all axial and radial dispersion
effects, including axial conduction within the thermal well. Axial conduction in
the outer wall is neglected based on the first assumption presented below and
on Bonvin's (1980) results that the conduction in the outer wall is most likely
insignificant and can be neglected from the model if axial dispersion in the bed

is retained. Although many dynamic analyses of packed bed reactors have
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neglected radial gradients to limit the complexity of the resulting model, this
work considers a packed bed system with extensive cooling at the reactor wall
and thus must account for the radial profiles within the bed (Jutan et al., 1977).
Radial temperature gradients are neglected within the thermal well due to its

comparitively small radius and high thermal conductivity.

Also accounted for by the model are density, heat capacity, and molecular
weight variations due to temperalure, pressure, and mole changes, along with
temperature induced variations in equilibriurmm constants, reaction rate con-
stants, and heats of reaction. Axial variations of the fluid velocity are
accounted for in the mathematical description using the overall mass conserva-
tion or continuity equation. These variations are the result of axial tempera-
ture changes and the change in the number of moles due to the methanation

reaction.

The major assumptions underlying the original model are:

1. The reactor wall temperature is equal to the cooling fluid ternperature
and is independent of length along the reactor (Carberry and Wendel,
1963; Jutan et al., 1977, Smith, 1970). The validity of this assumption is
generally based on the very high thermal conductivity of the reactar wall
and on the use of boiling fluids or high convection in the outer cooling
shell. The experimental reactor is designed to have boiling fluid in the

cooling jacket, as is common in highly exothermic industrial reactors.

2. Gas properties are functions of temperature, pressure, and total moles as
dictated by the ideal gas law. The assumption of ideal gas behavior will be
accurate as long as the operating temperatures of the reactor are much
higher than the critical temperatures of the component species and the

pressures are relatively low. These conditions should be met at the
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expecled operating conditions of the experimental methanation reactor

and are in general valid for most gaseous reaction systems.

3. There is no radial velocity, and the axial velocity across the radius of the
packed bed is uniform. Schwartz and Smith (1953) found that the veloc-
ity across the diameter of a packed bed is not uniform for radial aspect
ratios (tube-to-particle diameter) less than about 30, due to the
significant effect of the increased void space near the wall where the par-
ticles are locally ordered. This result has been verified by Hoiberg et al.
(1971) for a packed bed reactor with radial aspect ratio about 50. They
considered a radial velocity function suggested by experimental observa-
tions with a sharp peak about 157% greater than the mean fluid velocity
situated close to the wall. Simulations using their rmodel showed results
virtually identical to those obtained with a uniform velocity profile.
Although the radial aspect ratio for our experimental reactor is under
30.% a uniform velocity profile was assumed. Preliminary residence time
distribution studies should be conducted on the experimental packed bed
reactor to test this assumption. Although in many cases it may be
desired to increase the radial aspect ratio (possibly by crushing the
catalyst), this may be difficult in our systern due to the highly exothermic
solid-catalyzed reaction that can lead to excessive temperature rises
near the center of the bed. Carberry (1976) recommends reducing the
radial aspect ratio to minimize these temperature gradients. If the velo-
city profile in the experimental reactor is significantly nonuniform, the
mathematical model developed here allows predictive equations such as

those by Fahien and Stankovic (1979) to be easily incorporated.

8. Actually there are only about 12 particle diameters between the thermal well and outer wall,
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4. The physical properties of the solid catalyst and thermal well are taken
as constant, since the conditions within the reactor introduce only minor
variations in these parameters, and the heats of reaction and gas heat

capacities are taken as linear functions of temperature.

5. Hlavacek (1970) has shown that radiation between the solid catalyst and
gas can significantly affect the temperature dynamics in packed bed sys-
tems operating in excess of 673° K. Since the system considered in this
work usually operates well below these conditions, radiation terms are
not explicitly included in the model. However, their effect can to some
degree be accounted for in the overall heat transfer coefficients.”

It should be noted that the model developed in this analysis may be much more
complex than that necessary f[or accurate description of the experimental
methanation reactor. The increased complexity and generality allow simple
extensions of the model to other systems and to include additional physical and
chemical processes such as radial velocity variations and the dependence of
heat transfer coefficients on physical properties as defined by healt transfer

correlations.

3.3.4 Mathematical Relationships

The analysis in this thesis centers around the actual reactor bed. Combin-
ing these results with a simple analysis of the external processes, such as the
product recycle and feed-effluent heat exchanger, allows overall system analysis.
Figure 3.3-2 shows an expanded section of the reactor bed and defines the coor-

dinate system for the mathematical modeling.

A complete mathematical description of the reactor bed results using the

7. But not entirely since radiation effects are nonlinearly related to temperature.
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six differential equations that describe the catalyst, gas, and thermal well tem-
peratures, CO and CO; concentrations, and gas velocity. These are the con-
tinuity equation, three energy balances, and two component mass balances. The
following equaﬂorxs are written in dimensional quantities and are general for
packed bed analyses. Systerns without a thermal well can be modeled simply by
letting hy, hy, and Rg equal zero and by eliminating the thermal well energy

equation. Adiabatic analysis simply involves setting h.s and hy,; equal to zero.

Total mass conservation (continuity):

Opg , 0lpguy) _
5t s =0 (3.3-7)

z=0  pglg=Pgoligo

Energy balance for the gas:

DT

pgc,,a Dt = V-kVT +Q (3.3*8)

Then for the reactor bed after assuming k,; and kg, constant,

? PT, Upl(Te-Td) . Ky 8 |
—& — _ [ g _ “sg\tg s rg
BPuCh, gy~ ~tPeaCe, gyt Kue Y, | r or [r ar |

oT,
r=Ry Krg _6_rL = hyg(Tg—Th)

T,
r=R, ~Krg "a""f" = hwg(Tg”Tv)
6T
z= kzg#z hag(Tg=Ta) — Ugep ppe(To—T)
8T '
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Note that the convective term in the outlet boundary condition is generally
assumed negligible (Hoiberg et al., 1971). This assumption is used

throughout the ensuing analysis. Also note that the gas heat capacity, Cpg:

gas densi‘ty. pg and gas velocity, u,, are functions of position and time due
“to their dependence on mole changes, pressure, and temperature. Original
caleulations considered the gas heat capacity and thermal conductivity as
linear functicns of temperature since expected changes in molar composi-
tion throughout the bed had minimal eflects (< 1%) on these properties.
However, later analysis replaced the thermal conductivities and heat
transfer coefficients with dimensionless Peclet and Biot numbers which

were taken as constant throughout the bed.

Energy balance for the catalyst:
Using a similar analysis to that for the energy balance of the gas and

after assuming constant physical properties of the solid phase,

aT, 8°T,
(I"S)Pscp,“é“t-s" = Ky az;

+ (~AHy)Ru + (—AHs)Rs

(3.3-10)

PRy = ha(Te-Ty)
TR e (T T)
z= ku%!—zhsg(T,—Tg)
2L k= hg(TyT)

The heats of reaction for the methanation and steam-shift reactions are
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taken as linear functions of temperature:
AH; = AH; T +AH;, i =5 M (3.3-11)

based on'literature data and standard temperature dependence of the
heat capacities of the gas components. A verification of the necessity and
applicability of this relationship along with the specific parameters for

methanation and steam-shift is given in Section 3.4.
Energy balance for the thermal well:
Assuming constant physical properties in the thermal well,

o, . ®T, Uy,
Pl = Kna by

U
('I‘,,"Ro ~Ty) + —\7‘;6—(1*8”% —Ty) (3.3-12)

2=0 T, =Ty
ot

3z -

z=L
De Wasch and Froment (1971) discuss the calculation of the wall heat
transfer coefficients for the fluid and gas phases based on a lumped wall
heat transfer coefficient. Furthermore, radial heat conduction in the ther-
mal well is neglected since it should be of minor importance for a thin solid

well.

Mass balance in the reactor section:
Since two independent reactions are expected to be important within the
reactor, a mass balance must be written for each of two independent
species. Due to the sensitivity of the concentrations of the gaseous species
in the reactor under the planned operating conditions and to difficulties in
accurale concentration measurements, these two are taken as CO and CO,

in this analysis. Both of these species can accurately be detected using a
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chromatograph with a simple thermal conductivity detector or with a con-
tinuous CO/CO; analyzer. Note thati = 1 refers to CO and i = 2 refers to

COy in the following analyses.

The equation of continuity in cylindrical coordinates is (Bird et al.,

1960)
ey 1 B(rNy) 1 8N;jg . 8N,
ot tree ta| t R (33-13)
But
ONip _
1. 58 =0

2. Ne=J+ciug = -eDV x; + ey,

thus

Nig = cyuy ~ D,

Ntr = ‘CDr%%m

¥ oz

If we then incorporate the void fraction and apply the continuity equation
for species i along with Fick's law of diffusion and the assumption of con-

stant diffusivity and no radial velocity

dey _ _ 8(euy) D2 8%, | LD o ma&]‘_i
bt 9z 9z | 8z) radr| or) e
(3.3-14)
where R, =Ry—Rs. Ra=Rs .
ox;
r=Rg.R, "a?“:
- Bx;
z=0 ug(ei—cq) = ~cD,-5;-
z=L 5% o
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The rate terms Ry and Rs are taken to be global rates, incorporating all
mass transfer limitations. This allows bulk phase concentrations to be
used throughout the analysis. Although species concentration is propor-
tional to mole fraction, ¢¢ = cx;, complications arise since the total number
of moles decreases as the methanation reaction progresses. Therefore to
simplify the analysis technique, the mass balances are written using molec-
ular weights and mole fractions based on inlet conditions. Letting é be the
moles of CO reacted in the methanation reaction per total inlet moles,

_ xlo"“xZo"‘xl—Xg
1+2x1+2)(2

(3.3-15)

the following relations hold
M, =Mg(1-R8) . & = x(1-26) . (3.3-18)

The advantage of this formulation is that the molecular weight based on

inlet conditions, ﬁg. is constant. Thus

oo Meg o= P _ pel1-R0) (3.3-17)
YTOM, Mg Mg M,

Then after application of the overall continuity, Equation (3.3-15) becomes

6:«?,- _ 652} el { 81'{*.‘ \ ngfg _a‘g_
Pegr = WPegy tDigPe 1225 6
D 3 a%  Rpgfir as | RN
* ”"EF[”’E ar ' 1-26 ar| = (3.318)
B 4 R%: 86 _
r=RoRi et izser
. o 8% 2% a4
7= ug(%i~%0) = “Dz{“é‘z‘“*ml 28 oz

a%; 2% a6 _
6z T 126 oz =0

A
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Furthermore, algebraic manipulation of the boundary conditions using the

reaction relationship 6 = £, +%;, ~%; - leads to®

%;
!‘xRQ.Rl "5;‘“-‘— 0
8%,
=0 Ug(%i, %) = ~Dy 5~
z=L %%—= 0

Additional relations:
Finally, relationships for density and pressure changes are necessary. The

ideal gas law leads to

Py = _Mﬁ_. . (3_3_19)

R,T
The changes in the pressure along the bed are taken as linear by assuming
uniform packing and negligible wall effects. he overall pressure drop

across the bed is simply defined by the Ergun equation (Perry and Chilton,
1973)

_ | 150(1-%) 1—¢ Ve,
AP =1L -—-——-]-)';*—tg—'* 1.75pp, g, —';;"'—I')-;-' (3.3-20)

D. = 6(volume of particle)
»

where - = .
external surface area of particle

This could easily be replaced with a Blake-Kozeny type relationship

%E—-: —k pltgu, P=Py at z=0 (3.3-21)

if the original assumption is inadequate.

8. The stipulation )'{10 + fgo # 1% is needed for rigorous mathematical derivation of the reduced
boundary conditions.
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It should be noted that the importance of the continuity equation in the
general modeling presented throughout this thesis may be questionable since its
only use is in evaluating actual velocities within the reactor bed as influenced by
the mole, temperature, and pressure changes. Because of the use of mass veloci-
ties (pguy) throughout much of the analyses, the importance of the actual veloci-
ties is really restricted to analyses where pressure relationships such as the
Blake-Kozeny equation or velocity effects on heat transfer parameters are con-
sidered. Since our analysis is set up to be general and allow the inclusion of
these effects, the continuity equation is necessary. As seen later, very little
increased computational effort is introduced by retaining this equation, since it

is solved as a set of algebraic equations.

3.3.9 Numerical Solulion

Before attempting to solve the system of partial differential equations, they
are reduced to dimensionless form. The axial parameters are normalized with
respect to the reactor length, 1, radial parameters with respect to the outer
radius, R,, time with respect to the characteristic time L/Tg, and the remaining
parameters with respect to the steady state inlet conditions. The concentra-
tions are actually normalized with respect to the inlet steady state concentra-
tion of CO rather than with respect to each individual component, since some
inlet concentrations (except CO)} may be zero during normal experimental con-

ditions.

The resulting mathematical system consists of six coupled, three-
dimensional, nonlinear partial differential equations along with nonlinear alge-
braic boundary conditions, which must be solved to obtain thé temperature

profiles in the gas, catalyst, and thermal well, the concentration profiles, and
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the velocity profile. These equations are presented in Appendix 2. In their
present form, direct solution is not possible. However, approximation tech-
niques are available to reduce the equations to a set of first-order ordinary
differential eqﬁations in the time domain. The resulting system can then be
solved numerically using a variety of standard techniques. In this work, the
method of orthogonal collocation is used for this reduction, since it has proven
to be an extremely powerful technique in reactor modeling (Bonvin, 1980; Fin-

layson, 1971; Jutan et al., 1977).

3.3.5.1 Solution Technigues

Considerable emphasis has been placed during the past twenty years on
numerical solution techniques for complex nonlinear systems of the types com-
mon in chemical reactors. Traditional finite difference schemes are being
replaced by applications of the methods of weighted residuals. Finlayson (1972,
1980) has presented and compared the application of these various techniques

for the nonlinear analysis of problems in chemical engineering.

The finite difference method involves dividing the domain up into intervals
with the boundary points between intervals being called the grid or mesh points.
Then for a continuous function across the interval, a Taylor series expansion
can be used to deduce difference formulas for first and second derivatives. If
the differential equations are written at each grid point using the difference for-
mulas and the values at the first and last grid point solve the boundary condi-
tions, enough equations are available to solve for the value of the function at
each grid peoint and thus provide a representation of the solution. For most
chemical systems, the resulting equations are nonlinear, and accurate solution

requires a large number of grid points. Solution of the system is not trivial but
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can usually be obtained quite rapidly using various standard numerical pro-

cedures (Dahlquist and Bjorke, 1974; Davis, 1984; Finlayson, 198D).

The finite difference method can easily be extended to multidimensional
systems by epplying the same techniques in each of the dimensions. However,
the scale of the numerical problem increases dramatically with the number of
dimensions. Since nonadiabatic packed bed reactors consist of two important
spalial dimensions, radial and axial, along with the time dimension and usually
require a large number of grid points, accurate solution using the finite
difference scheme is often computationally prohibitive and may limit the com-

plexity of the mathematical model.

The method of weighted residuals presented in detail by Finlayson (1972,
1980) is a general method of obtaining solutions to both linear and nonlinear
systems of partial differential equations and is often used in one of its forms to
reduce the computation time from that of the finite difference technique. In the
method of weighted residuals, the unknown exact solutions are expanded in a
series of specified trial functions, that are chosen to satisfy the boundary condi-
tions, with unknown coefficients that are chosen to give the 'best’ solution to the

differential equations:

y(X) = go(x) + ), cepr(X (3.3-22)
k=0

These trial functions are substituted into the differential equations, and the
result is the residual (R). This residual is weighted by functions characteristic
of the particular method, and the weighted residuals are minimized over the
domain of the independent variable (V). In particular, the weighted integrals of

the residuals are set to zero:
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(w;R)=D0  j=1,2.,N (3.3-23a)
where the inner product is defined by
(wmmﬁwmv (3.3-23b)

The method of weighted residuals is comprised of the following basic tech-

niques, depending on the choice of the weighting function (Finlayson, 1872):

Subdomain Method
The domain is divided up into N subdomains, V;j, and the weights are
chosen as

1 vaJ'
Wj=

0 xnotinV;j (3.3-24)

The differential equation, integrated over the subdomain, is then zero.
As N increases, the differential equation is satisfied on the average in
smaller and smaller subdomains and approaches the exact solution

everywhere.

Collocation Method
The weighting functions are chosen to be the Dirac delta function
w; = 6(x —x;) (3.3-25)

Thus

J,wiRav = Rl (3.3-26)

)
This technique then forces the residual to be zero at N specified collo-

cation points. As N increases, the residual is zero at more and more

points and presumably approaches zero everywhere.
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least Squares Method

The least squares method uses the weighting functions

= R -
i = B, (8.3-27)

so that the mean square residual _/;Ra(c{.x) dV is being minimized.
The mean square residual is zero for the exact solution, so that, as
the number of parameters is increased, the mean square residual

gets smaller and the approximate solution approaches the exact solu-

tion.

Galerkin's Method
In this method, the weighting functions are chosen to be the trial
functions, which must be selected as members of a complete set of
functions. (A set of functions is complete if any function of a given
class can be expanded in terms of the set.) Also according to Finlay-
son (1972),
"a continuous function is zero if it is orthogonal to every
member of a complete set. Thus the Galerkin method
forces the residual to be zero by making it orthogenal to-
each member of a complete set of functions (in the limit
ag N »= )"

HMethod of Moments

In the Method of Moments, the weighting functions are chosen as
w; =xI (3.3-28)
Thus successively higher moments of the residual are required to be

Zero.

All of these methods of weighted residuals have proven to be quite powerful and

have been shown by Finlayson (1972, 1980) to be accurate numerical techniques
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superior to finite difference schemes for the solution of complex differential

equation systems.

Another potential solution technique appropriate for simulations of the
packed bed reactor is the method of characteristics. This procedure is suitable
for hyperbolic partial differential equations of the form obtained from the
energy balance for the gas and catalyst and the mass balances if axial disper-
sion is neglected and if the radial dimension is first discretized by a technique
such as orthogonal collocation. The thermal well energy balance would still
require a numerical technique that is not limited to hyperbolic systems since

axial conduction in the well should be significant.

3.2.0.1 Orthogonal Collocation

Of the various methods of weighted residuals presented in the previous sec-
tion, the collocation method and in particular the orthogonal collocation tech-
nique described in this section has proven to be quite effective in the solution of
~complex, nonlinear problems of the type typically encountered in chemical reac-
tors. The basic procedure was used by Stewart and Villadsen (1969) for the
prediction of multiple steady states in catalyst particles, by Ferguson and Fin-
layson (1970) for studying the transient heat and mass transfer in a catalyst
pellet, and by McGowin and Perlmutter (1871) for local stability analysis of a
nonadiabatic tubular reactor with axial mixing. Finlayson (1971, 1972, 1974)
showed the importance of the orthogonal collocation technique for packed bed

reactors.

The orthogonal collocation method has several important differences from
other reduction procedures. With other techniques, difficulties are often

encountered in deriving the values of the integrals involving complex nonlinear
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terms. In collocation, it is only necessary to evaluate the residual at the colloca-
tion points. The orthogonal collocation scheme developed by Villadsen and
Stewart (1967) for boundary value problems has the further advantage that the
collocation points are picked optimally and automatically so that the error
decreases much faster as the number of terms increases. The trial functions
are taken as a series of orthogonal polynomials which satisfy the boundary con-
ditions and the roots of the polynomials are taken as the collocation points.
Thus the choice of the trial functions and collocation peints is no longer arbi-
trary, and further analysis (Finlayson, 1972) shows that with this choice, low-
order collocation results are more dependable. A major simplification that
arises with this method is that the solution can be derived in terms of its value
at the collocation points, instead of in terms of the coefficients in the trial func-

tions, and that at these points the solution is exact.

A rigorous description of the technique requires appropriate definitions of

the orthogonal polynomials Pp,(x) as
Pu(x) = ﬂ cyx (3.3-29)
i=

with degree m and order m+1. The coefficients are defined so as to require the

orthogonality condition
b
S wx)Py(x)Pn(x)dx  n=0.1,2, .. m-1 (3.3-30)

to be satisfied for weighting functions w(x) =0. For boundary value problems,
the solution is expanded in terms of orthogonal polynomials with the first term
satisfying the boundary conditions followed by a series that has unknown
coefficients, with each term satisfying the homogeneous boundary conditions.

Various expansions are then possible. The most common and useful are:
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oo
yn(x) = ]15_.“ !
a1
+1
() = ‘5: byPi—1(x) (3.3-31)
=1

() = }3’ VL)

Since derivatives are actually expressed in terms of the solution at all of the
grid points in the collocation scheme rather than simply in terms of the neigh-
boring grid points as in finite difference schemes, the orthogonal collocation
technique then leads to computer programs that are relatively simple and to
numerical solutions that require a very few nurnber of collocation points in
comparison to the number of grid points necessary for a similar finite difference

solution.

3.3.56.3 Model Reduction

Finite difference methods have traditionally been used for reduction of par-
tial differential equation systems to ordinary differential equations or even to
systems of algebraic equations that can readily be solved using simple numeri-
cal techniques. However in chemical reactors, this method has a major draw-
back. For the system of six coupled, three-dimensional, nonlinear partial
differential equations'describing the methanation reactor, if we assume that
even 5 grid points are adequate for discretizing the radial direction and 30 grid
points for the axial direction,® we have a mesh of 150 grid points. At each grid
point, there are six ordinary differential equations in time. Hence the total
number of ordinary differential equations necessary to describe the system

would be 900! Much too large for extensive simulations or for control.

-The method of orthogonal collocation on the other hand has been very suc-

90ther;t:d_1es have used up to 20 radial grid points and 10000 axial grid poirnts!
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cessfully applied to chemical reactors and provides an accurate means of
transforming partial differential equations into a reasonably small set of ordi-
nary differential equations. This procedure is applied to the reactor model to
discretize botﬁ the radial and axial dimensions, leaving a manageable set of

ordinary differential equations in time.

3.3.6.3.1 Radial Collocation

The first step in the solution procedure is discretization in the radial direc-
tion. This involves writing the three-dimensional differential equations as a pos-
sibly enlarged set of two-dimensional equations at the radial collocation points
with the assumed profile identically satisfying the radial boundary conditions.
An examination of experimental measurements (Valstar et al., 1975) and typical
radial profiles (Finlayson, 1971) indicates that radial temperature profiles can
adequately be represented by a quadratic function of radial position. The qua-
dratic representation is preferable to one of higher order since dnly one interior
collocation point is then necessary,!® thus not increasing the dimensionality of

the system. The assumed profile is of the form:
+2 .
OE(BEr) = 3 (BT (3.3-32)
=1

with the number n of interior radial collocation points taken as one. This profile
must salisfy the boundary conditions and must be exact at the collocation
points » = gq, r., and 1.0, where the interior collocation point r, is selected as
the zero of the appropriate orthogonal polynomial. This formulation is

equivalent to the trial function
y(x) =b +CX+X(1~X)§I§ a:Pi 1 (x)
=1

10. Along with two boundary points, there are three collocation points.
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(3.3-33)

given by Villadsen and Stewart (1967) for nonsymmetric profiles.!!

Rigorous application of the procedure as presented by Finlayson (1972) or
the equivalent procedure presented below of satisfying the boundary conditions
with the assumed profile, leads to the coefficients d;(8¢) for the gas and tem-
perature profiles in terms of the temperatures at the collocation point, within
the well, and at the outer wall. Since the objective of radial collocation is to
eliminate the radial derivatives, Equation (3.3-32) is then substituted into the

partial differential equations.

For example, consider the radial temperature profile in the gas. At the
three radial collocation points r = ¢q, r., and 1.0, let the gas temperatures be

B,y 8, and @, and assume that the radial profile is quadratic:

@ (8¢r) = do(8d) + A (BT + da(B)r? (3.3-34)

This profile must satisfy the boundary conditions

Grs.po

00
"é,"rg'"l,..’o = }‘trg(@ -0y)
a6 (3.3-35)
or L-l = mk‘""l(@ﬂrﬂ“@")
where A, and A, are the dimensionless radial Biot numbers at the thermal
well and cooling wall, respectively. The profile must also be exact at the three
collocation points:
@go =dg+dipot dEWOE
B, = dp + dyre + dor? (3.3-36)
@gl = d,o + d1 + da
After rearranging and eliminating 8, and Bgl,

11. Due to the presence of the thermal well, & nonsymmetric function is necessary to describe the
profile between T = (g and 7 = 1.0.
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1 Fe rg dp 8,

T

Arg Porug—! PEAwg—2¢o||di| = |AwgB: (3.3-37)

The expressions for di($¢) in terms of @, , 8, and @, can be simply obtained by
applying Cramer's Rule. These solutions are shown in Appendix 3.

Since

A (3.3-38)

the dimensionless form of Equation {3.3-10) becomes

o8 08 820 [ d,
Per s = "Ps"ecp.‘},}g""‘ O+ ﬂgl‘*de*';:

Y + 7,(0,~8,) (3.3-39)

where @; and @, are now the temperatures at the radial collocation peint r., and

pg and Cp, &re now dimensionless parameters, normalized with respect to the

inlet steady state values. Similar results are obtained for the energy balance of
the catalyst. Although the solutions of the differential equations are then
obtained for the temperatures at the radial collocation point, the temperature
at any radial point can easily be determined using the radial profile given by
Equation (3.3-34) along with the solutions to Equation (3.3-37) for d;(%¢)

presented in Appendix 3.

The radial ceollocation point is then selected as the zero of the orthogonal
polynomial for cylindrical geometry between 7 = gp and » = 1.0. To be rigorous,
the entire analysis could be based on the shifted variable

, _ T ¥
r ———

= Osres 3.3-40
19 ( )

However, lengthy algebraic manipulations show that the results are identical.
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Nevertheless, it is convenient to use r' to find the radial collocation point, which
is then the zero of the Jacobi polynomial for a nonsymmetric system between

zero and one.!®

For radial concentration profiles, a quadratic representation may not be
adequate since application of the zero flux boundary conditions at » = gy and
7 = 1.0 leads to dzg =dg =0. Thus a quadratic representation for the concentra-
tion profiles reduces to the assumption of uniform radial concentrations, which
for a highly excthermic system may be significantly inaccurate. Although addi-
tional radial collocation points greatly increase the dimensionality of the result-
ing model, they may be necessary to accurately express the radial concentra-
tion profiles. Preliminary analysis in this section considers only one interior
radial concentration collocation point, although a detailed analysis of this
assumption is presented in Section 3.4.5. In that analysis, an assumed concen-
tration profile of the same form as Equation {3.3-32) is solved with several inte-
rior radial collocation points to determine the radial concentration coefficients.

The mass balances are then satisfied at each collocation point.

Thus, the original differential equations have been reduced from three-
dimensional in variables ¢, r, and ¥ to two-dimensional in variables ¢ and dby
orthogonal coliocation in the radial variable r. The reduced temperature equa-
tions are a function of the dependent variables at the radial collocation point r,
but incorporate radial information via the well and wall temperatures. Radial
profiles can be generaled [rom the collocation equation using the expressions
for the coefficients d;{(8.¢) presented in Appendix 3. Similarly, the continuity
equations are functions of the concentrations at each collocation point for mul-
tipoint radial collocation. With one interior collecation peint for the concentra-

tion analysis, the system consists of six differential equations describing the

12, The single radial collocation point is taken as I = 0.5 for the methanation system.
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overall continuity, energy balance for the thermal well, energy balance for the
gas and catalyst in terms of conditions at r., and mass balances for CO and CO,.
This shows the incentive for using only one radial collocation point, since the
number of two-dimensional partial differential equations is the same as the ori-

ginal number of three-dimensional equations.

3.3.5.3.2 Axial Collocation

Since the resulting system atter radial collocation is still too complex for
direct mathernatical solution, the next step in the solution process is discretiza-
tion of the two-dimensional system by orthogonal collocation in the axial direc-
tion. Although elimination of the spatial derivatives by axial collocation greatly
increases the number of equations,’® they become ordinary differential equa-
tions and are easily solved using traditional techniques. Since the position and
number of points are the only factors affecting the solution obtained by colloca-
tion, any set of linearly independent polynomials may be used as trial functions.

The Lagrangian polynomials of degrce N based on the collocation points $5

6o = 11 [5-'39—-] i=0, 1, ..., N+1 (3.3-41)
j=ojmi | G5

are used here. The differential equations are then collocated at the N zeros, {.
k =1,2, .., N, of a Legendre polynomial. Since only one lagrangian is non-zero
at a collocation point and since the residual is set equal to zero at this point,

the coefficient of the Lagrangian term is equal to the solution at that point.

Following the development of Villadsen and Michelsen (1978), the assumed

axial profiles are:

13. Since more than one axial collocation point is generally necessary.
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41
@t({-ﬂ) = l%: @u.i("g)li({) +
= yi(ed = :’z’;;y,-;(wu(t) j=1.2

B¢ = E@KJ(«»L‘(@ (3.3-42)

1 ACEESMEINE
0¢H = Eem)am

Since the ;(¢) are known functions based solely on the collocation points, the

differential operators can be applied a priori:

dk(¢) -0 )
Jg . By (3.3-43)

ST TTaE

Then after operating on the assumed solutions with the differential operators
and substituting into the partial differential equations, the residuals are set

equal to zero at the collocation points.

The collocation points are caleulated using programs given by Villadsen and
Michelsen {1978) for calculating the zeros of an arbitrary Jacobi polynomial
P{##)(x) that satisfies the orthogonality relationship

L uB(1-u)*P. (0P (u) du = Ciby (3.3-44)

where C; is a constant, §;; is the delta function and a and g are chosen based on
the geometry of the system. For the methanation reactor, zeros of P9 (z) are

used as collocation points.

The resulting equations in terms of conditions at the collocation points z;

are:
Catalyst Energy Balance

dB,, ,bgjl
o = Y. EﬁG,j+u1@,‘+ngL‘+7,@m
j=0

+ K3 (14918 )R +kc2(1+920, )R's + w3 (3.3-45)
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%1‘5‘04'@!; = AqualBg,=8y,)
}EAI‘HIJ 9, As“( Ny 'N+1)

Gas Energy Balance
B, d 8, -
+1
+ ag& Eﬁ@gj + Uq,@& + Qﬁ@& + 7;@,‘ + g .(33“'46)
J=0

P%l VaoMe,Cry,
j:OAQd-@g, = “)"35(@30_-@50) + —W(Q‘O—OQ)

+1
ZEOANHJ@:;, = Nozg(Osy,, ~Opy,,)

Mass Balances

dyi, +1 N+1 N+1 - 1
e Vg, ;z:oAﬁ»yk‘ + O E Bthb, LEAthki] 1T¢‘+1 @8‘ :ioA”@ ]

R¥r, 525 R [ 1 1 as
EETT T 7 NZA*J Vi a¢ T2 |+l B Laco, 3

& J=0

2] 8
& &y
~F ] =Ry +0; ==Rs k =1
4Ye, [55 ]2 P p

| (3.3-47)

GQ‘R' k=
“-OQ—F“ 5 =2



-214 -

where
% _ [, .
n— T oo + .
B(z lxl ’qu}ﬁj Xg :%:OE‘UYBJ
66 _ +1 _ +1
20 = TR L AuYy, +x-2}tA‘-,-Yz,]
=0 =0

}%!Ao iy 'Zg"—(y -y£)
§=0 J kj O ko Tk

+1
%: AN+1 Y, = 0
i=0

Thermal Well Energy Balance

d@t‘ %l
rrak atij.;,-@t, + 0, + maeh + 0By + g

+1
,& ANHJGL, =0
§=0

Overall Continuity

1 d8,, v 0B,T +
%2%"&“ s ' G “"R,-E,A""%'O

Note that i = 1, 2,

(3.3-48)

(3.3-49)

... N for all of the equations except the last where

i=1,2, .., N+1, that the o; coefficients are the result of radial collocation and

are presented in Appendix 3, and that all other dimensionless parameters are
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defined in Appendix 2. Furthermore, the reaction terms Ry and R’ are calcu-

lated at the conditions at the collocation points.

The resulting equations are a set of 6N+1 ordinary differential equations
along with algebraic boundary conditions. The solution procedure is further
simplified by solving the last equation for v, as a set of algebraic equations,
using the gas temperatures and derivatives of the gas temperatures from the
solutions of the remaining differential equations.!* Additionally, simple algebraic
manipulation allows for explicit solution of v, 8, 8, . v and y;, . Wwhile
solution for B, 8,  , 8,. and B,  requires the simultaneous solution of four
coupled algebraic equations. The resulting dynamic model is then a set of 5N
coupled, nonlinear ordinary differential equations and N+5 coupled, nonlinear

algebraic equations, where N is the number of interior axial collocation points.

Typical steady state profiles along a reactor obtained by other authors
(Jutan et al, 1977; Hoiberg et al., 1971) indicate that these profiles can be
represented by relatively low-order polynomials. However, temperature profiles
with steep gradients, as may be likely in a highly exothermic systern such as
methanation, may require higher-order polynomials. Although approximation
error is reduced by increasing the number of collocation points, numerical
problems with fitting higher-order polynomials to process curves may result.
Section 3.7 discusses the model dimensionality in detail. Presently, let it suffice
to say that 6 - B axial collocation points are generally sufficient, leading to a sys-
tem of 30 - 40 coupled, nonlinear ordinary differential equations and 11 - 13

coupled, nonlinear algebraic equations.

40
dd -’

14. i.e., effectively substituting Equation (3.3-48) into Equation {3.3-49) for
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3.3.5.4 Numerical Simulation

Steady state sclutions can be obtained by carrying a dynamic simulation to
steady state or by setting the time derivatives equal to zero in the ordinary
differential equations and then solving the resulting system of 6N+5 algebraic
equations. In the latter technique, solutions for very steep axial profiles often
show numerical convergence problems. These can be reduced by using better
initial guesses or by varying the actual solution algorithm. In extreme cases, it
may be necessary to carry the dynamic solution part way to steady state and

then use its results as an initial guess of the steady state solution.

Due to the large size of the mathematical problem and the complexity of
the nonlinear cquations, both dynamic and steady state solutions require
powerful algorithms for the solution of nonlinear algebraic equations and for
the solution of initial value problems in ordinary differential equations. Consid-
erable analysis of various solution algorithms led to the final selection of the
techniques described in this section due to their robustness under a great
variety of conditions and their relative speed of solution in comparison to other
techniques. Most olher procedures exhibited convergence problems. Even the
selected techniques fail to converge under certain conditions, but in general are
flexible enough to allow solution with the adjustment of several convergence

parameters.

Although the solution of the algebraic equations is relatively simple for the
dynamic simulations, it is extremely difficult for steady state solutions with poor
initial estimates of the solution profiles. Two methods are used in the computer
simulation programs developed in this work for the solution of the systems of
nonlinear algebraic equations. These are based on algorithms by Powell (Rabi-

nowitz, 1970) and Brown (1967). Although Brown's algorithm is in most cases
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more powerful than that of Powell, it is in general significantly slower. Thus
although the computer programs are written to use either technique, Brown's
algorithm is only used in those cases where Powell's algorithm fails to converge

to an appropriate solution.
Consider the system of nonlinear equations
fr(x) =0 k=12 ..n (3.3-50)

where x is the vector of unknowns (x;, Xg, ..., Xp). F(x) is the sum of squares of

the residuals
F(x) = 2‘;‘1 [fe(@)]? . (3.3-51)

Powell's technique for the solution of nonlinear equations is a hybrid of the
classical Newton-Raphson procedure and the Levenberg/Marquardt steepest de-
scent method. The new algorithm retains the fast convergence of the Newton
method but is modified to take steps along the steepest descent direction of

F(x), if it seems that the classical Newton iteration diverges.

The major difference between this hybrid algorithm and the standard
Levenberg/Marquardt iteration is that Powell's procedure does not require
explicit expressions for the derivatives of the functions, but instead uses succes-
sive values of f,(xU) (i =1,2,.., m j =1, 2, ..) to build up a numerical approxi-
mation to the Jacobian matrix. Note that xY) is the jth estimate of the solution.
The technique further includes several parameters that can be adjusted to
improve convergence for each particular system. One common difficulty with
this algorithm is that the method may converge to a stationary point of F(x),
although this may not be a giobal minimum. The theory underlying this pro-
cedure, along with examples and a sample Fortran program are given by Powell

(Rabinowitz, 1970).
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In the event that Powell's algorithmn fails to obtain a solution to the equa-
tions, a different initial estimate of x can be attempted or Brown's (1967) qua-
dratically convergent algorithm can be used. Basically, Brown's procedure con-
gists of

“"expanding the first equation in a Taylor series about the
starting guess, retaining only linear terms, equating to zero
and solving for only one variable, say x,. as a linear combi-
nation of the remaining n-1 variables. In the second equa-
tion, x; is eliminated by replacing it with its linear represen-
tation found above, and again the process of expanding
through linear terms. equating to zero and solving for one
variable in terms of the now remaining n-2 variables is per-
formed. One continues in this fashion, eliminating one vari-
able per equation, until for the nth equation. we are left
with one equation and one unknown. A single Newton step is
now performed, followed by back-substitution in the tri-
angularized linear system generated for the x;'s. A pivoting
effect is achieved by choosing for elimination at any step

that variable having a partial derivative of largest absolute
value.” (Brown, 1967)

Dynamic solutions of the mathernatical model for the packed bed reactor
also require a powerful method for initial value problems in ordinary differential
equations. The procedure selected in this work 1s a standard Adams-Moulton

predictor-corrector technique. This procedure is based on the formula
+ix +ox
- d -
Yom)¥) = [0 Lax= [ txyd)dx  (3352)
where the differential equations are defined as
-gf—z t(x.y(x)) (3.3-53)

In the Adams-Moulton case, f(x.y(x)) is approximated by an interpolation poly-
nomial determined by the values at each iteration, fp4). 1y, ...fn 4. In the par-
ticular routines used in this work, k& is taken as three and the predictor-

corrector formulas are
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yFEd) ~y, = -g—-ff—-(ssfn%gr,,_,-—am _2~9f, _3)

VAT = Yot 53 (i +198,—50n 1 Hn )

This method is combined with an automatic control of the step size and uses the
method of Runge-Kutta-Gill to start the integration process and to restart the

integration any time the interval size has been changed.

Thus the system of ordinary differential equations describing the reactor is
solved using an Adams-Moulton predictor-corrector technique with the method
of Runge-Kutta-Gill being used to start the integration process, and the non-
linear system of algebraic equations is solved using Powell's hybrid algorithm

(Rabinowitz, 1970) or Brown's (1967) quadratically convergent algorithm.

The computer simulation programs developed for this system use modified,
double precision versions of the Caltech library routines MODDEQ, NSES1, and
NSES?2 for these algorithms. Combining these techniques with a variable time-
step analysis, based on increasing the time-steps as the derivatives decrease
during the approach to steady state, leads to an efficient solution procedure for
obtaining dynamic reactor responses. All programs are writtgn in double preci-
sion and are modular so as to allow for easy modification or use with other reac-
tor systems by simple subroutine replacement. These computer programs and

complete operating instructions are included in Appendix 4.

Although the technique described above is useful for sirnulating the full,
nonlinear ordinary differential equation model, solution times can often be guite
long, even up to several hours of computation time on a Digital Equipment (DEC)
Vax 11/780 for a fifteen minute simulation due to the size and nonlinearity of
the system. These can be reduced significantly by linearizing the set of ordinary

differential equations around the steady state solution.'® The linearization is not

15. This of course requires the ability to directly solve for the steady state solution,
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limited to only the rate expressions but is performed on the entire differential
equations and is complicated by the dependence of the velocities, densities, heat
capacities, and other gas properties on the temperatures and compositions
throughout the bed. A linearization around steady state conditions leads

directly to a model of the form
x(t) = Ax(t) + Bu(t) +D (3.3-55)

where the state vector x includes the solid, gas, and thermal well temperatures,
and CO and CO; concentrations at the collocation points. The control vector u
consists of the expected disturbance and control variables, including cooling
wall temperature, inlet velocities, inlet gas temperatures, and inlet concentra-

tions of all species.

This linearized model can be solved explicitly in terms of matrix exponen-

tiation for time periods tg to t; where u remains fixed:
x(t;) = X4 Wx(ty) + A XY 1) [Bu + D] (3.3-56)

This analytic solution can then be simulated using eigenfunction evaluation of
the matrix exponential. Further explanation of this analysis is presented in

Sections 3.6 and 3.7.
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3.4 MODFL ANALYSIS

The objective of developing a complete mathematical description of an
experimental reactor is not simply intellectual fulfillment, but rather to study
the ateady state and transient effects of various parameters, operating condi-
tions, and modeling assumptions on the behavior, or actually the predicted
behavior, of the experimental process. This allows gaining significant insight
into the operation of the system without unnecessary lengthy and often hazard-
ous experiments. Using the fully developed model, specific experiments can be
planned, and the experimental design can be optimized to minimize potential

hazards and to focus on the areas of concern.

The steady state and transient effects of various parameters and assump-
tions on the mathematical simulations of the packed bed catalytic reactor are
now examined using the complete mathematical mmodel developed in the last sec-
tion. These studies lead to conclusions concerning the importance of various
physical and chemical phenomena and to the importance of a generalized
overall model structure. Note that the importance of this study is not simply in
defining our experimental system, but rather in its general applicability to
packed bed reactor modeling. All of the analyses presented in this thesis are
based on numerical solutions of the full, nonlinear model using the methanation
kineties of Vatcha {1978), although many analytic sclutions using the reduced
linear model developed in Section 3.6 and solutions with the methanation kinet-
ies proposed by Strand (1984) were used as verification of the important conclu-

gsions.

Unless otherwise stated, all figures presented throughout this and the fol-
lowing sections are based on the reversible methanation kinetics of Vatcha

(1978), all axial gas and catalyst temperature profiles are at the radial colloca-
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tion point, and all concentration profiles are mole fractions based on the total
inlet moles as defined by Equation (3.3-17). Furthermore, all simulations are
based on the kinetic parameters in Table 3.3-3, along with the modeling parame-
ters and operating conditions presented in the next section. The purpose of this
is to retain consistency throughout this thesis so that the various simulations

can easily be compared.

3.4.1 Modeling Parameters

The nurnerical values of the parameters used for this analysis are based on
published results of other packed bed analyses. Typical values of the major
parameters are shown in Table 3.4-1. The kinetic parameters are given in Table
3.3-3. Unless stated otherwise, these are the parameters used in the prelim-

inary simulations.

Catalyst Parameters Thermal Well Parameters
Sp, 0.23 cp, 0.12
Ps 1.04 Pt 8.02
.y - 0.0005 kg 0.039
Heat Transter Parameters Reactor Parameters
Usgg 17.02 L 30.00
Uy 0.02 Ro 0.189
U 0.14 R, 1.194
Agzs 600.00 Peny 10.00
Aezg 13.00 Penr 2.00
Arg=Mra 7.16 Pey, 2.00
) — 1.25 Peyr B.00
Table 3.4-1

Typical Reactor Parameters
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The physical reactor parameters were measured for the experimental
methanation reactor. The void fraction must be empirically determined for the
specific catalyst used in the experiments due to differences in catalyst crushing.
The catalyst used for the preliminary experiments is standard Girdler G-65
methanation catalyst. Its physical properties are shown in Table 3.4-2, which is
reproduced from the specification sheet from United Catalysts Ine. Although
the density of the catalyst is given in the specification sheet, the overall density
should be measured for the specific experimental conditions since the catalyst
is actually crushed substantially for our use. The heat capacity of the catalyst
is calculated over the expected temperature range of operation based on the
heat capacities of the individual components of the catalyst and the catalyst
composition. Results of this analysis are are shown in Table 3.4-3. Since the
temperatures within the reactor bed should generally remain within 100° K, a

constant heat capacity can be used.

The Lhermal well properlies are calculated using data for stainless steel
(type 304) from CRC Handbook of Chemistry and Physics (Weast, 1976) and
Chemical Engineers’ Handbook (Perry and Chilton, 1973). The heats of reaction
and equilibrium constants for the methanation and steam-shift reactions are
also readily available. Linear regression of data provided by United Catalysts
Inc. is shown in Figures 3.4-1 and 3.4-2 over the expected temperature range of
operation and is used to determine linear temperature relationships for the
heats of reaction and relationships for the equilibrium constants based on van't
Hoff's equations (Equation 3.3-5). Notice that the heats of reaction and the
equilibrium constants for both the methanation and steam-shift reactions vary
greatly over the temperature range of interest. Although the use of constant
values for these parameters would be highly inaccurate, relationships based on

van't Hoff's equation for the equilibrium constants and linear equations of the
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Methanstion Catalyst Typical Chemical and
Physical Properties
Catalyst Type, CawalystType........... G-85 Etactive: January 25, 1980
Formand 8irs  Form .................. Tavlets Superseces: January 31, 1978
15 N Neox K
Wedghut Povasss Weiglet Pavanion)
Chemical NI* ... ................ 24.27 T . T <0.18
Composition AlOy ................. 55.85 Mo . <0.10
Ca0 ... :
8lO; ... ;g 30 LO1 ta Constant Waight n:m
£ (As Graphite)......... . Pornee
8" (Maximum) ..., 0.08 1000°F* .. ........ ... 10.0 Max.
Na* (Manimum) ... ... 0.30
Physical A, Buik Demity, tbe.jeu ft .. ........... 855
Proparties
B, Surface Ares, m¥/g. ... ... ... 35-85

The surfsce ares is oblained by 8 modified BET method which consints of
nitrogen adsorption by the sample. The sampls is ground to a fine powder
{60-100 mesh) and purged with nitrogen at 200°C to a constant weight.

C. Pore Volume, ce/g...........o.ou.n 0.15-0.25

The pore volums is obtained with s mercury porsimeter st 80,000 peig which
corresponds 1o the total pore volume or pores greater than 29.2 Angstroms
diameter.

D. Crush Strength, Minimum Aversge® . . .. 90.0 Iby.
No More Than 5% Less Than.......... 40.0 iba,

Apparatus - Hydraulic press with horizontal plates of which the bottam piate
maoves varlically. in sarigs with the bottom plats is & pressure gauge which
records the pressure exertad on the tablet.

Procedure — The tablat |s piaced on its side and the lower piate I8 raised to
the tablet with z&ro pounds pressure on the gauge. The pressure is then
increased on the botlom pilate until the tablet crushes and the pressure at
braskage is recorded.

The crush on & minimum of twenty-five tablets is obtained and the aversge s

taken srithmatically.

To pratreat the sampie, dry the catalyst st 400°F for three hours and allow to
coot,

Crush Strangth Range on

individusl Tablets. ................... 40150

*Propacties normally measured by Quality Contol.

Table 3.4-2
Girdler G-85 Catalyst Specifications

form given in Equation (3.3-12) should be very accurate. As discussed in Section
3.3, these equations were incorporated in the original model. The coefficients
for our experimental conditions calculated using linear regression of the data

presented in Figures 3.4-1 and 3.4-2 are given in Table 3.4-4.

The remaining parameters for the mathematical description of the experi-

mental system are the heat transfer variables and the reaction kinetics.
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Temperature (° K) ¢p, (cal/g °K)
580, 0.285
575, 0.228
600. 0.230
825. 0.231
650. 0.232
875. 0.233
700, 0.235
725, 0.237
Table 3.4-3

Temperature Dependence of Catalyst Heat Capacity

Although these need to be estimated from initial experiments for our specific
catalyst and reactor bed (described in Section 4.2), preliminary values from
literature are used. LEffective thermal conductivities and heat transfer
coefficients are given by De Wasch and Froment (1971) for the solid and gas
phases in a heterogeneous packed bed model. Representative values for Peclet
numbers in a packed bed reactor are given by Carberry (1976) and Mears
(1978). Values for Peclet numbers from 0.5 to 200 were used throughout the

simulations.

For consistency, several sets of typical operating conditions are used for
the simulations presented in this thesis. These are shown in Table 3.4-5 and will
be referred to as standard Type I, II, or Ill conditions. These three significantly
different sets of conditions were chosen to cover a wide range of potential
operating conditioﬁs. Type 1 corresponds to operation at moderate to high tem-
peratures, pressures, and flowrates with relatively low inlet CO and H; concen-
trations and small amounts of inlet CH,, COp, and H;0 either from recycle or
from the upstream process when the methanator is being used to cleanup the
process stream pr:ior to ammonia synthesis. Type II oorresponds to realistic

conditions for the industrial use of methanation in synthetic natural gas pro-
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Hethanation Steam-Shift
Kpy, -29.44 | Kp, 4.39
Km 26341. Kp.g2 -46185.
AHy, -8.14 | AHs, -2.44
AHME -48350 AHsg 10780.

Table 3.4-4
Coefficients for Equations (3.3-5) and (3.3-12)

duction. Note that the inlet methane concentration is much higher than in Type
1. This large amount of methane significantly reduces the reaction rate. Finally,
Type 111 corresponds to single-pass laboratory experimental conditions where

only CO and H; are fed to the reactor. Flowrates and temperatures are rela-

tively low.
Type I Conditions
_ £=0.40 To=573°K Tg=573°K
Parameters: U, =75.0 crn/sec P=20 atm
Inlet Mole Fractions: | ~CH4 ™ 0.02 X00,=0.03 x40 =0.024
Xco=0.03 Xy, = 0.20
Type 1l Conditions
, £=0.57 To=573°K T,=573°K
Parameters: U, =75.0 cm/sec P=10atm
Inlet Mole Fractions: XcH, = 0.60 Xcog = 0.015 XHig0 = 0.02
Xco =0.06 Xy, =0.19
Type Ili Conditions
_ £=0.57 Te=510"K Tg=530°K
Parameters: ug, =14.0 cm/sec P=20atm
Inlet Mole Fractions: | *cHe=0-00 Xc0,=0.00  ,0=0.00
Xeo = 0.04 XHB:‘—OJZ
Table 3.4-8

Typical Operating Conditions
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3.3.1 Steady-State Behavior

Steady state axial gas and solid temperature profiles at various radial posi-
tions and concentration profiles for the standard Type I operating conditions
are displayed in Figure 3.4-3, and the corresponding radial temperature profiles
are displayed in Figure 3.4-4. As mentioned previously, the concentration
profiles show the mole fractions of CO and CO,; based on the total inlet moles.
The definition of these values is the moles of CO or COp divided by the total inlet
number of moles. This definition is used rather than standard mole fractions in

most situations since the total number of moles decreases rapidly in the bed.

At the conditions chosen for Type 1 operation, the methanation reaction is
quite rapid and approaches completion. The steam-shift reaction, which is
much slower, leads to a slight formation of CO;. Note that the overall conver-

sion of the CO; is actually quite small (less than 1%).

The steady state temperature profiles (Figures 3.4-3b and 3.4-4) show that a
'hot spot’ is present about half way through the reactor bed and is predominant
near the center of the bed. The presence of such a hot spot is a result of the
cooling jacket and is common in nonadiabatic packed bed reactors. The steady
state temperature profiles show a difference of up to 10° K between the solid and
gas temperatures, and later transient results show differences up to 20° K (lead-
ing to differences of over 20% in the reaction rates), thus providing initial

verification of the necessity of the heterogeneous analysis.

In the small region near the cooling wall, even the steady state temperature
differences between the solid and gas are significant due to the higher heat
transfer between the solid and cooling wall than that between the gas and the
cooling wall. The radial temperature profiles (Figure 3.4-4) also verify the neces-

sity of the radial temperature analysis, since the radial gradients are significant
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throughout the bed. Notice that except near the cooling wall the catalyst tem-
perature is greater than the gas temperature due to the exothermic reaction

cccurring on the catalyst surface.

The standard Type Il operating conditions are much milder and result in
only about 40% CO conversion and much lower reactor temperatures due to the
lower pressure, the larger void fraction, and the large amount of methane in the
feed. Steady state axial temnperature and concentration profiles for these condi-
tions are shown in Figure 3.4-5, and the steady state radial temperature profiles
are shown in Figure 3.4-6. Again the temperature differences between the solid

and gas are significant.

3.3.2 Dynamic Sirpulations

The real power of the model developed in this work is not in steady state
analyses, since this is relatively simple and has been investigated in detail in the
past, but rather in the transient or dynamic simulations necessary for control
design. This model has been used to simulate the effects of various process dis-
turbances and input changes. Under normal reactor operating conditions, step
or pulse changes in inlet gas temperatures, concentrations, or velocity or
changes in cooling rates can significantly affect the behavior of the process.
These disturbances must be understood for optimal system operation and con-

trol.

Figure 3.4-7 shows the effect of a 10% drop in the inlet gas temperature
(from 573° K to 515.7° K) on the axial temperature profiles within the reactor
for standard Type I operating conditions. Since such a disturbance would, in
general, not occur instantaneously, the inlet temperature was actually changed

from its initial to final value in a 0.5 second ramp. The complexities of the
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resulting reactor profiles are enhanced by the behavior of the cooling system.
Although the inlet gas temperature is reduced, the cooling jacket temperature
remains unchanged (Ty = 573° K). Thus the cooling jacket acts as a heating sys-
tem in the early part of the reactor and as a cooling system in the later part,
thus in effect transferring heat from the later stage to the early stage of the
reactor. Figure 3.4-7 also shows that although the inlet gas temperature is
reduced, the steady state outlet temperature actually increases by about 8° X,
since the hot spot shifts further down the reactor, effectively reducing the cool-
ing region. As expected, the responses of the concentration profiles (not shown)
are much faster than that of the thermal profiles, indicating the possible appli-
cability of the quasi steady state approximation for the concentrations (this will

be discussed in detail in Section 3.7).

Figure 3.4-B shows the axial gas and solid temperature profiles during start-
up operation. Notice that the 'hot spot' in the reactor moves down the bed as
the heat generated from reaction heats up the catalyst particles. Also note the
significant temperature difference between the catalyst and gas in the early part
of the reactor where conversion is rapid. These differences are even more pro-

nounced {over 20° K) near the center of the bed and near the outer wall.!

Figure 3.4-9 shows the temporal behavior of the catalyst, gas, and thermal
well temperatures at { = 0.38 and ¢ = 1.0 for a step change in the cooling fluid
temperature from 573° K to 593° K as would occur through increasing the nitro-
gen pressure in the Dowtherm condenser. This figure exemplifies the slow
response of the catalyst and thermal well temperatures due to their high ther-
mal capacitance. As discussed later, the gas temperature merely follows the
behavior of the solid due to the negligible accumulation of energy in the gas and

the high heat transfer coefficient between the gas and solid. This figure along

1. The profiles shown in Figure 3.4-8 are at the radial collocation point. I'p.
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with further evidence presented later in this thesis shows that the dynamic
behavior of the reactor is dominated by the catalyst and thermal well thermal

behavior.

Many other disturbances have been simulated, leading to an understanding
of the control complexities of the system. Many of these simulations are shown
in Sections 3.6 and 3.7 and are therefore not reproduced here. Axial tempera-
ture measurements have been found to be essential in determining and control-
ling the behavior of the process. Outlet temperatures alone cannot provide ade-

quate information for control of the reactor.

3.3.3 Effects of Reactor Operating Conditions

One of the major purposes of accurate mathematical modeling of the reac-
tor bed is to study the effects of various operating conditions on the behavior of
the reactor, thus allowing process optimization and insight into the perfor-
mance of the system under changes in various input parameters. This enables
careful design of control structures for the experimental system without

significant a priori experimentation.

Figure 3.4-10 shows the effect of the inlet gas temperature on both the
outlet gas temperature and CO conversion for the reversible kinetics given by
Equations (3.3-1) and (3.3-3), and Figure 3.4-11 shows the effects on the steady
state axial gas temperature profiles. As expected. the conversion and the 'hot
spot' temperature increase with increasing inlet gas temperature. However
under many conditions, the outlet gas temperature is inversely related to inlet
gas temperature. An increase in the inlet gas temperature produces a decrease

in the outlet gas temperature? as a result of the shifting of the 'hot spot’ down

2. The so-called "wrong-way' behavior.
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the bed (see Figure 3.4-7 also). However as shown in Figure 3.4-10, this is not
true throughout the possible operating regimes. Obviously, this behavior can
lead to significant control difficulties if the control design is based on the outlet

gas temperature as is often the case.

The steady state axial concentration profiles for an inlet gas temperature
of 823° K are shown in Figure 3.4-12. As before, the steam-shift reaction leads to
a slight formation of COp in the early part of the reactor due to the presence of
a large amount of CO. However as the CO is rapidly depleted in methane forma-
tion, the steam-shift reaction reverses. Due to the higher temperatures within
the reactor, the rates for both reactions are much higher than for the standard

Type I conditions.

Figure 3.4-10 also shows the tremendous effect that the inlet velocity or
flowrate has on conversion and temperatures. Figure 3.4-13 shows the steady
state axial gas temperature profiles at various inlet gas velocities. A sudden
drop in the inlet flowrate would cause the 'hot spot’' to become much more pro-
nounced and to shift towards the entrance of the bed. The lower flowrates also

lead to higher conversions (not shown).

Finally, the effects of the inlet CO concentration and cooling fluid tempera-
ture on the CO conversion and outlet gas temperature are shown in Figures 3.4-
14 and 3.4-15. An increase in either the inlet CO concentration or the Dowtherm
temperature® increases the conversion and the outlet gas temperature. Not too
surprisingly, the relationship between the outlet gas temperature and cooling
fluid temperature is nearly linear since for these conditions the reaction is
nearly complete in the first half of the reactor and the second half acts as a

heat exchanger to cool the gas.

8. This would be the result of increasing the nitrogen pressure in the Dowtherm condenser.
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3.3.4 Hadial Concentration Analysis

Radial gradients are generally ignored in dynamic analyses of packed bed
reactors, mainly due to the increased complexity of the resulting model. As
pointed out by Jutan et al (1977), in the only other major dynamic packed bed
reactor study that incorporates radial profiles, radial gradients are important in
industrial processes where wall cooling is required for safety or control. The ori-
ginal mathernatical model developed in the proceeding section includes com-
plete radial analysis of both the temperature and concentration profiles. How-
ever, explicit solution of the resulting partial differential equation rodel is not
feasible, and discretization is needed to reduce the model to a form suitable for
nurnerical solution. This reduction used the method of orthogonal collocation

in both the radial and axial dimensions.

The radial discretization must then account for the projected radial
profiles. In the analysis performed in the lasl seclion, one interior radial collo-
cation point was used. This along with the two radial boundary values at the
thermal well and cooling wall resulted in an inherent assumption of quadratic
radial gradients. An examination of experimental measurements (Valstar et al.,
1975) and typical radial profiles (Finlayson, 1971) for similar reactors indicates
that radial temperature profiles can adequately be represented by a quadratic
function of radial position. This quadratic representation is preferable to one of
higher order since the dimensionality of the system is minimized through the

use of only one interior collocation point.

However, a quadratic representation of the radial concentration profile may
not be adequate since application of zero flux conditions at the inner thermal
well and outer cooling wall with a quadratic profile reduces to an assumption of

constant radial concentrations. Although additional radial collocation points
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greatly increase the dimensionality of the resulting model, they may be neces-
sary to accurately express the radial concentration profiles. This section con-

siders the problem in detail by comparing simulations with additional radial col-
location.

The original model is discretizeci in the radial dimension using orthogonal
collocation with multiple interior collocation points for the concentration
profiles and a single radial collocation point for the gas and catalyst tempera-
tures. For example, with two interior collocation points, the assumed radial

concentration profile is
Y (B4r) = do(B.) + di(BD7 + (872 + dy(Br? (3.4-1)

This profile must satisfy the boundary conditions

By; _

ua?”[r.m_o 3.4-2
..a..}.’_‘...l =0 ( - >
87' rml

The profile must also be exact at the collocation points, 7 =¢q, r¢,, re,, and 1.0:

Yi, = do + dy o +dapf +dgpd
Vi, =dg +dr,, +dgré + dgrd
) 1 1 1

: 3.4-3
yica = dQ + dlrcg + dgrgz + dsrgz ( )
¥s, = do + dy +dg +dg

After rearranging and eliminating y;, and y;,,
01 2 3ld [ o
0 1 Ry 3pf||d 0
1 re, r,?l rEl dg| ~ y'irc (3.4-4)
z .3 (ld !
1 re, Fop gy 3 Vi,
3 %2 J

The expressions for d;(8¢) can be obtained as:
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3
ry, - 'é“'l”é?a(‘ﬁo*’l) +3rc, %o ]Yﬁ,c

dol=a

1

—a|rd - ”rcl(cpni-l) +3re, %o ]y‘r (3.4-5)
g

d,, = 3pox ry-:.,, - ¥, (3.4-6)
[ 2 €1

dg, = ”‘2‘“"(1‘*‘%)“ Yi, — ¥, (3.4-7)

aa cl

dg, = “{Ya‘, ~¥i, (3.4-8)

cg cl

-1

3
where o= |(rd -rd) - “é"(rCs"r%)(l +¢0) + 3pg(re,—re,)| (3.4-9)

These radial collocation solutions are then substituted into the partial

differential equations, using the relationships

By,
"5;—” dli + ng"" + Bda‘?'g
&y,
a‘_; = Rdp, + 6dy,7
8p, _ M,P, 00,
P @2 ar (3.4-10)
8d_ = %9 8y, _ Oy
ar X0 5r ~ *cog Br
B _ . B _ Py
—= % - Ry —i
are 0 5,2 €08 Fr2
where Brg is obtained from the one point radial collocation of the gas tempera-

tures. The concentration equations are then valid at both radial cellocation

points r, and re, since the residuals will be zero at these points. The full radial
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concentration profile can be reconstructed from Equations (3.4-1) and (3.4-5)
through (3.4-9). The energy balances for the gas, catalyst, and thermal well and

the continuity equation are unchanged.

Axial collocation and numerical seolution is performed in an identical
manner as before with this larger system of equations. The size of the
differential equation model has been increased by 2N nonlinear ordinary
differential equations, where N is the number of axial collocation points. Note
that for each additional radial collocation point for the concentrations, the

model will be increased by 2N nonlinear ordinary differential equations.

Sirnulations were then performed with this model and compared to those
using the earlier model. In the simulations, the bulk concentration can then be

obtained by integrating the radial profiles:

R
fRo ! 2Rm‘ yi(r)dr
1
fRo Zrirdr

Bulk Concentration = (3.4-11)

This allows direct comparison with previous simulations. Figure 3.4-18 shows a
comparison of the axial gas temperature and bulk concentration profiles for the
reactor with standard Type I operating conditions using the original model with
no radial concentration gradient (i.e., infinite radial diffusion) and using the new
model with a representative radial mass Peclet number of 2.0 and with a radial
mass Peclet number of = (i.e., no radial diffusion). Figure 3.4-17 shows a similar

comparison with Type Il operating conditions.

Figure 3.4-18 shows the radial temperature profiles at the reactor outlet.
The radial and axial temperature and bulk concentration profiles are effectively
not influenced by these modeling differences. Figure 3.4-19 shows the radial con-
centration profiles at ¢ = 0.38 and at the reactor outlet. Even with very high

Peclet numbers, the differences between the radial concentration profile across
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the relatively small bed and the assumed uniform profile are minimal. Definitely
under planned operaling conditions with small Peclet numbers, there is no
benefit to increasing the number of radial collocation points, especially in light

of the increased dimensionality of the resulting system.

3.3.5 Adiabatic Apalysis

Modeling of the packed bed catalytic reactor under adiabatic operation sim-
ply involves a slight modification of the boundary conditions for the catalyst and
gas energy balances. A zero flux condition should be used at the outer reactor
wall. This can be accomplished using the programs developed in this work sim-
ply by setting the outer wall heat transfer coefficients, hys and hyy (or
corresponding Biot numbers), equal to zero. Simulations under adiabatic opera-
tion do not significantly alter any of the conclusions presented throughout this
work and are often used for verification of worst-case nonadiabatic operation.
Figure 3.4-20 shows the adiabatic steady state temperature and concentration
profiles for standard Type I operating conditions. As expected, the temperature
rise through the bed is more dramatic than in the non-adiabatic case, leading to
much higher conversions through the bed. Due to the lack of any cooling, no
'hot spot’ develops and all heat generated by the reaction is removed from the
bed by the product gas, resulting in a very high temperature rise {200° K) within
the bed. Such high temperatures are undesirable since they can significantly
increase catalyst deactivation. Also note that in the adiabatic analysis the tem-
perature difference between the gas and catalyst is negligible. Although the heat
transfer coefficient between the gas and solid are as large as in the nonadiabatic
analysis, major differences exist during nonadiabatic operation between the

radial heat transfer through each phase.* The results shown in 3.4-20a along

4. The heat transfer coefficient from the solid to the outer wall and the radial conduction in the
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with other simulations indicates that a homogeneous analysis of the bed may be

adequate for adiabatic analyses.

Figure 3.4-20b shows that CO conversion is much higher under adiabatic
operation due to the higher bed temperatures. Note that the conversion of the
CO; becomes important as soon as CO is nearly depleted. The 'rippling’ in the
CO; curve is a result of the axial orthogonal collocation.® Numerical solution

problems such as this will be discussed in Section 3.5.

3.3.6 Importance of Thermal Well

The mathematical model developed in this work allows for an analysis of
the effects of a central axial thermal well. Although the presence of the well was
found to have little effect on the concentration profiles, it significantly alters the
transient temperature response of the reactor bed, since its large thermal capa-
citance increases the thermal time constant of the bed. Figure 3.4-21 shows the
radial gas and solid temperature profiles at the reactor exit (z = L) during reac-
tor start-up. As shown, the steady state profiles are similar, although conduc-
tion along the thermal well slightly alters the surrounding gas temperature. The
transient behavior exemplifies the slow response of the thermal well. It can be
seen that the response of the exit temperature profile is rapid without the well,
with steady state being approached in under one minute; whereas, the presence
of the well introduces a finite heat sink into the reactor center that slowly
absorbs some of the heat produced. Over ten minutes are necessary to
approach steady state with an eighth-inch diameter well. This is further seen in

Figure 3.4-22 where the temporal behavior of the catalyst and gas temperature

golid is greater than the corresponding perameters in the gas phase,

5. Although only 6 axial collocation poinls are used in most simulations, 12 points werc necessary
here and even then the results are less than optimum.
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at the reactor exit are compared with and without the presence of the thermal
well. These figures also show that the temperatures in the reactor center are
higher without the thermal well as would be expected. However, Figure 3.4-23
shows that the well has very little effect on the axial concentration profiles, and

overall conversion is only slightly affected.

Although the thermal well increases the thermal capacitance of the reactor
bed and reduces the reaction volume, these eflects alone cannot account for the
dramatic increase in the thermal time constants of the bed with a thermal well &
Whereas the dynamics of the catalyst particle temperatures are very fast due to
the heat generation on the particles from the exothermic reactions, the dynam-
ics of the thermal well temperatures are much slower since the heat is gen-
erated on the surrounding particles. Much of this energy is transferred to the
outer cooling jacket or out of the bed with the gas phase. Only a small portion is
transferred to the thermal well and even this through relatively slow mechan-

isms, thus resulting in the slow dynamic behavior of the well.

Since a thermal well is sometimes used in industry to obtain temperature
measurements for process monitoring or control, we note the importance of
incorporating even a relatively small well into the modeling and control analysis.
Basing decisions on measured temperatures within an axial thermal well and a
model without a thermal well (i.e., assuming that the measured temperatures

are the predicted temperatures at the center of the bed) can be dangerous.

Simple meodifications to the model development presented in this work
allow for simulating systems that do not include central thermal wells. In such
cases, the dimensionality of the mathematical system is reduced by N, since one

partial differential equation is eliminated. The modeling programs developed in

6. Due to the relatively small radius of the well, the thermal capacitance (Vpcy,) of the bed with the
thermal well (18 cal/°K) is only slightly higher than that without (14 cal/°K) and the loss in
reaction volume is only about 2%.
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this work can be used directly for systems without thermal wells simply by set-
ting the parameters for the well diameter and the thermal well heat transfer

coefficients, hyy and hy, (or corresponding Biot numbers), equal to zero.

3.3.7 Dispersion Effects

Much work has been focused on the significance of dispersion terms in the
transient material and energy equations for packed bed reactors. In general,
axial diffusion of mass and energy and radial diffusion of mass have been
neglected in comparison with convective terms in most packed bed reactor stu-
dies {Carberry and Wendel, 1963; De Wasch and Froment, 1971; Hlavacek, 1970;

Hoiberg et al., 1971; Jutan et al, 1977; Valstar et al, 1975).

For packed bed reactors, Carberry and Wendel (1963), Hlavacek and Marek
(1966), and Carberry and Butt (1975) report that axial dispersion effects are
negligible if the reactor length is sufficient. These and other researchers (Mears,
1976; Young and Finlayson, 1973) have developed criteria based on the reactor
length for conditions where the axial dispersion can safely be neglected. Since
the tube length/pellet diameter for the experimental methanation reactor is
about 150, just at the limit of most of the published criteria for neglecting axial
heat dispersion, careful analysis of these dispersion effects is needed. However,
neglecting axial mass dispersion should be a safe assumption since the tube
length /pellet diameter for the experimental system is well above the value of 50
generally recommended. Radial mass dispersion can also be neglected and is
inherently eliminated from our model since the one point radial collocation
rcsults in a constant radial concentration profile. However, the radial diffusion
of energy must be retained since it is one of the most important physical

processes influencing the dynamic and steady state behavior of the system by
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governing the radial low of energy through the bed to the cooling wall.

Simulations using the tull model were then used to study the necessity of
these dispersion effects and to verify some of the common assumptions. A wide
range of Peclet numbers were used in the simulations. The actual values for the
methanation reactor will have to be estimated from preliminary heat transfer
experiments in the reactor (Section 4.2). Based on extensive previous studies,
the radial gas Peclet number should range {rom 5 to 10 and the axial gas Peclet
numbers from 0.5 to 2.0 (Carberry, 1976). For completeness, our simulations

used Peclet numbers over a much wider range.

Comparison of steady state profiles for Type 1 conditions (Figure 3.4-24)
shows that neglecting axial mass diffusion has very little effect on the tempera-
ture and concentration profiles even though the axial gradients are significant.
However, Figure 3.4-25 shows that neglecting the axial thermal dispersion in the
gas does affect the solution prefiles. The axial temperature profiles are offset
and the concentration profiles are shifted slightly. Further simulations show

minimal effect of neglecting the axial conduction of energy in the solid.

Figure 3.4-26 shows that, for standard Type Il operating conditions, neglect-
ing the axial thermal dispersion leads to instabilities in the orthogonal colloca-
tion solution with six collocation points. Although the solutions at the colloca-
tion points are similar, neglecting axial dispersion of heat leads to some 'rip-
pling’ in the axial temperature profiles. However, the concentration profiles are
nearly unaffected. This 'rippling’ is a result of the axial orthogonal collocation
and can be reduced by increasing the number of collocation points. However,
this leads to a substantial increase in model dimensionality and thus solution
time. Obviously, the axial thermal diffusion has a stabilizing effect on the numer-

ical solution using orthogonal collocation and actually damps the behavior of
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the solution polynomial.

Finally, Figure 3.4-27 shows the effect of neglecting axial diffusion on the
dynamic sirmulations of the reactor under start-up operaticn with Type Il condi-

tions. Significant differences are apparent.

The reduction in solution time for these simulations is minimal and in some
cases the elimination of the axial diffusion terms actually increases the solution
time. Simulations show that neglecting the axial dispersion of mass has little
effect on numerical computation time, whereas, eliminating axial dispersion of
energy may significantly increase computation time and only rarely decreases it

substantially.

Thus our analysis of the effects of dispersion on the simulated behavior of
the reactor along with the work by Bonvin (1980) shows the necessity of includ-
ing the thermal diffusion terms. Sirnulations here verify that the numerical
stability of the meodel is greatly enhanced by retaining these dispersive effects
and that, although minor additional effort may be necessary in the madel
development, the numerical solution time may actually be reduced by retaining
some of these terms. Furthermore, simulations verify that the axial dispersion
of mass can usually be neglected, although the inclusion of these {erms in the
model introduces little complication in the collocation solution; whereas, other
golution procedures are often significantly hindered by these second derivative
terms. The radial dispersion of mass seemingly has little effect on either the
simulated results or solution times and can safely be neglected. This conclusion
is based on the radial concentration analysis presented in Section 3.4.5, since
the standard mathematical solution that uses one point radial collocation in

this work effectively assumes no radial conceniration gradient.
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3.5 OCFE HODEL ANALYSIS

The reaction rate expression for the methanation reaction, Equation (3.3-
1), used throughout much of this work is based on empirical work by Lee (1973)
and Vatcha (1978). This expression, along with the rate equation, Equation (3.3-
3). for the steam-shift reaction given by Moe (1962) provides valuable insight
into the modeling of multiple reaction systems. Both reactions are reversible
and are described by complex nonlinear rate expressions. Due to the reversibil-
ity of the reactions and the equilibrium constraints included in the rate expres-
sions, severe temperature and concentration profiles are generally not observed.
The orthogonal collocation procedure used for the numerical solution of the
resulting mathematical model shows very little numerical instability and allows
for rapid solution of even the most difficult profiles simply by increasing the

number of collocation points.

However, in many chemical systems including packed bed reactors with
rapid nonreversible kinetics, the interesting features of the solution are
confined to a very small region where the solution profile changes rapidly. The
orthogonal collocation method may become unwieldy because a large number of
collocation points may be needed so that enough are placed within this region to

provide an accurate representation of the solution.

A significant drawback of the orthogonal collocation technique is then its
inability to accurately define profiles with very sharp gradients or abrupt
changes, since the technique requires fitting a single polynomial to the entire
profile. Under such cases, although the solution will be exact at the collocation
points, significant oscillations in the profile are observed, and the obvious choice
would be to resoﬁ to a finite difference procedure which considers eéch interval

separately using first and second derivative matching conditions on the bound-
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aries or to a finite element approach. Accurate representation of the solution is
then possible even under extremely steep gradients simply by increasing the
number of grid points. However, this technique can easily become numerically
prohibitive due to the extremely high dimensionality of the resulting mathemat-
ical system. A compromise between the orthogonal collocation {OC) and finite
difference techniques has been proposed by Carey and Finlayson (1975). This

procedure is called Orthogonal Collocation on Finite Elements (OCFE).

3.5.1 Formulation of OCFE Technique

Although most of the preliminary analyses in this modeling work used the
rate expressions by Lee (1973), Moe (1962), and Vatcha (1978), all significant
conclusions were verified using the rate expression of Strand (1984) and ignor-
ing the steam-shift reaction. An important difference belween the two kinetic
descriptions is the sharpness of the resulting profiles. The reaction kinetics
determined by Strand (1984) are much faster than that proposed by Vatcha
(1976) and can lead to rapid complete conversion within the reactor bed, For
such kinetics, the numerical solution procedure described in Section 3.3.5 can

have difficulties during solution of the steady state profiles.

Specifically, numerical solution of the expected steady state profiles with
the new kinetice often requires excellent initial estimates, and in many cases
even then has numerical convergence difficulties. This is often due to the rapid
complete reaction of the carbon monoxide early in the reactor bed leading to
steep temperature and concentration profiles, an abrupt change in the concen-
tration profiles when the CO is depleted, and a linear concentration profile after
complete conversion of the CO. The orthogonal collocation on finite elements

procedure is then attempted to minimizc the numerical difficulties associated
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with orthogonal collocation.

Finlayson (1980) used the OCFE procedure for several examples with
extremely sharp gradients. including diffusion and reaction in a porous catalyst
pellet and transient convective diffusion. His analysis of the orthogonal colloca-
tion method, the finite difference method, and the orthogonal collocation on
finite elements scheme for these and other chemical systems shows that the
"orthogonal ceollocation method is by far and away the best method" except for
systemns with sharp profiles. The OCFE technique is then preferred. Finlayson
points out that detailed, comparative studies of even simple two-dimensional
problems using OCFE are rare, due to the complexity of the procedure. This sec-
tion provides the first complete OCFE analysis of a packed bed reactor along
with comparisons to simple orthogonal collocation results. This OCFE analysis is
performed on the two-dimensional system resulting after the radial orthogonal

collocation presented in Section 3.3.5.

The orthogonal collocation procedure uses a series of polynomials, each of
which is defined over the entire range 0 < ¢ < 1, as a trial function for the axial
collocation. Complications with this global procedure arise in the presence of
steep gradients or abrupt changes in the solution profile. In such situations, it
may be advantageous to use trial functions that are defined over only part of
the region and piece together adjacent functions to provide an approximation
over the entire domain. Using such a procedure, smaller regions can be used
near the location of the steep gradient. The OCFE technique involves using
orthogonal collocation within each of these elements. A similar analysis can be
performed using the Galerkin method within each element. However for non-
linear problems, it may be necessary to use quadrature formulas to evaluate the

integrals, resulting in lengthy calculations.
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Two major forms of the OCFE procedure are commeon and differ only in the
trial functions used. One uses the Lagrangian functions and adds conditions to
make the first derivatives continuous across the element boundaries, and the
other uses Hermite polynomials, which automatically have continuous first
derivatives between elements. Difficulties in the numerical integration of the
resulting system of equations occur using both types of trial functions, and per-
sonal preference must then dictate which is to be used. The final equations that
need to be integrated after application of the OCFE method in the axial dimen-
sion to the reactor equations (radial collocation is performed using simple

orthogonal collocation) can be expressed in the form
C=— = Aa—{(a) (3.5-1)

Using Hermite interpolation within the elements, the C matrix is not diago-
nal. Explicit solution methods cannot be applied to this system of equations
easily because of this nondiagonal matrix, and most inlegration packages are
also not suitable for such a system. However using lagrangian functions within
the elements, the continuity and boundary conditions have no time derivatives,
and the C matrix in the above equation is diagonal with nonzero elements
representing a residual and zero diagonal elements for the algebraic conditions.
Most standard integration packages are also not suitable for mixed systems of
algebraic and differential equations. However, our computer programs for the
standard orthogénai collocation procedure {Appendix 4) are written for mixed

systems. Thus the Lagrangian functions are used in this OCFE analysis.

The OCFE discretization analysis and computer programs developed in this
work allow general specification of the number of finite elements and tthe degree
of the collocation functions within each element. This is again an advancement

over prior analyses where the same degree of collocation was often used within
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each element. The entire domain is divided as shown in Figure 3.5-1. Within
each of NE elements, we apply orthogonal collocation as usual using Lagrangian
functions. The residual is evaluated at the internal collocation points. Using the
Lagrangian polynomials, we need to guarantee continuity of the first derivatives
or fluxes between elements. In our analysis, we use the continuity of the first
derivative. We thus append NE-1 conditions at the element boundaries. Then
the solution has continuous derivatives throughout the domain. With the addi-
tional two boundary conditions at ¢ = 0 and at ¢ = 1, there are a sufficient
number of conditions to solve for the profile at all of the collocation points and

at the element boundaries.
For the kth element, we define the transformation

2~z
= -———-——--*-hk(b) ht = 2k +1) — Z(k) (85'2)

so that the variable u is between zero and one in the element.! Redefining the
differential equations in terms of the variable u allows the application of stan-
dard orthogonal collocation within each element. Figure 3.5-2 illustrates the
local numbering system within each element. If we then define NE as the
number of elements, N as the number of interior collocation points in element
k,and M, as N, + 2, the relétion between the global numbering 1,7 and the local

numbering /,J is given by

+1

i lk‘jl (N; +1)

i=

7 = Z(e) + Why (3.5-3)

Then starting from the most general form of the dimensionless equations

after the one point radial collocation, we can apply the OCFE procedf}re. As an

example, let us consider the energy equation for the solid:

1. Note that z in this expression is the normalized axial coordinate (equivalent to ¢).
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80, %0, )
s - % o + 0,0, + w0y + 7,0, + 16 (140,8)Ry + k(1 +928)Rs +wg  (3.5-4)
80
z=0 "-6'5*3 AgzstB5—8,)
36,

"5’5" = ngs( @g’@s)

All temperatures in this equation are in terms of the conditions at the radial

collocation point.
Then for k = 1 to NE
Z = 2y + uhg (3.5-5)
Thus within each element

80, _ o 80,
8% ~ hE Au?

+ w18+ w0y + 750, +£,(1+¢,0)Ry +12( 1 +9204)Rs +wg  (3.5-6)

with the overall boundary conditiens

1 88
h1 Bu l“‘o
1 0@
Bt

= }\gzs(@s’”@g)

If we assume axial profiles within each element k = 1, ..., NE of the form

B,(u = 2& (9.‘(1’)11 () (3.5-7)

where as before I; are Lagrangian interpolation polynomials, then as usual

A dl;(u‘)
I du %
3.5-8
d"’l,(u) ( )
Brs= 5
du %

After applying orthogonal collocation,
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’ &

% Brs0g, + w04 +wp®y +740, +x1(1+¢,®&)R’u

+K32(1+;02®8‘)R's+&)3 (343‘9)
within element k& for the interior collocation points i = 2, ..., Ng+1.

Then if we require the continuity of the first derivatives between the ele-
ments so that the first derivative of the solution is continuous in the entire

domain0< ¢= 1.

My

1
e A c} = % A0 3.5-10
by -y ng Wil sl]alement k-1 [ hk J=1 H 81] ernant k ( )

The system boundary conditions then only affect the first and last elements:

M
Bl;"“ i AIJ@sJ )\gzs( 8 )

(8.5-11)

M
- ﬁANE’,J@sJ = ;\gzs(@ )

-8
hNE’ J=1 gMNE‘ q'!NE'

This same analysis is then performed for the energy balance for the gas,
the energy balance for the thermal well, the two mass balances, and the con-
tinuity equation. The final coupled system of algebraic and differential equa-
tions is shown in Appendix 5, along with computer programs for steady state
solution using this OCFE procedure. It consists of 5N ordinary differential equa-

tions and N + 8(NE + 1) algebraic equations, where

K
= i Ne (3.5-12)
k=1

The techniques used for the solution of this system are similar to those
used previously with the orthogonal collocation analysis. The major- complica-~

tions are the potentially large number of resulting equations® and possible con-

2. Depending on the number of elements and number of interior collocation points per element.
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fusion and errors in setting up the indexing in the computer algorithm.

Extreme care must be taken in this last respect.

It should be pointed out that this approach using Lagrangian polynomials
gives identical results to those that would be obtained using Hermite polynomi-
als since on each element we use orthogonal polynomials of the same order,
since the boundary conditions are satisfied by both solutions, since the residu-
als are evaluated at the same points, and since the first derivatives are continu-
ous across the element boundaries. The only preference for one over the other
is for convenience. The Lagrangian formulation, however, has the added advan-
tage of being applicable in situations where the fiux is continuous across the ele-
ment boundaries but the the first derivative is discontinuous. This can occur if

there is some type of physical change at the boundary.

A major advantage of the orthogonal collocation solution schemes is that
the optimal location of the collocation points is automatically determined as the
zeros of the orthogonal polynomial after specification of the number of colloca-
tion points. This point carries through to the OCFE technique; however, in this
procedure, you must also specify the number and position of the elements.
Several means for this are available. The simplest involves preliminary solutions
using orthogonal collocation to provide reasonable estimates since, even though
the OC solution may be numerically unsatisfactory due to oscillations in the

profiles, it can give accurate indications of break points in the profiles.

If the OCFE solution procedure is to be used regularly for system analysis, a
careful study of the problem of locating elements is necessary. Finlayson (1980)
gives a basis for this study in a cursory examination of variable grid spacing and
elements sizes, or ’radaptive meshes’ as he calls them. The simplest 'pfbcedure is

based on physical information about the solution profile such as the point
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where CO is depleted within the reactor bed. Several direct mathematical
approaches are also discussed by Carey and Finlayson (1975) and Finlayson
(1980). The first is based on the solution residuals. Although the residual is
zero at the collocation points when using orthogonal collocation or OCFE, it can
generally be nonzero elsewhere. After an approximate solution is calculated, the
residual is evaluated throughout the interval 0 £ ¢< 1. Ferguson and Finlayson
(1972) and Carey and Finlayson (1975) show that the error in the solution is
bounded by the mean square residual. Since we want the residual to be small
everywhere, we can locate the elements to make the residuals approach zero
everywhere. In particular, additional elements should be inserted at points
where the residual is large. According to Carey and Finlayson (1975),
"in this way, as the number of elements is increased the
solution should converge faster than for a uniform spacing
of elements because the elements are placed where needed.
. However, the largest residual usually occurred at the
endpeoint of the element since a continuity condition is
imposed there rather than setting a residual to zero. Thus
in other calculations it would probably suffice to calculate
the residual at the end points of the element and use that
residual to determine the location of additional elements.”
Other mathematical procedures are described by Finlayson (1980) based on
extensions to Pearson’s (1968) technique for finite difference methods and on

work by Ascher et al. (1979) and Russel and Christiansen (1978). These are not

discussed here since the above techniques are used in this thesis.

3.5.2 Hodel Comparisons

A large number of steady state simulations were performed using this OCFE
procedure with various rate expressions to determine the applicabilily and
necéssity of the technique for packed bed reactor modeling. Using the original

rate expressions of Lee (1973), Moe (1962), and Vatcha (1976), there is no major
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necessity of the OCFE procedure since even for conditions with very steep
profiles, an accurate, non-oscillating solution can usually be obtained simply by
increasing the number of collocation points in the orthogonal collocation
analysis.? Due to the reversibility of the kinetics and the relatively low activation
energy, the profiles remain relatively smooth without any abrupt changes or

sharp transitions.

The importance of the orthogonal collocation on flnite element approach is
then considered using the single reaction non-reversible kinetics proposed by
Strand (1984). Figure 3.5-3 shows the steady state axial gas temperatures using
these kinetics with standard Type I1I {Table 3.4-5) operating conditions and with
the parameters shown in Tables 3.4-1 and 3.3-4 along with the exceptions U,, =
B.50, ko, = 25.1, and Euy = 7000. Figure 3.5-4 shows a comparison of the steady
state axial temperature profiles using both orthogonal collocation (OC) and
orthogonal collocation of finite elements (OCFE) for the same conditions. As
shown, the numerical problems (oscillatory solution) exhibited in the orthogo-
nal collocation solution with six collocation points are completely eliminated by
increasing the number of collocation points or by using OCFE with appropriate
selection of the elements and order of collocation within the elements. The
major difference then between the OC solution with 12 interior collocation
points and the OCFE solution with three elements and only 10 interior colloca-
tion points (plus two interior element boundaries) is the sclution time. The
OCFE steady state solution took almost exactly twice as long (123 seconds
versus 59 seconds)! Thus if at all possible, the orthogonal collocation procedure

is preferred, even at the expense of using additional interior collocation points.

Another rnajoi' difficulty of the OCFE procedure is displayed in Figure 3.5-5.

3. Figures 3.4-28b and 3.4-20b show simulations using orthogonal collocation with possible numeri-
cal difficulties.
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This is the non-trivial problem of optimal selection of the number and position
of finite elements. Figure 3.5-5 shows a comparison of the OCFE steady state
axial temperature profiles for the conditions of Figure 3.5-3 with three elements
of length 0.15, 0.70, and 0.15 with N; = 2, N; = 5, and N3 = 3 and with three ele-
ments of length 0.10, 0.80, and 0.10 with N, = I, Nz = 5, and N3 = 1. Although
these finite element schemes are only slightly different, the resulting solution is
significantly affected and iz nearly as bad as the orthogonal collocation solution

with too few collocation points.

A final example shows the real power of the OCFE procedure. Figures 3.5-6
and 3.5-7 show 'best’' solutions obtained using orthogonal collocation and OCFE
for the steady state axial temperature and concentration profiles for the non-
reversible kinetics where the reaction is extremely rapid with complete conver-
sion early in the reactor bed. These conditions are identical to those in Figures

3.5-3 to 3.5-5 except that the reaction rate is twice as large (k,, =50.2). As we

would expect, the profiles are very sharp, and there is an abrupt change in the
concentration profiles at the point of complete conversion. The 'best’ solutions
.obtainable using orthogonal collocation require ten interior collocation points
and still show significant numerical problems in both the temperature and con-
centration profiles. The use of more or less collocation points increases the

oscillations in the profile, especially in the vicinity of zero concentration.

The solutions using the OCFE procedure show dramatic differences in the
profiles. Based on an expected abrupt change in the concentration profile at
about ¢ =0.40 (from the preliminary orthogonal collocation results), an OCFE
solultion was obtained using two elements of length 0.4 and 0.6 with N, = 5 and
N; = 1 or a total of only six interior collocation points and one interior bound-

ary point. These OCFE axial profiles are much sharper than those predicted by
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the orthogonal collocation procedure simply because orthogonal collocation
actually smooths the steep profiles by attempting to fit a single polynomial
through the entire region. Figures 3.5-6 and 3.5-7 show the locations of the col-
location points for both schemes. Grouping the collocation points around the
region of sharp profile changes in the OCFE procedure allows more accurate
representation of these changes. This is identical to the concept of increasing
the number of grid points around a sharp transition when using standard finite

element techniques.

As shown in Figure 3.5-7, the OCFE procedure is also capable of handling
the abrupt concentration profile change where the reaction reaches completion
with only a single collocation point being necessary in the final element, while
the orthogonal collocation procedure shows significant error in the proflles even
with additional collocation points. Increasing the number of collocation points
in either element for the OCFE solution has no significant beneficial effect on the
axial profiles and can introduce oscillations in the first element as shown in Fig-
ure 3.5-8. Increasing the number of elements without using sufficient interior
collocation points or misplacing the elements can lead to very strange results
(Figure 3.6-0 and 3.5-10) due to the individual polynomial representations and

continuity conditions at the element boundaries.

Table 3.5-1 summarizes the steady state solution times and qualitative
behavior of the resulting axial profiles for a variety of solution schemes. Notice
that the solution times increase rapidly as the number of collocation points is
increased with both solution techniques. The numerical computation times for
the orthogonal collocation and OCFE solutions shown in Figures 3.5-8 and 3.5-7
are 11.3 minutes and 1.5 minutes, respectively, thus providing further evidence

of the necessity of the OCFE procedure for these particular conditions.



Based on these and other simulations along with those by Finlayson (1974),
we can conclude that, for chemical packed bed reactor modeling, orthogonal
collocation is generally optimum in terms of accuracy and numerical solution
times. However if steep gradients or abrupt profile changes occur within the
reactor bed due to extremely fast kinetics or complete conversion of the limit-
ing component, OCFE may be more accurate and faster than simple orthogonal
collocation. It is then recornmended that, if such conditions are expected, the
modeling computer programs be written to allow either procedure to be used.
Otherwise, the programs can be written only for orthogonal collocation. The

computer programs in Appendix 5 are written for OCFE but allow orthogonal col-
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location simulation simply by letting NE equal one.

Procedure h; N; Solution Time Axial Profiles
8 4:54 Bad
7 5:28 Bad
oc 8 6.07 Bad
10 11:20 Bad
12 14.08 Bad
51 1:33 Excellent
6,1 1:.18 Slight Oscillalion
71 R:16 Slight Oscillation
52 4:51 Excellent
0.4.08 5 3 827 Excellent
55 11:28 Excellent
OCFE 4, 3 5:44 Excellent
3,3 4:19 Bad
1,5, 1 2:15 Fair
0.15,0.25.0.60 | ' 5’5 14:01 Fair
0.15, 020,065 | 3,5, 2 17:04 Bad
0,15, 0.15,070 | 4,5, 3 15:27 Bad
Table 3.5-1

OC and OCFE Solutions for Conditions in Figure 3.5-6
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Orthogonal Collocation Axial Temperature Profiles
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Figure 3.5-4
Axial Temperature Profiles
Same Conditions as Figure 3.5-3
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Axial Temperature Profiles
Same Conditions as Figure 3.5-3
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Figure 3.5-8
Axial Temperature Profiles
Same Conditions as Figure 3.5-5 except Double the Reaction Rate (kq,=50.2)

a) OCFE with 2 elements of length 0.4 and 0.6. N;=5. Np=1
b) OC with N=10
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Figure 3.5-7
Axial Concentration Profiles
Same Conditions as Figure 3.5-8

a) OCFE with 2 elements of length 0.4 and 0.6, N;=5, Np=1

b) OC with N=10
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Figure 3.5-8
Axial OCFE Temperature and Concentration Profiles
Two Elements of Length 0.4 and 0.8
Same Conditions as Figure 3.5-8

a. Gas Temperatures b. CO Concentrations

——-——*——N1=5. N2=1 - N1=6.Ng=l """"’N1=7, N2=1



-1

MOLE FRACTION CO =10

0.6

0.3

0.2

6.0

- 291 -

4 T L ¥ ¥ 1 ¥ 1

I~ = Cotlocation Points

- Eleman 13‘:6—2' 12 >l Eremant 3

]
|
{
i
i
'

0.4 0.

0.2 6 0.8
AXIAL POSITION, Z/L

Figure 3.5-9
Axial OCFE Concentration Profiles
Same Conditions as Figure 3.5-6

h;=0.15, hp=0.20, hg=0.65; N,;=3, N2=5, Ng=2

1.




(DEG K)

GAS TEMPERATURE

750
725
700
675
650
625
600
575
550
525
500
475

0

-292 -

1 T i H | ] T l 1

s Collocation Points

N v 1 Fr V1 17 vy i rrrrn1 710 d

[SNE WNS WU | O S NN S A N S N S S SN NS U N T |

Elament 3

GEIM{I\Q"'M"“—"E' t2

i 1 i i ' A 1

.0 0

.2 0.4 0.6 0.8
AXIAL POSITION, Z/L

Figure 3.5-10
Axial OCFE Gas Temperature Profiles
Same Conditions as Figure 3.5-6

h;=0.15, hp=0.25, hg=0.80; N;y=1, Np=b, Ng=1

1.



- 293 -

3.6 CONTROL MODEL DEVELOPMENT

As discussed by Ray (1981), the feedback control of distributed parameter
systems requires a reduction of the distributed system to an appropriate
lumped parameter model. Although this lumping can be performed prior to or
subsequent to a control structure analysis, the modeling equations must be
lumped for numerical integration during implementation. Our analysis of the
mathematical relationships describing the chemical and physical processes
within the reactor have used orthogonal collocation (OC) or orthogonal colloca-
tion on finite elements (OCFE) to replace the full distributed parameter system
with a lumped approximation that allows simulation of the steady state and
dynamic behavior of the packed bed catalytic reactor. Rather than making
major simplifications a priori, the system analysis and numerical lumping used
a detailed mathematical description of the reactor. However, computing facili-
ties generally available for on-line control cannot currently perform the neces-
sary calculations rapidly enough for practical control applications with the full,
nonlinear model developed to this point. Furthermore, solution times for
dynamic simulations with this model even make detailed parameter studies and
process optimization impractical using the full model. Thus a simplified lower-

order model is desired for on-line multivariable control and for process studies.

3.6.1 State-Space Representation

In simplifying the process model, it iz advantageous if the equations can be
reduced to fit into the framework of modern multivariable control theory, which
usually requires a model expressed as a set of linear first-order ordinary

differential equations in the state-space form:
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x(t) = Ax(t) + Bu(t) + Dd(t)
¥(t) = Hx(t) + Fu(t) (3.8-1)

where x(t}, u(t), d(t), and y(t) are the state, control, disturbance, and measure-

ment vectors, respectively.

Since the orthogonal collocation or OCFE procedure reduces the original
model to a first-order ordinary differential equation system, linearization tech-
niques can then be applied to obtain the necessary representation. A major
advantage of the orthogonal collocation or OCFE procedure for the reduction of
the partial differential equations over previous techniques such as finite
differences or finite elements Is that the size of the resulting ordinary
differential equation system is inherently quite small. Further reduction may be
desired and is discussed in Section 3.7, Once the dynamic equations have been
transformed to the standard state-space form and the model parameters are
estimated, various procedures can be used to design one or more multivariable
control schemes, or the reduced model can be used for detailed process simula-

tion and optimization.

However, real processes cannot accurately be described by the determinis-
tic form of Equation (3.6-1). For control applications, modeling and measure-
ment errors, reduction inaccuracies, and noise in the system may need to be
accounted for by considering the addition of stochastic disturbance terms to

the equations:

(1) = Ax(t) + Bu(t) + Dd(t) + ¥(t)
y(t) = Hx(t) + Fu(t) + n(t) (3.6-2)

where ¥{t) is a vector of random process noise and %(t) is a vector of random
measurement error. These can be thought of as representing the total eflect of
all of the disturbances or noises in the process not accounted for by the deter-

ministic model. These stochastic disturbances can include uncontrolled or
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unmodeled fluctuations in inlet concentrations or flow rates, in catalyst activity,
in cooling wall temperature, and in heat transfer coefficients and can lead to

suboptimal reactor performance or even systern uncontrollability.

In developing a general state-space representation of the reactor, all possi-
ble control and expected disturbance variables need to be identified. In the fol-
lowing analysis, we will treat the control and disturbance variables identically to

develop a model of the form

() = Ax(t) + Ww(t)
¥(t) = Hx(t) + Fw(t) (863)

where wi{t) now contains all control and disturbance terms,
Ww{t) = Bu(t) + Dd{t). This model can then be used for process simulations.
When specific control studies are desired, the Ww(t) term can simply be
separated into the appropriate control term Bu(t) and disturbance term Dd(t),
depending on the selected control configuration. Examples of this are shown in

Section 4.3.

Consider the simplified flow diagram of the reactor system shown in Figure
3.6-1. The possible control variables or disturbances to the process are the
flowrates of the input gases, the recycle ratio, the cooling jacket temperature,
the heat load of the preheater, and the feed-effluent heat exchanger bypass.
From the reactor’s point of view (and thus the reactor model), the inlet gas tem-
perature, the cooling wall temperature, the gas velocity, and the inlet gas con-
centration can be affected. We will thus consider the control and disturbance

vector of the form
T
w=[Br, Vg, 8. Y1 ¥8. Yo, Yy Yo, (3.6-4)

where these variables are nondimensional and the superscript {°) or subscript

(,) indicates inlet conditions.
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3.6.2 Model Linearization

The major complication in the model after reduction of the original partial
differential equations to ordinary differential equations is the nonlinearities that
result from the nonlinear rate expressions and from the temperature, concen-
tration, and velocity dependencies of the convective terms and of the gas and
reaction properties. The reduction of the first-order ordinary differential equa-
tion model to the state-space representation involves linearization of the ajge-
braic and differential equations about the steady state. The resulting
mathematical description is then valid for small perturbations around this

steady state.

This analytic linearization, although conceptually quite simple, is extremely
tedious. Simple numerical linearization could be used during simulations and
control through various readily available computer programs but does not pro-
vide a detailed analytical solution from which the effects of various parameters

can be investigated.

Minor reduction of the nonlinear ordinary differential equation model
developed using orthogonal collocation or OCFE first involved assuming constant
heat capacity of the gas throughout the reactor bed' and neglecting the axial
and radial mass diffusion terms, based on the results of the model analysis
presented in Section 3.4, The resulting model was then linearized in three
stages: linearization of the reaction rates, linearization of the algebraic equa-
tions and substitution into the differential equations, and linearization of the

resulting ordinary differential equations.

1. Simulations showed no loss in accuracy by this assumption. It only real benefit is a minor
reduction in linearization eflort.
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3.6.2.1 Linearization of the Reaction Rates

The nondimensionalized reaction rate expressions

R’s = (f; +f2Pr,Py) e T/ RyTel Y'co,Y'He — “KK‘ELY' oY 'Hg0 (3.6-5)
8
o P 12 ye0) (1 —0)
= 1+ KEP'I‘YH,_ + KBPTY% (3‘6-6)
where y; = y'(1-26) Pr, = (1-28)Pr (3.6-7)
Ky  YomYugo
= 3.6-8
¢ Kp PEPF yeo(ym,)® ( )
Ko
Ko  +
Kp, = el T i=S M (3.6-9)
%8 X80 _ XXy (3.6-10)

o oy T o,

are first linearized about the steady state operating conditions (ss) using a Tay-
~ lor series linearization approach. If we neglect the second and higher order

terms in the Taylor series expansion, the linearization is of the form
o R =
R(Oq Y1, Yo Y, Yy Y0 Y2 ¥8) ™ Ru + 2 |5+ (2-32)  (36-11)
1 &5
where Z.m 0.- Y:.Ym y&d‘- yﬁ" Yﬁz(l. Y?ryg
After lengthy analytic manipulation of the expressions, the resulting linearized

rate expressions are of the form given in the equation above with the {3—1:—}
&8

terms defined in Appendix 6.

It is important to remember that the linearized expressions are only valid
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in the vicinity of the specified steady state conditions. A comparisen of the rela-
tive magnitudes of the linear and nonlinear reaction rates is presented in Table
' 3.6-1 for both Type I and Type Il standard operating conditions defined in Table
3.4-5. These results are presented mainly to show the necessity for caution in
using the linearized expressions since significant errors can occur away from
the steady state. In general, although the rate expressions are highly nonlinear,
the errors are relatively small even at considerable deviations from steady state.
Although the errors in the steam-shift rate are quite large in several cases, the
reaction rates in these cases are so small that the steam-shift reaction has

insignificant effect on the reactor dynamics.

Type 1 Conditions

% Error
Ts | Tg Y1 Y2 Ry Ra

steady state | 830 | 827 | 0.13 | 1.00
840 | 837 | 0.13 | 1.00 || 0.23 | 125
650 | 847 | 0.13 | 1.00 || 0.85 | 25.1
620 | 617 | 0.13 | 1.00 || 0.27 | 24.2
630 | 627 | 025 | 099 || 027 | 7.5
630 | 827 | 0.03 | 1.02 || 0.91 4.2
640 | 637 | 025 | 09914031 25

Type Il Conditions

% Error
Ry Rg

Te | T Y Yo

steaty state | 813 | 610 | 0.71 | 1.01
603 | 600 | 0.71 | 1.01 || 0.31 0.87
623 | 620 | 0.71 | 0,71 || 0.26 0.45
613 | 610 | 0.82 | 1.01 || 0.15 2.80

Table 3.6-1
Nonlinear vs. Linearized Reaction Rates

3.6.2.2 Linearization of the Algebraic Equations

The algebraic equations for the orthogonal collocation model (shown in Sec-

tion 3.3.5) consist of the axial boundary conditions along with the continuity
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equation solved at the interior collocation points and at the end of the bed. This
latter equation is algebraic since the time derivative for the gas temperature
" can be replaced with the algebraic expression obtained from the energy balance

for the gas.

The boundary conditions for the mass balances and for the energy equation
for the thermal well can be solved explicitly for the concentrations and thermal
well temperatures at the axial boundary points as lincar expressions of the con-
ditions at the interior collocation points. The set of four boundary conditions
for the gas and catalyst temperatures are coupled and are nonlinear due to the
convective term in the inlet boundary condition for the gas phase. After a Tay-
lor series linearization of this term around the steady state inlet gas tempera-
ture, gas velocity, and inlet concentrations, the system of four equations is

solved for the gas and catalyst temperatures at the boundary points.

Linearization and solution of the continuity equation for the velocities at
the interior collocation points and at the end of the reactor are somewhat more
complex. Unfortunately, th‘i time derivative of the gas temperature term adds
‘signiﬁcant complexity to these algebraic equations. Since the linearized model
is expected to be valid over only a limited region around the steady state, and
since a study of the magnitudes of the terms in this equation showed that this
time derivative term is relatively small near the steady state, the term was

)
neglected (equivalent to assuming ;: = 0). Simulations using the full, non-
linear model verified that negligible error resulted from dropping this term. The
maximum error seen was during the first 10 seconds of a dynamic simulation

and was generally less that 0.1% even during this period.

The resulting equation
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T 8, + ’35‘ ) 8,] = 0

fori =1, ..., N+1 was then linearized using the tollowing relationship

Vg, B, ™ "'k@g, +V&(®Kj“§31) + ﬁgj(vm-?ﬁm)

The algebraic equations for the endpoint gas temperatures were then substi-
tuted into the linearized continuity equations. These equations were then solved
for the velocities. The results of this linearization of the algebraic equations is

shown in Appendix 6.

3.6.2.3 Linearization of the Differential Equations

The linear reaction rate expressions and the linear expressions for the
velocities and for the concentrations and temperatures at the axial boundary
points were then substituted into the ordinary differential equations. Lengthy
algebraic manipulation was’ necessary to linearize these equations due to
extreme couplings between the different state variables. The linearization was
completely analytical and rétained all possible complications. The results of
this analysis are shown in Appendix 6. Again great care must be exercised dur-
ing this algebraic reduction due to the extreme complexity of the model. All
resulls were verified through careful model simulations and finally by using the

symbolic equation solver SMP available on the Caltech computer system.
The final linearized model is of the form
¥=Ax +Ww+ C (3.6-14)

where the state vector
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T
x= {9-:' o Oy B oo B By Byy Y1y o Vi Yoy oo Yoy (8.6-15)

consists of the catalyst temperatures, the gas temperatures, the thermal well
temperatures, the CO concentrations, and the CO; concentrations at the interior

collocation points. The control and disturbance variables are

w = (B, v, 8o, Y. Yoy, Tho Vi 8| (3.6-16)

This linear system is then of order 5N, where N is the number of interior colloca-
tion points. Analytical expressions for the elements of the matrices A and W are
shown in Appendix 6. The constants C in the equations can be easily eliminated
by using deviation variables about the steady state values. At steady state, x =0

and thus
O=AX+Ww+C (3.6-17)
Subtracting this from the original equation,
X = A(Xx-X) + Ww—-W) (3.6-1B)
Letting
X¥=x-X and wW=w-W (3.6-19)
the resulting equation is of the desired state-space representation:
X = Ax + Ww {(3.6-20)

Note that in the remaining analyses, we will drop the (). It should still be clear
that deviation variables are being used. Then as per the previous discussion,
this linear representation can easily be separated into the standard state-space
representation shown in Equation (3.6-1) for any particular control

configuration.
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3.6.2.4 Numerical Solution of the Linearized Model

Nurnerical simulation of the behavior of the reactor using this linearized
model is significantly simpler. The first step in the solution must be to solve the
full, nonlinear model for the steady state profiles. This is accomplished using
either the algorithm by Powell (Rabinowitz. 1970) or Brown (1967) discussed in
Section 3.3.5. This first step,is limiting in the sense that no further linearized
analysis is possible without it. Due to the complexity of the nonlinear model,
numerical convergence problems may be significant during this steady state
solution. Obviously, the success of this solution is often based on the initial
guesses for the steady state profile. Experience or empirical data can help in
setting these values. Additionally, under extreme cases, the nonlinear dynamic
simulation programs can be used to sirmulate the behavior of the system from
specified profiles to the final steady state. As the dynamie solution approaches
the steady state, the resulting profiles can be used as the initial guesses for the
steady state solver so that the dynamic solution does not need to continue com-

pletely to steady state,

The steady state profiles are then used to calculate the matrices A and W.
The Adams-Moulton predictor-corrector technique can again be used to numeri-
eally integrate the linear model for dynamic simulations. However, due to the
linearity of the resulting mathematical system, an analytical solution of the
differential equations is possible. The general solution of the differential system

given by Equation (3.6-20) is
t
x(t) = x(ty) + [ etIAWw(s) ds (3.6-21)

Then if we consider a time interval (t + t + dt) over which w is constant,? this

solution simplifies to

2. We can take very small time steps, dt, if needed,
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x(t+dt) = eAdx(t) + A (AN -I)Ww(t) (3.6-22)

The major complications in this analytical solution are obviously the matrix

exponential and matrix inverse. If we let
A=SAS! (3.8-23)

where A is a diagonal matrix of the eigenvalues of A and S is the corresponding

matrix of eigenvectors, we then get
eAdt = gebdtg! apnd A'=SA7'ST (3.6-24)

where e*® and A™! are easily calculated since A is diagonal. Thus after the
steady state is determined and the time steps (dt) are selected, we can calculate
the eigenvalues and eigenvectors of the matrix A and from these the values of
A™! and e*' These lengthy calculations only need to be performed once for
each steady state and selected time step! Of course these time steps can be
quite large with the only restriction being that the control and disturbance vari-
ables are nearly constant during this period. If these variables are constant
over more than one selected time step, even the value of A~} (e —I)Ww' will be

‘constant and will not have toibe recalculated between time steps.

Several computer programs have been written to simulate this linearized
model of the reactor. These programs are discussed and listed in Appendix 4.
Basically, two programs are usedfor the linear model. The first called LINMOD
uses the Adams-Moulton predictor-corrector numerical integration of the linear
differential equation system, including our variable time-step analysis. This pro-
gram is similar in structure and operation to the nonlinear program NLNMOD.
The second program written for the linear model simulation, ANAMOD, uses the
analytical solution of the linear equations rather than performing a numerical

solution. Thus it takes only a fraction of the solution time.



- 304 -

These programs are set up to automatically determine the steady state
solution, to calculate the coefficient matrices for the linearized model, and to
optimally perform the dynamic simulations for a large variety of step changes
or disturbances or for start-up conditions. The program ANAMOD only performs
the matrix inversions, exponentiations, and multiplications as necessary. The
malrix inversion of the eigenvector matrix simply involves transforming the
matrix into upper triangular form by successively multiplying it on the left by a
transformation matrix that preserves the determinant of the original matrix.
The triangular matrix is inverted by back substitution and finally the inverse of
the original matrix is obtained by multiplying the inverse of the triangular

matrix by the original transformations on the right.

The determination of eigenvalues and eigenvectors of the matrix A is based
on a routine by Grad and Brebner (1968). The matrix is first scaled by a
sequence of similarity transformations and then normalized to have the Eucli-
dian norm equal to one. The matrix is reduced to an upper Hessenberg form by
Householder's method. Then the QR double step iterative process is performed
on the Hessenberg matrix t;o compute the eigenvalues. The eigenvectors are

obtained by inverse iteration.

3.6.3 State-Space Simulations

Figure 3.68-2 shows the simulated dynamic behavior of the gas temperatures
at various axial locations in the bed using both the linear and nonlinear sirnula-
tion programs for a step change in the inlet CO concentration from a mole frac-
tion of 0.06 to 0.07 and in the inlet gas termnperature from 573° K to 593° K. Fig-
ure 3.8-3 shows th;e corresponding dynamic behavior of the CO and CO, concen-

trations at the reactor exit and at a point early in the reactor bed. The axial



- 305 -

concentration profiles at the initial conditions and at the final steady state
using both the linear and nonlinear simulations are shown in Figure 3.6-4, and
the axial gas temperature profiles are shown in Figure 3.8-5 at t = 0, 15 seconds,
and 100 seconds (steady state). The temporal behavior of the profiles shows
that the discrepancies between the linear and nonlinear results increase as the
final steady state is approached. Even so, there are only slight discrepancies
(less than 2% in concentrations and less than 0.5% in temperatures) in the
profiles throughout the dynamic responses and at the final steady state even for

this relatively major step input change.

Figure 3.6-8 shows dynamic linear and nonlinear simulations of the gas
temperatures at ¢ = 0.17 and ¢ = 0.38 and Figure 3.8-7 shows the exit CO and
COgz concentrations for a 50 second disturbance in the inlet gas temperature
from 573° K to 601.85° K (a 5% increase) and in the inlet CO concentration from
a mole fraction of 0.06 to 0.072 (a 20% increase). Again we find that only minor
differences (less than 2%) are apparent between the two models and only then at
conditions sufficiently far from the steady state. As expected, the models give
identical results when the original steady state is reestablished after the distur-

bance.

Figure 3.6-8 shows the temporal behavior of the exit gas temperature and
the gas temperature at ¢ = 0.38 under start-up operation using both the linear
and nonlinear simulation programs. Figure 3.6-8 shows the axial temperature
profiles at 15 seconds, 30 seconds. and at steady state. As expected, the major
deviations between the models occur early in the simulation where the reactor
conditions are relatively far Irom the steady state conditions around which the
model is linearized. However, the magnitudes of the deviations are actually very
small, thus verifying the ability of the linearized model to simulate reactor

behavior even relatively far from steady state.
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Thus the simulations show that the lincar model is quite accurate even for
relatively large deviations from the steady state. Of course, losses in accuracy
are greater the larger the deviation. For start-up and disturbance simulations,
the linearized model does predict an eventual return to the steady state around
which the system was linearized. However for step input changes where the final
steady state differed from the original, some minimal loss in accuracy is
apparent in the final steady state reached using dynamic simulations of the
linear model from the original steady state. This difficulty can easily be circum-
vented in the case of step changes by relinearizing about the new final steady

state conditions somewhere during the simulation.

Table 3.6-2 shows a comparison of the solution times for the various
dynamic simulations using the three models. As shown, the reduction in solu-
tion time is enormous using the linear model. Using numerical integration of
the linear state-space model, simulation times are reduced by a factor of 10.
The analytical solution reduces simulation times by another factor of up to 100
(to a point where real time solution is possible)! As expected, the results using

both the numerical and analytic solutions of the linear model are identical.

, Model
Simulation NLNMOD | LINMOD | ANAMOD
Te+593°K Ea. ) X
Step Xeg-» 0.07 2:54:24 12:54 00:36
Step Ty-+593°K | 3:14:41 18:04 00:34¢
Start-up 4:43.26 28:39 00:28
Disturbance Ty~ 6802°K ER. . .
(50 seconds) xg~0.072 4:58:42 23:10 00:31

Table 3.8-2
Comparison of Simulation Times

Thus the results of this investigation concerning locally linearized models

along with the results of prior investigators (Hoiberg et al., 1971; Sinai and Foss,
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1970) show that such models are quite descriptive of the overall system and are
an extremely useful means of reducing model complexity. As pointed out by
Hoiberg et al. (18971) and verified in this analysis, there is relatively little incen-
tive for retaining the nonlinear representation in view of the large uncertainties

in the numerical values of the physical and chemical parameters.
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Figure 3.6-1
Simplified Reactor Flow Diagram
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3.7 HMODEL DIMENSIONALITY

Mathematical models are widely used in the design, simulation, optimiza-
tion, and control of chemical packed bed reactors. Although low-order models
are often devéloped for control of simple chemical systems using statistical
analysis of input/output data, these empirical models are generally inappropri-
ate for complicated, highly nonlinear packed bed analyses where very low-order
models are not sufficient and where operating conditions may vary greatly from
the vicinity of the operating point for which the models were developed. For
these systems, the mechanistic modeling approach presented in this thesis is
necessary. In this mechanistic analysis, a detailed mathematical description of
the physical and chemical phenomena in the system is solved directly. Although
this generally provides a more detailed solution valid over a wider operating
range and allows detailed investigation and prediction of the reactor behavior,
the model even after linearization is often too complex for controller design or
for implementation as part of the actual control system. low-order models are

thus required for on-line implementation of multivariable control strategies.

This section presents f; dimensionality study of the model discretization
and physical modeling assumptions for the mechanistic packed bed reactor
model. A further discussion of model reduction to approximate the full system
with one of moderate order (2Nth-order) is also presented. It is our opinion that
further reduction probably is not needed or desired for control studies. If addi-
tional reduction is necessary, model reduction techniques such as those

presented by Bonvin (1980) and Wilson et al. (1974) should be attempted.

3.7.1 Hodel Discretization

The model discretization or the number of collocation points necessary for
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accurate representation of the profiles within the reactor bed has a major effect
on the dimensionality and thus the solution time of the resulting model. As pre-
viously discussed, radial collocation with one interior collocation point generally
adequately accounts for radial thermal gradients without increasing the dimen-
sionality of the mathematical system. However, multipoint radial collocation
may be necessary to describe radial concentration profiles, The analysis of Sec-
tion 3.4.5 shows that even with very high radial mass Peclet numbers, the radial
concentration is nearly uniform and that the axial bulk concentration and
radial and axial temperatures are nearly unaffected by assuming uniform radial
concentration. Thus model dimensionality can be kept to a minimum by also
performing the radial concentration collocation with one interior collocation

point.

In this section, the optimal choice for the number of axial collocation
points is discussed. Obviously, if the number of axial collocation points is
insufficient, the resulting axial solution for the temperature and concentration
profiles will be incorrect. On the other hand, one of the problems with fitting
high-order polynomials to the axial profiles is that the polynomials, if of
sufficiently high order, may begin to ripple along the curve. As peinted out by
Jutan et al. (1977), this rippling can be extremely detrimental since the colloca-
tion formulas are used to approximate derivatives. Since there is a tradeof
between lowering the number of collocation points to reduce model dimen-
sionality and reduce profile rippling and increasing the number of collecation
points to retain high simulation accuracy, extreme care is required in the selec-

tion of the number of axial collocation peints.

The first attempts at determining the optimal number of axial collocation
points simply involved repeating simulations with differing axial discretization to

find conditions with minimum ripple and maximum accuracy. Figure 3.7-1
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shows the steady state axial temperature profiles tor standard Type I (Table 3.4-
5) conditions as the number of axial collocation points is changed. Eight or
more axial collocation points provide similar results, and even simulations with
six collocation peints show minimal inaccuracy. However, reducing the number
of collocation points below this leads to major discrepancies in the axial profiles.
These errors are even more important in the dynamic simulations shown in Fig-

ure 3.7-2.

Although this simulation procedure provides an optimal choice of the
number of axial collocation points for steady state and can give an indication of
the appropriate number of collocation points for dynamic simulations, Bonvin
(1980) shows that the convergence pattern of the dominant eigenvalues of the
model as the number of collocation ppints is increased can also be used as an
important procedure for determining the optimal axial discretization. Since
these dominant modes only describe the dynamic behavior of the linearized sys-
tem, simulation of the full model should be used to verify the results for tran-

sient and steady state analyses.

If the axial discretization is fine enough, the dominant eigenvalues have
converged to their true values. Figures 3.7-3 and 3.7-4 show the convergence of
the dominant eigenvalues for the Type | and Type 11 (Table 3.4-5) operating con-
ditions. The conditions for Figure 3.7-3 are the same as those used for Figures
3.7-1 and 3.7-8. The eigenvalue analysis shows that less than six collocation
points will lead to significant errors in the dynamic simulations for these condi-
tions since the dominant eigenvalues are far from their true values. Seven col-
location points would seem to be sufficient and six may be satistactory. These
results verify those obtained above using simulations with differing discretiza-
tion (Figure 3.7-1 and 3.7-2). With six interior axial collocation points, the full

model would consist of 30 coupled, nonlinear ordinary differential equations
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along with their algebraic boundary conditions. The linear model would be a

30th-order state-space representation!

Under conditions where very steep gradients exist within the reactor bed,
collocation may lead to oscillatory axial profiles (rippling) due to the attempt to
fit an Nth-order smooth polynomial function to the axial behavior. Although
these oscillations can be often reduced by decreasing the number of collocation
points, significant errors in the profiles can then result. Simple trial-and-error
should be used to determine the best number of axial collocation points to
reduce rippling and retain accuracy. In extreme cases with very steep axial
profiles or abrupt changes in the profiles, the orthogonal collocation on finite
element procedure explained in Section 3.5 may be necessary. Using this tech-
nique, not only the number of collocation points in each element needs to be

specified but also the number and size of the elements.

3.7.2 Physical Modeling Simplifications

Due to the complexities of the full mathematical description of a packed
bed reactor and the complications with numerical solution and analyses of such
descriptions, the extensive use of physical modeling simplifications is common.
Assurnptions that reduce the complexity of the resulting mathematical model
such as neglecting dispersion effects and radial gradients have been discussed
elsewhere in this work. Basically, the common assumnptions of neglecting radial
temperature gradients, neglecting thermal dispersion, and neglecting the varia-
tion of physical properties significantly reduce the accuracy of the resulting
model] for numerical simulations and for further optimization or control studies
without reducing t';he dimensionality of the resulting representation. In view of

the advances in computational techniques over the past decade for the solution
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of partial differential equation systems,! these simplifications are unnecessary
and provide minimal, if any, reduction in solution effort. Transient reactor
behavior can thus be simulated using accurate three-dimensional modeling with

the inclusion of known dispersion effects and parameter variations.

To this point in the modeling analysis, we have tried to incorporate all of
the mechanisms necessary for accurate description of the physical and chemi-
cal phenomena occurring in industrial reactors and to study the effects of vari-
ous modeling simplifications. We continue this study by considering several
major simplifications which do not simply reduce the structure of the partial
differential equations but actually significantly reduce the number of necessary
equations or the dimensionality of the process. These include the extensive use
of pseudo-homogeneous models--those that do not distinguish between the con-
ditions wilthin Lhe fluid and those on the solid catalyst—and the assumptions of
quasi steady state for concentrations and negligible energy accumulation in the

gas phase.

3 7.2.1 Homogeneous Analysis

The mathematical models of the heat and mass transfer processes in

packed bed reactors are classifled in two broad categories:

1. One-phase or pseudo-homogeneous models in which the reactor bed is

approximated by a quasi-homogeneous medium.

2. Two-phase or heterogeneous models where the catalyst and fluid
phases and the heat and mass transfer between phases are treated

explicitly.

1. Inparticular, the collocation techniques.
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Although the heterogeneous models are more realistic, they have been generally
ignored until only recently due to difficulties with numerical solution and
increased model dimensionality. Even several nonadiabatic packed bed reactor
studies that begin with a two-phase analysis reduce the model to a pseudo-
homogeneous form by assuming equal gas and catalyst temperatures for steady
state and dynamic solution (Jutan et al., 1977) or at least for the steady state
solution (Hoiberg et al., 1971). Some authors (Vortmeyer and Schaefer, 1974;
Vortmeyer et al., 1974) have even considered the equivalence of the one- and
two-phase approaches for one-dimensional or adiabatic studies. This thesis
presents the first detailed two-dimensional heterogeneous dynamic and steady

state packed bed reactor analysis.

However since it has been common practice to develop models for catalytic
reactors that do not distinguish between thermal conditions within the fluid
phase and those on the solid catalyst, a cursory examination of the homogene-
ous analysis is presented here. This assumption is generally justified by the
expectations of small temperature differences between the solid and gas phases
and results in a one-phase continuum representation of the actual reactor bed.
As discussed by Jutan et al. (1977), the difference between gas and catalyst tem-
peratures for fast flowing gas systems should be negligible. They further refer-
ence the work by Shaw (1874) that shows that there is ample driving force to
remove the heat generated by reaction and that no temperature difference

should exist between the gas and catalyst at steady state.

In our original system of partial differential equations, the two energy bal-

ances can be combined as proposed by Jutan et al. (1977) by eliminating the
U .
term, %(Tr 2), that describes the heat transfer between the solid and gas. If
b

the gas and solid temperature are assumed equal (T, = Tg). and the homogene-



- 323 -

ous gas/solid temperature is defined as T, the original combined energy balance

for the gas and solid becomes

aT__ oT 8%T o°T 1 aT
[pecp,(1-2) +Pgop 2] 5= —PaCp,Ugt 5, + £ 8z° +kr[ ar® ' r Fr_‘J

+ (”AHH)RH + (""ﬁHg)RS (3.7-1)

where k, and k, are efTfective conductivities for the combined gas/solid system.

Additionally, since

PgCp, &

P (ioey ™ 0004 (3.7-2)

the coefficient of the time derivative reduces to
[oacp,(1—€) + pgcp‘e] N pacp (1-8) (3.7-3)

The boundary conditions are

8T
z2=0 k,-a-z——= UgCp, OgE (T=Te)

z=1, a 0
oz (3.7-4)
r=Ry k,2-=h(T-T)
aT
rle Mkr'b—;': hw(T“Tw)

where h, and h, are effective heat transfer coefficients between the gas/solid

medium and the thermal well and cooling wall, respectively.

This equation is solved with the continuity equation, the energy balance for
the thermal well,* and the concentration equations using the same procedure as
for the full system. The dimensionality of the model has now been reduced by N

(i.e., the model now has order 4N). Computer simulation programs were written

2. With an overall heat transfer coefficient being used rather than Uy, and Uy,
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for this homogeneous model. Unfortunately, no direct comparisons can be
made between the simulations with the two-phase analysis and the homogene-
ous analysis since no direct mathematical relationship can be made between the
eflective and overall heat transfer coefficients of the homogeneous model
(kg kr by, hy, Up) and the individual gas and solid coefficients of the two-phase
model (kgq kg5 kg kg his, Nug, hig, hyg, Urs, Uyg). Some attempts (Vortmeyer and
Schaefer, 1974) have been made in this regard, but are not accurate enough for

direct comparison of the simulations of the two models.

Solution times using the homogeneous model are 15% to 257% less than that
for the full two-phase analysis, although the accuracy of the results may be
somewhat in question. Figures 3.7-5 and 3.7-8 show the axial temperature and
concentration profiles with Type I and 1l (Table 3.4-5) operating conditions and
with realistic heat transfer parameters. Although these simulations appear
gsimilar to those obtained with the heterogeneous analysis, no direct comparison

is possible as explained above,

However, simulations usgrlg the heterogeneous analysis even with high inlet
velocities lead to steady state temperature profiles with differences of up to 10°
K between the solid and gas phases and transient results with differences \ip to
20° K due to the high exothermicity of the methanation reaction on the catalyst
surface. These temperature differences can lead to significant errors in the
predicted reaction rates. Using the kinetics proposed by Strand (1984), the
methanation reaction rate about doubles with ever 10° K temperature rise over
the normal operating region. Therefore although a homogeneous analysis may
be adequate for reactions that are only slightly exothermic or simulations of
steady state phenomena, a heterogeneous analysis is necessary for dynamic

simulations of highly exothermic reaction processes.
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The increased dimensionality of the heterogeneous system can be reduced
using other techniques discussed in this section which require much milder
Aassumptions. The assumption of negligible energy accumulation in the gas
phase based on ’the approximation (Equation 3.7-3) provides the same reduction
in system dimensionality as the homogeneous analysis but with a much less

drastic assumption.

Measurement difficulties that arise in model verification of parameter esti-
mation using a heterogeneous analysis are also often cited as reasons for a
homogeneous analysis. Although theoretically it is possible to measure
separately the gas and solid temperatures, in practice il is difficult without seri-
ously affecting flow patterns within the reactor bed. These difficulties can be
minimized by using an internal thermal well as is common in industrial systems
and including this thermal well in the model development. This eliminates the
concern over whether temperature measurements within the reactor bed are

actually measuring gas or solid temperatures or a combination of both.

Another procedure often used with less severe assumptions than the equal-
ity of the gas and solid temperature is the pseudo-homogeneous analysis pro-
posed by Vortmeyer and Schaefer (1974). This procedure has proven to be quite
effective for simple adiabatic packed bed analyses and involves reducing the

energy balances for the gas and catalyst to a single equation using the assump-

tion
8%6 508,
= (3.7-5)

Although this assumption is often not too restrictive, additional more severe
assumptions must be introduced to reduce our mathematical model to the
pseudo-homogeneous form, since our reactor is nonadiabatic and requires

radial temperature considerations. A literature search failed to find any
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attempts of the Vortmeyer procedure for a nonadiabatic packed bed reactor.
For the full mathematical model developed in Section 3.3, the following assump-
tions would be necessary in addition to the standard Vortmeyer assumption
above:

1) Negligible energy accumulation in the gas phase.

2) No axial diffusion in the gas phase or

2 azTgl__
bT{Bzz =0

3)
B (10T, 8 10T
or |r or or |r Or
4)
Olpgug) _ o
Bz

Obviously, these assumptions are too restrictive for standard nonadiabatic

packed bed analyses.

8.7.2.2 Quasi Steady State Approxrimation

Transient analyses using the full, nonlinear model show that concentration
profiles reach a quasi steady state quite rapidly (often within 3 to 5 seconds);
whereas, the thermal response of the reactor bed is much slower® due to the
large heat capacity of the reactor bed and thermal well. An example of this

phenomenon is shown in Figure 3.7-7, where the transient responses of the solid

3. Thermal time constants are about two orders of magnitude greater than the concentration time
constants.
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temperatures, thermal well temperatures, and concentrations are shown for a
major step change in the inlet gas temperature and inlet CO concentration. In
this example, the effect of the step change is nearly immediate on the concen-
tration profiles with the major effect being within the first ten seconds. How-
ever, Figure 3.7-7a shows that the thermal well temperatures and the catalyst
temperatures take up to ten times as long as the concentrations to approach
the new steady state after the input step change. Note that the catalyst tem-
peratures shown in the figure are at the radial collocation point r = r, and that
the response of the catalyst temperatures near the center of the reactor (not

shown) is very similar to the thermal well response.

Furthermore, comparison of the thermal (vr) and the concentration (vg)

wave velocities as defined by Gould (1969)

_ Pglp gt
"7 pecp(1-6)
ve = u (3.7-6)

verify this quasi steady state for the concentration profiles. As in many solid
catalyzed gas reactions, the ratio of the concentration wave velocity to the ther-
mal wave velocity is quite large.* This implies that the concentration profiles
reach a quasi steady state répidly and that this quasi steady state then follows
the slowly changing temperature profile, thus providing theoretical backing for
the transient behavior of the concentrations and temperatures in Figure 3.7-7.
Packed bed studies by Jutan et al. (1977) have also shown that the concentra-

tion dynamics can be ignored in the packed bed medeling.

The quasi steady state approximation then allows the concentration time

derivatives to be set equal to zero

4. About 250 for our reactor.
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in the original partial differential equations or in the linearized model, thus
reducing 2N of the discretized ordinary differential equations to algebraic equa-
tions. In the linear system, these algebraic equations can be solved directly for
the concentrations and substituted into the differential equations. Computer
programs {Appendix 4) were written to simulate the reactor using this assump-
tion for both the full and linearized models. Although this approximation intro-
duces considerable simplification in the nonlinear model, its effect on the linear-
ized system is a simple reduction in systern dimensionality, and it does not lead

to any major reductions in analytic solution times.

Simulations show negligible differences in the transient temperature and
concentrations profiles as a result of this approximation. Some of these simula-
tions are shown in Section 3.7-4 where the model reduction procedures are com-
pared. The major advantage of this assumption should be apparent in control
systemn design where a reduction in the size of the state vector is computation-
ally beneficial or in the time-consuming simulations of the full nonlinear model.
It should be stressed that, although this quasi steady state approximation
involves setting the time derivatives of the concentrations equal to zero, it does
not imply that concentrations are independent of time, since concentrations are
still coupled directly to temperatures, and temperatures are obviously time

dependent.

3.7.2.3 Negligible Fnergy Accumulation in Gas

Another potential model simplification procedure involves assuming negligi-

ble energy accumulation in the gas phase as compared to that in the solid. This
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" is equivalent to the approximation above (Equation 3.7-3) based on the relative
magnitude of the energy accumulation in the gas and solid. For our system, the
accumulation of energy in the solid is approximately 250 to 300 times that in
the gas phase due to the relative thermal capacitance of the gas (Equation 3.7-
2) and the similarity of the temporal behavior of the gas and catalyst tempera-
tures (e.g.. Figure 3.7-8). Thus the accurnulation term in the energy balance for

the gas phase can be neglected:
80
PeCpE S = O (3.7-8)

in comparison to the energy accumulation in the catalyst and thermal well. This
reduces N of the original ordinary differential equations (after orthogonal collo-
cation) to algebraic equations. Again after linearization, these can be solved
directly for the gas temperatures which can then be substituted into the
remaining ordinary differential equations to eliminate the gas temperatures
from the state vector. Simulation computer programs were again written
(Appendix 4) and show negligible differences in the dynamic and steady state
profiles, small reductions in solution times for the nonlinear model, and no
major time reductions for the analytic solution. Some of these simulations are

shown in Section 3.7-4.

3.6.1 Model Reduction

Regardless of whether orthogonal collocation or orthogonal collocation on
finite elements is used for the discretization, the resulting linear state-space
representation is of high order (30-40 states)! due to the original system of five
coupled partial differential equations and the accurate treatment of the gas,

catalyst and thermal well temperatures and concentrations. Although dynamic

1. Thisis actually of very low-order in comparison to traditional finite difference solutions.
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simulations using the state-space representation are very fast, computational
difficulties still exist in developing multivariable feedback control algorithms
due to the relatively high order of the system. For such applications, an accu-

rate reduced-order model is desired.

Significant reduction is possible through the introduction of the approxi-
mations of quasi steady state for the concentrations, negligible accurnulation of
energy in the gas phase, or pseudo-homogeneity of the system. Although these
approximations could have been made in the original modeling, doing so without
a careful analysis of their effects on the model behavior can be dangerous. The
coinplete study of the mathematical modeling of a packed bed réactor allows
careful investigation of the significance of these assumptions and the combined
effects of several simplifications. Additionally, an analysis of the eigenstructure
of the system shows that simple modal reduction techniques such as those
presented by Bonvin (1980), Gould (1969), and Wilson et al. (1974) can lead to a
low-order state-space model. This section considers explicit modal reduction
approaches to model reduction that result in an explicit reduced model formu-

lation without statistical analysis of input/output data.

' Various model reduction approaches, or minor meodifications to existing
approaches, were proposed during the late 1880's and early 1970's. The basic
strategy of these approaches is to retain certain modes of the high-order model
in the low-order model. Wilson et al. (1974) summarized these techniques and
showed that many of the published modal approaches are equivalent since they
produce identical reduced models. They further considered the design of
reduced-order control models by performing the model reduction on the high-
order model and then designing a low-order controller and by designing a high-
order controller and then reducing this to a low-order control law. Bonvin

(1980) also provides a comparison of the various modal techniques with respect
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| to their steady state and dynamic accuracies as well as to the dependence of the

reduced models on the retained state variables.

According to Gould (1969), the central theme in modal reduction and con-
trol is
'that the transient behavior of a process is predominantly
determined by the modes associated with the smallest
eigenvalues. If it is possible to approximate a high-order
system by a lower-order system whose slow modes are the
same as those of the original system, then attention can be
focused on the attempt to alter the eigenvalues of the slow
modes 50 as to increase the speed of recovery of the process
from disturbances. It is essential to be aware of the fact
that various disturbances excite the modes differently so
that a scheme which is based on a lower-order model may

be inappropriate if a disturbance injects most of its 'energy’
in a fast mode which has been neglected.”

This basic approach is really divided into several distinct categories. Two of
these, Davison's method and Marshall's method, provide suitable model reduc-
tion for the state-space representation of the methanation reactor to a 12th-
order model. Comparisons of the models and discussion of additional model

reduction are presented in the next section.

3.7.3.1 Davison's Method

The principle of this method, proposed originally by Davison (1966), is to
neglect eigenvalues of the original system which are farthest from the origin
(the non-dominant modes) and retain only dominant eigenvalues and hence the
dominant time constants of the system. If we consider the solution of the

linearized model derived in Section 3.8,
Cx(t+dt) = ebdty(t) + A (A — IWw(t) (3.7-9)

and let
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A = SAS™ (3.7-10)

where A is the diagonal matrix of eigenvalues

M O...0
0 A

A= (3.7-11)
0 0 . ..\

and S is the corresponding matrix of eigenvectors, the dynamic behavior of the

system is governed by the term

Al(eAdt — 1) Ww(t) = SA-!(eAdt —T)S'Ww(t)

Agdt
e 1 0
Ay
=S SWw(t) (3.7-12)
gl
0 e 1
An

Obviously by neglecting the non-dominant eigenvalues, the dynamic behavior of
the approximate system will be similar to the original system, since the contri-
bution of the unretained modes will only be significant early in the dynamic

response.

Table 3.7-1 shows the system eigenvalues for our full 30th-order linear
state-space representation for Type II (Table 3.4-4) conditions. As shown, the
eigenvalues can be grouped into five distinct groups based on the real parts of

the eigenvalues:
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Group -(Real)
I & 50
11 1-5
111 4-86
v 0.06 - 0.08
Vv 0.01-0.03

Further analysis shows that the fastest modes (Group I) correspond directly to
the gas temperatures at the interior collocation points and those of Groups II
and III correspond to the concentrations. It is evident that, of the 30 modes of
the full linear model (with N = 6), 1B are very fast in comparison to the remain-
ing 12 (by two orders of magnitude or more). Thus direct modal reduction to a
12th-order model using Davison's method should provide good dynamic accu-

racy.

Group Real Part Imaginary Part
-53.49 + 1.93
-52.93 + 6.31
-51.98 +10.48
-5.03 + 5.76
-2.12 +10.38
-1.37 +10.35
- 6.27 + 1.89
- 5.66 + 1.85
-4.34 + 5.88
-0.08 + 0.010
- 0.07 + 0.0358
- 0.08 + 0.074
- 0.033 0.0000
- 0.021 + 0.0011
-0.018 + 0.0009
-0.0186 0.0000

Table 3.7-1

Eigenvalues of Full 30th-Order Linear Model

However by simply neglecting the non-dominant modes of the system, the
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| contribution of these modes is also absent at steady state, thus leading to possi-
ble (usually minor) steady state offset. Several identical modifications {Wilson et
al., 1974) to Davison's original method have been proposed by Davison and Chi-
dambara (Chidambara and Davison, 1967abc; Davison, 1968) and by Fossard
(1970). In these methods, the states of the reduced model are artificially recon-

ditioned to ensure desired steady state behavior.

3.7.3.2 Marshall's Method

Marshall's model reduction technique (Marshall, 1966) differs from
Davison's in that the steady state characteristics of the original system are
retained in the reduced model. Since the response of any element of the state
vector associated with a lérge eigenvalue is much faster than that of elements
associated with thc smaller eigenvalues {or larger time constants), the dynamics
of the non-dominant modes can simply be neglected.® This is equivalent to
approximating the response of the faster modes by an instantaneous step
change. If the fast modes in the methanation model are taken as the gas tem-
peratures and the CO and CO; concentrations, Marshall's procedure is a rigorous
mathematical reduction identical to the assumptions of quasi steady state for
the concentrations and negligible energy accumulation in the gas phase. An
important advantage of Marshall's method over Davison's method is that the
reduced-order mode! has the same steady state as the high-order model, since
the time derivatives are identically zero for all state variables at steady state.
However, the retained modes may no longer optimally represent the dynamic

behavior.

Table 3.7-1 shows that, for the methanation reactor model, the dynamic

8. Le., their time derivatives are set equal to zero.
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' response of the gas temperatures and CO and CO; concentrations should be

much faster (by two orders of magnitude) than the response of the catalyst and

thermal well temperatures. This prediction is verified in the dynamic responses

shown in Figures 3.7-7 and 3.7-8 and the previous analysis of the thermal and

concentration wave velocities.

Thus the state vector

- T
x‘-{@w@m-@wwm] K

is partitioned into

('3,‘ &
X = 8, X2 = ¥y
Yz
The state-space representation
x = Ax + Ww

(A, Az Ajg Ay Ay
Agy Agz Ags Ay Acs
where A= |Ag; Agz Asy Agy Ags

Ay Agp Az Ay Ass
(A1 Asz Ass Ass Ass)

can then be partitioned into two sets of equations:

(A); Ass) Az Ay Ay

X, = + +
% Ag; Ags) ™ Ase Ay Ags) ™ ws) ¥

'Am Af\arss1 'Azz Azy Aes‘

=1,..N
f 3
w,
W
and W= Wy
W,
;'5‘

LA

Xp = [Ag Agg|X + [App Ay AgiXe + (Wyw

As1 As3 (Asz Acs Ass)

/

(3.7-13)

(3.7-14)

(3.7-15)

(3.7-186)

(3.7-17)

(3.7-18)

Then we can let Xz = 0 in light of the quasi steady state approximation and the

assumption of negligible energy accumulation in the gas or in light of the
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significant differences in the magnitudes of the eigenvalues for the x; and x;
states and solve for x; as a function of x;. Substituting this result into Equation

(3.7-17) results in a reduced state-space model

il = A’xl +Ww (37"“19)

where the state variables are now the catalyst and thermal well temperatures at

the collocation points and the new matrices A" and W' are simply related to the

original matrices:

(
. |An Asg Az Ay Ais| Acr A
A= e Boo] ™ (A Aoy Ags)? A Ass (8.7-20)
As1 Ass
W,
w Az A, A R
w = [w;] - [A;: A: A;:]A;" w, (3.7-21)
l'6
Age Aoy Ags
where A;! = |Aye Ay Ass (3.7-22)
Asz Ass Acs

Of course, this technique does not actually eliminate the states

9&. Y1, and yz,. Instead it retains their steady state eflects and relates their
dynamic behaviour to the g‘as and thermal well temperatures. The reduced
model is then of order 2N, or of only 1Rth-order for N=6. Similarly, we could con-

sider each assumption independently. If we retain the state variables @,, the

model is of 3Nth-order.

3.7.4 Discussion of Reduced Model

The reduced-order model obtained using Marshall's method is an accurate

2Nth-order approximation to the original 5Nth-order model. Although the
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resulting model is equivalent to simply making the common assumptions of
negligible energy accumulation in the gas and quasi steady state for the concen-
trations, we have provided a rigorous mathematical approach to these assump-
tions based on the eigenstructure analysis and have provided an accurate
means of evaluating their applicability. The steady state problems associated
with Davison's method are eliminated, and the potential dynamic disagreement
between the original and reduced models is minimal for the methanation reac-

tor as verified by simulations.

Simulations using this reduced model show a reduction in computation
time, along with storage space, without any significant loss in accuracy. Table
3.7-2 shows the simulation times for various simulations using various models
and solution techniques with N = 6. All computer programs are documented in
Appendix 4. The prograrmm RD1MOD simulates the 2Nth-order model using ana-
lytic solution of the equations, and RD2MOD simulates an 3Nth-order model
where only the concentration dynamics have been neglected. Although the solu-
tion time advantages between the analytic solutions of the reduced models and
the full linear model seem to be minimal, these analyses were conducted with a
constant control and disturbance vector w over the periods of disturbance or
simulation. If these values change frequently as may be the case in practice, the

solution time savings for the reduced models will be increased.

Figures 3.7-9 and 3.7-10 show comparisons of the transient gas and solid
axial temperature profiles for a step input change using the full model and the
reduced models. The figures show negligible differences between the profiles at
times as low as ten seconds. Concentration results (not shown) show even
smaller discrepancies between the profiles. Additional simulations are not
shown since all attempted simulations showed minimal differences between the

solutions using the different linear models. Thus for the methanation system,
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. . Model
Simulation NLNMOD | LINMOD | ANAMOD | RD2MOD | RD1MOD

To+593°K | .., _ . . .
Step o007 | 25424 | 1254 00:36 00:24 00:22
Step Ty 593°K | 3:14:.41 | 18:04 00:34 00:22 00:20
Start-up 4:43:28 28:39 00:29 00:17 00:14
Disturbance T,-»B802°K En. . , . .
(50 secanas)  xas0g7y | 45842 | 2310 00:31 00:20 00:17

Table 3.7-2
Comparitive Simulation Times of Models

Marshall's model redliction provides an accurate 2Nth-order reduced state-

space representation of the original 5Nth-order linear model.

The excellent dynamic agreement between the original and reduced models
(Figures 3.7-9 and 3.7-10) can be explained by the eigenstructure of the reduced
system. As shown in Figure 3.7-11, the eigenvalues of the reduced model are
nearly identical (within 1%) to the dominant eigenvalues of the original model.
Thus the dynamic behavior is nearly identical to that which would result from
modal reduction using Davison's method. The advantage then of Marshall's
modal reduction for the methanation reactor model is that some contribution
of the 'fast’ modes is still retained in the algebraic equations that result from
the assumptions. These contributions lead to small deviations in the remaining
eigenvalues and eliminate steady state discrepancies without seriously affecting

the dynamic responses.

Since the 2Nth-order reduced model based on Marshall's reduction pro-
cedure accurately simulates the performance of the full linear model for a large
range of input changes and disturbances, there is little or no m;:entive to
attempt other techniques. If however further model reduction is desired or
necessary for control studies, more powerful reduction techniques would be

needed since the eigenvalues of the Nth-order model are of similar magnitudes
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~ and simple elimination of the larger ones may lead to major errors.

One possible procedure for further reduction would be Litz's modal reduc-
tion described in detail by Bonvin (1980). Litz proposed that the contribution of
the non-dominant modes be taken as a linear combination of the dominant
modes rather than simply being neglected. The appropriate linear combination
is determined in order to minimize the error between the responses of the non-
dominant modes in the original and in the reduced-order models. Bonvin (1980)
further explains that the eigenvalues of the reduce model are identical to the
dominant eigenvalues of the original model, but the eigenvectors are given a new
optimal orientation. Bonvin uses this technique to reduce a 24th-order model
for a tubular autothermal reactor to a Sth-order reduced model. He concludes

that Litz's procedure is superior to all other modal approaches.
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Chapter 4

RESULTS AND DISCUSSION

OF FUTURE EXPERIMENTAL STUDIES
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4.1 CONCLUSIONS OF CURRENT ANALYSIS

This thesis provides the basis for a concerted theoretical and experimental
program in multivariable process control structure design for packed bed chem-
ical reactors by presenting an in-depth control analysis of a practical, multivari-
able, distributed parameter system-—the heat conduction problem defined by the
simple diffusion equation-—using both frequency-domain and time-domain anal-
yses and the formulation, numerical solution, and analysis of a detailed model
for packed bed reactors, along with reduction to a low-order state-space

representation suitable for on-line process control.

The first portion of this work presented in Chapter 2 centers on the control
aspects of a one-dimensional, two-input heat conduction system. In particular,
an analysis of a number of multivariable process control strategies, including
non-interacting control, optimal control, inverse Nyquist array, and characteris-
tic locus techniques, is carried out theoretically. The significant results of this
study are discussed in Section 2.8 and only the major conclusions are outlined

here.

The study of the heat conduction system allowed for a careful study of vari-
ous control design techniques. Of all of the ones considered, the characteristic
locus procedure seems to have the most potential for this particular distributed
parameter system. This scheme provides a systematic, computer-aided design
strategy in terms’ of high and low frequency compensation that leads to an
excellent, proportional-integral controller. The study also considers the relation
between measurement structure and control system design. The choice of
measurements and their locations significantly affects the optimal control
design and the uséfulness of the different design techniques. The importance of

'extra’ measurements—-those in excess of the number required in the feedback
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loop~—for improving the systemn response is also shown. The additional informa-
tion on the process contained in these measurements can be used in a variety of
ways, including reducing the interaction in the control system through the tech-
nique of inner-loop decoupling which is proposed in this work. Finally, the
analysis of the heat conduction problem clearly shows the importance of an
accurate process model and the necessity of model reduction to a low-order

state-space representation for control structure design and implementation.

Based on these preliminary results, the second portion of this study pro-
vides a detailed mathematical modeling analysis of packed bed catalytic reac-
tors that significantly extends previous studies in the detail of the model and in
the consideration of all aspects of the model development and reduction to a
state-space control representation. Explicit consideration of common
simplifications is then presented, and the validity of these assumptions is
assessed in light of their effects and overall benefits. The general view that
modeling simplifications are desired since they lead to a reduction in numerical
solution effort is contested, and it is shown that many simplifications are no
longer necessary with today's advanced computational capabilities. A unified
approach to dynamic reactor modeling is developed and its importance in the
accurate description of dynamic and steady state reactor behavior, in the inves-
tigation of reactor start-up or the effects of process disturbances, and in the
development of an accurate reduced state-space model for the design of control
structures to stabilize the reactor under various disturbances or to provide

optimal system recovery from input changes is shown.

The basic results from this modeling study can be broken down into four

major classifications which are now discussed in detail.
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Dynamic Modeling

A detailed two-dimensional, two-phase dynamic mathematical
representation of packed bed chemical reactors is developed without any
major a priori simplifications. The model accurately accounts for multi-
ple chemical reactions, axial and radial diffusion of mass and energy,
property variations due to temperature, pressure, and mole changes, and
an axial thermal well. Detailed analysis shows the importance of the
heterogeneous analysis for highly exothermic reaction systems, espe-
cially for control applications due to significant temperature differences
between the gas and catalyst as a result of differences in the heat flow
through each of the phases radially to the cooling jacket. Although a
homogeneous analysis may be satisfactory for adiabatic or steady state
analyses, the equivalent reduction in system dimensionality and thus

solution time is available through other somewhat milder assumptions.

Radial temperature gradients were found to be important, although
radial concentration gradients were shown to be quite small. Radial
energy diffusion must be retained in the model since this is the basic
mechanism for transfer of energy from the reactor bed to the outer cool-
ing jacket. Although radial and axial mass diffusion are of minor impor-
tance if the aspect ratios for the reactor are sufficient, their inclusion in
the detailed mathematical model does not increase its dimensionality.
’Finally. axial thermal diffusion should not be neglected since this
assumption can lead to inaccuracies and since eliminating the axial ther-
mal diffusion terms may significantly increase numerical solution time or

may lead to instabilities in the solution procedure.
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Numerical Solution

The orthogonal collocation technique of reducing the partial
differential equations to ordinary differential equations is the best avail-
able method except for conditions with sharp profiles or abrupt profile
changes. In such cases, the orthogonal collocation on finite elements
procedure is recommended. This thesis provides the first analysis of a
packed bed reactor using orthogonal collocation on finite elements.
These techniques are far superior to finite difference procedures since
only a fraction of the number of grid points is necessary, leading to a
model of much smaller dimensionality. The number of collocation points
necessary for accurate representation of the profiles has a major effect
on the dimensionality of the resulting system of ordinary differential
equations and thus on the numerical solution time. Simulations and
eigenvalue analyses using the model developed in this work show that as
few as six axial collocation points may be satisfactory for packed bed
analyses. Further analysis shows that, if the order of the approximating
polynomial is increased beyond that necessary for accurate representa-
tion of the solution, oscillations of the polynomials between the colloca-
tion points can become quite large. Since these polynomials are used for
approximating derivatives in the partial differential equations, these

oscillations or ‘rippling’ can be very detrimental to the solution.

Far fewer collocation points are required for the radial than for the
axial profiles. The radial temperature profiles are accurately modeled by
a quadratic function. Thus with the boundary points at the thermal well
and the outer cooling wall, only one interior radial collocation point is

" needed for the thermal profiles. However, using one radial collocation

point for the radial concentration profiles inherently assumes a uniform
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radial concentration profile due to the zero flux boundary conditions.
Although assuming a flat radial concentration profile is not identical to a
cubic or quartic representation, differences are extremely small and
definitely negligible in light of the increased system dimensionality of a

higher-order representation.

In addition to the comparatively small dimensionality of the result-
ing ordinary differential equation system, other important benefits of the
orthogonal collocation scheme are that the collocation points and trial
functions are selected automatically and optimally and that the solutions
arc derived in terms of their values at the collocation points and at these
points the selution is exact. One of the drawbacks of the orthogonal col-
location on finite elements technique is the non-trivial problem of

optimal selection of the number and position of the elements.

Control Model

An accurate stale-space representation including all expected con-
trol and disturbance terms is obtained through analytic linearization of
the reaction rate expressions, algebraic equations, and ordinary
differential equations ébtainad from the original mathematical model of
the packed bed reactor. Simple adjustments to this representation allow
specific control considerations. Simulations of this linearized state-space
model show it to be very accurate even at conditions relatively far from
the steady state around which the linearization was performed. For sus-
tained step input changes, relinearization around the new steady state is
probably desired. With the accuracy of this linearized model and the
significant reduction in solution time, there is relatively little incentive

for retaining the nonlinear representation in most considerations.
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Two techniques were found to be effective in reducing the dimen-
sionality of the linear state-space representation for on-line control.
Both procedures provided accurate model reduction to a 2Nth-order
model.! Direct modal reduction using Davison's (1968) procedure of
retaining only the dominant modes is satisfactory for the packed bed
model but can lead to possible steady state offset. Marshall's (19686) tech-
nique retains the steady state characteristics by neglecting the dynamics
of the non-dominant modes. The 2Nth-order model developed with this
procedure retains the catalyst and thermal well dynamics and accurately
simulates the performance of the full linear model for a large range of

input changes and disturbances.

Packed Bed Reactor Behavior

The dynamic behavior of the packed bed reactor is dominated by the
catalyst and thermal well due to their large thermal capacitance relative
to the gas phase. The importance of the thermal well is minimal at
steady state in terms of conversion within the reactor. Its significant
effect is in the dynamics of the reactor. It does have a slight effect on the

steady state temperature profiles by conducting heat axially.

Finally, simulations showed that radial temperature gradients are
significant and that a 'hot spot’ develops in the bed under conditions of
rapid convérsion. Furthermore, classical problems with ‘wrong-way'
behavior where increases in the inlet gas temperature produce a decrease
in the outlet gas temperature are predicted. Obviously this can lead to
significant control difficulties if the control design is based on the outlet

gas temperature.

1. Where N is the number of axial collocation points.
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Thus the major development effort in this work has been the careful
mathematical modeling of the experimental reactor system and detailed
analysis of modeling assumptions, numerical solution techniques, pararmeter
sensitivity, model linearization, and model reduction using kinetic expressions
based on literature studies and preliminary experimentation and heat transfer
values obtained from standard correlations or published results. Other parame-
ters are calculated directly [rom the physical properties of the gas and reactor
system. Using these parameters, significant contributions in the area of packed
bed reactor modeling and control model development have been possible, along
with insight into expected operational and optimization difficulties of the
laboratory experimental reactor system. The generality of the model developed
in this analysis allows its use for various packed bed chemical reactors including

those under adiabatic operation and those without an axial thermal well.

As mentioned previously, this study really provides a basis and a unified

approach to packed bed modeling. An outline of this approach is as follows:

- The initial model development for dynamic and steady state analysis of
packed bed reactors should include detailed consideration of all major
physical and chemical phenomena within the system based on general
mass and energy balances. With current numerical techniques, minimal a
pricri simplifications are needed. Include all dispersion effects, parameter
variations due to temperature, pressure and mole changes, and axial varia-
tions in fluid velocity. The model should be heterogeneous and include
both the radial and axial analysis. All potential reactions should be
included in the model. If a thermal well is used for temperature measure-

ments, its analysis should also be included.

» Nondimensionalize the equations with respect to the inlet steady state con-
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ditions and the characteristic time for the reactor.

« Apply radial orthogonal collocation with one interior collocation point.

Then apply axial collocation using Lagrangian polynomials of degree N.2

» Use standard numerical techniques to simulate the behavior of this full
nonlinear system of ordinary diflerential equations. Investigate the
predicted behavior of the packed bed system. Check the applicability of

the assumptions of negligible axial and radial mass diffusion.

» linearize the reaction rate expressions, the algebraic equations, and the
ordinary differential equations around the steady state. Replace all vari-
ables with deviation variables. This should result in a general state-space
representation. Compare simulations of the linear model to the original

nonlinear model.

« Consider the optimal model dimensionality by comparing simulations with
differing number of axial collocation points and by plotting the behavior of

the major eigenvalues as a function of the number of collocation points.

» Reduce the dimensionality of the model if necessary using Davison's (1966)

or Marshall's (1968) modal technique.

« Finally, estimate the model parameters from experiments and compare
the model simulations to empirical results. Incorporate nonuniform radial
velocity profiles and more detailed pressure relations into the model if

necessary.

In addition to the analyses of control model development, the current stu-
dies provide the mathematical tools necessary to develop and study control

structures for the reactor system in our laboratory. These studies are currently

2. U sharp profiles or abrupt changes in the proflles are expected, use orthogonal collocation on
finite elements instead.
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in progress. The remainder of this chapter briefly outlines some of the experi-
mental work in progress along with the applications for the models developed in

this work.
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4.2 PARAMETER ESTIMATION AND MODEL VERIFICATION

Before control studies can be performed using the control model developed
in this work and before the implementation of these feedback control struc-
tures on the experimental reactor system, careful parameter estimation is
necessary. Although many parameters necessary for the mathematical model
can be calculated directly from physical considerations, the reaction and heat
transfer parameters must be measured directly for the experimental system. If
we neglect the radial and axial mass dispersion and the gas/solid heat transfer
in the axial boundary conditions and assume similar heat transfer coefficients
between the gas and solid and the reactor wall at both sides of the annulus (r =
Ry and r = R,;), the resulting dimensionless parameters in the model are shown
in Table 4.2-1. We can then divide the necessary input parameters for the model
into groups as shown in Table 4.2-2. Of course in addition to these parameters,
we do need to specify the operating conditions such as inlet concentrations,

pressures, cooling fluid temperature and inlet gas temperalure.

The physical reactor parameters are measured for the experimental reac-
tion system. The void fraction must be empirically determined for the specific
catalyst used in the experiments due to differences in catalyst crushing. The
catalyst for the preliminary experiments is standard Girdler G-85 methanation
catalyst, and the thermal well is stainless steel (Type 304). Their physical prop-
erties are readily available as discussed in Section 3.4.1. Data are also available
for the methanation and steam-shift reactions for heats of reaction and equili-
brium constants. As discussed in Section 3.4.1, linear regression of the data is
performed over the expected temperature ranges of operation to determine
linear temperature relationships for the heats of reaction and relationships

based on van't Heff's equation for the equilibrium constants.
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Aspect Ratios

axial n=1L/4d, radial m=R,/d, overall a=1L/R,
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Dimensionless Parameters
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Reactor £ L Rg R,
Calalyst Cp, P kg dp
Thermal Well Cp, Pr ky

Ugg U Usy Pey Peg
Heat Transfer - Ars A Aps
Heat of Reaction AHy, AHy, AHs, AHg,
Equilibrium Constant Ko  Kp,, Koo Kpo
Reaction Kinetics koy B K i

kos EaS fl f2

Table 4.2-2

Input Parameters for the Mathematical Model

The remaining parameters for the mgthematical description of the experi-
mental system are the heat transfer variables and the reaction kinetics. These
remaining parameters need to be estimated from preliminary experiments for
the specific catalyst and reactor bed. The strategy for this parameter estima-
tion is shown in Figure 4.2-1. Due to the large number of parameters necessary
for the mathematical description of the experimental system, simultaneous esti-
mation of all parameters from preliminary experiments in the methanation

reactor is not feasible. Instead the estimation is split into three stages. The
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 kinetic parameters (and the actual kinetic expression) are first estimated using
a specially constructed kinetics reactor. This reactor system and the determi-
nation of the kinetic expression are discussed by Strand (1984). Preliminary
results based on limited experiments were discussed earlier, along with their
effect on the numerical solution of the mathematical model. The rate was found
to be very fast and highly temperature dependent, leading to potential
difficulties in numerical simulations due to very steep axial temperature and
concentration profiles and complete conversion early in the reactor bed. These
difficulties can be reduced by using the orthogonal collocation on finite ele-
ments solution technique rather than simple orthogonal collocation. Further
experimentation is needed for accurate determination of the kinetics expres-
sions, especially in terms of reaction reversibility, termperature dependence, and

the importance of the steam-shift reaction.

The heat transfer parameters can first be estimated using experiments
without reaction in the bed. These can be performed by measuring temperature
responses in the thermal well, in the exit gas, and in the cooling fluid to input
(inlet gas temperature, cooling fluid temperature, or gas velocity) disturbances

or step changes.

Finally, all estimated parameters, except those that are found to be highly
insensitive, can be updated from experiments in the methanation reactor
operating under desired conditions. This parameter estimation is currently in

progress.

A sensitivity analysis was also performed to evaluate how accurately some
of the parameters must be determined. This analysis should be used in conjunc-
tion with a correiation analysis of the model parameters. The major heat

transfer parameters were increased and decreased by twenty percent individu-



ally, and the kinetic parameters were changed by ten percent. The dynamic sen-
sitivity is evaluated by the effect of the changes on the major eigenvalues;

whereas, the steady state sensitivity is evaluated by the effect of the changes on
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the steady state profiles and the outlet temperatures and concentrations.

Table 4.2-3 shows results for the standard Type 1I (Table 3.4-5) conditions.
The major parameters affecting the dynamic behavior of the system are those
related to the thermal well, thus verifying earlier conclusions as to the impor-

tance of the well on the dynamics of the system. For steady state behavior, the

methanation reaction parameters are of most importance.

Parameter Sensitivity

DYNAMIC STEADY STATE
-Real A; -Real Ap Tg Xcoa,
+207% -20% +207% -20% +20% -~207% | +20% -207%
Ug | 0.0185 0.0185 | 0.0172 '0.0172 || 609 609 | 0.0370 0.0368
Us 0.0167 0.0164 | 0.0173 0.0170 | 609 609 | 0.0369 0.0389
Usg 0.0133 0.0141 || 609. 809. | 0.0369 0.0369
Ags || 0.0185 0.0165 | 0.0172 0.0172 | 609. 809. { 0.0369 0.0369
Agmg || 0.01856 0.0165 | 0.0172 0.0172 | 608. 6809. | 0.0360 0.0369
Ause || 0.0184 00167 | 0.0170 0.0174 || 809. 610. | 0.0369 0.0368
Aug || 0.0155 0.0177 | 0.0162 0.0183 § 605. 615. | 0.0373 0.0364
Pey, || 0.0186 0.0185 | 0.0172 0.0172 {| 609. 809. | 0.0369 0.03689
Pey, || 0.0167 00164 | 0.0173  0.0170 j 616. 602. | 0.0383 0.0378
+107% ~10% +10% -10% +10% ~-10% | +10% -10%
kon 0.0165 0.0165 | 0.0172 0.0172 || 609. 809. | 0.0368 0.0369
kg, | 0.0165 0.0165 | 0.0172 0.0172 | 612. 606. | 0.0347 0.0392
K, 0.0165 0.0165 | 0.0172 0.0172 || 809. 610. | 0.03756 0.0362
Ko 0.0185 0.0185 | 0.0172 608. 611. | 0.0881 0.0355
E.u || 0.0166 0.0166 | 0.0173 0.0171 || 595. 822. | 0.0473 0.0223
Eas 0.0165 0.0165 | 0.0172 0.0172 || 809. 609. | 0.0371 0.0358
Table 4.2-3
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4.3 CONTROL NODEL CONFIGURATION

In this section, we consider reconfiguring the general control model for a
specific multivariable control structure. The control configuration shown in Fig-
ure 4.3-1 is studied for a single pass configuration of the reactor system. Note
that we have also neglected the feed-effluent heat exchanger in this preliminary
analysis, Temperature measurements are taken at M points within the reactor
bed (using thermocouples within the thermal well). Let us consider the control
of the gas temperature at the reactor outlet and at an internal point (possibly
the 'hot spot’) using the inlet process stream flowrate and the inlet gas tempera-
ture as the control variables and with expected disturbances in the inlet CO con-
centration and the cooling wall temperature. In our experimental system, the
control of the process flowrate is really set point control of the three mass con-
trollers with the ratio of hydrogen to carbon monoxide being kept nearly con-
stant (at about 3 to 1). The control of the inlet gas temperature possibly
involves a PID scheme with the overall control network controlling the inlet gas
temperature setpoint and a local controller on the preheater controlling the

actual gas temperature.
Consider the reduced state-space model developed earlier
x =A% +Ww (4.3-1)
where

T
x = [e,l,,...e,N, @,,1....,9,‘“]

T (4.3-2)
w= [@,,. Ve, 8, yi. y3. y}vlgO» Yﬁg‘ YEHJ

and the A and W matrices are defined as before, Equations (3.7-20) and (3.7-21),
and all variables are deviation variables. The variables in the original control

and disturbance vector w then need to be related to the actual control or distur-
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bance variables. 8, and y{ are disturbance variables, and y§, is directly related
to yf by y8, = 7y where 7 usually equals about 3. This is analogous to a process

where the CO/Hp stream comes {rom some other process upstream and the
ratio between the two remains nearly constant. The variables yg, yﬁzo. and y& /
are not used as either control or disturbance variables in this analysis. The inlet
gas temperature @, is an input variable or is related to the heat to the

preheater Qp. Finally, the gas velocity ug, is directly related to the input flowrate
and gas temperature:

- FP
Yo P;o""(R? - RE)e

{4.3-3)

where the variables in this equation are dimensional. After nondimensionaliza-

tion,
Fp
u,, = = 4.3-4
0= oo (4.3-4)
or in terms of the input variables
M, 8,F
= B 0P
Y T 28 267R&y? (4.55)
YXCoY1
and after linearization
ug, ¥ ofyp + aBy + B(REyXCO°)yP — 286 (4.3-6)
¥ -
where a= % — g= Mww 3 (4.3-7)
28-28y%& (2B—R6v%&)
Thus the original state-space representation is reconfigured to the form
X = Ax + Bu + Dd (4.3-8)

where \1=[F‘p GQ]T d={®w yf (4.3-9)
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and all variables are nondimensional and are deviation variables. If the original
control and disturbance matrix W was defined as

w-= [wl. W W W, W W, W, W) (4.3-10)
then the B and D matrices are given by

B= [a'z awgwa]

4.3-11
D=W,  WoryW,+B(28yRE)W,] (43-11)

Finally we need to consider the measurement structure. For measure-

ments at M points within the thermal well,
T
y=[0, .8 (4.3-12)

where 8; is the dimensionless temperature of the thermal well at point z;. Since

+1
Bu(2.t) = }; 84(O)Li(z;) (4.3-13)
and
By =8¢
1 (4’.3'14)
Bixi = Ry ‘21 Ani148x + AN 080

if we let the temperature of the thermal well at z = 0 equal the inlet gas tem-

perature, the measurement relationship in terms of deviation variables is
y=Cx+Fa (4.3-14)
where

C= [Ouny L]

D= [o.llxl le] (4.3-15)
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AN+1,N

1
Li(z) ~ AN‘—ﬂi’"an(Zl) oo Un(Zy) = INn(z1)
+1 N+1 +1,N+1
Ill = . B . (4{»3“16)
An+y, Ay
Lz — () - () - ety (2)
ANM,NM AN+1.N+1 ]

ANtio
Lo(zy) - mlmx(zx)

o(zy) — 0y ()

+1.N+1 }

Thus we have taken the general state-space representation described by
Equation (4.3-1) and reconfigured it to the appropriate control model for the
particular structure of interest. Consider the somewhat simpler control strue-
ture with only one manipulated variable, the inlet gas temperature, to simplify
the following discussion. The reduction of the general state-space representa-
tion to the specific control model is similar to the above analysis. If we then
c'onsider one measurement at ¢ = 0.3, the B and C matrices for standard Type II

(Table 3.4-5) with N = 7 are
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0.001 o [
~0.00008 0
0.00002 0
-0.00001 0
0.000008 0
~0.000009 0
0.000009 | oo

B =1 2218 C = ]oo018

—5.228 —0.020
2 726 1.003
~1.733 0.014

1.254 ~0.007
-0.970 0.005
0.903 | ~0.003|

This example shows one of the potential drawbacks of the orthogonal collo-
cation procedure for reducing the partial differential equations to ordinary
differential equations. The input matrix B multiplies the input by the appropri-
ate proportionality constants to indicate Lthe direct efTfect of an input change on
the state variables. From physical considerations, it is known that the only tem-
peratures within the reactor to be affected immediately by the inlet gas tem-
perature are those at the bed entrance. However as shown by the above B
matrix, all state variables (catalyst bed and thermal well temperatures) are
predicted by the model to be immediately afTfected as a consequence of the con-
tinuous nature of the polynomial approximations used along the length of the
bed. Of course, the major effect of an input disturbance is still to the state vari-
ables closest to the bed entrance. Thus, instantaneous changes or sharp gra-
dients moving through the bed cannot be adequately represented by these poly-
nomial functions. Note that the effect on the thermal well temperatures is
extremely high due to the assumption that the thermal well at the entrance of
the bed is in equilibrium with the inlet gas temperature. A simple change in this

boundary condition can reduce this effect if needed.
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The C matrix further shows the relationship between the measﬁrement at
¢=0.3 and the state variables. The coefficients in the C matrix show the relative
effect of each state variable on the measurement. As expected, the dominant
effect is of the thermal well temperature at the third collocation point (at

¢=0.297) since this is closest to the measurement location.

Although we have considered only two relatively simple examples, similar
analysis on proposed control structures will be necessary to develop the
appropriate control model. This analysis further provides some insight into the

behavior of the experimental system and of the proposed control structure.
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4.4 CONTROL SYSTEM DESIGN

As discussed earlier, this thesis provides a basis for a concerted theoretical
and experimental effort in multivariable process control structure design for
packed bed chemical reactors. Such a control study must center around the

basic elements of the control structure;
» the measured variables,
« the manipulated or control variables,

» the control configuration connecting the measured and manipulated

variables, and

» the control logic determining the eflects of the measurements on the
values of the manipulated variables.

In an experimental system such as our methanation reactor, these decisions are
by no means easy. It must be determined how to use the large number of poten-
tial measurements effectively. Are they all to be used? Or what subset is
optimum? In our experimental system. the potential measurements include
temperatures at up to 24 axial positions within the thermal well. Temperature
measurements are also available elsewhere throughout the reactor system and
within the cooling jacket and Dowtherm condenser. These latter measurements
probably are not too useful for the control structure but do provide additional
information on the operation of the process and can signal problems such as
lack of effective flow through the cooling jacket. Another potentially important
control measurement is the effluent CO, COp, and CH, concentrations. Currently
these are only available using a gas chromatograph with a delay of up to three
or four minutes. Since this is comparable to or slightly longer than the charac-
teristic time constants of the reactor, these concentration measurements may

be of little use in dynamic control but may be useful to update the model
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parameters periodically. Because effluent concentration measurements are
generally available in industrial processes and because they may significantly
affect control performance, it is planned that an on-line CO/CO; analyzer will be

added to the process.

The experimental system also has various possible control or manipulated
variables. These include the heat to the preheater, the flowrate of the process
stream, the bypass around the preheater and feed-effluent heat exchanger, the
ratio of the Hp to CO in the inlet process stream, and the recycle ratio. The inlet
concentrations of other species and the cooling fluid temperature could also be
manipulated if desired. Again a number of decisions must be made to select the

optimal subset of manipulated variables.

Even after these questions have been answered, careful consideration of the
control configuration and control logic is needed to design the control system to
handle the large number of potential disturbances (e.g., inlet CO concentration,
cooling fluid temperature, flowrates) and to meet the control objectives. For
our experimental system, these objectives may include maintaining product
quality, minimizing energy usage, minimizing hydrogen usage, and limiting tem-

perature excursions within the bed.

The first step in any proposed control research on a new experimental sys-
tem must be the application of existing control techniques to the system to
assess their perfofmance‘ Once this has been attempted, an important area of
concern that should be studied is that of measurement structures in industrial
systems. With all of the possible measured variables, decisions must be made as
to the optimal measurement structure. However, since the measurements are
such an '1mportan£ part of the overall control system, the measurement struc-

ture cannot be chosen independently but must depend on the choice of manipu-
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lated variables, the control configuration, the control logic, and even f.he control
objectives. Although various studies have been published on the measurement
problem in an open-loop framework (Aidarous et al, 1975, Amouroux et al.,
1978; Kumar and Seinfeld, 197Bab), the measurement location problem has
been virtually ignored with respect to closed-loop behavior. Some of the work
presented in Chapter 2 of this thesis provides a basis for research on the
interaction between measurements and control structure. This analysis should
be extended to the packed bed reactor with a detailed investigation of the
approach to optimal measurement selection in a closed-loop control

configuration.

Another potential control technique that should be considered is the evolu-
tionary control strﬁcture. This should not be confused with the self-tuning
regulator where the controller parameters are recomputed based on updated
values of the model parameters. What is proposed here is an extension to the
work by Alvarcz et al. (1981). They investigated the feasibility of a variable
measurement structure for a tubular reactor in which the best set of tempera-
ture sensors along the length of the reactor is selected in response to changes
in the operating conditions. Moreover, the actual structure of the control sys-
tem may need to be altered in response to changes in the characteristics of the
process during operation. The packed bed reactor system developed by Strand
(1984) and modeled in this thesis is an excellent system for the study of such
evolutionary structures due to the large number of available measurements and
controls, the fully automated nature of the system, and the substantial variance
in the operating profiles. The mathematical model developed in this thesis
should allow considerable study of the evolutionary control problem prior to

actual experimantal implementation.
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Finally, the control of the packed bed reactor operating with energy and
product recycle should be studied. Such systems are common in industry but

have generally been neglected in dynamic and control analyses.
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APPENDICES
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APPENDIX 1

COMPUTER PROGRAMS FOR HEAT CONDUCTION PROBLEM

Many computer programs were written for the analysis of the heat conduc-
tion problem for determining root-loci, inverse Nyquist plots, and characteristic
loci, for designing control strategies, for producing the necessary computer
graphics, and for simulating the behavior of the heat conduction system. Since
these programs are not unique but rather are based directly on published
theoretical works by various authors, the computer programs are not all dupli-
cated in this thesis. Rather they remain on the Caltech computer in the direc-

tory [RRK.HEAT].

However, two programs are presented in this appendix due to their impor-
tance in the characteristic locus control design for the heat conduction system:.
The first program performs the frame alignment for the design of the high fre-
quency compensator. At high frequencies, it is desirable to reduce the misalign-
ment angles between the compensated system's characteristic direction set and
the standard basis vectors. This can be accomplished by designing a real com-
pensator Ky that approximates the complex plane of Gy'(jw) at some high fre-
quency wy. Program ALIH, listed in Table Al-1, was written for this purpose and

uses the routine ALIGN to perform the actual alignment.

At low frequencies, the encirclement criterion should be satisfied and the
moduli of the characteristic loci should be large. This can be accomplished by
manipulating the loci with an appropriate approximately commutative con-
troller K, where K; = Al (s)B with A and B being the real frame matrices that
approximate the complex frame of the eigenvector matrix and dual eigenvector

matrix, respectively. Again the routine ALIGN is incorporated into a program,
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ALIL, for this purpose. This px;'ograrn is listed in Table A1-2. The elements of the
diagonal matrix I'y(s) are then chosen on the assumption that g = gik;, where g
and g; are the eigenvalues of the compensated and uncompensated system and
k; are the elements of I'y(s). The compensator Ky, is thus used to insure stability

and integrity and to adjust the gains at low frequency to reduce interaction.
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C PERFORMS THE FRAME ALIGNMENT FOR DESIGN OF THE HIGH FREQUENCY COMPENSATOR

COMPLEX S,DEL,DET,B(58,2),0(54,2)
DIMENSION Y{2,2),2¢2,2),EVI(Z),EVRIZ),IND(2),C(2,2),012,2)
DATA P1 /3.141592654/

W= 1388,
READ(5,3)XX1,XX2,W
SQ=SQRT(2.)

C SET uP Q(s)

AA=SQ*COS(PI*XX1)
BB=SQ*COS(2.*PI*XX1)
CC=SR*COS(PI*XX2)
DD=SQ*COS{2.*PI*XX2)
S=CMPLX(H.08,W)

CALL QSET(S,0.AA,B8,CC,DD)
CALL IDENT(B,5#,2,1.8)

CALL ALIGN(Q,Y,2)
PRINT &, W, YE1,1),Y01,2),¥€2,1),Y(2,2)
DO 188 I=],4
CALL ZERO1{EVR,2)
CALL ZEROI1(EVI,2)
CALL ZEROLIUIND,2)
CALL ZERO2(C,2,2)
CALL 2ER0Z(D,2,2)
Yiel.
YZ=1.
IFCI .EQ. 2 .OR. 1 ,EQ. 4)Y]m-Y]
IFCI LEQ. 3 LOR. T .EQ. 4)V2=av¥2
ZU1,1)mYL* ({1, +50"AA+SO*BBIYY(1,1) + (1.~-SQ*AA+SQ*BB)I*Y(2,1))
Z(1,2)=Y2%((1.+SQ"AA+SQ"BB)I*Y(1,2) + (1.~SQAA+SQ*BB)*Y{(2,2))
Z(2,1)aY1*((1.+SQ*CC+SQA™DDI*Y(1,1) + (1.~SQ*CC+SQ*DD)I*Y(2,1))
Z12,2)=Y2%((1.+8Q*CC+SQ"DD)I*Y(1,2) + (1.-SQ*CC+SQ*DD)I*Y(2,2))
CALL EIGENP(2,2,2,EVR,EV!,C,D,IND)
PRINT 2, Y1,Y2,EVR{1),EVI(1),EVR(2),EVI(2)
¥/ CONTINUE
STOP
1 FORMAT(1H1,/////7/5X, "FREQUENCY ="' Fi8.4,/////28X, "MATRIX KH",
d 6X,E18.3,4X,E10.3/34X ,E18.3,.4X,E18.3,////7//)
2 FORMATU1AX, Y]l =" F6.,1,3X,"Y2 =" ,F§,]1,6X, EIGENVALUES OF CBKN',
hd 6X,E9.2,3X,E9.2/862X,E9.2,3X,E9.2//7//17)

3 FORMAT(2X,3F5.1)
END

SURROUTINE ALIGN(V.Y .M}
C THIS ROUTINE ALIGNS THE REAL AND COMPLEX EIGENFRAMES

COMPLEX V(5#,2)

DIMENSION Y{(2,2),
- EVIi2),

DATA EPS /1.8E-16

DO 188 I=1,2
DO 188 J=1,2

g.g;.8(2.2).C(Z.Z)'D(Z.Z)yS(Z‘Z).EVR(Z).

Al
INDY
/

IF(M LEQ, 2) AUI,0)=REAL(V(I, J))
IF(M LEQ. 2) BUI,J)IWAIMAG(VII, d))
IF(M LEQ. 1) A{I,J)=REALIVIJ, 1))
IF(M LEQ, 1) BUI,J)=AIMAGIVIJ,1)?
1h8 CONTINUE
Table Al-1

Computer program ALIH
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DO 184 I=]1,2
Le3-1

CALL ZEROI(EVR,2)
CALL ZEROIL(EVI,2)
CALL ZEROL{IND.Z)
DO 181 J=1,2
DO 181 K=1,2

C{J,KImA(T J}*ALL,K) & B(I,.J)*8(],K}
D(J,K)=A{L ,J}*A{L,X) + B(L,J)*B(L,K}
CONT INUE
DET=D(1.)1)*0¢2,2) ~ DU1,2)%D(2,1)
IF(ABSIDET) .LT. EPS)GO TO 58%
S01,1)=(CL1,1)*%0(2,2) - Ct2,1)*D(1,2))/DET
S(1,2)=(C(1,2)*0(2,2) ~ C(2,2)*D(1,2))/DET
$12,1)=(C(2,1)*DC1,1) -~ C(1.,1)*D(2,1))/DET
S{2,2)=1CL2,2)*0(1,1) ~ UL, 2202, 1) I/7DET
CALL ZERO2(C,2.2)
CALL ZERO2(D,2,2)
CALL EIGENP(2,2.5,EVR,EVI,C,D,IND)
IF(EVR(1) ,GE. EVR(2))MN'I
IF(EVR(2) .GT. EVR{1))MMs2
IF(M JEQ. 20 YL, 1)sC(] ,MM)
IF(M LEQ. 2) Y(2,1)=C(2, MM}
IF{M (EQ. 1) Y{I,1)=CU1,MM)
IF(M LEQ, 1} Y(1,2)=C(2,MM)
CONTIMUE
RETURN
PRINT 18, DET
RETURN
FORMATU1H],.3X, "MATRIX IS SINGULAR® 5X.E1N.4)
ND
SUBRQUTINE ZEROI(A. M)
DIMENSION AN}
DO 184 I=i,N
All)=R. 8
RETURN
END
SUBROUTINE ZEROZ(A,N,M}
DIMENSION AN, M)
DO 182 I=1.N
DO 188 J=1.M
AL, 0)=4.8
CONTINUE
RETURN
END
SUBROUTIRE USET(S,Q.A.B.C,D)
COMPLEX Q(58,2),A1(58,2),B1(58,2) .RK(2,2)
COMPLEX S§,DET
DATA Pl /3.141592654/
CALL IDENT(B1.50#.2.1.8)
Q{1,1)e1./8 + SART(Z.)*A/{(S+PI**2) +SQRT(2.)*B/(S+4 *P]**2)
Q{1,2)=1./5 =~ SQRT(2.)*A/(S+PI**2) +SQRT(2.1*B/(S+4.*PI**2)
Q{2,1)=1./8 + SQRTIZ.)I*C/(S+PI**2) +SQRT(2.)*D/{S+4 . *P[ne2)
Q(2,2)=1./S -~ SORT(Z.)I*C/(S+PI**2) +SQRT(2.)*0/(S+4 *P]"*2)
zETURN
ND

SUBROUTINE IDENT(A,N,M,Z)
COMPLEX A(N,M)

At )'CMPLX(Z.' o
AC1,2)=CMPLX(N.¥,0.8)
A(Z.l)-CHPLX(l.l.'.l)
A(2, 2)1=CHMPLX(Z . H.B)
RETURN

END

SUBROUTINE MATMULT(
COMPLEX A(N1,M1),B(
Cl=A{1,1)
ACL, 1)=CL*B{(
Al1,2)1mC1mBI
Cl-A(Z 1)
A2, 11n¢C
A{2,2)1C
RETURN
END

PR

l.
lﬁ

Table Al-1 Continued
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C PERFORMS THE FRAME ALIGNMENT FOR DESIGN OF THE LOW FREQ. COMPENSATOR

COMPLEX S,DEL,DET,X(2,2),0(2,2),B(58,2),V(2),C(2,2),A(50,2)
COMMON XX1,XX2,RH11 ,RHI2,RH21,RH22,RL11,RL12,RL21,RL22,ALPHA
DIMENSION Y(2,2)

LOGICAL*4 WANTX

WANTX=_ TRUE.
READ(5,4) IS ;XI.XXZ sW,ALPHA RH11,RH12,RH21,RH22,RL11,RLE2,RL21,

PRINT &5,W, ALPHA RL11,RL1I2,RH1),RH12,RL21,RL22,RH2L,RH22
CALL IDENT {c,z, 2,1.8)

€ SET upP Q%)

S=CMPLX(F.#, W)
CALL QSET(S,Q)
CALL IDENT (B,5#,2,1.8)

C CALCULATE THE EIGENVALUES AND EIGENVECTORS

CALL EIGENC(2,2,0,C,V,WANTX,X)

X1=CABS(V(1))

X2=CABS(V(2))

PRINT 1, VI1) X1, VI2),X2,X01,3),X01,2),%X(2,1),%(2,2)
IFUIS .EQ. 1)STO P

C NORMALIZE EIGENVECTORS

DEL=CSQRT{X(1,1)%%2 «+ X{2,1)%*2)
DET=CSORTI(X(1,2)%%2 + X(2,2)%*2)
A(1,1)=X(1,1)/DEL
Al],2)Y=X{1,2)/DET
AL2,1)1=X{2,1)/DEL
Al2,2)=X12,2)/0ET

C ALIGN THE REAL AND COMPLEX EIGENFRAMES

LR wN

C THIS

Y /4

181

CALL ALIGN {(A,Y,1)

PRINT 2, Y(1,1), Y(l 2),vt2,1),v(2,2)
CALL CSLECD (A 2 Z.DET.ILL)

CALL ALIGN(B,Y 2

PRINT 3, YU1,1),Y(1,2),¥(2,1),Y(2,2)

STOP
FORMAT(//////!HX 'EIGENVALUES:
20/308X,FB.2," + *,F8.2, '1 (*,F7. 2.')') I/IXJX,
'§§?§?¥ECTORS"'2(135X z«zaax 2(F8, 3, . .F8. 1,
FORMAT(/////2BX . "MATRIX B'.8X . E10.3.4X E10.3/33X,E1 ﬂ LJEIH.3)
FORMAT(/////28X, "MATRIX A ,5X,E18.3,4X E18.3/33X,E1¥ 4X V1S3,
1711118170
FORMAT(12,3F5.1/9F8.3)
FORMAT(IHL,//////,5X%,'FREQUENCY =* F8.4///16X, 'ALPHA =’ F§.1,
END BX,'KL »* ,2F9.3,5X, 'KH »' ,2F%,3/36X,2F9.3,9X,2F9.2)

SUBROUTINE ALIGN(V,Y,M)
ROUTINE ALIGNS THE REAL AND COMPLEX EIGENFRAMES

COMPLEX V(5#8,2)
DIMENSION Y(2,2),A(2,2 .3(2.2).C(Z.Z),D(Z.Z).S(Z.Z)‘EVRKZ).
EVI(Z) INDU

DATA £PS /1.8E-38/
DO 148 Iw1,2

b ALT,J)=REALIVII L))

)} BUI,Q)=AIMAGIVII,I))

) ACILd) (J,1)}
IF{M L EQ., 1) B(I,J) Vig,11)
CONTINUE

00 184 1I=1,2
L=3-1

CALL ZEROI(EVI
CALL ZEROI(EVY
CALL ZEROJ(IM
DO 141 J=1,2
DO 1#1 K=1,2

J

J

e X
. .o«
NN
-

ClJ.K)=sA(1,
DX, KIwAlL,
CONTINUE

Table A1-2

Computer program ALIL
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DET=D{(1,1)*082,2) - D{(1,2)*D(2,1)
IFIABS({DET) .LT. EPS)GO TO 688
S(1,1)=(CL1,1)*D(2,2) ~ €(2,1)*D(1,2))/DET
S{1,2)=({C{1,2)"0(2.,2) - C(2,2)*D(1,2))/DET
S(2,1)«(C(2,1)*DLI, 1) -~ C(1,1)"Dt2,1))/DET
$12,2)=(C(2,2)*DL1,1) -~ C(1,2)"D(2,1))/DET
CALL ZERQ21(C,2,2)
CALL ZERO2(D,2,2)
CALL EIGENP(Z2,2,5,EVR,EV],C,D,IND)
IF(EVR{1) .GE. EVR(2))MM
IF(EVR(2) .CT. EVR(]))MM=2
IF(M LEQ, 2) YU1,1)eC(] ,MM)
IF{M LEQ, 2) Y(2,1)sC(2,MM)
IF(M (EQ. 1) Y(I,1)=C{1,MM)
IF(M _EQ. 1) Y{I.2)=C(2,MM)

154 CONTINUE
RETURN

LT 24 PRINT 18, DET
RETURN

19 ESSMAT(/IIII//I.SX.’MATRIX 1S SINGULAR® ,5X,.E18.4)

SUBROUTINE ZEROI(A,N)
DIMENSION AN}
DO 188 I=1,N
180 All)=g. @
RETURN
END

SUBROUTINE ZEROZ2(A,N,M)
DIMENSION A(N,M)
DO 188 I-1,N
00 182 J=1,M
All 0= . 8
18 CONTINUE
RETURN
END

SUBROUTINE QSET(S.Q)

COMPLEX Qf2,2),A1(58,2),B1(58,2),RK(2,2)

COMPLEX S,DET

COMMON XX1.XX2.RH11 ,RH12 ,RH2) RH22 RL11,RL12,RL21,RL22,ALPHA
DATA P1 /3.141592654/

CALL IDENT(B),5#,2,1.8)

SQ=S0RT(2.)

RK{1,1)wALPHA*RL11/S + RHIL

RK{1,2)=ALPHA*RLI12/S + RHIZ

RK(Z2,1)=ALPHA*RL21/S + RH2ZI

RK{2,2)=ALPHAYRLZ22/S + RH22

AA=SQ*COS(PI*XX1)

BB=SQ*COS{2.*P1*XX1)

CC=SQ*COS(PI"XX2)

DD=SQ*COS(2."P1*XX2)

Q(1,1)=1./5 + SQ*AA/(S+P1**2) +SQ*BB/(S+4.*P]**2)
Q(1,2)=1,/S - SQ*AA/(S+PI**2) +SQ*BB/(S+4.*PI**2)
Q(2,1)=1./8 + SQ*CC/(S+PI**2) +SU*DD/(S+4 . "PI**2)
Q(2,2)=1./S - SQ*CC/{S+PI**2) +SQ*DD/(S+4.*PI**2)
CALL MATMULTI(Q,RX,2,2,2.2)

RETURN

END

SUBROUTINE IDENT(A.N M2
COMPLEX A(N,

All, 1)-CMPLX(Z 5.0
A(l.Z)-CMPLX('.l.'.')
JEY=CMPLXUE. B, B 0)
J2)uCMPLX(Z 0.8
URN

SUBROUTINE MATMULT(A,B,N1,M1,N2,M2)
COMPLEX A(NI,M1), B(NZ HZ) c1
Ci=ALL1,1)
A(l.l)-C\'B(l.l) + A({l,2)%B(2,
A(1,2)eC1%8(1,2) + A{1,2)*B{
Cl=A{2,1)

AlL2,1)=C1*B(1,1) + AL2,2)*8¢
AL2,2)=C1"B(1,2) +« A(2,2)*8B¢
RETURNM

END

1
2,2
2,1)
2,2)

Table A1-R Continued
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APPENDIX 2

NORMALIZED PACKED BED REACTOR MODEL

The normalization of the original mathematical representation of the

packed bed reactor is based on

T o P

L Ta 87 P,
- I % . Oy
'r'—R1 "= s l'-’;;‘“Ep“
tu - T
N
Yg, Me,

Note that in the following normalized equations the (%) is dropped from

Pa cp'a. and M, and that

R
¥o = —E%
_MP_HP L WP
e = RT,  RT, = P&~ e,
g = -—-—-—ﬁ = —-—-—ﬁFl -
Cpa CPMTQ + Cp‘2
Total mass conservation (continuity):
B8pg N 6(pgvg) 0
X B¢

$=0  Pg¥g=Pg,V,
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Energy balance for the gas:
80 08 a“@ B; 8 | 00
PaCh, 5 = P EV“CP«—@}L agzg 7(0=04) + T Ta}g’]
00
T=%0 "'5,’,“&" N.rg(@ ~-8y)
8®g
r=1.0 Br = )\w-rg(@ "'Gw)
ocpgpg

QD
2:]3

¢=0 = Neng(Bg~84) — ““"’“‘(@0“@3)

[~}

¢=1.0 ——P—L—A,,g(e -8,

Note that the gas heat capacity, Cp,: &3S density, p;. and gas velocity, v,, are

functions of position and time due to their dependence on mole changes,

pressure, and temperature.

Energy balance for the catalyst:
Using a similar analysis to that for the energy balance of the gas and after
assuming constant physical properties of the solid phase,

00, _ %0, fh o 30, |
N “"aga T 6'rlr or |

+ 7s(®g -8y)

+5,(1+¢ IGB‘)R'H +15(1 +‘P2ea‘)R'S
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80
T =0 8r. = Awrs(@5—04)
or
o0
=0 'a‘?z)\ng((as“@g)

00
&=1.0 ‘”“5"5“ = Aeag(@s—Bg)

= Awrs( @4 =)

r=1.0 -

Energy balance for the thermal well:

Assuming constant physical properties in the thermal well,

80, _ 828,
rrua al'é?g—' + 7ts (631"’1'0‘@‘) + 7y (@g,.,o—Qt)

¢=0 0,=0,
09, _
=10 5 =0

Mass balance in the reactor section:

+ T g r

1-R6 or

By _ Oy om 3 | 6yfi2pgyig_§mj+ﬁ_m_g_.i By  Zpgnr 95

35 Bo¢  p, 8¢ |80 T 126 8¢ | pgr OT

@ ®
-0, -—ﬁ‘ﬁ—R*ﬂ +0g -g-‘mR's k=1
+
(]
~0'g “éL‘R'S k=2

where

25 . % _. %y,
= X ~ %8

8¢ e iled
8 _ o1 _, Oyz
T T T




T=¢p %’_Yt =0
r=1.0 %yr-f—-z
=0 P= 2 (-y)
£=1.0 %w—.o

In these equations, the dimensionless quantities are defined as follows.

Aspect Ratios

axial n =L/4; radial m =R,/d, overall a=L/R,

Axial Dispersion
k
o = ———— = (Pegen)”
Pe,FCpg e,
kes k.

py Qq = —
U, cp pe(1—8)L t picp g L

D,

Om = —— = (Peypn)™
Lo,

Radial Dispersion

ke _ kgl _
PsCp,(1—E)RYTUgo * 7 PgTpeRIU,,  Perggm

Bs =
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ﬁ - DrL - a
m ngﬁso P €rmill
Heat Transfer
5, = U,QL s = Upsls
) ﬁgovbpscp,( 1-8) v thtcptﬁgo
ﬁganogocp!s V,ptc,,tugo
Heats of Reaction
o o MAHPEE) Ry LA R0k,
! Uy Cp,To Ty Cp, To
_ To(AHy,) | To(bHg)
¥ = AHHg $2 = AHSg
Reaction Coefficients
“ﬁgol'ps( 1 —-S)P-ff (2}0{2) k oy
o, =
‘ Pe,Te, M Los(1—£)%8, o
— e o’ prved
o _ Mgol—ps( 1 “8) X}oizxgozk og 8 eﬁgoﬁgo
e £Pa,Ug X0
Biot Numbers
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huRl — P_“EF_I_.
Reaction Rates

PP (Fy) ik R
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APPENDIX 3

RADIAL COLLOCATION OF PACKED BED REACTOR MODEL

Gas Phase Radial Temperature Profile

At the three radial collocation points r = @g, ., and 1.0, let the gas tem-

peratures be 0, , 8, , and 8, and assume that the radial profile is quadratic:

B,(9¢7) = do(B¢) + 4, (8T + do(BYr?
This profile must satisfy the boundary conditions

o6
o 8 = -
or l"“'o - }‘trg(@gr,,u ®t)

00
‘g'rﬁ— lrnl = ~Awrg(Bg,,~Bw)

where Ay; and Ay are the dimensionless radial Biot numbers at the thermal
well and cooling wall, respectively. The profile must also be exact at the three

collocation points:

@, = do+d; ¢+ dapf
B, =dotdyr. + dor2
@)g1 =dg+d; +dp

After rearranging and eliminating 8, and 8, ,

AQ.rg ¢0>\trg'"1 ¢§A&rg'~z¢0 dy| = }‘Lrg@t

The expressions for d;(¥¢) in terms of 8,, ®, and ®, can be simply obtained by

applying Cramer's Rule. Let
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det = (poAerg—1)Awrg+2) + Fehwrg(#8Atrg—200) + réArg(Awrg+1)

- rg)\wrg(‘r”o}\t.rg"l) - ()\wrg*'l)(SogNrg“aSao) - rc)\trg()\wg*'z)

Then
dp = wl@ﬂr + wp0, + wg®,
dl - WQ@& + W5®t + WQ@'
d2 = W’/@gr + Wa@t + WQQW
where

- (¢0Atrg"1)(>\wrg+'2) - ()\wrg“'l)(S’g)\trg“zSaO)

b det
Wo = Arg(Awrg+ 1)TE = Agrglc(Awrg +2)
det
Wg = )\wgrc(‘pg)\trg—zwn) - )\wrg(‘po)\t.rg"'l)rg
det

- }\wrg(wt?Mg“BSOO) - >\trg(>\wrg+2)

+- det
wo = Aurg(Awrgt2) — Arghwrgle
5 det
_ )\trghwrgrg - )\wrg(‘ﬁg)\t.rg"z‘PO)
Wg =
det

Wep == )\trg(xwrg'kl) "')\‘rrg(‘PO}"u-g“'l)
T det
- )\Lrgxnrgrc - )\trg()\wrg+1)
8 det
)‘wrg(‘POAtrg""‘“l) = AtrgAwrglc
det

Wy =

Then based on the assumed quadratic profile
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88,
—5;—': d, + 2dpr
&0

r=aaka

the dimensionless form of the energy equation for the gas becomes

30 80 %0 d
Pahy g = PeVeSh a7 Gt * Frl4det 1| + 7a(®:-0y)

where 8, and 0, are now the temperatures at the radial collocation point r,, and

Py and Cp, Are dimensionless parameters, normalized with respect to the inlet
steady state values. Then if we let
- Be
Wy = 4fgwW, + W4 T Ve
4
- L
s = 4ﬁgw8 + r Wy
©

B
g = 4ﬁg(')wwg + ;f“@wwe

the energy equation for the gas becomes

Fo]c) 00 8%0
chp._é'&q': ’Psvscpa_c’i?g_+ “873?25_*‘ weBg + w58y + 7585 + we

Catalyst Phase Radial Temperature Collocation

Similar results are obtained for the energy balance of the catalyst using the

expression

B5(9.¢7) = do(B¢) + dy (BT + da(8)r?

The values for d;(%¢) in terms of 04, 8;, and B, are derived as before. Let
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det = (¢0)\m-1)()\m+2) + l‘c7\wrs(¢§)\m"2¢c) + rg)\trs(Avrrs"'l)

- rg}‘m(ﬁpoy\m“‘l) - ()\wra+1)(¢§)\trs"2¢0) ~ FAus(AwratR)

Then
dg = W,IQB,. + W’zet + W's@w
d; = W',,@gr + W50, + WgOy
dg = W’»y@,)r + W'e@t + W'g@w
where

_ (#ohrs=1) Awrs*2) =~ (hwrs+ 1) (pEMrs—2000)

det
wo = Nra(Aerst DTS = Aural ol Anra +2)
2 det
Wa = )\mrc(¢g7\m“2¢o) '")\m(?’o)\m“"l)rg
8 det
W = )‘Wm(wg)\trs”BWO) = Mrs{AwrstR)
* det
¢ e At-x‘s(kwrs""z) e Xm)\,,,rf
Wa = det
W = MMsrg ’Ans(ﬁag}‘m_z?())
6 =
det
Wo = Ars(Awrst1) = Awrs(PoMrs—1)
§ det
Wa = Awshwrsle = Aws{Awst1)
8 det

. Awrs{®oAtrs™1) = AusAwrsl'c

Ve = det
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B
Wi = 4fsWoy + —— Wy — Y
Ie

8
p = 4B.Ws + ;‘-—vfs

c

as = 4404w + EL0.
©

The energy equation for the catalyst becomes

00 1]
“%‘”'—“ o‘u""a"g"“'" 010, + weBy + 7u®g + 'Cl(l"'?ol@s)R'M + '52(1”*"?’2@3)12’8 + Wy

Thermal Well Energy Balance
We can now relate E'f'fo and 95:“'0 to the gas and catalyst temperatures at
the radial collocation point. If we let

Wy = Yia(W'1 + Weppo + Wo08)

wp = 7ig(W1 +Wapg +wopd)

Wp = Y1a(Wa+ Wspo +Waph —1) + yia(Wa + Wsgo + Wapf — 1)
@10 = YiBu(W's + Wapo + Woph) + 7,0u(Wa + Wepg + Wopd)

the energy balance for the thermal well becomes

¢ 8%0
61; = o 6(; + wq04 + 0B, + By + Wy

Radial Concentration Collocation

For radial concentration profiles, a quadratic representation may not be
adequate since application of the zerc flux boundary conditions at T = o and
r = 1.0 leads to d;-=dz = 0. Thus a quadratic representation for the concentra-
tion profiles reduces to the assumption of uniform radial concentrations, which

for a highly exothermic systemm may be significantly inaccurate. Although
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additional radial coliocation points greatly increase the dimensionality of the
resulting model, they may be necessary to accurately express the radial con-
centration profiles. A detailed analysis of multipoint radial concentration collo-

cation is presented in Section 3.4.5.
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APPENDIX 4
DOCUMENTATION

COMPUTER MODEL OF THE PACKED BED REACTOR

A large variety of programs have been written to model the methanation
packed bed reactor and to produce computer graphics of the various profiles on
a Zeta plotter or on the Versatec. This documentation describes these pro-
grams, the necessary library routines and input data énd the command
sequences for operation of the programs. This description is complete only for
the latest revision (version 4). All previous versions may have some major
diferences, This revision has been extensively tested under most expected
operating conditions. The programs are located in directory [RRK.MOD4]. All

important modeling programs are also included in this appendix.

Although the routines involve excellent numerical solution techniques, they
may still experience numerical solution difficulties in some cases, due to the
extreme complexity of the reactor model. Various parameters have been
included so that the user can circumvent these numerical problems, but prac-
tice is necessary. In rmost cases, numerical difficulties will only occur during the
steady state solutions due in large part to very bad input profiles for the initial

guesses.

MODELING ROUTINES

A two-phase, two-dimensional dynamic model was employed in this analysis,

with the assumption that the packed bed may be treated as a continuum insofar
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as changes occur smoothly and continuously within each phase throughout the
bed. This assumption should be valid under the conditions of the methanation
reactor (Hlavacek, 1970) and allows for treating heat and mass fluxes in a form

analogous to Fourier and Fick laws.

The original modeling analysis includes all major expected phenomena in
the reactor bed. The model accounts for axial and radial dispersion of mass and
energy. for mole changes that occur along the bed due to the methanation reac-
tion, and for temperature, pressure, and mole dependencies of gas velocity, den-
sity, average molecular weight, and heat capacity, reaction rate constants, and
heats of reaction. Additionally, a central axial thermal well is completely
modeled, including axial conduction of energy along the well. Finally, the model
is based on a three-dimensional (time, axial, and radial) heterogeneous analysis

and incorporates the effects of axial pressure gradients.

The primary reaction in the analysis is the methanation reaction with the
steam-shift reaction being the only significant side reaction. These reactions
have been studied extensively and kinetic information is available. A rate
expression for the methanation reaction for conditions similar to those in the
present reactor is given by Lee(1973) and Vatcha (1976). A complete analysis of
the steam-shitt reaction is provided by Moe (1962). Although these rate expres-
sions have been incorporated into the computer model of the system, the pro-
grams are written in such a way that the rate expressions can easily be changed

simply by replacing one subroutine.
The only major assumptions underlying the original model are:

+ Reactor wall temperature is equal to the cooling fluid temperature and is

independent of length along the reactor.
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» Gas properties are functions of temperature, pressure and total moles as

dictated by the ideal gas law.
» There is no radial velocity.
» Global rate expressions are valid.
« Physical properties of the solid catalyst and thermal well are constant.

» Heats of reaction and gas heat capacities are described as linear [unc-

tions of temperature.

This original model was coded into the programs MODELFOR and DIST.FOR
(found in directory [RRK.MOD1] on the CHEMVAX). Further analysis using
dynamic simulations to study the effect of making several major simplifications
to the model structure are coded into the following programs (also in

[RRK.MOD1]).
a. Negligible energy accumulation in the gas. (CMODEL1, CM1)
b. Quasi Steady state for concentration. (CMODEL2, CM2)
c. Homogeneous analysis. (CMODEL3, CM3)

It was concluded from these analyses that the first two assumptions may be
quite useful for later model reduction since they lead to minimal inaccuracies in

the simulated profiles.

Considerable analysis using these compiete modeling algorithms, led to the

following conclusions.

a. The temperature dependence of the heat capacity has very little effect on

the simulatipns.

b. Mass diffusion has little effect.
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c. The central axial thermal well has little effect on the concentration

profiles but significantly alters the transient temperature responses.

d. Numerical stablity of the model solution is greatly enhanced by retaining

the thermal dispersive effects.

e. The assumption of pseudo homogeneity of the system leads to significant

discrepancies in the dynamic and steady state profiles.

Finally, a very detailed and careful analysis was made concerning the radial con-
centration profile. The programs for this analysis are found in [RRK.CONC]. All
of these programs use the full nonlinear model with no additional assumptions.
A lengthy analysis concluded that the assumptidn of constant radial concentra-
tion profiles in the reactor bed leads to inconsequential differences in the axial

bulk concentrations, radial temperatures and axial temperatures.

Thus the final models described in this report include the additional
assumptions of constant heat capacity, negligible axial and radial mass diffusion

and constant radial concentration profiles.

LA Solution Strategy

The basic relationships faken to describe the systemn are the continuity
equation, the energy balance for the catalyst, the energy balance for the gas,
the energy balance for the thermal well, mass balance for CO, mass balance for
CO; and relationships for the density and pressure changes. These equations

are first normalized with respect to the steady state inlet conditions.

The resulting system consists of six coupled, three-dimensional nonlinear
partial differential-equations, which must be solved to obtain the temperature
profiles in the gas, catalyst and thermal well, the concentration profiles and the

velocity profile. The technique of orthogonal collocation is used to reduce the
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equations to a set of first-order ordinary differential equations in the time

domain.

A one point radial collocation is performed. This is quite accurate for tem-
perature profiles since it assumes a quadratic radial representation of the
profile. Since the assumed quadratic profile must satisfy the boundary condi-
tions and since the concentration boundary conditions are zero flux conditions,
the use of one point radial collocation implicitly assumes constant radial con-

centration profiles.

Discretization of the resulting system is then performed by orthogonal col-
location in the axial direction. Since the position and number of points are the
only factors affecting the solution obtained by orthogonal collocation, any set of
linearly independent polynorhials may be used as trail functions. The Lagran-
gian polynomials of degree N based on the collocation points z; are used in this

analysis.

The resulting equations are a set of 6N+1 ordinary differential equations
along with eleven algebraic boundary relations, where N is the number of axial
collocation points. The solution procedure is further simplified by solving the
continuity equation for the velocities as a set of algebraic equations, using tem-
perature values and temperature derivatives obtained from the solutions of the
remaining differential equations. Addition'ally. simple algebraic manipulation
allows for explicit solution of seven of the boundary variables. Thus the result-
ing dynamic model consists of a set of 5N coupled ordinary differential equa-

tions and N+5 coupled algebraic equations.

The solutions of the model are obtained using modified Caltech mli»brary rou-
tines. The system of ordinary differential equations is solved using a

modification of the Caltech routine MODDE® that uses an Adams-Moulton
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predictor-corrector technique, with the method of Runge-Kutta-Gill being used
to start the integration process. The nonlinear system of algebraic equations is
solved using modifications of Caltech's routines NSES! and NSESZ. The first of
these uses the standard techniques of inverting the Jacobian matrix but calcu-
lates the Jacobian numerically rather than having it input by the user. The
second uses Brown's (1967) quadratically convergent algorithm. NSES! is a fas-
ter routine but is not as numerically powerful as NSES2. The modeling pro-
grams are written to allow the user to specify which of the two routines to use to

calculate the steady state solution. The dynamic solutions always use NSES1.

LB Modeling Programa

Several programs were written to perform various types of modeling ana-
lyses. All of the programs have been extensively tested and are completely com-
patible. l.e., they use the same data files, calling formats and library routines
and have nearly identical output formats for easy comparison. All of the rou-
tines allow for completely arbitrary disturbances and step changes of the cool-
ing wall temperature, linear gas velocity, inlet gas temperature and inlet concen-
trations of the methane, carbon monoxide, carbon dioxide, water and hydrogen.
The routines are very modular, allowing for simple modifications and replace-
ments of reaction equations, cutput formats, input fermats, modeling equations

and even solution strategies.

Difficulties may arise during some simulations due to very steep profiles or
disturbances. The collocation solution technique has problems with these situa-
tions since it assumes a smooth continuous profile along the system Sharp dis-
turbances or steep-temperature profiles in the system can lead to oséillations in
the calculated axial profiles. These problems can usually be reduced by increas-

ing the number of collocation points.



- 404 -

The programs simulate the behavior of the model where the concentrations
are normalized with respect only to the inlet steady state concentration of CO.
This is better than normalizing with respect to the inlet steady state concentra-
tion of the individual species in case one or more of the other inlet steady state

concenirations are zero.

a. NLNMOD

This program simulates the'complete nonlinear solution of the system. The
above techniques are combined with a variable time-step analysis to
efficiently obtain the dynamic and steady state reactor responses. This vari-
able time-step procedure is automatic and involves increasing the time steps

as the system approaches steady state since the derivatives become smaller.

This program must be linked to MLIB and 11IB. A listing of this program is

included in Table A4-1,

b. LINMOD

This program performs the simulation for the linearized version of the
model, where the model is linearized about the steady state solution. The
program thus first calculates the initial steady state solution. based on a
user-defined initial guess. The program uses the standard numerical tech-

niques used in NLNMOD, including the variable time-step analysis.

The linear system is of order 5N with the states being the solid tempera-
tures, gas temperatures, thermal well temperatures, CO concentrations and

COz concentrations at the collocation points.

This program must be linked to MLIB and LLIB. A listing of this program is



~ 405 -

included in Table A4-2.

. ANAMOD

This program performs the same simulation as LINMOD except that it uses
the analytical solution of the linear equations rather than performing a
nurnerical solution. Thus it takes only a fraction of the solution time and
does not need the variable time-step analysis. The solution of the equations

can be obtained explicitly at any desired time.

This program must be linked to MLIB, ELIB and L1IB. A listing of this pro-

grarm is included in Table A4-3.

. RD1MOD

This program performs the simulations for the reduced linear model using
the analytical solution. The assumptions of negligible energy accumulation
in the gas and quasi steady state {or the concentrations are used to reduce
the model to an order of 2N. The retained states are the solid temperatures

and thermal well temperatures at the collocation points.

This program must be linked to MLIB, ELIB and ILIB. A listing of this pro-

gram is included in Table A4-4.

. RD2MOD

This program performs the simulations for the reduced linear mode!l using
the analytical solution. The assumption of quasi steady state for concentra-
tion is used to reduce the order of the model to 3N. The retained states are

the solid temperatures, gas temperatures and thermal well temperatures
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at the collocation points.

This program must be linked to MLIB, ELIB and L1IB. A listing of this pro-

gram is included in Table A4-5.

LC Input Variablex

The input variables are divided into groups and are described below. The
group names given between slashes are the names of the COMMON arrays that

the variables are stored in after they are read from the data file.

/REACP/ - REACTOR PARAMETERS

EPS void fraction {(cm**3 void/cm**3 bed)
L length of reactor bed (cm)
RO radius of thermal well (cm)
R: radius of reactor bed (cm)

/CATLS/ - CATALYST PARAMETERS

CPS heat capacity (cal/g °K)

PS density (g/cm®**3 catalyst)

Tc thermal conductlvit;y (cal/sec cm °K)
DC characteristic particle diameter (cm)

/THWEL/ - THERMAL WELL PARAMETERS
CPT heat capacity (cal/g °K)
PT density (g/cm**3)

Kr thermal conductivity (cal/sec cm °K)
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/GASPA/ - GAS PARAMETERS

PTZ axial thermal Peclet number
PTR radial thermal Peclet number
UGS steady state inlet velocity (cm/sec)

/HEATT/ - HEAT TRANSFER PARAMETERS
OHSG heat transfer coefficient(solid-gas)(cal/sec °K)
OHTS heat transfer coefficient(wall-solid)(cal/sec °K)

OHTG heat transfer coefficient(wall-gas)(cal/sec °K)

BSG Biot number (solid-gas)
BGS Biot number {gas-solid)
BTS Biot number (wall-solid)
BTG Biot number (wall-gas)

/OPCON/ - OPERATING CONDITIONS

SCH4 steady state inlet methane mole fraction

5CO steady state inlet carbon monoxide mole fraction
SCOo2 steady state inlet carbon dioxide mole fraction
SH2 steady state inlet hydrogen mole fraction

SHR0 steady state inlet steam mole fraction

PTO total inlet pressure (atm)

PT1 total outlet pressure (atm)

 STO steady state inlet gas temperature (°K)
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cooling wall temperature (°K)

/REAC1/ - REACTION PARAMETERS

DH1A

DH1B

DH2A

DHZB

KOpP

KO

heat of methanation constant, DH1=DHI1A*T+DH1B
heat of methanation constant (cal/mole)

heat of water-shift constant, DH2=DHZA*T+DHZB
heat of water-shift constant (cal/mole)

Arrhenius constant, methanation

Arrhenius constant, water-gas shift

/REACR/ - ADDITIONAL REACTOR PARAMETERS

KP:A equil constant, methanation, In KP1=KP1A+KP1B/T

KPiB equil constant, methanation

KPRA equil constant, water-gas shift InKP2=KP2A+KP2B/T

KPRA equil constant, water-gas shift

K2 constant for methanation reaction rate

K3 constant for methanation reaction rate

EAL activation energy, methanation (cal/g mole)

EA2 activation energy, water-gas shift (cal/g mole)
OTHER INPUT PARAMETERS:

DTO time step (sec)

N number of axial collocation points

TMAX maximum time (length ot simulation) (sec)
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RR radial collocation point with 0 < rr< 1
NEP precision in numerical routines, 10**nep
IFLAé type of initial profile guess
0 values input for const temps, conc, vel
1 entire profiles input

NFLAG steady state algebraic equation solver
1- NSES1, 2- NSES2

DL length of disturbance (sec)
IF max time step for variable time stepping is DTO*4**(IF-1)
NP number of time steps between printing

These variables are read in under the following format:

READ 1, EPS,L.RO.RZ

READ 1, CPS,PS,TC.DC

READ 1, CPT.PT KT

READ 1, PTZ PTR,UGS

READ 1, OHSG,0HTS,0HTG,BGS,BSG,BTS,BTG

READ 1, SCH4,5C0,5C02,SH2,SH20 PT0,PT1,ST0,STW
READ 1, DH1A,DH1B,DH2A,.DH2B,K0,KOP

READ 1, KP1A KP1B,KP2A KP2B K2,K3 EA1, EAR
READ 2, DTO,TMAX RR,DL.N NP ,NEP,IFLAG,IF NFLAG

where format 1 is (918.2) and tormat 2 is (41B.2/86iB). All of these variables may
not be necessary for all of the programs but to keep consistency in the input

data files they are all included.
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Note: Two of the variables change meanings in the different programs so that
the values in the data flie do not have to altered and so that the outputs
of the programs will be identical. These are DTO and NP. In the pro-
grams that require numerical solution {(NLNMOD, LINMOD), DTO must be
taken very small (around 0.005 second) and then NP is set large so that
the profiles are only printed out for every five or ten seconds during the
simulation (i.e. NP=1000). However, in the programs that are based on
analytical solutions, it is not necessary to take such small steps. If
printouts of the solutions are desired for every 5 seconds, then the time
steps should be set at 5 seconds. However, this would involve changing
the data files if you wanted to run say NLNMOD and then compare it to
ANAMOD. To eliminate this problem, the actual time steps used in the

analytical programs are DTO*NP.

After this set of inputs, the user must specify the initial guesses for the steady

state calculation as per the type specified by IFLAG:
IFLAG =0

Input the constant gas temperature, solid temperature, thermal well
temperature, CO concentration, COp concentration and velocity under

format (61B.2).
IFLAG = 1

Input the gas temperature, solid temperature, thermal well tempera-
ture, CO concentration, CO; concentration and velocity at each collo-
cation p;aint under the format (618.2) and then the solid tempera-
ture at z=0 and z=1, the gas temperature at z=0 and z=1 and the

velocity at z=0 under the format {5f8.2). The temperatures must be
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entered in nondimensional terms (as is output by the programs) and
the concentrations must be based on the inlet number of moles (as is
the output). Thus these inputs can be directly taken from one of the

output profiles.

Then finally, the type of simulation must be entered. The next input JFLAG tells

what type of simulation is being run. This variable is entered under the format

(i2).
JFLAG = 0 (step or disturbance)

The step or disturbance vector is then input. The inlet gas velocily,
inlet gas temperature, CO concentration, COp concentration, HyO con-
centration, Hp concentration, CH, concentration and cooling wall tem-

perature are input under the format (8£8.2).
JFLAG = 1

This is to simulate the behavior of the system starting from any arbi-
trary profile to steady state. The entire profile should be input just as

in IFLAG = 1 above.

A sample data file is shown below and is stored in [RRK.MOD4] as MOD4.DAT.
This data files performs a simulation of the system with a step change in the
inlet gas temperatlire from 573° K to 623° K. The simulation is for a step rather
than a simple disturbance since DL is set to infinity. The output will show the

simulated profiles at 10 second intervals from time O to 100 seconds.

0.57 30.0 0.1587 1.194
- 0.25 1.041 0.005 0.274437
0.12 8.02 0.039



- 412 -

2.00 B8.00 75.00
17.02 0.017950.1436 13.09 600.0 7.163 1.25
-6.144 -48350.-2.441 10760. 17.0 0.07524
-29.44 26340. 4.385 -4615. 1.470 0.7348 6950. 1BS0O.
0.005 100.0 0.5 9999999.
8 2000 -8B 0 3 0
573.0 B73.0 5730 0.06 0.015 750
0
75.0 8230 0.08 0.0150 0.02 0.19 060 573.0

LD Other Program Variables

Some of the other variables and arrays used throughout the routines are
described below. The minimum dimensions of the arrays are based on the

number of collocation points and are also described.

BWG = Biot number (wall-gas) - usually set equal to BTG
BWS = Biot number (wall-solid) - usually set equal to BTS
PGS = steady state inlet density (g/cm**3 gas)
ASG = heat transfer area, gas-catalyst (cm**2)
AST = heat transfer area, thermal well-catalyst (cm**2)
ATG = heat transfer area, thermal well-gas (cm**2)
VT = volume of thermal well (cm**3)
VB = volume of bed (cm**3)

" RG = gas constant (cm**3 atm/gmole K)

RGP = gas constant {cal/gmole K)
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CPG heat capacity of gas (cal/g K**2)

MG average molecular weight (g/g mole)

il

The following table describes the vectors and matrices used throughout the

modeling programs,

NAME MIN. DIMENSIONS PURPOSE
A N+2 N+2 first derivative collocation matrix
AA 5*N,5*N state matrix ‘A’
Al 5*N,5*N inverse of the state matrix
B N+2 N+2 second derivative collocation matrix
BB 5*N.8 control matrix 'B’
CcC 5*N AI*(EX-IDENTITY)*Q
DD 5*N constant matrix I’
ET 5*N.5*N AI*(EX-IDENTITY)
EVR 5*N real part of eigenvalues
EVI 5*N imag part of eigenvalues
EX 5*N,5*N EXP(AA*DT)
R N+2 vector containing collocation points
RL1 N.® constants for linearized methanation rate
RL2 N8 constants for linearized steam-shift rate
SR 5*N,5*N real part of eigenvectors
S1 5*N.5*N imag part of eigenvectors
SIR 5*N.5*N real part of SR,SI inverse
S1I 5*N,5*N imag part of SR,5I inverse

B disturbance or control vector

10 radial lumped coefficients

Y B*N+5 state vector
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YS B*N-+5 state vector

The structure of the state matrix (Y) and steady state state matrix (YS) is

1,...N Solid temperature at collocation pts
N+1,...2*N Gas temperature at collocation pts
2*N+1,..3*N Thermal well temperature at collocation pts
3*N+1,...,4*N CO concentration at collocation pts
4*N+1,..,5*N COz concentration at collocation pts

5*N+1,....6*N+1 Velocities at collocation pts plus z=1

BN+2 Solid temperature at z=0
6N+3 Selid temperature at z=1
BN~+4 Gas temperature at z=0
BN+5 Gas temperature at z=1

The structure of the control vector {U) is

—

cooling wall temperature
2 inlet velocity

3 inlet gas temperature

4 inlet CO concentration

5 inlet COp concentration
6 inlet H,0O concentration
7 inlet Hp concentration

8 inlet CH4 concentration

All quantities in the programs except the inputs are nondimensional. However,
the programs are not based on deviation variables. Thus the form of the linear

model is
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x(t) = Ax{t) + Bu(t) + D

The analytic solution of this equation used by ANAMOD, RD1MOD and RD2MOD is :

x(t;) = X9 9x(tg) + A [eX 1) [Bu + D]
This is valid for time tg to t; during which the control is constant.

LE Program Outputs

The prograrm output consists of displaying the input data, the program con-
ditions, the steady state conditions, and the axial collocation points. The initial
guess for the steady state solution is then shown with the calculated steady

state solution.

The simulated profiles are then printed at the specified intervals up to the
total time period. The final steady state, calculated by setting the time deriva-
tives equal to zero in the original simulation and solving the resultant system of
algebraic equations is printed. For the linearized cases, this steady state may
be significantly in error since the model was linearized about the original steady
state and since some of the variables such as MG and CPG are based on the
steady state inputs. For this reason, the ‘Actual Steady State' is also printed.

This is the steady state based on the new conditions.

Table A4-6 show the output using the above data file with TMAX = 5 for an
inlet gas temperature step change from 573° K to 623° K,
LIBRARY ROUTINES

Several sets of library routines have been written for the modeling and plot-

ting programs. Some of these routines are modifications of Caltech library
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routines. In these cases, the names are unchanged. The user may want to study
the Caltech documentation that accompaniss these programs. Although most
have been changed to clean up portions of the routines not needed in this work,
to reduce some of Lhe restrictions, and to work in double precision, the basic
techniques remain the same. These libraries are described below with brief
descriptions of the various routines in each library. All of these are found in

[RRK.LIBR].

LLIB.FOR This library contains the many routines necessary for modeling the
reactor. All of these routines have been written specifically for the packed bed

model and are listed in Table A4-7,
DIMLES calculates the dimensionless parameters.
INITIAL sets up initial profiles.

SETUPS reads the input data, makes preliminary calculations and prints

the inputs.
OUTPUT outputs the calculated profiles.
RADIAL  calculates the constants for the radially lumped model.

COLLOC calculates the zeros of the orthogonal polynomial and sets up

the axial collocation matrices.
INTLSS solves for the initial steady state profile.

FN1 defines the algebraic equations for use by NSES? when solving

for the steady state.
FN2 identical to FNI but is written to be used with NSES2.

FN3 defines the steady state linearized equations for NSES1.
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ASETUFP

ACTLSS

INSIM
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calculates the coefficients for the linearized rates.
sets up the linearized model including the state matrix
caleculates the final steady states.

initializes the simulation.

OUTCALC calculates the velocities and endpoint temperatures.

CPCALC

ENDPTS

REAC

calculates the gas heat capacity.
calculates the endpoint conditions.

calculates the dimensionless rates.

ELIB.FOR This library is necessary for the calculation of the eigenproperties.

EIGENP

calculates the eigenvalues and eigenvectors of a real matrix.

This routine uses the subprograms SKALE, REALVE, HESQR,

COMPYVE Lhal are also included in this library.

MLIB.FOR This library includes various numerical and printing routines.

DFOPR

JCOBI

MODDEQ

NSES1

evaluates the discretization matrices for collocation. This rou-

tine is from the text by Villadsen and Michelsen.

evaluates the roots and derivatives of Jacobi polynomials. This

subroutine is from the text by Villadsen and Michelsen.

may be used to solve a system of first-order differential equa-
tions.

This routine uses the subprograms MADAM, MGI/LL, MREST,
MSAVE that are also included in this library.

solves a system of algebraic equations by numerically calculat-
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ing the Jacobian and using MAT/NV to invert it.

NSESZ  solves a system of algebraic equations using Brown's quadrati-
cally convergent algorithm. This routine is slower than NSES!

but is more powerful.
PRINTS prints the scalars z(i) , i=1, ..., 8.
PRINTV prints the vector z{m).
PRINTM prints the matrix z(n,m).
ZEROV  zeros the vector z(m).
ZEROM  zeros the matrix z(n,m).

NEGCH  checks a vector for any negative values, sets the negative value

to zero and prints a warning message.
MATINV  inverts a matrix.
ENUDINV  inverts a matrix.
CINVSE inverts a complex matrix.
MATCPY copies a portion of one matrix to another.

MATMULT multiplies two matrices.

TILA PLIB.FOR

This library of routines is necessary for the plotting routines. Several of
the programs in this library are identical to those in MLIB except that they are

written in single precision for the plotting.
JCOBI same as in MLIB but in single precision.

DFOFR  same as in MLIB but in single precision.
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INTRP  evaluates the Lagrangian interpolation coefficients.
NAXS replaces the Caltech library routine for plotting the x axis.

NYAXIS replaces the Caltech library routine for plotting the y axis.

PLOTTING PROGRAMS

Several programs have been developed for plotting various types of profiles
on the Zeta plotter. These programs all must be linked to PLIB. All of the rou-
tines have slightly differing input data structures. Thus it may be necessary to
study the programs before attempting to use them the first time. Many of the

variables used by the programs are defined below.

OX.0Y -~ location of the origin on the page

XLXY - length of the two axes

Y1, Y2 - starting and ending values for the y axis

X1.X2 - starting and ending values for the x axis

XTYT - distance between tics on the two axes

1D - type of line drawn between the points

IST - 0 if the data is the last line for the plot, 1 if more lines follow
15 - speed of the plotter

N - number of collocation points

The following are the most useful programs. They are in [RRK.PLOT].

PGEN plots a completely general profile.
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PLTC

PLTC1

PLTCR

PLTR

PLTT

PLTTC
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plots the axial temperature profiles, given the values at the col-

location points.

plots the axial concentration profile, given the values at the col-

location points.

is identical to PLTC except that the concentration that is plot-

ted is that based on the inlet number of moles.
plots the radial concentration profile,

plots the radial temperature profile given the values at the collo-

cation points.

plots the time profiles of the temperature using the spline rou-

tines to fit the curve.

plots the concentration time profiles using the spline routines to

fit the curve.
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€ THIS PROGRAM MODELS A NONISOTHERMAL, NONADIABATIC FIXED #ED REACTOR
¢ VITH BOTH A COOLING JACKET AND A THERMAL WELL. THE AMALYSIS IS

¢ PERFORMED FOR A METHANATION OF CO SYSTEM.
<
<
4

LINK TO MLIB.LLIBN

THIS PROGRAMS SOLVES THE FULL NONKLINEAR MODEL WITH THE CONCENTRATIONS
NONDIMENS1ONAL W.R.T, THE STEADY~STATE INLET CONC. OF CO

IMPLICIT REAL'B (A-N,0~2)
REAL*S |, HC X8 KNP . KPIA.KPIB . KC1# . KP2A,KP28,KC2#,X2F,K3P

COMMON /REACP/ EPS,L,RH.RI
/CATLS/ €PS., PS.TC o
/THWEL/ CPT,P
/GASPA/ CPG., PTZ 'TR MC. PGS UGS UM
/HEATT/ OHSG, OHTS oNTG, BGS,B8SC,8TS,B76,8WC.BWS
ZOPCON/ SCHJ.SCO.SCOE.SHZ.SNZO‘PTI‘PT!.STI.STV
/REAC]I/ DHIA,DHIB,DHZA,DHZB KE¥ KEP
/DIMLE/ ALS ,ALG, ALT BES,BEG,GAS,CAG,CGTS,.CTC,DEL,

DEZ,$11, S!Z S13,PHIZ, PHIZ, PHI PH2,PH3

JRADIA/ W{18),WP(9,2), DETA(Z) RR
/COMAT/ A(ZS,ZS B(25.25), RE25) .0

/MISCL/7 WU 18R
/REAC2/ KC18 . KPIA KP1B.KC2H . KP2A KP28,K2P KIP,EA] (EA2
75.8), DD€75) U(s)

Pl
ISTATE, V01883 VOOT (108} 15707
EXTERNAL DERIV.FN
€ READ IN DATA AND CALCULATE CONSTANTS
CALL SETUPS (DT, TMAX.DL,M.RR,EP,IFLAG,.NFLAG,NP IF)
€ CALCULATE THE DIMENSIONLESS PARAMETERS
CALL DIMLES
€ CALCULATE CONSTANTS FOR THE RADIAL LUMPED MODEL
CALL RADIAL

C CALCULATE ZEROS OF THE ORTHOGONAL FULVNO!IAL AND SET UP AXIAL
< COLLOCATION MATRICIES A AND B.

CALL CoLLOC
€ SOLVE FOR THE STEADY STATE PROFILE

CALL INTLSSIY U IFLAG,NFLAG,L . UGS, PHI,N.EP)
€ SPECIFY INITIAL CONDITIONS

27-0;3

CALL INSIHN(V U, UU N IFLAG)
PRINT

ST-UU(N‘S)

CALL NSES1{N+5,UU.EP,108 .8 . FN)
CALL CQUTCALN (Y,UU N)

CALL QUTPUT (VY,U,T,L.UCS.PHI.B)

€ INITIALIZE INTEGRATION ROUTINE MODDEQ

LLwg
Jdie2y
By~

Kel .
CALL MODDEQ (DERIV,K,5°N,T,Y,YDOY,DT,EP)
€ SOLVE THE 5N O.D.E.'S FROM T TO T«DT

288 NTwNT+]
CALL MODDEQ (DERIV,K,5"N,T,Y,YDOT,DT.EP}
IF (K .EQ. =}) PRINT 2
IF (X (EQ. ~1) sTOP

€ SOLVE THE N+5 ALGEBRAIC EQUATIONS AT TIME TeDT

ST=UUIK+5)
CALL NSESI{N4L, UV, EF,100.5,FN)

€ PRINT RESULTS AND CONTINUE PROCESS IF T IS LESS THAN TMAX

IFLLL.EQ.¥ LAND. T.GE.DL) GO TO 38
IF(NT.NE.NP .AND. T.LT,TMAX) QO TO 280
CALL OUTCALN(Y YU, N}

CALL OUTPUT (V.U T.L,UGCS,PH1 ¥}

1F(T .GE. TMAX) GO TO iny

NT=N

SR LB EERIT A RRS

w2

Table A4-1
Computer Program NLNMOD
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€ ADIUST TIME STEP IF MNECESSARY

RS=RFN (VDOT 2‘")
JI«IIDINT (R$)

1F{JJd .EQ. 2) JJ-IXDINT(RS-.ZD') - 3

1F(J) .LE. & .OR. JJ .GE. IF) GO TO 209

DTX‘DT"‘ 50Bv*3J

IF((DTI-DT) .LE. .WANI0S .AND. (JJ1+43-RS) .LT. .1SDNIGO TO 28¥
DT=DT]

Jdledd

PRINT 4, (DT*L/UCS)

GO TO 282

€ ADJUST FOR END OF IMPULSE

bl Liw}
00 381 1e2.B

wl Utlrei Dp
UL1)=PH3
PRINT 3, (T*L/7URS)

DT=DTH
&0 To 282
€ CALCULATE FIMAL STEADY STATE

any IF(LL.EQ.] .OR. JFLAG.EQ.1)STOP
CALL ACTLSS(U.Y.EP,.M)

PRINT 1
CALL OUTPUTLY,.U,.B.D#,L,UCS,PH]1,2)
STOP

FORMAT(1H])
FORMAT (//77,2X, ERROR -~ MODDEQ COULD NOT CONVERGE',//7/)
FORMAT /7 /727777 ,2X, *ACTUAL TIME OF IMPULSE END = F8.4,//7111/)
EOS"AT(//III/.?X.'IEV TIME STEP = FIN.4/77111)
N

L

SUSROUTINE INSINN(Y,U.UU, N, JFLAG)
€ THIS SUBROUTINE INITIALIZES THE SIMULATION,

IMPLlCIT REAL‘! (A=H,0-%)
REAL*8 MG .M
DIMENS ION U(B) YULEB) uutien)
COMMON /GASPA/ CPG,PTz,PTR ,MG,PGS.UGS
L 70PCON/ SCH4,SCO, scoz, SHZ $H2D, PTl.FTl 578,87V

READ{S,1) JFLAG
1E(JFLAG .EQ. LJCALL INITIALLIY,U,1}
IF{JFLAG .EQ. 1)GO TO 28¥

READ (5,2) UGH, TH,XCO,XCOZ,XH20,XNZ,XCH4 TV
CALL CPCALC(XHZ, XCOQ, XCOZ XH2O XCHA TH MGF.CP.CPL,.CPD)
UN“NG'/HG'(CPI'T!*CFZ)/CPG

U({1)=TW/STH

U2)=UCH/ UGS

UL3)=TH/STH

U{4)=XCO/SCO

UL5)=XC02/SCO

U{6)=XH20/SCO

U(7)=XH2/5C0

U(8)=XCH4/SCO

PRINT 3, (ULI),1=),8),UN

299 DO 396 I=1,N+§
i YULL ) wYIN*he])
RETURN

FORMATLI2)
FORMAT(9F8.2)
FORHAT(//I ZX CINITIAL CONTROL VECTOR:®,/Z/8X,'TW = FI.I.SN.
*yFB.4,5X, TFBL A4S OXCO = FB.4, X » 5%
'XCO!“.'O 4, !K.'XMZO-‘.FI LR 8K, 'XHZ ', F8.4,5X, ‘XCHO"
FR.4/5X,"UM  »' FB.4)

D
8

END

SUBROUTINE OQUTCALN (Y,UU,N)

IMPLICIT REAL*S (A~H,0-2)
DIMENSION Y(188) UUTLIEE)

DO IEN Iwl Ne§

1 Y(S*N« )i l)
RETURN
EnD

Table A4-1 Continued
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SUBRCUTINE DERIV (NN.T,Y,YDOT)
¢ THIS SURROUTIRE DEFINES THE DIFERENTIAL EQUATIONS FOR USE BV MODOEQ.

IMPLICIT REAL*8 (A~H,0-2)
REAL*8 MG
DIMENSION Y(188),YDOT(10N)
COMMON /DIMLE/ ALS,ALG,ALT,BES,BEG,GAS,GAG,.GTS,GTC, DEL,
DEZ2,S511,512,S13,.PHI2,PHIZ,PH1,PH2,PH3
ZRADIAZ WLIN) WPL9,2) DETAL2).0R
/COMAT/ AL25,25) ,B125,25),R(26),M
/MISCIZ UuLIem)
/GASPA/ CPG . PTx,PTR, MG, PGS, UGS,
JLINEA/ AALT7S5,78), ll(75 8, 00(75) us)

NP2nKe2

NZwN*2

H3=He3

N4=N*y4

TAUPH2-1.08

CALL ENDFTS ATTH YIE YINPL Y2 Y2NPL TTHPL, Y, PHL)

DO 181 I=i.N

IPimie}

PG=TAU*R(IP1)+1.D8

CALL KREAC [YONI«T) YENAe]) YUT) YUNe]), PG, RIP,R2P)
S1eSUMIY ¥ B, UU(N*2) ,UULN+), I, N)

S2=SUMIY N A, UUIN+4) UUIN+E) ,[,0)
S3InSUMIY,N,B,UU(N+4) UUTN+5) [ ,N)
S4=SUM(Y N3 A YIZ,YINP] I ,N)
S6=SUMIY NA A, YZF . YZNPL, 1, N}
SBuSUMIY, N2, 8, TTH, TTHPL, 1 N}

YOOTiI)= ALS'SI + WU1IRYLL) + W
DEI*RIP*LT DF+PHIZwY(
4 W3

+ WIB)RYINZeT}
b CAGAY(I) « WIBI™ULl
. VDOT(HZ*I)‘(?}Y'E?‘; (71%¥4] + WI)PY{N2e])
YDOT({N3+l)lw ~UU(1)*S4 « SI2*Y(N+1)I*RZP/PC ~ SIISY(N+1I*RIP/PG
YOOT{NA+I)®» ~UUCLI®SE ~ SII*YINFII*R2P/PG
19 CONTINUE

RETURN
END

LE N B N N )

CAS*Y{N+1}
R1.DFsPUITTYLI))

'
»
n
.o

SUBROUTINE FN TUU.Y)
€ THIS SUBROUTINE DEFINES THE ALCESBRALIC EQUATIONS FOR USE BY MSES2

IMPLICIT REAL®S (A-H,0-2)
REAL*8 MG
D!HENSION UU(lll) LA
COMMON /COMAT/ A ZS 25),8(25,25) ,R(126),N
/DIMLE/ ALS, ALG ALT IES BEG GAS,GAL,GTS, LT, DET,
DE2.511,512,513, PHIZ Pﬂ!3 PHI,PHZ ,PH]
ISTATE/ v(idd), YDOT(XIBI ST,
JLINEA/ AALT7S, 75) BB{76, Bl DDl?S) uie?
/GASPA/ (PG, PY! FTl L PGS UesS
FHREATT/ OHSG, OHTS DNTG | 1 ISG ITS BTG, WG, BWS

HP2u=n
VCM'Z)'SU“(Y.'.A UUKN2)  UUIN3) I, RI+BES T (UUIRTET-LUIRS2) )

V(IOJ)-SUN(Y.I.A.UU(N'Z).UU(N*]).Nil‘N)QIGS'(UU(N03)-UU(I'E))
VIR ImSUMIY, N, A UUCNd) (BUINS) B NI oBSG(UUINGZ)-UUINCd))

* SUMS {212 (U3 ~UN N4} ) ZALC /UM I NS 4)
VENSE) wSUMLY (N, A, UUBIN*4) JUUIN+S) Nl NI+BSE*(UUIN+B)I-UUIN+3))

TAURPHZ~ 1 DN
DO 28# K=] N
sy VIK =Y IRAK)PSUMILUU, 8, A, U12) ,UU(N+1) K, NI-UULKI*SUMIY, N, A,
* UUENRE 4D, UUENeE) K, M) «VDOT(N+K ) ¢UULK ) *Y (N+KI"TAL/
» (TAUTR(K+{)+1.D8})
VNS mUU{N+E)*SUMTUU B, A U(2) UUINeT) Nel MI~UU(NST)ESUM(Y, X, A,
UUIN=4), UU(H#S) Mol M)~ {UUINeS I~ ST)IDTVUU(IOK)‘UUil*D) TAU/
. (TAU+1,08)
RETURN
END

Table A4~1 Continued



anon o000

- 424 -

THIS PROGRAM MODELS A NONISOTHERMAL, NONADIABATIC FIXED BED REACTOR
. WITH BOTH A COOLING JACKET AND A THERMAL WELL. THE ANALYSIS IS

PERFORMED FOR A METHANATION OF CO SYSTEM.

THIS PROGRAM PERFORMS THE SIMULATIONS FOR THE LINEARIZED MODEL

USING THE NUMERICAL DIFFERENTIAL EQUATION SOLVER MODDEQ.

LINK TO MLIB,LLIB

IMPLICIT REAL®B (A~H,0~7
REAL*B L ,KT,MG,KF, k8P, KPlA KP1B,KC1#,KP2A ,KP2B,KC28 ,K2P ,K3P

DIMENSION Y5(188),RL1L1G,9),RL2(15,9),Y(180),Y00T(10¢)

COMMON /REACP/ EPS,L,RH,R]

/CATLS/ CPS,PS,TC,DC

/THWEL/ CPT,PT,KT

/GASPA/ CPG,PTZ,PTR,MG,PGS,UGS,UM

/HEATT/ OHSG,OHTS,OHTG,BGS,BSG,BTS, BTG, BWE, BWS

/OPCON/ SCH4,S8C0,S5C02,5H2,SH20,PTH,PT1,STH,STVW

/REAC1/ DH]IA,DH1B,DH2A,DH28 ,K8,KEP

SOIMLE/ ALS,ALG,ALT,BES ,BEG,GAS,GAG,GTS,GTC,DET,
DE2,511,812,S13,PHI2,PHI3,PHI,PH2,PH3

/RADIA/ W(1B) ,WP{9,2) ,DETA(2),RR

/COMAT/ A(25,25),8(25,25),R(26),N

/REAC2/ KC1#,KP1A,KP1B,KC28, KPZA

/LINEA/ AA(?5.75).BB(75. ).DD(? .

JLALGB/ S{4,4) ,H(28,48) ,R1(20,4) A

EXTERNAL FN3,DERIV

K2P ,K3P ,EAL ,EA2

P IE IR IR 20 2F 2N 2N BE 2k 3 2% N )

KP2
A
L

8,
8)
7)

C READ IN DATA AND CALCULATE CONSTANTS

CALL SETUPS (DTH,TMAX,DL,N,RR,EP,IFLAG,NFLAG,NP,IF)

C CALCULATE THE DIMENSIONLESS PARAMETERS

CALL DIMLES

C CALCULATE CONSTANTS FOR THE RADIAL LUMPED MODEL

CALL RADIAL

C CALCULATE ZEROS Of THE ORTHOGONAL POLYNOMIAL AND SET UP AXIAL

COLLOCATION MATRICIES A AND B.
CALL COLLOC

C SOLVE FOR THE STEADY STATE PROFILES

CALL INTLSS{YS,U,IFLAG,NFLAG,L,UGS,PH1 N, EP)

C CALCULATE THE COEFFICIENTS FOR THE LINEARIZED REACTION RATES

CALL LREACIYS,RLI,RL2)
CALL ASETUP(YS,RL1,RL2)

C SPECIFY THE PROFILE AT T=8

T=8.08

CALL INSIM(Y,YS,U,N,JFLAG)
PRINT 1§

CALL OUTCALC(U,Y,YS(N*G+4),ALG)
CALL OUTPUTIY,U,T,L,UGS,PHL . M)

€ INITIALIZE INTEGRATION ROUTINE MOODEQ

292

LL=¥
JJ1=28
NTwg@¥
DT=0TH

K=}
CALL MODDEQ{DERIV,K,5*"N,T,Y,YDOT,DT,EP)

C SOLVE THE 5N O.D.E.'S FROM T TO T+DT

208

NT=NT+1

CALL MODDEQ{DERIV.K,.G"N,T,Y,YDOT,DT,EP}
IF(K .EQ. ~1) PRINT 2

IF(K ,EQ. -1) STOP

Table A4-2
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€ PRINT RESULTS AND CONTINUE IF T ¢ TMAX

IFILL.EQ.N .AND, T.GE.DL) GO TO 39¥
IFINT.NE.NP LAND, T.LT.TMAX) GO TO 288
CALL QUTCALCIU,Y,¥SINYG+d) ALG)

CALL OUTPUT(Y,U,T,L,UGS,PH] . &)

IF(T .GE. TMAX) GO TO 48%

NT=g

€ ADJUST TIME STEP 1F NECESSARY

RS=RFN (YDOT,2%N)

JI*IIDINTIRS)~3

IF(JJ) .EQ. 2) JIOw»IIDINTI{RS~.2D#) ~ 23

IF(JJ.LE.® .OR., JJ.GE.IF)ICO TO 2%

DT1wDTA*4,DE**)J

IFU{DTI-DT) .LE. .BEFIDF .AND. (JJ1+3-RS) .LT., .1D#)GO TO 289%
DT=DT1

JJi=Jd

PRINT 4, (DT®L/UGS)

GO TO 282

€ ADJUST FOR END OF [MPULSE

e LL=1
DO 3#1 I=2,.8

3 U=l . DB
Ui{1)=pH3
PRINT 3, (T*L/UGS)
DT=0TH
GO TO 242

€ CALCULATE FINAL STEADY STATE

ANy ;;gk% iEO. 1 .OR. JFLAG .EQ. 1)STOPM
CALL NSES1(S5*N,Y,EP*1.D-2,180,8,FN3)
CALL OUTCALCIU,Y,YSIN"G+4) ,ALG)
CALL OUTPUT{Y.U . B.DS.L UCK . PH! 2}
CALL ACTLSS(U,Y,EP,N)
CALL OUTPUT (Y,U,.B.D8,L,UGS,PHI, )

FORMAT(1H1)

FORMAT(///,2X, 'ERROR -~ MODDEQ COULD NOT CONVERGE",//
FORMAT(//I///// 2X,"ACTUAL TIME OF IMPULSE END =* FB ll/lll/l)
EOEHAT(/III//// W2X,"MEW TIME STEP =° Fl'.ll//////)

L]

WA e

SUBROUTINE DERIV (N.T,Y,YDOT)
C THIS SUBROUTINE DEFINES THE DIFFERENTIAL EQUATIONS FOR USE BY MODDEQ

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION Y(199),YDOTI189)

COMMON /L INEA/ AA(75,75),BB(75,8),00(75)
» JLALGB/ STA4,4) ,H(28.48) ,RIL2F,4)

DO 198 I=]1,N
VDOT(I)'DU(‘)
DO 181 J=1,

i YDDT(I)'YDOT(I)*AA(I Ji*Yed)
DO 188 J=1,8

i VDOT(I)-YDOT(I)¢B3(I J1=U(d)
g

Table A4-2 Continued
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THIS PROGRAM MODELS A MONISOTHERMAL, NONADIABATIC FIXED BED REACTOR
WITH BOTH A COOLING JACKET AND A THERMAL WELL, THE ANALYSIS IS
PERFORMED FOR A METHANATION OF CO SYSTEM.

THIS PROGRAM PERFORMS THE SIMULATIONS FOR THE LINEARIZED MODEL
USING THE ARALYTIC SOLUTION,

LINK TO MLIB.LLIB,ELIB

IMPLICIT REAL*8 (A-H,0-2)
REAL*"8 L,KT,MC, K8, KIP,KPIA KP1B,KCIN KP2A ,KP2B,KC28,K2F ,K3P
DIMENSION YSU188),RLI115,9),RL2(16,9),Y(188),Y00T(188)
COMMON /REACP/ EPS,L,RH,RI
/CATLS/ CPS,PS, TC oC
/THWEL,S CPT,PT,
7GASPA/ CPG,PTZ, PTR MG, PGS, UGS, UM
JHEATT/ ONSG OHTS OHTG BGS,BSG,BTS,BTG,BWG,BWS
/OPCON/ SCHJ.SCO.SCOZ.SHZ’SHZD.PTS.PTI.STl.STU
/REAC1/ DH1A,DHIB,DH2A,DH2B,K#,KOP
JOIMLE/ ALS,ALG,ALT,BES,BEG,GAS,GAG,GTS,GTG,DESL,
0E2,511,512,5SI3,PHIZ,PHI3,PH]1,PHZ,PH3
FRADIA/ WiL1H) ,WPL9,2) ,DETA(2],RR
JCOMAT/ AL25,25),8(25,25),R{25),N
/REAC2/ KC1#,KP1A,KP1B,KC29,KP2A ,KP28,K2P,K3P,EAL,EA2
JLINEA/ AA(75 75),B8175,8),0D(78), U(B)

LR 2R 2E BE R BN SR 2R Ik BN BN B 2N 2B 2R 2

JLALGR/ S(l.l).H(ZB i), RI(ZI 4), AL

JEIGEN/ EYR(;g)%gVI(75) JSRU75,75), SI(75 75),81R(78,78),
It

JANLYT/ A!(75.$5) EX(75,76),ET(75,75),CC(76)

EXTERNAL FNM3
READ IN DATA AND CALCULATE CONSTANTS

CALL SETUPS (DT,.TMAX,DL.N,RR,EP,IFLAG,NFLAG,NP IF)
DT«DT*NP

CALCULATE THE DIMENSIONLESS PARAMETERS
CALL DIMLES

CALCULATE CONSTANTS FOR THE RADIAL LUMPED MODEL
CALL RADIAL

CALCULATE ZEROS OF THE ORTHOGONAL POLYNOMIAL AND SET UP AXIAL
COLLOCATION MATRICIES A AND B.

CALL coLLOC )
SOLVE FOR THE STEADY STATE PROFILES
CALL INTLSS(YS,U,I1FLAG,NFLAG,L ,URS,PH], N ,EP)
CALCULATE THE CQEFFICIENTS FOR THE LINEARIZED REACTION RATES

CALL LREAC(YS,RL1,RL2)
CALL ASETUP(YS,RLI,RL2)

SPECIFY THE PROFILE AT Tw§
Teg.DF
CALL INSIMLY,YS U, M, IFLAG)

PRINT 1
CALL OUTCALCIU,Y,YSIN*6+4),ALC)

Table A4-3
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CALL OUTPUTLY,U,T,L,UGS,.PHL. ;)
C CALCULATE THE ANALYTIC CONSTANTS

Liwg
IN=§
22 CALL ANALYT{DT,.N,IM)

€ SOLYE THE SN Q.D.E.'S FROM T TO T+DT

20 DO 2#3 I-]1,B%N
YOOT(1}=CCLI)
D0 283 I»1,5"N
293 YOOT(I)=YDOTUII+EX{T,3)*Y{(J)
TeT+DT
DO 281 I=1,5"N
(2 AARBALL AR B

€ PRINT RESULTS AND CONTINUE IF T < TMAX

IFLLL.EQ. 8 AND. T.GE.DL) GO TO 34¥
CALL OUTCALC(U.Y,YS{N*6+4) ,ALG)
CALL OUTPUTLY,U,T,L,UGS,PHI )

IF(T LGE. TMAX) GO TO 4%

GO TO 228

€  ADJUST FOR END OF IMPULSE

s Li=]
DO 3¥1 I=2,8

s Ull)=1.08
Ui1)=pPH32
PRINT 2, (T*L/7UCS)
1N=2
G0 TO 282

C CALCULATE FINAL STEADY STATE

iy ;;;h% iEQ. 1 .OR. JFLAG .EQ. 1)STOP
CALL NSES1(5*N,Y,EP=*1,D-1,108,8,FN3)
CALL QUTCALCIU,Y,YS{N*6+4) ,ALG)
CALL OUTPUTIY,U,9.00,L,UGS.PHL,2)
CALL ACTLSS(U,Y.EP, M)
CALL QUTPUT (V.U .F.DF L UGS, PHI,.I)

sSTOP
1 FORMAT(1H])
2 ;2%HAT(IIII////.2X.'ACTUAL TIME OF IWPULSE END =* F8.4//7/7770)

Table A4-3 Continued
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SUBROUTINE ANALYT (DT,N,IN)

THIS SUBROUTINE CALCULATES THE CONSTANTS RECESSARY FOR THE
ANALYTICAL SOLUTION.

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION IND(75),Q(75)
COMMON /LINEA/ AAL75,75),8B¢75.8),00178),018)
/EIGEN/ EVR:?S).EVZ(75).SR(7§'75)‘SI(75.75)»SIR(78.757.

51117%,7%)
JANLYT/ AX(75,75),EX(75,75),ET(?5,75),CCU{75)}

IFLIN (EQ. 1) GO TO 289
IFLIN _EQ. 2) GO TO 328%

C CALCULATE THE EIGENPROPERTIES

CALL 2EROM(SR,?5,78)

CALL ZEROM(S§!,75,75)

CALL ZEROVIEVR,?S5)

CALL ZEROVIEVI.?78)

CALL MATCPY(AA,Al,78,75,75,75.75,75)
CALL EIGENP{S*N,?5,AJ,EVR,EVI.SR,S51,1IND)

C CALCULATE S INVERSE AND A INVERSE

CALL ZEROM{SIR,.75,75)
CALL ZEROM(SII,?5,75)
CALL MATCPY(AA AT, 75,7%,75,75,75,75)
DO 18¥ I=1 N*5

0¥ SIR(I,1)=1.08
CALL CINVSE{SR,.SI.SIR.SII
CALL BNDINVIAI,5*N,ITEST)

C CALCULATE EXPULAMBDADT)

289 DO 281 [w1.5*N
CCUII=DEXPIEVRIII*DTI*DCOSIEVI(II*DT)
241 QEI)=DEXP(EVRII>*DTI®DSINLEVIIII*DT)
DO 283 Ie],5"N
DO 283 J=1,5"N
STR=#, 08

a0

«75,5*N)

ST2=8.D8

CALL CMULTICC
292 CALL CMULTISR
283 EX{1,0)STR

€ CALCULATE ADDITIONAL CONSTANTS

DO 284 I=1,5"N

DO 284 Jw=1,5"N

ET{1,0)=0. 08

DO 294 K=l ,5*N

ALP=EX(K,J)

IFIK .EQ. J)ALP»ALP~1.D¥
24 ETUL,QIwETUI O)¢AILT K}*ALP

387 DO 381 I=1,5"N
QU1)=DD(I)
00 381 J=1,8

k2 QUII=QUII+BBII.IX™UI)
DO 342 I=1,.5"N
CCeIN=N.OF
DO M2 Jni 5%N

382 CCUIIeCCII)*ET(I JI™QJ)

RETURN
END

X,J),8T1,8T2?
STR,8TI}

— -~
-~
.~
- -~
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THIS PROGRAM MODELS A NONISOTHERMAL , NOMADIABATIC FIXED BED REACTOR
WITH BOTH A COOLING JACKET AND A THERMAL WELL. THE ANALYSIS IS
PERFORMED FOR A METHANATION OF CO SYSTEM.

c

<

c

C  THIS PROGRAM PERFORMS THE SIMULATIONS FOR THE REDUCED LINEAR MODEL
C USINGC THE ANALYTIC SOLUTION, THE ASSUMPTION OF NEGLIGIBLE ENERGY
[ ACCUMULATION IN THE GAS AND QUASI SS FOR CONCENTRATION ARE USED

c FOR THE MODEL REDUCTION,

c

LINK TO MLIB,LLIB.ELIE

IMPLICIT REAL"B (A-H,0-X)
REAL*S L KT, MG, KNI, KSR . KF 1A, KR8, chl.xnzn.xrzl.nczt.&zw.ttv
DIMENSION YS(198) RL1{15,9) RL2C1S, 95, Y(1EN) , YDOTC188)
COMMON /REACP/ EPS.L.RI. 1

JCATLS/ CPS.PS.TC.DC

"
e /THWEL/ CPT,.PT,K

- IGASPA/ CPG. PTZ PTl MG, PGS, UGS .

» FREATT/ OWSG, OHYS.OHTG BGS, 856, DTS 8TG.BVG,BWS

» JOPCON/ BCWA,BCQ,5C02,5N12, SHZO PT' PTIITH, BTV

* /REACL/ DMlA.DNlB.DNZAvDHZB.Kﬂ‘

» /DIMLE/ ALS,ALC ALT, SES.BEG.GAS.GAG.GTS.GTG.DE!.

. PER,S1), 312‘813.PN12.’N13.PNI"NZ.Pﬂﬂ

" IRADIA/ Vlli).VP(!.?).DETA(Z).RI

- /COMAT/ AL25,25),B125,25),R(25),M

" /REACZ/ KC1E,KPIA KPIB, KC28, KP2A KP2R, K2P,K3P ,EAL,EA2

* JLIMEA/ AA(75,76),8B(75,8),00(756),0(8)

* /LALGE/ SU4,4) . HI2N,48) RI(2F,4),ALLTY)

* JEIGEN/ EVRI75),EVI(Y5) ,SR(75,75),81(75.75),81R(75,786),
» S11(75,74%)

" ZANLYT/ AL176,7%) EX(75,75) ,ET(76,758),CCC

- JREDLN/ AC(75,75),AP(75,75),0P(758),C1 (75 75) C2(78,1),

-~ ACI(75,78)

EXTERNAL FN3
C READ IN DATA AND CALCULATE CONSTANTS

CALL SETUPS (DT,TMAX,DL,N,RR,EP,IFLAG,NFLAG, NP, IF)
OTe0TnP

€ CALCULATE THE DIMENSIONLESS PARAMETERS
CALL DIMLES

€ CALCULATE CONSTANTS FOR THE RADIAL LUMPED MODEL
CALL RADIAL

CALCULATE ZEROS QF THE ORTHOGONAL POLYNOMIAL AND SET UPF AXIAL
COLLOCATION MATRICIES A AND B.

CALL €OLLOC
€ SOLVE FOR THE STEADY STATE PROFILES ‘
CALL INTLSS(YS,U,IFLAG, NFLAG,L UGS, ,PHI N EP)
C  CALCULATE THE COEFFICIENTS FOR THE LIMEARIZED REACTION RATES

CALL LREACIYS,RL1I.RL2)
CALL ASETUP(YS, RL1I.RL2)

€ SPECIFY THE PROFILE AT Tes

talsl

T=8.08

CALL INSIMCY, YS,U, N, IFLAG)
PRINT 1

CALL OQUTCALCIU,Y,YSIN"6+4),ALE)
CALL OUTPUTIY,U,T,L,UGS,PH1 &)

C  CALCULATE THE ANALYTIC CONSTANTS
Li=g

IN=H
2.2 CALL REDUCE(N,IN}
CALL ANALYT(DT,N,IN)

€ SOLVE THE BN O.D.E.’S FROM T YO T+DT

28 DO 283 Y=i N

YoOT(11=CC(])

YDOT(I+N)=CCIN+T)

DO 283 J=1,N

. YDOT(N=1)=VDOT{N+I)+EXULoN, J)'Y(J)~Ex(ION.JON)'V(Z'IGJ)

E £ YDOTL{II»¥DOTEII+EXIT I *YIJI+EX{T, J+NI*YI2OND

TeTeliT

DO 281 1=1,N

Y{2*R+])w¥YDOT(N+1}
mn Y(1)=YDOT(1)

€ PRINT RESULTS AND CONTINUE IF T < TMAX

IF{LL.EQ.Z .AND. T.QE.DL) GO TO 38
CALL QUTRA(Y.N)

CALL OUTCALCIU,Y ¥YSIN"Ee4) ,ALE)
CALL OUTPUTLY, U, T,L UGS, PHL.8)

1F(T .GE. TMAX) &0 TO 44¥

&o TO 298

Table A4-4
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€  ADJUST FOR END OF IMPULSE

i Ll=]
DO 31 I=2,8
s UtIl=«1.08
VU1 )=PHI
PRINT 1, (T*L7UGS)
INe2
GO To 282

€ CALCULATE FINAL STEADY STATE

“nn 1FCLL LEQ. 1 LOR. JFLAG .EQ, 1)STOF
PRINT |
CALL NSES1(5%N,Y EP*1.0-2,180, .80 ,FN3)
CALL OUTCALCIU,Y,YSIN"G+4) ALG)
CALL QUTRALY N}
CALL OQUTPUT(Y,U.#.DF,L,UGCS,PHL,2)
CALL ACTLSS(U,Y,EP,N)
CALL QUTPUT (Y,U.#.DF,L,UCS,FH1.3)

FORMAT(INY)

E e i

END

SUBROUTINE ANALYT (DT.W,IN)

€ THIS SUBRCUTINE CALCULATES THE CONSTANTS NECESSARY FOR THE
c ANALYTICAL SOLUTION,

IMPLICIT REAL"8 (A-H,0-2)
DIMENSION IND(75),0(75)
COMMON /LINEA/ AA(75 75),8B{75.8),0D(7%),U(8)

S11(78,758}
JANLYT/ A1(75,75) ,EX{75,75),ET(75,75),CC{78)

IR N

ACL(76,7%)

IFCUIN LEQ, 1) GO TO 288
IFUIN LEQ. 2) GO TO ase

€ CALCULATE THE EIGENPROPERTIES

CALL ZEROMISR,75,7§)

CALL ZEROM(S!,75,78)

CALL ZEROV(EVR,75)

CALL ZEROVIEV].,?

CALL MATCPY(AP, AI 75 76.756,75,76,7%)
CALL EIGENP(27N,7§, AL, EVR,EVI.SR,SI,1IND)

€ CALCULATE S INVERSE AND A INVERSE

CALL ZEROM(SIR,7§.75)
CALL ZEROM(SI11,75,75)
CALL MATCPY{AP A],75,76,78,75,76,76)
DO 1#F Tal N&2

155 SIR(1,1}»1.D8
CALL CINVSE(SR,$1,5IR,S11,76,2*N)
CALL BNDINVIAI.Z*N,ITEST)

€ CALCULATE EXP(LAMBDA*DT)

Ed £ 0O 2#1 I-1,2%N
CC(T)=DEXP{EVR(I)*DT)*DCOSCEVI{1)*DT)
2%l Q{1)=mDEXP{EVRIT}I*DT)I*DSINCEVI(II®DY)
DO 283 1«1, ,2*N
PO 283 J'I.Z'N
STR=g.D%
$T1=9.08
DO 282 K=1,2°N
STl=8.00 .
S$T2=8.08
CALL CMULTICCIK) (
282 CALL CMULTI(SR(1,X},
3 EX(I,J)=§TR

€ CALCULATE ADDITIONAL CDNSTANTS

DO 204 1=],2*N
DO 2H4 Jml,2*N
ETUI,0)=@.DF
DO 284 K=) 2*N
ALPeEXI{K J)
IFLK .EQ. JIALPwALP-1.0F
E3 1) ET(I, JI=ET(I, JI+AIT,KITALP

s DO 342 Iwl,2%N
CCtl=8. 08
DO 342 J=].2"N

Iz CCUIIwCOUI =BT, QP ()

RETURN ‘
END

Table A4-4 Continued
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SUBROUTINE REDUCEIN,IN)

C THIS SUBROUTINE PERFORMS THE PHYSICAL MODEL REDUCTION FOR
[ USE WITH THE ANALYTIC SOLUTION.

1859

i
be 1

152

193

Y )

%

IMPLICIT REAL®B (A-H,0-2)
DIMENSION TiI{5#,54),T2(58,88)
COMMON /LINEA/ AA(75,75) ,BB(75,8),DD(7%
/REDULN/ AC{75,75) AP{T5,76) .QPL7
ACI(75,78)

IF{IN LEQ. 2) GO TO 280
n2meN

N3Iw3*N

Ni=a=N

DO 188 1wl N

DO 1#E J«1 N
ACUT,J)AA(N+] Ne))

ACUT N+ )sAA(N+T N3+J)
AC{T N2+ Y wAAIN+]  NA+J)
ACIN+T ,J)wAAINI+] N+D)
ACIN+T N+J)=AAINI+] N3+J)
ACIN4T N2+JIwAA NI+ NAsd)
ACIN2+I,J)mAA(NA+] N+d)
ACINZ2+] N+JI=AAINA+] N3+D)
ACINZ+ T N2+J)ImAAINLSD NE+D)
T.dy=AACT Ned)
1,N+J)ImAALT  N3+D)

1, N2+0)=AALT N&+d )

Hel JIwAALR2HT NeJ)

N+T N*J)IwAA{NZe] N3+3)
X

1

),U(8)
5}.CIL75,75),C2(75,1),

+1 ,N2+J 1 mAAIN2+1,N4+D)

W ImAAINST D)

I, N+JImAAIN+T ,N2+3)
T2(N+1,J)=AAIN3+],J}

T2(N+] N+J)ImAAIN3+] ,N2+J)
T2(NZ+1,J)wAAINA+] ,J)
T2(N2+1, N )wAAINL+] N2+J)

CALL MATCPY(T2.C1.58.58,75,75,N3,N2)
CALL BNDINVI(AC,M3,ITEST)

CALL MATCPY(AC.ACL,76,75,7%,78 N3 WD)
CALL MATMULTIAC,C1,75,785,75,75,N3, N2, ,N3)
CALL MATMULT{T1,AC .58 ,58,75,76 N2 ,N3.N3)
CALL MATMULT(AC,T2,75,75,58,.58.82,N2,N2)

00 18] I=1,%

DO 181 U=l N

APUI ) =AALL, ) =T2L1, )

APLL el ) wAA(T N2+J)~T2L1,NeJ)
AP(N+1,0)mAA(N2+] J)=T2{N+1,0)

AP N+ N+ ) wAA(NM2+T N2+ -T2IN+I ,N+J)

DO 182 I=1,N

1211, 1)=0D{N«1)

YZONT,1)mDDINI+T)
TZ(N2s1,1)%DDINA+T)

TI(I, 1)1=0B()

TIINGI,1)DDIN2e1)

00 142 JI=1.8
T2{1,11aT2(1, 1 )2BR(N+Y, DI*ULI)
TZUN+T, 1IWT2ENS T, 1) oBBINI],I)"U(D)
TZIM2oT, 1)T2(N241 1) oBB(NE+1, )% U10)
TICI. 1)%T1C, 1)e8BUE,J)00()

TLONAT 1)wTEENST 1) +8BINZ+1,2)70(J)

CALL MATCPY(T2,C2,84,5¢,75,1,N23,1)

CALL MATMULT(ACI,C2,75,75,75,1,N3,1,N3)
CALL MATMULTIAC,T2,75,75,50,58,N2,1,N3)
DO 1F3 I=1,M2

QP{I)=T1(1,.1)-T2(1.1)

RETURN
END

Attt
Percisiededesudes

t
{
{
{
{
4
{
{

SUBROUTINE OUTRA(Y, N}

IMPLICIT REAL*8 (A-N,0-2)

DIMENSION Y188)

COMMON /REDLN/ AC{75,75),AP(75,75),QP(758),C1(7%,75),C2(78,1},
ACT(76,76)

N2=2*N

N3=3*N

NAmd*N

DO 18K is1 N

Y{I+N)waQ201,1}

YOIANI I m-CR2UN+T, 1)

Y{I+Nd}mnC2(N2+I, 1)

DO 189 J=i N

YINCTIwY{Ne])=CLUT  JI*YVL{II-CL(T,N4JIY(NR+D)
YORI1)wYINIeII~CLINT, D)2V ~CL N1 NOQIOYINZ4))
ViNA+1)wY(NA+1I=CLIN2¢D , JIYIII=CLINZ+] N I"YINZ4Y)
RETURN

END

Table A4-4 Continued
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PROGRAM MODELS A NONISOTHERMAL, WONADIABATIC FIXED BED REACTOR

WITH BOTH A COOLING JACKET AND A THERMAL WELL. THE AMALYSIS IS

RFORMED FOR A METHANATION OF CO SYSTEM.

PROGRAM PERFORMS THE SIMULATIONS FOR THE REDUCED LINEAR WODEL
NG THE ANALYTIC SOLUTION. THE ASSUMPTION OF QUASI SS FOR

CONCENTRATION IS USED FOR THE MODEL REDUCTION.

¢
|
4
¢ THIS
¢
¢
<

LINK

S SR FEREI RS ES AT S

€ READ

¢ CALC

€ CALC

CALC

nea

€ SoLvV

€ CALC

€ SPEC

€ CALC

2.2

¢ soLv
b1/ 4

w3

1)

TO MLIB.LLIB.ELIB

IMPLICIT REAL*8 (A-H,0-Z)
REAL*S L ,KT,MG,K#,KBP,KPIA, KP1B,KCIN,KP2ZA,KP 28, KC2H , K2P , K3P
DIMENSION YS{188),RL1(15,97 RL2(1S, 9}, Y(1AN), YDOT(1H8)
COMMON /REACP/ EPS.L,RE,R1

7CATLS/ CPS.PS, TE.0C

/THWEL / CVT. Y,

JGASPA/ CPG.PTZ. o, MG, PGS, UGS, UM

/HEATT/ QHSG,OMTS,OHTG,BGS,B5G,BTS BTG, BWE,BWS

JOPCON/ SCHA,SCO,SCOZ,SH2 SHZO PTH,PT1,STH. STV

JREACI/ DH1A,DH1B,DH2A,DHZB,KE,KN#

JOIMLE/ ALS.ALG.ALT.BES.BEG,GAS,GAG,.GTS,6TG,DE1,

DEZ SI1.S12.S13, PRIZ,PHI3,PAI,PHZ,PH3

/RADIAZ WCiH) 27, DETA(Z) AR

JCOMAT/ A(25,25) 25.25),R(28),K

JREACZ/ KC18.KP1A.KP1B,KC2B,KP2A, xrzu.xzr X3P, EAL,EA2

JUINEA7 AAL78,75),88178.8),00¢ 785,

JUALGB/ S(4.4) H(28,40) .R1{28.4),ALLT)

JEIGEN/ §¥§:;g>;§¥1 75),$R( 7S, 75).sx(7s 75) . SIR(7S,75),

JARLYT/ A1(75,75) EX(75.75) ,ET{75,76),CC(78)

/REDLN/ Ag;{$g7§;;AP(7S,7S).0P(7S).c1(75.75).C2(75‘1).

A .

e -~

EXTERNAL FN3
IN DATA AND CALCULATE CONSTANTS

CALLTSE:UPS (DT, THAX DL N KR EP, IFLAG  NFLAG NP IF)
DT=D

ULATE THE DIMENSIONLESS PARAMETERS

CALL DIMLES .

UVLATE CONSTANTS FOR THE RADIAL LUMPED MODEL

CALL RADIAL

ULATE ZEROS OF THE ORTNOGONAL POLYNOMIAL AND SET UP AXIAL

COLLOCATIUN MATRICIES A Al

CALL coLLoc

E FOR THE STEADY STATE PROFILES

CALL INTLSS(YS, U, IFLAG.NFLAG,L UGS, ,PH] N,EP)

ULATE THE COEFFICIENTS FOR THE LINEARIZED REACTION RATES

CALL LREACUYS,.RL1,RL2)
CALL ASETUPLYS,RLI.RLZ)

IFY THE PROFILE AT Te¥

Teg. D8

CALL INSIM{Y,YS U N, JFLAG)
PRINT 1

CALL QUTCALCIU,Y, YS{N"6+4) ALG)
CALL OUTPUTIY,U.T,L.UGS,PHI . &)

ULATE THE ANALYTIC CONSTANTS

LL=#

IN»g

CALL REDUCEIN,IN)
CALL ANALYT(DT,N,IN)

E THE SN O.D.E.'S FROM T TO T+DT

DO 283 I=},3*N
YOOT(1)CC(1)

DO 283 J=1,3*N

YROTI I mYDOTIIISEXTY J)*Y (D)
TaT+DT

DC 281 I=1,3%N

¥Y{=YDROTLI)

€ PRINT RESULTS AND CONTINUE IF T < TMAX

IFLLLLEQ. N AND. T.GE.DL) GO TO 2N
CALL OUTRALY.H)

CALL OUTCALCIU,V,YSIN"6+4) ,ALG)
CALL QUTPUTIY,U,T,L, UGS, ,PHI O)

TF(T (GE. THAX) GO TO 44¥

GO TO 284

Table A4-5
Computer Program RD2MOD
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€ ADJUST FOR END OF IMPULSE

s Lie}
D0 34] 12,0
L2 4 Yir=1.08
Uil

IM=2
&0 TO 242
€ CALCULATE FINAL STEADY STATE

ANy 1F(LL .EQ. 3 .OR. JFLAGC .EQ. 1)STOP
PRINT |
CALL NSESI{B*N,Y . EP*1.0-2 10F K ,FN3)
CALL OQUTCALCIU.Y,YSIN®6+4) ,ALS)
CALL QUTRALY,.N)
CALL QUTPUTLY, U .#.DF,1,UGS5,PH1,2)
CALL ACTLSS(U,Y,EP N}
CALL OUTPUT (Y, U. 0. 08, L.UGS,PHL. D)

sYoP
1 FORMATUINGY
2 ;ggHAT(//II///I.ZX.’ACTUAL TIME OF INPULSE END «° . F8.4/7/7771)

SUBROUTINE ARALYT (DT %, 1)

£ YNIS SUBROUTINE CALCULATES THE CONSTANTS NECESSARY FOR THE
c ANALYTICAL SOLUTION.

IMPLICIT REAL"68 (A-H,0-Z)
DIMENSION XND(?S)'0(7S)
COMMON /LINEA/ AA(?75,75) ,BB(75,8),DD(75),ui(8)
/EIGEN/ EVR(75),EVI(75).SR{75,75) .SI{75,76) ,SIR(7S,78)
511(75 75)
JANLYT/ AIC7S,76) EX(75,75) ET(78,758),CCI78)
/REDLN/ g§¥357g;;l (76,75) ,0PL75),C1L78,76),02(78,1),

IFCIN LEQ. 1) GO YO 28F
IFLIN LEQ. 2} GO TO 388

€ CALCULATE THE EIGENPROPERTIES

CALL ZEROMISR,75,7%)

CALL ZEROM(SI,75,7%)

CALL ZEROVIEVR, 75)

CALL ZEROV(EV1.7

CALL MATCPY(AP,AI, 75 75.75,78,75,

CALL EIGENP(IWN, 75 Al EVR, ﬁVI SR, SX IND)

€ CALCULATE 5 INVERSE AND A INVERSE

CALL ZEROM(SIR,75, 75)
CALL FEROM(SIT .78,
CALL MATCPY(AP.AI, 75 75 75,76,75.78)
0o llﬂ 1wl N*3

i SIR(I,I)wi. D8
CALL C!NVSE(SR.SI.SIR.SII.75.3'")
CALL BNDINVIAL,3*N,ITEST)

€ CALCULATE EXP(LAMBDA*DY)

b4 1 DO 281 1w=1,3*N
CCUI}=DEXP(EVR{I)*DT)I*DCOS(EVI{I)*DT)
28 Q{II=DEXP(EVR(II*DTI*DSIN(EVILII*DT)
DO 283 1=1,3*N
bo 283 g-l.S'N

IR XN

DO 282 Kel, 3*N

ST1wn, 0¥

5T2=8.08

CALL CMULT(CCIK),Q(K),S K,J),811(K,J).,8T1,8T2)
282 CALL GMULTISRII K}, SI1LI 4ST1,8T2,8TR,STI)
2r3 EX{I,J)*STR

€ CALCULATE ADRDITIONAL CONSTANTS

DO 284 1+#1,3*N

00 284 J=1,3"N

ET(L.J)=@. 08

DO 204 Kx1,3%K

ALP=EX(K,d)

IF(K .EQ, J)ALP=ALP~1,D¥
24 ET(I,OImEY(1 J)eAL{] K)I*ALP

e DO 382 Im=],3*N

CCL1I =l . DF
DO 32 J=1, 3%M

I CO{I)eCOCIIETIT, II%AP (D)
RETURN
END

Table A4-5 Continued
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SUBROUTINE REDUCE(N,IN)

C THIS SUBROUTINE PERFORMS THE PHYSICAL WODEL REDUCTION FOR
USE WITH THE ANALYTIC SOLUTION,

IMPLICIT REAL*8 (A-#,0-2)
DIMENSION TI(50,.58),T2(58,58)
COMMON /LINEA/ AAL7S .75) BBI75,8),DD(78) U [ 3}
/REDLN/ AC(75,75) AP(75,75),QP(75),C1(
ACILT8,78)

IFCIN JEQ. 2) GO TO 298
N2w2wn
LEERLL]
Né=4*N
00 188 I=1,N
DO 14F dwi N
ACUI, JYwAA(NI«] K3e2)
AC(I N+J)=AAINI+] N4+d)
ACIN+T J)IwAA{NE+] N3+d)
AC(Nel Ne¢JIAA(NAS]T HA+J)
T1(1,J)=AALI,N3+J)
TICI N+J)=AALT,N4+d)
TI(N+I,J)=AA(N+] N3+D)
TI(N+T N¢J)=AAIN+] Néed)
THIN2+T,J)mAA(NZ+] N3+J)
TI(N2+T  N+J)=AAINZ+]  N&+J)
T2UI,J)1=AA(N3+] J)
T2(1 NeJ)=AAIN3+1 NeJ)
T2 M2+ )wAAIN3+] N2+J)
T2(N*! ,JI=AA(N&~]1 Q)
TZINT, N+ JImAA(NAT , N+J)

Y 1 TR2IN+I N2+D)wAALNA+T N2+d)
CALL MATCPY(T2.C1,598,50.76,75,N2,K3)
CALL BNDINVIAC,NZ,ITEST)
CALL MATCPY(AC,ACL,76,75,78.75,N2,N2)
CALL MATMULT(AC.CL,78,.75,75,75,N2,N3,02)
CALL MATMULTI(T! AC,58.58,75,75,N3 N2 N2}
CALL MATMULT(AC,T2,75,75,.58.50 , N3 ,N3,N2)

00 18] 1=1,N3
00 g1 J=i,N3
i APLT, JImAALT,0)-T201,3)

ki 14 00 182 I=1,.N
T2(1.1)=DD{N3+1}
TRIN+1,1)=0D(N4~1}
THI.1)=DD(1)
THIN+T, 11eDD{N«])
TI(N2+1,1)wODIN2#T)
00 182 Jw) .8
T241,1=T201 . 1 +BBIN3>1, 317 UCD)
TZIN+T, 1)eT2(N+1, 1 )+BBINGeT  JIPULD)
TICE 1Y =TI, LY +BBOT,2)0(J)
TH(N+T,1)=TI{NeI 1)+8BIN+1,J)%U(I)
1.2 TI(N29T, 1) eT1IN241 , 1)+BBINZ+I.II*U(D)

CALL MATCPY(T2,C2,60,8F,756,1,M2,1)
CALL MATMULT(ACI,.C2,75,75,75,1.N2,1,%2)
CALL MATMULTIAC,T2,75,75,58,50,N3,1,N82)
DO 183 1=1,N3

19 QPLI}=TI(],1)-T2¢C1,1)

RETURN
END

*

76,76),C2(78,1),

SUBROUTINE OUTRALY N}

IMPLICIT REAL*8 {A-H,0-2)

DIMENSION Y(188)

COMMON /REDLN/ ACU78,75) API78,76),0P(78) ,C1478,758),C21758,1),
- AC1(75,75)

N2u2*N

ERER

NaednN

DO 188 11N

MELLEILAL IR S S

YUI+NA)u-C20NsT, 1)

DO 188 J=1,N3

YNZoT)wY(NIoT)-CI1CT, DY (D)
N8 Y(NA+ T Y (MR )=CL(M+T,3)%¥(D)

RETURN

END

Table A4-5 Continued
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INPUT DATA:

REACTOR PARAMETERS CATALYST PARAMETERS THERMAL WELL PARAMETERS
EPS = H.5780E+B8 CPS = B.258BE+Q CPT = B, 1280E+8K
L » N.30DBE+H2 PS » N, 1841E+9] PT = N.8020E+H]
RE - F.1S87E+00 TC -~ J.5098E-83 KT = §.3900E-81
R1 = N.1194E+81
HEAT TRANSFER PARAMETERS REACTOR PARAMETERS

OHSC = &.1792E+82 DHIA = ~F.6144E+8] KPIA = -0, 2944E+82
OHTS = §.1795E-81 DH1B = ~§.4835E+85 KP1B = B.2634E+N5
OHTG = §.1436E+08 DH2A = -§.2441E+81 KP2A = §.4385E+81
BGS = #4.6200E+83 DH28 = @.1076E+48 KP2B = ~@.4615E+84
BSG = §.1309E+82 K# = §.179PE+82 K2 = G.1470E+81
BTS = @.7163E+81 K§P = §.7524E-#1 K3 = B.734BE+98
BTG = H.12S5HE+41 EAL = P .6YSHE+N4
PTZ =» §.2B08E+81 EA2 = Q.1B38E+NS
PTR = @.08000E+#1

PROGRAM CONDITIONS:

TIME STEP =~ 8. .9405%

MAX IMUM TIME = 5.8088

DISTURBANCE LENQTH = 9999999 .9909
RADIAL COLLOCATION POINT = #£.5808
NO. AXIAL COLLOC. POINTS = 8
ACCURACY OF CONVERGENCE - @.198E-08
INPUT FLAG =

NSES FLAG = 1

MAX VALUE OF DT = S 0828

STEADY STATE CONDITIONS:

XCH4 = B.6BIBE+BE T8 = §.S5738E+83
XCO = P.E80AE-A1 TW « §.5730E+83
XC02 = &.1589€E-01 PTE = B.1908E+92
XH2 = G 190RE+R0 PT1 = B.9008C+R)
XH20 = @ 2880E-81 . MG = §.1593E+082
UGS = P.750BE+R2 CPG = H.G572E+00

AXTAL COLLOCATION POINTS:
4.980BE+BE §.1986E-81 D.1817E+90 H.2372E+88

§.4B83E+88 M. 5917E+0F N.TG2BE+NS N.B9B3E+ES
§.98FLE+HN §.199FE+

Table A4-6
Sample Output From Program NLNMOD
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GAS TEMPERATURE

R = RS R = RR R = R
1.98888 1.808088 1.00800
1.80088 1. 8enny 1.e08088
1.00880 1.80888 1.08888
1.98800 1.00808 1.00808
1.80008 1. .Banne 1.88008
1.90809 1.800808 1.28888
1.B08008 1.98800 1.90000
1.00088 1.090088 1.800898
1.09088 1.88008 1.00808
1.80889 1.8080% 1.00888
WELL TEMP, CO CONC.
1.00088 g.86RO0NS
1.0BRRe g.86000088
1.800808 B.BEOBNN
1.80888 . B6RPRY
1.08088 ¥.g630888
1.90968 y.geupene
1.80008 R.B6PR038
1.90888 N.gcO0R80
1.900088 N.o600008
1.909808 #.9608809
STEADY STATE SOLUTION:
GAS TEMPERATURE
R = RO R = RR R =R
1.88188 1.860198 1.801%58
1.28635 1.88618 1.08442
1.82313 1.082106 1.81496
1.84569 1.94163 1.82958
1.86272 1.85788 1.840988%
1.87264 1.86685 1.84693
1.87361 1.86697 1.94787
1.87227 1.86578 1,84673
1.87811 1.86365 1.84518
1. #6991 1.86347 1.54505
WELL TEMP, CO CONC.
1.20808 0. 0600000
1.00549 B.A5965688
1.92324 B.8573679
1.94582 B.9543338
1.96389 0.0494708
1.87288 8.945583%
1.87408 B.8411858
1.87265 £.8389489
1.87893 #.9379699
1.87875 &.B368712
INITIAL CONTROL VECTOR:
™ = | .S888 ucs =« 1.9808 T
XCO02= §.2588 XH20= #.3333 XH2

UM =

1.8182

SOLID TEMPERATURE

R o= RE
1.88808
L. H0ee
1.00888
1.80808
1. 09898
1.90080
1,.82088
1.00888
1.000088
1.08888

€02 CONC.
8.%150808

R = RR
1.808008
1.000008
1.80088
1.80808
1.88008
1.809808
1.08008
1.BB008
1.60908
1.88088

VELOCITY

1.00008
1.80199
1.91827
1.82438
1.94257
1.86289
1.68258
1.89878
1.19867
1.11111%

SOLID TEMPERATURE

R = RS
1.88111
1.89828
1.92626
1.84978
1.86734
1.8772)
1.87822
1.,97662
1.87449
1.87328

€02 CONC.

N . E150000
B.B158128

« 1.M348
= 3.1667

Table A4-6 Continued

R = RR
1.898283
1.21156
1.02654
1.04786
1.86288
1.87842
1.87063
1.86305
1.86668
1.86377

VELOCITY

1.008088
1.88621
1.82956
1.86494

XCO = 1.85989
XCH4a= 15.009%

R = K1
1.00008
1.08000
1.80808
1.99009
1.08888
1.88088
1.88088
1.88009
1.08888
1.80888

1.82884
1.91974
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TIME = N.8888 SEC
GAS TEMPERATURE SOLID TEMPERATURE

R = R¥ R = RR =Rl R = RS R = RR R =Rl
1.82858 1.82378 1.81623 1.83254 1.82226 1.09613
1.88635 1.89618 1.00442 1.99828 1.81166 1.80412
1.82313 1.82186 1.81496 1.82626 1.02654 1.89868
1.84569 1.94163 1.02958 1.84378 1.84786 1.51584
1.96272 1.96788 1.04855 1.96734 1.806288 1.91962
1.07254 1.86685 1.84693 1.87731 1.87942 1.82219
1.87361 1.86697 1.84757 1.87822 1.07863 1.82218
1.87227 1.96578 1.04673 1.87662 1.86985 1.82167
1.87811 1.86365 1.084518 1.87448 1.96668 1.82884
1.87828 1.86377 1.84525 1.87378 1.06487 1.91982

WELL TEMP. CO CONC. €02 CONC. VELOCITY

1.83498 B.BCORABE s.2158890 1.88808

1.88549 A.5596588 . A16H120 F.98478

1.82324 B.8573679 p.8151151 1.88768

1.84582 B.#543335 B.B152437 1.84234

1.86389 H.0434788 ¥.B154779 1.87639

1.87288 B.HASSH3R B.B156721 1.18788

1.07488 B.BA11858 #.8159825 1.128406

1.87265 . 3389480 P.A16B245 1.14411

1.87893 8.8378699 #.8161387 1.15173

1.87123 #.8368712 f.p161421 1.154589

TIME = S5.p088 SEC
GAS TEMPERATURE SOLID TEMPERATURE

R = RE R = RR R = Rl R = RS R = RR R = Rl
1.#3833 1.83619 1.82686 1.83838 1.83696 1.81189
1.83576 1.893837 1.82883 1.83848 1.84325 1.81548
1.83913 1.94861 1.93819 1.83439 1.94348 1.91614
1.04915 1.84587 1.83289 1.mM5112 1.84994 1.81614
1.086281 1.85724 " 1.84068 1.86731 1.86199 1.81961
1.87227 1.86579 1.94666 1.87714 1.06999 1.42202
1.8732% 1.86655 1.04724 1.87799 1.87819 1.82282
1.87198 1.96532 1.84637 1.87641 1.86855 1.82147
1.06978 1.96317 1.84488 1.97422 1.96618 1.92865
1. BGIHS 1.86299 1.0M44686 1.87312 1.86329 1.41968

WELL TEMP, €O CONC. €02 CONC. VELOCITY

1.83498 #.8600008 B 8158888 1.80880

1.81873 #.8595399 8.8158172 1.88412

1.82545 §.9568903 B.8151378 1.81461

1.84625 #.85360898 8.8152788 1.03489

1.096386 #.8486592 #.9155188 1.86394

1.87287 B.PA46A33 8.8157174 1.89344

1.87402 B.8483822 #.8153516 1.11464

1.87264 H.93RFR58 4. H168785 1.12984

1.87883 + #.8361758 #.8161838 1.13778

1.57883 ”.9359769 £.5161945 1.14918

Table A4-8 Continued



STEADY STATE SOLUTION:

R =Ry
1.#3858
1.0430)
1.856585
H7361
.H8336
.BB652
.BE2ZRA
B7759
1.87375
1.87341

o bt s Bt 2o
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GAS TEMPERATURE

R = RR
1.83651
1.#3991
1.95149
1.86704
1.9758%
1.27878
1.874863
1.07063
1.96688
1.86656

WELL TEMP.

1.03498
1.84112
1.95689
1.87387
1.98387
1.88692
1.98268
1.5780%
1.87484
1 7454

R = RI1
1.82631
1.52886
1.83658
1.84764
1.45388
1.85597
1.9539)
1.85018
1.04745
1.84721

CO CONC.

LR ATLLLLd
B.8595286
f.8567781
N.9530768
§.8476871
#.H433679
#.9389593
§.H367156
¥.9348715
N .RIARTTIR

R = RY
1.93849
1.04614
1.86133
1.87894
1.p8899
1.49183
1.88693
1.08206
1.87831
1.57784

CO2 CONC.
E.0158000

Table A4-6 Continued

SOLID TEMPERATURE

R = RR
1.83746
1.04616
1.85762
1.87286
1.08984
1.88301
1.87804
1.87362
1.06956
1.96683

VELOCITY

1. BTN
1.808531
1.82483
1.95451
1.48211
1.10626
1.12238
1.13487
1.14118
1.14332

R =i
1.91209
1. 1504
1.41836
1.82387

"1.02548

1.82608
1.82446
1.02306
1.42171
1.92866
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SUBRQUTINE DIMLES
SUBROUTINE CALCULATES THE DIMENSIONLESS PARAMETERS

IMPLICIT REAL*8 (A-H,0-2)
REAL*8 L, KT ,MG.KF KZP,KC20,KP2A,KP2B,KIP K2P
COMMON /REACP/ EPS,L,.RE,RI
JCATLS/ CPS,PS,TC,DC
/THWEL/ CPT.PT,KT
ZGASPA/ CPG.PTz,PTR ,MG,PES, UGS, UM
FHEATT/ OHSG,ONTS ,OHTG,BGS,BSG,BTS . 8TC.BWG . BWS
JOPCON/ SCHA,SCO,8C02,5H2,5H20,PTH,PT] STH, STV
/REACI/ DHIA.DH1B,DH2A,DH2B,KI, KEP
/OTMCEZ ALS.ALG.ALT.BES.BEG.GAS.CAG.ETS. GTG.VEL.,
DE2.511,S12.S13,PHIZ,PHI3,PHI,PH2 PR3
/REAC2/ EXPA EXPB EXPC KCZE KPZA KFZB KiP ,K2P ,EAL EA2
DATA P1 /3. 10159265405/

VTwp IeRyes2al
VBuP W[ W{RIWNTRgNWD)

AQ«L/R1

EMl=1. 808-EPS
ALS=TC/{PS*CPS*EML *L *UGS)

ALG*1 . DF/(PTZ*EPS¥AZ)

ALTwKT/ (PT*CPT*L*UCS)
BESwALS*L*"2/R1*4p

BEG=AOQ/PTR/EPS/AR
GAS®OHSG*L/(VB*PS*CPEmEMIYUCS)
GAG'OHSG'L/(VB'FGS‘CPG‘EPS'UGS)
CTS=OHTS*L/(VT*PTCPT*YGES
GTG'GHTC'L/(VT'PT'CPT'UGS)
DEL=-L"DHIB*(PTH*SCOI**{EXPA+EXPBI*KEP /LUCE*CPE ST
DE2=-L*DH2B*SCO**2*KF/LUGS*CPS"STH)
SI1eMG*PS*EMI*(PTE*SCOI**{EXPA+EXPB)*KIP*L/ (EPS*UGS*PCS*SCO)
S12=MG*PS*EMI*SCO*KI*L/{EPS*UGS*PCS)
$13=512

PHIZeDHIA*STH/DHIB
PHI3wDH2A*STR/DHZB

BWGmBTG

BWS»BTS

PHIwRE/R]

PH2=PT1/PTH

PHI=STW/STR
RETURN

END

SUBROUTINE INITIAL (Y.U,IFLAG)
ROUTINE INITIALIZES THE SYSTEM

IMPLICIT REAL®S (A-H,0-2)
REAL™S MG
DIMENSION Y(1#8),U(8)
COMMON /OPLON/ SCH4 ,SCO,SCO2,5H2 ,SH20,PTH,PT1,STH,STW
FGASPA/ CPC,PTZ,PTR,MC,PUS, VUGS, UM
/COMAT/ AU26,2B1},8(26,26),R(28),N

0 308 1'2 4

{Iiw},

(1) 'STV/STH

(5)»8CH2/5C0O
{6)=SH20/8C0

(71=5HZ2/SCO
ULB)=SCHA/SCO

UM=1.08

IFUIFLAG .EQ. 1)G0 TO 282

READ{S,1) TC,TS,TT,X1,X2,VEL
DO 182 I=1,N
Y{3"N4+1IwX]17/SCO
Y4*N+]1)=X2/8C0
Y(S*N+1)=VEL*PTH/({PTI-PTEI*R{I+1)+PTH)/UGCS
MERALETA L)

YIN+1)=TG/STH
YL2*N+1)=TT/STH

CONTINVE
V(G'N*!)-VEL‘PYJ/PTI/UGS
Y{B6*N+2)aTS/8TH
Y{6*N+3)»TS/STR
Y(6*Ned ) »TG/STY
YUE*N+5)=TC/STH
Y{E*N+G)I=X]1/8CO

RETURN

DO 281 I=1,

READ(E,1) Y(N’l) YOI, Y(2"K41) X1, X2,V I5™N2])
E%(SCO+SCOZ-X1-X3)/(1.D0~2. DO*X1~2, Dﬂ'XZ

D*(SC02-X242.DA" (SCORKZ ~ X1®SCO21) /701,082 . 00X 12, 08%%2)
Y(3*N+])=({SCO-E+D}/SCO

YI4"Ne 1) w{SCO02-T)/8CO

CONTINUE

READ(S,1) Y(BWN+2) , YIEVN+D) YIE*N+4) YIE*N+5),Y{GeN+1)

RETURN
FORMAT(9F8.2)
END

D
U
U
u
u
U

Table A4-7
Library Program L1IB



¢
c

W

- 440 -

SUBROUTINE SETUPS (DTN, TMAX.DL.N,RR EP IFLAG,NFLAG NP IF}

THIS SUBROUTINE READS IN THE INPUT DATA AND MAKES PRELIMINARY
CALCULATIONS.

(R R RN

22 R A ERTESI AT R EDR

[N ]

[

IMPLICIT REAL®"E (A-H,
REAL®*B L, KT,MG, K&, KIP, KFZA KP2B,KC2W, K1P,K2P,K2,K3
COMMON /REACP/ EPS L.RJ R1
/CATLS/ CPS.PS,TC.DC
/THWEL/ CPT,PT,KT
/GASPA/ CPG.PTZ,PTR, MG, PGS, UGS UM
/HEATT/ OHSG,QHTS,0OHTG,BGS.BSG.BTS,BTE,BWGE, BVS
7OPCON/ SCH4,SCO,SC02,5H2,5H20,PTR.PTL,ETH, STV
/REAC1/ DHIA,DHIB,DH2A,DH28 . K&, XIP
/REAC2/ EXPA,EXPB,EXPC,KC28,KP2A,KP2B,K1P,K2P,EAL,EA2
DATA RG,RGP,PI /82.954408,1.987D9,3.14159265408/

READ(S,1) EPS,L,RE.R]

READ(5,1) CPS,PS,TC,DC

READ{5,1) CPI.P1 KT

READ(S,1) PTZ.P ugs

READ(5,1) OHSG. OHTS OMTC.BGS ,BSG.BTS . BTC

READ{5.1) SCH4,.SCO,5C02,5H2,8H20, PTl PT1,STH, STV
READ(B,1) OHIA,DH1B, DH2A, DHEB.K’ Ke

READ(5,1) EXPA,EXPB, EXPC.KP2A KP28, KZ K3,EAL . EA2
READ(S,2) DTH,TMAX, RR OL‘TS NyNP, NEP XFLAC XF MNFLAG

CALL CPCALC(SHZ,SC0O,SCO2,5H20,SCHA, STH, MG, CPE, CPEL,CPED)
PGS=MG*PTH#/RG/STH

KiP=K2*pTE*SCO

K2P«K3I*PTESCO

KC2@w1. 08

EPw1Q, DO "NEP

KAP ey gpeTSa*{~-.3)

PRINT 3,EPS.CPS.CPT,.L.PS,PT RE.TC. KT, R1,OHSG,DHIAEXPA,
OHTS ,DH18,EXPB, OHTG  DH2ALEXPC ,BGS . DHZB . KP2A,BSG KN,
KP28,BTS KOP ,K2,87TG,X3,PTZ,EAL,PTR, EAZ
PRINT 4., OTH,TMAX,DL,RR,TS,N,EP,IFLAG, NFLAG,DTE*4 DE**(1F-1)
PRINT 5,SCH4,STE,5C0,STW, SCOZ,PTB,SHZ . PT).5H20,M6,UGS,CP6

DT=DTH*UCS /L
TMAX = TMAX*UGS /L
DL=DL*UGS /L

RR= (1, DI-RE/RLI*PRRORA/NY
EAI=EAL/RGP

EAZ=EA2/RGP

RETURN

FORMAT(9D8.2)

FORMAT{5FB.2,/618)

FORMAT(IHY,////,3X, " INPUT DATA:',///9X,"REACTOR PARAMETERS' ,®X,
CATALYST PARAMETERS',6X.‘'THERMAL WELL PARAMETERS',.//
X,EPS  «' E12.4,9%X,'CPS ' E12.4,9X,°CPT =’ E12.4/

9%, . =’ E12.4,9X,°PS =’ E12.4,9X,°PT - E12.4,/
9X, *RE w' E12.4,8X,°TC =' E12.4,9%,°'KT ' E12.4/
9x, 'R} ".Elz‘l////IG
"HEAT TRANSFER PARAMETERS® 19X, ‘REACTOR PARAMETERS'//
9X,'OHSC »° (E12.4.9X, DHIA = E12,.4,9X,. EXPA =' E12.4,/
OK,POHTS = E32.4,8X,"ONIB = EX2 .4, ,9X,'EXPR w' E12.4,/
9X, CORTG »* E12.4.9X, DHZA = E12.4,9X,"EXPC =' E12.4,7
8X,*'BGCS =, E12.4,9X,°DH2B «*,E12.4,9X, 'KP2A =* E12.4,/
9X,'BSG = E12.4,9X,°K¥ = E12.4,9X,"KP2B w’ E12.4./
9X,"BTS W' E12.4,9X, "KBP -'.EIZ 4,9%,°K2 - E12.4,/
9X, BTG =" ,E12.4,36X,°K3 - E12.4/
SX"PTZ ".ElZ.l.SGX.'EAl = E12. 4/
CPTR = E12,4,36X ' ETZ.A
FORHAT(/I// 3X.'PﬁQGaAM CONDITXONS A LS
*TIME STEP «* ,FB.4,/9X, 'MAXIMUM TIME =°,F8.4,/9X,
‘DISTURBANCE LENGTH = F15,.4,79X

"RADIAL COLLOCATION POINT L Fﬂ.l 79%,

"START TIME (HRS) e’ F15.4,/9X

THO. AXIAL COLLOC, POINTS ".14 /9%

YACCURACY OF CONVERGENCE . E10.3 79X, TINPUT FLAG .14

/79X, *NSES FLAG «*,14,/8X, MAX VALUE OF DT =" .FB.4)
FORMAT(//// 3X *STEADY STATE CONDITIONS: ,/// 9%, "XCHL w',

£12. TR 'L E12.4,/9X.'XCO -',812,‘.3X,‘TV -,
£12. 4 19X *XC02 »*,E12. .SX.'PTB w' E12.4,/9X,'XH2 w=°,
£12.4,9X, ey ' E1Z, ./SX.'XﬂZO w' E12.4,9X,'MG -,
E1Z2.4.79%, "UGK ol CJELZ A9, 0CPE w0 EX2.4)

END
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SUBROUTINE OUTPUT (Y, U,T,L,UCS.PHI MM)
ROUTINE OUTPUTS THE CALCULATED RESULTS.

IHFLICIT REAL*S (A-H,0-7)
REAL"S
DINENSION MELLAFLIL S

COMMON /COMAT/ A(25 25),BL28,26) ,R(25), N
7OPCON/ SCHA'$CO_SCOZ.SN2,5H20,P ¥,PT1,STH, STV
JRADIA/ WOLE) WP (8,2) ,DETA(2) ,RR

DATA RG /B2.854408/

IFIMM . EQ. 1} PRINT 3
IF (MM (EQ. 2) PRINT B
IF(MM .EQ. 3) PRINT B
PHR2#PTI/PTH

N2m2*N

N3u3*N

Na=d=N

NEwh N

NE=G*N

NP2u=N+2

TA=T*L /UGS

IF{MM _EQ. #IPRINT 7,TA

CALL ENDPTS (TTH YIE.YINPL Y28, Y2NP1 ,TTNPL, Y UCM)

PRINT 2
FRINT 3, TR{YING+4) ,TTH,2,PHI),YING+4) TRIVING+4),TTH,2.1,08),
TRUY(NG*2) TTRH, 1 PHL) YING+2)  TR{Y(NE+2),TTH,.1,1.08)
DO 141 1«1, N
PRINT 3, TR(V(NQI) Y{KR2+1),2,PHL) ,YIN+I), TRUYINSTI) YIN2+1),2,
l ¥ TR(V(I) YiN2+1),1, FHI) YD) TRV, Y(NZ'I) 1.1.08)
!RINT 3, TR(V(NS»E) TINPL.2, PRI, YINE+S), TR(V(NGOS) TTNP1,2,1.0M)
STREYING+3) ,TTNPL, 1 .PHI) Y(NG+3)  TRIY(NG+3) ,TTNPL,1,1.08)

PRINT 4

PRINT 5, TTH,Y1#*SCO,Y29*SCO,UGH

00 1#2 I=1 N

THis] DE-2 NE*(SCO*IULRA)-YIN+II+U(E)I-YINL+1}))

PRINT § Y(NZ+1) YIN3+I)*SCO/THI . YINL+TII®SCO/THI YINS+])
THi=1 DH-2. 08" (SCOM{ULAI~YINPLeU(E)~Y2NP L))

PRINT 5, TTNPL.YINPI*SCO/TH] Y2NP1*SCO/THI Y ING*1)
RETURN ~

FORMAT(1H1, /72X,  INITIAL GUESSES! Y AS]

FORHAT(ISX.‘GAS TEMPERATURE* (25
’SDLID TEMPERATURE ', //GX ‘R = REC JIX, R = RR®,7X,
'R RI*,OX. 'R w Rﬂ‘ X, 'R = RR*, 7X RowRIT)

FORMAT (85X, 3(F9 5,4X).2X, 3069, 5,4X))

FORMAT( /18X, 'VELL TEHP 'L BX, ‘co CONC,°,5X,°'C02 CONC.".4X,
*VELOCITY' /)

FORMAT(19X.F9.5,6X,F18.7,3X F1H.7,3X, 79 5 3X,F9.%)

FORHAT(//LX.'STEADV STAYE SOLUTIONr ‘.

FORMAT (/7 ,2X " TIME =* F11. SE

EDRHAT(// V2XL CTACTUAL STEADY STATE SOLUTION: YA

ND

SUBROUTINE RADIAL

< rnagoiuanouTxns CALCULATES THE CONSTANTS FOR THE RADIALLY LUMPED
L.

IMPLICIT REAL*G (A-H,0-2)
COMMON /DIMLE/ ALS.ALG.ALT . BES,BEG,GAS,GAG,GTS,GTC,DEX,
PEZ,511,512,813, PHIZ PHI3 PHI PHZLPHS
IRADIA/ V(18 WP (9, 2) DETA(Z).R
JHEATT/ ONSG.OﬂTS.OHTC.BGS.BSG.BTS.!TG.BV‘.lUs

Wi )=N.08
Vi1g)=8. 08

Im)

S1=BTS
S2=BWS
S3%GAS
SA4=BES
$5=GTS

DETA(T )= PHI«PUI*RARIRR -1 . DFISRRA*2®( | DH-PR]II-RRI*S]1*§2
+ (2. DEYIPHI-RR)+RR**Z-PHI*"2) "8 ]
4 (-1 .DE*RR®*2+2 DE*(PHI~PHI*RR)I*S2+2. . DH"PH1-2.08

(PHI®S1~1 . DE)*(S2+2.00) (8221, D')‘(PNI"?'S! 2.D8%PHULY
S1*(S2¢1 . DAIRR**2-51*RR"{§2+2,
(SZPRR*(PHI®*2%8]|~-2. Dﬂ'PHl)‘SZ'(PHI'Sl 1.DF)I*RR**2)
S2%(PHI=*2*E1-2 . DE"PRH1I-SI*(52+2.D8)

S1%(S2+2 DF)-SI"S2*RA*2
(S1*SZ*RR**Z2~S2¥(PHI*"2*S1-2,DF*PH1))
SI%{S2+1.0B)~S2%(PHI*5]1~1.08)

RR*S 1485251 %(§2+1.08)

(SZ*(PHI*S]I-1.0F)-RR*S1*52)

31w (4. D*WP(7,1)4WP (4, T)/RRI*S4/DETAL] )-8

FImA DETWP LB, 1I+WP (S, 1) /RRI*SA/DETACT)

«3)w (4. DFWP(T, 1 1+WPL{E,1}/RR)I*SA/DETACY)

YRSET(WP (], 1)+WP L4, T)*PHIWR (7, 1)*PHI""2)/DETALT)
V(S)'V(B)*SS'(VF(Z.I)‘VP(S.X)'PNX*VP(B.!)'PHI"Z)/DETA(X)*S!
WL »WL 1Y +SEX (WP (3 1) eWP L6, 1I*PHIWR (S, 1) *PHI ) /DETALT)
1Ft1 .EQ. 2)RETURN

Is2

$1=876G

S2=BWG

S3=GAG

S4=BEC

§5=GT6

CO TO 1s¥

END
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SUBROUTINE FN1 (Y,V)
SUBROUTINE DEFINES THE ALGEBRAIC EQUATIONS FOR USE BY NSES!

IMPLICIT REAL™8 (A~H,0-Z)
DIMENSION Y(128),V(1)
COMMON /COMAT/ A(25,25),B(25,25),R(25) .8
/DIMLE/ ALS.ALG. ALY BES .BEG, GAS,GAG,GTS,GT¢,DET,
DE2.511.812,513,PHI2,PHIS PHL,PHZ PH3
/RADIA/ W{18),WP(9,2),DETA{2).RR
JHEATT/ OHSG.ONTS . OHTG.BGS.BSC.BTS. BTG, BWG,BWS

NP2uN+2
N2wN=2
NimNe]
RénNwd
NE=N*E
NEwNwg
TAU=PHZ~1 . 0N

CALL ENDPTS (TTE,YIH YINPL Y2F Y2NP1, TTHRL,Y UCH)

DO 142 I=1.N
IPlaf+l
PT=TAU*R{IP1I+1.08

CALL REAC (YONIT)  Y(MA+]) YUI),YI(N+T) ,PT RIP,R2P)
SIeSUMIY BB YING+2) YING«3) 1. N)

S2nSUMIY N A YING+d)  YINE+S), 1.0

S3=SUMIY N, B.YING+4) YING+E) I, N)
SAwSUMIY N3 A YIZ,YINPL, I, N)
S6=5UMIY N4, A YZF,YZNPL,1,N)
SB=SUM(Y,N2,.8.1.8DF, TTNPL, I N}

vi1} ALS*S1 ¢ WIII*Y{1) » W(2I*Y(N2+]1) + GAS*TY(N+I)}
DEI*RIP*{]1.DE*PHI2*YI1)) + DE2*R2P*(1.DE+PHII*YVI(I))
W{3)*PH3

~Y{NS+11*S2 + [(ALG*ST + WIA)*Y(N+]) + W(5)*Y{NZ+])
GAG*Y(1} + W(GIPPHII/PT "Y(N+I)

ALT*S58 « WIZY*Y(L) » WIBI®YIN+1) + M(9)IWY(N2+[)
Wiig1epH3

~Y(NE+I1)*S4 ¢ SI2*Y{N+II®RZP/PT ~ SILTYIN+1}*"RIP/PT
~Y(NS+II*88 ~ SII®Y(N+]}®R2P/PT

ViI+N)
Yi1+NK2}

VII+N3)
ViI+n4)
CONTINUE

VING+2)eSUMIY
VINB+3)mBUMIY
V(NG‘A)-SUH(V
.D.
Y

V(N605)-Suﬁ(
pteph

CALL REACIYINPI Y2NP] YI{NG+3) ,YINE+S) PT RIP R2P)
VINE+6)maY NG+ LI*SUMIY NI A VIR, YINPL NoLl , N)
+SI2*Y(NG+SI*R2P/PT -~ SII*Y(NG+S)I*RIP/PT

DO 118 Kwl N

VING+K o Y{NAKI*SUMIY NG, A, UGR YINE+1) K M)~V INS+KI®SUMIY N A,
YING*4) Y(RE*H)} K HIeY IHS~KI*Y{RvKI*TAU/ (TAUTRIK=1)+1.08)

VING+ 1) mY{NE+SISUMIY NS A UGB, YING+1)  Na]  N)-YINRG+1I"SUMIY N A
YUNE#A) YING+S] (N4 T NI*Y(NE«I )Y ING+S)*TAU/ {TAU+L1. DA

EETURN

ND

[N R IR |

Y(NG+2) YINE+3) , W K)+BES(YINE+4)-YING+2))
Y(NE#2) YANB+3) N+ H)+BES*(VING+»3)-YING+S))
YONB+A) YING+5) B NI+BSG {Y(NG+2)~VING+4))
F/YING+4))/ALG

AYING*4)  YING+S) , Ne] NI +BECFIYING+B)-YING+3))

242&‘

g

SUBROUTINE FN2(KK.Y.V)
SUBROUTINE DEFINES THE ALGEBRAIC EQUATIONS FOR USE BY NSES2

IMPLICIT REAL"D (A~H,0-2)
DIMENSTION Y188
COMMOK /ALGEBR/ ALIEE) A1)
/COMAT/ A(25,.25).B(25,25),R125) N,IB
/DIMLE/ ALS,ALG.ALY BES BEG.GAS.CAG,.CTS,GTG . DEL,
DEZ,$11.512,513,PHIZ.PHI3 PH],PH2Z,PH3
JRADIA/ WULE), WPL9,2) DETA(Z) ,RR
FHEATT/ QHSG ,OHTS ,ONTE BG5S . 856, BTS, BTG, BWE, BWS

HP2=N+2

R2uNw2

Ni=N*3

NéwN~4

NGwEupN

NEmN* G

TAU=pPH2~1.D0

CALL ENDPTS (TTE.YIN,YINPL Y2E Y2ZNPL, TTNPL,Y UGH)

1F 1KK .GT. N5ICO TO 24¥
If (KK .67, N&IGO TO 118
IF (g &Y. WNIGO TO 128
IF (KK .GT. NZIGO TO 138
IF (KX .GT. NGO TO 14%

Jwp¥

1P1=]+]

PTwTAUYR{IP1)el,D8

CALL REAC AYINS eI YINA4T), YLD VINL) PY RIP R2P)

SI=SUMIY,B . B, YI(NE+2), Y(N503).I N)

V= ALS*S| « WILI*Y(T} + WIZIWYVINZe1) o GASTYIN+T)
+ DEI®RIP®(].DE+PHIZ*YL{])) + DE2*R2P*{1.DF+PHITI*YITY)
+ WI3)I*PHI

RETURNR
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I=KK~N

IPinl+]

PT=TAUTR{IP1)+1.D¥

S2=SUM(Y,N,A,Y{NG+4) ,Y(NE+5),1,

S3=SUMIY N, B YINE+4) ,Y(NE+5), T,

Ve ~Y{N5+1)*$2 + {ALG*S3 + W4}
+ GAG*Y(I) + W(B)*PH3)/

(N+1) & WIB)I*YIN2+])
*Y{N+1)

‘<=

RFTURN

I=KK~N2

SE=SUMIY N2,B 1. 008, TTNPL, I, N)

Ve ALT*SB + WI7)2Y (1) + WLBIEYIN+I) ¢ WI9)I*YIN2+1)
o WUIB)I*PHS

RETURN

I#KK~N3

1P1l=]a1

PTaTAU*R{IPL)+]l.00

CALL REAC (YIN3+1),YINE+T) ,YIT) ¥(N+]) ,PT RIP R2P)
SA=SUMIY N3,A Y18, VINPL,1,N)

Ve =Y(N5+1)%S4 + SI29VIN+[I*R2P/PT = SIISYINCI)I*RIP/PT
RETURN

InKK-N4

IPiaf+]

PTaTAUR(IP1)+1.08

CALL REAC (YIN3+1), YUNAOT), YU, YINSL) , PT R1P R2P)
S6ESUMIY N4, A Y28, Y2NP1,1,0)

RETURN

KeXX~NE

KP 1=K+l

IF{K .LE. N+1) GO TO 189

LwKeN-1

1IF (L .EQ. 1) V'Sg?(z g AYINE+2) YINGST) B NI+BESTIYINGH4)

IF (L .EQ. 2) VeSUM(VY,P, A YINE+2) ,YING+3) N+1 ,NI+BCST(YINGE+3)
~Y{NE+5)

IF (L .EQ. 3) V=SUMIY,N, A YING+4) YI{NE+E) B ,N)I+BSGYIVING+2)
-Y(N6*4))-(l.DH-l.DH/V(NS*l))/ALG
IF (L .EQ. 4) V=SUMIY N,A Y(NE+4) ,Y(NE+5) ,Ne1 NI+BSEIY(NG+S)

~Y{NE+3})
RETURN
IF (K JEQ. N+1) VeY(NE«K)"YING+EIPTAU/{TAUCL. DE)+YING+E) ¥
SUM{Y NS, A UGH, YINB+1) K, NI-¥INS+K ¥
SUMIY N, A,YING+4) ,Y(NG+5) K. N)
IF (K URE. N+1) VaY(NS+KI*Y(N+KI*TAUZ{R{KPI)®TAU+1 DE)+Y(N+KI®
SUMIY NS A UGR Y(NG+ 1) K, NI -YINSaKY™
SUMIY N,A,YING+4)  Y{NG+E) K, N}
RETURN
END
SUBROUTINE FN2 (Y,.V)
IMPLICIT REAL*B (A~H,0-2)
DIMENSION Y(128),vI1}
COMMON /L INEA/ AA(75.75).DB(75‘0).DD(75).U(B)
ZLALGE, S(4,4) HI28,40) RI(2H,4),AL(7)
JCOMAT/ A125,25),8(25,25),R125),N

DU 1AF [w) R*5

%]
V(!)OV(I)*AA(! YL
DO 182 J=1.8
V(X)-V(I)*BB(I.J)'U(J)
CONTINUE
RETURN
END
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SUBROUTINE LREACIYS . RLI.RL2)

C THIS SUBROUTINE CALCDLATES THE COEFFICIENTS FOR THE
LINEARIZED RATES

IMPLICTT REAL*8 (A-H,D-7)

REAL*S KP2A . KP2B,KC2H,K1P,K2P, KP2

DIMENSION RLITIG, 9, ll?!lS 9),YS1188)

COMMON /OFCON/ SCH4,SCO. SCOZ $HZ, SH2Q,PTH.PT1, 5TH

- JREACR/ EXPA,EXPS, EXVC KC?ﬂ KPZA KP2R, KlP KZP QAI.EAZ
. JCOMAT/ A(25,25)., 8(25.251 ,Ri25),N
. FLINEA/ AALTS,78), 88(75 U) DB(75),U(8)

DATA F1,F2 /#.8300,.8.1708/

DO 108 I=1,N

Yi=YS{3"N+T)

Y2Zw¥S{4*N+1)

TS=YSi1}

TCaYSIN+1)
PTa(PTI/PTE-1.DEI*RIIS1)+1.08

TTwSTHY TS TS
KP2=DEXP{KPZA+KP2R/TS/STH)
THISCORIUCAI*U{H)I=Y1~Y2)
TH2#SCO®(UIS)~-Y2)

TH3I=1.DE-2Z. DETH]

YH2w (SH2~3. DH*TH]-THZ )} /SCO
YH20w{SH20+THI+TH21/8C0O

YCHA= (SCHA*THI)/SCO

PA=PY*TH3

AAA®]  DR+KIP*PT Y1 +K2P*PT*YH2

RLICT, 1)=DEXP(-EA1/STE/TS)*PT**(EXPA+EXPS) *YHZ "EXPBAYI*"EXPA
7AAATREXPC

*EAL/TT
*{I¥EXPB/YHZAEXFA/YI«EXPUNPT™(KIP+I"K2ZP ) /AAA)
®(A*EXPR/YHZ-4%EXPC*K2P*PT/AAA)
*(~3EXPB/YH2+3*EXPCHK2P*PT/AAAY
*{-AREXPB/YR2-APEXPLAK2P*PT/AAA Y

w.—..—n—-.—.
e m
- X

AAAF [ +F 2WPARPTYH

COwAAATDEXP (~EAZ/STE/TS)I/THI/THS

DOD»3. DB*Y2eKC2A*YI/KP2

EEmd .DE*Y2+2 . DB*KC2E*Y1/KP2
RL2{T,1)w{V2*YHZ-KC2A/KPZOYI*YH20I*CC

BEB= (2. DFPF2OPTA*PT/AAA~4 . DH/THII®PRL2(],1)%SC0
RL2UT,21»RL2CT, 1IREAZ/TT-KL2B*Y I *YH2OYKP 2B CL/XP2/TT
RL2{1,3)=BBB+CC*(DDD~KC2HYH2D/KF2)
A)wBBB2CCLEE+YH2Z)

211,
RL21{,5)=-BBB-LCPDOD
RL2(1,6)w~BBB~CCEE
RL2I1,T) '~CC'KC21'Y11KP2
RLA{1 . 8)wYE"C
RLZ(I.S)".'ﬂ!

Y/ CONTINUE
RETURN
END
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SUBRQUTINE ASETUPIY,RLI,.RL2)
SUBROUTINE SETS UPF YHE STATE MATRIX

IHPLIC!T REAL*8 (A-#,0-2)

REAL™S

DIHENSION YUILEE) RLIC1IS,9) RL2{Y

COMMON /L INEA/ AA(75.75).BB(75 B
JLALGE/ SU4,4) HI2B . 48R
/OIMLE/ ALS.ALC.ALT.BES 8

DEZ,S11.512.813,P

/RADIA/ V(lﬂ) weig, 2) DEY
TCOMAT/ AU25.257, B125.25) R1
/GASPA/

/OPCON/
FHEATT/

NP1=N+]
NP2ZeNe2

N2=N*2

N3=N*3

NemN*4

NE5=N"E

NE=N*6
TAU=PH2~1.D8
SCO2B+SC02/SCO
SCH4B=SCH4/SCO
SH2B#SH2/5C0
SH20B=SH2O/SLO

9
ob
28

P

3
i,
2§

WF
7
W4
AS
PH

R

)

A,

{
5
)
i
R

.

2
)
«
G.
3
N

CPG,PTZ,PTR, WG, PGS UGS . UM
SCH4,5C0,5C02, SHZ SH20.PTE,PT1,STE,STW
OHSG.OHTS.OHYC'BGS.GSC‘BTS.BTG.BVG.SVS

CONTROL MATRIX °8° AND

¥, 287,004, 28,20 .0 (28)
N
AL
AG,.GTS,GTC,DEL,
.P

'
8)
7)
G
1, PHZ PH3

{
{
H

CALL CPCALC(SH2,5C0,5C02,5H20,SCHL STH MG ,CPC,CPEI,CPE2)
€ CALCULATE THE § MATRIX

AA(1,]1)=BGS-A(],1)

Y=l DEF/ALG/YING+A)I*"24B5G~ALL,
YeuALl NP2}

Yu, 08

AALL,2)»-AL1,NP2)
AALL,3)=-BGS

AA(L  4)=F. 08
AA(2,1)m~AINP2,1)
AA(Z.Z)*“A(NPZ NP2)~BGS
AAC2,3) =&
AA(Z‘I)'BGS
AA(3, 1 )e-BSE
AA(3,2)wl DS
AA(3,3

AAL3 . 4

AACL, )

AAL4,2

CALL MATCPY (AA,5.,75,75.4,4,4,4)

1)

C CALCULATE THE F AND H MATRICES, ALONG WITH MATRIX Q

200

i

10y

DO 288 1=1,MP1
PLIN=TAU*R{I+1)+1.D0

ALL=TAU/PINPL)I*YING+]1)+SUMIY N5,A UGH,YI{NG+1) NP1, ,N)

D0 149 J=1 N
JPl=d+]

SIvS(3, 1I%A(L,dP12+S(3,2)%A(NPZ,JPL)
52'3(4.l)*A(l.JPX)OS(l,Z)'A(NPz.J?l)
$3=S(3,.31*A01,JP1)+S(3,.4)"A(NP2,JP])

SA=S(A II*ALL,IPL)+SUA4I%A(NPR,IP L)

DO 181 i=1 N

Ifl=]le}

HUT . QYo (SIYALIPL 1 )82%A(IP1 NP2))PY(NS+1)

HOD Rod o lALIP L  JPLIDSI*ACIPL, 1)+S4%ALIP] NP2} )"Y{NE+1)
QU1,1.0)eALG/PLII*(RUIPL, 1)I*S1+8(1P1 NP2)¥S2)
Q(Z-I'J)'~A(IPS.I)*SI*A(XPX,NPZ)'SZ

GU3. I, 0)mALG/P{IIN(BIIPL IPI)+BUIPL,LIMSI+BLIP] NP2)*S4)
Ql4,1,J)w=ALIPL JPL)-ALIP], 1)*S3~ALIPY NP2)I"S4
AACL,J)mYINsI)*A(IP], JP])

AACNPL,J3mVING4S)IA(NPZ, IP1)

AALJ,JYeAALY, J)*TAU/P(O)"V( +JI-SUMLY N A YINE+4)  YING+5) 0,0
H{J N+J)=HT{J N+J)-TAU/P(J)®Y(NE+J ) ~SUMLY, NS A UGH Y(NG+1),0,N)
H(N?l‘J)-(SI'A(NPZ.I)‘S?'A(NPE.NPZ))'V(NG*I)ﬂALL'SZ

HINPL Nod)Im(AINP2 JRL1ISSI®AINPR, 1) +S4 A(NP2 NP2) I Y(NES]1 ) ~ALL"SA
AALD NPIIaY(N+D)=ALJPLI NP2)

CONTINUE

AALNPL NPLISYINGeSIWIAINPI NP2)4TAU/BIRPL) ) ~SUMIY M, A, YINE+4),

Y(NG+5) NP, N)

CALL BNDINV (AA NPI,ITEST}
CALL MATCPY (AAF,78,75,28 .20 ,8P1 NP
CALL MATMULT(F,H

1)

2N 28 20 AN NP N2 NP L)

Table A4-7 Continued
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C  CALCULATE THE | MATRIX

STe(YING+4)=1.DE)/ALG/YING+4)

O 118 (w1, N

IP1wIs]

STI=YINGIISLALIPL, 109613, 3)4ALIP] NP2I*E(4,3))

RICI, 1) maYINS+T)*SUM(Y N A, YING»4) ,YING+5), I, N)
SY(N+[1*SUMIY N5, A UGE . YING+1), I NI+TAU/PCI)*

*

o YINS+II#Y (N[ I+STINGT
RICIL21w~ALIPL. 1)*Y{NY])=STI"ST
RI(1,3)»~STioST
RICI,A)STI/ALG/YING+4)
118 CONTINUE
STI=Y{NG+1)}*(A(NP2,1)*S(3,3)+AINP2, NP2)I"S(4,3))-ALL"S(4,3)
RI(NPL,1)w=Y(NG+11*SUMIY N.A,YING+4) YING+5) NP1 ,N)+Y(NG+5 )™

*

SUM{Y N5, A, UGH ,YI(NGE+1) NP1 ,NI+TAU/PINPII*YING+]1)"
Y(NG+5}+§TI*ST
TINPL,2)=-A(NP2, 1)*YING+5)~STI*ST
1(NP1,3)m=-ST1*ST
IANP |, A)1=STI/ALG/YINGT4
CALL HATHULT(F R1,208,2%, Zl A NP 4 NPL)

€ FINALLY SET UP THE STATE MATRIX "A‘.

CALL ZEROMUAA,75,75)

CALL ZEROM(BB,7&, 8)

CALL ZEROVIDUD,/$

AB=(2. DH*V(NS*A))/ALG/V(NB“)

DO 258 I=1.N

Ilmlel

STT=-AB*{S(3,3)%A011 *SU4,3I%A(11,NP2))

STi=AlT11,1)~A(NP2,1} T1,NP2I/AINP2 NP2}

ST2+5T)*éco28

ST3=#.08

DO 199 K=] N

STT=STT+Q(2,

ST1=8T1«(AL]
(8
1.

*

EF ]
ZzZER

YK +Q4, 1L KI*YINK)
13-ALTL NP2I*AINP2 K+ )/AINPZ NP2} )*YINT+K)
ST2=ST2e (A i

189 STI#5T3+Q( *

DO 241 Jw)l N

Jisd+l

AACT I =ALS*(BUI1,J11+BIT1,10%(S01,1)%A01,J1)+801,2)%A(NP2,31))
d “BUIL NPZIXISE2, 1I"ALL,J1148(2, 21 *AINP2 1))

AALT, J+M)=ALS™(BIIL,1)%(8(1,3 1,J1)+801,4)"A(NP2,J1))
- +B(I1., NPZY'(S(? 3)'A( +S{2,4)%AUINP2,31)))

AACN+T,3)=QU1, 1, J)*YIN+)+Q(2 TYI(NS+I)oHI,J)*STT

AAIN+T, N'J)'O(J 1, J)*Y(N+1)+Q JIPYINS+I)I+HT , NeJ)*STT

-8

Y-ACTL NP2I*AINPZ KL I/AINPE NP2)IPYINALK)

I.X}
1Ke
1,Ke
TKI*YIKI+Q(I, [ K)*YIN+K)

}
1 )
. )
< .
AA(NZ+T, NZ*J)-ALT'(B(XI J1)-8¢ NP2)*A(NPZ,J1)/AINP2 . NP2))
AA(“3*1.J)-—H(I.J)'STI
AA(N3+] NeJ)s-H{] ,J+N)I*ST}
AA{N3+]  N3¢J)*=Y(NS+II"{A{I1,J1)-AINP2Z,J1)"ALTI1,NP2)/AINP2 ,NP2))
AAUNA+L JIw-H{I JI*5T2
AACNAST N+J)m-H{I Nv))%ST2
AAINA+T NA+JISAAINI+] ,N3+))
241 CONTINUE

Si=1.0Z2+PHIZ2*Y(])

S2=1.08+PHIZ*YL])

$3«B(I1,1)%S11., 3)* (11 mP2I*5C

S4=8L11, !)'5(3. y+BLI1,NP2)*SH
S(3,3)1+A011.NP2)*S¢

(

1

JeW(L)+DETIR(RL
2)%S2+PHII*RL
+1)+CAS

1,3)*S1+DE2*RL2(1,3)*82

AALL  N4+1)wDE T.4)*S1+DE2*RL2(1, 41752

AA(N*I 1)=AALN +CAG*SH

AA(H‘X.N*X)'AA( GHATISTI((S13, 30908011, 104804, 3)*8(1]1 ,NP2))
* 'AB'ALG#V(S)'PH3'GAG‘V(X)¢V(S)'Y(NZ*I)OZ.DI'V(I)'Y(N*X)) PLI

AA(N+T H2+1)wW{5) %56

AAUNZ2L 1wt T)

AAIN2+] N+T)eW(g)

AAINZ+T N2+T)wAAINZ+T N2+1)eW(9)

o
b
E
>
-
-

{
(

Sl*Ple'RLI(I 11)+DEZ™

s

!
L2l
AACT, N*l)lAA !
AALT N2+1)wWi2
AATT N3+ {)=DEL

1

e
-
gy

)

AAINI+L [)eAAINI+] 1)+ (SI2*RL2(T,2)~S11*RLIITI 2))"S6
AALNI*T ReDT)®AAINI+I N+ DI#{STI2*RL2(E, 1)-STL*RLILT,1D)/PLD)
AA(NI+] NI+1)1mAAINI+] NI«[)+(SI2*RL2{1,3)~-S11*RL1I{].3))"S6
AAINTS] NASTIw{SIZoRL2(].4)~SIL1*RLI{].4))*86

AA(NA+T T)wAA(NA+L,1)-SI3*RL2(],2)*S6

AA(NA+] N+T)=AA(N4+I N+1)-SII*RL2(I,1}/P( 1)

T AA(NAST N3+1)e-SI3I*RL2(],3)%S6
AAINAST NA+T)mAA(NA*]  NE+1)-STII*"RL2(],4)"S6

Table A4-7 Continued
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BB(1,1)1w-ST*ALS*S3

8B(1.2)=BBUI,1)

BR{I,3)mALS*SI/ALG/YINE+4)

DO 378 Jmi.B

BBOI OI=DEI*RLI(T, I+ 1)*S1+DE2VRL2(],J+1)"S2

BBIN3+I,0)w(SIZ2*RLZ(T,J+1)2-ST11"RL1CT,JI+1))"S6

BB(NA+T , Jrw~SI3*RL2(1,J+1 )56

BB(N-T, l)'“V(N’X)'ST3 (V(4)'V(N'X)*V(E)*Y(NZ*I)’GAG'Y(I)*V(ﬁ)'
PHI+ (AB+STI®ALG*S4) *SBE+STYY (NS 1) *SS+RI(T,

BBIN*1. 2)=RI(I. 2)*STT~ST*S6*ALGWSA+STHY(NG+]1) "S5

BB(N*I.3)'($4'SG~V(N5+!)'SS/ALG)/V(N644)¢RI(1'4)'STT

BBIN2+1 . 3)mALT*(B(I1,1)~BUII NP2I*AINP2Z,1)/A(NP2Z NP2))

BBIN3I+] ] )=~RIU] JI™ST]

BB(NI+T , 2)=-RIL],2)%8T1

BB(NI+1,3)w-RI(L 4)"8T]

BBUN3+I,4)=BBINI+1,4)-YINS+1)*{ALL],1)-AINP2,1)*A{]] ,NP2)/
A(NPZ NP2))

BBINA+I, 1)e~R1(],3)%6T2

BEIN4+1 2)m~RI(],2)¥*5T2

BB(NA+] 3)m-RI(],4)7ST2

BAINACT B wBBINAT ) ~YINSeII*IACTL, 1)~AIRP2Z, 1I%ALTL NP2}/
ACNP2 NP2))

AL wl{ «CPGI*MO*STH( . TTET0-3)*STH+6. 7751 /MC/CPE
AL{2)=CPGI*STH/CPC
AL{3)=SCO*(STH*(.4243D0-3)-.175D2)/MC/CPG
AL{4)«SCO®ISTE*(3.4483D-3)+1.2762608)/MC/CPC
ALIS)=SCO*{STE"(6.3543D-31+4.425D8)/MG/CPC
AL{B)=SCO*(STA*(.FI430-3}~.16500)/MG/CPG
AL{7)=SCO*({STAY(11.65250~31~1.574208)/MG/CPG

STA«RLICI L 2)*Y{1I4RL1(T,BI®VING+TI+RLICT, 4)SVINASIISRLI(T )
SRLICI,6)I*SCOZB#RLINT,7)I*SHZOB+RLICI B)%SH2BRLINT,Y!

*SCHAB
S?S-RLZ!I 2)*Y(I)*RL2(I BINYINB+II+RL2(OT, AI*VINA+ L) oRL2UT,6)
L2tl,6) SCOZB'RLZ(I 7I*SHZ0B+RL2(1,8)%5H28
DD(I)IDE!'S!'(RLI( 1)-8Ta)~ DEI'RLX(I l)'PHIZ'V(I
+DE2*S2*IRL2 !.1)-ST5)—DEZ'kLZ(l.!)'PM!S'V(!)*ST‘ALS'SS
SALIIITBBOT, 12
DD(N+II®STT*(RI{I,1)~YINS+I))+STH(ALC*SH*S4-SE*Y(NS+1))
+ALUII*BB(N+1,1)

DDIN2+])w@, DO
DO(N3+1)=(Y(NG«D}-RIL],

+ALUII®BB(N3+I,1)
DDIN4+I)miY(NG«I)~RI(],
CONTIRUE

PI*STI+SII"SE*STA-SI2*S6"5T5+

L
1,
(
1
1
1
R 1

.

R 1))1*STR2+SI3*SEvSTH+AL (1 I%BBINA+T, 1)

DO 358 i+) M5

D0 358 J=3.8
BBII,J)=BB(1,J)+AL(J~1)*BBI{I, 1)
po 4#3 1=1,N

BB(I,1)=W(d}
BB(N¢1.1)-U(6)'Y(N‘Z)/P(I)
BRINZ«l,1)=W(18)
BB(N3+1,1)a8. D0

BBINA+I, 1)»0. 08

RETURN
END
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SURROUTINE ACTLES(U, ¥ EF N}
C THIS SUBROUTINE CALCULATES THE FINAL STEADY STATE

IMPLICTT REAL*8 (A-H,0-~2)
REAL*3 MG, KC28,KPZA,KP2B.K1P, K2P
DIMENSION U(B) V(25).Y(188)
COMMUN /GASPA/ CPG,PTZ PTR,MG,PCS,UCS, UM
/OPCON/ SCH4,SCO,SC02,5H2,5H20,.PTH,PT1,5TF,STW
/REAC2/ EXPA EXPB,EXPC ,KC28,KP2ZA KP2B,K1P K2P ,EAL,EA2
EXTERNAL FN1

STsMG

Viig)=STW
STW=U(1)*3TH
UGS=yt2)*UGS
STAwUL3ISTH
SCO=U{43*SCO
SCO2=U1S)*SCO
SH20=U161*SCO
SHZU(73*500
STHA=YJIBI"SCO

CALL CPCALCISHZ2 ,SCO . SCO2,5H20,5CHA,.STH . MC, CPG,CPQL,CPE2)
PGS=PGS*MG/ST/ULS)
KIPeKIP*U(4d}

K2PwK 2Pyl 4}

DO 18F i=1.8
1yl
11e). 08
11wSTW/STH
51e5C02/8C0
6
7

y»SH2/$C0
B)«SCHA/SCO
Vi91=UM
UM 1. D#
CALL DIMLES
CALL RADIAL

CALL NSES1(B*N+S Y EP 1N¥ . ¥ ,FAD)

DO 181 11,8
181 Utl)yevil)
UMwy(9)
DO 182 11N
Yil)=v(1)"u(3)
Y(N+])uY{N«T)}*y(3)
YI2%Ka])=YI{2*N )"y 2)
Vi3] 1mY {I*N+[I®U(4)
YO4"N+[)=Y(4"N+[ )2 U(4)
1.2 WAB*Ne D) wYIBNs L} oU(2)
YIBE*No 1 ImYLE*Ne1I*0(2)
13
(& 3]
(8- 3]
3

L]

iy

coococeg

t
{
{
{
{
{
{

YIG*N+21mVIE*NeZ)I"U
YIE"N+3)eY( 6 N+I)*Y
YIGN 4wy B*N+AI &Y
YIBYNB)mY (6N Y
ST=MG
STWavVIN)
UGS=UGS /U2
STESTE/UL3
4
t

SHZ=SC0/U(T}

SCHesSCOIULE)

CALL CPCALLCISH2,SCO,5C02,8820,5CH4 STH M6, CPC,CPEL,CPE2)
PES«PCSTMG/ST*ULI)

KIP=K1P/ULS)

KZPwKZP/UCA)

CALL DIMLES

CALL RADIAL

RETURN

END
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SUBROUTINE INSIMLY,YS, U N, IJFLAC)
€ THIS SUBROUTINE INITIALIZES THE SIMULATION.

IMPLICIT REAL™8 (A~H,0~2)

REAL"8 MG MGH

DIMENSION U(8),Y(188),YS{180)

COMMON /GASPA/ CPG.PTZ,PTR.MG,PCS. UGS, UM
- FQPCON/ SCH4,5C0,5C02,5H2,SHZO,PTH, PTL,STH,5TW
JLALGB/ S(4,4) HI20.48) ,R1128.4) ,ALLT)

READ(S,1) JFLAG
IF(IFLAG .EQ. 1)CALL !NITIALIV v, 5
IF(JIFLAG .EQ. 1IRETUR
00 189 I«1,6*N
e YiI)=ysiD)

READ {5,2) UGH,TE,XCO,XCO2,XH20,XH2 ,XCH4E, TV
Ve TW/STH

utl

U(2)=yGa/uGs
Ut =TE/STH
uis
Uts
u

*

I}mXCO/SCO
1=XC02/5C0
{6)=XH2Q0/SCO
U(7)mXHZ/SCO
ULB)=XCHA/SCO
UMsAL (T 1+ALTZ2) UL AL I *ULE) AL CAYPULEIvAL(S)*ULB I +ALLSE?
A *ULTI+AL{7)"ULE)
PRINT 3, (U(]),Iw=1,8),UM
RETURN
FORMAT12)
FORMAT(9F8.2)
FORMAT(///, ZX.'YNYT!AL CONTROIL VECTOR: ', //5X,°TW «' FD 48X,
UG w' FB.AGN, VT« FB.4,5X, 'XCO ".FO.l,SX.ISX.
- CHCO2=" FU. A, BN, "NK20=" FR.4,EX, " XH2 =" FB_ 4 58X *NCHAw?
END FB.4/8X,'UM  =* FB.4)
L]

N .
-

*

SUBROUTINE OUTCALCIU,Y,Y5,ALG?
€  THIS SUBROUTINE CALCULATES THE VELOCITIES AND ENOPT TEMPERATURES

XHPLXCIT REAL*8 (A-H,0-2)

REAL*H MG

DXHENSION Y188) ,SA(4) ,U(8)

COMMON /LALGB/ S(l.l).N(Zl.ll).RI(Z!.‘).AL(??
/COMAT/ A(25,25),B125,25),R(25) N
/GASPA/ CPG.PTZ,PTR,MG PGS, UGS, UM

HP2eN+2
NS=N*5
NE1=N"E+1
CALL ENDPTS (TTI,V!!.V)HPI.YZI.VZHPI.TTNPI Y UGH)
DO 188 1=1,N+1
V(NS‘!)*RI(X IX4RILTL2I*UGH+RITT,3IMUMGRICT, £ 0()
00 181 JI=1.N
" Y(NS*I)-V(N!*I)*H(X.J)'Y(J)‘H(I JENI*YIN+I )
188 CONTINUE

CALL ZEROVISA,4)
00 182 J=1,N
Jimde}
SACL eSALL1)I+ALL J13*YD)
SA(21=SA(2)+A(NP2,31)*Y()
SA(3)-SA(3)*A(1.Jl)'V(N*J)

1z SA{A)=GA (A ¢A{NPE, J1I*VIN+D)
ST=(YS<1.D8) /ALG/YS
SALDIwST-ST UM-STYUCH+U(3)/ALG/YS+SA(3)

DO 183 11,4
YINGI+] )@ 08
DO 183 Jg=1.4
i3 Y(NGL+LImY(NELI*I)»S(1,J1%8A0d)

RETURN
END

L ]
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SUBROUTINE CPCALCISH2,SCO,SCO2,.5H20,SCH4,STH, MG, CPGC,CPCL,CPE2)
€ THIS SUBROUTINE CALCS THE HEAT CAPACITY

XHPLICIT REAL*8(A~H,0-2)

REAL*8 M

SN2wl, DH ~SH2-SC0O-SCO2~SH20-SCHA

ME=SCHAYLI6. BA3DF+SCO28. llﬂADﬂ*SCOZ'Jl BRIBON+SH2ZY2 H16DN
d +SHZO%1B.Hi540F+SN2*28. 7134

CPGI={SH2*, 81D-3+«5N2*. 77670~ 34SC0'1 20-3+SCO2%4.216D~3
- SSH20%7,170-3+85CHA*12,42B20-3) /M0

CPG2w (SH2"6.6200+5N276.775D8+SCO%6 . 600+SCO2*B. F512600
- +SH20* 11, 20F+SCHAS . 200808 /MC

CPGwCPRIvSTHCPRZ

RETURN

END

SUBROUTINE ENDPTS (TTE.YIE,YINPI,Y2F Y2NPI,TTNPL,Y, UGH)
€ THMIS ROUTINE CALCULATES THE ENDPOINT CONDITIONS.
IMPLICIT REAL*8 (A~H,0-2)

DIMENSION Y(188)
COMMON /COMAT/ A(25,25).8{25,25),R(25),N

FLINEA/ AA(75.75).BB(75,E).DD(75).U(!)

* /DIMLE/ ALS ALG,ALT,BES,BEG,QAS ,GAG,GTS,GTG,DEL,
* DE2.811,812.813,PHI2,PHIZ,PHI,PHZ PH

NPZuNe2

NZ2=2%N

N3w3*N

Nd=4=N

UGE=U{2)"YIN*6+4)/U(3)

Yig=y(4)

Y2o=U(8)

YINPl=Y{N®GE+5)
YNPIw~A(NP2, 1) /AINP2 NP2)*U(S)
TINPIwg. DO

TTR*U(Z)

DO 188 Ie1,N
IPIw]al
Y2NP1eY2NP1~A(NP2 IP1) /A(NPZ NP2Z)sY{N&+I)
TINPI=TTNPL*AINP2 JP1)I*YIN2+])

3 CONTINUE
TTINPI=~(TTNPI+ACNPZ, L)VTTE)/ANP2 NP2)

RETURN
END

FUNCTION SUMIY, NN AA X1,X2,1,N)
IMPLICIT REAL*B (A-H,0-2)
DIMENSION Y188 AA(25,25)

SUM=F . 908
IPlmle]

DO 18F J=l,N
JPInd+]

5 SUM=SUM+AALIP ]
SUM=SUMAATTPT,
RETURN
END

TY(JeNN)

WP
LIRXKIAALIPL Ne2 w2

SUBROUTINE REAC {Y1,Y2,TS,.TC,PT .R1P,R2P)
€ THIS SUBROUTINE CALCULATES THE DIMENSIONLESS RATES

IMPLICIT REAL"E (A-H,0-7)
REAL*8 MG,KPZA KP2B. KCZE KiP K2P KP2
COMMON JOPCON/ SCH4,SCO, SCOZ SHZ.SMZO PTE,PTL, STH,STVW
/REAC2/ EXPA EXPB, ExXPE, KC2#,KP2A, XP2B, KIP KZP.EA! EA2
JLINEA/ AA(75,7%),8BL75,8), 00(75) uie)

GAwg . DF

TTwSTH*TS

KP2wDEXP (KP2ZA+KP2B/TT)

TH]=SCOY (U4 ~YI+U(5)~Y2)

TH2=SCO*(U(5)-Y2)

TH3=1,00~2,.D8*THI

YH2e{SCO*Y{7)~3 , DE"TH]I-THZ)/SCO/THS

YH2O={SCO*UIB)I+THI+TH2) /SCO/THE

YCHA=(SCORUCB) e THII/SCO/THI

YCO=Y1/TH3

YCO2#Y2/TH3

PAWBT*THI

(F(yh2 .1t. B.df)yh2e]l.d-108

{fiyco .1t. F.df)yco=l.d-1¥

llP*DEXP(-EAI/TT)'PA"(cxpa‘opr)'YMZ".pr'YCD".xp!/
- (1. 0B+KIPRPARYCOCKIP*PARYHE ) **axp

IZP-DEXP(“EAZITT)‘(.93050 17DI‘PA'PTB)'(VC02'VH2 ~YCO*YH20/
* KP2*KC28)

RETURN
END

Table A4-7 Continued
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FURCTION TR(T.TT,L.R)
IMPLICIT REAL®E {(A-K 0-7)
COMMON /RADIA/ WI1M) WPI9,21,DETALZ)Y AR
. JLINEAZ AMCT5,75) .BBU75,8), 00(75) (24 3

LYSWP LA, L)PR4WP (7 L} "Ro"2)"T
LY*WR G, LIPRIWP (B, L)PR**2)*TT
IMULT)4WP LB, LI*ULLI*RWP LT, LISUCT)I*R**2) /DETALL)

%
+* &
€~
g
—eg

FUNCTION REN CAA NN}
IMPLICIT REAL*B (A~H,0-2)
DIMENSION AAUINN)
STe8.08
DO 188 [«] WK
188 IFEDABSIAALLY) LGE, STY STw=AAL]D)
REN=-DLOGIF(DABSISTY)
RETURN
END

SU!ROUTINE coLLloC

c THIS ROUTINE CALCULATES THE ZERQS OF THE OKYHOGONAL POLYNOMIAL AND
ETS UP THE AXIAL COLLOCATION MATRICES A AND

IMELICIT REAL*8 (A-H,0-2)
DIMENSTION D1(25),02(25).03(25).v1(25),V2(25)
COMMON /COMAT/ A(25,25),8(25,25),R(25), N

CALL JCOBI(25.N,1,1.£.08.8.09.01.82,02,R)
PRINT 1, (R{J),Iw) N2}

00 1H) w1, N2

CALL DFOPR(2S, LI TR
CALL DFOPR{2S,N. 1,1,
DO 182 J=1 ,Ne2

ALl J1avi{d)

8ti, J)'VZ(J)

1.,1.01,02.03.R.V1}
1.,2,01,02.03,K,V2)

182 CON
151 CONTINUE
RETUAN .
1 gggNAT(/////,QX.‘AXIAL COLLOCATION POINTS: // . 301N, 4(E12.4)/))

SUBROUTINE INTLSStY,U,IFLAG NFLAG,L UGS, PH] N.EP)
€ THIS ROUTINE CALCULATES THE INITIAL STEADY STATE PROFILE
IMPLICIT REAL*8 (A-~H,0-7)

reslvy
DIMENSION YILNE) U8}
EXTERNAL FN1,FN2

CALL INITIAL (Y U, IFLAG)
CALL OUTPUT(Y.,U,#.08,L,UGCS,PHL, )
IFINFLAG .EQ. 1)CALL NSESI(6"N«6.Y,EP 208PF N ,FN1)
IF(NFLAG .EO. ZICALL NSESZ(6*N+5.Y,EP 508 . 1IT,FN2)
{FCIT EQ. 588) PRINT }
CALL OUTPUT(Y, U .¥.DF, L, UGS, PHI,2)
© RETURN
1 EO&MATG//I.ZX.'!EACNED WAXNIT IN WSES2°7/)
"D

Table A4-7 Continued
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APPENDIX 5

ORTHOGONAL COLLOCATION ON FINITE ELEMENTS MODEL

The technique and application of orthogonal collocation on finite elements
is described in detail in Section 3.5. This appendix presents a summary of the
final coupled systemn of algebraic and differential equations. Computer pro-
grams for solution of the packed bed reactor model using orthogonal collocation
on finite elements are presented in Tables A5-1 and A5-2 and are stored in direc-
tory [RRK.OCFE]. These are very similar in structure and operation to those in

Appendix 4.

After applying orthogonal collocation on finite elements, the packed bed

reactor model becomes

Catalyst Energy Balance

For elements k = 1, ..., NE,

81

d=s

= 3%— % By JGsJ + c"1691 + 02®t1 +7n®g1 +'Cl(l+¢l®a,)R’H

+102(1+92@,)R’s + wg

within each element k for the interior collocation points I = 2, ..., Ny+1. For ele-

menis k = 2, ..., NE,

[ B—'::- 'ij«l Au,-x-"'@"’] = [ Bl_,: :i: Ayg QW]W x

J=1 slemsnt k-1

and for the first (k=1) and last (k =NE) elements:
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1 M
hl E Al .1@ = )\gzs(eal —@31)

hNE’ ij‘: Aitsd By = Agn(Bgy =0y )
Gaz Energy Balance
For elements k = 1, ..., NE,
(-rg+1)ﬁgcps d®;, -(T(',;'Fl)VgIﬁngs %A] o

G s he0,,

+ E‘5—.,‘ij;-f’lBI,,Gi,3, +waBg, + wsBy, + 7,04, + wa

within each element k& for the interior collocation points I = 2, ..., Ny+1. For ele-

ments k = 2, ..., NE,

WpE

o[ Rl
h*“l J=1 w1 d T glemnent k-1 - hk =] TR elemamt &
and for the first (k=1) and last (k =NE) elements:

1 M VgaMgocpsn
ET ;i Ay @.J = "")\gza(@sl "@gl) + '—&;@;:_“(Ggg_@")

ﬁ& Ay d @y, = Ags(© )

hmg,' o yp - Byg
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~ Mass Balances

For elements &k = 1, ..., NE,

el L b%A %B t%}A } EHZA
AU S i + + —
as he /= SPAL he | & IFAY] = JPAY] TG+ P F) I

Ry g 2 {%A 96 2}’1,[711,,“1%[\@ 86
126 o 1-26 |f=y "W|B¢ T 128 | 76HT By

o fas)f
(1—26)% |0

where
N
62
€L - B + B
o Jg‘zm, ng 1JY4,]
o _ | %
T —le P %5 P JYE,]

within each element k for the interior collocation points / = 2, ..., Ny+1. For ele-

ments k = 2, ..., NE,
e ’ufou. 7y =1 Ya Y:]
he-t [ T I ament &1 by /3 M slement k
and for the first (k=1) and last (k =NE) elements:
M \7
1 [
— A = 0
B J};l 17 Y1, ———(am Yi, —¥f)

55§
Ay, ,ovi, =0
2, et Ty
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Thermal Well Energy Balance

For elements & = 1, ..., NE,

de,, ¥

d3g

&

—

Brs0y, + @, + wg@y, + g8y + wyg

=]

7|

within each element & for the interior collocation points

I =2,.., Ne+l. Forelementsk =2, .., NE,

= A0y,

1
J=1 I}mmnt k-1 [ hk J =1 clemnend k

|8 e

and for the first (k=1) and last (k =NE) elements:
Btl = et‘o

ﬁ’
@ U

Overall Continuity

For / =2, ..., Nx+1 for each element ¥ = 1, ..., NE-1 and for / = 2, ..., Nyp+2

for k = NE:

B, X v, 70, 1 N
mﬁf—.«zlAI’Jng - {5&‘ Br.sBg, + w4Bg + w50y + 750, + we

=0
TGt pglp, | BE ST

For elements k =2, ..., NE,

-
= | — AV
[h., = g’]

=1 u]otnmmc k-1 sloment k

[

and fork =1

Ve.Pey = VePs,
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THIS PROGRAM MODELS A NONISOTHERMAL, NONADIABATIC FIXED BED REACTOR
WITH BOTH A COOLING JACKET AND A THERMAL WELL. THE ANALYSIS IS
PERFORMED FOR A METHANATION OF CO SYSTEM.

THIS PROGRAM USES THE ORTHOGONAL COLLOCATION OF FINITE ELEMENTS METHOD

LINK TO MLIB,OCFELIB

THIS PROGRAMS SOLVES THE FULL NONLINEAR MODEL WITH THE CONCENTRATIONS
NONDIMENSIONAL W.R.T. THE STEADY-STATE INLET CONC. OF CO

IMPLICIT REAL*8 (A~H,0-2)
REAL*8 L,KT,MG K&, KOP KP1A,KP1B,KC1P,KP2A,KP2B,KC20,K2P ,K3P

COMMON /REACP/ EPS,L,RE,R1
/CATLS/ CPS,PS,TC,DC
/THWEL/ CPT,PT,KT
/GASPA/ CPG,PTZ,PTR,MG,PGS,UGS,UM
/HEATT/ OHSG,OHTS,O0HTG,BGS,BSG,BTS,BTG,BWG,BWS
/OPCON/ SCH4,SCO,SC02,SH2,SH20,PTH,PT1,8TH,STW
/REAC1/ DHIA,DH1B,DH2A,DH2B,KI,KIP
/DIMLE/ ALS,ALG,ALT,BES,BEG,GAS,GAG,GTS,6GTG,DE1,
DE2,511,S12,S13,PHIZ2,PHI3,PH],PHZ,PH3
/RADIA/ W{18),WP19,2),DETA{2),RR
/COMAT/ gEéNég)ég(S).Zl(S).NS(G),Z(5,25).A(5.25.25).
(5,25,25)
/INDEX/ NSE,NTS,NTT,NTG,NCO,NC2,NUG,NNE,NE]
/MISCI/ yulige)
/REACZ/ KC19,KP1A,KP1B,KC29,KP2A,KP2B,K2P ,K3P,EAL,EA2
/LINEA/ AAL75,75),BB(75,8),DD(75),U(8)
/STATE/ YU148),YDOT(108),ST,DT

¥ 2 3 R R R NSRS REERERDN

EXTERNAL DERIV,FN

READ IN DATA AND CALCULATE CONSTANTS
CALL SETUPS (DTH,TMAX,DL,RR,EP,NP,IF,IFLAG)
CALCULATE THE DIMENSIONLESS PARAMETERS
CALL DIMLES
CALCULATE CONSTANTS FOR THE PADIAL LUMPED MODEL
CALL RADIAL

CALCULATE ZFROS OF THE ORTHOGONAL POLYNOMIAL AND SET UP AXIAL
COLLOCATION MATRICIES A AND B.

CALL CnLLOC
SOLVE FOR THE STEADY STATE PROFILE
CALL INTLSSIY,U.FP.IF.A")

STOP
END

Table A5-1
Computer Program OCFE
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SUBROUTINE DIMLES
€ THIS SUBROUTINE CALCULATES THE DIMENSIONLESS PARAMETERS

IMPLICIT REAL*8 (A-
REAL*B L KT, MG,KH, Kﬂ? KCZO KP2A ,KP2B,K1P,K2P
COMMON /REACP/ EPS L REuRl
/CATLS/ CPS, PS TC,0C
/THWEL/ CPT,PT.KT
/GASPA/ CPG,PTZ,PTR,MG,PGS, UGS, UM
JHEATT/ OHSG ONTS ONTG BCS,BSC,BTS,87C,BWG,BWS
/QPCON/ SCH‘.SCO.SCOZ.SHZ,SHZO.PT'.PT!,ST!.STU
/REACL/ DHIA,DH1B,DH2A,DH2B K&, KBP
/DIMLE/ ALS,ALG,ALT,.BES,BEG,GAS,.GAG,CTS,GT6,DEL,
DE2,S11,512,813,PHI2,PHI3,PH],PH2,PH3
/REAC2/ EXPA,EXPB,EXPC,KC20,KP2A KP2B,KIP K2P ,EAL ,EA2
DATA PI1 /3.141592654D8/

LR IR IR 2 2 2% 2% O

VT=pI*Rgwe2w

VBuPI*_*(R]1**2-RE"*2)

AZ=L/DC

AR=R1/DC

AQ={ /R1

EMi=1.8D@-EPS
ALS=TC/(PS*CPS*EMI*L*UGS)
ALG=1.D#/(PTZ*EPS*AZ)
ALT=KT/{PT*CPT*L*UGS)
BES=ALS®L w2 /R]**2

BEG*AQ/PTR/EPS/AR
GAS=OHSG*L/(VB*PS*CPS*EMI*UGS)
GAG=OHSG*L/(VB*PGS*CPG*EPS™UGS)
GTS=OHTS*L/(VT*PT*CPT*UGS)
GTG=OHTG*L/(VT*PT*CPT*GS)
DEl=~L*DHIB*(PTH*SCOI* " (EXPA+EXPBI*KIP/(UGS*CPS*STE)
DEZ2=~L*DHZB*SCO*"2*KB/{UGS*CPS*STH)
SI1aMG*PSTEMI* (PTA*SCO)**(EXPA+EXPB)*KOP*L/(EPS*UCS*PES*SCO)
SI2eMG*PS*EMI*SCONKA*L/(EPS™UGS*PLS)
$13=S12

PHIZ=DHIA*STA/DHIB
PHI3=DH2A*STH/DH2B

BWG=BTG

BWS=BTS

PHiwRE/R1

PH2=PT1/PTH

PHI«STW/STH

RETURN

END

Table A5-2
Computer Program OCFELIB
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SUBROUTINE INITIAL (Y,U)
€ THIS ROUTINE INITIALIZES THE SYSTEM

IMPLICIT REAL*8 (A-H,0-2)

REAL*E MG

DIMENSION Y(19%),U(8)

COMMON /OPCON/ SCH4,SCO,SC02,8H2,SH20,PTH,PT1, STH,STV
/GASPA/ CPG,PTZ,PTR,MG,PGS,UGS,UM
/COMAT/ NE,N(S) ,H(8),Z1(6),NS(6),2(5,26),A(5,25,26),

B(5,25,25)

/INDEX/ NSE,NTS NTT,NTG,NCO,NC2,NUC,NNE,NE

DO 389 1=2,4
3 Utl)=1.08

Ut1)=STW/STH
Ui5)=5C02/SCO
U{6)=3H20/SCO
U(7)=5H2/SC0
U{B)=SCH4/SCO
UM=1.D@

READ(S,1) TG,TS,TT,X1,X2,VEL
DO 189 K=l ,NE
CALL INDICES(K,NK,NI,N2,N3,N4,N5,N6)
00 188 I=1,NK .
YINI+1)=TS/STH
YINZ#1 ) =TT/STR

. Y(N3+1)=TG/STH
Y{N&«1)=X1/5C0
Y{N5+1)=X2/SCO
Y(N6+1)=VEL/PRES{],K)/UGS

189 CONTINUE

DO 288 J=],NEl

YINTS+J)y=TS/STH

YINTT+J)=TT/STH

YINTG+J y=TG/STR

Y{NCO+J)=X1/SCO

YINC2+3)=X2/8CO

IF(J .NE. NEI)Y{NUG+J)=VEL/PRES(#,J)/UGS

I1F(J .EQ, NEJ)IY(NUG+J)=VEL*PTE/PTI/UGCS
258 CONTINUE

RETURN
1 FORMAT(9FB.2)
END

L2 2 2 1

Table A5-2 Continued
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SUBROUTINE SETUPS (DTS, TMAX,OL ,RR,EP,NP,IF)

€ THIS SUBROUTINE READS IN THE INPUT DATA AND MAKES PRELIMINARY
CALCULATIONS.

c

WA

IR I I N 3 )

I B EEEEEEEEESENENEIRE]

N % ERR

* 8 %%

IMPLICIT REAL*8 (A-H,0-2)

REAL"8B L ,KT,MG,KB,KOP ,KP2A,KP2B,KC20,K1P,K2P,K2,K3

COMMON /REACP/ EPS,L,RH,RI
/CATLS/ CP§,PS,TC,DC
/THWEL/ CPT,PY, KT
/GASPA/ CPG, PTZ PTR,MG,PGCS, UGS, UM
JHEATT/ OHSG OHTS OHTG BGS,BSG,BTS,BTC,BWG,BWS
JOPCON/ SCH4.SCO,SCOZ,SHZ,S“ZO‘PTH.PTX.STS.STV
/REACY/ DHI1A ,DHIB,DH2A,DH2B ,K¥,KEP
/REAC2/ EXPA ,EXPB,EXPC,KC28,KP2A,KP2B,K1P,K2P,EAL,EA2
FCOMAT/ NE N{H),H(5),Z1(6) ,RS(6),Z(5,2%),A(5,25,25),

8(5,25,25)
DATA RG,RGP,P1 /82.954409,).987D0,3,14159265400/
READ(S,1) EPS,L,RO.R1
READ(S5,1) CPS,PS.TC,DC
READ(5,1) CPT,PT,K
READ{S,1) PTZ,PTR,UGS
READ(5,1) OHSG OHTS OHTG,BGS ,BSG,BTS,BTG
READ(5,1) SCH4,SCO, SCOZ SH2 SNZO PTI.PTI STH,STW
READ(S5,1) DH!A.DHXB.DHZA.DﬂzB.KB.KﬂP
READ{5,1) EXPA,EXPB,EXPC,KP2A,KP2B,K2,K3,EAL,EA2
READ(5,2) DY#,TMAX,RR,DL,TS,NE,NP,NEP,IFLAG,IF
READ(5,6) (N(J),J=1,5),(H(J),J=1,B)
CALL CPCALCISH2Z, SCO $C02,SH20,SCH4 ,STH ,MC,CPGC,CPC1,CPC2)
PCS=MG*PTH/RG/STH
KiP=K2*PTH*SCO
K2P=K3*PTH*5CO
KC2@=1.08
EP=1M DO"NEP

KOP=K@P*TS**(-.3)

PRINT 3,EPS,CPS,CPT,L,PS,PT.RA,TC,KT,R]1,0HSC,DHIA,EXPA,
OHTS,DHIA, EXPB OHTG DHZA EXPC BGS DHZB KP2A,BSGC, KN,
KP28,87TS, KBP KZ BTG,K3, PTZ EAX PTR EA2

PRINT A.DTﬂ.TMAX.DL.KR.TS,EP.DTB".D"'(XF*I)

PRINT 5,SCH4.8TH.SCO.STW.SCO2.PTH.SH2.PT1,SH20,MC,UGCS,CPC

DY&=DTA*UGS/L
TMAX=TMAX*UGS /L
DL=DL*UGS/L
RR*{(1.DP-RE/R1)*RR+RO/R1
EAl=EAL/RGP

EAZ2#EA2/RGP

RETURN
FORMAT{9DB.2)
FORMAT(5FB.2,/618)
FORMAT(1IH1,////,3X, " INPUT DATAs*,///79X, REACTOR PARAMETERS®,8X,
*CATALYST PARAMETERS’,6X, 'THERMAL WELL PARAMETERS',//
9X,EPS =»’,E12.4,9X,°CPS =' E12.4,9X,°'CPT =’,E12.4/
BX.‘L = E12.4,9X,°PS =' E12.4,9X,°'PT = E12.4,/
+'RE =’ ,E12.4,9X,"TC =, E12.4,9X, KT -’ E12.4/
9X RY = E12.47/7776X,
*HEAT TRANSEER PARAHﬁTERS'.lBX 'REACTOR PARAMETERS'//
9X,'OHSG =',E12.4,9X, 'DHIA ".512-4.9X.’5XPA = E12.4,/
9X.'0HTS = E12.4,9%X,'DH1B »* ,E12.4,9X, EXPB =’ ,E12
9X, 'OHTG »*,E12.4,9X, '0OH2A »* E12.4,9X, EXPC =’ E12
+9X,"DH2B = ,E12.4,9X, KP2A =’ El12,
El12
LE12

9X,"BGS =’ E12.4

9%, "BSG = ,E12.4,8X, K& = E12.4, SX.’KPZB L f
9X,'BTS =',E12.4,9X, K&P -'.E12.¢.9X.‘K2 -’ .
9X,° BTG =", E12.4,36X, K3 ' E12.4/

X, PTZ ' E12.4,36X,"EAl =° E12.4/

9X,*'PTR =°',E12.4,36X,"EAZ «° E12.4)

FDRHAT(/I// 3X, 'PROGRAM CONDIT 1ONS* /7. 9%,
*TIME STEP = LFB.4 « MAXIMUM TIME =’ ,FB.4,/9X,

"DISTURBANCE LENGTH -'.FIS.A,ISX.

RADIAL COLLOCATION POINT =' F8.4,/3X,

*START TIME {(HRS) =* F15.4,/9X,

*ACCURACY OF CONVERGENCE ".Ell.3./9X.

*HAX VALUE OF DY «*',F8,
FORMAT(////,3X, 'STEADY STATE COND!T!ONS!' /77,9X,"XCHA =*,

EIZ.A 9%, TH =',E12.4,/9%X,°'XCO *'.EIZ.J.9X.'TV -,
/BX 'XCD2 -' E12.4.9X.'FT5 =' E12.4,/9X, "XH2 -'.
X.'PTl EIZ 4,/9%X, ' XH20 = E12.4,9X, MG LA
92;'061 = E12.4,3X,°CPG =’ ,El12.4)

Table A5-2 Continued
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SUBROUTINE OUTPUT (Y, U, T, MM)
€ THIS ROUTINE OQUTPUTS THE CALCULATED RESULTS.

IMPLICIT REAL*B (A~-H,0-2)
REAL*8 L ,MG
DIMENSION Y(18%},UlB) -
COMMON /COMAT/ 355N;5) g(ﬁ) J2I(6) ,NS(6),2(6,25),A15,25,28),
' ‘
/QPCON/ SCH4,SCO,SC02,8H2,SH20,PTH,PT1,STH,STW
/RADIA/ U(lﬂ),VP(S.Z).DETA(Z).RR
/GASPA/ CPG,PTZ,PTR ,MG,PGS,UGS,UM
/REACP/ EPS,L,RS,R)

DEX/ NSE,NMTS,NTT,NTG,NCO,NC2,NUG,NNE,NE]
DATA RG IBZ w4408/

IF{MM .EQ., 1) PRINT 1
{F{MM (EQ. 2) PRINT 6
IF(MM .EQ. 3) PRINT 8
PH2=PT1/PTH

PHI=RA/R]

TA=Tw| /UGS

IF(MM .EQ. MIPRINT 7,TA

PRINT 2

00 188 K=1,NE

CALL INDICES{K,NK,NI,N2,N3,N4,N5,N6)

PRINT 3, TR(V(NTC+K) V(NTT*K) 2, PH!) YINTCK
TRIYINTG+K), Y(NTT*K) 2,1, 05) TR(V(NTS*K).Y(NTT'K) 1,PHL),
YINTS+K), TR(V(NTS*K) V(NTT*K) 1,1.08)

DO 188 le], NK

198 PRINT 3, TR(Y(NB*!) V(NZ*I).Z'PHl) YON3+I),TRUYIN3+]1),YIN2+1), 2,

% ?ﬂa,TR(Y(Nl#I) JYIN2+1), PNX) Y(NX'I) TROYINL+I),YIN2+1),

«1.08)

PRINT 3, TRIY(NTG+NEI),Y(NTT+NEL1),2,PH1),YI(NTG+NEL),
- TR{YINTG+NEL) ,YINTT+NEL),2.1.D8), TR{YINTS+NE]) ,Y(NTT+NEL),
- 1,PHL) Y(NTS*NEL) , TROVINTSONEL ), YINTT+NEL),1,1.08)

PRINT 4

00 28¢ K=1,NE

CALL INDICES(K,NK,NI,N2,N3,N4,N5,N6)

CALL ACTCONC(YINCO+K),Y{NC2+K),X1,X2)

PRINT 65, Y(NTT+K),X1,X2,Y{NUG+K)

DO 287 1=1,NK

CALL ACTCONC(Y(N&*I) YINS+1),X1,X2)
s PRINT S,YIN2+I),X1, XZ Y(NG'I)

CALL ACTCONC{Y(NCO+NE1),Y{NC2+NE]),X1,X2)
:é%NT 8, Y(NTT*NEI) X1, XZ YUNUGNET)
UR

FORMAT(1M1,//2X, " INITIAL GUESSES: °*,//)

FORMAT( 16X, 'GAS TEMPERATURE'®,25X,
» 'SoLID TEMPERATURE‘ IIGX ‘R = RF',7X,"R = RR’,7X,
b 'R » Rl ‘R RH* ’R * RR*,7X,'R = R1")

FORHAT(SX 3(F9. 5 JX) ZX arFs, 5.CX))

FORHAT(IISX "WELL TEMP. ',EX,'CO CONC.’,5X, CO2 CONC.", 4X,
d TVELOCITY' /)

FORMAT( 19X ,F9.5,5X,F18.7,3X,F18.7,3X,F9. 5 3X.F9.%)

FORMAT(//ZX *STEADY STATE SOLUTIDN! './

FORMAT(//.&X.‘?[HE w',F11.4,"

EORHAT(//.ZX. ACTUAL STEADY STATE SOLUTXON: YA

ND

L B O

L2

* R

T

BN
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SUBROUTINE RADIAL

€ THIS SUBROUTINE CALCULATES THE CONSTANTS FOR THE RADIALLY LUMPED
MODE

IMPLICIT REAL®B (A-H,0-2)
COMMON /DIMLE/ ALS,ALG,ALT,BES,BEG,GAS ,GAG,GTS,6TG,DEL,
DE2,S11,512,813,PHIZ,PHI3,PH] PHZ,PH3
/RADIA/ V(lﬂ) UP(9.2).DETA(2).R
/HEATT/ OHSG, ONTS.OHTG BGS.BSG,BTS,BTG,BWG,BWS

W(3)=0.08
Wiim)-N.D8
=1

S1=BTS
§2=BWS
$3=GAS
S4=BES
S5=GTS

DETA(I)»(PHI+PHI**2*(RR~1.DF)+RR**2*(1.DF-PH1)~RR)*S1*52
+ {2.D8*{PHI-RR)+RR**2-PH]**2)*S]
+ (~1.DE+RR"*2+2.DA*(PH1-PHI*RR))I*S2+2 ,DF*PH1~-2.D8

PHI*S1-1.DE)IY(S2+42,.08)~(S2+1.DF)*(PH1"*2*51~-2 DE*"PH])
*(S2+1.DA)*RR"*2-S1*RR*(S2+2.08)
2%RR*(PHI®*2%S|~2 DOYPH])~S2*(PHI*S]1-1.08)*RR**2)
P{PHIWR2aG] -2 DAPHII-S1%(852+2.00)
w(824+2.D8)~-S1*S2*RR**2
1*S2*RR**2~-S2*(PH]**2*S1~2.DF*PHI))
*(52+1.DB)~S2*{PHI"S1~1,08)

"S1*S2-51"(52+1.08)

2" (PH1I*S1-1.D8)~-RR*51*52)

w (A DFWPLT7,13+WP L4, I)/RRI*SA/DETAL]L)~83

U( ya{4, 00*WPIB,1)+WP(5,1)}/RRI*SA/DETA(I)

W3+ I*3-3)w {4, DI WP{S, 1)+WP(6,1)/RRI®SA/DETALL)

W74 ~1)1mSETIWP{]1,L)eWP{4d, 1) "PHL*WP(7,1}*PHI""2)/DETA(TL)
Wi mW{9)+SE*(WP(2,1)+WP(S,1)*PH1+WP(8,1)*PHI**2)/DETA(I)-SS
WUIH)wW(LF)+SE* (WP, 1)+WPLI6, I)*PHI+WP(9,1)"PHI**2)/DETALT)
1Ft1 .EQ. 2)RETURN

1=2

Sle8TC

S2=8WG

S3=GAG

S4=BEG

§5=C76C

G0 TO 1N¥

4 1]

(
S
(
S
S

EELLLELELLL
V’D?‘Bw‘ev-ov
~4nr-$-—~&n~

{1,
(2,
(3,
{4,
(8,
{6,
7,
(8,
wPig,
ti+1
2+1

S
R
{
-3
~3
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SUBROUTINE FN1 (Y,V)
¢ THIS SUBROUTINE DEFINES THE ALGEBRAIC EQUATIONS FOR USE BY NSES!

IMPLICIT REAL*8 (A-H,0-2)

REAL *8 MG

DIMENSION Y(188),V(1)

COMMON /COMAT/ :E.N(S)ég(S).ZX(G),NS(S),Z(S.ZS).A(S.ZS.ZS).

(§,25,285)
/0IMLE/ ALS,ALG ALT BES,BEGC,CAS,CAG,CTS ,CTG,.DEL,
DE2,511,512,813,PHIZ,PHI3,PH],PH2,PH3

/LINEA/ AA(76,75),BB(75,8),0D(75),U(8)
/RADIA/ W(1@) ,WP(9,2),0ETA(2),RR
/HEATT/ OHSG,OHTS,OHTG,BGS,RSG,BTS,BTG,BWG,BWS
/INDEX/ NSE NTS,NTT,NTG.NCO,NC2,NUG,NNE,NEL
/GASPA/ CPG,PTZ,PTR,MG,PGS,VUGS,UM

DO 182 K=1,NE

CALL INDICESUK,NK,N1,N2,N3,N4,NE,N6)
DO 188 1=1,NK

PT=PRES(I,K)

CALL REAC (YIN&+T) ,YINS+I) , YINLI+I),YIN241) ,PT,RIP,R2P)

LI 2R 2N 2 3 BN 2 )

ViI+NL) = ALS*SUM(Y,I,K,1,2) + W{1)*Y(NI+I) + W{2)2Y{N2+1)
b + GAS*Y(N3+I) + DEI*RIP*(1.DB+PHIZ®YINI+I))
- + DEZ2WRZP*{1.DA+PHIZ*Y(NLI«1)) + W{3)*PH3

VII+NZ) = ALTRSUMIY,I1,K,2,2) « WI7)I*YINI+]) + WIB)I®Y{N3+I)
hd + WI9)IRY{N2+1) + W(1F)"PH3

V{I+N3) = ~Y(NG6+]1)*SUM(Y,I,K,3,1) + (ALG*SUM(Y,1,K,3,2)
" ¢ WEAIPYIN3+T) + WISIPYIN2+]) GAG*Y(N1+1)
b + WIB)I*PHI)/PT*Y(N3+I)

VII+N4) = -YING+I)*SUMIY,1,K,4,1) + SI2®V(NI+I)IYR2P/PT
* - SI1*Y{N3+1)*R1P/PT

VII+N5) = -Y(NE6+I)*SUM(Y,1,K,5,1) ~ SI3*YIN3+I)*R2P/PT

VIIeNE) = K, : l;

0

Y{N3+I)*SUMLY, i
- (PH2-1.D@8)/PT ~
i CONTINUE

00 382 L=1,86
N7=E*NSE+{L~ l)'NEl
DO 3@ K=2,NE
399 VIN7+K} = SUM(Y,N(K-1)+],K~1,L,1) ~ SUMLY, #,K,L,1)

VINTS+1) « SUM(Y,HF,1,1,1) ~ BRE*IY(NTS+1)-Y(NTG+1))

VINTS+NE1) » SUM({Y ,NNE,NE,1,1) -~ BGS™(Y{NTG+NE])-YINTS+NE1))
VINTT+1) w YINTT+1) = U(3)
-
-

+ YINI+I)*Y(N6+I)*
-

yi Y*SUMIY,1,K,3,1)

VINTT+NEL) SUM(Y ,NNE,RE,2,1)
VINTG+1) SUM(Y,#,1,3,1) ¢ BSGY(YINTS+1)~YINTG+1))
hd (1. DU-1.08/YINTC+1)/ALG

VINTG+NEL) = SUM(Y‘NNE.NE.3.1) - BSE*(Y(NTS+NE1)~YINTG+NEL))
VINCO+1) = YU(NCO+1)-ULl4)

VINCO+NE1) =~ SUM(Y,NNE,.NE,4,1)

VINC2+1) - YINC2+1)- U(S

VINC2¢REL) » SUM(Y, NNE,HNE,S,))

VINUG+L) - Y(NUG*l)-U(Z)

VINUG+NEL) = Y(NTG+NE1)*SUM{Y ,NNE ME,6,1) +» Y{NUG+NE]I)*

- YINTG+NEL)Y*(PHZ~1.DAI/PH2 - YINUG+NEL1)*
SUM{Y,NNE,NE,3,1)

»

RETURN
END

Table A5-2 Continued
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SUBROUTINE CPCALC(SHZ,SC0,SC02,SH20,.SCH4,STH MG, CPG,CPCL,CPR2)
€ THIS SUBROUTINE CALCS THE HEAT CAPACITY

IMPLICIT REAL*8(A-H,0-2)
REAL*8 MG
EN2w1 . DF-SH2~SCO~SCO2-SH20-SCNA
MGwSCHA*16.94300+SCO"2B. X1 04D0+SCO2v44 . FHIBDF+SH2*2 . F16DN
. +SH20*18.0154DF+SN2*28. 013408
CPG1={SH2*,BID~-3+5N2* . 7767D~3+8C0O"1,2D-2+8C02*4.216D-3
hd +SH20"7.17D-3+SCH4*12.,4282D-3)/MC
CPG2={SH2"6.62DP+SN2*h.775DA+SCO%E . 60F+5C0O2*8. 9512608
- *SH20%11.200+SCHA*G . 200800) /MG
CPG=CPGI*STH+CPG2
RETURN
END

FUNCTION SUM(Y,I,K,L,M)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION Y{1988)

COMMON /COMAT/ NE,N(5),H(S§),21(6),NS(6),2(5,25),A(5,25,25),
. B(6,25,25)

SUM=3. BD¥

IPlele]

NN=(L-1)*NS(NE+1)+NS(K)

N7=6*NS(NE+1)+(L-1)"(NE+1)

1F(M .EQ. 2) GO TO 289

00 188 g=] ,N{K)

JP1wdel
199 SUM=SUM+ALK, IP

SUM=SUM+A(K, IP

SUM=SUM/HIK)

RETURN

298 DO 281 J=],N(K)
JP1mJ+l

2N1 SUM=SUM+B(K,IP1
SUMSUM+BIK, IP)
SUM=SUM/HIK) /H!
RETURN
END

JPLII*Y{J+NN)
1)»

1,
1, YINT+K)+AIK, IPL , NCK)*2)*YIN7+K+1)

WwWPLITY{J+NN)
k%)'V(N?*K)+3(K'IPI.N(K)OZ)'V(N7*K01)

SUBROUTINE REAC (Y1,Y2,7T8,T6,PT,R1P,R2P)
€ THIS SUBROUTINE CALCULATES THE DIMENSIONLESS RATES

IMPLICIT REAL*8 (A-H,0-2)

REAL*B MG,KP2A,KP2B,KC28,K1P,K2P ,KP2

COMMON /OPCON/ SCH4,SCO,SCO02,SH2,SH20,PTH,PT1,STE,STW
- /REAC2/. EXPA ,EXPB ,EXPC ,KC2H,KP2A,KP2B ,K1P ,K2ZP,EAL,EAZ
- JLINEA/ AA(75,76),8BB(75,8),DD1(75),U(8)

GA=g.DE

TT=STH*TS

KP2uwDEXP {KP2ZA+KP2B/TT)
TH1=SCO*(U{4)~Y1+U(E)~Y2)
TH2=SCO*(U(5)-Y2) -
TH3=1.D8~2 . DA*TH]
YHZ={SCO*U(7)-3.DB"TH1-TH2)/SCO/TH3
YH20={SCO™U{B)+THI+TH2)/SCO/TH3
YOHAR(SCO*U(B)*THL)/SCO/THS
YCO=Y1/TH3

YCO2=Y2/TH3

PAsPTTHI

1F(YH2 ,LT. 9.D8F) YH2=1.D-18

1flyco 1t. #,.d8) yeo=].d-14

RiP= DEXP( EAl/TT)'PA"(expa*epr)'YHE".pr'VCO"pral
L (1.DB+KIP*PAYCO+K2P*PA*YH2 ) *"a

R2P=DEXP({~EA2/TT)I®{ . 8308+, l7Dﬂ'PA‘FTl)'(VCOZ*VHZ*YCO'VHZO/
bl KP2eKC28)

RETURN
END

Table A5-2 Continued
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FUNCTION TRI{T,TT,L.R)
IMPLICIT REAL"8 (A~H,0-2) .
COMMON /RADIA/ W(1#),WP(8,2),DETA(2),RR

/LINEA/ AAL75,75),BB(75,8), 00(75) uie?

TR={{WP LY*MWP (4, L)*ReWP ({7, LISR"™2)*T

{1,
S {WP(2,L)+WP{B , L)*R+WP(B,L)*R**2)*TT
FWP L3, LU L) oWP (6, LIYU(L I R+WP (9, L)*ULL)I*R**2)/DETA(L)
EETURN
NO

FUNCTION RFN (AA,NN)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION AAL187)

IF(DABS(AALL)) .GE, ST) STeAA(I)
RFEN=-DLOGIF(DABS(ST))

RETURN

END

SUBROUTINE ACTCONC(Y1,Y2,X1,X2}

IMPLICIT REAL™8 {A-H,0-2)

COMMON /OPCON/ SCHA,SC0,SCO2,5H2,SH20,PTH,PT] ,STR,STW
FLINEA/ AAL75,75),BB(75,8),DD(76),U(8)

THiw] . DA~2.DF*(SCOM(UL4)~Y]I+ULE)~Y2))
X1wyY1*SCO/THI

X2=Y2%SCO/THI

RETURN

END

FUNCTION PRESII,K)
IMPLICIT REAL™B (A-H,0-2)
COMMON /OPCON/ SCH4, SCO SCOZ,SHZ.SNZO PTH,PT1,5TH,STW
FCOMAT/ :ssn;?‘)zg() V), ZIUB) NS(B)Y,2(5, 25)‘Ms 25.2%),
(

PRES=( (PTI-PTE)I*(ZI(KI+H(K}®Z(K, 1+1))+PTH)/PTSY
RETURN
END

SUBROUTINE INDICES (K,NK,N1,N2,N3.N4,N5,N6)

IMPLICIT REAL*8 (A-H,0-2)

COMMON /COMAT/ Niéﬂég)ég(S).ZI(S).NS(S).Z(S.ZB).A(B.!E.ZS)'
Bi5,25,28)

NSE=NS(NE+])
NK=Ni{K)
NieNS(K)
N2=NSE+NS{X)
NIwZ*NSE+NS{K)
N4=3*NSE+NS(K)
NG=4*NSE+NS (K}
NBE=5"NSE+NS(K}
RETURN

END

Table A5-2 Continued
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SUBROUTINE COLLOC
ROUTINE CALCULATES THE ZEROS OF THE ORTHOGONAL POLYNOMIAL AND

c SETS UP THE AXIAL COLLOCATION MATRICES A AND 8

[ 2% ]

182
188

208

C THIS

IMPLICIT REAL*B (A-H,0-2)
DIMENSION D1(25),D2(25),03(25),V1{25),v2(26),R(25)
COMMON /COMAT/ gEéﬂég)éH(E).ZI(B).NS(G).Z(E.ZS).A(5,25.25).
( .25)
/INDEM/ NSE:NTS.NTT,NTG,NCO.NCZ.NUG.NNE.NEl

PRINT 1

DO 188 K=1,NE

NK=N{K)

CALL JCOBI{28,NK,1,1,8.
PRINT 2, K,H{K),(R(J),J
D0 8¢ 1=1,NK¢2

CALL DFOPR{25,NK,1,1,1,1,D1,02,D03,R,V1)
CALL DFOPRI2S,NK,1,1,1,2,01,02,03,R,V2)
DO 182 J=1,NK+2

AlK.1.9)=V1i(])

B(K,1,J)=v2(J)

CONTINUE

ZiK,1)=R{D)

CONTINUE

NS{1)=&

ZIC1) =R . DF

DO 288 K»1,NE

NS(K+1)=NS(K)+N(K)

ZI(K+1)=Z1(K)+H(K)

PRINT 3,{{(ZI(KI+HI{X)I*2(K,J)), =1 N{K)+1),Km] NE},1.D8

NE1=NE+]
NSE=NS{NE1)
NNE=N(NE)+1
NTS=6*NSE
NTT=6*NSE+NEL
NTG=6*NSE+2"NE1
NCO=6*NSE+3*NE]
NC2=G*NSE+4*NEI
NUG=6*NSE+S*NE1

RETURN
FORMAT(1H1,/,3X, "ORTHOGONAL COLLOCATION OF FINITE ELEMENTS®)
FORMAT(///2X,'ELEMENT &°,13,6X,'LENGTH = * F§.3,//,7X,
'COLLOCATION POINTS:",//3L18X,6F8.4/))
EORMAT(/////ZX.'COLLOCATION POINT SUMMARY:®,//,6L18X,6FB.4/))
ND

bg, 8. Dl 0p1,02,D03,R}
] NK+2

SUBROUTINE INTLSS(Y,U,.EP)
ROUTINE CALCULATES THE INITIAL STEADY STATE PROFILE

IMPLICIT REAL*8 (A~H,0~2)

DIMENSION Y(188),U0(8)

COMMON /INOEX/ NSE NTS NTT,NTG,NCO,NC2, NUG, NNE, RE1
EXTERNAL FN1

CALL INITIAL (V. U)

CALL QUTPUTLY,U.#.08,1)

CALL NSESl(S'(NSE*NEl) Y,EP,2808,8,FN1)
CALL OUTPUTIY,U,¥.DN,2)

RETURN

END
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APPENDIX 6

LINFAR PACKED BED REACTOR MODEL
Linearization of Reaction Rates
Methanation

~Ep/R.T
po o PRy (yco) (1)
M T T+ K Pryy, + K2Pryen,

If we neglect the second and higher order terms in a Taylor series expansion, the

linearized rate is of the form

Ry~ Ry + Ruol((@s“@a) + Ry, (yco—Feo) + Ru,coz(Yoog““Ycog) + Ruy&(YEO”‘LO)

+ Ruyé’o (¥80,~¥8,) *+ Ru " O(Yﬁgo”?ngo) + Ruygm(}’&{‘-?cm) + Rn’ﬁa( ¥8,-¥8,)

where

After performing the differentiation

o P )0 oeo(1 )
e 14K 1Pr¥e, +K'ePr¥en,

B  KeyV R
RT,02 TOZ(1-D) | ™=

Rg‘?-




Rll.y - 1 + ‘17- -1 + -‘1 + ~1 + —9 + _1-.5
@ 1Yo 1~V |¥Ho Yoy, Yoo Yy, Fu,
__ 8K,Pr —K3Pr
14K\ Pr¥u, +K'2Prycen,
£ 4K Py — KpP

Ry = v _[2 . 1 | ~12 + ”z _ 'lej'r 2 R

0 |17 |Vu0 FeH, TH, Yu,  1+K1Pryu, +K2Pryen,

7, 3K Pr — KpP

Ry =-|-Z —1 + _1 + _9 + E.S _ - 1_'r ‘z 'r- Ru_

& 1=V |¥m0  Yeu, Vm, Y, 1+K' 1 Pr¥u, +K2Pryex,
Ry =-R

780, M"3‘32

Ry = -|———iR
M50 [(1““19)‘5"320 Mo

Ry =|—3Y 1 K'\Pr R
8, |Ti(1-9) 2V, 1+K Py, +KePryoy, | =
Ry = J» + KaPr —|r
%, l(l"l-/)?cm 14+K" Pr¥u, +K'2Pr¥cx, e
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Steam-Shift

| (ty + 1Py, Py)e TR
ST (1-26)

Kes
Yeo,YHe — ‘K'P;S—YcoYHzo

where Py, = (1-26)Pr

If we neglect the second and higher order terms in a Taylor series expansion, the

linearized rate is of the form

Rs™ Rs, + Rs,'(@a”@s) +Rs, (yco~co) + Rs,%()’coz-?coa) + RS’EO(YSO"LO)

+ Rs’&a(ygoz"'}"r?og) + Rs’ﬁgo()fﬁgo“?ﬁzo) + Rsyaaf)’@nfyé’n‘) + Rs " (y8,~v8,)

where

Then after differentiation

(fl + fngApg)e%/&T°E”' [ B K“S o
Rs,, = (1-20)° [?coa)’}la - ‘K';'“YCOYHeo

’ 5 “Eas/RToPsyr & o
Eas (£, + £2P1,Po)e **KegVooTHg0Kpg,

Rs, = ——
s e Ky, To02(1-R0)?

%, RJ'O_@E
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_|2ePoPribs x|
RS0 ™ |T,+aPr, Py 1-26 | e
= ~E T.5 o -
(f,+1Pp, Po)e *8/"ae"s oo, KeslTeo = Fi0)
Y =
(1-20)% % Ko

- ~E,g/R.T.B -
b - | 2t,PoPrRg 488 (,+15Pr,Po)e = Fe's%s o ar B0
Srcop | t,4+1Pr, P, 1-26 | = (1-26)2 Yoog* Tt g -
Rg ., =0
y&;‘

_ Kcs?co(fx'*fzﬁnpo)e%'m’

—

80 Ko (1-R8)?

_ ?cog(f1+fz?TAPo)e.E‘s/R‘T°F'

B, (1-26)?
- - ~Eus/RgToB, [ _
Ry = 4880 2fPoPrR& Re - (f1+12Pr,Po)e o oo +Kchco
o |1R6  f+fPrPo | ™ (1-R0)? T Ky,
‘ E,gRT.E, [ _
4%& 2faPcPrX&o (fl'HB?TAPO)e fakyTo8s 3 ZK.,syco
RS = — e RS - B 4}’ma+~—.:.—*~“"—
o, |10 fi+fePrPo | ™ (1-26) \ Kps

|
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Linearization of Algebraic Equations

The boundary conditions for the mass balances and for the energy equation
for the thermal well can be solved explicitly for the concentrations and thermal
well temperatures at the axial boundary points as linear expressions of the con-
ditions at the interior collocation points. However, the set of four boundary
conditions for the gas and catalyst temperatures are coupled and are nonlinear
as a result of the convective term in the inlet boundary condition for the gas.
After a Taylor series linearization of this term around the steady state inlet gas
temperature, gas velocity, and inlet concentrations, the system of four equa-

tions is scolved for the gas and catalyst temperatures at the boundary points:

iAO.lej
® e
8y
0
O‘Nu _— JSJANHJ ™
Bso ngo.,@g’ +I
@em =1
¢}
dglANHJ &
with
= Myep + 5 + 8, +
R 5. | % |a8.) ° a0,
= 1
“aEzzo
and
(Ao.c “'>\gza) AO.N +1 )‘gu 0 -
S = ANH,O (AN+1,N+1+HAges) 0 ~Ages
- Aesg 0 (AgpNerg—1) AgN+1

o —7\.,% Anir0 (AN+1.N+1 +A-zg)
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Linearization and solution of the continuity equation for the velocities at
the interior collocation points and at the end of the reactor are somewhat more
complex. After linearization as described in Section 3.6 and after substitution
of the linearized equations above for the endpoint temperatures, the continuity

equation was solved for the velocities:

Vg‘ = jﬁ Hi.jesj + ﬁHiNﬁ@gj + Ii
=7 =1

where
H = F'G
I=JF'K

The matrices E, F, and G have the following elements?

— — }tt:l = .

= L forij =1,.., N+l
B, Ay i#] J

Fij =

Foriyjy =1, ... N:

Gyj = (Ai0SaiAas + AioSszAne1y + AiN+1Suhos + AiN+1SeeAne )V
Ginej = (Ai;+Ai0SssAo; + AcoSaalnerj + Aine1SesAos + Auns1SuAN 1)V,

Ginei = (A itA 053380 + Ay 0S3aAN+14 + AcN+1S45804 + Ai N+ 1S0aAN14) 7,

+1
“'P{V - A,.,ﬁ
b LT

1. Note that S are the elements of the above 8 matrix.
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+1 - — _ .
E = .;EOA‘LJ'(VE{OQ - ngG&) + Pivg‘eg‘ - Ai.ogg‘vgo + _Vg‘ (A 0Ss3 + A N+1S43)T

Fori=N+1,7=1,..N

Giy = (AioSaiAoy + Ai 0Sa2AN+1j + AcNe1Baihoy + AineiSeefne 5)Vg

—-

+1
Pivgt + :E_OA“"‘VEIG (SMAO.J' + S&EANHJ)

GiNsj = (Aqy+Ai0Sa3foy + A oSsaAN+1y + AiN+1SesAos + AiN+1Sealne 1)V,

(Sasha; + SuaAners)

+1
PV, + P&: AV,
8 Pl -

1
E; = “zzoAi.j(vg‘@gj - ng@&) + pi‘v"g.‘gg‘ - Ai.O@g‘Vgn + vg‘(Ai'.OS:‘BS + Ai_N“S;;s)P

+1
P{V"& + ::EOA‘;*V& Sasl’

linearization of the Differential Equations

The linear reaction rate expressions and the linear expressions for the velo-
cities and for the concentrations and temperatures at the axial boundary points
are then substituted into the differential equations. Due to extreme coupling
between the state variables, lengthy manipulation is necessary to linearize the

resulting equations. The linearization is completely analytic and the resulting
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model is®

X = Ax + Ww

where

T
x - {@Bl' ey Gm, 921‘ eery QEN' 0"1' vrey G"N' YIl' erey le,, Y2N, rey yZN}
T
4

w= {@0,. Vg, @0, Yéo. 8o, Yig0. Y&, ¥H ]

The elements of the state and control matrices A and B are as follows.?

Elements of the State Matriz

Forij =1,..N (i #7)
Aj = agBij + aBio(S11A0; + S12AN+15) + %eBiN+1(Sz1405 + SazAne 5)
Aut = 0Bis + 0B o(S11A0s + SipANe14) + 0eBiNs1(S21A0s + Sa2ANe14)

+w + 1c1(1+¢1~(§,‘)7Ruo.‘ + VIRM,,‘ + /oz(1+;oz‘@a‘)Rs"‘ + ¢3R5a‘

A Nej = 0B o(S15A0 5 + Si1aAnrrg) + 0Bine1(SesAoy + SzeAnirj)

A Nei = 03B 0(S13804 + S1aAna1s) + %eBin+1(SesAos + SealAniri) + Vs

2. Interms of deviation variables.

3. Note that the A; ; and B; j terms on the left of the equalities correspond to the elements of the
state and controi matrices A and B, whereas those on the right of the equalities correspond to
Lagrangian derivatives as given by Equation (8.943). The terma H; J correspond to elements of
the above H matrix.
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Ajonsg =0 Ao = o2
Acansy =0 AjaNe = 51(1+¢1®n¢)R“:co‘ ¥ '°2(1+¢a@n‘)Rs,m‘
A ane; =0 AjaNei = '61(1"’%63‘)}211,0%‘ + Kz(l"‘?’z@-‘)Rs’coa‘

k=]

[
ANyij = Qli‘,@g{ + Qg Yy + Ht'.jli (Qz, 04, + Qu,0;,) — (Sashs0 + Sashi )T

Anvii = Qu, By + Qe ¥y + His Lﬁ_}l(Qz‘ 2Be, + Qe ,Bg) — (SssAio + SesAinet)T

7g§g‘
TG +1

AnviNes = Qs B + Qu Ty, + H".Nn'li (Qe, .04, + Qs ,8,) — (Ssshio + Seshinn)T

& =1

il(QZu@s, + Q‘t“,'@g*) - (SSSA'i.Q + S*SA(.N*'I)T

AN"H-.Nﬂ = QS"‘ég‘ + QA‘.‘VZ‘ + H‘.Nﬂ K

1

(SssBig + S&SBi.N+1)?ag + 4wy + ’g'f‘"ws + 7g@a¢

* Th+l
+ w58y + 2%@'&} + ; 1(Q1‘ 28s, +Qs,,8)
Ansianyy =0 ANvioNH = T

An+i 8N+ = AN+ SNH = ANbi AN+ = ANbiana = 0
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AgNyi g =0 AoNuig = Wy
AgNviNeg =0 AgNui N = B

AgNt 2Ney = Ott:Bu - MB‘X;?:::" }
AgNsiaNu = “JB{.“ - M] + wg

ANM,NH

\
AN+ 3N+j = AeN+i SN+ = AgNtiaN+y = AeN+ianu =0

- AN+1.kA¢.N+1

Veo, +
AN+1N+1 chok Ai'o

AgNwj = "'Hu[ill {Au

. ANfl.kAi.Nﬂ

Yeo, + Ao —
ANH.NH *

Aswuss = -w,i[ & [Au

g 5,

AN+1.0A1'.Nf 1

ANH.NH

- AN+1.DA¢.N+1
ANH.NH

8
+025—Rs, —0y=5—R
PT‘ Sﬁn‘ ! PT‘ uol‘

AN+1):A£,N4~1 1_
, .= —-H, . s e rs—— + A
A8N+1,N+J i N+j k::l[Aik ANH.NH JYOO,, A1..0
w
AN aAiNe |
AsNei N+ = ~Hinu| 2, |Aix — —————{Vco, + Aip
L k=1 ANviNn1 }
R
+g e -g i
¢ Pr ' Pr

AsN+i 2N+j = AsNsigNe =0

;
_ ANe10AiN+L
ANny N+1

,
ANH.BALNH

ANH,NH

L
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- Ansi A
AgNr Ny = =V [Aiy — el R BAZ

ANs1N+1

8, 8,

+025— -0i15—R
2Pr, o, = 'Pr, o,

- AN+1.iA‘i,N+l

A
AN+X,N+1

A\"SNH.SNH = --V&

0 B, R O, R
AsNiiaNsy = AgN+i aN+i = 02"15; s,cog‘ - 1“15‘{ M, cog

- ANM,kAd.NM

= AN+1.OA1'.N+1 o0
Aani; Hi.J[k:l[A‘.k ANy Ne ¥ ]

L4 Py o —
Yeog, * Ai0¥Co, Areinet

_ Ani1eAiNn

- _ An+1,0Ai N+t &
AN+1.N+1 0

Ycozk ¥ Ai,o?é’og AN+1NH1

05‘
— 03 ‘IBE‘RSD"

AgnviNeg = —HiNeg

ANv1xAI N+ ].. o AN+10Ai N+ _,
kg:l[A-.Jc Avermier Yoo, Ay 0¥ co, Aveinns ¥éo,

_ AnnixAinn
);;:1[&* AxN+1N+1

ANi1,0Ad
AgneuiNe = ~HiNu Lo ge ]

7 A V& -
Yoo, A oFto, ANv1N#1

R,
Pr

AN+i2N+j = AaNvigNm = 0

]
Agnraneg =0 " ANviaNe = O3 —ﬁ?_-RS’CO(
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_ AN+15A0NH
AN+1,N+I

AsNviaNey = — T, [Aq‘,,j

8

ma'apT‘ stz‘

- ANH.'éA(.Nﬂ
ANt 1IN+

AaNviaNn = =V [Ai.i

where

Q= T(‘?il {Bi.O(SSIAO,j + SgeAn+15) + Bine(Sarhg; + S,zANHJ)]

]

Qe —{Ai.O(SSIAO.j + SapAne1s) + Aine1(Sahoy + S"ZAN”-")]

i

Qs ;ﬁT[B” + B; o(SssAoj + SauAN+15) + Bine1(Seshoj + 544AN+1.5)]

Qo = —[Ai.j + A o(Ss3A0,; + SasAne1g) + Aunar(Seshoy + S“AN"U)]

Elements of Control Matrix

To define the elements of the matrix B, the following definitions are needed. For

the methanation system,

Cp‘ = %‘ITOGO + cp‘a

where after substituting for the concentration of nitrogen in terms of the other

chemical species .
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£
} i
wg"“‘

{axc + 7‘30(“11,2}'132 + oy Y& + alcogY&Og + aleoyﬁgO + alcg‘y(?ﬂ‘)]

]

1 59
c"ng = ﬁ;"{%‘, + XCO(GQHEYISg + azcoY&J + a'zcoay 802 + aznzoy ﬁzo + a2ﬂ14yen4)]

Based on readily available data for the heat capacities of the gases,

oy 0.000776 | ag 8.775

oy, ~ 0.000034 | o,  -0.155

a, 0000424 | og, -0.175

Ricn, 0.003440 %2co, 1.278
Qg 0.006394 O2g.0 4.425
Oy, 0011653 | oy  -1.574

Then let us define

“c‘,,hT,,
a = =
opﬂ
o = e
Mgocpa
=0 /M
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Mg S,
®& (Toalcg‘ + ‘XQCH‘)
% = Mg, G,
Then if we define
N = ——@‘——“m Y2 = 5 73 = 3
GgY%, OgVe, oge,

the original definition for the constant I' becomes

=79 - ")'IMgcpa = NVg, t 729,

The matrix I can then be partitioned using the definition of vector E

1
v

, &o
E=[E F E E]j MqCp,
8,

where fori = 1, ...,'N

l -
By = "ﬁAﬁj(Vm@sj — Vg,05,) + P78 + %5 (A1 0553 + A N+1549)7s

e, = —Ai.0Bg — Vg, (Ai 0533 + AiN+1Ses) 71



- 480 -

Eg, = — Vg (A 0533 + Ainn1See)7:
Ey, = V(A 0S33 + A; N+1543)72

and fori = N+1

1
Ey= "]EA"J(V&@BJ =g, 8g) + PV Bg, + Vg, (A o0Ss5 + AinniSes)7s

+1
Pﬁ& + :EoAq;,kvgk 84-873

1321 = --A,,;'g@,;1 "V&(A@,csss + Ay N+1Sag) 71 +

41
P, + :EOA‘ £V, |Ses?1

Eg, = —¥,,(Ai 0583 + AiNe1Saa)7y + [Pi¥y, + :ﬁz&*v&]s"ﬂl

N+1

Ey = Vg (Ac0Sss + Ain+1Ses)7e — [Pu¥g, + kgoAqu,]Sw?'z

Thus we get

1=1, + Ly, + lgMyep +1,0,

Also if we define

X, = _Jijl(qluéaj@& +Qq, ,8,8;) - ;a-l—;—l—-{w@z + w58, By, +7,8,8,
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+ _@—&5-‘(453% + gf‘ws) +(T + 71)5&33(538&.0 + SggBiNe1)

[ — _ _
+ 719, (SssAi 0 + SeaAins1) + g, Li,(%ﬂ’f + Q4 ,8g,) — (Ss3Ai0 — SasAcne)T

Zl f AN+1 oA;.Nu f: (A¢ Az.NMANH.k ).. }

= ~I3 |As0 —
' t AN+1,N+1 k=1

Ly, = ~1 AR
' 3 As.o¥co €0 ™ AN +1.N+1 AN+1 N+

_ AnvioAiNn e, §5 _ AiNnAnns | _ ]
P} 2

Then the elements of the control matrix B are

Be
By = 48w + T Ve B2 = —7105(B; 0513 + By N+1523)
[+

Bis = as{y2 — 0171)(Bi.oSis + BiN+152s)

By = K1(1+¢158)RM’° + ”2(1+¢2-63)RM8 — 0g7106(B; 0513 + By N+1525)

co, Yo,

Bis = x,(1+¢,0,)Ry + Ka(1+928,)Ry - ag71%(B; 0513 + B N+1523)
7&;2‘ ‘ ’&)e‘

Bie=i(1+¢18)Ru .+ mp{1+920)Ry . — 047104(Bi oS3 + Bin+1523)
My Ty

0y

Bir = k(149 0)Ry = + Ka(1+¢z"@s)Ru,§2‘ — a57104(Bi 0515 + By N+152s)

&

Bip = 'Cx(l‘*'sﬂx@s)Ruyo — 0gY105(B; 0513 + BiN+1528)
2
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@& EE..
Bywia = ;a‘;r(‘lﬂgwg + . Wg)

71-@&03
TG+1

BNsiz = — (SsaBip + SesBin+1) + 7195, (Seshi 0 + SsahiNe)

T
o [g(%e., +Qu,By,) — (Sssheo — Sashene)T

_ 72‘@g‘ag
Brwis = —5 7 (SasBio + SaaBine1) — 72V, (SssAio + Sasfine1)
‘T{f"l

+ 14‘[/% (Qei_j@ns, + Qq _,61;,) ~ (Ssshi0 = SesBune )| + X

=1
Briia = opX Bynuis = agX; Brvig = ouXi
Briir = 08X Bnsig = 0aXy
Bon+ia = Vis(W's + Wego + Wepd) + 7ig(Ws + Wepo + Wod)

o Bi N+1AN+1 D
AN+1N#1

Bentiz =0 Bontis = aeBig —

BaN+ia = Benvis = Bonsig = Boneir = Boneis = Bsnei1 = 0

An+1,0Ai N+ AiNeiAN+1E
Banviz 2, |Auo Aveizio: ﬁ (Age Avones )eo,
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| AN+1,0Ad N+t AiNe1AN+1x
e = =] oy e e R . + o7
Ban+is 4 |Aio ANeiNet k:x(A‘* MANH.NH )Yco,, 1414
] o A
= & & AiN+1AN+ID o
a4 = AoV, — O R + 0g =R e A Y P4
Baeis = ~Auo%y = Pr uvc‘:’o‘ “Pr Syc’fo‘ Anvinn M CEON
58{ @&
BaNvis = Ul"'};’;—Rﬂye + Gz“P‘T_RS’O + gz
0g, Sop,
'@& 'é&
BaNu,a=—01T;-°Ru° +0z5—Rs . t+ouZ,
THg0, a0,
_ 8 3
BaNwin = - Ul"ﬁFRuyﬁ?‘ + Ua—l-)?-Rs,ﬁg‘ + aGZI‘
8 R z
ig = — O +
BaN+i g Py T, agZ ),
4
Bynvia =0

- - AN+1,0A,1‘..NH = AiNrAN+1LE (o
Baneiz = “12‘[&.0)’303 = "'Wy‘?"a + g}l(&x - m) 00,

- AN+1,084 N+ AinoAnng (|
R | . - AL LA ;2 ORI\ B AT
Bansis 4 11%.03’(:0il ANt ¥éo, ki:l(Au Aver o )Ycogkq

[}
Bynvia = "“a“""‘“PT RS’Q + 0l
<

+ (XIZQ1



- 484 -

- A{N+1AN+10 < 6&
Banai s = A, ¥y + —————— 2§ T8 ~ 0aq——R + 0 Z
4N+L,5 Aq 0V, AN+t '2,YCOg S Py SY&; 342,

2

_ B,
Bnuig= —035—Rs |+ o2y

Pr e,

8
Bynwio = — 03 }Sjr“Rs’ﬁa‘ + 0523, Bunsin = 02,
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