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Abstract

In this thesis I represent and analyze spatially and temporally constrained multi-agent

planning problems using tools from geometry and advanced calculus. The two prob-

lems considered in this thesis are multi-agent rendezvous and dynamic sensor coverage.

Together, these problems encompass the cooperation, constraint representation, and task

scheduling aspects of multi-agent planning problems. I have represented the constraint of

the rendezvous problem on the phase space and shown that the fulfilment of rendezvous

constraints is equivalent to certain conical regions being invariant. Alternatively, for the

dynamic coverage problem, the constraints can be adequately represented on the uncer-

tainty space and sensor motion laws can be obtained by partitioning the uncertainty space

and making decisions based on which partition the uncertainty lies in. I have examined

convergence behavior of sensor motion under such laws.
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Chapter 1

Introduction

All autonomous systems engineers and designers have to deal with planning problems.

These problems arise in a variety of critical missions like spacecraft docking, Mars rovers,

situational awareness, cooperative strike, cooperative exploration, missile interception, and

robotic oceanography. Given a thorough understanding of multi-agent planning problems,

one can envisage a lot of new applications where a transition from partial autonomy to

complete autonomy is possible, for example border patrol, search and surveillance, coop-

erative UAV missions, weather monitoring, selective beam forming in radars, multi-agent

consensus, load balancing, etc. Traditionally, planning has been studied as a subfield of

artificial intelligence. Computer scientists and roboticists have modeled multi-agent plans

using various approaches such as hybrid automata [1], petri nets [2], heuristics [3], Markov

decision processes [4], and temporal logic for distributed decision making [5]. While con-

trol and network engineers usually start with a dynamical systems model of the agents

and design cooperative control algorithms often in the presence of a non-ideal communi-

cation between agents [6], [7], [8], [9], and the reference therein. Due to the multitude of

approaches available to solve planning problems, it becomes absolutely critical that there

exist ways to quantify constraint satisfaction and analyze performance.

In this thesis, I present ideas that are based on geometry and calculus to illustrate con-

straint representation for two very different planning problems: multi-agent rendezvous and

dynamic sensor coverage. The specific mathematical tools employed for the two problems

may be different but the underlying philosophy is the same. Constraints are represented

in the most appropriate space depending on the metric of performance for that particular
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problem. Even though the tools employed here have been used in other fields of research,

and the problems studied have been considered by other researchers, the demonstration of

effective usage of geometric tools for analyzing the example planning problems is a novel

contribution of this thesis.

While analyzing multi-agent planning, it is often desirable that there be methods to

quantify, represent, and evaluate various important aspects of the problem. These aspects

can be cooperation/coordination, task scheduling, spatio-temporal constraint representa-

tion, and fault tolerance. If one is further interested in synthesis of algorithms to solve

these problems, the choice of an appropriate metric also becomes important. The two ex-

ample problems that I will deal with in this thesis relate to cooperation/coordination and

multi-task scheduling. Cooperation and coordination are central to and very critical in

multi-agent rendezvous missions, while task scheduling can be viewed as an equivalent

problem to dynamic sensor coverage. For both these problems I will identify the adequate

space to represent the constraints and the right geometric tools to deal with them. For

both these problems spatio-temporal constraints are represented in a manner specific to the

problem. I will not consider the fault tolerance aspect of multi-agent planning in this thesis.

Multi-agent rendezvous is the problem of designing control laws for multiple heteroge-

nous agents in order for them to converge to a common location at the same time. It is ab-

solutely critical in certain applications of the rendezvous problem that all the agents reach

the rendezvous location within a short time interval of each other. Cooperative strike is such

an application, where failure to meet this constraint may cause early detection and may pos-

sibly result in aborting the mission. In this thesis I represent this cooperation/coordination

constraint on the phase space using the idea of cone invariance and stability.

Chapters 2 and 3 deal with the rendezvous problem. In Chapter 2, I present a dynam-

ical systems representation for multi-agent rendezvous on the phase plane. I restrict my

attention to two agents, each with scalar dynamics. The problem of rendezvous is cast as

a stabilization problem, with a set of constraints on the trajectories of the agents, defined

on the phase plane. I also describe a method to generate control Lyapunov functions that,

when used in conjunction with a stabilizing control law, such as Sontag’s formula, makes

sure that the two-agent system attains rendezvous. The main result of this chapter is a



3

Lyapunov-like certificate theorem that describes a set of constraints, which when satisfied

are sufficient to guarantee rendezvous.

In Chapter 3, I pose the N scalar-agent rendezvous as a polyhedral cone invariance prob-

lem in the N-dimensional phase space. The underlying dynamics of the agents are assumed

to be linear. I derive a condition for positive invariance for polyhedral cones. Based on this

condition, I demonstrate that the problem of determining a certificate for rendezvous can

be stated as a convex feasibility problem. Under certain rendezvous requirements, I show

that there are no robust closed-loop linear solutions that satisfy the invariance conditions. I

show that the treatment of the rendezvous problem on the phase plane can be extended to

the case where agent dynamics are non-scalar.

The second part of my thesis deals with the dynamic sensor coverage problem. It is an

example multi-agent planning problem where I highlight the task scheduling aspect. The

objective here is to keep track of the values of a few uncertain parameters in a dynamic en-

vironment. Imagine there are only a few limited range sensors available to accomplish this

task, but these sensors are mobile. Now the problem is to determine what is the best way

to move these sensors around so as to collect the maximum possible information about the

environment or, in other words, keep the overall uncertainty of the environment bounded.

If one throws out the path planning part of the sensor coverage problem, this problem turns

out to be equivalent to the sensor scheduling and load balancing problems. For the dynamic

sensor coverage problem, since the appropriate metric is the error covariance of parameters

at different locations, the analysis is best captured on the uncertainty space. I partition the

uncertainty space into different regions and take sensor motion decisions based on where

the relative uncertainty at a given time lies. In this thesis I also present analysis of a couple

of stochastic sensor motion algorithms for the dynamic sensor coverage problem.

This problem is covered in Chapters 4 and 5. In Chapter 4, I introduce a theoretical

framework for the dynamic sensor coverage problem for the case with multiple discrete

time linear stochastic systems placed at different spatial locations. The objective is to keep

an appreciable estimate of the states of the systems at all times by deploying a few limited

range mobile sensors. The sensors implement a Kalman filter to estimate the states of all

the systems. In this chapter I present results for a single sensor executing two different
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random motion strategies. Under the first strategy the sensor motion is an independent and

identically distributed random process and a discrete time, discrete state ergodic Markov

chain under the second strategy. For both these strategies I give conditions under which a

single sensor fails or succeeds to solve the dynamic coverage problem. I also demonstrate

that the conditions for the first strategy are a special case of the main result for the second

strategy.

In Chapter 5, I present an analysis of the dynamic sensor coverage problem with un-

certainty feedback. I consider a simple case of two spatially separate uncertain systems 1

and 2. Contrary to Chapter 4, I take a deterministic approach in this chapter; the sensor

decides to measure system 1 or 2 based on the relative uncertainty of its estimates of the

states of the two systems. Error covariance is used as a metric for uncertainty of estimates.

Based on the sensor measurements, the error covariance evolves according to the Lyapunov

or the Riccati map. The uncertainty space is partitioned and each partition has a different

sensor motion decision associated with it. For a certain class of partitions I prove the ex-

istence and local stability of a unique periodic steady state orbit. I prove global stability

for a scalar special case. I also show by way of an example that by changing certain para-

meters in these partitions stable orbits of higher periods can be obtained. Implications of

this work and comparisons with existing work in the sensor scheduling and sensor cover-

age literature are also presented. In the end I present a discussion on future extensions of

this work. I demonstrate the utility of uncertainty feedback over open loop algorithms for

an example with time varying systems. Simulation examples are provided to illustrate the

main concepts.
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Chapter 2

Lyapunov certificates for scalar
rendezvous

2.1 Introduction

Recently there has been considerable interest in multi-agent coordination or cooperative

control (as cited in [10] and [11] for instance). This has led to the emergence of several in-

teresting control problems. One such problem is the rendezvous problem. In a rendezvous

problem, one desires to have several agents arrive at predefined destination points simul-

taneously. Cooperative strike or cooperative jamming are two examples of the rendezvous

problem. In the first scenario, multiple strikes are executed within an interval, from differ-

ent agents firing from different distances and traveling at different speeds. In the second

scenario, one or more agents need to start jamming slightly before the strike vehicle enters

the danger zone and sustain jamming until strike vehicle exits. In both the scenarios, it is

imperative that all the agents act simultaneously else the objective is not fulfilled.

The idea of rendezvous extends beyond just convergence to a static set of destination

points or the origin. The tools we develop for rendezvous can also be applied to formation

flying or interception problems with small modifications. Interception of incoming ballistic

missiles is a rendezvous problem where the origin becomes a moving target. However,

interception problems are different as the agents involved are non-cooperative. Formation

flying is a type of rendezvous problem where multiple agents must coordinate position

and velocity. The docking of two spacecraft is a rendezvous problem that involves the
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two spacecraft matching both position and velocity with the proper orientation. Air-to-

air refueling is another rendezvous problem. Additional applications arise in submersibles

where robotic vehicles must converge upon a set location, either moving or stationary.

As the push towards unmanned vehicles becomes more prevalent in the aerospace in-

dustry, methods for guaranteeing rendezvous will be necessary. It will be necessary to

answer whether a mission in a cooperative control framework can be accomplished with a

high degree of confidence in the presence of uncertainties. The uncertainty set can include

differing flight conditions, local parametric variations, component failures on an aircraft,

and communications variability such as loss of packets, temporary loss of link, etc.

In the existing literature, several researchers have addressed problems related to path

planning with timing constraints. In 1963, Meschler in [12] investigated a time optimal

rendezvous problem for linear time varying systems. He assumed that both the rendezvous

point and rendezvous time are not known a priori and that determining the minimum time at

which rendezvous occurred was of interest. In principle, complicated rendezvous problems

can be formulated using optimal control theory [13] and solved numerically. However, for

many vehicles, obstacles, and threats, the resulting optimization problem becomes quite

complicated and the computational time increases very rapidly with problem size. In [14],

[8] McLain et al. have proposed decomposition methods that break down the monolithic

problem into subproblems that can be solved efficiently in a decentralized manner. Similar

decomposition methods have also being proposed in [9] and [15] that solve path planning

problems with timing constraints in a decentralized manner. Heuristic search-based al-

gorithms have also been proposed as an alternative that approximates single large scale

optimization problems into decoupled, partially distributed problems enabling faster com-

putation [16],[17].

In this chapter we approach the rendezvous problem from the point of view of Lyapunov

stability [18]. Örgen et al. in [19] have recently proposed a Lyapunov function approach to

multi-agent coordination with application to formation flying. In this chapter, we propose

Lyapunov function approach to the rendezvous problem.

The chapter is organized as follows: The rendezvous problem is defined in Section 2.2

along with notions of perfect and approximate rendezvous and with an interpretation of ren-
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dezvous on the phase plane. An example is given in Section 2.3 of a system of agents that

achieve rendezvous under certain conditions with a Lyapunov-function-based controller.

A level-set method for constructing Lyapunov functions for use in rendezvous control is

given in Section 2.4. The subject of rendezvous certificates is addressed in Section 2.5, and

a certificate theorem is given for guaranteeing rendezvous using a certain class of Lyapunov

functions. An example illustrating the use of this certificate theorem is given, and remarks

are made concerning this and future work.

The results presented in this chapter have been published in [20].

2.2 The rendezvous problem

In this chapter we define the rendezvous problem to be the problem of determining a

control algorithm that drives multiple agents to a desired destination point. The trajectories

must be such that the agents visit the destination point only once and arrive at the same

time. We present results for two agents with scalar dynamics.

Consider two scalar systems or agentsV1 andV2 defined as

V1 : ẋ1 = f1(x1) + g1(x1)u1 ; f1(0) = 0,

V2 : ẋ2 = f2(x2) + g2(x2)u2 ; f2(0) = 0,
(2.1)

where xi ∈ R for i ∈ {1, 2} and the destination point being the origin. Let x1 and x2 in eqn.

(2.1) be the spatial coordinates of V1 and V2 on the real line. It is of interest to design

control laws u1 and u2 such that V1 and V2 reach the origin of the real line at the same

time. This is depicted in fig. 2.1(a).

Clearly agents that are exponentially stable will reach the origin as time tends to in-

finity. Thus comparison of arrival times at the origin, of two different agents becomes

meaningless. Even with cooperative control in place, if the origin is exponentially stable,

rendezvous at the origin will occur at infinite time in theory. From a practical standpoint,

it is desired that the agents achieve rendezvous in finite time. For this reason we relax

the definition of rendezvous to be such that rendezvous is achieved if the agents enter a

certain neighborhood around the origin, at the same time. We define this region to be the



8

�
�
�
�

1
2

x2(ta) = 0

x1(ta) = 0

x2(t0) x1(t0)

2

1

(a) At the origin

�
�
�
�

������
������
������

������
������
������

2
1

x2(ta) = −δ

x1(ta) = δ

Rendezvous region R

δ−δ

x2(t0) x1(t0)

2

1

(b) At the rendezvous region R

Figure 2.1: Rendezvous on the real line.

rendezvous region R:

R = {x ∈ R : −δ ≤ x ≤ δ} for some δ > 0

Therefore a valid rendezvous is one in which agents enter R at the same time. This is

illustrated in fig. 2.1(b). In Section 2.2.2 we will relax this definition for agents entering R
at approximately the same time.

2.2.1 Rendezvous interpretation on phase plane

Rendezvous is best visualized on the phase plane. To interpret rendezvous for the scalar

systems in eqn. (2.1) in the phase plane, we define the following:

U1 = {(x1, x2) : −δ ≤ x1 ≤ δ},
U2 = {(x1, x2) : −δ ≤ x2 ≤ δ},
S = U1 ∩ U2,

F = (U1 ∪ U2) − (U1 ∩ U2),

W = (R2 − (U1 ∪ U2)).

(2.2)

We refer to S as the rendezvous square and F as the forbidden region.

With reference to fig. 2.2(a), the strip on the x2-axis is U1, the strip on the x1-axis is

the region U2, and the rendezvous square is the destination set where the trajectories must

converge. The rendezvous square S is the set of configurations with both agents in the
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Figure 2.2: Rendezvous illustration

rendezvous region R. The rendezvous problem is well posed if the initial conditions of the

two agents satisfy

(x1(0), x2(0)) ∈ W, (2.3)

i.e., both the agents start outside the rendezvous region. If the condition in eqn. (2.3) is

violated, either V1, V2, or both start from within the rendezvous region R. In fig. 2.2(a)

trajectory B starts from an invalid initial point.

The forbidden region is the set of points F where one agent enters the rendezvous

region much before the other. In fig. 2.2(a), trajectory C crosses the forbidden region,

which implies that agent V1 with state x1 comes within the rendezvous region prior to the

final entry. Such trajectories are not acceptable, i.e., the trajectories must satisfy

(x1(t), x2(t)) < F ∀t. (2.4)

Trajectory A is an example of two agents, with valid initial conditions, achieving ren-

dezvous as desired.
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2.2.2 Perfect and approximate rendezvous

With the constraint defined in eqn. (2.4), the only way trajectories can enter S is through

the corners of the rendezvous square, i.e., through one of the points

(δ, δ), (δ,−δ), (−δ, δ), and (−δ,−δ).

This implies that the agents are constrained to enter S at precisely the same time, which

is the time the trajectory meets one of the four corners of S in the phase plane. In real-

ity, agents V1 and V2 may reach the rendezvous region within ∆T seconds of each other

(through the forbidden region, as is shown below). We now refer to the case when ∆T is

zero as ideal or perfect rendezvous and the case when ∆T is small as real or approximate

rendezvous.

Since the phase plane does not reveal time explicitly, we use a related measure ρ to

characterize rendezvous. We will first define ρ; its relation to ∆T will be explained there-

after. To define ρ, we first introduce tV1 and tV2 as the arrival times of agentsV1 andV2 at

the boundary of the rendezvous region R, i.e.,

tV1 = min [ t | x1(t) ∈ U1 ]

tV2 = min [ t | x2(t) ∈ U2 ] .

Clearly, ∆T is given by

∆T =
∣∣∣tV1 − tV2

∣∣∣ . (2.5)

Therefore, the time ta at which the trajectory enters region U1 ∪ U2 in the phase plane is

given by

ta = min(ta1 , ta2).

For a given trajectory (x(t) = [x1(t) x2(t)]T ), ρ is the maximum ratio of the distance from

the origin of the two agents, after one of them has reached the rendezvous region R. It can

be expressed as

ρ =
max(|x1(ta)|, |x2(ta)|)
min(|x1(ta)|, |x2(ta)|) =

max(|x1(ta)|, |x2(ta)|)
δ

. (2.6)
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For the rest of the chapter, rendezvous will always be specified by δ and a design measure

of approximate rendezvous, ρdes. In other words we will call a given rendezvous successful,

if all the trajectories satisfy

ρ ≤ ρdes. (2.7)

This notion of approximate rendezvous is illustrated in fig. 2.2(b). Whenever a trajectory

starting in the first quadrant enters region U1 ∪ U2 it is constrained to lie within the angle

generated by joining the points

(δ, δρdes), (0, 0), and (δρdes, δ) .

There exist similar constraints for trajectories originating in the other quadrants. The intro-

duction of ρ in the definition of rendezvous allows trajectories to enter forbidden region F
as long as they remain within the above mentioned angle set by the design constraint.

By the definition of ρ in eqn. (2.6) it is clear that for a given trajectory ρ ≥ 1. Therefore,

a specification of rendezvous is meaningful if and only if

ρdes ≥ 1. (2.8)

Note that for perfect rendezvous the specification becomes ρdes = 1.

In the worst case, at the time of entry of the first agent, ta, the distances of the two

agents from the origin can differ by δ(ρdes − 1). By ensuring that the trajectories remain

within the bold lines in fig. 2.2(b), upon entry in region U1 ∪ U2 we can make sure that

the two agents enter rendezvous region R within a small time ∆T of each other. Thus the

constraint in eqn. (2.7) helps keep ∆T small.

In fig. 2.2(b) both trajectories A and B fail to achieve perfect rendezvous as they do not

enter the rendezvous square S from its four corners. On the basis of eqn. (2.7), trajectory

B is unacceptable. Trajectory A is acceptable since it lies within the angle defined by the

bold lines.



12

2.3 Rendezvous using control lyapunov functions

In this section we motivate the use of control Lyapunov functions (CLFs) to solve the

rendezvous problem. Consider the Lyapunov function candidate

V(x1, x2) = x2
1 + x2

2 + (x2
1 − x2

2)2. (2.9)

Ensuring V̇ < 0 guarantees that all the three terms in eqn. (2.9) go to zero as time tends

to infinity. If x1 and x2 denote the spatial coordinates of agents V1 and V2 and the origin

is the rendezvous point, the first two terms ensure that they converge to the origin and the

third term ensures that the agents reach the origin simultaneously. This is demonstrated by

the following example:

Let the dynamics of the agents be given by

ẋ1 = u1

ẋ2 = u2.
(2.10)

It is easy to verify that V(x) in eqn. (2.9) is a CLF. Sontag in [21] proposed a formula for

producing a stabilizing controller based on the existence of a CLF V(x). Because of its

guarantee of stabilization and of providing a convenient relationship between closed-loop

trajectories and CLF level sets, Sontag’s formula is used here. For non-linear systems with

affine input such as

ẋ = f (x) + g(x)u,

Sontag’s formula can be written as

us =


−Vx f +

√
(Vx f )2+q(x)VxggT VT

x

VxggT VT
x

gT VT
x Vxg , 0,

0 Vxg = 0
(2.11)

where Vx =
∂V(x)
∂x .

For the system in eqn. (2.10) and control derived from V(x) in eqn. (2.9) using Sontag’s
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formula, the phase portrait is shown in fig. 2.3(a). The term (x2
1 − x2

2)2 in eqn. (2.9) ensures
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Figure 2.3: Rendezvous using control Lyapunov functions.

that the agents become equidistant from the origin by converging to the lines x1 = ±x2 prior

to their arrival at the origin. In this sense, rendezvous is achieved for any ρdes for any δ. Fig.

2.3(b) shows the phase portrait for the same system but with Lyapunov function defined as

V(x1, x2) = (x2
1 + x2

2)
[
a + be−8x2

1 x2
2/d

2(x2
1+x2

2)2]
. (2.12)

I will present the motivation behind choosing the above Lyapunov function in the next

section. Rendezvous is achieved by V1 and V2 in fig. 2.3(b) only under restricted values

of ρdes for a given δ. In one sense, however, rendezvous achieved by V1 and V2 in fig.

2.3(b) is ‘better’ than that in fig. 2.3(a) because the agents are equidistant from the origin

only locally. Rendezvous in fig. 2.3(a) forces the agents to be equidistant from the origin

even at large distances, which may not be necessary.

Thus, it is possible to implicitly satisfy the constraints on ρ, as defined in eqn. (2.7), if

the Lyapunov function has a certain form. For valid rendezvous, trajectories in the phase

plane should not cross either axis. If V̇ is negative definite for all points in the phase plane

and trajectories are constrained to be within the quadrant they start from, outside S, the

level sets are expected to have a clover leaf appearance as shown in fig. 2.4(b). Figure

2.4(b) shows the level sets of the Lyapunov function defined in eqn. (2.12). The level set

of these control Lyapunov functions provides insight into why rendezvous is achieved for
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Figure 2.4: Desired Lyapunov surface and its level sets.

these cases. With control using Sontag’s formula for the system in eqn. (2.10), rendezvous

is achievable because trajectories are constrained to be normal to the level set contours.

Controllers based on CLFs, whose level sets are similar to those in fig. 2.4(b), should drive

agents for system eqn. (2.10) to a successful rendezvous. The next section describes a

level set method for constructing control Lyapunov functions, and a certificate theorem for

testing whether rendezvous is achievable for a system is given in Section 2.5.

2.4 Generating lyapunov surfaces using level sets

In this section we will present a method to design Lyapunov surfaces by first designing

their level sets. As already demonstrated in the previous section, the level sets for all the

cases we are interested in look similar to that shown in fig. 2.4(b)

The main idea is to first write down an equation for a curve in R2 using polar coordinates

rn = h(θ), n ∈ Z+. Then we try to find a positive definite function V(r, θ) such that for some

c0 > 0, the following two equations are equivalent:

V(r, θ) = c0, (2.13)

rn = h(θ), n ∈ Z+; (2.14)

i.e., they describe the same curve in R2.
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Definition 2.4.1. We define a family T of real valued functions h : [0, 2π] → R with the

following properties:

1. the function h is continuous and strictly differentiable;

2. the function h is strictly positive:

h(θ) > 0, ∀ θ;

3. in the interval θ ∈ [0, π/2), h attains a minimum value at θ = 0;

4. In the interval θ ∈ [0, π/2), h attains a maximum value at θ = π/4;

5. the function h is symmetric about θ = π/4:

h(θ) = h(π/2 − θ); and

6. the function h is periodic with period π/2:

h(θ) = h(π/2 + θ).

Example 1. The function

h(θ) =
α + β

2
− α − β

2
cos(4θ), ∀α, β > 0 and α > β

satisfies all the properties in Definition (2.4.1). The fig. 2.5(a) shows a plot of h(θ) vs θ for

α = 5 and β = 1.

Example 2. The function

h(θ) =
1

a + be−
1−cos 4θ

d2

,

where a, b, d ∈ R and

a + b > 0

is also a member of T .
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Definition 2.4.2. We define a family C of closed curves c(r, θ) = 0 in R2, where

c(r, θ) = 0 and rn = h(θ)

describe the same closed curve in R2 for h(θ) ∈ T and a real number n > 1, with T as

defined above.

Example 3. The closed curve described by

r2 = 3 − 2 cos(4θ)

is a member of C as defined above. See fig. 2.5(b)

Example 4. The closed curve described by

r2 =
1

a + be−
1−cos4θ

d2

belongs to the family C of closed curves as defined above.

-6 -4 -2 2 4 6
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5

6

(a) h(θ)
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1.5

(b) Cloverleaf appearance

Figure 2.5: Examples.

Note that the properties of the function h(θ) ∈ T presented in Definition 2.4.1 gives it

the cloverleaf appearance, as shown in fig. 2.5(b).
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Constructing a Lyapunov surface. We can now construct a Lyapunov surface as

V(r, θ) =
c0rn

h(θ)
, c0 > 0, h(θ) ∈ T , n ∈ R, n > 1. (2.15)

The following is a lemma for the properties of the associated Lyapunov function to the

surface mentioned above. A proof is listed only for part 5 of the lemma.

Lemma 2.4.1. The Lyapunov surface V(r, θ) of eqn. (2.15) has the following properties:

1. V(r, θ) is continuous and differentiable everywhere on R2;

2. at the origin of R2

V(0, θ) = 0;

3. V(r, θ) is positive definite:

V(r, θ) > 0, ∀θ, r > 0;

4. all level curves of V(r, θ) belong to the family C of curves as defined above; and

5. all the level curves V(r, θ) = ξ have the same slope dy
dx at the point of intersection with

any line θ = θ0 irrespective of the value of ξ.

Proof of property 5 of Lemma 2.4.1: Consider a level curve of V(r, θ):

c0rn

h(θ)
= ξ, ξ > 0 (2.16)

Now for any curve in R2

dy
dx

=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

, (2.17)

the point of intersection of the curve (2.16) with the line θ = θ0 is given by


[
ξh(θ0)

c0

]1/n

, θ0

 . (2.18)
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The quantity dr
dθ can be evaluated as

dr
dθ

=
ξ

c0

h′(θ)
nrn−1 . (2.19)

Therefore, the slope evaluated at the point of intersection is given by

dy
dx

∣∣∣∣∣([ ξh(θ0)
c0

]1/n
,θ0

) =
h′(θ0) sin θ0 + nh(θ0) cos θ0

h′(θ0) cos θ0 − nh(θ0) sin θ0
, (2.20)

which is independent of ξ.

�

Example 5. The Lyapunov surface in eqn. (2.12) in Section 2.3 can be generated by using

the function h(θ) as given in Example 2 and eqn. (2.15) with n = 2 and c0 = 1 and then

converting to Cartesian coordinates.

2.5 Rendezvous certificates

In Section 2.3 we listed an example of a controller for achieving rendezvous. In this

section we present a Lyapunov certificate theorem for rendezvous. Schemes for guaran-

teeing rendezvous are absolutely necessary to answer whether a mission in a cooperative

control framework can be accomplished with a high degree of confidence in the presence

of uncertainties. The uncertainty set can include differing flight conditions, local paramet-

ric variations, component failures on an aircraft, and communications variability such as

loss of packets, temporary loss of link, etc. The result presented here is only a sufficient

condition.

Consider the following system of two agents:

V1 : ẋ1 = f1(x1, x2) ; f1(0, 0) = 0,

V2 : ẋ2 = f2(x1, x2) ; f2(0, 0) = 0,
(2.21)

where x1 and x2 ∈ R. The problem is to determine whether or not V1 and V2 achieve
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rendezvous in the region R around the origin given a specification ρdes as defined in Section

2.2.2. Before we state our main result we give a few definitions and a lemma.

Definition 2.5.1. Coverage Angle: We define the coverage angle θ0 as

θ0 = tan−1
(

1
ρdes

)
. (2.22)

Since we know from eqn. (2.8) that

ρdes ≥ 1,

therefore

θ0 ∈ [0, π/4]. (2.23)

Definition 2.5.2. We define the region I ⊂ R2 in polar coordinates as

I = {(r, θ)| nπ
2

+ θ0 ≤ θ ≤ (n + 1)π
2

− θ0, n ∈ Z}. (2.24)

The region I is shown in fig. 2.6.
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Figure 2.6: The region I.

Definition 2.5.3. Define regionZ ⊂ R2 as

Z = I ∩W, (2.25)

whereW is given by eqn. (2.2).
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Note that, by this definition, trajectories in Z also fall within the specification ρdes and

are thus considered valid for rendezvous. However, trajectories with initial conditions inZ
may not stay in Z. The following is a lemma for the invariance of I (and thus Z) given a

Lyapunov function of the form described in the previous section:

Lemma 2.5.1 (Invariance of region I). Consider a system of two agents

V1 : ẋ1 = f1(x1, x2) ; f1(0, 0) = 0

V2 : ẋ2 = f2(x1, x2) ; f2(0, 0) = 0

where x1 and x2 ∈ R, and suppose that the origin is shown to be asymptotically stable under

a Lyapunov function of the form

V(x1, x2) =
c0(x1

2 + x2
2)n/2

h
(
tan−1

(
x2
x1

))

with positive real constants c0 and n ≥ 1, and with h ∈ T . Furthermore, consider a coverage

angle θ0 corresponding to a design specification ρdes and identified with regions I and Z.

The region I is an invariant region for the system if

(∂V
∂x )T

. f (x1, x2)∥∥∥∂V
∂x

∥∥∥ ‖ f (x1, x2)‖

∣∣∣∣∣∣∣
x2=x1 tan θ0

≤ cos(π + θ1 − θ0), (2.26)

where
f (x1, x2)T = [ f1(x1, x2) f1(x1, x2)]

∂V
∂x

T
=

[
∂V
∂x1

∂V
∂x2

]

with

θ1 = tan−1
(
h′(θ0) sin θ0 + nh(θ0) cos θ0

h′(θ0) cos θ0 − nh(θ0) sin θ0

)
, and θ1 ≥ θ0.

Note that θ1 is defined along the boundary of Iwith θ1 ≥ θ0. Conceptually, invariance is

determined from the inner product of the closed-loop vector field f along the boundary of I
and the boundary itself. This lemma follows from examining the geometry of the boundary

of the region I, the level set curves of the Lyapunov function V , and the trajectory as we

will now see in the proof.
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Proof of Lemma 2.5.1: Suppose that the origin of the system

V1 : ẋ1 = f1(x1, x2) ; f1(0, 0) = 0

V2 : ẋ2 = f2(x1, x2) ; f2(0, 0) = 0

is asymptotically stable under the Lyapunov function

V(x1, x2) =
c0(x1

2 + x2
2)n/2

h
(
tan−1

(
x2
x1

)) .

A proof will be constructed by contradiction.

We first assume the contradictory and say that a particular trajectory of the system

(2.21)

x(t) : t ∈ [ti, t f ] (2.27)

with x(ti) ∈ Z goes out of the region I, i.e.

x(t f ) < I. (2.28)

Now since the trajectory is continuous there exists tc > ti such that

x(tc) ∈ σ(I) (2.29)

where σ(I) denotes the boundary of the region I.

Since h(θ) ∈ T it is periodic with period π/2 and is symmetric about θ = π/4, we can

without loss of generality assume that x(tc) lies on the line θ = θ0. Because of the periodic

and symmetric nature of h(θ) a similar proof, like the one about to be presented will hold if

x(tc) lies on any other line bounding region I.
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Since tc is the time, the trajectory crosses over from region I to region R2 − I, therefore

x(tc
−) ∈ I

x(tc
+) ∈ R2 − I.

(2.30)

@V@x
�0�1

Region If(x1; x2) 

ECA

O
D F B

GH
Figure 2.7: Intersection of a level curve with the line θ = θ0.

ẋ(tc) =

˙
x1(tc)

x2(tc)

 = f (x1(tc), x2(tc))

points out of the region I.

Now refer to fig. 2.7. O denotes the point (x1(tc), x2(tc)). AOB is the line θ = θ0 or

x2 = tan(θ0)x1 in Cartesian coordinates. COD is the level curve of V that passes through

the point O. EOF is the tangent and OG is the outward normal to the level curve COD at the

point O. Thus OG represents the vector ∂V/∂x. OH is the vector f (x1, x2) and as already

explained it points out of region I.

Let γ be the angle between the vectors ~OH and ~OG. But since the vector ~OG points
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away from the region I we have

γ < π/2 + θ1 − θ0 (2.31)

and in light of Eqn. (2.23),

γ, [π/2 + θ1 − θ0] ∈ [0, π]. (2.32)

Cosine is decreasing in the interval [0, π], therefore

cos γ > cos[π/2 + θ1 − θ0]. (2.33)

Note that

cos γ =
(∂V
∂x )T · f (x1, x2)∥∥∥∂V
∂x

∥∥∥ ‖ f (x1, x2)‖

∣∣∣∣∣∣∣
x2=x1 tan θ0

; (2.34)

this implies that

(∂V
∂x )T

. f (x1, x2)∥∥∥∂V
∂x

∥∥∥ ‖ f (x1, x2)‖

∣∣∣∣∣∣∣
x2=x1 tan θ0

> cos[π/2 + θ1 − θ0] (2.35)

which contradicts Eqn. (2.26). Hence all trajectories of the system in Eqn. (2.21) that

originate in the regionZ remain in the region I for all time. �

Similar lemmas may follow from considering cases other than θ1 ≥ θ0 and for other

forms of the invariant region I; we will explore those cases as this research is ongoing.

Now we present the main result of this chapter, a rendezvous certificate theorem.

Theorem 2.5.1 (Rendezvous certificate theorem). Consider a system of two agents

V1 : ẋ1 = f1(x1, x2) ; f1(0, 0) = 0,

V2 : ẋ2 = f2(x1, x2) ; f2(0, 0) = 0,

where x1 and x2 ∈ R, and suppose that the origin is shown to be asymptotically stable under
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a Lyapunov function of the form

V(x1, x2) =
c0(x1

2 + x2
2)n/2

h
(
tan−1

(
x2
x1

))

with positive real constants c0 and n ≥ 1, and with h ∈ T . Consider a coverage angle θ0

corresponding to a design specification ρdes and identified with regions I andZ. If a region

I is an invariant region for the system, then the agents attain rendezvous in the region R
around the origin within the design specification for all initial conditions lying in the region

Z.

Proof of Theorem 2.5.1: Follows from asymptotic stability of the origin and invariance

of I with the associated Lyapunov function.

�

Note that the equation of any level set of the Lyapunov function V, eqn. (2.26) in polar

coordinates is given by

rn =
ξ

c0
h(θ).

This describes a many-one mapping from θ to r. In other words, for a given value of θ there

are several values of real positive r. Thus invariance of I, and hence rendezvous, can be

examined unambiguously. In other words, since we know from Lemma 2.4.1, property 5,

that all level sets cut the line θ = θ0 with the same slope at the point of intersection, the

right hand side of eqn. (2.26) is a constant.

Example 6. Consider the following scenario from soccer: Suppose two members from one

team are driving the soccer ball towards their opponent’s goal. These two members are

traveling along the edges of the field, with one member in possession of the ball. If the team

member with the ball, identified as Player 1, is too close to the opponent goal keeper, the

opponent goal keeper is capable of either intercepting Player 1 or intercepting a pass from

Player 1 to Player 2. If a pass is made too early, the goal keeper is capable of intercepting

Player 2 after a pass is made to him.

Suppose these two players decide on the following strategy: Player 1 chooses to drive

toward the goal, drawing the goal keeper toward him. In the meantime, Player 2 is also



25

running toward the goal. Just before the goal keeper can intercept Player 1, Player 1 makes

a pass to Player 2. The pass must be made out of the reach of the goal keeper. Finally,

before the goal keeper can intercept Player 2, Player 2 scores a goal. This is illustrated in

the following figures.
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(b) Player 1 pass to Player 2
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(c) Player 2 reception
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GOAL!!

(d) Player 2 goal

Figure 2.8: Soccer strategy.

This scenario may be cast as a rendezvous problem. The trajectories of the two players

are linear and so the dynamics of the two players may be represented by a system of two

scalar agents. The combined events of the pass from Player 1 to Player 2 and the final

attempt at the goal is representative of rendezvous. The constraint of avoiding (player or

ball) interception by the goal keeper may be posed as a rendezvous performance problem.

Suppose that the dynamics of the two players are represented by

V1 : ẋ1 = −2x1 − 4x1(x2
1 − x2

2)

V2 : ẋ2 = −2x2 − 4x2(x2
2 − x2

1),

and suppose that the design specification given is ρdes = 2 − √3. Then with the Lyapunov
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function from eqn. (2.12) (repeated here for clarity),

V(x1, x2) = (x2
1 + x2

2)
[
a + be−8x2

1 x2
2/d

2(x2
1+x2

2)2]
,

and according to the theorem, the agents attain rendezvous for any initial condition lying

in the region Z as defined according to the specification. Note that the corresponding

coverage angle is θ0 = 15◦.

2.6 Concluding remarks

We have approached the rendezvous problem from the point of view of dynamics on

the phase plane and of Lyapunov stability and invariance. On the phase plane, rendezvous

can be realized in a rigorous fashion through the introduction of the rendezvous region R
and coverage regionZ with the respective design specifications δ and ρdes. Because of this

phase plane interpretation, Lyapunov stability theory can be directly applied to both the

construction of controllers for rendezvous and the certification of achieving rendezvous.

Lyapunov-function-based controller design is practical and intuitive for the rendezvous

problem because achieving rendezvous bears a connection to achieving asymptotic sta-

bility, and because level sets of the control Lyapunov function are related to the system

trajectories. A level set method was introduced for constructing Lyapunov functions for

the purpose of rendezvous control. Trajectories that begin in certain invariant regions of

phase space achieve rendezvous, which can be used to motivate Lyapunov function and

controller design. Finally, a certificate theorem was given as a sufficient condition for ren-

dezvous for a system, given the existence of invariant regions of phase space corresponding

to a Lyapunov function that guarantees asymptotic stability of the rendezvous point.

The phase plane interpretation for the rendezvous problem has applications in many ar-

eas and this research is ongoing. For instance, it would be interesting to explore the notions

of rendezvous region and coverage region for different geometries than those discussed

here.

In addition, similar certificate theorems can be constructed for other families of Lya-
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punov functions. The rendezvous problem may be recast to include systems of larger num-

bers of agents with general dynamics in the phase space of a higher dimension. We will

study multi-agent rendezvous in the next chapter, I will also present a section on non-scalar

agents. Necessary conditions could be explored for the rendezvous problem, and certifi-

cate theorems could be constructed for other types of rendezvous such as interception and

avoidance.
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Chapter 3

Cone invariance applied to rendezvous
of multiple agents

3.1 Introduction

We defined the rendezvous problem in the previous chapter. In the rendezvous problem,

one desires to have several agents arrive at predefined destination points simultaneously.

As stated earlier, applications of the rendezvous problem include cooperative strike and

jamming, ballistic missile interception, spacecraft docking, formation flying, and multi-

agent consensus. The rendezvous control problem has been treated in [20], [22], and [23].

However, a systematic theory of multi-agent rendezvous is still to be explored.

In [20] and Chapter 2, we pose the two-scalar agent rendezvous problem as a combina-

tion of a cone invariance problem and a stability problem in a two-dimensional phase space.

We presented a level set method of constructing control Lyapunov functions. Based on this

method, we derived the main result of the chapter, a certificate theorem for guaranteeing

approximate rendezvous. Using the ideas from Chapter 2, we pose the N-dimensional ren-

dezvous problem on an N-dimensional phase space where the underlying closed-loop agent

dynamics are linear. Because the underlying dynamics are linear, there exist quadratic con-

trol Lyapunov functions. Therefore, in this chapter we focus on satisfying cone invariance

for multi-agent rendezvous.

Invariance of polyhedral domains is well studied in the literature([24], [25], [26]). Tra-

ditionally, polyhedral invariance has been used to study the linear constrained regulation
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problem ([27], [28]) and problems with control and input saturation ([29]). Because of

the nature of these problems, polyhedral invariance literature is well developed when the

polyhedral set is represented in the constraint form (plane representation in [25]). How-

ever, in rendezvous applications, we employ a worst case analysis and thus we usually deal

with polyhedral sets represented in the generator form (vertex representation in [25]). In

this chapter, we derive invariance conditions for polyhedral cones represented in the gen-

erator form. Conical invariant sets have found applications in problems related to areas as

diverse as industrial growth [30], ecological systems and symbiotic species [31], the arms

race [32], and compartmental system analysis [33], [34]. Cone invariance is an essential

component in problems involving competition or cooperation.

In Section 3.2 we introduce the notation used in the chapter and basic results from

linear algebra. In Section 3.3 we represent the N scalar-agent rendezvous problem on

the phase plane, and define constraints on the trajectories. In Section 3.4 we present a

rendezvous certificate theorem. In Section 3.5 we analyze the implications of the cone

invariance conditions on the eigen-structure of the closed-loop dynamics. In Section 3.6

we demonstrate the applicability of phase plane concepts to non-scalar agent rendezvous.

In Section 3.7 we provide a summary of the results in this chapter and describe future

research problems.

The results presented in this chapter have been published in [35].

3.2 Notations and mathematical preliminaries

In this section, I will introduce definitions and mathematical preliminaries needed for

the results presented later in the chapter.

Definition 3.2.1. A set S is said to be positively invariant with respect to the system ẋ =

f (x) if x(0) ∈ S =⇒ x(t) ∈ S ∀t > 0.

Definition 3.2.2. We will denote the 2N hyper-octants of the vector space RN as O1, O2,

· · · , O2N .
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Definition 3.2.3. We denote the strict interior of a set S by int(S). The boundary of the set

S will be denoted by ß(S).

Lemma 3.2.1. Let v1, v2, · · · , v2N be vectors in RN such that vi ∈ int(Oi) then there exist

αi ∈ R, αi ≥ 0 such that

α1v1 + α2v2 + · · · + α2N v2N = 0 (3.1)

Proof: If vi ∈ int(Oi), then origin lies in the interior of the convex hull of the vertices

v1, v2, · · · , v2N . �

Lemma 3.2.2. Let v1, v2, · · · , v2N be vectors in RN such that

vi ∈ int(Oi).

Then there is a set of N linearly independent vectors in the set of vis. In other words, there

exist indices j1, j2, · · · , jN such that

v j1 , v j2 , · · · , v jN

is a linearly independent set.

Proof: Let ei = [0, 0, · · · , 1, 0, · · · , 0] with 1 in the ith coordinate, then we shall show

that ei ∈ span{v1, v2, · · · , v2N }. Renumber v j’s if necessary so that the ith coordinate of

the first 2N−1 vectors is positive. Let u j be the vector v j without the ith coordinate. Then

u1, · · · , u2N−1 are in different hyper-octants of R2N−1
. Therefore by Lemma 3.2.1 there exist

nonnegative reals α1, · · · , α2N−1 such that

α1u1 + α2u2 + · · · + α2N−1u2N−1 = 0

Hence

α1v1 + α2v2 + · · · + α2N−1v2N−1 = αei

with α > 0. Hence ei ∈ span{v1, v2, · · · , v2N }. �
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Definition 3.2.4. The conical hull of the points e1, e2, · · · , em in RN is the region defined by

{x ∈ RN : x = α1e1 + α2e2 + · · · + αmem, αi ∈ R, αi ≥ 0}.

If E ∈ RN×m then the conical hull of the columns of E will be denoted as Cone(E). The

points e1, e2, · · · , em are called the generators for the cone Cone(E).

Definition 3.2.5. A polyhedral cone is the one that can be constructed by taking the conical

hull of a finite number of generators.

Definition 3.2.6. A real m × m matrix T is said to be nonnegative if all its terms are non-

negative, i.e.,

Ti j ≥ 0, ∀i, j.

I will denote this by

T ≥ 0.

In order to distinguish from non-negative matrices, we use the following symbols to denote

sign definiteness:

T is symmetric positive definite =⇒ T � 0,

T is symmetric positive semidefinite =⇒ T � 0,

T is symmetric negative definite =⇒ T ≺ 0,

T is symmetric negative semidefinite =⇒ T. � 0

Definition 3.2.7. A real m × m matrix T is said to be essentially non-negative if all the

off-diagonal terms are non-negative, i.e.,

Ti j ≥ 0, ∀i , j.

We will denote this by

T
e≥ 0.

Definition 3.2.8. The spectral abscissa r(A) of an N×N matrix A is defined as the maximum
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real parts of its eigenvalues.

r(A) = max{Re(λ) : λ ∈ spec(A)}.

The following is a well known result in linear algebra and can be derived by extend-

ing Perron’s results (Theorem 8.3.1 in [36]) for nonnegative matrices to essentially non-

negative matrices.

Lemma 3.2.3. If T is an m ×m essentially non-negative matrix, then r(T ) is an eigenvalue

of T and there is a non-negative vector x ≥ 0, x , 0, such that T x = r(T )x.

Proof: If T
e≥ 0 then there is some ψ > 0 such that ψI + T ≥ 0.

Note that xi is an eigenvector of ψI + T with corresponding eigenvalue λi if and only

if xi an eigenvector of T with the corresponding eigenvalue λi − ψ. Now from Theorem

8.3.1 in [36] we know that the spectral radius ρ(ψI + T ) is an eigenvalue of ψI + T with

a nonnegative eigenvector. Hence ρ(ψI + T ) − ψ is an eigenvalue of T with a nonnegative

eigenvector. Now if λi are the set of eigenvalues of ψI + T then we have

Re(ρ(ψI + T )) − ψ) ≥ Re(λi − ψ)

Hence proved. �

3.3 N scalar-agent rendezvous

In this section we will define the rendezvous problem for N scalar agents trying to

rendezvous at the origin of the real line. We consider N scalar agents with closed loop

linear dynamics.

ẋ = Ax, (3.2)

x = [x1 x2 · · · xN]T , xi ∈ R. (3.3)

The development in this section is very similar to the cone invariance ideas developed
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for the two scalar-agent case in Chapter 2.

Ideally, rendezvous for N scalar agents V1 , V2 , · · · , VN is said to be successful if

all the N agents reach some neighborhood of the origin at precisely the same time as each

other. To be consistent with Chapter 2 we will refer to this as the perfect rendezvous. For

all practical purposes, it is sufficient that the agents reach this neighborhood within a short

time interval of each other. We consider the following neighborhood around the origin (the

rendezvous region):

R = x ∈ R : −δ ≤ x ≤ δ for some δ > 0. (3.4)

We will represent this problem on the N-dimensional phase space. Define regions on

the phase space

Ui = {(x1, x2, · · · , xN) | − δ ≤ xi ≤ δ} ,

i ∈ {1, 2, · · · ,N}. (3.5)

The arrival times of the agents in the rendezvous region R are

tVi = min [ t | x(t) ∈ Ui ] , i ∈ {1, 2, · · · , n}. (3.6)

We define the earliest arrival time ta as

ta = min(tV1 , tV2 , · · · , tVN ). (3.7)

The approximate rendezvous specification for the N scalar agents case can be written as

ρ =
max(|x1(ta)|, |x2(ta)|, · · · , |xN(ta)|)

δ
≤ ρdes. (3.8)

For perfect rendezvous ρdes = 1. Note that δρdes is an upper bound on the infinity norm of

the position of agents at the earliest time of arrival ta. In other words, eqn. (3.8) means that
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at the time of the earliest entry of an agent into the rendezvous region, the rest of the agents

should not be farther than δρdes.

Consider the hyper-cube C of side δ(ρdes − 1) in RN whose body diagonal is the line

joining the points

A = (δ, δ, · · · , δ)

and

B = (δρdes, δρdes, · · · , δρdes).

Let Υ be the set of all the vertices of C except A and B. Define the polyhedral cone I as

I = Cone(x : x ∈ Υ).

Note that Υ has 2N − 2 points. I will call these points e∞1 , e∞2 , · · · , e∞2N−2 as generators. The

superscript ∞ is used to denote that these points are the boundary points under ∞ norm

specification of approximate rendezvous. Define a matrix RN×(2N−2) matrix E∞ whose ith

column is the coordinates of the point e∞i .

An important observation is that if the polyhedral cone I is positively invariant with

respect to the system in eqn. (3.2) and if the system (3.2) is asymptotically stable then all

trajectories of eqn. (3.2) that originate in the cone I satisfy the approximate rendezvous

specification.

In the following example we demonstrate how to identify the cone I for N = 3.

Example 7. Using the approximate rendezvous specification given in eqn. (3.8) for the

three scalar agent case, the generator points e∞1 , e∞2 , · · · , e∞6 in the positive orthant are
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found to be

e∞1 = (δ, δ, δρdes)

e∞2 = (δ, δρdes, δ)

e∞3 = (δρdes, δ, δ)

e∞4 = (δρdes, δρdes, δ)

e∞5 = (δρdes, δ, δρdes)

e∞6 = (δ, δρdes, δρdes).

The conical hull of the above points is the outer cone in fig. 3.1.

Note that the approximate rendezvous can also be specified in the 2 norm or 1 norm

sense, our region I will be a second-order cone or a polyhedral cone with N generators,

respectively.

The 2 norm case is dealt with in [37]. For the case of 1 norm the approximate rendezvous

specification takes the form

|x1(ta)| + |x2(ta)| + · · · + |xN(ta)| ≤ δρdes. (3.9)

For perfect rendezvous

ρdes = N. (3.10)

and for feasible approximate rendezvous

ρdes ≥ N (3.11)

Eqn. (3.9) will give us N generator points in each of the hyper-octants. The invariant

cones will be defined as the conical hull of the boundary points in each hyper-octant. In the

following example we identify the desired invariant cone in R3
+.

Example 8. Using the approximate rendezvous specification given in eqn. (3.9) for the

three scalar agent case, the generator points e1
1 , e1

2 and e1
3 in the positive orthant are found
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Figure 3.1: The desired invariant polyhedral cones under 1 norm and∞ norm specifications
for δ = 0.2 and ρdes = 3.5 in R3

+.

to be

e1
1 = (δ, δ, δ(ρdes − 2))

e1
2 = (δ, δ(ρdes − 2), δ)

e1
3 = (δ(ρdes − 2), δ, δ).

3.4 Rendezvous certificate

In this section, we first present a lemma on invariance of polyhedral cones. A sim-

ilar result appears in [24]. Based on this lemma, we then state sufficient conditions for

rendezvous of N scalar agents.

Lemma 3.4.1. Consider a system with closed-loop dynamics given by eqn. (3.2). Let e1,

e2,· · · , em be points in RN and let E be a matrix in RN×m constructed by choosing these

points as columns. Then the region Cone(E) is positively invariant with respect to system

of eqn. (3.2) if and only if there exists an essentially non-negative m×m matrix T such that,

AE = ET. (3.12)
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Proof: (Sufficiency.) Assuming condition (3.12) holds, we need to prove the following

implication:

x(0) ∈ Cone(E)⇒ x(t) ∈ Cone(E), ∀t > 0. (3.13)

Now, the equality in eqn. (3.12) implies that

AkE = ET k, ∀k ∈ N (3.14)

⇒ eAtE = EeTt. (3.15)

Since x(0) ∈ I, therefore there exists a non-negative vector α ∈ Rm : α ≥ 0, such that,

x(0) = Eα. (3.16)

The expression for x(t) is given as

x(t) = eAtx(0), ∀t ≥ 0. (3.17)

Substituting (3.16) in (3.17) and then using (3.15) we get

x(t) = EeTtα. (3.18)

Now we will use the following classical result from [38]:

T essentially non-negative⇔ eTt non-negative: eTt ≥ 0,∀t ≥ 0.

A non-negative square matrix multiplied by a non-negative vector will give me some

non-negative vector β. Therefore,

x(t) = Eβ, β ≥ 0. (3.19)

Thus x(t) ∈ Cone(E).

(Necessity.) To prove necessity we assume that implication (3.13) holds.
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Let us represent x(t) as

x(t) = Eα(t), α(t) ≥ 0 ∀t ≥ 0. (3.20)

Now lets consider an infinitesimal move from the ith ray of the polyhedral cone. We

consider a point x0
i on the ith ray given by

x0
i = Eα, α j = 0 ∀ j , i, αi = 1. (3.21)

Differentiating (3.20) at x0
i gives us

ẋ(t)
∣∣∣∣x=x0

i
= Eα̇(t)

∣∣∣∣x=x0
i

(3.22)

⇒ Ax0
i = Eα̇(t)

∣∣∣∣x=x0
i

(3.23)

⇒ AE



0

0
...

1
...

0



= Eα̇(t)
∣∣∣∣x=x0

i
. (3.24)

For a trajectory starting at x = x0
i , to stay inside the polyhedral cone I I should have

α̇ j(t) ≥ 0, ∀ j , i. (3.25)
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Combining (3.24) and (3.25) we can rewrite

AE



0

0
...

1
...

0



= ET



0

0
...

1
...

0



, (3.26)

where the ith column of the matrix T is given by

T ji = α̇ j(t)
∣∣∣∣x=x0

i
. (3.27)

Note that T is essentially non-negative by construction.

Similarly applying positive invariance for other rays of the polyhedral cone, we can

prove that the action of AE is the same as the action of ET on a basis of Rm.

Therefore, there exists a Rm×m essentially non-negative matrix T such that AE = ET . �

The following is a certificate theorem for approximate rendezvous under∞ norm spec-

ification:

Theorem 3.4.1. Consider N scalar agents with closed-loop dynamics

ẋ = Ax, x ∈ RN .

If there exists a symmetric positive definite matrix P ∈ RN×N and an essentially non-

negative matrix T ∈ R(2N−2) × (2N−2) such that

AE∞ = E∞T

T
e≥ 0

 Positive invariance and,

AT P + PA ≺ 0

P � 0

 Asymptotic stability,
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where E∞ ∈ RN × 2N−2 is the matrix whose columns are the points e∞1 ,e∞2 ,· · · ,e∞2N−2,

then the agents will achieve rendezvous with ∞ norm specification ρdes, for all initial con-

ditions lying in the region Cone(E∞).

Proof: The proof of Theorem 3.4.1 directly follows from Lemma 3.4.1 and a well

known result on asymptotic stability of linear systems. �

Notes:

1. A similar result can be written down for the case when approximate rendezvous is

specified in terms of 1 norm.

2. The conditions in the theorem are linear in T and P. Checking whether the conditions

are satisfied is a convex feasibility problem.

Example 9. Consider the closed-loop system of three scalar agents described by

ẋ =



−3.5 1.0607 1.0607

1.0607 −4.25 0.75

1.0607 0.75 −4.25


x, x ∈ R3. (3.28)

Suppose we want to attain rendezvous in the ∞ norm as well as the 1 norm sense for

ρdes = 3.5 and δ = 0.2. The corresponding E matrices in the first quadrant are found to be:

E∞1 =



0.2 0.2 0.7 0.7 0.7 0.2

0.2 0.7 0.2 0.7 0.2 0.7

0.7 0.2 0.2 0.2 0.7 0.7


,

E1
1 =



0.2 0.2 0.3

0.2 0.3 0.2

0.3 0.2 0.2


.

The eigenvalues of the closed-loop system are all negative so it is asymptotically stable.

Feasible certificates were obtained for both the ∞ and 1 norm cases through solving the

convex invariance conditions of Theorem 3.4.1.
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Now consider the system

ẋ =



−3.5 1.299 0.75

1.299 −3.875 0.6495

0.75 0.6495 −4.625


x, x ∈ R3. (3.29)

The eigenvalues of the closed-loop matrix have negative real parts as before. The in-

variance conditions also result in a feasible solution for the ∞ norm case. However, for 1

norm the problem is infeasible.

This example shows that for given values of ρdes and δ, 1 norm specifications impose

stricter constraints on the trajectories than ∞ norm specifications. Fig. 3.2 shows some

trajectories of the system in eqn.(3.29). Notice that while the trajectories are invariant with

respect to the∞ norm cone, they move in and out of the 1 norm cone.

Figure 3.2: Trajectories invariant with respect to the outer cone but not the inner cone.
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3.5 Implication of the invariance result on the eigen-structure

of A

Theorem 3.4.1 only guarantees rendezvous for initial conditions lying in Cone(E∞),

which lies completely inside the positive hyper-orthant. If rendezvous has to be guaranteed

for initial conditions lying in all equivalent cones in all other hyper-orthants (for example

the region I1 ∪ I2 ∪ I3 ∪ I4 in fig. (3.3(a)) , then the required sufficient conditions are

the collection of all invariance conditions for each of these cones. But as we will find out

in this section, satisfying all such conditions imposes restrictions on the eigen-structure of

the closed loop A matrix and results in solutions that are non-robust.

In this section we will present results for approximate rendezvous under both the ∞
norm and 1 norm specifications. Due to the non-singular nature of the E matrices in the

case of 1 norm, the result is much stronger, as compared to the ∞ norm case. We first

present results for the∞ norm case.

Recall from Section 3.3, that for the∞ norm case, the E∞ matrix in the positive hyper-

orthant belongs to RN×2N−2. If ρdes > 1 then E∞ is full rank. From now on we will call the

E∞ matrix in the positive hyper-orthant E∞1 . The equivalent matrices in the other hyper-

orthants will be numbered E∞2 , E∞3 , · · · , E∞2N .

Note that E∞2 , E∞3 , · · · , E∞2N can be obtained from E∞1 by multiplying it with a non-

singular rotation matrix. Therefore E∞2 , E∞3 , · · · , E∞2N are also full rank. We will now state

and prove the following lemma.

Theorem 3.5.1. Let Cone(E∞1 ) be the desired invariant cone in the positive hyper-octant for

∞ norm approximate rendezvous specification ρdes > 1 and let Cone(E∞2 ), Cone(E∞3 ), · · ·
and Cone(E∞2N ) be the symmetric rotations of Cone(E∞1 ) in the other hyper-octants. Now if

all the above cones Cone(E∞1 ), Cone(E∞2 ), · · · and Cone(E∞2N ) are positively invariant with

respect to the system

ẋ = Ax, x ∈ RN

then all eigenvalues of A are real.

Proof: Cone(E∞1 ), Cone(E∞2 ), · · · and Cone(E∞2N ) are positively invariant with respect to



43

the above system; therefore, by Lemma 3.4.1 there exist essentially non-negative matrices

T1, T2, · · · , T2N , such that

AE∞i = E∞i Ti, (3.30)

Ti
e≥ 0, (3.31)

Ti ∈ R(2N−2)×(2N−2). (3.32)

Now by Lemma 3.2.3, r(Ti) is an eigenvalue of Ti and there exists xi ≥ 0, xi , 0 such that

Tixi = r(Ti)xi. (3.33)

Multiplying both sides by E∞i we get

E∞i Tixi = r(Ti)E∞i xi, (3.34)

AE∞i xi = r(Ti)E∞i xi. (3.35)

Now E∞i xi , 0 and E∞i xi ∈ Cone(E∞i ); therefore, r(Ti) is an eigenvalue of A and there exists

a corresponding eigenvector in Cone(E∞i ).

This means that A has 2N eigenvectors in the strict interior of each orthant. Therefore

by Lemma 3.2.2, N of these vectors are linearly independent. Therefore, all N eigenvalues

of A are real and are given by the spectral abscissa of the Ti matrices. �

We are able to prove a stronger result under the 1 norm specification, which we present

now:

Theorem 3.5.2. Let Cone(E1
1) be the desired invariant cone in the positive hyper-octant for

1 norm approximate rendezvous specification ρdes > N and let Cone(E1
2), Cone(E1

3), · · ·
and Cone(E1

2N ) be the symmetric rotations of Cone(E1
1) in the other hyper-octants. Now if

all the above cones Cone(E1
1), Cone(E1

2), · · · and Cone(E1
2N ) are positively invariant with

respect to the system

ẋ = Ax, x ∈ RN

then A has a single real eigenvalue with algebraic multiplicity = geometric multiplicity =
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N.

Proof: All steps of the proof for Theorem 3.5.1 hold by replacing the matrices E∞i with

the matrices E1
i . In addition, now we know that E1

i ∈ RN×N; therefore, the matrices A, T1,

T2, · · · and T2N are similar. Thus we have

r(T1) = r(T2) = · · · = r(T2N ). (3.36)

So all eigenvalues of A are the same with N linearly independent eigenvectors. �

Example 10 (Two scalar agent rendezvous). In this example we demonstrate Theorem 3.5.2

in the two dimensional phase space. In two dimensions the desired invariant cones are the

same for both∞ norm and 1 norm cases. The cone I1 in fig. 3.3(a) can be represented as

I1 = Cone(E1
1), (3.37)

E1
1 =


δρdes δ

δ δρdes

 . (3.38)

The cones I2, I3, and I4 can be generated by rotating I1 by π/2, π, and 3π/2 radians,

respectively, therefore,

Ii = Cone(E1
i ), (3.39)

E1
i = Ri−1E1

1, i ∈ {1, 2, 3, 4}, and (3.40)

R =


0 −1

1 0

 . (3.41)

Now from Lemma 3.5.2, if all the cones (I1, I2, I3, and I4) are positively invariant

w.r.t. the system

ẋ = Ax, x ∈ R2,

then A has a unique real eigenvalue with algebraic multiplicity = geometric multiplicity =

2. In other words the system ẋ = Ax has radial vector fields as shown in fig. (3.3(b)).

Note:
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I1

δρdes

x1

x2

2δ

I3

I2

I4

(a) The desired invariant
cones for 2 scalar agent
rendezvous

x1

x2

(b) Radial vector fields

Figure 3.3: Unique non-robust solution, if rendezvous is desired for trajectories originating
in all quadrants.

• If ρdes > N, the polyhedral cone corresponding to the 1 norm specification is fully

contained in the corresponding polyhedral cone for the ∞ norm case. We conjecture

that the only solution possible in the ∞ norm specification is the one that results in

radial fields (all eigenvalues same and real).

• The radial fields solutions thus obtained are non-robust to disturbance and uncer-

tainty. The trajectories live on the boundary of the polyhedral cone and can easily

deviate out of the cone under uncertainty.

• If rendezvous is desired for initial conditions lying in all the hyper-octants, non-linear

control design along the lines of [20] is likely to give a robust solution.

3.6 Non-scalar Agent Rendezvous

In this section we will demonstrate the applicability of the theory developed in Sections

3.3 and 3.4 to the case of non-scalar agents. We will demonstrate the simple case of two

planar agents trying to rendezvous at the origin of R2.
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Let us consider two planar vehicles with combined closed loop dynamics,

˙

x1

y1

x2

y2



= A



x1

y1

x2

y2



, (3.42)

where xi, yi ∈ R.

In fig. 3.4(a), the rendezvous task for agents 1 and 2 is to reach the inner square of

side δ around origin within a small time interval of each other. To accomplish this task,

we require that at the first instant when one agent enters the inner square, the other agent

should be at least inside the outer square of side δρdes. To state this condition formally we

define

tVi = min
[

t : max{|xi(t)|, |yi(t)|} ≤ δ ]
,

i ∈ {1, 2},
ta = min {tV1 , tV2}.

In this sense, tVi is the arrival time of the ith agent to the inner square; therefore for suc-

cessful rendezvous,

max
i

[
max{|xi(ta)|, |yi(ta)|}}] ≤ δρdes. (3.43)

δρdes

1

2

δ

(a) Planar rendezvous

2

1

(b) Limitations of Theorem 3.6.1.

Figure 3.4: Planar rendezvous condition is sufficient but not necessary
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Define the regionW ∈ R4 as

W =





x1

y1

x2

y2



:

1
ρdes

≤
∣∣∣∣ x1

x2

∣∣∣∣ ≤ ρdes

1
ρdes

≤
∣∣∣∣ y1
y2

∣∣∣∣ ≤ ρdes



. (3.44)

In order to guarantee rendezvous for all initial conditions lying inW, we will break down

the planar rendezvous problem into two scalar rendezvous problems. The idea is, that if

x1, x2 and y1, y2 attain rendezvous in their respective two-dimensional phase spaces, then

rendezvous will be successful on the plane.

We define the matrix Eplanar
1 as

Eplanar
1 =



δ ρdes 0 0

0 0 δ ρdes

ρdes δ 0 0

0 0 ρdes δ



. (3.45)

It is easy to verify the following result:

Lemma 3.6.1. [
x1 y1 x2 y2

]T
∈ Cone(Eplanar

1 ) (3.46)

if and only if


x1

x2

 ∈ Cone




δ δρdes

δρdes δ



 , (3.47)


y1

y2

 ∈ Cone




δ δρdes

δρdes δ



 . (3.48)

Now we can state the rendezvous certificate theorem for planar rendezvous,

Theorem 3.6.1. If the system in eqn.(3.42) is asymptotically stable and there exists a 4× 4
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matrix T such that

AEplanar
1 = Eplanar

1 T, (3.49)

T
e≥ 0, (3.50)

then one can guarantee rendezvous for all initial conditions such that

xi(0), yi(0) ≥ 0
[

x1(0) y1(0) x2(0) y2(0)
]T
∈ W.

Proof: The proof follows from Lemmas 3.4.1 and 3.6.1. �

It is important to note that this theorem only provides sufficient conditions for ren-

dezvous and yields certificates for trajectories where an agent never crosses from one quad-

rant to another on the plane. For instance, although the trajectories shown in fig. 3.4(b)

achieve successful planar rendezvous, the trajectories violate the invariance conditions re-

quired by the theorem. Deriving a more general certificate theorem that covers these cases

is an avenue of future research.

3.7 Conclusions and Future work

In this chapter, I have extended the concepts outlined in Chapter 2 to the case of N

scalar agents and have demonstrated their utility for non-scalar agents. While in Chapter 2

we considered two scalar agents with non-linear dynamics, in this chapter the underlying

dynamics are always assumed to be linear. I have employed the theory of invariance of

polyhedral regions to derive a set of convex conditions, which when feasible yield a certifi-

cate of successful rendezvous. I have also shown that if rendezvous certificates are desired

for initial conditions lying in a much larger symmetric set around the origin, the problem

is over-constrained. The only feasible closed-loop linear dynamics that satisfy this over-

constrained problem are the ones with radially decaying vector fields. All such solutions

are non-robust to uncertainties. This suggests that for robustness in the over-constrained
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case, we need to use non-linear synthesis.

The problem of designing a linear state feedback controller for rendezvous of N scalar

agents can form a good future extension of this work. A first attempt at the synthesis

problem led me to a set of conditions that are bilinear. There is some literature ([39], [40])

on a method to minimize the spectral abscissa of an essentially non-negative matrix under

cone invariance constraints. In our work on rendezvous using second order cones [41],

we present a detailed solution of the rendezvous synthesis problem. Future directions also

include introducing uncertainty and communication link failure between the cooperating

agents.
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Chapter 4

Stochastic algorithms for dynamic
sensor coverage

4.1 Introduction

Sensor coverage is the problem of deploying multiple sensors in an unknown environ-

ment for the purpose of automatic surveillance, cooperative exploration, or target detection.

Recent years have witnessed increased interest among the communication, control, and ro-

botics researchers in the area of mobile sensor networks. Each individual node in such a

network has sensing, computation, communication, and locomotion capabilities. When the

environment is rapidly changing, finding an efficient deployment strategy becomes a key

issue for any application.

Coverage can be static (fixed sensors) or dynamic (mobile sensors). Static sensor cov-

erage is desirable if the area to be covered is less than the union of the ranges of the sensor

nodes. Static sensor coverage problem has been considered in [42] and in the references

therein. The dynamic sensor coverage becomes necessary when a limited number of sen-

sors is available and the area of interest cannot be covered by a static configuration of

sensors. There have been attempts to empirically solve the dynamic coverage problem us-

ing simulations and actual robots [43] but a sound theoretical base is still missing in the

literature.

In this chapter I consider N discrete time linear systems located at different points in

space. One may think of dividing the uncertain area under consideration using a grid and
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then these N systems can be thought to represent the dynamics of local environment change

at the grid points. I analyze the case when a single sensor is deployed. The sensor maintains

discrete time Kalman filter estimates of the states of all the N systems. In order to model

the limited range of the sensor, I constrain the sensor to receive measurements only for

the system where it is physically located at that time instant. All the tools developed in

this chapter can be applied to the case where multiple grid points fall in the sensory range

and hence the sensor receives measurements from more than one system. This extension

requires only minor modifications and is left as a future research direction.

For a system where the sensor is located, the sensor implements both the time update

and measurement update laws of the Kalman filter. For all the other systems for which

the sensor did not receive any measurements, only the time update law is implemented.

The motion of the sensor is an i.i.d. random process under the first strategy and a discrete

time discrete state (DTDS) Markov chain in the later strategy. For successful coverage the

sensor needs to hop from one system to another such that the error covariance matrices of

the estimates of states of all N systems are bounded at all times. Intuition tells us that the

sensor should spend more time at a location where the environment is changing rapidly than

at one where the dynamics are relatively slow. The results I present in this chapter satisfy

this intuition. A similar set of results, developed independently, have been presented in

[44]

In Section 4.2 I describe the problem mathematically. In Section 4.3 and 4.4 I present

success and failure results for a single sensor moving according to two different motion

strategies. In Section 4.5, I conclude and identify future research directions.

The results presented in this chapter have been published in [45].

4.2 Problem Description

Consider N independently evolving LTI systems, whose dynamics are given by



xi,k+1 = Aixi,k + wi,k

yi,k = Cixi,k + vi,k

, (4.1)
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where xi,k, xi,k+1, wi,k ∈ Rni and yi,k, vi,k ∈ Rmi , wi and vi are Gaussian random vectors

with zero mean and covariance matrices Qi and Ri, respectively, and i takes values in the

set {1, 2, 3, · · · ,N}. Let Sn(S+
n ) denote the set of symmetric positive semidefinite(definite)

matrices of dimension n.

As already mentioned, the space to be covered can be discretized using a grid, and the

above N systems can be thought to represent the dynamics of certain local variables at the

grid points. These variables can be temperature, barometric pressure in case of weather

monitoring, threat emergence rate in case of surveillance, uncertain location of adversaries

and friends in a situational awareness task, and congestion measures at various routers in

the case of a network.

In reality the independent evolution of the systems assumption may not always hold,

as the dynamics of systems proximate in space may be highly dependent or even coupled.

The results for the coupled environment case are under development, but the basic intuition

and insight into the coverage problem remain the same.

There are N possible locations at which the sensor can be at a given time. If the sensor

is in state i at time k it only has access to the measurement of the ith system at that time.

The state transitions occur at a fixed time interval, which is assumed to be the same as the

sampling period of all the N systems without any loss of generality.

The sensor runs N Kalman filter recursions, one for each of the N systems. For system i

the time update equations of the Kalman filter are implemented at all time instants, whereas

the measurement update equations are implemented only at those time instants when the

sensor happens to be at location i.

Let S k be the stochastic process describing the motion of the sensor. S k takes values

in the set {1, 2, 3, · · · ,N}. Let Ii,k be the indicator function describing whether or not the

sensor is at location i at time k. Therefore Ii,k = 1 if and only if S k = i. We model the

covariance matrix of the measurement noise for the ith system in the following manner:

Var(vi,k) =



Ri, Ii,k = 1

σi
2I, Ii,k = 0

.
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When the sensor is not at location i no observation is made for system i and this corresponds

to the limiting case of σ→ ∞. Following a similar approach as in [46] we get the following

Kalman filter equations:

x̂−i,k+1 = Ai x̂i,k, (4.2)

P−i,k+1 = AiPi,kAT
i + Qi, (4.3)

x̂i,k+1 = x̂−i,k+1 + Ii,k+1P−i,k+1C
T
i (CiP−i,k+1C

T
i + Ri)

−1(yi,k+1 −Ci x̂−i,k+1), (4.4)

Pi,k+1 = P−i,k+1 − Ii,k+1P−i,k+1C
T
i (CiP−i,k+1C

T
i + Ri)

−1CiP−i,k+1. (4.5)

Eqn. (4.2) and eqn. (4.3) are the time update relations for the estimate and the error

covariance. It can be clearly seen from eqn. (4.4) and eqn. (4.5) that the measurement

update is performed only when the sensor is at location i.

Using the above equations the recursive relation for the a priori error covariance matrix

can be written as

P−i,k+1 = AiP−i,kAT
i + Qi − Ii,k+1AiP−i,kC

T
i (CiP−i,kC

T
i + Ri)

−1CiP−i,kAT
i . (4.6)

For the rest of the chapter I will drop the − superscript from P−i,k. An important obser-

vation is that eqn. (4.6) is stochastic in nature due to presence of the random variable Ii,k+1.

We now have N of these stochastic recursive equations, one for each of the N systems. So

to maintain an appreciable estimate of the states of all N systems we would want that the

limk→∞ E[Pi,k] remain bounded for all i.

Since both Ii,k+1 and Pi,k are random variables, we know that

E[Pi,k+1] = E
[
E[Pi,k+1|Pi,k]

]
, (4.7)

where the inner expectation operator is over Ii,k+1 and the outer expectation is over Pi,k.

Therefore,

E[Pi,k+1] = E[AiPi,kAT
i + Qi − ρi,k+1AiPi,kCT

i (CiPi,kCT
i + Ri)

−1CiPi,kAT
i ], (4.8)
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where ηi,k+1 = Pr[Ii,k+1 = 1|Pi,k].

Definition 4.2.1. The dynamic sensor coverage problem is considered successfully solved

if the N limits

lim
k→∞

E[Pi,k] , i ∈ {1, 2, · · · ,N}

are finite for any set of initial conditions Pi,0 ≥ 0.

If there exists an i ∈ {1, 2, · · · ,N} such that limk→∞ E[Pi,k] is unbounded for some Pi,0 ≥
0, then the sensors have failed to solve the dynamic coverage problem.

Based on the above definition, we now present success and failure results for two dif-

ferent sensor motion strategies for a single sensor.

4.3 S k independent and identically distributed

Under this strategy, at each time instant the sensor chooses to visit location i with prob-

ability πi, which is independent of the history of S k. In this case ηi,k+1 = Pr[Ii,k+1 = 1|Pi,k]

= Pr[Ii,k+1] = πi. So (4.8) reduces to

E[Pi,k+1] = E[AiPi,kAT
i + Qi − πiAiPi,kCT

i (CiPi,kCT
i + Ri)

−1CiPi,kAT
i ]. (4.9)

Now this equation is exactly the same as the one analyzed in [46] for packet-based

networks. The following two results easily follow.

Proposition 4.3.1. Consider the system in eqn. (4.1). Let (Ai,
√

Qi) be controllable, (Ai,Ci)

be detectable, and Ai be unstable for all i. The sensor motion is governed by an i.i.d.

distribution with Prob[S k = i] = πi. Now if

N∑

i=1

1
α2

i

< N − 1, (4.10)

where αi is the spectral radius of Ai, then a single sensor fails to solve the dynamic coverage

problem.
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Figure 4.1: Failure region

Proof :
N∑

i=1

1
α2

i

< N − 1 =⇒
N∑

i=1

(
1 − 1

α2
i

)
> 1.

Therefore for any steady state probability vector π there exists an i s.t. πi < 1− 1/αi
2. Now

from [46] we know that limk→∞ E[Pi,k] is unbounded for some initial condition Pi,0 ≥ 0.

Thus a single sensor cannot solve the dynamic sensor coverage problem. �.

It can be seen that eqn. (4.10) is a measure of how fast the systems evolve. In Fig. 4.1

the region above the curve is where a single sensor fails to solve the dynamic coverage

problem for two systems. It should be noted that if one system is evolving very slowly

then the sensor can tolerate very fast dynamics of the other system before it fails. In such a

scenario the sensor distributes its time, spending relatively large amount of time observing

the fast system.

I now give some conditions under which it’s possible to solve the dynamic sensor cov-

erage problem by employing a single sensor. Before that I need to carry over a few terms

from [46].
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For real symmetric Y , define Ψi(Y,Z) as

Ψi(Y,Z) =



Y
√
π(YAi + ZCi)

√
1 − πYAi

√
π(A′iY + C′i Z

′) Y 0
√

1 − πA′iY 0 Y



and πu
i as

πu
i = arg min

π

(∃0 ≤ Y ≤ I,Z | Ψi(Y,Z) > 0
)
.

Proposition 4.3.2. Let sensor motion be an i.i.d. process with distribution π. If
∑N

i=1 π
u
i < 1

and if π lies in the convex hull of the N points, ai, i = 1, · · · ,N, defined as

ai =

[
πu

1 · · · πu
i−1 1−∑k,i π

u
k πu

i+1 · · · πu
N

]T
,

then the dynamic coverage problem is solved.

Proof : Since π lies in the convex hull of the above points, therefore there exist βi ≥ 0,
∑

i βi = 1, s.t.

π j = πu
j

∑

i, j

βi + β j(1 −
∑

i, j

πu
i )

= πu
j(1 − β j) + β j(1 −

∑

i, j

πu
i )

> πu
j(1 − β j) + β jπ

u
j

= πu
j .

Now, it was shown in [46] that if πi > πu
i then E[Pi,k] remains bounded as k → ∞ for

all initial conditions Pi,0 ∈ Sni , and hence the result follows. �

4.4 S k varies according to an ergodic Markov process

In this section we will let S k be a discrete time discrete state DTDS Markov process

with transition probability matrix T . Ti j is the probability that the sensor will be at location

j at time k + 1 given that it is in location i at time k. If πi,k is the probability of finding the
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sensor in location i at time k, then the column vector πk follows the recursion

πT
k+1 = πT

kT .

This kind of model is better for sensor motion because there may be physical constraints

on the motion of the sensor. For example, the sensor may not be able to move between two

systems located far away in space in one time interval. Such restrictions can be imposed

by making the corresponding transition probability between such states equal to zero.

Markov chains have been used earlier for search and surveillance problems in the oper-

ations research community [47].

Under the ergodicity assumption we know that the Markov chain S k has a unique steady

state distribution and limk→∞ πk = π for all initial probability distributions. [?]

For the analysis of the Markov chain case we define the following relations for X ∈ Sn.

h(X) 4
= AXA′ + Q, (4.11)

f (X) 4
= AXC′(CXC′ + R)−1CXA′, (4.12)

g(X) 4
= h(X) − f (X). (4.13)

In the rest of this chapter hi(X), gi(X), and fi(X) will refer to the same functional forms

as described above but with parameters of system i. For example, hi(X) = AiXA′i + Qi for

i ∈ {1, 2, · · · ,N}. At this point we would like to remind the reader that under the estimation

scheme described in Section 2. the recursion of the error covariance matrix of location i

can be written in terms of hi and gi as

Pi,k+1 =


hi(Pi,k) S k , i

gi(Pi,k) S k = i
. (4.14)

We now present some preliminary results required to prove our main theorem.

Lemma 4.4.1. If X ≥ Y, then g(X) ≥ g(Y) and h(X) ≥ h(Y).

Proof : See [46]. �
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Lemma 4.4.2. If U ∈ S+
n and V ∈ Sn, then ∃ a scalar t ≥ 0 such that tU − V ∈ Sn.

Proof : By Weyl’s Theorem [48], t ≥ 0

λmin(tU − V) ≥ λmin(tU) + λmin(−V),

= tλmin(U) − λmax(V),

where λmin is the minimum eigenvalue and λmax is the maximum eigenvalue. So any t ≥
λmax(V)
λmin(U) proves the lemma. Such a t always exists because λmin(U) > 0. �

Lemma 4.4.3. g(X) ≥ Q,∀X ≥ 0 and if C is invertible then, g(X) ≤ AC−1RC
′−1A′+Q,∀X ≥

0.

Proof : Clearly g(X) ≥ g(0) = Q. For any X ≥ 0, as C−1RC
′−1 ∈ S+

n , by Lemma 4.4.2,

∃t ≥ 0 such that

X ≤ tC−1RC
′−1,

g(X)
a≤ g(tC−1RC

′−1),

= t/(t + 1)AC−1RC
′−1A′ + Q,

≤ AC−1RC
′−1A′ + Q,

by using Lemma 4.4.1 in a. �

Lemma 4.4.4. (a) If A is unstable then

lim
k→∞

hk(X0) = ∞, ∀X0 ∈ Sn.

(b) If the spectral radius of A, α < 1 and the pair (A,
√

Q) is observable, then the

Lyapunov difference equation Xk+1 = h(Xk) converges to a unique positive semi-

definite solution T > 0 as k → ∞. In other words the following infinite sum

lim
k→∞

AkX0A′k +

k−1∑

m=0

AmQA′m

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is a finite positive definite matrix T > 0 for all X0 ≥ 0, where T = h(T ).

Proof : See [49]. �

The following probabilities will be useful in our analysis. The derivation is relatively

simple and we omit the proofs due to space constraints. Tii is the ith diagonal entry of the

transition probability matrix and πi is the steady state probability of finding the sensor at

location i.

ρi,hh = Pr[S k+1 , i|S k , i] =
1 − πi(2 − Tii)

1 − πi
,

ρi,hg = Pr[S k+1 = i|S k , i] = 1 − ρi,hh,

ρi,gg = Pr[S k+1 = i|S k = i] = Tii,

ρi,gh = Pr[S k+1 , i|S k = i] = 1 − ρi,gg. (4.15)

Theorem 4.4.1. (a) Let (Ai,Ci) be detectable and (Ai,
√

Qi) be observable, and if the

sensor motion is described by an ergodic Markov chain S k then the sensor fails to

solve the dynamic coverage problem if at least one of the following conditions holds:

ρi,hh =
1 − πi(2 − Tii)

1 − πi
>

1
αi

2 , i ∈ 1, 2 · · ·N,

where αi is the spectral of Ai.

(b) If in addition all Cis are invertible then the sensor solves the Dynamic Coverage

problem, if all the following conditions hold:

ρi,hh =
1 − πi(2 − Tii)

1 − πi
<

1
αi

2 , i ∈ 1, 2 · · ·N.

Proof : For simplicity we prove this result for the case when the initial probability

distribution of the sensor is the same as the steady state distribution. In practice if one

knows the transition probability matrix of a Markov chain, implementing such a constraint

is easy.
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Table 4.1: Illustration of how to find the lower bound.
Probabilities Values Lower bounds
(1 − πi)ρ2

i,hh h3
i (Pi,0) h3

i (Pi,0)
πiρi,ghρi,hh h2

i gi(Pi,0) h2
i (Qi)

(1 − πi)ρi,hgρi,gh higihi(Pi,0) hi(Qi)
πiρi,ggρi,gh hig2

i (Pi,0) hi(Qi)
(1 − πi)ρi,hhρi,hg gih2

i (Pi,0) Qi

πiρi,ghρi,hg gihigi(Pi,0) Qi

(1 − πi)ρi,hgρi,gg g2
i hi(Pi,0) Qi

πiρ
2
i,gg g3

i (Pi,0) Qi

(a) Pi,k+1 can take 2k+1 different values with different probabilities for a given value of Pi,0

depending on the values of S 1, S 2 · · · S k+1. From Lemma 4.4.3 we know that gi(X) ≥
Qi, and from Lemma 4.4.1 we know that hi is an increasing function. Therefore,

E[Pi,k] ≥ πiQi +
(1 − πi)
ρi,hh

ρk
i,hhhk

i (Pi,0) +
πiρi,gh

ρi,hh

k−2∑

m=0

ρm+1
i,hh hm+1

i (Qi) (4.16)

To illustrate how we obtain the above inequality we consider the case when k = 3, in

table 4.4. The right hand side of the above equation is the inner product of the first

and third rows of the table. Using Lemma 4.4.4 the sensor would fail to solve the

dynamic coverage problem if the following condition holds for at least one system i.

ρi,hh =
1 − πi(2 − Tii)

1 − πi
>

1
αi

2 .

(b) If Cis are invertible then we can find an upper bound using Lemma 4.4.3

E[Pi,k] ≤ πiMi +
(1 − πi)
ρi,hh

ρk
i,hhhk

i (Pi,0) +
πiρi,gh

ρi,hh

k−2∑

m=0

ρm+1
i,hh hm+1

i (Mi) (4.17)

where Mi = AiC−1
i RiC′i

−1A′i + Qi, Now the first term on the right hand side is finite.

From Lemma 4.4.4 the second term is finite as k → ∞ if ρi,hhαi
2 < 1. The third term
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Figure 4.2: S k is a Markov process, N = 2.

after summing the geometric series can be rewritten as

πiρi,gh

ρi,hh


k−1∑

m=1

Ãm
i Mi(Ãm

i )′ +
ρi,hh

1 − ρi,hh

k−2∑

m=0

Ãm
i Qi(Ãm

i )′(1 − ρk−1−m
i,hh )

 , (4.18)

where Ãi =
√
ρi,hhAi. Again using Lemma 4.4.4 we know that this term is finite as

k → ∞ if ρi,hhαi
2 < 1. �

Note that for the N = 2 case, π1 = (1 − T22)/(2 − T22 − T11) and π2 = 1 − π1, where

Tii ∈ (0, 1) for ergodicity. It can be easily verified using (4.15) that ρ1,hh = T22 and ρ2,hh =

T11. Therefore, the instability region from Theorem 4.4.1 is the shaded region in Fig. 4.2.

Now a two state Markov chain is an i.i.d. distribution for the case when T11 + T22 = 1.

Now we can see from Fig. 4.2 that if 1/α2
1 + 1/α2

2 < 1, then point P lies below the line and

thus the dynamic coverage problem cannot be solved by an i.i.d. sensor motion algorithm.

This shows that Proposition 4.3.1 is a special case of Theorem 4.4.1.

Example 11. Consider two scalar systems with parameters A1 = 1.25, C1 = 0.2, R1 = 2.5,

Q1 = 20, A2 = 1.7, C2 = 0.4, R2 = 2 and Q2 = 10. The quantity 1/α2
1 + 1/α2

2 = 0.986 < 1,

therefore an i.i.d. sensor motion strategy will not be able solve the dynamic coverage
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Figure 4.3: Bounds on error covariance.

problem, but a Markov chain strategy with the following transition probability matrix

T =


0.3 0.7

0.4 0.6



solves the coverage problem with the expected error covariance contained between the

lower and upper bounds as shown in Fig. 4.3.

4.5 Conclusions and Future Directions

In this chapter I define the dynamic sensor coverage problem. I have considered a

simple case in which N spatially separated linear systems whose dynamics are decoupled

have to be observed by a single mobile sensor. Due to the finite range of the sensor, it can

make measurements for a particular system, only if it happens to be at that system. I have

modeled the motion of the sensor as an i.i.d. process and as an ergodic Markov chain.

There are several avenues of research that this chapter opens up. The most immediate
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one is the introduction of feedback. It should be noted that even though this chapter gives

success and failure bounds on probabilities for random sensor motion algorithms, it does

not talk about how to change the motion algorithm based on the uncertainty profile in the

space. The question “Where to move?” based on the confidence in estimates, requires

further analysis. Constructive procedures for an appropriate transition probability matrix,

respecting physical motion constraints between spatially separate locations, need to be de-

veloped. I have attempted to provide a deterministic answer to this question in the next

chapter.

Other research directions that I am currently pursuing are solving the coverage problem

when the dynamics of the environment are coupled and dependent at different locations and

solving the dynamic coverage problem with multiple sensors.
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Chapter 5

Dynamic sensor coverage with
uncertainty feedback

5.1 Introduction

Dynamic sensor coverage is a problem of utmost interest for a wide variety of applica-

tions. The idea of having a few, limited range, mobile sensors perform the coverage task

instead of employing multiple static sensors can result in immense savings in resources

for almost the same degree of performance. The application areas for this problem can

range from design of better and more intelligent surveillance systems, to solving situa-

tional awareness problems, to weather monitoring, to search and reconnaissance, and also

to sensor networks.

In [45] and in Chapter 4 I presented two stochastic strategies for solving the dynamic

sensor coverage problem. Under one strategy the stochastic process defining sensor motion

was i.i.d. and in the other it was a Markov chain. I gave success and failure results for both

these strategies. Such results were also independently developed in [44]. One ingredient

that is lacking in the previous work is that there was no real time control of the sensor

motion; in other words, once the surveillance system designer had information about the

dynamics of uncertainty at all spatial locations, the sensor motion algorithm was designed

off-line and it remained fixed after that. In this chapter I present some simple control

strategies and intelligent algorithms to enable the sensor to answer the question of where to

move based on the current uncertainty profile in space.



65

I first present a model of our environment, which is exactly similar to the one in chapter

4. This chapter contains results when the environment can be modeled as two spatially

separate systems 1 and 2; however I plan to extend the results to multiple locations and

multiple sensors. In this chapter the sensor moves according to the relative uncertainty in

the estimates of the states of the linear systems evolving at location 1 and 2. Error covari-

ance is used as a metric of uncertainty. As in Chapter 4, the sensor uses a Kalman filter

to estimate the states of the two systems. It simply predicts when there is no measure-

ment available and corrects when there is a measurement. The error covariance evolves

according to the Lyapunov equation and Riccati equation under the prediction and correc-

tion steps, respectively. This results in a switched iterated map system (SIMS). We then

analyze the ω limit set of the SIMS. In this chapter we present local attractivity result for a

unique period two orbit. We also show that this orbit is globally attractive for a scalar spe-

cial case. We present a few examples to illustrate the concept. Similar problem treatment

can be found in [50], however the authors consider scalar systems and are concerned with

optimality over a finite epoch. The motivation in the above paper is to optimally switch

beam patterns of a phased-array antenna radar in order to track multiple targets.

Most of the results presented in this chapter have been published in [51].
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5.1.1 Notation

× Cartesian product

⊗ Kronecker product

DF(x) Jacobian of function F at point x

R Real number field

X′ Transpose of an (n,m) real matrix X

tr[X] Trace of an (n, n) real matrix X

Sn Cone of real (n, n) symmetric

positive semidefinite matrices

S+
n Cone of real (n, n) symmetric

positive definite matrices

X ≥ Y , X > Y X − Y ∈ Sn, ∈ S+
n

for X, Y ∈ Sn

f n(X) A function applied n times

int[∆] Strict interior of a set ∆

λ[A] Set of all eigenvalues of matrix A

5.2 Problem Description

Consider two independently evolving LTI systems 1 and 2, placed at different locations,

whose dynamics are given by



xi,k+1 = Aixi,k + wi,k

yi,k = Cixi,k + vi,k

, (5.1)

where xi,k, xi,k+1, wi,k ∈ Rni and yi,k, vi,k ∈ Rmi , wi,k and vi,k are Gaussian random vectors

with zero mean and covariance matrices Qi and Ri, respectively, and i takes values in the

set {1, 2}. xi,0 is assumed to be a Gaussian random variable with mean xi,0 and covariance

matrix Pi,0 Both process and sensor noises are assumed to be white and independent of

each other and of the initial conditions.

The task for the sensor is to provide the best possible estimate of the states of systems
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1 and 2 for all time. At a given instance of time the sensor can either be at system 1 or 2.

Due to the limited range constraint the sensor can make measurements only for the system

where it is physically present at that time. The sensor executes a standard Kalman filtering

algorithm for estimation [52]. The prediction step is always executed for both systems, but

the correction step is executed only for the system where the sensor is physically located.

Let Ii,k be the indicator function describing whether or not the sensor is at location i at time

k.

Define the following relations for X ∈ Sn:

h(X) 4
= AXA′ + Q, (5.2)

f (X) 4
= AXC′(CXC′ + R)−1CXA′, (5.3)

g(X) 4
= h(X) − f (X). (5.4)

In the rest of this chapter hi(X), gi(X), and fi(X) will refer to the same functional forms

as described above but with parameters of system i. For example hi(X) = AiXA′i + Qi for

i ∈ {1, 2}.
Under the estimation scheme described above the recursion of the error covariance

matrices looks like

Pi,k+1 =


hi(Pi,k) Ii,k = 1

gi(Pi,k) Ii,k = 0
. (5.5)

Define Pk as

Pk
4
= (P1,k, P2,k) ∈ Sn1 × Sn2 . (5.6)

Now we are in a position to state the problem description.

For a given model of uncertainty at spatially separate locations (5.1), find a class of

sensor motion algorithms that guarantee Pk live in a bounded invariant subset of Sn1×Sn2 ,

as k → ∞. Is it possible to find the smallest such invariant subset?

In this chapter we present one class of sensor motion algorithm. We prove local stability

of a period two orbit and prove global stability for the scalar case.
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5.3 Preliminaries

In this section we will present a series of results, required for our analysis. While stating

these preliminary results we will omit the subscript i if the result holds for both values of i.

Lemma 5.3.1. (a) If A is unstable then

lim
k→∞

hk(X0) = ∞

for all X0 ∈ Sn.

(b) If the spectral radius of A, α < 1, and the pair (A,
√

Q) is observable, then the

Lyapunov difference equation Xk+1 = h(Xk) converges to a unique solution T ∈ S+
n as

k → ∞. In other words the following infinite sum

lim
k→∞

AkX0A′k +

k−1∑

m=0

AmQA′m


is a finite positive definite matrix T > 0 for all X0 ≥ 0, where T = h(T ).

Proof : See [49]. �

Lemma 5.3.2. If (A,C) is detectable and (A,
√

Q) is stabilizable, then there is a unique

P ∈ S+
n , independent of the initial condition X0 that is a solution to the Riccati recursion

Xk+1 = g(Xk),

Furthermore, P is also the unique positive definite solution to the discrete algebraic Riccati

equation (DARE)

X = g(X). (5.7)

Proof : See [52]. �

Lemma 5.3.3. If (An+1,C) is detectable and (An+1,
√∑n

k=0 AkQA′k) is stabilizable, then

there exists a unique positive definite solution to the equation

hn(g(X)) = X.
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Figure 5.1: Functions h(X) and g(X) in the scalar case with unstable A.

The solution can be found by solving the DARE g̃(X) = X, with Ã = An+1 and Q̃ =
∑n

k=0 AkQA′k.

Proof :

hn(g(X)) = An+1XA′n+1
+

n∑

k=0

AkQA′k − An+1XC′

×(CXC′ + R)−1CXA′n+1. (5.8)

It’s easy to see that the above equation has the same form as eqn. (5.4) with A and Q

replaced by An+1 and
∑n

k=0 AkQA′k, respectively. �

Lemma 5.3.4. The following properties of functions g(X) and h(X) hold:

(a) If X ≥ Y, then g(X) ≥ g(Y) and h(X) ≥ h(Y).

(b) If X ≥ Y and for some scalar λ ∈ [0, 1], g(λX + (1 − λ)Y) ≥ λg(X) + (1 − λ)g(Y).

(c) If C is invertible, then g(X) ≤ M = AC−1RC′−1A′ + Q ∀X ∈ Sn.

(d) If a unique solution P ∈ S+
n to the DARE, g(X) = X exists, then,

(i) h(P) ≥ P.
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(ii) g(X) ≥ P,∀X ≥ P.

(iii) g(X) ≤ P,∀X ≤ P.

(iv) If in addition a unique solution T ∈ S+
n to the Lyapunov equation, h(X) = X

exists, then T ≥ P.

(v) If in addition a unique solution S ∈ S+
n to the DARE, hg(X) = X exists, then,

S ≥ P.

(vi) If both unique T ∈ S+
n and S ∈ S+

n exist, then T ≥ S .

Proof : For (a), (b) see [46]. For (c) see [45].

(d) (i) P = g(P) = h(P) − f (P), f (P) ∈ Sn, therefore h(P) ≥ P.

(ii) By (a) and the definition of P.

(iii) By (a) and the definition of P.

(iv) Consider the set D = {X ∈ Sn : X ≥ P}. D is invariant under the map h(X).

Choose X0 ∈ D then by Lemma 5.3.1 (b), we have limk→∞ hk(X0) = T ∈ D.

Hence T ≥ P.

(v) Recall setD from (iv). From (a) and (d)(i), we know thatD is invariant under the

maps h(X) and g(X). By Lemma 5.3.3 we know that hg(X) = X is an algebraic

Riccati equation. Therefore by Lemma 5.3.2, repeated application of hg(X) on

some initial condition in the set D will result in the solution S . In other words,

if X0 ∈ D then S = limk→∞ (hg)k(X0) ∈ D, hence S ≥ P.

(vi) From equations (5.2), (5.3), and (5.4) we know h(X) ≥ g(X). This implies using

increasing property of h(X), T = limk→∞ hk(X0) ≥ limk→∞ (hg)k(X0) = S .

�

Lemma 5.3.5. Given X = X′, then X ∈ Sn iff ∀Y ∈ Sn, tr[YX] ≥ 0.

Proof : (Necessity.) If X,Y ∈ Sn, then by trace of the product inequality [49] λmin(X)tr[Y] ≤
tr[XY] ≤ λmax(X)tr[Y], where λmin(X) and λmax(X) are the minimum and maximum eigen-

values of X. Since X,Y ∈ Sn, all their eigenvalues are non-negative real numbers. Thus

tr[XY] ≥ 0.
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(Sufficiency.) Given tr[XY] ≥ 0,∀Y ∈ Sn and X = X′. This implies tr[Xyy′] ≥ 0, for all

y ∈ Rn. But tr[Xyy′] = tr[y′Xy], therefore y′Xy ≥ 0. Thus X ∈ Sn. �

Lemma 5.3.6. If a unique solution P to the DARE g(X) = X exists, then for all X > P,

there exists Γ ∈ Sn, such that tr[ΓX] > tr[Γg(X)].

Proof : Proof by contradiction. Let there exist X0 > P, such that ∀Γ ∈ Sn, tr[ΓX0] ≤
tr[Γg(X0)]. Therefore by Lemma 5.3.5 X0 ≤ g(X0). Now using Lemma 5.3.4 gk(X0) ≤
gk+1(X0), therefore limk→∞ gk(X0) , P, which is a contradiction to Lemma 5.3.2. �

Remark 5.3.1. One can prove a similar result ∀X < P; there exists a Γ ∈ Sn such that

tr[ΓX] < tr[Γg(X)]. These results are not too surprising as they are a manifestation of the

concavity property of g(X). In the scalar case the above result suggests X > g(X) if X > P

and X < g(X) if X < P, which is always true for concave functions. See fig. 5.1.

Let E be the family of all functions formed by taking the compositions of h(X) and g(X)

in any order. In other words,

E = {h, g, hg, gh, g2, h2, hg2, ghg · · · }. (5.9)

Lemma 5.3.7. All functions e(X) ∈ E are concave and increasing:

(a) If X ≥ Y, then e(X) ≥ e(Y).

(b) If X ≥ Y and for a scalar λ ∈ [0, 1], e(λX + (1 − λ)Y) ≥ λe(X) + (1 − λ)e(Y).

Proof : Follows easily from Lemma 5.3.4 and

h(λX + (1 − λ)Y) = λh(X) + (1 − λ)h(Y), ∀λ ∈ [0, 1].

�

5.4 Procedure

I now give a step by step procedure to partition the uncertainty space Sn1 × Sn2 into two

regions. Based on which partition the overall uncertainty lies in, the sensor decides to move



72

to location 1 or 2. After each step we prove its feasibility of execution using results from

Section 5.3. In the rest of the chapter we assume that the following assumption holds:

Assumption(*): (A2
i ,Ci) is detectable and (A2

i ,
√

AiQiA′i + Qi) is stabilizable for i ∈
{1, 2}.

Remark 5.4.1. Note that we do not require the matrices Ai to be stable.

[Step 1] In this step we find a two period cycle, for the case when the sensor keeps

oscillating between locations 1 and 2. Lets first state the following result.

Proposition 5.4.1. If assumption(*) holds and if the sensor keeps oscillating between lo-

cation 1 and 2, then Pk converges to a unique two period cycle C as k → ∞. The periodic

points of the limit cycle are given by

P1 = (S 1, g2(S 2)), and P2 = (g1(S 1), S 2), (5.10)

where S 1 and S 2 are unique positive definite solutions to the equations

X = h1g1(X), and X = h2g2(X),

respectively.

Proof : If the sensor keeps oscillating between location 1 and 2 then the error covariance

evolves as

· · · F∆1F∆2F∆1F∆2(P0),

where

F∆1(Pk)
4
=


g1(P1,k)

h2(P2,k)

 , (5.11)

F∆2(Pk)
4
=


h1(P1,k)

g2(P2,k)

 . (5.12)

Now from Lemma 5.3.3 hg(X) = X is a DARE and by Lemma 5.3.2 it has a unique so-

lution under assumption(*). If the sensor keeps switching between the two locations, it’s
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equivalent to repeated application of the map hg(X), hence the trajectories converge to C.

�

From Lemma 5.3.3 we know that S i are unique and can be found by solving the DARE.

Thus its possible to analytically solve for the periodic points.

[Step 2] In this step we will find a separating hyperplane between the periodic points

P1 and P2 found in [Step 1].

Proposition 5.4.2. If assumption(*) holds, then there exists a separating hyperplane be-

tween points P1 and P2.

Proof : From Lemma 5.3.4(d)(v) we know that S 2 ≥ P2; therefore, from Lemma 5.3.6

we know that there exists a Γ2 ∈ Sn and a scalar ζ > 0 such that

tr[Γ2S 2] > ζ ; tr[Γ2g2(S 2)] < ζ. (5.13)

Thus we have found a separating hyperplane tr[Γ2X] = ζ between points P1 and P2. �

Remark 5.4.2. The condition in eqn. (5.13) is linear in Γ2 and ζ2 and a feasible hyperplane

can be easily computed.

Remark 5.4.3. The most general equation of a hyperplane in Sn1 × Sn2 is

tr[Γ1X1] + tr[Γ2X2] = ζ,

where Xi ∈ Sni , Γ1,Γ2 are real symmetric matrices and ζ is a scalar.

We now define the following two exhaustive and mutually exclusive partitions of Sn1 ×
Sn2 ,

∆1 = {(X1, X2) ∈ Sn1 × Sn2 : tr[Γ2X2)] < ζ}, (5.14)

∆2 = {(X1, X2) ∈ Sn1 × Sn2 : tr[Γ2X2)] ≥ ζ}. (5.15)

Remark 5.4.4. By definition of ∆1 and ∆2, P1 ∈ ∆1 and P2 ∈ ∆2.
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[Step 3] In this step we use the separating hyperplane found in [Step 2] to present the

following motion control algorithm for the sensor:

(i) Start with initial error covariance matrix pair P0 = (P1,0, P2,0).

(ii) If Pk ∈ ∆1, then go to location 1, else go to location 2 at time k + 1.

(iii) k = k + 1, go to step (ii).

Therefore at time k, the dynamics in the Sn1 × Sn2 space iterates according to the fol-

lowing map:

Pk+1 =


F∆1(Pk), Pk ∈ ∆1

F∆2(Pk), Pk ∈ ∆2

. (5.16)

The algorithm above describes a switched iterated maps system (SIMS). There is a

discontinuity at the separating hyperplane. Our objective is to prove the global stability of

the period two orbit C. In this chapter we prove local stability of the periodic orbit C for

the general case. We prove global stability for the scalar case.

Similar results have been shown to hold in the case of switched server systems [53] and

the references therein. However, the dynamics are assumed to be linear in all the existing

results. In the case presented in this chapter g(X) is a non-linear map. In [54] the author

talks about iterated function systems with an assumption of continuity, and all maps are

assumed to be contractive. In our case, since we allow unstable Ai’s the map h(X) need not

be contractive and there can be discontinuity at the separating hyperplane.

5.5 Results for the Switched Iterated Map System

We start this section with a couple of easily provable results.

Theorem 5.5.1. If the sensor moves according to the algorithm described in Section 5.4 ,

then for every initial covariance pair P0 ∈ Sn1 × Sn2 , and for every kss > 0, there exist time

instants k1, k2 > kss, such that Pk1 ∈ ∆1 and Pk2 ∈ ∆2.

Proof : Proof by contradiction. Let there exist an initial condition P0 for which there

exists a kss > 0, such that Pk ∈ ∆1, for all k > kss. Thus map h2 is applied to P2,k at every
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instant after kss. Now if A2 is stable, a unique T 2 exists and limk→∞ hk
2(P2,0) = T 2. Now

since T 2 ≥ S 2 by Lemma 5.6.1, therefore using eqn. (5.13) and Lemma 5.3.5 we know that

the surface X2 = T 2 lies entirely in ∆2. This is a contradiction.

For the case when A2 is unstable, from Lemma 5.3.1 the solution to the Lyapunov

equation does not exist. Now lim2k→∞ tr[Γ2h2k
2 (P2,0)] ≥ limk→∞ tr[Γ2(h2g2)k(P2,0)] using

h(X) ≥ g(X) and lemma 5.3.5. But limk→∞ tr[Γ2(h2g2)k(P2,0)] approaches tr[Γ2S 2], which

is a value greater than ζ. Therefore eventually the covariance pair evolves into ∆2, which is

a contradiction.

Similarly one can arrive at a contradiction if the covariance pair is assumed to be con-

strained within ∆2. �.

The following corollary follows immediately:

Corollary 5.5.1. There does not exist a fixed point in Sn1 × Sn2 . There does not exist a limit

cycle in Sn1 × Sn2 , all of whose periodic points lie in ∆1 or ∆2.

In the rest of this section we prove that the two period orbit C is locally attracting.

We first define the notion of local attractivity of periodic points.

Definition 5.5.1. Consider a map F : Rn → Rn with period m, i.e., Fm(p) = p, where

p ∈ Rn is one of the periodic points. p is called a locally attracting periodic point, if there

exists an open set about p in which all points tend to p under forward iterations of F.

The following facts to check local attractivity are well known [55].

Fact 5.5.1. p is a locally attracting periodic point if all of the eigenvalues of DFm(p) are

less than 1 in absolute value.

Fact 5.5.2. For periodic orbits, the eigenvalues of the Jacobian matrix of Fm are same

at each periodic point of the orbit. In other words λ[DFm(F j(p))] are the same for j ∈
{0, 1, 2 · · ·m − 1}.

So in order to prove local attractivity of the periodic orbit C it’s enough to show that all

eigenvalues of the Jacobian matrix of the two step map F∆2F∆1 evaluated at the point P1 lie

inside the unit circle. The Jacobian matrix D[F∆2F∆1(x)]|x=P1 can be written as
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
d(h1g1(X1))

dX1
|X1=S 1

0

0 d(g2h2(X2))
dX2

|X2=g2(S 2)

 . (5.17)

Since the Jacobian matrix does not have any cross terms, its eigenvalues are the eigen-

values of the diagonal terms. Let us consider the first diagonal term. The following equa-

tion can be derived using the matrix differentiation section in [56]:

d(h1g1(X1))
dX1

|X1=S 1
= Ω1 ⊗Ω1, (5.18)

where

Ω1 = A2
1 − A2

1S 1C′1(C1S 1C′1 + R1)
−1

C1. (5.19)

Now the eigenvalues of Ω1 ⊗Ω1 are the products of all possible pairs of eigenvalues of

Ω1 [57]. So in order to prove that the eigenvalues of Ω1 ⊗ Ω1 are inside the unit circle, it’s

enough to show that the eigenvalues of Ω1, are all of modulus less than 1.

Under assumption(*) and using Lemma 5.3.3, we know that a unique solution S 1 ∈ S+
n

to the DARE h1g1(X) = X exists, therefore a stable Kalman filter for the LTI system

xk+1 = A2
1xk + wk wk ∼ N(0, A1Q1A′1 + Q1),

yk = C1xk + vk vk ∼ N(0,R1) (5.20)

can be found. The matrix Kk = A2
1S 1C′1(C1S 1C′1 + R1)

−1
is the corresponding Kalman gain

and the error dynamics are given by

ek+1 = Ω1ek + wk − Kkvk. (5.21)

But since the Kalman filter is stable, all eigenvalues of Ω1 must be strictly inside the unit

circle.

Let us now look at the second diagonal entry of the Jacobian matrix, and using fact

5.5.2

λ

[
d(g2h2(X2))

dX2
|X2=g2(S 2)

]
= λ

[
d(h2g2(X2))

dX2
|X2=S 2

]
. (5.22)
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Using a similar line of reasoning, we know that all eigenvalues of d(g2h2(X2))/dX2|X2=g2(S 2)

are inside the unit circle. Therefore, the periodic orbit C is locally attracting.

Remark 5.5.1. The proof of local attractivity is independent of the separator found in

Section 5.4 [Step 2]. The proof holds as long as P1 ∈ int[∆1] and P2 ∈ int[∆2].

5.6 Scalar Case

In this section, we consider the case when the sensor moves between two scalar systems.

Pk takes values in the closed positive quadrant of R2. In the scalar case assumption(*) is

equivalent to Ci , 0.

In addition to Lemma 5.3.4, there are a few additional properties of the maps that hold

for the scalar case

Lemma 5.6.1. Given assumption(*), then for X ∈ S1, every function e(X) ∈ E is one-one

and strictly increasing. There exists a unique E > 0 such that e(E) = E. In addition the

concavity of e(X) implies X > E ⇔ e(X) < X.

Proof of the lemma follows using concavity of functions and is left for the reader to

verify.

The separator in this case will be any line X2 = c2, such that g2(S 2) < c2 < S 2. The

partition ∆1 is the region X2 < c2. Note that hi(Xi) are invertible in the scalar case. Define

the following two regions in S1 × S1 :

κ1 = {X : h−1
2 (c2) ≤ X2 < c2}, (5.23)

κ2 = {X : c2 ≤ X2 < g−1
2 (c2)}. (5.24)

κ1, κ2 are the sets of all those points in ∆1, ∆2 that map to the region ∆2, ∆1 in one time

step.

By Theorem 5.5.1 we know that all trajectories that originate in ∆1 will eventually

switch to ∆2 and vice versa.
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All X ∈ κ1 map to a set entirely contained in κ2

c2 ≤ h2(X2) < h2(c2) < g−1
2 (c2), (5.25)

where the last inequality follows using Lemma 5.6.1 and noting that c2 is greater than the

fixed point g2(S 2) of the function g2h2.

Similarly, all X ∈ κ2 map to a set entirely contained in κ1. This implies that all trajecto-

ries will eventually switch back and forth between κ1 and κ2 and thus they will all converge

to the period two limit cycle C using a similar reasoning as in the proof of proposition 5.4.1.

Remark 5.6.1. We strongly believe that under the sensor motion algorithm described in

Section 5.4, the orbit C is globally stable in the general non-scalar case. We are currently

working on the proof for this case.

5.7 Examples

Consider two systems with

A1 =


1.25 0

1 1.1

 A2 =


1.01 0

2 0.8



C1 = [ 1 1 ] C2 = [ 1 1 ]

Q1 =


1 0

0 1

 Q2 =


1 0

0 2


R1 = 2.5 R2 = 1.5

Assumption(*) is satisfied therefore for this system, thus we can find unique

S 1 =


6.7565 6.1546

6.1546 11.5178

 , S 2 =


3.0213 5.1904

5.1904 17.8453


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Figure 5.2: Convergence to C.

by solving the DARE. A separating hyperplane can then be found by solving the convex

feasibility conditions (5.13).

tr




0.8009 −0.19

−0.19 0.1991

 X2

 = 3.014

Using the sensor motion algorithm described in Section 5.4 [Step 3], the trajectories of the

SIMS, converge to orbit C. Figure 5.2 shows evolution of the trace of X1 and X2 starting at

a randomly chosen initial condition.

Now let’s change ζ in the separating hyperplane to 4.5 instead of 3.014. Note that

by doing this condition (5.13) is violated. The resulting trace plot of uncertainties for

the same initial conditions is shown in fig. 5.3. The important thing to note is that the

steady state behavior is a three period cycle now. Therefore for different partitions of the

uncertainty space different steady state sensor schedules can result. For the first partition

in this example the sensor took measurements in the order 121212· · · . For the altered

partition the sensor schedule becomes 112112112· · · . Characterization of the steady state

sensor schedules with changing partitions is a future research topic I am exploring right

now. For illustration purposes consider the following example:
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Figure 5.3: Convergence to a three period cycle.

Example 12. Consider the following two identical systems:

1 : A1 = 1.4; R1 = 0.2; Q1 = 0.4; C1 = 0.4,

2 : A2 = 1.4; R2 = 0.2; Q2 = 0.4; C2 = 0.4.

I chose a linear partition passing through the origin with varying slopes and analyze

the steady state locations of periodic points. With varying slopes of this partition I get

different steady state behavior with different periods. This is shown in fig. 5.4, on the y axis

I plot the values of the error covariances of system 1 in steady state. It can be observed

that the steady state period is 2, when the partition has slope close to unity. The period

increases when the slope of the partition is moved away from unity. It may be now be useful

to recall that it was proven in [50] that the optimal sensor scheduling algorithm is obtained

with the partition at unity slope.

5.8 Uncertainty feedback: how it helps

We found out in the earlier sections that given full knowledge of system parameters,

and following the algorithm developed in Section 5.4, eventually the sensor keeps switch-

ing back and forth between 1 and 2. One may argue that if we know the steady state sensor
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motion behavior under this feedback scheme, then why not just hard code the sensor to

follow the steady state behavior in an open-loop manner. The question then is what does

adding feedback buy us? One immediate answer to this question is that the transient re-

sponse of convergence to the steady state periodic behavior will be better with feedback.

In this section we demonstrate the utility of feedback by considering systems with time

varying parameters.

Consider the following scenario in a radar selective beam-forming example. Let there

be two different targets that the radar has to track. Let’s assume that target 1 keeps switching

between two modes 1 f and 1s periodically. The dynamics in the modes are given by

1s : A1s = 1.1; R1s = 0.2; Q1s = 0.1; C1s = 1,

1 f : A1 f = 1.1; R1 f = 0.2; Q1 f = 0.1; C1 f = 2.

Note that C1 f is greater than C1s . In other words target 1 is more observable in mode 1 f

than in 1s. Let the dynamics of second target be given by

A2 = 1.1; R2 = 0.2; Q2 = 0.1; C2 = 1.

Consider the dotted and the solid schedules depicted in fig. 5.5. In the solid schedule

the radar measures target 1 when it is in mode 1 f , while in the dotted schedule it measures

target 1 when in mode 1s. An intelligent first guess may suggest that the solid schedule

may have lower uncertainty than the dotted schedule because it measures target 1 when it

is in the faster mode. Even though this turns out to be true for this example, the choice

of the best possible schedule in terms of the steady state uncertainty may not always be as

obvious. Later we will present some examples that illustrate this fact.

In this example the radar can end up in two different period two limit cycles on the

uncertainty space, corresponding to the solid and dotted schedules in figure 5.5. The steady

state limit cycle depends on the initial uncertainty and the initial mode of target 1. Consider

fig. 5.6. If the sensor motion control law is activated when target 1 is in the slow mode

and the initial uncertainty lies below the horizontal partition, the trajectory is depicted by
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Figure 5.4: Bifurcation Diagram.

Figure 5.5: Two possible period two steady state sensor schedules.

Figure 5.6: Same initial uncertainty profile but target 1 is in different initial modes
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rectangles. For the same initial uncertainty, if the motion control law is activated when

the target 1 is in the fast mode, the resulting trajectory is represented by circles. Note that

the steady state uncertainty is much lower in the later case. Now consider fig. 5.7; even

though at time zero, target 1 starts in mode 1 f for both trajectories but the trajectory with

iterates represented by circles measures target 1 in the more observable mode. Thus the

circle trajectory settles in lower steady state uncertainty.

To illustrate this mathematically we analyze the steady state solutions corresponding to

the solid and dotted schedules. The steady state error covariance of target 1, corresponding

to the solid schedule, keeps switching between S 1,s f and g1, f (S 1,s f ), where S 1,s f is the

unique positive definite solution to the equation h1,sg1, f (X) = X.

The dotted schedule results in steady state uncertainty of S 1, f s and g1,s(S 1, f s), where

S 1, f s is the unique positive definite solution to the equation h1, f g1,s(X) = X.

Now recall the DARE (5.7) can be rewritten in scalar case as

c2x2 − x((a2 − 1)r + c2q) − rq = 0. (5.26)

The unique positive solution to the above equation is given by

x =
(a2 − 1)r

2c2 +
q
2

+

√
(a2 − 1)2r2

4c4 +
q2

4
+

rq(a2 + 1)
2c2 .

From Lemma 5.3.3, we know h1,sg1, f (X) = X is a DARE with a = A1s A1 f , c = C1 f ,

q = A1s Q1 f A1s + Q1s and r = R1 f in eqn. (5.26). Similarly h1, f g1,s(X) = X is a DARE with

a = A1 f A1s , c = C1s , q = A1 f Q1s A1 f + Q1 f and r = R1s in eqn. (5.26)

For the example considered in this section we have C1, f > C1,s. Using this property it

is easy to show S 1,s f < S 1, f s and g1, f (S 1,s f ) < g1s(S 1, f s). This proves the lower steady state

uncertainty of the solid schedule in fig. 5.5.

Now imagine an open-loop sensor motion control law, where the sensor measures tar-

gets 1 and 2 in alternate time instants without using any knowledge of what the relative

uncertainty in estimates is and which mode target 1 is in. It is easy to imagine a situation

where the sensor can end up in the steady state limit cycle with higher error covariances.
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Although if the sensor uses uncertainty feedback and the knowledge of the active mode of

target 1, the following modified sensor motion law always attains the limit cycle with lower

error covariance for the particular example of this section.

Algorithm 1. • If the uncertainty lies in region ∆1 and,

– Target 1 is in mode 1 f , then measure target 1 else measure target 2.

• If the uncertainty lies in region ∆2 and,

– Target 1 is in mode 1 f , then measure target 1, else measure target 2.

In fig. 5.8 we compare the performance of the above algorithm with a simple open-loop

sensor scheduling solution, where the sensor chooses to measure targets 1 and 2 in alternate

time intervals. Even though in the first step the above algorithm measures target 1 in spite

of the uncertainty being above the partition, it eventually settles down in a lower steady

state uncertainty limit cycle. On the other hand, even though at the first step the open-

loop algorithm seems to make the right decision but it ends up in a limit cycle with higher

uncertainty. This is because the open-loop algorithm is ill-synchronized and measures

target 1 when it is in the less observable mode, and since it is open loop it has no way to

correct this synchronization.

5.9 Conclusions and Future Directions

This chapter presents an analysis of the sensor coverage problem with uncertainty feed-

back using iterated Lyapunov and Riccati maps. The sensor motion is based purely on

where the overall uncertainty of estimates of various systems lies on the uncertainty space.

I have discussed how to partition the space appropriately to obtain a locally stable steady

state orbit. I believe that this orbit is also globally stable; however, I do not have the proof

of global stability at this moment. In this chapter I presented the proof of global stability

for a scalar special case.

This chapter opens up a plethora of interesting research directions. Proving global sta-

bility of the two period orbit is an immediate avenue of research. As noted in the example,
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Figure 5.7: Target 1 starts in the same mode, but different initial uncertainty profile

Figure 5.8: Uncertainty feedback helps settle on a lower steady state uncertainty
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there needs to be a sound theory for the dependence of the period of the steady state cycle

on the separator chosen. Even though in this chapter I always chose a hyperplane as a sep-

arator, I believe there exists a class of manifolds that will produce the same kind of steady

state behavior. I believe that the theory developed in this chapter will lead to interesting

insight into real time algorithms for sensor scheduling and sensor coverage problems.
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Chapter 6

Conclusions, extensions, and open
questions

This thesis is an illustration of the application of geometric methods for analysis of

spatio-temporal planning problems. I have considered a couple of specific problems, the

multi-agent rendezvous problem and the dynamic sensor coverage problem. Through these

problems I have made an attempt to capture the cooperation and task scheduling constraints

of multi-agent planning problems. These constraints have been represented and analyzed

on an appropriate space.

Cone invariance is established as the analysis tool for cooperation constraints and has

been used in particular to provide certificates for the successful solution of the rendezvous

problem. For the sensor coverage problem I have identified the joint space of error co-

variances as the appropriate space for representation of constraints. I refer to this as the

uncertainty space. Decisions on what to measure are made based on where the relative

uncertainty lies on this space. In Chapter 4 I present stochastic sensor motion strategies for

the sensor coverage problem. The metric chosen there is the expected error covariance.

Controller synthesis for rendezvous based on cone invariance ideas is an open problem

and there is ongoing effort in this direction. In [41] the authors analyze the rendezvous

synthesis problem in the presence of uncertainty using quadratic cones. The representation

of cooperation constraints on the phase plane for other planning problems like interception-

evasion and multi-agent consensus is an exciting avenue of research. Generalization of the

level set method, as outlined in Chapter 2, to generate control Lyapunov functions for
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higher dimensions needs to be investigated.

One can get a lot of new insights into sensor scheduling and coverage algorithms by

employing the iterated map analysis presented in this thesis. I have just begun to scratch

the surface in this direction, but I strongly believe that the iterated map analysis can help in

answering open questions about optimal algorithms. Different steady state periodic orbits

on the uncertainty plane and their respective stability properties.

There is some ongoing debate on the efficacy of stochastic algorithms, as presented in

Chapter 4, and the deterministic algorithms, as presented in Chapter 5, for sensor coverage

tasks. While it turns out that stochastic algorithms may be better suited for a tracking ap-

plication when the agent to be tracked is adversary and adaptive to any deterministic strat-

egy, for applications like weather monitoring, oceanography, surveillance, and situational

awareness deterministic algorithms work better. One interesting question to investigate is

the efficacy of fuzzy strategies for coverage tasks.

In [58] the authors have made an attempt to choose the best possible Markov chain

describing sensor motion, which results in the lowest steady state expected covariance.

The authors used a scatter search hueristic in the above work to come up with different

candidate Markov chain transition matrices. Finding an optimal stochastic algorithm is an

interesting avenue of future research.
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