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ABSTRACT

The development of bulk metallic glass alloys is presented with various elemental
selection criteria, design strategies, and experimental techniques. The focus was later
drawn towards the development of noble bulk metallic glasses based on gold and
platinum. To formulate a good bulk glass forming composition, we found that the gold
alloys had to be optimized using uncommon approaches. One strategy was to primarily
increase the glass transition temperature of the alloy, instead of lowering the melting
temperature. The resulting gold bulk metallic glass alloy could be cast fully amorphous
up to 5 mm thick. However, the best gold glass former also exhibited many anomalous
behaviors; for example, a very high strain rate could induce phase separation in the bulk
glass forming liquid. A detail study on the strain rate induced crystallization was carried
out systematically to pinpoint the exact conditions that would cause an anomaly.

Additionally, a variety of comparative studies were conducted on the gold and
platinum bulk metallic glass alloys, including elastic constants measurement, heat
capacity measurement, viscosity measurement using three-point beam bending, and time
to crystallization study in order to construct a Time-Temperature Transformation diagram.

The last chapter switches gears to the engineering and technology aspect of gold
and platinum bulk metallic glasses. The thermoplastic soldering technique is introduced
as a novel method for joining any two materials at temperatures lower than that of
brazing or welding processes. The proposed technique is a new alternative to the lead-

free soldering process available to the electronic industry.
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