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Abstract

This thesis presents the scanning tunneling spectroscopic studies of the non-universal electronic

properties among electron- and hole-doped cuprates. Tunneling spectra of the electron-doped

Sr0.9La0.1CuO2 and the hole-doped YBa2Cu3O6+δ reveal distinctly different behavior in the pairing

symmetries, pseudogap phenomena, satellite features, and low-energy excitations. While under-

doped and optimally doped YBa2Cu3O6+δ exhibits d-wave and overdoped Ca-doped YBa2Cu3O6+δ

(d+s)-wave pairing symmetry, the electron-doped Sr0.9La0.1CuO2 shows fully gapped s-wave pairing

symmetry. The absence of the satellite features and pseudogap in tunneling spectra of electron-doped

cuprates sharply contrasts with their general presence in hole-doped cuprates. Furthermore, the sub-

gap low-energy spectral characteristics of Sr0.9La0.1CuO2 deviate substantially from the mean-field

Bardeen-Cooper-Schrieffer theory, while those of YBa2Cu3O6+δ can be fully accounted for by the

mean-field generalized Blonder-Tinkham-Klapwijk formalism.

Despite the aforementioned disparities, several experimental results reveal important connections

between the two types of cuprates. For instance, the coexistence of the pseudogap and superconduct-

ing spectra in hole-doped cuprates and the observations of the current- and field-induced pseudogap

in electron-doped cuprates suggest that competing orders, manifested as the pseudogap, coexist with

superconductivity in both types of cuprates. In addition, by comparing the tunneling spectra with

the high-field vortex dynamics measurements, we find that the quasiparticle spectral characteris-

tics of Sr0.9La0.1CuO2 and YBa2Cu3O6+δ correlate with the degree of field-induced quantum phase

fluctuations of the two compounds.

Based on these findings, we propose a simple model of coexisting density waves with super-

conductivity to unify the apparent non-universal phenomena among cuprate superconductors. By
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incorporating quantum phase fluctuations and adopting realistic band structures, numerical simula-

tions of the quasiparticle tunneling spectra demonstrate excess subgap low-energy excitations, which

is consistent with the empirical observations in Sr0.9La0.1CuO2. Furthermore, by tuning the ratio of

the density waves to superconductivity, the theoretical calculations reproduce the absence of pseudo-

gap phenomena in electron-doped cuprates and the general presence of he pseudogap in hole-doped

cuprates. Thereby, we conclude that the competing orders that coexist with superconductivity in

cuprate superconductors contribute to the rich cuprate phenomenology.
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