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ABSTRACT 
 

Ever since the elucidation of the double helical structure of DNA, it has been 

proposed that the stack of base pairs within the double helix may mediate charge 

transport (CT) reactions.  In fact, CT through DNA can result in chemistry at a distance, 

yielding oxidative DNA damage at a site remote from the bound oxidant.  DNA CT 

chemistry depends upon coupling within the stacked base pair array, and this chemistry is 

remarkably sensitive to sequence-dependent DNA structure and dynamics.  Using a 

variety of octahedral transition metal complexes, DNA CT has been probed to explore 

mechanistic considerations and biological possibilities.   

Interactions with DNA by a family of ruthenium(II) complexes bearing the 

dipyridophenazine (dppz) ligand or its derivatives have been examined.  An intercalative 

binding mode has been established based on luminescence enhancements in the presence 

of DNA, excited state quenching, fluorescence polarization values and enantioselectivity.  

Oxidative damage to DNA by these complexes using the flash/quench method has also 

been examined.  A direct correlation between the amount of guanine oxidation obtained 

via DNA CT and the strength of intercalative binding was observed.  These results 

support the importance of close association and intercalation for DNA-mediated CT.  

Electronic access to the DNA base pairs, provided by intercalation of the oxidant, is a 

prerequisite for efficient CT through the DNA π-stack. 

 Using polypyridyl ruthenium complexes, a reductive flash/quench scheme in 

DNA has also been explored.  The flash/quench scheme previously utilized in DNA 

studies involves an oxidative quencher and allows for examination of electronic hole 

transport through DNA.  In contrast, a reductive flash/quench technique would allow for 
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direct observation of electron transport through the base stack.  In our studies, p-

methoxydimethylaniline and potassium iodide have proven to be effective reductive 

quenchers of dipyridophenazine complexes of ruthenium.  However, by transient 

absorption spectroscopy, high performance liquid chromatography, gel electrophoresis, 

and electron paramagnetic resonance we are unable to observe any DNA reduction 

products with the ruthenium complexes examined.  Rates of back electron transfer may in 

fact be faster than trapping of the anion radical, thus hindering observation of long-range 

damage.      

The oxidative flash/quench technique was applied in probing DNA CT in a range 

of DNA assemblies containing a tethered ruthenium intercalator and methylindole (M), a 

low potential nucleobase analog, where radical formation at a distance as a function of 

DNA sequence could be examined both by laser spectroscopy and biochemical methods.  

Hole injection and subsequent formation of the methylindole radical cation were 

observed at a distance of over 30 Å at rates  > 107 s-1 in assemblies containing no guanine 

bases intervening the ruthenium intercalator and GMG oxidation site.  Radical yield was, 

however, strikingly sensitive to an intervening base mismatch; no significant 

methylindole radical formation was evident with an intervening AA mismatch.  Also 

critical is the sequence at the injection site; this sequence determines initial hole 

localization and hence the probability of hole propagation.  With guanine rather than 

inosine near the site of hole injection, decreased yields of radicals and long-range 

oxidative damage are observed.  The presence of the low energy guanine site in this case 

serves to localize the hole and increase the probability of back reaction at the injection 

site therefore diminishing CT through the base pair stack. 
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DNA assemblies containing a pendant dppz complex of Ru(II) along with two 

oxidative traps, a site containing the nucleoside analog methylindole (5’-GMG-3’) and a 

5’-GGG-3’ site, were constructed to explore charge equilibration across the base pair 

stack.  In these assemblies the base radicals form with a rate of ≥ 107 s-1.  Interestingly, 

the rate of base radical formation does not change upon the addition of a second radical 

trap, the 5’-GGG-3’ site; however the yield of methylindole oxidation is significantly 

lower.  This observation indicates that the 5’-GGG-3’ site is effective in competing for 

the migrating charge and provides a second trapping site.  Importantly, switching the 

orientation of the two trapping sites does not affect the yield of oxidized products at 

either site.  Therefore, in DNA both forward and reverse charge transport occur so as to 

provide equilibration across the duplex on a time scale that is fast compared to trapping at 

a particular site.  Further evidence of charge equilibration results from incorporating an 

intervening base-stacking perturbation and monitoring the fate of the injected charge.  

These experiments underscore the dynamic nature of DNA charge transport and reveal 

the importance of considering radical propagation in both directions along the DNA 

duplex.      

DNA conjugates containing adjacent duplex and guanine quadruplex assemblies 

have been designed to explore CT into quadruplex architectures.  The quadruplex 

assemblies have been characterized structurally using circular dichroism and by assaying 

for chemical protection.  Using an intercalating rhodium photooxidant, noncovalently 

bound or tethered to the duplex end, oxidizing radicals are found to be trapped in the 

folded quadruplex.  Damage is observed almost exclusively at the external tetrads of the 

quadruplex.  Little damage of the center tetrad is observed, due most likely to lowered 
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efficiency of radical trapping within the quadruplex core.  This pattern of damage is 

distinct from that observed for repetitive G sequences within duplex DNA.  The data 

indicate, furthermore, that in the conjugates examined, the guanine quadruplex provides a 

more effective trap than a 5’-GG-3’ guanine doublet within duplex DNA.  Additionally, 

within these assemblies, sufficient base-base overlap must exist at the duplex/quadruplex 

junction to allow for charge migration.  This funneling of damage to the quadruplex, as 

well as the unique pattern of damage within the quadruplex, requires consideration with 

respect to the analysis of oxidative DNA damage within the cell. 
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