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Abstract

The gravitational lensing cross sections for multiple imaging by elliptical galaxy po-
tentials is examined. Lenses are found to divide into strong and marginal lenses.
Three image systems form either allied geometries in which the two brightest images
lie on the same side of the lens, or opposed geometries in which the two brightest
images lie on opposite sides of the lens. Strong lenses are dominated by the three
image opposed geometry at low amplifications and the five image geometry at high
amplifications. Marginal lenses are dominated by the three image allied geometry.
The cross sections for multiple imaging are integrated over the expected distribution
of lenses and sources. The sources are taken to be quasars with a standard number-
magnitude relation. Approximately one in one thousand quasars will be multiply
imaged. Bright lensed quasars are likely to have five images due to the effects of
amplification bias.

Approximately one to ten percent of lens systems will involve more than one lensing
galaxy either at the same or at a different redshift. The statistical properties of such
“two screen” gravitational lenses are evaluated.

An inversion technique for resolved gravitational lenses is developed and applied to
the radio ring image MG1131+4+0456. The technique works both for intensity and
polarization maps. The velocity dispersion, position, ellipticity and position angle of -
the lens are tightly constrained — typically to within ten percent or two tenths of an
arc second.

The propagation of a precessing hydrodynamic jet is studied using finite difference
techniques in an axisyminetric system. The implications for the precessing jet in
S§S433 is examined. It is unlikely that the SS433 jet can be hydrodynamic in nature
unless the kinetic luminosity is much lower than that required to form the lobes of
the W50 remnant.

The tidal disruption of a star on a parabolic orbit past a supermassive black hole is
examined using smooth particle hydrodynamics. The spectrum of specific energies
for the debris is in close agreement with analytic expectations. Processes leading to
the formation of an accretion disk are discussed.
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1. Gravitational Lensing

The first gravitational lens, Q0957+561, was discovered in 1979 (Walsh et al., 1979).
It consisted of two redshift 1.41 quasar images separated by six arc-seconds on the sky,
with a redshift 0.36 cluster in between. Since then, gravitational lensing has undergone
an explosive growth in terms of both observed lens candidates and theoretical studies.
There are at least eight strong candidates for multiple imaging of point sources, and
an equal number of weaker candidates. Two types of phenomena have been found in
which extended rather than point sources are lensed. The first type, found in 1986 in the
cluster Abell 370, consists of extended arcs (which are typically ten to twenty arc seconds
in extent) about the cores of rich, distant clusters of galaxies (Lynds and Petrosian,
1986, Soucail et al., 1987). There are now nearly as many arc lenses as there are point
source lenses. The second type is the even more dramatic case of the radio ring images
MG113140456 and MG1634+1346 (Hewitt et al., 1988, Langston et al., 1988). Searches
are also underway for statistical effects due to distortions of singly imaged sources by
intervening matter. Detailed reviews of gravitational lensing can be found in Blandford
and Kochanek (1987) and Blandford, Kochanek, Kovner, and Narayan (1989).

1.1. Historical Introduction

The basic physics of gravitational lensing was understood in 1919, when the solar
eclipse expedition of that year confirmed that the gravitational bending of light by the
sun agreed with the predictions of general relativity,

_4M,
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at the solar limb (in units where G = 1 and ¢ = 1, which we will use throughout). It ap-
pears that no one seriously discussed the amplification or multiple imaging of background
sources until Einstein discussed gravitational lensing by stars in 1936 (Einstein, 1936).
The great leap was made in 1937 by Zwicky when he proposed gravitational lensing by
galaxies (Zwicky, 1937). Remember that both the sizes and distances to the “nebulae”
(as distant galaxies were then called) were extremely uncertain in 1937, so that it was a
rather radical proposal.

In Zwicky’s lifetime the subject remained quiescent because no examples of the phe-
nomenon were ever found. Sargent reports that Zwicky had an object that he claimed was
a gravitational lens although he never published the data. A fellow Caltech astronomer
(Munch) said that he would eat the photographic plate if Zwicky’s claim was correct.
The promise was made at a conference, and Munch appeared to be so perturbed that
the moderator of the session hastily brought it to a close. After Zwicky’s death, Sargent
examined the plate with the hope of serving it to Munch on a platter — unfortunately, the
putative lens appears to have been a plate defect (W.L.W. Sargent, private communica-
tion). Some theoretical progress was made prior to 1979, by Refsdal and Barnothy and
Barnothy in the 1960s and Bourassa, Kantowski, Norton, Press, Gunn and several others
in the 1970s. The discovery of Q09574561 in 1979 did not take (all) theorists by surprise.

1.2. Observations of Lenses

In the first few years after the discovery of Q0957+561, progress was slow. A second
lens, Q1115+080, was found in 1980 (Weymann et al., 1980), and a third, Q2016+112,
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was found in 1984 (Lawrence et al., 1984). (Schematic diagrams of the Q11154080 and
Q20164112 systems are shown in Figure 1.) Several other objects were claimed to be
lenses (e.g., Q2345+007 by Weedman et al., 1982, and Q16354267 by Djorgovski et al.,
1984) but the evidence for lensing was not convincing. The strong cases have more than
twoimages or direct evidence of a lens, while the weak cases have only two quasar images
with no indication of a lens.

An object lesson on the danger of assuming that the weak cases are lensed is given
by the binary quasar PKS1145-071 (Djorgovski et al., 1987). This system consists of
two optical images separated by 4.2 arc-seconds with an optical flux ratio of 2.5 and
a redshift separation consistent with Az = 0. Based on this information, the system
matches the characteristics of the other “dark matter” lenses such as Q23454-007. In this
case, however, the brighter quasar is also a radio source, while the fainter one is not — the
lower limit on the radio luminosity ratio is 500. This system cannot be a gravitational
lens. Yet only 1 — 10% of QSOs (depending on luminosity) are radio sources, so that a
clear distinction between binaries and lenses will be much more difficult in most cases.
For each pair such as PKS1145-071 there will be ten or more pairs in which neither object
is a radio source.

The first example of lensing an extended object was found in 1986 when Lynds and
Petrosian (1986) and Soucail et al. (1987) reported the discovery of a faint arc extending
for 20 arc seconds about the core of the cluster Abell 370. Initially the lens hypothesis for
the arc was considered unlikely because it required the core of the cluster to be far more
compact than conventional wisdom allowed. In 1988, however, Soucail et al. found that
the arc had a different redshift from that of the cluster (0.72 for the arc, and 0.37 for the
cluster), which proved that the effect was due to lensing. Several smaller arc structures
have been found in A370, which reinforce the lensing hypothesis. Since then many rich,
distant clusters have been found to contain arcs (Giraud, 1988, Lavery and Henry, 1988,
Lynds and Petrosian, 1989).

The object MG1131+0456 found by Hewitt et al. (1988) is a radio core-jet source
which is transformed into a ring by an intervening galaxy. There are two images of the
core, and the jet is wrapped around the two images of the core to form a nearly complete
elliptical ring. Unfortunately both the underlying radio source and the lens are too faint
for spectroscopy and the redshifts have not been measured. Optical images do not show
a ring, but this may be due to the difficulty in resolving the ring at optical wavelengths
because of atmospheric seeing. A second example, MG1634+1346, was found by the same
group (Langston et al., 1989) — in this case the source contains an unlensed radio lobe,
an unresolved core, and a second radio lobe that is lensed into a ring. Both the quasar
and the lens are bright enough for spectroscopy, and the redshifts have been determined
to be 1.74 and 0.25 respectively.

A summary of the observed lenses is given in Table 1. The lenses are classified to be
point sources, arcs, or rings and the case for each lens is summarized by the options of
a Scottish jury: guilty, not proven, and not guilty. For their own protection, cases that
have been found not guilty are not listed.

Even in the absence of multiple imaging, gravitational lenses produce a distorted
image of the universe by altering the shape or flux of objects behind the lens. These
distorted, single images rarely show dramatic evidence of the lensing effect (with the
possible exception of some of the arc lenses) and it is only in a statistical sample that the
distortions can be measured. Several attempts have been made to detect the presence
of statistical gravitational lensing since 1979. The first attempt (Tyson et al., 1984)
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looked for changes in the shape of galaxies. A region of the sky was split into foreground
and background galaxies based on their magnitudes. The foreground galaxies induce a
tangential distortion in the isophotes of the background galaxies, the magnitude of which
can be used to measure the mass of the lens. The goal of Tyson and his collaborators
was to set limits on galactic dark matter halos. The effect is subtle because it involves a
change in the slope of the lensing potential, and the results were not conclusive.

More recent statistical studies have centered on examining the density of quasars near
galaxies in magnitude limited samples (Webster et al., 1988, Fugmann, 1988). The number
of quasars increases steeply with the limiting magnitude of the survey, with an eight-fold
increase per magnitude below 19, and a three-fold increase per magnitude above 19. The
halo of a galaxy slightly amplifies the quasars behind it, so that the effective depth of the
survey is higher near galaxies. If the quasar number-magnitude relation is N(m), and the
mean amplification induced by galaxies within some radius is A, then the overdensity of
lenses near galaxies is ~ N(m + 2.5log A)/AN(m). If the typical induced amplification
is A ~ 2 (it is probably somewhat smaller) then the overdensity will be about 2.4. The
Webster survey, which is the largest, reports a mean overdensity of 4.1, which is much
larger than expected.

1.3. Theoretical Considerations

The theoretical formalism that is most useful for understanding the lensing phe-
nomenon is based on Fermat’s principle (Schneider, 1984, Blandford and Narayan, 1986).
General relativity tells us that the time delay induced by a Newtonian gravitational po-
tential ® is simply 2% in geometric units. This allows the construction of a virtual time
delay surface, which gives the time delay associated with virtual each ray passing from the
source to the observer. Fermat’s principle requires that the path that a light ray follows
from the source to the observer be an extremum of the virtual time delay.

The typical source and lens in our systems lie at cosmological distances from the
observer, and the separation is characterized by the Hubble radius ¢/Hy = 3000h~! Mpc
where h = Hy/100 km s~ *Mpc™" is between 0.5 and 1. Because the typical lens is very
small (~ 10 kpc for galaxies, or ~ 500 kpc for clusters) compared to the cosmological
separations between the lens and the observer or the source, we can use the thin lens
approximation. The first consequence of this approximation is that the structure of lens
along the line of sight can be ignored, and the effective lensing potential is the two-
dimensional Newtonian potential found by integrating the gravitational field along the
line of sight, ¢(?) = [ ®&ds. The second consequence of the thin lens approximation is that
the deflection angles are small, so that the geometric components of the time delay due
to the differences in path length of virtual rays can be expanded in the small deflection
angle. The virtual time delay is

1DorDos

7— @) —263(7 .
5 Dis ( ) —242)(2) (1.2)
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where 7 and @ are two-dimensional angular distances on the sky for the position of the
virtual image and the source. The quantities Doz, Dos, and Dys are the angular di-
ameter distances between the Observer, the Lens, and the Source. An angular diameter
distance, D, relates the angular separation of two points on the sky, 6, to their physical
separation, [, through the relation # = [/D. In laboratory optics, D is simply the distance,
while in gravitational lensing it depends on the background cosmology of the universe.
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The final factor of (1 + z1,) corrects the time delay at the lens for the general relativistic
time dilation between the lens and the observer.

Given a source position, @, the image positions, &, are found using Fermat’s principle
to lie at solutions of V7 =0, or

Dips

3 42z
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The distortion of the image is related to the curvature of the time delay surface through
du; = 7,; 6z; where 7,;; is the two-dimensional matrix of second derivatives of the time
delay surface. If the time delay surface is very flat in some direction (¢.e., an eigenvalue
of 7,;; is nearly zero), the image of a finite sized source will be stretched in that direction.
The ratio of the area of a source to the area of its image is A~1 = |7;;| where 4 is the
amplification. Image positions on which A diverges are said to lie on critical lines, and the
corresponding locus of source positions are termed caustics. On the critical line, one of the
eigenvalues of 7,;; is zero, and images are “infinitely” stretched along the corresponding
eigenvector.

The caustics mark the boundaries for transitions between different image multiplic-
ities, and the critical lines mark the points where images are created or destroyed as a
source crosses a caustic. Caustics can be classified by the local shape of the time delay
surface in terms of “catastrophe” theory. Only two types of “catastrophes” are important
in gravitational lensing: the fold and the cusp. Both fold and cusp caustics mark transi-
tions in which the image multiplicity changes by two — it is the character of the process
by which the images are created or destroyed that differentiates them. When a source
crosses a fold catastrophe from the higher to the lower image multiplicity region, two
images merge on the critical line associated with the caustic. The amplification of these
two images diverges, while that of all other images in the system remains approximately
constant. The images vanish when the source is across the caustic. If the transition is
made by crossing a cusp caustic, three images merge instead of two. The amplification
of the merging images again diverges, but once the source is across the caustic one of
the three images is still present and highly amplified. The statistical properties of lenses
are dominated by the properties of the fold caustics (because the folds are curves while
the cusps are points in the source plane, so that the region of source space dominated by
cusps has a lower “dimension” than that dominated by folds).

1.4. Studies in Gravitational Lensing

Early work on gravitational lenses focused on singular, circular potentials (Turner,
Ostriker and Gott, 1983). A singular, monotonically-decreasing, two-dimensional lensing
potential can have two types of singularities: a divergence at the origin, or a discontinuity
in derivatives at the origin. A divergent potential always generates multiple images, and if
the potential is monotonic there will always be two images lying on the line connecting the
source and the lens, with one image on either side of the lens. Lenses with discontinuities
in the derivative of the potential generate multiple images over only a limited region of the
source plane, but the boundary separating the multiply-imaging region from the singly
imaging region is not a true caustic because the amplification of the images does not
diverge. Sources directly behind the lens generate an image that is a circular ring, termed
an Einstein ring, about the center of the lens. At this point, the amplification is infinite
in the direction along the ring and the origin is a “point caustic.”
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In Chapter 2 we discuss the structural effects on lensing behavior due to lifting the
two degeneracies of these simple lenses by giving the potential a finite core radius or
ellipticity. The addition of a core radius gives the lenses a true outer caustic, which is
associated with the inner critical line of the lens. We call this caustic the radial caustic
because it corresponds to two radially amplified images merging on the inner critical line.
The point directly behind the lens still generates Einstein rings due to the merging of
two tangentially extended images on the tangential critical line. Image systems that are
dominated by the radial caustic we term allied images because the two brightest images
are found on the same side of the lens, straddling the radial critical line, and image systems
dominated by the tangential caustic we term opposed images because the two brightest
images lie on opposite sides of the lens. If the core radius is small enough, the cross section
is dominated by the opposed image geometry — two images are near the tangential critical
line, and the third image is captured and deamplified by the core of the lens. As the core
radius is increased, the allied geometry becomes increasingly important until it dominates
the cross section. In this case the lens is only marginally able to generate multiple images,
and a further increase in the core radius leads to the lens becoming sub-critical and unable
to generate multiple images.

The point tangential caustic is structurally unstable to non-axisymmetric pertur-
bations, and the introduction of a small ellipticity to the lensing potential causes it to
unfold into an astroid consisting of four cusps joined by folds. The region inside the as-
troid generates five images, and transitions from five to three images are characterized by
images merging on the tangential critical line. For the moderate ellipticities characteris-
tic of galaxies, the elliptical lenses are dominated by the three-image opposed geometry,
followed by the five-image geometries and only then the three-image allied geometries.
Marginal lenses, however, are still dominated by the three-image allied geometry. In the
elliptical lenses the three-image opposed geometry is no longer associated with a caustic
— it is really a transition between five images and the three-image allied geometry, which
is associated with mergers on the radial caustic. As a result, the high amplification cross
sections for the various geometries are dominated by the five-image geometries (except
when the lens is marginal and the allied geometry again dominates).

In Chapter 3 we apply the results of Chapter 2 to estimate the number and properties
of gravitational lenses in the universe. We use the language of particle physics to describe
the interaction of background sources with a lens. A lens has a cross section for multiple
imaging, which is the area of the source plane in which the lens will generate multiple
images of a source. The lens can produce three types of multiple image geometries: the
three-image allied, three-image opposed, and five-image geometries. We characterize the
probability of an image type by its branching ratio, which is the fraction of multiply-
imaged sources that have that image type. We integrate the cross sections for imaging
over the redshift distribution of galaxies to find an optical depth for gravitational lensing.
For typical spiral galaxies with velocity dispersion ¢ = 177 km s ~1, core size s = 1/3 kpc,
ellipticity ¢ = 0.2, and local number density 0.02h> Mpc~3, the mean optical depth is
~ 1.5 x 10~* and the branching ratios for the opposed, allied, and five-image geometries
are 0.73 : 0.03 : 0.24 For typical elliptical galaxies with velocity dispersion ¢ = 306 km s -1
and local number density 0.0088h3 Mpc 3, the mean optical depth is ~ 1.3 x 1073, and
the branching ratios are 0.88 : 0.00 : 0.12. The optical depth for highly amplified lenses is
much lower (7 x 10~ and 3 x 10~° respectively), but the branching ratios are dominated
by the five-image geometry.

Because the quasar number counts increase very steeply as you look at fainter ob-
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jects, the high amplification lensing events can have a disproportionate effect on the lenses
found in a magnitude limited sample. At a fixed observed magnitude, m, the contribu-
tion from images with amplification A is weighted by the number of sources at magnitude
m + 2.5log A. If the number of quasars increases faster than the cross section decreases,
the highly amplified faint quasars contribute more than the intrinsically bright quasars —
this eflect is called amplification bias. If we want to understand the probable properties
of observed lenses, we must integrate the optical depths against the quasar distribution
including the effects of amplification bias to find the properties of a magnitude limited
sample of lensed quasars. Because the quasar number counts become less steep above 19
magnitudes, we expect the effects of amplification bias to be most significant for magni-
tudes less than 17. This can be seen in the ratio of the expected number of five-image
lenses to the expected number of three-image lenses. Since the five-image geometry dom-
inates the high magnification cross section, the characteristic sign of amplification bias is
an anomalously large ratio of five to three images. Strong amplification bias is found at
the bright end of the distribution where the five-image geometry becomes more probable
than the three-image geometries. The bias weakens and then vanishes as the magnitude
limit approaches the break in the quasar number counts. The lensed images are typically
separated by between one-half and two arc seconds, and one image is strongly deamplified
and trapped in the core of the galaxy.

Chapter 3 was inspired by the Q20164112 and Q22374030 lens systems. The
Q20164112 system seemed impossible to model if all of the galaxies were at the same
redshift, and the Q22374030 lens system showed signs of a second lens system because of
the existence of an absorption line in the quasar spectrum. Subramanian, Rees and Chitre
(1987) proposed that the “dark matter” lenses (such as Q23454007 and Q1635+267) were
generated by using several weak, dark lenses at different redshifts to give the large ob-
served image separations. The statistical distribution of galaxies leads us to expect that
one to ten percent of lensed objects should have a significant contribution from a sec-
ond galaxy. The equations for the two-screen system were discussed by Schneider and
Borgeest (1986), Blandford and Narayan (1986), Kovner (1987), and Padmanabhan and
Subramanian (1988), but they did not undertake a systematic study of their properties.
The only study of the interactions of two central potentials was a study of two point
masses lying at the same redshift by Schneider and Weiss (1986). We therefore undertook
a large scale survey of the properties of the two-screen gravitational lens, in which there
are two galaxies lying at different redshifts and separations.

The two-screen lens is also dominated by the properties of the fold caustics in the
lens although the details of the cross sections show complicated resonances in the cross
section and branching ratios. The most efficient lenses always consist of two lenses at
the same redshift with separations that are small compared to the typical radius of the
tangential critical line. The cross section shows a minimum for separations of twice the
radius of the critical line, and for larger separations it increases to the cross section for two
isolated lenses. The minimum occurs when the multiply-imaging regions for each galaxy
overlap in the source plane. Associated with the cross section minimum is a much higher
branching ratio for having seven images. Similarly as the redshift separation increases,
the first lens overfocuses light rays at the redshift of the second lens leading to a drop in
the overall cross section. These studies were made on the Caltech Mark IIT hypercube, a
coarse grained parallel computer, to take advantage of the large total memory available
on parallel machines. There are a number of interesting problems involved in parallelizing
the lensing algorithm, which we discuss in Apostolakis and Kochanek (1989).
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Unresolved lenses such as Q11154080 provide relatively few constraints on models
for the lensing potential because the lensing potential is sampled only at the locations
of the five images. The radio rings (and potentially the arcs) provide a constraint for
every multiply-imaged pixel in the map, and Chapter 4 exploits this property of extended
images to invert the first radio ring, MG1131+40456. The key to our method is that a
gravitational lens preserves the surface brightness of the source so that a resolved image
of a lens has the true surface brightness of the source. (An image can be amplified in
the sense that the total flux from the source is larger than what we would receive in the
absence of the lens if the area of the image is larger than the area of the source.) If we
have a model potential and we invert the image to obtain a model source, the extent to
which image pixels of differing surface brightnesses are mapped onto the same source pixel
provides a measure of the error in the inversion. We define an error measure based on the
r.m.s. mismatch in surface brightnesses, and then vary the parameters of the lens model
so as to minimize the error measure. The resulting inversion shows a normal radio source
consisting of a compact core and a jet lensed by a typical galaxy. Not only can we invert
the shape of the ring correctly, but we can also consistently invert polarization maps of
the source. The inversion is highly sensitive to the values of the parameters for the lens —
the velocity dispersion is constrained to within five percent, and the position of the lens
to within two tenths of an arc second. This technique produces stronger constraints on
the mass distribution in a moderate redshift galaxy than any other method.

2. Numerical Hydrodynamics

Many problems in astrophysics reduce to solving the Euler equations of hydrodynam-
ics. Until recently, progress was restricted to problems that could be reduced to ordinary
differential equations, or to model problems that admit analytic solutions. Only rarely
could multi-dimensional dynamical systems be studied with any detail. The typical as-
trophysical flow is characterized by moderate-to-high Mach numbers, and extremely high
Reynolds numbers, which leads to the expectation that the flows will have complicated
shock structures mixed with uncharacterizable turbulent behavior on all scales. The recent
availability of supercomputers allows us to begin studying these systems without some of
the restrictive assumptions required to make analytic progress. Computers, however, are
never a panacea, and they introduce their own restrictions and limitations.

The greatest danger is the tendency to regard the tool of simulation as a deus ez
machina from which results spring as Athena from the head of Zeus. Simulation is never
a replacement for a qualitative, physical understanding of a process, but rather it is a
tool for isolating which processes dominate the dynamics in systems where there are a
large number of competing effects. The second danger in simulations is to confuse the
apparent success of a technique, as manifested by alack of error messages or the continued
cooperation of the computer in evolving the system further, with a successful simulation.
This particular aspect of a successful simulation is the least part of the overall effort.
The real test of correctness is the provision of conclusive evidence that the technique is
appropriate for the problem to which it is applied. This requires a careful series of tests
and calibrations of the numerical technique, initially on trivial problems, but culminating
with problems as closely related to the system we wish to study as is practical. I will
discuss the application of the tools of simulation to two astrophysical problems: the
propagation of precessing jets, and the tidal disruption of a star during a close encounter
with a supermassive black hole.
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2.1. Hollow Conical Jets

The first serious astrophysical jet simulations were carried out by Norman, Smarr,
Winkler, and Smith in 1982. In these siinulations, axisymmetric jets were injected with
varying Mach numbers into a homogeneous medium in pressure equilibrium with the
jet. The two parameters in the study are the density contrast between the jet and the
medium, 1 = p;/pge, and the jet internal Mach number, M; (Norman and Winkler, 1985,
Norman, Winkler, and Smarr, 1983, 1984, K6ssel and Miiller, 1988, Lind, Payne, Meier,
and Blandford, 1988).

The simulations of jets have been restricted to two-dimensional (usually axisym-
metric) hydrodynamic or restricted MHD (including only the toroidal field components)
models. The hydrodynamic equations are probably valid even though the jet is composed
of a hot, rarefied plasma because magnetic fields keep the particles closely coupled. (In the
absence of magnetic fields, the mean free path of a particle would typically be larger than
the jet’s width.) The magnetic fields may be strong enough to be dynamically important,
in which case the MHD equations must be used, and studies of jets with strong toroidal
magnetic fields indicate significant differences in their dynamics (Lind, Payne, Meier and
Blandford, 1988, Clarke, Norman, and Burns, 1986). Detailed comparisons between ob-
served and simulated astrophysical jets are not practical because the only diagnostics we
have of the observed jets are the line of sight integrals of extremely complicated radiative
emission processes through the jet. Nonetheless, we can obtain physical insight into the
dynamical processes through the use of simulation, even if it represents a highly idealized
model.

The stability of the jet is largely determined by the Mach number. If we assume a
steady flow at velocity v through a channel of width A4, then the mass flux pvA must be a
constant, and Bernoulli’s principle requires that the specific energy, v?/2 + yP/p(y — 1),
remain constant along flow lines. Under these assumptions, the response of the pressure
to a change in the width of the channel is

dP 1 dA

d4 2.1
P “T1_17 A (2.1)

If the channel’s area is reduced (dA < 0) a subsonic flow experiences a pressure drop in
the constriction (M < 1 — dP « dA) while a supersonic flow experiences a pressure
increase in the constriction (M > 1 — dP « —dA). A pressure drop tries to constrict the
channel further, leading to an instability, while a pressure increase resists the constriction
and stabilizes the flow. If we move into the rest frame of the jet, the same criterion holds
except that the internal Mach number of the jet is replaced by the Mach number of the
jet relative to the ambient sound speed. The jet will be stable against pinching modes if
the jet is supersonic in both frames, v > ¢; + ¢ or M; > 1+ n1/2. The first unstable
mode of the supersonic jet must now be a “kinking” mode rather than a “sausage” mode.
As most astrophysical jets are extremely light (7 < 1) the condition on the Mach number
for stability reduces to M; > 1 (Norman and Winkler, 1985).

Most numerical studies have been restricted to two-dimensional, axisymmetric jets
in which the symmetry suppresses all kinking modes. Real jets are, of course, three-
dimensional and analytic studies of the growth of perturbations in cylindrical jets indicate
the presence of unstable helical modes (Payne and Cohn, 1985, Ferrari, Massaglia, and
Trussoni, 1982). Numerical studies of kink modes have been limited to examining two-
dimensional slab jets, which are excited with side to side oscillations at the orifice (Hardee
and Norman, 1988, Norman and Hardee, 1988). The slab jets are unstable, but they are
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somewhat unrealistic because the jet acts like a wall separating two regions of ambient gas.
In the cylindrical geometry, the ambient gas can communicate by sending signals around,
as well as through, the jet. Moreover, the models for jets that are used to compute the
instabilities differ from the observed jets by neglecting to include the cocoon of shocked jet
gas that sheaths astrophysical jets and protects them from the influences of the external
medium. Three-dimensional simulations will be required to understand the (observed)
stability of supersonic jets.

In the rest frame of the interface between the head of the jet and the shocked ambient
medium the ram pressures of the jet and the ambient medium must be balanced. If the
interface advances at velocity v,,, and the areas of the jet and the working surface are 4;
and A, respectively, then

4; [pi(v; — vw)® + Pj] = Ay [pavd, + Pa) (2.2)

The thermal pressure is of order ]Wj"z of the ram pressure so that the pressure can be
neglected in high Mach number flows. This implies that the Mach number of the working
surface (relative to the ambient sound speed) is

A4\ 1 _ (ps4i )"
wo=a(52) e = (22) &9

where the radius of the working surface is typically two to three jet radii (Norman and
Winkler, 1985, Lind, Payne, Meier, and Blandford, 1988). The jet gas passes through a
terminal shock structure typically consisting of a Mach disk on the axis and an annular
shock that deflects the gas into the cocoon. Low Mach number or high density jets require
no cocoon to contain the spent jet gas because the jet moves almost ballistically through
the ambient medium. Jets in this regime are called “naked beam” jets. High Mach number
and low density jets generate a large cocoon because they advance very slowly through
the ambient gas.

The cocoon is not a quiescent region ~ it is filled with vortices of varying size and
strength. Some of the vortices are supersonic and exhibit radial shocks in their cores.
The motions in the cocoon periodically impinge on the surface of the beam, triggering the
formation of crossed shocks along the axis of the jet. The perturbations travel in from the
surface of the beam at approximately the sound velocity (the more violent perturbations
can travel supersonically) so that the characteristic angle of the crossed shocks is the
Mach angle.

Most astrophysical jets are thought to resemble the cylindrical jets described above.
The largest extragalactic jets have velocities near the speed of light and maintain their
structure over hundreds of thousands of light years (see Begelman, Blandford, and Rees,
1984 for a review). There are a few exceptions, the most spectacular one of which is the
galactic object SS433 (see Margon 1984 for a review). The 55433 jet precesses with a
period of about one half of a year on the surface of a cone with a half angle of twenty
degrees. The jet velocity is known to be 0.26¢ from radio observations of the jet near
$S433 where clumps of gas emit radio waves that allow the trajectory to be mapped as
the jet precesses. The mildly relativistic velocity allows the geometry to be fixed exactly
(Hjellming and Johnston, 1982, 1985). Surrounding 55433 is the radio shell and possible
supernova remnant W50. W50 is strongly elongated along the precession axis of the 55433
jet: along the major axis W50 is 100 parsecs from 55433, and along the minor axis it is

only b0 parsecs away.
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The natural assumption is that the elongation of W50 is due to the action of the
jet (Begelman et al., 1980, Davidson and McCray, 1980, Konigl, 1983). The lobes of
W50 are considerably narrower than the opening angle of the precession cone: the half
angle relative to SS433 is approximately ten degrees compared to twenty degrees for the
jet. This implies that the jet must be focussed as it propagates from S5433 to the lobes.
The only model for a hydrodynamic focusing mechanism was proposed by Eichler (1983)
who assumed that the pressure on the interior of the precession cone is negligible. This is
equivalent to assuming that the interior gas cools very efficiently. Unfortunately the jet can
only be observed on scales that are small compared to W50 so there is no direct evidence
of the jet focusing and then impinging on the lobes. There is only indirect evidence for the
presence of the jet in the region between 55433 and W50 from observations of diffuse X-
ray emission and the positions of a few optical filaments (Zealey, Dopita, and Malin, 1980,
Watson et al., 1983). In Chapter 6 we make a detailed study of the propagation of hollow
jets to understand the differences between hollow jets and the filled jets discussed above.
We are restricted to two-dimensional, axisymmetric simulations, but this approximation
is quite good because the precession time of the jet is short compared for the time scale to
the jet to propagate from SS433 to W50 (0.5 years versus ~ 1000 years). Our conclusion is
that purely hydrodynamical effects are unable to account for the apparent geometry of the
55433-W50 system. One must either invoke additional physics such as non-adiabaticity
(through radiative cooling — which is not a likely solution) or non-hydrodynamic focusing
(using magnetic fields) or one must drop the assumption of a present day interaction
between the jet and W50.

2.2. Tidal Disruption

Active galactic nuclel (AGN) are the most luminous objects in the universe, with
luminosities from 1042 to 10 ergs s—!. The higher luminosity is the equivalent of con-
verting several solar masses of matter into radiation every year. AGNs are thought to
be driven by accretion onto a supermassive black hole lying at the center of the galaxy.
Material enters an accretion disk about the black hole, and viscous forces slowly release
the potential energy of the disk gas leading to the radiative emission. The luminosity is
limited by the Eddington luminosity of the black hole, which is the luminosity at which
the radiation pressure on an infalling electron exceeds the gravitational attraction. For
a black hole of mass My = 10°M = Ms solar masses, Lg =~ 10** Mg ergs s~*, and an
accretion rate of ~ 0.002Mge~! solar masses per year is required for efficiency € < 1in
converting mass to radiated energy. This implies that the highest luminosity AGNs re-
quire central black holes of ~ 10° M radiating near the Eddington limit, with accretion
rates of 2¢~! solar masses per year. Lower luminosity AGNs require much smaller black
holes and accretion rates (see Begelman, Blandford, and Rees, 1984, or Begelman, 1985
for reviews of AGN physics).

The accretion disk must be continuously fed if the AGN is to maintain its luminosity
and a variety of possible mechanisms have been proposed, including global instabilities,
stellar winds, stellar collisions, and tidal disruption. We want to study the dynamics of the
tidal disruption mechanism in detail. Disruption can supply fuel only for low luminosity
AGNs because the stars pass through the event horizons of the black hole before disrupting
if the black hole is more massive than 10° Mg = 10° Mg, and because the density of stars
required to maintain a disruption rate of one star each year is so high that other processes
such as collisions are more important (Phinney, 1989, or Rees, 1988 for reviews). The
black hole disrupts all stars on nearly radial orbits in a dynamical time, so that the “loss
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cone” of stars with angular momenta low enough to be captured is rapidly emptied. The
loss cone is refilled on the diffusion time scale, which is controlled either by the relaxation
time scale of the star cluster (Young et al., 1977) or by the asymmetries in the potential
(Norman and Silk, 1983). In either case, the time between disruptions for a Mg black
hole such as the one which may lie at the galactic center is approximately one thousand
years. In Chapter 7 we consider the detailed dynamics of the tidal disruption mechanism
for the most common encounter using the technique of smooth particle hydrodynamics.

A star passing a black hole will be tidally disrupted if the surface gravity of the star
is less than the tidal gravity of the black hole. If the radius of the orbital pericenter is R,
the star will disrupt when the ratio,

R3 oM 1/2
— P *

satisfies 5 < 1 (Press and Teukolsky, 1977). For a star like the sun passing a 109 M, black
hole this occurs when R, < 100R, which is much larger than the Schwarzschild radius of
the black hole (~ 4Rg). The disruption orbits are effectively parabolic, so that when the
star disrupts, half of the mass is bound to the black hole and eventually captured, while
the other half is unbound and ejected from the system. The key realization about this
process was made by Lacy, Townes, and Hollenbach in 1982 when they pointed out that
the characteristic energy of the debris is not the binding energy of the star, €, but the
potential energy difference across the star at pericenter, Ae. The spread in the specific
binding energies of the debris is Ae ~ (GMy/Ry)(Rs/Rp) > €& ~ (GMp/R,). This
corresponds to velocities of several thousand kilometers per second for the ejecta from a
solar type star. The captured debris begins to return after one month and continues to
return at a super-Eddington rate for approximately two years after the disruption of a
solar type star on an n = 1 orbit.

The binding energy of the debris is very small compared to the binding energy of a
circular orbit with the same angular momentum, so that the time scale for the orbits to
circularize into a disk near the black hole is limited by the time scale to radiate the binding
energy. If the gas radiates at fraction f of the Eddington luminosity, the time scale for
the gas to cool and settle after the orbits are circularized is ~ (GMpM./Rp)/fLg ~ 3f~!
years. Hence the disruption of a single star supports accretion onto a 108 M, black hole for
anywhere from a few to one hundred years depending on the details of the post-disruption
evolution (Rees, 1988). This means that AGN with black hole masses near Mg will be
in a quiescent state most of the time because of the long intervals between disruption
events punctuated by Eddington level emission flares while the material from a disruption
is accreted onto the black hole. Perhaps our own galaxy contains such a black hole, but

it is in its quiescent state.
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TABLE 1
Lens Candidates

QSO zQ z, mQ 6(") Number  How Type Verdict Who
arc-seconds of lmages

09574561 " 1.41 0.36 17 6 2 R,0 point + jet guilty Walsh et al., 1979
11154080 1.72 ? 16 2 4 0 point Weymann et al., 1980
2016+112  3.27 0.8,7 22 3 3 R,0 point Lawrence et al., 1984
22374031 1.7  0.04, 0.67 17 1 4 0 point Huchra et al., 1985
0142-100 2.72 ~0.5 17 2 2 0 point Surdej et al., 1987

3C324 1.2 0.84 20 2 2 o) point Le Fevre et al., 1987
14134117  2.55 ? 17 1 4 0 point Magain et al., 1988
04144456 ? ? 2 4 R,O point Hewitt et al., 1988
113140456 ? ? 22?7 2 2 R,O ring guilty Hewitt et al., 1988
163441346 1.74 0.25 21 2 - R ring Langston et al., 1989

A370 0.72 0.37 22 20 - 0 arc guilty Lynds et al., 1986

A963 ? 0.21 22 18 -~ ) arc Lavery et al., 1988
CL0500-24 ? 0.32 14 - 0 arc Giraud, 1988
CL2244-02 ? 0.33 20 15 - 0] arc Lynds et al., 1989
23454007 2.2 ? 19 7 2 0) point not proven  Weedman et al., 1982
1635+267 2.0 ? 19 4 2 0 point Djorgovski et al., 1984
00234171 1.0 ? 23 5 2 R point Hewitt et al., 1987

UM425 1.5 ~0.6 16 6 4 0] point Meylan et al., 1989

91V
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Figure 1. Schematic diagram (top) of the gravitational lens Q11154080 showing the
four images (A,A’,B,C) and the position of the lensing galaxy. The area of the circles sur-
rounding the images indicates their relative fluxes. Images A and A’ are probably merging
on a critical line. Schematic diagram (bottom) of the gravitational lens Q20164112 show-
ing the three images (A,B,C), two emission regions at the same redshift as the images
(A1,B1), and the two lensing galaxies (D,C’). The area of the circles surrounding the
images indicates their relative fluxes.
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Abstract

The imaging properties of isolated gravitational lenses are investigated numerically
using a model two-dimensional potential parametrized by its hardness, core radius and
ellipticity. Cross sections for creating image arrangements with specific characteristics
are presented and analyzed. Strong circular lenses can produce bright opposed images on
opposite sides of the potential center with an asymptotic cross section for producing a
pair of images magnified by more than a factor My, of ~ A, /M}Z, where A, is the area
of the of the outermost critical circle on the sky. When the ellipticity of the potential
exceeds 1/M, five image configurations become possible and predominate for maximum
amplifications 2 5. In this case, highly amplified images are generally found close together;
it is not possible to account for widely separated images being highly amplified. The
faintest image can be amplified by a factor ~ f~2, where f is the central surface density
in units of the critical surface density for multiple imaging. Marginal gravitational lenses
generally create three amplified images. The time delay associated with bright images
separated by rqy is proportional to 72,/ M,.
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1. Introduction

In spite of intensive observational and theoretical effort, not one of the eight claimed
examples of multiple imaging of a quasar by a gravitational lens is properly understood.
In some cases, (e.g. Q0957+561, Gorenstein et al.) one or more galaxies are seen in the
field of the quasar and although they must contribute to the light deflection, they cannot
account for the observed arrangement of images alone. In other cases, (e.g. Q16354267,
Djorgovski and Spinrad) there is no evidence for any intervening galaxies and indeed
doubt has been cast upon the reality of some of these claims (e.g. Shaver and Cristiani,
1986, Phinney and Blandford, 1986). It is clear that studies of multiply imaged quasars,
just like those of the dynamics of galaxies and clusters of galaxies, require the presence
of sub-luminous material. Observations and analyses of multiple images then take on a
special importance as they provide one of the few diagnostics we have of dark matter.

In principle, the images contain quite a lot of information about the gravitational
potential well formed by the dark matter. When two images lie on opposite sides of
the potential well, their angular separation is a measure of the velocity dispersion of
the particles that form the potential well (e.g. Young et al., 1980). If the images are
resolved, their relative parities and shears may fix the topology of the arrival time surface
and, indirectly, the rough shape of the potential well (e.g. Blandford and Narayan, 1986,
henceforth BN). Finally, the curious absence of the odd images from most of the examples
we have so far may imply the presence of a singular potential, or at least one that possesses
a small core radius. It is a tantalizing prospect that an astronomer can use beams of
photons to probe a condensation of dark matter in much the same way that a nuclear
physicist uses bears of electrons to study the structure of an atomic nucleus.

In one of the more detailed studies of gravitational imaging, Turner, Ostriker, and
Gott, 1983, (henceforth TOG) used a singular isothermal sphere and a point mass to
describe the distribution of matter in the lens. However, as several authors have pointed
out, this may not be representative of actual lenses in three distinct ways. Firstly, the
addition of even a mild degree of asymmetry can have a profound effect on the images (e.g.
Nityananda and Ostriker, 1984). In particular, when the potential is sufficiently elliptical
in shape, bright images will mostly be found close together straddling a critical line and
on the same side of the potential well, rather than on opposite sides as is the case for a
strictly circular potential (e.g BN). Secondly, a singular isothermal sphere potential will
only produce two images and is quite unrepresentative of a flat bottomed potential well
that will usually create a fairly bright odd image. Finally, the fairly “soft” potential well
associated with an isothermal sphere, behaves rather differently from the “hard” potential
generated by a more concentrated mass distribution; in particular, the former potential
is more likely to create five, as opposed to three, images. Quantitative calculations of the
rate of occurrence of multiple images, predicated on overly simple assumptions about the
form of the intervening matter, can be quite misleading.

Earlier work on the imaging properties of elliptical potentials has either been con-
fined to specific examples tailored to a particular quasar image pair (e.g. Narasimha et
al., 1982,1984ab), or constrained by the limitations of analytical calculations to small per-
turbations of circular potentials (e.g. Subramanian and Cowling, 1986, or Kovner, 1986).
Nevertheless, some qualitative understanding of the problem has been gained and several
theorems (albeit of limited applicability) have been proven.

In this paper, we describe a numerical study of the imaging properties of a three
parameter family of isolated elliptical potential wells. Specifically, we compute the mag-
nification distributions, the relative probabilities of observing three and five images and
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their arrangement on the sky relative to the potential well, and the differences in the light
travel times. We believe that our models span the range of qualitative behavior to be
expected from a single, centrally concentrated mass distribution and although there is
some model dependence in our quantitative results, the approximate descriptions of these
distributions, which we derive, are of quite general applicability.

Unfortunately, the present work also has some limitations, especially when it comes
to analyzing observations in detail. Our models assume that the potential is smooth
and we ignore the possibility of micro-lensing of a sufficiently compact source by stars
(e.g. Paczyriski 1986ab, Schneider 1986abc). We also only consider lenses confined to a
single plane; multiple lenses, located at different distances along the line of sight from
the observer to the source (e.g. Subramanian and Chitre, 1985), admit an even richer
variety of image configurations. Finally, by restricting our investigation to purely elliptical
potentials we exclude lenses comprising several galaxies, probably lying in the same group
or cluster, and superposed on the sky. Such relatively rare, large amplitude fluctuations in
the cosmic density distribution could be responsible for the observed preference for large
image splittings. In fact, even had we analyzed a more complete family of potentials, and
included these additional effects, we would still not have understood what types of image
arrangements should be found in observed systems. Selection effects bias the discovery
of gravitational lenses. In particular, amplification bias, the tendency to over represent
intrinsically faint but highly magnified quasars, must also be included.

In this paper we only compute cross sections; in an accompanying paper we use these
cross sections to attempt to calculate the expected distribution of quasar images if the
lenses are described by our model potential. In §2, we describe the model potentials that
we use and in §3, we review the geometric optics of a gravitational lens. Cross sections
are defined in §4 and described in §5 for strong lenses of varying ellipticity, core radius,
and hardness. In §6, a similar study is made of marginal lenses. These potentials are
normalized by ensuring that they have the same radius within which the average surface
density equals the “critical density” for producing multiple images at the distance of the
lens. We then present our results in the form of rough “rules of thumb?” that express
the variation of image arrangements with potential shape. The distribution of another
important observable, the arrival time differences for the different images, is discussed in
§7. Our results are collected in the concluding section. The appendix deals with analytical
calculations for circularly symmetric potential wells that we use to check the accuracy of
our numerical computations and to help understand the results.

2. Model Elliptical Potentials

We use a three parameter class of two-dimensional Newtonian potentials that char-
acterize the properties of isolated galactic and dark matter potentials.

Wz, y) = %[<1+(1~e)<§—>2+(1+6)<%>2>a~1} (2.1)

The parameter a determines the softness of the potential, spanning the range from an
asymptotically isothermal form, which we henceforth refer to as isothermal, {a = 1/2) to
a Plummer model (@ — 0, ¥ — (A/2)In(1 + (1 + €)z?/s?(1 — €)y*/s%) . A measures the
depth of the potential, and s the radius of the core. We consider values of the ellipticity €
between 0 and 0.2. For values of € beyond a critical value €. = a/(1 — a), these potentials
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develop negative surface densities at radii greater than

-1
P

(;)2 - [a+ o= axe- < (22)

beginning along the y-axis for positive ¢. This behavior will not affect the statistical
lensing properties of the potential, that are essentially governed by average quantities
which do not behave unphysically. Moreover, as we confine our attention to small € < 0.2,
the negative surface density region begins outside the region of interest for lensing for
almost all of the cases studied. For example, the & = 0 case has negative surface density
regions for all € # 0, yet the lensing properties are nearly the same as for nearby models
with a ~ 0.1, which do not suffer from the problem. In the limit of small core radius
and ellipticity, the ellipticity of the associated surface density contours is a factor of
(14 a)/o > 3 larger than the ellipticity of the surface potential, e. In the limit of large
core radius, the surface density ellipticity is 3¢/2 independent of a.

Real potentials of elliptical mass distributions become more circular with increasing
radius. This introduces at least one extra parameter. As most of the multiple imaging
events are associated with light rays having small impact parameters, we have found
that using a single ellipticity is adequate and avoids additional complication. A further
parameter that could be introduced in a more complete study would describe the twisting
of equipotential surfaces associated with triaxial three-dimensional potentials which are
not viewed along their principal axis.

The lensing properties of the galaxy are closely connected to the average surface
deusity (%) of the lens within a given radius. For circular models,

me=30+ ()] 3)

where $(0) = A/27Gs?.
3. Imaging By Gravitational Potentials

Consider a ray from the source S to the observer O passing through lens L with
impact parameter r relative to the lens center. Let the same ray have impact parameter
u in the absence of the lens. The general lens equation (eg. Bourassa and Kantowski

1975) becomes
u=r- V.¢(r) (3.1)

where ¢ = 2Do1Drs/Dosc?, and Dor, Drs, and Dog are angular diameter distances.
The images produced by a source with coordinates u = (us,u,) are found at solutions
r = (z,y) of equation (3.1). The image magnification relative to free propagation in the
absence of the lens, denoted by M, is the inverse of the determinant of the transformation

u — r, and is given by
MY = (1= 8,0,8)(1 — 0,0,¢) — (8:0,9)°. (3.2)
The time delay ¢ (and its normalized form 7) are given by

DosT (1+ZL)D05 1 2
= = - - — r 3.3
¢ ¢ DorDrsc 2( r-u )=l (33)
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where all quantities are evaluated at the positions of the images.

If the lens is strong enough to produce multiple images of sources with redshift =5,
there will be caustic linesin the source plane that separate regions associated with different
numbers of images. Sources located on these caustics will create infinitely amplified images
on critical lines in the lens plane. For a circularly symmetric potential there will be two
critical lines both of which are circles. The smaller circle, with radius r _, is the locus
of pairs of radially merging images produced by sources lying on the radial caustic. The
larger circle, at radius 7., coincides with the ring image produced by a source on the
optic axis. This second caustic degenerates to a point in the source plane. If the source
is displaced slightly off the axis, two bright images are created on opposite sides of the
lens center, one just inside and the other just outside the critical radius. The critical radii
satisfy the equations

K[l + ri/szr_l =1 (3.4)
o2
K [1 + r2_/32] [1 + (20 — 1)7«3/52} =1 (3.5)
where . 94D oy DLs (3 .
Dogsc?s? )

Previous discussions of gravitational lensing (eg TOG) have emphasised the impor-
tance of the critical surface density, X, = ¢?Dos/4n1GDorDrs, which is the density of
a uniform sheet of matter that is just able to focus rays at the observer. Application of
Gauss’ theorem tells us that the mean density within the radius r is just X, (cfequation
(2.3)). We choose this radius as a fiducial radius measuring the linear size of the potential.
This definition is necessary because when comparing cross sections for potentials with dif-
ferent values of o and s we must normalize the potentials. When we compare different
lenses, we shall measure cross sections in units of 73, and distances on the sky in units
of r,.. The core size s will be replaced by its renormalized value § = s/r;. Similarly, we
introduce the normalized time delay

{= DOLDLSTi(l + ZL)_IDB}SCt. (3.7)
The depth of the potential well A, used in equation (2.1), can be expressed in terms of 3

by

A= B05CTh gy ga yie (3.8)

"~ 2DorDrs
so that

¢ — /g;;-zl-( 14 /6_2 )1—0([(1 + (1 _ 6).'1327‘12,6—2 + (1 + e)yZT—;Z'B-—2> _ 1] (39)

We emphasize that our choice of normalization is necessarily arbitrary. A different
normalization may be preferable for some applications, and an elementary rescaling must
be performed. Because there is no simply defined mean surface density for an elliptical
potential, we will continue to use the value of r, from equation (3.4). This is justified
because it is still the mean radius of the outermost critical line to first order in € and we
are only interested in small . Multiple images will be found with equation (3.9) provided
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that G is real. Models with § > 1 are only marginally dense enough to accomplish this,
however, as their central surface density is just larger than the critical surface density by a
factor ~ (1~ a)B~2. Galaxies at z, ~ 0.5 have § < 0.1 and make strong lenses for sources
at zg 2 1. However, for clusters of galaxies, multiple imagingis at best marginal,§ 2 1(eg
Narayan, Blandford, and Nityananda, 1986, Kovner, 1986). As discussed in §2, Plummer
models with finite ellipticity and small core radii develop negative surface densities. The
condition that the surface density remain positive within the critical contour is 8 >
V €(1 + €). Although a few of our models violate this constraint, we emphasize that none

of our conclusions are in fact sensitive to the surface density distribution.
4. Cross Sections

Although some analytical results have been given for simple, circularly symmetric
potentials, it is necessary to compute most cross sections numerically. We use a ‘backwards
ray tracing’ algorithm to follow rays from the observer, through the lens plane, to the
source. The rays corresponding to a system of multiple images in the lens plane are traced
back to their origin in the source plane. In practice, the lens and source planes are divided
into N by N grids where N is 200, 500, or even 1000, depending on the resolution required.
The lensing equation (3.1) is then evaluated by finite differencing, and is used to project
triangles (half of a grid box) from the lens to the source plane. (Triangles are used because
their projection is always convex—any other object may have a concave projection near
caustic lines.) All source plane grid points inside the projected triangle are associated
with an image in the lens plane at one of the vertices of the triangle. Multiple images
are made when the projections of triangles from different areas of the lens plane overlap
on the source plane. The amplification is computed as the average amplification over one
grid box by taking the ratios of the areas of the triangles and its projection. Although
the method necessarily satisfies the odd image number theorem (eg. Burke, 1981), some
care must be taken to avoid the generation of spurious pairs of images.

Once the map of grid points in the source plane onto the image plane is known,
all other quantities can be found by direct calculation. We have evaluated the bright
image separation, the distance from the faintest image to the origin, the amplification
of the faintest image, the amplification ratios, the time delay, the merger angle of the
two bright images relative to the origin, and the angle between the brightest and faintest
images. Each lens calculation consists of the image positions for each of the N 2 positions
on the source plane grid. If the lens model is characterized by total cross section o we
can compute the cross section for a particular image property provided it has total cross
section 2 100N 2 and image separations 2 /o N 1.

The cross section for some property (eg. creation of five images), is also estimated

using
d2
g:/d%:/w} (4.1)

The first integral is carried out over all sources that produce images of the specified type
and the second integral must be integrated over only one image per source. The cross
section for large amplification is too small to be computed accurately on a grid of this
size and we use an asymptotic formula obtained by locating all the critical lines in the
lens plane and then expanding about this line. If we write H = M1, then, by definition,
H = 0 on the critical line and the cross section for amplification of two images, both
amplified by more than |M|, is given asymptotically by a line integral around all the
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critical lines

U(Mlz > M) = 2]3.42 /H:O lvd‘;{‘ (42)

(Blandford and Narayan 1986). These asymptotic formulae match well onto the numerical
calculations. A similar problem arises when the potential well is deep and one image is
located near its center and is consequently highly deamplified. We will use equation (5.6)
below in this case.

5. Magnification and Arrangement of Images: Strong
Lenses

It is simplest to discuss the image configurations in two limiting cases. In this section,
we assume that the central surface density is substantially greater than critical (8 < 1).
In the following section we assume 4 > 1.

5.1. The Singular Isothermal Sphere

The simplest model of a gravitational lens, explored in some depth by TOG is a
singular isothermal sphere. In our notation this is described by a potential with a = 0.5
and € = 0 in the limit § — 0. This case is in many respects atypical of generic transparent
potentials. It only creates two images and these lie on opposite sides of the potential. The
caustic associated with tangential mergers and the critical curve associated with radial
mergers both degenerate to a point at the origin. Bright images are created when the
source lies close to the optic axis; when it lies on the axis, a structurally unstable ring
image is created.

When the source lies behind the critical circle of radius ry with projected radius
u < 74 the twoimages are located at radii 71 2 = ry +u and the (unsigned) amplifications
are My 2 = ri/u+ 1. The mean amplification is Myy = ry/u and the cross section for
producing two images with mean amplification M, > Mis then o(Mq; > M) = w72 /M?
The second image disappears when the source crosses the radial caustic at u = r; and at
this point, M; = 2, My = 0 so that M;; = 1 and the total 2 image cross section is 7r?.

5.2. Influence of a Hard Potential

An isothermal potential with a constant velocity dispersion (appropriate to the
outer parts of galaxies) is the softest type of potential conventionally considered for self-
gravitating bodies (but see Blandford, Phinney, and Narayan, 1986). We now consider
the effect of hardening the potential by allowing the exponent a to decrease from a = 1/2

to a = 0. For the moment we keep the potential singular (8 — 0).
The bending angle is now ri‘z"rz"_l and diverges at the origin unless a = 1/2.

Image amplifications are related to their positions through

M = [1 +(1- 2a)<{:>2a«2} B [1 - (%)myz} B (5.1)

As long as the potential remains singular, all sources are doubly imaged but the second
image becomes increasingly faint with increasing impact parameter,

1 u 4(1-a)/(1-2a)
- +
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Formally this implies an infinite total cross section for the generation of multiple images.
This is very misleading because the ratio of the faint to bright image amplification is
rapidly converging to zero, and the “brightest” image amplification is rapidly converging
to one as the impact parameter increases beyond r.

My | 1420-0)(1-20a) 2
M1 N 4(].——0()2 M12

My > 1 (5.3)

The physically interesting cross section is not the total cross section, but the cross section
for the average amplification of the two images, My, to be greater than some value M,

2
mri 1

Lyy > M) & b
oMz > M) = g 5 3

M>1. (5.4)
The physical multiple image cross section, in the sense of what it is possible to observe,
(as compared to the formal but divergent total cross section) is equation (5.3) evaluated
at a fiducial amplification M. From this point of view, the hardness of the potential has a
much weaker effect on the total cross section (5.3) because the bright image cross section
for M1z > 1 decreases only by a factor of 1/4(1 — a)? > 1/4.

5.3. Implications of a Finite Core Size

Adding a finite core radius to the potential ensures that the total multiple image cross
section is finite and introduces a third image located near the core. This also creates a
second circular caustic and an associated critical circle on which pairs of images produced
by sources well away from the optic axis can merge radially and be infinitely amplified. We
will refer to two bright images that lie on the same side of the potential as allied images,
and two bright images that lie on opposite sides of the potential as opposed images.
Allied images merging parallel to the radial direction will be call radially merging, and
those merging perpendicular to the radial direction will be called tangentially merging.
We introduce the distinction now, although circular potentials can generate only radially
merging allied images. (See Figure la,b,c).

Although the total cross section is now finite for all values of «, it still misrepresents
the physical cross section. The total cross section o ~ f-2+42r? (see the Appendix,
equation (A.25)), while (5.3) describes the opposed image cross section, o( Myz > M).
Together these give an estimate of the minimum average amplification of the brightest
two images. For the a = 1/2 isothermal case, it is My 2 1, but for the a = 0 Plummer
model most of the cross section is for creating at least one highly deamplified image (see
Figures 2a-d).

We can also give analytic expressions for the asymptotic cross sections for bright allied
images associated with the radial caustic when the core radius is small, (i.e., when § <<
1). In all cases, the critical circle C_ is located at r_ =~ s with the image magnification

M ~ g%, /1, ifa#1/2 (5.5)

where 7y, is the bright image separation (see Figure 3). The integral cross section for
producing two allied images with M1, in excess of M is
, 438 a=0
- T
o(My > M) = M—j— 35/285 o=1/4 (5.6)
B*/3 a=1/2
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Inspecting these cross sections, we conclude that if the core radius is small ( < 1), then
the cross sections for bright allied images (all of which merge radially), are ignorably
small compared with those for opposed images as computed in §5.2. This difference is
most marked for hard potentials because they can deflect rays through a much larger
angle. The third opposed image is located within the core, (r < s), there is no shear, and
the amplification is given by

2
M; ~ 54(1—0) — <E_(O)_> , <1 (5.7)
Yerit

Here, we see an important difference between hard and soft potentials; the former create
fainter third images for a given core size because they have larger central surface densities
(see Figure 4). These asymptotic formulae, which are discussed further in the Appendix,
are only valid for § < 0.3. They have been used to test the numerical method.

5.4. Elliptical Potentials

The character of the images changes again when the circular symmetry of the po-
tential is broken. If we start with a circularly symmetric, multiply-imaging potential and
increase the ellipticity € from zero, a small four cusped caustic will be created around the
optic axis. When the source lies within this caustic, five images (two saddle points and
two minima lying in a ring around a central maximum in the arrival time surface) will be
produced.

It is of interest to ask how elliptic the potential need be in practice for there to be
a qualitative change in the image properties. We can provide a partial answer to this
question by considering a circular potential with 8 < 1. When the impact parameter u
of the source is small, two opposed images will be created close to the outer critical circle
of radius ry. A simple calculation reveals that the normalized arrival time difference
between these two images is Af;; = 1/(1 — a)M (cf. Appendix). Now, if we allow the
potential to become elliptic, an azimuthal perturbation A¢ ~ er? will be imposed over
the arrival time surface near the outer critical circle. When Aj; ~ Ag, the opposed
images will be displaced, and two new images created. The condition for validity of
results based on circular potentials is Toughly that the bright image amplification M;,
not exceed 1/(1 — a)e. Numerical calculations verify this rule.

Surrounding the inner caustic will be a region in which only three images are created.
This three image region will itself be bounded by an elliptical second caustic associated
with radially merging images as discussed in §5.3. Sources that lie outside this second
caustic will only create one image. As we increase the ellipticity, the size of the inner,
cusped caustic will increase and it will eventually expand beyond the other caustic. Hence
cusps can be associated with three images as well as five images.

The two brightest images will always straddle one of the two critical lines in the
lens plane. The inner (outer) critical curve C_ (C} ) associated with the outer (inner)
caustic in the source plane is associated with the merger of the brightest image pair in
the five-image (three-image) configuration. The faintest image I's (I3) is located near the
core of the potential, inside of C_, with amplification given roughly by (5.6). In the five
image case, the middle images, I3 and J; are located between the critical curves, and
outside C respectively. For allied image mergers (closely straddling a critical line), we
can subclassify the mergers by whether they are merging radially or tangentially. We
expect most allied three image cases to merge radially as they are associated with the
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limagon topology time delay surface. Allied five image cases will merge tangentially in
most cases because they are associated with the lemniscate time delay contours formed
inside the limagon contour (c¢f BN).

5.5. Results of Numerical Computations

In order to understand the types of images to be expected most frequently from
strong isolated elliptical potentials, we have computed cross sections and tabulated image
properties for 27 models with all combinations of o = 0,0.25,0.5;8 = 0.03,0.1,0.3;¢ =
0,0.1,0.2. These models cover the volume of parameter space for which the analytical
formulae presented in the Appendix in the limit § < 1 are essentially correct for the
circular potentials.

In Table 1, we display cross sections and branching ratios for model isothermal po-
tential wells. Total multiple imaging cross sections and cross sections for Myy > 10 are
given. The branching ratios measure the fraction of the total cross section associated
with opposed image configurations, allied image configurations and five image configura-
tions. Table 2 repeats this information for Plummer potential models. In Figures 2a-d,
we display the integral cross sections for average magnification greater than some value
M for four circularly symmetric potentials and find that opposed images predominate.
The asymptotic cross sections agree well with both the estimate derived by integrating
around the critical curves and the analytical expressions described in the Appendix. In
particular the inverse square law for the integral cross section (equation (4.5)), is satisfied.
These circular cross sections can be contrasted with the elliptical cross sections displayed
in Figures ba-d, which show that if we require that two of the images are amplified by
more than ~ 3, five images are more likely to be produced than three images.

We have also computed the amplifications of the faintest images for a range of models
and these results are given in Table 3. As the eccentricity is increased and the inner ( 3 to
5 ) caustic expands away from the origin, the behavior of the faint image changes. As with
the circular potentials, the position of minimum amplification is located at the center of
the potential (for strong potentials), but it is no longer associated with images of sources
lying very near caustic lines. For low amplification, the faintest image I5 approaches the
origin and a limiting magnification of M,,;,. As the source approaches the three to five
caustic, Iy moves away from the origin and brightens (see Figure 8).

The properties of opposed images are similar to those found for circular potentials.
However, the minimum distance of the faint image I3 from the origin occurs at the three
to five transition, where it asymptotes to the position and amplification of the faintest
of the five images just belore the merger of I3 and I occurs. The faint allied image will
only be affected by the deformations of the C_ critical line, which is the image of the
outer elliptical caustic and is therefore not as severely deformed by the introduction of
ellipticity. (This is not true if you make the ellipticity very large, and the cusped caustic
interpenetrates or surrounds the elliptical caustic.) The positions and amplifications of
the radially merging allied images are not strongly affected by ellipticity. Tangentially
merging allied images, however, only arise in the presence of ellipticity.

The ratio of the amplification of the second brightest image M3 to the amplification of
the brightest image M for the three image configurations has the general form of (5.3): a
function of the form 1 — aM;;' where a ~ 1 for § < 1. This is borne out by the numerical
results even in the elliptical case for images that merge radially and hence depend on
radial gradients of the amplification that are only weakly affected by the ellipticity. As
a general rule, at My, ~ 1 the ratio is ~ .3, and at amplifications ~ 10 it is ~ .8. The
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five-image case behaves differently because they merge tangentially and depend on the
tangential gradients of the amplification. In general these should be much weaker than
the radial gradients (by factors of order €) so we expect that the ratio should be much
closer to one even at low amplifications. This is born out by the simulations: at My, ~ 1,
M, /M, ~ .8 and it then converges to 1 with the M;;' behavior predicted by the circular
results.

6. Magnification and Arrangement of Images: Marginal
Lenses

In this section we investigate lenses that are only just strong enough to create multiple
images (0 > 1).

6.1. Qualitative Features

In contrast to the strong lenses discussed in §5, marginal lenses are quite insensitive
to o as we are only interested in the approximately quadratic potential variation near the
core. Again, let us fix our ideas by considering circular potentials. The total cross section
is given by (see Appendix)

4772 (1 — a)?
+ 4
o= ———— (7%, 6.1
2 (61)
The ratio of the total cross section for isothermal and Plummmer models varies by a factor
of only four (cf a 82 dependence for § < 1). The cross section for producing three images
with mean amplification greater than M is

U(Mlz > M) = rﬂ'a)z]_ﬁ% (62)

in both the opposed and allied cases associated with the outer and inner critical lines
respectively. The magnification of the third image is given by

M; ~ (1_?4?)7 (6.3)

in both cases. The opposed and allied images are equally probable, and the third image
is strongly magnified, again in contrast to 8 < 1.

Now let us introduce some ellipticity, which permits five images to be created. The
five-image cross section initially increases with ¢ ( at fixed o and ). However, when

ex1—(14p7%)~"t (6.4)

the lens is only able to focus the source along one direction, and only three-image geome-
tries are possible. (This is the lemniscate case of BN.) In this case, the brightest images

are exclusively allied and radially merging.
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6.2. Numerical Results

We have computed cross sections and tabulated image profiles for twelve marginal
isothermal and Plummer potentials. A separate investigation verifies that our results
are not sensitive to a as asserted in §6.1. We adopt ellipticities ¢ = 0, 0.1, and 0.2
and dimensionless core radii 8 = 1, and 3. Cross sections for the larger value of g are
well approximated by the asymptotic formulae developed in §6.1 and the Appendix. The
results are tabulated in Tables 1 and 2 and displayed in Figure 9. We find that in a
circular potential with § = 3, allied and opposed bright images are equally common (in
agreement with equation (6.2)). For the cases € = 0.1 and 0.2 and 8 = 3, only bright,
radially merging, allied images are created, (which is expected from equation (6.4)). The
total cross section is substantially greater than for the purely circular potential. The five-
image cross sections are completely suppressed in the numerical results for which (6.4) is
satisfied.

7. Time Delays

For circular potentials, the normalized time delay between the two brightest images
can be calculated by expanding about the appropriate caustic (see the Appendix). For
opposed images,

;L Th  1+p?

t1g ™~ = 7.1
12 7_—2{—]‘/[12 4(1 — OC), ( )

while for allied images,

1
552/3 a=1/2
2 a—1 IB <1
. Tio 1/ 1-2a 21—
t i aaand —_ ——— (1 DL) 2
7 90T iy, 3(2(1——(1)) A a7 1/2 (72)
162
e 1
L 2(1 - ) p>

As can be seen in Figure 10, where a normalized histogram of dN/d#;, is plotted, the
distribution is very sharply peaked about the asymptotic value, with a tail trailing off
towards larger values. While it is surprising that the distribution is so compact for the
opposed images, (after all, (7.1) and (7.2) are derived for large amplification events in
circular lenses) it will still contribute an error of roughly 10 % to any time delay measure-
ment in addition to errors in determining 3, o, and M;, observationally. The five-image
time delay distribution is very broad because of the variations in the tangential derivatives
of the magnification along the critical line.

8. Conclusions

In this investigation, we have computed the cross sections for different types of mul-
tiple imaging events involving a single elliptical lens described by three parameters that
measure its hardness, core radius, and ellipticity. We have found that numerical evaluation
can give accurate calculations for image magnifications in the range 0.005 < M < 300.
The measured cross sections converge to the asymptotic values calculated at higher mag-
nification and, in the case of circular potentials for which full analytical expressions are
available (see the Appendix), have errors consistent with those expected from the finite
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grid spacing. Cross sections can only be estimated reliably as long as several discrete grid
points are associated with the image arrangement whose probability is being measured.
However, as gravitational lensing is itself an intrinsically rare phenomenon, we have no in-
terest in highly improbable lensing configurations and so we believe that our computations
are sufliciently accurate for application to quasars. Our choice of potential is necessarily
arbitrary because we are a long way from being able to infer the mass distribution in
any observed lensing event. So, it is only the general features of our calculations that are
likely to be useful. Fortunately these can be summarised in a few “rules of thumb.”
For isolated, centrally-concentrated potentials we find that:

1. The cross section for multiple imaging in which the two brightest images have a
mean magnification in excess of My, is roughly o(Myy > M) ~ A4 (14 B4)/4(1 — a)? M?
for all 8, where A, measures the area on the sky of the outer critical line, and a ranges
from 1/2 (Isothermal) to 0 (Plummer) as the potential hardens. This formula appears to
be good to about 20% for M;, 2 10. The total cross section is only a useful quantity for
very soft potentials for which it is roughly A, .

2. Although smooth, strong, circular potentials can only create three images, five-
image configurations are common if the symmetry is broken and the potential is slightly
elliptic as we generally expect to be the case. When M;,; < (1 — a)~le™1, three images of
which the brightest two are opposed are nearly always created. When My 2 (1—a)"te™ 1,
five images (with the brightest pair usually merging tangentially) are generally produced.
For strong lenses with My, 2 10 the five-image cross section is roughly five times the
three-image cross sectiomn.

3. If we restrict attention to the three-image cases, opposed images greatly outnumber
allied images, except when the potential is only marginally capable of producing multiple
images (i.e., # 2 1). The allied images that do exist are displaced radially from each
other, and straddle the inner critical line.

4. Amplification bias due to highly magnified but intrinsically faint quasars is easily
detected for elliptical potentials. Because the five-image and three-image allied cross sec-
tions dominate high magnification events, any large biasing effects will result in anoma-
lously high numbers of these events relative to the three-image opposed lenses, which
dominate the low amplification cross section. Similarly, the bright image splittings for
allied events are much smaller than for opposed events, so that strongly biased samples
will have anomalously low bright image separations.

5. The magnification of the faintest image is controlled by the size of the core. When
the core is small, it is ~ B¥1=%) ~ (E(0)/Z p4)%, and will be unobservably faint for
B < 0.1. When @ is large the amplification is (1 — a) ~28* so that the faint image is nearly
as bright as the two brightest images. In five-image cases, the third and fourth images
are usually at least 5 times fainter than the two brightest images at M, 2 10.

6. The magnification of the second brightest image M, relative to the magnification
of the brightest image M, is a sensitive measure of My, for three-image opposed and
radially allied configurations. This is true for a range of magnifications in both the strong
and marginal limits ( for the strong lenses, 1 < Miy; < 10 and for the marginal lenses
10 < My, < 100). In each case the ratio M,/M;, has the value ~ 0.2 at the lower
amplification, and =~ 0.9 at the upper amplification. The approximate form of the decay
with increasing amplification is 1 — aM,* with a ~ 1. Tangentially allied configurations,
such as almost all five-image cases, do not have this property: for My ~ 1, My /M; ~ 0.8
for strong lenses. The results, however, are strongly dependent on the model in use.
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7. The time delay between the two bright images can be approximated by

r?y Dos(1l+ z1)
My c¢DorDrs

t12 ~

It is doubtful that the Hubble constant will ever be measured reliably by these means.

These results have immediate, though not necessarily original, implications for mod-
elling observed gravitational lens candidates:

The double quasar 0957 4 561 is believed to be imaged by a giant elliptical galaxy
and an associated cluster. The potential is almost certainly elliptical, which implies that
as only two images are seen, their magnification is unlikely to be very large ( My, < 10).
The third image is presumably located in the core of the galaxy and can be rendered
invisible if the core radius is < 1 kpc. (See Gorenstein et al., 1984, Greenfield et al., 1980,
Narasimha et al., 1984a, Young et al., 1980, 1981b.)

In the quasar 1115 + 080, four images have been observed. These are most probably
produced by an elliptical potential. The separation of the A images is roughly one-half of
the radius of the potential and the amplification ratio is reported to be ~ 0.9 4+ 0.2 (Foy
et al.). This implies that the mean magnification of the A images is ~ 20 and that of B,C
is ~ 4. The missing fifth image can be deamplified by a modest galactic core size. (See
Foy et al., 1985, Shaklan et al., 1986, Young et al., 1981a)

The observed image configuration of 20164112 has not been reproduced in any single
screen models. This is not surprising because there appear to be two galaxies present.
Nevertheless, our attempts to model the system with two superposed potential wells also
failed. We suspect that the two galaxies are at quite different redshifts so that the single
lens approximation is invalid. (See Schneider, D. et al., 1985,1986.)

The quasar 2237 -+ 0305 is observed to give two and possibly three images behind a
z7, = 0.04 Zwicky galaxy. This is likely to be a marginally imaging case, and it is possible
that we are observing a lemniscate arrival time surface. (See Huchra et al., 1985.)

The importance of the calculations that we present in this paper is that they allow
one to estimate the probability of a particular lens model being realized in practice. In
the accompanying paper, we use these cross sections in integrations over source redshifts
and luminosity distributions together with lens redshift in order to compute the expected
distribution of multiple image arrangements from a potential well of specified form.
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Appendix: Analytic Results for Circular Potentials

For circular potentials the lens equation simplifies to the polynomial expression

a-1

1-a
ta =77 [ﬂ—z + 1} [1 + ma*?] = f(#) (A.1)
— 7 — pl2a=1) g1 (4.2)

with 7 the ray position, and 4 the source position in the lens plane relative to the center
of the potential in units of r.. All images are on the line connecting the source and the
origin, with the exception of the degenerate result for 4« = 0 when there is a ring image.
The + branch gives the single image on the same side of the potential as the source, and
the — branch gives either two or no solutions on the opposite side of the potential. We
will use the following notation: fs and f;+ denote first and second radial derivatives of
the function f defined in (A.1) and £, fi, and f? denote the derivative evaluated at
fy, #_ and O respectively. Similarly for the higher order derivatives. The amplification
for these potentials is given by

M—l — f_f'ﬁ (A3)

T

1-o a—2
=1-2 [ﬂ“" + 1} [1 + ﬁ,a*z} [1 + afzﬁ“z]
2(1-a) 2a—2)
+[ﬂ“2+1} {1+fHT”] P~+2aﬁﬂ—2+(2a—-Ufﬁ?A}(AA)
For strong ( < 1) potentials, this reduces to

M~ - [1 - 1*2(1““)} [1 +(1- 2a)f«2(1—a)]. (A.5)

Opposed Images

The tangential, or opposed image, caustic degenerates to a point on the optic axis
of the lens (u — 0). For sources near this caustic, the two bright images have a roughly
constant separation of

f19 o 2 (AG)

to O(1/M?). The faint third image is still located near the origin. By performing a Taylor
expansion about # = 1 and 4 = 0, we obtain

1 1
STV R a8
_MZ(I—a)[ﬁ~2+1]1“°‘_1 (4.8)
1 /62(1—04)
waicey P! 49)
1 g '

_—— 1.
Mai-ay P
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The amplification of the faint image at the origin remains approximately constant as the
bright images near the critical line,

-2

Mz ~ M(0) = [[ﬂ‘z +1]7% —1 (A.10)
4(1—-a)
— {ﬁ pel (.A.ll)
Bt1-a)? B> 1.

which results in amplification of the ‘faint’ image in the weak potential limit ( 1 < [,6‘2 +
1]1—a < 2 ), and deamplification for strong potentials. The ratio of the amplification of
the second brightest image to the amplification of the brightest image is calculable from
a second order expansion of the amplification about the critical line,

1_1—!—2(1—-04)(1—205)1

M, oy m P!

=2 = (A.12)

Ml 1~ ..___@_‘_1._____-2_ /H > 1
4(l—a) M '

The cross section for amplification of the bright pair of images above the average value of
M is

T 1

1+ﬂ2 2
= 'M%(zx(l - a))z (4.14)
1
Z@{r_a)—ﬂ— p<t
— . P (A.15)
Hi-apaz 771

The normalized time delay between the two brightest opposed images is estimated by

52

f1p Bfﬁ]% (A.16)
o [1F] 14067

EAREs. i

Allied Images

The radial, or allied image, caustic is located where the radial magnification diverges.

This implies

l-o o2
0=fr=1- [,6”2 + 1J [1 + f?_ﬂ‘zJ [1 + (20 — 1)f2_ﬂ—2J. (A.18)
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This has exact analytic solutions for & = 0,1/2, which are

1/2
ﬁ[(ﬂ‘z + 1) - 1] ifa=1/2
o= 5 12 (A.19)
LlVerrTramT-es)|  ia-o,
but for general a it has only approximate solutions for strong and weak lenses:
( ﬂ2/3(1_52/3 )1/2 a:]_/Q
5 1/2 gkl
P~ Nier [1 — 2271 — a)? (1 — 2a)°‘"2,62(1‘°‘)] a#1/2
1
\ ﬁ 8> 1.
(A.20)

The bright image separation can be found from a Taylor expansion about the critical line
at 7._,

2

12 & — - A21
M f-fr (4.21)
2 184/ 2/3\-3/2
A1
ﬁ5—4a
~ 23-2%(1 — @)%~ 2%(1 - 204)2“_7/2——M a#1/2 (A.22)
1 4
\/— A B> 1
M2 (1-a)P
The cross section for amplification greater than My is
- P21
6(Mz > M)~ = 7 (A.23)
{}«(1 gy a=1/2
p<1
ﬂ6—4a
~ ¢ w22 2%(1 — @) 2(1 — 207 e a#1/2 (A.24)
0
75 1
— Ty > 1.
4(1 — a)? M? g
The total three-image cross section is given by & = w2, where 4_ = f~ is the radius
of the allied image caustic,
—2
& =dn(1—a) 5741+ (1~ 2a)f2 577 (A.25)
7r22(0(—1)(1 _ a)Z(a—l)(l _ 2a)1—2a'3»~2+4a IB <1
~ (A.26)

gt g > 1.
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When a — 1/2, it is necessary to go to the next order of the expansion,

& (1 — G,

The time delay between two bright allied images is

1|3f-
L 23
50
~ l-a
~ li } 2(1 - a) B21-a)
2 M 3\ 1- 2
1 2
L 2(1 - a)ﬁ

a=1/2

a#£l1/2

(A.27)

(A.28)
L1

(A.29)
g> 1.
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TABLE 1
Integral Cross Sections and Branching Ratios for the Isothermal Potential

Total Mlg 2 10
I} €  Cross Section Opposed Allied Five Image Cross Section Opposed Allied Five Image
0.0 0.0013 0.551 0.449 0.000 0.0013 0.551 0.449 0.000
3.00 0.1 0.0588 0.000 1.000 0.000 0.0002 0.000 1.000 0.000
0.2 0.3189 0.000 1.000 0.000 0.0002 0.000 1.000 0.000
0.0 0.0550 0.791 0.209 0.000 0.0550 0.791 0.209 0.000
1.00 0.1 0.2670 0.592 0.231 0.177 0.0535 0.187 0.286 0.526
0.2 0.1893 0.000 0.907 0.093 0.1226 0.000 0.856 0.144
0.0 0.6140 0.984 0.016 0.000 0.0619 0.954 0.046 0.000
030 0.1 0.6009 0.899 0.023 0.079 0.0487 0.288 0.058 0.654
0.2 0.5629 0.621 0.050 0.329 0.0470 0.058 0.203 0.739
0.0 1.5311 0.999 0.001 0.000 0.0502 0.998 0.002 0.000
0.10 0.1 15185 0.968 0.001 0.031 0.0394 0274 0.003 0.723
0.2 1.4702 0.867 0.002 0.131 0.0427 0.153 0.004 0.843
0.0 2.3060 1.000 0.000 0.000 0.0491 1.000 0.000 0.000
0.03 0.1 2.3004 0.979 0.000 0.021 0.0386 0.273 0.000 0.726

0.2 2.2499 0.914 0.000 0.086 0.0423 0.148 0.003 0.849

¢cd



TABLE 2
Integral Cross Sections and Branching Ratios for the Plummer Potential

Total M12 Z 10
B €  Cross Section Opposed Allied FiveImage Cross Section Opposed Allied Five Image
0.0 0.005 0.567 0.430 0.000 0.0053 0.570 0.430 0.000
3.00 0.1 0.059 0.000 1.000 0.000 © 0.0588 0.000 1.000 0.000
0.2 0.319 0.000 1.000 0.000 0.3189 0.000 1.000 0.000
0.0 0.283 0.869 0.131 0.000 0.0670 0.782 0.218 0.000
1.00 0.1 0.267 0.592 0.231 0.177 0.0535 0.188 0.286 0.526
0.2 0.269 0.000 0.480 0.520 0.0556 0.000 0.645 0.355
0.0 7.419 1.000 0.000 0.000 0.0138 0.995 0.005 0.000
030 0.1 7.358 0.993 0.000 0.006 0.0118 0.157 0.005 0.838
0.2 7.175 0.973 0.000 0.027 0.0139 0.109 0.000 0.891
0.0 75.38 1.000 0.000 0.000 0.0089 1.000 0.000 0.000
0.10 0.1 75.27 0.999 0.000 0.001 0.0123 0.400 0.000 0.600
0.2 74.04 0.997 0.000 0.003 0.0135 0.348 0.000 0.652
0.0 313.9 1.000 0.000 0.000 0.0101 1.000 0.000 0.000
003 0.1 346.5 1.000 0.000 0.000 0.0169 0.250 0.000 0.750

0.2 385.7 0.999 0.000 0.001 0.0046 0.000 0.000 1.000

g£c-d



B-24

TABLE 3
Amplification of the Faint Image for My, > 10
Isothermal Plummer
B e  Opposed Allied Five Image Opposed Allied Five Image
0.0 425.312 465.311 102.022 113.910
3.00 0.1 21.3568 20.7634 21.3568 20.7634
0.2 8.07411 8.07411
0.0 9.00360 15.4445 1.07700 3.66580
1.00 0.1  2.54422 2.79136 1.19969 2.54422 2.79136 1.19969
0.2 4.73180 3.78601 2.93875 1.84264
0.0 0.17110 5.53943 0.02735 1.07815
0.30 0.1  0.24902 3.63303 0.17827 0.02957 1.06770 0.00833
0.2  0.34519 6.51348 0.41989 0.03730 1.06770 0.01340
0.0 0.01259 2.84462 0.00012 1.06770
0.10 0.1 0.03123 2.56735 0.01291 0.00012 1.06770 0.00012
0.2 0.05290 2.01740 0.01712 0.00012 1.06770 0.00012
0.0 0.00366 2.01740 0.00003 1.06770
0.03 0.1 0.00604 2.01740 0.00111 0.00003 1.06770 0.00003
0.2 0.00616 2.09214 0.00414 0.00003 1.06770 0.00002
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FiG. 16

Y1z
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Figure 1. (a). Location and properties of opposed images for a source triply
imaged by an elliptical lens centered at O. The tangential and radial critical lines are
labeled Cyand C_. The three images are labeled Iy, I, and I3 in order of decreasing
amplification. The angle subtended by the two brightest images at O is designated 64,.
r12 (not shown) is the separation of the two brightest images (I and I) in units of r.
ro3 is the distance from the origin O to the faintest image. (b). Location and properties
of allied images. Definitions as in (a) with the exception that i;; measures the angle
between the separation of the two brightest images, and the radius vector. (c¢). Location
and properties of images for a five-image configuration. Definitions as in (a) and (b). If
the two brightest images are allied the angle 1,2 is measured, if they are opposed, the
angle 6, is measured.
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Figure 2. Dimensionless integral cross sections, 6( M3 > M) = o(Myp > M)/,
as a function of amplification My, for four circular models. Lines marked by triangles are
opposed cross sections, squares are allied cross sections. The dotted line is the asymptotic
result calculated from a line integral around the caustics (Equation 4.2).

(a). a=1/2 Isothermal model [ =0.30
(b). a=1/2 Isothermal model g =0.03
(c). a=0 Plummer model B =0.30
(d). a=1/4 B =0.10
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Figure 3. Dimensionless bright image separation 7,3 = 715 /7, as a function of am-
plification My, for the isothermal 3 = 0.1, € = 0.0 case. Shown for opposed (triangles) and
allied (squares) image configurations. Error bars are the standard deviation in the value
at the given magnification. Dashed lines are analytic fits from the Appendix (equations
A.6 and A.22). Note that for opposed images 713 is insensitive to the magnification as
it is fixed by the average diameter of the outer critical curve. However, the allied image

separations decrease inversely with magnification.
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Figure 4. Amplification of the faintest image as a function of AM;,. Model and
labeling as in Figure 3. Note that in the three-image allied configuration, the third
image is not deamplified. No points are drawn in regions where the differential cross
section vanishes due to the finite number of grid points in the simulation.



B-29

ISOTHERMAL MODEL L ISOTHERMAL MODEL
2100 L a=1/28=030¢=02 | Z 100 aw=w1/28=003¢: =02
E ] F \
; ;
9 Ay
gl " gno"
-t N \ -3
g N g
N
Em‘z 3 NS §10'2
A
f \ 4
N\
g10°3 N 3 £103
3 \ E 5
- \ ] a
N
10-4 1 A 1074
100 10 102 1071
AVERAGE BRIGHT IMAGE AMPLIFICATION
102 ——rrrrrry \
PLUMMER MODEL 10

Z ol am0pf=030¢c=102 z
E gxo" 3
gwo g
o Q
3 a10°!
B é
oo i
z 10 z
g 5
Z 2
F] @ -3
3 103 10
g0 &

104 L ieietl |o-4 - 1 s "

1071 109 10! 1071 109 10!

AVERAGE BRIGHT IMAGE AMPLIFICATION AVERAGE BRIGHT IMAGE AMPLIFICATION

Figure 5. Dimensionless integral cross sections, §( My, > M) as a function of
amplification My, for four eccentric models with € = 0.2. Definitions are as in Figure 2,
with the addition that lines marked by pentagons are five-image cross sections.

(a). =1/2 Isothermal model G =0.30
(b). a=1/2 Isothermal model [ =0.03
(¢). a=0 Plummer model 8 =0.30
(d). a=1/4 4 =0.10

Note that at large amplification, the five-image cross section is dominant.



B-30

T T T T LI B S B 1 T ) T T T TTr—T
| ISOTHERMAL MODEL
a=1/28=010¢ =02
I Ty -
% 10° o —
= ]
> - ]
= _ ]
& ]
o, - i
= L
& -
£z - i
o}
<
= o
= 107 |~
E_‘ -
tn r
= i N
E_‘ -
las - L
© |
= -
m L
1072 4
0 1 il L 1 1 1
10 102

AVERAGE BRIGHT IMAGE AMPLIFICATION

Figure 6. Dimensionless bright image separation #13 = r12/7r, as a function of
amplification Mj; for the isothermal 8 = 0.1, € = 0.2 case. Shown for opposed-image
(triangles), allied-image (squares), and five-image (pentagons) configurations. Error bars
are the standard deviation in the value at the given magnification. Note that for opposed

images 71, remains insensitive to the magnification.
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Figure 7. Cosines of orientation angles cos ;5 and cos v, for the same model as
in Figure 6 as a function of amplification M,;;. Positive values of the angle give 13,
while negative values are 8;,. Opposed images are diametrically opposed with respect to
the center of the potential (612 ~ 180°). If the brightest two images of a three image
configuration are allied, they are displaced roughly radially (412 ~ 0°). The brightest
two images in a five-image configuration are generally also allied, but separated along a

tangential direction (12 ~ 90°).
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Figure 9. Dimensionless integral cross sections and faint image amplifications as
a function of Mi, for circular and elliptical cases of the marginal isothermal lens with

B =3.

(a). Cross Section e=0.0
(b). Cross Section e=0.2
(c). Faint Image Amplification e=0.0

(d). Faint Image Amplification e=10.2
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for an isothermal model with § = 0.1 and € = 0.1. Solid line is distribution of three-image
opposed time delays, dashed line is for five-image time delays. The three-image radial al-
lied images are not shown because the distribution is not meaningful due to low statistics.
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Abstract

Optical depths for the magnification and positions of multiple quasar images cre-
ated by a cosmological distribution of isolated elliptical potential wells are computed.
Introducing a core radius into a singular potential well can reduce the optical depth for
multiple imaging by a large factor. Strong lenses predominantly produce three images of
which two are opposed at low magnification and five images at high magnification when
amplification bias may become important. In practice, amplification bias is important
only for bright (B < 18™) quasars. In most instances one image is deamplified by the
core. Marginal lenses produce mainly three comparatively bright images, but with rela-
tively small probability. As an application, we estimate a probability ~ 10 ~¢ that a given
galaxy at zz, ~ 0.4 will lens a background quasar (e.g. 2237 + 0305).
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1. Introduction

In Blandford and Kochanek (1987; hereafter Paper 1), we computed cross sections
for multiple imaging by a three-parameter (hardness, core radius and eccentricity) fam-
ily of isolated elliptical potentials. We calculated the relative probabilities for creating
different types of image arrangement and magnifications and also provided estimates of
these quantities useful for rough estimates. In Paper 1, we confined our attention to the
case of a single quasar and a single lens. In the present paper, we go on to consider the
observable consequences of distributing lenses and quasars throughout the universe.

The nature of the lensing potentials responsible for the observed multiply imaged
quasars is unclear. Several of the gravitational lens candidates are found in regions of the
sky devoid of galaxies (e.g. Canizares 1986). In these cases, the deflecting matter appears
quite sub-luminous and is perhaps a concentration of the “dark matter” strongly suspected
to dominate the dynamics of the universe. The simplest non-degenerate form of potential
well is elliptical in shape. (As we discuss in Paper 1, circularly symmetric potentials are
not generic and their use in calculations like these can give misleading impressions.) In
82, we relate the physical parameters that describe our family of potentials to the velocity
dispersion and core radius of an underlying isotropic particle distribution. For illustration
purposes, we use galaxy-like and cluster-like parameters for our potential wells although
it is possible to scale our results to other forms. We emphasize that our potentials are
not intended to be accurate descriptions of real galaxies and clusters. In §3 we introduce
the notion of optical depth and evaluate it under the assumption that there is a constant
co-moving density of lenses and a source at redshift 2g = 2. In §4 we adopt a simple
model of the quasar luminosity function and use this to calculate the expected observed
distribution of image configurations. Our conclusions are collected in §5.

2. Model Potentials

We continue to use the model two-dimensional Newtonian potential introduced in

Paper 1: 2 -
sew=|(1+0-9(2) +a+a(t)) -1, (2.1)

The parameters a, A, s, and € are the hardness, depth, core size and eccentricity of the
potential. For simplicity, we restrict our attention to approximately isothermal poten-
tials with @ = 1/2 and limit our study to the effects of A, s, and e. The potential is
reparametrized in terms of a dimensionless ratio § = s/r; where ry equals the radius
of the ring image formed on the lens plane by a source behind the origin of a circular
potential. For the isothermal potential,

8 = [(%)2 - 1] o (2.2)
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If the potential is formed by small identical particles (e.g., stars) with an isotropic
velocity distribution, then we can compute the observed central velocity dispersion in a
formal manner by the procedure detailed in the Appendix to find that
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ypp (2.3)
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for the isothermal potential. The central velocity dispersion does not equal the local
velocity dispersion well outside the core 02 = A/2ms. 