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ABSTRACT 

 Mechanistic and synthetic investigations into the kinetic resolution of racemic -

olefins by polymerization catalysis using C1- and C2-symmetric zirconocenes are 

reported.  The importance of chain end control as a stereocontrol element was probed 

with ethylene and propylene copolymerizations catalyzed by the C1-symmetric catalyst, 

{1,2-(SiMe2)2(
5
-3,5-C5H1(CHMe2)2)(

5
-4-C5H2((S)-CHMeCMe3)]}ZrCl2/MAO.  

Selectivity factors and pentad analysis of racemic -olefin and propylene 

polymerizations catalyzed by a similar C1-symmetric catalyst, 

 {1,2-(SiMe2)2(
5
-3,5-C5H1(CHMe2)2)(

5
-4-C5H2((S)-CHEtCMe3)]}ZrCl2/MAO, 

indicate that site epimerization does not limit selectivity during kinetic resolution.    

 To avoid some of the issues involved with the C1-symmetric catalysts, a route to 

enantiopure C2-symmetric zirconocenes was pursued.  With the aid of the chiral 

auxiliary, (R)-N
2
,N

2’
-di-p-tolyl-1,1’-binaphtyl-2,2’-diamine, enantiospecefic synthesis of 

(S,S)-{C2H4-1,2-(1-indene)2}ZrCl2 was accomplished and its use for kinetic resolution 

was investigated.  Although synthetically useful selectivities were not observed, it was 

determined that the C2-symmetric catalyst does not racemize during polymerization, 

which substantiates a more thorough investigation of catalysts based on {C2H4-1,2-(1-

indene)2}ZrCl2. 
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INTRODUCTION 

  

 The polymerization of -olefins catalyzed by a heterogeneous mixture of group 

IV metal(s) and Lewis acid cocatalyst(s) (Ziegler-Natta catalysts) is one of the most 

prolific reactions in the chemical industry.  Using this process, useful engineering 

polymers such as polypropylene and polyethylene are being produced on the multi ton 

scale producing 10
10

 pounds of polymer, annually.
1
 A continuing effort in the 

organometallic community has been the development of well-defined single-site catalysts 

that can be used as homogeneous analogs of the heterogeneous Ziegler-Natta 

polymerization catalysts.  Many mechanistic features of Ziegler-Natta polymerization 

have emerged as a result of these studies, and several properties unique to the 

homogeneous systems have been identified. 

 For example, facial selectivity for olefin migratory insertion has been linked to 

the catalyst geometry by an intimate relay mechanism between the ligands on the 

catalyst, the polymer chain, and the incoming olefin.
2
 The critical feature for this 

mechanism is an -agostic interaction between the polymeryl chain and the 14-electron 

metal species that develops in the transition state for olefin migratory insertion (Scheme 

0.1).
3
  Since 1,2-migratory insertion results in a polymeryl chain with two -hydrogens, 

the agostic interaction can occur in one of two ways.  The ligand(s) on the metal fragment 

often dictate which of the two agostic interactions is preferred by encouraging the 

polymeryl group to reside in a conformation that avoids steric interactions with the 

ligand.  These interactions are relevant to the facial selectivity of olefin insertion because 

the geometry of the incoming olefin is primarily controlled by the conformation of the 

polymeryl group with the substituent of the -olefin tending to reside anti to the 

polymeryl chain (Scheme 0.1).  The consequence of this relay mechanism is that C2-

symmetric catalysts, such as (rac)-{C2H4(
5
-1-indenyl)2}ZrCl2 (1), encourage olefin 

insertions from the same enantioface to give isotactic polymers, and some Cs-symmetric 
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symmetric catalysts, such as{1,2-(SiMe2)2(
5
-3,5-C5H1(CHMe2)2)(

5
-C5H5)}ZrCl2 (2), 

encourage olefin insertions from alternating enantiofaces to give syndiotactic polymer.  

The production of syndiotactic polypropylene was particularly exciting because this 

microstructure could not be obtained with heterogeneous Ziegler-Natta catalysts.  

Unfortunately, syndiotactic polypropylene has not been used extensively as an 

engineering polymer due to poor processibility.  Nevertheless, the production of new 

polymer materials previously inaccessible to Ziegler-Natta catalysts has spurred an 

intense research effort in homogeneous polymerization catalysis that have recently 

included -olefin/ethylene random copolymerizations,
4
 living polymerizations,

5
 and 

stereoblock copolymerizations.
6
 

Scheme 0.1  The interplay between catalyst, polymer chain, and olefin, and its effect on 

polypropylene polymer microstructure. 
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 Recent efforts in our group have been devoted to enantioselective 

polymerizations, specifically kinetic resolution by selective polymerization of one 

antipode of a racemic mixture of an -olefin (Scheme 0.2).
7
 The success of kinetic 

resolution of such -olefins would be valuable given that synthesis of enantiopure -

olefins is difficult especially in the absence of any polar directing groups.
8
 For example, 

asymmetric dihydroxylation of dissymmetric internal olefins can only be achieved with 
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modest selectivity
9
 although in some cases good selectivity is observed.

10
 A notable 

exception to this limitation is the recent development of asymmetric alkylation of allylic 

phosphates, which proceed in impressive regio- and enantioselectivities.
11

  Kinetic 

resolution by polymerization has the advantage that separation of the unreacted olefin 

product would only require a simple filtration.  Additionally, kinetic resolution by 

polymerization would yield enantiopure polyolefins that could have unique physical, 

mechanical, and optical properties. 

Scheme 0.2  Kinetic resolution of racemic -olefins by polymerization catalysis 
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 The foundation for this work was the development of an enantiopure version of 

the highly active C1-symmetric catalyst, {1,2-(SiMe2)2(
5
-3,5-C5H1(CHMe2)2)(

5
-4-

C5H2(CHMeCMe3)]}ZrCl2 (3) pioneered by Dr. Chris Levy.   CBS reduction of the 

requisite ketone facilitated the synthesis of enantiopure (S)-3, and with the aide of Dr. 

Cliff Baar and a talented graduate student, Dr. Endy Min, a survey of the kinetic 

resolution of some simple racemic -olefins was accomplished (Table 0.1).
7
  Although 

selectivity factors (s = krel = kfast/kslow) determined for these reactions were low for most 

olefins studied, the selectivity factor for 3,4-dimethyl-1-pentene (s = kS/kR = 16) was 

within the range of synthetically useful kinetic resolutions (e.g., an e.e. of  75% is 

obtained for a reaction carried out to 50% conversion with s = 16). 
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Table 0.1  Selectivity and activity for the kinetic resolution of racemic -olefins 

catalyzed by (S)-3/MAO. 

comonomer

R

R
MAO, Al/Zr=500

tetradecane (2.0 mL)

25 °C

m
n m

(S)-3 (0.02 mol%)

2.0 mL

TOF = mmolchiral olefin/(mmolcatalyst*hr).

s (kS/kR)

60 (12) 2.6 (0.2)

551 (50)

33 (10)

40 (11)

18 (2)

1.8 (0.2)

2.1 (0.1)

16.8 (0.8)

7.6 (0.8)

&
R

TOF

 

 The preference for the catalyst to select for the S antipode was rationalized by an 

enantiomorphic site control mechanism (Scheme 0.3).  A feature of C1-symmetric 

catalysts such as (S)-3, is that the polymeryl group tends to reside away from the methyl 

group on the top cyclopentadienyl (as pictured) by a site epimerization mechanism that 

encourages olefin insertions to occur from the same side of the zirconocene wedge (see 

Chapter 2).  To avoid unfavorable steric interactions, we rationalized that olefin 

coordination occurs with the hydrogen on the stereogenic carbon directed toward the 

zirconocene.  In this conformation, R antipode coordination would display an unfavorable 

interaction between the large group of the chiral olefin (e.g. ethyl for 3-methyl-1-pentene) 

and the isopropyl groups on the bottom cyclopentadienyl group of (S)-3 (as pictured). 
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Scheme 0.3  Transition states used to rationalize preferential S antipode uptake in the 

kinetic resolutions. 
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 In a valiant synthetic effort, Dr. Endy Min and Dr. Cliff Baar undertook the 

modification of the bottom cyclopentadienyl (Cp) group of (S)-3.  Unfortunately, these 

efforts met limited success.  Replacement of the isopropyl groups of (S)-3 was possible 

with other substituents such as 3-pentyl and cyclohexyl, but only modest differences in 

selectivity were observed.
12

  The analogs prepared, however, were arguably sterically 

similar to the isopropyl groups of (S)-3 because they were connected to the bottom Cp by 

tertiary carbons.  Unfortunately, synthesis of the tert-butyl or trimethyl silyl analogs of 

(S)-3 could not be completed due to either steric congestion or silyl-group migrations. 

Efforts were made to make the bottom Cp asymmetric, but this synthesis produced 

diastereomeric zirconocenes that were difficult to isolate and displayed poor activities 

and selectivities for kinetic resolution of racemic -olefins. 

 At the time of my arrival, there were several synthetic and mechanistic questions 

that deserved attention.  First, the model used to explain enantioselection in these 

catalysts involves direct interaction between the metal center and the chiral monomer.  In 

addition to the chirality at the metal center, however, there exists chirality in the polymer 

chain end that may affect enantioselection during the reaction, the so-called chain end 

control.  At the time it was unclear if chain end control is an important stereocontrol 

element, and if it is important whether it works cooperatively or uncooperatively with 



INTRODUCTION  -6-  

enantiomorphic site control.  A second point worth consideration for the C1-symmetric 

system was whether or not inefficient site epimerization limits the selectivity of the 

kinetic resolutions.  Since the polymerization sites of (S)-3 are pseudo-enantiotopic, one 

might expect the slow reacting monomer to preferentially react for olefin insertions when 

the polymeryl group resides on the same side of the methyl group in (S)-3.  Finally, since 

the synthesis of (S)-3 and its analogs were both long and resulted in modest changes in 

selectivity, new enantiopure catalysts directed towards the kinetic resolution of racemic 

-olefins were desired.  The subsequent chapters describe attempts to address each of 

these questions in the order discussed above. 
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CHAPTER ONE 

 

ENANTIOMORPHIC SITE VS. CHAIN END CONTROL IN THE 

KINETIC RESOLUTION OF RACEMIC -OLEFINS USING  

C1-SYMMETRIC ZIRCONOCENE POLYMERIZATION CATALYSTS 

 

1.1 Abstract 

Copolymerization of racemic -olefins with ethylene and several prochiral -

olefins were carried out in the presence of enantiopure C1-symmetric ansa-metallocene, 

{1,2-(SiMe2)2(
5-3,5-C5H1(CHMe2)2)(

5-4-C5H2((S)-CHMeCMe3)]}ZrCl2, (S)-2, to 

probe the affect of the polymer chain end on enantioselection for the R or S -olefins 

during the kinetic resolution by polymerization catalysis.  Copolymerizations with 

ethylene revealed that the polymer chain end is an important factor in the 

enantioselection of the reaction, and that for homopolymerization, chain end control 

generally works cooperatively with enantiomorphic site control.  Results from propylene 

copolymerizations suggested that chain end control arising from a methyl group at the -

carbon along the main chain can drastically affect selectivity, but its importance as a 

stereo-directing element depends on the identity of the racemic olefin.  Chain end control 

was also probed by the polymerization of enantioenriched chiral -olefins in the presence 

of achiral catalysts, {1,2-(SiMe2)2(
5-3,5-C5H1(CHMe2)2)(

5-C5H5)}ZrCl2 (1) and 

{Me2C( 5-C13H8)(
5-C5H4)}ZrCl2 (3).  Selectivity for the olefins studied indicated that 

chain end control is a small but measurable factor. 
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1.2 Introduction 

Simple chiral olefins in their enantiopure forms (e.g., (R)-3-methyl-1-pentene) 

would potentially be highly versatile substrates for asymmetric synthesis and as 

precursors to polymeric materials with previously inaccessible optical or physical 

properties.  Thus, efficient routes to such enantiopure alkenes are highly desirable.  Most 

of the methods used to synthesize enantiopure olefins are only suitable for functionalized 

substrates such as allylic alcohols,1 allylic ethers,2 and dienes,3 which can participate in 

substrate directed catalysis, primarily through chelation to the catalytically active metal 

center.  There are few examples where simple chiral alkenes can be enantioselectively 

synthesized or isolated by kinetic resolution of a racemic mixture.4  

Ziegler-Natta and metallocene catalysts can be highly active and often exhibit 

very high levels of enantiofacial selectivity in the polymerization of prochiral olefins, 

producing polymers with well-defined microstructures.5  Thus, enantiopure Ziegler-Natta 

or metallocene catalysts might be used as kinetic resolving agents to preferentially 

polymerize one enantiomer of a chiral alkene, leaving the less reactive enantiomer 

unreacted and recoverable by simple filtration.  Moreover, the optically active polymer, 

by virtue of enantiopure substituents off the main chain, may likewise be isolated and 

could display interesting physical, mechanical, and optical properties. 

 That enantiopure sites in heterogeneous systems can preferentially polymerize a 

single antipode of a racemic olefin was first demonstrated by Pino in 1955, and later 

demonstrated by other research groups.6,7  Because they are more well defined, single-site 

metallocene catalysts are better candidates for carrying out such resolutions.8 For 

example, Ciardelli and coworkers have used enantiopure, C2-symmetric (S,S)-

{1,2-ethylene-bis(tetrahydroindenyl)}ZrX2/methyl aluminoxane (MAO) to effect the 

partial resolution of 4-substituted chiral olefins such as 4-methyl-1-hexene (s = 
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kfaster/kslower = 1.4).9  For this system, low catalyst activities prevented the polymerization 

of -olefins bearing chiral groups in the 3 position such as 3-methyl-1-pentene.  

3-Methyl-1-pentene can be polymerized with other metallocene catalysts, but thus far 

only with Cs and certain types of unresolved rac-C2-symmetric catalysts, precluding any 

possible kinetic resolution.10,11 

We have reported that doubly-bridged ansa zirconocene catalyst 

{1,2-(SiMe2)2(
5-3,5-C5H1(CHMe2)2)(

5-C5H5)}ZrCl2 (1) activated with MAO 

polymerize propylene with very high syndiospecificities and with extremely high 

activities.12 Modification of this Cs-symmetric catalyst system with a racemic 

3,3-dimethyl-2-butyl ("methylneopentyl") substituent has also been accomplished to give 

the C1-symmetric zirconocene, {1,2-(SiMe2)2(
5-3,5-C5H1(CHMe2)2)(

5-4-

C5H2(CHMeCMe3)]}ZrCl2 (2).13 

Kinetic resolution of racemic chiral -olefins by polymerization was realized 

using the enantiopure zirconocene precatalyst (S)-2, and selectivities, s = kfaster/kslower = 

kS/kR, of 2 to 16 were obtained for several chiral 3-methyl-1-olefins (Scheme 1.1).  

Isotactic poly(3-methyl-1-pentene) is obtained, and based on the very high melting 

temperatures (Tm), the other poly(chiral monomers) are also likely isotactic.14 

Scheme 1.1  Kinetic resolution of racemic -olefins using (S)-2. 
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Although we attributed the stereoselection for the S antipode primarily to 

enantiomorphic site control, we speculated that the predominantly isotactic polymer is 

formed by enchainment of monomer at one of the two sites, with site epimerization 

following each insertion (Scheme 1.2). 
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Scheme 1.2  Site epimerization in polymerization catalyzed by (S)-2. 

Although this rationalization appears to reconcile the performance of these 

catalysts to first order, additional factors that affect stereoselection needed to be 

addressed.  Unlike many catalysts used for kinetic resolutions, polymerization catalysts 

retain chirality in the polymeryl group attached to the catalyst.  Thus, the next 

enchainment possesses not only the metal asymmetry, but also that from the last inserted 

monomer (and others farther from the catalytic site).  Chiral induction in these reactions 

can therefore be derived from: (a) the catalyst asymmetry (following enantiomorphic site 

control statistics15), (b) the polymer asymmetry (chain end control following Bernoullian 

statistics16), or, most likely, (c) a combination of the two.  Indications that chain end 

control could dominate enantiomorphic site control under some conditions, especially 

with 3-substituted monomers, have been reported.7,10,17 Whereas the catalyst 
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[{Me2C( 5-C13H8)(
5-C5H4)}ZrCl2]/MAO (3) generates syndiotactic polypropylene, 

Zambelli et al. found that it catalyzes the polymerization of 3-methyl-1-pentene to yield 

“co-isotactic” polymer (Scheme 1.3).10  

Zr
Cl Cl

n
MAO Al/Zr = 500

toluene, 50 ºC

n/2

co-isotactic poly(3-methyl-1-pentene)

R S

(Ewen)ZrCl2

 

Scheme 1.3  Synthesis of co-isotactic poly(3-methyl-1-pentene) using 3. 

To probe the contribution that chain end control may exert in our kinetic 

resolutions, we have undertaken copolymerizations of racemic chiral olefins with achiral 

ethylene or propylene comonomers using (S)-2 as the catalyst.  Copolymerization 

effectively removes chain end control by “running out” the -stereocenter with achiral 

enchainments prior to another enchainment of chiral monomer (Scheme 1.4).  Ethylene 

copolymerization (R’ = H) thus isolates enantiomorphic site control as the only source of 

asymmetric induction.  Similar copolymerizations with prochiral olefins such as 

propylene (R’ = CH3) could reveal the influence on stereocontrol of chirality in the 

polymer backbone ( -stereocenter) as opposed to the polymer side chain ( -stereocenter). 
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Scheme 1.4  Copolymerization experiments for probing chain end control. 

1.3 Results and Discussion 

The term “chain end control” is traditionally used to describe generic interactions 

between the polymer chain end and the incoming olefin that result in stereoregular olefin 

insertions.18  In the context of prochiral olefin polymerization (e.g. -olefin), chain end 

control refers to the enantiofacial differentiation exerted by the chiral carbon that results 

from the previously enchained monomer (at the  position in Scheme 1.4).  

Homopolymers of a chiral 3-methyl-1-ene have two stereocenters per repeat unit, making 

chain end control multidimensional, likely with a rather complex interplay of side chain 

( ) and main chain ( ) chirality influencing the choice of chiral monomer enantioface and 

stereochemistry at the 3-carbon.  This complexity is important to recognize at the outset 
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when attempting to interpret experiments designed to probe chain end control in chiral 

olefin polymerization.   

Ethylene copolymerizations.  Results for ethylene copolymerizations along with 

the corresponding results for homopolymerizations of several chiral olefins, using (S)-2 

as precatalyst and MAO as cocatalyst are shown in Table 1.1.  To ensure that the 

polymers contain a minimal number of consecutive chiral repeat units, the 

copolymerizations were carried out under a constant feed of ethylene.  Relative to the 

previously reported homopolymerizations,14 aluminum-to-zirconium ratios were reduced 

from 1000 to 500, and in some cases (entries 5 and 7) the chiral olefin concentration was 

reduced by addition of tetradecane or toluene.  These experimental modifications were 

necessary to moderate the increased viscosity of the polymer solutions during 

copolymerization.  For several olefins (entries 2 and 6) homopolymerizations were 

carried out using these experimental modifications, and the selectivities resulting from 

these control experiments were within experimental error the same (entries 1 and 5, 

respectively).  It is interesting to note that diluting the chiral monomer with toluene 

increased the activity of the catalyst without affecting the selectivity of the reaction.  This 

increase was found to be general and is attributed to improved solubility of the 

MAO/zirconocenium cation complex.  Thus, the increase in activity is ascribed to an 

increase in the concentration of catalyst in solution.19 



CHAPTER ONE 

 

-15-

comonomer conv. ratea s  = kS /kR

R

R

MAO, Al/Zr = 500

tetradecane (2.0 mL)

25 °C

+ C2H4 (760 torr)nm

n:m Tm (ºC)b

n m

(S)-2 (0.02 mol%)

entry

1

3

4

5

2.0 mL

7

a conv. rate = mmolchiral olefin/(mmolcatalyst*hr); b Tm for polyethylene = 136 ºC. c br = broad thermal 

transition; d 1.5 mL toluene, 0.5 mL tetradecane; e 4.0 mL tetradeacane;  f 4.0 mL toluene and 0.5 

mL tetradecane; g 4.0 mL toluene, 0.5 mL tetradecane, and 300 torr C2H4; h multiple Tm observed

conv. ratea s  = kS /kR

Homopolymerization Copolymerization

410 (160) 3.4 (0.1)

312 (76)

190 (6)

172 (33)e

143 (8)g

1.4 (0.1)

1.2 (0.1)

13 (2)

5.1 (0.9)

6:1

20:1 119

7:1 107

11:1 122

7:1

60 (12) 2.6 (0.2)

551 (50)

33 (10)

40 (11)

18 (2)g

1.8 (0.2)

2.1 (0.1)

16.8 (0.8)

7.6 (0.8)

brc

121h

2

6 223f 15.5

449d 2.6

 

Table 1.1 Selectivity factors and thermal data in racemic -olefin/ethylene 

copolymerizations catalyzed by (S)-2 with corresponding homopolymerization data for 

comparison. 

Because copolymerization yields different selectivity as compared to 

homopolymerization in every case, albeit in varying degrees, both chain end control and 

enantiomorphic site control must be significant stereocontrol elements in all of the 

homopolymerizations studied.  Two possible scenarios may be envisioned for 

homopolymerization of the chiral monomer under such conditions: (1) the stereocontrol 

elements may work cooperatively, selecting for the same enantiomer, or (2) they may 

operate uncooperatively, selecting for opposite enantiomers.  If chain end control 
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cooperates with enantiomorphic site control during homopolymerization, then the s value 

appears enhanced for homopolymerization relative to the copolymerization, because the 

added selectivity arising from the polymer chain end control is essentially absent in the 

copolymerization experiment.  This first scenario appears to be the case for the majority 

of olefins investigated.  However, selectivity for homopolymerization of 

3-methyl-1-pentene is less than for copolymerization, suggesting that for this chiral 

olefin, enantiomorphic site and chain end control work uncooperatively and select for 

opposite antipodes. 

Ethylene copolymer characterization.  Our interpretation of the above results 

assumes that copolymerization effectively eliminates any significant contribution to s 

from chain end control, i.e., that ethylene is incorporated much more frequently than the 

chiral monomer such that the likelihood of consecutive chiral monomer repeat units is 

small.  Enhanced chiral olefin conversion rates generally observed for copolymerization 

relative to homopolymerization suggest that this is indeed the case.20  Migratory insertion 

of a sterically hindered 3-methyl-substituted -olefin into the bulkier metal alkyl 

({Zr-[CH2CH(CHMeR)] m…} (R > Me)) for homopolymerization is expected to be slow 

compared to copolymerization,21 which involves primarily bulky olefin insertion into 

less-hindered {Zr-[CH2CH2]n-[CH2CH(CHMeR)]-[CH2CH2]m…} (R > Me) units. 

Additional evidence for a polymer microstructure with few consecutive chiral 

repeat units is in the thermal behavior of these polymers.  Melting temperatures of 

ethylene/ -olefin random copolymers have been shown to decrease linearly as the 

concentration of -olefin is increased in the copolymer.  The -olefin units disrupt the 

polyethylene crystal lattice by shortening the average methylene sequence length. 

Consistent with a largely random incorporation of chiral monomer units into the 

polyethylene, melting temperatures for ethylene/chiral monomer copolymers (Table 1.1) 

decrease roughly linearly with increasing chiral monomer concentration as shown in 
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Figure 1.1.22  It is puzzling, however, that polymer melting points decrease more slowly 

with increasing comonomer content as compared to simple -olefin/ethylene copolymers, 

especially considering that the identity of the -olefin was reported to have little effect on 

the melting point of simple -olefin/ethylene copolymers at a given comonomer 

concentration.23,24  While we have no explanation for higher Tm values for the chiral 

monomer/ethylene copolymers, the linear dependence (Figure 1.1) of Tm with 

comonomer incorporation is, nonetheless, most consistent with random incorporation. 

 

 

Figure 1.1  Plot of chiral monomer content vs. melting temperature (Tm) in ethylene 

copolymers of racemic -olefin/ethylene ( ) and -olefin/ethylene ( ) copolymers.23 

Data for poly(3,4,4-trimethyl-1-pentene-co-ethylene) omitted due to multiple melting 

points likely from MW effects (see experimental section).  To illustrate linear trend, data 

not appearing in Table 1.1 are included.  

To further support the blocky nature of these polymers, a sequential nucleation 

and annealing (SNA) experiment was performed for poly(3,4-dimethyl-1-pentene-co-

ethylene) using differential scanning calorimetry (DSC). An SNA experiment involves 
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heating a polymer sample to a temperature above the melting point of the polymer 

followed by an annealing time.  After cooling to room temperature, the polymer sample is 

again heated and annealed, but this time to a temperature slightly lower than the first 

cycle.  The sequence is repeated incrementally decreasing the temperature until the 

annealing temperature reaches room temperature.  A thermograph is then obtained over 

the entire annealing range to probe the effect that SNA has on the polymer.  Previous 

investigations revealed that SNA experiments performed on polyethylene encourage 

aggregation of polyethylene into microcrystalline domains, the melting point of which 

could be related to the methylene sequence length.24,25  This correlation was established 

by measuring the correlation between melting temperatures and methylene sequence 

length of linear hydrocarbon standards with defined molecular weights.  These 

experiments, therefore, allow for the identification and semiquantification of methylene 

sequence lengths in the polymer. Thermographs for the poly(3,4-dimethyl-1-pentene-co-

ethylene) synthesized above with and without SNA appear in Figure 1.2, and the 

correlation between melting point and methylene sequence length using the relationship 

previously established24,25 appears in Figure 1.3.  Both Figures 1.2 and 1.3 appear to be 

bimodal indicating at least two copolymers with different average methylene sequence 

lengths.  Despite this complication, it is clear from Figure 1.3 that there is a negligible 

amount of short (<10) methylene sequence lengths suggesting that consecutive chiral 

repeat units in this polymer are unlikely. 
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Figure 1.2  DSC thermographs for poly(3,4-dimethyl-1-pentene-co-ethylene) with (red, 

solid) and without (blue, dashed) sequential nucleation and annealing. 

 

Figure 1.3  Methylene sequence length distribution from SNA analysis of poly(3,4-

dimethyl-1-pentene-co-ethylene). 
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The random nature of these copolymers is further substantiated by their 13C NMR 

spectra.  The 13C{1H} NMR spectrum for poly(3,4-dimethyl-1-pentene-co-ethylene) is 

shown in Figure 1.4 and the corresponding calculations appear in Table 1.2.26  Using 

parameters determined by Lindeman and Adams,27 chemical shifts may be calculated for 

a polymer microstructure with and without consecutive 3,4-dimethyl-1-pentene repeat 

units (see Appendix B).  The spectra of these copolymers are more complex, however, 

due to chirality in both the polymer main and side chain, making the polymer main chain 

methylene carbons ( , , , etc.), and the side chain methyl carbons (1 and 2’) 

diastereotopic.  Unfortunately, Lindeman and Adams’ parameters are not available to 

account for this asymmetry, but the authors note that for such cases calculated chemical 

shifts are often close to the geometric mean of the experimental chemical shifts, which 

we do in fact observe as well. 

 

Figure 1.4  13C{1H} NMR spectrum of poly(3,4-dimethyl-1-pentene-co-ethylene). 
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carbon  B2'3'3
a 1,3-B2'3'3

b 1,5-B2'3'3
c poly(1,3-B2'3'3)  observed   assignment  d 

3 '  13.65  13.65  13.65  13.65  11.86  3'B2'3'3 1 .76  
1, 2' 19.63  19.63  19.63  19.63  19.89, 21.98 1B2'3'3, 2'B2'3'3 1 .31  

'
e 

N / A  N / A  25.58  N / A  27.45     
f 27.77  27.77  27.70  N / A  27.98, 28.43 B2'3'3 0 .44  
 30.00  30.00  30.00  30.00  30.00  B2'3'3 0 .00  
 30.21  30.21  30.21  N / A  30.63  B2'3'3 0 .08  

2  30.71  30.71  30.71  30.71  30.63  2B2'3'3 0 .42  
 32.03  32.28  32.03  N / A  30.44, 32.91 B2'3'3 0 .36  
'  N / A  34.10  32.03  34.60  37.55     

b r  39.77  37.95  39.77  36.13  40.43  brB2'3'3 0 .66  
3  41.85  41.98  41.85  42.10  42.09  3B2'3'3 0 .24  

a 
isolated branch; 

b 
consecutive branches; 

c
 branches separated by one ethylene unit;  

d  = |expt. – calc.| experimental diastereotopic carbons are averaged to get ; e ’ and ’ indicate 

carbons on the polymer chain between branching points; 
f  

, , , and  indicate carbons on the 

polymer chain adjacent to the branching unit s   

Table 1.2 Calculated and observed 13C{1H} NMR resonances for poly(3,4-dimethyl-1-

pentene-co-ethylene). 

Calculated 13C NMR shifts for most carbons cannot distinguish between a 

microstructure with or without consecutive 3,4-dimethyl-1-pentene repeat units.  

However, the calculated shifts for the branching carbon  (“brB2’3’3”) are sufficiently 

different to indicate a microstructure without consecutive chiral repeat units.  Moreover, 

the observed spectrum can be completely assigned with fairly good agreement for 

calculated and experimental 13C shifts (within 1.75 ppm accuracy) for all peaks, assuming 

a microstructure without consecutive 3,4-dimethyl-1-pentene repeat units, with only two 

substantial unassigned resonances (those marked with an asterisk in Figure 1.4).  These 

could be attributed the - and -methylene carbons connecting a minor fraction of 

consecutive 3,4-dimethyl-1-pentene repeat units.  For such an occurrence, however, 

multiple resonances would most likely occur due to the diastereotopic nature of such 

carbons.  Alternatively, the resonances marked with an asterix in Figure 1.4 could also be 

associated with end groups. 
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13C{1H} NMR spectra for the other copolymers presented in Table 1.1 were also 

measured (See Appendix B).  With the exception of poly(3,4,4-trimethyl-1-pentene-co-

ethylene) all of these spectra resemble that for poly(3,4-dimethyl-1-pentene-co-ethylene) 

and agree with calculations for a polymer microstructure with little evidence for 

consecutive chiral repeat units (see Appendix B).  Because 

poly(3,4,4-trimethyl-1-pentene-co-ethylene) has very bulky side chains, termination 

occurs much more frequently, and the molecular weight accordingly is low (Mn = 2,688 

g/mol).  Consequently, the NMR spectrum is complicated by resonances from the 

polymer chain end, making it difficult to identify resonances associated with a polymer 

microstructure that contains isolated chiral repeat units.  Nonetheless, the similarity of its 

chiral olefin content to the other higher molecular weight copolymers leads us to believe 

that it also has isolated chiral comonomer enchainments. 

Copolymerization of ethylene with 1,2-bis-
13

C-3,4-dimethyl-1-pentene.  In a 

final attempt to prove that the ethylene copolymers synthesized above do not contain 

consecutive chiral repeat units, copolymerization of 1,2-bis-13C-3,4-dimethyl-1-pentene 

(4) with ethylene was attempted (Scheme 1.5).  The 13C NMR for a copolymer with 

isolated 4 subunits would consist of two doublets from 1JC1-C2 coupling, while additional 

1JC-C coupling is expected for copolymer containing consecutive 4 subunits.   

R
1,2-13C-labeled

chiral monomer

4

no 1JC-C coupling from 

consecutive chiral repeat units

n n

(S)-2 / MAO

tetradecane
RT

+ C2H4
*

*
*

*2n

 

Scheme 1.5  Copolymerization of 1,2-13C-3,4-dimethyl-1-pentene (4) with ethylene. 

In order to accomplish this task, a short and efficient route to 4 was desired.  A 

possible route became evident when Vitagliano and coworkers reported that the 
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dicationic platinum -complex 5 served as a catalyst for the conversion of 2-methyl-2-

butene and ethylene to 3,4-dimethyl-1-pentene.28  Reproduction of these results was 

satisfactorily accomplished (see Appendix A), and we successfully synthesized doubly 

13C-labeled olefin 4 in modest yield using 13C2H4 (Scheme 1.6).  Modest yields were 

likely due to the small-scale distillation required for the purification of 4 and not to any 

limitation from the catalysis (i.e., unselective reaction).  Incorporation of the 13C label at 

C1 and C2 in 4 was confirmed by 1H and 13C NMR spectroscopy as well as an appropriate 

isomer shift in the IR spectrum (See Experimental Section). The primary limitation being 

the cost of the 13C2H4, this route could be a general and efficient route to 1,2-13C-labeled 

-olefins, which to our knowledge have never been synthesized before. 

1.1 13C2H4 (8.0 atm)

CH3NO2, RT 

48%

N

Ph2P PPh2Pt

*
*

+

(BF4)2

4

5

 

Scheme 1.6  Synthesis of 4 using 5. 

Because economics dictated that only small amounts of 4 could be synthesized, 

the ethylene copolymerization experiment had to be scaled down.  This turned out to be 

quite problematic due to mass transfer issues.  Polymerizations carried out at one quarter 

the scale in the same glassware used for polymerizations reported in Table 1.1 resulted in 

low chiral olefin conversion.  With appropriately scaled glassware, chiral olefin 

incorporation was observed but selectivity factors were typically lower (i.e., s = 9 for 3,4-

dimethyl-1-pentene copolymerization).  Nevertheless, homopolymerization of 4 (s = 

14.2) and ethylene copolymerization (s = 6.6) were carried out.  Although the spectrum 

for poly(4) (Figure 1.5) was unexpectedly simple, the resonances observed were distinct 
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compared to those observed for poly-(3,4-dimethyl-1-pentene-co-ethylene) (Figure 1.4).  

To our disappointment, the spectrum for poly(4-co-ethylene) was very complicated 

(Figure 1.6).  Resonances from isolated and consecutive 4 units are obvious as well as 

many resonances that are absent in Figures 1.4 or 1.5.  We tentatively assigned these 

resonances to end groups or low molecular weight oligomers that resulted from mass 

transfer issues.  This assignment is supported by molecular weight data, which indicate 

unusually low molecular weights (MWn = 3,233 g/mol compared to 15,618 g/mol for 

unlabeled copolymer) and unusually broad polydispersities (PDI = 8.31 compared to 6.95 

for unlabeled copolymer).  Unfortunately, mass transfer issues could never be resolved 

for the small-scale reactions.  

 

 

Figure 1.5  13C{1H} NMR spectrum of poly(4). 
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Figure 1.6  13C{1H} NMR spectrum of poly(4-co-ethylene); eg = end group. 

Propylene copolymerizations.  Propylene copolymerizations with chiral 

-olefins have also been carried out (Scheme 1.4, R’ = CH3) to probe how chain end 

control originating from methyl-substituted main chain ( ) chirality affects 

enantioselectivity.  Results for propylene copolymerizations are given in Table 1.3. Due 

to increased viscosity of the propylene copolymers in tetradecane, the propylene 

copolymerizations were carried out with added toluene.  As noted above, toluene 

accelerates the homopolymerization of several olefins (i. e. entries 1 vs. 2 and 5 vs. 6 in 

Table 1.1).  Thus, we are unable to strictly compare chiral conversion rates for propylene 

copolymerizations to those for the corresponding homopolymerizations.  Nevertheless, it 

can be seen from entries 1, 4, and 5 (Table 1.3), with comparisons to data from Table 1.1, 

that propylene copolymerization rates with added toluene are slightly faster for the 

propylene copolymerization relative to the homopolymerization.  Presumably this trend 
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holds true for the other monomers, implying that the chiral monomers insert primarily 

into {Zr-[CH2CHMe]n-[CH2CH(CHMeR)]-[CH2CHMe]m} (R > Me) repeat units.21  

olefin conv. rateb s = kS /kR

854 (58) 1.9 (0.1)

780 (90)

526 (56)

266 (37)

137 (1)e

2.0 (0.2)

1.6 (0.2)

3.9 (0.3)

1.0 (0.1)

10:1 88

8:1

14:1

16:1

21:1

92

92

99

R

R

MAO, Al/Zr = 500

tetradecane (0.5 mL)
toluene (2mL),

25 °C

+ C3H6 (760 torr)nm

n:m Tm (ºC)c

n m

(S)-2 (0.02 mol%)

entry

1

2

3

4

3.0 mL

5

brd

a homopolymerization (Table 1.1); b conv. rate = mmolchiral olefin/(mmolcatalyst*hr);  
c  Tm polypropylene = 109 ºC; d br = broad melting transition; e 2.0 mL olefin, 4.0 mL 
toluene and 400 torr C3H6

s = kS /kR
a

2.6 (0.2)

1.8 (0.2)

2.1 (0.1)

16.8 (0.8)

7.6 (0.8)

copolymerization

 

Table 1.3 Selectivity factors and thermal data in racemic -olefin/propylene 

copolymerizations catalyzed by (S)-2/MAO.  

Selectivity factors in propylene copolymerizations were generally lower 

compared to homopolymerizations.   This is particularly pronounced for propylene 

copolymerizations involving 3,4-dimethyl-1-pentene and 3,4,4-trimethyl-1-pentene 

(entries 4 and 5) with the latter monomer showing no selectivity during 

copolymerization.  Furthermore, selectivity factors in propylene copolymerizations differ 

from the corresponding ethylene copolymerizations.  These data suggest that polymer 

main chain chirality can be an important source of stereoinduction during 

homopolymerization, the magnitude of which is dependent on the identity of the olefin.   
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Propylene copolymer characterization.  In order to establish a copolymer with 

randomly inserted chiral repeat units, studies analogous to those carried out for ethylene 

copolymers were undertaken for the propylene copolymers.   

13C{1H} NMR spectra were obtained for all the polymers in Table 1.3 (see 

Appendix C).  Unlike ethylene copolymers, modeling of the 13C NMR spectra for 

isolated comonomer incorporation in the propylene copolymers was difficult due to 

pentad sequences and overlapping peaks.  However, the pentad sequences from 

propylene segments in the methyl region of the spectra are unobstructed by resonances 

from chiral olefin comonomer, and are informative for probing how chiral comonomer 

incorporation affects the propylene enantiofacial selectivity (Table 1.4).   

entry comonomer [mmmm] [mmmr] [rmmr] [mmrr] [xmrx] [rmrm] [rrrr] [rrrm] [mrrm] E
a B

b 

1 --- 60.6 14.0 0.0 10.8 5.3 0.9 0.0 3.0 5.5 1.00 8.77 

2 3-methyl-1-pentene 63.3 12.5 4.2 10.3 4.9 0.0 0.0 1.0 3.9 0.64 6.68 

3 3-methyl-1-pentene 64.1 12.6 2.3 10.8 3.6 0.7 0.7 0.9 4.4 0.80 8.46 

4 3,5,5-trimethyl-1-hexene 60.7 14.0 2.2 11.0 5.2 0.0 1.0 1.1 4.7 0.84 8.02 

5 3,4-dimethyl-1-pentene 53.5 15.4 0.0 13.8 7.3 1.9 0.0 2.0 6.1 0.70 4.18 

6 3,4,4-trimethyl-1-pentene 50.2 17.5 0.0 12.0 8.0 1.9 1.3 2.3 6.7 0.94 5.79 
a enantiomorphic site control triad test, E = 2[rr]/[mr]. b Bernoulian chain end control triad test  
B = 4[mm][rr]/[mr]. 

Table 1.4 Pentad sequences and triad tests for racemic -olefin/propylene 

copolymerizations. 

When propylene alone is polymerized under the same conditions, the 

enantiomorphic model triad test15,29 indicates enantiomorphic site control is operative for 

this catalyst system (E = 1.01).  Interestingly, incorporation of chiral monomers perturbs 

the polypropylene pentad distribution away from enantiomorphic site control (E < 1).30  

Moreover, chain end control is not the dominant stereocontrol element that dictates the 
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polypropylene tacticity for the copolymerizations, because the Bernoullian triad test (B) 

established by Bovey16 to identify polymers operating under chain end control shows that 

B is much greater than unity.  Thus, whereas the copolymerizations appear to operate 

closer to enantiomorphic site control for enchainments of propylene units, the situation is 

more complex, and, once again, an interplay of chain end and enantiomorphic site control 

mechanisms appear to be at work for the poly(chiral monomer-co-propylene) as well as 

for the poly(chiral monomer) homopolymers. 

Similar to the ethylene copolymers, the copolymers from Table 1.3 have 

depressed melting temperatures relative to polypropylene synthesized under the same 

reaction conditions.  Unlike the polyethylene copolymers, however, melting points for 

these copolymers do not decrease linearly with increasing comonomer content.  Coutinho 

et. al. have reported that, unlike polyethylene copolymers, melting temperatures for 

isotactic propylene-copolymers depend on the nature of the comonomer.  This tendency 

arises from differing sizes of the side chains that allow for more or less facile molecular 

motions and consequently different melting temperatures.31 

Whereas this observation may explain our findings, we believe that the side 

chains in these copolymers create similar sized defects.  An alternative explanation for 

the observed thermal behavior is that incorporation of a chiral comonomer changes the 

concentration of stereoerrors in the copolymer, which also has an effect on the melting 

temperature by shortening the isotactic sequence length. De Rosa, Resconi, and 

coworkers recently reported that there is a linear dependence between melting 

point and [rr] stereo-errors for metallocene-prepared isotactic polypropylenes 

with predominately rr stereoerrors.32 Similar to polyethylene copolymers, randomly 

inserted rr stereoerrors shorten the average isotactic sequence (<Liso>) in the polymer, 

creating smaller crystalline domains and consequently lower melting temperatures.  

Considering the findings of De Rosa and Resconi, it is reasonable to assume that 
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incorporation of chiral monomer and [rr] stereoerrors, both of which shorten the average 

isotactic sequence, will decrease the melting temperature of the polymer.  Therefore, the 

melting temperatures for the copolymers in Table 1.3 should be dependent on both [rr] 

and [chiral monomer], and if these are randomly inserted, their individual effects could 

be additive, giving rise to a linear dependence of Tm with [rr] + [chiral monomer].  

Shown in Table 1.5 and plotted in Figure 1.7 are melting temperatures vs. [rr] + 

[chiral monomer] for the polymers from Table 1.3, together with the isotactic polymers 

studied by De Rosa and Resconi.  As we hypothesized, there is indeed a roughly linear 

relationship between Tm and the sum of [rr] and [chiral monomer].  While the correlation 

agrees reasonably well with De Rosa and Resconi’s results, in general the copolymers 

have higher melting points than the polypropylene samples at a given [rr] + [chiral 

monomer].  This discrepancy could be due to a significant number of chiral monomer 

repeat units existing as polymer chain ends.  Because chain ends do not shorten the 

methylene sequence length, the melting points do not reflect their presence.  The data 

point that best illustrates this explanation is the anomalous data point, 

poly(3,4,4-trimethyl-1-pentene-co-propylene).  Because this monomer is very bulky, 

chain termination occurs more rapidly after comonomer insertion, leading to lower 

molecular weights and longer methylene sequence lengths at a given chiral monomer 

concentration.  Nevertheless, the linear trend suggests chiral monomer insertions are 

random, and considering the small [chiral olefin] in the polymer, is indirect evidence that 

there are few consecutive chiral repeat units in the copolymer. 
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Entry [rr] [chiral olefin] 
[rr]+ 

[chiral olefin] 
Tm (ºC) <Liso>

 

1 8.5 0.0 8.5 109 10.8 

2 4.8 8.9 13.7 88 6.3 

3 6.0 5.2 11.2 101 7.9 

4 6.8 6.5 13.3 92 6.5 

5 8.0 5.8 13.8 92 6.2 

6 10.3 4.5 14.8 99 5.7 

<Liso> = (100-[rr]-[chiral olefin])/([rr]+[chiral olefin]) 

Table 1.5  Dependence of average isotactic sequence (<Liso>) on temperature.  Entries 

are the same as in Table 1.4. 

 

 

Figure 1.7  Melting temperature (Tm) vs. [rr] + [comonomer] ( ) and <Liso> ( ) in 

propylene and chiral monomer/propylene copolymers, respectively.  Open symbols 

indicate data points from this study while shaded symbols indicate data from the 

literature. 
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Other -olefin copolymerizations.  Since results in Table 1.3 suggest that 

polymer main chain chirality (  chirality) could be an important stereodetermining factor, 

a brief examination of bulkier -olefin copolymerizations was undertaken to probe steric 

effects.  Since comonomers larger than butene are liquids at room temperature, 

polymerizations were carried out using a large excess of achiral comonomer to insure a 

low probability of consecutive chiral repeat units in the copolymer.  In initial 

experiments, 1-pentene was copolymerized with 3-methyl-1-pentene in a 10:1 ratio using 

(S)-2 as the catalyst.  Because the absolute concentration of 1-pentene was high in the 

reaction, however, complete polymerization of 1-pentene occurred with minimal 3-

methyl-1-pentene incorporation.   

 To better understand the relative reactivity of the two monomers, the reactivity 

ratios (r3M1P, r1P) were determined by monitoring conversion for both monomers during 

polymerizations at various monomer ratios according to the method of Fineman and Ross 

(Appendix D).33  Since reactivity ratios are defined by the relative rates of self-

propagation to cross-propagation (i.e., rx = kxx/kxy  where kxx and kxy indicate insertion rate 

constants for monomer x inserting after itself or monomer y, respectively) they indicate 

the likelihood of consecutive repeat units with r > 0 indicating a propensity for 

homopolymerization and a r < 0 indicating a propensity to insert comonomer.  In this 

case, the reactivity ratios were determined to be r3M1P = 0.07 and r1P = 23, which suggests 

a large kinetic preference for consecutive 1-pentene polymerization with occasional 3-

methyl-1-pentene insertions.  Due to this large kinetic difference, 1-pentene/3-methyl-1-

pentene copolymerizations were carried out with an excess of 3-methyl-1-pentene in 

hopes that olefin concentration would compensate for the large kinetic discrepancy.  

Unfortunately, the initial concentrations of 1-pentene required were too low to observe 

any amount of 3-methyl-1-pentene conversion before complete 1-pentene conversion 

precluding any accurate measure of selectivity.  A constant feed of 1-pentene at low 
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concentrations would be required to ensure efficient incorporation of 3-methyl-1-pentene.  

Unfortunately, a constant feed of 1-pentene is not achievable with the current 

experimental setup.  A similar problem was encountered when 4-methyl-1-pentene/3,4-

dimethyl-1-pentene copolymerizations were attempted. 

To compensate for the significant difference in rates, 3-methyl-1-butene/3-

methyl-1-pentene copolymerizations were attempted.  Reactivity ratios for this olefin 

combination indicate that the two monomers have a slight kinetic preference for 

homopolymerization (r3M1P = 2, r3M1B = 2).  Without other evidence, these reactivity 

ratios suggest that there is a good possibility for consecutive chiral olefin incorporation.  

Considering that establishing the polymer microstructure would be difficult by either 13C 

NMR or by melting temperatures, copolymerization attempts using this olefin were also 

abandoned. 

Polymerization of enantioenriched olefins with achiral catalysts.  Until 

now all of the experiments designed to probe chain end control have tried to isolate 

enantiomorphic site control.  Alternatively, chain end control can be isolated from 

enantiomorphic site control if enantioenriched olefin is polymerized with an achiral 

catalyst (Scheme 1.7).  Enantioinduction in these experiments can only come from the 

chiral polymer chain, so any change in e.e. can be attributed to chain end control.   

R

30% e.e.

MAO, tetradecane
RT

Rachiral catalyst

e.e.?

any change in e.e. due 
to chain end control

R

n
&

 

Scheme 1.7  Enantioenriched olefin polymerization experiments to probe chain end 

control. 
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Requisite for these experiments is access to enantioenriched olefins.  Enantiopure 

(S)-3-methyl-1-pentene has previously been synthesized in our group using a classical 

route,34 but other enantiopure olefins have yet to be synthesized.  Attempts were made to 

synthesize enantiopure (R)-3,4-dimethyl-1-pentene using the Myers’ pseudoephedrine 

chiral auxialliary35 as outlined in Scheme 1.8.  Amidation of isovaleryl chloride followed 

by alkylation proceeded smoothly and with high selectivity to give amide 6, but removal 

of the chiral auxiliary with LiAlH(OEt)3 was problematic due to the instability of 

aldehyde 7.  An alternate route to  (R)-3,4-dimethyl-1-pentene, which avoids 7, involves 

platinum catalyzed conversion of 2-methyl-2-butene to (rac)-3,4-dimethyl-1-pentene 

(vide supra) followed by kinetic resolution of the racemic olefin by polymerization with 

(S)-2 (Scheme 1.9).  Synthesis of enantiopure 3,4-dimethyl-1-pentene on the multi-gram 

scale was easily accomplished with this route yielding 3,4-dimethyl-1-pentene (>95% 

e.e).  This synthesis marks the first preparative scale reaction accomplished for the 

kinetic resolution by polymerization technique. 

NH

OH
Cl

O

N

OH

NEt3, THF

92%

O

a) LDA, LiCl
b) MeI

1) LiAlH(OEt)3

2) TFA, 1N HCl

H

O

Ph3PCH3Br

base

N

OH O

99% 6

7  

Scheme 1.8   Attempted synthesis of (R)-3,4-dimethyl-1-pentene using a chiral auxiliary. 

CH3NO2, RT 

48%

4

C2H4 (1.0 atm) (S)-2 / MAO

toluene, RT

>95% e.e.
34% yield

(rac) &

 

Scheme 1.9  Synthesis of (R)-3,4-dimethyl-1-pentene using kinetic resolution. 
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After an initial screen of some common achiral catalysts, it was determined that 1 

and 3 were active for racemic -olefin polymerizations.  The results of 3-methyl-1-

pentene (30% e.e. S-enriched) and 3,4-dimethyl-1-pentene (33% e.e. R-enriched) 

polymerizations with these catalysts appear in Table 1.6.  In every case studied, erosion 

of e.e. in the starting material was observed, suggesting a slight preference for the 

monomer antipode present in excess.  This result was somewhat surprising considering 

Zambelli’s finding that 3 polymerizes 3-methyl-1-pentene to give co-iso-tactic polymer 

(vide supra).  When starting from enantioenriched olefin, enhancement in e.e. would be 

expected for such a microstructure because R and S monomer antipodes are equally 

incorporated in the polymer.  We currently do not have an explanation for this 

discrepancy. 

Given the initial and final e.e.’s of the monomer (e.e.0 and e.e.t, respectively) and 

the conversion of the reaction (C), selectivity factors can be determined using equation 

(1.1).36 

   s =
k fast
k slow

=

ln
1+ e.e.t( )* 1 C( )

1+ e.e.0( )

 

 
 

 

 
 

ln
1 e.e.t( )* 1 C( )

1 e.e.0( )

 

 
 

 

 
 

     (1.1) 

As shown in Table 1.6, selectivity factors are low for both 3-methyl-1pentene and 3,4-

dimethyl-1-pentene indicating that chain end control does not impart a significant amount 

of stereoinduction during the polymerization.  Qualitatively, these results are consistent 

with the copolymerization experiments that appear above because in those studies similar 

s-factors were found for ethylene copolymerizations and homopolymerizations.  It is 

interesting to note that despite their similar steric structure, 1 and 3  display different s-

factors for enantioenriched 3-methyl-1-pentene (entries 2 and 4).  This observation 

suggests that chain end control is partly dependent on catalyst structure even for achiral 
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catalysts, which illustrates how intimately connected the catalyst and polymer chain end 

are during kinetic resolution.   

R

MAO (Al/Zr = 500)

tetradecane/toluene R

olefin

s 

(kfast/kslow)catalyst

1 or 3

TOFaT(ºC)

1 25 28

1

1.0

25 1.3 (0.1)

e.e.t 
(%)

2

25

3 30 12 2.06

kfast

N/A

S

S

1 25 53(5) 14 1.7 (0.1) R

1 25 8 2 1.0 N/A

3 30 0 1.05 N/A

a turnover frequency = mmolol/(mmolcat*h).  bobserved dimer in the GC.

35(9)

0% > e.e.0 > 100%

e.e.0 

(%)

0

32

33

30

0

0

entry

1

2

3

4

5b

6b

 

Table 1.6  Selectivity factors in enantioenriched olefin polymerizations catalyzed by 

achiral catalysts 1/MAO and 3/MAO. 

1.4 Conclusions 

Copolymerizations of chiral monomers with ethylene and propylene highlight the 

importance of chain end control for the kinetic resolution of chiral -olefins by 

homopolymerization.  The experimentally determined selectivity factors (s) for 

homopolymerization and for the two copolymerizations are summarized in Table 1.7.  

The various stereocontrol elements (enantiomorphic site (“Zr*”), polypropylene main 

chain chirality ( C3), and enchained chiral monomer’s main chain ( cm) and side chain ( ) 

chirality) that determine s operate in a coupled fashion, each reinforcing or opposing the 

others (Scheme 1.10).  Thus, the situation is complex, and effects of the individual 

stereocontrol elements are not simply additive, nor are they multiplicative.  

Copolymerization of chiral monomers with ethylene provides the simplest stereocontrol 

process: enantiomorphic site control in the absence of the other control elements. The 
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substituted 1-pentenes (entries 1, 4 and 5, Table 1.7) appear to give better s values than 

do the substituted 1-hexenes (entries 2 and 3).  The subtle influence of an additional 

methylene on the ability of the catalyst site to choose between antipodes of monomer is 

striking, particularly for 3-methyl-1-pentene (s = 3.4 (0.1)) vs. 3-methyl-1-hexene (s = 1.4 

(0.1)), where the latter might be expected to display the larger, not smaller s value, due to 

a greater size difference (3-n-propyl vs. 3-methyl as compared to 3-ethyl vs. 3-methyl).  

Hence, there is no clear correlation of high s with steric effects for this (admittedly 

limited) set of chiral 3-methyl-1-alkenes. 

olefin

1.9 (0.1)

2.0 (0.2)

s  = kS /kR

3.4 (0.1)

1.4 (0.1)

1.2 (0.1)

13 (2)

5.1 (0.9)

Copolymerization

3.9 (0.3)

1.6 (0.2)

1.0 (0.1)

C2H4 C3H6

2.6 (0.2)

1.8 (0.2)

2.1 (0.1)

16.8 (0.8)

7.6 (0.8)

Homopolymerizaion

entry

1

2

3

4

5

s  = kS /kR s  = kS /kR

 

Table 1.7 Summary of selectivity factors in copolymerization experiments. 

The copolymerizations of chiral monomers with propylene present new surprises.  

Under the influence of Zr*, and C3 and/or C3’, the 1-hexenes once again behave 

differently from the 1-pentenes: the former displaying slight increase in s, as compared 

with the corresponding values of s for ethylene copolymerizations, and the latter 

decreases in s, ranging from modest (entry 1) to sizeable (entries 4 and 5).  While one 

might expect the largest chain end effects for the bulkiest -olefin, the magnitude of the 

effect on s of a  methyl group on the polymeryl chain was quite unexpected.  Compared 
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to polymerizations operative under exclusive enantiomorphic site control, the 

stereoselection is greatly reduced for 3,4-dimethyl-1-pentene (s decreasing from 13 to 

3.9, entry 4) and is essentially completely offset for 3,4,4-trimethyl-1-pentene (s 

decreases from 5.1 to 1.0, entry 5). 

[Zr*]
C3

[Zr*]

R

[Zr*]

R

[Zr*]

R

[Zr*]
C3

'

[Zr*]

R

• ethylene/chiral comonomer copolymerization:
   s determined by Zr* (enantiomorphic site control)

• propylene/chiral comonomer copolymerization:

   s determined by Zr* and C3 or C3
' (site and C3 chain end control)

[Zr*]

R

CM

R R

[Zr*]

R R R R

• homopolymerization of chiral monomer:
   s determined by Zr*, CM and  (site and CM and  chain end control)

R

R

R

 

Scheme 1.10  Illustration of different stereocontrol elements during kinetic resolution by 

polymerization. 

Finally, the most complex set of control elements operates during 

homopolymerization of chiral monomers.  The combination of Zr*, CM and  control 

elements, again unexpectedly, more closely resembles the enantiomorphic site control 

alone (ethylene copolymerizations) than it does Zr* and C3 and/or C3’(propylene 

copolymerizations).  Hence, the s values for homopolymerizations of all five 

3-methyl-1-alkenes are fairly close to those obtained under enantiomorphic site control 

alone.  Perhaps most unexpected is that the combination of CM and  with Zr* more than 
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restores the stereoselection lost by combining C3 and/or C3’ with Zr* for 

3,4-dimethyl-1-pentene and 3,4,4-trimethyl-1-pentene (entries 5 and 6).  The effects on 

the 1-hexenes, on the other hand, are quite modest (entries 2 and 3).  As noted earlier, the 

combination of CM and  with Zr* leads to a slight reduction in s for 3-methyl-1-pentene, 

when compared with the s obtained when Zr* operates alone for this chiral monomer. 

Whereas these data illustrate the complexity of the interplay of the various 

stereocontrol elements operating in these kinetic resolutions of chiral 3-methyl-1-alkenes 

using catalyst system (S)-2/MAO, we can draw the following conclusions: 

(1)  Enantiomorphic site control (Zr*) chooses for the same antipode with roughly the 

same stereoselection (s) in ethylene/chiral monomer copolymerizations as does the 

combination of Zr*, CM, and  chain end control, implicating enantiomorphic site control 

as an important stereocontrol element. 

(2)  With the exception of 3-methyl-1-pentene, enantiomorphic site control and the CM 

and  chain end control elements select for the same antipode of chiral monomer in the 

homopolymerizations, and hence the s values are larger for homopolymerizations than for 

ethylene/chiral monomer copolymerizations. 

(3)  For copolymerizations with propylene, where Zr* and chain end control arising from 

a -methyl group combine, surprisingly large offsetting effects on s are found for the 

alkenes having the sterically most demanding 3-substituents. The addition of CM and  to 

Zr* more than restores the stereoselection lost by the combination of C3 and/or C3’ with 

Zr* for these two olefins. 

(4) Whereas successful kinetic resolution (s > 10) is observed with 

3,4-dimethyl-1-pentene, there are no clear correlations between the structure of the chiral 

olefin and the value of s, so that the guiding principles for design of a practical and 

general C1-symmetric catalyst for kinetic resolutions by polymerization of chiral 
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monomers are not yet apparent.  A successful and general strategy for kinetic resolution 

of chiral -olefins will likely require a much larger enantiomorphic site control than that 

exhibited by (S)-2. 

1.5 Experimental Section 

General methods.  All air- and/or moisture sensitive compounds were 

manipulated using standard high-vacuum line, swivel frit assembly (see swivelfrit.mov 

for a demo), Schlenk and cannula techniques or in a glove box under nitrogen atmosphere 

as described previously.37  Argon, ethylene, and propylene were purified by passage 

through columns of MnO on vermiculite and activated 4 Å molecular sieves.  All 

solvents and reagents were stored under vacuum over sodium benzophenenone ketyl, 

titanocene, lithium aluminum hydride, or calcium hydride prior to use.  Unless otherwise 

stated -olefins were purchased from Chemsampco.  2-methyl-2-butene, 2,3-dimethyl-2-

butene, isovalaryl chloride, lithium aluminum hydride, and pseudoephedrine were 

purchased from Aldrich and were used without further purification.  1,2-13C-ethylene was 

purchased from Cambridge Isotopes and was used without further purification. 

Methylaluminoxane (MAO) was purchased from Albemarle, and all volatiles were 

removed in vacou at 150 ºC overnight.  It was found to be essential that all Me3Al was 

removed from the MAO (See Chapter 2). Polymerization catalysts 1,12 (S)-2,14 and 3
38 

were synthesized as described previously.  Platinum complex 5 was synthesized by a 

modified literature procedure (See Appendix A).28  Enantiopure 3-methyl-1-pentene was 

synthesized as described previously.34 

NMR spectra of small molecules were obtained on a Varian Mercury 

spectrometer operating at 300 MHz for 1H and 75 MHz for 13C{1H}.  13C{1H} NMR 

spectra of polymers were obtained at 100–120 ºC on a Varian Inova spectrometer 

operating at 125 MHz using an acquisition time of 3 s, a relaxation delay of 6 s, a sweep 
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width of 3000 Hz, and a 90º pulse angle. Spectra and line listings for all the polymers 

appear in Appendices B and C along with calculations for possible polymer 

microstructures for polyethylene copolymers. 

Differential Scanning Calorimetry (DSC) thermographs were obtained on a 

Perkin Elmer DSC-7 using the Pyris software package for data analysis.  The melting 

temperature and enthalpy were calibrated by standard substance indium.  The polymers 

(7-8 mg) were heated to 130 ºC at 40 ºC/min. and held there for 5 minutes to erase 

thermal history.  To induce crystallization, the polymer sample was cooled to 25 ºC at 20 

ºC/min and heated to 160 ºC at the same rate.  Finally, the samples were cooled to RT at 

10 ºC/min and heated to 160 ºC at the same rate.  Crystallization and melting 

temperatures were obtained from the thermographs during this last cycle.  Sequential 

nucleation and annealing (SNA) experiments were performed following the temperature 

program outlined in Figure 1.8 and analyzed by heating sample from 0 ºC to 160 ºC at 10 

ºC/min followed by cooling at the same rate.  Data obtained from the heating curve was 

correlated to methylene sequence length in the same fashion as reported previously.24  

 

Figure 1.8  Diagram of sequential nucleation and annealing (SNA) temperature program. 
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Gas chromatographs (GC) were obtained on an Agilent 6890 gas chromatograph 

using a 30 m by 0.25 mm polysiloxane “HP-5” column from Agilent technologies for 

chiral monomer conversions and 30 m by 0.25 mm -cyclodextrin trifluoroacetyl 

“Chiraldex TA” column from Advanced Separations Technology for enantioassays.  A 

summary of the GC methods for each monomer as well as observed retention times 

appear in Appendix E. 

BP provided molecular weight analysis of the polymers by GPC using a Waters 

2000 instrument.  Measurements were carried out at 139 ºC in 1,2,4-trichlorobenzene 

running at 1 mL/min.  Molecular weights and distributions were determined using a 

refractive index detector relative to polypropylene standards.   

A summary of the molecular weight data as well as 13C{1H} NMR spectra and 

DSC thermographs appear in Appendices B and C for ethylene and propylene 

copolymers, respectively. 

Synthesis of 1,2-bis-
13

C-3,4-dimethyl-1-pentene, 4.  A thick-walled 100 mL 

Schlenk tube equipped with a stir bar was charged with 5 (80 mg, 0.092 mmol) and 

evacuated. Nitromethane (0.75 mL) and 2-methyl-2-butene (3.0 mL, 2.0 g, 28 mmol) 

were added to the tube by vacuum transfer at –78 ºC.  1,2-13C-ethylene (750 mL, 31 

mmol) was condensed onto the biphasic reaction mixture at –180 ºC.  The vessel was 

sealed and slowly brought to RT where it stirred for 1 day.  A small amount of Pt0 was 

observable after this reaction time.  The volatile liquids were isolated by vacuum transfer, 

and the hydrocarbon phase was purified by spinning band fractional distillation to give a 

colorless liquid.  NMR spectra of the nonvolatile liquid displayed dimerization products 

with no 13C enriched resonances.  The distillate was passed through a small plug of 

activated alumina to remove any traces of nitromethane.  The alumina was washed with 

tetradecane (2 mL), and the small amount of product that remained on the alumina was 
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isolated by vacuum transfer from the tetradecane solution and combined with the rest of 

the colorless product (1.306 g, 46%).  1H NMR (300 MHz, CDCl3, 25ºC):  = 0.84 (d, 3J 

= 2.4 Hz, 3H, CH(CH3)2), 0.87 (d, 3J = 2.4 Hz, 3H, CH(CH3)2), 0.96 (dd, 3J = 6.9, 5.0 Hz, 

3H, CH3), 1.53 (m, 1H, CH(CH3)2), 1.96 (m, 1H, CH(CH3)), 4.92 (dm, 1J = 169 Hz, 1H, 

cis-13CH2
13CH), 4.98 (dm, 1J = 140. Hz, 1H, trans-13CH2

13CH), 5.73 (dm, 1J = 149 Hz, 

1H, 13CH2
13CH). 13C{1H} NMR (75 MHz, CDCl3, 25 ºC):  = 17.04 (CH3), 19.9 

(CH(CH3)2), 32.9 (CH(CH3)2), 44.3 (d, 1J = 42 Hz, CHCH3), 113.4 (d, 1J = 69 Hz, 

13
CH2

13CH), 143.4 (d, 1J = 69 Hz, 13CH2
13

CH). IR(CDCl3): (cm-1): 3077 (s, 13C-H), 

2960 (bs), 2874 (s), 1638 (s, 13C=13C), 1456 (bs), 1418 (s), 1368 (s), 1260 (bs). 

Synthesis of N-((1R,2R)-1-hydroxy-1-phenylpropan-2-yl)-N,3-dimethyl- 

butanamide.  On the Schlenk line, pseudoephedrine (39.6168g, 239.8 mmol) was 

combined with triethyl amine (40.0 mL, 29.1 g, 288 mmol) and THF (850 mL) in a 2 L 2-

neck flask.  In a 500 mL 2-neck flask isovaleryl chloride (32.4 mL, 31.8 g, 264 mmol) 

was combined with THF (150 mL).  At 0 ºC, the isovaleryl chloride solution was 

cannulated onto the amide solution.  A white precipitate formed immediately.  The 

reaction was stirred for 30 minutes then water (250 mL) was added to the reaction, the 

addition of which caused the precipitate to disappear.  Ethyl acetate (500 mL) and brine 

(500 mL) were added to the reaction.  The organic layer was washed three times with 

brine (500 mL).  The organic layer was isolated and dried over sodium sulfate.  The 

solvent was removed and the crude product was recrystallized from hexanes at -20 ºC.  

The white product was filtered, washed three times with cold hexanes (20 mL) and dried 

in vacou overnight. Yield = 54.745 g (92%). The 1H NMR spectrum was consistent with 

the spectrum previously reported for the desired product.35 

Synthesis of (R)-N-((1R,2R)-1-hydroxyl-1-phenylpropan-2-yl)-N,2,3-

trimethylbutanamide (6).  Under argon, lithium chloride (55.006 g, 1.30 mol) and di-
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isopropyl amine (69 mL, 49.3g, 0.488 mol) were combined with THF (800 mL) in a 2 L 

2-neck flask equipped with a 250 mL addition funnel. N-((1R,2R)-1-hydroxy-1-

phenylpropan-2-yl)-N,3-dimethyl-butanamide (53.102g, 0.213 mol) and THF (500 mL) 

were combined in a 500 mL 2-neck flask.  At -78 ºC, n-butyl lithium (280 mL of 1.6 M in 

hexanes, 0.45 mol) was added dropwise to the 2 L flask.  After the addition, the mixture 

was brought to 0 ºC for 5 minutes and returned to -78 ºC  (LDA solution).  The solution 

containing N-((1R,2R)-1-hydroxy-1-phenylpropan-2-yl)-N,3-dimethyl-butanamide was 

cannulated onto the LDA solution and stirred at -78 ºC for 45 minutes followed by an 

additional 45 minutes at 0 ºC.  At 0 ºC, methyl iodide (53 mL, 121g, 0.85 mol) was added 

dropwise to the reaction.  The mixture was stirred for 1 h at which time aqueous 

ammonium chloride (500 mL) and diethyl ether (200 mL) were added.  The aqueous 

layer was washed three times with diethyl ether (500 mL).  The organics were combined, 

dried over sodium sulfate, and concentrated down.  The yellow oil was purified by silica 

gel column chromatography (1:1 hexanes:acetone) to give a pale yellow oil.  Yield = 

55.426 g (99%).  The 1H NMR spectrum was consistent with the spectrum previously 

reported for 7.35  GC analysis indicated an 88% d.e.  

Synthesis of (rac)-3,4-dimethyl-1-pentene. Platinum complex 5 (0.9212g, 1.06 

mmol) was charged in a 250 mL flask.  2-methyl-2-butene (100 mL, 66 g, 940 mmol) and 

nitromethane (11 mL) were vacuum transferred onto the 5.  The reaction was backfilled 

with ethylene (1 atm) and was allowed to stir for 2 d.  The volatiles were vacuum 

transferred into a 200 mL flask to give a biphasic mixture.  The less dense layer was 

isolated and distilled by Vigarau column fractional distillation to give a colorless liquid 

that was 95% pure as determined by GC and 1H NMR spectroscopy, the major byproduct 

being nitromethane.  Note: Polymerizations attempted with this purity of monomer were 

completely inhibited by the small amount of nitromethane.  The product was filtered over 

freshly dried alumina to remove all traces of nitromethane.  Yield = 50.65g (55%).  The 
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1H NMR spectrum is consistent with an authentic sample of 3,4-dimethyl-1-pentene.  1H 

NMR (300 MHz, CDCl3, 25 ºC):  = 0.84 (d, 3J = 2.4 Hz, 3H, CH(CH3)2), 0.87 (d, 3J = 

2.4 Hz, 3H, CH(CH3)2), 0.96 (d, 3J = 7.2 Hz, 3H, CH(CH3)), 1.53 (m, 1H, CH(CH3)2), 

1.96 (m, 1H, CH(CH3)), 4.92 (m, 1H, cis-CH2CH), 4.96 (m, 1H, trans-CH2CH), 5.73 (m, 

1H, CH2CH). 

Synthesis of (R)-3,4-dimethyl-1-pentene.  In the glove box, MAO (1.4312g, 

24.7 mmol) and tetradecane (2.3713g) were placed in a 100 mL flask equipped with a stir 

bar and a 180º Kontes valve.  (S)-2 (0.02 g, 0.04 mmol) was added to a 10 mL Strauss 

flask.  On the high vacuum line, (rac)-3,4-dimethyl-1-pentene (12.0 mL, 8.38 g, 85.3 

mmol) and toluene (12.0 mL) were vacuum transferred onto the MAO/tetradecane 

mixture and toluene (3.0 mL) was vacuum transferred onto the (S)-2.  After being 

allowed to stir for 1 h, an aliquot was taken for GC analysis for a t = 0 data point.  Under 

positive argon pressure, the catalyst solution was rapidly introduced to the reaction 

mixture by syringe.  The mixture immediately turned pale yellow.  The reaction was 

monitored by periodic GC analysis of small aliquots using tetradecane as the internal 

standard.  After 7 h the reaction was 66% complete.  The reaction was stopped by 

vacuum transferring the volatiles and quenching the MAO by slow addition of acidic 

methanol (10% v/v HCl(aq)).  The yield was determined from GC calibration curves of 

3,4-dimethyl-1-pentene in toluene. An enantioassay was performed on the volatiles in the 

fashion described below and analyzed by chiral GC.  Yield = 34%, e.e. = 96%. 

Synthesis of (rac)-3,4,4-trimethyl-1-pentene.  This olefin was prepared in an 

analogous fashion to 3,4-dimethyl-1-pentene except 2,3-dimethyl-2-butene (45 mL, 32g, 

380 mmol), 4 (0.561 g, 0.643 mmol), and nitromethane (5 mL) were used and the 

reaction was stirred at room temperature under ethylene (760 torr) for 4 d.  Unlike 3,4-

dimethyl-1-pentene synthesis, complete conversion of the starting material was not 

observed by GC.  Distillation of the volatiles was possible without any residual 
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nitromethane to give a colorless liquid 98% pure by 1H NMR with the only observable 

impurity being 2,3-dimethyl-2-butene.  Yield = 29.4 g (69%).  The 1H NMR was 

consistent with the spectrum of an authentic sample of 3,4,4-trimethyl-1-pentene.  1H 

NMR (300 MHz, CDCl3, 25 ºC):  = 0.85 (s, 9H, C(CH3)3), 0.94 (d, 3J = 6.9 Hz, 3H, 

CH(CH3)), 1.90 (m, 1H, CH(CH3)), 4.92 (m, 1H, cis-CH2CH), 4.96 (m, 1H, trans-

CH2CH), 5.77 (m, 1H, CH2CH). 

Generic copolymerization procedure.  In the glove box, MAO (0.15 g, 2.6 

mmol) and the tetradecane internal standard (2.0 g), were placed in a 10 mL Schlenk 

flask equipped with a stir bar and a side-arm which could be isolated from the flask by a 

stopcock.  On the high vacuum line, racemic -olefin (2.0 mL) was vacuum transferred 

onto the MAO/tetradecane and stirred for 30 minutes under ethylene or propylene (760 

torr).  In some cases different amounts of reagents were used, and toluene was sometimes 

added by vacuum transfer (See Tables 1.1 and 1.2).  An aliquot was removed and 

analyzed by GC for a t = 0 data point.  Under positive ethylene/propylene pressure, (S)-2 

was added to the reaction via the side arm as a toluene solution (0.5 mL, 5 μmol).  For 

reactions run at ethylene or propylene pressures less than 760 torr, the reaction vessel was 

sealed and the manifold evacuated.  The Schlenk flask was then introduced to the 

appropriate pressure and regulated with a Fisher/Porter valve.  The reaction was stopped 

by removing an aliquot for GC analysis then rapidly frozen in a dry ice/acetone bath.  

The volatiles were collected by vacuum transfer, and an enantioassay was performed as 

described previously27 and outlined below. Selectivity factors and monomer conversion 

rates were determined as an average of three separate polymerizations per chiral 

monomer/achiral monomer combination and appear in Tables 1.1 and 1.3. 

Generic copolymerization procedure for liquid comonomers.  In the glove 

box, MAO (0.2 g, 15 mmol) and tetradecane (2.0 g) were loaded in a 10 mL Schlenk 

flask equipped with a stir bar and a sidearm, which could be isolated from the flask by a 
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stopcock.  On the high vacuum line, the racemic -olefin (2 mL) and the appropriate 

amount of achiral olefin were vacuum transferred onto the reaction flask.  The mixture 

was stirred for 30 minutes.  An aliquot was removed and analyzed by GC for a t = 0 data 

point.  (S)-2 was introduced by syringe as a toluene solution (0.5 mL, 3 μmol).  Olefin 

conversion could be monitored by periodic GC analysis of aliquots.  Reactivity ratios 

were determined from conversion of the two olefins at t = 5 minutes.  The reactions were 

stopped after conversion of the racemic olefin reached 25%–80%.  Vacuum transfer and 

enantioassay were performed as described for the gaseous copolymerization reactions. 

Determination of enantiomeric excess from recovered monomer.   Some of 

the volatiles recovered from the polymerization (0.150 g) were combined with 

RuCl3(H2O)3 (0.025 g, 0.096 mmol) and NaIO4 (1g, 4.68 mmol) in a 20 mL scintillation 

vial equipped with a small stir bar.  Carbon tetrachloride (5 mL), acetonitrile (5 mL), and 

water (6 mL) were added to the vial.  The vial was sealed with a Teflon-lined cap and 

stirred for one day.  The mixture was centrifuged for 5 minutes and the organic layer was 

separated and washed twice with aqueous sodium thiosulfate (6 mL).  The organics were 

isolated and concentrated down until approximately 0.1 mL remained containing the 

organic acid (Note: this is particularly important for 3-methyl-1-pentene enantioassays 

because acetonitrile and methyl 2-methylbutanoate overlap in the gas chromatograph).  

Methyl esters of the organic acids were obtained with the addition of 10% BF3/MeOH 

solution (4 mL) and heating the sealed vial to 50 ºC for 10 minutes.  After cooling to 

room temperature, water (8 mL) was added to the mixture.  Hexanes (2 mL) was added to 

the vial to extract the methyl ester.  The organic layer was isolated and dried over 

magnesium sulfate before being analyzed by chiral GC (see Appendix E). 

Polymer purification.  A solution of HCl/methanol (10% v/v) was added to the 

reaction to quench the MAO.  The polymer slurry was collected and the volatiles 

removed.  The remaining residue was dissolved in toluene or chlorobenezene (50 mL) 
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and precipitated into MeOH (1.8 L).  The precipitate was isolated and washed three times 

with MeOH (20 mL).  The polymer was dried in vacou at room temperature overnight. 

Comonomer content was estimated in two ways: from integrating the 13C NMR 

spectra (see Appendices B and C) and from polymer weight measurements based on GC 

conversion and the polymer mass.  The comonomer content obtained from NMR analysis 

was 5 mol% different from polymer weight measurements.  Due to overlapping peaks 

and pentad sequences involving comonomer, comonomer content for polypropylene 

copolymers could not be estimated from the polymers’ NMR spectra. 

Nomenclature for copolymers.  The 13C resonances for ethylene copolymers are 

named according to the nomenclature proposed by Usami and Takayama.39  The 

nomenclature consists of two parameters: (1) a number or Greek letter identifying a 

specific carbon on or near the polymer branch (#Bs), and (2) a descriptor of the type of 

polymer branch(es) of x length which is (are) closest to the specified carbon (#Bx).  

Numeric prefixes are used to identify carbons on the polymer branch with C1 being the 

last carbon of the branch.  Greek letters are used as prefixes to describe carbons on the 

main polymer chain with  describing the carbon closest to the branch.  Branching 

carbons are identified with the prefix br.  For example, 1B3 and B3 describe the last 

carbon of a three-carbon branch and the second carbon from the branching carbon of the 

three-carbon branch in the polymer main chain, respectively (see Figure 1.9).   

For carbons that are between two branches, an additional descriptor is added to 

describe the relative relationship between the two branches.  The carbons between the 

two branches are indicated with primed Greek letters.  For example, the carbons adjacent 

to the branching carbon in between two 4-carbon branches separated by an ethylene unit 

would be described as 1,4 ’B4 (See Figure 1.9).   
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Because it is necessary to describe branches on branches to identify all the 

carbons in the polymer microstructures encountered in this study, an addition to the 

nomenclature was introduced.  Primed numbers indicate one-carbon branches on the 

carbon of the longest branch from the main chain.  For example, the methyl group in the 

3 position of 3-methyl-1-pentene when incorporated in a polymer chain would be 

described as 3’B3’3 (two carbons from the monomer are in the polymer main chain and, 

therefore, do not appear in the nomenclature to describe the branch).  See Figure 1.9.  

 

Figure 1.9 Illustration of nomenclature for copolymers. 

Polyethylene.  Yield = 0.789 g. Tm = 136 ºC, Hm = 112.5 J/g, Tc = 114 ºC, Hc 

= -111.9 J/g.  Mn = 185,043, Mw = 552,720, Mw/Mn = 2.99. 13C{1H} NMR (125 MHz, 

o-dichlorobenzene-d4, 120 ºC):  = 30.00 (CH2). 

Poly(3-methyl-1-pentene-co-ethylene). GC analysis of recovered monomer 

gave: e.e. = 41.9% (C = 50.5%), s = kS/kR = 3.53.  Polymer yield = 2.089 g (14.7 mol% 3-

methyl-1-pentene by mass, 10.4% by NMR). Tm = broad thermal transition.  Mn = 

10,639, Mw = 46,168, Mw/Mn = 4.34. 13C{1H} NMR (125 MHz, o-dichlorobenzene-d4, 

120 ºC):  = 12.41 (1B3’3), 12.86 (1,3-1B3’3), 15.66 (3’B3’3), 27.23 (2B3’3), 28.34 ( B3’3), 

28.54 ( B3’3), 30.00 ( B3’3), 30.47 ( B3’3), 30.54 ( B3’3), 30.96 ( B3’3), 32.25 ( B3’3), 

32.76 (1,3- B3’3), 37.56 (1,3-brB3’3 and 1,3-3B3’3), 37.63 (3B3’3), 42.88 (brB3’3). 

Poly(3-methyl-1-hexene-co-ethylene). GC analysis of recovered monomer gave: 

e.e. = 14.7% (C = 54.2%), s = kS/kR = 1.46.  Polymer yield = 2.148 g (12.0 mol% 3-
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methyl-1-hexene by mass, 10.4% by NMR).  Tm = 107 ºC, Hm = 0.5 J/g, Tc = 93 ºC, 

Hc = -6.3 J/g. Mn = 15,584, Mw = 79,133, Mw/Mn = 4.34. 13C{1H} NMR (125 MHz, 

o-dichlorobenzene-d4, 100 ºC):  = 14.74 (1B4’4), 16.01 (4’B4’4), 21.16 (2B4’4), 28.34 

( B4’4), 28.51 ( B4’4), 30.00 ( B4’4), 30.46 ( B4’4), 30.51( B4’4), 30.78 ( B4’4), 32.07 

( B4’4), 35.01 (4B4’4), 36.90 (3B4’4), 42.96 (brB4’4). 

Poly(3,5,5-trimethyl-1-hexene-co-ethylene). GC analysis of recovered monomer 

gave: e.e. =  10.8% (C = 49.3%), s = kS/kR = 1.38.  Polymer yield = 2.478 g (8.2 mol% 

3,5,5-trimethyl-1-hexene  by mass, 4.6 % by NMR).  Tm = 122 ºC, Hm = 11.3 J/g , Tc = 

99, 106 ºC, Hc = -15.9 J/b. Mn = 20,007, Mw = 99,771, Mw/Mn = 4.99. 13C{1H} 

NMR(125 MHz, o-dichlorobenzene-d4, 100 ºC):  = 14.09 (1Bn), 18.59 (4’B2’2’4’4), 22.86 

(2Bn), 28.64 ( B2’2’4’4), 28.75 ( B2’2’4’4), 29.51 (4Bn), 30.00 ( B2’2’4’4), 30.32 (1B2’2’4’4, 

2’B2’2’4’4, 2’B2’2’4’4), 30.46 ( B2’2’4’4), 30.50 ( B2’2’4’4), 31.06 (4B2’2’4’4), 31.20 (2B2’2’4’4), 

31.37 ( B2’2’4’4), 32.15 (3Bn), 32.19 ( B2’2’4’4), 43.5 (brBn), 45.53 (brB2’2’4’4), 49.33 

(3B2’2’4’4). 

Poly(3,4-dimethyl-1-pentene-co-ethylene). GC analysis of recovered monomer 

gave: e.e. = 37.2% (C = 30.7%), s = kS/kR = 16.5.  Polymer yield = 3.268 g (4.8 mol% 

3,4-dimethyl-1-pentene by mass, 3.7 mol% by NMR). Tm = 119 ºC, Hm = 46.0 J/g, Tc = 

100 ºC, Hc = -52.1 J/g.  Mn = 15,618, Mw = 108,479, Mw/Mn = 6.95.  13C{1H} NMR 

(125 MHz, o-dichlorobenzene-d4, 120 ºC):  = 11.86 (3’B3’4’3), 19.89 (1B3’4’3), 21.98 

(2’B3’4’3), 27.45 (end group), 27.98 ( B3’4’3), 28.43 ( B3’4’3), 30.00 ( B3’4’3), 30.39 (end 

group), 30.44 ( B3’4’3), 30.63 ( B3’4’3, 2B3’4’3), 32.91 ( B3’4’3), 37.55 (end group), 40.43 

(brB3’4’3), 42.09 (3B3’4’3). 

Poly(3,4,4-trimethyl-1-pentene-co-ethylene). GC analysis of recovered 

monomer gave: e.e. = 44.2% (C = 43.0%), s = kS/kR = 5.9.  Polymer yield = 1.791 g (12.4 

mol% 3,4,4-trimethyl-1-pentene by mass). Tm = 105, 119, 122 ºC, Hm = 79.5 J/g, Tc = 
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96, 108 ºC, Hc = -78.9 J/g.  Mn = 2,688, Mw = 16,008, Mw/Mn = 5.954. 13C{1H} NMR 

(125 MHz, o-dichlorobenzene, 100 ºC):  9.35, 9.40, 9.65, 14.53, 16.18, 27.52, 28.29, 

28.61, 28.77, 28.84, 28.92, 29.05, 29.22, 29.67, 29.89, 29.93, 30.00, 30.32, 30.40, 30.53, 

30.57, 31.45, 31.84, 32.18, 33.12, 33.63, 33.98, 34.07, 34.10, 34.53, 35.25, 35.30, 35.58, 

36.09, 38.15, 38.51, 43.50, 44.38, 44.61, 45.61, 45.25, 50.06, 110.00, 154.00. 

Synthesis of poly(1,2-bis-
13

C-3,4-dimethyl-1-pentene-co-ethylene). Polymer-

ization was carried out as outlined above but with smaller amounts of 1,2-bis-13C-3,4-

dimethyl-1-pentene (0.60 mL, 0.42 g, 4.2 mmol), tetradecane (0.564 g) and catalyst 

solution (0.3 mL, 3 μmol).  GC analysis of recovered monomer gave: e.e. = 94.1 % (C = 

72.3 %), s = kS/kR = 6.6.  Polymer yield = 0.4902 g (22.9 mol% 3,4-dimethyl-1-pentene 

by mass).  Tm.= 121 ºC, H = 35.2 J/g, Tc = 110 ºC, H = 35.0 J/g.  Mn = 3,233, Mw = 

26,888, Mw/Mn = 8.31. {1H}13C NMR (125 MHz, o-dichlorobenzene, 100 ºC):  = 

 154.60  (d, 1J = 36 Hz, 13C), 139.00, 138.66, 108.10 (d, 1J = 36 Hz, 13C), 40.12 (d, 1J = 35 

Hz, 13C), 36.7 (m, br, 13C), 35.68, 35.40, 34.69, 34.30 (d, 1J = 35 Hz, 13C), 32.74 (d, 1J = 

35 Hz, 13C), 32.6 (v. br), 30.31 (d, 1J = 36 Hz), 29.70 ( B3’4’3), 27.62 (d, 1J = 34 Hz, 

13C), 21.68, 19.58, 18.65, 18.30, 15.48, 14.92, 14.64, 11.54.  

Synthesis of poly(1,2-bis-
13

C-3,4-dimethyl-1-pentene).  Polymerization was 

carried out in the same fashion as (R)-3,4-dimethyl-1-pentene polymerizations except 

small amounts of 1,2-bis-13C-3,4-dimethyl-1-pentene (0.50 mL, 0.35 g, 3.48 mmol), 

tetradecane (1.01 g), and catalyst solution (0.2 mL, 3 μmol) were used.  GC analysis of 

the recovered monomer gave: e.e. = 27.7 % (C = 25.0 % ), s = kS/kR = 14.2.  Polymer 

yield = 0.08 g. 13C{1H} NMR (125 MHz, o-dichlorobenzene, 100 ºC):  = 36.52 (d, 1J = 

36 Hz, 13C), 36.24 (d, 1J = 36 Hz), 33.13 (br. d, 1J = 32 Hz), 32.52 (br. d, 1J = 32 Hz), 

32.5 (br. m), 30.32, 30.03, 29.93, 22.18, 21.51, 16.04, 15.74, 11.48. 
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Polypropylene.  Yield = 2.873 g. Tm = 108 ºC, Hm = 20.2 J/g, Tc = 72, 80 ºC, 

Hc = -26.7 J/g. Mn = 2,878, Mw = 5,219, Mw/Mn = 1.81.  

Poly(3-methyl-1-pentene-co-propylene).  GC analysis of recovered monomer 

gave: e.e. = 10.0% (C = 27.6%), s = kS/kR = 1.88.  Polymer yield = 3.731 g (8.9 mol% 3-

methyl-1-pentene by mass).  Tm = 101 ºC, Hm = 27.3 J/g, Tc = 53, 70 ºC, Hc = -35.0 

J/g. Mn = 3,155, Mw = 5,291, Mw/Mn = 1.68.  

Poly(3-methyl-1-hexene-co-propylene).  GC analysis of recovered monomer 

gave: e.e. = 24.3% (C = 54.4%), s = kS/kR = 1.87.  Polymer yield = 4.647 g (10.8 mol% 3-

methyl-1-hexene by mass).  Tm = broad, Tc = 31.6 ºC, Hc = -9.7 J/g.  Mn = 2,812, Mw = 

4,873, Mw/Mn = 1.73. 

Poly(3,5,5-trimethyl-1-hexene-co-propylene).  GC analysis of recovered 

monomer gave: e.e. = 13.0% (C = 43.2%), s = kS/kR = 1.58.  Polymer yield = 5.383 g (6.5 

mol% 3,5,5-trimethyl-1-hexene by mass).  Tm = 92, Hm = 11.7 J/g, Tc = 45, 56 ºC, Hc 

= -21.9J/g. Mn = 2,673, Mw = 4,891, Mw/Mn = 1.83. 

Poly(3,4-dimethyl-1-pentene-co-propylene).  GC analysis of recovered 

monomer gave: e.e. = 22.8% (C = 32.5%), s = kS/kR = 3.47.  Polymer yield = 4.171 g (5.8 

mol% 3,4-dimethyl-1-pentene by mass). Tm = 92 ºC, Hm = 19.1 J/g, Tc = 48, 68 ºC, Hc 

= -22.8 J/g.  Mn = 2,455, Mw = 4,121, Mw/Mn = 1.68.  

Poly(3,4,4-trimethyl-1-pentene-co-propylene). GC analysis of recovered 

monomer gave: e.e. = 1.8 % (C = 42.8 %), s = kS/kR = 1.07.  Polymer yield = 5.986 g (4.5 

mol% 3,4,4-trimethyl-1-pentene by mass).  Tm = 99 ºC, Hm = 10.7 J/g, Tc = 60, 66 ºC, 

Hc = -18.8 J/g.  Mn = 1,912, Mw = 3,484, Mw/Mn = 1.82. 
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CHAPTER TWO 

 

SITE EPIMERIZATION IN THE KINETIC RESOLUTION OF 

RACEMIC -OLEFINS USING C1-SYMMETRIC 

ZIRCONOCENE POLYMERIZATION CATALYSTS  

 

2.1 Abstract  

 The use of a new C1-symmetric olefin polymerization precatalyst,  

(1,2-SiMe2)2{
5-C5H2-4-((S)-CHEtCMe3)}{ 5-C5H-3,5-(CHMe2)2}ZrCl2, (S)-2, for the 

kinetic resolution of 3-methyl substituted racemic -olefins was investigated.  Selectivity 

factors for most olefins were greater for the ethylneopentyl derivative (S)-2 as compared 

to its previously reported methylneopentyl analog, (1,2-SiMe2)2{
5-C5H2-4-((S)-

CHMeCCMe3)}{ 5-C5H-3,5-(CHMe2)2}ZrCl2, (S)-1.  Pentad analysis of polypropylene 

polymerized with (S)-2 at various propylene concentrations indicated that (S)-2 

undergoes more rapid site epimerization at intermediate propylene concentrations 

compared to (S)-1.  At low propylene concentrations, however, the two catalysts behaved 

similarly.  Polymerization of 3,5,5-trimethyl-1-hexene at different olefin concentrations 

and temperatures illustrated that selectivity differences between the two catalysts are 

likely not a consequence of inefficient site epimerization.  The effect of added 

trimethylaluminum on polymerizations catalyzed by (S)-1 and its relationship to site 

epimerization during such reactions was also investigated.  



CHAPTER TWO -57-

2.2 Introduction 

 Polymerization catalysts are among the most active and stereoselective catalysts 

in homogeneous catalysis.1  Due to their potential commercial value, much effort has 

been devoted to understanding how catalyst structure affects polymer microstructure.  In 

particular there often is a correlation between catalyst symmetry and poly- -olefin 

tacticity with C2-symmetric catalysts yielding isotactic polymer and Cs-symmetric 

catalysts giving syndiotactic polymer.  As a consequence of these studies, a detailed 

mechanistic picture is emerging for these catalysts.2  

R R R R R
+

n
enantiopure
    catalyst

R2n
s = krel = kS/kR

n

poly((S)-olefin) (R)-olefin(rac)-olefin  

Scheme 2.1 Kinetic resolution of racemic -olefins by polymerization. 

 As discussed extensively in the introduction and in Chapter 1, the remarkable 

stereoselectivities displayed by polymerization catalysts inspired our to group to explore 

the kinetic resolution of racemic -olefins by polymerization using enantiopure catalysts 

(Scheme 2.1).3,4  Due to their high degree of activity, the doubly linked C1-symmetric 

catalyst precurser 

 (1,2-SiMe2)2{
5-C5H2-4-((S)-CHMeCCMe3)}{ 5-C5H-3,5-(CH(CH3)2}ZrCl2 ((S)-1) and 

related compounds were initially investigated for the kinetic resolution of 3-substituted-1-

olefins (e.g., 3-methyl-1-pentene or 3,4-dimethyl-1-pentene) to afford isotactic polymer 

at all concentrations examined.3  
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Me2Si

Me2Si
R

R

Zr
Cl

Cl

CH3

H

S

R = i-Pr ((S)-1), 3-pentyl, cyclohexyl  

 On the other hand, these catalysts polymerize propylene to give isotactic 

polypropylene at low propylene concentrations and syndiotactic polypropylene at high 

propylene concentrations.5   A switch from syndiotactic polypropylene produced at high 

[propylene] to isotactic polypropylene produced at low [propylene] has been explained 

by a polymerization mechanism whereby unimolecular site epimerization competes with 

bimolecular chain propagation (Scheme 2.2).  It was argued that the bulky methyl 

neopentyl group of these catalysts pushes the polymer chain away from the methyl group. 

At low concentrations of propylene, unimolecular site epimerization precedes 

enchainment of another monomer, and chain propagation occurs mainly by propylene 

coordination to the same side of the zirconocene wedge using the same enantioface of the 

olefin, thus yielding isotactic polymer.  At high monomer concentrations, bimolecular 

chain propagation is relatively favored over site epimerization, allowing for propylene 

enchainments from both sides of the zirconocene wedge with alternating enantiofacial 

preferences producing syndiotactic polymer.  For 3-methyl substituted -olefins, chain 

propagation is believed to be much slower than site epimerization even at high olefin 

concentrations, leading to isotactic polymer as shown for the blue pathway of Scheme 

2.2. 
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Scheme 2.2 Site epimerization in -olefins polymerizations catalyzed by C1-symmetric 

zirconocenes. 

 The most convincing evidence for the production of isotactic polymer during 

kinetic resolution of racemic olefins, however, is a 13C{1H} NMR spectrum of poly(3-

methyl-1-pentene) which was compared to authentic samples of isotactic poly(3-methyl-

1-pentene).6   Unlike NMR spectra for polypropylene, poly(3-methyl-1-pentene) spectra 

are much less diagnostic due to poor polymer solubility and broad overlapping peaks.  

Consequently, stereoerrors, arising for example by occasional operation of the red 

pathway of Scheme 2.2, are harder to detect than for polypropylene.  The analyses of 

microstructures of the other polymers obtained in these kinetic resolutions are similarly 

difficult to establish. 

• •Zr
+
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R

•• Zr
+

P

R

•• Zr+

P

R
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klr

blue pathway much faster than red pathway with krl relatively large:
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 We therefore considered that low selectivity factors observed during kinetic 

resolutions are at least in part a consequence of inefficient site epimerization (i.e. 

occasional insertion from the red pathway in Scheme 2.2).  Occasional olefin uptake 

when the polymeryl chain lies on the sterically more hindered side of the zirconocene 

wedge would likely result in olefin insertions with opposite enantiofacial and 

diastereoselectivities compared to enchainments occurring when the polymeryl chain 

resides on the sterically less-hindered side.  That is to say that for these misinsertions, the 

normally disfavored antipode of the monomer (R for (S)-1) is preferentially incorporated 

over the favored antipode (S for (S)-1).  The consequence of this behavior is a selectivity 

factor that is artificially low with the magnitude of retardation depending on the 

frequency of inefficient site epimerization. 

 To examine the possibility that incomplete site epimerization operates with 

catalyst system (S)-1, Endy Min in our group carried out the synthesis of the 

ethylneopentyl analog (S)-2 and reported initial experiments towards kinetic resolution of 

racemic -olefins.7  Should inefficient site epimerization limit the efficacy of (S)-1, we 

anticipated the more bulky ethyl group in (S)-2 would encourage site epimerization 

resulting in higher selectivity factors during kinetic resolution.  Indeed, these initial 

experiments revealed higher selectivity factors when (S)-2 was used as the catalyst for all 

monomers studied. 

Me2Si

Me2Si
Zr

Cl

Cl

H

S

(S)-2

CH3
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 To further probe the possibility that inefficient site epimerization limits 

selectivity, reported herein is a more extensive examination of the scope of the kinetic 

resolutions catalyzed by (S)-2.  Additionally, propylene and racemic -olefin 

polymerizations carried out at various monomer concentrations and temperatures were 

accomplished.  For catalysts where unimolecular site epimerization competes with 

bimolecular chain propagation these changes in experimental conditions should affect 

selectivity factors in a predictable way. 

2.3 Results and Discussion 

 Polymerization of racemic -olefins with (S)-2.  Although the synthesis of  (S)-

2 was described previously,7 the limitations of the synthetic route and comparison with 

the reported synthesis of (S)-13 deserves some comment.  Whereas synthesis of the upper 

cyclopentadiene for (S)-1 (as pictured) was achieved by CBS reduction of pinacolone 

followed by SN2 displacement of the corresponding mesylate with cyclopentadienyl (Cp) 

anion, analogous procedures were problematic for (S)-2 (Scheme 2.3).  Instead of the 10 

mol% in situ prepared CBS catalyst which was used for pinacolone reduction, a 

stoichiometric amount of solid preformed CBS catalyst was required to reduce 3 to the 

corresponding alcohol, (R)-4, in high optical purities.8   Lower temperatures (-78 ºC vs. -

20 ºC) as well as longer addition times were required to achieve high enantiomeric 

excess.  Treating the mesylate of (R)-4 with Cp anion was also more challenging for the 

synthesis of (S)-5 compared to the analogous reaction during the synthesis of (S)-1.  

Although the product of the reaction was obtained with complete inversion of 

stereochemistry, yields of (S)-5 were low.  In fact, the major product of this reaction was 

elimination of the mesylate rather than SN2 displacement.  Nevertheless, synthesis of (S)-

5 could be accomplished, albeit in low yields, and elaboration to (S)-2 was carried out in 

complete analogy and in similar yields to (S)-1. 
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Scheme 2.3 Synthesis of (S)-2. 

 Structurally, (S)-2 displays similar features to (S)-1 as indicated by an X-ray 

crystal structure, which was obtained for (S)-2 and appears in Figure 2.1.  The ethyl 

group occupies the right side of the zirconocene wedge (as pictured) in a similar fashion 

to the methyl group of (S)-1.   The distance between the two isopropyl groups on the 

bottom cyclopentadienyl ring are 5.123 Å for (S)-2 compared to 5.163 Å for (S)-1.  The 

angle between the two cyclopentadienyl rings is 73.1º and 72.2 for (S)-2 and (S)-1, 

respectively.  The only major difference between the two structures is that the torsional 

angle between the methyl (methylene) group on the top Cp, the Cp centroid, and 

zirconium, which is 39.1º for (S)-1 is more obtuse for (S)-2 (46.7º).  Other relevant bond 

distances and angles appear in Appendix F. 
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Figure 2.1  Molecular structure for (S)-2. 

 The results for polymerization of the racemic -olefins using (S)-2 as the 

precatalyst appear in Table 2.1 along with analogous reactions using (S)-1 as the 

precatalyst for comparison.  In general, (S)-2 was the more active catalyst.  This is in 

accord with the larger bite angle for (S)-2 compared to (S)-1.  In most cases, the 

selectivity factors for (S)-2 were larger than for (S)-1 particularly for 3,5,5-trimethyl-1-

hexene.  The one exception is the polymerization of 3,4,4-trimethyl-1-pentene where (S)-

1 is more selective than (S)-2 during kinetic resolution.  We cannot explain this anomaly, 

but it could be due to lower molecular weights for polymers obtained when (S)-2 rather 

than (S)-1 was used as the catalyst.  Inherent to lower molecular weight polymer are more 

olefin insertions into zirconium hydrides, a process that has been shown to have poor 

enantiofacial selectivity.   This hypothesis is supported by the observation of dimers in 

the gas chromatograph used to follow the polymerization reaction.  Additionally, the 

polymer that was recovered from these reactions accounted for only 60%–70% of the 
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converted olefin.  The remainder of the mass was presumably lost during the purification 

of the polymer as methanol soluble oligomers.  Although the substrates represented in 

Table 2.1 are limited and the difference in selectivities is substrate dependent, these data 

are consistent with there being more efficient site epimerization during polymerization 

when (S)-2 is employed as the catalyst rather than (S)-1 (vide supra).  To further probe 

this possibility, propylene polymerizations as well as polymerization of racemic -olefins 

under different reaction conditions were carried out. 

TOF (h-1) s = kS/kRTOF (h-1) s = kS/kR

2.4

15.9

2.1

7.6

3.2

20.5

8.5

3.2

280

75

988

16a

47

34

37

18a

olefin

(S)-1 (S)-2

a 3 mg catalyst and toluene (2.0 mL) was used instead of tetradecane.

R

R

MAO, Al/Zr = 1000

tetradecane (2.0 mL)

25 °C

n
n

 (0.02 mol%)

2.0 mL

catalyst

 

Table 2.1 Selectivity and activity for racemic -olefin polymerizations catalyzed by 

(S)-1/MAO and (S)-2/MAO. 

 Propylene polymerizations catalyzed by (S)-2. As noted above, we have 

previously reported that precatalyst (S)-1 produces moderately syndiotactic 

polypropylene in neat propylene and moderately isotactic polypropylene at low propylene 

concentrations due to competition between site epimerzation and chain propagation.5  If 



CHAPTER TWO -65-

(S)-2 undergoes faster site epimerization than (S)-1, then polymers produced from (S)-2  

should be more isotactic (lower [r]) than polymers produced from (S)-1 at all 

concentrations of propylene.  Propylene polymerizations were therefore carried out at 

various propylene concentrations, and the tacticity of these polymers was determined by 

13C NMR spectroscopy.  Results from these experiments along with similar experiments 

carried out with (S)-1 appear in Table 2.2. 

 As was the case with (S)-1, isotacticity decreased with increasing propylene 

concentration when (S)-2 was used as the catalyst (i.e. [mmmm] = 62.3% and 12.9% for 

[C3H6] of 0.8 M and 8.1 M, respectively).   Figure 2.2 is a plot of [r] versus [C3H6], 

which was made to help compare the two catalysts.  To better illustrate the trends, the 

methyl region of the NMR spectra for polypropylene obtained at three concentrations 

appears in Figure 2.3.  Both catalysts display saturation behavior at low and high 

propylene concentrations.  At low propylene concentration ([C3H6] = 0.8 M), isotactic 

polypropylene is produced with virtually identical microstructures for the two catalysts 

(Table 2.2, entries 1 and 2 and Figure 2.3), whereas at high propylene concentration the 

two catalysts yield syndiotactic polypropylene with similar but not identical 

microstructures (entries 7 and 8).  At intermediate propylene concentrations, however, 

differences between the two catalysts are evident (entries 3-6, Figure 2.3).  Although [r] 

increases with propylene concentration to similar saturation points for both catalysts, the 

increase is more rapid for (S)-1  than (S)-2 (Figure 2.2). 
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Figure 2.2 Plot of [r] versus [C3H6] for propylene polymerizations catalyzed by (S)-1 

and (S)-2. 

 

Figure 2.3 Methyl region of 13C{1H} NMR for polypropylene polymerized at different 

[C3H6] catalyzed by (S)-1 and (S)-2. 

 These data can be rationalized as follows. At low propylene concentration, site 

epimerization occurs after practically every olefin insertion for both catalysts.  The 

microstructure observed for these polymers, therefore, is primarily controlled by the 

enantiofacial selectivity of the olefin insertion when the polymer chain lies on the 
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sterically less hindered side of the zirconocene wedge.  Furthermore, the enatiofacial 

selectivities for this polymerization site are similar for the two catalysts because similar 

microstructures are obtained at this limit.  At intermediate propylene concentrations site 

epimerization competes with olefin insertion for both catalysts.  As expected, the ethyl 

group of (S)-2 encourages site epimerization more than (S)-1 because [r], which is 

proportional to the number of consecutive olefin insertions without site epimerization, 

increases more gradually with propylene concentration for (S)-2.  At high propylene 

concentration, chain propagation begins to dominate for both catalysts.  The differences 

between the two catalysts is not as evident because under these conditions site 

epimerization is not as important.  Polymer microstructure is again controlled by the 

enantiofacial selectivity of the inserted monomer, but this time facial selectivity from 

both sides of the zirconocene wedge affect polymer microstructure.  In accord with this 

explanation, polymerizations carried out in liquid propylene at 0 ºC with both catalysts 

displayed almost identical polymer microstructures  (Table 2.2, entries 9 and 10).   

 To further support the above explanation, the pentad distributions for 

polymerization carried out in the data at liquid propylene were modeled with a 

unidirectional site epimerization model.9  The model considers three mechanisms that can 

effect the polypropylene pentad distribution.  These mechanisms are represented by three 

parameters: , the enantiofacial selectivity of olefin insertions when the polymeryl group 

lies on the sterically less-hindered side of the zirconocene, , the enantiofacial selectivity 

of olefin insertions when the polymeryl group lies on the sterically more-crowded side, 

and , the probability for site epimerization when the polymeryl group moves from the 

sterically more crowded to the sterically less-hindered side. The model does not take into 

account the possibility of insertions after a site epimerization from the sterically less-

hindered to the sterically more-hindered side.  Least squares fit of the neat polypropylene 

data show that  is 0.99 and 0.99,  is 0.16 and 0.13, and  is 0.13 and 0.21, for (S)-1 and 
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(S)-2, respectively (RMS = 0.871 and 0.904).  These data are in full agreement with the 

above explanation.  As anticipated, the major difference between the two catalysts is site 

epimerization with more efficient site epimerization occurring for (S)-2 compared to (S)-

1 as indicated by a larger  for (S)-2.  The enantiofacial selectivity parameters (  and ) 

are also easily rationalized.  These parameters not only describe the selectivity of the 

olefin polymerized, but they also indicate which face of the olefin is favored.  Values for 

 or  that are 0 or 1 indicate perfectly selective insertions from opposite olefin 

enantiofaces, while a value of  or  close to 0.5 describe unselective insertions.  For 

polymerizations catalyzed by (S)-1 or (S)-2, enantiofacial selectivities when the polymer 

chain lies on the sterically less-hindered side (described by ) are very high and 

approximately the same.  As expected,  is less than 0.5 and is approximately the same 

for the two catalysts.  The enantiofacial selectivity values suggest that highly syndiotactic 

polymer (insertions into alternating enantiofaces) would be produced in the absence of 

site epimerization.  The two catalysts display similar values for  and , which indicates 

that substitution of the methyl group in (S)-1 for an ethyl group in (S)-2 does not 

significantly affect the facial selectivity for olefin insertions.  It is interesting to note that 

for both catalysts  is not as close to 0 as  is to 1.  A possible explanation is that the 

methyl/ethyl group on the top Cp competes with the isopropyl group on the bottom Cp to 

direct the polymer chain down rather than up (as pictured in Scheme 2.2).  Propylene 

coordination occurs so that the methyl group avoids the polymer chain thereby 

undergoing insertions from the “wrong” enantioface for the polymer chain directed down. 

 Using  and  from the neat propylene data, the rest of the data in Table 2.2 can 

be modeled by changing .  Modeling all of the data in Table 2.2 by varying all three 

parameters yields better least squares fits (See Appendix G), but it is unclear why  and  

would change much with propylene concentration.  Neat propylene data was used for 

obtaining the values for  and  because there is a good probability for insertion from 
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both polymerization sites under these conditions.   Figure 2.4 is a plot of  versus [C3H6] 

for both catalysts.  As can be seen from Figure 2.4,  decreases with increasing propylene 

concentration for both catalysts indicating that site epimerization occurs more readily at 

low propylene concentration.  Figure 2.4 also shows that at intermediate and high 

propylene concentrations,  is larger for (S)-2 compared to (S)-1 with changes in  being 

more significant for (S)-2.  This suggests that the ethyl group of (S)-2 is more effective at 

directing the polymeryl group towards the sterically less hindered side of the zirconocene 

wedge. 

 

Figure 2.4.  Propylene concentration dependence on the probability of site epimerization 

parameter ( ) used to model data in Table 2.2. 

 The rate constant for site epimerization (kepim) relative to olefin insertion when the 

polymer chain resides on the sterically congested side of the zirconocenes (k -ins) can be 

obtained from the data in Figure 2.4.  The probability of site epimerization can be 

expressed in terms of these rate constants using the simple relationshiop shown in 

equation (2.1): 

    
  

=
kepim

kepim + k ins[C3H6]
    (2.1) 
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The inverse of equation 2.1 gives the relationship: 

     
  

1
=1+

k ins

kepim

[C3H6]      (2.2) 

Therefore, a plot between 1/  and [C3H6] should give a line with a slope equal to  

k -ins/kepim. A plot of 1/  versus [C3H6] was made for the data in Figure 2.4 and appear in 

Figure 2.5.  The data for each catalyst fits reasonably well to equation (2.2) producing 

linear plots with y-intercepts equal to 1.  The inverse of the slopes of these plots reveal 

that kepim/k -ins is 3.8 and 8.2 for polymerization catalyzed by (S)-1 and (S)-2, respectively, 

indicating that both catalysts prefer to undergo site epimerization rather than olefin 

insertion.  Consistent with our qualitative analysis, catalyst (S)-2 is approximately two 

times more likely to undergo site epimerization rather than olefin insertion compared to 

catalyst (S)-1.  This difference is not substantial from an energy standpoint indicating that 

the catalysts behave similarly.  At this point it is important to emphasize that the 

information from Figure 2.5 does not indicate the absolute value for the site 

epimerization rate constants nor does it provide any information about absolute and 

relative olefin insertion rates when the polymer chain resides on the sterically less-

hindered side of the zirconocene.  Nevertheless, these data show that (S)-2 encourages 

site epimerization marginally better than (S)-1 for propylene polymerizations. 
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Figure 2.5 Plot of 1/  versus [C3H6] for propylene polymerizations catalyzed by (S)-1 

and (S)-2. 

 Polymerization of 3,5,5-trimethyl-1-hexene at different temperatures and 

olefin concentrations.  Because chain propagation is believed to be much slower for 3-

substituted olefins,10 we hypothesized that the 3-methyl substituted racemic -olefins 

used for kinetic resolution would behave much like propylene polymerization at low 

propylene concentrations.  In other words, chain propagation would be too slow to 

compete with site epimerization.  To help verify this we monitored the selectivity of 

3,5,5-trimethyl-1-hexene polymerizations at different olefin concentrations and 

temperatures (Table 2.3).    

 If chain propagation, which is dependent on olefin concentration, is in 

competition with olefin independent site epimerization during racemic -olefin 

polymerization, then selectivity factors should increase at lower olefin concentrations 

(vide supra).  Qualitatively, we have noticed that selectivity factors are insensitive to 

conversion during racemic -olefin polymerization.  Olefin concentration decreases as 

the reaction proceeds, so selectivity factors should increase with conversion if site 

epimerization competes with chain propagation.  This observation is not conclusive, 
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however, because olefin concentration does not vary much under typical reaction 

conditions. 

 

 

 

 

 

    

 

Table 2.3 Selectivity and activity for 3,5,5-trimethyl-1-hexene polymerizations carried 

out at various olefin concentrations and temperatures.  Polymerizations were carried out 

in toluene with MAO (1000 equiv.) and 1 mmol catalyst.  Numbers in parenthesis 

indicate average error. 

 We therefore undertook the polymerization of 3,5,5,-trimethyl-1-hexene at 

different initial olefin concentrations using (S)-1 and (S)-2  as precatalysts (Table 2.3, 

entries 2, 3, 6, and 7).  Curiously, for polymerizations catalyszed by (S)-1, selectivity 

factors are greater when toluene is used as opposed to tetradecane (compare entry 3 in 

Table 2.3 with entry 2 in Table 2.1).  Previously, we reported that selectivity factors were 

insensitive to the solvent used for the reaction,11 but we did not polymerize 3,5,5-

trimethyl-1-hexene in toluene in that study.  At this time we have no explanation for this 

anomaly.  Nevertheless, the results presented in Table 2.3 are inconsistent with 

polymerizations where site epimerization competes with chain propagation because 

selectivity factors remain the same (for (S)-1) or even decrease with decreasing olefin 

concentration (for (S)-2).  The only explanation that we have for the latter trend is that 

polymers obtained at lower olefin concentrations should have lower molecular weights 

entry catalyst 
[olefin] 

(M) 
T 

(ºC) TOF (h-1) s = kS/kR 

1 (S)-1a 2.4 0 40 (10) 3.9 (0.2) 

2 (S)-1a 0.85 20 110 (30) 2.9 (0.2) 

3 (S)-1 2.4 20 110 (30) 3.2 (0.2) 

4 (S)-1 2.4 50 1400 (300) 2.6 (0.1) 

5 (S)-2a 2.3 0 50 (40) 11.5 (0.5) 

6 (S)-2a 0.86 20 100 (10) 5.8 (0.4) 

7 (S)-2 2.3 20 90 (70) 8.4 (0.1) 

8 (S)-2 2.3 50 420 (30) 4.9 (0.3) 

a 3 μmol of catalyst used. 
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and consequently lower selectivities (vide supra).  However, this explanation is not very 

satisfying because oligomers were not observed in the gas chromatograph used for 

determining conversion, and a near quantitative mass balance was obtained from the 

polymer yields for all the polymerizations.  It seems unlikely that there will be enough 

unselective initiation events to impact the selectivity factor much when primarily 

polymer is formed in the reaction. 

 To compliment the olefin concentration results, 3,5,5-trimethyl-1-hexene was 

polymerized at different temperatures using (S)-1 and (S)-2 as catalysts (Table 2.3). The 

results are displayed graphically in Figure 2.6 and clearly show that selectivity decreases 

with increasing temperature for both catalysts.  Selectivity factors are expected to be 

particularly sensitive to temperature if second order chain propagation is in competition 

with first order site epimerization.  Under these circumstances the second order process, 

typically characterized by a more negative entropy of activation, should be less important 

than the first order process at higher temperatures.  Therefore, site epimerization should 

predominate at higher temperatures, and selectivity factors should increase with 

temperature.  This expectation is the opposite to what is observed for the polymerization 

of 3,5,5-trimethyl-1-hexene suggesting once again that chain propagation is not in 

competition with site epimerization. 
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Figure 2.6.  Temperature dependence of selectivity factors (s) during 3,5,5-trimethyl-1-

hexene polymerizations catalyzed by (S)-1 and (S)-2. 

 Effect of added trimethylaluminum on selectivity during 3,4-dimethyl-1-

pentene polymerizations.  During the course of these investigations an interesting 

observation was made.  If the methylaluminoxane (MAO) used was not exhaustively 

dried, selectivity factors during kinetic resolutions would be erroneously low.  It was 

surmised that MAO containing traces of trimethylaluminum caused increased amounts of 

chain transfer and consequently more insertions into metal hydrides, which are known to 

be unselective (vide supra).  To test whether adventitious trimethylaluminum was 

affecting selectivity, 3,4-dimethyl-1-pentene polymerizations were carried out by adding 

known amounts of trimethylaluminum to exhaustively dried MAO (using (S)-1 as the 

catalyst).  The results from this brief investigation appear in Table 2.4. 

 As anticipated, the addition of 175 equivalents of trimethylaluminum (relative to 

zirconium) to the reaction significantly decreased the selectivity from 15.3 to 3.4 (Table 

2.4).  The addition of 328 equivalents of trimethylaluminum degraded the selectivity even 

further but the difference in selectivity between 175 and 328 equivalents of added 

trimethylaluminum was modest.  In conjunction with the lower selectivities, 3,4-
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dimethyl-1-pentene dimers were observable in the GC used to follow the reaction.  The 

observation of dimers in the GC is consistent with the molecular weight explanation for 

the low selectivities observed in the presence of trimethylaluminum.  However, this 

explanation does not explain why increasing the trimethylaluminum equivalents from 175 

to 328 did not affect selectivity as significantly as going from no added 

trimethylaluminum to 175 equivalents. 

(S)-1 (2 μmol)

MAO, Al/Zr = 500
tetradecane (2.0g) 25 °C

s (kS/kR)conv.(%) e.e.(%)TOFAl/Zr
Me3Al
(equiv.)

39.7 40 15.352.71100 0

764 175 48.2 21 38.3 3.4

1114 328 19.5 11.0 3.016
 

Table 2.4 Effect of added trimethylaluminum on selectivity during 3,4-dimethyl-1-

pentene polymerizations catalyzed by (S)-1/MAO. 

 An alternative explanation for this behavior is that trimethylaluminum impedes 

site epimerization relative to olefin propagation thereby allowing for insertions to occur 

from both sides of the zirconocene wedge.  As shown in Scheme 2.4, coordination of 

trimethylaluminum to the zirconocene polymerization should slow site epimerization 

because the polymer chain would have to displace the coordinated trimethylaluminum.  

This explanation is consistent with the saturation behavior observed for the selectivity 

factors because at some trimethylaluminum concentration all of the active catalytic sites 

would contain bound trimethylaluminum.  It is also reasonable to think that 

trimethylaluminum would affect the site epimerization rates more than the relative 

insertion rates from the two catalytic sites. 
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Scheme 2.4 Trimethylaluminum coordination and its effect on site epimerization. 

 To probe this possibility, the 13C{1H} NMR of poly(3,4-dimethyl-1-pentene) 

produced in the presence and absence of trimethylaluminum were obtained.  To our 

surprise, the spectrum for each polymer was exceedingly simple each containing a single 

resonance for every carbon in the polymer.  Equally surprising was that the spectra with 

and without added trimethylaluminum were identical despite the fact that the two samples 

displayed different solubility properties.  Furthermore, the solubility properties 

complicated our understanding of the situation as the sample polymerized in the presence 

of added trimethylaluminum was less soluble than the sample polymerized without 

trimethylaluminum.  The simple NMR spectra indicate that highly isotactic poly(3,4-

dimethyl-1-pentene) was produced in the presence and absence of trimethylaluminum.  

This conclusion suggested that the selectivity degradation observed during kinetic 

resolution is likely due to the molecular weight phenomena.  On the other hand, the 

solubility properties for the polymers do not support this explanation because it is 

commonly observed that polymer solubility increases with decreasing molecular weight, 
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which is opposite to what was observed as the polymer produced in the presence of 

trimethylaluminum (producing lower molecular weight polymer) is less soluble.  

Unfortunately, the results from this NMR study were inconclusive. 

 It stands to reason that if trimethylaluminum affects site epimerization rates, this 

should manifest itself in propylene polymerizations and could be modeled in a similar 

fashion as above.  A propylene polymerization carried out in dilute propylene with added 

trimethylaluminum was therefored accomplished using (S)-1 as the catalyst.  The most 

striking thing about this polymerization is the three orders of magnitude decrease in 

turnover frequency (Table 2.5).  The polymer produced was clearly isotactic and 

appeared similar to polypropylene produced without trimethylaluminum.  However, a 

careful examination of the pentads revealed some differences.  Notably, the [mmmm] was 

54% compared to 63% for polymerizations carried out in the presence and absence of 

trimethylaluminum, respectively.  The decrease in [mmmm] content is consistent with 

trimethylaluminum impeding site epimerization.  However, using the unidirectional site 

epimerization model and  and  determined previously,  for the polymerization carried 

out with added trimethylaluminum was approximately the same (0.86) compared to  for 

the polymerization carried out without trimethylaluminum (0.89).  It is important to note 

that  and  could be different in the presence of added trimethylaluminum.  At this time 

we do not have the neat polypropylene data necessary to derive  and  accurately. 
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Me3Al 

(equiv.) 

activity 

(gpoly/(gcat*h) [mmmm] [mmmr] [rmmr] [mmrr] 

[mrmm]+ 

[rrmr] 

0 2.5 x 103 62.9 14.0 0.9 12.7 3.8 

125 7.5 x 101 53.6 16.6 1.2 11.7 6.5 

Me3Al 

(equiv.) 

activity 

(gpoly/(gcat*h) [mrmr] [rrrr] [mrrr] [mrrm] [r] 

0 2.5 x 103 0.0 0.0 1.5 4.4 14.1 

125 7.5 x 101 0.0 1.5 3.0 6.0 19.6 

Table 2.5 Pentad analysis for propylene produced in the presence and absence of 

added trimethylaluminum at [C3H6] = 0.8 M.  Polymerizations carried out in 20 mL 

toluene and under constant pressure of propylene at 20 ºC. 

2.4 Conclusions 

 The synthesis of (S)-2 and its use for the kinetic resolution of racemic -olefins 

by polymerization revealed enhanced selectivity compared to (S)-1 for most olefins 

studied.  Several experiments were completed which demonstrated that although (S)-2 

undergoes more efficient site epimerization than (S)-1 in propylene polymerizations, this 

mechanism does not account for the difference in selectivities obtained during kinetic 

resolution of racemic 3-substituted-1-olefins.  Due to slow insertion rates, it seems 3-

substituted-1-olefins behave similarly to propylene polymerizations at low olefin 

concentrations where polymer produced from (S)-1 and (S)-2 are indistinguishable.  A 

possible explanation for the observed differences in selectivity is that chain end control is 

more or less important for (S)-2 compared to (S)-1.  This explanation is particularly 

attractive because the olefin that displays the biggest difference in selectivity between the 

two catalysts, 3,5,5-trimethyl-1-hexene, belonged to a class of olefins (the substituted 

hexene monomers) that displayed different chain end control behavior for 

polymerizations catalyzed by (S)-1 (See Chapter 1).  Indeed, initial ethylene/3,5,5-
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trimethyl copolymerizations, which probe chain end control by removing the chiral chain 

with long runs of achiral comonomer, suggest that chain end control is more important 

for (S)-2 compared to (S)-1 because a copolymerization selectivity factor of 1.7 was 

observed compared to 8.0 for homopolymerization.  For comparison the corresponding 

selectivity factors for homo- and ethylene copolymerizations catalyzed by (S)-1 are 2.1 

and 1.2, respectively.11 

 Finally, the challenges associated with the synthesis of (S)-2 preclude any further 

modification of catalysts based on (S)-1 for the kinetic resolution of racemic -olefins. 

Unfortunately, replacing the ethyl group with something more sterically bulky like 

isopropyl would likely not be possible for several reasons.  First, reduction of the ketone 

used to synthesize (S)-2 required stoichiometric amounts of the chiral CBS borane to 

produce the alcohol product with high e.e.’s (Scheme 2.3).  It is unlikely that a less 

sterically biased ketone could be reduced with high enantioselectivities with the CBS 

catalyst or any other chiral reducing agent.  Even if enantioselective reduction were 

possible (or another route to the alcohol was devised), formation of the chiral Cp may be 

difficult because it involves SN2 displacement of a tertiary mesylate or tosylate with 

cyclopentadiene anion.   SN2  displacement of the mesylated (R)-3, during the synthesis 

of (S)-2 was plagued with a competing elimination reaction to give internal alkenes.  

Finally, substituting an ethyl group with an isopropyl group in 2 may allow rotation of the 

C-C bond between the cyclopentadiene and the stereogenic carbon. Steric difference 

between tert-butyl and isopropyl groups may not be enough to lock this C-C bond in one 

rotational conformation, and free rotation of this bond would effectively epimerize the 

chirality of the zirconocene by oscillating the sterically more hindered side of the 

zirconocene wedge (Scheme 2.5) 
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Scheme 2.5  Decreased rotational barrier for a hypothetical isopropyl-neopentyl catalyst.  

 For all of these reasons, other classes of enantiopure catalysts are currently being 

pursued for kinetic resolution of racemic -olefins including C2-symmetric zirconocenes 

(Chapter 3) and non-metallocene catalysts. 

2.5 Experimental Section 

 General methods.  All air and/or moisture sensitive materials were handled using 

high-vacuum line, swivel frit assembly (see swivelfrit.mov for a demo), glove box, 

Schlenk, and cannula techniques under a nitrogen or argon atmosphere.12 Argon was 

purified by passage through MnO on vermiculite and activated 4 Å molecular sieves.  

Propylene (polymer purity, Matheson) was passed through an Oxisorb column 

(Matheson) before use.  All glassware was oven dried before use.   

 Solvents were dried and degassed over sodium benzophenone ketyl, calcium 

hydride, or over titanocene.13  Trimethylaluminum was purchased from Aldrich and used 

as received.  Polymerization catalysts (S)-13 and (S)-27 were synthesized as previously 

reported. 3-methyl-1-pentene and 3,5,5,-trimethyl-1-hexene were purchased from 

Chemsampco.  3,4,4-trimethyl-1-pentene and 3,4-dimethyl-1-pentene were prepared as 

previously described.   All olefins were dried and degassed over LiAlH4 for 2 d, then 

vacuum transferred and stored in Schlenk flasks over CaH2.  In some cases, olefins stored 

over LiAlH4 formed into an unusable gel.  Methylaluminoxane (MAO) was purchased 

from Albemarle as 10% or 30% toluene solution.  All volatiles were removed in vacuo to 

give a white powder.  The white MAO solid was dried at 150 ºC for 12 h in vacuo high.  



CHAPTER TWO -82-

Tetradecane was dried over sodium and vacuum distilled into a Schlenk flask, which was 

stored in the glove box.   

 NMR spectra to characterize compounds were recorded on a Varian Mercury 

VX300 spectrometer (1H, 300 MHz, 13C{1H}, 75 MHz).  13C{1H} NMR spectra of 

polymers were obtained at 100 120 ºC on a Varian Inova spectrometer operating at 125 

MHz using an acquisition time of 3 s, a relaxation delay of 6 s, a sweep width of 3000 

Hz, and a 90º pulse angle.  At least 3000 transients were obtained. Conversions for 

polymerizations were determined by gas chromatography (Agilent 6890) using a 30 m x 

0.25 mm polysiloxane “HP 5” column or a 10 m x 0.1 mm “DB-1” column from Agilent 

technologies. Enantiomeric excess was determined by gas chromatography (Agilent 

6890) using a 30 m x 0.25 mm  cyclodextrin trifluoroacetyl “Chiraldex TA” column 

from Advanced Separations Technology. Single crystal X-ray crystallography was 

carried out on a Bruker SMART 1000 difractometer.  Atomic coordinates as well as bond 

distances and angles for (S)-2 appear in Appendix F. 

 The three parameter unidirectional site epimerization model was developed 

previously9 and fits to the theoretical model were performed by least squares analysis 

using Excel.  A short description of the model as well as results from the model varying 

all three parameters and only  using  and  from neat polypropylene polymerizations 

appear in Appendix G. 

 Generic polymerization procedure for racemic -olefins.  MAO (500-1000 

equiv.) and tetradecane (1.5 mL) were added to a Schlenk flask (10 mL) with a side arm 

containing a glass stopcock.  The appropriate olefin (1.5-2.0 mL) was vacuum transferred 

onto the reaction mixture.  For reactions in toluene, toluene was also vacuum transferred 

onto the reaction (in these cases only a small amount of tetradecane was added to the 

reaction for an internal standard).  The mixture was stirred under argon for a minimum of 

30 minutes.  An aliquot was removed via the side arm for a t = 0 reference point.  A 
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catalyst stock solution (2 μM) was generally made in toluene or benzene by vacuum 

transferring the appropriate solvent (3.5 mL) onto the catalyst (5 mg).  This solution was 

used within a few d of preparation.  No difference in selectivity or turnover was noticed 

for older catalyst solutions.  The catalyst solution (1-2 x 10-3 mmol) was added by syringe 

to the reaction vessel via the side arm.  The reaction mixture generally turned pale 

yellow.  The polymerization was followed by GC by taking occasional aliquots from the 

reaction (reactions generally take 13-24 h.).  When the reaction was 30%-70% complete, 

it was stopped by vacuum transferring the remaining volatiles.  The MAO was quenched 

with 10% HCl in methanol (10 mL).  The polymer was further purified by precipitation 

into methanol (200 mL) and stirring overnight.  The polymer was dried in vacuo at room 

temperature overnight.  Enantioassay was performed as previously described3 and as 

outlined in Chapter 1. 

 Polymerization of racemic -olefins at T = 0 ºC.  The procedure is the same as 

the generic polymerization procedure except that the reaction was equilibrated at 0 ºC 

with a circulating bath prior to the t = 0 GC aliquot, and toluene was used as the internal 

standard.  Catalyst loadings were also higher for these polymerizations (3-4 x 10-3 mmol 

in 0.5 mL benzene). 

 Polymerization of racemic -olefins at T = 50 ºC.  The procedure is the same as 

the generic polymerization procedure except a Schlenk tube (50 mL) without a side arm 

was used.  This change was made to avoid olefin loss at elevated temperatures.  

Unfortunately, this change also precludes following the reaction by multiple aliquot 

removal for fear that olefin evaporation would be significant.  Additionally, the catalyst 

solution (1 x 10-3 mmol) was introduced to the reaction at ambient temperatures via the 

Teflon stopcock of the Schlenk tube, then rapidly brought to 50 ºC where it stirred for 2-4 

h. 
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 Polymerization of propylene in toluene solutions.  MAO (250 mg, ~1000 

equiv.) and toluene (20 mL) were added to a glass reactor (125 mL, Andrews Glass Co, 

max. pressure 200 psig) equipped with a septum port, a three way valve connected to a 

quick disconnect, a large stir bar, and a pressure gauge (0-300 psig).  CAUTION: this 

procedure should be preformed behind a blast shield.  The flask was connected to the 

propylene tank and purged with propylene at pressures slightly greater than 1 atm for 5 

minutes.  The flask was pressurized to the appropriate pressure of propylene14 for 15 

minutes prior to catalyst injection.  A catalyst stock solution (2 μM) was made in the 

glove box by dissolving the catalyst (5 mg) in toluene (3.5 mL).  This solution was used 

within a few d and was stored at -30 ºC in the glove box.  No differences in activity or 

tacticity were noticed for polymerizations run with older catalyst solutions.  An aliquot of 

the stock solution (0.5 mL, 1 x 10-3 mmol) was loaded in a 1 mL gas-tight syringe 

equipped with a long 18-gauge steel needle.  The needle was stopped with a septum, and  

brought out of the glove box.  The catalyst solution was injected via the septum port 

against the propylene pressure of the reaction.  The reaction was run open to the 

propylene tank at the appropriate pressure with rapid stirring (700 rpm).  The reaction 

was run for 10-30 minutes depending on the propylene pressures with lower propylene 

pressures requiring longer reaction times.  The polymerization was stopped by slowly 

releasing the excess propylene pressure.  The MAO was quenched by slow addition of 

10% HCl/MeOH (20 mL).  After stirring for 30 minutes, the polymer was further purified 

by precipitation into methanol (400 mL).  This mixture was allowed to stir a few hours to 

dissolve all of the aluminoxane.  The polymer was isolated by filtration and washed with 

fresh methanol (3 x 10 mL).  The polymer was dried in vacuo at 110 ºC overnight.  The 

polymer microstructure was determined by 13C{1H} NMR (1,1,2,2-tetrachloroethane-d2, 

110 ºC). 
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 Polymerization of propylene in neat propylene (T = 0 ºC).  The procedure was 

the same as for propylene polymerizations carried out in toluene solutions except only 3 

mL of toluene was initially loaded into the reaction vessel.  Propylene (~20 mL) was 

condensed into the reaction vessel at 0 ºC.  The reaction was maintained at 0 ºC with an 

ice bath.  The reaction was run for 10 minutes before quenching as outlined above. 
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CHAPTER THREE 

 

SYNTHESIS OF ENANTIOPURE C2-SYMMETRIC 

ZIRCONOCENES FOR THE KINETIC RESOLUTION OF 

RACEMIC -OLEFINS 

 

3.1 Abstract 

 Enantiopure synthesis of C2-symmetric zirconocenes and their use for kinetic 

resolution of racemic -olefins by polymerization is reported.  Although the classical 

resolution of racemic zirconocenes was unsuccessful with reagents such as 1,1’-bi-2-

naphthol (BINOL) or (R)-O-acetyl-mandelic acid, enantioselective synthesis of the 

zirconocenes was possible using chelating chiral auxiliaries.   When coordinated to 

zirconium, the bisphenoxide ligand (R)-3,3'-di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-bi-2-

phenol ((R)-BIPHEN) (5) could effectively direct the coordination of Li{Me2Si(1-

indene)2} (Li{SBI}) to form one C2-symmetric enantiomer, {(R,R)-SBI}Zr{(R)-

BIPHEN}. Attempts to remove the BIPHEN chiral auxiliary were unsuccessful often 

resulting in zirconocene racemization.  To circumvent this problem, the diamine ligand 

(R)-N2,N2’-di-p-tolyl-1,1’-binaphtyl-2,2’-diamine ((R)-tolBINAM, (R)-5) was 

synthesized.  When coordinated to zirconium, (R)-tolBINAM effectively directed the 

coordination of Li{C2H4-1,2-(1-indene)2} (Li2{EBI}) to give one diastereomer, {(S,S)-

EBI}Zr{(R)-tolBINAM} (S,S,R)-18, which underwent a ligand metathesis reaction with 

hydrochloric acid to give (S,S)-(EBI)ZrCl2, (S,S)-3.  Enantiopure zirconocenes could be 

synthesized for EBI ligands with substituents located on the indenyl six-membered rings 

but substituents installed on the five-membered ring were not tolerated.  Racemic -

olefin polymerization with (S,S)-3, and (S,S,R)-18 gave identical selectivity factors (s) but 
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lower activities for the latter.  This suggests that the chiral auxiliary does not play a role 

in asymmetric induction but does inhibit initiation.  Low selectivity factors (s = kS/kR = 

1.5-4.0) were observed for all olefins investigated, but a constant selectivity was 

observed for a range of conversions suggesting that the zirconocene does not racemize 

during polymerization.   

3.2 Introduction 

 In the previous two chapters, mechanistic considerations were investigated that 

may limit kinetic resolution of racemic -olefins by polymerization using C1-symmetric 

zirconocene catalysts based on 1.1 Because modification of 1 was synthetically 

challenging and only modest changes in selectivity resulted,2 investigation into other 

catalysts for kinetic resolution was and continues to be pursued in our laboratory.3  When 

considering alternative catalysts, it is instructive to return to the original design 

principles. First, the catalyst must be very active for polypropylene polymerizations 

because polymerization rates are much slower for bulky 3-substituted olefins that are 

used for kinetic resolution.4  Next, the catalyst should show high levels of isospecificity 

so that olefin insertions occur from the same enantioface for every insertion.  Finally, an 

enantiopure catalyst that does not undergo racemization during polymerization must be 

synthesized.   

Me2Si

Me2Si
i-Pr

i-Pr

Zr
Cl

Cl

CH3

H

S

1  
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 An attractive class of catalyst that meets most of these criteria are C2-symmetric 

bis-indenyl ansa-zirconocenes such as (rac)-{Me2Si( 5-1-indenyl)2}ZrCl2 2 ((rac)-

(SBI)ZrCl2)
5 and (rac)-{C2H4(

5-1-indenyl)2}ZrCl2 3 ((rac)-(EBI)ZrCl2).
6  These 

catalysts are very active for propylene polymerizations (190 and 188 kgpoly/mmolcat*h, 

respectively),7,8 and since the two polymerization sites on the catalysts are identical, 

olefin insertions occur from the same enantioface leading to highly isotactic 

polypropylene ([mmmm] = 81.7 and 78.5, respectively).7   

 It seems that the major limitation for these catalysts is the ability to synthesize 

them in an enantiopure fashion.  It is important to emphasize the complexity associated 

with this limitation.  Zirconocenes such as 2 and 3 are typically synthesized either by salt 

metathesis between the deprotonated ligand precursor and zirconium tetrachloride or by 

an amine elimination route from reaction of the protonated ligand with zirconium tetrakis 

dimethylamide followed by chlorination with reagents such as trimethylsilyl chloride.  

During the course of either metallation reaction, three stereoisomers can form two C2-

symmetric isomers (R,R and S,S or the rac isomers) and one Cs-symmetric isomer (S,R = 

R,S or meso isomer) (Scheme 3.1).  Statistically, the meso and rac diastereomers should 

form in a 1:1 ratio, but thermodynamics can favor one or the other diastereomer 

depending on the ligand identity and reaction conditions.  Since the meso diastereomer 

has been shown to yield atactic polypropylene9 and its separation from the isospecific rac 

isomers can be difficult, much effort has been devoted towards the synthesis of C2-

symmetric catalysts devoid of the meso diastereomer.10-16  In addition to this 

complication, there is evidence that interconversion between the stereoisomers can occur 

either with the assistance of salts such as lithium chloride or by a radical mechanism 

(Scheme 3.1).16-18  All of these factors make any attempt to synthesize enantiopure C2-

symmetric zirconocene complicated. 
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Scheme 3.1 Stereoisomers and known racemization mechanisms for 2.16-18 

 At the onset of our investigation, only a few enantiopure C2-symmetric Group 

III/IV metallocenes had been synthesized,16,19-23 the most notable of which was 

Brintzinger’s catalyst, {C2H4-1,2-( 5-4,5,6,7,-tetrahydro-1-indenyl)}ZrCl2 4 

((EBITHI)ZrCl2).
20,21,23  Brintzinger showed that enantiopure (S,S)-4 could be obtained 

by resolving a racemic mixture of the zirconocene upon reaction with (S)-1,1’-bi-2-

naphthol ((S)-BINOL) or (R)-O-acetylmandelic acid followed by treatment with 

hydrochloric acid.23  Buchwald improved on the BINOL procedure and provided access 

to both chiral antipodes of 4 by treating the reaction mixture with an equivalent of 4-

aminobenzoic acid, which coordinates the unreacted antipode and causes it to precipitate 

out of solution.  Isolation of the enantiomer in the precipitate can be achieved by 

treatment with 1,1’-biphen-2,2’diol  (Scheme 3.2).20 
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Scheme 3.2  Resolution of (rac)-4 with BINOL.20 

 Enantiopure 4 has been shown to be an effective catalyst for the asymmetric 

hydrogenation of olefins,24 ketimines,23 and enamines.25  Ciardelli et. al. found that  

{(S,S)-EBTHI}Zr{(R)-O-acetylmandelic acid}2 could be used as a polymerization 

catalyst for the kinetic resolution of 4-methyl-1-hexene, but the selectivity factor was low 

(s = kS/kR  = 1.4) (Scheme 3.3).26  Furthermore, the authors found that the catalyst was 

inactive for the polymerization of 3-substituted racemic -olefins such as 3-methyl-1-

pentene. 
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Scheme 3.3 Kinetic resolution of 4-methyl-1-hexene with {(R,R)-THEBI}Zr{(R)-O-

acetylmandelate}2. 
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 Since the indenyl-based catalysts 2 and 3 were known to polymerize 3-methyl-1-

pentene,27,28 and rapid modification of these catalysts seemed possible due to well-

established indene chemistry,7,8,11,29-31 enantiopure versions of 2 and/or 3 were initially 

targeted as catalysts for kinetic resolution.  There were two main problems that needed to 

be overcome: (1) a route to enantiopure zirconocenes 2 and/or 3 needed to be devised and 

(2) it must be shown that racemization of the zirconocene both as the precatalyst and in 

the activated form does not occur. We now report both a classical resolution approach as 

well as a chiral auxiliary approach to meet the first requirement, while selectivity factors 

observed during the course of the kinetic resolution reaction have provided some insight 

into the question of catalyst racemization. 

3.3 Results and Discussion 

 Attempted resolution of racemic C2-symmetric zirconocenes. Since resolution 

of 4 was possible using BINOL or O-acetyl mandelic acid, we initially tried to resolve 2 

using the methods outlined by Brintzinger23 and Buchwald.20  Treatment of 2 with 

BINOL in the presence of triethylamine in aromatic solvents led to protonation of the 

dimethylsilyl-bis-indenyl ligand and decomposition of the complex.  In a second 

experiment, 2 was treated with the lithium salt of BINOL in the hope that lithium 

chloride precipitation would drive the product towards one diastereomer.16  

Unfortunately, this reaction was plagued by the insolubility of the deprotonated BINOL 

and decomposition of the zirconium complex at higher temperatures.  When the 

experiments were repeated in coordinating solvents or with chelators such 

tetramethylethylenediamine (TMEDA), rapid decomposition occurred. Similar problems 

were encountered when (R)-O-acetylmandelic acid was employed as the resolving 

reagent.  Reaction of (R)-O-acetylmandelic acid with 2 in the presence of triethylamine 

led to the formation of what was believed to be the diastereomeric pair as indicated by 
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NMR spectroscopy. However, the indenyl ligand was still protonated at a rate 

comparable to ligand substitution.   

 Stereospecific synthesis of enantiopure C2-symmetric zirconocenes using a 

bisphenolate chiral auxiliary.  An alternative route to enantiopure C2-symmetric 

zirconocenes is by stereospecific synthesis using a chiral auxiliary followed by removal 

of the chiral auxiliary to give the zirconocene dichloride or dialkyl precatalysts. Damrau 

and Brintzinger15 have used this strategy to synthesize several diastereomerically pure 

C2-symmetric zirconocenes including 2 using achiral bisphenolate ligands.15  

 Initially, BINOL was considered as a chiral replacement for the biphenol ligands 

in order to achieve an enantiospecific reaction, but previous attempts to synthesize related 

(BINOL)TiCl2 by Heppert and coworkers led to multi-nuclear complexes.32   Presumably 

this tendency could be avoided by using a chelating bisphenol with substitution on the 

carbon adjacent to the alcohol functionality.  A convenient compound that meets this 

requirement was the commercially available 3,3'-di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-

bi-2-phenol (BIPHEN). With the racemic bisphenol, a short synthesis of diastereomeric 

pure C2-symmetric zirconocenes was accomplished (Scheme 3.4).  Treatment of the 

sodium salt of (rac)-BIPHEN (5) with ZrCl4(THF)2 gave (rac)-(BIPHEN)ZrCl2(THF)2, 6, 

in 60% yield.  When 6 was treated with Li2(SBI)•Et2O only one diastereomer of 

(SBI)Zr(BIPHEN), 7, was observable by 1H NMR spectroscopy (Figure 3.1)! 

Furthermore, racemization of the compound is slow as the 1H NMR spectrum remained 

unchanged after several days in solution at room temperature with no precautions taken 

to shield the reaction from light. 
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Scheme 3.4 Diastereospecific synthesis of 7 using BIPHEN chiral auxiliary.  Note:  

enantiomer shown for 7 is {(S,S)-SBI}Zr{(S)-BIPHEN}. 

 

Figure 3.1  1H NMR of (rac)-7 in C6D6. 

 Since the 1H NMR spectrum of 7 was so simple, it was deduced that the 

compound was C2-symmetric.  The diastereomer with the indenyl ligand in a meso 

conformation would result in many inequivalent proton resonances that would otherwise 

be equivalent for a C2-symmetric diastereomer.  Particularly diagnostic was the single 

dimethylsilyl resonance that appears upfield (0.7 ppm).  For (meso)-2, these protons 

appear as two singlets whereas (rac)-2 displays only one resonance.5   
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 The generality of the synthetic route was investigated on an NMR scale by 

reacting 6 with several different deprotonated ligands (Scheme 3.5).  The method appears 

to tolerate different ansa backbones as demonstrated by the reaction with the ethylene-

linked Li2(EBI), which produced only one C2-symmetric diastereomer 8.  Additionally, 

the method is promising for the synthesis of enantiopure cyclopentadiene-based 

zirconocenes because one major C2-symmetric diastereomer 9 was observed in the NMR 

spectrum when 1-Me2Si(3-C5H3(CMe3))2 was reacted with 6. 

Zr
O

O

t-Bu

t-Bu

Si

{(S,S)-SBI}Zr{(S)-BIPHEN}

7

Zr
O

O

t-Bu

t-Bu

8

{(S,S)-EBI}Zr{(S)-BIPHEN}

Zr
O

O

t-Bu

t-Bu

t-Bu

Si

t-Bu

{(S,S)-Dp}Zr{(S)-BIPHEN}

9  

Scheme 3.5  Proposed structures for 7-9 (enantiomers omitted for clarity). 

 Crystallization of 7 was attempted in order to determine which C2-symmetric 

diastereomer was formed by X-ray crystallography (i.e., R,R,R or S,S,R and their 

respective enantiomeric pair for SBI,SBI,BIPHEN, respectively).  Several solvents and 

mixtures of solvents were tried as well as slow evaporation techniques, but all of these 

attempts were unsuccessful due to the tendency for 7 to precipitate out of solution as an 

amorphous solid.  

 To model the steric interactions involved, PM3 calculations were carried out on 

the three diastereomers.  Figure 3.2 shows the optimized structures from these 

calculations with their relative free energies using the meso isomer as a reference.  

Although these calculations were carried out at a low level of theory, it was reassuring 

that the lowest energy diastereomer was a C2-symmetric diastereomer.  Analysis of these 

structures indicated that the major steric interaction that favors the (R,R,R)  diastereomer 
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is between the tert-butyl groups on BIPHEN and the six-membered ring of SBI.  This 

interaction occurs once in the (meso,R) and twice in the (S,S,R) diastereomers, but not at 

all in the (R,R,R) diastereomers in which both tert-butyl groups occupy space adjacent to 

the five-membered ring of  SBI.   

 

Figure 3.2 PM3 calculations for the three possible diastereomers of 7.  Note: ligand 

enantiomer shown is (R)-BIPHEN. 
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 To corroborate the calculations, a steady-state 1-D nOe difference experiment was 

carried out on 7.  We anticipated from the calculations that the (S,S,R) diastereomer 

would display a strong nOe between the tert-butyl group and the resonances from the SBI 

six-membered ring whereas the tert-butyl groups for the (R,R,R) diastereomer would 

have a stronger nOe with resonances from the five-membered ring.  When the tert-butyl 

group was irradiated (Figure 3.3), a strong nOe was observed for the doublets at 5.88 and 

6.08 ppm as well as for the singlet at 7.13 ppm.  A somewhat weaker nOe was observed 

for resonances at 6.90 and 7.51  ppm.  With the aide of other nOe spectra and by analogy 

to other SBI zirconocenes, the spectrum for 7 could be completely assigned as shown in 

Figure 3.1.  The doublets at 5.88 and 6.08 ppm are distinctive for SBI zirconocenes and 

are undoubtedly the indenyl hydrogens on the five-membered rings of SBI.5  The singlet 

at 7.13 ppm is assigned to the Ar-H proton on BIPHEN.   The multiplet centered at 6.90 

ppm is a combination of three chemically distinct protons (6H in all due to C2-symmetry) 

assigned to the indenyl hydrogens on the six-membered rings of SBI.  The doublet at 7.51 

ppm can be assigned to Hj (Figure 3.1).  This assignment was made primarily from the 

observance of a strong nOe between this resonance and the singlet assigned to the Me2Si 

group (0.72 ppm).  Qualitatively, the observation of a strong nOe between the tert-butyl 

group of BIPHEN and the five-membered rings of SBI supports an assignment for the 

(R,R,R) diastereomer for 7 in full agreement with the lowest energy diastereomer found 

by computation. 
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Figure 3.3 1-D nOe difference spectrum of 7 when tert-butyl group of BIPHEN was 

irradiated. 

 A more quantitative assignment can be achieved by using the tert-butyl–Ar-H 

nOe as an internal reference.  The calculations suggest that this distance is likely to be 

insensitive to the diastereomer formed.  Therefore, the magnitude of the observed tert-

butyl–Ar-H nOe can be correlated to the value for the corresponding distance from the 

calculations and an estimate for the distance between the tert-butyl group and the five- 

and six-membered ring protons of the SBI ligand can be made using the well-known 1/r6 

relationship between the nOe intensity and distance (r).33  These estimates along with the 

expected distances for both C2-symmetric diastereomers from the calculations are 

presented in Table 3.1.  From these data and considering that the (R,R,R) diastereomer is 
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the diastereomer calculated to be lowest in energy, 7 can be assigned as the (R,R,R) 

diastereomer with reasonable confidence. Although nOe studies were not carried for 8 

and 9, the major diastereomer for these compounds is presumably (R,R,R) by analogy to 

7.  

     distances from PM3 (Å) 

hydrogen 
chemical 

shift 
nOe 

integral 
normalized 

nOea 
calculated 

distance (Å) (R,R,R)-7 (S,S,R)-7 

Hb 7.13 3.27 1.64 2.27 2.27 2.25 

Hg 5.88 1.73 0.86 2.52 2.68 3.46 

Hf 6.08 1.98 0.99 2.46 2.59 3.33 

Hh 6.91 0.09 0.05 4.09 4.15 3.81 

Hi & Hj 7.02 0.99 0.25 3.11b 3.85b 2.70b 

Hk 7.51 0.20 0.10 3.62 3.81 3.85 
a  normalized by the number of protons contributing to the signal.   b average of the two distances.  

Table 3.1 Estimated tert-butyl–Hn distances from the nOe difference spectrum of 7 and 

comparison with corresponding distances for the (S,S,R) and (R,R,R) diastereomers from 

PM3 calculations. 

 The final step to reach enantiopure precatalysts from 7 is removal of the chiral 

auxiliary.  Unfortunately, this step proved to be problematic.  Many different reagents 

were used in attempts to convert 7 to the corresponding dihalide or dialkyl zirconocene 

(Scheme 3.6).  Attempts to halogenate 7 with trimethylsilyl chloride lead to no reaction 

whereas treatment with hydrochloric acid lead only to protonated SBI ligand.  Aluminum 

trichloride seemed to react with 7, but no new Me2Si resonances were observed in the 1H 

NMR spectrum perhaps indicating aluminum coordination to oxygen.  Aluminum 

tribromide successfully converted 7 into (rac)-(SBI)ZrBr2 but its formation was 

apparently accompanied by racemization as an equal amount of (meso)-(SBI)ZrBr2 was 

observed in the 1H NMR spectrum.  When a ligand exchange reaction with zirconium 

tetrachloride was attempted, the solution turned pale green and the NMR broadened 

indicating either a paramagnetic or multinuclear species.   
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Alkylations were initially avoided because Grignards and lithium reagents 

typically used for alkylations are known to racemize C2-symmetric zirconocenes.17  Since 

halogenation reactions were unsuccessful, however, alkylations were attempted.  

Unfortunately, reactions with methyl lithium or dimethyl Grignard were messy and 

irreproducible.  Alkylations with trimethyl aluminum suffered a similar fate to aluminum 

trichloride reactions.  Finally, alkylating reagents such as lithium tetramethyl aluminate, 

typically used for late transition metals, were unreactive towards 7. The oxophilicity of 

zirconium and/or the steric hindrance provided by the tert-butyl groups of BIPHEN are 

likely reasons for the complications associated with its removal from 7.  

Zr
O

O

t-Bu

t-Bu

SiAlMe3

AlCl3

AlBr3

Me3SiCl

no new Me2Si resonances

no new Me2Si resonances

no reaction

1:1 (rac):(meso) (SBI)ZrBr2

ZrCl4 green solution

broad NMR

MeLi(rac)-(SBI)ZrMe2?

irreproducible

HCl

Li[AlMe4]

Me2AlOEt

MeMgBr

no reaction

no reaction

(rac)-(SBI)ZrMe2? 

not isolable

free SBI ligand

Alkylation Halogenation

(rac)-7

Scheme 3.6 Attempts to remove BIPHEN from (rac)-7 by alkylation or halogenation. 

Polymerization of racemic -olefins using the enantiopure zirconocene 

catalyst, (R,R,R)-7.  Although enantiopure zirconocene dichloride or dialkyl precatalysts 

were inaccessible with the bisphenoxide route, there are reported examples where 

bisalkoxide zirconocenes are activated in situ with MAO without any detrimental effects 

to catalyst activity.15  In these cases MAO is believed to first alkylate the bisalkoxide then 

activate the dialkyl species towards polymerization by methide abstraction.  Figure 3.4 is 

a plot of conversion versus time for the polymerization of 3-methyl-pentene catalyzed by 

(rac)-7/MAO and (rac)-2/MAO.  It is clear from this plot that (rac)-7/MAO is less active 

than (rac)-2/MAO presumably because MAO activates only a small portion of (rac)-7 
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towards polymerization.  Turnover frequencies after 30 hours of polymerization indicate 

that (rac)-2/MAO is approximately six times faster than (rac)-7/MAO. 

 

Figure 3.4 Plot of conversion versus time for 3-methyl-1-pentene polymerizations 

catalyzed by (rac)-2 or (rac)-7. 

Although 3-methyl-1-pentene polymerization was slow, enantiopure (R,R,R)-7 

was synthesized in complete analogy to Scheme 3.4 (using (R)-BIPHEN), and kinetic 

resolution of racemic -olefin by polymerization was attempted.  To compensate for the 

loss in activity, these experiments were carried out at 45 ºC.  The selectivity factors and 

turnover frequencies for these experiments appear in Table 3.2 and indicate that this 

system is not useful for the kinetic resolution of any of the racemic -olefins tested.  It is 

possible that low selectivity factors were observed because high reaction temperatures 

were required.  However, these data are also consistent with rapid racemization of the C2-

symmetric catalyst after or during MAO activation and/or offsetting effects from the 

chiral counter ion which results from in situ activation of (R,R,R)-7.  Because of this 

ambiguity, an alternative strategy for the synthesis of C2-symmetric zirconocenes was 

devised. 
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R

R

MAO, Al/Zr = 5000

tetradecane (2.0 mL)

n

n

catalyst

(0.05 mol%)

2.0 mL

monomerentry

1

3

4

TOFa s = kR /kS

85 ---

58

52

1.07

1.00

2 13 ---

catalyst T (ºC)

2 25

7 25

(R,R,R)-7 45 75 1.10

(R,R,R)-7 45

455 (R,R,R)-7

a TOF = mmololefin/(mmolcat*h)  

Table 3.2 Selectivity factors in racemic -olefin polymerizations catalyzed by  

(R,R,R)-7/MAO. 

Stereospecific synthesis of enantiopure C2-symmetric zirconocenes using a 

diamine chiral auxiliary.  Since zirconium amide bonds are generally weaker than 

zirconium alkoxide bonds,34 replacement of the BIPHEN ligand with a diamine ligand 

should make the chiral auxiliary more labile.  Indeed, Jordan and coworkers have shown 

that the achiral diamine ligand PhNH(CH2)3NHPh can be used to direct the coordination 

of EBI to form a C2-symmetric zirconocene, which, when reacted with hydrochloric acid, 

gives 3 without any meso isomer.12  The tendency for the coordinated ligand to adopt a 

C2-symmetric conformation provided the steric bias required to favor the rac 

diastereomer.  This observation coupled with the success we had with the bisphenoxide 

ligands prompted the synthesis of a chiral diamine ligand based on 1,1’-binaphtyl-2,2’-

diamine (BINAM).  It is important to note that during the course of this work Jordan 

published similar findings for the enantiopure diamine ligand  
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(R,R)-PhNHCH(Me)CH2CH(Me)NHPh.22  However, no catalysis was reported using the 

enantiopure zirconocene and only one example was synthesized ((S,S)-3).  Additionally, 

synthesis of Jordan’s ligand is lengthy and the starting material is costly. 

 In order to mimic the coordination geometry of Jordan’s achiral ligand N,N’-di-

substitution of the BINAM ligand was necessary.  Alkylation of (rac)-BINAM was 

possible by condensation with benzaldehyde followed by lithium aluminum hydride 

reduction to give (rac)-N,N-dibenzyl BINAM (benzBINAM, Scheme 3.7).  

Deprotonation of (rac)-benzBINAM followed by reaction with zirconium tetrachloride 

was straightforward to form (rac)-(benzBINAM)ZrCl2(THF)2 10, but reaction with 

Li2(SBI) gave a 1:1 mixture of rac and meso diastereomers by 1H NMR spectroscopy.   

NHCH2Ph

NHCH2Ph
NH2

NH2

1) 2.0 PhCOCl 1) 2.0 n-BuLi
(rac)

2) ZrCl42) LiAlH4

1:1 mixture 
rac/meso Me2Si
resonances

benzBINAM

Zr
N

N

Cl

Cl

THF

THF
Ph

Ph

Li2(SBI)

10  

Scheme 3.7 Synthesis of benzBINAM and attempted metallation. 

 A curious feature of this NMR was that only one set of benzyl resonances (with 

identical chemical shifts to 10) was observed despite the evidence from the dimethylsilyl 

resonances for at least two species in solution.  At the time, it was rationalized that the 

NMR resonances were coincidental, and that benzBINAM poorly directed the 

coordination of SBI because of conformational flexibility originating from N–CH2Ph 

bond rotation.  This rationale prompted the synthesis of N,N’-di-arylated BINAM ligands.  

After more careful examination of the data and considering the observations made with 

the N,N’-di-arylated BINAM ligands (vide infra), it was later concluded that the species 

resulting from the deprotonation of (rac)-benzBINAM and ZrCl4(THF)2 was a 1:1 

mixture of (rac)-(benzBINAM)2Zr and ZrCl4(THF)2.  When Li2(SBI) was reacted with 

this mixture, it reacted unselectively with ZrCl4(THF)2 to give a 1:1 mixture of rac:meso 
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diastereomers.  During the course of this reaction (rac)-(benzBINAM)2Zr was left 

unchanged thereby explaining the unexpected NMR spectrum.  Since the N,N’-di-

arylated ligands were successful for synthesizing enantiopure zirconocenes (vide infra), 

however, the N,N’-di-alkylated ligands were not pursued further. 

 Access to (rac)-N2,N2’-di-phenyl-1,1’-binaphthyl-2,2’-diamine ((rac)-

phenBINAM, 11) was accomplished with a palladium-catalyzed Buchwald/Hartwig 

coupling reaction between (rac)-BINAM and 2 equivalents of phenyl bromide (Scheme 

3.8).  Metallation of (rac)-phenBINAM was attempted three different ways (Scheme 3.8).  

First, deprotonation of the ligand with n-butyl lithium followed by treatment with 

ZrCl4(THF)2 gave a mixture of products by 1H NMR spectroscopy.  The major product of 

this mixture was determined to be (rac)-(phenBINAM)2Zr by comparison to an 

independently synthesized sample of the bis-ligated species.  Bis-ligation could not be 

prevented even with an excess of ZrCl4(THF)2.  Isolation of a mono-ligated zirconium 

species was possible by reacting (rac)-phenBINAM with a slight excess of tetrabenzyl 

zirconium to give (rac)-(phenBINAM)Zr(CH2Ph)2 (12).  Unfortunately, no reaction 

occurred when 12 was treated with SBI even after heating to 80 ºC in benzene.   

 



CHAPTER THREE -105-

NH2

NH2
(rac)

Pd(dba)3
(rac)-BINAP

Na(OC(CH3)3)
bromobenzene
80 ºC

NHPh

NHPh

1) 2.0 n-BuLi

phenBINAM

2) ZrCl4

11

major product

(phenBINAM)2Zr

Zr(CH2Ph)4

Zr

Zr

N

N

Ph

Ph

CH2Ph

CH2Ph

N

N

Ph

Ph

2

12

SBI

80 ºC, days
no rxn.

Zr(NMe2)4

Zr

N

N

Ph

Ph

NMe2

NMe2

13

Me3SiCl
ambiguous 

resultsTHF

 

Scheme 3.8  Synthesis of (rac)-phenBINAM (11) and attempted metallation. 

 Finally, successful mono-ligation of (rac)-phenBINAM could be achieved by 

reacting the ligand with an excess of Zr(NMe2)4.  This reaction was spontaneous to give 

(rac)-(phenBINAM)Zr(NMe2)2 (13) and did not require conditions that expel dimethyl 

amine suggesting a large thermodynamic preference for the formation of 13.  

Furthermore, it was critical that an excess of Zr(NMe2)4 was used in order to prevent bis-

ligation, which occurred when stoichiometric amounts of Zr(NMe2)4 were employed.  An 

amine elimination route13, 14 to the zirconocene was explored by treating 13 with the EBI 

ligand.  However, no reaction occurred even after heating to 60 ºC for a few days.  A 

more circuitous route to the desired zirconocene is converting 13 to the zirconium 

dichloride species (rac)-(phenBINAM)ZrCl2(THF)2 (14) followed by salt metathesis with 

deprotonated ansa ligand.  Unfortunately, attempts to convert 13 to 14 using 

trimethylsilyl chloride gave ambiguous results, because without the aid of aliphatic 
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protons, identification of the number and identity of the product(s) by NMR spectroscopy 

was difficult. 

 To circumvent this problem, p-bromotoluene was used in the Buchwald/Hartwig 

coupling reaction to give (rac)-N2,N2’-di-p-tolyl-1,1’-binaphthyl-2,2’-diamine ((rac)-

tolBINAM, 15).  Unlike phenBINAM, useful NMR handles are present for tolBINAM as 

both the tolyl methyl groups and the AB quartet of 1,4-substituted aryls are characteristic.  

Using (rac)-tolBINAM, a successful route to diastereomerically pure C2-symmetric 

zirconocene was finally found (Scheme 3.9).  Synthesis of (rac)-

(tolBINAM)ZrCl2(THF)2 (16) was achieved via the amine elimination route.  Unlike 14, 

however, NMR-identification of 16 was possible when (rac)-(tolBINAM)Zr(NMe2)2 (17) 

was treated with trimethylsilyl chloride.  Care must be taken during the chlorination 

reaction as trimethylsilyl chloride contaminated with hydrochloric acid led to free (rac)-

tolBINAM.  When 16 was exposed to Li2(EBI) it was satisfying to observe only one C2-

symmetric diastereomer 18 in the 1H NMR spectrum as evidence by the single methyl 

resonance and the relatively simple aryl resonances including an AB quartet from the 

tolyl group of tolBINAM (Figure 3.5).35  Unlike the BIPHEN ligands, removal of the 

tolBINAM chiral auxiliary could be achieved by treating 18 with hydrochloric acid to 

give 3 without any evidence for the meso isomer.  Interestingly, 3 could not be obtained 

by treating 18 with trimethylsilyl chloride possibly due to the steric congestion about 18. 
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Scheme 3.9 Synthesis of (S,S,R)-18 and removal of the chiral auxiliary with 

hydrochloric acid.  Note: Enantioselective synthesis proceeded similarly using (R)-

tolBINAM to give the enantiomer illustrated, {(S,S)-EBI}Zr{(R)-tolBINAM} (vide 

infra). 

 

Figure 3.5  1H NMR of (rac)-18 in C6D6.  

 Crystallization of 18 from toluene/petroleum ether solutions gave bright orange 

crystals suitable for single-crystal X-ray crystallography.  Several views of the X-ray 

crystal structure of 18 appear in Figure 3.6.  Consistent with the NMR solution data, the 
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solid-state crystal structure indicates a C2-symmetric coordination mode for the EBI 

ligand.  Furthermore, the six-membered rings of the EBI adopt the stereochemistry 

required to avoid the tolyl groups of the protruding tolBINAM ligand.  This tendency is 

particularly evident for the wedge view of the zirconocene (Figure 3.6, view A).  The 

stereochemical consequence of this interaction is that the R antipode of the tolBINAM 

ligand encourages EBI ligand binding with S,S to give the (S,S-EBI)Zr(R-tolBINAM) 

diastereomer or (S,S,R)-18 (To better visualize the coordination environment of 18 see 

structure01.avi). 

 

Figure 3.6 Molecular structure of (rac)-18 from three different angles.  tolBINAM and 

EBI ligands are depicted in red and black, respectively.  Thermal ellipsoids are drawn to 

50% probability (see Appendix I for complete list of bond distances and angles). 

 Enantioselective synthesis of (S,S,R)-18 was performed by analogy to the racemic 

synthesis described in Scheme 3.9 using enantiopure (R)-tolBINAM.  The synthesis 
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proceeded similarly giving high yields of (S,S,R)-18, but solubility of the enantiopure 

zirconium compounds were different compared with the racemic compounds (see 

experimental section).  Solubility became particularly problematic when (S,S,R)-18 was 

treated with hydrochloric acid to remove the chiral auxiliary.  During the racemic 

synthesis, 3 could be separated from the diamonium chloride salt of (rac)-tolBINAM (19) 

by toluene solvent extraction.  Surprisingly, (R)-19 was found to be soluble in all 

aromatic and ethereal solvents tested.  Fractional recrystallization of the reaction mixture 

was successful for the isolation of (S,S)-3, but several recrystallizations were necessary 

leading to low yields.  Anion exchange with sodium tetraphenylborate and 

tetrabutylammonium hexafluorophosphate were attempted, but the solubility properties 

of the diammonium salt were not altered greatly.  Several metallic reagents were added to 

the reaction mixture in hopes that chelation to (R)-19 would occur, but all of these 

attempts were unsuccessful. 

 During the course of this latter investigation, however, some interesting unrelated 

reactivity was revealed.  When a mixture of (R,R)-3 and (R)-19 was treated with 

Zr(NMe2)4, four new indenyl resonances were observed in the 1H NMR spectrum rather 

than the expected resonances for (R)-(tolBINAM)Zr(NMe2)2.  This observation suggested 

that Zr(NMe2)4 reacted with (R,R)-3 rather than (R)-19.  To verify this hypothesis, 

racemic 3 was reacted with Zr(NMe2)4.  The reaction cleanly formed one product, the 

indenyl resonances of which were identical to those previously observed.  Additionally, 

without resonances from tolBINAM to complicate the NMR spectrum, it became 

apparent that the new species contained a dimethylamide functional group.  The presence 

of four different indenyl resonances was consistent with an asymmetric compound.  

Crystallization of the compound was possible and an X-ray crystal structure revealed that 

the compound synthesized was (rac)-(EBI)Zr(NMe2)Cl.  This finding was exciting 

because it could potentially be used as a general route to mixed zirconocene dialkyls by 
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the route proposed in Scheme 3.10.  Zirconocene dialkyl compounds have been shown to 

be very useful for mechanistic studies.36 

Zr ClCl

3

Zr(NMe2)4
Zr NMe2Cl

(rac) (rac) RLi
Zr NMe2R

(rac)

Zr NMe2R
(rac) Me3SiCl

Zr ClR
(rac) Zr R'R

(rac)R'Li

 

Scheme 3.10 Synthesis of (rac)-(EBI)Zr(NMe2)2Cl and proposed synthesis of mixed 

zirconocene dialkyl complexes. 

 The generality of using (R)-16 for the stereospecific synthesis of C2-symmetric 

zirconocenes other than 3 was not investigated extensively in favor of a brief 

investigation of how the synthetic method tolerated substituted EBI ligands (Scheme 

3.11).37  Synthesis of 1,2-bis(2-methyl-1-indenyl) ethane (20),31 1,2-bis(3-methy-1-

indenyl)ethane (21),30 and 1,2-bis(4,7-dimethyl-1-indenyl)ethane (22)11 “EBI” ligands 

were carried out and NMR-scale reactions with (R)-16 were performed.  Disappointingly, 

unselective reactions occurred for the 2-methyl and 3-methyl substituted ligands, 20 or 

21.   

1
2

3 4
5

6
7

20 21 22 24  

Scheme 3.11  Different “EBI” ligands. 
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 Reaction with 22 initially gave a complex NMR spectrum but after stirring at 

room temperature the spectrum became increasingly simplified until after a day of 

stirring a single C2-symmetric product was evident.  The complex NMR spectrum was 

likely due to the formation of many intermediates including all the possible diastereomers 

for 1-coordination of 22 as well as the reversible formation of the high-energy 

diastereomers with 2-coordination.  Although intermediates have not been identified, the 

NMR behavior is consistent with a reaction under thermodynamic control.  This result 

was reproducible on a preparative scale to give enantiopure (S,S-4,4’,7,7’-tetramethyl-

EBI)Zr(R-tolBINAM) (S,S,R)-23, the relative stereochemistry of which was determined 

by X-ray crystallography (Figure 3.7).  Considering that substituents installed on the six-

membered ring was tolerated, investigation into a 4,5-benzanulated EBI ligand (24, 

Scheme 3.11) is being pursued.  Although the results are preliminary, NMR evidence 

supports preferential formation of C2-symmetric zirconocene in this case as well. 

 

Figure 3.7 X-ray crystal structure for (S,S,R)-23.  tolBINAM and 22 are depicted in red 

and black, respectively for clarity.  Thermal ellipsoids are drawn to 50% probability. 

 Polymerization of racemic -olefins using enantiopure C2-symmetric 

zirconocene catalysts, (S,S)-3 and (S,S,R)-18. MAO activation of (S,S,R)-18 for 

racemic -olefin polymerization was accomplished in a similar fashion to (R,R,R)-7.  

Unlike (R,R,R)-7/MAO, however, room temperature polymerizations of 3-methyl-1-
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pentene catalyzed by (S,S,R)-18/MAO proceeded at reasonable rates.  The activity and 

selectivity factors for these polymerizations appear in Table 3.3.   

monomer

R

R

MAO, Al/Zr = 500

tetradecane (2.0 mL)

25 °C

n
n

(S,S,R)-18

(0.02 mol%)

entry

1

4

5

2.0 mL

6

a TOF = mmolchiral olefin/(mmolcatalyst*hr); 
b catalyst = (S,S)-3; c low conversion.

TOFa s = kS /kR

22 (3) 1.6 (0.1)

34 (8)

9 (1)

2.3c (0.4)

2.1 (0.1)

4.4 (0.4)

2 (1)

2b 86 (10) 1.8 (0.1)

 

Table 3.3 Selectivity factors in polymerization of racemic -olefins catalyzed by 

(S,S,R)-18/MAO and (S,S)-3/MAO. 

 In every case studied, the S antipode was preferentially polymerized, but 

selectivity factors were low with 3,4-dimethyl-1-pentene polymerizations being the 

highest (s = kS/kR = 4.4).  Despite the low selectivities, these results were encouraging 

because modification of (S,S)-18 is possible and doing so could increase selectivity.  As 

previously mentioned, enantiopure 4,7-dimethyl substituted zirconocene (S,S,R)-23 could 

be obtained using the tolBINAM chiral auxiliary.  However, it was disappointing to find 

that both (S,S,R)-23 and the corresponding zirconocene dichloride were inactive towards 

chiral -olefin polymerizations.  A possible solution to this problem is a 4,5-

benzanulated EBI ligand (24). Similar ligands with this substitution pattern have been 



CHAPTER THREE -113-

synthesized and propylene polymerization catalyzed by the corresponding zirconocenes 

proceeded without compromising facial selectivity or activity.8,27  Unfortunately, 

investigation into this catalyst is still in its preliminary stages.  

 In addition to using (S,S,R)-18 as the precatalyst, preliminary data for 3-methyl-1-

pentene polymerizations using (S,S)-3 appear in Table 3.3.  The selectivity factors for 

these polymerizations are, within experimental error, the same (entry 1 vs. entry 2) 

indicating that selectivity is not effected by the presence of the chiral auxiliary in (S,S,R)-

18 polymerizations.  As anticipated, the activity for polymerizations catalyzed by (S,S)-3 

were greater compared to (S,S,R)-18.  However, turnover frequencies were only four 

times faster for the zirconocene dichloride.  As previously stated, turnover frequencies for 

2 were six times faster than the corresponding bisphenoxide-containing zirconocene, 7.  

This difference is again reflective of the lability of tolBINAM compared to BIPHEN. 

olefin

R

R

MAO, Al/Zr = 500

tetradecane (2.0 mL)
25 °C

n
n

 (0.02 mol%)

entry

1

3

2.0 mL

aTOF = mmolchiral olefin/(mmolcatalyst*hr).  b 0.003 mmol catalyst.

TOFa s = kS /kR

19 1.52

26 2.14

2

conv. (%) e.e. (%)

4

37.4 9.8

59.7 24.0 25 1.70

38.7 18.2

65.9 37.8 42 2.05

(S,S,R)-18

time

24 h
25 h

38 h

45 h

5b 107 h 30.4 11.4 1.9010

 

Table 3.4 Kinetic data from selected polymerizations that comprise Table 3.3. 

 Finally, it is important to note that polymerizations catalyzed by (S,S,R)-18 do not 

display behavior consistent with catalyst racemization.  To illustrate this point, Table 3.4 

contains data from selected individual polymerizations that comprise Table 3.3.  For a 
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catalyst that racemizes during the course of a reaction, selectivity factors should degrade 

at higher olefin conversions.  Table 3.4 clearly shows that this is not the case for two 

different olefins indicating that the active species formed from (S,S,R)-18/MAO does not 

racemize during the polymerization. 

3.4 Conclusions 

 Many of the potential obstacles associated with using C2-symmetric zirconocene 

polymerization catalysts for the kinetic resolution of racemic -olefins have been 

overcome.  The steric interactions important for the successful synthesis of enantiopure 

C2-symmetric zirconocenes were defined by using the BIPHEN and tolBINAM chiral 

auxiliaries.  It is interesting to compare the results using these chiral auxiliaries.  As 

previously discussed, the preferred C2-symmetric conformation for the EBI ligand in 

(R,R,R)-7 is opposite to what was observed for (S,S,R)-18.  This indicates that tolBINAM 

directs the coordination of EBI differently than BIPHEN.  The crystal structure of 

(S,S,R)-18 (Figure 3.6) suggests that the major steric interaction preventing the formation 

of (R,R,R)-18 is between the N-tolyl substitution of BINAM and the six-membered rings 

of EBI.  Similarly, the PM3 calculations for 7 (Figure 3.2) suggest that the (S ,S,R)-7 

diastereomer is disfavored by steric interactions between the tert-butyl groups of 

BIPHEN and the six-membered rings of SBI.  This discrepancy arises because the 

substituents translate the axial chirality from the binapthyl group in orthogonal directions.  

The tolyl substituent of tolBINAM runs roughly parallel to the long axis of the naphthyl 

moeity, effectively extending the same sense of axial chirality past the principle rotation 

axis.  In order to avoid the tolyl groups, the EBI ligand is forced to adopt the 

conformation with an opposite sense of axial chirality.  On the other hand, the tert-butyl 

groups of BIPHEN extend roughly perpendicular to the long axis of the biphenyl groups 

effectively relegating the tert-butyl groups to occupy the same steric space that the 3,3’-

methyl groups occupy.  In order to avoid the tert-butyl groups, the EBI ligand adopts the 
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conformation with the same sense of axial chirality (to better visualize this see 

structure01.avi and structure02.avi). 

 Before leaving this point, it is interesting to note that (R,R,R) diastereomer is the 

preferred diastereomer found for the resolution of 4 with BINOL.20,38  The authors note 

that the major diastereomer is formed due to a steric interaction between the “backside” 

of BINOL (distal to the phenol functionality) and the six-membered ring of the EBTHI 

ligand.  The data presented herein, however, indicate that the major steric interaction 

involves the “front side” of the chiral auxiliaries either as substituents proximal to the 

phenol functional group as in BIPHEN or as N-substitution as in tolBINAM.  Particularly 

supportive of this analysis is the observation that tolBINAM, despite its similarity to 

BINOL, prefers to form the opposite C2-symmetric diastereomer to what was observed 

for 4 (see structure03.avi). 

 In retrospect, it is possible to understand why (R)-BINOL was unable to resolve 2.  

The hydrogenated six-membered ring in 4 affords a bulkier group for stereo-

differentiation.  The unsaturated indenes of 2 do not extend enough to interact with the 

“front side” of BINOL.  Stereodifferentiation is not realized until the steric congestion is 

increased either by substitution adjacent to the phenol functionality as in 7 or by bringing 

the steric bulk closer to the metal as in 18. 

 Despite generally observing low selectivities, MAO activation of enantiopure 

zirconocenes (S,S,R)-18 and (S,S)-3 for the polymerization of racemic -olefins revealed 

two important points.  First, the presence of residual chiral auxiliary does not affect the 

selectivity of the reaction since selectivity was the same when either (S,S,R)-18 or (S,S)-3 

were used.  Second, constant selectivity factors over a range of conversion indicate that 

the catalyst does not racemize during the polymerization.   

 This second point is particularly exciting because it indicates that C2-symmetric 

zirconocenes based on 3 can be synthesized which may display higher selectivity.  Initial 
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ligand screens show that the synthetic methodology tolerated substitution on the six-

membered rings of EBI but is intolerant to substitution on the five-membered rings.  

Although disappointing, this observation is consistent with our steric model because 

substituents on the five-membered rings (i.e. ligands 20 and 21) would be directed into 

the tolyl group of tolBINAM for the (S,S,R) diastereomer thereby raising the ground state 

energy of this diastereomer.  On the other hand, substituents appended to the six-

membered rings of EBI reside away from the tolyl groups for the (S,S,R) diastereomer.  

Unfortunately, the only enantiopure derivative of EBI that has been synthesized thus far, 

(S,S,R)-23, is inactive towards racemic olefin polymerization.  Encouraging initial results 

have been obtained for the synthesis of an enantiopure 4,5-benzo substituted EBI 

zirconocene substantiating further investigation into its use for kinetic resolution.  

Additionally, application of the synthetic methodology towards the synthesis of 

enantiopure zirconocenes based on the sterically more open SBI zirconocenes may give a 

more active catalyst and may also be pursued. 

3.5  Experimental Section 

 General methods.  All air- and/or moisture-sensitive compounds were 

manipulated using standard high-vacuum line, swivel frit assembly (see swivelfrit.mov 

for a demo), Schlenk and cannula techniques or in a glove box under nitrogen atmosphere 

as described previously.39  Argon was purified by passage through columns of MnO on 

vermiculite and activated 4 Å molecular sieves.  All solvents and liquid reagents were 

stored under vacuum over sodium benzophenenone ketyl, titanocene, or calcium hydride 

prior to use.  Unless otherwise stated -olefins were purchased from Chemsampco.  3,4-

dimethyl-1-pentene and 3,4,4-trimethyl-1-pentene were prepared as described in Chapter 

1.   Methylaluminoxane (MAO) was purchased from Abermarle, and all volatiles were 

removed in vacuo at 150 ºC overnight.  It was found to be essential that all trimethyl 

aluminum was removed from the MAO (see Chapter 2).  Racemic and enantiopure 5, 
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Pd(dba)3 and racemic 2,2’-bis(diphenylphosphino)-1,1’-binaphthyl (BINAP) were 

purchased from Strem and were used without further purification.  Racemic and 

enantiopure 1,1’-binapthyl-2,2’-diamine (BINAM), racemic 1,1’-binapthyl-2,2’-diol 

(BINOL), sodium hydride, trimethyl aluminum and n-butyl lithium were purchased from 

Aldrich and were used without further purification.  Sodium tert-butoxide was purchased 

from Aldrich and purified by sublimation before use.  The ansa ligands: di(1-

indenyl)dimethylsilane (SBI),5 1,2-di(1-indenyl)ethane (EBI),6 bis(3-tert-

butylcyclopentadienyl)dimethylsilane,40 20,31 21,30 and 2241 were synthesized and 

deprotonated as described previously.  The zirconium compounds: 2,41 3,6 ZrCl4(THF)2,
42 

Zr(NMe2)4,
13 and Zr(CH2Ph)4

43 were synthesized as described previously.  The reagents 

Me2Al(OCH2CH3)
44 and Li[Me4Al]45 were prepared as described previously.  Unless 

otherwise noted, racemic and enantiopure syntheses proceeded similarly. 

 NMR spectra were obtained on a Varian Mercury spectrometer operating at 300 

MHz for 1H and 125 MHz for 13C{1H}.  All chemical shifts are reported in ppm relative 

to tetramethylsilane.  1-D nOe difference spectra were spectra were obtained on a Varian 

Inova spectrometer operating at 500 MHz. 

 Gas chromatographs (GC) were obtained on an Agilent 6890 gas chromatograph 

using a 30 m x 0.25 mm polysiloxane “HP-5” column from Agilent technologies for 

chiral monomer conversions and 30 m x 0.25 mm -cyclodextrin trifluoroacetyl 

“Chiraldex TA” column from Advanced Separations Technology for enantioassays.  

Summaries of the GC methods for each monomer as well as observed retention times 

appear in Appendix E. 

 Single crystal X-ray crystallography was carried out on a Bruker SMART 1000 

difractometer.  Atomic coordinates as well as bond distances and angles for (rac)-

(EBI)Zr(NMe2)Cl and (rac)-18 appear in Appendices H and I, respectively.  Crystals 

from (S,S,R)-22 were unsuitable for obtaining accurate bond distances and angles, but 
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connectivity could be established as indicated in Figure 3.7 and the space group in which 

the crystals formed was determined to be P212121. 

 Optical rotations were measured on a JASCO P1010 polarimeter at ambient 

temperature.  PM3 calculations were carried out using Mac SPARTAN v 1.0.4e.  Ligands 

and zirconocene dichlorides were constructed and their minimum energy conformation 

was found using PM3.  The two fragments were then connected and a molecular 

mechanics (MM3) minimum was found before calculating the minimum energy 

conformation using PM3. 

 Synthesis of sodium (rac)-3,3’-di-tert-butyl-5,5’,6,6’-tetramethylbiphenyl-

2,2’-bis(olate)•THF, Na2{(rac)-BIPHEN}•THF.  A slurry of sodium hydride (0.1891 g, 

7.89 mmol) in THF (25 mL) was cannulated onto a solution of (rac)-BIPHEN (1.208 g, 

3.41 mmol) in THF (25mL) precooled to –78 °C.  With the system open to a bubbler, the 

solution was slowly brought to room temperature and then heated to reflux for 24 h.  The 

solution turned blue within an hour followed by a second color change to yellow at 

approximately 12 h of heating.  The solvent was removed to give 1.452 g (100%).  1H 

NMR (300 Mhz, THF-d8):  = 1.35 (s, 18H, CCH3), 1.61 (s, 6H, PhCH3 ),  2.12 (s, 6H, 

PhCH3), 6.75 (s, 2H, PhH). 13C NMR (125 MHz, THF-d8):  = 17.1, 20.8, 30.6, 35.2, 

116.5 (br), 123.5, 126.3, 132.8, 133.5, 134.0, 165.6 (br). 

 Synthesis of (rac)-(BIPHEN)ZrCl2(THF)2, 6.  In a swivel frit assembly 

equipped with 100 mL round bottom flasks, THF (60 mL) was vacuum transferred onto a 

mixture of Na2{(rac)-BIPHEN}•THF (0.960 g, 2.56 mmol) and ZrCl4(THF)2 (0.977 g, 

2.56 mmol).  The reaction mixture was brought to 50 ºC and stirred overnight at which 

time a white precipitate was evident.  The precipitate was filtered and the solvent was 

removed in vacuo.  In the glove box, diethyl ether (30 mL) was added to dissolve the 

resulting white foam.  After a few minutes, a white crystalline precipitate began to form 

from the homogeneous solution.  The solution was kept at –35 °C for 1 day.  The white 
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precipitate was isolated by filtration and washed one time with cold diethyl ether to yield 

0.7948 g (47.2%) a white solid.  Concentration of the mother liquor and cooling yielded a 

second crop (0.2 g, 12 %) to give an overall yield of 59%.  1H NMR (300 MHz,  C6D6):  

= 1.17 (m, 8H, THF), 1.69 (s, 6H, PhCH3), 1.74 (s, 18H, C(CH3)3), 2.18 (s, 6H, PhCH3), 

4.01 (m, 8H, THF), 7.28 (s, 2H, PhH). 

 Synthesis of (rac)-(BIPHEN)Zr(SBI), 7.  A 10:1 mixture of toluene and THF 

(11 mL) was added rapidly to a mixture of 5 (0.245 g, 0.377 mmol) and (SBI)Li2•(Et2O) 

(0.144 g, 0.321 mmol) at room temperature.  The mixture immediately turned orange and 

a precipitate formed within an hour.  After stirring for five hours the solvent was 

removed.  Toluene (10 mL) was added to the residue and the precipitate (LiCl) was 

filtered off.  The toluene was then removed in vacuo to give an orange powder, 0.133 g 

(64.8%).  1H NMR (300 MHz, C6D6):  = 0.72 (s, 6H, He), 1.32 (s, 18H, Ha), 1.50 (s, 6H, 

Hd), 2.17 (s, 6H, Hc), 5.88 (d, 2.8 Hz, 2H, Hg), 6.08 (d, 3.3 Hz, 2H, Hf), 6.89-7.01 (m, 6H, 

Hh, Hi, Hj), 7.13 (s, 2H, Hb), 7.51 (d, 8.2 Hz, 2H, Hk). 
1H NMR (300 MHz, THF-d8):  = 

1.13 (s, 6H, He), 1.19 (s, 18H, Ha), 1.28 (s, 6H, Hd), 2.18 (s, 6H, Hc), 5.65 (d, 2.8 Hz, 2H, 

Hf), 6.08 (d, 2.8 Hz, 2H, Hg), 6.76 (d, 8.2 Hz, 2H, Hh), 6.99 (s, 2H, Hb), 7.08 (t, 7.1 Hz, 

4H, Hi and Hj), 7.67 (d, 8.8 Hz, 2H, Hk).  
13C{1H} NMR (125 MHz, THF-d8):  = -1.2, 

16.3, 20.4, 31.7, 35.6, 93.3, 110.3, 118.2. 124.3, 125.4, 126.6, 126.7, 127.3, 128.2, 128.4, 

132.4, 134.7, 136.6. C44H50O2SiZr cal’d: 72.4 % C, 6.9 % H found: 71.4 % C, 6.9 % H. 

1-D nOe (500 MHz, C6D6, irradiated: observed): He: Hf (2.5%), Hk (5.4%); Ha: Hg 

(1.9%), Hf (2.1%), Hh, Hi, and Hj (1.4%), Hb (3.4%), Hk (0.3%); Hd: Hc (3.4%); Hc: Hd 

(4.0%), Hb (3.1%); Hg: Ha (2.9%), Hf (6.6%), Hh (6.1%); Hf: He (4.5%), Ha (4.8%), Hg 

(9.3%), Hk (4.1%).  
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 NMR-scale generation of (rac)-(BIPHEN)Zr(EBI), 8.  At room temperature, 

Li2(EBI)•2THF (21.0 mg, .050 mmol) was dissolved in a 10:1 mixture of THF-d8/C6D6 

(0.4 mL)  and slowly added to a 10:1 THF-d8/C6D6 solution (0.75 mL) of 6 (33.3 mg, 

0.050 mmol).  The reaction turned yellow.  The 1H NMR was consistent with the 

formation of only one C2-symmetric product.  1H NMR (300 MHz, 10:1 C6D6/THF-d8):  

= 1.39 (s, 18H, C(CH3)3), 1.75 (s, 6H, CH3), 2.20 (s, 6H, CH3), 3.16 (m, 2H, CH2), 3.35 

(m, 2H, CH2), 5.59 (d, 3J = 2.8 Hz, 2H, Ind-H), 5.93 (d, 3J = 2.8 Hz, 2H, Ind-H), 6.76 (d, 

3J = 3.3 Hz, 2H, ArH), 6.94 (dd, 3J = 9.0, 7.5 Hz, 2H, ArH), 7.08 (dd, 3J = 8.5, 7.8 Hz, 

2H, ArH), 7.18 (s, 2H, ArH), 7.42 (d, 3J = 8.3 Hz, 2H, indenyl ArH). 

 NMR-scale generation of (rac)-(BIPHEN)Zr{1-Me2Si(3-C5H3(CMe3))2}, 9.  

Li2(1-Me2Si(3-C5H3(CMe3))2) (32.8 mg, 0.105 mmol) and 6 (79.3 mg, 0.124 mmol) were 

dissolved in a 10:1 mixture of C6D6/THF-d8 (1.0 mL).  A precipitate began to form after a 

few hours. The 1H NMR was consistent with the formation of one major C2-symmetrc 

product.  There does seem to be evidence for a minor product that may be the meso 

isomer.  1H NMR (300 MHz, 10:1 C6D6):  = 0.45 (s, 6H, Si(CH3)2), 0.98 (s, 18H, 

CpC(CH3)3), 1.51 (s, 18H, ArC(CH3)3), 2.15 (s, 6H, CH3), 5.8 (m, 4H, CpH), 5.94 (m, 

2H, CpH), 7.12 (s, 2H, ArH).   

  Synthesis of N2,N2’-dibenzylidene-1,1’-binapthyl-2,2’-diamine.  BINAM 

(3.027 g, 10.6 mmol) and N,N’-dimethylacetamide (150 mL) were combined in a 250 mL 

2-neck flask.  Benzoyl chloride (3.15g, 22.4 mmol) was dissolved in N,N’-

dimethylacetamide (5 mL) and added to the BINAM solution dropwise.  The solution 

was heated to 45 ºC for four hours.  The product was precipitated by pouring the reaction 
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mixture into water (1400 mL).  The product was isolated and redissolved into methylene 

chloride (250 mL).  The golden solution was washed three times with water (100 mL) 

and once with brine (100 mL).  The organic phase was dried with magnesium sulfate and 

the solvent was removed in vacuo to give an off white solid.  Yield = 5.317 g (80%)  The 

NMR data are consistent with literature.46  

 Synthesis of N2,N2’-dibenzylidene-1,1’-binapthyl-2,2’-diamine (benzBINAM). 

N
2,N2’-dibenzylidene-1,1’-binapthyl-2,2’-diamine (3.003 g, 6.09 mmol) was dissolved in 

THF (75 mL).  At 0 ºC, the solution was cannulated onto a THF (75 mL) slurry of lithium 

aluminum hydride (1.297 g, 34.18 mmol).  The reaction was slowly brought to room 

temperature and stirred for 1 h.  The solution was heated at reflux for 18 h.  The reaction 

was quenched at 0 ºC by slow addition of water (4.5 mL) followed by 10% aqueous 

sodium hydroxide (4.5 mL) and another aliquot of water (13.5 mL).  The slurry was 

stirred for 30 m and the precipitate was filtered.  The bright yellow solution was dried 

with magnesium sulfate and the solvent was removed in vacuo to give a yellow oil.  

Purification of the product was accomplished by silica gel chromatography using a 5:1 

mixture of hexanes:ethyl acetate as the eluent.  The compound with  Rf (5:1 

hexanes:ethyl acetate) = 0.55 was isolated and the solvent was removed to give a yellow 

solid.  Yield = 1.738 g (61%).  1H NMR (300 MHz, DMSO-d6):  = 4.42 (d, 3J = 4.1 Hz, 

4H, CH2), 4.85 (t, 3J = 4.6 Hz, 2H, NH), 6.78 (m, 2H, ArH), 7.19 (m, 16H, ArH), 7.79 

(m, 4H, ArH) .  13C{1H} NMR (125 MHz, DMSO-d6):  46.2, 111.0, 114.3, 121.2, 123.0, 

126.1, 126.4, 126.6, 126.9, 128.0, 128.1.  

 Synthesis of Li2(benzBINAM). In a 100 mL round bottom flask, benzBINAM 

(0.912 g, 1.96 mmol) was dissolved in toluene (50 mL).  At -78 ºC, n-butyl lithium (3.0 

mL of 1.6 M solution in hexanes, 4.8 mmol) was added to the solution.  The solution 

immediately turned orange.  The solution was slowly warmed to room temperature and 

left to stir overnight overnight.  The solution turned dark yellowish green.  The toluene 
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was removed in vacuo and replaced with petroleum ether (50 mL).  The solid was filtered 

and washed three times with petroleum ether (40 mL).  The solvent was removed in 

vacuo to give a yellow/green solid.  Yield = 0.7908 g (100%).  1H NMR (300 MHz, THF-

d8):  =
 4.37 (d, 3J = 15.7 Hz, 2H, CH2), 4.48 (d, 3J = 15.4 Hz, 2H, CH2), 6.61 (m, 4H, 

ArH), 6.74 (m, 2H, ArH), 6.93 (d, 3J = 9.8 Hz, 2H, ArH), 7.02 (m, 2H, ArH), 7.12 (ps. t., 

3J = 8.2 Hz, 4H, ArH), 7.33 (m, 8H, ArH). 13C NMR (125 MHz, THF-d8):  = 54.3, 

114.3, 116.7, 117.0, 124.9, 125.3, 125.6, 126.0, 128.2, 128.6 (2C), 129.0, 137.6, 146.9, 

158.7.  

 Reaction between Li2(benzBINAM) and ZrCl4(THF)2, 10. At -78 ºC, diethyl 

ether (12 mL) and THF (12.5 mL) were vacuum transferred onto a 50 mL flask 

containing Li2(benzBINAM) (0.2806 g, 0.787 mmol) and ZrCl4 (0.1843 g, 0.791 mmol).  

The reaction was slowly brought to 0 ºC where it turned deep red and a precipitate 

formed.  After stirring for 2 h, the reaction was brought to room temperature where it 

stirred an additional 6 h.  The solvent was removed in vacuo and replaced with benzene 

(12 mL).  The mixture was allowed to stir at room temperature for 30 m.  The white 

precipitate was filtered and washed twice with benzene (5 mL).  The solvent was 

removed in vacuo.  In the glove box, the product was precipitated into petroleum ether 

(15 mL) from a toluene solution (10 mL).  The product was filtered and washed three 

times with petroleum ether (10 mL) then dried in vacuo to give a yellow solid.  Yield = 

0.281 g (48.5%).  1H NMR (300 MHz, C6D6):  = 0.99 (br s, THF), 1.22 (br s, THF), 

4.00 (d, 3J = 15.9 Hz, CH2), 4.2 (br s, THF), 4.27 (d, 3J = 15.9 Hz, CH2), 6.70 (d, 3J = 8.6 

Hz, ArH), 6.81 (m, ArH), 6.97 (m, ArH), 7.49 (m, ArH). 

 Synthesis of (rac)-N2,N2’-diphenyl-1,1’-binapthyl-2,2’-diamine (phenBINAM) 

11.  In an inert atmosphere, (rac)-BINAM (0.821 g, 2.89 mmol), Pd2(dba)3 (0.26 g, 0.28 

mmol), (rac)-BINAP (0.353 g, 0.570 mmol), sodium tert-butoxide (2.92 g, 34.0 mmol), 

and toluene (15 mL) were combined in a 25 mL Schlenk tube.  At room temperature and 
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under rapid stirring, bromobenzene (12.2 g, 71.5 mmol) was injected onto the reaction 

mixture and stirred 10 minutes.  The reaction was brought to 85 ºC for 2 h. Toluene (30 

mL) and water (10 mL) were added to the reaction.  The organic phase was extracted 

three times with water (30 mL) and dried over magnesium sulfate.  The solution was 

concentrated to give a red oil, which was further purified by silica gel column 

chromatography using toluene as the eluent.  Fractions from the high Rf compound were 

combined and the toluene was removed in vacuo.  The resulting yellow oil was triturated 

twice with petroleum ether (100 mL) and the solvent was removed in vacuo overnight to 

give a yellow solid.  Yield = 1.222 g (97%).  1H NMR spectrum agrees with the literature 

spectrum.47  1H NMR (300 Hz, CDCl3, 20 ºC):  = 4.34 (br s, 2H, NH), 6.93 (m, 6H, 

ArH), 7.23 (m, 10H, ArH), 7.67 (d, 3J = 8.3 Hz, 2H, ArH), 7.87 (m, 4H, ArH). 13C NMR 

(125 MHz, CDCl3):  = 116.5, 118.0, 120.1, 122.4, 123.7, 124.7, 127.3, 128.4, 129.4, 

129.6, 134.2, 140.5, 142.7, 146.8.   

 Synthesis of (rac)-(phenBINAM)Zr(CH2Ph)2, 12.  Zr(CH2Ph)4 (0.306 g, 0.672 

mmol) was dissolved in toluene (15 mL) and added to a toluene (15 mL) solution of 11 

(0.286 g, 0.654 mmol) at room temperature.  The reaction was stirred at room 

temperature overnight and then at 60 ºC for 2 h.  The solvent was removed in vacuo and 

the reaction vessel was brought into the box.  The solid was recrystallized from a 1:1 

toluene/petroleum ether mixture at -35 ºC.  Yellow crystals formed, which were isolated 

and washed with cold toluene (1 mL).  The solvent was removed in vacuo overnight. 

Yield = 0.184 g (41 %).  1H NMR (300 MHz, C6D6):  = 1.93 (d, 3J = 10.2 Hz, 2H, 

CH2C6H5), 2.35 (d, 3J = 10.2 Hz, 2H, CH2C6H5), 6.66 (d, 3J = 7.4 Hz, 4H, ArH), 6.74 (m, 

2H, ArH), 6.86 (m, 6H, ArH), 6.97 (m, 4H, ArH), 7.18 (m, 8H, ArH), 7.33 (d, 3J = 8.4 

Hz, 2H, ArH), 7.60 (d, 3J = 9.0 Hz, 4H, ArH). 

 Synthesis of (rac)-(phenBINAM)Zr(NMe2)2, 13.  At -78 ºC, toluene (50 mL) 

was vacuum transferred onto a mixture of 11 (0.497 g, 1.13 mmol) and Zr(NMe2)4 (0.370 
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g, 1.38 mmol).  The reaction was brought to room temperature where it stirred for 4 h.  

The solvent was removed and replaced with petroleum ether.  A yellow precipitate 

formed after stirring for 1 h.  The precipitate was filtered and washed with cold petroleum 

ether then dried in vacuo overnight.  Yield = 0.6070 g (87 %).  1H NMR (300 MHz, 

C6D6):  = 2.62 (s, 12H, N(CH3)2), 6.79 (m, 2H, ArH), 6.95 (m, 4H, ArH), 7.15 (m, 8H, 

ArH), 7.31 (m, 2H, ArH), 7.49 (m, 4H, ArH), 7.60 (m, 2H, ArH).  

 Synthesis of (R)-N2,N2’-di-para-tolyl-1,1’-binapthyl-2,2’-diamine (tolBINAM), 

(R)-15.  In an inert atmosphere, (R)-BINAM (9.751 g, 34.3 mmol), Pd2(dba)3 (3.15 g, 

3.43 mmol), (rac)-BINAP (4.26 g, 6.85 mmol), and toluene (120 mL) were combined in 

a 150 mL Schlenk tube.  At room temperature and under rapid stirring, p-bromotoluene 

(8.8 mL, 12.23 g, 71.5 mmol) was injected onto the reaction mixture and stirred 10 

minutes.  Sodium tert-butoxide (35.59 g, 413.5 mmol) was added to the reaction portion 

wise over the course of 30 minutes.  The reaction was stirred at room temperature for 15 

minutes, then brought to 85 ºC for 24 h.  The reaction was diluted with toluene (400 mL).  

and was washed three times with water (100 mL).  The organics were isolated and the 

aqueous layer was washed twice with toluene (50 mL).  The organic layer was dried over 

magnesium sulfate, and the solvent was removed to give a red oil.  Purification of the 

product was achieved by silica gel column chromatography using toluene as the eluent.  

The high Rf (Rf (3:1 hexanes/acetone) = 0.74) product was isolated as a pale yellow solid 

and was determined to be the desired product.  Yield = 21.612g (78.3%).  
  
[ ]D

25(0.412, 

THF) = 89.7.  1H NMR (300 MHz, CDCl3):  = 2.27 (s, 6H, CH3), 5.54 (s, 2H, NH), 6.90 

(d, 3J = 8.3 Hz, 4H, tolyl-ArH), 7.02 (d, 3J = 8.3 Hz, 4H, tolyl-ArH), 7.12-7.33 (m, 6H, 

naphthyl-ArH), 7.61 (d, 3J = 8.8 Hz, 2H, naphthyl-ArH), 7.84 (ps.t, J = 8.1 Hz, naphthyl-

ArH) .  13C{1H} NMR (125 MHz, CDCl3):  = 20.7, 115.3, 117.3, 121.1, 123.1, 124.3, 

126.9, 128.2, 129.1, 129.3, 129.7, 132.1, 134.0, 139.8, 141.1.  The low Rf spot (Rf 

(hexanes/acetone) = 0.59) was isolated and determined to be the mono arylated product.  
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Yield = 0.410g (3.2%).  1H NMR (300 MHz, CDCl3):  = 2.27 (s, 3H, CH3), 3.72 (bs, 

2H, NH2), 5.50 (s, 1H, NH), 6.84-7.32 (m, 10H, ArH), 7.62 (d, 3J = 8.8 Hz, 2H, napthyl-

ArH), 7.83 (ps. t, J = 8.1 Hz, 4H, naphthyl-ArH). 

 Synthesis of (R)-(tolBINAM)Zr(NMe2)2, (R)-17.  (R)-15 (4.16 g, 8.95 mmol) 

and Zr(NMe2)4 (2.99 g, 11.1 mmol) were placed in a 250 mL round bottom flask 

equipped with stir bar and affixed to a large swivel frit assembly.  Toluene (200 mL) was 

vacuum transferred onto the solids at -78 ºC.  The reaction was slowly brought to room 

temperature were it was allowed to stir overnight open to a mercury bubbler.  The solvent 

was removed from the bright yellow solution and replaced with hexamethyl disiloxane 

(100 mL) (petroleum ether was used for racemic synthesis, but (R)-19 is soluble in 

petroleum ether).  After stirring 30 min. at room temperature, a yellow precipitate 

formed.  The precipitate was filtered and washed four times with hexamethyl disiloxane 

(20 mL) followed by once with cold pentane (10 mL) (pentane was not necessary for 

racemic synthesis).  The solvent was removed and the solids were dried in vacuo to yield 

a yellow powder which was >95% pure with Zr(NMe2)4) being the minor impurity.  

Yield = 5.003 g (87.1%).  The product was further purified by recrystallization from 

petroleum ether to give 4.018 g (70.0%) product free of Zr(NMe2)4.   [ ]D
27 (0.2, THF) =  

-772.6.  1H NMR (300 MHz, C6D6):  = 2.13 (s, 6H, CH3), 2.67 (s, 12H, N(CH3)2), 6.90-

7.04 (m, 8H, ArH), 7.06-7.20 (m, 4H, ArH), 7.33 p (d, 3J = 7.4 Hz, 2H, napthyl-ArH), 

7.49 (d, 3J = 7.2 Hz, 2H, napthyl-ArH), 7.58 (dd, 3J = 8.9 Hz, 4H, napthyl-ArH) .  

13C{1H} NMR (125 MHz, C6D6):  = 21.12, 40.75, 121.16, 123.19, 124.32, 125.21, 

126.78, 127.81, 128.61, 130.01, 130.90, 131.30, 132.28, 136.00, 143.85, 149.86. 

C38H38N4Zr cal’d: 71.10% C, 5.97% H, 8.73% N found: 70.80% C, 6.01% H, 8.36% N.  

 Synthesis of (R)-(tolBINAM)ZrCl2(THF)2, (R)-16. (R)-17 (1.537 g, 2.39 mmol) 

was placed in a 250 mL round bottom flask equipped with a stir bar, and affixed to a 

large swivel frit assembly.  THF (125 mL) was vacuum transferred onto the solid.  At -78 
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ºC, trimethylsilyl chloride (0.51 g, 4.7 mmol) was vacuum transferred onto the reaction 

mixture.  The reaction was slowly brought to room temperature and stirred overnight 

under argon.  The THF was removed and replaced with petroleum ether (150 mL).  The 

mixture was stirred for 1 h at which time a yellow precipitate formed.  The precipitate 

was filtered and washed four times with cold petroleum ether (50 mL).  The solvent was 

removed in vacuo to give a yellow solid.  Yield = 1.687 g (95.6%).  
  
[ ]D

27 (0.2, THF) = 

205.7.  1H NMR (300 MHz, C6D6):  = 1.29 (s, 8H, THF), 2.04 (s, 6H, CH3), 3.80 (s, 4H, 

THF), 4.13 (s, 4H, THF), 7.46 (d, 3J = 8.3 Hz, 4H, tolyl-ArH), 6.91 (ps. t, J = 7.6 Hz, 2H, 

napthyl-ArH), 7.00 (ps. t, J = 7.4 Hz, 2H, napthyl-ArH), 7.09 (d, 3J = 8.0 Hz, 4H, tolyl-

ArH), 7.48 (d, 3J = 8.3 Hz, napthyl-ArH), 7.63 (ps. t, J = 8.8 Hz, 2H, napthyl-ArH), 7.82 

(d, J = 8.5 Hz, 2H, napthyl-ArH).  13C NMR (125 MHz, C6D6):  = 20.93, 26.00, 73.04, 

119.73 (br), 121.70, 126.00, 126.68, 128.90, 129.68, 130.39, 131.64, 132.80, 134.59, 

139.70 (br), 151.11.  C42H42Cl2N2O2Zr cal’d: 65.78% C, 5.52% H, 3.65% N found: 

62.85% C, 6.03% H, 3.85% N.  

 Synthesis of {(S,S)-EBI)}Zr{(R)-tolBINAM}, (S,S,R)-18.  (R)-16 (1.49 g, 2.02 

mmol) and Li2(EBI)•Et2O (0.799 g, 2.03 mmol) were placed in a 250 mL round bottom 

flask.  At -78 ºC THF (150 mL) was vacuum transferred onto the solids.  The reaction 

was brought to –10 ºC and stirred under argon for 24h.  The reaction turned deep red.  

The THF was removed and the oily residue was triturated twice with petroleum ether (20 

mL).  Toluene (75 mL) was added to the mixture and stirred for 20 minutes.  A fine 

orange precipitate formed.  The precipitate was filtered over celite and washed three 

times with toluene (10 mL).  The mother liquor was concentrated in half, and petroleum 

ether (75 mL) was added.  A yellow/orange precipitate formed which was filtered.  The  

solvent was removed from the mother liquor and the orange product was triturated twice 

with petroleum ether then dried in vacuo overnight to give an orange solid.  Yield = 

1.0993g (67.2%).  For the racemic synthesis, crystals suitable for X-ray crystallography 
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were obtained by slow petroleum ether diffusion in a toluene solution.  1H NMR 

(300MHz, C6D6):  = 2.14 (s, 6H, CH3), 3.18-3.34 (m, 2H, CH2), 3.36-3.52 (m, 2H, 

CH2), 5.56 (d, 3J = 3.03 Hz, 2H, indenyl CH), 6.20 (d, 3J = 3.3 Hz, 2H, indenyl CH), 6.60 

(br. s, 4H, ArH), 6.70-7.02 (m, 12H, ArH), 7.06-7.22 (m, 6H, ArH), 7.55 (d, 3J = 9.1 Hz, 

2H, ArH), 7.69 (dd, 3J = 8.5 Hz, 4H, ArH).  13C NMR (125 MHz, C6D6):  = 20.7, 29.1, 

105.5, 117.0, 118.4, 121.7, 124.2, 124.5, 124.8, 126.0, 126.3, 126.7, 127.3, 127.7, 128.9, 

129.1, 130.0, 130.5, 131.4, 134.6, 151.2, 156.4. C54H42N2Zr cal’d = 79.87 %C, 5.63 %H, 

3.65 %N found = 80.06 %C, 5.23 % H, 3.46 % N. 

 Synthesis of (rac)-3. In a small swivel frit assembly, (rac)-18 (0.190 g, 0.236 

mmol) was dissolved in benzene (10 mL).  At 0 ºC, ethereal hydrochloric acid (0.52 

mmol) was syringed onto the reaction mixture.  The mixture immediately turned dark 

orange then faded to pale yellow-orange.  After stirring 1 h, the benzene was removed 

and fresh benzene was added to the reaction.  A yellow precipitate formed, which was 

filtered and washed once with benzene (2 mL).  The solvent was removed and the yellow 

product was obtained from the filtrant.  Yield = 0.030 g (31 %).  The 1H NMR was 

consistent with the literature.6  (S,S)-3 was obtained in a similar manner starting with 

0.478 g (0.590 mmol) of (S,S,R)-18.  For the enantiopure synthesis three recrystallization 

of the filtrant from diethyl ether was necessary free the product from (S)-19.  Yield = 

0.025 mg (10.1 %). 

 Synthesis of (rac)-(EBI)Zr(NMe2)Cl.  Toluene (25 mL) was vacuum transferred 

onto a mixture of Zr(NMe2)4 (0.139 g, 0.519 mmol) and 3 (0.216 g, 0.516 mmol) at -78 

ºC.  The reaction was slowly brought to room temperature where it stirred overnight.  The 

solution became bright orange.  The solvent was removed in vacuo and petroleum ether 

(25 mL) was added to the flask.  A precipitate formed after stirring at room temperature 

for 1 h.  The precipitate was isolated and washed twice with petroleum ether (2 mL) then 

dried in vacuo for a few hours to give an orange solid 85% pure by NMR with the major 
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biproduct presumably being Zr(NMe2)3Cl (br s 2.78 in 1H NMR).  Yield = 0.186 g 

(84%).  Crystals suitable for X-ray crystallography were obtained by recrystallization 

from diethyl ether at -30 ºC.  1H NMR (300 MHz, C6D6):   = 2.52 (s, 6H, N(CH3)2), 3.10 

(m, 3H, CH2), 3.39 (m, 1H, CH2), 5.61 (d, 3J = 3.0 Hz, 1H, Ind-CH), 5.98 (d, 3J = 3.1 Hz, 

1H, Ind-CH), 6.33 (d, 3J = 3.5 Hz, 1H, Ind-CH), 6.45 (d, 3J = 3.0 Hz, 1H, Ind-CH), 6.65 

(ps. t., 1H, ArH), 6.98 (ps. t., 1H, ArH), 7.16 (m, 1H, ArH), 7.28 (m, 3H, ArH), 7.47 (d, 

3J = 8.8 Hz, 1H, ArH).  13C{1H} NMR (125 MHz, C6D6):  = 29.7, 30.1, 48.0, 103.0, 

106.0, 113.5, 116.3, 118.1, 119.5, 121.2, 121.6, 121.7, 123.7, 123.9, 124.2, 125.8, 126.3, 

126.4, 130.1, 131.9. 

 Synthesis of {(S,S)-1,2-bis(4,7-dimethyl-1-indenyl)ethane}Zr{(R)-tolBINAM}, 

(S,S,R)-23.  A THF (8 mL) solution of Li2{22} (0.200 g, 0.552 mmol) was added 

dropwise to a frozen THF (12 mL) solution of (R)-16 (0.405 g, 0.548 mmol).  The 

solution was allowed to come to room temperature where it turned a dark reddish brown.  

After stirring 1 d, the solvent was removed in vacuo and replaced with benzene (20 mL).  

The solution was filtered over celite and the celite was washed twice with benzene (4 

mL). The mother liquor was lyophilized to give a reddish brown solid 90% pure by 

NMR.  Yield = 0.464 g (98%).  Pure product was obtained by dissolving the solid in 

toluene (4 mL) and layered with petroleum ether (10 mL).  After slow diffusion at -30 ºC, 

the precipitate was filtered and the solvent was removed from the mother liquor to give 

an orange solid.  Yield = 0.40 g (87 %).  Crystals suitable for X-ray crystallography were 

obtained by recrystallization from diethyl ether at -30 ºC.  1H NMR (300 MHz, C6D6):  

= 0.99 (s, 6H, CH3), 2.12 (s, 6H, tolyl-CH3), 2.79 (s, 6H, CH3), 3.19 (m, 2H, CH2), 3.86 

(m, 2H, CH2), 6.03 (d, 3J = 3.7 Hz, 2H, indenyl CH), 6.38 (m, 4H, ArH), 6.57 (d, 3J = 8.9 

Hz, 4H, ArH), 6.78 (m, 12H, ArH), 7.12 (m, 4H, ArH), 7.30 (d, 3J = 8.7 Hz, 2H, ArH), 

7.53 (d, 3J = 8.0 Hz, 2H, ArH).  13C{1H} NMR (125 MHz, C6D6):  = 18.6, 21.2, 22.9, 
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28.8, 100.6, 112.4, 114.7, 118.3, 121.7, 124.5, 126.3, 126.8, 127.1, 127.3, 127.5, 127.6, 

129.4, 129.7, 130.4, 131.1, 131.2, 131.3, 131.7, 133.5, 135.0, 153.0, 159.0. 

 Generic procedure for the polymerization of racemic -olefins.  An 8 μM 

solution of catalyst in toluene was made in a Straus flask prior to polymerization.  This 

stock solution was stored under argon at –30 °C and used as needed.  Stock solutions 

older than a week were not used.  Methyl aluminoxane (MAO) (250 mg, 3 mmol) was 

combined with tetradecane (3 mL) in a 10 mL Schlenk flask equipped with a side arm for 

reaction sampling.  Racemic -olefin (2 mL, ~15 mmol) was transferred onto the reaction 

mixture and stirred for at least 30 minutes.  An aliquot was removed for GC analysis for a 

t = 0 point.  Under an argon purge, the catalyst solution (0.5 mL, 4 μmmol) was syringed 

onto the reaction mixture.  Aliquots from the reaction were abstracted and analyzed by 

GC to get conversion.  In order to minimize error, reaction sampling was kept at a 

minimum.  At the appropriate olefin conversion, the reaction was stopped by vacuum 

transferring the volatiles.  The MAO was quenched with a 10% solution of aqueous 

hydrochloric acid in methanol.  The polymer was collected as a toluene slurry, and where 

appropriate isolated by precipitation into methanol as described in Chapter Two.  

Enantiomeric excess was determined as previously described1 and outlined in Chapter 

One. 
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APPENDIX A 

 

REACTIVITY OF DICATIONIC -COMPLEXES OF 

PLATINUM AND THEIR USE TO SYNTHESIZE CHIRAL  

-OLEFINS 

 

A.1 Introduction 

 As work progressed towards the development of a polymerization catalyst for the 

kinetic resolution of racemic -olefins, it became evident that an efficient route to the 

substrates would be desirable.  This need became more evident because many olefins 

including the most bulky olefins were never commercially available or are no longer 

available.  In the past, bulky olefins such as 3,4,4-trimethyl-1-pentene were obtained in a 

multi-step classical synthesis involving Wittig chemistry.
1
  A brief survey of the recent 

literature revealed a communication from Vitagliano and coworkers describing a 

platinum-catalyzed olefin dimerization between ethylene and 2-methyl-2-butene to form 

3,4-dimethyl-1-pentene, an olefin we typically use in our studies (Scheme A.1).
2
 

R

+ C2H4

R

N

Ph2P PPh2Pt

(BF4)2

 

Scheme A.1 Platinum-catalyzed synthesis of 3,4-dimethyl-1-pentene. 

 Through a series of labeling experiments and ligand exchange reactions, 

Vitagliano proposed the mechanism proposed in Scheme A.2.  The dicationic platinum 

complex 1 used for the catalyst activates coordinated ethylene to nucleophillic attack by 
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2-methyl-2-butene to form a platinum alkyl containing a stabilized tertiary carbocation 

(2).  A series of consecutive hydride shifts occur which transform 2 to the 3,4-dimethyl-

1-pentene platinum complex 3.  Finally, a rate determining olefin substitution with 

ethylene occurs to reveal 3,4-dimethyl-1-pentene and 1.   

H R

H

(PNP)Pt

C2H4

CH2

CH2
(PNP)Pt

H R

(PNP)Pt H
C

R

H

H

H

R

H 2+

2+

(PNP)Pt H
C

H
H

R

1

2
3

 

Scheme A.2 Mechanism for 3,4-dimethyl-1-pentene formation. 

The authors comment that 3,4,4-trimethyl-1-pentene can be synthesized in a similar 

fashion from ethylene and 2,3-dimethyl-2-butene, but 3-methyl-1-pentene could not be 

produced catalytically from 2-butene presumably due to the required formation of a 

secondary carbocation for this internal olefin.   

 Subsequent to this report, Gagne and coworkers reported that 1 also facilitates 

cycloadditions of 1,6-dienes by a similar mechanism to form cyclohexenes by a similar 

mechanism.
3
  In the same communication, Gagne reported catalysts similar to 1 also 

undergo cyclization of 1,6-dienes, but the catalytic loop is closed by a cyclopropanation 

reaction instead of a second hydride shift. 
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 Since olefins we typically use for our kinetic resolutions were synthesized with 1 

from inexpensive starting materials, we decided to investigate this catalyst for the 

synthesis of racemic olefins.  We also briefly investigated the reactivity of 1 towards 

other non-classical nucleophiles and attempted to synthesize enantiopure platinum 

compounds for the enantioselective synthesis of chiral 3-substituted olefins. 

A.2  Results and Discussion 

 Although 1 was obtained by the same route that Vitagliano reported, adapted 

procedures were necessary to get satisfactory yields (see experimental section).  With 1 in 

hand, we were able to satisfactorily reproduce the catalysis reported by Vitagliano for the 

synthesis of 3,4-dimethyl-1-pentene in dichloromethane.  Although GC yields were high 

for these reactions, isolated yields tended to be low because methylene chloride was 

difficult to remove from the reaction.  A convenient solvent for reactions on a preparative 

scale is nitromethane.  Catalyst decomposition is rapid in nitromethane leading to 

platinum complexes which dimerize the internal olefin,
2
 but the solvent is immiscible 

with both the starting material and the product of reaction.  The product can be separated 

by simple filtration followed by a single distillation to remover residual starting material 

and dimer.  Olefin suitable for polymerization can be obtained by passing the distillate 

through a small plug of alumina to remove residual nitromethane. An additional 

advantage for using nitromethane is that the reaction occurs in the polar phase so low 

catalyst loadings can be used without sacrificing much activity.   

 With this procedure, a multi-gram (60 g) synthesis of of 3,4-dimethyl-1-pentene 

and 3,4,4-trimethyl-1-pentene could be accomplished using 0.1 mol% 1.  Attempts to 

synthesize 3-methyl-1-pentene from 2-butene failed, but small scale reactions between 

ethylidene cyclohexene and 1 under an atmosphere of ethylene gave 3-cyclohexyl-1-

butene in modest GC yields.  Unfortunately,  a preparative scale of this reaction was not 

performed. 
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 Since Gagne had success with dienes as nucleophiles for this reaction, 

investigation into nucleophillic addition of other non-classical nucleophiles to the 

coordinated olefin of 1 was investigated.  In particular, we were interested in the 

reactivity of enamines or enol ethers towards 1 with the hopes that homoallylic alcohols 

or amines would be formed by a mechanism similar to Scheme A.2 (Scheme A.3).  The 

rationale was that formation of eneamonium or oxonium ion would stabilize the positive 

charge in a similar fashion to the tertiary carbocation in 2.  

X

R

R

X

[Pt(C2H4]2+

R

X

[Pt]+

X = NR'2, OR'

H

enamonium or carbonium 
stabilized carbocation  

Scheme A.3  Potential products from eneamine or enol ethers. 

 Unfortunately, when 1 was treated with enol ethers such as 2,3-dihydrofuran or 

ethyl-1-propenyl ether, rapid oligomerization of the substrate occurred.  These 

oligomerization products were the same products observed by treating the enol ethers 

with simple acids.  It is likely that the platinum catalyst or HBF4 produced from catalyst 

decompositions serves as a Lewis acid to dimerize the enol ethers. 

 Although no catalysis was observed in the presence of ethylene, an NMR-scale 

stoichiometric reaction between 1 and N-methyl indole was somewhat clean to form one 

product at 0 ºC within one hour (
31

P = 33.97 ppm, 
1
JPt-P = 2635 Hz, CD2Cl2).  Although 

these results a very preliminary, the 
1
H NMR displayed no evidence of free or 

coordinated ethylene suggesting that some reaction occurred between the indole and the 

bound olefin rather than olefin displacement.  Upon warming to room temperature, 

resonances from the initially formed product disappear and are ultimately replaced by 

two new platinum products in the 
31

P NMR (
31

P = 33.2 and 32.1 ppm).  Unfortunately, 
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liberation of the indole product(s) from the platinum was not possible by treatment with 

acetonitrile or acid, and the experiment was not repeated.  Nevertheless, these results are 

encouraging and deserve future consideration. 

 Finally, we were intrigued by the possibility that enantiopure unfunctionalized 

olefins could be obtained directly from the platinum catalysis instead of via kinetic 

resolution by polymerization.  From a fundamental standpoint, this was particularly 

interesting because it would require an unprecedented stereospecefic hydride transfer.  

The synthesis of the enantiopure platinum catalyst 4 based on a bisphosphine ligand (5) 

previously synthesized by Osbourne
4
 and Zhang

5
 was proposed for this purpose 

following Scheme A.4. 

N

Ph2P PPh2Pt

I
I

2.0 AgBF4

C2H4

N

Ph2P PPh2Pt

C2H4
(BF4)2

N

Ph2P PPh2N

TsO OTs
N

O O

1) (-)DIP-Cl 2 LiPPh2

(Me2S)2PtI2

2) TosCl, NaH

4

5

 

Scheme A.4  Proposed synthesis of 4. 

 Due to time constraints the desired platinum complex was never synthesized, but 

Osbourne and Zhang’s syntheses of the bisphosphine ligand was repeated.  An important 

modification to their procedure, however, was that a stoichiometric quantity of the 

lithium diphenyl phosphide was required to avoid racemization.  Before leaving this 

subject, some important control experiments were completed that indicate that the 

dicationic platinum compounds do not racemize enantiopure olefins.  First, complex 1 
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was treated with enantioenriched 3,4-dimethyl-1-pentene (see chapter 1) and subjected to 

reaction conditions.  The optical purity of 3,4-dimethyl-1-pentene remained the same 

after days of exposure to 1 indicating that 1 by itself does not racemize the enantiopure 

olefin.  Second, the olefin dimerization catalysis was performed for the synthesis of 

3,4,4-trimethyl-1-pentene in the presence of enantioenriched 3,4-dimethyl-1-pentene 

using 1 as the catalyst.  Again, enantioassay of the product olefin mixture indicated that 

racemization of the 3,4-dimethyl-1-pentene did not occur.  Therefore, by-products that 

may be produced during catalysis also do not racemize enantiopure olefins. 

A.3  Conclusions 

 Vitagliano’s claim that olefin dimerization between an internal olefin and 

ethylene catalyzed by 1 was reproduced and optimized for large-scale production of 3,4-

dimethyl-1-pentene and 3,4,4-trimethyl-1-pentene.  Investigation into alternative non-

classical nucleophiles was somewhat disappointing with acid catalysis often dominating.  

However, stoichiometric reactions between 1 and N-methyl indole suggest that reaction 

between the coordinated olefin and indole occur in this case.  The compatibility of 1 with 

enantiopure olefins was established thereby making enantioselective versions of the 

olefin dimerization catalysis possible using catalysts such as 4. 

A.4 Experimental Section.   

 Synthesis of 2,6-bis(diphenylphosphino)methyl)pyridine (PNP).  In a 500 mL 

round bottom flask, diphenyl phosphine (2.376 g, 13.44 mmol) was combined with THF 

(200 mL) and dioxane (20 mL).  At 0 ºC, a THF (100 mL) slurry of sodium hydride (0.68 

g, 28.3 mmol) was cannulated onto the diphenyl phosphine mixture.  The reaction was 

slowly brought to room temperature then to 40 ºC open to a mercury bubbler.  The 

reaction mixture turned yellow within an hour and after heating overnight, the reaction 

turned orange.  The mixture was brought to 0 ºC where 2,6-bis(chloromethyl)pyridine 

(2.3676 g, 13.44 mmol) dissolved in THF (70 mL) was added via cannula transfer.  The 
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color immediately disappeared.  The reaction was brought to 60 ºC for 10 minutes then 

the solvent was removed in vacou.  In the glovebox, THF (200 mL) was added to the 

mixture, and the mixture was filtered through celite.  The solution was concentrated 

down until one half of the original volume of THF remained.  Diethyl ether (100 mL) 

was layered on the THF mixture and the product was recrystallized at -35 ºC for a week.  

The white precipitate was isolated and washed three times with cold THF (6 mL) then 

dried in vacou for a few hours.  Yield = 5.0541 g (79 %).  
1
H, 

31
P NMR spectra agree 

with literature.
6
 

 Synthesis of (Me2S)2PtI2.  Potassium tetrachloroplatinate (2.1080 g, 5.08 mmol) 

was added to degassed water (250 mL) in a 500 mL 2-neck flask.  Potassium iodide 

(3.4396 g, 20.66 mmol) was added to the solution.  The solution darkened in minutes.  

An ethanol (100 mL) solution of dimethyl sulfide (0.93 mL, 0.78 g, 13 mmol) was slowly 

cannulated onto the reaction mixture.  An precipitate formed within minutes.  The 

mixture was allowed to stir overnight.  The orange precipitate was filtered to yield 2.78 g 

product (98%).  The platinum complex can be used without further purification, but 

purification by recrystallization from ethanol was often done. 

 Synthesis of [(PNP)PtI]I. At room temperature, PNP (0.472 g, 0.992 mmol) 

was dissolved in CH2Cl2 (20 mL) and cannulated onto a CH2Cl2 (50 mL) solution of 

(Me2S)2PtI2.  The reaction was stirred at room temperature for 2 h.  The reaction was 

concentrated to a volume of 15 mL and diethyl ether (65 mL) was added to the reaction 

dropwise.  A yellow precipitate formed.  After stirring 1 h, the yellow precipitate was 

filtered and washed three times with diethyl ether (5 mL).  The solid was dried in vacuo 

overnight.  Yield = 0.9102 g (99 %).  
1
H, 

31
P NMR consistent with the literature.

6
 

 Synthesis of 1.  [(PNP)PtI]I (0.6507 g, 0.705 mmol) was dissolved in CH2Cl2 (30 

mL).  The mixture was purged with ethylene for 5 minutes and remained under an 

atmosphere of ethylene.  At 0 ºC, a CH2Cl2 (10 mL) slurry of silver tetrafluoroborate 
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(0.281 g, 1.44 mmol) was cannulated onto the reaction mixture.  A yellow-green 

precipitate formed within minutes.  After 1 h, the precipitate was filtered and washed 

three times with CH2Cl2.  Diethyl ether (125 mL) was added dropwise to the reaction to 

precipitate the product.  The white precipitate was filtered and dried in vacou overnight.  

Yield = 0.4875 g (79 %).  
1
H, 

31
P NMR consistent with literature.

6
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APPENDIX B 

 

CHARACTERIZATION DATA FOR 

ETHYLENE/CHIRAL -OLEFIN COPOLYMERS 

  

 The following pages contain: gel permeation chromatographs (GPC), differential 

scanning calorimetry (DSC) thermographs, and proton decoupled carbon-13 nuclear 

magnetic resonance (
13

C{
1
H} NMR), data for ethylene/chiral -olefin copolymers 

described in Chapter One.  Additionally, theoretical calculations for the 
13

C{
1
H} NMR 

spectra for polymer microstructures with and without consecutive chiral repeat units are 

included.  For detailed experimental procedures see the experimental section of Chapter 

One. 
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Figure B.1 GPC traces and corresponding molecular weight data for ethylene/chiral -

olefin copolymers 

 

polymer          Mn        Mw        Mp 
PDI = 

Mw/Mn 

polyethylene 185,043 552,720 603,075 2.99 

poly(3-methyl-1-pentene-co-ethylene 10,639 46,168 26,623 4.34 

poly(3-methyl-1-hexene-co-ethylene) 15,584 79,133 24,044 5.08 

poly(3,5,5-trimethyl-1-hexene-co-ethylene) 20,007 99,771 58,150 4.99 

poly(3,4-dimethyl-1-pentene-co-ethylene) 15,618 108,479 45,264 6.95 

poly(3,4,4-trimethyl-1-pentene-co-ethylene) 2,688 16,008 2,831 5.95 
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Figure B.2 
13

C{
1
H} NMR (125 MHz, o-dichlorobenzene-d4, 100 ºC) spectrum for 

polyethylene. 

 

Figure B.3 DSC thermograph for polyethylene 
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Figure B.4 
13

C{
1
H} NMR (125 MHz, o-dichlorobenzene-d4, 100 ºC) spectrum for 

poly(3-methyl-1-pentene-co-ethylene). 

 

Figure B.5 DSC thermograph for poly(3-methyl-1-pentene-co-ethylene). 
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Figure B.6 
13

C{
1
H} NMR (125 MHz, o-dichlorobenzene-d4-d2, 100 ºC) spectrum for 

poly(3-methyl-1-hexene-co-ethylene). 

 

Figure B.7 DSC thermograph for poly(3-methyl-1-hexene-co-ethylene). 
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Figure B.8 
13

C{
1
H} NMR (125 MHz, o-dichlorobenzene-d4, 100 ºC) spectrum for 

poly(3,5,5-trimethyl-1-hexene-co-ethylene). 

 

Figure B.9 DSC thermograph of poly(3,5,5-trimethyl-1-hexene-co-ethylene). 
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Figure B.10 
13

C{
1
H} NMR (125 MHz, o-dichlorobenzene-d4, 100 ºC) spectrum for 

poly(3,4-dimethyl-1-pentene-co-ethylene). 

 

Figure B.11 DSC thermograph for poly(3,4-dimethyl-1-pentene-co-ethylene). 
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Figure B.12 
13

C{
1
H} NMR (125 MHz, o-dichlorobenzene-d4, 100 ºC) spectrum 

poly(3,4,4-trimethyl-1-pentene-co-ethylene). 

 

Figure B.13 DSC thermograph of poly(3,4,4-trimethyl-1-pentente-co-ethylene). 
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Table B.1 Experimental and theoretical 
13

C NMR chemical shifts for poly(3-methyl-1-

pentene-co-ethylene). 

 

carbon B3'3
a 1,3-B3'3

b 1,5-B3'3
c poly(1,3-B3'3) observed   assignment d 

1 11.36 11.36 11.36 11.36 12.41 1B3'3 1.05 
     12.86 1,3-1B3'3

g 1.50 
3' 16.64 16.64 16.64 16.64 15.66 3’B3'3

 0.98 
2 27.16 27.16 27.16 27.16 27.24 2B3'3 0.08 

f 
27.77 27.77 27.77 N/A 28.34, 28.54 B3'3 0.67 

 30.00 30.00 30.00 30.00 30.00 B3'3 0.00 
 30.21 30.21 30.21 N/A 30.47, 30.54 B3'3 0.30 
 31.78 32.03 32.03 34.1 30.96, 32.25 B3'3 0.18 

     32.76 1,3- B3'3
g 

0.73 
     37.56  1,3-3B3'3

g 0.12 
3 37.31 37.44 37.31 37.56 37.63 3B3'3 0.32 
br 41.84 40.02 41.84 38.2 42.88 brB3’3 1.04 
’

e 
N/A 33.6 32.03 N/A    

’ N/A N/A 25.58 N/A    
 
a 

isolated branch; 
b 

consecutive branches; 
c
 branches separated by one ethylene unit; 

d 
 = |expt.-

calc.| experimental diastereotopic carbons are averaged to get ; 
e 

’ and ’ indicate carbons on the 

polymer chain between branching points; 
f 

, , , and  indicate carbons on the polymer chain 

adjacent to the branching units; 
g
 may also be assigned to poly(1,3-B3’3) or 1,5-B3’3 microstructures 
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Table B.2 Experimental and theoretical 
13

C NMR chemical shifts for poly(3-methyl-1-

hexene-co-ethylene). 

 

carbon B4'4
a 1,3-B4'4

b 1,5-B4'4
c poly(1,3-B4'4) observed   assignment d 

     14.07 1Bn  
1 14.35 14.35 14.35 14.35 14.47 1B4'4 0.12 
4' 17.13 17.13 17.13 17.13 16.01 4’B4'4 1.12 
2 20.21 20.21 20.21 20.21 21.16 2B4'4 0.95 
     22.86 2Bn  
f 

27.77 27.77 27.77 N/A 28.34, 28.51 B4'4 0.67 
 30.00 30.00 30.00 30.00 30.00 B4'4 0.00 
 30.21 30.21 30.21 N/A 30.46, 30.51 B4'4 0.28 
 31.78 32.03 31.78 27.15 30.78, 32.07 B4'4 0.36 

4 35.24 35.365 35.24 35.49 35.01 4B4'4 0.23 
3 36.91 36.91 36.91 36.91 36.90 3B4'4 0.01 
br 41.965 40.145 41.965 38.325 42.96 brB4'4 1.00 
’

e 
N/A 33.6 32.03 N/A    

’ N/A N/A 25.58 N/A    
 
a 

isolated branch; 
b 

consecutive branches; 
c
 branches separated by one ethylene unit; 

d 
 = |expt.-calc.| 

experimental diastereotopic carbons are averaged to get ; 
e 

’ and ’ indicate carbons on the 

polymer chain between branching points; 
f 

, , , and  indicate carbons on the polymer chain 

adjacent to the branching units   
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Table B.3 Experimental and theoretical 
13

C NMR chemical shifts for poly(3,5,5-

trimethyl-1-hexene-co-ethylene). 

 

carbon B2’2’4’4
a 1,3-B2’2’4’4

b 1,5-B2’2’4’4
c poly(1,3-B2’2’4’4) observed   assignment d 

     14.09 1Bn  
4' 18.11 18.11 18.11 18.11 18.59 4’B2’2’4’4 0.48 
     22.86 2Bn  
f 

27.77 27.77 27.52 N/A 28.64, 28.75 B2’2’4’4 0.93 
     29.51 4Bn  
 30.00 30.00 30.00 30.00 30.00 B2’2’4’4 0.00 
 30.21 30.21 30.21 N/A 30.46, 30.50 B2’2’4’4 0.27 

1 30.27 30.27 30.27 30.27 30.32 
1B2’2’4’4, 

2’B2’2’4’4 0.05 
2' 30.27 30.27 30.27 30.27    
4 31.1 31.23 31.1 31.35 31.06 4B2’2’4’4 0.04 
2 31.39 31.39 31.39 31.39 31.20 2B2’2’4’4 0.19 

 31.78 32.03 31.78 34.1 31.37, 32.19 B2’2’4’4 0.00 
     43.5 brBn  

br 42.22 40.4 42.22 38.58 45.53 brB2’2’4’4 3.32 
3 48.59 48.59 48.59 48.59 49.33 3B2’2’4’4 0.74 
’

e 
N/A 33.6 32.03 N/A    

’ N/A N/A 25.58 N/A    
 
a 

isolated branch; 
b 

consecutive branches; 
c
 branches separated by one ethylene unit; 

d 
 = |expt.-

calc.| experimental diastereotopic carbons are averaged to get ; 
e  

’ and ’ indicate carbons on the 

polymer chain between branching points; 
f 

, , , and  indicate carbons on the polymer chain 

adjacent to the branching units   
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Table B.4 Experimental and theoretical 
13

C NMR chemical shifts for poly(3,4-

dimethyl-1-pentene-co-ethylene). 

 

carbon B2'3'3
a 1,3-B2'3'3

b 1,5-B2'3'3
c poly(1,3-B2'3'3) observed   assignment d 

3' 13.65 13.65 13.65 13.65 11.86 3'B2'3'3 1.76 
1, 2' 19.63 19.63 19.63 19.63 19.89, 21.98 1B2'3'3, 2'B2'3'3 1.31 

'
e 

N/A N/A 25.58 N/A 27.45    
f 

27.77 27.77 27.70 N/A 27.98, 28.43 B2'3'3 0.44 
 30.00 30.00 30.00 30.00 30.00 B2'3'3 0.00 
 30.21 30.21 30.21 N/A 30.63 B2'3'3 0.08 

2 30.71 30.71 30.71 30.71 30.63 2B2'3'3 0.42 
 32.03 32.28 32.03 N/A 30.44, 32.91 B2'3'3 0.36 
' N/A 34.10 32.03 34.60 37.55    

br 39.77 37.95 39.77 36.13 40.43 brB2'3'3 0.66 
3 41.85 41.98 41.85 42.10 42.09 3B2'3'3 0.24 

 
a 

isolated branch; 
b 

consecutive branches; 
c
 branches separated by one ethylene unit; 

d  
 = |expt.-calc.| 

experimental diastereotopic carbons are averaged to get ; 
e 

’ and ’ indicate carbons on the 

polymer chain between branching points; 
f 

, , , and  indicate carbons on the polymer chain 

adjacent to the branching units   
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Table B.5 Experimental and theoretical 
13

C NMR chemical shifts for poly(3,4,4-

trimethyl-1-pentene-co-ethylene). 

 

 

carbon B2'2’3’3
a 1,3-B2'2’3’3

b 1,5-B2'2’3’3
c poly(1,3-B2'2’3’3) observed   assignment 

3' 10.66 10.66 10.66 10.66 See cannot assign 
1 27.28 27.28 27.28 27.28 experimental  
2' 27.28 27.28 27.28 27.28 section  

d 
27.77 27.77 27.77 N/A   

 30.21 30.21 30.21 N/A   

 32.28 32.53 32.28 N/A   
2 33.09 33.09 33.09 33.09   

br 37.7 35.88 37.7 34.06   
3 45.41 45.535 45.41 45.66   
’

e 
N/A 34.6 32.53 35.1   

’ N/A N/A 25.58 N/A   
3' 10.66 10.66 10.66 10.66   

a  
isolated branch; 

b 
consecutive branches; 

c
 branches separated by one ethylene unit; 

d 
, , , 

and  indicate carbons on the polymer chain adjacent to the branching units; 
e 

’ and ’ 

indicate carbons on the polymer chain between branching points 
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APPENDIX C 

 

CHARACTERIZATION DATA FOR 

PROPYLENE/CHIRAL -OLEFIN COPOLYMERS 

  

 The following pages contain: gel permeation chromatographs (GPC), differential 

scanning calorimetry (DSC) thermographs, and proton decoupled carbon-13 nuclear 

magnetic resonance (
13

C{
1
H} NMR), data for propylene/chiral -olefin copolymers 

described in Chapter One.  For detailed experimental procedures see the experimental 

section of Chapter One. 
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Figure C.1 GPC traces and corresponding molecular weight data for propylene/chiral 

-olefin copolymers 

 

 

polymer Mn        Mw        Mp 
PDI = 

Mw/Mn 

polypropylene 2,878 5,219 4,059 1.81 

poly(3-methyl-1-pentene-co-propylene 3,155 5,291 4,600 1.68 

poly(3-methyl-1-hexene-co-propylene) 2,812 4,873 4,038 1.73 

poly(3,5,5-trimethyl-1-hexene-co-propylene) 2,673 4,891 3,813 1.83 

poly(3,4-dimethyl-1-pentene-co-propylene) 2,455 4,121 3,290 1.68 

poly(3,4,4-trimethyl-1-pentene-co-propylene) 1,912 3,484 2,262 1.82 
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Figure C.2 
13

C{
1
H} NMR (125 MHz, 1,1,2,2-tetrachloroethane-d2, 100 ºC) spectrum 

for polypropylene. 

 

Figure C.3 DSC thermograph for polypropylene 
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Figure C.4 
13

C{
1
H} NMR (125 MHz, 1,1,2,2-tetrachloroethane-d2, 100 ºC) spectrum 

for poly(3-methyl-1-pentene-co-propylene). 

 

Figure C.5 DSC thermograph for poly(3-methyl-1-pentene-co-propylene). 
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Figure C.6 
13

C{
1
H} NMR (125 MHz, 1,1,2,2-tetrachloroethane-d2, 100 ºC) spectrum 

for poly(3-methyl-1-hexene-co-propylene). 

 

Figure C.7 DSC thermograph for poly(3-methyl-1-hexene-co-propylene). 
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Figure C.8 
13

C{
1
H} NMR (125 MHz, 1,1,2,2-tetrachloroethane-d2, 100 ºC) spectrum 

for poly(3,5,5-trimethyl-1-hexene-co-propylene). 

 

Figure C.9 DSC thermograph of poly(3,5,5-trimethyl-1-hexene-co-propylene). 
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Figure C.10 
13

C{
1
H} NMR (125 MHz, 1,1,2,2-tetrachloroethane-d2, 100 ºC) spectrum 

for poly(3,4-dimethyl-1-pentene-co-propylene). 

 

Figure C.11 DSC thermograph for poly(3,4-dimethyl-1-pentene-co-propylene). 
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Figure C.12 
13

C{
1
H} NMR (125 MHz, 1,1,2,2-tetrachloroethane-d2, 100 ºC) spectrum 

poly(3,4,4-trimethyl-1-pentene-co-propylene). 

 

Figure C.13 DSC thermograph of poly(3,4,4-trimethyl-1-pentente-co-propylene). 
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APPENDIX D 

 

DATA FOR THE DETERMINATION OF REACTIVITY RATIOS 

FOR -OLEFIN/CHIRAL MONOMER COPOLYMERS 

 

 Reactivity ratios for the prochiral -olefin/chiral monomer copolymerizations 

discussed in Chapter 1 was determined using the method of Fineman and Ross.  A good 

description of this method is in Odian’s, Principles of Polymerization.  The method is a 

linear least-squares regression analysis that relates the copolymer composition to the 

relative rates of homo- and copolymerization for each monomer following relationship 

(D.1): 

     G =r1F r2  (D.1) 

where r1 and r2 are the reactivity ratios for monomer 1 and 2, respectively.  G and F are 

related to the initial concentration of each olefin ([Mn]) and the change in this 

concentration (d[Mn]) at low conversion by (D.2) and (D.3): 

  

  

G =

[M1]

[M 2]

 

 
 

 

 
 

d[M1]

d[M 2]

 

 
 

 

 
 1

 

 
 

 

 
 

d[M1]

d[M 2]

 

 
 

 

 
 

 (D.2) 

  

  

F =
[M1]

2 * d[M 2]

[M 2]
2 * d[M1]

 (D.3) 

Practically, reactivity ratios can be determined with a technique that can monitor olefin 

conversion dat low overall conversion. Using this data, G and F can be determined from 

equations (D.2) and (D.3) and plotting G vs. F will give a line with a slope that is the 

reactivity ratio of one monomer and the intercept giving the reactivity ratio of the other 

monomer. 
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 The method of Fineman and Ross is congruent with the GC aliquot method that 

we use to follow our reactions, so determining reactivity ratios with this method was 

possible.  Figures D.1 and D.2 are plots of G vs. F for 1-pentene/3-methyl-1-pentene and 

3-methyl-1-butene/3-methyl-1-pentene copolymerizations, respectively.  For a discussion 

of the reactivity ratios obtained from these plots see Chapter 1. 

 

Figure D.1 Fineman and Ross plot for 1-pentene/3-methyl-1-pentene 

copolymerizations. 

 

Figure D.2 Fineman and Ross plot for 3-methyl-1-butene/3-methyl-1-pentene 

copolymerizations. 
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APPENDIX E 

 

SUMMARY OF GAS CHROMATOGRAPHIC METHODS 

 

 As this project has progressed a great deal of empirical information has been 

gained and passed by word of mouth.  In particular, the gas chromatograph (GC) methods 

used to follow the polymerization of racemic -olefins as well as for the determination of 

their enantiomeric excess have been tediously determined, but no permanent record of 

this information exists.  Below is a summary of the GC methods and some empirical 

observations that my predecessors and I have made during the course of our work.  Many 

experiments have been conducted to optimize these conditions, and several months of 

work have been ruined by some unfortunate discoveries pertaining to either the GC runs 

used to follow the reactions or the GC runs obtained for enantioassays.  Hopefully, the 

summary will help future coworkers from making similar mistakes to those that we have 

encountered. 

 For most of the olefins studied, conversion of the racemic a-olefin 

polymerizations were followed by GC’s using a Agilent 19091S-433 “HP-5”  column 

(5% Phenyl Methyl Siloxane 30.0 m x 250 μm x 0.25 μm) with the following instrument 

parameters and temperature program (called “Method 3” on the Bercaw Group GC): 

Flow = 2.0 mL/m Inlet T = 200 ºC Split Ratio = 150:1 Detector T = 250 ºC 

Temperature Program: 

1) Isothermal step at the initial temperature of  35 ºC for 1 minute 

2) Temperature ramp at 10 ºC/min to 150 ºC 

3) Isothermal step at 150 ºC for 5 minutes 
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 Total run time = 17 minutes 50 seconds 

Table E.1 is a table of common compounds and their retention times using this method   

compound 
retention time 

(m) 

acetone 1.15 

hexanes 1.17 

benzene 1.46 

toluene 3.38 

isopropanol 1.48 

3-methyl-1-pentene 1.56 

butanol 2.53 

3-methyl-1-hexene 2.04 

3,5,5-trimethyl-1-pentene 3.38 

3,4-dimethyl-1-pentene 2.07 

3,4,4-trimethyl-1-pentene 2.66 

tetradecane 12.74 

chlorobenzene 4.57 

1,2-dichlorbenzene 7.59 

Table E.1  Retention times for common compounds using the standard GC method for 

monitoring conversion during polymerizations. 

 A few observations have been made for the chromatographs used to follow 

conversion of the reaction.  Generally, aliquots (<0.1 mL) from polymerization reactions 

are removed from the reaction vessel and diluted in an alcoholic solvent.  This is done to 

quench any MAO in the reaction.  It is important to emphasize that the choice of alcohol 

is critical.  As seen in Table E.1, isopropanol is a good solvent for the GC samples for 

most olefins.  The one exception is 3-methyl-1-pentene, as the large solvent peak from 

isopropanol can sometime overlap with this monomer.  For 3-methyl-1-pentene 

polymerizations, therefore, butanol was generally used as the GC solvent.  Butanol is 

generally not a good GC solvent because the solvent peak tends to be broad and overlaps 

with many of the olefin peaks.  Ethanol was usually not used because of the benzene 

contaminent used to denature ethanol in reagent grade ethanol.  Methanol should never be 
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used as a GC solvent to get conversion!  This is not because methanol is harmful to the 

column, but rather because it is not miscible with tetradecane, the ubiquitous internal 

standard used in these reactions.    

 The HP-5 column works well for most olefins, but it is problematic for 3,5,5-

trimethyl-1-hexene because the retention time for this olefin coincides with retention 

times for toluene.  It is important to keep this fact in mind for all 3,5,5-trimethyl-1-

pentene polymerizations.  These reactions should be carried out using benzene as the 

solvent for the catalyst or (preferably) using a different GC column.  We have found that 

the DC-5 column (Agilent 127-1013E, 10.0 m x 100 μm x 0.4 μm) achieves clean 

separation of toluene and 3,5,5-trimethyl-1-hexene peaks when operating under the below 

instrumental conditions and temperature program (called “Method 3b” on the Bercaw 

Group GC): 

 Flow = 0.2 ml/m Inlet T = 250 ºC  Split Ratio = 500:1 Detector T = 320 ºC 

Temperature Program: 

1) Isothermal step at initial temperature = 35 for 1 minute 

2) Temperature ramp at 10 ºC/min to 150 ºC. 

3) Isothermal step at 150 ºC for 10 minutes 

The  retention times for isopropanol, toluene, 3,5,5-trimethyl-1-hexene, and tetradecane 

using this method are: 1.563, 4.650, 4.772, 15.973 minutes respectively. 

 Enantiomeric excess for the reactions were determined on a Chiraldex G-TA 

chiral column.  Initially, conversion was determined on this column, but this shortened 

the lifetime of the column presumably due to alcoholysis of the column.  Care was taken 

to ensure that water was not introduced onto this column.  The GC solvent that was used 

was either diethyl ether or hexanes.  All samples were dried over magnesium sulfate prior 

to analysis.  Each olefin required unique GC conditions and temperature programs.  
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These methods are presented in Table E.2 along with the retention times for each 

antipode of the methyl ester of the olefins commonly studied.    

retiention times (m) 
flow 

(ml/m) 

initial T 

(ºC) 

isotherm 

(m) 

ramp 

rate 

(ºC/m) 

Final T 

(ºC) 

isotherm 

(m) 

run 

time 

(m) R S 

1.0 40 10 15 160 5 29.00 10.286 10.89 

2.0 50 10 15 160 5 22.33 6.412 6.972 

1.0 55 17 15 160 5 29.00 17.97 18.472 

1.0 60 20 15 160 5 31.67 11.709 12.29 

0.5 40 40 10 160 5 57.00 42.201 43.122 

Table E.2 Instrument conditions and temperature programs for enantioassay GC 

methods.  All temperature programs have three parts: 1) isotherm at an initial 

temperature, 2) temperature ramp to a final temperature, and 3) isotherm at the final 

temperature.  Settings common to all methods are: Inlet T = 200 ºC, Detector T = 250 ºC. 

 Optical purity was determined from the integrals of the two antipodes multiplied 

by the sensitivity factor determined from a racemic mixture of the olefin.  Identification 

of the absolute identity of the methyl ester enantiomers was previously described (Baar, 

C. R.; Levy, C. J.; Min, E. Y.-J.; Henling, L. M.; Day, M. W.; Bercaw, J. E. J. Am. Chem. 

Soc. 2004, 126, 8216).  As the column aged, the peaks corresponding to each antipode 

begin to merge.  Baseline separation could commonly be obtained by modification of the 

generic procedure for each olefin, but in such cases new sensitivity factors must be 

obtained.  Care must be taken for determining the e.e. of 3-methyl-1-pentene 

polymerizations.  It is important all of the derivitization solvent (CH3CN and CCl4) be 

removed from 3-methyl-1-butanoic acid before methanolysis to the methyl ester because 

acetonitrile has the same retention time as the methyl ester of 3-methyl-1-butanoic acid.  
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Table F.1.  Crystal data and structure refinement for (S)-2 (CCDC 635262). 

Empirical formula  C27H44Si2Cl2Zr 

Formula weight  586.92 

Crystallization solvent  Toluene 

Crystal habit  Plate 

Crystal size 0.25 x 0.22 x 0.07 mm3 

Crystal color  Colorless  

 Data Collection  

Type of diffractometer  Bruker SMART 1000 

Wavelength  0.71073 Å MoK   

Data Collection Temperature  100(2) K 

 range for 24444 reflections used 
in lattice determination  2.27º to 40.09° 

Unit cell dimensions a = 8.7249(3) Å 
 b = 11.4772(4) Å 
 c = 28.8269(11) Å 

Volume 2886.65(18) Å3 

Z 4 

Crystal system  Orthorhombic 

Space group  P212121 

Density (calculated) 1.351 Mg/m3 

F(000) 1232 

Data collection program Bruker SMART v5.630 

 range for data collection 1.91º to 40.60° 

Completeness to  = 40.60° 92.3%  

Index ranges -15  h  15, -19  k  18, -52  l  50 

Data collection scan type   scans at 7  settings 

Data reduction program  Bruker SAINT v6.45A 

Reflections collected 67983 

Independent reflections 16445 [Rint= 0.0944] 

Absorption coefficient 0.663 mm-1 

Absorption correction None 

Max. and min. transmission 0.9551 and 0.8518 



APPENDIX F  -171- 

 

Table F.1 (continued) 

 Structure solution and Refinement  

Structure solution program  Bruker XS v6.12 

Primary solution method  Direct methods 

Secondary solution method  Difference Fourier map 

Hydrogen placement  Geometric positions 

Structure refinement program  Bruker XL v6.12 

Refinement method Full matrix least-squares on F2 

Data/restraints/parameters 16445/0/301 

Treatment of hydrogen atoms  Riding 

Goodness-of-fit on F2 1.091 

Final R indices [I>2 (I), 12573 reflections] R1 = 0.0393, wR2 = 0.0663 

R indices (all data) R1 = 0.0609, wR2 = 0.0698 

Type of weighting scheme used Sigma 

Weighting scheme used w=1/ 2(Fo2) 

Max shift/error  0.001 

Average shift/error  0.000 

Absolute structure determination Anomalous differences 

Absolute structure parameter -0.031(19) 

Largest diff. peak and hole 0.778 and -0.557 e.Å-3 

 Special Refinement Details  

Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of 

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative 

F2. The threshold expression of F2 > 2 ( F2) is used only for calculating R-factors (gt) etc. and is 

not relevant to the choice of reflections for refinement.  R-factors based on F2 are statistically 

about twice as large as those based on F, and R-factors based on ALL data will be even larger. 

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using 

the full covariance matrix.  The cell esds are taken into account individually in the estimation of 

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only 

used when they are defined by crystal symmetry.  An approximate (isotropic) treatment of cell 

esds is used for estimating esds involving l.s. planes. 
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Figure F.1 Minimum overlap view of (S)-2.
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Table F.2  Atomic coordinates (104) and equivalent isotropic displacement parameters 

(Å2 x 103) for (S)-2 (CCDC 635262).  U(eq) is defined as the trace of the orthogonalized 

Uij tensor.  
________________________________________________________________________________ 
 x y z U

eq
 

________________________________________________________________________________ 
Zr(1) 387(1) 8003(1) 1238(1) 9(1) 
Cl(1) -347(1) 7967(1) 422(1) 16(1) 
Cl(2) -813(1) 9758(1) 1543(1) 14(1) 
Si(1) 2322(1) 5631(1) 1204(1) 11(1) 
Si(2) 1918(1) 7286(1) 2211(1) 10(1) 
C(1) 2954(2) 9150(2) 1035(1) 10(1) 
C(2) 3066(2) 7988(2) 869(1) 11(1) 
C(3) 2971(2) 7187(1) 1249(1) 11(1) 
C(4) 2781(2) 7892(2) 1666(1) 10(1) 
C(5) 2773(2) 9076(2) 1521(1) 11(1) 
C(6) -2068(2) 6747(2) 1482(1) 13(1) 
C(7) -1070(2) 6022(1) 1224(1) 13(1) 
C(8) 375(2) 5975(1) 1455(1) 10(1) 
C(9) 218(2) 6664(1) 1887(1) 11(1) 
C(10) -1321(2) 7096(2) 1896(1) 11(1) 
C(11) 3201(2) 10237(2) 744(1) 11(1) 
C(12) 2066(2) 11228(2) 859(1) 14(1) 
C(13) 653(2) 11209(2) 544(1) 21(1) 
C(14) 4928(2) 10620(2) 761(1) 13(1) 
C(15) 5200(2) 11540(2) 384(1) 19(1) 
C(16) 5981(2) 9584(2) 665(1) 17(1) 
C(17) 5359(2) 11140(1) 1234(1) 17(1) 
C(18) -1567(2) 5334(2) 800(1) 15(1) 
C(19) -3108(2) 5731(2) 611(1) 20(1) 
C(20) -1635(2) 4041(2) 932(1) 24(1) 
C(21) -2112(2) 7701(2) 2297(1) 12(1) 
C(22) -2239(2) 6826(2) 2700(1) 17(1) 
C(23) -3704(2) 8145(2) 2161(1) 16(1) 
C(24) 2337(2) 5186(2) 584(1) 16(1) 
C(25) 3425(2) 4513(2) 1538(1) 20(1) 
C(26) 1462(2) 8509(2) 2615(1) 17(1) 
C(27) 3119(2) 6224(2) 2536(1) 16(1) 
________________________________________________________________________________
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Table F.3   Selected bond lengths (Å) and angles (°) for (S)-2 (CCDC 635262). 
_______________________________________________________________________________
Zr(1)-Cl(2) 2.4356(4) 
Zr(1)-Cl(1) 2.4374(4) 
 
Zr(1)-Cent(1) 2.222 
Zr(1)-Cent(2) 2.241 

Cl(2)-Zr(1)-Cl(1) 104.467(15) 
 
 
Cent(1)-Zr(1)-Cent(2) 122.1 
Cent(1)-Zr(1)-Cl(1) 107.5 
Cent(2)-Zr(1)-Cl(2) 107.7

_______________________________________________________________________________ 
Cent(1) is the centroid of C(1), C(2), C(3), C(4), and C(5) 
Cent(2) is the centroid of C(6), C(7), C(8), C(9), C(10) 
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Table F.4  Bond lengths (Å) and angles (°) for (S)-2 (CCDC 635262). 
_______________________________________________________________________________
Cent(1)-Zr(1)  2.222 
Cent(2)-Zr(1)  2.241 
Zr(1)-C(8)  2.4105(15) 
Zr(1)-C(9)  2.4262(15) 
Zr(1)-C(4)  2.4301(14) 
Zr(1)-Cl(2)  2.4356(4) 
Zr(1)-Cl(1)  2.4374(4) 
Zr(1)-C(3)  2.4415(14) 
Zr(1)-C(5)  2.5536(16) 
Zr(1)-C(2)  2.5676(15) 
Zr(1)-C(7)  2.6051(16) 
Zr(1)-C(10)  2.6285(15) 
Zr(1)-C(1)  2.6629(16) 
Zr(1)-C(6)  2.6757(16) 
Si(1)-C(24)  1.8603(17) 
Si(1)-C(25)  1.8702(18) 
Si(1)-C(3)  1.8774(16) 
Si(1)-C(8)  1.8875(17) 
Si(2)-C(27)  1.8603(18) 
Si(2)-C(26)  1.8673(18) 
Si(2)-C(4)  1.8762(16) 
Si(2)-C(9)  1.8930(17) 
C(1)-C(5)  1.414(2) 
C(1)-C(2)  1.420(2) 
C(1)-C(11)  1.519(2) 
C(2)-C(3)  1.433(2) 
C(3)-C(4)  1.459(2) 
C(4)-C(5)  1.421(2) 
C(6)-C(7)  1.416(2) 
C(6)-C(10)  1.419(2) 
C(7)-C(8)  1.428(2) 
C(7)-C(18)  1.517(2) 
C(8)-C(9)  1.480(2) 
C(9)-C(10)  1.432(2) 
C(10)-C(21)  1.515(2) 
C(11)-C(12)  1.544(2) 
C(11)-C(14)  1.571(2) 
C(12)-C(13)  1.531(2) 
C(14)-C(16)  1.528(2) 
C(14)-C(17)  1.534(2) 
C(14)-C(15)  1.535(2) 
C(18)-C(19)  1.521(2) 
C(18)-C(20)  1.532(3) 
C(21)-C(23)  1.531(2) 
C(21)-C(22)  1.539(2) 
 
C(8)-Zr(1)-C(9) 35.63(5) 
C(8)-Zr(1)-C(4) 79.68(6) 
C(9)-Zr(1)-C(4) 68.11(5) 
C(8)-Zr(1)-Cl(2) 134.63(4) 
C(9)-Zr(1)-Cl(2) 102.63(4) 

C(4)-Zr(1)-Cl(2) 103.22(4) 
C(8)-Zr(1)-Cl(1) 103.54(4) 
C(9)-Zr(1)-Cl(1) 135.86(4) 
C(4)-Zr(1)-Cl(1) 135.68(4) 
Cent(1)-Zr(1)-Cent(2) 122.1 
Cent(1)-Zr(1)-Cl(1) 107.5 
Cent(2)-Zr(1)-Cl(2) 107.7 
Cl(2)-Zr(1)-Cl(1) 104.467(15) 
C(8)-Zr(1)-C(3) 68.28(5) 
C(9)-Zr(1)-C(3) 78.61(5) 
C(4)-Zr(1)-C(3) 34.84(5) 
Cl(2)-Zr(1)-C(3) 135.18(4) 
Cl(1)-Zr(1)-C(3) 104.45(4) 
C(8)-Zr(1)-C(5) 112.69(5) 
C(9)-Zr(1)-C(5) 96.20(5) 
C(4)-Zr(1)-C(5) 33.02(6) 
Cl(2)-Zr(1)-C(5) 80.54(4) 
Cl(1)-Zr(1)-C(5) 122.09(4) 
C(3)-Zr(1)-C(5) 55.10(5) 
C(8)-Zr(1)-C(2) 96.03(6) 
C(9)-Zr(1)-C(2) 111.72(5) 
C(4)-Zr(1)-C(2) 55.06(5) 
Cl(2)-Zr(1)-C(2) 123.14(4) 
Cl(1)-Zr(1)-C(2) 80.80(3) 
C(3)-Zr(1)-C(2) 33.11(5) 
C(5)-Zr(1)-C(2) 52.66(5) 
C(8)-Zr(1)-C(7) 32.79(5) 
C(9)-Zr(1)-C(7) 55.21(5) 
C(4)-Zr(1)-C(7) 112.44(6) 
Cl(2)-Zr(1)-C(7) 121.19(4) 
Cl(1)-Zr(1)-C(7) 80.92(4) 
C(3)-Zr(1)-C(7) 96.65(5) 
C(5)-Zr(1)-C(7) 145.46(5) 
C(2)-Zr(1)-C(7) 115.58(6) 
C(8)-Zr(1)-C(10) 55.07(5) 
C(9)-Zr(1)-C(10) 32.61(5) 
C(4)-Zr(1)-C(10) 95.71(5) 
Cl(2)-Zr(1)-C(10) 79.76(4) 
Cl(1)-Zr(1)-C(10) 122.77(3) 
C(3)-Zr(1)-C(10) 111.21(5) 
C(5)-Zr(1)-C(10) 114.95(5) 
C(2)-Zr(1)-C(10) 144.33(5) 
C(7)-Zr(1)-C(10) 52.35(5) 
C(8)-Zr(1)-C(1) 122.54(6) 
C(9)-Zr(1)-C(1) 122.24(5) 
C(4)-Zr(1)-C(1) 54.14(5) 
Cl(2)-Zr(1)-C(1) 91.84(4) 
Cl(1)-Zr(1)-C(1) 91.01(4) 
C(3)-Zr(1)-C(1) 54.27(5) 
C(5)-Zr(1)-C(1) 31.35(5) 
C(2)-Zr(1)-C(1) 31.44(5) 
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C(7)-Zr(1)-C(1) 146.97(5) 
C(10)-Zr(1)-C(1) 146.21(5) 
C(8)-Zr(1)-C(6) 53.71(5) 
C(9)-Zr(1)-C(6) 53.65(5) 
C(4)-Zr(1)-C(6) 121.76(5) 
Cl(2)-Zr(1)-C(6) 90.36(4) 
Cl(1)-Zr(1)-C(6) 91.97(4) 
C(3)-Zr(1)-C(6) 121.93(5) 
C(5)-Zr(1)-C(6) 145.92(5) 
C(2)-Zr(1)-C(6) 146.50(6) 
C(7)-Zr(1)-C(6) 31.07(5) 
C(10)-Zr(1)-C(6) 31.02(5) 
C(1)-Zr(1)-C(6) 175.74(5) 
C(24)-Si(1)-C(25) 107.60(9) 
C(24)-Si(1)-C(3) 108.97(8) 
C(25)-Si(1)-C(3) 117.50(8) 
C(24)-Si(1)-C(8) 115.62(7) 
C(25)-Si(1)-C(8) 114.16(8) 
C(3)-Si(1)-C(8) 92.65(7) 
C(24)-Si(1)-Zr(1) 105.40(6) 
C(25)-Si(1)-Zr(1) 147.00(6) 
C(3)-Si(1)-Zr(1) 49.40(4) 
C(8)-Si(1)-Zr(1) 48.48(5) 
C(27)-Si(2)-C(26) 107.37(8) 
C(27)-Si(2)-C(4) 116.02(8) 
C(26)-Si(2)-C(4) 109.16(8) 
C(27)-Si(2)-C(9) 116.31(8) 
C(26)-Si(2)-C(9) 115.14(8) 
C(4)-Si(2)-C(9) 92.35(7) 
C(27)-Si(2)-Zr(1) 147.28(6) 
C(26)-Si(2)-Zr(1) 105.26(6) 
C(4)-Si(2)-Zr(1) 48.77(4) 
C(9)-Si(2)-Zr(1) 48.70(5) 
C(5)-C(1)-C(2) 106.57(15) 
C(5)-C(1)-C(11) 127.81(16) 
C(2)-C(1)-C(11) 125.15(14) 
C(5)-C(1)-Zr(1) 70.05(9) 
C(2)-C(1)-Zr(1) 70.57(9) 
C(11)-C(1)-Zr(1) 130.28(11) 
C(1)-C(2)-C(3) 109.96(13) 
C(1)-C(2)-Zr(1) 77.99(9) 
C(3)-C(2)-Zr(1) 68.61(8) 
C(2)-C(3)-C(4) 106.28(14) 
C(2)-C(3)-Si(1) 125.09(12) 
C(4)-C(3)-Si(1) 123.41(12) 
C(2)-C(3)-Zr(1) 78.28(9) 
C(4)-C(3)-Zr(1) 72.15(8) 
Si(1)-C(3)-Zr(1) 94.88(6) 
C(5)-C(4)-C(3) 106.83(13) 
C(5)-C(4)-Si(2) 126.78(12) 
C(3)-C(4)-Si(2) 121.96(12) 
C(5)-C(4)-Zr(1) 78.27(9) 
C(3)-C(4)-Zr(1) 73.01(8) 
Si(2)-C(4)-Zr(1) 95.74(6) 

C(1)-C(5)-C(4) 110.36(15) 
C(1)-C(5)-Zr(1) 78.59(10) 
C(4)-C(5)-Zr(1) 68.71(8) 
C(7)-C(6)-C(10) 109.05(14) 
C(7)-C(6)-Zr(1) 71.71(9) 
C(10)-C(6)-Zr(1) 72.65(9) 
C(6)-C(7)-C(8) 108.61(14) 
C(6)-C(7)-C(18) 123.55(14) 
C(8)-C(7)-C(18) 127.58(15) 
C(6)-C(7)-Zr(1) 77.22(9) 
C(8)-C(7)-Zr(1) 66.09(8) 
C(18)-C(7)-Zr(1) 127.32(11) 
C(7)-C(8)-C(9) 106.95(14) 
C(7)-C(8)-Si(1) 128.51(11) 
C(9)-C(8)-Si(1) 121.15(12) 
C(7)-C(8)-Zr(1) 81.12(9) 
C(9)-C(8)-Zr(1) 72.76(9) 
Si(1)-C(8)-Zr(1) 95.63(6) 
C(10)-C(9)-C(8) 106.75(13) 
C(10)-C(9)-Si(2) 126.49(12) 
C(8)-C(9)-Si(2) 122.93(12) 
C(10)-C(9)-Zr(1) 81.49(9) 
C(8)-C(9)-Zr(1) 71.60(8) 
Si(2)-C(9)-Zr(1) 95.42(7) 
C(6)-C(10)-C(9) 108.45(14) 
C(6)-C(10)-C(21) 124.29(13) 
C(9)-C(10)-C(21) 126.90(13) 
C(6)-C(10)-Zr(1) 76.33(9) 
C(9)-C(10)-Zr(1) 65.91(8) 
C(21)-C(10)-Zr(1) 128.92(11) 
C(1)-C(11)-C(12) 113.31(13) 
C(1)-C(11)-C(14) 110.41(13) 
C(12)-C(11)-C(14) 113.72(14) 
C(13)-C(12)-C(11) 112.31(14) 
C(16)-C(14)-C(17) 108.46(13) 
C(16)-C(14)-C(15) 108.26(14) 
C(17)-C(14)-C(15) 108.93(14) 
C(16)-C(14)-C(11) 110.67(15) 
C(17)-C(14)-C(11) 111.85(13) 
C(15)-C(14)-C(11) 108.59(13) 
C(7)-C(18)-C(19) 112.72(15) 
C(7)-C(18)-C(20) 108.41(15) 
C(19)-C(18)-C(20) 110.16(15) 
C(10)-C(21)-C(23) 111.75(13) 
C(10)-C(21)-C(22) 108.05(14) 
C(23)-C(21)-C(22) 110.17(1
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Table F.5  Anisotropic displacement parameters (Å2x 104) for (S)-2 (CCDC 635262).  

The anisotropic displacement factor exponent takes the form: -2 2[ h2a*2U11 + ... + 2 h k 

a* b* U12]. 
______________________________________________________________________________ 
    U11 U22 U33 U23 U13 U12 
______________________________________________________________________________ 
Zr(1) 88(1)  102(1) 75(1)  0(1) -3(1)  7(1) 
Cl(1) 171(2)  199(2) 97(1)  5(1) -23(1)  10(2) 
Cl(2) 134(2)  129(2) 148(2)  -8(1) 25(1)  24(1) 
Si(1) 109(2)  108(2) 116(2)  1(2) 4(2)  9(1) 
Si(2) 102(2)  127(2) 83(2)  12(2) -11(1)  -9(2) 
C(1) 93(6)  108(8) 110(6)  0(5) 1(5)  -3(5) 
C(2) 82(6)  140(8) 121(6)  4(6) 12(5)  8(6) 
C(3) 74(5)  127(8) 122(6)  -5(6) 1(5)  1(5) 
C(4) 72(6)  137(8) 102(6)  -1(6) -19(4)  -11(6) 
C(5) 91(6)  132(8) 103(6)  -6(6) -12(5)  -4(5) 
C(6) 108(6)  156(9) 119(6)  -7(6) -4(5)  -8(5) 
C(7) 138(6)  111(8) 135(6)  15(7) 1(6)  -25(5) 
C(8) 143(6)  86(7) 72(5)  8(5) 7(6)  -7(6) 
C(9) 132(7)  97(8) 99(6)  11(5) -1(5)  -14(5) 
C(10) 112(6)  109(8) 98(6)  7(6) 2(5)  -11(6) 
C(11) 142(7)  106(8) 85(6)  16(5) 3(5)  4(6) 
C(12) 173(8)  126(9) 133(7)  12(6) 10(6)  21(6) 
C(13) 208(9)  192(10) 218(8)  14(7) -41(6)  86(7) 
C(14) 147(7)  130(8) 99(6)  22(5) 8(5)  -6(5) 
C(15) 231(9)  187(9) 165(7)  47(6) 39(7)  -25(7) 
C(16) 141(7)  191(10) 178(8)  14(6) 21(6)  7(6) 
C(17) 171(7)  162(8) 181(6)  -2(7) -16(8)  -37(7) 
C(18) 135(7)  170(9) 134(7)  -59(6) 1(5)  -27(6) 
C(19) 143(8)  294(11) 162(8)  -74(7) -41(6)  -14(7) 
C(20) 276(10)  163(10) 274(10)  -68(8) -42(8)  -58(8) 
C(21) 112(6)  140(8) 105(6)  -12(5) 18(5)  2(5) 
C(22) 204(8)  178(10) 140(7)  26(6) 42(6)  28(7) 
C(23) 125(7)  184(9) 166(7)  -16(7) 19(5)  14(6) 
C(24) 154(7)  186(10) 147(7)  -49(6) 10(6)  -3(7) 
C(25) 241(9)  160(10) 190(8)  17(7) -2(7)  60(7) 
C(26) 155(8)  205(10) 154(7)  -32(6) -12(6)  -23(7) 
C(27) 159(8)  202(10) 131(7)  44(6) -38(6)  -12(7) 
_____________________________________________________________________________ 
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APPENDIX G 

 

RESULTS FROM THE UNIDIRECTIONAL SITE EPIMERIZATION MODEL 

  

 This appendix contains a summary of the unidirectional site epimerization model 

used to model polypropylene pentad data discussed in Chapter Two.  For a complete 

derivation of the model and a more extensive discussion see S. A. Miller’s Ph D thesis 

(California Institute of Technology, 2000).  The model considers three parameters that 

can affect the polymer pentads: enantiofacial selectivity of olefin insertion from the two 

sites of the catalyst (  and ) and the probability of site epimerization during 

polymerization ( ).  The statistical model calculates the probability of every outcome for 

a given pentad at an , , and, .  Theoretical fits to the experimental data were obtained 

iteratively by minimizing the root mean square (RMS) difference between the 

experimental and theoretical pentads using Excel. 

 Below is a bar chart for each polypropylene sample analyzed in Chapter 2 that 

shows the theoretical and experimental pentads along with the RMS value for: (a) a 

model where all three parameters are varied and (b) a model where only  is varied using 

 and  obtained from neat polypropylene data. 
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Figure G.1 Unimolecular site epimerization model fits for polypropylene (neat C3H6) 

with catalyst (S)-1 varying all three parameters. 
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(a) 3-parameter, 8.1 M C3H6.   

 

(b) 1-paramater, 8.1 C3H6. 

 

Figure G.2 Unimolecular site epimerization model fits for polypropylene (8.1 M) with 

catalyst (S)-1 varying (a) all three parameters and (b) only .
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(a) 3-parameter, 4.6 M C3H6. 

 

(b) 1-parameter, 4.6 C3H6. 

 

Figure G.3 Unimolecular site epimerization model fits for polypropylene (4.6 M) with 

catalyst (S)-1 varying (a) all three parameters and (b) only .
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(a) 3-parameter, 3.4 M C3H6. 

 

(b) 1-parameter, 3.4 M C3H6. 

 

Figure G.4 Unimolecular site epimerization model fits for polypropylene (3.4 M) with 

catalyst (S)-1 varying (a) all three parameters and (b) only .



APPENDIX G -183-

(a) 3-parameter, 0.8 M C3H6. 

 

(b) 1-parameter, 0.8 M C3H6. 

 

Figure G.5 Unimolecular site epimerization model fits for polypropylene (0.8 M) with 

catalyst (S)-1 varying (a) all three parameters and (b) only .
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Figure G.6 Unimolecular site epimerization model fits for polypropylene (neat C3H6) 

with catalyst (S)-2 varying all three parameters.
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(a) 3-paramater, 8.1 M C3H6 

 

(b) 1-parameter, 8.1 M C3H6 

 

Figure G.7  Unimolecular site epimerization model fits for polypropylene (8.1 M) with 

catalyst (S)-2 varying (a) all three parameters and (b) only .
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a) 3-parameter, 4.6 M C3H6 

 

b) 1-parameter, 4.6 M C3H6 

 

Figure G.8  Unimolecular site epimerization model fits for polypropylene (4.6 M) with 

catalyst (S)-2 varying (a) all three parameters and (b) only .
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a) 3-parameter, 3.4 M C3H6 

 

b) 1-paramter, 3.4 M C3H6 

 

Figure G.9  Unimolecular site epimerization model fits for polypropylene (3.4 M) with 

catalyst (S)-2 varying (a) all three parameters and (b) only .
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a) 3-paramter, 0.8 M C3H6 

 

b) 1-parameter, 0.8 M 

 

Figure G.10  Unimolecular site epimerization model fits for polypropylene (0.8 M) with 

catalyst (S)-2 varying (a) all three parameters and (b) only . 
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APPENDIX H 

 

X-RAY CRYSTALLOGRAPHIC DATA FOR  

(rac)-(EBI)Zr(NMe2)Cl 
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Note: Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK 
and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition 
number 602362. 
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Table H.1  Crystal data and structure refinement for (rac)-(EBI)Zr(NMe2)Cl 

(CCDC 602362). 

Empirical formula  C22H22NClZr 

Formula weight  427.08 

Crystallization Solvent  Diethylether/toluene 

Crystal Habit  Needle 

Crystal size 0.04 x 0.31 x 0.11 mm3 

Crystal color  Red  

 Data Collection  

Type of diffractometer  Bruker SMART 1000 

Wavelength  0.71073 Å MoK   

Data Collection Temperature  100(2) K 

 range for 9675 reflections used 
in lattice determination  2.28º to 32.00° 

Unit cell dimensions a = 7.5960(5) Å 
 b = 9.5569(7) Å  = 98.315(2)° 
 c = 25.6267(19) Å 

Volume 1840.8(2) Å3 

Z 4 

Crystal system  Monoclinic 

Space group  P21/n 

Density (calculated) 1.541 Mg/m3 

F(000) 872 

Data collection program Bruker SMART v5.630 

 range for data collection 1.61º to 32.72° 

Completeness to  = 32.72° 84.2%  

Index ranges -11  h  11, -12  k  12, -37  l  34 

Data collection scan type   scans at 5  settings 

Data reduction program  Bruker SAINT v6.45A 

Reflections collected 27995 

Independent reflections 5735 [Rint= 0.0752] 

Absorption coefficient 0.746 mm-1 

Absorption correction None 

Max. and min. transmission 0.9224 and 0.7545 
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Table H.1 (continued) 

 Structure solution and refinement  

Structure solution program  Bruker XS v6.12 

Primary solution method  Direct methods 

Secondary solution method  Difference Fourier map 

Hydrogen placement  Difference Fourier map 

Structure refinement program  Bruker XL v6.12 

Refinement method Full matrix least-squares on F2 

Data/restraints/parameters 5735/0/314 

Treatment of hydrogen atoms  Unrestrained 

Goodness-of-fit on F2 1.101 

Final R indices [I>2 (I),  3824 reflections] R1 = 0.0361, wR2 = 0.0511 

R indices (all data) R1 = 0.0701, wR2 = 0.0545 

Type of weighting scheme used Sigma 

Weighting scheme used w=1/ 2(Fo2) 

Max shift/error  0.000 

Average shift/error  0.000 

Largest diff. peak and hole 0.573 and -0.840 e.Å-3 

 Special Refinement Details  

Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of 

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative 

F2. The threshold expression of F2 > 2 ( F2) is used only for calculating R-factors (gt) etc. and is 

not relevant to the choice of reflections for refinement.  R-factors based on F2 are statistically 

about twice as large as those based on F, and R-factors based on ALL data will be even larger. 

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using 

the full covariance matrix.  The cell esds are taken into account individually in the estimation of 

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only 

used when they are defined by crystal symmetry.  An approximate (isotropic) treatment of cell 

esds is used for estimating esds involving l.s. planes. 
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Figure H.1 Minimum overlap view of (rac)-(EBI)Zr(NMe2)Cl.  

 

Figure H. 2 Unit cell contents for (rac)-(EBI)Zr(NMe2)Cl 
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Table H.2  Atomic coordinates (104) and equivalent isotropic displacement parameters 

(Å2x 103) for (rac)-(EBI)Zr(NMe2)Cl (CCDC 602362).  U(eq) is defined as the trace of 

the orthogonalized Uij tensor.  

______________________________________________________________________  
  x y z  U

eq
 

______________________________________________________________________ 
Zr(1) 3702(1) 3159(1) 1099(1) 9(1) 
Cl(1) 6733(1) 3228(1) 864(1) 18(1) 
N(1) 2510(2) 2092(2) 452(1) 12(1) 
C(1) 2007(2) 5145(2) 1436(1) 12(1) 
C(2) 1215(3) 4904(2) 913(1) 14(1) 
C(3) 2405(3) 5265(2) 559(1) 13(1) 
C(4) 3962(3) 5826(2) 869(1) 12(1) 
C(5) 3732(3) 5724(2) 1414(1) 12(1) 
C(6) 5128(3) 6175(2) 1812(1) 16(1) 
C(7) 6632(3) 6731(2) 1664(1) 20(1) 
C(8) 6824(3) 6860(2) 1121(1) 22(1) 
C(9) 5548(3) 6422(2) 730(1) 17(1) 
C(10) 3101(3) 2773(2) 2044(1) 12(1) 
C(11) 4946(3) 2549(2) 2049(1) 14(1) 
C(12) 5222(3) 1333(2) 1759(1) 14(1) 
C(13) 3536(3) 717(2) 1589(1) 11(1) 
C(14) 2209(2) 1641(2) 1751(1) 11(1) 
C(15) 368(3) 1292(2) 1615(1) 14(1) 
C(16) -75(3) 66(2) 1363(1) 17(1) 
C(17) 1249(3) -874(2) 1225(1) 16(1) 
C(18) 3010(3) -552(2) 1329(1) 14(1) 
C(19) 1128(3) 4894(2) 1921(1) 16(1) 
C(20) 2249(3) 3928(2) 2316(1) 18(1) 
C(21) 3528(3) 918(2) 280(1) 18(1) 
C(22) 815(3) 2208(3) 109(1) 21(1) 
_____________________________________________________________________
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Table H.3  Selected bond lengths (Å) and angles (°) for (rac)-(EBI)Zr(NMe2)Cl 

(CCDC 602362). 

_________________________________________________________________________
Zr(1)-N(1) 2.0435(16) 
Zr(1)-Cl(1) 2.4623(5) 
Zr(1)-Cent(1) 2.255 
Zr(1)-Cent(2) 2.289 
 

N(1)-Zr(1)-Cl(1) 97.78(5) 
Cent(1)-Zr(1)-Cent(2) 123.9 
Cent(1)-Zr(1)-N(1) 107.6 
Cent(1)-Zr(1)-Cl(1) 106.8 
Cent(2)-Zr(1)-N(1) 110.3 
Cent(2)-Zr(1)-Cl(1) 107.3

________________________________________________________________________ 
Cent(1) is the centroid of C(1), C(2), C(3), C(4), and C(5) 
Cent(2) is the centroid of C(10), C(11), C(12), C(13), and C(14) 
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Table H.4   Bond lengths (Å) and angles (°) for  (ra c)-(EBI)Zr(NMe2)Cl  

(CCDC 602362). 

________________________________________________________________________________
Zr(1)-N(1)  2.0435(16) 
Zr(1)-Cl(1)  2.4623(5) 
Zr(1)-C(2)  2.5132(19) 
Zr(1)-C(1)  2.5158(19) 
Zr(1)-C(11)  2.548(2) 
Zr(1)-C(10)  2.5573(19) 
Zr(1)-C(3)  2.557(2) 
Zr(1)-C(5)  2.5793(19) 
Zr(1)-C(12)  2.585(2) 
Zr(1)-C(14)  2.5954(18) 
Zr(1)-C(4)  2.6298(19) 
Zr(1)-C(13)  2.6618(19) 
N(1)-C(22)  1.454(3) 
N(1)-C(21)  1.465(3) 
C(1)-C(2)  1.406(3) 
C(1)-C(5)  1.432(3) 
C(1)-C(19)  1.513(3) 
C(2)-C(3)  1.414(3) 
C(2)-H(2)  0.912(19) 
C(3)-C(4)  1.430(3) 
C(3)-H(3)  0.94(2) 
C(4)-C(9)  1.424(3) 
C(4)-C(5)  1.435(3) 
C(5)-C(6)  1.428(3) 
C(6)-C(7)  1.363(3) 
C(6)-H(6)  0.89(2) 
C(7)-C(8)  1.425(3) 
C(7)-H(7)  0.94(2) 
C(8)-C(9)  1.356(3) 
C(8)-H(8)  0.95(2) 
C(9)-H(9)  0.94(2) 
C(10)-C(11)  1.417(3) 
C(10)-C(14)  1.431(3) 
C(10)-C(20)  1.500(3) 
C(11)-C(12)  1.410(3) 
C(11)-H(11)  0.93(2) 
C(12)-C(13)  1.420(3) 
C(12)-H(12)  0.945(19) 
C(13)-C(18)  1.414(3) 
C(13)-C(14)  1.446(3) 
C(14)-C(15)  1.431(3) 
C(15)-C(16)  1.356(3) 
C(15)-H(15)  0.90(2) 
C(16)-C(17)  1.431(3) 
C(16)-H(16)  0.943(18) 
C(17)-C(18)  1.361(3) 
C(17)-H(17)  0.93(2) 

C(18)-H(18)  0.89(2) 
C(19)-C(20)  1.533(3) 
C(19)-H(19A)  0.916(18) 
C(19)-H(19B)  0.946(19) 
C(20)-H(20A)  0.986(19) 
C(20)-H(20B)  0.93(2) 
C(21)-H(21A)  0.97(2) 
C(21)-H(21B)  0.97(2) 
C(21)-H(21C)  1.00(2) 
C(22)-H(22A)  0.98(3) 
C(22)-H(22B)  0.88(3) 
C(22)-H(22C)  0.91(3) 
 
N(1)-Zr(1)-Cl(1) 97.78(5) 
N(1)-Zr(1)-C(2) 86.86(7) 
Cl(1)-Zr(1)-C(2) 129.80(5) 
N(1)-Zr(1)-C(1) 117.82(6) 
Cl(1)-Zr(1)-C(1) 127.38(5) 
C(2)-Zr(1)-C(1) 32.46(6) 
N(1)-Zr(1)-C(11) 136.09(7) 
Cl(1)-Zr(1)-C(11) 90.49(5) 
C(2)-Zr(1)-C(11) 119.81(7) 
C(1)-Zr(1)-C(11) 88.96(7) 
N(1)-Zr(1)-C(10) 125.31(6) 
Cl(1)-Zr(1)-C(10) 122.45(5) 
C(2)-Zr(1)-C(10) 92.41(6) 
C(1)-Zr(1)-C(10) 67.19(6) 
C(11)-Zr(1)-C(10) 32.22(6) 
N(1)-Zr(1)-C(3) 82.13(7) 
Cl(1)-Zr(1)-C(3) 98.50(5) 
C(2)-Zr(1)-C(3) 32.38(6) 
C(1)-Zr(1)-C(3) 54.28(7) 
C(11)-Zr(1)-C(3) 139.25(7) 
C(10)-Zr(1)-C(3) 121.24(6) 
N(1)-Zr(1)-C(5) 135.33(6) 
Cl(1)-Zr(1)-C(5) 94.87(5) 
C(2)-Zr(1)-C(5) 53.21(7) 
C(1)-Zr(1)-C(5) 32.61(6) 
C(11)-Zr(1)-C(5) 86.17(7) 
C(10)-Zr(1)-C(5) 80.51(6) 
C(3)-Zr(1)-C(5) 53.63(7) 
N(1)-Zr(1)-C(12) 107.32(7) 
Cl(1)-Zr(1)-C(12) 80.40(5) 
C(2)-Zr(1)-C(12) 145.49(7) 
C(1)-Zr(1)-C(12) 119.10(7) 
C(11)-Zr(1)-C(12) 31.88(7) 
C(10)-Zr(1)-C(12) 53.55(7) 
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C(3)-Zr(1)-C(12) 170.55(7) 
C(5)-Zr(1)-C(12) 116.98(7) 
N(1)-Zr(1)-C(14) 93.44(6) 
Cl(1)-Zr(1)-C(14) 133.09(4) 
C(2)-Zr(1)-C(14) 96.07(6) 
C(1)-Zr(1)-C(14) 84.66(6) 
C(11)-Zr(1)-C(14) 52.62(6) 
C(10)-Zr(1)-C(14) 32.23(6) 
C(3)-Zr(1)-C(14) 128.19(6) 
C(5)-Zr(1)-C(14) 108.32(6) 
C(12)-Zr(1)-C(14) 52.83(6) 
N(1)-Zr(1)-C(4) 109.94(6) 
Cl(1)-Zr(1)-C(4) 79.44(4) 
C(2)-Zr(1)-C(4) 52.65(6) 
C(1)-Zr(1)-C(4) 53.46(6) 
C(11)-Zr(1)-C(4) 113.98(7) 
C(10)-Zr(1)-C(4) 112.42(6) 
C(3)-Zr(1)-C(4) 31.97(6) 
C(5)-Zr(1)-C(4) 31.97(6) 
C(12)-Zr(1)-C(4) 139.51(7) 
C(14)-Zr(1)-C(4) 137.72(6) 
N(1)-Zr(1)-C(13) 84.22(6) 
Cl(1)-Zr(1)-C(13) 104.38(4) 
C(2)-Zr(1)-C(13) 125.80(6) 
C(1)-Zr(1)-C(13) 115.94(6) 
C(11)-Zr(1)-C(13) 52.05(6) 
C(10)-Zr(1)-C(13) 53.07(6) 
C(3)-Zr(1)-C(13) 154.71(6) 
C(5)-Zr(1)-C(13) 133.18(7) 
C(12)-Zr(1)-C(13) 31.36(6) 
C(14)-Zr(1)-C(13) 31.89(6) 
C(4)-Zr(1)-C(13) 164.93(6) 
C(22)-N(1)-C(21) 109.67(18) 
C(22)-N(1)-Zr(1) 134.54(14) 
C(21)-N(1)-Zr(1) 115.79(13) 
C(2)-C(1)-C(5) 107.03(17) 
C(2)-C(1)-C(19) 125.34(18) 
C(5)-C(1)-C(19) 127.56(19) 
C(2)-C(1)-Zr(1) 73.67(11) 
C(5)-C(1)-Zr(1) 76.14(11) 
C(19)-C(1)-Zr(1) 118.16(13) 
C(1)-C(2)-C(3) 110.33(18) 
C(1)-C(2)-Zr(1) 73.87(11) 
C(3)-C(2)-Zr(1) 75.53(11) 
C(1)-C(2)-H(2) 125.6(13) 
C(3)-C(2)-H(2) 124.0(13) 
Zr(1)-C(2)-H(2) 117.8(13) 
C(2)-C(3)-C(4) 106.75(19) 
C(2)-C(3)-Zr(1) 72.09(12) 
C(4)-C(3)-Zr(1) 76.80(11) 
C(2)-C(3)-H(3) 128.3(13) 
C(4)-C(3)-H(3) 124.6(13) 
Zr(1)-C(3)-H(3) 121.7(13) 
C(9)-C(4)-C(3) 132.2(2) 

C(9)-C(4)-C(5) 119.84(19) 
C(3)-C(4)-C(5) 107.94(17) 
C(9)-C(4)-Zr(1) 122.49(13) 
C(3)-C(4)-Zr(1) 71.23(11) 
C(5)-C(4)-Zr(1) 72.08(11) 
C(6)-C(5)-C(1) 132.63(19) 
C(6)-C(5)-C(4) 119.53(18) 
C(1)-C(5)-C(4) 107.83(17) 
C(6)-C(5)-Zr(1) 118.85(13) 
C(1)-C(5)-Zr(1) 71.26(11) 
C(4)-C(5)-Zr(1) 75.96(12) 
C(7)-C(6)-C(5) 118.9(2) 
C(7)-C(6)-H(6) 119.9(14) 
C(5)-C(6)-H(6) 121.1(14) 
C(6)-C(7)-C(8) 121.0(2) 
C(6)-C(7)-H(7) 120.0(12) 
C(8)-C(7)-H(7) 118.7(12) 
C(9)-C(8)-C(7) 122.1(2) 
C(9)-C(8)-H(8) 122.4(14) 
C(7)-C(8)-H(8) 115.4(14) 
C(8)-C(9)-C(4) 118.6(2) 
C(8)-C(9)-H(9) 123.2(12) 
C(4)-C(9)-H(9) 118.1(12) 
C(11)-C(10)-C(14) 106.39(17) 
C(11)-C(10)-C(20) 126.91(19) 
C(14)-C(10)-C(20) 126.63(18) 
C(11)-C(10)-Zr(1) 73.54(11) 
C(14)-C(10)-Zr(1) 75.35(11) 
C(20)-C(10)-Zr(1) 118.79(13) 
C(12)-C(11)-C(10) 110.03(18) 
C(12)-C(11)-Zr(1) 75.48(12) 
C(10)-C(11)-Zr(1) 74.23(11) 
C(12)-C(11)-H(11) 126.6(12) 
C(10)-C(11)-H(11) 123.3(12) 
Zr(1)-C(11)-H(11) 115.4(12) 
C(11)-C(12)-C(13) 107.92(18) 
C(11)-C(12)-Zr(1) 72.64(12) 
C(13)-C(12)-Zr(1) 77.32(12) 
C(11)-C(12)-H(12) 124.2(12) 
C(13)-C(12)-H(12) 127.6(12) 
Zr(1)-C(12)-H(12) 120.6(12) 
C(18)-C(13)-C(12) 132.97(19) 
C(18)-C(13)-C(14) 119.91(18) 
C(12)-C(13)-C(14) 107.07(18) 
C(18)-C(13)-Zr(1) 124.02(14) 
C(12)-C(13)-Zr(1) 71.33(11) 
C(14)-C(13)-Zr(1) 71.52(10) 
C(15)-C(14)-C(10) 132.55(18) 
C(15)-C(14)-C(13) 118.99(18) 
C(10)-C(14)-C(13) 108.45(16) 
C(15)-C(14)-Zr(1) 118.42(13) 
C(10)-C(14)-Zr(1) 72.42(10) 
C(13)-C(14)-Zr(1) 76.59(10) 
C(16)-C(15)-C(14) 119.0(2) 
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C(16)-C(15)-H(15) 121.7(13) 
C(14)-C(15)-H(15) 119.3(13) 
C(15)-C(16)-C(17) 121.7(2) 
C(15)-C(16)-H(16) 120.7(11) 
C(17)-C(16)-H(16) 117.5(11) 
C(18)-C(17)-C(16) 121.1(2) 
C(18)-C(17)-H(17) 120.3(13) 
C(16)-C(17)-H(17) 118.6(13) 
C(17)-C(18)-C(13) 119.2(2) 
C(17)-C(18)-H(18) 119.9(14) 
C(13)-C(18)-H(18) 120.8(14) 
C(1)-C(19)-C(20) 111.62(17) 
C(1)-C(19)-H(19A) 108.7(12) 
C(20)-C(19)-H(19A) 109.6(12) 
C(1)-C(19)-H(19B) 108.8(11) 
C(20)-C(19)-H(19B) 110.9(11) 
H(19A)-C(19)-H(19B) 107.1(16) 
C(10)-C(20)-C(19) 111.87(18) 
C(10)-C(20)-H(20A) 110.3(11) 
C(19)-C(20)-H(20A) 110.2(11) 
C(10)-C(20)-H(20B) 109.5(12) 
C(19)-C(20)-H(20B) 110.9(12) 
H(20A)-C(20)-H(20B) 103.8(17) 
N(1)-C(21)-H(21A) 110.1(11) 
N(1)-C(21)-H(21B) 115.3(11) 
H(21A)-C(21)-H(21B) 102.3(16) 
N(1)-C(21)-H(21C) 110.1(12) 
H(21A)-C(21)-H(21C) 110.1(16) 
H(21B)-C(21)-H(21C) 108.6(16) 
N(1)-C(22)-H(22A) 112.1(16) 
N(1)-C(22)-H(22B) 111.7(17) 
H(22A)-C(22)-H(22B) 106(2) 
N(1)-C(22)-H(22C) 114.0(16) 
H(22A)-C(22)-H(22C) 105(2) 
H(22B)-C(22)-H(22C) 108(2
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Table H.5.   Anisotropic displacement parameters (Å2 x104) for (rac)-(EBI)Zr(NMe2)Cl 

(CCDC 602362).  The anisotropic displacement factor exponent takes the form: -2 2 [ h2 

a*2U 11  + ... + 2 h k a* b* U12 ]. 

______________________________________________________________________________  
 U11 U22  U33 U23 U13 U12 
______________________________________________________________________________  
Zr(1) 77(1)  93(1) 100(1)  2(1) 16(1)  5(1) 
Cl(1) 105(2)  183(3) 251(3)  42(3) 67(2)  14(2) 
N(1) 125(8)  109(10) 125(9)  -7(7) 20(7)  18(7) 
C(1) 93(9)  85(11) 178(11)  -3(9) 49(8)  23(8) 
C(2) 99(10)  112(11) 201(12)  -26(9) 30(9)  33(9) 
C(3) 165(11)  105(11) 115(11)  17(9) -12(9)  45(9) 
C(4) 125(10)  68(11) 163(12)  23(8) 27(8)  32(8) 
C(5) 131(10)  79(11) 148(12)  -14(9) 33(9)  12(8) 
C(6) 199(11)  105(11) 168(13)  -23(9) 16(9)  16(9) 
C(7) 160(10)  144(12) 289(13)  -56(11) 4(9)  -12(10) 
C(8) 173(10)  122(11) 371(14)  -35(12) 112(10)  -52(11) 
C(9) 233(12)  98(11) 201(13)  10(9) 116(10)  -3(9) 
C(10) 159(10)  104(11) 95(10)  20(8) 33(8)  -22(8) 
C(11) 165(11)  145(11) 110(11)  21(9) -18(9)  -55(9) 
C(12) 128(10)  133(11) 146(12)  65(9) 6(9)  15(9) 
C(13) 135(10)  112(11) 93(11)  49(8) 19(8)  -2(8) 
C(14) 135(9)  98(11) 104(10)  32(8) 43(8)  10(8) 
C(15) 126(10)  145(11) 150(12)  37(9) 51(9)  11(9) 
C(16) 108(10)  197(12) 204(12)  1(10) 15(9)  -25(9) 
C(17) 197(11)  120(12) 150(12)  -16(9) 17(9)  -39(9) 
C(18) 175(11)  98(11) 134(12)  24(9) 33(9)  31(9) 
C(19) 169(11)  139(12) 183(12)  -44(10) 78(9)  3(10) 
C(20) 242(12)  149(12) 160(12)  -19(10) 89(10)  -37(10) 
C(21) 240(13)  135(12) 166(13)  -20(10) 66(10)  -14(10) 
C(22) 193(12)  239(15) 179(13)  -33(10) -19(10)  -2(11) 
______________________________________________________________________________ 
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Table H.6  Hydrogen coordinates (104) and isotropic  displacement parameters (Å2 x103) 

for (rac)-(EBI)Zr(NMe2)Cl (CCDC 602362). 

_____________________________________________________________________________  
 x  y  z  U

iso
 

_____________________________________________________________________________ 
H(2) 90(30) 4570(20) 812(8) 18(6) 
H(3) 2200(30) 5250(20) 187(9) 22(6) 
H(6) 5000(30) 6140(20) 2151(9) 19(6) 
H(7) 7510(30) 7120(20) 1917(8) 15(6) 
H(8) 7920(30) 7230(20) 1053(9) 40(7) 
H(9) 5680(30) 6440(20) 369(9) 17(6) 
H(11) 5820(30) 3150(20) 2212(8) 16(5) 
H(12) 6350(30) 970(20) 1722(8) 16(6) 
H(15) -460(30) 1870(20) 1712(8) 21(6) 
H(16) -1280(20) -167(19) 1252(7) 9(5) 
H(17) 880(30) -1700(20) 1051(8) 22(6) 
H(18) 3820(30) -1160(20) 1246(8) 20(6) 
H(19A) 30(20) 4499(19) 1819(7) 4(5) 
H(20A) 1510(30) 3535(19) 2567(8) 12(5) 
H(21A) 3800(20) 1090(20) -74(8) 11(5) 
H(22A) 960(30) 2480(30) -249(12) 62(9) 
H(19B) 930(20) 5770(20) 2078(7) 6(5) 
H(20B) 3120(30) 4430(20) 2529(8) 10(5) 
H(21B) 2900(30) 30(20) 237(8) 15(6) 
H(22B) 240(30) 1400(30) 78(10) 47(9) 
H(21C) 4650(30) 780(20) 531(8) 15(6) 
H(22C) 70(30) 2860(30) 217(10) 50(8) 
____________________________________________________________________________ 
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Table I.1  Crystal data and structure refinement for (ra c)-18 (CCDC 246589). 

Empirical formula  C61H50N2Zr 

Formula weight  902.25 

Crystallization Solvent  Toluene/petroleum ether 

Crystal Habit  Fragment 

Crystal size 0.36 x 0.16 x 0.05 mm3 

Crystal color  Orange  

 Data Collection  

Type of diffractometer  Bruker SMART 1000 

Wavelength  0.71073 Å MoK   

Data Collection Temperature  100(2) K 

 range for 10520 reflections used 
in lattice determination  2.25º to 30.86° 

Unit cell dimensions a = 9.0168(6) Å = 96.911(2)° 
 b = 11.8062(6) Å = 97.5720(10)° 
 c = 22.5649(14) Å  = 111.8280(10)° 

Volume 2172.7(2) Å3 

Z 2 

Crystal system  Triclinic 

Space group  P-1 

Density (calculated) 1.379 Mg/m3 

F(000) 940 

Data collection program Bruker SMART v5.054 

 range for data collection 1.85º to 32.94° 

Completeness to  = 32.94° 83.2%  

Index ranges -13  h  13, -17  k  17, -34  l  34 

Data collection scan type   scans at 5  settings 

Data reduction program  Bruker SAINT v6.45 

Reflections collected 36571 

Independent reflections 13576 [Rint= 0.0761] 

Absorption coefficient 0.298 mm-1 

Absorption correction None 

Max. and min. transmission 0.9852 and 0.9002 
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Table I.1 (continued) 

 Structure solution and Refinement 

Structure solution program  SHELXS-97 (Sheldrick, 1990) 

Primary solution method  Patterson method 

Secondary solution method  Difference Fourier map 

Hydrogen placement  Geometric positions 

Structure refinement program  SHELXL-97 (Sheldrick, 1997) 

Refinement method Full matrix least-squares on F2 

Data/restraints/parameters 13576/0/580 

Treatment of hydrogen atoms  Riding 

Goodness-of-fit on F2 1.227 

Final R indices [I>2 (I),  8720 reflections] R1 = 0.0537, wR2 = 0.0899 

R indices (all data) R1 = 0.0913, wR2 = 0.0949 

Type of weighting scheme used Sigma 

Weighting scheme used w=1/ 2(Fo2) 

Max shift/error  0.001 

Average shift/error  0.000 

Largest diff. peak and hole 1.490 and -1.009 e.Å-3 

 Special Refinement Details  

Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of 

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative 

F2. The threshold expression of F2 > 2  ( F2) is used only for calculating R-factors(gt) etc. and is 

not relevant to the choice of reflections for refinement.  R-factors based on F2 are statistically 

about twice as large as those based on F, and R-factors based on ALL data will be even larger. 

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using 

the full covariance matrix.  The cell esds are taken into account individually in the estimation of 

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only 

used when they are defined by crystal symmetry.  An approximate (isotropic) treatment of cell 

esds is used for estimating esds involving l.s. planes. 
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Figure I.1 Minimum overlap view of (rac)-18. 

 

Figure I.2 Crystal packing of (rac)-18. 
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Figure I.3 Unit cell contents of (rac)-18.
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Table I.2  Atomic coordinates (104) and equivalent isotropic displacement parameters 

(Å2x103) for (rac)-18 (CCDC 246589). U(eq) is defined as the trace of the orthogonalized 

Uij tensor.  
             ___________________________________________________________________ 

 x y z Ueq 

___________________________________________________________________ 
Zr(1) 8343(1) -870(1) 7429(1) 15(1) 
N(1) 9247(2) 973(2) 7954(1) 15(1) 
N(2) 7573(2) -636(2) 6530(1) 15(1) 
C(1) 11200(3) -715(2) 7081(1) 18(1) 
C(2) 11420(3) -289(2) 7709(1) 19(1) 
C(3) 10590(3) -1306(2) 7976(1) 19(1) 
C(4) 9749(3) -2375(2) 7513(1) 19(1) 
C(5) 10170(3) -2031(2) 6956(1) 16(1) 
C(6) 9923(3) -2720(2) 6366(1) 18(1) 
C(7) 10662(3) -2145(2) 5934(1) 22(1) 
C(8) 11634(3) -863(2) 6057(1) 26(1) 
C(9) 11907(3) -149(2) 6614(1) 21(1) 
C(10) 6579(3) -1765(2) 8260(1) 18(1) 
C(11) 6774(3) -2738(2) 7887(1) 20(1) 
C(12) 5889(3) -2877(2) 7298(1) 23(1) 
C(13) 5227(3) -1972(2) 7284(1) 24(1) 
C(14) 5603(3) -1303(2) 7884(1) 22(1) 
C(15) 5071(3) -411(2) 8153(1) 28(1) 
C(16) 5430(3) -52(2) 8772(1) 30(1) 
C(17) 6398(3) -511(2) 9143(1) 26(1) 
C(18) 6983(3) -1332(2) 8901(1) 22(1) 
C(19) 8727(3) -3645(2) 7618(1) 23(1) 
C(20) 7670(3) -3525(2) 8080(1) 25(1) 
C(21) 6357(3) -1491(2) 6037(1) 15(1) 
C(22) 6175(3) -2719(2) 5901(1) 16(1) 
C(23) 4922(3) -3561(2) 5453(1) 17(1) 
C(24) 3825(3) -3218(2) 5104(1) 15(1) 
C(25) 4044(3) -1974(2) 5221(1) 18(1) 
C(26) 5290(3) -1125(2) 5680(1) 17(1) 
C(27) 2420(3) -4175(2) 4648(1) 23(1) 
C(28) 8474(3) 517(2) 6373(1) 13(1) 
C(29) 9137(3) 506(2) 5829(1) 17(1) 
C(30) 10068(3) 1572(2) 5658(1) 18(1) 
C(31) 10449(3) 2742(2) 6028(1) 14(1) 
C(32) 11445(3) 3872(2) 5875(1) 16(1) 
C(33) 11819(3) 4985(2) 6237(1) 17(1) 
C(34) 11213(3) 5019(2) 6780(1) 16(1) 
C(35) 10232(3) 3950(2) 6937(1) 15(1) 
C(36) 9800(3) 2773(2) 6570(1) 13(1) 
C(37) 8730(3) 1636(2) 6725(1) 13(1) 
C(38) 10578(3) 1605(2) 8446(1) 15(1) 
C(39) 10872(3) 1042(2) 8933(1) 19(1) 
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C(40) 12295(3) 1613(2) 9368(1) 23(1) 
C(41) 13445(3) 2776(2) 9358(1) 23(1) 
C(42) 13105(3) 3372(2) 8897(1) 21(1) 
C(43) 11710(3) 2797(2) 8447(1) 18(1) 
C(44) 14978(3) 3365(3) 9831(1) 41(1) 
C(45) 8273(3) 1654(2) 7814(1) 14(1) 
C(46) 7733(3) 2199(2) 8299(1) 16(1) 
C(47) 6676(3) 2745(2) 8189(1) 19(1) 
C(48) 6044(3) 2779(2) 7585(1) 14(1) 
C(49) 4885(3) 3302(2) 7455(1) 18(1) 
C(50) 4340(3) 3377(2) 6880(1) 19(1) 
C(51) 4909(3) 2914(2) 6396(1) 19(1) 
C(52) 6018(3) 2387(2) 6502(1) 15(1) 
C(53) 6629(3) 2309(2) 7097(1) 13(1) 
C(54) 7840(3) 1790(2) 7224(1) 13(1) 
C(61) 2658(3) 6539(3) 8534(1) 32(1) 
C(62) 1550(3) 6548(2) 8978(1) 25(1) 
C(63) 302(3) 5466(2) 9024(1) 28(1) 
C(64) -732(4) 5472(3) 9428(1) 33(1) 
C(65) -534(3) 6551(3) 9788(1) 33(1) 
C(66) 717(3) 7650(3) 9750(1) 33(1) 
C(67) 1752(3) 7648(2) 9348(1) 28(1) 
__________________________________________________________________
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Table I.3  Selected bond lengths (Å) and angles (°) for (ra c)-18 (CCDC 246589). 
_________________________________________________________
Zr(1)-Cent1 2.322 
Zr(1)-Cent2 2.312 
Zr(1)-N(2) 2.1393(18) 
Zr(1)-N(1) 2.1460(19) 
 

Cent1-Zr(1)-Cent2 122.4 
Cent1-Zr(1)-N(1) 104.4 
Cent1-Zr(1)-N(2) 108.9 
Cent2-Zr(1)-N(1) 110.3 
Cent2-Zr(1)-N(2) 105.9

____________________________________________________________________ 
Cent(1) is the centroid of C(1), C(2), C(3), C(4), and C(5) 
Cent(2) is the centroid of C(10), C(11), C(12), C(13), and C(14) 
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Table I.4  Bond lengths (Å) and angles (°) for  (ra c)-18 (CCDC 246589). 
______________________________________________________________________________
Zr(1)-Cent1  2.322 
Zr(1)-Cent2  2.312 
Zr(1)-N(2)  2.1393(18) 
Zr(1)-N(1)  2.1460(19) 
Zr(1)-C(3)  2.483(2) 
Zr(1)-C(12)  2.522(2) 
Zr(1)-C(4)  2.549(2) 
Zr(1)-C(11)  2.560(2) 
Zr(1)-C(2)  2.567(2) 
Zr(1)-C(13)  2.575(2) 
Zr(1)-C(10)  2.679(2) 
Zr(1)-C(14)  2.698(2) 
Zr(1)-C(1)  2.739(2) 
Zr(1)-C(5)  2.743(2) 
N(1)-C(38)  1.420(3) 
N(1)-C(45)  1.424(3) 
N(2)-C(28)  1.418(3) 
N(2)-C(21)  1.429(3) 
C(1)-C(2)  1.407(3) 
C(1)-C(9)  1.412(3) 
C(1)-C(5)  1.452(3) 
C(2)-C(3)  1.410(3) 
C(3)-C(4)  1.422(3) 
C(4)-C(5)  1.423(3) 
C(4)-C(19)  1.506(3) 
C(5)-C(6)  1.417(3) 
C(6)-C(7)  1.362(3) 
C(7)-C(8)  1.409(3) 
C(8)-C(9)  1.365(3) 
C(10)-C(11)  1.420(3) 
C(10)-C(18)  1.426(3) 
C(10)-C(14)  1.436(3) 
C(11)-C(12)  1.414(3) 
C(11)-C(20)  1.506(3) 
C(12)-C(13)  1.406(3) 
C(13)-C(14)  1.412(3) 
C(14)-C(15)  1.415(3) 
C(15)-C(16)  1.366(4) 
C(16)-C(17)  1.424(3) 
C(17)-C(18)  1.357(3) 
C(19)-C(20)  1.530(3) 
C(21)-C(22)  1.388(3) 
C(21)-C(26)  1.397(3) 
C(22)-C(23)  1.382(3) 
C(23)-C(24)  1.390(3) 
C(24)-C(25)  1.393(3) 
C(24)-C(27)  1.501(3) 
C(25)-C(26)  1.395(3) 
C(28)-C(37)  1.378(3) 
C(28)-C(29)  1.434(3) 
C(29)-C(30)  1.362(3) 

C(30)-C(31)  1.420(3) 
C(31)-C(32)  1.418(3) 
C(31)-C(36)  1.426(3) 
C(32)-C(33)  1.359(3) 
C(33)-C(34)  1.408(3) 
C(34)-C(35)  1.364(3) 
C(35)-C(36)  1.415(3) 
C(36)-C(37)  1.446(3) 
C(37)-C(54)  1.498(3) 
C(38)-C(39)  1.395(3) 
C(38)-C(43)  1.398(3) 
C(39)-C(40)  1.390(3) 
C(40)-C(41)  1.384(4) 
C(41)-C(42)  1.387(3) 
C(41)-C(44)  1.501(4) 
C(42)-C(43)  1.391(3) 
C(45)-C(54)  1.384(3) 
C(45)-C(46)  1.431(3) 
C(46)-C(47)  1.349(3) 
C(47)-C(48)  1.419(3) 
C(48)-C(49)  1.415(3) 
C(48)-C(53)  1.422(3) 
C(49)-C(50)  1.351(3) 
C(50)-C(51)  1.402(3) 
C(51)-C(52)  1.371(3) 
C(52)-C(53)  1.409(3) 
C(53)-C(54)  1.451(3) 
C(61)-C(62)  1.507(3) 
C(62)-C(63)  1.379(3) 
C(62)-C(67)  1.393(3) 
C(63)-C(64)  1.390(3) 
C(64)-C(65)  1.363(4) 
C(65)-C(66)  1.388(4) 
C(66)-C(67)  1.386(3) 
 
Cent1-Zr(1)-Cent2 122.4 
Cent1-Zr(1)-N(1) 104.4 
Cent1-Zr(1)-N(2) 108.9 
Cent2-Zr(1)-N(1) 110.3 
Cent2-Zr(1)-N(2) 105.9 
N(2)-Zr(1)-N(1) 103.49(7) 
N(2)-Zr(1)-C(3) 137.35(7) 
N(1)-Zr(1)-C(3) 92.01(7) 
N(2)-Zr(1)-C(12) 90.97(8) 
N(1)-Zr(1)-C(12) 137.80(8) 
C(3)-Zr(1)-C(12) 103.79(8) 
N(2)-Zr(1)-C(4) 116.48(7) 
N(1)-Zr(1)-C(4) 124.62(7) 
C(3)-Zr(1)-C(4) 32.79(7) 
C(12)-Zr(1)-C(4) 80.12(8) 
N(2)-Zr(1)-C(11) 123.27(8) 
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N(1)-Zr(1)-C(11) 120.18(7) 
C(3)-Zr(1)-C(11) 78.36(8) 
C(12)-Zr(1)-C(11) 32.31(7) 
C(4)-Zr(1)-C(11) 66.86(8) 
N(2)-Zr(1)-C(2) 113.42(7) 
N(1)-Zr(1)-C(2) 76.49(7) 
C(3)-Zr(1)-C(2) 32.38(7) 
C(12)-Zr(1)-C(2) 133.37(8) 
C(4)-Zr(1)-C(2) 53.69(8) 
C(11)-Zr(1)-C(2) 110.73(8) 
N(2)-Zr(1)-C(13) 78.29(8) 
N(1)-Zr(1)-C(13) 112.30(8) 
C(3)-Zr(1)-C(13) 131.85(8) 
C(12)-Zr(1)-C(13) 32.01(8) 
C(4)-Zr(1)-C(13) 112.10(8) 
C(11)-Zr(1)-C(13) 53.53(8) 
C(2)-Zr(1)-C(13) 164.09(7) 
N(2)-Zr(1)-C(10) 129.85(7) 
N(1)-Zr(1)-C(10) 90.62(7) 
C(3)-Zr(1)-C(10) 88.63(8) 
C(12)-Zr(1)-C(10) 51.75(8) 
C(4)-Zr(1)-C(10) 91.53(7) 
C(11)-Zr(1)-C(10) 31.34(7) 
C(2)-Zr(1)-C(10) 116.66(7) 
C(13)-Zr(1)-C(10) 52.09(8) 
N(2)-Zr(1)-C(14) 101.11(7) 
N(1)-Zr(1)-C(14) 86.81(7) 
C(3)-Zr(1)-C(14) 119.47(8) 
C(12)-Zr(1)-C(14) 51.28(8) 
C(4)-Zr(1)-C(14) 118.66(7) 
C(11)-Zr(1)-C(14) 51.96(7) 
C(2)-Zr(1)-C(14) 144.18(8) 
C(13)-Zr(1)-C(14) 30.96(8) 
C(10)-Zr(1)-C(14) 30.98(7) 
N(2)-Zr(1)-C(1) 86.87(7) 
N(1)-Zr(1)-C(1) 96.93(7) 
C(3)-Zr(1)-C(1) 51.55(7) 
C(12)-Zr(1)-C(1) 123.63(8) 
C(4)-Zr(1)-C(1) 51.94(7) 
C(11)-Zr(1)-C(1) 118.79(7) 
C(2)-Zr(1)-C(1) 30.53(7) 
C(13)-Zr(1)-C(1) 149.51(8) 
C(10)-Zr(1)-C(1) 139.53(7) 
C(14)-Zr(1)-C(1) 170.20(7) 
N(2)-Zr(1)-C(5) 88.43(7) 
N(1)-Zr(1)-C(5) 126.33(7) 
C(3)-Zr(1)-C(5) 51.61(7) 
C(12)-Zr(1)-C(5) 92.95(8) 
C(4)-Zr(1)-C(5) 30.93(7) 
C(11)-Zr(1)-C(5) 92.58(7) 
C(2)-Zr(1)-C(5) 51.37(7) 
C(13)-Zr(1)-C(5) 121.36(8) 
C(10)-Zr(1)-C(5) 121.08(7) 
C(14)-Zr(1)-C(5) 142.60(7) 

C(1)-Zr(1)-C(5) 30.71(7) 
C(38)-N(1)-C(45) 113.88(18) 
C(38)-N(1)-Zr(1) 131.48(14) 
C(45)-N(1)-Zr(1) 114.46(14) 
C(28)-N(2)-C(21) 113.34(17) 
C(28)-N(2)-Zr(1) 115.98(14) 
C(21)-N(2)-Zr(1) 130.50(14) 
C(2)-C(1)-C(9) 132.4(2) 
C(2)-C(1)-C(5) 107.6(2) 
C(9)-C(1)-C(5) 119.6(2) 
C(2)-C(1)-Zr(1) 67.94(13) 
C(9)-C(1)-Zr(1) 128.68(15) 
C(5)-C(1)-Zr(1) 74.79(12) 
C(1)-C(2)-C(3) 108.2(2) 
C(1)-C(2)-Zr(1) 81.53(14) 
C(3)-C(2)-Zr(1) 70.54(13) 
C(2)-C(3)-C(4) 109.3(2) 
C(2)-C(3)-Zr(1) 77.08(13) 
C(4)-C(3)-Zr(1) 76.17(13) 
C(3)-C(4)-C(5) 107.0(2) 
C(3)-C(4)-C(19) 125.2(2) 
C(5)-C(4)-C(19) 127.6(2) 
C(3)-C(4)-Zr(1) 71.04(12) 
C(5)-C(4)-Zr(1) 82.07(13) 
C(19)-C(4)-Zr(1) 116.41(15) 
C(6)-C(5)-C(4) 133.1(2) 
C(6)-C(5)-C(1) 118.8(2) 
C(4)-C(5)-C(1) 107.7(2) 
C(6)-C(5)-Zr(1) 129.75(15) 
C(4)-C(5)-Zr(1) 67.00(12) 
C(1)-C(5)-Zr(1) 74.50(12) 
C(7)-C(6)-C(5) 119.8(2) 
C(6)-C(7)-C(8) 121.0(2) 
C(9)-C(8)-C(7) 121.9(2) 
C(8)-C(9)-C(1) 119.0(2) 
C(11)-C(10)-C(18) 132.2(2) 
C(11)-C(10)-C(14) 107.7(2) 
C(18)-C(10)-C(14) 119.5(2) 
C(11)-C(10)-Zr(1) 69.68(13) 
C(18)-C(10)-Zr(1) 127.41(16) 
C(14)-C(10)-Zr(1) 75.25(13) 
C(12)-C(11)-C(10) 106.7(2) 
C(12)-C(11)-C(20) 125.9(2) 
C(10)-C(11)-C(20) 127.3(2) 
C(12)-C(11)-Zr(1) 72.39(13) 
C(10)-C(11)-Zr(1) 78.98(13) 
C(20)-C(11)-Zr(1) 116.70(16) 
C(13)-C(12)-C(11) 110.1(2) 
C(13)-C(12)-Zr(1) 76.08(14) 
C(11)-C(12)-Zr(1) 75.30(14) 
C(12)-C(13)-C(14) 106.9(2) 
C(12)-C(13)-Zr(1) 71.91(14) 
C(14)-C(13)-Zr(1) 79.33(14) 
C(13)-C(14)-C(15) 131.7(2) 
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C(13)-C(14)-C(10) 108.3(2) 
C(15)-C(14)-C(10) 119.7(2) 
C(13)-C(14)-Zr(1) 69.71(13) 
C(15)-C(14)-Zr(1) 127.32(17) 
C(10)-C(14)-Zr(1) 73.78(13) 
C(16)-C(15)-C(14) 119.1(2) 
C(15)-C(16)-C(17) 121.0(2) 
C(18)-C(17)-C(16) 121.7(2) 
C(17)-C(18)-C(10) 118.8(2) 
C(4)-C(19)-C(20) 109.51(19) 
C(11)-C(20)-C(19) 109.50(19) 
C(22)-C(21)-C(26) 117.5(2) 
C(22)-C(21)-N(2) 121.4(2) 
C(26)-C(21)-N(2) 121.1(2) 
C(23)-C(22)-C(21) 121.0(2) 
C(22)-C(23)-C(24) 122.2(2) 
C(23)-C(24)-C(25) 117.1(2) 
C(23)-C(24)-C(27) 120.4(2) 
C(25)-C(24)-C(27) 122.3(2) 
C(24)-C(25)-C(26) 120.9(2) 
C(25)-C(26)-C(21) 121.2(2) 
C(37)-C(28)-N(2) 122.14(19) 
C(37)-C(28)-C(29) 119.5(2) 
N(2)-C(28)-C(29) 118.34(19) 
C(30)-C(29)-C(28) 122.0(2) 
C(29)-C(30)-C(31) 120.2(2) 
C(32)-C(31)-C(30) 122.1(2) 
C(32)-C(31)-C(36) 119.3(2) 
C(30)-C(31)-C(36) 118.6(2) 
C(33)-C(32)-C(31) 121.5(2) 
C(32)-C(33)-C(34) 119.4(2) 
C(35)-C(34)-C(33) 120.5(2) 
C(34)-C(35)-C(36) 122.0(2) 
C(35)-C(36)-C(31) 117.3(2) 
C(35)-C(36)-C(37) 122.4(2) 
C(31)-C(36)-C(37) 120.3(2) 
C(28)-C(37)-C(36) 119.0(2) 
C(28)-C(37)-C(54) 124.9(2) 
C(36)-C(37)-C(54) 115.76(19) 
C(39)-C(38)-C(43) 116.9(2) 
C(39)-C(38)-N(1) 121.8(2) 
C(43)-C(38)-N(1) 121.2(2) 
C(40)-C(39)-C(38) 120.7(2) 
C(41)-C(40)-C(39) 122.3(2) 
C(40)-C(41)-C(42) 117.0(2) 
C(40)-C(41)-C(44) 121.1(2) 
C(42)-C(41)-C(44) 121.9(2) 
C(41)-C(42)-C(43) 121.3(2) 
C(42)-C(43)-C(38) 121.5(2) 
C(54)-C(45)-N(1) 121.31(19) 
C(54)-C(45)-C(46) 119.9(2) 
N(1)-C(45)-C(46) 118.81(19) 
C(47)-C(46)-C(45) 121.5(2) 
C(46)-C(47)-C(48) 120.6(2) 

C(49)-C(48)-C(47) 121.8(2) 
C(49)-C(48)-C(53) 119.1(2) 
C(47)-C(48)-C(53) 119.0(2) 
C(50)-C(49)-C(48) 121.5(2) 
C(49)-C(50)-C(51) 119.8(2) 
C(52)-C(51)-C(50) 120.4(2) 
C(51)-C(52)-C(53) 121.3(2) 
C(52)-C(53)-C(48) 117.9(2) 
C(52)-C(53)-C(54) 122.4(2) 
C(48)-C(53)-C(54) 119.7(2) 
C(45)-C(54)-C(53) 118.5(2) 
C(45)-C(54)-C(37) 124.0(2) 
C(53)-C(54)-C(37) 116.69(19) 
C(63)-C(62)-C(67) 118.4(2) 
C(63)-C(62)-C(61) 120.7(2) 
C(67)-C(62)-C(61) 120.9(2) 
C(62)-C(63)-C(64) 120.9(3) 
C(65)-C(64)-C(63) 120.6(3) 
C(64)-C(65)-C(66) 119.5(3) 
C(67)-C(66)-C(65) 120.1(3) 

C(66)-C(67)-C(62) 



APPENDIX I  -211- 

 

Table I.5.   Anisotropic displacement parameters (Å2x104) for (ra c)-18 (CC246589).  

The anisotropic displacement factor exponent takes the form: -2 2 [ h2 a*2U 11  + ... + 2 h 

k a* b* U12 ]. 

____________________________________________________________________________ 
 U11 U22  U33 U23 U13 U12 

____________________________________________________________________________ 
  
Zr(1) 144(1)  149(1) 137(1)  25(1) 8(1)  53(1) 
N(1) 159(11)  186(10) 124(10)  33(8) 8(8)  95(9) 
N(2) 144(10)  149(10) 133(10)  17(8) 24(8)  48(8) 
C(1) 143(13)  191(13) 225(13)  30(11) 18(10)  102(11) 
C(2) 146(13)  169(13) 259(14)  -7(11) -5(11)  86(11) 
C(3) 229(14)  220(13) 176(13)  42(11) 34(11)  137(11) 
C(4) 208(14)  200(13) 178(13)  28(11) 39(11)  113(11) 
C(5) 165(13)  194(13) 162(12)  30(10) 22(10)  114(11) 
C(6) 195(13)  190(13) 175(13)  -3(10) -21(10)  116(11) 
C(7) 241(15)  304(15) 182(13)  20(11) 49(11)  172(12) 
C(8) 258(15)  299(15) 324(16)  133(13) 147(13)  166(13) 
C(9) 128(13)  185(13) 320(15)  48(11) 67(11)  63(11) 
C(10) 128(13)  213(13) 204(13)  91(11) 55(10)  40(11) 
C(11) 215(14)  171(13) 198(13)  52(10) 55(11)  36(11) 
C(12) 202(14)  203(13) 195(13)  14(11) 30(11)  -16(11) 
C(13) 155(13)  273(14) 235(14)  137(12) 26(11)  -3(11) 
C(14) 131(13)  250(14) 279(15)  126(12) 87(11)  45(11) 
C(15) 186(14)  354(16) 410(18)  234(14) 143(13)  137(13) 
C(16) 305(16)  277(15) 402(18)  146(13) 214(14)  149(13) 
C(17) 276(16)  264(15) 260(15)  81(12) 139(12)  77(13) 
C(18) 204(14)  211(14) 221(14)  72(11) 12(11)  56(11) 
C(19) 328(16)  154(13) 229(14)  36(11) 57(12)  114(12) 
C(20) 327(16)  208(14) 234(14)  96(11) 85(12)  109(12) 
C(21) 139(12)  180(12) 131(12)  32(10) 30(10)  57(10) 
C(22) 156(13)  197(13) 146(12)  27(10) 22(10)  86(11) 
C(23) 186(13)  172(13) 180(13)  7(10) 59(10)  92(11) 
C(24) 135(12)  226(13) 93(11)  9(10) 41(9)  65(10) 
C(25) 168(13)  242(14) 149(12)  49(10) 34(10)  100(11) 
C(26) 205(13)  130(12) 192(13)  20(10) 47(10)  79(10) 
C(27) 224(14)  227(14) 209(14)  24(11) 0(11)  69(11) 
C(28) 118(12)  169(12) 120(11)  27(9) 4(9)  81(10) 
C(29) 208(13)  180(13) 129(12)  3(10) 31(10)  108(11) 
C(30) 207(13)  271(14) 89(11)  42(10) 43(10)  125(11) 
C(31) 126(12)  175(12) 136(12)  58(10) 10(9)  68(10) 
C(32) 134(13)  266(14) 128(12)  101(10) 47(10)  103(11) 
C(33) 147(13)  170(12) 213(13)  113(10) 47(10)  56(10) 
C(34) 141(13)  154(12) 198(13)  36(10) 4(10)  70(10) 
C(35) 150(12)  185(12) 113(12)  19(10) 14(9)  75(10) 
C(36) 105(12)  172(12) 121(11)  53(9) 8(9)  70(10) 
C(37) 113(12)  180(12) 118(12)  31(10) 8(9)  77(10) 
C(38) 153(13)  191(13) 123(12)  -7(10) 18(10)  104(11) 
C(39) 237(14)  204(13) 166(13)  32(11) 41(11)  113(11) 
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C(40) 279(15)  304(15) 160(13)  49(11) 8(11)  185(13) 
C(41) 182(14)  362(16) 150(13)  -12(11) 18(11)  124(12) 
C(42) 165(13)  219(13) 201(13)  -5(11) 62(11)  46(11) 
C(43) 195(13)  220(13) 153(12)  36(10) 54(10)  104(11) 
C(44) 290(17)  560(20) 291(17)  51(15) -39(13)  109(16) 
C(45) 100(12)  110(11) 175(12)  19(9) 31(10)  16(9) 
C(46) 177(13)  192(13) 109(12)  22(10) 22(10)  63(11) 
C(47) 229(14)  213(13) 141(12)  -21(10) 63(10)  120(11) 
C(48) 92(12)  174(12) 139(12)  18(10) 26(9)  45(10) 
C(49) 182(13)  165(12) 206(13)  -1(10) 56(10)  82(11) 
C(50) 150(13)  200(13) 245(14)  46(11) -2(11)  105(11) 
C(51) 179(13)  210(13) 198(13)  90(11) 21(10)  87(11) 
C(52) 157(13)  162(12) 150(12)  31(10) 50(10)  63(10) 
C(53) 125(12)  115(11) 136(12)  30(9) 26(9)  39(10) 
C(54) 129(12)  106(11) 129(12)  16(9) 29(9)  32(10) 
C(61) 313(17)  374(17) 298(16)  76(13) 108(13)  130(14) 
C(62) 220(15)  307(15) 203(14)  63(12) 7(11)  102(12) 
C(63) 305(16)  267(15) 301(16)  72(12) 80(13)  135(13) 
C(64) 364(18)  338(17) 348(17)  155(14) 143(14)  142(14) 
C(65) 341(18)  463(19) 280(16)  128(14) 145(13)  219(15) 
C(66) 391(18)  383(18) 249(15)  -22(13) 30(13)  218(15) 
C(67) 276(16)  261(15) 260(15)  42(12) 6(12)  78(13) 
____________________________________________________________________________ 
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