OXIDATIVE DNA DAMAGE BY
LONG-RANGE CHARGE TRANSPORT

Thesis by
Sarah Delaney

In Partial Fulfillment
of the Requirements
for the Degree of Doctor of Philosophy

California Institute of Technology

Pasadena, California

2004

(Defended May 17, 2004)



© 2004
Sarah Delaney
All rights reserved.



iii

ACKNOWLEDGEMENTS

I first must thank my research advisor, Professor Jacqueline K. Barton. You are
an incredible role model. Your undying enthusiasm for chemistry and science in general
are amazing. As I struggled through my first few years of graduate school your words of
encouragement kept my spirits high during the infamous reduction project. Importantly,
throughout those trying years you encouraged me to explore other projects; I always
appreciated the freedom to work independently. 1 admire your response to critics, always
taking the high road and answering questions with good science as opposed to personal
attacks. You are truly an inspirational leader and in your lab | have learned to be a better
critical thinker, leader, mentor, and overall a better scientist. | sincerely thank you for
bringing together such a wonderful group of intelligent people who have contributed to
my graduate career in various ways. Lastly, and perhaps most importantly, | thank you
for better preparing me for a career in science. | look forward to our future interactions.

Mo Renta deserves an entire volume to properly thank her for all she has done for
me over the years. Suffice it to say that she makes things run smoothly around the lab.
Because of Mo I was able to focus on doing chemistry and for that | thank her
immensely. Others in the chemistry department have helped me out in a pinch. Tom
Dunn is able to fix almost anything and revived many instruments for me over the years.
Dian Buchness makes administrative tasks so easy and is a source of endless smiles.

I must also acknowledge my thesis committee. | thank Professor Harry Gray for
serving as Chairman of my committee and for putting me at ease during my candidacy
and proposal defenses; it is always nice to be told you are going to pass as soon as you

walk in the door. | also value numerous discussions with Harry about the virtues of the



flash/quench technique. | want to thank Professors Doug Rees and John Bercaw for
taking time to read my proposals and thesis and offering insightful advice.

Many Barton group members, both past and present, have helped me in various
ways during my time at Caltech. Professor Megan Nufiez and Dr. Christopher Treadway
were kind enough to help me get started in the group. Megan shared her wisdom on gel
running and Chris introduced me to the wonders of inorganic synthesis; their patience
was incredible. | also greatly value their friendship. I look forward to visiting Megan at
Mt. Holyoke College. And I still have not given up on Chris’ eating habits. Pickles and
ketchup are not vegetables!

Professor Scott Rajski shared his bioorganic and biochemical knowledge, in
addition to his culinary expertise. Even though he was a big-shot postdoc and | was a
lowly first-year graduate student he always treated me like a colleague and friend. |
vividly remember the day when he actually asked me for advice on running a gel. Drs.
Kimberly Copeland and Jennifer Kisko welcomed me to the girly corner of the lab. Kim
in particular was always willing to lend a sympathetic ear or help me out in any way
possible. She helped keep me sane during my first few years at Caltech. Dr. Duncan
Odom shared his scientific wisdom and provided endless entertainment in lab. He also
introduced me to some of the best eating in the Los Angeles area and frequently offered
advice on my personal life, although I never really asked! Professor David Vicic
frequently took pity on my meager synthetic skills and helped me out in the hood.

Prof. Dr. Eric Stemp spent considerable time with me in the cold, dark Bl sub-
basement doing laser experiments. From Eric | learned much about photochemistry, but

more importantly perhaps, | experienced his passion for teaching. His dedication to his



girls is truly admirable and he has certainly inspired many students to pursue scientific
careers.

Jonathan Hart is an all-around knowledgeable guy who was always willing to take
time to discuss the intricacies of PCR or help me with computer problems. Irv Lau
always shared his JellyBellys. | thank Donato Ceres for many lunches and coffee breaks
and thought-provoking talks about science and life in general. Dr. Eva Riiba never
ridiculed my attempts to communicate auf deutsch. | thank Dr. Henrik Junicke for his
friendship and for being such a wonderful host and tour guide during my numerous Vvisits
to Mannheim. My time at Caltech was also greatly influenced by Dr. Matthias Pascaly. |
have grown immeasurably, both professionally and personally, because of our time
together.

I thank Dr. Melanie O’Neill for her friendship over the years. Melanie is such a
sincere and insightful person and I look forward to her success in leading her own
research group. Having the desk next to mine, Dr. Anne Petitjean was forced to endure
my endless complaining and questioning. She was always willing to listen and offer
advice and motivation when solicited. Tao Liu kept me on my toes with questions about
english grammar. Dr. Tashica Williams was always a source of smiles and who to call if
I need legal advice in the future. Dr. Maria DeRosa shares my addiction for reality TV
and recaps of the previous evenings drama was always a welcomed break from thesis
writing.

I was fortunate to have two very talented undergraduates working with me over

the years, Koun Han and Eunice Rivas. | know they will both go far in life.



Vi

During my years at Caltech | was fortunate to have numerous running partners
who helped me maintain some level of sanity. It was through countless marathon
training runs that Drs. Elizabeth Boon, Jae Y00, and | became such good friends. Jae
may say that Liz and | gossiped too much, but I know that he secretly loved it. | look
forward to future runs, and | know there will be many. Dave Michalak and Amie Boal
joined us for the LA Marathon and brought new stories and gossip along with much cheer
and many laughs.

Lastly, I must thank my family for their love and support. Their encouragement
over the years made tough times easier; without them I could never have made it this far.
Mom, Dad, and Michael, thank you for understanding when I could not be home for
holidays and family celebrations. Thank you for always welcoming me home even if it
was only for 12 hours. For your endless sacrifices and support over the years, | am truly

thankful.



Vil
ABSTRACT

Ever since the elucidation of the double helical structure of DNA, it has been
proposed that the stack of base pairs within the double helix may mediate charge
transport (CT) reactions. In fact, CT through DNA can result in chemistry at a distance,
yielding oxidative DNA damage at a site remote from the bound oxidant. DNA CT
chemistry depends upon coupling within the stacked base pair array, and this chemistry is
remarkably sensitive to sequence-dependent DNA structure and dynamics. Using a
variety of octahedral transition metal complexes, DNA CT has been probed to explore
mechanistic considerations and biological possibilities.

Interactions with DNA by a family of ruthenium(l1) complexes bearing the
dipyridophenazine (dppz) ligand or its derivatives have been examined. An intercalative
binding mode has been established based on luminescence enhancements in the presence
of DNA, excited state quenching, fluorescence polarization values and enantioselectivity.
Oxidative damage to DNA by these complexes using the flash/quench method has also
been examined. A direct correlation between the amount of guanine oxidation obtained
via DNA CT and the strength of intercalative binding was observed. These results
support the importance of close association and intercalation for DNA-mediated CT.
Electronic access to the DNA base pairs, provided by intercalation of the oxidant, is a
prerequisite for efficient CT through the DNA r-stack.

Using polypyridyl ruthenium complexes, a reductive flash/quench scheme in
DNA has also been explored. The flash/quench scheme previously utilized in DNA
studies involves an oxidative quencher and allows for examination of electronic hole

transport through DNA. In contrast, a reductive flash/quench technique would allow for
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direct observation of electron transport through the base stack. In our studies, p-
methoxydimethylaniline and potassium iodide have proven to be effective reductive
quenchers of dipyridophenazine complexes of ruthenium. However, by transient
absorption spectroscopy, high performance liquid chromatography, gel electrophoresis,
and electron paramagnetic resonance we are unable to observe any DNA reduction
products with the ruthenium complexes examined. Rates of back electron transfer may in
fact be faster than trapping of the anion radical, thus hindering observation of long-range
damage.

The oxidative flash/quench technique was applied in probing DNA CT in a range
of DNA assemblies containing a tethered ruthenium intercalator and methylindole (M), a
low potential nucleobase analog, where radical formation at a distance as a function of
DNA sequence could be examined both by laser spectroscopy and biochemical methods.
Hole injection and subsequent formation of the methylindole radical cation were
observed at a distance of over 30 A at rates > 10" s™ in assemblies containing no guanine
bases intervening the ruthenium intercalator and GMG oxidation site. Radical yield was,
however, strikingly sensitive to an intervening base mismatch; no significant
methylindole radical formation was evident with an intervening AA mismatch. Also
critical is the sequence at the injection site; this sequence determines initial hole
localization and hence the probability of hole propagation. With guanine rather than
inosine near the site of hole injection, decreased yields of radicals and long-range
oxidative damage are observed. The presence of the low energy guanine site in this case
serves to localize the hole and increase the probability of back reaction at the injection

site therefore diminishing CT through the base pair stack.



DNA assemblies containing a pendant dppz complex of Ru(ll) along with two
oxidative traps, a site containing the nucleoside analog methylindole (5’-GMG-3’) and a
5’-GGG-3’ site, were constructed to explore charge equilibration across the base pair
stack. In these assemblies the base radicals form with a rate of > 10" s™*. Interestingly,
the rate of base radical formation does not change upon the addition of a second radical
trap, the 5’-GGG-3’ site; however the yield of methylindole oxidation is significantly
lower. This observation indicates that the 5’-GGG-3’ site is effective in competing for
the migrating charge and provides a second trapping site. Importantly, switching the
orientation of the two trapping sites does not affect the yield of oxidized products at
either site. Therefore, in DNA both forward and reverse charge transport occur so as to
provide equilibration across the duplex on a time scale that is fast compared to trapping at
a particular site. Further evidence of charge equilibration results from incorporating an
intervening base-stacking perturbation and monitoring the fate of the injected charge.
These experiments underscore the dynamic nature of DNA charge transport and reveal
the importance of considering radical propagation in both directions along the DNA
duplex.

DNA conjugates containing adjacent duplex and guanine quadruplex assemblies
have been designed to explore CT into quadruplex architectures. The quadruplex
assemblies have been characterized structurally using circular dichroism and by assaying
for chemical protection. Using an intercalating rhodium photooxidant, noncovalently
bound or tethered to the duplex end, oxidizing radicals are found to be trapped in the
folded quadruplex. Damage is observed almost exclusively at the external tetrads of the

quadruplex. Little damage of the center tetrad is observed, due most likely to lowered



efficiency of radical trapping within the quadruplex core. This pattern of damage is
distinct from that observed for repetitive G sequences within duplex DNA. The data
indicate, furthermore, that in the conjugates examined, the guanine quadruplex provides a
more effective trap than a 5’-GG-3’ guanine doublet within duplex DNA. Additionally,
within these assemblies, sufficient base-base overlap must exist at the duplex/quadruplex
junction to allow for charge migration. This funneling of damage to the quadruplex, as
well as the unique pattern of damage within the quadruplex, requires consideration with

respect to the analysis of oxidative DNA damage within the cell.
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