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Abstract

In many engineering applications, scattering of acoustic or electromagnetic waves from a body of arbi-
trary shape is considered in an infinite medium. Solving the underlying partial differential equations
with a standard numerical method such as finite elements or finite differences requires truncating the
unbounded domain of definition into a finite computational region. As a consequence, an appropriate
boundary condition must be prescribed at the artificial boundary. Many approaches have been proposed
for this fundamental problem in the field of wave scattering. All of them fall into one of three main
categories.

The first class of methods is based on mathematical approximations or physical heuristics. These
boundary conditions are often local in space and time, therefore easy to implement and run in short
computing times. However, these approaches give rise to spurious reflections at the artificial boundary,
no matter how refined the discretization is, which travel back into the computational domain and corrupt
the solution.

A second group consists of accurate and convergent methods. However, these formulations are usually
nonlocal in time and space, thus harder to implement and often more expensive than the computation
of the interior scheme itself.

Finally, there are methods which are accurate and fast. These approaches are often local in time,
and the nonlocality in space is confined to a closed surface rather than the whole computational domain.
The drawback of these approaches lies in the fact that the outer boundary must be taken to be either a
sphere, a plane, or a cylinder. For many applications of interest, this may require use of a computational
domain much larger than actually needed, which leads to an expensive overall numerical scheme.

This work introduces a new methodology in order to compute the fields at the artificial boundary.
The boundary condition is both nonlocal in space and time, but the nonlocal behavior is confined to a

finite number of points in time and to a surface in space. Like the second class of methods described



vii

above, the proposed algorithm is accurate and numerically convergent, yet its computational cost is
less than the underlying portion of the volumetric calculation. And, unlike the third category, this
new approach allows us to choose the artificial boundary to be arbitrarily close to the scatterer. This
method is based on a novel concept of “equivalent source” representations which allows a highly accurate
and fast evaluation of the boundary condition when used in combination with fast Fourier transforms.
We present a variety of numerical results demonstrating the accuracy and effectiveness of the proposed

approach.
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Chapter 1

Introduction

Scattering theory has played a central role in twentieth-century mathematical physics. Indeed, in fields
like radar and sonar technology, earthquake simulation, aeroacoustics, medical applications of com-
puterized tomography, or even quantum chemistry, scattering problems have attracted and challenged
scientists for well over a hundred years.

The mathematical models are based on physical conservation laws, and lead to partial differential
equations, whose solution may generally be obtained only by means of numerical methods. In many
of these scattering problems, the phenomenon of interest is local but embedded in a large surrounding
medium. Boundary effects arising from the exterior of that large region are often negligible, which
allows modeling it as an infinite, unbounded domain. Sommerfeld [83] proposed a radiation condition
at infinity which ensures well-posedness of the problem. In his honor, this condition is nowadays well
known as the Sommerfeld radiation condition, which guarantees that the wave is purely outgoing and
decaying as it approaches infinity. Standard numerical methods, such as finite differences (FD) and finite
elements (FEM), can approximately solve the partial differential equation. However, this usually requires
truncation of the unbounded domain and introduction of an artificial boundary condition, because the
finite resources of a computer do not allow simulation of a natural phenomenon in a truly infinite domain.
If the artificial condition on the truncated boundary does not behave like the actual condition at infinity,
spurious reflections will be generated, which will propagate back into the local region of interest and
thus pollute the solution.

A typical scattering problem consists of a bounded obstacle I', a source term f, and possibly an

incident wave u;. A wave is generated away from the solid object and propagates freely in space, until
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it eventually hits the obstacle and is scattered. This reflected wave is called the scattered field us—see

Figure 1.1.

Figure 1.1: A typical time-dependent scattering problem

At any time, the total wave field u is the superposition of v; and us. In all of the examples considered
in this thesis the assumption is made that the scatterer is not penetrable. This assumption is in fact
immaterial to the methods developed in this contribution: the computational boundary conditions we
develop are applicable irrespective of whether the scatterer is penetrable or not, as long as it occupies
a finite region in space. An impenetrable object is called sound-soft if the total wave field vanishes on
its boundary, which leads to the Dirichlet boundary condition us = —u; on I'. In contrast, an acoustic
sound-hard obstacle requires the normal velocity of the total field to vanish on its boundary, which
implies the Neumann condition 0,us = —0d,u; on I', where v is the unit outward normal on I'. In more
general impenetrable models, the so-called impedance boundary condition of the form d,u+iAu = 0 on
I is considered, where \ is a positive constant (see [24]).

The incident field is typically known, and the direct scattering problem is to determine u4 from the

knowledge of u; and the partial differential equation governing the wave motion.

1.1 Historical review

The list of computational boundary conditions proposed previously for the time-dependent scattering
problem is indeed extensive. A survey and bibliography which includes the research in this field up to
1992 can be found in the monograph by Givoli [37]. Other comprehensive and more recent reviews can
be located in Tsynkov [87] and Hagstrom [47, 48, 49]; the latter describe methods which can deliver

arbitrary accuracy at acceptable computational cost.
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Perhaps the most famous of the existing computational boundary conditions was introduced by
Lindman [62], and further expanded by Engquist and Majda [29, 30] in the late seventies. These
authors developed an exact boundary condition in terms of a pseudo-differential operator, and obtained
an increasingly accurate sequence of local operators by applying Padé approximations on a certain
square root function. In 1980, Bayliss and Turkel [8] used a large distance expansion of the solution
and also obtained a sequence of boundary conditions. In the mid-eighties, Higdon [52] derived boundary
conditions, which are perfectly absorbing at certain angles of incidence. As an alternative, Jiang and
Wong [58] used a similar approach and obtained boundary conditions, which are perfectly absorbing
for wave packets traveling at a certain group velocity. In 1994, Bérenger [9] introduced the perfectly
matched layer (PML) for Maxwell’s equations. This technique is based on the construction of an artificial
layer surrounding the computational domain which would completely absorb the outgoing wave, i.e., the
PML acts as reflectionless interface. Bérenger’s original formulation is only weakly well-posed. A clearer
understanding of PML as a complex coordinate stretching emerged in [21]. Later formulations became
mathematically more clear (see [74, 77]). The PML has emerged as one of the preferred computational
boundary conditions, as it provides geometric flexibility and has the potential for generalizations to
inhomogeneous or even nonlinear systems. Besides, the implementation is simple, and, although the
method is not directly based on an exact formulation and requires a complex parameter selection process,
it is yet convergent for many applications.

Methods based on exact or convergent formulations go back to the seventies as well. One of the first
nonreflecting boundary conditions was proposed by Smith [82] in 1974. He discovered that reflections
from the outer boundary may be completely eliminated by adding together the solutions of the ap-
propriate Dirichlet and Neumann problems. However, this requires running the overall interior scheme
many times, making it too expensive and as a consequence useless for realistic applications. Ting and
Miksis [86] suggested in the mid-eighties an approach based on Kirchhoff’s formula, which was later im-
plemented by Givoli and Cohen in [38]. This method has potential for high accuracy and the boundary
can exhibit flexible topologies. He and Weston [51] developed a fully vector version of the scheme for
Maxwell’s equations. A drawback is the costly retarded potential evaluation. Alpert, Greengard, and
Hagstrom [4] developed a nonreflecting boundary condition based on Fourier and Laplace transforms.
This technique involves a costly convolution operation. However, they showed in [3] that the convolu-

tion kernel can be compressed for planar, spherical, and cylindrical boundaries. Independently, a similar
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approach to the compression of boundary kernels was proposed by Lubich and Schédle [63]. Another
acceleration method based on fast multipole expansions was proposed by Michielssen et al. [67, 69].

Sofronov [84], and, independently, Grote and Keller [40, 41] developed and implemented an integro-
differential approach in three dimensions and demonstrated that high accuracy can be achieved. Grote
and Keller extended their ideas to Maxwell’s equations [43] and to the elastodynamic equation [44].
The cost to compute the boundary condition is reasonable and smaller than the interior scheme. The
drawback of these approaches is that a spherical boundary must be prescribed, making the volumetric
portion of the computation in case of an elongated scatterer unnecessarily expensive.

Ryaben’kii and Tsynkov [88] constructed for the time-dependent wave equation an auxiliary function
satisfying a forced wave equation in free space which agrees with the solution of the original problem at
the artificial boundary. They demonstrated that the auxiliary function can be computed efficiently using
Fourier methods exploiting the strong Huyghens principle. T'synkov later applied this idea to Maxwell’s

equations [89].

1.2 Overview

In this thesis, we shall study the three-dimensional time-dependent scalar wave equation, which, in case
of a compressible fluid, can be derived from the conservation of mass and Newton’s second law (see [54]).
In this specific case, the wave equation describes a pressure field, and the solution to the equation is the
amplitude of the pressure for a given point in space and time.

In Chapter 2, we review the wave equation defined in an unbounded domain. The Sommerfeld condi-
tion at infinity is essential for the purely outgoing character of the waves. The Kirchhoff representation
plays a crucial role in this thesis and is discussed in Section 2.2. In 2.3, we present the main basis of our
proposed nonreflecting computational boundary condition. The details of the algorithm are specified in
the subsequent chapters.

We introduce and investigate equivalent sources for the Helmholtz equation in Section 3.1. Instead of
dealing with true sources in a volumetric domain, it is possible to compute artificial sources on a certain
surface which surrounds the domain of the true sources. We call these artificial distributions “equivalent
sources.” They represent the actual field with high accuracy at any point which lies outside a small
neighborhood of the sources. Section 3.2 deals with the extension of the concept to the time domain.

While the treatment of periodic data is straightforward, a new approach needs to be developed to process
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nonperiodic data. The concept of continuation Fourier series proves to be of great significance in these
regards. The special treatment for Fourier expansion of nonperiodic functions is discussed extensively in
Section 3.3. Numerous numerical results are provided, demonstrating the high accuracy of the equivalent
source technique in the time-dependent case.

In Chapter 4, we propose a technique based on equivalent sources which computes the data on
the artificial boundary efficiently. The basis of our algorithm is comparable to [38, 86], but the use
of equivalent sources in our approach accelerates the boundary data evaluation significantly: in the
references [38, 86], the dominant work arises from the computational boundary, while we demonstrate
that, in our approach, the interior computation is the dominant cost.

Our methodology is exact in the sense that no spurious reflections develop at the artificial boundary
and thus, clean convergence is obtained as discretizations are refined appropriately. Methods such as
[8, 9, 29, 30, 31, 32, 51, 52, 58, 60, 61, 62, 75, 77], in contrast, suffer from the problem of spurious
reflections, which may result in corruption of the numerical solutions.

Although in references [65, 66, 68, 69] it was shown that the time domain multipole method can
adequately be used to obtain data on the computational boundary, we have not been able to locate in
any of these references information that would allow us to determine the efficiency of the approach in
terms of computational time. In this thesis, we demonstrate efficient computing times of our approach,
and our method may also prove to be more advantageous than the accelerated multipole technique

discussed in [65, 66, 68, 69] in terms of implementation and accuracy.



Chapter 2

Wave equation in unbounded domains

2.1 Model problem

We consider a bounded domain © C R3 with boundary I'. At an arbitrary point (x,t) € R3\© xR, the
scattered field ug(x,t) for our model problem is a real or complex valued function solving the following

acoustic sound-hard problem

1 9 :
2pals Au, = f(z,t) in R3\O x (0,00) (2.1)
us(x,0) = wug(x), xcR3\O (2.2)
%us(m, 0) = up(x), =x=cR\O (2.3)
v-Vu, = g(xz,t) onT x (0,00) (2.4)
. 0 10
Tlg]gor <Eus + EE%) = 0, r= |zl (2.5)

We assume that the forcing term f(a,t) along with the initial conditions ug(x) and ug(x) have a
compact support that lies within a domain  C R3, which surrounds the scatterer entirely and thus has
I" as its inner boundary. The scattered field us propagates with a finite constant velocity ¢ away from
the scatterer in the medium R3\@. The geometry is depicted in Figure 1.1. The given function g(zx,t)
in (2.4) is equal to —0,u; as discussed in Chapter 1. We note that the Neumann condition (2.4) on
I" corresponds to a sound-hard obstacle and it would be replaced by the Dirichlet condition us = —u;
in case of a sound-soft scatterer. Finally, the Sommerfeld condition (2.5) at infinity insures that the

scattered wave is purely outgoing.
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A solution to this problem exists, is unique, and depends continuously on the data (see, e.g., [24]
and references therein): the problem (2.1)—(2.5) is well-posed in the sense of Hadamard.

The solution of (2.1)—(2.5) can be expressed by means of an integral representation which is known
in the literature as Kirchhoff’s formula. This formula can be easily obtained by transforming the given
equations into the Fourier space, which results in a Helmholtz problem whose solution can be expressed
by means of a frequency-domain integral representation, and then transforming the result back into the
time domain. The result of this calculation is summarized in the next section. In Appendix A, the
well-known details associated with this result are reviewed: in Appendix A.1 the Helmholtz problem
is formulated, Appendix A.2 discusses the integral representation and, Appendix A.3 transforms the

solution into the time domain.

2.2 Kirchhoff representation

In the rest of this thesis, we simplify the notation by omitting the subscript s in the scattered field us. A
well-known Kirchhoff formula for the solution of the problem (2.1)—(2.5) is summarized in the following

theorem.

Theorem 2.2.1. Let r = x — & and r = | — &|. Then, using the definitions in Section 2.1, for any

point x € R3\O, we have

W t) = (@) +um (@) + v, ), (2.6)

where
(1) = ﬁ/g@dm (2.7)
W@, ) = ﬁ/réaf—&) (2.0 ) asa), (2.8)

w(a,t) = / vr {”(‘%’t —d %% (5:,15 - g)}ds(:i). (2.9)

A Jp 12 r

Kirchhoff’s formula (2.6) is an integral expression for the solution of (2.1).
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We emphasize two crucial properties of this solution:
1) In absence of the forcing f, the field u is given by a surface integration over the scatterer I'. If f does
not vanish, the volumetric term (2.7) must be added. Because of the assumption that f has a compact
support in €2, this integration would be confined to a finite three-dimensional domain.
2) The integrands in the surface integrals (2.8) and (2.9) depend on retarded values of the field u, its

derivative in time Oyu, and its normal derivative 0,u on the scatterer’s surface I'.

2.3 Scattering solver

We recall that the domain of interest €2 is chosen large enough such that the supports of the functions
f(x,t),up(x), and tg(x) lie within Q. Finite elements can handle complex geometries of {2 and thus are a
suitable choice to resolve the computational domain accurately. However, the truncated problem is only
well-posed if a boundary condition is imposed on the outer boundary B. It is not straightforward how to
reformulate Sommerfeld’s radiation condition (2.5) at infinity to the finite boundary B. As mentioned in
the Introduction (Section 1.1), many approaches have been proposed to solve this fundamental problem.

In this section, we present the main basis of the new convergent computational boundary condition we
introduce in this thesis. The computational boundary condition is computed from information inside the
domain. Initially, the scattered field vanishes outside of the compact supported regions of f(x,t), uo(x)
and ug(x). We introduce a closed surface S which surrounds the union of these domains. The waves
propagate with the constant velocity ¢ from S into the infinite space and arrive at the surface B no
earlier than tyin = lyin/c, where ly, is the minimum distance from S to B. Therefore, for the time
t € Iy = [0, tyminl, the required boundary condition on B is trivial, and the following well-posed scattering

problem can be solved at (x,t) € Q x Iy with any appropriate numerical scheme:

1 9? .
EP L Au = f(x,t) inQxIy (2.10)
u(z,0) = w(x), xe (2.11)
%u(az, 0) = up(z), =z (2.12)
v-Vu = gr(z,t), onT x I (2.13)
Ly = 0, on B x I, (2.14)

where a suitable linear operator in (2.14) needs to be specified which will be discussed in Section 4.1.4.
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The solution u(x,t) of (2.10)—(2.14) for (x,t) € Q x I represents the field as it travels from I' to
the outer boundary B. During that time, the wave passes through S; we accumulate this data on that
surface. Once the wave arrives at B, the interior scheme needs to be interrupted, because the field is now
nonvanishing on the artificial boundary and therefore boundary data need to be provided. The values
on S can be regarded as true sources, and the Kirchhoff formula (2.6) expresses that the superposition
of all the infinitesimal source distributions make up the total scattered field at all points outside of S.
We note that by construction, the compact support of f is inside of the closed surface S, therefore, the

evaluation of u(x,t) outside of the closed surface of S is restricted to surface integrations:
u(x,t) = u™(x,t)+ ul(e,t), (2.15)

where

W () = /1 Ou (3.6~ 7) ds(@). (2.16)

T drm s ov(2)

wl(z,t) = ﬁ/ vr {u(i’t —J %% (5:,15 - g)}ds(:i). (2.17)

s T2 r

The numerical approximations on the r.h.s. of equations (2.10)—(2.13) are known for ¢t € I} = [tmin, 2 -
tmin], and thus we are able to use the interior solver in 2 to compute the approximated solution for
that time interval. The accumulated field on S for ¢t € Iy U I; allows us to compute new data on B for
t € Iy = [2 - tmin, 3 * tmin), Which in turn can be used to use the interior algorithm for the time interval
I. This leads to an iterative process. In the mid-eighties, Ting and Miksis [86] proposed to use (2.15)
as an exact nonreflecting boundary condition, which ten years later was numerically implemented by
Givoli and Cohen [38]. These authors considered £ to be either the identity- or the Neumann-operator.
In [38], it is reported that the overall algorithm exhibits numerical long-time instability: the solution
converges up to a certain time to the true solution until an instability develops which manifests by the
appearance of rapidly growing oscillations. Givoli and Cohen propose in [38] to remove the instability by
the use of a dissipative interior scheme. The disadvantage, though, is obvious: this eliminates the use of
all popular and well-understood nondissipative schemes. As we shall demonstrate in Section 4.1.4, the
problem of long-time instability for nondissipative numerical schemes can be easily solved by choosing £

to be an appropriate Sommerfeld type operator. The most significant drawback of using (2.6) directly as
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the nonreflecting boundary condition is thus the long computing time: the convolution-like operations
in (2.16) and (2.17) make the open boundary algorithm more expensive than the interior solver. In this
thesis, we propose an approach which significantly accelerates the evaluation of the integrals (2.16)—(2.17)
without degrading accuracy and, as a result, the evaluation of the computational boundary conditions is
significantly faster than the overall interior PDE algorithm. This is achieved through the use of certain
“equivalent sources” that, placed on an appropriate Cartesian mesh, provide useful representations of
the field values. The details of the construction are addressed in subsequent chapters. This construction
leads to Algorithm 2.3.1, which summarizes the procedure to determine the approximated solution to the
scattering problem (2.1)—(2.5) on a finite domain. Defining I}, = [ktmin, (1 + k)tmin] for £ =0, ..., Npax

the overall algorithm reads:

Algorithm 2.3.1. Scattering solver

1. Initially, the scattered field propagates from I' to B in the time interval Iy; the wave field thus
vanishes on B during that time. An appropriate interior scheme can be used to solve equations
(2.10) to (2.14) in the three-dimensional computational domain 2. This interior solver needs to be

interrupted once the first wave arrives at the outer boundary B.

2. The nonreflecting boundary condition solver (step 3) and the interior solver (step 4) are iteratively

invoked for k =1,..., Npax-

3. The accumulated data on S X I,_1U...Ulp_1_,, for a suitable integer m in 0 < m < k can be used
to apply the equivalent source algorithm (EQS) that shall be developed in this thesis to compute the

boundary data ggp(x,t) on B x Ij,.

4. All information on the r.h.s. of the system

1 9? ,
gwu—Au = flz,t) i QxI (2.18)
u(@, ktpin) = up(x), x e (2.19)
%u(m, ktmin) = (), x e (2.20)
v-Vu = gr(z,t), onl xI (2.21)
Llu] = gn(z,t), on Bx I, (2.22)

18 known. Thus, an appropriate interior numerical method can be used to obtain the solution in
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Chapter 3

Time domain equivalent sources

In this chapter we consider time-dependent wave fields generated by volumetric source distributions
inside a cube, and we formulate a methodology to represent that wave to a high-order accuracy by
equivalent sources positioned on any given pair of opposite faces of the cube. A corresponding method-
ology was introduced in [13, 14] for the Helmholtz equation for the frequency domain. A review of the
material introduced previously is presented in Appendix B. In Section 3.1, in turn, we give an exten-
sive discussion about the behavior of the approximated frequency domain field for specific parameter
values. Then, our extension of the concept to time-periodic functions is presented in Section 3.2: a
time-periodic function can be accurately approximated by a Fourier representation, thus enabling us
to use the equivalent source technique for every wave number separately. Section 3.3 is devoted to the
more realistic case when the time dependent field is nonperiodic. A Fourier transform cannot be used
directly, since this would give rise to the Gibbs phenomenon. A partition of unity method could be
applied to such a signal to split the initially nonperiodic wave into wave packets that can be viewed
as periodic functions. However, as shown in 3.3.1, this method may affect the computing time of the
nonreflecting boundary algorithm negatively. The continuation method introduced in 3.3.2 overcomes
the shortcomings of the partition of unity approach. In 3.3.3 the necessity of defining a time buffer in
connection with the computational boundary condition is explored. Finally, we close this chapter with

numerical experiments in 3.3.4 demonstrating the effectiveness and accuracy of the approach.
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3.1 Parameter value identification

In order to identify relevant parameters for the accuracy of the equivalent sources, we give here a brief
review of the two-face approach. Let us assume that true sources are embedded in a cube of edge size H
and generate a time-harmonic field with wave number k. It has been established in [13, 14], and is also
discussed in Appendix B, that there are equivalent sources on two opposite faces D1 and D of the cube
which approximate the initial wave to a high accuracy outside of a certain neighborhood of the source
distributions.

In practice, these artificial point sources are constructed as follows: the two selected faces D1 and
Dy are each discretized using a set of S x S equidistant nodes. This gives rise to two Cartesian uniform
two-dimensional grids Tél) and Téz) of mesh size Ag = H/(S — 1) which are located at the two faces D1
and Ds, respectively, so there is a total of ng = 2 x S x § such points. An equivalent monopole source
Dy,

§; and an equivalent dipole source 7); are placed at each node y; € 7" U7y . The geometry is depicted

in Figure 3.1.

Figure 3.1: The two discretized faces in three dimensions

A second, larger cube also centered about the origin is constructed. We denote the union of its six
faces by S¢ and call it the collocation surface. Each face of this collocation cube is discretized into
C x C equidistant nodes, i.e., the mesh size is Ac = H¢o/(C — 1), where H¢ denotes the edge length of

the collocation cell. Under the assumption that the field @ is known at the collocation points @; with
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l€{l,...,nc}, where ng = 6 x C' x C' — 12 x C' + 8 (see Section 3.1.1), the values of £; = {(y;) and

n; =n(y;) for j € {1,...,ng} are obtained by solving the overdetermined system

W= | A, A ]| (3.1)
n
where the vector @ is defined by
()
u = a(zr) | (3.2)
i W(xn,)
the monopole matrix is given by
eikrl,j
A = 3.3
{ m}l,] 47_[_,,,,l] ( )
and the dipole matrix is
e’ile,j 1 .
{Ad}l,j = W <E - Z]{?) Vi-T;- (34)
7] ’
In (3.3) and (3.4), we use the notation r;; = ®; — y,,7,; = |r;| and v; is the unit normal to the

two faces at y; € Tél) U Téz). The overdetermined system (3.1) is solved in the least-square sense by
means of a singular value decomposition. The computational cost of this procedure is then an order
O(nc-n%) operation. Hence, both S and C should be reasonably small, in order to avoid large computing
times. However, it should be noted that the singular value decomposition needs to be performed only
once. The equivalent sources evaluate then the field at any desired point outside of the collocation cell

by the matrix-vector multiplication (3.1). This algorithm is summarized in Appendix B.2.1. In the

following subsection, we present the results of a variety of computational tests designed to demonstrate
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the dependence of the algorithm’s performance on the values of the various associated parameters.

3.1.1 Accuracy as a function of collocation cube size

Le us consider a time-harmonic field with wave number & radiating from a point within a cubic cell ¢;
of side length H. On two opposite faces Dy and Dy of ¢;, an appropriate number of locations for the
equivalent sources ng = 2 x S x S is selected (compare with Figure 3.1). We note that in [12, 13, 14],
it is proposed to place the equivalent sources on the points of the extended planes of D1 and Dy which
lie within the union of two circular domains concentric with (and containing) the faces of ¢;. The radius
of these domains is chosen to be equal to (or slightly larger than) half the length of the diagonals of
the faces. However, our finding is that in the context of the present work there is no disadvantage in
terms of accuracy and computing time if we choose to place equivalent sources directly on the Cartesian
grids TS) U Tg), and thus this shall be our standard choice in this thesis. We refer to Appendix B.2
for further discussion on this issue. We recall that in order to evaluate the equivalent sources, the field
needs to be specified at the noc = 6 x C x C — 12 x C' 4 8 collocation points of the surface S¢. The
number ng results as sources are placed on each one of the six faces on the cube: on the first of the
three pairs of opposite faces, we place 2 x C' x C' Cartesian points; on the second pair of opposite faces,
only 2 x C' x C — 4 x C new positions can be located; and finally, on the last opposite pair, only the
2x (' x C—8x (C+8 interior points of the Cartesian grid can be selected. We assume that the wave values
at the collocation points along with the parameters k, H, S, C are known. The purpose of this subsection
is to determine the dimensions of a suitable collocation cube which is characterized by the edge length
He. To this end, we select the specific values k = 10, S = 7, and C' = 7 (which means that ng = 98 and
no = 218). Numerical results suggest it is best to choose n¢ at least 2ng. Numerical experiments further
indicate that under these constraints, any other choice of parameters for k, S, C lead quantitatively to
the same conclusions. We consider the five different values 2H,2.5H,3H,4H, and 5H for Hc. Once the
collocation cube is known, Algorithm B.2.1 can be used to obtain an approximation of the wave at any
point outside of the collocation cube At the fixed point in space P = [0,1.25,1.26]%, we compute the
numerical error Ep(H¢) to the exact solution in absolute norm. The results are displayed in Figure
3.2 for the four different values 0.00025,0.0025,0.025, and 0.25 for H. We note that the point P lies
outside of the collocation cube for all five choices of H¢. Figure 3.2 leads to the following observation:

for any fixed H, the equivalent source computation yields a more accurate solution at P as the distance



3.1 Parameter value identification

16

10_3 F T
[ —— H=0.00025 5 :
, [l —= H=0.0025 |
10" —— H=0.025
|~ H=0.25 | ‘
10° | i
107° |
a \
LUl |
107 | \ 3
10_8 3 M E
107 A ]
_10:
10 | | | |
107 107 107 107" 10° 10’
HC

Figure 3.2: The error Ep(H¢) as a function of Ho at P = [0,1.25,1.26]" for different values of H

from the two faces D1 U D> to the collocation points increases. Clearly, in this experiment the increased
distance is realized by increasing the size of Ho while keeping H constant, and by doing so, the surface
Sc comes closer to the point P. It might be thought that the decreased distance from P to the collocation
points influences the conclusion “the bigger the collocation cube, the more accurate the equivalent source
computation.”

To see whether that is indeed the case, we consider the following experiment: for the value H = 0.25,
we select one of the five parameters for He from the first example, and we evaluate the error E(P) at
the location P = [0,1,0]*, where [ takes one of the nine values 0.6H,0.8H,1.2H,1.4H,1.5H,1.6H,2H,
or 3H. Clearly, the first point lies for all five collocation boxes between the surfaces of ¢; and S¢, while
the last point is positioned outside the collocation cube. In Figure 3.3, we plot E(P) as a function of
P for the smallest and the largest collocation box, i.e., Ho = 2H and Ho = 5H, respectively. The
quantitative behavior is obvious: starting just outside ¢; and moving toward S¢, the accuracy increases
until the collocation surface is reached. Continuing moving in the same direction, the behavior remains

unchanged, i.e., the farther away from the collocation box, the more accurate. Looking back at the first
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Figure 3.3: The error E(P) as a function of P = [0,1,0]" for two different values of H¢

experiment, we see that as the collocation cube increases, the more accurate the solution, despite the
fact that the point under consideration is closer. This leads to the conclusion that a larger collocation
box yields more accurate results.

As we will explain later, ideally, we want to choose H¢ as small as possible, but on the other hand,
the scheme should be as accurate as possible. These two trends conflict each other, and the selection
He = 3H seems to be a reasonable compromise. Thus, Ho = 3H is our standard choice if not stated

otherwise.
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3.1.2 Point source at the origin

In this subsection, we assume that the point source & of the Green’s function (A.12) is located at the
origin. The two faces D1 and Dy are centered about the origin, and given a certain wave number k£ and
side length H, we seek to determine the number of sources necessary to obtain a prescribed accuracy
from Algorithm B.2.1. The wave length is proportional to 1/k (see (A.9)), and therefore, Ag should
be proportional to 1/k to adequately resolve the wave in space. Table 3.1 shows the accuracy of the
two-face approach for various parameters k, H, ng, and nc. The table is meant as an illustration only,
to demonstrate how the change of various parameters affects the accuracy of the solution. In the first
column, we consider four specific values for the wave number, i.e., £ = 0,25, 100, and 300. The value in
parentheses next to the wave number is its inverse, which gives a rough idea what the closest distance
between two equivalent sources is expected to be. Studies show that the biggest error to the exact
solution in absolute norm outside of the collocation box are found close to the surface S¢, as has been
established in the last Section 3.1.1. In the second column, different sizes H of the panel length are
considered. The entries in the third, fourth, and fifth columns are all linked to the parameter S. To see
that the resolution of the equivalent sources lies in the right range, it is helpful to compare the closest
distance between the sources with the inverted values of the wave number. It is thus useful to consider
the value Ag, which is given in the third column. The entries of the fourth column represent the number
of sources S along the panel-side H. The total amount of equivalent sources ng are tabulated in the
fifth column. These entries are helpful for estimating computing times. Similarly, the parameters Ao, C
and no are given in the sixth, seventh, and eighth columns, respectively. Finally, the values of the last
column correspond to the absolute error at the point [0,3H,0]¢. Table 3.1 shows that, as we expect, for
a fixed k and H, the accuracy increases as Ag and A¢ are decreased. Interestingly, as we increase H
and keep the wave number k fixed, we can use larger Ag and still obtain the same order of accuracy.
The number of sources, however, will generally increase as can be seen in Table 3.1 and also in Figure
3.5.

Now we pose the following question: given a wave number k and a panel length H, what mesh size
Ag is at least required to obtain a prescribed accuracy of the field? The answer can be found in Figures
3.4 and 3.5 for wave numbers up to k = 60 and panel lengths up to H = 0.5. The parameters are chosen
in such a way that the error in these figures is at least of the order O(107%) outside of a sphere about the

origin of radius 3H. The algorithm which determines the parameters picks for any S automatically S+ 1
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Lk G [ H [ As [S|ns]| Ac [ C[ ng || emor |
0, (00) 0.025 0.0125 3] 18 0.025 41 56 [ 3-107%
0.01875 | 5 | 98 1-107°
0.0083333 | 4 | 32 0.01875 | 5 | 98 || 4-1076
0.015 6 | 152 || 3-107
0.00625 | 5 | 50 0.01875 | 5 | 98 1-1076
0.015 6 | 152 || 6-1077
0.005 6 | 72 0.015 6 | 152 || 6-1077
0.0041667 | 7 | 98 0.0125 7| 218 || 8-107°
0.0035714 | 8 | 128 || 0.0107143 | 8 | 296 | 3-107°
0.075 0.025 4 | 32 0.05625 | 5 | 98 1-10°
0.01875 | 5 | 50 0.05625 | 5 | 98 || 5-107°
0.0125 71 98 0.0375 7| 218 || 4-107°
0.0107143 | 8 | 128 | 0.0321429 | 8 | 296 || 1-1079
0.5 0.25 3|18 0.5 4 | 56 1-107°
0.0833333 | 7 | 98 0.25 7| 218 || 7-1071°
25, (0.04) 0.025 0.0125 3|18 0.025 4 | 56 | 4-1077
0.0083333 | 4 | 32 0.01875 | 5 | 98 1-107°
0.00625 | 5 | 50 0.015 6 | 152 || 1-10
0.075 | 0.01875 | 5 | 50 0.05625 | 5 | 98 || 9-107°
0.0107143 | 8 | 128 | 0.0321429 | 8 | 296 || 6-1079
0.5 0.125 5 | 50 0.375 51 98 || 2-1072
0.0833333 | 7 | 98 | 0.214286 | 8 | 296 || 2-10~*
0.0714286 | 8 | 128 || 0.214286 | 8 | 296 || 7-107°
0.0625 9 | 162 0.1875 9 | 38 || 8-1077
100, (0.01) 0.025 || 0.00625 | 5 | 50 0.015 6 | 152 || 1-107°
0.075 0.015 6 | 72 0.045 6 | 152 || 1-107*
0.0375 7| 218 || 2-107°
0.0125 71 98 0.0125 8 | 296 || 9-1077
300, (0.003333) | 0.025 || 0.0041667 | 7 | 98 0.0125 7 | 218 || 4-10°F
0.075 | 0.00625 | 13 | 338 || 0.0160714 | 15 | 1178 || 8-10~"

Table 3.1: The field is generated by a point source located at the origin. The table demonstrates the
accuracy of the two-face approach for various parameters k, H, ng, and nc.
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collocation points along the large cube of size 3H. If the accuracy fails to be achieved, it changes C' up
to S + 5, which means that there might be certain cases where the desired accuracy could be obtained
by choosing a lower S and more than S + 5 collocation points. In Figure 3.4, we observe that in general,
as k is held constant and H gradually increases, the mesh size Ag can be chosen larger to obtain the
same accuracy of at least O(107%). But Figure 3.5 also reveals that “the larger H, the better” does not
always hold. For k = 60 fixed, for example, we need to have only S = 4 sources along the panel length
H = 0.025, while it is required to have S = 16 for H = 0.5. If we were to put equivalent sources on faces
of the prescribed length H = 0.5, it would make more sense to partition them into a couple of panels of

smaller lengths, to make the underlying singular value decomposition computation less expensive.
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Figure 3.4: The mesh size Ag as a function of the wave number k£ and the panel length H to obtain at
least O(107%) accuracy in the field values
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Figure 3.5: The number of equivalent sources S along one panel length as a function of the wave number
k and the panel length H to obtain at least @(10~°) accuracy in the field values
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3.1.3 Point source at the most challenging location

Numerical experiments indicate that it is most challenging to position the test source & at [H /2,0, —H /2],
or in the middle of one of the other three edges which connect the two faces Dy and Ds. Table 3.2 dis-
plays numerical accuracy for various parameter values. The structure of the table is the same as in
Table 3.1, but these two tables are not meant to directly compare with each other. Rather, Table 3.2
is supposed to demonstrate that high accuracy of order O(10~7) for wave numbers up to k¥ = 100 and
panel lengths H between 0.01 and 0.05 can be achieved by selecting S and C in the range of 10 to
15. Computational results in [14] suggest that the accuracy increases by increasing kH, and the error
estimate (B.17) gives a rough order for the values considered there (kH = 8,12, and 16). Here, we are
interested in achieving a high accuracy for smaller values of kH. The results in Table 3.2 show that a
significantly higher accuracy can be achieved for small values kH than estimate (B.17) indicates. In fact,
Table 3.2 demonstrates that at least a O(10~7) accuracy can be achieved for kH in the range of 0.25 to
5. For a given wave number k and panel length H, the error is largely influenced by the choices of Ag
and Ac¢. The results for £ = 100 in Table 3.2 suggest that for a fixed wave number, the accuracy indeed
increases with higher H: for the values H = 0.01 and H = 0.025 for example, the error of O(10~7) does
not improve as S and C are increased; for H = 0.05 however, the numerical approximation exceeds this
limit with appropriate values S and C.

The diagrams in Figures 3.6 to 3.9 display the relationship that is needed between k, H, and S so that
the numerical solution approximates the true solution to at least @(10~?). Figure 3.10 displays the num-
ber of collocation points C' used along one edge. The algorithm used here to determine the parameters
tests systematically for S fixed sources C' = S and more collocation points until the desired accuracy is
achieved. If the desired accuracy fails to be reached for that number of sources, the algorithm increases
S by one and the search for the lowest value C starts again. This is repeated until the appropriate values

S and C for a given k are found. The procedure is performed for all wave numbers of interest.

The rest of Chapter 3 deals with the extension of Algorithm B.2.1 to the time domain: time de-
pendent waves propagate from source distributions located inside of the cubic cell ¢; of edge length H
into the infinite three-dimensional space. The goal is to find time-dependent equivalent sources on the
faces Dy and D3 yielding a high-order representation of the field. At any point & € S¢, we imagine to

decompose the wave into wave packets: this can be realized with the partition of unity (see Section 3.3.1
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‘ k ‘ H H Ag ‘ S ‘ ng H Ac ‘ C ‘ ne H error

25 | 0.01 || 0.00111 |10 [200 || 0.00333 |10 | 488 [ 1-107%
0.000909 | 12 | 288 || 0.002727 |12 | 728 | 2-1077

0.000714 | 15 | 450 || 0.001875 | 17 | 1538 || 2-10~7

0.025 || 0.00277 | 10 [ 200 || 0.00833 |10 | 488 | 2-1078
0.00227 | 12 | 288 || 0.006818 |12 | 728 || 5-1078

0.05 || 0.00556 | 10 | 200 || 0.01667 | 10 | 488 || 2-1078
0.004545 | 12 | 288 || 0.013636 | 12 | 728 || 4-10~8

50 | 0.01 [ 0.00111 |10 [ 200 || 0.00333 |10 | 488 [ 1-107%
0.000909 | 12 | 288 || 0.002727 |12 | 728 | 1-1077

0.000714 | 15 | 450 || 0.001875 |17 | 1538 || 2-10~7

0.025 || 0.00277 | 10 [ 200 || 0.00833 |10 | 488 | 4-1078
0.00227 | 12 | 288 || 0.006818 |12 | 728 || 9-1078

0.05 || 0.00455 | 10 | 200 || 0.01667 | 10 | 488 || 9-1078
0.004545 | 12 | 288 || 0.01363 |12 | 728 || 2-1077

75 | 0.01 [ 0.001111 | 10 | 200 || 0.0033333 | 10 | 488 || 9-10~7
0.000909 | 12 | 288 || 0.0027273 | 12 | 728 | 2-1077

0.000714 | 15 | 450 || 0.001875 | 17 | 1538 || 31077

0.025 || 0.002778 | 10 | 200 || 0.0083333 | 10 | 488 | 8-1078
0.002273 | 12 | 288 || 0.0068182 | 12 | 728 [ 1-1077

0.001786 | 15 | 450 || 0.0046875 | 17 | 1538 || 2-10~7

0.05 || 0.005556 | 10 | 200 || 0.0166667 | 10 | 488 | 4-1077
0.004545 | 12 | 288 || 0.0136364 | 12 | 728 | 31077

0.003571 | 15 | 450 || 0.009375 | 17 | 1538 || 2-1077

0.075 || 0.008333 | 10 | 200 0.025 10 | 488 || 2-1076
0.006818 | 12 | 288 || 0.0204545 | 12 | 728 | 3-1077

0.005357 | 15 | 450 || 0.0140625 | 17 | 1538 || 2-10~7

100 | 0.01 || 0.00111 | 10 | 200 || 0.00333 |10 | 488 [ 1-10°°
0.000909 | 12 | 288 || 0.002727 |12 | 728 | 3-1077

0.000714 | 15 | 450 || 0.001875 | 17 | 1538 || 3-10~"

0.025 || 0.002778 | 10 | 200 || 0.008333 | 10 | 488 | 2-1077
0.002272 | 12 | 288 || 0.006818 |12 | 728 | 4-10~"

0.001786 | 15 | 450 || 0.004688 | 17 | 1538 || 4-1077

0.05 || 0.005556 | 10 | 200 || 0.016667 | 10 | 488 || 1-106
0.004545 | 12 | 288 || 0.013636 | 12 | 728 | 4-1077

0.003571 | 15 | 450 || 0.009375 | 17 | 1538 || 2-1078

Table 3.2: The field is generated by a point source located at [H/2,0,—H/2]. The table displays the

accuracy of the two-face approach for various parameters k, H, ng, and nc.
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to obtain at least O(107°) accuracy in the field values
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for details). We associate the collocation surface with the Kirchhoff surface, and, in view of Kirchhoff’s
formula, the partition of the solution of the wave equations can be evaluated packetwise at any point
outside of S¢ before adding the packets by superposition principle to the wave function together. There-
fore, it is natural to develop and study the concept of the equivalent sources for time-periodic waves first,
which we do in the next section. The interest of this discussion is mainly theoretical, however, since,
as mentioned in Section 3.3.1, an alternative approach introduced in Section 3.3, based on a certain

“continuation method” for Fourier series, can be significantly more efficient in practice.

We close this section with a final remark. Let us assume that a time dependent wave is propagating
from a point source into the open three-dimensional space. The point source is located in ¢; between

the faces D1 and Ds. In view of equation (2.1), this means that the forcing term takes the form
f(z,t) = 4nd(x — xo)s(t), (3.5)

where g is the position of the point source and s(t) is an arbitrarily, sufficiently smooth function
representing the strength of the source at time ¢. We recall that the Kirchhoff representation (2.6) solves
(2.1). Since the problem is purely outgoing from a point source into the three-dimensional space, the
surface integrals (2.8) and (2.9) vanish and the solution (2.6) simplifies to

_ f(:?:,t—r/c)di _ s(t—r/c)

x,t
u(@,?) R3 4drr r

, (3.6)

where r is the distance from « to the location of the source . This simple model enables us to evaluate
the exact solution to the wave equation very easily without any numerical integration rules. Under the
assumption that the field is known on the collocation surface S¢, our goal is to compute an equivalent
source distribution on the two faces D1 and Dy, which represents the wave outside of S¢. This is discussed
in subsequent sections.

We note that this point source solution can also be used to construct a simple solution to the more
complicated case when a scatterer is present: we place a fictitious point source inside the scatterer.
We know that (3.6) solves the wave equation; thus, if we impose on the scatterer’s surface a boundary
condition that assumes the form (3.6) for the field values, the exact solution to the problem (2.1)—(2.5)

is equation (3.6) and especially, its evaluation does not involve any numerical approximation.
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3.2 The time-dependent periodic case

In this section we assume that the continuous wave function u(x,t) is T-periodic at any point x outside

of ¢;, i.e., u(x,t) = u(x,t + T). Thus, for € R3\¢;, the field can be expanded by the Fourier series

o0
u(@,t) = > dg(x)e T, (3.7)
n=-—o0o
with the Fourier coefficients

1 T )

~ — 27y

%@):—/1m@ert (3.9)
T Jo

—2mimt/T

Substituting (3.7) into the homogeneous wave equation, multiplying by e and integrating over

the time domain [0, 7] leads to the Helmholtz equations
Aty + k20, = 0, forxc R3¢, (3.9)

where the wave numbers are defined as

2

(3.10)

In view of the two-face approach, it is clear that monopole equivalent sources &Sl ) and dipole equivalent
sources ny(f ) can be found on the two discs D for each frequency index n. The Fourier coefficients ., are
thus represented to high-order accuracy by the corresponding frequency-dependent equivalent sources.
Under the assumption that the Fourier coefficients of the considered waves are rapidly converging to zero

as |n| increases, only few frequency modes need to be considered to achieve a very accurate approximation

of (3.7). We summarize the procedure in

Algorithm 3.2.1.

1. Transform the given data u(x,t,,) at the collocation points x € S¢ into the Fourier space which
gives Uy, (x) for {m,n} € {0,...,N —1}.

2. Apply Algorithm B.2.1 to the N Fourier coefficient. This results in the equivalent sources & ,(Ll ) Un,(f )

on the panels D; for [ =1, 2.
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3. Algorithm B.5.1 can now be applied to evaluate ,(x) on any Cartesian grid T}?’ ) outside of Se

fast (see Appendix B for details).

®3)

4. The inverse Fourier transform in time at « € 7'F3 gives the approximation to u(x,t,,).

3.2.1 Numerical example

As an example, let us assume that the propagation velocity is ¢ = 1 and take s(¢) (see equation (3.5))

to equal the Gaussian function
s(t) = e (t710)*/7" (3.11)

with ¢ = 0.4 and ¢35 = 3. The function’s values outside the interval 0 < ¢ < 6 are no larger than
O(10=%), and thus repeating this function periodically with period 6 gives rise to a discretization of a
periodic smooth function of period T' = 6 up to rounding errors. The function and its discrete Fourier
transform with N = 32 points are plotted in Figure 3.11. Applying the inverse Fourier transform to the
Fourier coefficients {§m}7]\£;(1) gives the approximated values at the N points. The maximum absolute
error at these points to the original function s(t) is 3 - 1076, To determine how well the N frequencies
approximate the function at other points, we can extend the Fourier spectrum by zero padding, i.e., the

modified Fourier coefficients {Em}iz;(l) take the form

Sms ifme{0,...,N/2},
Sm=19 Sy_gim Hme{N—-1,.. ,N—N/2+1}, (3.12)
0, otherwise.

In (3.12) we assume that N = 2°N , where « is a positive integer. Applying an inverse Fourier trans-
form to the zero-padded coefficients samples the approximated function at N equidistant points in the
physical time domain. The two lower pictures of Figure 3.11 illustrate this for N = 2N. For a fixed
N, we compare the zero-padded function with the exact solution at a large number N (= 32,768) of
equidistant points and compute the maximum absolute error e,. The results along with the maximum

errors in the first and second derivatives are reported in Table 3.3. In our numerical code, the indices
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Figure 3.11: The source strength s(t) and zero padding with N = 32 and N =64
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| N | Fmax oo | 0/0esc | 07/07ess |
16 | 8.38 0.022 0.183 1.69
32 | 16.76 | 3.50-107% | 5.88-107® | 9.94-107*
64 | 3351 |444-10716 | 1.81-107" | 4.22.10~1
128 | 67.02 | 4.44-10716 | 3.96-107'® | 2.00-10"13
256 | 134.04 | 4.44-10716 | 8.66-1071° | 7.32-10~13

Table 3.3: Accuracy of truncating the Fourier series of s(t)

larger than N/2 correspond to negative frequencies in the Fourier space; therefore, the maximum wave
number is kpax = 7N/(cT'). The more points N are used, the larger the resolved frequency spectrum
and the better the Fourier expansion approximates the original function. From Table 3.3, it is evident
that a number N = 64 of modes suffice to approximate the original function along with its first two
derivatives almost to machine precision.

In order to demonstrate the properties of approximation of our time-dependent equivalent source ap-
proximations, we now select a point source position at x¢g = [H/2,0, —H/2] and use (3.6) to evaluate
the given field at all collocation points & € S¢. The panel length of the two faces is H = 0.0625. The
results in Figures 3.8-3.10 suggest to select S = 5 and C' = 8 to approximate the true field with the
equivalent sources at least to the order of O(107%). Algorithm 3.2.1 can now be applied to evaluate
the solution at any point outside of the collocation cell. Figure 3.12 displays the field in the time and
frequency domains for all nc = 296 collocation points. In Figure 3.13 we plot the exact solution u(x,t)
(blue solid) and its numerical approximation up(x,t) (green crosses) at the point « = [0, 0,0.1876]. The

error in the maximum norm at the point x is defined by

ex(®) = max  |u(x,ty) — up(e, ty)| (3.13)

me{0,...,N—1}

Table 3.4 displays errors up to the second time derivative at = [0,0,0.1876] for fixed H = 0.0625, N =
64,7 = 6 and for different values S and C. The entries of this table confirm that, in accordance with

the results displayed in Figures 3.8-3.10, the accuracy of O(10~°) for S = 5,C = 8 is achieved.
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Figure 3.12: The field and its spectrum at all collocation points for N = 64,C' =8

\ H =0.0625,N = 64, kyaz ~ 34,7 =6
‘ S ‘ ng ‘ C ‘ ne H oo () ‘ Oreno () ‘ Oteoo ()
31181 5] 98 [[25-10%]6.1-1072]3.5-1072
152 || 1.7-1073 | 4.2-1073 | 2.4-1072
218 || 1.7-1073 | 4.3-1073 | 2.5-1072
98 [16.3-107*]1.5-107%|89-1073
152 | 1.2-107* | 3.0-107* | 1.8 -1073
218 || 1.6-107* | 4.0-107* | 2.4-1073
206 || 1.3-107° [ 43-107° | 2.5-10~1
386 || 5.9-1076 [ 2.9-107° | 1.6-1074
488 1 8.0-107% [ 3.3-107° | 1.9-1074
218 [ 36-107° | 85-107° | 4.8-10~1
296 (| 3.0-107% | 6.7-107% | 3.1-107°
386 || 8.0-1076 | 1.8-107° | 9.8-107°
218 || 2.7-107° | 7.5-107° | 3.8-10~1
296 || 4.5-1076% | 1.1-107° | 5.0-107°
386 || 5.4-1077 | 2.0-1076 | 8.3-1076

© 0| O O3 O

—_
o

© 00 J|© 00 3

Table 3.4: Accuracy of the solution and its first two time derivatives at = [0, 0, 0.1876]
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Figure 3.13: Solution (top), its first (center), and second (bottom) time derivative at [0,0,0.1876]. The
crosses correspond to the numerical values, the solid line is the exact solution.
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3.3 The time-dependent nonperiodic case

The general case does not have periodic sources. To discuss this problem let us consider a wave field
that, at time ¢t = 0, begins expanding from x( into the infinite space. On their way, the waves travel
through the collocation surface S¢. For a fixed time ¢ = T" we would like to compute equivalent sources
which represent the portion of the wave that passed through S¢. In general, the data on S¢ is nonperiodic
in the interval ¢ € [0,T], i.e., u(x¢,0) # u(xc,T). In view of the Kirchhoff representation (2.6) to (2.9),
the known portion of the wave on S in time can be regarded as arising from distribution of sources;
certainly the given data are generally not periodic. Yet we cannot directly adapt the technique described
in the last section to evaluate the field at a point outside of S¢, since that method relies on the Fourier
expansion (3.7), which in the present context would give rise to the Gibbs phenomenon and, thus, to an
extremely poor approximation. Instead, in this section we study a strategy that makes use of partitions
of unity and results in wave packets of finite support defined on S¢. The equivalent source code from
the last section can then be applied to the resulting wave packets. But difficulties arise when we use this
splitting in connection with nonreflecting open boundary conditions: too many frequency modes may
be introduced, which result in high computing costs. An alternative technique that does not suffer from

this difficulty shall be discussed in Section 3.3.2.

3.3.1 Partition of unity

The concept of the partition of unity (POU) allows us to split a given wave function u(xz,t) at any

K

_1, of which the functions associated with the indices

point € S¢ into K wave packets {un,(z,t)}
m € {2,..., K — 1} have finite support in time for K > 3.

A partition of unity (see reference [12] ) may be defined by

Wt
wp(t) = E/i(), m=1,..., K, (3.14)
> o—1 Welt)
where W,,,(t) is given by
vt 1 1), i =1,
Win(t) =« v(—t; —t{) —{F)y, if m= K, (3.15)

w(—t; =™ ™) (st ) i 1 < m < K and K > 3,
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with £{™ < ™ < £{™ < ¢{™ and

1, it ¢ < tlv
v(t;ty, t2) = ¢ 0, if t > to, (3.16)

exp (21‘/2_;’51 exp(—%)) , otherwise.

Then, we define K wave packets at € S¢ by multiplying the total field with the corresponding window

function:
um(x,t) = ulx,t)wn(t). (3.17)

In view of Kirchhoff’s formula and the linear superposition principle, u(x,t) at any point & outside of
Sc can be obtained by evaluating each wave packet u,,(x,t) separately and then adding all overlapping

parts in time together to the total field strength:

wzt) = S ule,t). (3.18)

gl

Computational boundary condition based on POU

In Algorithm 2.3.1 we described a method that acts as a nonreflecting computational boundary condition
by making use of the POU along with the equivalent source Algorithm 3.2.1. The alternative approach
described in what fallows is not optimal in terms of computing cost, this discussion rather serves as
a preliminary step to motivate the equivalent source algorithm as a transparent boundary condition
without imposing restrictive requirements on the wave function, such as periodicity. To do this we
embed the scatterer into a cube ¢; of side length H and assume that all compact supported regions of
the initial conditions and the forcing term lie strictly within the collocation box. The cell ¢; consists of
three pairs of opposite faces, which we denote by D&l) UDS) for I € {1,2,3}. The collocation cube in turn
is located in a larger cube with boundary B, and the computational domain €2 for the interior solver in

Algorithm 2.3.1 is bounded internally by the surface of the scatterer I', and externally by B. The waves,
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initially originating from the interior of the collocation cube, eventually expand into the open space. As
explained in Section 2.3, the interior algorithm needs to be interrupted once the first wave arrives at
B. The collocation surface S¢ acts as accumulator of the waves which pass through. Without loss of
generality, we assume that the first wave arrives at S¢ at the time ¢t = 0 and at B at the time ¢t = T'. In
practice, we choose T' < lyin/c, where Iy, is the minimum distance from S¢ to B. In general, the data
gathered during the time interval Iy = [0,7] on S¢ is neither periodic nor has a compact time support,
but a wave packet of finite support can be constructed by multiplying the data with a window function
w1, where tél) coincides with T', and tgl) is ideally as close to T' as possible (see Figures 3.14 and 3.15).
The smaller At() = tgl) — t(l), the more Fourier coefficients are required to resolve wi accurately with
a Fourier series, but the larger the interval [0,7 — At(M] in which u; coincides with u. Algorithm 3.2.1
can now be applied on the wave packet to compute the field u; on B, which arrives there at the time
t = T and represents u up to the time t = 27" — At() (see Figure 3.15). We note that the equivalent
source algorithm is used for each of the three opposite two-face pairs D&l) UDS),Z € {1,2,3}. Each pair’s
equivalent sources represent the field outside of S¢ to high order. But an efficient evaluation of the waves
is only possible if the plane on which the field needs to be computed is parallel to the two faces. If many
points are defined on B, it is advantageous to evaluate the equivalent sources for each one of the three
dimensions separately and make use of the fast evaluation technique described in Appendix B.3. Once
the boundary data is computed, the interior solver can be used to evaluate u(x,t) in Q for the time
interval Iy = [T, 2T — At(l)]. On the collocation surface, a subsequent wave packet us is constructed. The

parameters of wg are selected as follows: t§2) = tgl), tg) = tgl), and tf) = 2T — AtM). Even though t:(f) in

principle is free to be chosen, it is most reasonable to set it to equal tf) — AtW . This way, no additional

)

modes are introduced in the frequency spectrum of wo. Equivalent sources on D&l) U Dél are computed
with Algorithm 3.2.1 to represent us, which evaluate the field data on B. We emphasize an important
subtlety: the first time Algorithm 3.2.1 is used, the data of u; on B in the time-interval [27 — At() 27
is not considered for the interior computation, because that part corresponds to the transition of the
window function wy from one to zero. The second time Algorithm 3.2.1 is invoked, we obtain in the same
interval [2T — At 2T the corresponding counterpart of the partition of unity, i.e., the superposition
uy + up in [27 — At 2T7] forms the total scattered field  on B. The domain [27T),3T — Atéz) — At)]

does not correspond to a transition part of wo, and thus, us = u in that interval on the outer boundary.

Thus, the data on the boundary B is known for the interval 21" — At(1), 3T — Atf) — AtM] (see Figure
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3.15). By induction, we can use the same argument: when Algorithm 3.2.1 is invoked the m-th time,
the nonreflecting boundary condition is known up to the time (m + 1)T" — Y ;" Atgk). The procedure
is graphically demonstrated in Figures 3.14 and 3.15. The wave function used in this example is of the
form (3.6) with s(t) = W (t) - exp (sin (5.47t — 2.77m) — cos (27t)), where W (t) is a window function with

the parameters t1 = 0,t = 0.28,t3 = 1.575,t4 = 1.75.

Figure 3.14: Graphical development of the data at the collocation point . The interior solver needs

to be interrupted at the time tgl) (top). The accumulated data at & is multiplied by wq (bottom). The

equivalent source Algorithm 3.2.1 evaluates the wave packet uq at &g, and the interior solver can be
applied to compute the field at &~ up to the time tf) (top); compare also with Figure 3.15. The wave
packet wug is constructed at ¢ (bottom), and Algorithm 3.2.1 evaluates the wave uy at xpg; using the
interior solver again leads to gathered data at ¢ up to the time tf’) (top), which can be split into ug

by an appropriate window function w3 (bottom).
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Figure 3.15: Graphical development of evaluating the boundary data at xp: Given the solution from
the interior solver at ¢ up to the time tgl), the wave packet u is constructed (top), which is evaluated
at all boundary points g with Algorithm 3.2.1 (bottom). Based on the information on B, the interior
solver computes u up to time tf) = t§2) +T. The POU at & gives ug (top), and the arrival of this wave
packet at xg can be computed with Algorithm 3.2.1 again (bottom). Note that by superposition of u;
and uy at &g, new boundary data for v are known from t§2) + T to téz) + T': this enables the interior
solver to evaluate u up to the time téz) + T in the whole computational domain €2 (top). This leads to
an iterative process.
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Disadvantage of the POU approach

Even though the POU-based procedure is completely sound and has proved to be useful in our devel-
opment of computational boundary conditions, we have found that an alternate approach, based on a
certain “continuation method” for the resolution of the Gibbs phenomenon, can be significantly more
advantageous in terms of computational accuracy and speed. Indeed, the POU we introduced may give
rise to additional high-frequency modes which cannot be neglected if the corresponding wave packet is
to be resolved to high order. We illustrate this by revisiting the numerical experiment 3.2.1. We adapt
exactly the same geometry and parameters as in that example, with one crucial difference: we split
the known waves on S¢ (see Figure 3.12 top) into two packets u; and ug, i.e., K = 2 in (3.14)—(3.18).

The two transition parameters for w; are chosen as tgl) = 3 fixed and 3 < t;l) < 6 variable. Similarly,

)

t§2) = 3 and téz) = tgl). Our purpose in considering different values for tél is to explore the impact
that the choice At = AtM) = At may have on the total number N of frequency modes that are
needed to resolve the wave to the same accuracy as in the periodic case: Table 3.3 shows that N = 64
modes in the truncated series suffice to approximate the Gaussian function to machine precision, and
Table 3.4 confirms that the parameters S = 5 and C = 8 produce approximations of the field with the
time-dependent equivalent sources to at least O(10~°) accuracy for H = 0.0625 in the periodic case. We
use Algorithm 3.2.1 with the same parameters for S and C, and expect to choose N > 64 if the accuracy
of O(1079) is not achieved: this would indicate that the window functions introduce additional Fourier
coefficients which cannot be neglected for the desired range of convergence. Clearly, the larger At, the
fewer frequency modes are necessary in the truncated Fourier series. On the other hand, we wish to
choose At as small as possible. In Table 3.5, we display the results of Algorithm 3.2.1 for the error e, at
the point [0,0,3H]!, which is the biggest error amongst those arising from the two wave functions u; and
us. As we can see from Table 3.5, if At = 3, the expected accuracy is obtained with the same truncation
parameter N = 64 as in the periodic case. For At < 2, however, N = 64 does not suffice to achieve
such accuracies: for At = 2 we need N = 128; At = 1 requires N = 256; and At = 0.5 even demands
more than N = 1024 to obtain an error of O(107°) in the field values. If the outer boundary B is chosen
very close to S¢, these observations highlight a significant issue: if T' = lyyin/c is small, the interval At
in which the transition of the window function from one to zero takes place is the smaller, because At
ought to occupy only a small portion of the domain [0,7]. If the field u is not highly oscillatory, the

geometry forces us to choose steep window functions which require many more frequency modes N than
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1] N eoo
3| 6 64 || 6.5-107°
3 5 64 | 4.8-107%
128 | 4.9-107°
3 | 4 64 | 1.6-1072
128 | 8.4-107*
256 || 5.0-107°
3 [35] 64 [35-1071
128 | 9.3-1072
256 | 3.7-1073
512 || 4.7-1074
1,024 || 4.5-1074

Table 3.5: The maximum error e, at = [0,0,3H] of the two wave packets u; and uo. The equivalent
source computation is performed with the parameters S = 5,C = 8, and H = 0.0625. The number of
Fourier modes N are increased if the error fails to be in the order O(107?).

64 to yield the expected accuracy. In practice, this makes the approach considered above more expensive
than it might be. The computational boundary condition based on the POU is thus not as efficient as
may be desirable in terms of computing times; therefore we will not explore it further in this thesis.
Instead of exploring the POU further, we propose to apply a Fourier continuation method (see
[16, 17]) to the wave functions on S¢: the time domain [0, 7] is extended into a suitable interval [to, 1],
in which we define periodic functions that converge to a high accuracy to the initial waves in [0, 7], and
Algorithm 3.2.1 is then used on the resulting periodic functions. We discuss the continuation method in

the next section and modify it appropriately for our needs.
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3.3.2 Continuation method

In this section we describe a certain continuation method [16, 17] for the resolution of the Gibbs phe-
nomenon. Let us consider a function u(t) in the interval [0,7], and let t,, = (n —1)dt for n € {1,...,N}
denote the discrete sample location in [0,7]. We assume that the function u is only known at the N
discrete points, and the entries of the vector w = [u1,...,uy]|’ are the given function values at these
points. We seek a T,-periodic function v(t) that is defined in [to,¢1] D [0,T], i.e., T, = t; — tg, such that

it matches the function « in its domain of definition [0,7] to a high accuracy. We express v(t) by
M 271
v(t) = > bpe T Y (3.19)

and notice that v(¢) can be sampled at the points ¢,, € [0,7]. In matrix notation, this can be written as

v = Av, (3.20)

—2mi(m—1)tn /T

where v = [v(t1),...,v(tn)]50 = [01,...,00]" and A,y = € We are looking for the

continuation coefficients v which approximate the initial function values u the best in the Lo-norm, i.e.,
min ||u — Ad|f. (3.21)
v

The solution to (3.21) can be obtained using a singular value decomposition (SVD). As shown in [16, 17],
this approach is highly accurate: the solution converges super-algebraically fast to the given function
u(t), that is, the error is of the order 1/M*~! if v € C%. If s = 0o, the error converges faster than any
power of 1/M. We refer to [16, 17] for further details.

A numerical example is given in Figure 3.16 for the function u(t) = s(t —d)/d with T'= 3 and T, = 6.
The fixed distance d is equal to the absolute value of the vector [H/2,0,—H/2]!, where H = 0.0625.
The Gaussian function s(t) is defined in (3.11) and its parameters are chosen as o = 0.4 and to = 3.
Table 3.6 displays the error of u(t) and v(t) in the maximum norm at 31,000 equidistant points in [0, 3]
for various modes M and sampling points IN. The table demonstrates the high accuracy of the method.

Oversampling (i.e., N > M) seems to be particularly useful to obtain a better approximation for a fixed
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number of frequencies M: for example, the table shows that doubling M and N from 32 to 64 improves

the accuracy of the function by a factor of 10%.

Singular Value Decomposition

It is pointed out in [78] that the SVD may be misused for ill-conditioned matrices, if small singular
values are not adequately zeroed out. The condition numbers (ratio of largest to smallest eigenvalues)
for the problems discussed in the previous section range from O(10) to O(1016): the problem is rather
ill conditioned. Computing @ directly by means of the relation @ = V - 87U (where U € CV*M and
V € CM*M are unitary matrices) may give unsatisfactory results. The matrix § € CM*M is diagonal
with the singular values as its entries. To avoid any difficulties arising from use of the singular value
decomposition, we set the (i,4)-entry of the diagonal matrix S~! as the inverse of the singular value
1

s; only if the relation ¢ > s‘;’j" is satisfied, where the value of € is in the range of the floating-point

precision and syax denotes the maximum singular value; if this condition does not hold, we set the entry

to zero:

(5, = 4 s ez EE
S b= ' '
0, else.

(3.22)

For example, in Matlab tests (where € ~ 2.2204 - 10716), we indeed notice that the modified definition
(3.22) gives rise to a more accurate result for the least-square solution once the condition number of
A reaches the range of O(10%0). In the case M = N = 64, use of a direct SVD results in errors of
€00, 0/0ese and 02 /0%eqe t0 6.3 -1079,1.4- 1076, and 2.1 - 10™%, respectively. Errors are smaller by a
factor of 10 by making use of (3.22). The differences are even more extreme for larger condition numbers.
The solution of the continuation method is plotted in Figure 3.16 for N = 128 and M = 64.

The behavior of the function in the extended domain can vary significantly for different N and M,
as is demonstrated in Figure 3.17. This is due to the fact that the series coefficients, produced by the
continuation method, cannot be bounded by the maximum absolute value of the function approximated.
This may result in large values in the extended domain, as can be observed in the upper two plots
of Figure 3.17. We discuss an alternative approach in Appendix C, which may be more useful in

applications where the large continuation coefficients could cause difficulties. That approach is based
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time

Figure 3.16: The continuation method is applied to the red discrete data in [0, 3] to the extended domain
[0, 6], resulting in the blue periodic solution.

on the observation that the Chebyshev coefficients are nicely bounded in terms of the maximum value

of the function approximated. The periodicity of the function is achieved by extending the Chebyshev

polynomials outside of the standard domain of definition and insuring a compact support by multiplying

the basis functions by appropriate window functions (see Appendix C for more details). In our context,

the fact that the Fourier coefficients cannot be bounded by the absolute maximum value of the function

does not lead to any difficulties, and we adopt this approach to obtain a periodic wave function on S¢.

Finally, we point out that a modified approach, recently introduced in [15] can bypass the large

condition number issues. But, in the present context, the described approach is completely satisfactory.

| M | N | €00 | 0/0iess | 07/0Fes |
32 [ 32| 44-10% | 46-107* | 3.3-1072
32 | 64 || 1.0-107% | 1.8-1076 | 2.1-107*
32 | 128 || 1.7-1072 | 41-1077 | 6.2-107°
32 (256 | 1.1-107° | 3.8-1077 | 5.7-107°
64 | 64 [ 7.3-10719] 1.6-1077 | 2.5-107°
64 [ 128 | 3.6-10713 | 14-1079 | 3.5.-1078
64 | 256 || 4.6-107'* | 1.2-107' | 3.6-107?
64 | 512 || 3.0-107" | 1.3-10712 | 4.7.10710
128 [128 || 3.2-107° | 14-107° | 44-107*
128 | 256 || 3.7-10713 | 2.8-10719 | 1.4-1077
128 [ 512 || 41-107"% | 1.7-107'* | 1.4-1078

Table 3.6: Accuracy of the continuation method
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N=64, M=32
N=32, M=32 300 T
200 T
0 250 E
-200 T
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-400 B
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~1400 i
1600 I I | | | _50 I I I | |
0 1 2 3 4 5 6 0 1 2 3 4 5 6
time time

N=256, M=64 N=128, M=128
T 20 T

1 2 3 4 5 6
time time
N=256, M=128 N=512, M=128

15 T T

Figure 3.17: The continuation method for different value of N and M. Note the significant differences
of the functions in the extension domains. The blue graph corresponds to the exact solution. By
construction, the approximated solution (green) matches the blue to a high accuracy in the domain [0, 3]
(compare with Table 3.6).



3.3 The time-dependent nonperiodic case 46

Formulation for real-valued functions

The Fourier continuation method as described by (3.19)—(3.21) has a drawback for purely real functions
u(t). As is well known, for a real-valued periodic function the real part of the Fourier coefficients is
symmetric and the imaginary part antisymmetric. The least-square solution (3.21) does not insure that
these properties are satisfied. As a result, we cannot obtain v(t) by an efficient inverse Fourier transform
which takes advantages of the symmetries in the Fourier coefficients by storing only half of the real
and imaginary Fourier data. This difficulty can easily be bypassed by reformulating (3.20) into a linear
system for half of the real and imaginary coefficients only, which results in solving the N x (M — 1)

linear system

u = tg-e +A.- v+ A D! (3.23)
in the least-square sense for
o
v = ot | . (3.24)
’lA)I
In (3.23), we use the notation AZ* = 2cos (2Fjk), AJ* = 2sin (2 jk), o7 = [@fz,...,ﬁﬁﬂ_l]t, ol =
[of,... ,O&/z_l]t, and e; = [1,...,1]t. System (3.23) has two significant advantages over (3.20). First, it

makes full use of the underlying symmetries. As a result, a purely real linear system which reduces the
size by a factor of two in each dimension needs to be solved. Second, an inverse fast Fourier transform
(FFT) can now be applied to © in order to obtain v accurately.

Table 3.7 demonstrates that the method gives rise to high-order accuracy. An inverse FFT is used to
compute the discrete function values in the time domain. Zero padding is performed so that the extended
solution is sampled at 2'6 = 65,536 points in the extended domain. Notice that the expansions in Table
3.7 are computed with M — 1 modes, which should be taken into account when comparing the results

with Table 3.6.
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‘ M ‘ N H €oo ‘ 0/ 0o ‘ 0% 0% e
32 [ 32| 71-10% | 74-107* | 5.4-1072
32 | 64 | 50-107% | 86-107% | 1.0-1073
32 (128 | 9.0-107° | 22-107% | 35-107*
32 (256 | 6.0-107° | 20-1076 | 3.1-107*
64 | 64 [[26-10719] 56-1078 | 8.5-107F
64 [ 128 | 7.6-1074 | 31-107" | 79.1077
64 | 256 | 3.2-1074]39-1072 | 1.2-107?
64 | 512 | 2.8-1074 | 1.2-107 | 2.8-1077
128 [ 128 || 1.0-1079 | 45-1077 [ 1.4-107*
128 | 256 || 1.9-10713 | 1.3-1071° | 6.6- 1078
128 | 512 || 8.3-107 | 39.10"" | 2.8-1078

Table 3.7: Accuracy of the modified continuation method

3.3.3 Time buffer

Once the field on S¢ is periodically extended with the continuation method as described in the last
section, this data can be accurately represented by a Fourier series. In principle, we can use Algorithm
3.2.1 and proceed as in the periodic case to evaluate the field outside of S¢, but caution is needed. To get
started, let us revisit the simple geometry we described in Section 3.3.1 where we developed the POU-
based approach to act as a nonreflecting computational boundary condition: the scatterer is positioned
inside of the cube ¢; of side length H. The faces of ¢; consist of the three pairs Dy) U Dgl),l € {1,2,3}.
Further, the collocation box with surface S¢ is embedded in a larger cube whose surface B acts as the
open boundary, see Figure 3.18 left. As before, we assume that the interior scheme solves for the field
in the time interval Iy = [0,7], and needs to be interrupted at time 7', since the first nonvanishing
contribution of the waves arrives at B. The goal here is to describe the usage of the continuation method
along with Algorithm 3.2.1 to obtain the boundary data on B for the interval I1 = [tmin, T + tmin], where
tmin = Tmin/¢ and rpi, denotes the minimum distance from S¢ to B. We recall that at any point € B,

the solution is given by

1 1 Ou

u(x,t) = E/Sc;ay—(y)(y,t—tr)dS(yH

1 v.r {U(y,t_tr) + 1@(y7t—tr)}d3(y)‘ (3.25)

dm Js. 12 r c ot
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where r = x—y,r = |r|,t, = r/c and v(y) is the outer unit normal of S¢ at y. While we do not use (3.25)
directly in our algorithm, the formula remains useful for theoretical purposes. When approximating the
given data at y € S¢ in the time interval Iy by means of the continuation method, the question arises as
to how to define the extended domain of definition. To this end, we introduce the time buffer t gp > 0
and denote the extended interval by [—tpp,T| U [T,2T + tpr|. The true data of the field is defined in
the first interval [—tpp,T], while the artificial part that arises from the Fourier continuation method
is located in the second interval [T, 27 + tpr| (see Figure 3.18). We assume here that the past needed
information is known on S¢. Our goal is to determine the conditions on ¢pp: can the time buffer just

be set to zero, or do some restrictions apply? After the continuation method is employed, the data

Figure 3.18: Left: Geometry of the problem. Right: Fourier continuation method applied to the source-
strengths. The time buffer ¢ gz is necessary to insure that the total induced field does not get corrupted.

on S¢ is T,-periodic, i.e., u(y,t) = u(y,t + Te), where T, = 2T + 2tgp. Focusing on formula (3.25),
the integrands can be regarded as a product of Pu(y,t — t,) with a scalar function (which depends
on r), where the linear operator P is the identity, the partial time-derivative, or the projection of the
gradient on v, and the scalar function is continuous for r > 0. Careful consideration of (3.25) yields the
conclusion that at (x,t) € B x [—tgp, T|U[T,2T +tpr]|, the solution u is corrupted in certain regions of
both time intervals [—tpp,T| and [T, 2T + tpr|. Indeed, let us consider the two extreme cases when the
infinitesimal wave travels the shortest and longest distance from S¢ to B, respectively. Denoting by 7
the minimum and by rp, the maximum distance from S¢ to B, it takes the corresponding infinitesimal
waves tmin = Tmin/C and tmax = Tmax/C to arrive at B, respectively. Focusing first on the wave which

travels the minimum distance, we notice that the periodic functions Pu(y,t) in (3.25) are retarded by
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tmin; therefore, the data associated with the artificial extension of the continuation functions which is
initially in [T,2T + tgp] on S¢ can be found in the domain [~tgp, —tgr + tmin] U [tmin + T, 2T + tr).
This is graphically depicted in the upper portion of Figure 3.19: the gray shaded areas are associated
with this domain. Any other infinitesimal wave that starts from S¢ arrives at this point on B later: the
corresponding distance traveled is r > ryin and thus the boundaries of the gray shaded regions move to
the right for ¢, > tyi,. Under the assumption that ¢ g is sufficiently large, the gray region from the left
will not reach the time ¢,;, + 7. This means that there is indeed an interval which is not corrupted by
the artificial continuation extension function, and, the time t,;, + 7 is the fixed boundary on the right
of this domain (see the blue solid line in upper Figure 3.19).

The same argument for the infinitesimal wave which travels the longest distance from S¢ to B
reveals that the region which is not corrupted from the left is at —tpp + tmax (see middle picture
in Figure 3.19) and the gray regions, associated with corruption in the wave function, is the union
[—tBF, —tBF + tmax] U [tmax + T, 2T + tpr].

Therefore, the time interval for which the wave is not corrupted anywhere in B is the interval
[—tBF + tmax, tmin + T']. This domain is depicted graphically by overlapping the two extreme cases
described: this results in the lower Figure 3.19. Any other infinitesimal wave from S¢ has a traveling
time ¢, which satisfies tyin < £, < tmax, and thus its nonpolluted region will lie always within the interval
I = [—tBF + tmax, tmin + 7], which is bounded by the two blue solid lines in the bottom of Figure 3.19.
We recall that we wish to compute the wave on B for the interval I; and thus I; O I; must hold. The
upper bound of both intervals is ¢y, + 1, but the lower bound of Iy is i, and of 11 iS tmax — tBr,

respectively. It follows that ¢yin > tmax — tBF, Which can be rewritten as

tpp > Lmax T Fmin (3.26)
C

The condition (3.26) shows that the time buffer ¢tpr is dependent on the geometry of the collocation
surface S¢ and the artificial boundary B and must be bigger than zero.

We thus have found a preliminary algorithm that solves the scattering problem defined in an un-
bounded domain. This algorithm successfully incorporates the equivalent source Algorithm 3.2.1 as a
crucial part into a computational boundary evaluator. The technique described here proves vastly supe-
rior to the POU-based methodology in terms of computational cost. In Algorithm 3.3.1, we summarize

the main step of the nonreflecting boundary condition solver given the data on S¢. The overall scattering
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Figure 3.19: Top: The infinitesimal wave which travels the minimum distance 7 i, from S¢ to B. Middle:
The infinitesimal wave that travels the maximum distance 7y, from S¢ to B. Bottom: Overlapping the
two extreme cases gives the validity of the domain of the field at B.
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algorithm is to be coupled with an interior scheme as explained in 2.3.1 and 3.3.1.

Algorithm 3.3.1.

1. Given data on S¢ up to time 7', compute the field on B for times ¢ in the interval I1 = [tyin, T+ tmin]-
Based on the geometry of S¢ and B, along with the condition (3.26) on the time buffer tpr, we
determine the extended domain [—tpp, 27 +tpr], and use the continuation method in this interval

to obtain the Fourier continuation functions.

2. At this point we (can and do) apply the periodic case—Algorithm 3.2.1. The solution is valid in
the interval I 1 = [~tBF + tmax, tmin + | Notice that if we define the smallest possible time buffer,

i.e., tBFr = tmax — tmin, fl shrinks to I; = [tmim T+ tmin]-

In the next section, we demonstrate the performance of Algorithm 3.3.1 on a numerical example.
In the following chapter, we then design an improved methodology for the nonreflecting computational
boundary condition solver that enables us to take advantage of Algorithm 3.2.1 in an efficient manner,

thus leading to our overall proposed nonreflecting boundary condition.

3.3.4 Numerical experiments

We demonstrate the performance of Algorithm 3.3.1 by applying it on the example introduced in Section
3.2.1: we recall that the parameters in the periodic case we considered are H = 0.0625,5 =5,C =8, N =
64, c = 1 to obtain an accuracy of O(107°). Here, we assume that nonperiodic data on S¢, shown in the
upper portion of Figure 3.20, is given in the interval [0, 3]. Below is a plot of the continuation functions

defined in the extended time domain [0, 6]. Further, we select ¢t g = tmax — tmin and plot the solution at
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Figure 3.20: The initial data and its periodic extension at the collocation points

the points

@1 = [0,0,0.1876]", rmin = 0.0939, rmax = 0.2297, tpp = 0.1359
@5 = [0,0,0.6875]", rmin = 0.5938, rmax = 0.7002, tpp = 0.1064
@3 = [0,0,1.1875]%, rmin = 1.0938, rmax = 1.1949, t g = 0.1011
@4 = [0,0,1.6875]", rmin = 1.5938, rmax = 1.6927, t g = 0.0990
@5 = [0,0,2.1875]", rmin = 2.0938, rmax = 2.1915, t g = 0.0978
@6 = [0,0,2.6875]", rmin = 2.5938, rmax = 2.6908, g = 0.0970
@7 = [0,0,3.1875]%, rmin = 3.0938, rmax = 3.1903,¢gp = 0.0965

xg = [0,0,5.1875)", rmin = 5.0938, Tmax = 5.1892,tpr = 0.0954

which is displayed in Figure 3.21. The green curve corresponds to the numerical solutions obtained with
Algorithm 3.3.1. The blue graph represents the exact solution. As we can see, the numerical wave re-
enters from the left once it travels out of the time domain on the right. These values do not correspond

to the time scale displayed, because the real wave is traveling to infinity and is not periodic in time at a
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fixed point in space. The periodicity in time has been artificially created by the continuation method,
and the re-entered parts should be translated to the proper time scale to the right. More precisely,
re-entered data from the left needs to be shifted by the appropriate multiple of T, = 6 to the right.
This issue does not cause a problem for the first six points x| to xg if we are only interested in the
time interval [(rmax — TBF)/C Tmin/c + T]. At the point @7, we observe that a part of the well-resolved
solution has actually traveled out of the time domain and is found at a misplaced scale to the left. As
expected, this effect is even better visible at the farthest point xg, where the entire numerical solution is
completely misplaced. Instead of computing the appropriate shift to the correct time scale, this problem
may be alternatively solved by choosing a larger value of T,. Table 3.7 gives the accuracy for various
equivalent sources ng and collocation points n¢ at the points @1, x4, and xg, respectively. The error

€so (), defined in (3.13), is computed in the time-interval [(¢min + tBF)/C, tmin/c + T).

‘ {BF = "max — "'min ‘

‘ point ‘ S ‘ ng ‘ C ‘ ne H €oo ‘ 0/0eno ‘ 0?/0?eq ‘
1 |5 ]50]8]296 [ 1.0-10°]26-107°]3.9-107*
T4 24-107% | 1.3-107° | 7.3-107°
T 14-107% | 84-107% | 45-107°
x, | 672181296 41-10%]13-10°]6.0-10"°
x4 75-1007 [ 6.1-107% | 5.0-107°
x6 50-1077 | 4.1-107% | 3.3.107°
1 | 7198938 25-1077[36-107%]4.0-107°
x4 7.0-1077 | 5.9-1076 | 4.7-107°
x6 47-107713.9-107% | 3.1-107°

Table 3.8: Convergence study of Algorithm 3.3.1
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Figure 3.21: The blue curve shows the exact wave function; the green curve is the numerical solution
obtained by extending the data periodically with the continuation method at the collocation points,
obtaining the corresponding equivalent sources on the two faces D1 and Dy, and evaluating the field
with these sources at the shown points.



55

Chapter 4

Scattering solver

In this chapter, we introduce our new methodology for evaluation of computational boundary conditions,
and, thus, for solution of the scattering problem (2.1)—(2.5) in general unbounded domains. In Algorithm
2.3.1 we formulated the main basis of the boundary condition algorithm without specifying details of
evaluation methodologies. Taking advantage of the concepts we developed in the last chapter to formulate
a new convergent boundary condition algorithm by detailing aspects left unspecified in Algorithm 2.3.1.

This chapter is organized as follows: in Section 4.1, we present the nonreflecting boundary condition
algorithm. First, we introduce an appropriate geometric framework (in 4.1.1) that allows us to identify
Algorithm 3.3.1 as a local problem. In Section 4.1.2 we present an efficient computation of the data on
the artificial boundary B. In 4.1.3, we discuss an important subtlety: the reconstruction of numerical
derivatives from noisy data. This issue is important when coupling our nonreflecting boundary condi-
tion with an interior solver to insure the expected convergence rate. (The accuracy of evaluating our
nonreflecting boundary condition is not to be lower than that presented in the interior solver (such as
FEM), so that the overall convergence rate is generally that given by the interior method). We introduce
a novel concept based on Chebyshev interpolation which produces excellent accuracies for numerical dif-
ferentiation of functions with insignificant computational cost and extremely simple implementations.
An aspect concerning adequate choices of the boundary operator L is discussed in 4.1.4: long-time
instability occurs if an inappropriate boundary condition operator is used.

The (standard) interior solver we use to demonstrate the properties of our computational boundary
conditions is introduced in Section 4.2. Specifically, we choose a finite element method (FEM) in

space, because it can handle complicated geometries and high-order shape functions may be defined
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over selected elements as necessary. The details of the FEM formulation are presented in Section 4.2.2.
Because of the time dependence, an appropriate time-marching scheme is also a part of the interior
solver; well-known explicit and implicit methods are briefly discussed in 4.2.3.

Numerical results in 4.3 confirm the excellent properties of our nonreflecting boundary condition:
the overall method exhibits the expected convergence rate as the discretizations are refined, and the
computing times which arise in connection with the boundary value evaluation are only a small portion
of the time required by the interior scheme. This is a significant advantage over a direct application of
Kirchhoff’s formula as put forward in [86]. A complexity and storage count of the main operations that
are involved in the computational boundary value evaluation is given in 4.4. Finally, we close this thesis

with concluding remarks in Section 4.5.

4.1 Nonreflecting boundary condition

This section deals with the design and construction of our nonreflecting boundary condition. First, we
introduce in 4.1.1 the geometric framework that is necessary to formulate the boundary data evaluation.
Based on that framework, we propose in Section 4.1.2 a new technique that relies on equivalent sources
to compute the nonreflecting boundary data. The technique coupled with a numerical interior scheme
requires resolution of a crucial detail to insure that the convergence rate of the interior solver is achieved
by the overall algorithm: the problem of numerical differentiation of approximated functions without
order-of-accuracy deterioration must be addressed. In 4.1.3, we propose a new methodology to address
this problem. Another important aspect is the question of long-time stability. We demonstrate that this
topic is closely connected with finding a suitable boundary operator. This issue is addressed in Section

4.1.4.

4.1.1 Geometry

We focus on problem (2.1)—(2.5) and recall that we deal with unbounded domains: a scatterer with
surface I' of arbitrary shape occupies the domain ©. The scattered waves u can travel freely from I" into
the infinite space and are thus functions defined in R3\©. We also recall that, per our earlier assumptions,
all initial conditions along with the forcing term vanish outside of a certain region that is close to the
scatterer. We surround this region with a transparent Kirchhoff surface S: as the waves expand into

the infinite domain, they freely travel through S allowing us to accumulate the wave data. In view of
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Kirchhoft’s surface representation (2.15), the accumulated information can be used to evaluate the field
at any point outside of S. We impose the following two requirements on the construction of S: 1) The
surface should be as close to the scatterer as possible and 2) it does not intersect with the regions of
compact support for ug, @, and f. The computational domain §2 surrounds the scatterer I' and must be
defined in such a way that it entirely contains §. Apart from that, 2 can be chosen freely its size will
generally depend on the needs of the specific application. Because {2 completely surrounds the scatterer,
it is internally bounded by I', and externally by the artificial boundary B. For simplicity, in this thesis
we assume that B is the surface of a cuboid, i.e., it consists of the union of the cuboid’s six faces By:
B= nglBk. However, this is not a requirement for our method to work: in fact, B can take any shape
with insignificant additional computational costs by incorperating relevant techniques from [14]. Next,
we introduce an equidistant three-dimensional Cartesian grid 7y with mesh size H. Without loss of
generality, we assume that this grid splits the volume of the cuboid into cubes of edge size H. The union
of all the cubes in 7 that intersect with the scatterer © fill a volumetric domain which embeds I entirely.
We assume that the compactly supported regions of ug, @y, and f also fall into this domain. Thus, the

surface of this domain qualifies and is chosen to act as S (see Figure 4.1). We denote the P faces of 7

Tn

B

O
Y[/

Figure 4.1: Geometry of the global problem: The computational domain 2 with inner boundary I'" and
outer boundary B. The Cartesian grid 74 splits the cuboid into cubes, and the Kirchhoff surface S
embeds the scatterer I' and is compromised of specially selected faces of 7.

which lie on S by §;, where j € {1,..., P}, ie., S = UleSj. To further proceed with the presentation
of our computational boundary condition, we need to introduce additional geometrical concepts to each
panel S;, which will result in defining a local problem. In what follows we give the description of the

local geometry, and explain in Section 4.1.2 how this relates to the computational boundary condition.



4.1 Nonreflecting boundary condition 58

At each pair of opposite edges of each S;, we place a parallel pair of faces Dg?l) UDEQQ) with edge length
H perpendicular to §;. This is illustrated in Figure 4.2. The subscript 1 or 2 distinguishes the disc
in a two-face pair and is consistent with the notation of the previous chapter, while [ € {1,2} denotes
which one of the two possible two-face pairs is being referred to. Finally, we associate with every S;
a collocation cube of size 3H which is the union of the cube just constructed in Figure 4.2 with its 26

neighboring cubes of the same size H. We denote the surface of the collocation box by Sc;. We now

2
(j2)

0
(1)

Figure 4.2: Geometry for local panel S;. The two two-face pairs Dg)l)UDg‘)2
to S; and are of edge size H.

),l € {1, 2}, are perpendicular
have all the necessary tools for the design of our nonreflecting boundary condition that acts as boundary

solver in step 3 of Algorithm 2.3.1. We give its formulation in the next section.

4.1.2 Evaluation of the computational boundary condition

We recall that in the scattering solver 2.3.1, we left the two main algorithms unspecified, namely, the
exact procedure to evaluate the data on B (step 3) and, the numerical scheme for the PDE system
(2.18)—(2.22) that acts as interior solver (step 4). This section deals with step 3, the main topic of this
thesis.

We recall that the interior solver cannot proceed, say at t = T, when needed data on B is unspecified.
We assume that the interior scheme for that cycle was employed for the time interval I = [0,7]. Our
goal is to compute the boundary values (x,t) at B X [tmin, I+ tmin] based on the information we gathered
on S up to the time ¢t = T, where t,,;, < T denotes the minimum time the wave needs to travel from S

to B.

We point out that in [86], it was proposed to use the Kirchhoff representation (2.15) for this task.
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However, the computation is extremely cost-intensive—in fact, significantly more expensive than the
volumetric interior calculation. In what follows, we present an approach based on Algorithm 3.3.1 whose
computational cost amounts to only a small portion of the three-dimensional interior computational cost.

By our construction of the last section, Kirchhoff’s surface & decomposes into P panels {Sj}le.
In view of formula (2.15), it is clear that instead of performing the integration over S directly, we can
decompose the computation into P integrals over S; and sum the results after evaluating each integral
separately. In other words, the data on S can be considered true sources: an infinitesimal wave expands
from the surface into the space. The superposition of these contributions at any point yields the total
field. This observation leads to the following idea: instead of using the true sources on S; directly, we
could substitute them for the equivalent sources. Now if we could reposition the true sources lying on
S to special locations, say on planes on 7y that are parallel to one of the six faces of B, we could take
advantage of a fast evaluation of the field which is based on FFTs, see Appendix B.3.

In what follows, we give the technical details that can be used to implement this idea. On each &;,
we select a two-dimensional mesh 75, with S x .S nodes and, at each node, we extend the domain of
definition in time from [0,7] to [—tpp,T| U [T,2T + tpr| by choosing a suitable time buffer ¢tpp. The
continuation method can then be applied to obtain a periodic function that approximates the wave in
[0, 7] to high order, and an accurate representation of the Fourier coefficients can be obtained by means
of FFT. For each relevant frequency w, we can compute the Fourier coefficients on @ € S¢; by the
integral representation

s, (@,w) = /S | {ﬂ(i)ia%';(:;’)@ —%(:ﬁ)(lk(m,fc)}ds(fc), (4.1)

where G (x, &) is the Green’s function for the Helmholtz equation (see (A.12)), and the subscript k
denotes the wave number (see (A.8)). Note that in a typical application, when the parameters are
chosen appropriately, such a local computation has a significantly smaller amount of points on S; and
Sc; than on § and B. As a consequence, the computational effort for these local operations is expected
to be much smaller than performing the evaluation globally. Once the local field generated by the
distributions of sources on the collocation surface S; is known on S¢;, Algorithm B.2.1 can be used
to determine the local equivalent sources on the faces S; and Dg.?l) U DE;?Q) for I € {1,2}. We point

out that it is not necessary to compute the equivalent sources on S;; instead, we can just use the true

sources. Figure 4.3 graphically depicts such a local problem associated with S;. These P local problems
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are completely independent from each other and are thus a perfect task for parallel computing, should

such parallel implementations be pursued. Once the local equivalent sources are known, they need to

zoom

EH’;;_\

=

u(xg,t)

Y

t min t

Figure 4.3: Graphical illustration of the local problem: The continuation method is applied to data on
S; by extending the time-domain from [0, 7] to [~tpp, T]U[T, 2T +tpr]. After a Fourier transform, the
Fourier coefficients are evaluated on Sc;, and finally, the two-face approach can be applied to obtain the

local equivalent sources on Dgll)j) U Dg)j): these sources generate the same local field as the distributions
on §;.

be assembled to global distributions. In the following, we focus our attention on the evaluation of the

global field on By, for a fixed k € {1,...,6}. All local faces parallel to this specific plane are selected,
e : (1 (1 2 &)

which is either S; or one of the two pairs D(j,l) U D(j72)’ D(j,l) U D(j,z)

the selected planes are added together if they lie at the same node. In this manner, global equivalent

. The strength of the sources of

sources associated to planes that are parallel to By, are obtained. They represent to high order the same
field as is induced by the true sources on S. On each such plane, the global equivalent sources form
a two-dimensional mesh, which, if necessary, can be extended to an equally spaced Cartesian grid by
assigning the nodes with no distribution a source of strength zero. Note that all of these planes lie on
Tg—see Figure 4.4 and Figure 4.5. Once the global equivalent sources are defined on Cartesian regular
meshes, the techniques described in Appendix B.3 to B.6 can be applied to rapidly compute the data
on Bj.

We close this section with a numerical illustration. Let us assume that the scatterer I' is a sphere
with radius R = 0.25 and S is the cube of size 2R which includes the sphere entirely. We choose

three different grids 77 with the mesh sizes H equal to 2R/5,2R/7 and 2R/15, respectively. The outer
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Figure 4.4: Global equivalent sources to compute the field on By and By fast. The locations with a
lighter dot correspond to point distributions of zero strength.
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Figure 4.5: Global equivalent sources to compute the field on Bg and By fast. The locations with a
lighter dot correspond to point distributions with zero strength.
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boundary B is the surface of the cube of length 2(R + nH) centered about the origin. The integer
n equals 2 for the coarsest, 3 for the intermediate, and 6 for the finest mesh 7g. It follows that the
minimum distance from the inner to the outer boundary is rm, = nH, i.e., for the three different grids
we have rpin = 0.2, rmin =~ 0.21429, and ryin = 0.2, respectively. The maximum distance from S to B
iS Tmax = V3(2R + rmin). We define the time buffer to be tgr = (Tmax — Tmin)/¢, Which is according to
(3.26) a feasible choice. We assume that the known field at the point @ € S for t € [~tpp,T] is of the
form (3.6), where T' = 3,r = || and s(t) is defined in (3.11) with the parameters o = 0.5,t9 = 2. From
this information, we compute the field on B as explained in this section. The wave function on § is
extended from the time interval [—tpp,T| to [—tpr, 2T + tpr| with the continuation method described
in Section 3.3.2. The sampling points and modes in time are chosen as N = M = 32, and we use zero
padding to sample the interval at N, = 128 equidistant points. The propagation velocity of the wave
is ¢ = 1, which means that the maximum discrete wave number equals ky.x =~ 16.76. The graphical
constructions of Section 3.3.3 still apply, with the appropriate reinterpretation of ryi, and rmax. The
solution wuy on B is valid for the time interval I = [tmin, tmin + 1] The error ep is defined by

= t) — £ 42
es max max [u(@, t) — un(, )| (4.2)

The results are reported in Table 4.1 for different choices of S and C'. On B, we also compute the
maximum space-time errors d;eg and 0,eg, where v is the outer normal of B. We note that the results
for the finest and the coarsest mesh 7y can be compared directly, because in both cases ry;,, = 0.2
and the constructed surfaces B coincide in both cases. For the intermediate grid 77, however, we have

Tmin ~ 0.21429.

4.1.3 High-accuracy differentiation

The problem of evaluating numerical derivatives from approximate data arise in a wide range of areas
of numerical analysis and scientific computing, including image processing, solution of integral and dif-
ferential equations, parameter identification, etc. [27, 20, 35, 46, 45]. The particular problem motivating
this work, concerns the evaluation of (4.1) accurately: since the Kirchhoff integral involves both values
of the function and its normal derivative, a degradation in the order of the solution accuracy would oc-
cur unless such normal derivatives are evaluated with an order of accuracy equal to that implicit in the

interior solver formulation. As we demonstrated in 4.3, evaluation of the necessary normal derivatives by
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‘ H ‘S‘C‘ en ‘ oOren ‘ ayen ‘
0.1 3[3]12-10%]26-107%]1.3-1072
515751076 |24-107°| 1.4-107*
717135-1077|1.1-107%|3.7.-10°6
9191]22-108[41-1077|59-1077

007143 [ 3 [ 3 [78-107*]26-103 | 6.7-1073
515 [43-1076|1.7-107° | 3.9-107°
717120-1077|22-1076 | 2.7.10°6

919 |42-10816-10%]1.6-1076

0.03333 [ 3| 3 [1.1-1073 | 4.0-1073 | 8.0-1073
515 (731076 |27.107° | 5.2-107°
717112-1077{55-1077 | 9.3-1077
9191]15-1078[38-1077|43-1077

Table 4.1: Accuracy for three different meshes 777

means of the technique introduced here allows one to obtain solutions with full order of accuracy—with
negligible computational cost.

Previous work on reconstruction of numerical derivatives from scattered noisy data [5, 25, 85, 45,
80, 92, 93, 36, 5] has focused on one of two main approaches: finite differences and regularization.
Most of these references are concerned with stability: they seek to eliminate large derivative errors that
arise as two function values f(z1) and f(z2) with large errors that occur at points z; and xo that lie
very close to each other. In reference [92, 93], for example, an approach (with theoretical error bounds
in [93]) is presented which seeks to minimize accuracy degradation by means of a Tikhonov regularization
strategy. The methodology presented in this thesis offers a number of advantages over those introduced
earlier: 1) It is extremely simple—it only requires simple polynomial interpolations and Chebyshev
approximations, both of very low order; 2) The theoretical analysis is straightforward; 3) Unlike the
approaches [92, 93], it does not require the solution of a large system of equations; 4) It preserves the
accuracy order even for strongly randomized errors; and 5) It is significantly more accurate than previous
methods. We emphasize these points through consideration of an example drawn from [93]: for a smooth
function selecting (smooth!) errors of the form 0.001 sin(7x;) and inverting a large system of equations,
the cited work produced first derivatives of the order of 0.01, while, for this example, the present method
produces errors of the order of 0.002. More importantly, our method produced a maximum error of the
order of 0.005, even when the error in the function values was of order 0.001 but random—so that two
neighboring points could have errors of equal magnitude and different sign. Equally appealing results

can be obtained from the present methodology for derivatives of arbitrarily high orders. As an additional
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reference we mention the contribution [5] where a statistical framework is considered, and bounds on
the variances of the errors of the computed derivatives are given; for example, evaluation of the second-
order derivatives making up the Laplacian in three dimensions were obtained in that contribution with
an error variance of order h%/11; corresponding second derivatives of one-dimensional data were given
with error variances of order h?/?; in this context our method would, in contrast, provide accuracy of
high order until the limit imposed by the statistics of the underlying error is reached.

This section is organized as follows: we first introduce our method and establish rigorous error
bounds and convergence speeds. In order to make precise the character of the proposed methodology we
assume the underlying data contain an error of the order O(h"), where h is a measure of the step-size
of the possibly non-equi-spaced grid; we then show that, for any order of differentiation, the derivatives
obtained by means of the proposed approach contain an error that decreases, likewise, like h”. We then
present a variety of numerical examples, including cases in one and higher dimensions, first and higher
derivatives, problems including random errors, and, finally, an example in which the derivatives of a finite
element solution of the Poisson equation are computed. In all cases the proposed methodology produces

excellent accuracies with insignificant computational cost and extremely simple implementations.

Theory

We consider a function f(¢) which is either s times differentiable (f(¢) € C®), infinitely differentiable
(f(t) € C*), or analytic (f(t) € C*); without loss of generality we assume f is defined in the interval
[—1,1]. (We focus on a one-dimensional problem at first, although, as shown in Section 4.1.3, problems
in arbitrary dimensions may be treated by this method.) Let a set of L approximate discrete values of

f, {f(@g)}%zl be given, in such a way that for a fixed constant C' we have
|f(05)_f~(0€)| SChr7 €:17"'aL7 (43)
where the mesh size h is given by

h = —0p_1]. 4.4
fggagXLWe 01| (4.4)

Roughly speaking, our method is based on using the given data to produce adequate Chebyshev interpo-

lations: in view of the extremely fast convergence of Cheybyshev approximations, Chebyshev expansions
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of low-order can be used with high accuracy, thereby avoiding accumulation of sampling errors. In what
follows we thus consider low order Chebyshev approximations in the interval [—1, 1]; the corresponding
Chebyshev points for a Chebyshev expansion of order N will be denoted by

by = cos (W) . (4.5)

Clearly the values of f are not given on a Chebyshev grid {tr}; our strategy thus calls for interpolation
by polynomials of adequate degrees to insure preservation of the accuracy order in the function values.
Indeed, to guarantee convergence of order r in presence of errors as in equation (4.3), for every point ¢,
we find a set of r consecutive neighboring points {6;,...,0;4,} such that (8; < t; < 6;4,), and we obtain
an approximation of f at t; by evaluating at the point ¢; the polynomial of order r that interpolates
approximate values { f (0¢) }eens,; clearly, the values thus obtained approximate the exact function f with

an error of the order of h":
\f(tk) — f(t)| SCR", k=1,...,N. (4.6)

Using these values our method then proceeds by evaluating the Chebyshev interpolant

fnt) = Z/ aT;(t), (4.7)

1=1

where T)(t) is the Chebyshev polynomial of degree j, see [11, 78]. (Here we use the usual convention
according to which the prime in the summation symbol indicates that the i = 1 term in the sum is

multiplied by 1/2.)

Algorithm prescription: Using the notations set forth in the previous paragraphs, an approxrimate
derivative of the function f of an arbitrary order n is obtained via n-fold differentiation of the relation
(4.7). This is the complete prescription of the proposed (exceedingly simple) methodology; an equally

simple error analysis, presented in what follows, establishes the excellent properties of the algorithm.

Remark 4.1.1. We note that the evaluation of the Chebyshev interpolant is not subject to instabilities

that arise in regular polynomial interpolation: the Chebyshev coefficients in equation (4.7) can be obtained
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easily by taking advantage of the discrete-orthogonality property

N
Y Tit)Ti(t) = kndij, (4.8)
k=1
where the normalization factor kn in (4.8) is given by
N . . .
>, ift= 1,
ky =4 2 fi=i# (4.9)
N, ifi=j=1,
which gives rise to a stable procedure, embodied in the formula
(4.10)

2 XL
& == ftr)Ti(t),
k=1

=l

for the evaluation of the Chebyshev interpolant. Similarly, the continuous orthogonality property

LT () Ty(t 5 fi=j#1,
/ ng)dt by where ke 2 TTTIF (4.11)
- Vit modfi=j=1,
can be used to obtain the alternative formula
(4.12)

o2 [ B0L0,
‘oo 1 V1—t2 ’
which, although not part of our numerical implementation, will prove useful in our theoretical analysis.

For notational simplicity, in the subsequent error analysis we assume f is analytic (s = w); the

analysis can be carried in a completely analogous manner, with very similar results, for cases where f

is either finitely or infinitely differentiable, but not necessarily an analytic function.
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Proceeding to our error analysis, we note first that the error |f(t) — fn(t)| can be estimated easily.

To do this let f(t) be the (rapidly convergent) Chebyshev expansion

=3 gTy(t)  with cj_ 1f(1)_i2)dt (4.13)
i=1 -

and let fn(t) denote the truncation of this series at order N:

N
S e Ti). (4.14)
j=1
The triangle inequality then yields
[F(t) = Fn@O] < 1) = fn @] + £ () = P ()] (4.15)

Under the present hypothesis of analyticity of the function f, the first term on the right-hand side of
equation (4.15) is exponentially small: less than, say, Cyexp (—oN) for suitable constants C; and o.

The second term on the r.h.s. of (4.15), which equals

N
/

1> (ew — &) Tk(®)], (4.16)

=1

is bounded by 2C' Nh"—since, from equations (4.6), (4.7), (4.12), and (4.13) we have |c — ¢x| < 2Ch".

In summary, we have

If(t) = fn(@®)] < Cie N +2CNh". (4.17)

It follows that the bound of the error is minimized if

N ~ —llog<20h ), (4.18)

Cio
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indicating that only few terms in the truncated sums are necessary to maximize the Chebyshev approx-
imation. An analogous analysis can be performed if f is only s-times differentiable. This proves the

following theorem:

Theorem 4.1.1. Let f(t) be in C° and fn(t) constructed by (4.7). Then, the absolute error can be
bounded by (4.17) if s = w and by

f@t) — fn(t)] < %+2CNhT if seN. (4.19)

Further, the optimal N is given by (4.18) in the former case, and by

1

SCQ s+
N ~ (2(]]1’“) (4.20)

in the latter case.

The derivative of the error can be estimated very similarly by

/(&) = I @) < 1F/() = O]+ ) = Fa @) (4.21)

Looking at the r.h.s of the triangle inequality (4.21), an upper bound for the first term is C'y exp (—oN)
if s = w and Cy/N*~! if s € N, while the second term can be bounded by 2C N3h", where we made use
of the fact that |T}(t)| < k?. More generally, the absolute value of the n-th derivative of the Chebyshev
polynomial is bounded by C,,k?", C,, being a suitable constant. This relation can be easily established

by the fact that

n—1
T <TP() and TV(1) = [
m=0

k2 — m?

_— 4.22
2m + 1" ( )

see [1, 11]. The result is summarized in the next theorem:

Theorem 4.1.1. Under the same assumptions as in Theorem 4.1.1, the error of the n-th order derivative
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of the Chebyshev expansion (4.7) is bounded by

FO @) — F 0] < Cem®N 4200, NI if s =, (4.23)

LK) — P

IN

CoN"™° 4+ 2CC, NP Dp" i s eN; (4.24)

clearly in the case that f € C®°, the second estimate in (4.24) holds for all s € N.

Remark 4.1.1. In view of the fast convergence to zero of the exponential function and the large powers
of 1/N*~" we take in practice a slightly larger value of N (since the constants are not known). As we
refine h, the truncation parameter N wvirtually does not change. Thus, the error of the derivative is of

the order O(h").

Numerical Examples
Reconstructing the first derivative

We consider the Gaussian function f(t) = exp (—(t — to)?/o?) with the parameters o = 0.5, = 0.1, and
choose L discrete points in [a —hg/2,b+ hy /2] at the nodes 6, = a+ (£ —3/2)hy for ¢ € {1,..., L}, where
hg = (b—a)/(L —2). On the 3L points t; = a+ (¢ —1)h with £ € {1,...,3L} and h = (b—a)/(3L — 1)
we define the discrete values { fg}iﬁil by sampling the corresponding local linear polynomial at ¢y, which
is obtained from the values f(6y) and f(fx11) with ¢ty € (0, 0x+1]. Applying the mean value theorem, it

is easy to see that

[fe— fto)l < max  [f"(E)|hg,  te € Ok ps1l, (4.25)

£€[0k,0k11]

thus establishing a perturbation (’)(hg) of f to the analytic function f. From this data we wish to
construct an approximated derivative to f’(t), which is also second-order convergent.

First, we remark that a polynomial of any order will generally not achieve the desired result. In-
deed, local polynomials of order r can be constructed from the values f corresponding to the nodes

{t¢,...,tes,} which approximate the true function f to second order, but taking the derivative of these
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local polynomials yields generally only first order convergence in the Lo- and Ls.-norms, defined by

N

e = o hs D W4 (t) = /(1) (4.26)
i—1

, == / . —_ / .

€Loc,pr = 122}]%5 |pr(tl) f (tz)|7 (427)

respectively. Here Ny denotes the number of sampling points and hg is the maximum distance between
two neighboring sampling points, and p/.(¢;) is the corresponding local polynomial of order r differentiated
at the point ¢;.

We turn our attention to our proposed procedure and seek to define a Chebyshev polynomial in [a, c]
for a fixed ¢ € (a,b]. The discrete values { fg}g’il are used along with the quadratic local polynomials to
approximate f(t) to second order at the Chebyshev points, and finally, the Chebyshev coefficients are

computed by formula (C.9). The derivative of expansion (4.7) can be expressed as

N
)= ), (4.28)
k=1

where the ¢ coefficients satisfy the recurrence relation in descending order:

Ay = y_1=0 (4.29)
1
&y = p_— {2kéy + ¢y}, k=N-1,N-2,...,2, (4.30)

with ap =2 if K =1 and a; = 1 for £ > 1. Equation (4.28) can be evaluated by Clenshaw’s recurrence
formula, and the Chebyshev coefficients ¢}, are efficiently obtained by a fast cosine transform (see [11] and
[78] for more details). In Figure 4.6 the results confirm second-order convergence of (4.28) in both the
Ls- and Lo.-norm. Here, the parameters a = 0,b = 0.26,¢ = a + (v/2 — 1)/4 ~ 0.1036, and N = 10 are
used. The plots show the superior convergence rate of the Chebyshev polynomial derivative compared

to the differentiation of the quadratic polynomial ps.
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Figure 4.6: Left: second-order convergence of the Chebyshev polynomial (dashed-dotted line) and its first
derivative (solid) in the Lo,-norm, as opposed to only first-order convergence of the quadratic polynomial
derivative p)(t) (dashed). Right: Same error plots as on the left, but in the Lo-norm. To compare the
convergence rates, the slopes of the pictured triangles correspond to second-order convergence in both
plots.

Reconstruction of higher-order derivatives

Adapting the notation of the first example, let us assume a = —1,b = 1. The L values { fg}é;:l are defined
on the equidistant grid in [a, b] with spacing h = 2/(L — 1) and are obtained by an r-th order local spline
interpolation s, (t) of the exact function values which are known on the grid points a — hyv/0.2/2 + khg,
where k € Z,hg = (2++/0.2)/(L — 1) and r € [2,3,4,5]. The suitable number of Chebyshev polynomials
N is empirically determined and depends on the order r. The specific values of IV used in these examples
are reported in the caption of Figure 4.7. The Chebyshev coefficients ¢ are determined by (C.9). We
note that (4.28)—(4.30) can be extended to obtain the n-th derivative of the Chebyshev polynomial p(t)
by

N

M) = D GT), (4.31)
k=1

& = &_1=0 (4.32)
1

&= {2k&} + &}, k=N-1,N-2,....2 (4.33)
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Figure 4.7: Upper left: Construction of the Chebyshev polynomial from local second-order spline func-
tions at N = 18 Chebyshev points. The derivatives of the Chebyshev polynomial exhibit all second-order
convergence (n = 1,2,3). Upper right: The values at the N = 24 Chebyshev points are obtained from
third-order spline polynomials. Therefore, the derivatives of the Chebyshev polynomial are of order
three, which is again demonstrated for the first three derivatives. Lower left: N = 30 terms are used in
the Chebyshev expansion. The values at the Chebyshev points approximate the true function to fourth
order. Lower right: Fifth-order convergence of the Chebyshev polynomial derivatives (displayed again
for n =1,2,3), and N = 34 is used. The triangles in all plots exhibit the expected convergence slope as
comparison.
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(see [11]). In Figure 4.7, the errors in the Ly-norm

e (1) = £ (1) = o™ () 14 1t (4.34)

are plotted as a function of hy for n € {1,2,3}. The graphs in Figure 4.7 demonstrate that the envelopes
of the Chebyshev polynomial derivatives converge with order r, while the derivatives of the spline poly-
nomials would only provide accuracy of order r — n. The slopes of the plotted triangles indicate the

expected order of convergence.

Comparison to the radial basis function approximation method

We give a numerical comparison of our introduced methodology to the the radial basis function approach
discussed in [93]. In that reference, the function f(z) = sin (27z)exp (—z?2) is considered and it is
assumed that on n uniformly distributed points in the domain [—2,2] the noisy data is given by fi =
fi +0.001esin (rz;) for i = 1,...,n. In [93], the case € = 1 is considered. This is a significantly less
challenging problem than we are considering since the error varies smoothly from point to point. Wei
and Hong [93] use the radial basis function approximation approach and display the root mean square
error of the first derivative and n. The root mean square error (RMSE) at Ny arbitrary sampling points

{2;}Y5 is defined by

E(f) = EZ(f(xi)_f(xi))Z- (4.35)

According to the results presented in [93], the RMSE of the derivative converges up to errors of the order
of 0.01 for n large enough. In Figure 4.8, we reproduce the same computation with our method, where
N = 30 Chebyshev points are used. The RMSE converges to ~ 0.00223 (much closer to the error in the
original function values!) for n large enough, demonstrating a clear superiority of the new approach. We
turn our attention to the more challenging problem when € is a uniformly distributed random number
n (0,1). The result is documented on the left plot of Figure 4.8. The RMSE is more oscillatory, yet
an excellent convergence of at least 0.005 is obtained. No results for such types of random errors are

provided in reference [93].
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Figure 4.8: Left: Root mean square error versus the number of given sampling points n if ¢ = 1. Right:
Same plot as on the left, but this time, € is a uniformly distributed random number in [0, 1].

Reconstructing the gradient from a numerical solution of a partial differential equation

A sphere I' of radius R = 0.25 centered about the origin is located in a cube with the six end-points
[£0.45,+0.45, £0.45]. The surface of the cube B and I' form the outer and inner boundaries of the
three-dimensional domain €2, respectively. We wish to compute the gradient at an arbitrary point in €2,

of the solution of the elliptic partial differential equation

Au = f (4.36)
v-Vulr = g¢r (4.37)
(u+v-Vu)lp = gg, (4.38)

where v is the outer normal of the corresponding surfaces. We solve equations (4.36)—(4.38) with a
finite element method. The gradient can be obtained from the solution through the corresponding
differentiated local shape functions; as is well known, however, this leads to accuracy loss. Especially,
if the gradient data needs to be used as an input for another numerical scheme which is at least of the
same order as the finite element method, the result will be generally of an order smaller than the finite
elements despite the higher accuracy of the scheme, because the gradient suffers deterioration. For such
applications, it is crucial to compute the gradient to the same order of convergence as the solution itself,

see [5] for such an example.
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The variational formulation of problem (4.36)—(4.38) is:
“Find uy, € H1(Q2), such that

(un,v) + (Vup, Vu)a = (g958,v)5 + (9r,v)r — (f,v)a (4.39)

holds for any v € H;(Q2).”
We discretize the computational domain 2 by a tetrahedral grid 7 with maximum mesh size h and use

linear basis function ¢;. This leads to the linear system
(C+K)u = I, (4.40)
where

Ci;=(¢i,05)8, Kij=(bi,¢j), li= (9r,%)r+ (98,%)5— (f,i)a- (4.41)

We solve (4.40) with an iterative CG-solver (see [22]) to obtain w. For an arbitrary point x in €2, we

select its corresponding element 7, € 7 and compute the gradient by

Vou(x) = Zu,Vd),(:B) (4.42)

€Ty

Next, we compute the gradient by the Chebyshev-based approximation algorithm introduced in this
section. To do this we use lines parallel to the coordinate axis passing through the point «, which either
intersect at both ends with B or intersect at one end with B and at the other end with I', see Figure 4.9
for an example. These three lines form the local coordinate system we use at the point . On each one
of its axes, we select the appropriate number of Chebyshev points, determine the corresponding finite

element T, for every Chebyshev point . and compute the approximated solution at these points by

up(Te) = Y uigi(Te). (4.43)

€T,

Once the values at the Chebyshev points are known, we compute the Chebyshev coefficients for every

dimension and use (4.28)—(4.30) to obtain the gradient V .u. For our a numerical example we use for the
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0.45 | 0.45

Figure 4.9: The inner boundary I' and three of the six faces of the outer boundary B in the background.
Inside of Q, the local coordinate system for the point [0.2,0.1, —0.2] is constructed. In each dimension,
the appropriate number of Chebyshev points is chosen (dots along the corresponding lines).
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r.h.s. of equations (4.36)—(4.38) the functions

f@) = @ {6cos (@) +sin (jz[>)Bz|* —6)}, for z e, (4.44)
gr(z) = 2(cos(jz?) —sin(|z*) v .2z, for zeT, (4.45)
ga(x) = 2 (cos(|z|*) —sin(|z|?)) e®’y .z + cos (|w\2)e‘m‘2, for x € B, (4.46)

so that the exact solution of the system is

u(x) = cos(\w\2)e‘w‘2, for xe€Q. (4.47)

The numerical results in Figure 4.10 display the Lo-error for different mesh sizes of the finite element
grid. A clear second-order convergence pattern can be observed for the error of the function and its
gradient obtained from the Chebyshev expansion. In contrast, the convergence rate of the gradient

evaluated by (4.42) is only accurate to first order.

Conclusion

We have proposed an efficient approach for the evaluation of the derivatives of an approximated function
to maximum possible order of convergence. The method is fast and extremely simple, yet powerful.
Numerical examples illustrate the higher accuracy and convergence rate over standard methods. This
technique can be successfully used to preserve the accuracy of the interior solver in Algorithm 2.3.1
when coupling it with the nonreflecting boundary condition that requires a data input of a derivative
(see equation (4.1)) that needs to be computed from the numerical solution of the interior solver. A
standard differentiation corrupts the convergence of the overall scheme, because its input data is of lower
order. In contrast, the input derivative by our new technique conserves the convergence of the interior

scheme, as we demonstrate in Section 4.3.
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Figure 4.10: Mesh size h versus Lg-error. The improvement in accuracy and convergence rate of the
Chebyshev gradient (cross) to the polynomial gradient (circle) is clearly visible: second-order convergence
of the finite element solution uy, (star) and the Chebyshev gradient V .uy,, but only first-order convergence
of Vyuy, to the corresponding exact solutions.
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4.1.4 Boundary operator

This section deals with the specification of an appropriate linear operator £ in (2.22). Ting and Miksis
proposed in [86] to use Kirchhoff’s formula directly as a nonreflecting boundary condition, i.e., these
authors chose £ as the identity operator. However, when Givoli and Cohen [38] implemented a numerical
scheme that incorporates that boundary condition, they discovered a long-time instability when it is
combined with a nondissipative interior finite difference stencil: the numerical solution converges up
to a certain time to the correct solution but then a strong instability develops which manifests itself
through the appearance of rapidly growing oscillations (see [38]). These authors propose to remove the
instability through use of an appropriate dissipative interior scheme. The disadvantage of this approach
is that, obviously, it precludes the use of popular and well-understood nondissipative schemes. Therefore,
the question arises as to whether there is a more appropriate choice for the operator £ such that the
long-time instability does not occur even when a nondissipative interior scheme is used. As it happens,
the Sommerfeld-type operator may be the proper choice in (2.22) to avoid the long-time instability. As is
known, the Sommerfeld radiation condition at infinity (2.5) eliminates the family of solutions associated
with the incoming characteristics and thus insures that the scattering waves which satisfy (2.1)—(2.5)
are purely outgoing. It seems intuitively clear that the nonreflecting condition on the finite artificial
boundary B should also have this operator involved. We point out that many proposed transparent
boundary conditions are formulated in terms of a Sommerfeld-type operator, and long-time stability has
been observed and proven for many of these approaches (see, e.g., [8, 29, 31, 40, 42, 50, 52]). In this

section, we present some aspects which demonstrate the impact of the boundary operator on stability.

Example: Impact of different linear boundary operators

We consider the following one-dimensional model problem defined for (z,t) € Ry x Ry :

1 92%u &%u
ou
u(z,0) = E(m, 0)=0, z>0, (4.49)

u(zr =0,t) = gr(t). (4.50)
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The function gr(t) in (4.50) is known, and we wish to evaluate the solution numerically in [0, 23] for a
fixed positive value xp > 0. This artificial truncation from the semi-infinite domain requires imposing a
boundary condition at xg. The exact local nonreflecting boundary condition at x5 for problem (4.48)—

(4.50) is the well-known Sommerfeld condition

1@ ou

il - — = rn. 4.51
Cat—i_al' 0, z=uxp (5)

Instead of using (4.51), we wish to use Kirchhoft’s formula, which is in the one-dimensional case
Lu(zp,t) = Lu(zs,t—(xp—1x5)/c), ==, (4.52)

where we assume that the linear operator L is either the identity or the Sommerfeld-type operator
10, + 0, + o for some @ € R (compare with (4.53) and (4.55), respectively). We note that o # 0 is
needed if a Neumann boundary condition is prescribed at the inner boundary xzp: in the case that purely
Neumann conditions are imposed on the boundary of the computational domain, the solution is only
unique up to a constant; this can be avoided by adding a Dirichlet-type condition on the outer boundary
by introducing an « # 0 value in the corresponding Sommerfeld operator. This simple one-dimensional
model problem proves to be very useful to investigate the impact of £ on the stability, since in this case
the Kirchhoff formula does not involve integration: if an instability develops in either the presence of
a numerical integration rule or when equivalent sources are used, it may be unclear which effect causes
the instability. If in turn we observe instability only for certain operators in absence of any integration
rule in (4.52), it is clear that the choice of £ lies at the source of the difficulty. In the first case, when

L equals the identity operator, the boundary condition reads
u(zp,t) = u(zs,t—(z—zs)/c), z=us, (4.53)

in the second case, when we deal with the Sommerfeld-type operator with o = 0, we have

10u Ou 10u 10u
EE + % = Ea_y(l'Say”y:t—(ac—zs)/c - Ea_y(xSyy”y:t—(m—xS)/cv (4'54)
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which simplifies to the Sommerfeld condition (4.51). If a # 0, the boundary condition is

10u Ou
25—1—%4—au = au(zs,t— (v —1xs)/c), x=uzp. (4.55)

We define an equidistant grid with spacing Az and At and apply central finite differences on (4.55):

n+1 n—1 n n
h — U (T — U
B B— n—"n4;
B B + JB+1 JB—1 n ! diff (4.56)

2At 2Az B s ’

u

where ngig = (jB — js)/A and the ratio A = At/Ax is chosen such that n 4 is an integer. Discretizing
equations (4.48)—(4.49) with central finite differences and combining with (4.56), we get the discrete

initial conditions (n = 0)

W = 0, ul=0, je{l,...,iB}, (4.57)

along with the time evolution equations (n > 1)

uftt = gr(tnt), (4.58)
wit = 21 M) - N AL, G e{2 s — 1 (4.59)
A—1 272 QAN [ nny
+1  _ -1 n—ngif
’U,;LB = 2 (1 - )\) U;'LB + P 1'&?8 + )\—HU?B_I + a/\—H (’U,js — 'LL;LB) . (460)

When Kirchhoff’s formula (4.53) is used directly as the computational boundary condition, the corre-
sponding discrete system is identical to (4.57)—(4.59), but (4.60) must be replaced by

ntl g na, (4.61)

Uiy - Jjs

We choose A = 1/2,j5 = 21,gr = sint, and implement (4.57)—(4.59) along with the open boundary
condition (4.61). We observe that an instability develops at ¢ ~ 8 if n 4 # 1. In the special case when
ngif = 1, stability is obtained, as has been discovered and proved in [38]. The numerical solution is
plotted in Figure 4.11 for the two cases n g € {1,2}. Next, we replace (4.61) by (4.60) and find that the
numerical system is stable for a suitable choice of the parameter «. Table 4.2 displays the restrictions
on « to guarantee stability for n g4z = 1,2,3, and 4. The solution is computed for a large number of time

steps (over 5,000,000 steps), so that we can assume long-time stability if « lies in the corresponding
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Figure 4.11: Solution u(xg,t) obtained with boundary condition (4.61). For n 4 = 1 (blue), the solution

is stable, while instability occurs for n 45 = 2 (green).
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range of Table 4.2.

‘ Ndif ‘ Stability if a € ‘

1 [—49, 316]
2 [—24,203]
3 [—16, 96]
4 [—12, 48]

Table 4.2: As the distance x3 — xs increases, the domain of definition for av decreases to insure stability.

Total energy of the system

A proof of stability of a numerical method can often be given on the basis of considering the total energy

contained in the solution. The boundedness of the energy of a certain scheme at any time under the

assumption that no energy enters the computational domain implies stability. We thus consider the

total energy F(t) = 1/2(fw8 (Oyu)? + 1/c2(Vu)?dzx) of the system when there is no external forcing and

no wave enters the domain [xp, xg]. The solution u(z,t), which results solely from the initial conditions

uo(t),uo(t) that are compactly supported in [z, xg], can freely travel through the boundaries xp = 0

and xp = 1 and eventually leave the computational domain if nonreflecting boundary conditions are

imposed at zp and zp. Taking the derivative of E(t), making use of the homogeneous wave equation

and integration by parts shows that the change in the total energy is given by

Ou Ou |
/ _ 2
E®) = 5ozl

In analogy to (4.55), the modified Sommerfeld boundary condition at zp reads

10u @4_
cot Or

au = oau(rgt+(r—xg)/c), z=ar,

and the discretized model problem (¢ = 1) is

uth = 2(1 =N =T N+ N, G e{2, 05— 1,
/\—1 2)\2 2AE\
n+1 _ n 1 n N—ndiff n
U = 2= M R W R >\+1<u uﬂ'B)’
A—1 2)2 2AtA
+1 1 N—"nq4if
Wit = 20N S e a5y (v )

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)
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with the two given initial conditions u? and u]1 for j € {1,...,j8}. Dizcretizing (4.62) with central

differences, the numerical energy thus satisfies

n+1 n—1 ntl _gn—lyn gm0 ntl _gn=lgn oy
E - E U u Yig+1 ~ Yjg_y u U Ujp+1 = Ujp_y

_ B JB -1 7jr Jr
2AL a 2At 20z 2At 2Ax ' (4.67)

Substituting the discretized boundary conditions (4.65) and (4.66) into (4.67) and multiplying by 2A¢

gives
n+l _  n—1\2 n+l _ n—1\2
prtl _ pn—l (ujs Yip ) + (ujr Yip )
T 2At +
n+l _  n—1 N=Ndiff n ~ n+l _  n—1 n—fldz‘ﬁ _n
o (UjB W ) <ujs u]8> + a (ujF uy ) <ujé u]F> . (4.68)

If we choose o = @ = 0, i.e., we consider the Sommerfeld condition, we easily see that
Entl Tt <o, (4.69)

and summing from n = 1ton = N —1 leads to EVN 4+ EVN~! < E°+ E', which implies numerical stability.
Thus, the condition (4.69) is sufficient for stability.
If a#0,a #0, (u?s_”diﬁ — U?B) # 0, and (u;,;_ﬁdiﬁ — u?r) = 0, the following conditions on « and &

suffice for stability:

uﬂ+1 _ uT-L_l
a < Aa— (4.70)
2At (ujs i ug‘8>
and
n+1 n—1
I (4.71)
2At (u;: i _ u;‘F)

—ngif

Quantitatively, we expect that the differences in (u;: Wy > and (uﬂ_n‘“ﬁ —u? ) increase as n gy

JB Js Jr
increases, which leads to more restrictive choices for a and & for larger n g4z Table 4.2 confirms this
behavior. If a purely Neumann condition is prescribed at the inner boundary condition, Lemma 4.1.1

shows that a > 0 is required to insure uniqueness.
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Uniqueness

In the following lemma, we consider a three-dimensional domain 2, which is internally bounded by the
surface of the scatterer I' and externally by B. We show that if purely Neumann conditions are prescribed
on I', the « in the boundary operator is required to be positive to guarantee a unique solution. The

proof also translates directly to the one-dimensional case.

Lemma 4.1.1. Let a(x) > 0. Then the PDE

5?2
0 g 0
sule = o), (g a+al@)) uls = gst) (4.73)
0 .
u(z,0) = wuo, Eu(az, 0) = o, (4.74)

defined for (x,t) € Q x [0,00), admits a unique solution.

Proof. Let us assume that there are two different solutions u; and ug that solve (4.72)—(4.74). Then, the
difference function w = u; — ugy solves the homogeneous system of (4.72)—(4.74), and the time derivative

of its total energy is

d
EEQ(t) = (0w, iw)q + (Voyw, Vw)q. (4.75)

The first term on the r.h.s in (4.75) equals to (Aw,d;w)q, and integration by parts reveals that
(Opw, dyw)q = (O,w, dyw)aq — (Vw, Voyw, )q. Therefore,

d
EEQ(t) = (Ohw,0w)yq (4.76)

and using the fact that the Neumann condition on I' vanishes, we even have %EQ (t) = (Opw, Orw) 5. We

replace d,u|g by —(0; + a)u|p, integrate in time from zero to 7' > 0 and obtain
T 1
Eo(T) = Eq(0) - / (Oyw, dw)p dt — 5 {(aw, w)s[T] — (aw, w)s[0]} - (4.77)
0

Clearly, the first and the last term on the r.h.s vanish because of the homogeneous initial condition, and
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we are left with
T 1
Fo(T) = — / (0w, D) dt — - (o, w)s[T). (4.78)
0

Obviously, E(T) > 0 by definition, but E(T) < 0 by (4.78). Therefore the total energy of w has to
vanish for all times, and (4.78) leads to the conditions d;w|p = 0 and w|p = 0. If & = 0, only the first
condition holds, which would yield w|g = ¢(xp) only. But for a(xp) > 0,w|z = 0, and we can apply

the analytic continuation principle to find w(x,t) = 0 for any ¢ and x € Q. Thus, u; = ug, which proves

uniqueness.
O
Remark 4.1.1.
1. If a(x,t) depends on « and t, a sufficient condition for uniqueness is
—a(z, t)u(z,t) < du(x,t) forx € Bandte Ry. (4.79)
2. Combining (4.76) with (4.73), we see that a sufficient condition for stability is
98(t) — a(x, t)u(x,t) < dwu(x,t), =€ B. (4.80)

3. Many computational boundary conditions proposed previously, which don’t exhibit long-time in-
stability, involve the operator £ = %(% + 0 + % when B is a sphere. We conjecture that for a

convex computational domain €2, when v - & > 0, the operator

10 0 v-x
Lo = ——+—+—— 4.81
“ cot - ov * |z |? (481)
gives rise to stability. If a Dirichlet boundary condition is imposed on I', we conjecture that the

operator

19 8

implies stability.
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4.2 Interior solver

4.2.1 Variational formulation

We denote the Sobolev space by

ou 2 .
<9 <3 .
&UieL(Q)}, 1<i<3 (4.83)

H'(Q) = {u € L*(Q) |

For u(t) € H'(Q) and v € H'(Q2), we define (u,v)q = [, u(z, t)v(z)de, (u,v)p = I5 u(z, t)v(z)dS, and

(u,v)r = [pu(z,t)v(x)dS,. Next, we multiply (2.18) by a test function 7, integrate by parts and use

(2.19)—(2.22) to obtain the following variational formulation:

Find u(t) € H'(2), such that for all v € H'(f), we have

0%u ou
W,v + | Lu— 5,7) + (Vu, Vo) = (f,v)q + (gr,v)p + (98,1, 0) 5 (4.84)
Q B

(u(0),v)q = (u0,v)g, (¥(0),v)g = (i0,v)q - (4.85)

4.2.2 Finite element formulation

The computational domain is discretized by a mesh 7, which approximates 2 with a finite number of

elements K. The finite element space
SP1(Q,7) = {ue H(Q) |ulx € P, for K € 7} (4.86)
contains all functions in H'(2) whose restrictions to K € 7 are polynomials of order p. Replacing the

Sobolev space by (4.86), the unknown wave field and the test function can be approximated by

up(x,t)

Il
e

G
u(r(@),  on(@) =D veor(@) (4.87)
k=1

where {¢y(x)}{_, span the discretized Sobolev space (4.86). The finite element discretization reads:
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Find uy(t) € SYP(€2,7) such that for all v, € SHP(Q, 7)

02 0
(%ﬂ%) + <EUh - %ﬂ%) + (Vun, Vop)g = (f,vn)q + (9, 00)r + (98,8, VR (4.88)
Q v B

(un(0),vn)g = (uo,vn)e,  (up(0),vn)e = (do,vn)a.  (4.89)
Equations (4.88) and (4.89) are equivalent to the linear second-order system
Mi+Cu+ (K+Mu = It (4.90)
for w(t) = [ui(t),...,uc(t)] € R&*! with the initial conditions
Mu(0) =1,  Mu(0) = I,. (4.91)

The matrices M and K in (4.90) are known as the mass and stiffness matrix, respectively. Their entries

are

My, = (¢rP1)a (4.92)

Ky, = (Vér, Vér)a. (4.93)

We remark that both matrices are sparse due to the local definitions of the basis functions. Further, the
mass matrix M is symmetric positive definite, while the stiffness matrix K is generally only positive
semi-definite. However, if Dirichlet boundary condition are prescribed on a part of I or B, Poincaré’s
theorem states that the matrix K in this particular case is even positive definite.

The matrix C in (4.90) takes the form

Cry = (¢, 91)5 (4.94)

This matrix is symmetric positive semi-definite and acts as a damping term.
Finally, the matrix M in (4.90) is only nonvanishing if £ is given by (4.81), in which case its entries
can be expressed by

My, = (Lfm,@) : (4.95)
|| B
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That matrix is symmetric positive semi-definite if v - & > 0, which is the case for convex boundaries B.

Contrary to the matrices (4.92), (4.93), (4.94) and (4.95), the load vector

) = (f,ox)a+(9,0K)r + (98.n, Pr)B (4.96)

is time dependent and thus needs to be updated at every time-step. The linear semi-discrete system
(4.90)—(4.91) needs to be solved with an appropriate time-marching scheme, which is discussed in the

next section.

4.2.3 Time-marching schemes

There are many suitable time-marching schemes, implicit as well as explicit ones, that can be applied
successfully to (4.90)-(4.91). The explicit methods are easy to implement and the solution is obtained
with a direct solver; however, restrictions on the time step apply to insure stability. In many cases, only a
relatively small time step can be chosen to satisfy the CFL-condition. Implicit methods can have a much
larger time step and in many cases no restrictions apply to guarantee stability. The discrete equations
need to be obtained through the solution of a linear system, making the computational cost for one time
step larger than in an explicit scheme. Therefore, it is important to find out for the specific system to
be solved what method works best. Here, we give an example of an explicit and an implicit solver. As
a representative for the explicit classes, we consider the leap-frog scheme, which has been very popular
in connection with the wave equation. Then, we present an implicit method which is particularly useful

with our nonreflecting boundary condition.

Explicit method

We select the leap-frog method to solve (4.90)—(4.91) in time. The time-step At needs to be chosen
sufficiently small compared to the minimum mesh size hpy;, of the finite element grid 7 to satisfy the

CFL-condition of numerical stability, i.e.,

< Cy (4.97)
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for an appropriate constant Cy < 1. The solution vector u* corresponds to the time t* = kAt. Then the

basic step to advance the numerical solution in time for £k =1,2,... is
AuFtt = I(tF) + Biuf + Boub !, (4.98)
where
A= (Lvile (4.99)
A 2At ) '
and
B, = 2A4(K+M) Bo=(—C— M (4.100)
R WNZ o2 \ear T AT ) '

The matrix A in (4.99) is symmetric positive definite, and therefore invertible. Also, it is sparse due to

the locality of the basis functions {¢x}$_,.

Implicit method

To avoid the restriction (4.97), we consider the implicit scheme

Méfuk + Kuk,g + Muk,g + Cohup, = lkﬂ, (4.101)
with the definitions
up = (upyr —2up +up 1)/ (A2, (4.102)
5tuk = (uk+1 - uk_l)/(2At), (4.103)
Uy = Ougi1 + (1 — 20)uy + Oug—_1. (4.104)

As noted in [28], this second-order correct approximation in At is unconditionally stable for § > 1/4,
and the choice # = 1/4 minimizes the time truncation error over this class of methods. With this specific
choice, equation (4.101) can be rewritten as

1 1 1
Ajugy = Biug+ Boug 1+ <Zl(tk+1) + il(tk) + Zl(tk_1)> . (4.105)
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The sparse matrix
1 -
Al = A+ <K + M) (4.106)

is positive definite. We note that our nonreflecting boundary condition is particularly suitable for the
scheme in (4.105). Indeed, the I(¢x4+1) in (4.105) can be easily obtained, since the boundary values are

precomputed for a certain time-interval. Therefore, equation (4.105) can be solved directly.

4.3 Numerical examples

In this section, we provide numerical results for the overall scattering solver, Algorithm 2.3.1. In Section
4.3.1, we assume that the scatterer is a sphere and the field is generated by a point source on the z-axis.
This makes the problem axis-symmetric, and we can reduce the computation in the three-dimensional
domain to two dimensions. This model is particularly useful to study the performance of the fully
three-dimensional artificial boundary condition at minimum computational cost. The evaluation of the
nonreflecting boundary condition based on the equivalent sources is not reduced in dimensionality. The
results show that the developed solver satisfies the expected accuracy and exhibits long-time stability.
In Section 4.3.2, we present computations for elongated obstacles, for which the nonreflecting boundary
evaluator may be especially advantageous over other approaches: many artificial boundary conditions
require a large domain 2 either to obtain a prescribed accuracy, or the boundary must be of a special
shape, which often makes the definition of the computational domain 2 unnecessary large. In our
method, in contrast, the artificial boundary can be in principle as close to the scatterer as desired without
compromising accuracy. In Section 4.3.3 we present fully three-dimensional computations showing that
the computational times required by the nonreflecting boundary condition algorithm is only a small

portion of the overall computation.

4.3.1 Spherical obstacle

In this section we provide some numerical examples of Algorithm 2.3.1 that make use of the explicit time-
marching scheme (4.98) to discretize (2.18)—(2.22). The obstacle I' is the sphere of radius r, centered
about the origin, and the artificial boundary B is the cylinder with radius r. and height 2r. along the

z-axis from [—r,,r.|. The source strength f(a,t) is defined in (3.5) and (3.11). The exact solution to the
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problem is given by (3.6) as long as the point source lies strictly within the scatterer. In this case, the
wave is purely outgoing and the numerical solution approximates the given exact solution provided these
functions match on I'. Assuming that the field and its time derivative are zero initially, the wave enters
the computational domain €2 through the inner boundary I', since there is no forcing outside the sphere.
The Kirchoff’s surface S is chosen as the cube with edge length 2rg which includes the sphere entirely,
see Figure 4.12. We note that if x¢ in (3.5) is positioned on the z-axis, the problem is axis-symmetric
and the three-dimensional finite element computation in 2 can be reduced to two dimensions in the

cylindrical coordinates r and z, i.e.,

r =2+ y>? z =z (4.107)

as mentioned earlier, results of a fully three-dimensional computations are presented in Section 4.3.3. A
two-dimensional finite element mesh in cylindrical coordinates (r, z) of this form is depicted in Figure
4.12. For any angle 6 = arctan £ the field u(r, z,t) has the same value for fixed ,z, and ¢. In this

particular case, the entries of equations (4.92) to (4.96) take the form

My, = o (r, 2)@y(r, 2)rdrdz (4.108)
Qr',z
L[ e, e, 06 0w
K, = /Qm { o (r,2) r (r,z) + P (r,2) 5 (r, z)} rdrdz (4.109)
Cri = / G (r, 2)u (r, 2)rdS; - (4.110)
B'r,z
- 7
My, = 5. Gi(r, 2) i (r, Z)mdsr,z (4.111)
o) = [ fsteddids+ [ gz tonr 2,
+/ 98.1(r, 2, 1) (1, 2)rdS; - (4.112)
Br,z

The reduction of the interior computation to a two-dimensional domain helps us to keep the overall

number of unknowns low, so that a direct sparse solver works well to invert the system matrix A. In the
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Figure 4.12: Blue: Finite element mesh in cylindrical coordinates (r, z) which discretizes the computa-

tional domain 2. Green: Intersection of the finite element grid with the Kirchhoff’s surface S
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computations of this section, we specifically use the SuperLU solver, which can be freely downloaded
from http://crd.Ibl.gov/~xiaoye/SuperLU.

For the shape functions associated with (4.86), we select the serendipity space (see [81]). We define
a family of finite element meshes {my}$_, which differ in their maximum mesh sizes h, where mg is
the coarsest and mg the finest grid. Clearly, h needs to be small enough to resolve the minimum wave
length. As a “rule of thumb,” kh = 27h/X should be no larger than 0.6 which means that every relevant
wave length is represented on the finite element mesh by at least 10 points (see [54]); note, however,
that owing to pollution effects, the number of points per wavelength needs to be increased as the total
acoustic size of the scatterer increases. The mesh size hnin denotes the shortest edge on a finite element
grid and At = C)hpin is the time step in the leap-frog scheme with the constant value C) = 0.1. We

define the instantaneous errors e (t) and ey(t) as

ealt) = [Vult) = Van( Dl (4.113)

e2(t) lu(-st) = un(s )l @) (4.114)

and denote by eq r and ep 7 their maximum value over the time interval [0, T]:

eq, T tlén[gx] ec(t) (4 )
T = t). 4.116
€9, tlén[gx] ea(t) ( )

Demonstration of long-time instability if Neumann boundary operator is used

The numerical results presented in this section are computed using the parameters c = 1,7, = 0.25, H =
275 /5,re = rs+2H, 2o = [0,0,0]", 0 = 0.5,tg = 2.0, S =5,C = 5,limin = Te—7s, lmax = V3(rs+7¢),lpr =
Imax — lmin + 0.1, N; = 32, N, = 128 if not stated otherwise. We turn our attention to the choice of the
operator £ in (2.22). The blue curves on the upper left of Figure 4.13 display the numerical values of
the wave field at the point 3 = [0, 0.4, 0] when the Neumann operator £, = 9, is used in (2.22). In the
lower left picture, the function s(¢) = sin (2t) is used instead. The green curves are the true solutions.
On the right figures the corresponding errors up(xs3,t) — ue. (3, t) are depicted for ¢ € [0,42]. As in
the examples in reference [38], the solution is accurate at first, but after a certain time an instability

develops; compare also with Section 4.1.4.



4.3 Numerical examples 95

: H 0.5
. uex(xs,t)
o uh(x3,t) I
C |
il
= | |
)
(2]
-0.5r b
1t | i
-1.5F 1
_ob i
-2.5c . . . . \ | | | ]
0 5 10 15 20 25 30 35 40 45 45
time time
35 : :
—u (X ‘ 500
soll — u, (X,:1) ]
400+ 1
25+ b
201 1 =~ 300f |
§ £
315 1 7 200t 1
@ =
10+ 10X
2 100 8
5+ |
// \ //\ // \\‘ //\\ (/\\ \\ // \ O ]
0 J \\\ // \\\\//‘/ \\J/,/ \\\ / \\U / \ / 1
_5 L L L L 1 1 1 1 _100 L L L L L L L L
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
time time

Figure 4.13: Choosing the Neumann operator £, in (2.22) leads to long-time instability for an interior
nondissipative stencil (blue). The green curve is the exact solution. These examples are computed on
mesh myg, and the solution is plotted at x3 = [0,0.4,0]* (left). On the right, the error of the two curves is
displayed. The procedure as explained in 4.1.3 is used to compute the gradient on the Kirchhoff surface.
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Long-time stability for Sommerfeld-type operator

The problem of long-time instability is resolved when we replace the operator £, by (4.81) or by (4.82):
the blue curves in Figures 4.14 and 4.16 correspond to computations using the operator £g in (2.22) and
demonstrate that the numerical solution remains stable. On the upper left, the solution is displayed at
x3, while on the upper right its gradient is projected to m = [1,1,1]. The lower pictures show that the
errors up(xs,t) — Uez(xs3,t) and n - V(up(xs3,t) — ey (23, t)) remain bounded and are small. While the
gradient seems to behave properly (Figure 4.14, lower right), the numerical solution does not approach
zero with high-order accuracy once the wave is supposed to have completely left 2 (Figure 4.14, lower
left). We also observe that the error of the solution in Figure 4.16 (lower left) is not symmetric about
the time axis as it should be. Rather, it is shifted by a constant. Again, its gradient doesn’t exhibit
this difficulty. This discrepancy is due to the prescription of purely Neumann data on I". Any constant
solves the associated homogeneous problem, and therefore uniqueness is not guaranteed. The operator
L, defined in (4.81) insures that zero is the only constant which solves its homogeneous problem, and
therefore uniqueness of the numerical solution is guaranteed even with purely Neumann data on I'. This
is shown for the two different examples in Figures 4.15 and 4.17, respectively. Figure 4.18 demonstrates

that the numerical solution remains stable, even after many more time steps.

Convergence

Next, we investigate the accuracy in time of the overall numerical scheme for the two stable boundary
operators defined in (4.81) and (4.82). The results in Figure 4.19 are obtained using the Sommerfeld
operator Lg to evaluate ex(t) and e (t) on ms. We study the importance of reconstructing the gradient
of the solution on the Kirchhoff’s surface S to highest possible order: on the top of Figure 4.19, standard
linear interpolation of the form Vup (xs,tn) = > Vér(xs)uk(t,) is used, which leads to loss in accuracy.
While the gradient of the solution behaves properly, the field itself is not as accurate as it should be. Using
the Chebyshev interpolation technique as explained in Section 4.1.3 leads to a significant improvement
(middle of Figure 4.19). These specific examples are computed with Nepep, = 7 and Nepep» = 14 in
the r and z directions, respectively. Finally, for comparison purposes, at the bottom of Figure 4.19,
the computation is performed by imposing the exact values on B instead of using the computational
boundary condition approach. As can be seen in Figure 4.20, using the operator £, defined in (4.81)

brings significant improvement. The upper picture reveals that the behavior and accuracy is still not
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Figure 4.14: Top: The numerical solution computed on mesh mg with the Sommerfeld operator Lg. The
plots show the solution at x3 = [0,0.4,0]*, and its gradient projected to n = [1,1,1]’. The technique
developed in 4.1.3 is used to compute the gradient on S. Bottom: The timely difference of the numerical

and exact wave field at x3.
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Figure 4.15: Same computation as in Figure 4.14, but £, is used in place of the Sommerfeld operator.
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Figure 4.16: Top: The numerical solution computed on mesh mg with the Sommerfeld operator Lg. The
plots show the solution at 3 = [0,0.4,0]*, and its gradient projected to n = [1,1,1]!. The Chebyshev
series is used to compute the gradient on S. Bottom: The timely difference of the numerical and exact
wave field at 3. Note that the amplitude of the error on the left oscillates between [—0.0155,0.0125].
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Figure 4.17: Same computation as in Figure 4.14, but £, is used in place of the Sommerfeld operator.

This time, the error is in both cases symmetric with respect to the time axis.
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Figure 4.19: The errors ey(t) (left) and eg(t) (right) are displayed when using Lg as the boundary oper-
ator. The evaluations for these specific results are performed on mg. The plots differ in how the gradient
on S is computed. Top: linear interpolation is used to get the gradient. Center: The interpolation
method developed in 4.1.3 computes the gradient. Bottom: Lg is applied on the exact values to obtain
9B,n- While eg(t) is identical in all three cases (right), significant differences are observed in e (t) (left).
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Figure 4.20: The error eq(t) is displayed when using £, as the boundary operator. The evaluations for
these specific results are performed on m3. The plots differ in how the gradient on § is computed. Top:
linear interpolation is used to get the gradient. Center: The interpolation method from Section 4.1.3
computes the gradient. Bottom: L, is applied on the exact values to obtain gz j,.
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Figure 4.21: The operator L)y is used to obtain ea(t) and e(t) on the mesh mg. The inaccuracy in es(t)
is due to linear interpolation to evaluate the gradient on S. If the technique from Section 4.1.3 is used
to evaluate the gradient, the plot is identical to the picture in the center of Figure 4.20.

the same as when the exact data on B in (2.22) is used—compare with the lower plot. The middle graph
demonstrates that the problem is removed when evaluating the gradient on & with the special Chebyshev
expansion technique. Finally, Figure (4.21) demonstrates that also other choices for a(x) > 0 can lead

to a unique, numerical stable solution. Here, we define

10 0 1
EM:EE—I—%—FW. (4.117)

Clearly, if the outer boundary is a sphere, v -  equals |z| and the operator in (4.117) is identical to
(4.81). This is not the case if B is the surface of a cuboid, but since 1/|x| > 0, uniqueness is guaranteed
by Lemma 4.1.1, and the numerical results in Figure 4.21 also confirm stability. As in Figure 4.20, the
artificial middle arch of the plot in Figure 4.21 on the left, which causes the numerical solution to be
less accurate, vanishes when the standard linear interpolation is replaced by the method developed in
4.1.3. The plot in the latter case is identical to the picture in the center of Figure 4.20.

In Figure 4.22, we show the results for e 7 and egr on the meshes {mk}szo where K = 8 if the
polynomial degree of the shape functions is p = 1 and K = 4 if p = 2. The maximum value of the
error is reached on all grids around the time ¢ ~ 2. On a logarithmic scale, we plot the mesh size on
the abscissa versus the errors on the ordinate. For linear shape functions p = 1, we expect first-order

convergence for egr and second-order convergence for esr, which is confirmed in Figure 4.22. We
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Figure 4.22: Convergence analysis for p = 1 (top) and p = 2 (bottom). The errors are plotted in the
energy norm and Lo-norm, respectively. In all computations the maximum errors in time are around
t~2
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perform similar computations for quadratic shape functions p = 2. The results in Figure 4.22 show that
eg,r is now second-order and ez 7 third-order convergent, as expected. Figure 4.22 thus confirms the
high accuracy of the nonreflecting boundary condition: as the discretizations of the FEM are refined,

the solution converges according to the order of the interior scheme to the exact solution.

[ | h Jgdof(p=1)]gdof(p=2) |
mo | 0.0429329 450 1,295
my | 0.0321997 741 2,153
my | 0.0275997 1,035 3,021
ms | 0.0241498 1,309 3,833
ma | 0.0214665 1,615 4,741
ms | 0.0195652 1,953 5,745
me | 0.018 2,323 6,845
my | 0.0166667 | 2,725 8,041
mg | 0.015 3,388 10,015

Table 4.3: The table displays the mesh sizes for {m}zzo along with the global degree of freedom for
p=1and p=2.

Contour plots

Figures 4.23 and 4.24 show the contour plots of the total field and the scattered field, respectively. In
these cases, the point source is located at xq = [0,0,0.6], and the numerical solutions are computed on
the FEM mesh my. Finally, Figure 4.25 shows the scattered field at selected points in space for the time
interval [0, 10.5].
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Figure 4.23: Contour plots of the total field for the times t ~ 1.47,1.76,...,4.88. The point source is
located at o = [0,0,0.6]*
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Figure 4.24: Contour plots of the scattered field for the selected times ¢t =~ 0.71, 1.23,1.69,1.98,
2.26,2.82,3.10, 3.39, 3.67, 3.95,4.23, 4.38. The point source is located at o = [0,0,0.6]" and the com-
putation was performed on my.
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Higher wave numbers

As an illustration of a more challenging problem, we consider s(t) = sin (kt) in (3.5) and the point source
acts from xg = [0,0,0.23]" with k = 14 or k = 40. In the first case, the computation is performed on the
meshes {mk}izo, in the more challenging case, on {mk},lfoz& see Table 4.4 for the degree of freedom of

the two finest meshes. Plots of the solutions and their corresponding e (t) errors are displayed in Figure

| | gdof(p=1) |
me 5,355
mio 8, 865

Table 4.4: The degree of freedom of meshes mg and mqg

4.26. The convergence results are summarized in Table 4.5. The eq  error is expected to be first-order
convergent. Thus, the last column should be one. As we can see, this is achieved for k = 14, while the
convergence is worse than first order for £ = 40, and more grid points per wave length are necessary to

get the clean first-order convergence rate.

k kE+1

k h kh | ecr %
0.0420320 | 0.6 | 1.50596
14 | 00321997 | 0.45 | 1.13011 |  0.9980
0.0275997 | 0.39 | 0.942462 |  1.1779
0015 | 0.6 | 331743
40 | 0.0118421 | 0.47 | 2.60183 0.884

0.00918367 | 0.37 | 2.14951 0.885

Table 4.5: Comparison between k = 40,d/\ ~ 3.18 and k = 14,d/\ = 1.11
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Figure 4.26: In both cases, the resolution is kh ~

k =14, ho ~ 0.043,d/\ ~ 1.11. Right: k = 40, hg

0.6 and the point source acts from s = 0.23. Left:

0.015,d/\ ~ 3.18
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4.3.2 Elongated obstacle

In this section, we demonstrate that the computational nonreflecting boundary condition developed in
this thesis has a significant advantage over other approaches. For the present example the scatterer is
an ellipse with the major axis of length 0.3, the minor axis of 0.02. We surround it by the cuboid of
dimensions 0.02 x 0.02 x 0.3, which acts as the Kirchhoff’s surface S. As the outer boundary B, we select
the cuboid of length 0.1x0.1x0.46 and position it in such a way that the minimum distance to S is 0.04 in
the z- and z- direction, and 0.08 in the y- direction. Further, we choose H = 0.02, which gives 510 panels
on §. The maximum wave number is ky.x &~ 16, and from Figures 3.8 to 3.10 we deduce the parameters
S = 3,C = 3 suffice to approximate the waves with the equivalent sources everywhere with an error
of at least O(107%). Further, we consider N; = 32 frequency modes in total and we use zero-padding
with N, = 64 points when the wave is transformed from the frequency domain back into the physical
domain on B. The same Gaussian pulse as in the last section is used, located at [0,0,0.06]'. The FEM
grid in Figures 4.27 and 4.28 has 1,159 degrees of freedom, with A, =~ 0.00216 and hpa =~ 0.01167.
The contour plots in Figure 4.27 and 4.28 represent the total and scattered field, respectively. The
plots correspond in both cases to ¢t = 0.639, 3.228, 3.659, and 3.875. Using a sphere of radius 0.23 as the
artificial boundary B instead requires roughly ten times more elements in two dimensions and hundred

times more elements in three dimensions, and correspondingly higher computational times.
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Figure 4.28: Contour plots of the scattered field for the selected times. The point source is located at
xo = [0,0,0.06]".



4.3 Numerical examples 113

4.3.3 Fully three-dimensional example

In this subsection, we present numerical results for the fully three-dimensional version of the sphere in
a cube geometry. The spherical scatterer of radius 0.25 is embedded in a cube of length 0.9. Figure 4.29

depicts the scatterer with three faces of the outer boundary in the background. For these computations,

solution

045 045 time

Figure 4.29: Left: Sphere in a Cube. Right: Exact and numerical solution computed on the coarsest
grid at = [0.25,0.25, —0.25]"

the implicit scheme (4.101) is used along with a CG-solver to invert the matrix A;. Typically, the
CG-solver requires up to 50 iterations for every time step. The usage of (4.101) removes the CFL
constraint and allows us to choose At = hpyi,. The cubic Kirchhoff surface of length 0.5 consists of
150 panels with H = 0.1. The scattered field matches with the outgoing wave generated at the point
source &g = [0.15,0.1,—0.11]¢. In these computations, the parameters ¢ = 0.5 and tg = 2.0 are used.
The numerical solution is computed in the time interval [0,7]. The scattered wave has fully left the
computational domain at time ¢ = 7. Since the global time step At changes with the (maximum) mesh
size h, the number of time steps n; for the FEM computation increases as the mesh is refined. The
computational domain is discretized by tetrahedra.

The main purpose of this section is to present comparisons of the computing times of the interior
scheme to those arising from the boundary data on B. The first three computations in Table 4.6 are
performed on a single Intel(R) Pentium(R) D 3.4 GHz processor with 1 GB RAM. For every cell problem,

the parameters S = 3,C = 3, N, = 8, N, = 128 are used. The “global degrees of freedom” (gdof) equal
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the number of nodes of the FEM grid because we consider here a purely Neumann problem with linear
shape functions. The exact and numerical solution on the coarsest grid at the point [0.25,0.25, —0.25]*
is depicted in Figure 4.29 on the left. As is demonstrated in Table 4.6, the portion of the computing
time for the nonreflecting boundary condition based on equivalent sources (EQS) is much smaller than
the time required for the FEM evaluation. We note that the elapsed time for the FEM algorithm is
even larger for an explicit method due to the CFL restriction. The sixth column in the table shows that
the evaluation of the open boundary data is in all cases smaller than 10% of the overall computation.

The last two computations in Figure 4.6 are performed on a Pentium III (Cascades) CPU with 3.1 GB

| gdof | h | mn [ FEM [sec] | EQS [sec] | EQS/(FEM+EQS) |

58,256 | 0.043 | 640 590 60 9.2 %
151,440 | 0.031 | 880 2,029 90 4.3 %
264,672 | 0.026 | 1,082 4,220 130 3 %
365,120 | 0.023 | 1,202 70,150 1,270 1.8 %
423,696 | 0.022 | 1,280 86,000 1,360 1.6 %

Table 4.6: The table displays the computing times of the FEM and EQS algorithm for various mesh
sizes h.
RAM. For each cell problem, the parameters S = 5,C = 5, N; = 8 N, = 128 are used to increase the
accuracy on the boundary B. Even so, the EQS algorithm needs significantly less time than the FEM.
Figure 4.31 displays the evolution of the scattered wave which matches a field that is generated by a
point source located at [0, 0,0.2] and expands in the open three-dimensional space. The plots correspond
to the selected times ¢t = 1.3,1.4,1.5,1.6. The three-dimensional graphs show the contour of the wave
on the four surfaces {x € R3: 2 =0,0 < y,2 <045}, {x € R?: 2 =0,0 < 2,y < 045}, {x € R? : y =
0,0 <,z <045}, and {x € R3: || = 0.25,2 > 0,y > 0,z > 0}. Note that the wave perfectly exits the
domain without any visible spurious reflections—a fact that is born in a more precise manner by the

extremely small quantitative values of the error observed.
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Figure 4.30: Contour plot of the scattered wave with color bar at time t = 1.6
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Figure 4.31: Contour plots of the scattered field for different times
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4.4 Complexity and storage

The computational cost and storage required for the computational boundary evaluations depends on
the specific problem under consideration. Here, our goal is to roughly estimate these costs for typical
geometries. We assume that B is close to the surface S, and that the Kirchhoff’s surface consists of
np panels. To each such panel we associate ng source locations and n¢ collocation points. N; discrete
frequencies are necessary to represent the wave accurately (by means of the continuation method, see
Section 3.3.2). Further, we recall that the global equivalent sources are located at n; layers that are
parallel to one of the three faces of the outer boundary, and n; is the number of time iterations needed for
the FEM before it needs to be interrupted to run the computational boundary algorithm. For simplicity,

we assume both B and S are cubes. The major operations to compute one cycle of boundary data are:

1. Given us(t;) and dyus(t;), compute us(w;) and J,us(wj), where j € {0,..., Ny — 1}. At ngnp
points, a FFT of the size N;/2 has to be performed twice. Thus, this requires operations of the
order O(2-ngnp - N¢/2logy(N¢/2)).

2. Evaluate 4¢(wj) at all collocation points. For N;/2 frequencies, two summations over a product
of a Green’s function (or its normal derivative) with a true source are involved. Each sum has
ng terms, and must be evaluated at n¢ points for np panels. The operation count is therefore

O(2- N¢/2-ngncnp).

3. For every cell problem, calculate the local equivalent sources on each of the three two-faces pairs.
This is essentially three times a matrix-vector multiplication of the size 2n¢ - 4ng for N /2 fre-

quencies at np panels, i.e., the work is O(3 - 8ngnc - Ni/2 - np).

4. Apply the appropriate fast algorithm to obtain the boundary data gz(w;) from the global equivalent
sources. For every dimension and frequency, this involves 4n; two-dimensional FFTs of the size
4N, where N is the number of unknowns on one of the two-dimensional faces {Bj}%_,, one inverse
FFT of the same size and 2n; /N multiplications, which is in summary an operation of the order

O(3- N¢/2-AN{2n; + (4n; + 1) logy AN }).

5. An inverse FFT in time for N;/2 relevant frequencies at 6N points yields gp(t;). This requires
O(6N - N;/2logy N¢/2) operations.
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The work Xz and storage Zp requirements for these five steps are summarized in Table 4.7, under

the assumption that nc ~ 2ng and n; &~ /np/6. Thus, the dominant term in the operation count is

‘ step H work Y ‘ storage Zp ‘
1 O(ngnp - Nilogy (N¢/2)) O(2Ninsnp)
2 O(2Ntnpn2s) O(Ninenp)
3 O(24Nynpn?) O(np -3 -2ng)
4 || O(6/VENN{2\/np + (4y/np + V6) logy (4N)}) O(6NNy)
5 O(3N - N¢logs (N¢/2)) O(6N Ny)

Table 4.7: Main work and storage contributions to compute the data on B

O(Nyy/npN logy (4N)). We further note that due to the high accuracy of the equivalent sources, the
panel length needs to be altered only very slowly as we refine the FEM mesh, making the work close to
an order ¥ = O(N;N logy (4N)) operation. Using the Kirchhoff’s formula directly as proposed in [86]
costs ¥ = O(nyN?), which is significantly higher than our algorithm for large N. Specifically, the ratio
of the number of operations is

> N
=0 () (15)

The total number of operations of a FEM in the computational domain €2 is of the order Yo = O(n; N3/?)
when linear shape functions are used. In (4.118), we use the fact that typically n; is of the order of
N;. Thus, the required work for the total scattering Algorithm 2.3.1 is dominated by ¢ for sufficiently
large N, while the proposed procedure in [86] is dominated by ¥ k.

The storage of our proposed boundary condition, in turn, is dominated by =g = O(N;N). For an
explicit time-marching scheme, the CFL-condition (4.97) must hold, which implies that n; = O(v/N)
and therefore, Z5 = O(N3/2), which is of the same order as the storage = in [86] and the interior FEM
scheme with linear shape functions.

The authors in [86] point out that their proposed scheme is typically more efficient than the absorbing
boundary conditions developed in [8, 29, 32, 62, 60, 61, 75], which introduce an error proportional to
O(1/R)**1, where R is the size of the computational domain and k is an integer determining the order
of approximation. These conditions are local in nature and thus have negligible computing times, but to
maintain the accuracy of the FEM requires choosing a computational domain much larger than suffices

through the use of Kirchhoff’s formula, where one can select the boundary B as close to the scatterer as
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desired. The authors in [86] show that in this sense, their proposed scheme is usually more efficient in
terms of work and storage, even though the computation of the boundary condition is more expensive
than the interior scheme. More recent approaches [3, 40, 84] which are exact nonreflecting boundary
conditions in nature may suffer in certain circumstances from similar disadvantages if a special geometry
on B, such as a sphere, is required: in case of elongated scatterers, a vast computational domain {2 needs
to be selected, making the overall algorithm inefficient, even though the boundary data are computed fast
and no error is introduced outside of the interior discretization order. Our proposed scattering algorithm
is thus more advantageous than many other approaches: 1) it improves significantly the computing time
of the boundary data compared to reference [86]; 2) it does not introduce any spurious reflection at
the artificial boundary as methods proposed in [8, 29, 32, 62, 60, 61, 75]; and 3) it is very flexible in

designing the computational domain, contrary to approaches as introduced in [3, 40, 84].

4.5 Conclusion

In this thesis, we have introduced a new, exact nonreflecting boundary condition for the scalar wave
equation. The approach is based on equivalent sources, which allows accelerating the computation
of the artificial boundary condition considered in [86]: While in that reference, the dominant work
arises from the computational boundary, we have demonstrated that in our case, the interior scheme is
more expensive than the boundary condition algorithm. In fact, the computing times for our proposed
nonreflecting boundary condition is only a small portion compared to an FEM in the three-dimensional
computational domain. Our method is asymptotically exact in nature, so that, in practice, no spurious
reflections develop at the artificial boundary. Methods such as [8, 9, 29, 30, 31, 32, 51, 52, 58, 60,
61, 62, 75, 77|, in contrast, may suffer from this problem, which can corrupt the numerical solution
significantly. Finally, our proposed approach allows us to truncate the computational domain from
the unbounded space arbitrarily close to the scatterer. Many exact nonreflecting boundary conditions
[3, 4, 40, 41, 43, 44, 63, 84] do not allow this.

Even though we have focused in this thesis on the wave equation, the developed techniques directly
translate also to Maxwell’s equations and to elastodynamic waves under similar conditions as in this
work.

Finally, we believe that the scattering Algorithm 2.3.1 may be further accelerated and made more

efficient by using a more suitable interior solver. The recently developed ADI algorithm [15] may prove
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to be an excellent scheme coupled with our nonreflecting boundary condition, as, without requiring
large matrix inversions, it gives rise to unconditional stability; it is thus significantly faster than FEM

implementations, and discretizations of very high order are easily achieved.
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Appendix A

Review: the wave equation

A.1 Helmholtz problem

We assume that us(x,t) and f(x,t) can be expressed by the the Fourier integral representation

1 > ~ —twt
us(zx,t) = o _Oous(w,w)e dw (A.1)
1 <, —iwt
flz,t) = — fx,w)e” " dw, (A.2)
2 J_ o
with the inverse transformations
(e, w) = / us(, 1) dt (A3)
f(ac,w) = / f(ac,t)ei“’tdt. (A.4)

For (A.3) to hold, the solution must be causal, i.e., it cannot depend on the unbounded past. Then,

substituting (A.1) and (A.2) into (2.1), (2.4), and (2.5) gives rise to the time harmonic problem

Al + ki, = —f(z,w) inR3xR (A.5)
Ois = g(x,w) onI xR (A.6)
lim r (0,us —iktus) = 0, r=|x| (A.7)

r—00
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The time harmonic problem is, of course, intimately associated with its time-dependent counterpart.
The elliptic partial differential equation (A.5) is known as the inhomogeneous Helmholtz equation with

wave number given by the dispersion relation

: (A.8)

see, e.g., [91]. As is known, the dispersion relation results from substituting a plane wave citk-—wt) jntq

the homogeneous part of the wave equation (2.1), where k = |k|. The wave length A, in turn, is given by

27
=2 A.
and, similarly, the period T is obtained by
27
= —. 1
T - (A.10)
Substituting (A.9) and (A.10) into (A.8) yields
A= cT. (A.11)

A.2 Integral representation

A.2.1 Green’s function

In the following discussion, it is assumed that the speed of sound c is positive. We note that for a fixed

Z, the functions

o ~ 1 eik|£l)—£i3| AL
K, z) = Em (A.12)
and
B 1 —ik|T—T|
Gz, &) = EE— (A.13)
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both satisfy the homogeneous Helmholtz equation if « # &. But Sommerfeld’s radiation condition (A.7)
accepts only (A.12) and eliminates (A.13). The Green’s function (A.12) is therefore known to be the
radial outgoing fundamental solution of the homogeneous Helmholtz equation in R3\{Z}. It can be
shown that the solution to the exterior Helmholtz problem behaves at infinity like exp(ikr)/r - a(r/r),
where « is a function of the vector r/r, i.e., a function defined on the unit sphere and thus independent

of the radial direction r, see [76].

A.2.2 Representation theorem

Theorem A.2.1. Let © be a domain of class C?, an assumption that we make for simplicity *, T' its
boundary and v the unit normal vector on T' which points outside of ©. Let us(x) be a sufficiently
smooth function (i.e., 45 € C*(R*\©) N C(R3\O)) and its normal derivative is defined in the sense that
the limit Oyts(x) = limy_ gv(x) - Vis(x — hv(x)) exists uniformly on © € T'. Further, assume that G
satisfies the inhomogeneous Helmholtz equation (A.5), and that Q is a domain that contains the compact
support of the inhomogeneity f and has ' as its inner boundary (see Figure A.1). Then, the integral

representation
Us(x,w) = 0" (x,w) + ur(z,w), (A.14)
with

W'(z,w) = [ f(& w)Gilx,&)dE, (A.15)

ar(e,w) = /F{ﬁ(iz)w—@(i)Gk(a:,:E)}ds(:E), (A.16)

holds for € R3\O.

Proof. The proof can be found in [24], for example. Since the theorem plays a major role in this thesis,

! This regularity assumption is a sufficient condition and can be weakened, see [59]. A domain © € R? is said to be of
class C’k, if for each point z of the boundary 90 there exists a neighborhood V, of z such that the intersection V, N O can
be mapped bijectively onto the half ball {z € R3: |x| < 1,23 > 0}, this mapping and its inverse are k-times continuously
differentiable, and the intersection V, N @O is mapped onto the disk {x € R?® : |z| < 1,23 = 0}.
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a proof is provided here for completeness. We suppose that u,v € C%(Q) and define

(w,v)q = /Qu(:i)v(:i)da?: (A.17)
(U, 0) 5 = /8Q u(x)v(x)ds(x) (A.18)
By Green'’s first theorem, we have
(Au,v)q = (n-Vu,v)yq — (Vu, Vo), (A.19)
(Av,u)q = (n-Vu,u)yg — (Vu,Vu)g. (A.20)

Subtracting (A.20) from (A.19) gives
(Au,v)g — (Av,u)g = (n-Vu,v)gq — (- Vo,u),q - (A.21)

Let « be an arbitrary point in €, and let us define Q, = {x € Q : |® — &| > p} and B, = Q\Q,, for
any sufficiently small p > 0, so that the sphere S(z;p) = {& € Q : |x — &| = p} is fully contained in 2
without touching its inner boundary I' or outer boundary B (see Figure A.1). Further, for a sufficiently
large R > 0, we define Qp, = {Z € R*\(© U B,) : |Z| < R}, which has I' as its inner and the sphere
Sk ={% € R?:|Z| = R} as its outer boundary.

Next, we substitute v(&) = G(x, ) and u(x) = u(x), for & € Qp ), into (A.21). We make use of (A.5),

the fact that f is vanishing outside €, AG(z,.) = —k?G(x,.) and v = —n on I to obtain

(@, n-VG(@,))s, — (n-Va,Gle,.)s = (f,G(a:, .))Qp + (v VG(,.), i) —

(v-Vi,G(z,.))r — (n-VG(z,.),id)g, + (n-Vi,G(z,.))s, -

R

(A.22)

With the substitution & = & + p(y — «), we can express the terms on the left-hand side of (A.22) as

p2eipk
(n-Vi, Gz, )5, - | neVyile s ol - @)ds(y), (A.23)
S(x,1)

P 47

— ikp)e'®
(n V6l s, = SO e ply - @)ds(y). (A24)
S(x,1)

P 47
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Figure A.1: Visualization of the domains

In the limit p — 0, the quantity in equation (A.23) tends to zero, while that in equation (A.24) tends
to u(x).
We turn our attention to the last two terms in (A.22). Adding and subtracting the expression ik(u, G(x,.)) 55,

we can write them as

((% - m) . G(a, .>>SR - <(% - zk) A(a, >u> " (4.25)

The absolute value of the first term in (A.25) can be estimated by the fact that the radiation condition
R(Or —ik)t — 0 as R tends to infinity holds and |G(x, &)| < % for some constants C7 as R — oo. This

yields

—0, asR — o0 (A.26)
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The absolute value of the second term in (A.25) can be estimated by the Schwarz inequality

< il (57 - ) 6@ (A7)

SR

By direct computation, we see that (8%2 — zk:) G(z,.) < R% for some constant C, and therefore the
inequality || (% —ik) G(, .)HSR < I—C; holds. We consider (A.19) in the domain Qg = {& € R}\O : |Z| <

R} for v = 4 and u = @, which results in

(n-Vi,i)g, = —(n-Via,a)p -k (4,0)q, +(Va, Vi), . (A.28)
Taking the imaginary part of (A.28), it follows that
Im(n-Vi,i)g, = —Im(n- Vi, d)r. (A.29)
We also note that
0 ou ou
— —ik)al| = |55 k2|t 2k Im (4, —— A.30
| -8 = |55, + s, +2 i T, (A.30)

tends to zero as R — oo because of the Sommerfeld radiation condition (A.7). Combining (A.29) and

(A.30) gives

) ou . A
}%ﬂl}o{“@ SR+k2 HuHsR} = 2kIm(n-Va,0)p. (A.31)

Both terms on the left-hand side of (A.31) are nonnegative. Hence, they must be individually bounded
by a constant as R — oo since their sum tends to a finite limit, which is the right-hand side of (A.31).
We find therefore that (A.27) goes to zero in the limit R — oco. Passing to the limits p — 0 and R — oo
in (A.22) completes the proof. O
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A.3 Proof of the Kirchhoff representation

In the following, we denote | — &| by r. We establish in this section the well-known Kirchhoff repre-
sentation by transforming the frequency domain expression (A.14) into an integral representation in the
time domain. Kirchhoff’s formula is, of course, well known, and the details of its derivation are provided

here for the sake of completeness. Applying the inverse Fourier transform to (A.14), we obtain
u(x,t) = u’(x,t) +u™(x,t) +ul(z, ),

where the first term on the r.h.s. can be simplified to

(z,1) / / f(&,w)Gr(x, 2)e™ ™ dwdE =
T on
/ / / f(@ W@ Y didwdE =
/ / (@ / W&t gy didz =
471'7‘ _

2m8(L—t+t)

< f@,f) N
/Q/_OO Ay 5(g—t+t)dtdm_

f@t-§)
/Qwa.

A similar computation gives

W (@, 1) = %/F/_Z af—é)(:ﬁ,w)Gk(m,i)e_mdwdi :Aﬁaf—é) (2.0 ) dsa).
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Finally, we note that

vo(@-—x) 1 gy V(@) ey Vo (@—2)10 0
Z ik fw(L—t+t) _ iw( 7 —t+t) zw( t—i—t)
47r2 (r ik)e 4nr3 © * 42 s

Defining r = x — &, we get

1 [P IG(Z, ) . o~ i -
d - ) iw(t—t) —
u®(x,t) 27T/F/—oo /_OO (@) u(z,t)e dwdtdz
-r oo z’w(%—t—l—f) v-rl (9/ zw(%—t-ﬁ-f) g ~) —
// { <47Tr3 /_ooe dw + 12 ot e dw | ¢ dtds(x)
// @0) [ ls(C i+ 202050y ) Laasa)
u(@ 473 e drr? c Ot e B =
ver [u@,t—2) 10u /. r
/F47TT‘2{ r +EE (m,t—g)}ds.

A.4 Expansion in spherical harmonics

Spherical harmonics play an important role in the analysis of the Helmholtz equation; an expression
of the general solution of the Helmholtz equation in terms of spherical harmonics is provided in this
section. We assume that outside of a sphere centered at the origin with radius rp, the homogeneous

Helmholtz equation

Ad(x) + K*a(x) = 0 forr=|x| > (A.32)

holds. Introducing the spherical coordinates

rsin 6 cos ¢
r = rsinfsing | (A.33)

rcosf
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and denoting the unit sphere by I' = {z € R3 : |x| = 1}, the spherical harmonics can be expressed by

Yom(0,0) = \/(2n4:(:l)$l|;l‘;ﬂ)!an(cos@)eim‘z’, (A.34)

where the P,llm| are the associated Legendre functions. The spherical harmonics form an orthonormal

basis of L?(I'), see, e.g., [76]. We write (A.32) in spherical coordinates

0?2 20 1 o
(% - or + EAS> u+ k0 = 0, (A.35)

and we seek solutions of the form

W@) = DDt (1) Yiun(6, ). (A.36)

n=0m=-—n

The expansion (A.36) is substituted into (A.35), and, noticing that the Y, satisfy the eigenvalue

problem

AsYpn = —nn+1) Yo, (A.37)
for the Laplace-Beltrami operator
1 0 0 1 02
Ag = ——— |sinf— —_— A.
S sin 6 99 (Sln989> T 0942 (4.38)

we multiply equation (A.35) by Y5 and integrate over the unit sphere to get
2 20 1
<—+——+k2—7n(n+ )>umn = 0, r>rm. (A.39)

Dividing this equation by k? and making the change of variable 7 = kr along with w,,,,(1) = @(7) gives

rise to the spherical Bessel equation. The radial part of the expansion is therefore given by

umn(r) = Cmnhgzl)(rk)+dmnh%2)(rk)v (A'40)
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1,2)

where ¢, and d,,, are constants, and where hgl are the spherical Hankel functions of the first and

second kind,

o) = o (32) (5 = e e (1) (A1)

P = wDr), 8= (A.42)

see [76]. Alternatively, the spherical Hankel functions can be defined as the linear combination of the

two linearly independent classes of spherical Bessel functions j,, and spherical Neumann functions y,,:

WD) = —ya(r) +ijulr) (A.43)
hP(r) = —yalr) — ijn(r). (A.44)

Note that the definitions of the spherical Hankel functions vary in the literature. 2 In the rest of this
section, we investigate the impact of the outer operator on the uniqueness of the solution. This topic is
related to Section 4.1.4. As we shall see, a Sommerfeld-type operator is crucial to obtain a uniqueness

proof.

Unbounded domain: Sommerfeld’s radiation condition at infinity

Only the hg) family consists of outgoing waves and satisfies the radiation condition (A.7) at infinity.
More precisely, the expression (0, — ik)hsll)(rk) behaves like (—i)"[—exp(ikr)/(rk)]5y as r — oo and

r(0, — zk:)h(2) (rk) ~ —2(i)"*lexp(—ikr)B} as r — oo. It follows that all constants d,,, must vanish
to satisfy Sommerfeld’s boundary condition at infinity. Suppose we know the Dirichlet values of 4 on
the sphere with radius rp centered around the origin. The solution in the exterior of the sphere can be

written as the expansion

(1 7’ n
a(w) = Z fin_(rk) D CnnYmn(0, ), (A.45)

n= Oh Tl"k m=—n

Com = (0, Ymn)p - (A.46)

2For example, in [24], the spherical Hankel function of the first kind is defined as S (r) = (—z)"% no@mB (5™,
or equivalently as RV = Jn + Yn.
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We note that formula (A.45) holds for any rr > 0. It can be shown that if the series converges in the
mean square sense on the sphere |@| = rp, then it necessarily converges absolutely and uniformly on
compact subsets |x| > rp. Away from the origin, it solves the homogeneous Helmholtz equation.

We point out that \h%l)(rk)lz = (af + ot /(rk)* + ...+ al/(rk)®") /(rk)* with suitable positive con-
stants af,...,a? (see [76] for further details) is nonvanishing, and thus k? is never an eigenvalue to the
operator —A in the annulus, which makes (A.45) the unique radial part of the Helmholtz problem with
a Dirichlet condition on rr and Sommerfeld data at infinity. This result is a fundamental difference to a
purely Dirichlet or Neumann problem, as we demonstrate in the following subsections: we consider the
example of a domain with spherical finite inner and outer boundary, and we seek boundary conditions

on the outer sphere that uniquely determine the field in the bounded domain.

Finite domain: Dirichlet or Neumann boundary condition on outer boundary

We consider (A.32) defined in the annulus rr < r < rg along with the Dirichlet boundary conditions
u|p = gr at the inner sphere and u|p = gg at the outer sphere with the given Dirichlet data gr and gp.

This leads to

ufm = cmnhg)(mk) + dmnhf) (rek), (A.47)
Up = Cnmh$) (r0k) + dn B (o), (A.48)
where ul = (gr, Yinn)r and uB = (g5, Yinn)s. The constants are given by

b b (rsk) — g8 b (rrk)

Crn = (A.49)
WY ek (rk) — B (rgk) W (k)
r o) B,
dmn _ gmnhn (TBk) gmnhn (Trk) (A50)

W) (rsk) B (rek) — B (rek) B (rgk)

Equations (A.49) and(A.50) are not valid if their denominator vanishes. This occurs if

In(rk)yn(rrk) = yn(rsk)jn(rrk). (A.51)
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Equality (A.51) holds if and only if k2 is a Dirichlet eigenvalue of the negative Laplacian in the spherical
shell. Thus, we see that if we impose Dirichlet boundary conditions on the inner and outer sphere,
uniqueness of solutions does not hold for certain wave numbers k. A similar situation arises for Neumann

boundary conditions.

Finite domain: Sommerfeld-type boundary condition on the outer boundary

We emphasize that the lack of uniqueness discussed in the previous section does not occur if a Sommerfeld-
type operator is imposed on the outer sphere of radius ri of a spherical shell. In order to demonstrate
this fact, let us assume that we are given Dirichlet data at rp and the condition (9,u — iku)|p = gp.

The two equations which determine the constants ¢,,, and d,,, are

g;rm = Cmnhgzl)(rl"k) + dmnhg) (TI‘k) (A.52)
and
B d ) (1) d ) 1 (2)
I = Cmnk %hn (7)|rgk — thy ) (rBk) | + dmnk %h” ()|l — thy (rBk) | . (A.53)

The formal solution of the linear system (A.52)—(A.53) is

GBS (o) = ghy |2 (1) ar = ihS? (rsk)
Cmn = o) (A.54)

Kb [0 (1) ot — 0 (rsk)]| = 6Bl (rok)
dmn = ) , (A.55)

where

d , d .
Dy = k{200 | SO0t 1 r80) |~ 00 0) |02 1) — 02 )|
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simplifies to

Dy, = 2k {jn(rrk)yn(rek) — ju(rek)y.(rrk)} +

2ki {jn(rek)yy, (rek) — yn(rrk)j, (rsk) } - (A.56)

Therefore,

’Dn’2 = 4k2 [jn(rl“k)yn(rl?k) - jn(er)yn(rFk)P +

A2 [ (rrk)y (rak) — 4h (rsk)yn(rok) ]2, (A.57)

and thus |D,,|? vanishes if and only if

yn(rsk)  —gn(rsk) | | aCrek) | ] 0 (A.58)

Yn(rsk) —jn(rsk) Yn(rrk) 0

The determinant of the matrix in (A.58) is equal to y,(rgk)j, (rk) — y.,(rsk)jn(rpk). This is exactly
the negative Wronskian of j,(r) and y,(r). Because these two functions are linearly independent, the
Wronskian is never zero (in fact, the Wronskian equals — W, see, e.g., [24]). It follows that the matrix
in (A.58) is invertible and the solution to the corresponding system is j,(rrk) = 0 and y,,(rrk) = 0. As
these two functions never have common zeros (see [1, 76]), this condition can’t occur and we conclude

that the constants ¢y, and d,,, are uniquely determined by (A.54) and (A.55).
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Appendix B

Equivalent sources

In this appendix we describe a method to represent solutions of the Helmholtz equation by means of
planar distributions of sources. We consider an outgoing wave 4 that is generated by sources contained
in the ball of radius rp centered at the origin: the solution we consider is given by a certain integral
defined on a bounded domain (contained within the sphere of radius rr) that is a surface, a volume, or
both. Outside of this ball, equation (A.32) holds and the field can thus be represented as an expansion
(A.45) for |x| > rr. Now, we pose the following question: Is it possible to distribute some artificial
sources on a disc within the ball, such that these new introduced sources generate a field which coincides
to a high accuracy with the initial wave? This question has been affirmatively answered in [13, 14].
In this appendix, we discuss the details and formulate efficient algorithms which are relevant for our

purpose of constructing the data on the artificial outer boundary.

B.1 Equivalent source distribution on a disc

Theorem B.1.1. Let € >0, b>a >0, B(rg;b) = {x € R3: |x — r¢| < b} and

i@) = > BIE) D cumYum(0,9) (B.1)
n=0

m=—n

with some bounded constants cpy,. Then, there is a combination of single- and double-layer potentials
@p with densities supported on the disc D = {x € R3 : y = 0,22% + 2% < a®}, which differs from i(x) in

less than € for all x € R3\ B(rg;b).
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Proof. We note that (B.1) satisfies the homogeneous Helmholtz equation (A.32) away from the origin
along with the radiation condition at infinity. We denote the origin by ry and define two new coordinate

systems with origins at the points

0 0
7‘1(5) =ryg—290 1 , 7”2(5) =7rg+0 1 , (B2)
0 0

for § > 0 (see Figure B.1). Next, we define balls Bg around the centers r;, ¢ = 1 or 2, with radii larger

Figure B.1: The geometry of Theorem B.1.1

than 9, i.e., both points ry and r; lie in Bg. Now the Dirichlet problems

AW+ K2 = 0, x € R3\Bi (B.3)
@' = dlyp, €IB; (B.4)
r (0, —ik)a' = 0, as r' — oo, (B.5)

admit the solution

n=0

m=—n
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where the ¢, are uniquely determined by (A.46) and (B.4). With these constants, this formula defines
a solution of the homogeneous Helmholtz equation for & € R3\{r;}. By construction, % and @’ solve
the Helmholtz equation outside Bg with the same boundary conditions on 8Bf; and at infinity. By
uniqueness, it follows that @ = ' outside of Bg. In particular, for any point outside the ball B(rg;b),

the identity @' = 4% = 4 holds. Therefore, we can write

1

o = a'4+a®—a, xcRN\B(rgb). (B.7)

Since all three functions @, @’ satisfy the homogeneous Helmholtz equation away from their origins, we

can make use of the representation theorem in Section A.2.2 to get

L = u(x oG T.T) — % T z. 2)ds(%
‘o /slusQ @) 5@ @2 ~ 5, @C(@ 2)ds(@), (B.8)
a7 ﬁi:i}—’r" 0G a;j;_aﬂij_r' (s

Comparing these results with (B.7) and noticing that 1 = —vy on the disc D, it follows that

@=ds+ap, (B.10)
where
e — - i~ _., 0G .
us = ;/Sl(u (& —r;i(9)) u(m))ayz('%)(m’m) _
out . ont i )
<51/i(§c) (@ —ri(d)) — (@) (a:)> Gz, x)ds(x), (B.11)

ol ol
/D <ai(@) (@ —m(9) - %m(@ - 7’2(5)>> G(x, z)ds(&). (B.12)

The Green’s function and its derivative are bounded in (B.11), because the distance from any point on

S to the point « is nonvanishing. In view of the uniform continuity of the functions @ and 4° away from
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their origins (see Section A.4), for any positive numbers €; and €5 there exists a positive constant &0 such

that, |a'(z — r;(0)) — a(&)| < €1 and |8f?ai3) (x —7;i(9)) — 83&) (&)| < & for all § < &y. As & approaches

zero, the integrals over S; vanish, i.e., for any e > 0, there is a g, such that for § < dg, |ag| < e. We

conclude that |4 — up| = |ug| < € for 6 < dg. O

B.2 Two-face approach

We assume that the distribution of all known sources are contained in a cubic cell ¢; of side H. Let us
introduce the spheres Sy = {z € R® : |z F £[0,1,0]| = @H},S}’z ={zeR3: |lz¥Z0,1,0] =4},
and S = {x € R?: |x| = 1+2—\/§H } (see Figure B.2.1). Theorem B.1.1 implies the following theorem (see

[12, 13, 14] for more details):

Theorem B.2.1. Outside Sy, the field t.,(x) induced by sources contained in a cubic cell ¢; can be
approzimated with a prescribed accuracy by the sum of a single- and a double-layer potential with densities

distributed over any pair of parallel faces of c;.

Figure B.2: The geometry of Theorem B.2.1

We select one of the three pairs of the cube’s parallel faces and denote it by D1 U Dsy. Theorem B.2.1
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states that there exist sources {(&) and 7 (&) located at & € D; U Dy, such that

Pl = [ (jo@a)@ - Gl o) ) ds@ (B.13

approximates 4 at any @ outside of Sj in absolute value in less than an arbitrary small € > 0, i.e.,

P& nl(x) —d(z)] <e. (B.14)

In practice, the integrals in (B.13) must be discretized, leading to the representation of the form

Ticla) = Y (e @) ) - Gwiw)). (B.15)
n=1 n

where ¢ and 7 are the equivalent sources sampled at the integration points and multiplied by the

corresponding weights. We note that when studying the truncation error of the Green’s function, i.e.,

k Z Z B (k|z|) Ym<| |>]n(kz|m|)Y (;0' (B.16)

n=N+1m=-—n

EN =

the estimate
ey < 37N2 (B.17)

can be obtained under the assumption that N ~ 2kH, see [14].
We define the vectors € and 7 with the entries &; = &(y;) and 7; = n(y;), and consider the exact
and approximated field values at nc distinct points a; for [ € {1,...,n¢c}. Denoting r; ; = x; — y; and

r1,; = |r1], equation (B.15) can be written in the matrix form

e

b = [Am Ad} : (B.18)

S
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where
[ 706, n(21) |
Y o= | Il ni(x) | (B.19)
| Z[E ml(zne)
eile,j
{An}; = prey (B.20)
and
eikrl,j 1 .
{Adt; = W<;_Zk> VT (B.21)
g \TLj

Assuming that the field @ is known at the n¢ distinct collocation points x;, the goal is to find the
equivalent source distribution on the two faces. This motivates us to look for monopole sources & € R™s*1

and dipole sources n € R™*! such that ||[& — (A& + Agn)|, is minimized, i.e., we seek to solve

I%lin & — (Am€ + Aan)|; - (B.22)

)

The solution of the overdetermined system (B.22) can be obtained by the pseudo-inverse of the matrix
[A,,, Ag], which involves a singular value decomposition that is generally an order O(n¢ - n%) operation.
Once the equivalent sources £, 1 are computed, the field can be evaluated to a high accuracy at any
point outside of the collocation surface. In practice, we have to determine the position of the collocation
points. In [13], it is suggested to embed the cube with the two panels of size H into the center of a
three-times-larger cube of size 3H and choose points on this surface as collocation points. This leads to

the following algorithm:
Algorithm B.2.1.

(0

1. Given two opposite faces of a cube with length H, choose an appropriate equivalent source grid 7¢
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on the panels with nodes y; and mesh size Ag—see Figure 3.1. Select equally spaced collocation
points x; on the six faces of a three-times-larger cube that embeds the cell with the equivalent

sources. We assume that the field values 4; = u(x;) are known at all collocation points.
2. Build the system matrices (B.20) and (B.21).
3. Solve the least-square problem (B.22).

4. The field values can be evaluated at any point outside the collocation surface by the matrix-vector

multiplication (B.18).

Effect of various disc sizes on accuracy and efficiency

We seek to substitute the true sources contained in a cubic cell ¢; by equivalent sources on the faces of ¢;
in such a way that the field produced by the true and equivalent sources coincide to within a prescribed
numerical accuracy. In [12, 13, 14], it is proposed to place the equivalent sources in a set II;. The set II;
consists of points which lie within the union of two circular domains concentric with (and containing)
two opposite faces of ¢;. The radius of these domains is chosen to be equal to (or slightly larger than)
the length of half of the diagonals of the faces.

We demonstrate that in the context of this thesis it is advantageous in terms of accuracy and
computing time to place equivalent sources directly on the Cartesian grids Tél) UTg) of the faces D1 U Do
of ¢; with edge side H. We set the radius of II; to H, in which case it is slightly larger than half the
diagonal of the faces. Two separate computations are performed with Algorithm B.2.1 to obtain the
equivalent sources on II; and Dy U Ds, respectively, and the field is then evaluated on a slightly larger
cubic surface than the collocation surface. Specifically, the side length of the cube is 3H +2-107%. In the
Figures B.4 and B.5 we plot the maximum absolute error on that surface versus the number of locations
of the equivalent sources ng for the wave numbers k = 0.25,k = 1.25,k = 4, and k = 12, respectively.
The side length of ¢; is chosen as H = 2 for this specific computation. We observe the same quantitative
behavior in all cases: as ng increases, the equivalent sources on D1 U D5 produce up to a certain critical
value ngm’l ~ 1,000 more accurate values than the distributions on II;. But as ng approaches this
value, the convergence of the distributions on D1 U Dy slows down, while the representation induced
by the sources from II; continues rapidly converging to the exact solution until ng reaches a second

critical value ngm’Q ~ 4,000. At this point, there is a significant difference between the errors of the two
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curves. We note that as kH increases, the numerical solutions for a certain ng are less accurate. In the
Figures 3.6-3.10, we consider a maximal value of kH = 6. From Figures B.4-B.5 we conclude that if the
prescribed accuracy of the equivalent sources is O(1078) or less for kH < 6, the distribution on D1 U Dy
is advantageous over the distribution on II;. In the context of this thesis, the errors produced by the
finite element and finite difference schemes are larger than this order for the mesh sizes we consider.
Thus, we deal with the range ng < ngm’l, and choose to distribute the equivalent source locations on
D1 U D rather than on II;.

Finally, we emphasize that the accuracy of the equivalent sources representation is not limited: we
can obtain more and more accurate solutions all the way to machine precision by increasing the sizes of
the discs in the set II; appropriately. We demonstrate this in the example when H = 2 and k = 2. The
radius of the various II;(«) is defined by (1 4+ «)H/2, where « is a constant. In Figure B.3, we see that

higher accuracy is achieved as « is increased appropriately. It should be noted, as we already stated

before, that increasing the collocation box also results in higher accuracy.

. kH =4
10 — — —
o=0.0
] 2| s o=0.25 |
0 0=0.5
o=0.75
107 F a=1.0 H
107 | -
S
@
107 | -
107° 1
1072t 1
~14
10 N SN——
10° 10° 10* 10°
nS

Figure B.3: Convergence study as « increases
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B.3 Fast sampling in space

For special geometries, the convolution (B.18) can be evaluated rapidly by means of a fast Fourier
transform (FFT). We explain this on the basis of the two-face approach where the equivalent sources

are distributed on the regions Tél) Ur®see Figure 3.1. The positions of the equivalent sources on the
O]

discs D are at y e where [ € {1,2}. Further, the two-dimensional multi-index j is defined in the range

of (j1,j2) € {1,...,S} x{1,...,S}. We assume that the plane B is parallel to the discs D; U Do, and a
®3)

two-dimensional equidistant grid 74~ is constructed on it with nodes xy = y,(gl) +d®, where d is the

distance vectors from D; to B, see Figure B.6. We denote the monopole and dipole source distributions

N S— P =y +d?
J J

d(l)

Figure B.6: Geometry to sample on B with a FFT

on D; by §j(-l) and nj(-l), where j € Tél) and [ € {1,2}, and recall that the field at the points x; can be

computed by

2
vy = Zng), fOI‘kETéS), (B.23)
=1
where
1 1 1 l l
W = Y e a0, B2y

(1)
JE€Tg
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and

oG I
dY . = ——— " 2. (B.26)
k—j 8V(y§»l)) J

We note that the right-hand side of equations (B.25) and (B.26), with [ € {1,2} and {j,k} € Tél), are
functions of yy) —x = yy) — y,(f) —d¥ = ygllk — dW, and therefore, the right-hand side of equation
(B.24) can be regarded as a two-dimensional convolution defined on the equi-spaced mesh Tél). The

following lemma indicates how (B.24) can be computed fast with a two-dimensional FFT.

Lemma B.3.1. Given the nonperiodic discrete values (; and s;, with j € {0,...,N — 1} and 1 €

{=(N —-1),...,0,...,N — 1}, the convolution

N-1

=Y spjG, ke{0,...,N-1} (B.27)
j=0

can be evaluated by Fourier transforms as
o = F HF{EY F{ Y, ked{0,...,N -1}, (B.28)

where N = 2N — 1, F{o}, = Zﬁ;é ﬁme2mkm/N, for j€{0,...,N —1} and

= G ifje{0,... N1} (B.29)

0, else

sj,  ifje{~(N~—-1),...,0,...,N —1}
5i=19 s;_x» #i€{N,...,N—-1} (B.30)

sivys ifj€{=(N—=1),...,—N}



B.3 Fast sampling in space 146

" ifke{0,...,N—1
U = g J { J (B.31)

N-1
> j—0 Sk— iCj, else

forke{N,...,N —1}.

Proof. Using the definition of the Fourier transform and (B.27), we have

F{v}p = Z Upe N kM — Z Z Sm—jCje€ e kM

m=0 j=0
Exchanging the sums and substituting for m = n + j gives

—1N—-1—j

Flolr = Z 37 sue N D, (B.32)

=0 n=-j
For a fixed j in (B.32), we split the inner sum into two parts:

N—1—j N—1—j

Z $nGj e R k(n+i) Z Cjsne R k(ntd) Z Cjsn e N k() (B.33)

TL:—_j n_—]

We set m = N + n, and introduce this into the first sum of (B.33):

2
i

27 27 _ . 27 .
E C]S eN K +5) Z (]Sm NEeN R(m=N+j) — gjsm—Ne N (m+])-

n=—j m=N—j m

I
P
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Therefore, equation (B.33) can be rewritten as

—_

N—1—j _ N—1—j . ' - -
Z Sngje%k(nﬂ) — Z stne%k(nﬂ) + Z Can—NGQT("H)- (B.34)
n=—j n=0 n=N—j
If the values of s, are N—periodic, i.e., s, = s,_n for n € {0,..., N — 1} which is depicted in Figure
B.7, equation (B.34) simplifies to Zg:_ol jsne%k(”“) and we have
N—1N-1 . NN
Flote = Z Z CaneTk("ﬂ) = Z Cje Nk Z Sn€ N = FLC Y - F{sh. (B.35)
Jj=0 n=0 7=0 n=0
LN =

For nonperiodic values, i.e., s, # s,—n, we define the extended values 5; and éj for j € {0,..

S

m

T
-(N-1) -1 0

z 1

Figure B.7: N—periodic discrete values s,

I I I
T T T T T T
—(2N-2) ce -N  —=(N-D)

Figure B.8: Extended nonperiodic values s, to N-periodic values ,
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2N —1} as in (B.30) and (B.29), respectively (compare also with Figure B.8). By construction, we have

N_
v =Y 8¢, ke{0,...,N—1}. (B.36)
j=0

=

Thus, the definition 95, = Zj»v:_ol §k—jC~j is equal to vy for the indices k € {0,..., N — 1}. Since 5, is
N-periodic, equations (B.32)(B.35) apply for the N discrete values. We conclude that the Fourier
transform F{#}; can be computed by a multiplication of F{3} with F{C}1, and the lemma follows by
performing the inverse Fourier transform on {0}, and (B.36).

O

Remark B.3.1. Lemma B.S3.1 is also valid for multi-indices, and thus it can be applied to equation

(B.24), with sy, substituted for my, or dy, and ; replaced by &; or n;.

B.4 Evaluation of the field on finer meshes than Té?))

We consider the geometry in Figure B.6. In the last section we described a fast and accurate algorithm

for the evaluation of the field on the mesh Tég) of the plane B. Here, our goal is to evaluate the field on

a finer mesh TI(,—? ), Clearly, we could obtain the unknown values from a local interpolation, but this may

be below our expected accuracy if the spacing of Té3) is too large. Instead, we can extend the ideas of

the last section to finer grids by zero-padding. In the following, we give the details of this approach.

We define an equidistant Cartesian grid TI(Jl) of mesh size Ap and length H with F x F nodes in

such a way that all points of the coarser mesh Tél) coincide with nodes belonging to 70

the three meshes Tg) on D1, Dy, and B with the finer grids Tg) and assign to all nodes on D; which do

. We replace

not coincide with the initial coarser mesh an equivalent source of strength zero. This procedure is also

0

known as zero-padding and it results in defining a discrete source distribution & g) (y;)Un 1~£

finer grids j € Tg) of the two faces D;. Thus, we can extend the monopole distribution on Tél) by

(y;) on the

D if (j1, o) € ¥
ey =4 s (B.37)

0, else,
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and the dipole distribution by

0 0, i (rg) € 7

np (Y;) = (B.38)

0, else.

It is obvious that the field ¥ p(xx) on B defined by

Z STt el )+ d) P w)y ke, (B.39)

1
lljél(v)

(3)

is identical to (B.23) for a coarse grid point @ with k € 7¢5’. The values m,(g) and d( ) ; are the natural

extensions of (B.25) and (B.26) to the finer grids {k,j} € TF Using (B.37) and (B.38), we can simplify
(B.39) to

Z Z {m € +a 0"y, kerd. (B.40)

= 1 (l)

Clearly, for computational purposes we prefer (B.39) over (B.40), as (B.39) can be evaluated with
0]

Lemma B.3.1 fast by two-dimensional FFTs on the meshes 75, while it is less obvious how to achieve
this with (B.40). Nevertheless, equation (B.40) reveals that (B.39) indeed evaluates the field values
O]

correctly, once the equivalent sources £j(-l) and 7;

;0 are known. In a more general case, there are n; layers

where equivalent sources are defined. Equation (B.39) includes 2n; matrix-vector multiplications of size
F*, and the cost to compute ¢ p directly is therefore an O(2n;F*) process. In contrast, computing
the convolution in (B.39) with Lemma B.3.1 involves 4n; two-dimensional FFTs of the size (2F — 1)2,
one inverse FFT of the same size and 2n;(2F — 1) multiplications, which is in summary an order

O ((2F — 1)*{2n; + (4ny + 1) log, (2F — 1)?}) operation.
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B.5 Implementation details of formula (B.39)

Lemma B.3.1 can be applied to (B.39) as follows: we identify 5, 5, with mé) k, and dé &y for {k1, ko} €

{-(2F —-1),...,0,...,2F — 1}. These values are functions of «;, j, — y,ii,w for j € 7'1(;) and k € T};),l €

{1,2} and can be built in the following way:

p
f(a:kl,kz —yé{)o), if {kl,kg} S TI(;I) = {0,...,F— 1}
I Flxoo — 4" i) if {hn ko) € {=1,..., —(F = 1)}
Sklyk2 (l)7 . (B41)
f(a:kl, yO _k ) if {kl,—kg}e{l,...,F—l}
2
fl@or, —yY ), if {—ki,ke} € {1,...., F -1},
1,
where f is the Green’s function or its normal derivative:
G(x,y), if sp =m
flag) = { Y o (B.42)

85(%) (z,y), if s = di.

In practice, we prefer not to deal with negative indices, which can be achieved by shifting these indices

by +(2F — 1). This results in 2F — 1 periodic values §j, defined for {k1,k2} € {0,...,2F — 2}.

®3)

We summarize the fast evaluation on the grid 7" in
Algorithm B.5.1.

®

1. Given the equivalent sources §j(-l) and 7);

(@)

on the meshes 74”, extend their definition on 7}” by
zero-padding (see equations (B.37) and (B.38)).
(1) ) .
2. Build my . and d’, according to (B.41).
3. Evaluate the two-dimensional FFT's of 5 F ,nF ,m,(j) ko and J,(gll) ko

4. Multiply the corresponding expressions term by term in the Fourier space.

5. Apply the inverse FFT (B.28) to get the field values on the grid points of 7'1(;3).
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Figures B.9 and B.10 display the real and imaginary parts of the functions mf),d,i” and ﬁ’L,(f),Jf),
respectively. The centers of the two faces Dy and Ds are located at [0, —H/2,0] and [0, H/2,0]. The
parameters for this example are F' = 5, H = 0.0625,k = 10, and d® = 4.5 - H. Figure B.11 gives the
contour plots of m,(j) and CZ,(:) for the refined meshes with F' =9 and F' = 17 nodes per side length.

Table B.1 shows the computing times in seconds on a Pentium IIT (Cascades) CPU to evaluate the field
on 7'};3 ) directly by the convolution (CONV) versus the CPU-time required to compute the same values
with the fast Algorithm B.5.1, denoted by CFFT. Note that the elapsed times for the CFFT algorithm

shown in the table include the build-up time of formulas (B.41) and (B.42), as well as all necessary

FFTs, which means that the portion of the purely sampling algorithm in CFFT is even smaller.

| S| C|] F || CONV | CFFT |

11 115 | 41 1 0
81 2 1
161 8 1
321 34 3
641 135 14

13 |17 ] 49 1 0
97 4 0
193 16 0
385 67 5
769 270 28

15|19 | 57 2 0
113 8 0
225 31 1
449 123
897 491 41

Table B.1: CPU-times of CONV and CFFT in sec

B.6 Evaluation on a large surface B

Let us assume the field values need to be computed on a plane B which is significantly larger than the
discs Dj. In such a case, the meshes of the two-faces Tl(;l) and 7'1(;2) can be appropriately increased to the
large grid size on B and equivalent sources of strength zero assigned to the new nodes. However, this
may be not efficient with respect to storage and computing time. Instead, it might be advantageous to
split the original large sampling mesh on B into meshes Tl(;~37j ) for j €{1,...,J} that are of the same size

®3)

as 7~ and which may or may not overlap—see Figure B.12 for an example. On each of these meshes
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Figure B.9: Real and imaginary parts of m,(j) and J,(:) for F =5, H =0.0625,k = 10
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Figure B.10: Real and imaginary parts of m,(f) and ci,(f) for F =5, H =0.0625,k = 10



B.6 Evaluation on a large surface B

154

16
14
12
10

N oA~ O

16
14
12
10

N A~ O

30

25

20

30

25

20

Figure B.11: Real and imaginary parts of m;,

m )
172
5 10 15
k1
s, )
172
5 10 15
k1
K(m" )
172
10 20 30
k1
3(m", )
172
10 20 30
k

u
u
u
u

-0.206
16
-0.208
14
-0.21 12
-0.212 10
_ X
0.214 8
-0.216 6
-0.218 4
-0.22 5
16
0.085 14
12
0.08 10
x(\l
8
0.075 6
4
0.07
2
-0.206
-0.208 30
-0.21 25
-0.212 20
o
-0214 < o
-0.216
10
-0.218
—0.22 5
30
0.085
25
0.08 20
x(\l
15
0.075
10
0.07 5
(1)

and cZ,(;) for F' =9 and F = 17, respectively

SK(dk '« )
12
5 10 15
k1
(1)
i'((dk k )
12
5 10 15
k1
(1)
EK(dk « )
12
10 20 30
k1
(1)
sl
12
10 20 30
k



B.6 Evaluation on a large surface B 155

the fast evaluation algorithm B.5.1 can be applied. This limits the size of the Fourier transforms to
(2F — 1) x (2F — 1) and can save a significant amount of storage if the sampling on B needs to be
performed over a large area on an extremely fine mesh. Figure B.12 illustrates splitting the evaluation
on B into J = 9 smaller computations. In the Figures B.13 and B.14, we plot the real and imaginary

parts of ﬁllgl) and J]gl) (3,7)

and T}?’g)

for the meshes 7 , respectively.

B

Figure B.12: Splitting the field evaluation on B into 9 smaller FFT computations on the meshes 7 };3 )

forj=1,...,9
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Appendix C

Periodic extension based on Chebyshev

approximation

Unlike the Fourier transformed variables of a function, the series coefficients produced by the continuation
method cannot be bounded by the maximum absolute value of the function approximated, see [17]. As
a result, the continuation coefficients can be quite large, which may lead to large function values in
the extended domain, as demonstrated in Figure 3.17. While this does not necessarily seem to be a
significant disadvantage for our application, it might be an asset to bound the continuation function in
the extended domain by a small constant. As known, the Chebyshev coeflicients are nicely bounded in
terms of the maximum value of the function approximated. This observation leads us to explore the
Chebyshev polynomials T;,(t), with the goal to extend the domain of definition for the Chebyshev series
into a larger periodic domain.

We recall some important properties of the polynomials T, (t). For ¢t € [—1,1], the Chebyshev

polynomial of degree n is defined (see, e.g. [11] or [39]) by

T.(t) = cos(n O(t)), (C.1)

O(t) = arccos(t). (C.2)

It is easy to see that Ty(t) = 1 and T3 (t) = t. The trigonometric identity cos(n z) = 2cos(x) cos((n —
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1) ) — cos((n — 2) z) immediately gives the recurrence relation
Tn(t) = QtTn_l(t) — Tn_g(t), n > 2. (03)

Formula (C.3) along with the initial conditions reveal that T}, is indeed a polynomial of order n. The

T, (t) has n zeros in the interval [—1, 1] which are located at the points

J A,
t = cos<w>, k=0,1,...,n—1, (C.4)

n

also known as the Chebyshev points. Also, in the same interval, the Chebyshev polynomial exhibits
n + 1 extrema, which take the values 1 if maximum and —1 if minimum, located at cos(wk/n) for
k =0,1,...,n. Since all the n zeros of T},(t) are in [—1,1], we expect the Chebyshev polynomials to
grow rapidly to infinity once outside of that interval if n > 1. This means that the Chebyshev series,

initially defined in [—1,1],

N-1

o) = Y adilt) - geo. (C.5)
k=0

would exhibit a rapid growth to large values if the domain of definition of the Chebyshev polynomials
were to be extended outside [—1, 1]. Besides, such an extension would not necessarily lead to a periodic
function. Both difficulties can be overcome by defining for each mode an appropriate window function
wi(t) = w(t; —ag, —1, 1, ax) which is one in [—1, 1] and smoothly decays to zero in [1, a] and [—ak, —1] for
an appropriate value ay > 1. A possible definition for the window is the C'*° function w(t; ¢, t1,t2,t3) =

v(—t; —t1, —to) - v(t; ta, t3), where

1, ift <tg,
v(tito,t1) = ¢ 0, ift>t, (C.6)

exp (2’;1_710 eXp(—%)) , else,
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see [16]. The expansion

N—

,_.

crTr(t — —cowp(1), (C.7)
k=0

is the natural extension of (C.5) to the domain ¢ € [—T,/2,T,/2], where T, is the period of the extended
domain. By definition, we have 0(t) = v(t) for ¢t € [—1,1]. The original function does not need to be

confined to [—1,1]. In fact, the transformation

:E(t) = (tb_ta)/2 T+ (ta+tb)/2 (08)

maps the reference interval into any domain [t,,tp]. We illustrate the accuracy of the method on two
concrete examples.

We consider the function in Figure C.1 on the left defined in the interval [2.8,3.0]. Our goal is to
construct an expansion (C.7) which is periodic in the interval [2.6,3.2], i.e., T, = 6, and approximates

the given green function in Figure C.1 to high order. We set N = 35 and compute the Chebyshev points

0.7

10*
06F B 107 b
05f i 107 L
10° F
5 04F 1
3
g
2 <! 107
2
S 03} i
107
02F B
107"
0.1+ e i
’// 10 16
0 1 1 1 1 1 1 1 1048 L L L 1 1 1
25 26 27 28 29 3 3.1 3.2 33 0 5 10 15 20 25 30 35
time k

Figure C.1: Left: The function we wish to approximate to high accuracy in [2.8,3.0].
Right: The error e¥_ is a measure if a; has been chosen appropriately.

in the reference interval. Under the assumption that the function values v(t) at these points are known,
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we evaluate the Chebyshev coefficients

k=0

N-1
aq = %Zv(cos(%))cos(%), [=0,...,N -1 (C.9)

The subtlety lies in selecting an appropriate a,. Here, we choose wg = 1 and

3, ifke{l,...,15},
ap = (ClO)
1.3, if k€ {16,...,35} .

On the right of Figure C.1, we compare the discrete values cxTy(t;)wg(t;) at M equidistant points in
[—3,3] with its zero padded function. More precisely, we apply a FFT to the values of ¢ T} (t;)wg(t;)
at M /2 equidistant points in [—3, 3], and, after zero padding to M frequency coefficients, transform the
data back into the physical domain. We plot for every Chebyshev mode k£ the maximum absolute error

b = Th(t)wi(tr) — Fof {Far o {enThwn } } (¢ .11
oo le{o??ﬁ—l}‘ck k(t)wit) = Fag {AFuplecTiost )] (C.11)

on a logarithmic scale. A too large error in (C.11) for some k may indicate that the aj is not chosen

07 T T T T T T T 07
0.6 T 0.6
05 q 05
0.4 0.4
< c
<] <]
El El
S S
@ @
0.3 0.3
0.2 q 02
0.1F rd i 01fF _
0 I I I I I I I 0 I I I I I I I
25 26 27 2.8 29 3 3.1 3.2 3.3 25 26 27 2.8 29 3 3.1 3.2 3.3
time time

Figure C.2: Left: Continuation function (blue crosses) in the initial domain [2.8,3.0]. Right: Continua-
tion function (blue crosses) in the extended domain [2.6,3.2]
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appropriately. Indeed, a slow-to-zero decaying window function wg(¢) can cause the term ¢ Tjwy to rise
outside the reference interval rapidly to extremely large values before falling to zero. On the other hand,
a steep decay to zero of wy, can introduce too high frequencies in ¢ Tpwy. In both cases, the term ¢, Trwy
would be hard to resolve properly. The result on the right side of Figure C.1 suggests that the choice
in (C.10) is acceptable. The function (C.7) is plotted in Figure C.2 in both the original and extended
domain. The values outside of [2.8,3.0] are nicely bounded as expected, and, inside the interval, the
error to the original function is small: eso &~ 8.0- 1071, 9seno ~ 4.4 - 107, Openo ~ 4.0 - 107 7.
In the second example, we want to find the Chebyshev continuation of the function plotted in Figure
C.3 on the left. It should match with the original function in the domain [2.8,3.0], but this time we

choose T, = 4 , i.e., the extended periodic function is supposed to be defined in [2.7,3.1]. We select
wo = 1 and

2, ifke{l,...,27},
ay

(C.12)
1.3, if ke {28,...,35} .

The plot in Figure C.3 on the right suggests that this is a suitable choice. Figure C.4 again confirms that
the periodic function is bounded by a small constant outside the original interval. Finally, the errors

inside of [2.8,3.0] are s ~ 1.5 - 1071 dse0e ~ 2.6 - 10711, Ojreqe &~ 1.2 - 1077 demonstrating again the
high accuracy of this approach.

0.4
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05 I I I I I I I
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time

I I 12
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Figure C.3: Left: The function we wish to approximate. Right: The error ¥

o0
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Figure C.4: Left: Continuation function (blue crosses) in [2.8,3.0]. Right: Continuation function (blue
crosses) in [2.7,3.1]
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