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Abstract

This thesis presents the scanning tunneling spectroscopic studies of the non-universal electronic
properties among electron- and hole-doped cuprates. Tunneling spectra of the electron-doped
Srg.9Lag.1CuO2 and the hole-doped YBasCusOgs reveal distinctly different behavior in the pairing
symmetries, pseudogap phenomena, satellite features, and low-energy excitations. While under-
doped and optimally doped YBasCu3Og,5 exhibits d-wave and overdoped Ca-doped YBaoCusOgs
(d+s)-wave pairing symmetry, the electron-doped Srg gLag.1 CuOs shows fully gapped s-wave pairing
symmetry. The absence of the satellite features and pseudogap in tunneling spectra of electron-doped
cuprates sharply contrasts with their general presence in hole-doped cuprates. Furthermore, the sub-
gap low-energy spectral characteristics of Srgglag1CuOs deviate substantially from the mean-field
Bardeen-Cooper-Schrieffer theory, while those of YBayCusOgys can be fully accounted for by the
mean-field generalized Blonder-Tinkham-Klapwijk formalism.

Despite the aforementioned disparities, several experimental results reveal important connections
between the two types of cuprates. For instance, the coexistence of the pseudogap and superconduct-
ing spectra in hole-doped cuprates and the observations of the current- and field-induced pseudogap
in electron-doped cuprates suggest that competing orders, manifested as the pseudogap, coexist with
superconductivity in both types of cuprates. In addition, by comparing the tunneling spectra with
the high-field vortex dynamics measurements, we find that the quasiparticle spectral characteris-
tics of Srg.gLag1CuOg and YBayCusOgs correlate with the degree of field-induced quantum phase
fluctuations of the two compounds.

Based on these findings, we propose a simple model of coexisting density waves with super-

conductivity to unify the apparent non-universal phenomena among cuprate superconductors. By
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incorporating quantum phase fluctuations and adopting realistic band structures, numerical simula-
tions of the quasiparticle tunneling spectra demonstrate excess subgap low-energy excitations, which
is consistent with the empirical observations in Srg gLag.1CuQOs. Furthermore, by tuning the ratio of
the density waves to superconductivity, the theoretical calculations reproduce the absence of pseudo-
gap phenomena in electron-doped cuprates and the general presence of he pseudogap in hole-doped
cuprates. Thereby, we conclude that the competing orders that coexist with superconductivity in

cuprate superconductors contribute to the rich cuprate phenomenology.
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