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Abstract

We investigate the effects of model misspecification and stochastic dynamics in the prob-
lem of forecasting. In economics and many fields of engineering, many researchers are
guilty of the dangerous practice of treating their mathematical models as the true data
generating mechanisms responsible for the observed phenomena and downplaying or omit-
ting all together the important step of model verification. In recent years, econometri-
cians have acknowledged the need to account for model misspecification in the problems
of estimation and forecasting. In particular, a large body of work has emerged to ad-
dress properties of estimators under model misspecification, along with a plethora of
misspecification testing methodologies. In this work, we investigate the combined effects
of model misspecification and various types of stochastic dynamics on forecasts based on
linear regression models. The data generating process (DGP) is assumed unknown to the
forecaster except for the nature of process dependencies, i.e., independent identically dis-
tributed, covariance stationary, or nonstationary. Estimation is carried out by means of
ordinary least squares, and forecasts are evaluated with the mean squared forecast error
(MSFE) or mean square error of prediction. We investigate the sample size dependence
of the MSFE. For this purpose, we develop an algorithm to approximate the MSFE by
an expression depending only on the sample size n and moments of the processes. The
approximation is constructed by Taylor series expansions of the squared forecast error
which do not require knowledge of the functional form of the DGP. The approximation
can be used to determine the existence of optimal observation windows which result in
the minimum MSFE. We assess the accuracy of the approximating algorithm with Monte

Carlo experiments.
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Chapter 1

Introduction

The two main objectives in the fields of engineering, the social sciences, and the natu-
ral sciences are description of phenomena and prediction of phenomena. In engineering
and most of the natural sciences, the ability to perform controlled experiments is of fun-
damental importance for testing theories and building models that explain underlying
relationships. For most of the social sciences, and in particular for economics, researchers
lack the important tool of repetitive experimentation. This missing link between empir-
ical reality and theoretical modeling has been regarded as a considerable handicap in
the development of economics as a science. Two influential developments in the early
twentieth century addressed this quandary: the introduction of formal probability the-
ory in economic modeling, and the development of the field of econometric forecasting.
Probability based models allow for statistical hypothesis testing to evaluate results from
estimation. Econometric forecasting, and in particular the use of out of sample forecasts,
have become indispensable in the use of empirical studies to validate theoretical models.

The aim of this thesis is to answer the question: How much past data is optimal to
use in the construction of a forecast? Our approach to the subject is to use tools from
econometrics to determine the dependence of a common evaluation scheme, the mean
square forecast error, on the sample size.

Many forecasting methodologies have been developed, with the most commonly used
being time series and econometric models [9, 32]. A strategy for building forecasts must
include three major steps: specification, estimation, and verification. In the work that
follows, we keep with the convention of simplicity and specify linear models. Standard

practice in estimation makes use of three possible mechanisms to determine the temporal
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significance of data: one is to use an expanding window, which includes all available data
to form estimators; a second is to apply a rolling window of fixed size; the third applies
a predetermined monotonic decreasing weighting function. These procedures are ad hoc
with no basis for their application other than the researcher’s intuition. Verification can
consist of evaluating a forecast constructed with the estimated model by comparing the
forecast to realizations outside the estimation sample.

Determining the temporal significance of data for the problems of estimation and
forecasting is of great consequence for optimal accuracy. The most intuitive reason for
this is that data may simply “get too old” to be informative, and in many cases may,
in fact, hinder the discovery of the underlying relationships. This phenomena manifests
itself, for example, in certain types of bias of estimators. The characteristic which encom-
passes the evolving nature of data is the dynamics of the data generating process. For
the mathematical description of stochastic processes, the dynamics are summarized by
the probability joint distribution. Mathematical convention categorizes process dynamics
based on the joint distribution as either stationary or nonstationary. Proper selection
of data is clearly an important matter for estimation and forecasting when considering
nonstationary processes which are characterized by the dynamic nature of the joint dis-
tribution. For example, structural breaks in economic data due to institutional, political,
financial, and technological changes are well documented [3, 13, 32, 33, 53, 139] and can
lead to serious bias in estimation and unacceptable prediction errors. Less intuitive is the
need to be concern about the temporal significance of data in the case of stationary pro-
cesses which are generated by constant probability structures. Data temporal significance
has ramifications for the treatment of stationary processes when model misspecification
is inevitable. The concept of misspecification arises from the acknowledgment that re-
searchers in general work with models of the data generating processes which suffer from
discrepancies. For the treatment of economics, this idea is best described by White in

[152],

Because of the exceeding complexity of economic behavior, because of
the extreme difficulty of measuring or even properly defining relevant aspects
of economic phenomena, and because the economist typically has little or

no control over the economic phenomenon under study, economic theory is
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fundamentally and inherently limited in the degree to which it can describe
economic reality or make legitimate falsifiable statements about economic
reality. Because the empirical economist must deal with nature in all her
complexity, it is optimistic in the extreme to hope or believe that standard
parametric economic models or probability models are sufficiently adequate
to capture this complexity.

A realistic attitude in such circumstances is that an economic model or a
probability model is in fact only a more or less crude approximation to what-
ever might be the "true” relationships among the observed data, rather than
necessarily providing an accurate description of either the actual economic
or probabilistic relationships. Consequently, it is necessary to view economic

and/or probability models as misspecified to some greater or lesser degree.

The ramifications of model misspecification for estimation have been studied mainly
for linear regression models of non-stochastic variables under a very restricted class model
misspecifications [20, 72, 73, 80, 98, 108, 120, 121, 124, 145, 146, 157]. More generally,
the work in [43, 149, 150, 152] addresses stochastic process and provides large sample
properties of estimators, such as the quasi-maximum likelihood estimator, ordinary least
squares and weighted least squares, in the presence of general model misspecifications.

In this work, the goal is to construct a data based procedure for determining the tem-
poral significance of data for the problem of forecasting. In particular, we are interested
in the behavior of forecast evaluating schemes for finite size samples. To do this, we
develop a forecasting strategy which integrates the estimation and verification steps into
one step. We now describe this strategy. As mentioned, the model is specified as a linear
regression of observed stochastic processes, {X;}, that act as explanatory variables for
the dependent stochastic process, {Y;}. The regression parameters are estimated with
the ordinary least squares (OLS) estimator. At this point in most forecasting strategies,
the OLS estimator is completely defined as a function of the most recent or available n
observations of the processes, and the estimation procedure is finished. In our strategy,
the value of n is a variable to be determined in the verification step. As such, the OLS
estimator is implicitly a function of the variable n. The one step ahead forecast YHL” at

the origin t of the variable Y3, is given by the linear form of the regression and by using
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the OLS. Again, the forecast, through the OLS, is implicitly a function of the variable n.
As in much of the literature, [32, 33|, the forecast evaluating scheme of choice is the mean
square forecast error (MSFE), defined as MSFE;, = E[(Y;—1 — }A/HL”)Q], and, through
the forecast, the MSFE is implicitly a function of the variable n. The verification and
estimation steps are linked together by the determination of n. The optimal value of n is
determined in the verification stage by evaluating the forecast performance by means of
the MSFE. For this, we define an optimal observation window of size n*, as the solution

to the optimization problem:

min MSFE;,.

neNt

n* can be either finite or infinite'. The case when n* is infinite implies all data available
should be used for forecasting. The case when n* is finite describes the optimal continuous
compact observation window to be used for forecasting. The key question is therefore to
study the behavior of the MSFE as a function of the sample size variable n. Analyzing
the sample size dependence (SSD) of the MSFE is a difficult task, especially under the
assumption of misspecification. The significance of misspecification in forecasting has
been studied in [16, 17, 91, 126]. This work gives expressions for the MSFE that only
apply to the case where the data generating process is known to be an autoregressive
process of order m and the forecast is constructed with a model which is an autoregressive
process of order p # m. Clearly this violates our assumption of not knowing the functional
form of the data generating process in the course of the analysis.

Up to now, no method has been developed to study the SSD of the unconditional
MSFEZ?. In the chapters to follow, we construct an approximation of the MSFE for
forecasting problems involving processes with different types of stochastic dependencies

which can be used to study the SSD under the assumption arbitrary misspecifications.

If the minimum MSFE occurs at more than one value of n, n* refers to the smallest value of n.
?In [113] the authors obtain a first order approximation for the MSFE under the assumption of i.i.d.
normally distributed processes.
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1.1 Outline and contributions

The thesis is organized into nine chapters. Chapter 2 presents basic concepts of fore-
casting, e.g. methodologies, principles, and definitions, and introduces the main problem
of interest. Section 2.2 provides a historic exposition of important developments in eco-
nomic forecasting. Section 2.3 describes different forecasting methodologies. Section 2.4
describes the forecast problem of predicting an unknown data generating process us-
ing a linear forecasting model. Section 2.5 provides a short exposition on the subject
of misspecification in terms of density functions. Section 2.6 presents some motivating
examples and section 2.7 provides theoretical intuition for the problem of determining
optimal observation widows.

Chapter 3 presents notation of probability, random variables, and expectations. The
concept of truncated expectation, and properties based on the standard notation of ex-
pectations are developed. Truncated expectations are crucial to the development of the
forecasting algorithms based on Taylor approximations which are presented in chapters
to follow.

Chapter 4 presents an algorithm to approximate the expectation of functions of ran-
dom variables based on Taylor series expansions. The technique is used in Chapters 5,
6, and 7 to approximate the mean square forecast error (MSFE).

Chapter 5 presents the algorithm which yields an approximation of the MSFE for
a forecasting problem involving independent and identically distributed processes. This
Taylor algorithm approximation is meant to be used as a tool to describe the sample
size dependence (SSD) of the MSFE. Section 5.2 reviews some properties of the OLS and
MSFE under the assumption of a correctly specified forecast model. Section 5.3 describes
properties of the ordinary least squares (OLS) under the assumption of a functionally
misspecified model. Section 5.4 presents the derivation of the Taylor algorithm for the
scalar case, and Section 5.5 presents the derivation for the multi-variate case. Section 5.6
evaluates the performance of the Taylor algorithm for the MSFE of a scalar forecasting
problem with Monte Carlo experiments.

Chapter 6 presents the algorithm which yields an approximation of the mean square

forecast error for a forecasting problem involving stationary processes. Section 6.2
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presents results in the literature concerning estimation under misspecification with de-
pendent observations. Section 6.3 presents the algorithm and Section 6.4 presents Monte
Carlo experiments to evaluate the MSFE approximation.

Chapter 7 presents the algorithm which yields an approximation of the mean square
forecast error for a forecasting problem involving independent and identically distributed
processes which undergo structural breaks. Section 7.2 presents the algorithm and Section
7.3 presents Monte Carlo experiments to evaluate the MSFE approximation.

Chapter 8 presents a literature review of the Delta method as well as new results for
a wider class of functions. Chapter 9 discusses the conditions needed for application of
the Delta method results presented in Chapter 8.

The main contributions of this thesis are as follow:

e We develop an algorithm to approximate the MSFE in forecasting problems for-
mulated with models which may be misspecified. Unlike anything in the literature,
our algorithm makes no assumptions on the specific form of the data generating

process and can be applied to real empirical problems.

e We employ the MSFE approximation to investigate the sample size dependence of
the MSFE and determine the existence of optimal observation windows for three
classes of processes: i.i.d. processes, covariance stationary processes, and structural

break processes.

e We prove some Delta method theorems for unbounded functions which provide

bounds on the error of approximation.

e We provide an extensive treatment on the use of Taylor series to approximate

statistics.



Chapter 2

Forecasting

2.1 Introduction

In this chapter, we present basic concepts of forecasting, e.g., methodologies, princi-
ples, and definitions, and introduce the main problem of interest. Section 2.2 provides
a historic exposition of the most important developments and contributions in economic
modeling and forecasting. Section 2.3 describes different forecasting methodologies. The
two main methodologies of interest are time series models and econometric models. Sec-
tion 2.4 describes the forecast problem of predicting an unknown data generating process
using a linear forecasting model, with Section 2.4.4 focusing on the analysis of the mean
square forecast error (MSFE). Section 2.5 provides a short exposition on the subject
of misspecification in terms of density functions. Section 2.6 presents some motivating
examples and Section 2.7 provides theoretical intuition for the problem of determining

optimal observation widows.

2.2 History and background

Many would agree that the two main goals in the study of econometrics are optimal
estimation and forecasting. To provide a clear prospective of the contribution of this
thesis to the field of forecasting, we present a short overview of the history and methods
of forecasting in economics. In the broadest sense, forecasting is any set of rules or
procedure which is carried out with the intent of predicting the outcome of a future

event, or some particular characteristic of a future event. We refer the reader to the
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references [32, 41, 62, 99, 103] for further details on the survey that follows.

To realize a comprehensive understanding of the development and present state of
economic forecasting, it is paramount to assess the progression of macroeconomic theory
and modeling. The reason for this is that the first attempts at forecasting came about as
methods for evaluating macroeconomic models. The origins of economic forecasting can
be traced to the work of economists of the nineteenth and early twentieth centuries in the
two main branches of macroeconomics, business cycle and demand analysis. Morgan [103]
gives an account of attempts by early econometricians to model these economic phenom-
ena. William Stanley Jevons and Henry Ludwell Moore were two of the first economists
to apply the econometric approach of combining economic theory with statistical tools
to give evidence for hypotheses concerning the business cycle.

Jevons was one of the first economists to combine theory with statistical data on many
events to explain the business cycle. Jevons’ initial hypothesis on trade cycles was that
the sunspot cycle of 11.1 years was responsible for a weather cycle which in turn caused
a harvest cycle and ultimately led to a price cycle ([79] in paper VI). Jevons’ analysis
consisted of laying out data for a number of price series for different crops over a 140 year
period on an 11 year grid. The analysis, based on agricultural data from the thirteenth
and fourteenth centuries, showed similar patterns of variation in the prices of each of
the crops. The results of this work were inconclusive since the analysis revealed similar
patterns for grids of 3,5,7,9 and 13 years. Jevons also investigated cycles in commercial
credit. His analysis of nineteenth century financial crises exhibited an average cycle of
10.8 years, short of the sunspot cycle of 11.1 years. Jevons suggested that his sunspot
theory combined with the theory of credit cycle would produce the observed averaged
cycle for financial crises. Most of his contemporaries dismissed the work of Jevons.
Some of the strongest criticism concerned the lack evidence and weak explanation of the
casual mechanisms of his theory. Nonetheless, the idea behind Jevons’ work of combining
endogenous and exogenous causes became an important element in econometric models
of the business cycle in the 1930’s.

Much like Jevons, Henry Ludwell Moore developed theories on the exogenous causes
of the business cycle. Moore [101] found evidence to attribute the business cycle to

weather cycles, and later [102] extended the casual reasoning back to movements of the
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planet Venus. For Moore, the casual chain of explanation between the weather cycle
and the business cycle was the primary subject of study. He abandoned the standard
methodologies of the time on the grounds that the real dynamic factors of the economy
could not be captured by comparative statistics. Morgan [103] gives as example of the
contemporary mainstream methods, the work by Robertson [123] on the business cycle,
which made use of comparative static arguments with statistical data but without any
statistical analysis or explanation of the dynamic path of the economy. Moore’s efforts
focused on discovering and verifying statistically the casual connections in the chain of
evidence in order to explain the business cycle. His treatment of evidence, according to
Morgan [103], was highly technological compared to his predecessors and contemporaries.
Moore’s statistical methods included harmonic analysis, correlation, multiple regression,
and time series decomposition. His analysis of business cycles was far superior to any
other statistical treatment of the period.

In a 1933 paper, Ragnar Frisch [52] made important progress in the application of
the econometric method by developing a dynamic mathematical model of the business
cycle, which not only enabled theorists to explore for insights into how the economy
might work but also was amenable to econometric analysis. The work of Moore and
others explained and estimated the business cycle by fitting the dynamic patterns of a
particular time. Frisch’s model was not built to fit any particular data set, instead, the
purpose of the model design was to generate economic cycles through the interactions of
the equations in the system by estimating parameters based on the particular data set at
hand. The second important econometric design of Frisch’s model was the interaction of
random shocks with a deterministic system. The role of random shocks transformed the
model from a solely theoretical model producing the cyclical components to one which
could produce the jagged appearance of economic data. The shocks changed the dynamic
economic model into a formal econometric stochastic model of how real economic data
might be produced [103].

The first crucial event in the annals of forecasting was the formulation of the first
practical macroeconomic model of the business cycle by Jan Tinbergen in 1936. Morgan
[103] examines in detail the work and contribution of Tinbergen’s macrodynamic models.

The following summarizes Morgan’s account. Tinbergen’s contribution consists of three
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major reports in which he estimates and tests models of economies and the business
cycle. The first of these reports was published in 1936 in response to a request by the
Dutch Economic Association to study policies to help relieve the depression [140]. In
it, Tinbergen builds and estimates the first macrodynamic model of the business cycle.
The model is also used to simulate the likely impact of policies. As his starting point,
Tinbergen takes the basic idea of Frisch [52] that a business cycle should consist of two
parts, an economic mechanism and the outside influences or shocks. The Dutch model
contained 31 variables and 22 relationships which were divided into technical equations,
definitional equations, and direct casual relationships which provided explanations of
price movements, sales, competition, and the formation and disposal of incomes. Each of
the equations was estimated separately. The formation of each individual equation and
the choice of variables were found by iterating between theoretical ideas and empirical
evidence. Graphical methods were used by plotting dependent and explanatory variables
to reveal specific causes of a crisis or revival. To understand the behavior of the model,
Tinbergen reduced the system of 22 equations to one difference equation of one variable,
non-labor income, by a process of substitution and elimination. The final equation gave a
representation of the structure of the Dutch economy which Tinbergen in turn used to find
the time path of the system. The Dutch model showed that the economy had a damped
cyclic path which would tend to an equilibrium provided there were no disturbances. In
practice, determining the dynamic character the model was complicated by the presence
of disturbances. Extrapolation of the model was used as a test of the power of the
model to provide a theory of the business cycle and led to the investigation of optimal
policy based on the model predicted time paths. Policy changes affected the relations
in the model through additive disturbance terms or by changing coefficients and causing
structural change. In this way, Tinbergen’s model originated the practice of determining
policy based on econometric forecasts. The second report made by Tinbergen [141] was a
commission made by the League of Nations to undertake statistical tests of business cycle
theories presented by G. Haberler [63]. Tinbergen developed and estimated mathematical
models for verbally expressed theories of the business cycle, but the emphasis of this
report was on testing using procedures involving economic and statistical criteria. The

first of these procedures involved testing the models on different countries and time
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periods. Second, Tinbergen tried the models on different subperiods to test for for
structural changes. Third, prediction tests were carried out by extrapolating the fitted
equations. The third important report made by Tinbergen was also part of the League of
Nations report [141]. In it, Tinbergen developed a three-stage procedure for evaluating
theories of the business cycle. The stages were first to test whether the verbal model
could be expressed as an econometric model; second to statistically verify the relations
of the model; and third to test and verify if the final equation had a cyclic solution.
To evaluate his procedure, Tinbergen built the first large scale macroeconometric model
of the USA. Tinbergen’s general conclusion was that a depression can originated from
inherent disproportionalities in the economy, and that policy changes might intervene
to prevent the rise or fall of a depression. By the 1940s, the war had vanquished the
depression and theories of the business cycle had gone out of fashion. Nonetheless,
the econometric methods for estimation and testing set forth by Tinbergen had great
influence on the work of economists in the second part of the twentieth century.

As we have noted, since the beginning of the twentieth century, econometricians had
been using statistical methods to measure and verify economic theory. And yet, it was
the prevalent belief at the time that probability theory was inapplicable to economic data.
The paradox lay in the theoretical basis for statistical methods being probability theory,
and economists using statistical methods at the same time they rejected probability
theory. Applied economists at this time believed in the existence of real laws of economics
waiting to be discovered. Thus, the primary goal in early econometric work was that of
measurement. No importance was paid to inference, so that if measured values were put
in question, blame was attributed to the quality of the data and no doubt was cast on
the theory.

In areas where a generally agreed theory existed, i.e., demand theory, statistical
methods were simply tools to measure the parameters of the laws. The theory was not in
doubt, the measured laws were taken to be true, and questions of inference did not arise.
In other areas where theoretical laws were in doubt, such as business cycle research, sta-
tistical methods were used to uncover the true laws from the data. Inference again found
a limited role. Therefore, inference methods based on probability theory as tools to com-

pare theoretical laws to empirical relationships were neglected and deemed unnecessary
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by the economists of the time. This neglect was due in part to econometricians’ belief
that economic data did not meet the criteria necessary for the application of probability
reasoning. In work on demand, for example, the least squares method was used as an
estimation device without any reference to probability distributions. This is due to the
fact that the relationship between two variables can be measured by a least squares line,
and the distribution of the variables does not come into question unless one is interested
in inference about whether it is a good measure. The application of probability theory
was rejected in such work, based on the argument that observations were rarely the result
of sampling procedures. One of the earliest rejections of the application of probability
theory to economics was that offered by Warren Persons, [112, 111], in his 1923 presi-
dential address to the American Statistical Association. Persons rejected mathematical
probability theory in business cycle analysis and forecasting, and cited as a reason the
fact that economic data are time-related and “cannot be considered a random sample
except in an unreal, hypothetical sense.”

The first comprehensive discourse on the rejection of the application of probability
theory in economics and the validity of economic forecasting is the work of Morgenstern
(1928) [104]. Morgenstern delineated the problems with probability theory as the lack
of homogeneity of the underlying conditions, the non-independence of observed time
series and the limited availability of data. Besides his objections towards probability
theory, Morgenstern also argued against economic and business forecasting on the basis
that forecasts would be invalidated by reactions to them. This is reminiscent of the
“Lucas critique” [97]. Because of the impossibility of economic forecasts and the impact
of adverse effects of decisions made based on them, Morgenstern censured the use of
forecasting for stabilization and social control.

The work of Morgenstern was critically reviewed by Marget (1929) [99]. In his work,

Marget outlines the following three main propositions offered by Morgenstern:

I. Forecast in economics by the methods of economic theory and statistics is

“in principle” impossible.

I1. Even if it were possible to develop a technique of economic forecasting,

such a technique would be incomplete, by virtue of its necessary limi-
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tation to methods based on a knowledge of economics alone; it would

therefore be incapable of application in actual situations.

ITII. Moreover, such forecasts can serve no useful purpose. All attempts to

develop a formal technique for forecast are therefore to be discouraged.

Morgenstern provides support for each these propositions with further subsidiary sub-
propositions. We review the arguments given by Morgenstern for these propositions and
the counter arguments of Marget.

The sub-propositions given by Morgenstern for the first proposition, I, that “forecast-
ing in economics, by methods of economic theory and statistics, is in principle impossible”

are as follows:

A. The data with which the economic forecaster must deal are of such a
nature as to make it certain that the prerequisites for adequate induction

must always be lacking.

B. Economic processes, and therefore the data in which their action is regis-
tered, are not characterized by a degree of regularity sufficient to make
their future course amenable to forecast, such “laws” as are discoverable

being by nature “inexact” and loose, and therefore unreliable.

C. Forecasting in economics differs from forecasting in all other sciences in
the characteristic that, in economics, the very fact of forecast leads to

“anticipations” which are bound to make the original forecast false.

For sub-proposition A, Morgenstern first argues on the incompatibility of economic
data and probability analysis, as a method of scientific induction, as a major obstruc-
tion to the problem of economic forecasting. The criteria required by Morgenstern on
economic data for the application of formal probability theory include homogeneity and
independence. Marget argues that the level of homogeneity and independence required
by Morgenstern is so extreme as to make use of probability theory in other scientific areas
— where its usefulness is well established — inconceivable. Marget, like most economists
of the time, agrees with Morgenstern on the partial failure of probability theory as a

tool for induction in economic forecasting. Nonetheless, Marget does not see this failure
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as a coup de grace for the principle of forecasting, and argues probability analysis is by
no means the only tool available for scientific forecasting. For instance, prediction of
day to day weather is cited by Marget as an example of forecasting which is primarily
based on a theory of causation rather than techniques of probability. As a second point
in support of his argument, Morgenstern points to the inadequacy of economic statistics
in providing a complete description of economic processes and ultimately being used for
forecast. Marget argues that even if economic statistics alone can not provide a basis for
induction, which in turn serves as basis for forecast, there is no reason why new methods
can not be developed which can further the paths of progress in forecasting.

For sub-proposition B, Morgenstern addresses the concept of an “economic law” by
distinguishing between two types of “law.” The first interpretation given is in the sense of
a “rule of adequate causation”, and the second as a tendency to “continuous repetition.”
The latter description of “law” is used by Morgenstern to refer to a tendency of data
to conform to measurable patterns that can be predicted by mathematical formulas.
According to Morgenstern, by the nature of economic processes, one can not expect to
discover regularities of the kind described by the second type of economic “law” and

furthermore

The discovery of such regularities by purely empirical means would carry
with it no assurance of the indefinite continuance of these regularities, and so

would represent no reliable basis for forecast.

Marget views the second type of “law”, which concerns itself with regularities, to be in
some sense naive, and argues that the concept of law which best exemplifies the basis
for most scientific endeavor is a law as a “rule of adequate causation.” Marget views
as reasonable the possibility of explaining movements in statistical data based on the
concept of causation. Indeed, if this were not the case, Marget explains, all validity of
scientific explanation in economics would be futile. Marget presents the explanation of
processes based on causation as the path to follow in order to make progress in the lines
forecasting, and ties such rules of causation to the study of economic theory.

The third sub-proposition, C, of Morgenstern is seen by Marget as the most im-

portant. If the third sub-proposition of Morgenstern is found to be sound, all other
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arguments in favor of the possibility of forecasting in economics become irrelevant. Mar-
get’s position on the third sub-proposition — regarding the invalidity of a forecast due
to the causal influence of the forecast itself — is that forecasting should be feasible by
including the possible reactions to the forecast as one of the potential factors affecting
the final result. Marget also questions whether the anticipatory actions need necessarily
to be of the disruptive sort which invalidates the original forecast. In some instances,
Marget argues, all that might result from these anticipations is an “intensification, in-
stead of a contradiction, of the actions that would have been inaugurated in any case.”
Furthermore, Marget insists there is no reason to assume that the new datum from the
forecast must outweigh all other data available, and necessarily cause agents to abandon
the course of action that would be taken in the absence of the original forecast.

In his second principal proposition, II, Morgenstern argues that even if a “positive
theory of forecasting in economics” were possible, it would not be adequate in practice,
since the data in use are the result of forces other than just economic forces. Marget
begins his counterpoint by suggesting that the objection is as valid against explanation of
economic theory as it is for attempts at forecasting. Morgenstern sees as a major obstruc-
tion to further progress in economic forecasting the ramifications that can be attributed
to different branches of knowledge. Sociology, for example, is cited by Morgenstern as a
field not yet sufficiently advanced to be of practical use to a business forecaster. Marget
responds that the incompleteness of knowledge cannot be used to deny the possibility of
the attainment of further knowledge. Morgenstern argues that, for an economic forecast,
only economic theory and the data refined by economic statistics may be used, while at
the same time stating that economic data is not sufficient for the problem in practice.
Marget states there is no reason why an economist interested in forecasts of cotton prices,
for example, should not combine her own knowledge on how to economize on the basis of
a particular situation with the first hand knowledge of meteorologists and agronomists
as to what the situation might be.

In his third and final proposition, ITI, Morgenstern asserts that the attempt to fore-
cast economic events is “without purpose.” Morgenstern concludes that the possible use
of forecasting as an instrument for social control of industry, in particular the possibility

of stabilization, may well endanger those efforts by threatening the “rationality” of the
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economic processes. For this proposition, Marget does not refer back to the earlier anal-
ysis of the disruptive feedback effects between the forecast and anticipations. Instead,
Marget challenges the fundamental argument that presents stabilization as a test for the
usefulness of attempts at forecast, and the view that forecast itself can have significance
only for economic policy and not for the development of economic theory. Marget be-
lieves Morgenstern fails to recognize the value which persistent attempts to forecast have
for the development of economic theory. Marget sustains that failures in forecasting,
like failures in attempts at verification of economic theory, should be greeted with en-
thusiasm, since it is likely such failures are due to inadequate attention to important
factors. Marget believes the test of successful forecasting has the inestimable advantage
of pointing out new variables and new possibilities of mechanisms which might never
have otherwise been discovered or estimated.

The views expressed by Morgenstern and Marget regarding the validity of economic
forecasting set the stage for further development at a time where forecasting techniques
were at their infancy. Economic forecasting was not doomed as Morgenstern might have
one believe, but at the same time, the arguments of Marget needed to be substantiated by
formal protocols. In 1944, the publication of Trygve Haavelmo’s The probability approach
in econometrics [62] provided the first basis for such protocols in the form of probability
techniques. According to Haavelmo, econometric research aims at a conjunction of eco-
nomic theory and actual measurements through the use of the theory and techniques of

statistical inference. Haavelmo summarizes the state of the art in econometrics.

So far, the common procedure has been, first to construct an economic
theory involving exact functional relationships, then to compare this theory
with some actual measurements, and, finally, “to judge” whether the corre-
spondence is “good” or “bad.” Tools of statistical inference have been intro-
duced, in some degree, to support such judgment, e.g., the calculation of a
few standard errors and multiple-correlation coefficients. The application of
such simple “statistics” has been considered legitimate, while, at the same
time, the adoption of definite probability models has been deemed a crime in
economic research, a violation of the very nature of economic data. That is

to say, it has been considered legitimate to use some of the tools developed
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in statistical theory without accepting the very foundation upon which sta-
tistical theory is built. For no tool developed in the theory of statistics has
any meaning — except, perhaps, for descriptive purposes — without being

referred to some stochastic scheme.

Haavelmo attributes the reluctance of economists to accept probability theory as a basis
for economic theory to a very narrow concept of probability theory. Most economists of
the time believed probability schemes applied only to phenomena consisting of series of
observations where each observation originated as an independent drawing from a single
population. Economic time series do not conform to such a narrow model of probability
“because the successive observations are not independent.” Haavelmo’s premise is that it
is not necessary for observations to be independent or to follow the same one-dimensional
probability law, that in fact, it is sufficient to consider the whole set of n observations as
one observation of n variables following an n-dimensional joint probability law. One can
test the hypothesis regarding the joint probability law and draw inference as to its form
based on one n-dimensional sample point.

The general principles of statistical inference introduced by Haavelmo are based on
the Neyman-Pearson theory of testing statistical hypotheses. Haavelmo addresses many
issues including: a general discussion on the connection between abstract models and
economic reality; the question of establishing “constant relationships” in economics, and
the degree of invariance of economic relations with respect to changes in structure; the
nature of stochastic models and their applicability to economic data; demonstration
that a hypothetical system of economic relations can be expressed as statements of the
joint probability law of the economic variables involved, and that such a system can be
regarded as a statistical hypothesis in the Neyman-Pearson sense; the well posed problem
of estimation; and an outline of the problem of predictions.

We describe the general probability formulation of Haavelmo’s prediction problem.
By a statistical prediction or forecast, one means a probability statement about the
location of a sample point to be observed in the future. If one considers n random
variables, X1, Xo,...,X,,, with a known joint probability law, one may calculate the
probability of a sample point falling into a given region of the sample space. If the actual

joint probability law of the variables to be predicted is known, the problem of deriving a
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prediction formula is one of probability calculus, while the question of choosing a “best”
prediction formula is subjective matter. More often, the probability law is not known and
the prediction problem becomes closely connected with the problems of testing hypotheses
and estimation.

Consider n time series of random variables X;;, ¢ = 1,2,...,n observable from ¢ = 1
on. Suppose we can observe values up to some time, ¢ = s;, for each of the n series,
and the problem is to predict later observations. The total of random variables to be

considered are

X’i,t:(Xi,laXi,27”‘7X’i,Si7X’i XZ'731.+2,...), 121,2777,

»Si+17

One might want to predict any joint system of M variables among the variables X,
fori=1,2,...,n; 7=1,2,.... The M to be predicted variables, relabeled as X n41,...,
XnN+m, together with the sy 4+ so + --- + s, = N observed variables, relabeled as
X1,..., Xy, form a system of N + M variables. We assume, regardless of the values
S1,-..,5n, and regardless of the set of M future variables, the joint probability law of
the N + M variables exists even if it might not be known to the forecaster. Let this
joint probability be denoted as p = p(X1,..., X~n, XN+1,-.., X~Ntam), which usually can
be described implicitly by a system of stochastic relations between the variables. Let
p1 = p1(Xq,...,Xn) denote the joint probability law of the N variables Xq,..., Xy,

and denote the conditional probability law of the M variables X i1, ..., Xy, condi-

tional on the N variables X1,..., Xn by p2 = po(Xn+1,- .-, Xnam| X1, .-, Xn). If pis

known, one can calculate po, given the IV variables Xi,..., Xy and p = p;1 - po.

Let E; denote any sample values of the observable variables X1,..., Xy, and F»
denote any sample values of the future variables Xyy1,...,Xnyp- Any Ep can be
represented by a point in the N dimensional sample space R of the variables X1,..., Xn,

and any Fs can be represented by a point in the M dimensional sample space R9 of the
variables Xn1,..., Xn4+a. Similarly, we let E denote a point in the sample space R
of all N + M variables. Now, given any particular E, one can calculate from ps the
probability that Fo will fall in a given point set of the sample space Ry. The resulting

probability would be a function of E;. Furthermore, for any given F; and any given
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probability level P, one can derive a system of point set regimes in Ry with probability
of E5 falling in one of such sets equal to P. Any such point set in Ry is referred to
as a region of prediction and denoted by Ws. One is usually interested in a region
Wy of probability P, which is in some sense the “narrowest” possible. The choice of
probability level and region Wy will depend on the particular intended use, and such
choice is therefore is not a problem of statistics.

If po is known, the problem of prediction is one of probability calculus and not one
of statistical inference from a sample. In practice, ps is unknown and information about
p2 must be obtained from samples F of previous observation. This procedure is made

possible by the following important basic assumption:

The probability law, p, of the N+ M variables X1, ..., Xn, Xn41,. -, XN+M
is of such a type that the specification of p; implies the complete specification

of p and, therefore, of ps.

That is, if p is characterized by a number of unknown parameters, then all these parame-
ters must also characterize p; so that ps contains no other parameters. This assumption
therefore implies that for prediction to be possible, a certain persistence in the mechanism
which produces the data must be present.

Haavelmo also describes a method by which to derive prediction formulae. Given that
F5 denotes a point in the sample space Ro of Xn41,..., XN+, we denote by Fya point
in Ry to be used as a prediction of E5. The problem is one of defining E as a function of
X1,...,Xn, such that the probability of Fy being close, in some sense, to E5 is high. Fy
is called a prediction function. Furthermore, one can assign a system of weights to the
possible errors in prediction by defining a weight or loss function £(Es, E‘g), such that
L(Es, Ey) = 0 and L(Ey, Eg) > 0 for Ey # F5. The expected value of the loss function

in repeated samples is given by:

T:/ﬁ(EQ,Eg)pdE.
R

The choice of Es as a function of X 1,...,Xn should be so that r is as small as possible.
The problem of deriving the best prediction function is closely related to the problem of

deriving best estimates. Although there is always some level of subjectivity when it comes
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to choosing a prediction function and loss function, the procedure given by Haavelmo
describes precisely where and how the subjective elements enter the prediction problem.

Haavelmo’s interpretation of economic processes as realizations of stochastic processes
rather than realizations of independent processes gave way to the acceptance of probabil-
ity theory for modeling in economics. Furthermore, his methodology for prediction based
on the concepts of probability laws, prediction formulae, and loss functions set forth the
development of mathematically precise protocols to study the validity of forecasting.

By the end of the 1940s, Haavelmo’s probability approach had been generally accepted
in the USA, and became the basis for the macroeconomic model built by Lawrence R.
Klein for the Cowles Commission in 1950 [85]. Klein recognized the importance of the
contributions made by Tinbergen in his two League of Nations reports, and considered
his own work an extension of Tinbergen’s work. The structural form of Klein’s models
also reflects the influence of Keynes’ “General Theory.” Klein sought to emphasize the

discovery of economic theories through his models as well as performing forecasts.

If we know the quantitative characteristics of the economic system, we
shall be able to forecast with a specified level of probability the course of
certain economic magnitudes such as employment, output, or income; and we
shall also be able to forecast with a specified level of probability the effect

upon the system of various economic policies. ([85], p.1)

Klein considers as his main contribution the ability to accept or reject admissible hy-
potheses of economic theory based on their suitability for the purpose of forecasting.
Klein classifies the variables to be used in the model as endogenous or exogenous. En-
dogenous variables are those determined by the economic system and include output, em-
ployment, prices, profits, rents, investment. Exogenous variables are those representing
forces outside the economic system such as those originating from natural, technological,
sociological, political, or institutional events. Klein argues, economists have developed
theories of economic behavior which can be used to determine the endogenous variables
and their relations expressed as structural equations. Klein defines y;;—j as the ith en-
dogenous variable in the ¢ — k period, z; as the ith exogenous variable, u;; as the ith

random disturbance of the ¢th period and the model of the economic system is given as
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follows:

fi(yl,ta"'vyn,tw”7yl,t—p7"'7yn,t—p7zl7‘”7Zm) = Uit, 1= 17”'7”' (221)

The f; functions define the structural equations, which equal in number to the endogenous
variables, and the econometric problem of interest is the estimation of the structural
parameters of the f; functions. Klein also offers an alternative problem when the main
aim at hand is forecasting rather than explanation and description. The argument for
the alternative procedure is that not all structural parameters in (2.2.1) might be needed
to construct a forecast. Klein solves (2.2.1) for the endogenous variables to be forecasted,

such that the new set of equations, referred to as the reduced form, are as follows:

Yit = gi(yl,t—l, s Yng—1s -5 YLt—ps oo Yngt—ps ZLy - - -5 Zmy ULty - - JUnt), 1=1,...,n.

(2.2.2)

The parameters of (2.2.2) will be different from the parameters of (2.2.1). Klein studies
three statistical models. The first of these models is a simple three equation system by
which he “sacrificed details of economic behavior patterns in order to illustrate different
methods of structural estimation in dynamical economic systems” (p. 84). In his second
model, Klein estimated parameters which were deemed necessary for purposes of fore-
casting. Finally, in his last model, Klein developed the same procedures, but for a large
structural model of the economy.

The importance of econometric modeling and forecasting was further strengthened
by the work of H. Theil in the 1960s [137, 138]. In [137], Theil outlines the three main
problems of forecast analysis: verification and accuracy analysis; the analysis of the gen-
eration of predictions; and the use of forecasts for policy purposes. Furthermore, Theil
provides new measures to evaluate forecast accuracy with empirical application for the
Dutch and Scandinavian economies. Theil also addresses two problems of methodology:
the particular type of data analyzed, and statistical inference. For the problem of sta-
tistical inference, Theil discusses the desirable properties of econometric and statistical
approaches, and generalizes the method of least-squares for the complications of auto-

correlated disturbances and simultaneous equations. Finally, Theil turns to the problem
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of determining the relationship between forecasting and policy by addressing the uncer-
tainty characterizing decision processes. In [138], Theil deals with general problems of
methodology and the consequences of prediction errors at the decision-making level. In
several chapters, Theil introduces information theory as a tool for evaluation of forecasts
and to deal with data obtained from surveys.

In the post-war period, apart from the work of Klein and Theil, the development of
theoretical methods for forecasting focused on time series analysis [32]. Among others,
the work on time series analysis can be exemplified by that of Wiener [156], Kalman [82],
Whittle [154], Box and Jenkins [25] and Harvey [67, 68]. Also, by the end of the 1970s,
Keynesian macroeconomic models such as those of Tinbergen, Kelin, and Theil were in
decline, as was structural Keynesian macroeconomic forecasting [41]. In response to the
failures of Keynesian structural models, econometricians began to explore nonstructural
forecasting methods. Work on nonstructural methods predates the Keynesian period, but
this work was overlooked mainly for the popularity of Keynesian methods. Beginning in
the 1920s, the work of Slutsky [132] and Yule [161] focused on the use of simple linear
difference equations driven by random stochastic shocks, autoregressions, for modeling
and forecasting a variety of economic and financial time series [41]. The key insight in
the use of autoregressions is that system dynamics convert random inputs into serially
correlated outputs, a phenomenon called the Slutsky-Yule effect. In the 1930s, H. Wold
[158] made a ground breaking contribution by showing that given sufficient stability of
the underlying probabilistic mechanism generating the series, the stochastic part can be
represented as a model of the Slutsky-Yule type. N. Wiener [156] and A. Kolmogorov
[88, 89] worked out the mathematical formulae for optimal forecasts from models of the
type studied by Slutsky, Yule, and Wold. In the late 1950s and late 1960s, R. Kalman
extended the theory by relaxing conditions imposed by Wiener and Kolmogorov. His
forecasting formula is known as the Kalman filter, which is designed to work with a
state-space representation of the system. The Wold-Wiener-Kolmogorov-Kalman theory
is exposited in Whittle [155]. A major push in the direction of nonstructural methods
came in 1970 with the publication of Box and Jenkins’ book [25] on nonstructural time
series analysis and forecasting.

Box and Jenkins’ model allowed for stochastic trends to be driven by cumulative
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effects of the random shocks, rather than just modeling trends via a linear determinis-
tic function of time. The concept of stochastic trends had wide-range implications, since
shocks to series have permanent effects. The most important contribution of the Box and
Jenkins methodology consists of a framework for nonstructural forecasting formulated as
iterative cycles of model formation, estimation, diagnostic testing, and forecasting. The
main tool at the core of the Box-Jenkins framework are autoregressive moving average
(ARMA) models. The need for modeling cross-variable relationships in macroeconomics
led to the expansion of the Box-Jenkins program by the creation of vector autoregressions
(VAR) to handle multivariate modeling and forecasting. VAR models are less restrictive
than the system-of-equations used in structural models, because variables do not need to
be label as endogenous or exogenous. Instead, with VAR models, all variables are con-
sidered to be endogenous. Early contributions to multivariate work of time series include
the work of Granger [57] and Sims [130, 131]. Dynamic factor models originated from
a need to make VAR models more flexible. In dynamic factor models, some economic
shocks are common across sectors while others are particular to only a few sectors. Con-
tributions to dynamic factor models include the work of Sargent and Sims [127], Geweke
[54], Stock and Watson [134, 135], Quah and Sargent [118], and Forni and Reichlin [50].
The concept of cointegration, where two or more series contain a stochastic trend but
their linear combination does not, was developed by Granger [58], and Engle and Granger
[48].

As for nonlinear models, one of the most important applications of the time series
Box-Jenkins methods is the modeling of volatility dynamics, which allows forecasting of
the unobservable volatility of observable processes. The literature of volatility forecasting
began with the seminal papers of Engle in 1982 [47] and Bollerslev in 1986 [22]. Their
models allow the conditional variance of the shocks to vary with time, as a function of
past errors in the case of the former, and as a function of past errors and past condi-
tional variances in the case of the latter. These nonlinear models have become of great
importance in finance, and extensive surveys of volatility forecasting include Bollerslev,
Chou and Kroner [23], Bollerslev, Engle and Nelson [24], and Poon and Granger [117]. A
second important category of nonlinear time series models is regime-switching models. In

regime-switching, or threshold models, an indicator variable determines the occurrence
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of a switch. Important contributions to threshold models include the work of Tong [142],
Granger and Terésvirta [60], and Hamilton [65].

We thus conclude this survey of some of the most important developments and con-
tributions in economics and econometrics to the problem of forecasting. This survey,
although not exhaustive, attempts to give a taste of the progression in modeling and
forecasting that has led to the methodology applied in the work to follow. We note many
important areas of research have not been covered, such as neural networks and machine
learning. We refer the interested reader to other more extensive surveys of economic

forecasting [9], [147].

2.3 Forecasting methodologies

We next provide an overview of forecasting methodologies, and extensively describe the
one particular methodology which is put into practice in the core of this thesis. A most
extensive catalog of forecasting methodologies can be found in Armstrong’s book [9], and
the following sketch of methodologies is based on his work.

Forecasting methodologies can be categorized into two classes: judgmental and sta-
tistical. The first class of methodologies described by Armstrong, judgmental methodolo-
gies, include role playing, intentions, and expert opinions. Role playing is a forecasting
methodology which attempts to predict decisions and actions of people and groups by
requiring participants to act and respond to fictitious situations that replicate possible
conflicts. Role playing is most effective in prediction when the conflicting parties must
respond to large changes. Examples of situations where role playing might be applicable
include companies designing product and predicting consumer reactions, labor issues, mil-
itary strategies, forming strategies in court cases, and negotiating contracts. Intentions,
as a methodology, outlines procedures to use individuals’ plans, goals, or expectations
about the future to forecast individuals’ actions. Basic principles of intentions measure-
ment require that intentions should be quantified using probability scales, that intentions
should be adjusted to remove biases, that respondents should be segmented, and that
intentions can be used to form best and worst case forecasts. Intentions can be applied

to problems such as marketers measuring consumers’ purchase intentions, and the design
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of political polls. Expert opinion, as a forecast methodology, consists of principles using
a collection of experts’ forecasts to construct one unifying forecast.

The second class of forecasting methodologies outlined by Armstrong, statistical
methodologies, can be divided into two subcategories: extrapolation models and econo-
metric models. These two subcategories have been addressed in the history survey of
the previous section. Extrapolation models are also known as nonstructural models, and
econometric models are also referred to as structural models.

Armstrong [11] presents an extensive account on principles and strategies for fore-
casting with extrapolation models, and the following is a summary of time series models.
The main principle behind extrapolation of time series is that all necessary information
is contained in the historical values of the time series being forecasted, while the prin-
ciple behind cross-sectional extrapolation is that characteristics of one set of data can
be generalized to another set. The strengths of using extrapolation of time series are
that past behavior tends to be a good indicator of future behavior, it is objective, it is
replicable, and its is inexpensive. Time series extrapolation is also known as univariate
time series forecasting. Armstrong’s first principle for extrapolation of time series is that,
when selecting data, one should use all relevant data and adjust the data for important
past events. Second, one should make seasonal adjustments when seasonal effects are
expected. A third principle, when extrapolating, is the use of simple functional forms.
By far, the most influential models of time series are the univariate models proposed by
Box and Jenkins [25]. Most time series models can be expressed as Box-Jenkins models.
The dominant class of scalar time series models are integrated autoregressive moving
average models (ARIMAs). There are several reasons for the success of the Box-Jenkins
framework. Generally, the order of the AR and MA polynomials required for adequate fit
of time series is relatively low. Many economic time series are non-stationary but in many
cases can be made stationary by differencing; in such cases, ARIMA models are amenable
for analysis. Excellent surveys of the Box-Jenkins framework include [25, 27, 64, 67].

The following summary of principles and strategies for econometric forecasting is
based on the work of P. Allen and R. Fildes [2]. At the core of econometric methods
lie statistical procedures which are employed to estimate models specified primarily by

economic theory. Farly econometric models focused on collecting as many casual vari-
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ables as possible, if deemed by theory as relevant. This strategy led to much failure
because little attention was given to the dynamic structure. The application of vector
autoregression (VAR) methods in the 1980s resolved much of the problem. Contemporary
econometricians use economic theory as a guide to describe long-term cause and effect
relationships, and use data to determine the structure of the model, in terms of lags on
variables and differencing, which best describes the short-term dynamics. The principal
tool available to the econometrician is regression analysis. Allen and Fildes suggest the
fundamental principle for econometric forecasting is to aim for a relatively simple model
specification. We now describe an eight-step strategy for forecasting, as proposed by
Allen and Fildes, based on time series econometrics. The eight steps comprise: defining
the objectives, determining the set of variables, collecting the data, forming an initial
specification, estimating the model, misspecification testing, model simplification, and
comparing the out-of-sample performance.

By defining the objective, Allen and Fildes refer to deciding whether the purpose of
the study is to explain or to forecast. For the purpose of explanation, such as analyzing
policy, model structure is the important factor, and conditional forecasts should be used
to test the model. For the purpose of forecasting, one must be able to forecast the
explanatory variables used in the model with certain level of accuracy. When it comes
to determining the set of variables to be included in the model, it is suggested that
one considers casual variables based on guidelines from theory and previous empirical

research. Armstrong [10] gives four criteria for including a variable in a model:
1. a strong casual relationship is expected,
2. the casual relationship can be estimated accurately,
3. the casual variable changes substantially over time,
4. the change in the casual variable can be forecasted accurately.

For collecting data, Allen and Fildes suggest gathering all data available. This does not
imply that all data is ultimately used for estimation and forecasting, but rather, the claim
is that knowledge of factors such as structural breaks can result in improved models and

superior forecast accuracy.
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Once the list of variables to be used in the model has been determined, in the step of
initial specification, the econometrician designates the variables that occur in a specific
equation and the functional form of the equation. Part of determining the functional
form consists of deciding on the number of lags on each variable. Determining what
variables to include in an equation is usually based on theory. The use of a vector
autoregression model avoids the task of assigning variables as dependent or explanatory,
since each left hand side variable depends on lags of itself and the other variables on the
right hand side. Allen and Fildes suggest one must take into account all previous work
when specifying a preliminary model. This concept of encompassing can be described as
follows: a theory encompasses a rival theory if the former explains at least as much as
the latter explained. [106] and [49] are examples of work on forecast encompassing. The
common approach used by time series econometricians (e.g., [70],[69]) to model building
relies upon a general-to-specific principle. In this approach, a model with certain degree
of generality is tested for misspecification, and failure leads to a new simpler model for
testing.

For the step of estimation, Allen and Fildes suggest there seems to be no advantage
in using any other procedure other than ordinary least squares (OLS). Some support for
this conclusion is that OLS seems to be robust to violations of underlying assumptions.
OLS has stood up well against theoretically superior estimation methods. In the case
of estimating systems of equations, OLS is biased, but according to Kennedy [83], this
bias is not much worse that that of other methods. OLS is robust to misspecification,
and OLS has the smallest variance among estimators. Monte Carlo studies have shown
OLS to be less sensitive than other estimators to problems of multicollinearity, errors in
variables, and misspecification in small samples. Dielman and Rose [42] compare out-of-
sample forecasts from OLS, least absolute value (LAV), and Prais-Winsten methods on a
bivariate model with first order autocorrelated errors and find that OLS was frequently
better.

Once a model has been estimated, misspecification tests can be applied. The failure of
a specification test is an indication that the model as estimated is an inadequate summary
of the data. Unfortunately, Allen and Fildes point out, there is not much evidence to tie

misspecification tests to forecasting performance. Some econometricians view the failure
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of a misspecification test as a reason to explore new specifications rather than focus on
new estimation methods. Such econometricians view theory as a guide, although incom-
plete, for selecting casual variables, and consider testing essential in the construction of
models. When a model fails a number of misspecification tests, the econometrician must
consider additional casual variables, restructure the dynamic interdependencies, or re-
evaluate the functional form. Some important misspecification tests include parameter
stability, specification error, omitted variables, nonlinearities, autoregressive residuals,
and linear versus log-linear specification. Once a model satisfies a number of misspec-
ification tests, one can consider simplifying the model. As mentioned, for the purpose
of forecasting, one should aim towards simplicity rather than correct specification. In
time series, reducing the lag length is the primary method of simplification and should
be done one equation at a time in VAR models. Beginning with a general equation,
reducing the lag successively guarantees the residual sum of squares of the new restricted
model will not be statistically worse than the residual sum of squares for the previous
more general model. Finally, it is important to test model performance with data not
used for estimation. This out-of-sample forecasting method gives clues to the generality
of the model since, it might do well in explaining the past but it may perform poorly
in predicting the future. Much of the work presented in this thesis is mainly concerned
with univariate time series in the Box-Jenkins framework, although some treatment of
multivariate processes is presented in Chapter 5. The reason for restricting mainly to
univariate processes is to maintain simplicity in computation and exposition. There are
no theoretical obstructions to expand the computational work to VAR models.

Econometricians making use of ARIMA or VAR models face four main sources of
error. Specification error can be present due to inappropriate choice of explanatory
variables, use of an incorrect functional form, or the presence of structural breaks. Con-
ditioning error results from inaccuracies in the information used to form the conditional
forecast. When constructing a forecast, parameters are estimated based on a sample of
observations; the inaccuracies involved in estimating these parameters result in sampling
error in the forecast. Finally, random error is present in a forecast, even under correct
specification, due to the residuals used in the modeling and estimation.

The evaluation of forecasts is a critical step that must be carried out before implement-
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ing a forecast. Clements and Hendry [32] provide a complete and systematic treatment
of forecast evaluation for time series models, and we summarize their primary principles.
Granger and Newbold [59] presented a critique of evaluation methods available at the

time, and Clements and Hendry summarize the main contention:

Methods for gauging forecast accuracy cannot usefully be based on com-
parison of the time series, or the distributional properties, of the actual and
predicted series. It makes more sense to analyze the difference between the

two.

A general criterion to measure ex post forecast accuracy, based on the actual values

(Ay) of a series and the predicted values (P;), can be given as follows:

I(P, Ay). (2.3.1)

An optimal prediction is one for which (2.3.1) obtains an extremum. Based on the main
contention of Granger and Newbold, the criterion can be made more specific by writing

it as follows:

I(Pt, At) = I(At - Pt, At) = I(Gt, At) = C(Et), (232)

with ¢, = A; — P, and the costs are only a function of the forecast error, €;. If C(-) is a
quadratic function, the criterion is squared in the error and averaging over errors leads to
the mean square forecast error (MSFE) criterion. Reasons for choosing a quadratic form
for C include mathematical tractability, large errors are proportionately more serious
than small errors, and in many situations over and under prediction have similar costs.

We list other measures of forecast accuracy:

1. Mean absolute error (MAE): This is the average of the absolute values of the forecast
error, and is best applicable when the cost of forecast errors is proportional to the

absolute size of the forecast error.

2. Root mean square error (RMSE): This is the square root of the average of the
squared values of the forecast error. This measure implicitly weights large errors

more than small errors. This is simply the square root of the MSFE.
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3. Mean absolute percentage error (MAPE): This is the average of the absolute values
of the percentage errors. It is dimensionless, and its use is appropriate when the cost
of the error is closely related to the percentage error, rather than to the numerical

size of the error.
4. Median absolute percentage error (MdAPE)

5. Relative absolute error (RAE): This measure compares the error for a proposed

forecasting model to that for the naive forecast.

6. Correlation of forecasts with actual values: In this measure, changes, rather than
levels of the variable being forecasted are regressed on the forecasts of these changes
and the resulting R? is used as a measure of forecast accuracy. Armstrong [9] warns

against using R? to compare forecasting models.

7. Conditional efficiency: A forecast A is conditionally efficient relative to forecast
B if B contributes no useful information beyond that contained in A, and can be
evaluated by regressing the variable being forecasted on A and B and testing the

null that the coefficient of B is zero.

The work in this thesis evaluates forecasts using the MSFE. One reason for using the
MSFE is its computational tractability. Another reason for using the MSFE is due to
the generality of our methods. Since no specific economic phenomena is considered in
developing our algorithms, we select the MSFE for its generality over other context-
specific loss functions.

The first assumption we adhere to in the work to follow is that the observed process to
be forecasted originates from a data generating process (DGP) which might depend on a
parameter vector § € © C R¥. Clements and Hendry ([32], p.11) present a framework for
the forecasting problem with six facets: (A) the nature of the DGP; (B) the knowledge
level about the DGP; (C) the dimensionality of the system to be studied; (D) the form of
the analysis; (E) the forecast horizon; and (F') the linearity of the system. The principal
aim of this thesis is to develop algorithms, under the assumption of unknown DGP and

unknown 6, for different dynamic structures of the DGP.
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2.4 Forecast problem

As described in section 2.3, the two principal forecasting methodologies used in economics
and finance are univariate time series models in the Box-Jenkins tradition, and vector
autoregressive (VAR) econometric models. In what follows, we describe the forecast
problem of interest. The scope of our approach in constructing the problem is general

enough to allow for application of both the univariate time series and VAR methodologies.

2.4.1 Notation and setup

Consider a stochastic process Z = {Z; : @ — R™"! m € N7 =1,...,T + 1}, defined
on a complete probability space (Q, F, P), where F = {F,, 7 =1,...,T+1} and F; is the
o-field F; = 0{Zs,s < 7}. In what follows, we denote by Y, the component of interest of
the observed vector Z,, Y. € R, and interpret the remaining components, denoted W,
as being an m x 1 vector of other variables. In other words, we let Z, = (Y;, W,])". The
random variable Y, is further assumed to be continuously distributed.

The forecasting problem considered involves forecasting the variable Y;,, where s is
the prediction horizon of interest, s > 1, and ¢ is the forecast origin with ¢ < T'. In what
follows, we set s = 1 and examine the one-step-ahead predictions of Y1, knowing that
all results developed in this case can readily be generalized to any s > 1. In standard
notation, the subscript 7 on the expectation, E;[-], denotes conditioning on the entire
information set F,. In particular, we shall assume the forecaster employs the expected
value of Y;;1 conditional on the entire information set F;, E;[Y; 1] to specify the forecast
model. We denote by X; an m x 1 column vector of F;-measurable variables that are used
to forecast Y11, X; = (X},...,X/™)T. For the case m = 1, X; = X/. In applications,
X, can contain (1) various lags of the variable of interest Y-, (2) realizations of the other
variables W, as well as (3) any function of the previous two. As such, our setup will

allow for applications involving both time series and cross-section data. In what follows,
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t—1

we use the following notation for the time series {Y-}L_, | ., and {X;}., .

Xin = (Xt—nw”vXt—l)TERnxma

Y;,n = (Y;E—n—i-l)"'?Y;f)TERnle

O
3
Il

X/ X € R

We assume the forecaster does not know the data generating process (DGP) responsible
for the observed time series {Y;}. Instead, she uses some, possibly misspecified, forecast-
ing model to produce her forecasts, which are then evaluated using a loss function £. In
practice, the most commonly encountered situation is the one in which the forecasting
model employed is linear and the loss function is quadratic. In what follows, we derive
the mean square forecast error (MSFE) for linear forecasting models under the possible

presence of model misspecification.

2.4.2 Forecast construction

As mentioned, we assume the forecaster specifies the forecast model based on the condi-
tional expectation Ey[Y;11] of the observed process {Y;}. This is as a consequence of the
well known fact that the prediction with the smallest MSFE is, in fact, the conditional
expectation E;[Y;y1], ([64], p. 72). For example, for a DGP with additive innovations of
the form

DGP : Y;H—l = ’lp(Xt) + Ut+1, (241)

where {U.} is the innovation process with E.[U;] = 0 and Var(U;) = o < oo for

all 7, E[Yiy1] = ©(Xy). It is common practice in econometrics to assume a specific

form for E;[Y;+1] in estimation and forecasting. In what follows, we use the notation

Uy = (Bt [Yient1)s - - VBT € RMXT and Uin = Ut—n+1,-- -, U)T € R, so that
}/t,n = g(\pt,na Ut,n)7 (242)

for some functional form g. Not knowing the exact form of the DGP, we assume the

forecaster’s prediction of Y;11 is based on a model for E;[Y;41] which is linear in X}, and
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an innovation process {V;} such that
Yie1 = 0" X¢ + Viga, (2.4.3)

where ( is an m x 1 parameter vector, 0 € B, B compact in R™, and V; is such that
E-[V:]=0.

It is important to note that — while being linear — the forecasting model is not
assumed to be correctly specified. In other words, we do not make the assumption that
E(Yiy1) is a linear function of X;. In fact, a major aim of the work in this thesis is
to investigate the ramifications of the phenomena of misspecification in the context of
forecasting. Misspecification of the forecasting model can result from a variety of causes.
For example, in her choice of X, the forecaster might omit some of the F,—measurable
variables that enter Ey(Y;41); in this case, the forecasting model is dynamically misspec-
ified. Moreover, even if F¢(Y;y1) is a function of X; alone, its functional form might be
highly nonlinear; in this case the forecasting model is functionally misspecified.

The parameter [ is assumed to be estimated by an ordinary least squares (OLS)
estimator. The OLS estimator of 3 can be computed by using sample sets of various sizes.
When the sample set is a continuous interval in time, we refer to it as an observation
window. In the construction of a forecast, one important aspect to determine is the
nature of the sample used for the estimation of the forecast model. In the case of an
observation window, this corresponds to determining its length. In chapters to follow,
we develop quantitative methods for determining the length of an observation window
used in the forecasting problem. Two prevalent methods found in the literature are:
(1) a rolling window forecasting scheme, or (2) a recursive (also known as expanding
window) forecasting scheme. Under the rolling window forecasting scheme, the forecaster
re-estimates the parameter (3 of the linear forecasting model in (2.4.3) at each point ¢,
T — R <t <T. The estimation sample contains the n most recent observations—X;_,,

to Xy_1 and Y;_,, 41 to Y;— so the OLS estimator of 3 has the form
Brn = Qua X/ Yin. (2.4.4)

For example, in the single regressor case, the above expression for f;,, reduces to G, =
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(S X2)71 (1) Vi1 X,). The above OLS estimator BAM is then used to con-

s=t—n s=t—n

struct the forecast f’t+1,n of Y11 as follows
Virin = Bl X (2.4.5)

This procedure is repeated R times over the out-of-sample period [T'— R, T], and the
forecaster re-estimates (5 each time there are new observations available. The value of
n — which enters the forecast f’t+1,n through the OLS estimator Bt,n — is most often
chosen in an ad hoc manner, since there are no systematic methods in the literature to
obtain an optimal value.

The recursive (or expanding) window scheme involves using all past observations
available, i.e., the observations from date 1 to . Hence, if the forecaster uses a recursive
window forecasting scheme, at any time ¢, T'—R < t < T', she computes BAM = Q;thtTth,t,
and constructs }A/Hl,t = B;Xt. In other words, the recursive scheme corresponds to the
case where n =t in the OLS expression (2.4.4) above. As previously, the OLS estimator
BAM is computed T times, only now the estimate of § relies on all the data prior to time .
Both the rolling window and recursive forecasting schemes have great shortcomings. For
instance, neither of these schemes is likely to be optimal if the DGP for the time series
{Y;} undergoes a structural break. A rolling window of a short fixed size might work well
immediately after the break but valuable information will be lost as the distance from
the break increases. The recursive scheme will produce significantly biased forecasts after
the break, until the post break information out weighs the pre-break information. It is
our ultimate goal to develop and evaluate a new optimal forecasting scheme which relies
on the nature of the processes {Ys} and {X} for the choice of the forecasting window.
Before tackling this in the chapters that follow, we examine forecast evaluation based on

the decomposition of the MSFE.

2.4.3 Forecast evaluation

In our evaluation of the accuracy of the forecasts }A/HL”, we abide by common practice,
and represent the accuracy criterion by means of a cost or loss function. Assuming the

forecast evaluator uses a quadratic loss function, an optimal forecasting scheme consists
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of minimizing mean square forecast error (MSFE). Hence, we are interested in examining
the dependence of the expected squared forecast error on the window size n. Following
the standard approach [56, 32|, the expected squared forecast error can be defined in one
of two ways, depending on its intended use. For calculating specific errors given past

realizations of the explanatory variables, Xy = 0{X;_,,,..., X}, we define the criterion
CMSFE;, = E[(Yiy1 — Yis10)?| X, (2.4.6)

where fftﬂm is as defined in (2.4.5). We refer to this criterion as the conditional MSFE.
On the other hand, if we wish to analyze general properties of the MSFE, independent
of specific realizations of the explanatory variables, the unconditional MSFE or simply

the MSFE, is given by
MSFE, = E[(Yit1 = Yir10)'] = Elef 1,4, (2.4.7)

where €415, is the time-t 4- 1 forecast error, €1, = Yi41 — }A’Hl’n. In the work to follow,

as in [113, 114], we use the latter form of the MSFE for forecast accuracy evaluation.

2.4.4 Decomposition of the MSFE

It is common for analysis to decompose the MSFE into component parts. The squared
bias and variance decomposition consists of the sum of two terms, as traditionally done

in the forecasting literature (see, e.g., [56, 32, 113]), and has the following form:
2 2
E[Et—i-l,n] - bn + Un, (248)

where b2 = (E [et+17n])2 is the squared bias of the forecast error, and v, = Var(ei1.n)
is the variance of the forecast error. (2.4.8) is easily derived from the definition of the
variance.

Writing the MSFE as the sum of the squared bias and variance of the error allows for
a revealing analysis of the first two moments of the error in the forecast. The bias term
refers to the level of model misspecification in the forecast, while the variance captures

the level of homogeneity in the processes. Both the bias and variance terms are affected
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by the accuracy of the estimator employed. In what follows, we present some properties
of the CMSFE and the MSFE which concern their sample size dependence (SSD), i.e.,
properties regarding the observation window size n.
We assume the DGP has the general form Y;,, = ¥, + U, and rewrite the OLS
estimator in (2.4.4) as ﬁAtm = O¢p + At p, where

Otn = Qup Xih Ui, A = Qg X, Upne (2.4.9)
The forecast error evaluated at ¢t + 1 is given by
Et—i-l,n = "L/)(Xt) + Ut+l — (@t,n + At,n)TXt. (2410)

The CMSFE can be written as the sum of a conditional squared bias term and a condi-

tional variance term as follows:

CMSFEy, =b%, ,, + vx,n, (2.4.11)
2 2 T 2

B = Blevrnl) = (0(X0) — 0], X,) (2.4.12)

Uy = Var(ep1n| ) = ofy + var(A], Xy) = o + 05 X, Qi 4 Xo. (2.4.13)

It is clear that both components depend on the particular realization X;. The following

proposition describes the n dependence of the conditional variance component.

Proposition 2.1
(i) For a given realization X, vx,n | n.
(ii) For a correctly specified linear model and a given realization Xy, the optimal forecast-

ing scheme is recursive.

The proposition implies the variance decreases as the amount of data used to form the

forecast increases. To gain some intuition on the variance decay with n, consider the

t—1

scalar case m = 1. In this case, Q@ = >, _, XZ-2 and the conditional variance is

t—1
vt =of +op( Yy X7)TIXE. (2.4.14)

1=t—n
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The variance decay is clear from the fact the denominator increases as n increases, while
the numerator is constant. The monotonic behavior of the conditional variance suggests
that any interesting behavior of the CMSFE as the sample size increases is due entirely
to the conditional squared bias term.

The conditional squared bias component for a misspecified model (2.4.12), on the
other hand, does not exhibit a clear monotonic dependence on n. In fact, the conditional
squared bias for a misspecified model inherits the erratic nature of the particular real-
ization X}, making the CMSFE unfit for any analysis of an optimal observation window.
We can see this clearly in the scalar case m = 1 where the term @Z Xt in the conditional
squared bias is given by

t—1

t—1
O, X =Xi( ) X)) (X)X, (2.4.15)

i=t—n i=t—n

The absence of an n dependent decay in the squared bias can be seen by comparing

(2.4.14) and (2.4.15). The following example illustrates these ideas.

Example 2.1 Consider the nonlinear univariate DGP given by Y11 = th—i—UHl, where
{U;} ~ IIN(0,1). Furthermore, assume the process {X .} follows an AR(1): X1 =
(1 —a)+ aX;+ Vip1, where a = 0.9 and {V;} ~ IIN(0,0.4). We investigate the SSD of
the conditional variance and the conditional bias through a Monte Carlo experiment for
three realizations of the process {X;}. The results of the experiment, given in figure 2.1,

show the erratic nature of the conditional squared bias component. O

Due to the failure of the CMSFE in revealing optimal forecasting schemes, we turn
to the unconditional MSFE as defined in (2.4.7), written in terms of the squared bias
and variance components. The forecast error evaluated at ¢ + 1 given by (2.4.10) leads
to the unconditional squared bias component

B = Bleria] = (BI(X)] - EO7,X1) (2.4.16)
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Figure 2.1: Conditional squared bias, conditional variance and CMSFE for three realiza-
tions of the process {X;}

and the unconditional variance component

vy = Var(egi1n) = ob + Var(¢(Xy)) + Var(@InXt) + var(A,InXt)

— 2Cov(¥(Xy), 0/, %), (2.4.17)

where Var(A,InXt) = U%E[(XJQ;éXt)]. As expected, neither component depends on a
particular realization of the process {X;}.

The unconditional variance component, (2.4.17), of the MSFE under misspecifica-
tion contains noise from parameter estimation, o7, + 0 F (X, Q. 1Xy)], as well as vari-
ance terms which are associated with the misspecification of the model, Var(y(X;)) +
Var(@tTnXt) — 2Cov (Y (Xy), @ZnXt). The presence of these latter terms makes the SSD
of the unconditional bias and variance ambiguous. We note that the SSD of both the
squared bias and variance components is manifested in the terms @Z X and X" Q. 1x;.
To understand some aspects of the SSD, the following proposition characterizes the SSD
of the term E[X, ¢ 1X;] and the SSD of the unconditional variance in the case of a

linear DGP.
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Proposition 2.2
(1) E[XtTQt_’%Xt] > E[XtTQt_ﬁHXt] for any n and t.
(ii) When the DGP is linear, v, | n .

Proof. (i) First we show XtTQt_ﬁXt > XtTQt_ﬁHXt a.s-P. We write
Xin+1 = [Xt-n-l)?,fn} € RMHIXE
and substitute in the expression for Q¢ 11 so that
X Qi Xe = =X (X Kin + Xin 1 X[ n_l)_lxt, asP  (24.18)
Using the following inverse formula
(A1 — Ap At Ag) ™ = AT+ A Ao (Agg — Ag AT Ar) T Ag AT
we can rewrite (2.4.18) as
X QX = X Qi X — X[ Qi X1 (14 X1 Qir X)) X1 Q1 Xy, as-P,

where we used A1 = Qppn, A12 = Xy—pn—1, A21 = XtT_n_]L and Ago = —1. It follows, since
Q¢ is positive definite, Qt_% is positive semidefinite so XtT_n_lQ;;Xt_n_l is positive
semidefinite and 1+ X" n—1Q¢, 1X; 1 and its inverse are positive scalars. Finally we

have
X Qia XX, 1Qin Xy = (X, QX)) (X[, Qi Xy) >0, asP

and the result follows.
(ii) Substituting Ft,n = Xmﬂ in the expression for ©;, one obtains ©;, = 3. Substi-
tuting O, = 8 and f(X;) = 8" X; in (2.4.17) one obtains v, = o3 + 2Var(8' X;)) +
O'%E[(X;Q;%Xt)] —2Cov(BT Xy, BT Xy) = o0& + J%E[(X;Q;%Xt)]. The result follows
from part (i). m

The proposition implies the term E[X tT o éXt] of the variance decreases as more data

is used to construct the forecast. Next, we look at the term @Z »X . The term @,I WXt can
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Figure 2.2: Terms of bias components of the MSFE for a misspecified linear model for a
quadratic DGP

be found in both the bias and variance components in the expectation, E [@tT nXt], the
variance, Var(@ZnXt), and the covariance with ¢(X;), Cov(¢(X%), G)ZnXt). The presence
of the term @Z Xt in both the squared bias component and the variance component
makes it difficult to establish a trade-off with respect to the window size n. In fact, as
the following example demonstrates, a trade-off between the unconditional bias and the

unconditional variance is not warrantied to exist.

Example 2.2 Consider the nonlinear DGP and process {X;} given in example 2.1. We
investigate the SSD of the variance covariance terms Var(@InXt), Cov((Xy), G),InXt),
and U%E[(X;Q;%Xt)] through a Monte Carlo experiment. For each value of window
size m, n = 1,...,100, we compute the probability limits of different components of
Var(©T X;), as sample averages across 10,000 replications of the series {X;}, {V;}, and
{U;}. The results of the experiment are shown in figure (2.2). O

Furthermore, the following proposition shows that the only conclusions about optimal

forecasting schemes which one can arrive at are for the simple correctly specified linear
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Figure 2.3: The three plots correspond to the unconditional bias, variance, and MSFE,
respectively, for a misspecified linear model for a quadratic TDGP.

case.

Proposition 2.3 If the DGP (2.4.1) is linear, the squared bias b2 is zero and it is mean

square optimal to use a recursive forecast scheme.

Proof. Since ¥(X;) = ©/,,X;, the unconditional bias in (2.4.16) is zero and the uncon-
ditional variance in (2.4.17) reduces to 0%, + o5 E[(X, Qr, 1X})]. The result follows from
proposition 2.2. =

Concluding, we have seen there are two possible ways to define the MSFE, a con-
ditional form and an unconditional form. We examined the squared bias and variance
decomposition for both conditional and unconditional forms. For the conditional form,
the dependence of the conditional squared bias on the particular realization X; made
the conditional MSFE unfit for analyzing optimal forecasting window schemes. Further-
more, for the unconditional bias and variance decomposition, the presence of variance
covariance terms made the SSD ambiguous and its analysis infeasible. The work in the

chapters to follow provide tools to assist in the analysis of the SSD of the MSFE.
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2.5 Misspecification

Economic and econometric models are parsimonious mathematical devices used to ap-
proximate complex generating processes. As such, models fail to capture the complete
dynamic relationships responsible for the observed behavior and misspecification be-
comes ubiquitous. One of the main goals of this thesis is to understand the ramifications
of misspecification for the problem of forecasting. In particular, we are interested in the
nature of the sample size dependence of the mean square forecast error under misspecified
conditions. This subject is addressed in Chapters 5, 6, and 7.

Some common types of misspecification include the omission of relevant variables,
inclusion of irrelevant variables, incorrect functional form, errors-in-variables, autocor-
relation, heteroscedasticity, incompleteness of systems, and incorrect distributional as-
sumptions. A formal and concrete treatise of misspecification can be conducted by the
use of maximum likelihood techniques in the tradition of Cox [34, 35|, Berk [14, 15],
Huber [74], and White [152]. The following is based on [152].

Empirical phenomena is viewed as the realization of a stochastic processes as given

in the following assumption.

Assumption 2.1 The observed data are a realization of a stochastic process Z = {Z; :
Q- R veN,7=12,..} on a complete probability space (1, F, Py), where Q = R">® =
X2 RY and F = B">® = B(R">®).

As an element w of 2 ranges over €, the realization Z,(w) ranges over R". For
concreteness and convenience the choice ) = RY* is made so that Z, is the projection
operator that selects z; as the 7th coordinate of w, Z;(w) = zr. The v x 1 observation
vector Z, is often partitioned as Z, = (Y,',X.[)T, where Y, is [ x 1 and X, isv —1 x 1,
where Y} is a set of dependent variables to be determined, explained or forecasted partly
on the basis of other variables X.

The probability measure Py provides a complete description of the stochastic behavior
of the sequence Z and is viewed as the true data generating mechanism or data generating
process. The problems of estimation and inference arise because Py is unknown. Given a
realization of the of the sequence Z, knowledge of Py can be inferred from Z. Usually, one

has available a realization 2™ of a finite history, Z" = (X ,..., X,[)T, referred to as a
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sample of size n. The stochastic generating process of any sample of size n is completely
described by its distribution PJ'(B) = Py[X" € B] for B € B"". The goal of estimation
and inference is to learn about Fj from information contained in the sample generated
by Z™. A description of the stochastic nature of any sample equivalent to that provided

by Fj is given by the Radon-Nikodyn density.

Theorem 2.4 (Theorem 2.1 in [152]) Given assumption 2.1 and if Py is absolutely
continuous with respect to given o-finite measures v™ on (R'™, B'™), there erists a mea-
surable non-negative Radon-Nikodyn density g" = dP§/dv"™, unique up to a set of v"-

measure zero, such that
Py (B) = / g"du™,
B

for all B € B"™.

As long as v™ is properly chosen, the theorem warranties the existence of the relevant
density function. Given v", knowledge of ¢" is tantamount to knowledge of P§j'. One can
recover )" by using the sample to learn about g". This can be done by constructing an
approximation to ¢g" based on Z™. A criterion to evaluate such an approximation was

introduced by Kullback and Leibler [90].

Definition 2.5 (KLIC) Let (2, F,v) be a measure space, let g : Q2 — RT be a measur-
able function satisfying [ gdv < oo and [¢ glog gdv < oo, where S = {w € Q : g(w) > 0},
and let f : Q — RT be a measurable function satisfying fsglog fdv < co. The Kullback-
Leibler Information Criterion (KLIC) is defined as

Ig: f) = /S g1o0g(g/ f)dv.

The KLIC measures the discrepancy between g and f as described by the information

inequality.

Theorem 2.6 (Information inequality, theorem 2.3 in [152]) Let f,g,v,S and I
be as in definition 2.5. If [(g— f)dv >0, then I(g : f) >0 and I(g : f) = 0 if and only

if g = f almost everywhere -v on S.



44

I(g : f) can serve as a measure of the closeness of f to g as discussed by Akaike [1].
Comparison of the adequacy of two approximations fi and fy by means of the KLIC is

based on

Ig: f1)~X(g: f2) = /S log(f2/ f1)gdv,

where the latter quantity can be estimated without knowledge of g.

Approximations of g" can be based on a probability model as defined below.

Definition 2.7 (Probability model) Let (2, F) be a measurable space. A probability

model is a collection P of distinct probability measures on (£, F).
An element P of P is a model element.

Definition 2.8 (Correctly specified probability model) The probability model P is
correctly specified for Z if P contains Py, the data generating process of assumption 2.1.

Otherwise, P is misspecified for Z.

In many cases, P, is assumed to belong to some probability model with elements indexed
by a finite parameter vector, P = {Py : § € © C RP,p € N}. Such a model is referred
to as a parametric probability model and written P = {Py}. A parametric probability
model tends to be a small subset of P*, the collection of all probability measures on

(Q,F).

Theorem 2.9 (Theorem 2.6 in [152]) Let P = {Py} be a parametric probability model.
Define P} as P} (B) = Py[Z" € B], B€ B, n=1,2,..., 0 € ©. Suppose there exists a
o-finite measure " on (RV™, B™) such that for each 0 in ©, Pg is absolutely continuous

with respect ton™, n=1,2,.... Then there exrists a nonnegative Radon-Nikodyn density

f(-,0) = dPg/dn™ measurable-B*™ for each 6 in ©, n=1,2,....

The density f™(-,0) is said to be constructed “from the top down” by first positing a
parametric probability model P and then applying theorem 2.9. In economics, approxi-
mations to g" are rarely constructed from the top down. The mapping f™(z",-) : © — RT
is referred to as the likelihood function generated by the probability model P with re-

spect to ™ for the realization z", or simply the likelihood function generated by P. An
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important representation of g” for the construction of approximations is given in the next

theorem.

Theorem 2.10 (Theorem 2.7 in [152]) Given assumption 2.1 and given P§ is abso-
lutely continuous with respect to given o-finite measures v™ on (R, B"™), the densi-
ties g", n = 1,2,... can be chosen such that z™ € S™ = {z" : ¢g"(z") > 0} implies
2L e 8§71 for all 2 in S™. We refer to densities g™ with this property as standard.

Then for all 2™ in S™
log ¢"(2") = Zlog gr(27), n=12,...,
=1

where g-(27) = g™ (27)/g" M"Y, 1 =1,2,..., and g1(2}) = g'(z!) = ().

Often, g, can be interpreted as a conditional density of Z, given Z™~! with respect to
a measure v,. An approximation to g" can be constructed “from the bottom up” with

functions f; : RY™ x © — R™ as approximations to g,, 7 = 1,2,... as follows:

n

i 0) = 1] £(27,0).

T=1

This approximation is referred to as a quasi-likelihood function. A probability model P
is constructed “from the bottom up” if the model is generated by a sequence of function

{f"=TI2_, f+} as defined below.

Definition 2.11 Let "™ be a measure on (R, B"") and let f™ : R x © — RT be
measurable-BY"™ for each 0 in ©, an arbitrary set, n = 1,2,.... For each 6 in O, define

the measure
P(;"‘(B):/ 0V (M), B € B,
B

We say that {f™} generates the probability model P = {Py} with respect to {n"} if for
each 0 in © there exists a probability measure Py on (RV>°, B>°) such that for each n the

restriction of Py to (R"",B"") is given by P, n=1,2,....

To generate a probability model, it is necessary that f, be a conditional density for Z,

given Z7! for all § in © and all 7. This requirement is often violated in economet-
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ric practice, rendering probability models too narrow a class of approximations to Pj.
For this reason, attention is focused to a wider class of approximations referred to as

parametric stochastic specifications.

Definition 2.12 (Parametric stochastic specifications) A parametric stochastic spec-
ifications on (Q, F) is a collection S of sequences of functions f(0) = {f-(-,0) : R" —
RT,7 =1,2,...} obtained by letting 0 range over © C R?, p € N where for each T =
1,2,... and each 0 € O, f(-,0) : RY" — RT is measurable-B'T, i.e. S ={f(0) : 0 € O}.

S = {f:} is a specification for Z when the conditions of the definition are met and " =
[1}_, f+ is referred to as the quasi-likelihood specified by S. Stochastic specifications
may be correctly or incorrectly specified to varying degrees. For some applications, f is
allowed to depend on n, {f,, : RV x© — R* n,t =1,2,...}. The following assumption

is useful in construction specifications.

Assumption 2.2 The functions f, : R x © — R are such that f.(-,0) is measurable-
BT for each 0 in ©, a compact subset of RP, p € N, and f.(Z7,-) is continuous on
© a.s.-FPy, i.e., fr(27,-) is continuous on © for all 2™ in some F. € B'7, Fj[F;] = 1,

T=12,....

Under assumption 2.2, the quasi-likelihood f™ = []”_; f- can be viewed as an approxi-

mation to g" as measured by the KLIC
I(g" : f0) = /S log g™ (=")/ f" (2", 0)] g" (2" )dv" (=").

Choosing 6 to minimize I(g" : f™;0) is equivalent to choosing 6 to maximize the following

L(0) = [ 1oz 17", 0)g" ()" ()
— [ tog (", 0y ()
= Ellog f™"(Z",0)].
When f"(2",6) is correctly specified, f"(2",6p) = g™ (2") for a unique vector 6y in O so

that choosing 6 to maximize ﬂn(é’) yields 6y by the information inequality. In practice, 6

cannot be chosen in this way since En(ﬁ) is an expected value determined by the unknown
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g"™. This can often be solved approximately using sample information. For this purpose,

note that maximizing L, () is equivalent to maximizing
La(6) = n ' La(6) = Eln~log f"(2",0)].
Furthermore, it follows that

n"'log f(2",0) =n~" ) log f-(Z7,6).
=1
If a law of large numbers applies to the sum, for n sufficiently large, E[n~!log f*(Z", )]
can be approximated by L,(Z",60) = n~!log f*(Z",0). Therefore, the value of § which
provides the best approximation to g™ can be approximated by the solution 0,, to the

problem

n
Lo(Z™",0)=n"1) log £,(Z7,0).
IQHEag)( n( ’ ) n Tz::l og f ( ’ )
L,, is the quasi-log-likelihood function and én is the quasi-maximum likelihood estimator

(QMLE). We give an existence theorem.

Theorem 2.13 (Theorem 2.12 in [152]) Given assumptions 2.1 and 2.2 and a se-

quence {O©,} of compact subsets of ©, for each n = 1,2,... there exists a function

Oy, : R — ©,, measurable-B"" and a set F,, € B"" with P} (F,) =1 such that for all 2"
m F,

L,(z",6(z")) = Iax L,(z",0).

én is a random variable with stochastic properties such as consistency and an asymptotic
distribution. White [149, 152] studies the consistency of the QMLE. The idea is that
because 6, maximizes Ly, (Z",0) and L,(Z",0) tends to L,(0) = E[L,(Z",0)], then 6,
should tend to the value of #, 8, which maximizes L,. Under assumptions 2.1 and 2.2
and assumptions on the continuity of Eflog f-(Z7,-)], {log f(Z7,0)} obeying a law of
large numbers and a uniqueness of the maximizers of { L, }, White proves 0, — 0r — 0 as

n — oo a.s-Py. We note L,, depends on the chosen parametric stochastic specification

S = {f:} and as such, 6} does not necessarily coincide with the parameter 6y of the
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correctly specified parametric stochastic specification. White [152] and Domowits and
White [151] give conditions for the asymptotic normality of the QMLE.

In chapters 5 and 6, we review some large sample results for the OLS under as-
sumptions of misspecification and develop approximations to understand finite sample
properties of the OLS and the MSFE under misspecification. For sake of brevity, we omit
a description of the vast field of misspecification tests but direct the interested reader to

the comprehensive monograph by Godfrey [55].

2.6 Motivating examples

The following examples serve as motivation for the work in chapters to follow by illus-
trating the sample size dependence (SSD) of the MSFE under different circumstances.
The principal phenomena that we try to capture with these examples is the effect of
model misspecification on the SSD of the MSFE.

In this first example, we investigate the SSD of the MSFE for the forecast of a DGP

consisting of a linear regression with a correctly specified model.

Example 2.14 We consider the forecast problem where the DGP is generated by a re-

gression process of the form:
Yi = oX¢ 1 + U,

with {U;} ~ IIN(0,0r) and {X;} ~ IIN(p,0,). The forecaster applies a correctly
specified model of the form Y, = BXy_1 + V4, resulting in the forecast }A/Hl = BXt. The

OLS formed from the n most recent observations is given by the following:

t—1 t—1

Bt,n:[ > XZ]_l tz_i Yr+1XT=¢+[ > XZ]_1 tz_i Uri1 X7,

T=t—n T=t—n T=t—n T=t—n

and its expectation is E[Btn] = ¢. The square of the OLS is as follows :

t—1

t—1 . t—1 Ly -1 )
Bf,n=¢2+2¢[ > X?} 3 UT+1XT+[ Y XE} [ 3 UT+1XT]

T=t—n T=t—n T=t—n T=t—n
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Figure 2.4: MSFE with oy =1and p=1and 0, =1

and its expectation is E[Bfn] = ¢? + o2 E[l) Y X2). The MSFE is as follows:

T=t—m “° T
MSFE =E[Y2,] — 2E[Yi41 X,|E[6..] + E[X2|E[32,]

(£2])

T=t—n

=, (1 + E[X?)E

To investigate the sample size dependence of the MSFE expression above, we conduct a

Monte Carlo experiment. The conditional MSFE is given by

t—1
CMSFE =o? (1 +X§( 3 XZ) _1> .

T=t—n

We produce one hundred thousand i.i.d realizations of the sequence {X1,...,Xgo} with
{X 80, ~ IIN(1,1) and oy = 1. The MSFE from the Monte Carlo experiment is
shown in Figure 2.4. As expected, the MSFE decreases monotonically with increasing
sample size and it is optimal to use as much data as available.

O

In the second example, we investigate the sample size dependence of the MSFE for the
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forecast of a DGP consisting of the same regression process as in example 2.14. In

contrast to the previous case, we assume the forecaster uses a misspecified model.

Example 2.15 We consider the forecast problem where the DGP is generated by a re-

gression process of the form:
Vi =9Xi1 + Uy,

with {U;} ~ IIN(0,0p) and {X;} ~ IIN(u,05). The forecaster applies a misspecified
white noise model of the form Yy = B+ Vi, resulting in the forecast f/}H = B The OLS

formed from the n most recent observations is given by the following:

1 t—1
5t,n:E Z YT+17

T=t—n

and its expectation is E[f3;,] = E[Y;]. The square of the OLS is as follows:

. 1, =l 9 = t—1
Bim = ﬁ( > YT“) = ﬁ( PIRETENDY Yi+1Yj+1)a
T=i—n T=t—n Z#]’t_n
and its expectation is
52 Lo L\ o
BI3,) =SBV + (1- - ) B[V

The MSFE is given by

MSFE =E[Y2,] - 2E[Y;11)E[Bs.n] + E[B2,]
=Var(Y;) <1 - l) .

n

The MSFE decreases monotonically with increasing sample size and it is optimal to use

as much data as available.
Oa

Example 2.16 We consider the forecast problem where the DGP is generated by an
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AR(1) process of the form:

Yi=p+¢Yi1+ U

The forecaster applies a white noise model of the form Y = [ + Vi, resulting in the

forecast f/}H = ﬁt,n. The MSFE takes the following form:
MSFE = E[Y71] = 2E[Ye1 0] + E[67,].

We are interested in the sample size dependence of the MSFE, which translates in part
to the sample size dependence of the OLS. The OLS formed from the n most recent

observations is given by the following:

1 t—1
5t,n:E Z YT+1'

T=t—m
The second term of the MSFE is as follows:

t—1

1 n
Y. EMinYrp] =E Y]+ - v,
=1

T=t—mn

E[Yi16i0] =

where v; = Cov(Yy, Yy—;). Substituting the expression for the autocovariance of the process
{Y:}, vi = ¢'of /(1 — ¢?), the expression for the variance of Yy, Var(Yy) = 0% /(1 — ¢?),

and the summation

~ i (1—¢")
;¢—¢(1_¢),

we obtain the following expression

ElViafon] = B[V + SVar(v) ¢ (ﬂ‘_‘f) . (2.6.1)

The square of the OLS is as follows:
t—1 i—1

t—1
. 1 2 1
ﬁt%n:ﬁ( > YT“) :ﬁ< IRETENDY Yi+1Yj+1)a

T=t—n T=t—n i#j,t—n
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and its expectation is

t—1
N 1 1
E[6?,] = EE[Ytz] t3 Z BlYiy1Yja]-
i1#j,t—n
For the second term we have
t—1 t—1 [L2
> ElimYial= ) [COU(YiH’YjH) + -0
i#j,t—n i;éj,t n

2

_2271—1% (n —n)(lﬁ@?

Substituting the expression for the autocovariance ~v; = (bia% /(1 —¢?), the expression for

the variance Var(Y;) = o3, /(1 — ¢?), and the summations

; 1—¢"1 i 6= ng"— ¢ 4 ngnt!
Z # = 2 G-17
we obtain
. 1 2 2 1—¢"
(3] = E* Y] + ~Var(¥)) (1 + %) —zVar(¥) ¢ (ﬁ) - (262)

Substituting expressions (2.6.1) and (2.6.2) in the MSFE, we obtain the following expres-
sion for the MSFE:

MSFE = Var(Y)) [1 + <1 + 2;@;) 1 9 <%> n2] .

Figures 2.5 through 2.9 show the MSFE for the case with oy = 1 and different values of

0.
0

Example 2.17 We consider the forecast problem where the DGP is generated by an
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‘ ¢ ‘ Figure ‘
A B C D
1 |008] 03] 04| 06
$s 1 0.08] 0.1 | 0.3 | 0.2
#3 | 0.08]0.05| 0.2 |0.01
b4 | 0.08 ] 0.05 | 0.01 | 0.01
é5 | 0.08 ] 0.05 | 0.01 | 0.01
b6 | 0.08 | 0.05 | 0.01 | 0.01
é7 | 0.08 ] 0.05 | 0.01 | 0.01
#s | 0.08 | 0.05 | 0.01 | 0.01
b9 | 0.08 | 0.05 | 0.01 | 0.01
é10 | 0.08 | 0.05 | 0.01 | 0.01
é11 | 0.08 | 0.05 | 0.01 | 0.01
é12 | 0.08 | 0.05 | 0.01 | 0.01

Table 2.1: Autoregressive parameters

AR(12) process of the form:

Y =01Yi—1 + ¢2Yi o+ @33+ paYia + ¢5Yi_5 + d6Yi—s

+ OrYi 7+ $8Yi—g + PoYi—g + d10Yi—10 + P11Yi—11 + ¢12Ye—12 + Uy,

where Uy is zero mean white noise. The forecaster applies an AR(1) model of the form
Y, = Y1 + V4, resulting in the forecast ﬁﬂ = BAth. The table below provides the
parameter values for the plots shown in Figure 2.10. The MSFEs are generated by means

of Monte Carlo simulations.
a

Example 2.18 We consider the forecast problem where the DGP is generated by a de-

terministic trend process of the form:
Yi=p+ ot + Uy.

The forecaster applies a white noise model of the form Y = [ + Vi, resulting in the

forecast ﬁﬂ = ﬁAt,n. The MSFE takes the following form

MSFE = E[Yt%rl] — QE[Y%HﬁAt,n] + E[Btzn]
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The OLS formed from the n most recent observations is given by the following

1 t—1
5t,n:E Z YT+1'

T=t—n

The first term of the MSFE is as follows:
E[YZ] = (n+3(t +1))* + of.

The second term of the MSFE is as follows:

. 0 on
ElYir1 B8] = (n+ 0@+ 1)) (1 + 5T ot — 7)‘
The square of the OLS is as follows:
A = s 1, £ t—1
Bin = m( > YT+1) = ﬁ( PR AT Yz’+1Yj+1)7
T=t—n T=t—n i1#£j,t—n

and its expectation is
N 1 of 4 52
E|B,] = 1@+t 26t)% + ?U —5(@p+d+20t)n+ an.
Combining terms, the MSFE has the following form

52 o 82 52



MSFE for deterministic trend process

61

3 T T T T T T
! 5=0.01
281 ,' - = =501 ||
. —e—5=05

261 ! 1

1

1
241 I} 1

1

MSFE

Optimal observation window

40

35

30

N
a1
T

Window size
N
o
T

15F

0.4

Figure 2.11: MSFE with

0.6 0.8 1 1.2 1.4 1.6 1.8 2

oy = 1 for the deterministic trend example



62

2.7 Intuition behind our approach

In Section 2.4, we construct the forecasting problem based on a linear regression model.
The explanatory variables can consist of casual variables, as well as time lags of the
dependent variable. In the latter case, the resulting formulation is a time series model.
Restricting the problem by selecting a linear model is in line with common practice in
the forecasting literature, which favors in most situations simple models over correct
specification ([2], p. 306). For estimation, ordinary least squares (OLS) is the estimator
of choice. The evaluation of forecasts is to be carried out by means of the MSFE. The
methods chosen for estimation and evaluation allow for the most general framework
possible in the sense of the processes being analyzed.

The primary aim of this thesis is to understand how the accuracy of a forecast might
depend on the amount of data used in the estimation of the model. By amount of data, we
refer to the temporal element of the series. Should we use the last month, quarter, year,
or decade of a particular time series in formulating a forecast? In some of the literature,
this is referred to as selecting an observation window. We do not try to address the
question of determining casual dependencies of different cross-sectional data.

To better understand how one might go about determining such an observation win-
dow, we recall the eight step strategy outlined by Allen and Fildes [2] to construct econo-
metric forecasts. For the first step, the objective is forecasting. For determining the set
of variables, we assume the relevant casual relationships have been established and the
list of variables to be used in the problem are given. We further assume the forecaster
has access to the longest available series for each of the variables and has some relative
knowledge of events such as past structural breaks. The specification of the model as
a linear regression has been established as well as the use of OLS for estimation. It is
at the stage of estimation that the issue of an observation window can first be raised.
This is made particularly simple by the use of the OLS, which depends on an estimation
sample consisting of the last n observations, as can be seen in (2.4.4). The question
to ask is: Can we determine an optimal observation window at the stage of estimation
alone? The answer is no. To understand why this is so, consider what the estimation

problem entails. For the case of least squares, the estimation problem is given by the
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optimization problem:

t—1
Brm = argmingep > (Yr1(0) — BX,)%. (2.7.1)

r=t—n

The aim of the estimation problem (2.7.1) is to choose a Bt,n which, on average, replicates
the process as close as possible with the linear model, i.e., the aim is optimal fit and
explanation. Since the objective of the forecast problem is not explanation, but rather
prediction, one must question the appropriateness of choosing an observation window
at this stage. Consider for example, a process with unstable parameters which has
undergone a structural break in the past and is modeled with a correct functional form.
If the observation window is determined at the estimation stage, the answer would be, in
most situations, to use all post-break data and to ignore all pre-break data. This would
assure that the model fits the post-break process as close as possible. Nonetheless, it
is well known that, in many situations, such as having a short post-break data history,
optimal forecasts make use of pre-break data. In the case of the MSFE, this is due to the
bias-variance trade-off. Consequently, the task of evaluating the temporal significance of
data for the purpose of forecasting must be carried beyond the estimation stage.

The existing methods used to discriminate data based on a temporal criteria include:
using an expanding window; using a fixed-size window; and using exponential declining
weights. These methods are ad hoc and are always applied at the estimation stage,
making them sub-optimal for the purpose of forecasting. A major contribution of this
thesis is the reformulation of the standard forecasting strategies to allow for evaluation
of the temporal significance of data in a setting more appropriate than the estimation
problem. This reformulation of forecasting strategies is essential to make the temporal
evaluation of data a systematic procedure which relies on the dynamic nature of the
observed processes.

The standard way of solving the estimation problem (2.7.1) assumes the use of series
{Xtny..., Xe—1} and {Yi—py1,...,Y:} of a predetermined length n and possibly with
predetermined weights. The selection of this length n and weights, as noted earlier, is
done in an ad hoc manner by qualitative means which are very loosely based on some

theoretic aspects of the processes being observed. For example, a forecaster might be
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aware the economic phenomenon of interest undergoes small but frequent structural
shifts, and she might choose to use a fixed size observation window of length equal to the
average length of the periods between shifts.

Once the estimation problem (2.7.1) is solved, BAM is a fixed quantity leading to the
forecast }AQH = Bth. This estimation problem does not evaluate data directly in terms
of its temporal significance, and at no point during the eight steps of the forecasting
strategy is the accuracy of the forecast tested for sensitivity to the length of the data set.

We intend to make the selection of an observation window systematic and quan-
titative. Instead of blindly predetermining the length of the series in the problem, we
propose a reformulation of the estimation problem which treats the length n as a variable
to be determined simultaneously with the estimator BAM. The criteria for determining the
length of the series is maximizing accuracy of the forecast as a function of n. In the case
of forecast evaluation with the MSFE, this criteria translates to minimizing the MSFE
as a function of n. For evaluation by means of the MSFE, the reformulated estimation

problem is as follows:

n* = argmin, .y E[(Yiy1 — BenXt)?, (2.7.2)
t—1
Brn = argminge > (Yr1(0) — BX-)°. (2.7.3)
T=t—n

These ideas can be developed in a more general setting. Consider the forecast problem

of predicting the variable Y;;1 where the DGP and forecast model are as follows:

DGP : Y; = g(Wi,0), Model: Y; = f(Xy, ). (2.7.4)

We assume W; € R™ and X; € RF are t-measurable vectors of random variables and
0 € RP and 3 € RY? are parameter vectors. The vectors W; and X; can contain any set of
causal cross-sectional variables, as well as time lags of the dependent variable Y;. This
setup allows for modeling of any degree of misspecification. Up to this point, the problem

does not differ from standard strategies. We solve the forecast problem by means of the
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following forecast equation and error:

Forecast equation : Yth(Kn) = f(Xt,BAm(Kn)),

Error : €410 (K,) = Yeq1 — }A/t_irlm(Kn).

Bt,n is the estimator of 3, and K, is a real valued function K, : R" — [0, 1], which
plays the role of a kernel assigning weights with values in the interval [0,1] to each of
the datum used in forming ﬁAt,n. K, has as domain R" because each particular weight
in [0,1] assigned to a variable must be determined based on the information contained
by all of the explanatory variables {X;_,,,..., X;—1}. In particular, we will demonstrate
autocovariances among the data play an important role in determining the kernel K.
It is important to note the kernel K, is a time or temporal kernel, as opposed to the
typical spatial kernels used in nonparametric econometrics. Spatial kernels weight data
according to the distance of the value of a particular datum to a mean. We make explicit
the dependence of the forecast Y and the error € on the kernel K,, to emphasize how
our strategy differs from contemporary forecasting strategies which do not analyze the
temporal dependence of a forecast.

Under the unrealistic assumption of correct specification, the DGP and model co-
incide and are given by Y; = g(W¢,6). The forecast equation becomes }A/t_i_l,n(Kn) =
g(Wt,HAt,n(Kn)). Under reasonable assumptions, an unbiased, E[étn] = 6, and consis-
tent, 9t,n Ll 0, estimator ét,n can be obtained. The forecast evaluation under these
conditions should lead us to the choice of the trivial kernel K,, = 1. The reason being

that using the trivial kernel, one obtains the following highly desirable relations:
- P P
Yt+1m - Yt+17 €t+1,n — 0.

Under misspecification, the DGP and model would be given by (2.7.4). The forecast
equation becomes Yth(Kn) = f(Xt,ﬂAt,n(Kn)). Estimators for this problem will be

biased and the kernel is determined, for a chosen estimator Bt,n and a chosen cost function
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L, by the following optimization problem:
mgn L(etr1,0(Kn))-

For the work presented in this thesis, we focus attention to step kernels of the form

1 if I(n) is true
K, = ]-I(n) =
0 otherwise
The kernel is the indicator function which is one if condition I(n) is satisfied, and zero
otherwise. Returning to the case of estimation with OLS and evaluation with the MSFE,

the estimation problem described in (2.7.2) and (2.7.3) can be written in terms of a

temporal step kernel as follows:

n* = argmin, .y E[(Yir1 — Bin(Kn) X1)?,

t—1
Bin(Kn) = argmingep > (K7 Yr11(0) — BX,)?,
T=t—m
1, n<n®
K, =
0 n>n*

This system of relations cannot be solved explicitly for n*. Instead, one can apply a search
method for the optimal window size n* by calculating the MSFE, E[(Viy1—frn(Kn)X:)?,
for different values of n starting with n = 1. This procedure would reveal the sample size
dependence (SSD) of the MSFE. The difficulty in applying the search method as suggested
lies in that the squared forecast error is a non-trivial function of the explanatory variables.
This function can not be simplified with the usual properties of the expectation in order
to obtain a functional form depending explicitly on the value of n. To tackle the problem
of discerning the SSD of the MSFE, we propose an approximation method. This method
has as a main goal to approximate functionally complex statistics such as the squared
forecast error by simple statistics with tractable expectations.

In the work of this thesis, we consider a Taylor polynomial of order m, P,,, to ap-
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proximate the squared forecast error,
634—1711 = (}/t-i-l - 5t,n(Kn)Xt)2 ~ Pm(Xt—rm e 7Xt—17 Y;f—n—i-h e 7Y;f)

A main contribution of this thesis is to provide an extensive exposition on the use of Taylor
polynomials to approximate statistics and apply those approximations in the context of
forecasting. Of particular interest is that, in general, the resulting approximation can be
written as a linear combination of moments and real autocovariances which can easily
be approximated, making the method suitable for empirical applications. To carry out
approximations of statistics with Taylor polynomials, attention must be given to the fact
that there has to be some agreement between the radius of convergence and the range
of the random variables involved in the statistic. Chapter 3 and Chapter 4 address this

and related questions.
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Chapter 3

Expectations and truncated
expectations

3.1 Introduction

This chapter presents basic standard notation of probability, random variables, and ex-
pectations. We develop the concept of truncated expectation and describe properties
based on the standard notation of expectations. Truncated expectations are crucial to
the development of the forecasting algorithms based on Taylor approximations which are

presented in chapters to follow.

3.2 Expectations

Let (2, F, P) be a probability measure space and (R, B) a measurable space. A random
variable X is an F /B measurable function X : Q@ — R. That is, X (w) induces an inverse
mapping from B to F such that X ~!(B) € F for every B € B, where B is the linear
Borel field. The symbol p will denote a probability measure on the real line, while P
is used for the probability measure on the underlying space 2. The following theorem

relates P and p.

Theorem 3.1 (Theorem 3.1.3 in [31]) FEach random variable on the probability space
(Q, F, P) induces a probability space (R, B, 1) by means of the following correspondence:

w(B)=PX '(B)=P(X 'B))=Pw:X(w)e€B), VYBeB.
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O

The measure p, induced by X, is called the probability distribution or law, and has an

associated distribution function F'x given by
Fx(z) = p((—00,2]) = P(w: X(w) < z).

If X is ar.v. on (Q,F,P) which induces the space (R,B,u) and g : R — R is a
Borel function, then g o X(w) = g(X(w)) is a random variable on the probability space
(R, B, ng~1). The distribution of g(X) is ug~! with

1y~ (A) = (g~ A) = Plw: g(X()) € 4) = Pw: X(w) € g~ A).

We now define the integral of a measurable function and present some properties of
integrals which are essential to define the expectation of functions of random variables.
Let ¢ denote a real measurable function on the probability space (2, F,P). If ¢ is

nonnegative, the integral of ¢ with respect to the measure P is defined as follows:

/(b )dP(w —SUPZL}Q{{@b } P(A;),

where the supremum extends over all finite decompositions {A;} of 2 into F-sets. For a

general function ¢, define its positive part, ¢, and negative part, ¢~ as follows

¢F(w) = ;
07 —00 < ¢( )S

¢_(w) _ —(;5((.«)), —00 S ¢(w) S 0 ’
0, 0<¢w) <o

so that ¢ = ¢ — ¢~. The general integral is defined by

/¢ YdP(w /¢+ YdP(w /¢ w)dP(w
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For a set A € F, the integral of ¢ over A is defined by

/ f(w)dP(w) = / Loen - $(w)dP(w),
A Q

where 1,¢c4 is the indicator function of the set A. Given J is a nonnegative measurable

function on the measure space (2, F, P), a measure v defined by
= / d(w)dP(w), AeF
A

is said to have density ¢ with respect to P. A random variable X on (2, F, P) and its
distribution u have density f with respect to the Lebesgue measure A if f is a nonnegative

Borel function on R and

Plw: X(w) e A)=p(4) = /Af(a;)dx, AeR.

For any random variable the density is assumed to be with respect to the Lebesgue
measure A if no other measure is specified. The density f and distribution function F'x

of a random variable X are related by the following Lebesgue integral

_ /_OO F(t)dt

The following theorem presents important relations involving integration and the density

of a measure.

Theorem 3.2 (Theorem 16.11 in [19]) If v has density 6 with respect to P, then

/¢ Y /¢ ), (3.2.1)

holds for nonnegative ¢. Moreover, ¢, not necessarily nonnegative, is integrable with

respect to v if and only if ¢p0 is integrable with respect to P, in which case (3.2.1) and

[ owrav) = [ owitw)ar),

both hold. O
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We now address change of variables by a mapping and integration. Let (Q, F) and (Q', ')
be measurable spaces and T : Q — Q' a F/F' measurable mapping. For a measure P
on F, PT~! defines a measure on F’ given by PT~Y(A') = P(T~'A’), for A’ € F'. The

following theorem gives change of variable formulas for integration.

Theorem 3.3 (Theorem 16.13 in [19]) If ¢ is nonnegative, then

/ ¢(Tw)P(dw) = | ¢()PT(dw). (3.2.2)
Q Qf

A function ¢, not necessarily nonnegative, is integrable with respect to PT 1 if and only

if T is integrable with respect to P, in which case (3.2.2) and

/ H(Tw)P(dw) = | $(w)PT(do'),
T-1A/ N

hold. O

We can now use all the concepts of integration to define expectation. The expected value

of a random variable X on (2, F, P) is the integral of X with respect to the measure P:

E[X]:/QX(w)dP(w).

For each A in F, the truncated expectation is given by
E[X(w) - 1yen] = / X(w)dP(w). (3.2.3)
A

The following assumptions are made in the theorem that follows which shows different

representations of the expectation.

Assumption 3.1 The r.v. X on (Q,F, P) induces the probability space (R, B, ).
Assumption 3.2 g: R — R is a Borel function so that g(X) is a r.v. on (R,B,ug™!).

The following theorem shows the dual characterization of the expectation of a function.

Theorem 3.4 (Theorem 3.2.2 in [31]) Under assumptions 3.1 and 3.2

Elg(x)] = /Q 9(X (@))dP(w) = / o(2)du(z). (3.2.4)

R
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O

(3.2.4) follows directly from theorem 3.3, replacing 7' : w — Q' with X : Q@ — R, ¢
by g, setting ' = x, and noting PX !(dw’) = p(dx) = du(x). Furthermore, under
assumptions 3.1 and 3.2 and if X has density f with respect to the Lebesgue measure,

we have

(e}

s@f@)ar= [ ga)f(a)da. (3.25)

—00

Elg(X)] = /R g(z)dpu(z) = /

R

(3.2.5) follows from theorem 3.2 by replacing v with p, P with A\, w with z, ¢ with g, Q
with R and § with f. If X has distribution function Fx with continuous derivatives we

have dFx (z) = f(x)dx and

EMXﬂz/WQWV@szfmd@ﬂk@)

—0o0 —00

We now extend the results and definitions to multiple random variables. In R¥,
the k-dimensional Borel field B is o(R*), where R¥ denotes the measurable rectangles,
By X By x --- x By, where B; € Bfori=1,...,k, of R¥. We call a measurable mapping
X into R¥, X : Q@ — R* a random vector on the space (2, F, P) and write X (w) =
(X1 (w),..., Xg(w))". X is measurable F if and only if each component mapping X; is
measurable F. For a k-dimensional random vector X = (X1,...,X})T, the distribution

w, which is a probability measure on B*, and the distribution function are given by

wA) = Plw: (X1(w),..., Xiw)) € A), AeBF

F(xy,...,25) = P(w: X1(w) < 21,00, Xp(w) < 2p) = p(Sz),

where S, = {y :y; < x;,i=1,...,k}. A random vector X and its distribution p have
density f with respect to the k-dimensional Lebesgue measure A if f is a nonnegative

Borel function on R* and

P(w:X(w)GA):,u(A):/Af(:vl,...,xk)dxl---dxk, A e R”,
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If X is a k-dimensional random vector with distribution p and ¢ : R¥ — R? is measurable,
then g(X) is an i-dimensional random vector with distribution ug=1. If g; : R* — R
is defined by gj(z1,...,25) = x;, it follows g;(X) = X; has distribution p; = ,ugj_l
given by pi(A) = pl(z1,...,25) : z; € Al = P(w : Xj(w) € A), for A € R. The y;
are referred to as the marginal distributions of u. If u has density f with respect to the
k-dimensional Lebesgue measure, 11; has density f; with respect to the one dimensional

Lebesgue measure given by

f](ZL’) = /Rkl f(a;l, ey Lj—1, Ly T4y - e - ,.Tk)d:lil s d]Ij_ld:L’j+1 cee dJIk

The random variables Xi,..., X, are defined to be independent if the o-fields they
generate o(X1),...,0(Xy) are independent. Xi,..., X} are independent if and only
if P(Xy € Hy,...,Xy € Hy) = P(X; € Hy)---P(Xy € Hg), and if and only if
P(Xy<z,....Xp <uxp)=P(X1 <x1)--- P(Xi < xp).

Given the random vector (X7,..., X) with distribution p having density f and dis-
tribution function F' and each X; with marginal distribution p,; having density f; and
marginal distribution function F;, Xi,..., X} are independent if and only if p is the
product measure with g = 1 X - -+ X pg, if and only if F(xq,...,zx) = Fi(x1) - - - Fr(xg),
and if and only if f(z) = fi(21)--- fx(zx). For Borel measurable function g : R¥ — R
with g~1(B) € B* for every B € B, h(w) = g(X1(w), -, Xi(w)) is a F/B measurable

r.v. and we have the expectation
Blo(Xi(0). o Xuw))] = [ h@)dP(o).
Similarly, applying theorem 3.3,
Blo(¥1@) o Xuw)] = [ (oo adn(on,- o),

and if p has density f with respect to the k-dimensional Lebesgue measure A by theorem

3.2 and Fubini’s theorem

Elg(X;1(w),..., Xp(w))] = /_OO /_OO g(x1,. . xp) f(xy, ... xp)dey - - - dag.
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3.3 Truncated expectations

Under assumptions 3.1 and 3.2 for each A € B

Elg(X) Loex-14] = /

X-1A

YX@)IPE) = [ a@)du(o). (3.3.1)

(3.3.1) follows from theorem 3.3 by replacing 7' : w — Q' with X : Q — R, ¢ by g,
A by A, setting w’ = x and noting PX ~!(dw') = u(dz) = du(z). Furthermore, under
assumptions 3.1 and 3.2 and if X has density f with respect to the Lebesgue measure

and A = [a,b], we have

b

Elg(X)  Toex-14] = /A o) du(x) = / o) f ()N = / o) f(x)de.  (332)

A a

(3.3.2) follows from theorem 3.2 by replacing v with p, P with A\, w with z, ¢ with g, A
with A and § with f. If X has distribution function F'x with continuous derivatives we

have dFx (z) = f(x)dx and

b b
Elg(X) - Lyex-14] = / o) f (x)dz = / g(2)dFy (). (3.3.3)

We refer to the expectation given by (3.3.1), (3.3.2), and (3.3.3) as the truncated expec-
tation of g(X) to A and write

Truncated moments to A and truncated central moments to A about z( are

BIX* A] = /X | XH@)dP(W) = /A Fdu(z),

E[(X —xz0)*, A = /

X-1A

(X(w) — 20) dP(w) = / (2 — x0)¥du(a),

A

respectively. When the interval A is clear from context, we write E[X] for (3.2.3). For
AcRFand A= A; x --- x Ay, the truncated expectation of g(X;(w),...,Xp(w)) to A
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is given by

Blg(¥1@) - X)) Loex-ial = [ (K1) Xilw))dP()

:/Ag(xl,...,xk)d,u(xl,...,xk)
:/ / g($1,...,xk)f($1,...,le‘k)dibl"'dZL‘k.
Ay Ap

This expectation will be denoted as follows

E[Q(Xl(w)v s 7Xk(w))7A] = E[Q(Xl(w)v s 7Xk(w)) : 1w€X—1A]‘

We now present some properties of truncated expectations.

Assumption 3.3 X = (Xy,..., X}) is a random vector on the space (Q, F, P) into RF.
Assumption 3.4 A € RF and A = A; x --- x Ay, where each A; is an interval in R.
Proposition 3.5 (Martinez) Given c is a real constant:

1. Under assumption 3.3, Elc, A] = cP(w : X (w) € A),

2. Under assumptions 3.3 and 3.4, for X1,..., X}, independent, Elc, A] = cP(X; €
Al)P(Xk EAk) .

Proof. For 1, we write

Ble.A) =Ele- Liex 14 = |

cdP(w) = / cdp(xy, ..., xK)
X-1A A

:/ / cf(x1,...,zp)dzy - doy, = cP(w: X(w) € A).
Ay Ag
For 2, with X1,..., X} independent, it follows

/Al"'/Akcf(ffl,---,xk)difl"'dﬂﬁk:/Al"'Ak0f1($1)"‘fk($k)d$1"'dl‘k

=c [ fi(z1)dxy - . fr(xp)dry = cP(X1 € Ay)--- P(X) € Ap).
Ay K
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Proposition 3.6 (Martinez) Given assumptions 3.3 and 3.4, for X1,..., Xy indepen-
dent

E[X;, Al = E[X;, A[]P(X1 € A1) P(X;_1 € Ai_1)P(Xiq1 € Aj1) -+ P(Xg € Ag),

fori=1,... k.

Proof. For Xi,..., X} independent

E[Xy, A / / 1 fi(z1) - fr(og)doy -
A Ay

:/A r1fi(zr)dry | fa(w2)dze - [ fr(ze)dzy

Az A
= E[Xl,Al] (X2 S Ag) (Xk S Ak)
The general result follows if X is replaced by any of the X;’s. m
Proposition 3.7 (Martinez) Given assumptions 3.3 and 3.4, it follows:
1. Given assumption 3.3, E [ZZ 1 cZXZ,A] Sk GE[Xi, Al

2. Given assumptions 3.3 and 3.4, for Xq,..., X independent

ZCZ XZ,A X1 € AI)P(XZ—l € Ai—l)

k
E Z CiXi, A
i=1

. P(Xi+l € Ai—i—l) e P(Xk € Ak)

Proof. For 1,
k k
E ZciXi,A :/ / Zcixif(xl,...,xk)dxl-“dxk
i=1 A A =1
k k
:Zci/ / xif(z1,...,xx)dxy -+ - day = ZciE[Xi,A].
=1 “4 A i=1
For X1,..., X} independent or i.i.d the result follows from

k
E Z Cz'Xz'a A
=1

Zcz f1 xy)dxy - / xifi(zg)dw; -+ | fr(xg)doy.

i=1 Ai Ak
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Proposition 3.8 (Martinez) Given assumptions 3.3 and 3.4, for X1,..., Xy indepen-
dent, it follows:

1. E[Xng,A] = E[Xl,Al]E_[XQ,AQ]P(Xg € Ag) i P(Xk € Ak),

2. B[X;- Xy, Al = E[X1, Ay] - E[Xy, Ay.

Proof. For Xq,..., X} independent or i.i.d

E[X1X2,A]=/A 331f1(331)d331/A 72 fo(w)dry ; f3(w3)dz3 - - ; Jr(xg)dy,.

2 is a simple extension of 1. m
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Chapter 4

Taylor series approximations of
expectations

4.1 Introduction

Evaluating the expectation of a function of random variables is an important problem
with many applications. In econometrics, for estimators, which are functions of random
variables, determining their moments is important to understand small and large sample
properties. In economics and finance, approximating the expectation of utility functions
is necessary to solve portfolio optimization problems, [95, 93, 71, 40]. This chapter
presents an algorithm to approximate the expectation of functions of random variables
based on Taylor series expansions. These techniques will be used in later chapters to
approximate the expectation of functions with complicated dependencies on sums of

random variables and other statistics.

4.2 Algorithm

We begin by considering univariate functions. Given a random variable X defined on a
probability space (€2, F, P) with continuous density function f(z) and a Borel function
¢ : R — R, the expected value of Y = ¢(X) is given by

BlY) = [ sqls)is

—00
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where g is the density function of Y. This expectation can be rewritten, as presented in

(3.2.5), in the following form:

Obtaining an explicit analytic expression for this expectation by integration can be
done in very few cases. Numerical integration is the most viable option. Most numerical
procedures would involve knowing the functional form of the density. Such algorithms
applied to real empirical problems would require estimating the distribution from data.
In many situations, one would prefer to work with an expression of the expected value
Elp(X)], which consists of a function of moments of the argument variable X. We
study algorithms based on Taylor approximations which require estimation of only a few
central moments. Such algorithms have been a standard device for computing expected
utilities for portfolio optimization [125, 143]. In this literature, there has been much
debate on the accuracy of approximating expectation of functions by means of a Taylor
series expansion. But as we will discuss, much of the confusion can be settled with some
basic theorems of integration and by putting aside issues concerning the appropriateness
of utility functions.

The idea of approximating the expectation of a function by means of a Taylor series
relies on the hope that taking the expectation of the function is equivalent to taking the
expectation of its series representation, and in turn that the expectation of the series
expansion is equivalent to summing the series of expected values of the series elements.
There are two important mathematical issues which must be addressed to assess the
viability of such an approximation. The first issue is the convergence of a Taylor series
to the function it represents. The second issue has to do with term-by-term integrability
of an infinite series. We begin by reviewing some concepts of convergent power series.

From the theory of infinite series of non-random variables, the Taylor series

< 0y
38 k(' 0) (4 — o)t (4.2.1)
k=0

is a particular type of power series, and can represent the function () in a neighborhood
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of xg. Such neighborhood is referred to as the neighborhood of convergence of the series

and is defined by the radius of convergence. The radius of convergence of (4.2.1) is given

by
r=1/a with o= lim (1™ (a0) /K1) V. (4.2.2)

For any x € B = {z : |v — xg| < r|}, the series (4.2.1) converges to ¢(x). For any
x € B¢ ={x: |x — x| > r|}, the series (4.2.1) diverges.

We would like to understand a similar relation between a function of a random variable
and a Taylor series with random elements. When considering random variables X and

©(X) with density functions f(z) and g(x) respectively, the Taylor series

% LR (5
Y #(X — zo)¥, (4.2.3)
k=0 )

has radius of convergence as defined by (4.2.2). The almost sure convergence of (4.2.3)

with a finite radius of convergence r can be written as

_ - SO(k)(JfO) _\k
p(X)I(X €B)=>_ (X —20)" (X € B) as., (4.2.4)
. !

[e=]

where I(+) is the indicator function. For r = co we have simply

< k) (g
p(X)=>" SOT(!O)(X —z0)*  as. (4.2.5)
k=

o

When considering the approximation of a function of non-random variables by a
Taylor series, the approximation is only true within the radius of convergence. When
considering the approximation of the expectation of a function of a random variable by a
Taylor series, we must take into account not only the radius of convergence of the series
but also the range of the random variable in question. The algorithm for computing the
expected value of a function of a random variable based on a Taylor series approximation

is therefore based on the following expression

Elp(X)] =T + T, (4.2.6)
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T, =E i M(X —z0)"I(X € A)

k!
k=0

T, = Blp(X0I(X € 49 = [ olo)f(5)ds.

c

o (0 (o
:/A [Z ¢ z0) k(' 0) (s — ao)t| £(s)ds,

k=0

In (4.2.6), the interval of integration of the expectation is split. T4 represents an integral
whose interval A is a compact strict subset of the region of convergence B of the Taylor
series of v, and T represents an integral over the complement of A denoted by A°€.

The objective is, given (4.2.6), to view T} as an approximation of E[p(X)] provided

T5 is small
Elp(X)] = Th.

T1 gives an expression based on the central moments of the random variable X if
the integral and summation can be interchanged. This is also known as integrating the
series term-by-term. Therefore, the applicability of a Taylor’s series expansion of ¢(X)
to approximate the expectation F[p(X)] depends on the circumstances which allow for

the following equality

2 o®) (g 2. k) (g
/ [Z*”k—ﬁ%—xovfﬂw)] to =3 E [ o aos@)]ar. (a2)
k=0

k=0

Well known sufficient conditions concerning uniform convergence of series exist which
allow the integral of a series to be computed term by term. Such conditions will be fun-
damental to the approximating algorithm we develop, and we state them in the following

theorem.

Theorem 4.1 (Knopp, [87]) The series F(z) = > fo(x) is assumed uniformly con-
vergent in the interval J, and all the functions f,(x) are supposed integrable over the
closed subinterval J': a < x <'b, so that F(x) is also continuous in that subinterval.
Then F(x) is also integrable over J' and the integral of F(x) over the interval J' may be

obtained by term-by-term integration

/ab [i fn(:l?)] dr = i [/ab fn($)d$:| . (4.2.8)
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Similar sufficient conditions can be found in [7, 8, 51, 133]. The following theorem

concerns uniform convergence of a Taylor series.

Theorem 4.2 (Apostol, [7]) A power series converges uniformly on every compact

subset interior to the neighborhood of convergence.
The following theorem is necessary for the proposition to follow.

Theorem 4.3 (Knopp, [87]) If > fn(x) is uniformly convergent in J, so is the series
> g(x) fn(z), where g(x) denotes any function defined and bounded in the interval J.

We can now state a proposition.

Proposition 4.4 (Martinez) Let p(z) : R — R be a function whose Taylor series
representation about the point x¢ has neighborhood of convergence B = {x : |x — x| < 1}.
Let X be a random variable defined on the probability space (2, F, P) with bounded density
function f, mean E[X] = p, with E(X — u)* < oo for k =1,2..., and E[p(X)] < cc.
Then

L) ()
Blpx)] = 3. IV Bl -t A4 Bp(OIX €AY, (429)
k=0

where A C B and

E[(X — p)F Al = /A(s—,u)kf(s)ds, k=1,2,...

will be referred to as truncated central moments. Truncated expectations are defined in

section 3.3.

Proof. E[p(X)] can be written as (4.2.6). It is only left to prove that (4.2.7) holds.
By theorem 4.2, the Taylor series representation of ¢(x) converges uniformly on every

compact subset A" of the neighborhood of convergence B. By theorem 4.3, the series

0 L) (s
> 0 i)

k=0

converges uniformly on the compact subset A’. By theorem 4.1, (4.2.7) holds with A a

compact subset of A’. m
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It is important to note that the conditions of the proposition are sufficient and not
necessary. Every time truncated central moments are used with A C B, the series in
(4.2.9) will converge. The necessity of the conditions fail because there are series that
can be integrated term-by-term which do not converge uniformly. Furthermore, the

conditions of uniform convergence restrict the interval A to be compact.

4.3 Examples

Given a random variable X, the relevance of the radius of convergence of the Taylor series
representation of a function ¢ when approximating the expected value of ¢(X) was first
pointed out in [95]. Unfortunately, the author provides misleading explanations for the

conclusion reached. The author concludes:

The counterexamples confirm the analytic result that the interval of conver-
gence prohibits the application of a Taylor’s series expansion for a logarithmic
and power utility function. Regardless of what sort of probability distribu-
tion is involved, the approximation does not work.... We can conclude that
the hitherto common Taylor’s series expansion yields an exact result for the

normal distribution, exponential utility combination only.

The main problem with the author’s conclusions is applying the uniform convergence

conditions of theorem 4.1 as necessary rather than sufficient conditions.

The integral of an infinite sum is equal to the sum of an infinite series of

integrals only if the series converges uniformly.

Furthermore, the author fails to realize the need to use (4.2.6) and (4.2.7) in the approx-
imation. No satisfactory alternative solution is given in [95] to the problem of erroneous
approximations resulting from inappropriate use of the Taylor’s series. Proposition 4.4
provides such alternative solution. In the following examples, we apply the results of
proposition 4.4 to the numerical cases studied in [95].

We consider the utility functions examined in [95]. These include an exponential, a

power, and a logarithmic utility function as given below:

U(x) = 1000(1 — exp(—0.05x)), (4.3.1)



x.—s, x>0
Ux)=4q 0, 2=0 , (4.3.2)
—%2, x <0
U(x)=Inz, z>0. (4.3.3)

The radius of convergence for the exponential utility is infinity. For the power utility
as well as the logarithmic utility, the radius of convergence is equal the point zy around
which the series expansion is made. In our examples, xg is equal to the mean of the
random variable X.

As in [95], we investigate normally distributed returns with probability density func-

tion:

2
f(:v):%exp [—% <$;M> ], —00 < x < 00,

with numerical parameters p = 10 and o = 82 and lognormally distributed returns with

mean m = 10 and variance s? = 82 with probability distribution:

o= Lo |3 (221Y ] 0o

e
oV 2T 2 o

The parameters of the lognormal distribution are

2

_ ~ 2 _ 5 ~

The central moments of the normal distribution are given by

(2k)lo?F

mok—1 =0, mop = EEATTRE

k=1,2,....
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The central moments, m;, of the lognormal distribution can be obtained from the raw

moments M;

- (jo)? L[ k k
Mj=exp (jp+-"— ), my= > (—1)k M, MY
_ k
k=0
We compare the approximations obtained using the inappropriate Taylor series algorithm
in [95] to approximations obtained using the algorithm in proposition 4.4.

In table 4.1, we present results for the power utility function (4.3.2) and normally
distributed returns. The second of five columns labeled central moments presents the
approximation to the expected value of E[p(X)] obtained using the algorithm in [95].
Columns three, four, and five present the approximations to the expectation E[p(X)I{X €
A}] given by the expression

5200 b —

k=0
which forms part of the expected value E[p(X)] according the algorithm in proposition
44 with p =10, A={r:a<2<b},a=1x10"1" and b =40, b = 19, and b = 10
respectively.

The row labeled EU;,; presents the expected value of utility computed by numerical
integration. The entries below the label EU,,oment in column two are the expected value of
utility computed with the algorithm in [95], aggregating even order central moments from
the second to the twentieth and the sixtieth. The entries below the label EU,,oment in
column three are the expected value of the truncated utility computed with the algorithm
in proposition 4.4 using truncated central moments with A = {2 : 1 x 10710 < z < 40}.
Similarly for columns four and five with b = 19 and b = 10, respectively.

The results of Table 4.1 column two demonstrate as stated in [95] that the inappro-
priate algorithm provides diverging approximations to the expectation as the number
of Taylor series terms increases. The results of table 4.1, column three, with truncated
moments with b = 40, demonstrate approximations of E[p(X)I[{X € A}] will diverge
when the condition A C B is violated which is the case for column three, since for the

power utility B = {z: 0 < z < 20}.
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Table 4.1: Expected utility for the power function with normal distribution of returns

Central moments Truncated central moments
b=40 b=19 b=10
EU;p 3.29127 5.72865 4.17849 1.63261
EUmoment
n
2 5.67629 5.68382 4.23834 1.70708
4 5.17793 5.63197 4.20645 1.66358
6 4.10522 5.46344 4.19525 1.65037
8 0.17441 4.81374 4.18990 1.64443
10 -20.3739 1.88376 4.18687 1.64119
12 -160.436 -13.0124 4.18497 1.63920
14 -948.491 -95.9590 4.18369 1.63787
16 -8694.25 -590.983 4.18278 1.63693
18 -97456.3 -3707.77 4.18211 1.63625
20 —1.26 x 106 -24175.8 4.18159 1.63572
60 —1.75 x 103 —1.32 x 102 4.17910 1.63322

Table 4.2: Expected utility for the exponential function with lognormal distribution of
returns

Central moments Truncated central moments
b=250 b=40 b=10
EU;pn: 348.45852 348.45579  334.95660 149.78575
EUmoment
n
2 331.30006 331.45016 331.10499 151.35090
4 332.96127 334.91574 334.64081 149.79519
6 298.42314 332.66927 334.94485 149.78578
8 -49.125352 330.33387 334.95632 149.78575
10 -4065.2351 331.54319 334.95659 149.78575
12 -46885.083 336.12332  334.95660 149.78575
14 -431291.72 341.38923 334.95660 149.78575
16 —3.27 x 106 345.21978  334.95660 149.78575
18 —2.06 x 107 347.24970  334.95660 149.78575
20 —1.31 x 108 348.08368 334.95660 149.78575
60 —2.86 x 10! 348.45579  334.95660 149.78575




Table 4.3: Expected utility for the power function with lognormal distribution of returns

Table 4.4: Expected utility for the logarithmic function with lognormal distribution of

returns
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Central moments

Truncated central moments

b=40 b=19 b=10
EUsn: 5.86842 5.65357 4.67461 2.934209
EUmoment
n
2 5.67629 5.64162 4.75615 3.023612
4 1.71872 5.51842 4.69837 2.959522
6 -689.208 5.16860 4.68431 2.944414
8 724895 3.57674 4.67933 2.939136
10 —2.02 x 10° -4.75683 4.67717 2.936872
12 —8.75 x 102 -52.4990 4.67611 2.935765
14 —4.70 x 1016 -344.679 4.67555 2.935173
16 —2.86 x 1020 -2224.52 4.67522 2.934834
18 —1.90 x 10%* -14798.9 4.67502 2.934629
20 —1.32 x 10%8 -101559 4.67489  2.934500
60 —3.9 x 10106 —7.53 x 1022 4.67461 2.934212

Central moments

Truncated central moments

b=40 b=19  b=10
EUjp 2.00317 1.94496 1.63163 1.01679
EUmoment
n
2 1.89259 1.96099 1.71776  1.10915
4 -2.28348 1.80780 1.66498 1.05186
6 -895.907 1.30455 1.64785 1.03370
8 —1.096 x 109 -1.25812 1.64059 1.02608
10 —3.450 x 10? -16.0976 1.63701 1.02234
12 —1.65 x 103 -108.832 1.63506 1.02032
14 —9.59 x 106 -720.681 1.63392 1.01914
16 —6.26 x 1020 -4925.26 1.63321 1.01841
18 —4.40 x 10 -34743.5 1.63276 1.01794
20 —3.24 x 10%8 -251570 1.63245 1.01763
60 —1.7 x 10107 —3.25 x 102 1.63165 1.01681
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The results of columns four and five show approximations which converge towards
the quantities obtained by numerical integration as the number of Taylor series terms
increases. These results validate proposition 4.4.

Table 4.2 has the same format as table 4.1, and presents results for the exponen-
tial utility function with lognormally distributed returns. Again the results in column
two demonstrate as stated in [95] that the inappropriate algorithm provides diverging
approximations to the expectation of the exponential function as the number of Tay-
lor series terms increases. For the exponential function we know B = R. Therefore,
proposition 4.4 implies any compact subset A will result in converging approximations
to Elp(X)I{X € A}|. This is indeed confirmed by the results of columns three, four,
and five.

Tables 4.3 and 4.4 provide similar results for the power function with lognormal re-
turns, and for the logarithmic function with lognormal returns respectively. To conclude,
all four numerical examples demonstrate that when the radius of convergence of p(z) is
finite, the algorithm of proposition 4.4 with truncated moments and with A a compact
subset of B provides a convergent Taylor series approximation of E[p(X)I{X € A}].
Otherwise, for the case of exponential utility and infinite radius of convergence, one
can still choose a compact set A to obtain a convergent Taylor series approximation of

E[p(X)I{X € A}].

4.4 Approximation error

As stated above, using truncated expectations we can write

Elp(X)] = E[¢(X), A] + Elp(X), A°],

where A is a compact subset of the neighborhood of convergence and A€ is its complement.

Furthermore, for any finite n, and under the assumptions of proposition 4.4, we can write
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where R(n) is the Lagrange remainder of the Taylor series. It follows, the approximation

error is given by

no k) _ _ _
Ble(x)] - 3 E B B 4] = B[R, 4]+ Ble(x), 47 (44.0)

k=0

Proposition 4.4 and the examples in the previous section provide and demonstrate
the methodology to approximate E[p(X)I{X € A}] by means of converging Taylor
series approximations. The accuracy of the approximation E[p(X)] ~ E[p(X)I{X €
A}] depends on the size of E[p(X)I{X € A¢}]. In what follows, we attempt to find
bounds for E[p(X)I{X € A°}] in order to make improvements on the approximation
Elp(X)] = Elp(X)I{X € A}| by using an approximation which incorporates a measure
on the size of E[p(X)I{X € A°}]. To accomplish this, we must define a particular class
of functions.

Consider a random variable X defined on a complete probability space (2, F, P) with
E[X] =0 < co. Let A C R be an interval, possibly unbounded, with P(X € A) = 1.
Define G, as the class of functions defined on A such that ¢ € G, implies ¢ has a Taylor
series expansion about 6 with a possibly unbounded neighborhood of convergence B C A

and with

lo(x)] = O(|=]*) as |z| — oo.

Therefore, given ¢ € G,, there exists an N > 0 such that |p(z)| < ¢|z|* for some constant
¢ for all z with |z — 6] > N. Otherwise, |¢p(x)| < M for |z — 0| < N for some constant
M. We now present a number of assumptions followed by a proposition which provides
an approximation of E[¢(X)] in terms of the infinite Taylor series and which takes into

account a bound on the approximation error E[p(X), A°}].
Assumption 4.1 ¢ € G, .

Assumption 4.2 X is a random wvariable with E[X] = 0 and E(X — 0)* < oo for
k=1,2,....

Assumption 4.3 E[p(X)] < oc.
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Assumption 4.4 A = {z : a < x < b} is a compact subset of the neighborhood of
convergence B of o(x), 0 + N1 > b and § — Ny < a.

Proposition 4.5 (Martinez) Under assumptions 4.1 through 4.4

E(X — Q)k + R1 + Ro,

X pk)
mlex) < Y
k=0

where Ry = MP(X € A), Ry=cE|[|X|*I{X € A°}], and

A={z:0-—No<z<a}U{z:b<z<N+0},

AN={z:2>No+0}U{z:2<6— N},

E(X —p)k = /A(s—,u)kf(s)ds, k=1,2,....
Proof. We write E[p(X)] =Ty + T» where,
Ty = Elp(X)I{X € A}], Tb = E[p(X)I{X € A%}].
We find expressions for 77 and 75 beginning with T5. Since ¢ € G,
Elp(X)I[{X € A}] < MP(X €A),

where the constant M depends on b and N. Similarly E[p(X)I{X € A°}] < cE[|X|“I{X €
A°}]. Tt follows To < MP(X € A) + cE[|X|“I{X € A¢}]. For T1, by proposition 4.4 we

can write

T = i ME(X — )k (4.4.2)

k!
k=0

and the theorem is proven. m

R; and R, are in terms of absolute moments and probabilities of the random variable
X, both of which can be calculated or estimated easily with knowledge of X. The
corollary that follows gives a bound similar to proposition 4.5 but with the infinite series

replaced by a finite sum and a bounded remainder.
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Assumption 4.5 M, is a number such that |9t (z)| < M, for every z € A

Corollary 4.6 Under assumptions 4.1 through 4.5

IA

q
Z E(X —0)* 4+ Ry + Ry + Rs,
k=0

where Ry = MP(X € A), R = cE[|X|*I{X € A°}],
M
R3 = E
T g+
A={z:0-No<z<a}U{z:b<z<N;+0},

D |X - 6|q+17

={r:x>No+0}U{x:2<60— N1},
E(X — ) = / (s — ) f(s)ds, BIX — plf = / s~ ulffs)ds k=1.2,....
A A

Proof. This follows from equating the Taylor series and the Taylor polynomial plus

remainder as follows

> o®)(p g
SO gy

k=0 ’ k=0

= 0)" + Ry(2),

where R,(z) = ¢4t (c)(x — 0)9%1 /(g + 1)! for some c in the interval (a,x). The result
follows since |Ry(z)| < Mylx — 0|97 /(g +1)! for every z € A m

Example 4.7 We revisit two of the numerical examples studied in section 4.3. We
apply the result of proposition 4.5 to the example of an exponential utility function with
lognormal distribution of returns and to the erxample of a power utility function with

lognormal distribution of returns. The results are presented in tables 4.5 and 4.6.

There are two main ways to improve on the error from Rs. For functions in general,
one is to do piecewise linear approximations of ¢ is A¢. Another, simpler, method can be
applied to functions like the power and logarithmic utilities. These functions have radius
of convergence equal to the point at which the Taylor series expansion is taken. Instead
of evaluating the Taylor series around the mean 6, one can do the evaluation at some

large value xg. This effectively reduces the size of A°.
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Table 4.5: Expected utility for the exponential function with lognormal distribution of
returns

Truncated central moments
b=250 b=40 b=10
EU;pn: 348.45852
EUpoment Ri, Ry Ri, Ry Ry, Ry
n
2 331.45289  345.79466 500.75764
4 334.91847 349.33048  499.20193
6 332.67200 349.63452  499.19252
8 330.33660 349.64600 499.19249
10 331.54591 349.64626 499.19249
12 336.12605 349.64626  499.19249
14 341.39195 349.64626 499.19249
16 345.22251  349.64626 499.19249
18 347.25243  349.64626  499.19249
20 348.08641 349.64626 499.19249
60 348.45851  349.64626  499.19249

Table 4.6: Expected utility for the power function with lognormal distribution of returns

Truncated central moments
b=19 b=10
EU;p 5.86842
EUmoment Rh R2 Rla R2
n
2 6.26983 7.18741
4 6.21205 7.12332
6 6.19798 7.10821
8 6.19300 7.10293
10 6.19085 7.10067
12 6.18979 7.09956
14 6.18922 7.09897
16 6.18889 7.09863
18 6.18869 7.09843
20 6.18857 7.09830
60 6.18829 7.09801
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Table 4.7: Expected utility for the power function with lognormal distribution of returns

Truncated central moments

EU;nt 5.86842

EUpoment | 0 =5 x0=10 z90=50 x9=100 z7= 500
b=9 =19 b=99 b=199 b=999

n
2 2.62402 4.75615 7.28777  8.95420 17.43726
4 2.61850 4.69837 6.50790  7.48044  13.18943
6 2.61721 4.68431 6.22911 6.89060 11.26424
8 2.61679 4.67933 6.09514 6.57976  10.13221
10 2.61661 4.67717 6.02043 6.39213  9.37765
12 2.61654 4.67611 5.97474  6.26909  8.83565
14 2.61649 4.67555 5.94496  6.18372 = 8.42643
16 2.61647 4.67522 5.92462  6.12200  8.10619
18 2.61646 4.67502 5.91021 6.07593  7.84872
20 2.61645 4.67489 5.89971  6.04066  7.63732
50 2.61644 4.67462 5.86317 5.89335  6.42874

100 2.61644 4.67461 5.85984 5.87196  6.05069
200 2.61644 4.67461 5.85949  5.86848  5.91294
5000 2.61644 4.67461 5.85947  5.86809  5.86842

Example 4.8 We revisit one of the numerical examples studied in section 4.3. We apply
the result of proposition 4.5 to the example of a power utility function with lognormal
distribution of returns. The Taylor series is expanded at the point xo. We evaluate
different approximations as the point xo and the end point b of the interval A get larger.
The results presented in table 4.7 demonstrate the approrimation improves as n and the

value of xg increase.

In later chapters we present Delta method results where one is interested in how the
expectation depends on some parameter. In these cases the results are equalities rather
than the bound given in the above theorem. These equalities are obtained by including

big-O expressions of certain order of the parameter.
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Chapter 5

Taylor algorithm for independent
identically distributed processes

5.1 Introduction

In this chapter, we construct an algorithm which yields an approximation, based on Tay-
lor series, of the mean square forecast error (MSFE) for a forecasting problem involving
independent and identically distributed processes. This Taylor algorithm approximation
is meant to be used as a tool to describe the sample size dependence (SSD) of the MSFE.

Sample size dependence refers to the dependence of a statistic on a parameter or pa-
rameters which embody information concerning the amount of data involved in the forma-
tion of the statistic. For example, consider a stationary stochastic process {X T}]TVZI with
E[X;] = p, and variance o2 Vi. The sample mean of the process, fizn = 1/nY 1 X;,
is a random variable and a statistic with n describing the sample size. One might be
interested in the behavior of this random variable for different values of n. Large sample
theory would tell us fi, , is consistent, jizn £ te. Of more interest is the behavior of
fiz.n for finite values of n. For this, we investigate the SSD of two moments of the sample
mean: the expected value of fiz , and the mean square error (MSE) of fi », and p,. The
expected value of fiy 5, Elfign] = iz, is independent of n. This is the unbiased property
of the sample mean and, again, not of much use for the purpose at hand. The MSE
between fiy , and py, MSE = E[(fizn — pz)?], gives a measure of the average squared

deviation of iy, from p;. This can be helpful to understand, on average, how much of
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fig,n differs from g, for finite values of n. This SSD can be derived explicitly. First

Elp2,]=E

%<§:XZ)2] _ %(i};[xﬂ + ZE[Xin])

i#j
1 1
= ~(@2+ 1)+ (1= =) na+ud),

where 71 2 = Cov(X1, X2) and we make use of the stationarity assumption.
MSE, = E[(Iaz,n - N:c)z] = E[ﬂi,n - 2/150,71,“:0 + Ni] = E[ﬂi,n] - ,ui,
and finally we obtain
L
MSE, = E(% —71,2) + 71,2 (5.1.1)

(5.1.1) gives the explicit dependence of the MSE on the sample size n. We can see that
on average, the square difference between i, , and p, decays as 1/n to v 2.

Just as the sample mean is a statistic, a forecast, in a forecasting problem as described
in Chapter 2, is a statistic constructed from some predetermine functional form and an
estimator, scalar, or vector. This estimator, another statistic, will depend on a variable n,
describing the size of the sample used to form the estimator. Therefore, given a stochastic
process {Y;}, and a forecast f’t+1,n of Y;11, we are interested in understanding how the
average squared difference between }A/Hlm and Y;y1 behaves for different values of the
sample size n. We are interested in the SSD of the MSFE. In forecasting, understanding
the SSD of the MSFE can be of great importance. This is especially true if we can find
classes of processes for which analyzing the SSD results in an optimal observation window
which provides the best forecast possible for a particular estimator.

In this chapter, we propose to understand the SSD of the MSFE for a forecasting
problem involving independent processes. The forecasting model is assumed linear and
the estimator of choice is the OLS. Unlike the motivating example of the sample mean
given above, determining the SSD of the MSFE can not be done explicitly. This is due,
in the scalar case, to the fractional functional form of the OLS and, in the multi-variate

case, to the inversion of a matrix of sample data. This complication can not be simply
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solved by a different choice of estimator, since the OLS tends to be the simplest estimator
available. One of the main contributions of this thesis is to overcome this difficulty by
developing a methodology to extract the SSD from a statistic such as the MSFE with a
complicated functional form.

The methodology proposed consists of writing the square forecast error (SFE) as a
function of two statistics. This function is approximated by a Taylor expansion with
respect to the two statistics about two points, the expectation of the two statistics. We
obtain an approximation of the MSFE by taking the expectation of the Taylor approxima-
tion of the SFE. The expected value of the resulting Taylor approximation is a polynomial
of central moments of the two statistics. These central moments are subsequently ex-
panded and simplified to extract the explicit sample size dependence which is manifested
in the sample size variable n. The final expression for the approximation of the MSFE is
a polynomial in 1/n with coefficients consisting of functions of moments of the observed
dependent and explanatory processes. The algorithm makes no assumptions on the form
of the DGP for the dependent variable. This allows us to investigate the ramifications of
misspecification in the forecasting problem and how these might manifest themselves in
the SSD.

The rest of the chapter is organized as follows. In Section 5.2, we review some
properties of the OLS and MSFE under the assumption of a correctly specified forecast
model. Section 5.3 describes properties of the OLS under the assumption of a functionally
misspecified model which have repercussions for the forecasting problem. Section 5.4
presents the derivation of the Taylor algorithm for the scalar case, and Section 5.5 presents
the derivation for the multi-variate case. Finally, in Section 5.6, the performance of the
Taylor algorithm for the MSFE of a scalar forecasting problem is evaluated with Monte

Carlo experiments, and Section 5.7 concludes.

5.2 Properties for the OLS and MSFE under correct spec-

ification

Let {Y;} be an observable scalar process of interest to a forecaster. In general, the DGP

is not known to the forecaster and therefore, in order to forecast, she must construct
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mathematical models which best capture empirical characteristics of the observed process.
The forecaster might be interested in formulating her predictions based on linear models
of the process. A linear regression model is a correspondence which relates the dependent

variable Y; 41 to a (m x 1) vector of explanatory variables, X; as follows:
Yie1 = X, 6+ Vi, (5.2.1)

where {V;} is a scalar innovation process and ¢ is a vector of parameters. If we iden-
tify ¢ as the present time, we consider the sample of the n most resent observations
(Yt—nt1s - Yty Tt—n, .-, 2¢—1). The OLS estimate based on such a sample is the value
of ¢ which minimizes the residual sum of squares (RSS):

t—1

RSS= Y (yri1—x] ¢) (5.2.2)

T=t—n

In this section, as in most literature treatments of linear regression, we make the dra-
conian assumption that the DGP can be described by a mathematical relation of the

process {Y;} which coincides with the form of the regression model (5.2.1):
DGP : Y1 = X, B+ Uy, (5.2.3)

where Uy is a scalar innovation process and (3 is a vector of parameters. In other words, we
assume the model (5.2.1) is correctly specified. 3 is often refereed to as the true parameter
vector and the objective of it is to obtain the best possible estimate for this parameter
vector, based on the observed sample. Under condition (5.2.3), the OLS estimate of 3

obtained from the minimization of the RRS is given by:

t—1

Lot
Bt,n:[ > mf] 'Y e (5.2.4)

T=t—n T=t—n
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The OLS sample residual for observation ¢t is vy = y; — mtT BAM. We now return to deal

with the random processes and define the following objects:

Xin = (Xe—n, uth—l)T e R™*™,
Y:f,n = (}/t—n-i—h cee 7}/%)1— € RnXla
Qin = X\ Xip € R,

Ut,n = (Ut—n—i-la ey Ut)T S RnXI.

As a function of the random processes, the OLS is a statistic and can be written as

follows:
Ben = B+ Qin X Usn.- (5.2.5)

(5.2.5) gives the relation between the true parameter 5 and the OLS estimator Bt,n- This
relation is true because of the correctly specified assumption given by condition (5.2.3).
Many results concerning the OLS exist based on different assumptions on the explanatory
variables and the innovation process [61, 64]. We will focus on result for a specific set of

assumptions.
Assumption 5.1 X, is stochastic and independent of U for all t,s.

2

Assumption 5.2 U; is i.i.d with mean zero and variance o;.

Taking expectations of (5.2.5) and exploiting assumption 5.2,

E[Bt,n] = ﬁ + E[Q;rlLXt—l,—n]E[Ut,n] = ﬁa

so that the OLS estimator is unbiased.
For asymptotic results, our interest is in the behavior of @t,n as n becomes large. We

begin by establishing consistency of the OLS for which we need the following assumption.

Assumption 5.3 (1/n) >0t X, X7 £ Q, a positive definite matriz.

T=t—n
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From (5.2.5), we write

A t—1 o t—1

Bim — B = [(1/71) Y X x] } [(1/71) 3 XTUTH] (5.2.6)

T=t—m T=t—m
For the first term of (5.2.6), assumption 5.3 and theorem A.19 imply
t—1 .
[(1/71) 3 XTXTT} Lo (5.2.7)

T=t—n

For the second term of (5.2.6), note X, U,y is a martingale difference sequence with
a finite variance-covariance matrix given by E[X,U, 1 XU, 1] = o2E[X,X]]. By

proposition A.31,

[(1/71) ti XTUTH] 2. (5.2.8)

T=t—n

Applying proposition A.20 to (5.2.6), (5.2.7) and (5.2.8),
Bin—B-Q1-0=0,

confirming the consistency of the OLS estimator. For the asymptotic distribution of the

OLS we require a further assumption.
Assumption 5.4 E[X, X, ] = Q,, a positive definite matriz with (1/T) Y1_, Q; — Q.
Under the assumptions above, it can be shown (see [64], p . 210) that

VT (B — 8) & N(0,02Q71). (5.2.9)

Furthermore, the OLS estimate of the variance of the innovations, o2, is given by s2 =

RSS/(n —m), which is unbiased, consistent, and satisfies

VT(s2 = 02) 5 N(0, jug — o).
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We now turn to properties of the MSFE under the assumption of a correctly specified

model. For the scalar case, the OLS reduces to

t—1

=0+ (Y x2) ti Ur 1 X,

T=t—n T=t—n

We calculate the large sample properties of the SFE. Substituting the OLS estimator in

the expression for the SFE we obtain:

SFE, =(Yiy1 — Yis1)? = (8 = Bun)? X2 +2(8 — Brn) XiUsy1 + Uy

t—1 Ly, -1 )
(5 (S v
o T
- 2( 3 XZ) Ur i1 X: Xy Upsy + U2, .
T=t—n T=t—n

By theorem A.13 it follows

t—1 t—1
1 1
=N U X, B EUaX) =0, = Y x25 E[x2. (5.2.10)
n

g
n
T=t—n T=t—m

Multiplying and dividing the first term of the SFE by 1/n?, multiplying and dividing the
second term of the SFE by 1/n, applying (5.2.10) and theorem A.18 part 2, we obtain:

SFE, 5 U%,, MSFE, 5 o2,

We can derive a simplified expression for the MSFE for the case where the elements of
the explanatory process {X,} are mutually independent, i.e., E[X;X;] = E[X;|E[X;] for
1 # j. First, we know the OLS is unbiased, £ [Bt,n], and the expected value of the square
of the OLS is given as follows:

t—1

E[32,] :aﬁE[( 3 XZ)_I]

T=t—n
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Given these expressions for E[3;,] and E [Bfn], the MSFE is as follows:
t—1 —1
MSFE = o2 + UZEK 3 XE) }
T=t—n
This expression is simple, yet, the SSD is not transparent. Even under the assumption of
correct specification, one can see the difficulty of determining the SSD of a statistic such
as a MSFE which incorporates the OLS. In the next section, we present large sample

results for the OLS under the assumption of misspecification.

5.3 Misspecification and the OLS

Much of what is known about estimation and inference relies on the assumption that
the model in question coincides with the data generating process. For this reason, it is
important to understand properties of commonly used estimators under the assumption
of misspecification. The most important results in the literature regarding properties of
the OLS when the regression model is misspecified were developed by White in [150].
These results are large sample properties of the OLS under functional misspecification.
In this section, we present the assumptions and the main results of [150]. The first

assumption describes the class of DGPs under consideration.

Assumption 5.5 The true model is
Y:=9(Z;)+€¢, T=1,...,n,

where g is an unknown function and (Z;,€;) are i.i.d. random 1 x (p + 1) vectors such
that E[Z;] =0, E[Z] Z.] = M., is finite and nonsingular, Ele;] = 0, E[e2] = 02 < oo,
E[Z]e] =0 and Elg(Z;)*] = 0% < cc.

The linear model is of the form
YT:XT/8+UT7 Tzl,...,n,

where u, = g(Z;) — X, + er is a random variable and the 1 x k vector X, has ele-

ments which are functions of elements of Z, but some elements of Z. may be omitted.
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Let F, . denote the joint distribution of Z,e;. White writes the mean square error of

approximation prediction as follows:

2(8) = / (9(2) — 2 + EPdF, (. 6).

With the i.i.d assumption, this coincides with the definition of the MSFE at an arbitrary
forecast origin. The OLS estimator is BOLgn = (XTX)"'X"Y, where X is the n x k

matrix with rows X,. Further assumptions are as follows.

Assumption 5.6 g and X are measurable functions of Z.

Assumption 5.7 E[g(Z,)e,] =0, E[X]] =0, E[X] X;] = My, is finite and nonsingu-

lar.

B* is defined as the parameter that uniquely solves the following optimization
mﬁin a2(3). (5.3.1)

The main result is given in the following theorem.

Theorem 5.1 (Theorem 2 in [150]) Under assumptions 5.5, 5.6, and 5.7, BOLS’“ 25
B* and 52 255 02(3*) where s> = (n — k)" (Yr — X Bornsn)?

If g(2) = xPy, then B* = [y for any distribution of the Z, otherwise, 3* depends crucially
on the distribution of the Z,. As the sample size goes to infinity, BO LS,n is approximately

normally distributed, as shown in the next theorem.

Theorem 5.2 (Theorem 3 in [150]) Under assumptions 5.5, 5.6, and 5.7,
5 w\ A _ * _
Vi(Borsa — B%) ~ N0, M V(5 ) M),

provided E[Y2X,' X;] and E[X%XZTXZ-], j=1,...,k are finite. Moreover, (X X/n) %%
M_}! and

VOLS - n_l Z(YT - XT@OLS,n)QX;I—XT Cg' V(ﬁ*),

=1
so that
(XTX/n) Wors(XTX/n)~t &5 M V(3 ML
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Theorem 5.1 is of great consequence for the problem of forecasting under misspecification.
To see this, by its definition, §* is the value attained by the linear parameter of the model
which results in the smallest value of the MSFE, i.e., 02(3*). The objective of analyzing
the SSD of the MSFE is to find the values of the sample size variable n for which the
MSFE attains the value o2(3*). Theorem 5.1 describes the behavior of the MSFE as
n goes to infinity by characterizing the behavior of BOLS,” as n goes to infinity. Since
Bo LS.n attains the value 8* at infinity, o%(3) attains the value o%(3*) at infinity. Although
theorem 5.1 is a good first start in understanding the SSD of the MSFE, the next issue
one would like to address is the behavior of the MSFE for finite values of n. We would
like to answer the question: Does there exist an n* < oo so that az(ﬁAOLg,n*) = o2(8*).
The main purpose of the work in this thesis is to understand the SSD for finite values of
n.

In the next section, we develop an algorithm that can be used to construct an ap-
proximation of the MSFE in order to analyze the sample size dependence and determine

the possible existence of optimal observation windows of finite length.

5.4 The algorithm: scalar case

As presented in chapter 2, the forecasting problem of interest consists of predicting the
observed process {Y;} at 7 = t + 1, Yi41 € R, by means of a linear regression of the
k x 1 column vector X; of Fi;-measurable variables. In this section we assume k£ = 1.
The forecaster does not know the DGP which generates the series {Y;} and uses a linear
model in X; to approximate the conditional expectation E;[Y;+1]. The linear model used

to forecast Yiy; is of the form
Yir1 = BXe + Viqa, (5.4.1)

in which the parameter 8, 8 € B, B compact in R, is estimated by OLS. The estimation

sample contains the n most recent observations, {Y;_p41,...,Y:} and {X¢—p, ..., X¢—1},
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and the OLS estimator of 3 has the form

t—1 -1 /1
o = ( 5 XTx:) (z XTYTH). (5.42)
T=t—n T=t—n

The OLS estimator Bt,n is used to construct the forecast of Y;11, denoted }A/Hl,n, given
by
YA;ﬁ—l—l,n = 5t,nXt'

Using as cost function a squared loss function, the criterion which provides a measure of

forecast accuracy is the MSFE given by
MSFE, = E|(Yis1 = Yir1n)*) = BYA] = 2B[YenaYiprn] + B[V, ,). - (5.4.3)

The MSFE is the expected value of statistics which depend on the sample size parameter
n. We construct a Taylor algorithm, as developed in Chapter 4, to approximate the
MSFE in order to investigate the existence of an optimal observation window. The
existence of such optimal observation window can be revealed by assessing the SSD of
the MSFE. For this purpose, we begin the construction of the algorithm by focusing on

the expectation of the following n-dependent terms

M, = Y1 Yisin = Y;H—lXtBt,na (5.4.4)

Moy = Vi, = X757 (5.4.5)

Substituting the scalar form of the OLS estimator ﬁAt,n, IT; ,, and I3, become, respec-

tively,

t—1 t—1 t—1 t—1

D =YeXe( Y 22) 7 Y veoke Io,=[( X 7)) % Y veax]

s=t—n s=t—n s=t—n s=t—mn

By defining the statistics S, and S, as follows:

1 t—1 1 t—1
Sl,nEE Z YT+].XT7 S2,nEE Z Xza

T=t—n T=t—n
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the OLS estimator can be rewritten

A Sl n
n — : bl 4
fin = 3. (546)

)

and (5.4.4) and (5.4.5) become respectively

S Sy \ 2
Oy, = Vi X o Ty, = X7 <ﬁ> :
SQm S2,n

We assume the sequence of regressors { X} to be independent and identically distributed.

By independence, we can write
E[ll,] = E[Yi1 X)E[Ben],  Elllan] = E[XE[G,]. (5.4.7)

We take a slight detour to explain a settle point involving (5.4.7). In an empirical
situation, the independence assumption of the explanatory process {X,} can be tested.
But (5.4.7) has the stronger implication that the random variable Y;;; is independent
of the random variables {X;_,,..., Xy_1}. In an empirical situation, this independence
would have to be tested. The existence of such independence in the data would be the
motivating force for constructing the forecasting model in the specification stage of the
forecast methodology. In the case the independence between Y; 1 and {Xy_p, ..., Xy—1}
cannot be established, the algorithm would need to be modified. Chapter 6 develops a
Taylor algorithm applicable for more general dependencies between the dependent and
explanatory processes.

Continuing with our exposition, the next step in the construction of the algorithm is
to apply the techniques of Chapter 4 to find approximations of F [Btn] and F [@fn] Such
approximations are conducted by means of Taylor series expansions of BAM and Bfn with
respect to the statistics S, and S, about some points w; and wy respectively. From
the theory developed in Chapter 4, we learned that approximating the expectation of a
function of random variables by means of Taylor series requires one, in many instances, to
approximate the expectation by a truncated expectation. Using truncated expectations
is necessary because Taylor series approximations are valid only within the region of

convergence and, at the same time, the random variables involved take values on a
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specific range. In the case of ﬁt,n and 5?”, the approximations will depend on truncated
central moments of S, and Sy,. Let A be a set inside the region of convergence B
of the Taylor series of Bt,n with respect to the statistics Sy, and S3,. Appendix C.1.1
provides details on the nature of the region of convergence of the Taylor series expansion
of the OLS and on the nature of convergence sets such as 4. We write the expectation

of the OLS estimator and its square as follows

ElBin] = ElByn, Al + E[Bin, A°], E[3},] = E[B2,, Al + E[B},, A, (5.4.8)

where A€ is the complement of A. Taylor series can be used within A to approximate
Bt,n and ﬁ?n To obtain further analytic results, we assume P(X € A) =~ 1 so that
ElBin] = E[Bin, Al and E[ﬂ?n] R~ E[BEH,A] We define the points about which to

calculate the Taylor series as follows:
= E[S1,] = E[Yi11X:], w2 = E[Sa,] = E[X7],

where the equalities follow from the i.i.d. assumption. The fourth order Taylor polyno-

mial of BAM about the points w; and ws is as follows:

N 1 1
Q(ﬂt,nyé‘:) :w_2 + 2(Sln _wl) _%(SQn - ) w_%(sl,n _wl)(52,n _w2)
1
+ w—é(Sz,n — wo)? + —5(S1,n — w1)(S2n — wg)? — w—i(sz n—wa)?
wy Wy Wy
w1 4 1 3
+ —= (82,0 —w2)" — —(S1,n — w1)(S2,n — w2)”.
Wa Wy

The fourth order Taylor polynomial of Bfn about the points wy and ws is as follows:

A2 w% w1 2 1 2
Q(ﬁt,n’4) =— + 2—2(Sl,n —w1) — ] (52 n —wz) + —g(sl,n —wi)
Wy W) Wy W)

w1 w% 2
- 4_3(51,71 - wl)(SQ,n - WQ) + 3_4(52,71 - w2)
w2 )

L (S = w1)2(Som — w2) + e%(sm — w1)(Sap — w2)?
2

3
(52 n )3 + F(Sl,n - w1)2(52,n - w2)2

3
wy
2
1
5
wy 2
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w1 3 w% 4
—8—=(S1,n —w1)(S2.n — w2)” +5—5 (52,0 — wa)™.
w2 w2

We take expectations of the fourth order polynomials to obtain the approximations

E[Bt,n] ~ E[Bt,m A] ~ E[Q(Bt,m 4)]7

Q

E[B},] = B3, Al = E[Q(5,, 4)].

Using these approximations, the MSFE approximation becomes
MSFE, ~ E[Y},] = 2E[Yi11 Xi{|E[Q(B1n,4)] + E[XJ1E[Q(5,,4))- (5.4.9)

The central moments involved in the expectation of the Taylor polynomials are expanded
and simplified to derive the SSD in terms of the sample size variable n. Appendix C,
Section C.2, presents the derivation of the central moments for the general case without
assuming P(X € A) ~ 1. With P(X € A) = 1, the expectation of the term (51, — w1)

is as follows:

t—1
1
E[(S1p —w1)] = - _zt; ElYr1X;] —w = ElY; Xy 1] —w1 =0,
where the second equality follows from the i.i.d assumptions. We write the rest of the

central moments involved in the expectation of Q(ﬁt,n,él) and Q(ﬁzn,él) under the i.i.d

and P(X € A) ~ 1 assumptions:

E[(S2 — w2)] = E[X? 4] — w2 =0,

Bl(S1 — 1)) = [ BV X21] — BViXe ]| = Var(¥iXi 1),
Bl(So0 — w2)?] =+ [BIXE,] - B2[X2,]] = - Var(XP),
Bl(S10 —01)(So0 — w2)] =+ [BIVXE] ~ BYiXe 1] BIXZ,]] = - Cov(ViXe 1, X2y),

B{(Stn —1)(Sam — 2)?] = =5 [BIYXE)) — B X, ] BIXL ]

— 2BV, X}, |BIXP ] + 2B [V X, ] B2 X2 ]|,
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Bl(S10 — w1)2(So,0 — w2)] = 5 [BIVZXE) ~ BYVZXE B ]
— 2B[Yi X1 | BV X[y + 2B [YiXe) BIXE, ],
El(S10 — 01)(So0 — 02)"] = 5 [EWXL B ] ~ BIYiX ] EIX2 ] EXE]
— BYX2L B XE] + BYi X1 B (X2
+ (BT~ BIYiX, 1 BIXE) - 8B XEBIX ]
= 3E[Y, X} 4 ]E[X{ ] + 6B[Y, Xe 1| B[X? ] BIX) 4]
+ 6B X7, B2 X2 ] - 6B, X, ) E*[X2]
Bl(S10 — 1) (San — w2)’] = —p [BIV2XE B ~ BIYAXE ] FX7]
— E*Yi X, |E[X} ] — AEY: X, | E[X] B[V, X} 4]
+ 2B (VX + 3EXYi Xoo1| P X7 |
b o[BIV XE] - BV XX ] - 2BV X BIXE )
+ 2B XE B X2 ] - 2B [V, X[ | E[YiXiA]
+ 2B (Y X, 1) E[X ] + 8E[Y, X} E[Yi X, 1] E[X{ ]
— 2BV X ] - 6ER[YiX, ] EP X2, ],
Bl(San —wn)'] = =5 [B2,] — 2BIX B2 (XE ) + BA(XE)|

1
+ = [ BIXE) — 4BIX0, ) BIXE ] - BE(XL,) + 12B[X, B2 (X2]

~6E'[X7,]].

These central moments can be derived from the general central moments given in C.2
by replacing truncated expectations with expectations and simplifying. Substituting the
above central moments in the expression for E[Q( Bt,n, 4)], one obtains

BlQn ) =2 + L | A B[XE ) - S BViXE]
t,ns —w2 n w% t—1 w% tAt—1

1 [ wios W1 d 1 5 L 3
e [—w—gE[Xt_l] - SPXL ]+ g EXE )~ 2 BGXL )

w1 3 3
+ 35 B (X;_1] - BV XP 4 ]EX, ] + S EY: X} ]
Wy Wy w3
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1
+ g | AEXS ) - 32 EXD ) - 3L ER (X ] + 6 E[X} ]
n? |ws wy w) w3
3 3
oA EY: X[ ]+ 3ED/tX£5—1]+_4EDQXE’—1]E[X5‘—1]
Wy Wa Wo
6
B _2E[YtXE—1]} .
5

Similarly, substituting the above central moments in the expression for E[Q( ﬁ?n, 4)], one

obtains
E[Q((,,4)] —“’—%Jrl 3w—%E[X4 | -4 E[V;X? ]+ 1E[Y2X2 ]
t,no _w% n w% t—1 tAt—1 t—1

w1
3
Wy
1 wi 6 % 5 w1 3
+ o5 | A Xl -3 BIX; ]+ 6w4E[YtXt—l]+4EE[YtXt—1]
wy

n 2 2 2
2 ply2xd EV2X2 ] 4 15%0 B2 x?
w_g’ Y X ] — w_§ Yy Xi ]+ w_g [Xi4]
w1 3 6
— 24 S BYXE BN )+ SV XE B+
Wy Wo Wy
1 W% 8 W% 6 W% 27 v4 W% 4
+ — 5_6E[Xt—1] — 12 E[Xt—l] — 15_6E [Xt—l] + 18—4E[Xt_1]
n3 | wh ws wo Wy
w w
= 8pEXT )+ 18 S EMXD ] 4 247 BYIX B
2 2
3 3
- 24_ Y. X7 ] + E[Yt XP - _4EDQ2X:52—1]E[X?—1]
w2 Wy
6 2 4 6 2 2 6 o 3
- =5 EY Xi ]+ 5B Xi] - 5 BTV X
Wa W) Wy

The construction of the algorithm is completed by substituting the expressions for E[Q(ﬁt,n, 4)]
and E[Q(Bt%n, 4)] in the MSFE approximation (5.4.9). The approximation of the MSFE

is as follows:

MSFE, ~ E[Y2,] - 201 E[Q(Byn, 4)] + w2B[Q(5},,,4)]

1 A A Q
_ 1 AL 4.1
m G (5.4.10)

with A=A+2B-D,Q=6A4—6B—D+E,

A =wiw3E[X] ] — 2wwi E[Y; X7 1] + Wi E[Y2X] ],
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B = nBIXS ] — 2013 BYi XD ) + WBYVAXL )
¢ = E[Yt%rl]wg - W%C‘J%a
D = 9wiB* (X} ] — 18wiwn EY: X} E[X/ ] + 3wl B[V X7 BIX ]
+ 63 B Y, X,

E = 3WiE[X} |] — 6wiwe B[Y; X[ 1] + 3wiE[YV2AXE ).

The fourth order MSFE approximation given in (5.4.10) depends on the sample size
n up to a cubic term 1/n3. It can be shown the central moments E[(S2, — w2)’]

E[(S1n — w1)(S2n — wo)*], and E[(S1n — w1)2(Sg,n — wy)3] involved in the fifth order

)

term of the Taylor series of Bt,n and ﬁ?n do not alter the constant term, the 1/n term
or the 1/n? term of the fourth order MSFE approximation. In fact, the fifth order terms
of the Taylor series approximation of Bt,n and ﬁ?n only contribute a 1/n® term and a
1/n* term. Although the Taylor series approximation of the MSFE can be found up to
any order required, further analytic results can be obtained by focusing on the MSFE

approximation up to quadratic terms given by

1

MSFE, ~ — [C’—F

A A] = MSFE,. (5.4.11)
Wy

n o n?
To determine the existence of an optimal observation window, we examine the solution
to the following optimization problem

min {C—i—é—é}.
n

n n2

The extremum of the MSFE approximation (5.4.11) is given by

Ne =2 (5.4.12)

Z.
By analyzing this extremum, we can determine an approximation for the optimal obser-
vation window. Let n* denote the size of the observation window which minimizes the
MSFE approximation MSFFE,,. n* is the approximation to the optimal observation win-

dow n* which minimizes the true MSFE. Since in most practical applications the amount
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of data available is finite, we denote by 7 the size of the largest data window available
for forecasting and estimation. To understand the SSD of the MSFE, we determine some
properties of the MSFE approximation, M SFE,,. First, the limit of MSFE,, as n — oo
is given by C/wj and C > 0.

Proposition 5.3 C' > 0.

Proof. See Appendix C.3. =
Define n = An/(An — A). The main conclusion about the existence of an optimal
observation window when the processes in question are i.i.d is summarized in the following

proposition and its proof presents the analysis of the SSD of MSFE,,.
Proposition 5.4 If {X} and {Y;} are i.i.d. processes and n < 1, then n* = n.

Proof. First we rewrite A as follows
A=wE (X2~ wgmlxt)?].

Since ws > 0, it follows A > 0. The partial derivative of the MSFE approximation
(5.4.11) with respect to n is

—MSFE, = — 2
on wg +

— +2 (5.4.13)

0 1 [—A A}

and the extremum is given by (5.4.12). We analyze the two cases n, < 0 and n, > 0.

Case n, < 0:

Since the size of the forecasting window must be a positive integer, n, < 0 is not
a solution to the optimal forecasting window problem. Nonetheless, we examine the
behavior of MSFE,, for positive values of n when n, < 0. From the expression for
No, Mo < 0 if and only if A < 0 and, as a consequence, MSFE, — 400 as n, — 0,
MSFE,, — C/w; asn — oo, and by (5.4.13) %mn < 0 whenever n > 0. Therefore,
MSFE, decreases monotonically as n — oo suggesting it is optimal to use all available
data to estimate Bt,n and obtain the smallest value of the MSFE.

Case n, > 0:

First, note n, > 0 if and only if A > 0. To determine if n, is a minimum or a

maximum of M SFFE,, we write the second partial derivative of M SF'E,, with respect to
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MSFE

Figure 5.1: MSFE approximation for n, > 0

*MSFE, 1 A A
ettt U ) b Sty 4.14
on? wg [ 6 ] (5 )

Substituting (5.4.12) in (5.4.14) leads to

1 A4

PMSFE,| _ 1 A* _
n* N SUJS’ A3

on? 0,

and it follows n, is a maximum of M SFE,, whenever n, > 0 and therefore n* # n,. n is
defined as the value of n, which is less 72, at which MSFFE,, has the same value as at 7.
The general shape of MSFE, for n, > 0 is illustrated in figure 5.1. Since 2* must be a
positive integer, the result follows, n* =n whenn < 1. m

As noted earlier, MSFE,, is an approximation of the MSFE truncated at the 1/n?
term. MSFE, was implemented to provide further analytic results. Nonetheless, the
approximation (5.4.10) can be used to graphically analyze the SSD of the MSFE, given

the necessary moments.

5.5 The algorithm: multi-variate case

We now construct the approximation of the MSFE for the multi-variate case with k = m.

As before, we denote by X; a mx 1 column vector, X; = (X}, ..., Xtm)T, of Fi-measurable
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variables that are used to forecast Y;11 € R. As in the scalar case, using as cost function
the squared loss function, the criterion which provides a measure of forecast accuracy is

the MSFE given by
MSFE, = E[(Yi41 — Yig10)?] = EYA,] = 2E[Yi1 Vi1 ] + EYA,,). (5.5.1)

The MSFE is the expected value of statistics, f’t+1,n and }A/t%rl’n, which depend on the
parameter n. To begin the construction of the algorithm, and since we are interested in

the SSD of the MSFE, we restrict attention to the expectations of the following terms

M, = Y1 Yisin = 1@+1X;5t,n7 (5.5.2)
o, = Y2, = (BL,X)% = X} BB n Xe. (5.5.3)

Substituting the vector form of the OLS estimator Bt,m II; ,, and IIy, become, respec-
tively,
-1
My = Ve X, (X0 Xen) X[V,

Mo, = X, (X, Xen) 7 XYY Xn (X X)) 71 X

)

By defining the statistics S, and S, as follows

1
Sin ==X Yin eR™ 5, = EXJnXt,n € R™*m

S

we rewrite the OLS estimator
Bt = SypSim € R™L, (5.5.4)
and (5.5.2) and (5.5.3) become respectively
Oy, =YX, Sop 81, Mom=X,S5) 8], SinSshXe.

We assume X; and X, are independent for all ¢ # s and X; has the same distribution

for all t. Furthermore, for each ¢, X; and Xg are independent for all ¢ # j. By the
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independence assumptions, we can write

E[Hl,n] = E[YtHXtT]E[Bt,n] = E[YtHXtT]E[Sz_,}l Sl,n]?
Elllz,] = El(es (XoX{")) "E[es (BinBiln)]

— E[(CS (XtXtT))T]E[CS (52_7111 SITL Sl,n 52_71)]7

n

where cs stands for column string. The next step in the construction of the algorithm is to
apply the techniques of Chapter 4 to find approximations of E [Btn] and Ecs (BtnBtTn)]
Such approximations are conducted by means of Taylor series expansions of Bt,n and
cs (BthTn) with respect to the statistics Sy, and S, about points wy and wq, respec-
tively. From the theory developed in Chapter 4, and as in the scalar case, approximating
the expectation of a function of random variables by means of Taylor series requires
one, in many instances, to approximate the expectation by a truncated expectation. In
the case of Bt,n and cs (ﬁAthTn), the approximations will depend on truncated central
moments of S, and S2,. We write the expectation of the OLS estimator BAM and

cs (BthTn) as follows

E[@t,n] = E[@t,rm A] + E[Bt,?h AC]’
E[CS (ﬁt,nﬁ?,—n)] = E[CS (Bt,nBtTn)a A] + E[CS (Bt,nﬁ;l,—n)? AC]?

where A is a region where Taylor series can be used to approximate BAM and cs ( Atm BAtT n)-
To obtain further analytic results, we assume P(X € A) ~ 1 so that E[3;.,] = E[B;.n, Al
and Elcs (Bmﬁ?n)] ~ Elcs (BMB;),A] We define

wi = E[S1,] = E[XiYit1] € R™Y wy = E[Sy,] = E[X: X, ] € R™™,

where the expectation of a matrix is equal to the matrix of the expectation of the elements
and, similarly, for the expectation of a vector. We write matrix Taylor polynomials,
applying notation, given in Appendix C.4, for derivatives of matrix valued functions of
matrices with respect to matrices and vectors as defined in [144]. We define the vector

b, by stacking the m x 1 vector Si, and the column string of the m x m matrix S5,
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and similarly define the vector b by stacking the m x 1 vector w; and the column string

of the m x m matrix ws.

w1 c Rm(1+m)><1

cs Sop, cS wo

The Mth order Taylor polynomial approximating Bt,n, with respect to b, and about the

point b, is as follows:

n=

Q) =5+ 3 5 (0l ), (10 -9% 1),
=1

The Mth order Taylor polynomial approximating cs (ﬁtnﬂ?n) about the point by is as

follows:
Moy, .
Qles (BunBla). M) = es (w3 wf i)+ 30 7 (Djees (Buall), (=0 @),
i=1 "
where sz = wy. We take expectations of the Mth order polynomials to obtain the
approximations

ElBtn) ~ EBin, Al = E[Q(Bin, M)],
Eles (BunBin)] = Eles (BenBiln) Al = E[Q(cs (Ben/,), M)].

The expectations of the Mth order Taylor polynomials of Bt,n and cs Btnﬁ?n are respec-

tively

n=

M
BlQGun M) =wi'or+ Y 2 (Di Bin), B[ 0] @1,  (555)
i=2

E[Q(cs (BinfB,), M)] = cs (w2_ 'l wiw; )
+Z ( e ﬁtnﬁm)>b _EE[(bn—B)@”] @ 1. (55.6)

n=
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In this exposition, we use fourth order polynomials M = 4. We take expectations of the

fourth order polynomials to obtain the approximations

E[ﬁt,n] ~ E[Q<Bt,n7 4)]7 E[Cs(ﬁt,nﬁt—[—n)] ~ E[Q(Bt%nﬂ 4)]

Using these approximations, the MSFE approximation becomes

MSFE, ~ B[Y2,]~2E[Yis1 X EIQ(Bn, O+ El(es(X: X)) T1EIQUes (BenB,), )
(5.5.7)

In order to analyze the SSD of the MSFE approximation, we are interested in the n
dependence of (5.5.5) and (5.5.6). First, we note, as before, w; and w9 are n-independent.

Next we examine the derivative terms

n=

(Di Ain), o (Dhees Buabl), - (55.3)

The n dependence of Bt,n and cs (BtnﬁAtTn) occurs through the statistics Sy, and S .
S1,n is a m x 1 vector with terms of the form

t—1
1 . ,
Sli,nZE Z X'Yrp, i=1,...,m.

T=t—n
Sap is @ m x m matrix with terms of the form

t—1
1 o
Spijm =~ D XiXL, i=1...,m j=1...,m.

T=t—n

By the definition of the vectors b,, and b, BAM evaluated at b, = b is n-independent.
Similarly, cs (Btnﬂ?n) evaluated at b, = b is n-independent. This is clear from the
zeroth order terms of the Taylor expansions (5.5.5) and (5.5.6). The first derivative of

Bt ., with respect to b is given b
) n g y

Db;[ Bt’n = (Dbl,n /Btvn DbZ,n Bt,n e Dbm(1+m),n Bt,n) € Rmxm(1+m)’
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where b, = (b0 bin(14m),n)- Each of the m elements of ﬁt,n is a rational function of
the elements S1;, @ = 1,...,m and the elements Sy, ¢ = 1,...,m, 7 =1,...,m and
the only n dependence is through these m(1 + m) terms. Consequently, each of the m
elements of Dbh,n BAM, by the definition of b,, is a rational function of the elements S1;,
i=1,...,m and the elements Sy, i =1,...,m, j=1,...,mfor h=1,...,m(m+1).
The n-dependence of Dbh,n Bt,n is also only through the m(1 +m) terms S1;, and So;; .
When evaluated at b, = b, Dbl ﬁt,n is n-independent. The same arguments are true
for any derivative of BAM with respect to b, and for any derivative of cs (ﬁtnﬁgn) with

respect to b .
Proposition 5.5 Both expressions in (5.5.8) are n-independent for i =0,1,....

By the proposition, the SSD dependence of (5.5.5) and (5.5.6) is restricted to the expec-
tation term E [(bn - 5)®Z} e R (m+D'>1 which corresponds to the central moments of
the scalar case. The elements of the m?(m + 1) x 1 vector E [(bn - 5)®i] are central
moments of the statistics S1;, and So;;,. We write these central moments, which are
involved in the fourth order polynomials Q( ﬁt,n, 4) and Q(cs (Btnﬁ;r ), 4). For the second
order Taylor terms, with indexes ¢, j, k,! running from 1 to m, the central moments are

as follows:

1 2

E[(S1in = w1) (Stjm —wij)] = ~ Vi ,
1
E[(S1ipn — w1i) (S2jkn — w2jk)] = giijk )
1
E[(S2ijn — w2ij) (S2ktn — wakt)] = Ev??,ijkl .

For the third order Taylor terms, with indexes i, j, k,[,0,p running from 1 to m, the

central moments are as follows:

1
E[(S1in — w1i)(S1jn — wij)(Siken — wik)] = m‘/lg:ijk ,
1
E[(S1in — w1i)(S1jn — wij)(S2kt,n — wok)] = ﬁVQ%ijkl :
1
E[(S1in — w1i)(S2jk,n — wajk) (S2to,n — wato)] = ﬁvszz-jkzo :

1
E[(Saij,n — w2ij) (S2ki,n — wakt) (S20p,n — W2op)] = ﬁvfjijklop :
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For the fourth order Taylor terms, with indexes i, j, k, [, 0, p, ¢, running from 1 to m,

the central moments are as follows:

1 1
E[(S1imn — w1i)(S1jm — w15) (S1kn — wik) (Sum — wu)] = ﬁvfijkl + gUﬁzjkz ;

1 1

E[(S1in — w1i)(S1jn — wij) (Stkmn — wik) (S210,n — Waio)] = mvfijklo + $U24,ijklo ;
E[(Stin — w1i)(S1jn — wi)(S2ki,n — wakt) (S20p,n — w2op)] = %‘/g%ijklop
+%U§,ijklop :
E[(S1i,n — w1i)(S2jk,n — w2k ) (Sato,n — Wato) (S2pgn — wapg)] = %szjkzapq
+%Uziijklopq ;
E[(S2ijn — w2ij) (Sokin — wakt) (S20p,n — waop) (S2grn — wagr)] = %Vﬁzjkzapqr
+%Ué,ijklopqr :

We present the expansion of the above central moments for orders one through four and
the definition of the variables Vfij, ce ngijklopqr and Uﬁijkl, ce Ué’ijklopqr in Appendix
C.5.1. The vectors E[(bn — 5)®i] 1 = 2,3,4 are reformulated in Appendix C.5.1 in
a form which emphasizes the SSD. The resulting expressions consist of n-independent

terms multiplying 1/n, 1/n2 and 1/n. These expressions are as follows:

_ 1

El(b, = 5)®%] = — [Box Vs + Boz2 Vi cs i + B2 Vs
+ Eoy Vé? cs [ij ¢s [kl
= lv2
=-v?

7 1
E[(by —0)%°) = [EM Vet + Bz Vel esi) + Bas Vagi esiji)

n2

+ B4 Vili cspjn cspiol) + B Vapigie) + Ea6 Vs esiii esrlo
+ By Vég cs[ csfiljklio] T £4.8 V4?: cslij cs[kl CS[op]]]]
_ 1 3
=V,

- 1

®47 4 4 4
El(bn =) = — | Box Vi + 6.2 Vaitsie espa + £o6.3 Vayjity csmpa)

4 4 4
+ Eo.a Vs (515 esirt estoplll] T 65 Vo i esirjtao) T £6.6 Vai csily esiiio]
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+ Eo.7 Vi cst esfiiktlopl) + F6.8 Vil esijk esio csipall]

+ Eo.o Va, esiitytuliel T 6,10 Vs, esiis csirilop

+ Bo,11 Vs, esii estijeon] T 612 Vi, esli esijk csiiopg

+ Bo,13 Vi, et esflislitlop] T 6,14 Vi, cs] esili esiiliolpa

+ E,15 Vi, s el esilshliolpal + F6.16 Vs, csiij esiut esiop csipal]

<0(55)

Loa 1o
§V+$U'

The definition of all matrices Ea 1, ..., Fs 16, as well as a description of the subscript
indexing notation used for the V' variables, can be found in Appendix C.5.1. Substituting
the above expressions for E[(b, —b)® 2], E[(b, —b)®?3], and E|[(b, —b)®*] in the expression

for the expectation of the fourth order Taylor polynomial of Bt,m E [Q(Bm, 4)], we obtain

E[Q(Btﬂ% 4)] u)2 wl + 5= (D{?T 2 ﬁt n) b —5V2 & 1
101 3 1 PR
+ﬁ [3'< bT 3 ﬁtn) n:EV ® I+ E<Dbg4 ﬁt,n)b
1
4ln3

Vi I]

n=

+ ( bT4ﬁtn) _I_)U4®I-

Similarly, substituting the above expressions for E[(b,, —b)® 2], E[(b, —b)® 3] and E[(b, —

b)®4] in the expression for the expectation of the fourth order Taylor polynomial of

cs (Btnﬁ;rn)a E[Q(cs (Bt,nBtTn),4)], we obtain

BIQes (Gunil) ) = o5 (il wrwy ) + 5 (s es (Buanfil), V2ol

n=

1[1 - 1
e [5 (Biyscs (Bunbl)), Vi@ T+ (Dipues (Buabl),
1

4 P ST 4
+4ln3 (Db;[‘l s (ﬁt,”ﬁt,n))b BU ® 1.

n=

vt ®I}
b

n=

Substituting the above expressions of E[Q(5.n,4)] and E[Q(cs (Bmﬁ?n), 4)] in expres-

sion (5.5.7) for the MSFE fourth order approximation, we obtain the following expression
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for the MSFE approximation with explicit SSD

MSFE, = [E[Yt%rﬂ —2w] wy twy + (cs w) Tes (w;lwfwlwgl)}

1 . o
5o [—2@ (D2 Bin), _ +(eswo)T(Dfaes (Buabl), VP I}

1]1 T3 A s . \
ﬁ |:§ <—2CU1 <’Db25 Bt,n) b—F + (CS CUQ) (DbP CS (Bt’nﬂt’n))bn:(’, V ® T
1 A ~ ~
+ (—2w1T (sz‘p ﬁt,n) 5t (cs w) ' (Dg‘y cs (ﬁt,nﬁgn))bn:J Vig I]
A A
=C+—— —.
n o n

The analysis of the SSD of the MSFE approximation above follows as in the scalar case.

5.6 Monte-Carlo evidence

In this section, we present two sets of Monte Carlo experiments designed to test the

Taylor algorithm method developed above.

5.6.1 Robustness of the approximating algorithm

In the first set of Monte Carlo experiments, our goal is to assess qualitatively the robust-
ness of the Taylor algorithm to changes in the region of convergence of the Taylor series
employed in the approximation. The Taylor algorithm relies on specifying a set A C B

where B is the region of convergence of the Taylor series of BAM so that
E[Bt,n] = E[Bt,na A] + E[Bt,nv AC] .

Within B, and therefore within A, the Taylor series of Bt,n converges. Letting Q(Bt,n, 4)
be the 4th order Taylor polynomial of BAM, the approximation of the OLS and the MSFE

are as follows:

E[ﬁt,n] ~ E[Q(Bt,na4)7“4]7 (561)
MSFE, ~ E[Y2,] - 2E[Yis1 X E[Q(Brn. 4). Al + E[XZ]E[Q(F2,,4), Al (5.6.2)
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Clearly, if P((X¢_p,...,Xi—1) € A) = 1, E[B;,A°] will be small and (5.6.1) and (5.6.2)
can be considered good approximations. In what follows, we evaluate the accuracy of
(5.6.2) for varying values of the probability P((X;—p,...,X;—1) € A). This evaluation
is carried out by constructing the approximation (5.6.2) with the truncated expectations
of Q(Bm,él) and Q(Bﬁn,él). The truncated expectations of Q(Bt,n,él) and Q(Bﬁn,él) are
constructed using the truncated central moments in Appendix C, Section C.2. The
resulting approximation is compared to a benchmark MSFE.

We choose the following DGP for the experiment
Yip1 = X2 4 U, (5.6.3)

with the process {U;} ~ IIN(0,0,) and {X;} ~ IIN(ug,0,). We set iz = 1, 0, =
0.1, o, = 1. The forecast model is given by Y;+1 = BX; + V41, the forecast is given
by f’t+1,n = Bth, where Bt,n is the OLS estimator (5.4.2), and the forecast error is
€410 = Yir1 — Yip1n.

Since the MSFE can not be evaluated analytically, we calculate the benchmark MSFE
by means of Monte Carlo simulations. The motivation behind using Monte Carlo simu-
lations to determine a benchmark MSFE lies in that the MSFE is equal to the expected

value of the conditional mean square forecast error (CMSFE)

MSFE = E[CMSFE], CMSFE = Ey[e;,,,,].

t—1

Given a realization of the processes { X}, _, .

and {Y;}._,_, ., it is simple to compute
the CMSFE conditional on the given sample. Generating many such samples, M, by
Monte Carlo simulations, we can construct M CMSFEs, {CMSFE;}M,  and approxi-

mate the MSFE by the sample mean of the simulations

M
1
MSFE ~ < ; CMSFE;.
We now describe the details involved in the construction of the benchmark MSFE. For
the given set of values of the parameters P = {4, 04, 0y}, twenty thousand Monte Carlo

simulations are conducted (M = 20000). We use the index m to denote a particular



122

Monte Carlo simulation. For the mth simulation, we generate the sample series {2, }1_;

of length T' = 101 as a realization of the explanatory process {X, }! such that the

T=t—n
first element of the series is the first observation, 1 <~ ¢t — n, and the last element of the
series is the last observation, 101 < t. Each x is a realization of a normally distributed
random variable, X ~ N(u,,0,), and the population series is independent and identically
distributed, {X, t=1  ITD. From this sample series, we calculate the sample series

T=t—m
{frm}L_, by means of the relation f;,, = 22,,, according to the DGP (5.6.3). Finally,

T,m?

T

with the sample series {z;,,}_;, and {fr.m}1_4,

at the forecast origin 7 = T — 1, we

construct the CMSFE as follows:

CMSFEjn =2 0+ Uy nm,

Xt7n7m
T—1 2
b2 . =T—n fT,mmT,m
Xt ,m ft,m — Ttm T_1 5 ,
ZT:T—TL xT,m
2,..2

2 O-uxt,m
vXtynvm =0y + T—1 2 )
=T—n*7,m

where bit,n,m and vy, n,m are the conditional squared bias and conditional variance of
the forecast error, respectively. For each simulation, we obtain T'— 1 = 100 values of the

CMSFE. One for each value of n starting from n = 1 to n = 100. The case n = 1 refers

to estimation of the OLS carried out with only one observation. For a particular set of

parameters P, we obtain an array of size M x T — 1 of CMSFEs, {CMSFEi,j}Z.Ai’Ej_:ll.
Finally, the benchmark MSFE for a set of parameters P and for an observation window

of size n is given by the following:

M
1
MSFE, ~ — ; CMSFE;,. (5.6.4)
The benchmark Monte Carlo MSFE is compared with the MSFE approximation ob-
tained with the Taylor algorithm given by (5.6.2). The approximation (5.6.2) is con-
structed using the truncated central moments presented in Appendix C.2. Substituting

the DGP in these central moments, the necessary truncated expectations are calculated
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by numerical integration. For example:

E[(S1yn —wi1), Al = E[Y;X;_1, Al — w?P(X € A)

I
ey

(X2 1, Al + E[U X1, Al —w?P(X € A)

I
s

[XP 1, Al - wIP(X € A)

EX} |, I|P(X; 1 € )" —w?P(X,_ € D",

where the probability set A is as defined in Appendix C.1.2. We note that, for this Monte
Carlo experiment, knowledge of the DGP is necessary to calculate the truncated central
moments. Knowledge of the DGP is not necessary in the Monte Carlo experiments in
the next section or for empirical applications. To assess the robustness of the Taylor
approximation, we change the size of A by changing the size of I; for i =¢t—mn,...,t —1
by changing the size of §;. For u, = 1 and o, = .1, the largest possible value of
0; is §; ~ 4.212670, and P(X; € I;) ~ 0.9999747. By reducing the size of d;, the
intervals I; and the region A shrink. The other values of §; used are 2.80,,2.50;,20,,
and the respective probabilities are P(X; € I;) ~ 0.99488974, P(X; € I;) ~ 0.98758, and
P(X; € I;) =~ 0.9544979. The resulting MSFE approximations are presented in Figure
5.2. This shows that the MSFE approximation given by (5.6.2) is not robust for large n.

Next, in what follows, we assess the robustness of the Taylor algorithm given by
(5.4.11). This approximation is obtained through the assumption that the range of
the explanatory random variable is contained inside a set A, P(X € A) = 1, which
is inside the region of convergence B of the Taylor series of the OLS. This results in
E[Bin] = E[Btn, Al and E[B;,, A] = 0. We want to evaluate the performance of the
MSFE approximation (5.4.11) when applied to circumstances that violate the contain-
ment assumption, i.e., when the range of the explanatory random variable goes beyond
the region of convergence and P(X € A) < 1. We conduct two experiments with the
explanatory process {X,} ~ IIN(uy,0,). Clearly, this process does not satisfy the
containment condition since P(X € A) < 1 for any compact A. The DGP used is
Yii1 = 01X; + 0o X7 + Uy q with {U,} ~ ITN(0,0,). The set of parameters investigated
are given in Table 5.1. The benchmark MSFE is obtained by Monte Carlo simulations

as described in the previous set of experiments. As derived in Section C.1.1, the radius
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_y2
MSFE for DGP Yt+1_Xt +Ut+1

O  Monte Carlo (MSFE)

22| 4th order approximation 8=4.212670, P(XO A)= .9999747|
— — — 4th order approximation 6=2.80, P(XO A)= .99488974
2 4th order approximation 6=2.50, P(X[O A)= .98758

—  —  4th order approximation 6=20, P(XO A)= .9544979

Figure 5.2: Benchmark Monte Carlo MSFE and Taylor algorithm MSFE approximation
for different probability sets
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of convergence in terms of the explanatory variable is R,, = \/2n(u2 + 02). The exper-

iments are designed by keeping all parameters fixed except for u, and o,. In the first
experiment, p, = 10 and o, = 0.1. In the second experiment p, = 0.1 and o, = 10.
Clearly, the radius of convergence R,, remains fixed in the two experiments by the choice
of . and o,. In the first experiment, the probability with n = 1 of X € B is almost one,
since o, is small. In the second experiment, this probability decreases to 0.8427. Figures
5.3 and 5.4 present the benchmark MSFE and the Taylor algorithm approximation MSFE
for the two experiments. From these, we can see that the MSFE approximation (5.4.11),
under violation of the containment assumption, remains robust for large values of n, but
fails to replicate the benchmark MSFE for small values of n. The MSFE approximation
given by (5.4.11) outperforms the MSFE approximation given by (5.6.2) and therefore

validates making the containment assumption P(X € A) ~ 1.

01 =1,0, =1,
oy =1, R; = 14.1428
. 10 0.1
Og 0.1 10
P(XeB)| 1 |0.8427

Table 5.1: Set of parameters for the experiments to assess the containment condition
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MSFE for DGP with uleo, 0X=0.1, ou=1

4 T T T T T
O  Monte Carlo
Taylor Algorithm
3.5H i
w3 b
L
]
=
25} h
2 —— T
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Figure 5.3: MSFE for a quadratic DGP with 61 =1,0, =1, y, = 10,0, =0.1,0, =1

4 MSFE for DGP with p =0.1, 0 =10, 0 =1
X 10 X X u
45 T T T T T
O  Monte Carlo
Taylor Algorithm

MSFE

2.5 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Figure 5.4: MSFE for a quadratic DGP with 6, =1,60, =1, u, =0.1,0, = 10,0, =1
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5.6.2 Assessing misspecification

In this section, we present Monte Carlo experiments to investigate the ramifications of
misspecification in the forecasting problem described in Section 2.4 with independent
identically distributed processes and to evaluate the ability of the Taylor algorithm to
capture these effects. The paramount assumption made in this chapter, that of indepen-
dence of the explanatory variables, is imposed on the simulations that follow. To carry
out this endeavor, we construct a benchmark MSFE by means of Monte Carlo simula-
tions. This benchmark MSFE is then compared to the MSFE approximation obtained
with the Taylor algorithm and given by (5.4.11). For the analysis, we consider several

DGPs each of the general form
Yir1 = (X4, 0) 4+ Upga,

where {U;} ~ IIN(0,0,) is an innovation process, {X;} ~ IIN(pz,05), and 6 is a vector
of parameters. The DGPs considered differ in the functional form of ¢. The functions

we consider are as follows:

01 (X1,0) = 01X, + 02 X7%,

QOQ(Xt, (9) = 94 — (93 log[l + exp(—92/03 — (91Xt/03)], (5 6 5)
( ) =0,X; + OQ(Xt + 93)2 + Sin(?T(Xt — 1)/94),
(X, 0)

wa(Xy,0) = 01Xy + 0274

As described in the previous section, the MSFE cannot be evaluated analytically, so we
calculate the benchmark MSFE by means of Monte Carlo simulations. The motivation
behind using Monte Carlo simulations to determine a benchmark MSFE lies in the fact

that the MSFE is equal to the expected value of the CMSFE. Given a realization of the

t—1
T=t—m

processes { X, } and {Y-}L_, .4, it is simple to compute the CMSFE conditional on
the given sample. Generating many such samples, M, by Monte Carlo simulations, we can
construct M conditional mean square forecast errors, {CMSF Ei}i]\ip and approximate
the MSFE by the sample mean of the simulations.

We now describe the details involved in the construction of the benchmark MSFE.

For the given set of values of the parameters P = {u,, 0., 04,0} and a particular func-
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tional form of ¢ from the given in (5.6.5), twenty thousand Monte Carlo simulations are
conducted (M = 20000). We use the index m to denote a particular Monte-Carlo simula-
tion. For the mth simulation, we generate the sample series {xﬂm}rf:l of length T = 501
as a realization of the explanatory process {X,}{_, . such that the first element of the
series is the first observation, 1 «» t — n, and the last element of the series is the last
observation, 501 < t. Each x is a realization of a normally distributed random variable,
X ~ N(pz,0.), and the population series is independent and identically distributed,
{X,}'Z}_, ~ IID. From this sample series, we calculate the sample series {f;,}1_, by
means of the relation f;,, = @;(z;m,0) for each of the DGPs in (5.6.5).
T

Finally, with the sample series {x;,,}1_;, and {f-.m}1_;, at the forecast origin 7 =

T — 1, we construct the CMSFE as follows:

CMSFEp; =Y, pm + Uxenms

T-1
ZT:T_n fT,meT,m
ZT—I 2
T=T—n xT,m
2,2
O-umt,m

_ 2
Uxt,n,m = Oy + ZT_l 2
T=T—n xT,m

2

2 —
bx,g,n,m - ft,m — Tt;m

I

where b?@,n,m and vy, nm are the conditional squared bias and conditional variance of
the forecast error, respectively. For each simulation, we obtain T'— 1 = 500 values of the
CMSFE. One for each value of n starting from n = 1 to n = 500. The case n = 1 refers
to estimation of the OLS carried out with only one observation. For a particular set of
parameters P, we obtain an array of size M x T — 1 of CMSFEs, {CMSFEi,j}?i’fj_:ll.
Finally, the benchmark MSFE for a set of parameters P and for an observation window

of size n is given by the following:

M
1
MSFE, ~ + Z_; CMSFE;,. (5.6.6)
The benchmark Monte Carlo MSFE is compared with the MSFE approximation ob-
tained with the Taylor algorithm given by (5.4.11). The approximation (5.4.11) is con-

structed by use of sample moments in place of their population counterparts. For this,

we generate the sample series {$7—}7]_V:1 of length NV = 5000 as a realization of the explana-
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tory process {X,}._, . such that the first element of the series is the first observation,
1 < t —n, and the last element of the series is the last observation, 5000 < t. Each x
is a realization of a normally distributed random variable, X ~ N(u,,0,), and the pop-

ulation series is independent and identically distributed, {X,}!Z ~~ ITD. Similarly,

T=t-n
we generate the sample series {u,})"_; of length N = 5000 as a realization of the innova-
tion process {U,}L_, ,, such that the first element of the series is the first observation,
1 « t—n, and the last element of the series is the last observation, 5000 < ¢t. Each u is a
realization of a normally distributed random variable, U ~ N(0, 0,), and the population

series is independent and identically distributed, {U ~ IID. Finally, the sample

T= t n
series {y, })V_, is generated by means of the relation y, = ¢;(X,,0) + u, for each DGP
n (5.6.5).

The population moments in (5.4.11) are estimated by generating their sample coun-

terparts. For example:

N
1
P 5 Yot

E[Y/X{ 4] ~

—_
<
QN
8
NN

N ¢

Therefore, for a given set of the parameters, P = {u,,0,,0y,0}, we can generate the
necessary sample moments and ultimately evaluate (5.4.11) for different values of the
observation window size n. The resulting MSFE can be compared to the benchmark
MSFE (5.6.6). In the next section, we discuss results for different sets of values of the

parameters involved for the four DGPs given in (5.6.5).

5.6.3 Discussion

The sets of parameter values investigated and the reference to their corresponding MSFE
plots are given in tables 5.2,5.3,5.4,5.5 for the four functional forms of the DGP given
n (5.6.5). We first describe the results for the DGP with ¢ (X4, 0) = 6, X, —H92Xt63. The
values 1 = 2, 65 = 0.05, f3 = 2 are fixed. For these parameter values, the misspecification
is due to the quadratic term. The variance of the explanatory variable o2 and the variance

2

of the innovation o are evaluated at different values, as shown in Table 5.2, columns
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one and two. For the nine experiments conducted, the extremum value is negative,
ng < 0. These are given in the fourth column of the table. With this, the approximation
(5.4.11), by proposition 5.4, suggests there exists no optimal observation window and all
data available must be used to forecast. In all nine experiments, the benchmark MSFE
monotonically decreases with minimum value at the last value of n = 500. In the figures,
we plot both the SSD of the benchmark Monte Carlo MSFE and the SSD of the Taylor
approximation MSFE for values of n from zero to one hundred. Qualitatively, in all nine
experiments, the Taylor algorithm provides an MSFE approximation which replicates

the form of the benchmark MSFE. For a given value of the explanatory variable variance

2

2. as the variance of the innovation o2 increases, the level of the benchmark MSFE and

g u

the level of the Taylor approximation MSFE increase but the SSD remains monotonic
decreasing. Continuing with the DGP with ¢1(X¢,0) = 601 X; + 02Xf3, we conduct nine
more experiments with fixed new values of 7 = 1,0, = 2,03 = 2. By increasing the
value of the parameter 05, we increase the influence of the quadratic term in the DGP
and therefore increase the misspecification of the linear forecast model employed by the

Taylor algorithm. The same values of the variance of the explanatory variable o2 and the

2

- are used as in the previous nine experiments. For this second

variance of the innovation o
set of nine experiments, the extremum values are also negative, ng < 0. These values are
given in the seventh column of the table. Again, the approximation (5.4.11) suggests there
exists no optimal observation window and all data available must be used to forecast.
As before, in all nine experiments, the benchmark MSFE monotonically decreases with
minimum value at the last value of n = 500. Qualitatively, the results are similar
to those of the previous nine experiments. The Taylor algorithm provides an MSFE
approximation which replicates the form of the benchmark MSFE. Nonetheless, compared
to the previous nine experiments, the Taylor approximation appears less accurate, as
can be seen in Figures 5.17,5.18,5.19. This should be attributed to an increase in the
variance of the dependent process {Y;}, rather than viewed as an effect of the “increase”
in misspecification.

Similar analysis is carried out for the other three DGPs, as given in (5.6.5). For

each of these three functional forms of the DGP, two sets of experiments are conducted.

For ¢o(Xy,0) = 04 — 03log[l + exp(—02/03 — 01X,/03)], the first set of experiments has
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parameters #; = 1,0 = 0.01,63 = 1,0, = 0.001 and the second set of experiments has
parameters 0] = 1,05 = 2.5,03 = 1,04 = 1.5. For ¢3(Xs,0) = 01.X; + 02(X; + 03)% +
sin(m(X; — 1)/04), the first set of experiments has parameters 0, = 1,6, = 0.001, 6035 =
1,8, = 1 and the second set of experiments has parameters 6, = 0.1,65 = 2,03 =
0.1,04, = 1. For p4(X3,0) = 61X; + 0274, the first set of experiments has parameters
#1 = 1,05 = 0.001 and the second set of experiments has parameters 01 = 1,0, = 2.

For each of these six sets of experiments, the variance of the explanatory variable o2 is

2

o is evaluated

evaluated at three different values, and the variance of the innovation o
at nine different values, for a total of fifty-four experiments. For all experiments, as
presented in the tables, the extremum values are negative, ng < 0. This implies, that
for all examples studied, the approximation (5.4.11) suggests there exists no optimal
observation window and all data available must be used to forecast. Furthermore, for all
experiments, the benchmark MSFE monotonically decreases with minimum value at the
last value of n = 500. Regardless of the level of misspecification achieved by the different
sets of parameters, the general shape of the SSD of the benchmark MSFE, and that of
the SSD of the Taylor approximation MSFE, is monotonic decreasing. The results of
the experiments point to the conclusion that, when the processes involved in the forecast

problem are temporally independent, there exists no optimal observation window and it

is optimal to use all data available to form a forecast.

5.7 Conclusions

In this chapter, we analyze the SSD of the MSFE for a forecasting problem with a forecast
model consisting of a linear regression which misspecifies the data generating problem.
The observed processes are assumed to be i.i.d. As described in section 5.3, the most im-
portant result in the literature on the SSD of the MSFE under misspecification and with
i.i.d. processes is given by White [150]. This result describes the behavior of the MSFE
as the sample size n goes to infinity. By developing a Taylor algorithm, we formulate an
approximation of the MSFE which can be used to explain the SSD of the MSFE for finite
values of the sample size variable n. We evaluate this algorithm by numerical experi-

ments and a benchmark MSFE constructed by Monte Carlo simulations. For the cases of
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functional misspecifications studied, the Taylor algorithm MSFE replicates the behavior
of the benchmark MSFE for finite values of n. Furthermore, the experiments reveal the
MSFE, for the cases studied, decreases monotonically, leading to the conclusion that no

optimal observation windows of finite size exist.
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1, phe =10
Oz oy | 01 =2,00=0.05,05=2| 01 =1,00=2,03=2
Figure No n Figure ng n
0.1 ] 0.01 5.5 -0.0040 NA 5.14  -0.0029 NA
0.1 5.6 -0.0042 NA 515 -0.0032 NA
1 5.7 -0.0019 NA 5.16  -0.00560 NA
1 0.1 5.8 -0.0439 NA 5.17  -0.0334 NA
1 5.9 -0.0886 NA 518  -0.0356 NA
5| 5.10 -0.0824 NA 5.19  -0.0468 NA
10 1| 511 -1.1851 NA 520 -1.1953 NA
10| 512 -1.6691 NA 521  -1.1913 NA
30| 5.13 -2.3033 NA 522  -1.1859 NA
Table 5.2: NA indicates not applicable by definition
P2, bz = 10
(o Oy 91 = 1,92 = 0.01, 91 = 1,92 = 2.5,
s =1,60, =0.001 03 =1,0,=1.5
Figure o n | Figure ng n
0.1 ]0.01| 5.23 -0.0016 NA | 5.32 -0.0019 NA
0.1 524 -0.0016 NA | 533 -8.8952¢-04 NA
1] 525 -0.0016 NA | 5.34 -0.0016 NA
1 0.1 526 -0.0781 NA | 5.35 -0.2303 NA
1| 527 -0.0781 NA | 5.36 -0.0769 NA
5| 528 -0.0781 NA | 5.37 -0.0770 NA
10 1] 529 -6.0039 NA | 5.38 -5.1178 NA
10| 530 -2.8170 NA | 5.39 -2.6739 NA
30| 5.31 -2.5644 NA | 5.40 -2.5453 NA

Table 5.3: NA indicates not applicable by definition
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3, e =10
Oy Oy 01 =1,0, =0.001, 01 =0.1,05 = 2,
0s=1,0,=1 03 =0.1,0, =1
Figure No n | Figure ng

0.1 { 0.01 5.41 -0.0056 NA | 550 -0.0024 NA
0.1 5.42 -0.0037 NA | 551 -0.0027 NA
1 543  -4.8605e-04 NA | 5.52 -0.0048 NA
1 0.1 5.44 -0.0755 NA | 553 -0.0278 NA
1 5.45 -0.0763 NA | 554 -0.0300 NA
5| 5.46 -0.0777 NA | 555 -0.0416 NA
10 1 5.47 -2.6647 NA | 556 -1.1961 NA
10| 5.48 -2.5121 NA | 557 -1.1920 NA
30| 5.49 -2.5160 NA | 558 -1.1866 NA

Table 5.4: NA indicates not applicable by definition

04y g =10, py =8

Oy | 0, Ou 01 =1,05 =0.001 01 =1,0,=2
Figure Mo n | Figure 10 n
0.1]0.15]0.01| 559 -0.0012 NA | 568 -1.0718¢-04 NA
0.1 ] 560 -0.0012 NA | 5.69 4.9040e-04 NA
1 5.61 -0.0012 NA 5.70 -2.2814e-04 NA
1 1.5 0.1 5.62 -0.0916 NA 5.71 -0.1124 NA
1] 563 -0.0922 NA | 5.72 -0.1011 NA
5| 5.64 -0.0923 NA | 5.73 -0.0801 NA
10 15 1 5.65 -3.2029 NA 5.74 -2.8364 NA
10| 5.66 -3.2129 NA | 5.75 -2.7043 NA
30| 5.67 -3.2137 NA | 5.76 -2.6989 NA

Table 5.5: NA indicates not applicable by definition
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Figure 5.5: MSFE for ¢1(x), 61 = 2,02 = 0.05,03 = 2, p, = 10,0, = 0.1,0, = 0.01
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Figure 5.6: MSFE for (), 61 = 2,05 = 0.05,03 = 2, u, = 10,0, =0.1,0, = 0.1
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Figure 5.7: MSFE for ¢1(x), 61 = 2,05 = 0.05,03 = 2, u, = 10,0, =0.1,0, =1

MSFE for DGP with @ 0X=1, ouz.l

O  Monte Carlo

Taylor Algorithm
0.55 R

0.5 h

0.45H 4

MSFE
o
N
T
L

0.35 i

0.3 i

VTV OISO [OTOLO O OO LTOIVIOT] D

0.25 R

02 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Figure 5.8: MSFE for ¢;(x), 61 = 2,05 = 0.05,03 = 2, puy, = 10,0, = 1,0, = 0.1
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Figure 5.9: MSFE for ¢1(x), 61 = 2,02 = 0.05,05 = 2, pu, = 10,0, = 1,0, =1
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Figure 5.11: MSFE for ¢4(z), 61 = 2,05 = 0.05,03 = 2, p, = 10,0, = 10,0, =1
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Figure 5.12: MSFE for ¢4(x), 81 = 2,05 = 0.05,03 = 2, u, = 10,0, = 10,0, = 10
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Figure 5.17: MSFE for ¢1(x), 61 = 1,05 = 2,03 =2, p, = 10,0, = 1,0, = 0.1
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Figure 5.18: MSFE for ¢;(z), 61 = 1,05 =2,03 =2, up, = 10,0, = 1,0, =1
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Figure 5.19: MSFE for p;(z), 01 = 1,0, =2,03 =2, u, = 10,0, = 1,0, =5
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Figure 5.20: MSFE for ¢(z), 61 = 1,05 = 2,03 =2, u, = 10,0, = 10,0, =1
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Figure 5.21: MSFE for ¢1(x), 61 = 1,05 = 2,03 =2, p, = 10,0, = 10,0, = 10
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Figure 5.22: MSFE for ¢i(x), 64 = 1,05 = 2,03 = 2, p, = 10,0, = 10,0, = 30
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Figure 5.27: MSFE for ps(x), 1 = 1,05 =0.01,05 = 1,0, = 0.001, p, = 10,0, = 1,0, =
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Figure 5.28: MSFE for ps(x), 1 = 1,02 =0.01,05 = 1,0, = 0.001, p, = 10,0, = 1,0, =
5
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Figure 5.31: MSFE for ¢y(z), 61 = 1,6, = 0.01,05 = 1,6, = 0.001, pu, = 10,0, =
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Figure 5.32: MSFE for po(z), 01 = 1,05 = 2.5,05 = 1,04 = 1.5, p, = 10,0, = 0.1,0,, =
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Figure 5.33: MSFE for pso(x), 01 = 1,00 = 2.5,05 = 1,04 = 1.5, u, = 10,0, = 0.1,0, =
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Figure 5.34: MSFE for ¢o(x), 61 = 1,05 =2.5,03 =1,04 = 1.5, u; = 10,0, =0.1,0, =1
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Figure 5.35: MSFE for ¢o(x), 61 = 1,05 =2.5,03 =1,0, = 1.5, yu, = 10,0, = 1,0, = 0.1
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Figure 5.36: MSFE for pa(x), 64 = 1,00 =2.5,053 =1,04 = 1.5, uy = 10,0, = 1,0, =1
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Figure 5.37: MSFE for pso(x), 64 = 1,00 =2.5,03 =1,04, = 1.5, p, = 10,0, = 1,04, =5
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Figure 5.38: MSFE for py(z), 01 = 1,05 =2.5,03 =1,04 = 1.5, p, = 10,0, = 10,0, =1
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Figure 5.39: MSFE for ps(x), 01 = 1,05 = 2.5,03 = 1,04 = 1.5, u, = 10,0, = 10,0, = 10
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Figure 5.40: MSFE for pa(x), 1 = 1,05 = 2.5,03 = 1,04 = 1.5, u, = 10,0, = 10,0, = 30
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Figure 5.41: MSFE for ¢3(x), 61 = 1,0, =0.001,05 = 1,04 =1, u, = 10,0, = 0.1,0,, =
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Figure 5.42: MSFE for ¢3(x), 61 = 1,0, =0.001,05 = 1,04 =1, y, = 10,0, = 0.1,0,, =
0.1
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Figure 5.44: MSFE for p3(x), 6; = 1,05 = 0.001,03 = 1,0, = 1, pt, = 10,0, = 1,0, = 0.1
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Figure 5.47: MSFE for p3(x), 6, = 1,6, = 0.001,05 = 1,0, = 1, pu, = 10,0, = 10,0, =1
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Figure 5.48: MSFE for p3(z), 61 = 1,05 = 0.001,03 = 1,04 = 1, u, = 10,0, = 10,0, =
10
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Figure 5.49: MSFE for p3(z), 61 = 1,05 = 0.001,05 = 1,04, = 1, p, = 10,0, = 10,0, =
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Figure 5.50: MSFE for p3(z), 61 =0.1,00 = 2,605 = 0.1,04, = 1, p, = 10,0, = 0.1,0,, =
0.01
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Figure 5.54: MSFE for p3(x), 61 =0.1,00 =2,03 =0.1,04, =1, p, = 10,0, = 1,0, =1
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Figure 5.55: MSFE for p3(x), 64 =0.1,00 =2,03 =0.1,04, = 1, p, = 10,0, = 1,04, =5
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Figure 5.57: MSFE for p3(x), 61 =0.1,0, = 2,03 =0.1,04 = 1, p, = 10,0, = 10,0, = 10
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Figure 5.58: MSFE for p3(x), §; =0.1,05 = 2,03 =0.1,04 = 1, p, = 10,0, = 10,0, = 30
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Figure 5.61: MSFE for p4(z), 61 = 1,0, = 0.001, p, = 10,u, = 8,0, = 0.1,0,
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Figure 5.62: MSFE for @4(z), 61 = 1,62 = 0.001, p, = 10,4, = 8,0, = 1,0, = 1.5,0, =
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Figure 5.63: MSFE for @4(z), 61 = 1,62 = 0.001, p, = 10,4, = 8,0, = 1,0, =1.5,0, =
1
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Figure 5.64: MSFE for @4(z), 61 = 1,62 = 0.001, p, = 10,4, = 8,0, = 1,0, = 1.5,0, =
5
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Figure 5.67: MSFE for p4(z), 61 = 1,02 = 0.001, p, = 10, u, = 8,0, = 10,0, = 15,0, =
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Figure 5.68: MSFE for p4(z), 01 = 1,05 = 2, u, = 10, u, = 8,0, = 0.1,0, = 0.15,0,, =
0.01
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Figure 5.69: MSFE for p4(z), 01 = 1,03 = 2, p, = 10, u, = 8,0, = 0.1,0, = 0.15,0, =
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Figure 5.70: MSFE for p4(x), 01 = 1,00 =2, u, = 10,4, = 8,0, =0.1,0, = 0.15,0, =1
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Figure 5.71: MSFE for p4(z), 61 = 1,00 =2, y, = 10,4, = 8,0, = 1,0, =1.5,0, = 0.1
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Figure 5.72: MSFE for p4(z), 61 = 1,00 =2, pup, = 10,4, = 8,0, = 1,0, =1.5,0, =1
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MSFE for DGP with @, 0x=1, GZ=1.5, 0u=5
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Figure 5.73: MSFE for p4(z), 61 =1,00 =2, u, = 10,4, = 8,0, = 1,0, =1.5,0, =5
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Figure 5.74: MSFE for p4(x), 61 = 1,00 =2, p, = 10, p, = 8,0, = 10,0, = 15,0, =1
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Chapter 6

Taylor algorithm for stationary
processes

6.1 Introduction

In Chapter 5, we studied a forecasting problem involving independent and identically
distributed (i.i.d.) processes. In the present chapter, we allow for more general processes
and construct an algorithm which yields an approximation, based on Taylor series, of
the mean square forecast error (MSFE) for a forecasting problem involving stationary
processes. This Taylor algorithm approximation is meant to be used as a tool to describe
the sample size dependence (SSD) of the MSFE. We begin by defining two types of

stationarity.

Definition 6.1 Let G be the joint distribution function of the sequence {Z1,Zs, ...},
where Z; is a ¢ X 1 vector, and let Gy11 be the joint distribution function of the sequence

{Zi41,Zsy2,...}. The sequence {Z;} is strictly stationary if G1 = Gyy1 for each t > 1.

Definition 6.2 If a sequence has constant variance and has covariances that depend only

on the time lag between Z; and Z; ., the sequence is said to be covariance stationary.

Clearly, every strictly stationary process is covariance stationary but not vice versa, and
an i.i.d. process is both strictly stationary and covariance stationary. To encompass as
many different dependencies of stationary processes as possible, the algorithm developed
in this chapter assumes covariance stationarity of the processes.

As is evident from the motivating examples given in Section 2.6, one of the possi-

ble ramifications of the presence of model misspecification is the existence of optimal
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observation windows for the problem of forecasting. In Chapter 5, results from the
approximation of the MSFE by the Taylor algorithm and from the benchmark MSFE
obtained with Monte Carlo simulations suggest no optimal observation window exists
for the functional misspecifications studied. These experiments were carried out under
the assumption that the processes in question were temporally independent. One can
attribute the fact that no optimal observation windows exist under misspecification to
the static nature of those processes.

The rest of the chapter is organized as follows. In Section 6.2, we present the only
relevant results in the literature concerning estimation under misspecification with de-
pendent observations. These consist of some large sample results for the OLS under
assumptions of misspecification. In Section 6.3, we construct an algorithm to study the
effects of model misspecification on the SSD of the MSFE for the forecasting problem
involving covariance stationary processes. In Section 6.4, we present Monte Carlo exper-

iments to evaluate the MSFE approximation.

6.2 Misspecification and the OLS

In Chapter 5, we analyze the SSD of the MSFE for a forecasting problem which involves
i.i.d. observations. In Section 5.3, we present the most relevant result in the literature
on the SSD of the MSFE for a forecasting problem with a regression model with i.i.d.
observations. In this section we present the most relevant result on the properties of
the OLS in a forecasting problem with dependent observations under model functional
misspecification.

Domowitz and White, in [43], present large sample properties of the OLS for an
estimation problem under misspecification of the DGP. We begin with a description of

the DGP.

Assumption 6.1 Let the probability space (0, B, P) be given. A sequence of real valued

responses Y, is generated as
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where the g, are unknown measurable functions of the real valued random vector Z... The
vector Z; is finite dimensional and jointly distributed with distribution function F. on €,

a Fuclidean space.
Y, and Z, are not assumed to be stationary.

Assumption 6.2 The researcher chooses a sequence of functions h, to approrimate the
data generating process. h,(z,0), T =1,2,...,n, are continuous functions of 0 for each
z i Q uniformly in T, a.s-P, and measurable functions of z for each 6 € ©, a compact

subset of a finite dimensional Euclidean space.

The nonlinear least squares (NLS) estimator 0,, solves the following problem

. 2 -1 2
m 0) = Y, —h(Z:,0))".
i@ =nt 3 ( (Z:.6))

The OLS is obtained when the h, are linear. The parameter 6 is defined as the vector

which minimizes the average prediction mean square error
n
22=n1Yy /(gT(z) by (2,0))%dF,. (6.2.1)
=1

Note the prediction mean square error is the same as the MSFFE. evaluated at the
forecast origin 7. The average given in (6.2.1) over 7 is the average of the MSFE,
evaluated at different forecast origins 7 = 1,2,...,n. We give a definition and two

assumptions needed for the main result.

Definition 6.3 Let Q,(0) be continuous on a compact set, ©, such that Q,(0) has a
minimum at 0, n = 1,2,.... Let J,(€) be an open sphere centered at 0} with fized
radius € > 0. For each n =1,2,..., define the neighborhood N, = J,(e) N O, such that
its complement in ©, N¢, is compact. The minimizer 0} is said to be identifiably unique
if and only if

liminf | min Qn(6) — Qn(e;;)] >0

n 0eENS

for any fixed € > 0.

Assumption 6.3 The random vectors {Z.} are either (a) ¢-mizing, with ¢(m) of size

r1/(2ry — 1), r1 > 1; or (b) a-mixing, with a(m) of size r1/(r1 — 1), r1 > 1.
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Assumption 6.4 {(9-(Z;) — h-(Z;,0))?} is dominated by uniformly (r1 + §)-integrable

functions, r1 > 1, 0 < < rq.
Assumption 6.5 62 has a minimizer at 0% which is identifiably unique.

Theorem 6.4 (Corollary 3.1 in [43]) Under assumptions 6.1 through 6.5, 0,,—0 —

0, a.s., as n — oo.

The theorem establishes the least squares estimator as a strongly consistent estimator of
the parameter vector which minimizes the average MSE of prediction. The result of the
theorem describes the behavior of the NSL or OLS as n goes to infinity.

As in Chapter 5, we are interested in the sample size dependence of the MSFE.
Allowing for dependent observations, in the next section we develop an algorithm that
can be used to construct an approximation of the MSFE, in order to analyze the sample
size dependence for finite values of the sample size variable n and determine the possible

existence of optimal observation windows of finite length.

6.3 The algorithm: scalar case

As presented in Chapter 2, the forecasting problem of interest consists of predicting the
observed process {Y;} at 7 = t + 1, Yi41 € R, by means of a linear regression of the
k x 1 column vector X; of Fi;-measurable variables. In this section, we assume k = 1.
The forecaster does not know the data generating process (DGP) which generates the
series {Y;}, and uses a linear model in X; to approximate the conditional expectation
Ei[Y;4+1]. The process {Yr4+1, X} is assumed to be either covariance stationary or strictly
stationary. We obtain the following proposition as a straight forward application of

theorem A.38 in Appendix A.

Proposition 6.5 Given the process {Y,11,X;} is strictly stationary, processes of the

form {ngo Y:infij_l}, where i; and k; are integers, are also strictly stationary .

The linear model used to forecast Yiy1 is of the form

Yip1 = BXs + Vi,
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in which the parameter 8, 6 € B, B compact in R, is estimated by OLS. The estimation
sample contains the n most recent observations, {Y;_,41,...,Y:} and {X¢—p,..., X¢1},

and the OLS estimator of 3 has the form

A t—1 -1 /4
Bt,n = < Z XTX;I—) < Z XTYT+1) .

T=t—n T=t—n

The OLS estimator BAM is used to construct the forecast of Y;;1, denoted }A/t-l-lﬂh given
by
}/t—l—l,n = ﬁt,nXt-

The criterion used to evaluate forecast accuracy is the MSFE given by
MSFE, = E[(Yiy1 — Yiy10)?] = E[Yi2] = 2E[Yii1 XeBen] + E[XtQBth]

The MSFE is the expected value of statistics which depend on the sample size parameter
n. We construct a Taylor algorithm, as developed in Chapter 4, to approximate the
MSFE in order to investigate the existence of an optimal observation window. The
existence of such optimal observation window can be revealed by assessing the SSD of
the MSFE. For this purpose, we begin the construction of the algorithm by focusing on

the expectation of the following n dependent terms

Sln

O1n =Y 1 XiBip = 5,
S2,n

1 1 9 1
Sin=— Etj Yo XiYrn Xy, Spn=— Etj X7, Syn=— ) XiYenX.

The next step in the construction of the algorithm is to apply the techniques of
Chapter 4 to find approximations of E[O;,| and E[O2,]|. Such approximations are
conducted by means of Taylor series expansions of ©1, and O3 ,, with respect to the

statistics S1,, S2,, and S3, about some points wi,, wy and w3, respectively. From
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the theory developed in Chapter 4, we learned that approximating the expectation of a
function of random variables by means of Taylor series requires one, in many instances, to
approximate the expectation by a truncated expectation. Using truncated expectations
is necessary because Taylor series approximations are valid only within the region of
convergence and, at the same time, the random variables involved take values on a specific
range. In the case of ©1 ,, the approximation will depend on truncated central moments
of S1, and Sy, and in the case of ©,, the approximation will depend on truncated
central moments of Sy, and S3,. Let A be a set inside the region of convergence B of
the Taylor series of ©1, with respect to the statistics S, and S2,. Appendix C.1.1
provides details on the nature of the region of convergence of the Taylor series expansion
of the OLS, and on the nature of convergence sets such as A. We write the expectation

of O, and O9,, as follows:

E[©1,4] = E[O1,, Al + E[©1,n, A°), (6.3.1)
E[O2,] = E[O2,4, A] + E[O 5., A, (6.3.2)

where Taylor series can be used in A to approximate 01, and ©2,. Within A, we look
at Taylor approximations of ©1 , with respect to Sy, and Sa, about the points w1y, wo,
and Taylor approximations of O3, with respect S, and S3, about the points wa, w3 p,

where

t—1
1
Win = E[Sl,n] = g T:zt;nE[Yt—i—lXtYT—l—lXTL
wa = E[Syn] = E[X}7 4],
1 t—1
wan = BlSsn] =~ Y B[X,Yr1 X ].

T=t—n

The fourth order Taylor polynomial of ©1,, is as follows:

Win
w2

1 w1 1
+ _(Sl,n - wl,n) - —én(SQ,n - w2) - _Q(Sl,n - wl,n)(SQ,n - w2)
w2 UJ2 w2

Q(@l,ny 4) =

w1, 1 w1
+ =5 (San — w2)? + —5(S1,n — win)(S2n — w2)? — — (San — w2)?
Wy wWo )
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wi, 1
+ = (Son — wo)t — —(S1,n — win)(S2n — wa)?.
Wa Wy

The fourth order Taylor polynomial of ©3,, is as follows:

2

2
w3, ws, w3, 1
Q(O2,,4) :—w; + 2—w2n (S3.n —w3m) — Q—w; (Sa2,n — wa) + P(S&n — w3 pn)?
2 2 2 2
W3 n w?2>,n 2
- F(S?;,n - w3,n)(52,n - w2) +3 oA (52,11 - W2)
b 2
1 2 W3 n 2
- 23(53,11 —w35) (S2,n —w2) +6 i (93,0 — wW3,n)(S2,n — wo)
b 2

w3 3
— 4= (8o —wn)’ + —7(S3n — wa)* (S — w2)?

Wa Wo
w3 w%
1 ,n
-8 5 (53,71 - w3,n)(52,n - W2)3 + 5—6 (SQ,n — (,UQ)4.
Wa Wy

Using the fourth order Taylor polynomials Q(©;,,4) and Q(©2,,4) to approximate
©1,, and O, respectively inside A, (6.3.1) and (6.3.2) become

E[©1,] = E[Q(O1,n,4), Al + E[01,,, A, (6.3.3)
E[O2.,) ~ E[Q(Og.0,4), Al + E[O,5, A (6.3.4)

Using these approximations, the MSFE approximation can be written as follows:
MSFE, =~ E[Y2,] — 2(E[Q(©1,4), Al + E[O1 ., A%)) + E[Q(O2,,,4), A] + E[O2,,, A°].

The central moments involved in the expectation of the Taylor polynomials are ex-
panded and simplified to derive the SSD in terms of the sample size variable n. Appendix
D, Section D.1 presents the derivation of the central moments for the general case without
assuming P(X € A) ~ 1. With the assumption P(X, € A) ~ 1 for all 7, the approxima-
tions for ©1 , and O3, given in (6.3.3) and (6.3.4) become E[0,] ~ E[Q(O1,,,4)] and
E[O2,] = E[Q(O2,,4)], respectively, and the MSFE approximation is as follows:

MSFE, ~ E[Y2,] — 2E[Q(01,,,4)] + E[Q(O2,,,4)]. (6.3.5)
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We write the central moments involved in the expectation of Q(Bm,él) and Q(ﬁzn,él)

under the assumptions of covariance stationarity and P(X € A) = 1:

E[(Sl,n - wl,n)] = 07 E[(SQ,n - w2)] = 07 E[(S?),n - wS,n)] = 07
1

t— t—1
1
El(S2n —w2)?) = = | D EIX}+ Y BIX2XP)| - EAXE,),
T=t—n i#j,t—n
1 t—1 t—1
El(S3n —wsn)?) = = | D BIXFYZAXI+ Y BIXPYin XY X))
T=t—n i#j,t—n
t—1 t—1
= Y XY X - Y EXYinaXiEX Y X,
T=t—n i#j,t—n
1 t—1
B[(S10 = wi.0)(S2n = w2)] = = | _2; E[Yip1 X, Yy X2
1 t—1
+ Z BYin XY XiXF)| = ~BIXE,] Y ElYin XeYranXo)
i#j,t—n T=t—n
1 t—1 t—1
E[(So,n — w2)(S3.0 — w3 )] = ﬁ{ Z ElX,Y 1 X2+ Z E[XtY;L—i-lXiXJZ]]
T=t—n i#j,t—n
t—1
E[X} ) Z BIX: Y1 X7,
T=t—n

t—1
1
E[(S1,n — wi,)(S2n — w2)?] = ﬁ[ ) B[V XY, 1 X2
T=t—n

t—1
- Z EYinXYin X X1+ ) Efin XY X X))
i£j,t—n i#£j,t—n
t—1
+ Y BV XY XiXIX() - Y B[ XiYo X E[(XD
i#jF#k,t—n T=t—n
t—1 -1
— Y EYinXYin XE[X] - ) EVin XY XiE [X7X7]
i£j,t—n i£j,t—n
t—1
- Y B XY XiE [X3x7] |
1£j#kt—n
t—1 t—1

2
__E[Xf_l][ Y EVmXYaX )+ Y E[Y}HXtY;HXinH

T=t—n i£j,t—n
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9 t—1
+ BN Y B XYoo X,

T=t—n

t—1 i—1
1
E[(S3 — w3n)(So.n — w2)*] = ﬁ[ Y EBX\Y,u X2+ ) EIXYia XX
T=t-n i#jt—n
t t—1
+ BXYin XX+ > EX)YiaXX;X}]
t—1 i—1
- EX\Y, X EX - > EX\Yin Xi|E[X]]
T=t-n i#jt—n
t—1 i—1
- E[XYin Xi|E [X}X7] - Z E[X:Yi(1 XG|E [XfX,f]]
t—1 t—1
- SBR[ Y EXYenXi+ Y B[XYiaXxY] |

-n i#£j,t—n

|
—

\)

2
+ EEQ[XE—I] E[XtYT-‘rlXT]?

t—1 t—1
1
E[(S3n — w3.n)?(S2,n — w2)] = ﬁ{ > BIXPYZLX[+ Y EIXPYAL XX
T=t—n i#j,t—n
t—1
+ Z E[XPY; 1 XY X))+ Z E[XPYi1 XY 11 X; X7
z;é],t n 1£j#kt—n
t—1
-2 Z EX: Yo X EX Y, 1 X2 =2 ) EXyY; 1 X E[X Y X}
T=t—n i#j,t—n
t—1
-2 Z EX, Y1 X|E[XYi1 X X7 -2 Y E[Xi Y X B[X, Y41 X, X7]
i£j,t—n i#£jt—n
t—1
-2 ) E[XtY;-i‘lXi]E[XtY}'l-lXlez]}
1£j#kt—n
1 t—1 t—1
+§[2E[Xt2—1] > EXYin X E[XYin X)) +2B(X7 ] Y XY XS]
i#j,t—n T=t—n
t—1 i—1
— BIXP2] Y BIXPYZX2 - BIXE] Y EXPYiXiYpaX)),

T=t—n i#jt—n
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t—1 t—1 t—1

1
E[(SQ,n—wg)?»]:ﬁ[ Y B+ Y EXAXH+ Y E[XEX;X,i]]
T=t—n 1#j,t—n i#j£k,t—n
3 t—1 t—1
SEXE| Y BlX+ Y BIXEXY)| +2B°(XE )
T=t—n 1#j,t—n
1 t—1 t—1 t—1
Bl(Son —w2)'] = —| 0 EIXH+ Y EXPXI+ Y EX!X]]
T=t—n i£jt—n i#jt—n
t—1
+ Y ExiGxi+ Y E[XfoX,fo]]
i1#jF#k,t—n 1#j#k#lt—n
4 t—1 t—1 t—1
- SEXZ| Y BT+ Y BIXH+ Y BIXEXIXD]
T=t—n 1#j,t—n i#jF£k,t—n
6 t—1 t—1
+SEUXE]| YD B+ Y BlxExD)| - sEYXE),
T=t—n 1#j,t—n
t—1

L e
E[(S1,n — wi,)(S2n — w2)?] = H[ Z EYi 1 Xy Ve 1 X7
T=t—n

t—1
+ Z EYinXYin XX+ Y Efin XY X0 X))
z;é],t n i£j,t—n
t—1
- Z EY,n XY XP X[+ ) EYin XY Xi X X}]
i1#£jt—n 1£j#kt—n
t—1
+ Y BV XYin XPXGXP+ Y EYin XY Xi X XPX]]
1£j#kt—n 1£j#kFELt—n
t—1 i—1
- Y BNV X Yo XAEXY - Y BV XY X E[X)
T=t—n i#j,t—n
t—1 t—1
— Y EMin XoYin XJEX! X - ) BV XoYin Xi|E[X[ X7
i#£jt—n i#£jt—n
t—1 t—1
- Y BN XY XEXIX - ) BN XiYin X B[XPXF X7
1£j#kt—n 1£j#kt—n

t—1
— Y BN X X EXXEXP)]
i£j£k#Lt—n
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t—1 t—1
1
+ 5| = 8BIXE] Y BN XiYrn X2 = 3EIX2,] Y BlYinXYin X,X]]
T=t—n i#j,t—n
t—1
—3E[X2,] ) EYin XY XPX7)
i1#£j,t—n
t—1
—3E[X7,] ) EYin XY XiX:X]]
1£j#kt—n
t—1
+3E[X7] Y EYin XY X, B[X]
T=t—m
t—1
+3E[X74] Y BV XeYin Xi E[X]]
i#£j,t—n
t—1
+3E(X7 ] Y EVin XY X B[X7 X7
i1#£j,t—n
t—1
+3EXE] Y B XY XEX2XE)|
i1#jF#k,t—n
t—1 t—

1
[3E2 (X71) S BV XY X3 + 3E% (X2 E[Y;+1Xt}/i+1XiX]2]]
(2

n

1
T=t—n i#g,t—n

t—1
3
——BXP] D B XaYen X,

T=t—mn

t—1
1
E[(S3n — wan)(San — w2)’] = ﬁ{ > E[XiYrX]]
T=t—n

t—1 t—1
+ Y EXYin XX+ ) B[X Y XD X
t—1 i—1
+ Y BX\YinXPXj+ ) EXYia XXX}
t—1 t—1
+ Y EXYiaXEXIXP+ Y EXYin X X7XEX]]
i#j#kyt_n Z#J#k#ht_n
t—1 t—1
— Y BIX\Y; XA EIXY - Y E[XyYi 1 Xi|E[X]]
T=t-n i#j,t—n
t—1 t—1
Y EXYiaX)EX!XI] - ) E[X;Yi X E[X/X]]
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t—1 t—1
- Y EXYiaXEX[XP - ) EXYin X E[X? XX
1#£j#kt—n 1#j#kt—n
t—1
- Y EXYiaXJEXXENR)|
itk t—n

1 t—1 t—1
T3 [ - 3B[X} 4] Z E[XiY;11X]] = 3E[X 4] Z E[X;Yit1 X X]]
T=t—n i#j,t—n
t—1 t—1
- 3B[X} 4] Z E[XY; 11X} X7] = 3E[X} 4] Z E[X,Y; 11 X, X7 X}
i#£jt—n i#j#kt—n
t—1 t—1

+3E[X2) Y EXY,n XA EX]+3EX2,] Y E[X Y Xi|E[X]]

r=t—n it
t—1
+3E[X} ) Z E[X,Yi1 Xi| E[X}7 X7]
i#jt—n
t—1
F3EXEL] Y Bl Yin X E[X2XE)|
i1#jF#k,t—n
1 t—1 t—1
+ﬁ[3E2[Xf_l] N EX Yo X34 3E°X7 ] Y E[XYi XX
r=t—n i£jtn
3 t—1
- —BXL] ) BlXiYrn X,
T=t—m
1 t—1 t—1
El(S00 — w0, (52— ] = [ 3 BAY2,X0 4 Y BIXPY2 XX
r=t-n iAjtn
t—1 t—1
+ Y BIXYLXIXI+ ) EXPYR XXX
i1#£j,t—n i1#jF#k,t—n
t—1 t—1
+ Y EXPYi X0V X+ Y EXPYi XoYn XX
t—1 t—1
FY B X+ Y XYL X
t—1 i—1
+ Y BXYinXiYinXpXPX7) -2 Y EX Y XA EIX Y X7
i#i#kALt—n T=t—n

t—1
—2 Y ElXYin X)|E[XYj 1 X]] - 2

i#jt—n

t—1
> EXYin Xi|E[X, Y1 X X
i#jt—n
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t—1
—2 Z EXY;inXiE[X,Y; 1 X, X[ =2 ) EX\Yin XiE[X,Y; 1 X, X;]
z;é],t n 1£j#kt—n
t—1
-2 Z EXY;in Xi|E[X,Yi 1 XP X7 -2 ) E[XYin X E[X,Y; (1 X3 X7)
i1#£j,t—n 1£j,t—n
t—1
-2 Y EXYiaXiE[X,Y; 1 X)X}
1£j#kt—n
t—1
-2 Y EXYi XiE[X, Y1 XXX}
1£j#kt—n
t—1
-2 Y EXYi X\ E[X,Y; 1 X, X7 X7
i1#jF#k,t—n
t—1
-2 > EXYin X EXY) 0 X XEXT]
i;éj;ék;él,t n
t—1
+ Z XY XABX + ) B Y X ELX]
T=t—n i#j,t—n
+ Z E[X,Y; 11X E[X Y11 X5] E[X]]
i#£j,t—n
+ ) BXYin XiE[X Y X5 BIX})
i;éj;ékt n
t—1
+ Z XYin XEXPX )+ ) EPXYi 1 X E[X7 X}
z;éjt n i£j#k,t—n

+ Z E[X;Yi1 Xi| E[X: Y11 X5 B[X? X7
i#j,t—n

+ Y EXyYinXi|E[X,Y; 1 X, E[X;X}]

i1#jF#k,t—n
t—1

+ ) E[XtYEHXi]E[XthJrlXj]E[Xl%Xlz]]

i j kALt —n

1 t—1 t—1

5| —2BIX2) Y BIXYZ XN - 2B(X2 ) Y BIXPYZXPX])
T=t—n i#j,t—n
t—1
—2B[X7 4] E[X}Yit1 XY 41 X]]

i#jt—n
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t—1
—2E[X7,] ) EX}YiuXiVinX;X(]
1£j#kt—n
t—1
+AE[X? ] ) EXyYr 1 X, E[X Y1 X7
T=t—n
t—1
+ABIX? ] > EXYin X E[X,Y; 1 X))
i#jt—n
t—1
+4E[X7 ] Y E[XYin X)) B[X, Y XX
i#jt—n
t—1
+ABIX? ] > BIXYin X BE[X,Y) 1 X, X7
i#jt—n
t—1
FABXE)] Y. EIXYin XiBIX Y0 X, X7
i£j#k,t—n
1 t—1 t—1
+ o3| =3EXE) Y BN Y X )+ EPXE ) Y BIXPYZ X2
T=t—n T=t—n
t—1
+ B [X7] ) BX}Yia XY X))
t—1
—3E’[X7 ] Y E[XiYin X B[X,Yin X)),

6.4 Monte Carlo evidence

6.4.1 The experiment

In this section, we present Monte Carlo experiments to investigate the ramifications of
misspecification in the forecasting problem described in Chapter 2 and to evaluate the
ability of the Taylor algorithm to capture these effects. In particular, we focus on the
case where the explanatory and dependent variables are covariance stationary processes.
To carry out this endeavor, we construct a benchmark MSFE by means of Monte Carlo

simulations. This benchmark MSFE is then compared to the MSFE approximation
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obtained with the Taylor algorithm and given by (6.3.5). For the analysis, we consider

the DGP given in the motivating example 2.16
}/i :/’L+¢}/t—l+Ut7

where {U;} ~ IIN(0,0,) is an innovation process and ¢ is a scalar parameter. The
forecasting model in the example is given by Y, = (G + V., so that the sequence of
explanatory variables { X} is a sequence of ones.

As described in the previous chapter, the MSFE cannot be evaluated analytically,
so that we calculate the benchmark MSFE by means of Monte Carlo simulations. The
motivation behind using Monte Carlo simulations to determine a benchmark MSFE lies
in that the MSFE is equal to the expected value of the conditional mean square forecast
error (CMSFE). Given a realization of the process {Y;}t_, 11, it is simple to compute
the CMSFE conditional on the given sample. Generating many such samples, M, by
Monte Carlo simulations, we can construct M conditional mean square forecast errors,
{CMSF Ei}f‘il, and approximate the MSFE by the sample mean of the simulations.

We now describe the details involved in the construction of the benchmark MSFE.
For the given set of values of the parameters P = {u,0,,¢}, one hundred thousand
Monte Carlo simulations are conducted (M = 100000). We use the index m to denote
a particular Monte Carlo simulation. For the mth simulation, we generate the sample
series {urm}1_; of length T = 251 as a realization of the innovation process {U,}L_,_,,
such that the first element of the series is the first observation, 1 < t — n, and the
last element of the series is the last observation, 251 « t. Each u is a realization of
a normally distributed random variable, U ~ N(0,0,), and the population series is

t—1
T=t—n

independent and identically distributed, {U ~ IID. From this sample series of
the innovation process, we calculate the sample series {yT,m}Zzl by means of the relation
Yrm = OYr—1,m + ur with the starting value y;,, = 0. The first 50 values of y are
discarded.

Finally, with the sample series {y,}Z_s;, at the forecast origin 7 = T — 1, we
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construct the CMSFE as follows:

CMSFEr_1mn = Y7 — 2y187—1,0m + 37— 1 nm>

T-1
o ZTZT—TL YrmYr—1,m

ﬁT—l,n,m — T—1 5
ZT:T—TL yT,m

For each simulation, we obtain T'— 1 — 50 = 200 values of the CMSFE, one for each value
of n starting from n = 1 to n = 200. The case n = 1 refers to estimation of the OLS
carried out with only one observation. For a particular set of parameters P, we obtain
an array of size M x T'— 51 of CMSFEs, {C’MSFEZj}f\ilTj_:‘:’ljL Finally, the benchmark
MSFE for a set of parameters P and for an observation window of size n is given by the

following:

M
>  CMSFE;,. (6.4.1)
=51

MSFE, ~
" M —50

The benchmark Monte Carlo MSFE is compared with the MSFE approximation ob-
tained with the Taylor algorithm given by (6.3.5). The approximation (6.3.5) is con-
structed by use of sample moments in place of their population counterparts. For this,
we generate the innovation series {u,}_; of length N = 3100 as a realization of the

innovation process {U; }£_ such that the first element of the series is the first obser-

t—n>
vation, 1 «» t — n, and the last element of the series is the last observation, 3100 « ¢.
Each u is a realization of a normally distributed random variable, u ~ N(0,0,), and
the population series is independent and identically distributed, {U. T}tT_:lt_n ~ IID. The
sample series {y,}IV_, is generated by means of the relation y, = ¢y,_1 + u, with the
starting value y; = 0. The first 100 values of y are discarded.

The population moments in (6.3.5) are estimated by generating their sample coun-

terparts. For example:
1 N
2 2 7 Z 2, 2
E[Xt—lXt—Q] ~ N _ 101 = ajT:L‘T—:U
T=

N
1
BIXPY2X] ] = T > alyPal g
7=102
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Therefore, for a given set of the parameters, P = {u, 0y, ¢}, we can generate the necessary

sample moments and ultimately evaluate (6.3.5) for different values of the observation

window size n. The resulting MSFE can be compared to the benchmark MSFE (6.4.1).

6.4.2 Discussion

The parameters y = 0, o, = 1 were fixed for four experiments in which we varied the
value of the parameter ¢. The values of ¢ studied were 0.1, 0.5, 0.8, and 0.95. For
¢ = 0, the model is correctly specified so that as ¢ increases, misspecification in some
sense increases. The benchmark MSFE and the Taylor approximation of the MSFE are
compared for each value of ¢ in Figures 6.1, 6.2, 6.3, and 6.4. The results show that
the Taylor approximation of the MSFE captures the general behavior of the benchmark
MSFE, but the results are not as accurate as the results for i.i.d. processes presented in
the previous chapter. The results are best for the case with ¢ = 0.1, which is the process
nearest to being i.i.d. of the processes studied. The lack of accuracy in the experiments
might be attributed to the method of approximating population moments with sample

moments. Future work will employ Newey-West estimators.
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Chapter 7

Taylor algorithm for structural
break processes

7.1 Introduction

As noted in the historical exposition of forecasting in Chapter 2, one major obstacle for
the subject of forecasting to gain acceptance in the economic community has been the
lack of homogeneity of economic data. Much work has been done to understand the level
of regularity in economic data and, in particular, the presence of structural changes. The
literature which deals with testing for structural breaks includes: the work of Chow [29],
for linear regression models when the point of the break is known; the work of Brown,
Durbin, and Evans [28], applicable when the point of the break is unknown; and the
application of tests to dynamic models and tests for the estimation of the size and timing
of the break by Plobeger, Kramer and Kontrus [116], Hansen [66], Andrews [5], Inclan
and Tiao [78], Andrews and Ploberger [6], Chu, Stinchcombe and White [30] and Bai
and Perron [13]. This plethora of work has led to abundant evidence of structural breaks
in economic series, [3, 13, 32, 33, 53, 139].

The problem of forecasting a process which has undergone a structural change presents
an ideal circumstance to address the premise of this thesis by asking the question: How
much data should one use to forecast such a series. Using only post-break data for
the estimation of the forecasting model would result in unbiased forecast errors. If,
in addition, pre-break data is used in the estimation of the forecasting model, forecast

errors would no longer be unbiased, although the variance would be lower than in the
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post-break-only case. In this chapter, we present a methodology to quantify this trade
off and answer the question of how far back one should look when making a forecast.
Modern economies undergo major institutional, political, financial, and technological
changes which manifest themselves in the data employed by econometricians. These
manifestations are modeled by use of structural breaks in the form of parameter shifts.
The significance of the presence of structural changes in the context of the forecasting

problem has been addressed by Clements and Hendry,

Deterministic shifts (changes in equilibrium means and steady-state trends)
in the model relative to the DGP are a dominant source of forecast failure.

([33], p. 69)

[Clements and Hendry] present taxonomies of forecast errors in both I(0)
and I(1) systems, which suggest that structural breaks are the main culprit

for systematic forecast failure. ([33], p. 36)

The most commonly used procedures developed to handle non-stationarities use a rolling
window of a fixed size, an expanding window (recursive method), or apply exponentially
decreasing weights. None of these schemes are likely to be optimal if the DGP undergoes
a structural break. A rolling window of a short fixed size might work well immediately
after the break, but valuable information will be lost as the distance from the break
increases. The recursive scheme and the exponential scheme with long memory will
produce significantly biased forecasts after the break until the post break information
significantly outweighs the pre-break information.

Work on forecasting in the presence of structural changes has only recently began to
be addressed by econometricians. Clements and Hendry [32, 33] address the analysis of
forecast errors from autoregressive models subject to structural change. However, the
authors assume the parameters of the AR model remain constant during the estima-
tion period. Pesaran and Timmermann [114] develop a theoretical framework for the
analysis of small-sample properties of forecasts from general autoregressive models under
structural breaks. They determine conditions under which the forecast errors are un-

biased and demonstrate some of their theoretical results with Monte Carlo simulations.
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To our knowledge, the only work, besides our own, which explores the subject of deter-
mining quantitatively optimal observation windows for processes that undergo structural
changes is that of Pesaran and Timmermann [113]. In [113], Pesaran and Timmermann
analyze the sample size dependence for the conditional and unconditional MSFE when
the DGP is linear with a singular structural break and the forecasting model is linear.
Hence misspecification arises from not modeling the break when using pre-break data to
estimate the post-break model. Under the assumption of strictly exogenous regressors,
the authors obtain stylized facts describing the appropriate use of pre-break observations
for the conditional MSFE. For the single regressor case, the authors apply the restrictive
conditions of identically independent and jointly normally distributed disturbances and
regressors to obtain an analytic expression for the unconditional MSFE.

The analyses of Clements and Hendry [32, 33|, and Pesaran and Timmermann [113,
114] assume that the estimation is carried out based on a correctly specified post-break
model; i.e, the functional form of the model and DGP after the break occurs are AR
models with the same autoregressive parameter. The only misspecification in estimation
comes from effectively “ignoring” the break when using pre-break data. Our work allows
for such break misspecification but further accommodates other forms of misspecification
by refraining from putting any assumptions on the DGP. We note that the work that
follows focuses on the treatment of independent and identically distributed processes
which undergo a structural break. However, the theory and methodology presented here
can be extended to the problem of forecasting with time series models which undergo a

structural break. This is subject for future research.

7.2 Forecasting a general structural break process

As presented in Chapter 2, the forecasting problem of interest consists of predicting the
observed process {Y;} at 7 =t+1, Y41 € R, by means of a linear regression of the k x 1
column vector X; of Fi-measurable variables. In this section we assume k = 1. We apply
the techniques of Chapter 4 to approximate the optimal observation window to forecast

the process {Y;} generated by a DGP with a temporal structural break. The DGP is as



193

follows:

y, =] Theen TSEmm (7.2.1)

Yory1, 7>t —my
We assume the forecaster knows the process {Y,} undergoes a structural break at time
t —ny. Beyond the occurrence of a structural break at time ¢ — ny, the forecaster does not
know the nature of the DGP which generates the process {Y;} and uses a model for the
conditional expectation of Y;i1, Et[Y;+1], which is linear in X;. The linear model used

to construct the forecast of Y; 1 is of the form
Vi1 = 8 X¢ + Vig,

in which the parameter 3, 8 € B, B compact in R, is estimated by ordinary least squares
(OLS). The estimation sample contains the n most recent observations and the OLS

estimator of 3 has the form

A t—1 -1
o = ( 3 x3> (z XTYT+1>.

—t—n T=t—n
7.2.1 The MSFE for n > n,

As explained in Section 2.7, to understand the sample size dependence (SSD) of the
MSFE, we seek to construct an approximation consisting of a function which depends
only on moments of the explanatory and dependent variables, and on the variable n. In
this way, given the necessary moments or their sample counterparts, one can compute
and compare different values of the MSFE for any desired window size n. The OLS
estimator has different functional forms for the two cases n > ny, and n < ny. For n > ny,

the OLS estimator can be written as the sum of two terms BAM = O pn + At p, where

t—np—1 t—1 t—1
-1 -1 2
@t,n = Q E XTY1,T+17 At,n = Q E XT}/2,T+1) Q = § XT-
T=t—m T=t—ny T=t—mn

The above OLS estimator BAM is then used to construct the forecast of Yi;1, denoted

Yt+17m given by Yt+l7n = ﬁt,nXt = (On + A¢y) Xy Using as cost function the squared
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loss function, the criterion which provides a measure of forecast accuracy is the MSFE

given by
MSFE, = E[(Yis1 — Yi10)?] = E[Y2] = 2E[Yi1Vigrn) + VA ,). (722)

In this chapter we assume, for the sequence of regressors {X,}, X, and X; to be inde-

pendent and identically distributed for s # t. By independence, we can write

MSFE, =E[Y2,] ~ 2E[Yi1 X (EO1] + ElAr)

+ E[X7|(E[07,] + 2E[O1nArn] + E[A7,)]).

The MSFE consists of the expected value of functions of statistics which depend on the
parameter n. In the sections to follow, we apply Taylor algorithms developed in Chapter
4 to approximate the MSFE in order to find estimates for the optimal observation window

size n. O, and A, can be written as functions of three statistics S1,, S2,, and S3,

as follows
Sln SSn
Orn=——, A —_—
t,n S2,n t,n S2,n
where
|t = =
Sip=— Vi1 Xy, So,=— X2, S5, =— Yo, X, (723
Ln = Zt:n 1r+1 2m = zt:n o San = ;ﬂ 2,741 (7.2.3)
T=1— T=t— T=1—Tp

The objective is to apply the techniques of Chapter 4 to find approximations of E[O¢ ],
E[07,], E[Asn], E[A},], and E[O;,Ay]. Such approximations are conducted by means
of Taylor series expansions of O, and @%,n with respect to the statistics Sy, and So,
about some points w;, and wg; by means of Taylor series expansions of A, and A%n
with respect to the statistics S3, and S;, about some points w3, and wy; and by
means of Taylor series expansions of ©;,A;, with respect to the statistics S1,, Son,
and S3, about some points wi p, wa, and w3 ,. Once these Taylor approximations are
obtained, we can approximate the expectations E[0;y,], E[©7,], E[A:y], E[A},], and

E[©;nAty]. From the theory developed in Chapter 4, we learned that approximating
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the expectation of a function of random variables by means of Taylor series requires one,
in many instances, to approximate the expectation by a truncated expectation. The

need for truncated expectations arises from the fact that the Taylor approximation is

2

valid only in the region of convergence of the Taylor series. In the case of ©¢, and 67,

the approximations will depend on truncated central moments of S, and S ,; in the
case of Ay, and Afm, the approximations will depend on truncated central moments of
S3p and Sa,,; and in the case of ©,A;,, the approximations will depend on truncated
central moments of Si,, S3,, and Ss,. Let A be the region of convergence for the
Taylor series of ©;, with respect to the statistics S, and S, let B be the region of
convergence for the Taylor series of A, with respect to the statistics S5, and Sa,,, and
let C be the region of convergence for the Taylor series of ©;,A;, with respect to the
statistics S1.5, S3,n, and S2 ,,. Appendix C.1.1 provides details on the nature of the region
of convergence for the Taylor expansion. We write the expectation of the components

Otn, Ains @an, Ain, Oyt of the MSFE as follows:

E[@tm] = E[@t,na A] + E[@tﬂh Ac]? E[ein] = E[G)z%,m A] + E[G)?,m AC]?
E[At,) = E[Atp, Bl + E[At n, B, E[Afm] = E[A2,,B] + E[A? , B,

t,n t,n

E[©:nAiy] = E[@t,n/\t,m Cl+ E[@t,n/\t,m cy,

where A€ is the complement of A, B¢ is the complement of B, and C¢ is the complement of
C'. Taylor series can be used in A to approximate 0, and @?’n, and similarly Taylor series
can be used in B to approximate A, and Aﬁn. To obtain further analytic results, we
assume P(X € A) ~ 1, P(X € B) ~ 1, and P(X € C) ~ 1 so that E[O;,] ~ E[O4,, A],
E6},] ~ B[}, Al El\r,] ~ B[\, Bl EN2,] ~ B[\, Bl and E[0,,Ar,] ~

E [©¢nAtn, C]. We define the points about which to calculate the Taylor series as follows:

n
gb)E[Y]_J_ant_nb_l],

Win = E[Sl,n] = (1 —
w2 = E[S2,n] = E[th—lL

n
wan = E[S3,] = ;bE[Yz,tXt_l],
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where the equalities follow from the i.i.d. assumption. The fourth order Taylor polyno-

mials of ©;, and A, about the points wy , and wy are as follows:

w 1 w 1
Q(O1n,4) === + —(S10 — win) = —5(San — w2) = —5(S10 = wWi.n)(Sa,n — w2)
w2 w2 w2 w2
w 1 w
ln(S2n )2 _3(Sln wl,n)(SZn _w2)2 - ﬁ(sbn )3
W2 2 WQ
w
ln(S2n - _4(51,11 _wl,n)(SZn _w2)3’
W2 Wo
w w 1
Q(At,n, 4) = 5’; s (S3 n w37n) - %;;(ng - C()Q) - M—%(S&n - wgm)(ng - wg)
w 1 w
(S — wo)? 4+ 5 (S0 — win)(Son — w2)? — 2 (Sg — wo)?
w 1
(S, — 1 (S30 — w3.n) (o — wa)?.
W2 Wo
The fourth order Taylor polynomials of @tQ,n and Ain about the points wy, and wy are
as follows:
Wi w1 % 1
Q(@?,na ) = L (Sl n wl,n) - (52 n ) _Q(SI,n - wl,n)2
w2 W2 w2 wy
Win win 2
— 44— (Sl n wl,n)(SZn - w2) + 3—4(52,n - w2)
w2 wy
w
— (St — w10 (S — w2) + 6= (S1n — win)(S2n — w2)?
wy 2
%n 3 2 2
- 4—(52 n—w2)® + (S0 — win)? (G2 — wa)
w2 Wy
w2
w
~ 8 (St~ win) (2 — w2)° 45 L (G — wo),
2 u12
Q(Afn,4) = w2 2 5 (30 — w3 ) — w2 = (San — w2) + w_%(s&n — w3 n)
Ws.n w%n 2
—4—5 (S50 — w3,n)(S2,n —w2) +3— (S2,0 — w2)
w2 ws
w
3 (Sg n W3,n)2(52,n —wy) + 6%(Sg,n — (,u?,,n)(Szn — w2)2
Wy 2
gn 3 3 2 2
—4—F D (52 n ) + J(S&n - w3,n) (52,n - W2)
2 2
W3.n 3 w?%,n 4
_ 8—(53 n w?,,n)(SQM — w2) +5 0 (SQm — LUQ) .
Wy 2
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The fourth order Taylor polynomial of ©;,A;, about the points w1y, w2 and w3, is as

follows:

w w, w w w
Q(Op Ay, 4) =520 4 IS, g ) — 2R (S, L wn)
w3 wj w3
w 1
L (53 n w3,n) + _2(51,11 - WLn)(ng — W3,n)
w2 wj
w
—92 (j” (51 n WLn)(SQ’n — ) — 2 (SQ n w2)(5’3,n — W?;,n)
2 2
+3w1nW3n(S2n_ )2_4W1nW3n(S2n )3
w2 w2
2
— 3810 —win)(S2n — w2)(S30 — wan)
2

3 w
(10— win)(S2n — w2) + 34 (S3 0 — wan) (S2n — w2)?
) 2

W1,nW3n 3
5B (G — wo)t (S — win) (S3 — wan) (S — wo)?
w2 )

w3, wL
571 (Sl,n - wl,n)(SQ,n - w2)3 —4 5n (S3,n - w3,n)(S2,n - w2)3'
Wy Wy

We take expectations of the fourth order polynomials to obtain the approximations

E[@t,n] ~ E[@t,m ] ~ [Q(et,m 4)]7

E[At,n] ~ E[At s ] ~ [Q(At ns )]7
El67,] ~ E[67,, Al ~ E[Q(67,,4)],
E[A},] ~ EIAL,,, B] = E[Q(AF,,,4)],

)

E[@t,nAt,n] ~ E[@t,nAt,na C] ~ E[Q(@t,nAt,na 4)]
Using these approximations, the MSFE approximation becomes

MSFE, ~E[Y{,] — 2B[Y;41X]E[Q(O¢,4)] — 2E[Yi 11 X)) E[Q(Ayn, 4)]

+ BIXZ)(FIQ(62,,4)] + 2B[Q(Ornhin, 4)] + EQ(AZ,,, )]).

The central moments involved in the expectation of the Taylor polynomials are expanded

to derive the n dependence. We write the central moments involved in the expectation
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Of Q(@t,na 4)7 Q(At,Tm 4)7 Q(@im 4)7 Q(Atz,ru 4)7 &Ild Q(@t,nAt,?h 4)

E[(Sl,n - wl,n)] = 07 E[(Sln - w2)] = 07 E[(SB,n - w3,n)] = 07
1
El(Sin = win)(S2n —w2)] = [E[Yl,t—anf’_nb—ﬂ - E[Yl,t—nbXt—nb—le_nb—ﬂ]
np
+3 [E[Yl,t—ant—”b—1Xt2—nb—2] - E[Y17t—an?—nb—l]:| ,

E[(Sl,n - wl,n)(s?),n - w3,n)] =0,

n
E[(S2,n — w2)(S3,n — w3 )] = n—’; [E[Yz,tX?—ﬂ - E[thXt—le_z]],

1
E[(Sl,” - wl,n)2] = E [E[Yl%t—anzg—nb—l] - E[Ylvt_ant_nb_l}/Lt_nb_1Xt_”b_2]:|

n
+ n—’; [E Y1ty Xt—ny—1Y1,t—ny—1Xt—ny—2] — E [le,t—antz—nb—l]] :

E[(S3 — w3n)?] = % [E[Yz%tXf—ﬂ - E[Y2,tXt—1Y2,t—1Xt—2]}’

E[(S1,n = wi,n)(S2,n — w2)?] = % [E[Ylyt—ants—nb—l] — EY1 i, Xty 1| E[X(L4]
— 2B[Yi0, X}, 1| BIXE 1) 4 2BV gy Xy XX
+ % [ — BY10-n, X0 py—1] + Y100, Xeny—1] B[X{ ]
2BV, X7y 1 BIXE ] = 2B (V1 0y iy B2 X ],

Bl(Shn = @3,0) (S2 = w2)?] = =5 | BV, X7 4] = ElYo, Xi 1| E[X[)
— 2E[Y X} 1 E[X7 5] + 2E[Ya, Xy 1] E? [Xt—2]] ,

1
E[(Sl,n - wl,n)2(S2,n - UJQ)] = |:E|:Y12,t—ant4—1’Lb—1] - E[Yl%t—antz—nb—l]E[Xlg—l]

TL2
—2EY1t—n, X7y 1) EV1 -y -1 X4y 2]
+2R? [Yl,t_ant_nb_l]E[XE_l]]
+ % { - E[le,t—anzl—n—‘rb—l] + E[Y12,t—ant2—nb—1]E[Xt2—1]
+ 2E[Y1 40—, Xi 11 E[Y1,0—np—1 Xi—ny—2]
— 2B2[Y1 -, Xy 1} E[XE ]
E[(S3n = ws.n)*(Szn — wo)] = =5 | B2, X{ ] = B[V X2, BIXZ,)
— 2B[Yo X7 4| E[Ya 1 X; o] + 2E2[Yo, X 1| E[X7 5],

E[(Sl,n - wl,n)(SQ,n - w2)(S3,n - w3,n)] = 07
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Bl(S1 — w1,0)(San = 2] = 2 [EW 0, XE 1 X ]
— EY1tn, Xt ony 1 X( 2 X7y 3] = W2 B0ty Xy 1 X7y o]
+ sz[Yl,t—nbXt—nb—le_nb_QXtQ_nb—g]]
b [BV o X ] = BV Xy 1 XD, )
= 3EY1 4, X¢ oy 1 Xty —2) = 3(n + D EY1 40, Xy -1 K¢, o]
+ (3np + 6)w2 E[Y1 4—ny Xt—ny -1 X7, o]
+ (3np + 6)wa E[Y1 4, X{ 1 X7y o]
= 3(m + D2 E[V1,0ny Xoomy—1 X, 2 XP ]|
+ % - E[Ylﬂt—”bXZ—nb—l] + E[Yl,t—ant—nb—1Xt6_nb_2]

+3E[Y14n, X}

t—nb—lXt2—nb—2] + 3E[Yl,t—an?—anXf—nb—ﬂ
— 6E[Y1 1y Xt—ny—1 X7y -2 X7y 3]

— 6E[Y11—, Xi 1 Xi 2 X iy ]

+ GE[YLt—nbXt—nb—1Xt2—nb—2Xt2—nb—3Xt2—nb—4]] )

n
E[(S3n — wsn)(S2n — w2)’] = 3n—§ [ — E[Ya,: Xe 1 X}, 1 X7 o)

ny—1

+ B2 Xe 1 X7, 1 XP o X, o] + E[You X2 X[, ]

np—3
— BlYo XP 1 XE 1 XE ]

+ % { — E[Y2, Xi-1 X)) ] + 6E[Yo: Xe 1 X} 0 X7, 1]

- GE[Y2,tXt—1Xt2—2Xt2—3Xt2—nb—1] + E[Ya X[ 1] — 3E[Ya, X)) 1 X} )
—3E[Yo, X} | X o] + GE[Y2,tXf—1Xt2—2Xt2—nb—1] )

1
B[St —win)(San = w2)’] = — | B0, X7

4
- m Xt—nb—Q]

ny—1

- BY?, X}

2 2
t—nb—lXt—nb—QXt—nb—S]

— EY1 41—y Xt—np—1Y10—np—1 X1—ny—2. X1, 3]

+ 2E[Y1 4y Xi oy -1 Y1 0—ny—1 X7y 2]

- 4E[Y1,t—nbXt—nb—1Y1,t—nb—1X?_nb_2Xt2_nb_3]

+ 3E[Y1,t—nbXt—nb—1Y1,t—nb—1Xt—nb—2Xt2—nb—3Xt2—nb—4]]

1
+ E E[Yl%t—antG—TLb—l] - (nb + 1)E[Y12,t—ant2—’l’Lb—1X;1—’rLb—2]
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- 2E[Y12,t—an;1— Xt2—nb—2]

np—1
+ (16 + 2) B[V, Xy -1 Xy -2 Xy 3]
— 2E[Y1 -y X7y -1 Y1, t—my—1 Xt —ny—2]
+ (g + 2)E[Y1,t—nbXt—nb—1m,t—nb—lXt—nb—2Xt4—nb—3]
—2(2ny, + ].)E[YLt_nbXf_nb_lm,t—nb—lX?—nb—2]
+8(np + D) EY1t—ny Xt—ny—1Y1t-ny—1 X5y 2X7 1y 3]
— (5ny, + 6)E[Y1,t—nbXt—nb—1Yl,t—nb—1Xt—nb—2Xt2—nb—3Xt2—nb—4]]
+ % - E[Yl%t—antG—nb—l] + E[Ylgt—antQ—nb—lX?—nb—ﬂ
+ QE[Yl%t—nble—nb—lXE—nb—Q] - 2E[Y12,t—nbXf—nb—le—nb—QXtQ—nb—?,]
+ QE[Ylyt_nbXf_nb_lyl,t—nb—lXt—nb—Q]
— 2E[Y1 4y Xt—ny—1Y1,t—ny—1 Xt—ny—2. X7, 3]
+2(np + DEY1t—n, X7y 1 Y1t-ny—1X7 2]
— A(np 4 2) E[Y1 1y Xi—ny—1 Y10 np -1 X5y —2 X7y 3]
+ 21+ 3) B[Vt Xty 1 Vi rp—1 Xty -0 X2y 5 X7y 4]] :
E[(S3 — w3n)* (S0 — w2)?] = % |:E[Y22,tXt2—1X;1—nb—1] — E[Y3, X{ 1 X7 5 X7 ]
— B2 Xi 1Yo 1 Xe2 Xy, ]
+ E[Y2,tXt—1Y2,t—1Xt—2Xt2—nb—1Xt2—nb—2]]
+ % [ - E[Y22,tXt2—1X;1—2] + 2E[Y22,tXt2—1Xt2—nb—1Xt2—nb—2]
+2E[Y2, X; 1Yo 1 Xy o X}, ]
+2(np — 3)EYo, Xp 1Yo 1 X2 X7y 1 X7y o] + B[V X7 ]
— 2E(Y$ X} 1 XP o] — 2E[Y2 Xy-1Yay-1X] o]
+2(ny — DE[Y2, X7 1Yoy 1X] ]
—4(np — 2)E[Y2,tXt—1Y2,t—1Xt3—2Xt2—3]] )
E[(S1 — w1.0)(San — w2)2(S3m — wsn)] = 2% [wéE[Yz,tXt_l]E[Yl,t_ant_nb_l]
+ BY1 0, Xi 1| E[Yo, Xi 1] — w2 (Yo Xo 1) E[Y1 4o, XJ 1]

— B[V X{ 1| Y0, Xy
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n2
+ 2n—2 [W2E[Y2,tXt—1]E[Yl,t_anf’_nb_l]

— WS E[Yo 1 Xt 1| E[Y1 4y Xt—ny—1]

+ wo B[Y24 X} (1Bt tny Xt—ny—1] — E[Y2u X7 1]E[Y1 40, X7y 1]

Substituting the above central moments into the expressions for the expectation of
the fourth order Taylor polynomials Q(©¢p,4), Q(A¢n,4), Q(@gn,él), and Q(Agn,él),
and substituting the expressions for these expectations in the expression for the MSFE

approximation, we obtain the following:

A B D E F -
MSFE,~C+ =+ = + =+ — + — = MSFE,, (7.2.4)
n n?2 nd3 nt nd
where
1
A==~ 2(E[X} ] — newd) E[Yi1 X EY1 -y Xe—ny—1]
D)

+ 202 B[Yi1 Xi) B[Y1 1m0, Xi 1) — 20603 E[Yi1 Xi) E[Y2,1 Xy 1]
+ W3 EYE 0, X7y 1] = 203 B2 Y14, Xi 1] 4 3E[X 1| B [Y1 4y Xi 1]
— 4w E[Y1 4y Xt—ny—1] E[Y1 40—y Xp oy 1] + 2nbw§E[Yl,t_m,Xt_nb_l]E[Yg,tXt_l]] :

1
B=— (15E%[X} |] — 4w E[X? |] — 3waB[X ! (](1 + 2np)
2

+ nyws (ny — 1)) E? Y1 t—ny X t—mp—1]

+ (4w3 (2np + 1) — 24w E[X N EY1 -0, Xy 1) EY1 4=y Xt—y—1]

+ 6w; £ [Yl,t—an?—nb—l] + (Bw3 (X} ] — wi(ny + 1))E[Y12,t—ant2—nb—1]
+ 6w BY1 -, X7y 1] EY1 i, Xo oy 1] = 205 B[YP,_, X0, )

— dnpws B[Ya 1 X7 | EY 4y Xt—ny—1] + nbwg‘E[thXf_l]

+ (2w B[X{ 1] — 6B X} ] + 2w3 B[ X 1] + 8nywi E[X} ]

+ 2npw3 (1 — 1)) E[Y1.4—ny Xt—ny—1) E[Yo.0 X¢—1]

+ (6w E[X} ] — 2w3 (2np + 1) EY14—n, X, 1] E[Y2:X¢1]

— 203 E[Y1 4=y X{ 1| E[Y2, Xi—1]

+ 2w BYo X7 1| E[Ya, 1 Xi1]
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2 4 4 2
+ (—2mpwy E[X ] — mpws (1 — np) ) EZ Y2, X 1] |,

1
C :w_2 |:E[Y't3_1]w2 — 2E[th_let]E[Yl,t—ant—nb—l] + EQ[Ylyt—ant—”b_l]] )

D :wig [(5E[Xt8_1] —15E2[XE )20y + 1) + wa E[XS |)(8ny, — 12)
+ 3wWIE[X{ 1] (nd 4 np + 6) + npws (ny — 1)) E[Y1 4y Xty 1]
— 8w E[Y1 4y Xt—ny—1] E[Y10—n, X[y 1]
+ (24w E[X1](2ng + 1) — 4wd (ng + 15 + 6)) E[Y1 -y Xt—ny—1 ] E[Y1t -0, Xi 1y 1]
— 6w3 (2 + 1) E?[Y1 40, X, 1] + 12003 EY1 ¢, Xi2 o, 1] E[Yo X724
+ 3w%E[Y12,t—ant6—nb—l] + (BwiB[X{ 1 ](1 — mp) + wi(ny + 6))E[Y12,t—ant2—nb—1]
+ npw3 (BE[X ] — W%)E[Y;,tXf—ﬂ
+ w3 (18 — 121) E[Y1 4—ny Xt—ny—1) E[Y1,0—n, X7y 1]
+ 6nyw3 EY1 4y Xt ny 1] EY2, X7 1] + 2w3 (ny — 3)E[Y?,_,, X[, 1]
— 2npwi B[V, X[ ]+ dnpwa (npws — 6E[X; ) EYa, X} 41 E[Y -0y Xtny 1]
+ (6E2[X} (60 +1) — 2E[XS ] + wo E[XP ,](6 — 10my)
—2EE[X} 1302 4 np 4 6) + 2npwi (1 — 1)) E[Y1 4y Xty 1) E[Yor Xt 1]
+ 2w EY1 g, X[y 1] E[Y2,1 Xy—1]
+ (—6wa E[X} ] (1 + Br) + 203 (2nf + np + 6)) (Y1 4—n, Xi—pp, 1| E[Y2 X1 1]
+ (6npwa B[X; ]+ 2npwi (1 — 2ny)) E[Y2, X7 1 ]E[Y2, Xy 1]
+ w3 (8ny — 6)E[Y1, -, Xip, 1] E[Yo, Xi—1] — 2npwi E[Ya X7 (| E[Y2, Xy 1]
+ (2npwo B[X? 1] — 6np B* (X 1] + npws B[ X} 1] (3ny — 1)
+ i (np — 1)) E? [thxt_l]] ,

1
E=— (15, B2 [ X ) (np + 2) — 100y E[ X ] + 4npwa E[XE (](6 — ny)
2

— 30mpw3 B[X; 1] + nyws(np — 18))E2[Y1 ¢y Xt—ny—1]

+ 16npw2 E[Y1 4y Xi—ny—1) EY1 -0y X{_y 1]

— 8npw2 B[Y1.4—ny Xt—ny—1] E[Yos X{_1]

+ (T2npws — 24npwe B[ X} (](2 + nb))E[Yl,t—nbXt—nb—1]E[Y1,t—ant3—nb—1]

+ (24npwo B[ X} 1] (g + 1) — 4815w E[Y1 4y Xt—ny—1) E[Yo,: X} 1]
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np + DE? Y10, X7, 1] = 120fw3 Y1 -0, Xi 1 E[Y2u X7 ]

np — 1) E*[Y2, X} 1] — 3npws B[V, X?

t—np—1

|+ 3npw3 BY3, X7 4]
E[le—l] - ng)E[Yl%t—antQ—nb—l]
2“}% - E[X?—l])E[Y;,tXtQ—l] - 6nbw§E[Y22,tXt4—l]

np = TV EY1t—n, Xt—ny—1 ] E[Y1 -, X7y 1]

—_—~ o~~~ o~ =

+ 6npw5 (4 — 1) B[Y1 1ty Xty 1] B[Yo,: X{ 1] + 6mpws B[YE,_,, Xi o]
+ (12np B[ X2 1] — 6np E*[ X 1](6 + 5np) + npw2 B[ X7 _1](8np, — 30)
+ 36npws (E[X} 1]+ wd) — 2n2wi) E[Y14—ny Xt—ny 1) E[Y2,: X¢ 1]
— 10npwo E[Y1 -y X[, 1JE[Y2, Xio1] + 2npwn E[Y2: Xy 1] E[Ya X[ |]
+ (6npwa E[X; 1] (4ny + 5) — 60npws) E[Y1 4—ny X7, 1] E[Y2u Xi1]
+ (36npws — 6npwa E[X7 ] (4ny + 1) E[Ya, X} |1 B[Ya, X;1]
+ 6npw3 (5 — 1) E[Y1,0—ny, X7y 1] E[Y2,0 X4—1]
+ 6npwi (np — 2)E[Ya, X7 1| E[Y2,:X:1]
+ (p B2X 1) (150, + 6) — 2np B[XE 1] + npwo E[ XD 1](6 — 4np) — 6nyw3 E[X} 4]
+ nywi (ny — 18))E2 [YQ,tXt_l]],
F=(n2E[XS ] — 15ni B[ X} ] — 12n2wo E[XP (] + 120wl E[X ]} ]
+ 18n3ws) E*[Y1 ¢, Xt—ny—1] — 8njw2 B[Y1 -y Xi—ny—1] E[Y1,0—ny X{_ 1]
+ 8n2wa B[] 4y Xi—ny—1)E[Ya: X[ 1]
+ 24njwa(B[X} 1] — 203) E[Y1 -y Xt—ny—1) E[Y1 -0y Xi 1]
+ 24ndwo(2npws — BIXE ) EYt—ny Xt—ny—1]E[Ya,: X} 1]
+ 240w E[Y1 4 -y Xt—ny—1] Y1t -0, X}y 1]
— 24n2WEE Y14y Xty 1| E[Yor X7 ]
+ (30nf E?[ X ] — 10nZE[X} ] + 24njwe B[XY 1] — 24nfw3 B[ X} ]
— 36n7w3)E[Y1 t—ny Xt—ny—1])E[Yor Xi-1]
+ 8n5wa BV 4—n, X{_p, 1]EY2:Xi—1] — 8njwa E[Yo, X[ 1| E[Y2 Xs—1]
+ 24nfwr(2w5 — BIX{ 1) E[Y1t-ny Xip, 1] B[Y2,: X1

+ 24nfwr(B[X} ] — 203) E[Ya, X 1] E[Y2, Xi1]
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— 24nw3 E[Y1 ¢ 0, X}, 1 E[Y2,: Xe-1] + 24njw3 E[Yo X7 | E[Y2,4 X 1]
+ (5ngE[X} 1] — 15ng B (X ] — 12nfwe E[X] 1] + 12njws E[X} ]

+18niw3) E?[Ya, X;1].

Now we proceed to estimate the MSFE for the case when n < ny,.

7.2.2 The MSFE for n < n,

For n < ng, the OLS estimator can be written as follows

t—1 t—1
ﬁt,n:Q_l Z XT}/2,T+17 Q: Z Xz

T=t—n T=t—m

By independence, we can write
MSFE, =E[Y},] - 2E[Yt+lXt]E[Bt,n] + E[XE]E[Btzn]

Bt,n can be written as a function of the two statistics Sy, and Sy, as follows:

5 S4,n
ﬁt,n gm’
where
1 t—1 1 t—1
Sg,n: E Z ng S4,n: E Z Y2,7’+1X7" (725)
T=t—n T=t—n

As before, we write the expectation of the OLS estimator and its square as follows:
E[Btm] = E[Bt,mA] + E[Bt,mAcL E[Btz,n] = E[Btz,m A] + E[Btz,m Ac]v

where A€ is the complement of A. Taylor series can be used in A to approximate Bt,n
and 5?” To obtain further analytic results, we assume P(X € A) =~ 1, so that E [ﬁtn] R
E [ﬁt,n, Al and E [5?”] ~FE [5?”, A]. The Taylor series of ﬁt,n and Bfn are calculated about

the points wy and wy for the statistics S ,,, S4,. We define the points about which to
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calculate the Taylor series as follows:
= E[Son] = E[X71], wi= E[Sun] = E[Ya, X; 1],

where the equalities follow from the i.i.d. assumption. The fourth order Taylor polyno-

mials of ﬁt,n and Bfn about the points ws and wy are as follows:

R 1
QB 4) =22 i <S4 n—Wa) — (S — ws) — —5(Sun — wa)(San — ws)
Wy Wy

1 W4.n
+ —3(52,n —wg)? + 5(54,71 — wq)(So.pn —wa)? — ﬁ(sln —wy)?

Wy 2 2
w 1
+ =5 (Sam —wa) = —(Sap — wa)(S2n — w2)’,
2 2
A w2 w w2 1
Q(B2,,4) =2 1275 (Su — wa) — 3<52n —wp) + 5 (S — wa)?
wy Wy wy Wy

2
w
- 4w—§<s4,n = 01)(San = w2) + 354 (San — w2
2

Wy
w—4(54 n — wa)(S2., — wa)?
Wy

(54 n — w1)?(Son — wa) +

3
1Sy —wo)® + 3(54’” — wy)?(Som — wa)?
2

P
(S — wa)(Sopn — w2)® + 5%(52,n —wy)*.
2

w3
Wy
2
o
Wy
Wi
_5
Wy
We take expectations of the fourth order polynomials to obtain the approximations

ElBin] & ElBen, Al = E[Q(Brn, 4],
E(B,] = B3, Al » E[Q(5 . 4)].

Q

Using these approximations, the MSFE approximation for n < nj becomes
MSFE, ~E[Y}1] - 2E[Yi1 Xy E[Q(Bun. )] + EIXFIEIQ(5,.4)-

The central moments involved in the expectation of the Taylor polynomials are expanded

to derive the n dependence. We write the central moments involved in the expectation
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of Q(Brn.4) and Q(B2,,4):

E[(Son —w2)] =0, E[(Syn —ws)] =0,
1
E[(S2,n — w2)(S4n —wa)] = - [E[Yz,tXf’_ﬂ - E[ngtXt_le_z]],
o L 2 v2 1
E[(S4n —wa)?] = - ElY5,Xi 1] — ElY2;: Xy 1Yo 1X; 2],
1
B[(S4n = w1)(San — w2)?] = — | EV2eX7y] = E[Y2eXi1] BIX(]
— 2B (Yo, X} 4| E[X7 o) + 2B[Ya, X1 E?[X, o] .
1
B[St = w1)2(Sa.n —w2)] = — | ENVRXL,) - BIYE, X2, E[X2)
— 2B[Yo, X} 1| E Va1 Xio] + 2BV, Xo ] EIXZ o]
_ _ 31 i _ 4 2
E[(S4n — w1)(S2n — w2)”’] = 3 ElY2: X1 Xy, 1 X0, o]
+ E[YQ,tXt—1Xt2—nb—1Xt2—nb—2Xt2—nb—3] + E[YQ,tX?—lX;l—nb—l]
- E[YZtXE—1Xt2—nb—1Xt2—nb—2]]
i _ 6 4 2
T3 ElY2 Xi 1 Xy o] +6E[Yo Xy 1 Xy o X, 1]
— 6B Yoy Xy 1 X7 o X7 3 X7, 1] + EYou X[ 1] = 3E[Yo, X7 | X7 )]
— 3E[Ya, X} 1 X[ o] + 6E[Y2,tXt3—1Xt2—2Xt2—nb—1]} ;
1
B[St = w1)2(San — w2)?] = — | BV XE X 1] = B2 X2 XP 0 XE ]
- E[Y2,tXt—1Y2,t—1Xt—2Xt4_nb_1]
+ E[thXt—1Y2,t—1Xt—2Xt2_nb—1Xt2—nb—2]]

1

+ n3 [ N E[thXf_le_Q] + 2E[Y22,tXt2—1Xt2— th_"b_ﬂ

ny—1
+ 2E[Y2 Xy 1Yo 1 Xe o X[, 4]

+2(np — 3)EY2, Xe 1Yo 1 X2 X7, 1 X7y o] + EYS XD ]

ny—2
— 2E(Y$ X} XP ] — 2E[Y2 Xy 1Yay1X] o]
+2(ny — 1) E[Yo, X2 Yo, 1 X} 5]

—4(ny — 2)E[Ya; Xy 1Yoy 1 X o X7 ]|

Substituting the above central moments into the expressions for the expectation of the

fourth order Taylor polynomials Q( BAM, 4) and Q(ﬁzn, 4), and substituting the expressions
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for these expectations in the expression for the MSFE approximation, we obtain the

following:
A B D —___
MSFE, ~C+—+ — + —5 = MSFE,, (7.2.6)
n o n n

where

1

A=— [ng[Y;txf_l] — 2wy B[Yo 1 Xy 1] E[Yo, XP 1) + EIX/ ] E* Yo, Xi ]|,
2
1

B =— (6w} E[Y2,: X} 1) + (B3 BIX! ] — wd) BIYZ, X7 ]

2
- 2W§E[Y22,tXf—1] + 4w3 E[Y2 X7 1] E[Y2 Xi_1]

+ 2w (ws — 9E[X{ ) E[Yo X7 1| E[Ya X1
+ (OE?[X;L] — 20 B[XY ] — WS E[X;L4]) E?[Ya, X 1] |,
1
C =E[Y3,] — —E*[Ya, X; 1],
w2
D = — 6w E*[Ya, X} 1] + 3W§E[Y22,tXt6—1] + 3w (2w5 — E[X;l—l])E[YQ%tXE—l]
— 6wy E[Y5, X[ 1] — 6wy E[Ya X[ 1| E[Y2 X; 1]
+ 202 (9E[ X} 1] — 6w3)E[Yo,: X7 1| E[Yor Xt 1] + 1203 E[Yo X7 1BV X; 1]

+ (BEIX} ] = 9E?[X{ 4] = 6w B[XP 4] + 6wi BIX[ ) B2 (Y2, X 1],

7.3 Monte Carlo evidence

7.3.1 The experiments

In this section, we assess the approximation of the MSFE given by the two equations
(7.2.4) and (7.2.6) by means of Monte Carlo simulations. This is carried out in two sets
of experiments. For the two sets of tests, we analyze robustness of the accuracy of the
algorithm to the variance of the processes involved. For the exposition, we adopt a linear

structural break DGP with a shift in the linear parameter and a shift in the variance of
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the innovation process given by the following expression:

Yo, = hXr +Uirr1, TSt—myp ’ (73.1)
0o Xr +Usry1, T>t—1y

with 61,02 € R, Var(U, ;) = o2, Var(Us,) = 03, E[X,] = ptg, and Var(X,) = o2. The
forecast model is given by Y11 = BX; + Viyq, the forecast is given by YHL” = BAth,
where Bt,n is the OLS estimator, and the forecast error is €11, = Yi41 — }A/Hl,n. The
misspecification arises from not modeling the break. We want to compare the MSFE
approximation obtained with the Taylor algorithm to a benchmark MSFE determined
by Monte Carlo simulations. The motivation behind using Monte Carlo simulations to
determine a benchmark MSFE lies in the fact that the MSFE is equal to the expected

value of the conditional mean square forecast error (CMSFE)

MSFE = E[CMSFE], CMSFE = E[e},,,,].

t—1

Given a realization of the processes {X}.—;

and {Y-}f_,_, .|, it is simple to compute
the CMSFE conditional on the given sample. Generating many such samples, M, by
Monte Carlo simulations, we can construct M conditional mean square forecast errors,

{CMSFE;},, and approximate the MSFE by the sample mean of the simulations

| M
MSFE ~ — ; CMSFE,;.
We now describe the details involved in the construction of the benchmark MSFE. For a
given set of values of the parameters P = {p,, 04,01, 02,01,02,n,}, ten thousand Monte
Carlo simulations are conducted (M = 10000). Each of the M simulations is constructed
as follows. First, we generate the series {z,}_; of length N = 501 as a realization of
the explanatory process {X,}{_, . such that the first element of the series is the first
observation, 1 < ¢t —n, and the last element of the series is the last observation, 501 « t.
Each x is a realization of a normally distributed random variable, X ~ N(u,,0,), and
the population series is independent and identically distributed, {X 7.}lt_l ~ IID. We

T=t—n

split the series into two, S; = {azT}tT":”l and Sy = {337}50:1tnb+1, with ¢,, = 500 — np. Sy
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includes the values of X which occur prior to the break, and Sy includes the values of
X subsequent to the break. With &; and Sy, we construct another two series. With
S1, we construct {]‘1177}';":”1 by means of the relation f; , = 61z,. With Sz, we construct
{fe T}io_ltn 41 by means of the relation f3; = 6O2x,. Finally, with the sample series

{z 35, {f1, T} ; and {flT}iozltanv at the forecast origin t = N — 1, we construct the

CMSFE for n > ny as follows:

CMSFE, =b%, , + Uy,

N—ny—1 N-1 2
f ZT:](;b—TL flﬂ'mT x ZTZN—TLb f277—$7—
xt, 2t~ N—1 5 7t N—1 2 )
ZT N—nTr ZT N n LT
N—np—1
- 2 ZT Nb n .’1}'7_ 2 ZT N— nb
Uxt,n 02 + Jl t N—1 + J2$ )

(N —n 9«’2)2

(Cr=n-n77)?

and for n < ny, the CMSFE is as follows:

CMSFE, = b2, + vyn

Xt,n
N-1 2
b2 f o ZTZN—H f2ﬂ'x7'
Xt5T 2.t Tt ZN_l 9 )
r=N-nT7
2.2
_ 2 O34
UXt,TL_J2+ZN 1 97
r=N-n L7

where bi » and v,,, are the conditional squared bias and conditional variance of the
forecast error, respectively. For each simulation, we obtain N — 1 = 500 values of the
CMSFE, one for each value of n starting from n = 1 to n = 500. The case n = 1 refers
to estimation of the OLS carried out with only one observation. For a particular set of
parameters P, we obtain an array of size M x N — 1 of CMSFEs, {C’MSFEZ]}Z]\ilj\;_zljL
Finally, the benchmark MSFE for a set of parameters P and for an observation window

of size n is given by the following:
LM
MSFE, ~ — Z; CMSFE;,,. (7.3.2)
1=

As mentioned previously, we conduct two set tests. These two sets of tests use the same

procedure to calculate the benchmark MSFE, but differ in method by which the Taylor
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approximation, given by (7.2.4) and (7.2.6), is computed. In the first set of experiments,
the goal is to test the Taylor approximation in the best-case scenario possible. The
best-case scenario would be for the forecaster to have access to the population moments
and population real autocovariances involved in the expressions (7.2.4) and (7.2.6). To
simulate this best-case scenario, we use Monte Carlo simulations to approximate the
population moments and population real autocovariances in question with their sample
counterparts. Since the goal is to obtain close representations of population moments,
we use large samples of the processes. Although the legitimacy of this practice must be
questioned, we recall the goal of the first set of tests is to evaluate the mathematical
adequacy of the Taylor algorithm, even if it is done in an unrealistic setting. The second
set of tests will evaluate the Taylor algorithm under more realistic conditions reminiscent
of empirical applications.

For the first set of tests, the Taylor algorithm is constructed by first generating a
realization of the explanatory process {X,;} ~ IIN(u,,o0,). This realization is given by
the series {x,}._, with L equal to one million. This series is divided into two series
X = {xT}Tzl and Xy = {:I:T}T:[L/Z]Jrl ([-] stands for the integer part of the argument).
Next, we generate a realization of the innovation processes {U; .} ~ IIN(0,01) and
{Uz+} ~ IIN(0,02) given by Uy = {u1,}. L/ I and Uy = {U277—}7[_/:[L/2]+1, respectively.
Finally, we construct a realization of the dependent process {Y;} using X7, X, U, and
Uy. This realization of the dependent variable is given by the two series Y1 = {y1, 7.}[L/ 2
and Vo = {y277—}7_:[L/2]+1. Y1 is constructed by means of the relation y; » = 612, + u ~
for x; € Xy, and Vs is constructed by means of the relation yo ; = 0oz, +us » for z, € Ab.
The population moments in (7.2.4) and (7.2.6) are estimated by generating their sample

counterparts with Xy, Xo, Vi, and )». For example:
[L/2]

E[Yl,t—anf np— 1 L/2 Zylﬂ' Trs
L

1
E[Y3, X} ] ~ /2 _[L%Hyifxi-

Therefore, for a given set of the parameters, P = {uy, 04,01, 02,01,02,np}, we can gen-

erate the series X7, X5, Vi, Vo, the necessary sample moments, and ultimately evaluate
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(7.2.4) and (7.2.6) for different values of the observation window size n. The resulting
MSFE can be compared to the benchmark MSFE (7.3.2). The sets of parameter values
investigated in the best-case scenario, and the reference to their corresponding MSFE,
plots are given in Table 7.1.

We must clarify one issue with this procedure. By the construction of the series
X1, Xo, V1, and s, the structural break seems to occur in the middle of the series at
t = [L/2]. This would seem to make n, = [L/2]. This is not what we want and is not
what is done in the first set of experiments. The series were taken long in each direction
from the break to obtain good approximations of the population moments. We do not
mean to fix n, = [L/2] but rather, the way to think of this artificial procedure is as
follows: person A observed a large amount of data of size L with a structural break
in the middle; person A computes sample moments as described above; person B has
observed only a fraction of the data available to person A with the latest observation at
time ¢ and with the break occurring at time ¢ — ny; person A gives her sample moment
calculations to person B; person B uses those sample moments together with (7.2.4) and
(7.2.6) to calculate the Taylor algorithm of the MSFE. Although artificial, this procedure
serves to explore the robustness of the Taylor algorithm for the MSFE in the best-case
scenario when the best possible sample moments are available.

The second set of experiments also has as the main goal evaluation of the robustness
of the Taylor algorithm, but under more practical considerations than the first set of
tests. For these tests, we take the role of person B in the above description, without
any input from person A. That is, person B must estimate sample moments with the
available data as one would do in any real empirical application. The procedure is the
same as previously described except for the definitions of the series. In the second set
of tests, we let X; = {azT}tT":bl, Xy = {:ET}f:tan, U = {uLT}tT":bl, Uy = {uQJ}f:tan,
V= {yl,T}tT":bl, and Yy = {y277}£:tnb+l7 so that ny, = L —t,,. With these definitions,
the accuracy of the sample moments will depend on the size of nj, and L. This suggests
that the accuracy of the Taylor algorithm will depend on the amount of post-break data

available.
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7.3.2 Discussion

Most of the issues we discuss regarding the Monte Carlo simulations carried out are sum-
marized in Tables 7.1 and 7.2. As mentioned, two sets of experiments were performed.
The first set of tests involved large data series to obtain accurate sample moments nec-
essary for the calculation of the MSFE with the Taylor algorithm given by (7.2.4) and
(7.2.6). For the case with p, = 10,01 = 2,05 = 2.5, 23 experiments are performed
with varying values of 0., 01, and oy. For all 23 experiments, the MSFE obtained with
the Taylor algorithm and the benchmark MSFE seem in close agreement. Out of these
23 experiments, the benchmark MSFE has an optimal observation window in 18 of the
cases. Out of these 18 cases, the optimal observation window of the Taylor algorithm
MSFE agrees with the benchmark in 15 cases. In two cases, the optimal observation
windows differ by one observation, and in one case by seven observations. The worst per-
formance of the Taylor algorithm occurs for the case with the highest process variances,
o, = 10,01 = 40, 09 = 40.

For the case with u, = 0,61 = 2,0, = 2.5, 23 experiments are also performed with
varying values of 0., 01, and g3. Out of these 23 experiments, the benchmark MSFE has
an optimal observation window in 14 of the cases. Out of these 14 cases, the optimal
observation window of the Taylor algorithm MSFE agrees with the benchmark in 7 cases.
The results seem to indicate performance worsens as o1 and oy increase, not necessarily as
0, increases. This can be observed by comparing the experiments with o, = 1 with those
experiments with o, = 10 for the different values of o1 and o9. One can get intuition for
this by examining the dependence of the MSFE for a correctly specified model on the

variance of the innovation

MSFE = oy (1 +E

e m— — oy as mn — OQ.
t—1 2 ’
t—nXs

Based on this, one can understand how the Taylor algorithm MSFE can be sensitive to a
volatile innovation. The worst performance occurred for the higher values of o1 and 0.

Although, for the case with u, = 10,0, = 2,05 = 2.05, the patter of performance was
similar across different values of o,, 01, and o9 to the other cases, the overall performance

is worse than the previous two cases. Out of 17 experiments, there is agreement among
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the observation windows only in three tests. One explanation for this eventuality is
that, when the parameter shift is small, from 61 = 2 to 2 = 2.05, the OLS estimator has
difficulty detecting the change over the volatility of the processes. This is turn, translates
to a less accurate estimate of the optimal observation window by the Taylor algorithm.

The second set of experiments makes use of smaller data samples in order to replicate
an empirical setting. The performance of the Taylor algorithm is expected to worsen from
that in the previous set of experiments with large data samples. Two cases are examined,
the first with sample size L = 2000 and n; = 20 and the second with sample size L = 5000
and np = 100. For the first case with L = 2000 and n; = 20, the Taylor algorithm fails
to identify the benchmark optimal window 15 times out of 18. In the other three tests,
the Taylor algorithm misses the benchmark optimal window by 1, 2, and 5 observations.
For the case with L = 5000 and n; = 100, the results are more promising. In this
case, the Taylor algorithm fails to identify the benchmark optimal window 4 times out of
18. The Taylor algorithm provides the correct optimal window in three experiments. In
the other 11 experiments, the difference between the Taylor algorithm optimal window
and the benchmark optimal window ranges from 1 observation to 78 observations. The
performance across different values of o, 01, and o9 follows the same pattern as in the
first set of experiments with performance decaying with increasing values of o1 and os.

We do not present results for Monte Carlo experiments with parameter shift in the
standard deviations o1 and o9 because we do not find significant difference in the accuracy
and the patterns of performance of the Taylor algorithm as presented for parameter shift

in the linear parameters 67 and 6.
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pe = 10 py =0 pe =10
01 =2,00=25|601=2,00b=25 |61 =2,60,=2.05
ox | 01| 09 figure figure figure
0.1 0 0| 71 NA 724 NA 747 NA
01101 72 cw 725 cw 748 cw
1 1| 73 cw 726 n>500 |749 cw
1 0 0| 74 NA 7.27 NA 7.50 NA
05105] 75 cw 7.28 cw 751 A=1
1 1| 76 cw 729 cw 752 cw
3 3 7.7 cw 730 A=125 | 753 A=11
5 51 7.8 A= 731 n>500 | 754 n>500
3 0 0| 79 NA 7.32 NA 7.55 NA
1 11710 cw 7.33 756 A=
3 31711 cw 734 cw 757 A=T
5 5712 cw 735 A= 7.58 n > 500
10| 10| 7.13 cw 7.36 n > 500 —
5 0 0| 714 NA 7.37 NA 759 NA
1 11715 cw 7.38 760 A=
5 5716 cw 739 cw 7.61 n > 500
10| 10| 7.17 cw 740 A=1 —
15| 15| 7.18 cw 741 A =125 —
10 0 0| 719 NA 742 NA 7.62 NA
5 5720 cw 743 cw 7.63 n > 500
0] 10721 A=1 744 cw —
20| 20 | 7.22 cw 745 A=1 —
40 | 40 | 723 A=T 746 n > 500 —

Table 7.1: Sets of parameter values for the best-case scenario experiments, L = 1 x 105.
cw indicates the optimal observation window given by the Taylor algorithm and the
A = ¢ indicates that the absolute difference between the
optimal observation window given by the Taylor algorithm and the optimal observation
window given by the benchmark MSFE is equal to the integer a. n > 500 indicates
the optimal observation window does not occur within the observed sample of 500. NA

benchmark MSFE coincide.

indicates no optimal observation window exists in the benchmark MSFE.
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L =2000,n; = 20 | L = 5000,n; = 100
pe =10 pe =10
01 =2,00=2.5 01 =2,00 =25
oy | 01| o9 figure figure
0.1 0 0764 NA 7.87 NA
0101|765 F 788 F
1 1766 F 7.89 cw
1 0 0| 767 NA 7.90 NA
0505|768 F 791 F
1 11769 F 792 F
3 3|77 F 7.93 cw
5 51771 A=1 7.94 cw
3 0 0772 NA 7.95 NA
1 1773 F 796 A=1
3 3|77 F 797 A=1
5 5|77 F 798 A=2
10| 10| 7.76 A =2 799 A=3
5 0 0| 777 NA 7.100 NA
1 1177 F 7101 A=3
5|77 F 7.102 A=
10| 10| 7.80 F 7103 A=
15 15781 A=5 7104 A =17
10 0 0782 NA 7.105 NA
5 5783 F 7106 A=19
10| 10 | 7.84 F 7.107 A =19
20| 20 | 7.85 F 7.108 A =78
40 | 40 | 7.86 F 7109 F

Table 7.2: Sets of parameter values for the experiments with limited samples and nj, = 20,
np = 100. cw indicates the optimal observation window given by the Taylor algorithm and
the benchmark MSFE coincide. A = a indicates that the absolute difference between the
optimal observation window given by the Taylor algorithm and the optimal observation
window given by the benchmark MSFE is equal to the integer a. NA indicates no optimal
observation window exists in the benchmark MSFE. F indicates the Taylor algorithm has

failed to identify an optimal observation window.
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MSFE for E[X]=10,0,=0.1,0,=0,0,=0
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Figure 7.1: MSFE for E[X] =10, 0, =0.1, 01 =0, 02 =0, 61 = 2, 03 = 2.5, n;, = 20
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Figure 7.2: MSFE for E[X]| =10, 0, = 0.1, 01 = 0.1, 02 = 0.1, 61 = 2, 0 = 2.5, n;, = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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MSFE for E[X]=10,0,=0.1,0,=1,0,=1

12k O Monte Carlo )
X Monte Carlo minimum MSFE
Taylor Algorithm n< n
10} Taylor Algorithm n > ]
Taylor minimum MSFE
8 - .
w
LL
0
s 6 1
4t 4
i % |
O Il Il Il Il Il
0 10 20 30 40 50 60 70

Figure 7.3: MSFE for E[X] =10, 0, = 0.1, 01 = 1, 02 = 1, 61 = 2, 0 = 2.5, ny, = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.4: MSFE for E[X] =10,0,=1,01 =0, 02 =0, 01 =2, 05 = 2.5, ny =20
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MSFE for E[X]=10,0X=1,0120.5,0220.5
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Figure 7.5: MSFE for F[X] =10, 0, = 1, 01 = 0.5, 09 = 0.5, 01 = 2, 03 = 2.5, ny, = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.6: MSFE for E[X] = 10, 0, = 1,
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Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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MSFE for E[X]:lo,ox:l,ol:3,02:3
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n
Figure 7.7: MSFE for E[X] =10, 0, =1, 01 =3, 00 = 3, 61 = 2, 0 =
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE =

MSFE
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Figure 7.8: MSFE for E[X] =10, 0, = 1, 01 = 5, 02 = 5, 61 = 2, 03 = 2.5, n = 20,
Monte Carlo minimum MSFE =21, Taylor algorithm minimum MSFE = 20
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Figure 7.9: MSFE for E[X] =10, 0, =3, 01 =0, 05 =0, 6; =2, § = 2.5, n, = 20
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Figure 7.10: MSFE for E[X]| =10, 0, = 3,01 =1, 09 = 1, 61 = 2, 03 = 2.5, n, = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.11: MSFE for E[X]| =10, 0, = 3, 01 = 3, 02 = 3, 61 = 2, 03 = 2.5, ny, = 20,
np = 20, Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.12: MSFE for E[X]| =10, 0, = 3, 01 = 5, 09 = 5, 61 = 2, 05 = 2.5, n, = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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MSFE for E[X]:10,0X23,01:10,02:10
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Figure 7.13: MSFE for E[X] = 10, 0, = 3, 01 = 10, 09 = 10, 01 = 2, 03 = 2.5, ny, = 20,
Monte Carlo minimum MSFE =22, Taylor algorithm minimum MSFE =22
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Figure 7.14: MSFE for E[X] =10, 0, =5, 01 =0, 02 = 0, 01 = 2, 05 = 2.5, nj, = 20
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MSFE for E[X]:10,0x25,0121,02:1
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Figure 7.15: MSFE for E[X]| =10, 0, = 5,01 =1, 09 = 1, 61 = 2, 03 = 2.5, n, = 20.
Monte Carlo minimum MSFE = 20, Taylor algorithm local minimum MSFE = 20
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Figure 7.16: MSFE for E[X]| =10, 0, = 5, 01 = 5, 09 = 5, 61 = 2, 05 = 2.5, n, = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20



224

MSFE for E[X]:10,0X25,01:10,02:10
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Figure 7.17: MSFE for E[X] = 10, 0, = 5, 01 = 10, 09 = 10, 01 = 2, 03 = 2.5, ny, = 20,
Monte Carlo minimum MSFE =22, Taylor algorithm minimum MSFE =22
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Figure 7.18: MSFE for E[X] =10, 0, = 5, 01 = 15, 09 = 15, 61 = 2, 05 = 2.5, ny, = 20,
Monte Carlo minimum MSFE =25, Taylor algorithm minimum MSFE =25
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Figure 7.19: MSFE for E[X] =10, 0, =10, 01 =0, 09 =0, 6 = 2, 63 = 2.5, n; = 20
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Figure 7.20: MSFE for E[X]| = 10, 0, = 10, 01 = 5, 09 = 5, 01 = 2, 03 = 2.5, n; = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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MSFE for E[X]=10,0X=10,01=1O,02=10
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Figure 7.21: MSFE for E[X] = 10, 0, = 10, 07 = 10, 09 = 10, 6; = 2, 63 = 2.5, n; = 20,
Monte Carlo minimum MSFE = 21, Taylor algorithm minimum MSFE = 20
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Figure 7.22: MSFE for E[X] = 10, 0, = 10, 01 = 20, 09 = 20, 6; = 2, 6 = 2.5, n; = 20,
Monte Carlo minimum MSFE = 26, Taylor algorithm minimum MSFE = 26
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MSFE for E[X]=10,0X=10,01=40,02=40
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Figure 7.23: MSFE for E[X] = 10, 0, = 10, 01 = 40, 09 = 40, 6; = 2, 6, = 2.5, n; = 20,
Monte Carlo minimum MSFE = 119, Taylor algorithm minimum MSFE = 126
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Figure 7.24: MSFE for E[X] =0, 0, =0.1, 01 =0, 02 =0, 61 =2, 03 = 2.5, n;, = 20
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MSFE for E[X]=0,0X=O.1,01=0.1,02=0.1
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Figure 7.25: MSFE for F[X] =0, 0, =0.1, 01 = 0.1, 02 = 0.1, 61 = 2, 5 = 2.5, n; = 20,
Monte Carlo minimum MSFE = 22, Taylor algorithm minimum MSFE = 22
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Figure 7.26: MSFE for E[X] =0, 0, = 0.1, 01 =1, 02 = 1, 61 = 2, 05 = 2.5, ny, = 20,
Monte Carlo minimum MSFE > 500, Taylor algorithm minimum MSFE > 500
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Figure 7.27: MSFE for E[X]|=0,0,=1,01 =0,02 =0, 01 =2, 0o = 2.5, np =20
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Figure 7.28: MSFE for E[X] =0, 0, = 1, 01 = 0.5, 09 = 0.5, 1 = 2, 6, = 2.5, nj, = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm local minimum MSFE = 20
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Figure 7.29: MSFE for E[X] =0, 0, =1, 01 =1, 00 =1, 61 = 2, 3 = 2.5, n, = 20,
Monte Carlo minimum MSFE = 22, Taylor algorithm minimum MSFE = 22
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Figure 7.30: MSFE for E[X] =0, 0, =1, 01 =3, 09 = 3, 61 = 2, 3 = 2.5, n, = 20,
Monte Carlo minimum MSFE = 253, Taylor algorithm minimum MSFE = 378
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Figure 7.31: MSFE for E[X] =0, 0, =1, 01 =5, 09 = 5, 61 = 2, 2 = 2.5, n = 20,
Monte Carlo minimum MSFE > 500, Taylor algorithm minimum MSFE > 500
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Figure 7.32: MSFE for E[X] =0, 0, =3,0, =0, 00 =0, 6; =2, 6, = 2.5, n = 20
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Figure 7.33: MSFE for E[X]|=0,0,=3,01=1,00=1,0; =2, 05 =25, np =20
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Figure 7.34: MSFE for E[X] =0, 0, = 3, 01 = 3, 02 = 3, 61 = 2, 02 = 2.5, n; = 20,
Monte Carlo minimum MSFE = 22, Taylor algorithm minimum MSFE = 22
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Figure 7.35: MSFE for E[X] =0, 0, = 3, 01 =5, 09 = 5, 61 = 2, 03 = 2.5, n = 20,
Monte Carlo minimum MSFE = 29, Taylor algorithm minimum MSFE = 30
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Figure 7.36: MSFE for E[X]| =0, 0, = 3, 01 = 10, 02 = 10, 1 = 2, 03 = 2.5, n; = 20,
Monte Carlo minimum MSFE > 500, Taylor algorithm minimum MSFE > 500
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Figure 7.37: MSFE for E[X]|=0,0, =5,01=0,02 =0, 01 =2, 05 =2.5, ny =20
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Figure 7.38: MSFE for E[X]|=0,0,=5,01=1,00=1, 01 =2, 05 =25, ny =20
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Figure 7.39: MSFE for E[X] =0, 0, = 5, 01
Monte Carlo minimum MSFE = 22, Taylor algorithm minimum MSFE = 22
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Figure 7.40: MSFE for E[X]| =0, 0, =5, 01 = 10, 02 = 10, 1 = 2, 3 = 2.5, n, = 20,
Monte Carlo minimum MSFE = 37, Taylor algorithm minimum MSFE = 38
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Figure 7.41: MSFE for E[X]| =0, 0, =5, 01 = 15, 02 = 15, 1 = 2, 03 = 2.5, n; = 20,
Monte Carlo minimum MSFE = 253, Taylor algorithm minimum MSFE = 378

MSFE for E[X]:O,oleo,olzo,ozzo
16 T T T

12 h

MSFE

O  Monte Carlo
Taylor Algorithm n<n

b
Taylor Algorithm n > n

_2 L L L L Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

n

Figure 7.42: MSFE for E[X] =0, 0, =10, 01 =0, 02 =0, 61 = 2, 63 = 2.5, n; = 20
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Figure 7.43: MSFE for E[X]| =0, 0, = 10, 01 =5, 09 = 5, 61 = 2, 03 = 2.5, ny, = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm local minimum MSFE = 20
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Figure 7.44: MSFE for E[X] =0, 0, = 10, 01 = 10, 05 = 10, 6; = 2, 05 = 2.5, n;, = 20,
Monte Carlo minimum MSFE = 22, Taylor algorithm minimum MSFE = 22
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Figure 7.45: MSFE for E[X] =0, 0, = 10, 01 = 20, 09 = 20, 6; = 2, 05 = 2.5, nj, = 20,
Monte Carlo minimum MSFE = 37, Taylor algorithm minimum MSFE = 38
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Figure 7.46: MSFE for E[X] =0, 0, = 10, 01 = 40, o9 = 40, 01 = 2, 03 = 2.5, ny, = 20,
Monte Carlo minimum MSFE > 500, Taylor algorithm minimum MSFE > 500
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Figure 7.47: MSFE for E[X] =10, 0, = 0.1, 01 =0, 05 = 0, 6; = 2, 65 = 2.05
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Figure 7.48: MSFE for E[X] = 10, 0, = 0.1, 01 = 0.1, 09 = 0.1, 6; = 2, 3 = 2.05,
ny = 20, Monte Carlo minimum MSFE = 20,Taylor algorithm minimum MSFE = 20
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Figure 7.49: MSFE for E[X]| =10, 0, =0.1, 01 =1, 09 = 1, ; = 2, 65 = 2.05, ny, = 20,
Monte Carlo minimum MSFE = 22 Taylor algorithm minimum MSFE = 22
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Figure 7.50: MSFE for E[X] =10, 0, =1,01 =0, 03 =0, 6 = 2, 6 = 2.05
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Figure 7.51: MSFE for F[X] =10, 0, =1, 01 = 0.5, 02 = 0.5, 61 = 2, 0 = 2.05, n;, = 20,
Monte Carlo minimum MSFE = 21, Taylor algorithm minimum MSFE = 20
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Figure 7.52: MSFE for E[X]| =10, 0, =1, 01 =1, 09 = 1, 1 = 2, 3 = 2.05, n, = 20,
Monte Carlo minimum MSFE = 22 Taylor algorithm minimum MSFE = 22



242

MSFE for E[X]:lo,ox:l,ol:3,02:3

T
O  Monte Carlo
X Monte Carlo minimum MSFE
Taylor Algorithm n< n,
9451 Taylor Algorithm n > i
Taylor minimum MSFE
9.4 R
L
& 9.35F ]
=
9.3F |
925 - 00RO
X
X
92 Il Il Il Il Il
0 50 100 150 200 250 300

Figure 7.53: MSFE for E[X]| =10, 0, = 1, 01 = 3, 02 = 3, 01 = 2, 03 = 2.05, n; = 20,
Monte Carlo minimum MSFE = 186, Taylor algorithm minimum MSFE = 175
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Figure 7.54: MSFE for E[X]| =10, 0, =1, 01 =5, 02 = 5, 01 = 2, 3 = 2.05, n, = 20,
Monte Carlo minimum MSFE > 500, Taylor algorithm minimum MSFE > 500



243

MSFE for E[X]=10,0X=3,01=0,02=0

0.1

0.05

MSFE

-0.05F O Monte Carlo
Taylor Algorithm n< n
Taylor Algorithm n > n
_01 1 1 1 1
0 10 20 30 40 50 60 70

Figure 7.55: MSFE for E[X] =10, 0, =3, 01 =0, 00 =0, 6 = 2, 6, = 2.05
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Figure 7.56: MSFE for E[X]| =10, 0, =3, 01 =1, 02 = 1, 1 = 2, 03 = 2.05, n; = 20,
Monte Carlo minimum MSFE = 22 Taylor algorithm minimum MSFE = 21
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MSFE for E[X]:10,GX:3,01:3,02:3

10 T T T
O  Monte Carlo
9.9} X Monte Carlo minimum MSFE|{
Taylor Algorithm n< Ny
98} Taylor Algorithm n > n i
Taylor minimum MSFE
9.7
9.6
w
¢ 9.5
=
9.4+
9.3F
9.2 h% g
%
9.1 |
X
X
9 Il Il Il Il Il Il Il Il Il

0 20 40 60 80 100 120 140 160 180 200
n

Figure 7.57: MSFE for E[X]| =10, 0, = 3, 01 = 3, 02 = 3, 01 = 2, 03 = 2.05, n; = 20,
Monte Carlo minimum MSFE = 121, Taylor algorithm minimum MSFE = 114
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Figure 7.58: MSFE for E[X]| =10, 0, =3, 01 =5, 02 = 5, 01 = 2, 3 = 2.05, n, = 20,
Monte Carlo minimum MSFE > 500,Taylor algorithm minimum MSFE > 500
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Figure 7.59: MSFE for E[X] =10, 0, =5, 01 =0, 00 =0, 6 = 2, 65 = 2.05
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Figure 7.60: MSFE for E[X]| =10, 0, =5, 01 =1, 02 = 1, 01 = 2, 03 = 2.05, n; = 20,
Monte Carlo minimum MSFE = 22, Taylor algorithm minimum MSFE = 21
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Figure 7.61: MSFE for E[X]| =10, 0, =5, 01 =5, 02 = 5, 01 = 2, 03 = 2.05, n, = 20,
Monte Carlo minimum MSFE > 500, Taylor algorithm minimum MSFE > 500
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Figure 7.62: MSFE for E[X]| =10, 0, =10, 01 =0, 09 =0, 61 = 2, 3 = 2.05
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Figure 7.63: MSFE for E[X] =10, 0, = 10, 01 =5, 09 = 5, 61 = 2, 5 = 2.05, n, = 20,
Monte Carlo minimum MSFE > 500, Taylor algorithm minimum MSFE > 500
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Figure 7.64: MSFE for E[X]| =10, 0, =0.1,01 =0,09 =0, 0; =2, 6 =25
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Figure 7.65: MSFE for E[X] =10, 0, = 0.1, 01 = 0.1, 02 = 0.1, 6; = 2, 03 = 2.5
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Figure 7.66: MSFE for E[X] =10, 0, =0.1, 01 =1, 05 =1, 6, = 2, 6, = 2.5
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Figure 7.67: MSFE for E[X] =10,0, =1,01 =0,02=0,0; =2, 0, =25
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Figure 7.68: MSFE for E[X] =10, 0, =1, 01 = 0.5, 03 = 0.5, 6; = 2, 6 = 2.5
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Figure 7.69: MSFE for E[X] =10,0, =1,01=1,00=1,0; =2,0, =25
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Figure 7.70: MSFE for E[X] =10, 0, =1, 01 =3, 02 = 3, 01 = 2, 05 = 2.5
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Figure 7.71: MSFE for E[X]| = 10, 0, = 1, 01 = 5, 02 = 5, 61 = 2, 6 = 2.5. Monte
Carlo minimum MSFE = 21, Taylor algorithm minimum MSFE = 20

MSFE for E[X]=10,6,=3,6,=0,0,=0,L=2000,n =20

S STe

20

L -20f 1
)
=
_40 - u
O  Monte Carlo
—60r Taylor Algorithm n< n 1
Taylor Algorithm n > n
-80 I I I | |
0 50 100 150 200 250 300
n
Figure 7.72: MSFE for E[X] =10, 0, =3,01 =0,02=0,0; =2, 0, =25
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Figure 7.73: MSFE for E[X] =10,0, =3,01=1,00=1,0; =2, 0, =25
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Figure 7.74: MSFE for E[X] =10, 0, =3, 01 =3, 03 = 3, 61 = 2, 0, = 2.5
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Figure 7.75: MSFE for E[X] =10, 0, =3, 01 =5, 03 =5, 61 = 2, 0 = 2.5
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Figure 7.76: MSFE for E[X] = 10, 0, = 3, 01 = 10, 02 = 10, 6; = 2, 6, = 2.5. Monte
Carlo minimum MSFE = 22 Taylor algorithm minimum MSFE = 20
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MSFE for E[X]:lO,0X=5.Gl=0.02=0,L:2000,nb=20

40 w ‘
TR ‘,\y\‘.i{\«y‘w‘jn‘-m\r\jvjvnmjw\‘\‘v,-ti‘w‘jmm‘4\‘\y‘\mrw\iv'\«‘«mj“‘,mg«w-uiD
20 b
O -
_20 -
L
L
0
= 40 b
_60 - m
_sol O Monte Carlo |
Taylor Algorithm n< n
Taylor Algorithm n >
-100} yior~g B
0 50 100 150 200 250 300

Figure 7.77: MSFE for E[X] =10, 0, =5,01 =0, 02 =0, 6; =2, §, = 2.5
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Figure 7.78: MSFE for E[X] =10, 0, =5,01 =1, 00 =1, 0; =2, 0 = 2.5
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140

120

100

MSFE for E[X] =10, 0, =5, 01 =5, 05 = 5, 6;

300

=2, 0y =25

MSFE for E[X]=10,0X=5,01=10,62=1O,L=2000,nb=20

X
X
X
X
X
X
X
X
X
X,

TN

R

)

TR

g0

— Taylor Algorithm n > n,

Monte Carlo

Monte Carlo minimum MSFE

Taylor Algorithm n< n,

50

100

150

200 250 300

0y =5, 01 =10, 09 =10, 0; = 2, 5 = 2.5



256

MSFE for E[X]=10,GX=5,01=15,02=15,L=2000,nb=20
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Figure 7.81: MSFE for E[X] = 10, 0, = 5, 01 = 15, 09 = 15, ; = 2, 6, = 2.5. Monte
Carlo minimum MSFE = 25 Taylor algorithm minimum MSFE = 20
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Figure 7.82: MSFE for E[X] =10, 0, =10, 01 =0, 09 =0, 61 =2, 6 = 2.5
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Figure 7.83: MSFE for E[X] =10, 0, =10, 01 =5, 03 = 5, 01 = 2, f = 2.5
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Figure 7.84: MSFE for E[X] = 10,
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Figure 7.85: MSFE for E[X] = 10, 0, = 10, 01 = 20, 02 =20, 0; = 2, 62 = 2.5
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Figure 7.86: MSFE for E[X] = 10, o, = 10, o1 = 40, 05 = 40, 6; = 2, 65 = 2.5
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Figure 7.87: MSFE for E[X]| =10, 0, =0.1, 01 =0,09 =0, 0; =2, 6 = 2.5
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Figure 7.88: MSFE for E[X] =10, 0, =0.1, 01 = 0.1, 09 = 0.1, 6; = 2, 0, = 2.5
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MSFE for E[X]=10,0X=O.1,01=1,02=1,L=5000,nb=100
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Figure 7.89: MSFE for E[X]| =10, 0, = 0.1, 01 =1, 00 = 1, 61 = 2, 3 = 2.5. Monte
Carlo minimum MSFE = 100, Taylor algorithm minimum MSFE = 100
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Figure 7.90: MSFE for E[X] =10,0, =1,01 =0,02=0,0; =2, 0, =25
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MSFE for E[X]:10,0x:1,ol=0.5,02=0.5,L=5000,nb=100
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Figure 7.91: MSFE for E[X] =10, 0, =1, 01 = 0.5, 02 = 0.5, 01 = 2, 03 = 2.5
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Figure 7.92: MSFE for E[X] =10,0,=1,01=1,09=1,0; =2,0, =25
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Figure 7.93: MSFE for F[X]| = 10, 0, = 1, 01 = 3, 02 = 3, 01 = 2, 62 = 2.5. Monte
Carlo minimum MSFE = 100, Taylor algorithm minimum MSFE = 100
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Figure 7.94: MSFE for E[X]| = 10, 0, = 1, 01 = 5, 02 = 5, 61 = 2, 6 = 2.5. Monte
Carlo minimum MSFE = 100, Taylor algorithm minimum MSFE = 100
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MSFE for E[X]=10,0X=3,01=O,02=O,L=5000,nb=100
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Figure 7.95: MSFE for E[X] =10, 0, =3,01 =0,02=0,0; =2, 0, =25
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Figure 7.96: MSFE for E[X]| =10, 0, =3, 01 = 1, 02 = 1, 6; = 2, 62 = 2.5. Monte
Carlo minimum MSFE = 100, Taylor algorithm minimum MSFE = 101
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Figure 7.97: MSFE for E[X]| = 10, 0, = 3, 01 = 3, 02 = 3, 01 = 2, 62 = 2.5. Monte
Carlo minimum MSFE = 100, Taylor algorithm minimum MSFE = 101
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Figure 7.98: MSFE for E[X]| = 10, 0, = 3, 01 = 5, 02 = 5, 61 = 2, 6 = 2.5. Monte
Carlo minimum MSFE = 100, Taylor algorithm minimum MSFE = 102
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Figure 7.99: MSFE for E[X] = 10, 0, = 3, 01 = 10, 02 = 10, 6; = 2, 6, = 2.5. Monte
Carlo minimum MSFE = 102, Taylor algorithm minimum MSFE = 105
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Figure 7.100: MSFE for E[X] =10, 0, =5,01 =0,09 =0, 01 =2, 6, =25
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MSFE for E[X]:10,0X25,01=1,0221,L=5000,nb2100
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Figure 7.101: MSFE for F[X] =10, 0, =5, 01 = 1, 00 = 1, 61 = 2, 62 = 2.5. Monte
Carlo minimum MSFE = 100, Taylor algorithm minimum MSFE = 103
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Figure 7.102: MSFE for F[X] = 10, 0, =5, 01 = 5, 03 = 5, 61 = 2, 6, = 2.5. Monte
Carlo minimum MSFE = 100, Taylor algorithm minimum MSFE = 105
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Figure 7.103: MSFE for E[X]| = 10, 0, = 5, 01 = 10, 09 = 10, 6; = 2, 63 = 2.5. Monte
Carlo minimum MSFE = 101, Taylor algorithm minimum MSFE = 109
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Figure 7.104: MSFE for E[X]| = 10, 0, = 5, 01 = 15, 09 = 15, 61 = 2, 6, = 2.5. Monte
Carlo minimum MSFE = 103, Taylor algorithm minimum MSFE = 120
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Figure 7.105: MSFE for F[X] = 10, 0, = 10, 01 = 0, 09 = 0, 0; = 2, 03 = 2.5.Taylor
algorithm minimum MSFE = 116
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Figure 7.106: MSFE for E[X] = 10, 0, = 10, 01 = 5, 09 = 5, 1 = 2, 6, = 2.5. Monte
Carlo minimum MSFE = 100, Taylor algorithm minimum MSFE = 119
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Figure 7.107: MSFE for F[X]| = 10, 0, = 10, 01 = 10, 09 = 10, 61 = 2, 6 = 2.5. Monte
Carlo minimum MSFE = 100, Taylor algorithm minimum MSFE = 119
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Figure 7.108: MSFE for E[X]| = 10, 0, = 10, o1 = 20, 09 = 20, 61 = 2, 6, = 2.5. Monte
Carlo minimum MSFE = 104, Taylor algorithm minimum MSFE = 182
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Figure 7.109: MSFE for F[X]| = 10, 0, = 10, 01 = 40, 09 = 40, 6, = 2, 6, = 2.5. Monte
Carlo minimum MSFE = 104, Taylor algorithm minimum MSFE = 182
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Chapter 8

The Delta Method

8.1 Introduction

When studying random processes, whether continuous or discrete, scalar or multivariate,
all information concerning the process is contained in the distribution or joint distribution
functions. Distribution functions can be functionally quite complicated. The expectation
is the main tool which provides quantitative measures of different characteristics of the
distribution and density functions. For example, in the case of a normally distributed
random variable the expectation provides the center value around which observations
occur. Similarly, the variance provides a measure of the dispersion of the events around
the mean. In general, moments and central moments of random processes provide criteria
by which one can understand the occurrences of random events.

Functions of random variables are ubiquitous in economics, econometrics, and finance,
and therefore it becomes critical to understand the distribution of functions of random
variables. The Delta method is a tool used in statistics to approximate the moments of
a function of random variables. In this chapter, we begin by exploring the underlying
tool used by the Delta method, the Taylor approximation. We follow with a literature
overview of the different results that fall under the title of the Delta Method, including
the conditions for their application.

The Delta method provides an approximation to the expectation of a function ¢
of random variables by taking expectation of a polynomial approximation to . This
polynomial approximation is usually a truncated Taylor series centered at the population

mean F[X], and the convergence depends on the smoothness and boundedness of ¢ as
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well as the moments of X.

8.2 Delta Method for bounded functions

The first version of the Delta method was presented by Cramér [36, p.353]. Cramér
uses the Delta method to approximate the mean and variance of some function of sample
moments. We present the theorem and its proof to illustrate the methods and assump-
tions. We begin with a random variable X with distribution F' and X1,..., X, an i.i.d.
random sample from F'. xy,--- ,x, is a realization of the random sample. p; is the jth
population moment of X, p; = E [X7], and ft; is the jth population central moment,
fi; = E[(X — p)’]. Denote the jth sample moment by m;, = > &, a:Z/n and the jth
sample central moment by m;j, = >~ (z; — )7 /n. Both m;, and m;,, are functions
from R™ into R and therefore a function depending on these moments is a function on
R™. Given a function ¢ of two sample central moments m; ,,m; , the mean and variance

of ¢ can be estimated as follows:

Theorem 8.1 (Cramér) Suppose:

1. In some neighborhood of the point m; , = [i;, m;, = fi; the function ¢ is continuous
and has continuous derivatives of the first and second order with respect to the arguments
my and my,.

2. For all possible values of x;, it follows || < CnP, where C' and p are non-negative
constants.

Denoting vo = ¢(fti, i), 1 = Op/0my; ([i, fij) and pa = Op/0m; (fii, ij), the mean and

variance of the random variable p(m;,m;) are :

E[p(mi, mj)] = @0+ O(n™h),

Var(p) = pa(mi) o3 + 2p11 (M, m;)p109 + pa(me)es + 0(n=3/?).

Proof. Let P(S) be the probability function of the joint distribution of X,--- , X,,. P(S)

is a set function in R”. Since Xi,---,X,, is a random sample of X, we know from the
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characteristics of sampling distributions
E[(min — )] = O(n™"). (8.2.1)

Using this, and by Tchebycheff’s theorem, it follows that

E[(min — i) A
Pl — )% 2 €] < { S Lo e2knk’

or

_ _ A
e’fn

for some constant A independent of ¢ and n. The corresponding inequalities hold for

Mjn. Define the set Z = {(z1, -+ ,xn) : |Min — fis| <€ |mjn — 1| < €} and denote by

Z° the complement of Z. It follows from (8.2.2) that

2A 2A

P(Z2%) < . P(Z)>1- . (8.2.3)

It follows that E[¢] = [, @dP+ [,.@dP. By condition 2), (8.2.3) and choosing k > p+1
|[c pdP| < 2ACnP [e**nF = O(n™'). For ¢ small enough, it follows from condition 1)

that for any point in Z

@(mi,myj) = po + (Mi — fig)p1 + (My — [ij)p2 + R,

R= o [(m; = )" + 20 — i) (M = [i)12 + (M5 — i) ¢ha]

where cp;j denotes second order derivatives evaluated at a point between (m;,m;) and

(i, i5). It follows

/QOdP = QD()P(Z) +(,01/(T7LZ' —ﬂi)dP—Hog/(mj —ﬂj)dp+/ RdP. (8.2.4)
Z Z Z Z

By (8.2.3), the first term on the right of the equality differs from ¢y by a quantity of

order n~* which is smaller than n~! by our choice of k. For the other two terms we first
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note ¢ and o are independent of n. Furthermore, given that for sample distributions
Elmin] = i +0(n™) and  E[(min — 1)*] = O(n™F) (8.2.5)
and applying Schwarz inequality it follows

/Z(ﬁlm — fi3)dP = E[m;, — fi;) — / (M m — fi;)dP

c

=0(n Y - /(mm — 1;)dP,

1/2
|:/ (mm — ﬂz)2dp dP:|
c ZC

< [E[(mzn — ,ﬂi)Q]P(ZC)F/2 - O(n—(k:+1)/2)7

IA

/c(mz‘,n - ﬂz‘)dp'

and similarly for m;,. The derivatives gogj are bounded for sufficiently small ¢ by con-
dition 1), and it follows that the last term in (8.2.4) is of order n~!. Hence the right
hand side of (8.2.4) differs from g by a quantity of order n~!, and this proves the first
relation of the theorem. We omit the proof of the variance term and direct the reader to
the original text. m

In summary, Cramér proves a Delta method for a function of two central moments which
depends on the sample size n only through the sample moments. The same proof can
be extended for functions of any number of central moments. The main assumptions
on the function ¢ are first that ¢ is bounded by CnP for positive constants C,p and
second that ¢ is twice continuously differentiable in a neighborhood of the population
moments fi; and fi;. The process X is assumed to have sufficient finite moments. The
fact that the function ¢ has as its arguments sample moments, makes Cramér’s result
rather restrictive. This can be seen from the required bounds (8.2.1) and (8.2.5), which
are derived for characteristics of sampling distributions.

Hurt, in [76], expands the application of the Delta method by allowing more general
random variables as arguments of the function ¢, by allowing the function ¢ to depend
explicitly on the sample size n, and by taking more terms of the Taylor series expansion
in the approximation. Specifically, he derives asymptotic formulas for E[p(T},,n)] and

Var(p(T,,n)) where T, is a possibly multi-dimensional statistic. The order of the re-
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mainder depends on the smoothness of the function ¢ and on the size of the moments of

T,,. The main theorem when T, is a one dimensional statistic is as follows:

Theorem 8.2 (Theorem 1 in [76], Hurt) Let ¢ = ¢(t,n) be a function defined on
R x N. Assume, for all n and some q > 1, ¢ admits the continuous (q+ 1)st derivative
fort € [0—0,0+0] where § > 0 is independent of n. Suppose ¢ is bounded on R x N and
all derivatives ¢, -, o4t are bounded on [# — 6,0 + 8] x N. Let {T,,} be a sequence of
statistics with finite moments up to order 2(q+1) such that E|T, —2¢t! = O(n—(a+1)),
Then

g .
Elp(Tn,n) — ¢(0,n)] = ) l, <a]—“.’>t_0 E[(T, — 0)7] + O(n~(at1)/2),

qa q j k
11 (9 d"p
Var[p(Ta,n) — ¢(0,n)] = Z Z UK <W>t:9 <W>t:9

- cov[(Ty, — 0), (T, — 0)*] + O(n~(a+2)/2),

The theorem for the multi-dimensional case follows:

Theorem 8.3 (Theorem 2 in [76],Hurt) Let ¢(t1,...,t,,n) be a function defined
on R" x N. Assume:

1) for all n, ¢ is (¢ + 1) times totally differentiable with respect to t;’s in the interval
K = X]_,[0; — 0;,0; + 9], 61 > 0, 0; independent of n,

2) ¢ is bounded on R" x N,

3) all the derivatives up to the order ¢ + 1 are bounded on K x N,

4) {(Thn, -+ Trn) 302 is a sequence of multidimensional statistics such that

5) there exists absolute moments of T;, up to order 2(q+ 1)

6) fori=1,--- 1 E|T;, — 0,24t = O(n—(at1))

Then with i1 + -+ + i, = j:

E[@(Tl?% 7T7“nan) - @(017 797“7”)] =

11 o
ZFZZ [c‘%’f...@tff

j=1 11 ir

E[(Th, — 91)"1 e (T — er)i’”] + O(n—(q+l)/2)7
t=6
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and with i1 + -+ i, =j, mi+---+m, =k

V(IT[ (Tlm T TTnan) - 80(917 o 797“7”)] =
q o
;kzﬂj’k'; ;; Z [at“... “] o [atTl...at?”L:é)

€ [(Tin — 001 .. (Ton — 0,)7 (Tin — 01)™ .. (Ty — 0,)"] + O(n~(T+D/2),

where t = (t1,-+- ,t.),0 = (01,--- ,0,).

The proof for theorems 8.2 and 8.3 follow similarly as the proof by Cramér in that
the expected value is split into an integral on a neighborhood around the corresponding
population statistic 6, Z = {t : |t — 0] < ¢} for the one dimensional case, and an integral
on the complement of said neighborhood, Z¢. The dependence of the size of the remainder
on the sample size n follows from the assumption that the sequence {T),} of statistics has
finite moments up to order 2(q + 1) such that E|T,, — 0]2+1),

The Delta method theorems up to this point assume boundedness of the function
. There are many unbounded functions that are of interest, such as the squared error
function. In the next section, we examine Delta method results for some classes of

unbounded functions.

8.3 Delta Method for polynomial bounded functions

Lehmann [92] presents a Delta method for the special case where ¢ does not need to be

bounded as long as the derivatives of ¢ up to some order exist and are bounded.

Theorem 8.4 (Theorem 5.1 in [92], Lehmann) Let Xy,---, X, bei.i.d. with E[X1] =

¢, Var(Xy) = o2 and finite fourth moment. Suppose ¢ is a function of a real variable
whose first four derwatives o' (x),¢" (), ¢ (x), ") () exist for all x € T where I is
an interval with P(X, € I) = 1, and such that | (x)] < M for all x € I, for some
M < oco. Then

Elp(X)] = (&) + 5-¢ (&) + R,
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and if, in addition, the fourth derivative of p? is also bounded,

o2

Var(p(X)) = —(¢'(9)" + Bn,

where the remainder R, in both cases is O(n=2).

Proof. The result follows from the strong assumptions on the function ¢ and the fact
that E[(X — €)% and E[(X — £)?¥], if they exist, are of order 1/n* for k > 1. First,

we make note of the following relations:

If for all z, the fourth derivative p(**) exists and satisfies |p(*) (x)| < M for some M < oo,

then

"

p(z) = () + @' ()T — &) + 59 (E)(T —€)* + L ()@ —€)° +R(z,6), (83.1)

6

where |R(z,&)| < M(z — £)*/24. Taking expectations of (8.3.1) the result follows. m

Theorem 8.5 (Theorem 5.1a in [92], Lehmann) The results in theorem 8.4 remain
valid if for some k > 3 the function ¢ has k derivatives, the kth derivative is bounded,

and the first k moments of the X ’s exists.

The assumptions of bounded derivatives of the function ¢ up to some order k£ are equiv-
alent to polynomial boundedness of ¢ by a polynomial of order of at least k.

In [107], Oehlert attempts extend previous Delta method theorems in that the ap-
proximating polynomial does not need to be a truncated Taylor series and that the
function in question needs to be only polynomially bounded in its arguments. We
give some notation and state the theorem. The theorem is proven for functions of

the normalized sample moments wu;, = Z:L:l(:nf — j)/+/n. For polynomials in the

first J normalized sample moments, let p = (p1,pa2,...,ps)’ be a vector of powers and
wP = up = il uhl ,u’fn. The sets P4 and Pp are finite sets of powers that define

the approximating and bounding polynomials.
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Theorem 8.6 (Oehlert) Let the random variables w;y be the normalized sample mo-
ments of an i.i.d. sample of size n from a distribution with finite tth moment. Suppose

that there are approxrimating and bounding polynomials

Ap(un) = Z anpu?,  Bp(un) = Z by pu?,

PEPY pEPp

such that
72 lo(n, un) — An(un)| 50, (8.3.2)
nPlo(n, un) — An(un)| < Blun), (8.3.3)

for all n sufficiently large. Ift > 2J and t > maxpepyup, Z}]:l Jpj, then nPE|p(n, u,) —
Ay (up)|—0, and consequently, Ep(n,u,)] = E[A,(un)] + o(n™?).

Assumption (8.3.2) of this theorem is quite strong and limits its applicability in very

important situations.

8.4 Delta Method for exponentially bounded

functions

In this section, we present Delta method results for a class of functions which might grow
faster than a polynomial function but can be bounded by an exponential function.

In [84], Khan applies stronger conditions on the random variables than those in [36]
and [92] in order to obtain a Delta method theorem that applies to a larger family of
functions. Consider the i.i.d. random variables X1, Xo, -+, X,, with mean p, variance
o? and X,, = > | X;/n. Let A C R be an interval such that P(X; € A) = 1. Define F

as the class of functions, continuous on A, such that ¢ € F implies
lp(x)| = O(e™!) as |z| — oo, for some a > 0. (8.4.1)

It follows that bounded functions and polynomially bounded functions belong to F.
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Theorem 8.7 (Theorem 1 in [84], Khan) Let X, Xy, -+, X, bei.i.d. random vari-

2

ables with mean p and variance o<, and assume that X1 has a finite moment generating

function (m.g.f.). Let ¢ be a continuous function on A with ¢ € F where A is an interval
such that P(X; € A) = 1. Suppose that the first four derivatives of f are continuous in
(=0, +9) for some 6 > 0. Then

The following two Lemmas are required for the proof of the theorem.

Lemma 8.8 (Chernoff) Let X1, Xo, -, X,, be i.i.d. random variables with mean u,
and assume X1 has a finite m.g.f. ¢(0) for 0 € J containing zero. Then, for any 6 > 0,

there exist numbers p and p1 (0 < p,p1 < 1) such that
P(Xp—p2>06)<pi, P(Xn—pl>d) <2p"

Lemma 8.9 (Khan) Let ¢ € F,and let E|p(X,)| < co. Then under the conditions of

Lemma 8.8
Elp(X)I{| Xy — pl > 6} = O()(p" + pi) = O(n?).

We now present the proof of the theorem.
Proof. (Theorem 8.7) Let Q(z) = Zﬁzo((a:—u)k/k!)go(k) (1) be the Taylor polynomial,

and consider the Taylor expansion of ¢ in (u — 0, u + d) as

@ (e — ) — oW (w)

=Qx)+ R(z), 0<n<l.

It is well known that E[(X, — u)3] = O(n™2), E[(X, — u)*] = O(n~?), and there-
fore it follows E[Q(X,)] = ¢(u) + %gp”(,u) +O0M™2). Let 0 < 6 < 0 and set T, =
Elo(X))I{|Xn —p| < 61} By lemma 8.9 we have E[p(X,,)] = T,, + E[¢o(X,) I{| X, — 0] >
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61} =T, + O(n™2). Clearly

T = E[Q(Xn) {| Xy — 0] < 01}] + E[R(Xp)I{| Xy — 0] < 61}]

= BlQ(Xn)] — BIQ(Xn) {| Xy — 0] = 01}] + E[R(Xy)I{| Xy — 0] < 01}]
Since Q(z) € F, by lemma 8.9 we have
T, = E[Q(X,)] + O(n™?) + E[R(X,) I{| X, — 0] < 01}].

Now consider the remainder term. Let Z, = u+n(X,, —p), 0 <n=mn, < 1. | X, —pu| < 61
implies |Z, — u| < 61, and Z, is in the closed interval [y — &y, + 61]. Since ¢ (x) is
continuous in [p — &1, i + 61], hence (1/4!)|o® (Z,) — ¥ ()| remains bounded by some

constant K. Thus we have

BIR(X)H{|X, — 0] < 81}) < KE[(X, — )] = O(n™?).

Khan’s theorem has many weaknesses. To begin with, the theorem only applies to
functions with one argument consisting of a sample mean of a random sample. The proof
is not general enough to be extended to functions of other sample statistics or functions
with more general dependence on several random variables. This weakness can be traced
to lemma 8.9 which is an application of the Law of Large Numbers.

The following theorem extends the work of Khan [84] and Hurt [76]. The theorem
replaces the need for finite m.g.f.’s with a more general condition. The statistic S,
is allowed to be arbitrary as opposed to being the sample mean of r.v.’s Xq,...,X,,.
The condition in [76] that ¢ must be bounded is relaxed to the condition given in
[84] for bounding ¢ with an exponential function. We consider a continuous function
©(Sp) : ACR — R. S, is a one dimensional statistic with P(S,, € A) = 1 and which
itself can be a function of n random variables X1,..., X, i.e., Sp(X1,...,Xp). ¢ € Fyu

implies condition (8.4.1) holds. First, given some assumptions, we prove a lemma.

Assumption 8.1 1/py +1/ps =1 with p1 > 1 pa > 1.
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Assumption 8.2 {S,} is a sequence of one dimensional statistics with finite moments

up to order pa(q+1).

. P
Assumption 8.3 S5, — 6.
Assumption 8.4 E|S, — §P2(at)) = O(n=(at1)),
Assumption 8.5 Eexp(p1a|S,|) < oco.
Assumption 8.6 ¢ € F, and E|p(S,)| < o0.

Assumption 8.1 is the condition required by Hélder’s inequality, which is used in the
lemma to follow. Parameters pq, po make the result of the lemma and the theorem more
general than the results in [84]. In fact, there is no reason to use Schwarz inequality
instead of the more general Holder’s inequality in lemma 2 of [84]. Assumption 8.3
has implications regarding the dynamic nature of the process {X;}. For example, if the
statistic S, is the sample mean of Xi,...,X,, assumption 8.3 implies the r.v.’s of the
process { X} must be identically distributed, (see Chapter 3 in [153]). Assumption 8.5 is
weaker than the assumption of finite m.g.f’s used in [84]. Assumption 8.6 characterizes
the growth nature of the function ¢(z) as |x| — oo and establishes the existence of the

expected value we attempt to approximate.

Lemma 8.10 (Martinez) Under assumptions 8.1 through 8.6
Elo(S)I{|Sy — 0] > 6}] = O(n~(at1)/p2),

Proof. ¢ € F, implies there exists a finite NV and a constant C, both independent of
x, such that |p(x)] < Cexp(alz|) V x with [t —60| > N. Let B(z) ={z:J < |z—0| < N}
and B(z) = {z : |z — 0] > N} where I{-} is the indicator function. It follows

Elo(Su)I{[Sn — 0| = 6}] = Elp(Sn)I{B(Sn)} + Elp(Sn) I{B(Sn)}]. (8.4.2)

By continuity of ¢, |¢(S,)| < M in B(S,) for some constant M independent of n. By
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Markov’s inequality and the assumption on the moments of S,,

Ello(S)|I{B(Sn)}] < MP(S, € B(S,)) < MP(|S, — 0] > )

M

< WE[ 1S, — 9|P2(Q+1)] _ O(n—(q+1))' (8.4.3)

Let us comment on (8.4.3). The exponent involved in Markov’s inequality can be set to
any finite number. In the above, we set this exponent equal to p2(q + 1). The reason for
this lies in the use of this lemma in theorem 8.11. The present lemma is used in the said
theorem to bound a Taylor expansion in a neighborhood of #. In theory, the exponent
in Markov’s inequality can be set equal to any number greater or equal to pa(¢+1). On

B(Sn), |0(Sn)| < Cexp(alSn|), and it follows that
Ello(S)[1{B(S,)}] < CElexp(0]S,)I{B(S,)}).
By Holder’s inequality,
Blexp(alSu[) I{B(S.)}] < EYPexp(p1alS, DI (P(1S, — 0] = N))' /7.

Since S, = 6 and exp(z) is continuous on A, it follows that exp(p1«|Sy,|) il exp(p1c|d])

(see proposition A.18 in Appendix B). Furthermore, assumption 8.5 implies, by the domi-

nated convergence theorem (see Appendix F'), Elexp(p1a|Sy|)] converges to Elexp(pic|6])]
as n — oo and therefore Elexp(p1a|Sy|)] = O(1). It follows that

Ello(Sn)IT{B(Sn)}] < CE'P [exp(p1a|S|)](P(|S, — 6] > N))'/72
= 0(1)0(n=(a+1)/P2)  (8.4.4)

(8.4.2), (8.4.3), and (8.4.4) give the result. m
We give one assumption and state the theorem.

Assumption 8.7 : For some q > 1, p(x) has finite and continuous derivatives up to

order ¢+ 1 in (0 — 0,0 4 6) for some § > 0.

Assumption 8.7 is needed to write the Taylor expansion of ¢ in the interval (6 —6,0+0)
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in the following theorem.

Theorem 8.11 (Martinez) Under assumptions 8.1 through 8.7
—0) —(g+1)/p
E[p(Sn +Z <88]> _ Bl(S = 0)]+ 0t 2).

Proof. Let ¢®)(x) denote the kth derivative of ¢ with respect to z. Let Q,(z) =
1o ©®)(0)(z — 6)* /k!. The Taylor expansion of ¢ in (§ — 8,6 + 6) is

#le) = Qole) + PO + (e - 0)) (@ — 0)7*!

(g+1)!
= Qq(x) + Ry(x), 0<n<1. (8.4.5)

It follows

E[(Sn — 0)"]. (8.4.6)

E[Qq(Sn )+ D

k=1

?T‘|p—t

Let 0 < 81 < 0 and set T}, = E[p(Sp)I{|Sn — 0| < 01}]. By lemma 8.10 it follows
E[(Sn)] = T + Elp(Sn)I{|Sn — 0] = 61}] = T, + O(n~ 0+ /P2), (8.4.7)

One can write T}, as follows:

Ty = ElQq(Sn)I{[Sn — 0] < 01}] + E[Ry(Sn)I{|Sn — 0] < 61}]

= E[Qq(Sn)] — E[Qq(Sn)I{[Sn — 0] = 01}] + E[R¢(Sn)I{|Sn — 0] < 61}].
Since Qq(z) € Fu, by lemma 8.10 it follows

= E[Qq(Sn)] + O(n™"*D/2) 1 B[Ry (S,)1{|Sy — 0] < 61}]. (8.4.8)
To understand the order of the remainder term we first note

E[Ry(Sp)I{|Sn — 0] < 61}] = E[Ry(Sn)I{|Sn — 0] < d1}],
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and Z, = 0 +n(S, —0) € [0 — 61,0 +6;] for 0<n <1 It follows, since plath is

continuous in [0 — 61,6 + 01], go(q“)(Zn) is bounded and we have
E[|Ry(So)|I{|S,, — 0] < 6,}] < KE[|S,, — 0]9TV] = O(n=(a+D/p2), (8.4.9)

The result follows from (8.4.6), (8.4.7), (8.4.8) and (8.4.9). m

The previous theorems apply to functions, ¢(x), which become unbounded as |z| — oo
but do not apply to functions which become unbounded at a finite point in A. Next, we
consider the case of a function ¢(x) : A C R — R with an essential discontinuity at a point
xo. Define subintervals A;(x) = {x € R: |[z—0]| <}, As(x) = {x € R: |[z—x0| < 1} and
As(x) = (A1(z)UAz(z))¢ for 6 > 0,01 > 0 such that xg+01 = 0—39 and A = A;UAsUAs.

Let Q(aﬁ) denote the class of functions on A such that

lp(x)] = O(e™), as |z| —oc and

lp(z)] = O(?/1#=2ly " as & — z, for some «,3 > 0.

As before, S;, is a one dimensional statistic with P(S,, € A) = 1. We give some assump-

tions and prove two lemmas.
Assumption 8.8 0 # ¢ and Elexp(p13/]Sn — z0])] < oc.
Assumption 8.9 ¢ € G, 3) and E|p(Sy)| < co.

The following lemma is similar to lemma 8.10 except that assumption 8.6 is replaced by

assumption 8.9.

Lemma 8.12 (Martinez) Under assumptions 8.1,8.2,8.3,8.4,8.5, and 8.9
E[p(Sn)I{S, € A3}] = O(n~(at1)/p2)

Proof. The proof of this lemma follows similarly as the proof of lemma 8.10. Without
loss of generality we take zo = 0, 8 > 0. ¢ € G, 3 implies there exists a finite C' and a
constant N, both independent of z, such that |¢(z)| < Cexp(a|z|) Vo with |z — 6| > N.
Let Bi(z) ={r e R:d<x—60 <N}, Be(x) ={x e R: 00— N <z < -4} and
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B(z) ={z: |x — 0] > N}. Tt follows

Elp(Sn)I{S, € A3}] =E[p(Sn)I{Sn € B1(Sn)}] + Elp(Sn)I{Sn € Ba(Sn)}]
+ E[@(Sn)j{sn € B(Sn)}]

Following the same arguments of lemma 8.10, E[p(S,,)I{S, € B(S,)}] = O(n~(a+D/p2),
By continuity of ¢ in A; U A3, [¢(Sy)| < M on Bi(Sy) and Ba(S),) for some constant M

independent of n and

M

= WEHS" — g|P2at] = O(n~ (et D),

Similarly, E[¢(Sn)I{S, € B2(Sn)}] = O(n~(¢*t1) and the result follows. m

Lemma 8.13 (Martinez) Under assumptions 8.1,8.2,8.3,8.4,8.8 and 8.9
E[p(S)I{|Sn € As}] = O(n~(a+1)/p2)

Proof. Without loss of generality we take xg = 0, § > 0. Since ¢ € G, g, 3 a finite C
and a # > 0 such that [¢(S,)| < Cexp(5/|Sn|) on Az and we have

Ell@(Sn)|I{Sn € A2}] < CElexp(B/|Sn|)I{ Sy € Az}]
< CEYP exp(p1 8/|S,]))(P(I{S, € A2}))"/P
< CEYP [exp(p1 B/|Sa)](P(I{|Sn — 6] > 61)) /72,

where the second inequality follows from Hoélder’s inequality. Since S, L 9 and the ex-
pression exp(p1/3/|x|) is continuous at 4, it follows by proposition A.18, exp(p1/3/|Sn|) il
exp(p14/]0]). Furthermore, assumption 8.8 implies, by the dominated convergence theo-
rem, that Elexp(p15/|Sn|)]— FElexp(p15/]0])] as n — oo and therefore Elexp(p13/|Sn|)] =
O(1). It follows that

E||S,, — g|p2(at1)
Sp2(g+1)

1/p2
Ello(Sn)[I{S, € A2}] < O(1) < ) = O(n~(at0/p2) " (8.4.10)
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and (8.4.10) gives the result. m

Theorem 8.14 (Martinez) Under assumptions 8.1,8.2,8.3,8.4,8.5,8.7,8.8,8.9
Ble(Sn)] = #(0) + Z 0 BI(S, - 0] + Oln~w /),
DsT

Proof. As before, let Qq(x) = >"{_ Ogo(k (0)(z — 0)¥/k!. The Taylor expansion of ¢ in
(0—6,0+9) is given by (8.4.5) and the expected value of Q,(Sy) is given by (8.4.6). The

expected value of ¢(S;,) can be written as follows

E[SO(SH)] = E[@(Sn)l{sn € Al}] + E[@(Sn)l{sn € A2}]
+ E[p(S0)I{Sn € Ag}]. (8.4.11)

From lemma 8.12, it follows E[p(S,)I{S, € A3} = O(n~@+t)/P2) Denote T;, =
Elp(Sp)I{S, € A1}] and

T = E[Qq(Sn)I{Sn € Ar}] + E[Rq(Sn)I{Sn € Ar}]
= E[Qq(sn)] - E[Qq(sn)I{Sn S A2}]
— E[Qq(Sn)I{Sn € As}] + E[Ry(Sn)I{S, € A1}].

Since Qq(Sn) € G(a,3), by lemma 8.12, lemma 8.13 and (8.4.9) T, = E[Qq(Sn)] +
O(n=(a+1)/p2) (8.4.11) becomes E[p(S,,)] = E[Qq(Sn)|+E[p(Sn)I{Sy € Ao}|+O(n=(at1)/p2)
and the result follows by applying lemma 8.13 again . m

The multivariate version of the previous theorem can be formulated by considering a
function p(z) : A C R” — R with an essential discontinuity at a point ¢ = (z10,- - , Zr0)-
Using the Euclidean norm || - ||2, we define subsets Aj(x) = {z € R" : ||z — 0|2 < J},
Ay(z) ={z € R" : ||z — x0||2 < 61} and Az(x) = (A1(z) U Ax(x))¢ with 6 > 0, 61 > 0,
|10 — x0||2 = 01 + J such that A= A; U Ay U Az. H, g denotes the class of functions on
A such that |o(z)] = O(e®!l*ll) as ||z]] — oo and |p(z)| = O(e/Il#=0lly as ||z — 24|| — 0
for some a, 3 > 0, where || - || is the one norm ||z|| = Y |;]. Sin is a one dimensional

statistic for ¢ = 1,...,r with P((S1p, - ,Sm) € A) = 1.
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Assumption 8.10 {S,, = (Sin, - ,Sm)} is a sequence of multidimensional statistics

with finite absolute moments of Sy, up to order pa(q+1).
Assumption 8.11 S, il 0; fori=1,...,7.

Assumption 8.12 F|S;, — 6;[P24tD) = O(n=(4t)) fori=1,... 7.
Assumption 8.13 Elexp(pial|Sy|])] < 0.

Assumption 8.14 0 # xg and Elexp(p13/||Sn — xo|)] < 0.
Assumption 8.15 ¢ € G, 3 and E|p(S,)| < oco.

Assumption 8.16 ¢ has finite and continuous partial derivatives up to order q + 1 in

A

We note, for the case of a multivariate function p(z) : A C R"™ — RS, it is sufficient

to check the assumptions above for each ¢;(z) : A C R" — R, ¢ = 1,...,s where

p(x) = (p1(2),- -, 0s(2)) T

Lemma 8.15 (Martinez) Under assumptions 8.1, 8.10,8.11,8.12,8.13 and 8.15
E[p(Sn) {8, € A3(S)}] = O(n~(@/p2)

Proof. ¢ € H, 3 implies 3 a finite N, N > 64261, and a constant C', both independent
of z, such that |¢(z)| < Cexp(al|z||) Yz with ||z — 0|2 > N. Let B(z) = {z : ||z —0]|2 >
N} and B(z) = {x : B¢ — A; — As}. Tt follows

E[p(Sn)I{Sn € A3(Sp)}] = Elo(Sn)I{Sn € B(Sn)} + Elp(Sn)I{Sn € B(Sn)}].

By continuity of ¢ on As(x), |¢(Sn)| < M on B(S,,) for some constant M independent
of n. It follows by Markov’s inequality

Elp(Sn)I{Sn € B(Sn)}| < MP(S, € B(Sh)) < MP(||Sp — 0]]2 > 9)

M p2(q+1)
ng[HSn_HH; ].
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Furthermore,

T

EJ||S,, 9”172 q+1 [(Z o — ) )pz(q+1 /2] [(Z i — 04 )pz(q-i-l)]

=1

[ (5 e

=1

<

.

T

{ ( n—(atD) )1/pz(q+l)}pz(q+l) :O(n_(q+1)), (8.4.12)
=1

where the second inequality is due to Minkowski’s inequality and the second equality
follows from the assumption on the moments of S,,. On B(S,,), |¢(S,)| < Cexp(a||Sal||)

and it follows

Elp(Sn)I{Sy € B(Sn)}] < CElexp(a|[Snl[)I{Ss € B(Sn)}]

< CEYP exp(pral|Sul I P(1|Sn — 0ll2 > N))V/72,

where the second inequality follows by Hoélder’s inequality. Since Sy, il 0; and exp(x) is
continuous on A, it follows exp(p1|Sin|) £ exp(p1a0;|) and exp(p1c||Sy||) £ exp(p1c|0]]).
Furthermore, the assumption E|exp(pi1c||Sy||)] < oo implies, by the dominated con-
vergence theorem, that FElexp(pi1c||Sy||)]—Elexp(p1c||0||)] as n — oo and therefore
Elexp(p1c||Sn]])] = O(1). It follows

Ello(Sn)|I{B(Sn)}] < CEVP exp(p1al|Sal )] (P(|S, — 0] > N))!/P2
= 0(1)O(n~(at1)/P2) " (8.4.13)

The result follows from 8.4.12 and 8.4.13. =

Lemma 8.16 (Martinez) Under assumptions 8.1,8.10,8.11,8.12, 8.14 and 8.15
E[p(S,)I{Sy € A3(Sp)}] = O(n~(a+1/p2)

Proof. Since ¢ € H, g, 3 a finite C' such that [¢(Sy)| < Cexp(5/||Sn||) on Az and we
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have

Ello(Sn)|I{Sn € A2}] < CE[exp(B/[|Snl[)I{Sn € Az}]
< CEYP exp(p13/1S,|)](P(I{S, € A2})"/P
< CEYP exp(p13/|SnlD)(P(I{]]Sn = 0]]2 = 61)) /7=,

where the second inequality follows from Holder’s inequality. Since S;, Ll 0i, |1Sn]| il
[|0]]. By continuity of the expression exp(p1/3/||z||) at €, it follows by proposition A.18,
exp(p15/||Snl]) L exp(p13/]|0]]). Furthermore, assumption 8.14 implies, by the domi-
nated convergence theorem, Elexp(p13/||Sn||)]— Elexp(p15/]]0]|)] as n — oo and there-
fore Elexp(p15/||Sn|])] = O(1). It follows

1 B(|IS, — 020\
E[|o(Sp)|[I{S, € A2} < CEYPrlexp(p1/||Sn]])] Spa(arD)

= 0(1)O(n~ @t 1)/P2) - (8.4.14)

and (8.4.14) gives the result. m

Theorem 8.17 (Martinez) Given ¢(Sin, - ,Sm) : A C R" — R, under assumptions
8.1 and 8.10 through 8.16, it follows

Elo(Sin, -+ ,Sm)] = (917...79T)+

> 1Y

E[(S1n — 61) ... (Spn — 6,)] + O(n~(a+1/p2),
s=0

with iy + -+ +i, =Jj, s=(s1,-+-,87) and 0 = (01,--- ,0,).

Proof. The proof is a generalization of the one dimensional theorem. The multivariate

Taylor expansion of ¢(S5,,) in A; is given by ¢(Sy) = Qq(Sn) + Ry(Sy), where

Qq(sn) = 90(61’ to 707“)+

- o7 . .
IFPNDD | e

ir s=0
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fori; +---4+14 =7 and

1 ajsp . .
Ry(Sn) = ——51 > D [ﬁ] (Stn = 01)" ... (S — 67)"
(g+1)! - - Osit...0s; o n(Smt)

fori;+---+1i, = ¢+1,0 <n < 1. The expected value of ¢(S,,) can be written as follows

Elp(Sn)] = Elp(Sn)I{Sy € A1}] + E[p(Sn)I{Sn € A2}]

+ E[p(Sn)I{Sn € A5}]. (8.4.15)

From lemmas 8.15 and 8.16, E[p(S,)I{S, € A2} = O(n~(@+D/P2) and E[p(S,)I{S, €
A3}] = O(n~(@+D/P2) respectively. Denote T}, = E[p(S,)I{S, € A1}] and

T =E[Qq(Sn)I{Sy € A1}] + E[Ry(Sn)I{Sn € A1}]
:E[Qq(sn)] - E[QQ(SH)I{SH € A2}]
— E[Qq(Sn)I{Sn € A3}] + E[Ry(Sn)I{Sn € A1}].

Given Z, = 0+ n(S, —0) € Aj, and since all partial and total derivatives of order g + 1

are continuous and bounded,

El|Rq(8n)|I{Sn € A1}] < KB[|(S1n—0)" -+ (Spn—0)" || < KE[|S1n—0" -+ S —0|"]

. A\ M@t
< K{[E|Sm — 0|7 (B — OI‘IH]“} '

= O(n~(at/p2) " (8.4.16)

where the third inequality follows from lemma F.2. By lemma 8.15, lemma 8.16 and
(8.4.16), T, = E[Qy(Sn)] +O(n~(@FD/P2) and (8.4.15) becomes E[p(Sn)] = E[Qq(Sn)] +
O(n=(atD/r2) m

We next consider a rational function ¢(z) : A C R"™ — R of the form ¢(z) =
Q1(2)/Q2(x) where @1 and Qo are polynomials. Using the Euclidean norm || - ||2, we
define subsets Ay (z) = {z € R" : ||z — 0||2 < 0}, A2(z) = {z € R" : ||Q2(x)||]2 < 01} and
As(z) = (A1(z) U Az(x))¢ with 6 > 0, 67 > 0 such that A1 N Ay =0, A= A U Ay U As.
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Ja,p denotes the class of rational functions on A such that

[p(@)] = O as ||| — oo,
|90($)|:O(eﬁ/”Q2(x)H) as  [|Qa(z)]] — 0.

Sin is a one dimensional statistic for i = 1,...,r and P(S,, = (S1p, -+ ,5n) € A) = L.
Assumption 8.17 Elexp(pi1c||Sn||)] < oo and Elexp(p18/||Q2(Sn)|])] < oo.
Assumption 8.18 ¢ € J, 3 and E|p(S,)| < oo.

Lemma 8.18 (Martinez) Under assumptions 8.1, 8.10,8.11,8.12,8.17 and 8.18
E[p(8,)I{S, € A3(Sp)}] = O(n~(atD/p2),

Proof. ¢ € J, 3 implies there exists a constant C, independent of z, such that |p(z)| <
Cexp(al|z|| + /]|Q2(x)||) Yz € As. Let N > § and define sets B(x) = {z : ||z — 0|2 <
N} — (A1 UAy) and B(x) = {z : ||z — 0]|2 > N} — Ay. Tt follows

E[p(Sn)I{Sn € A3(Sn)}] = Elo(Sn)I{Sn € B(Sn)} + Elp(Sn)I{Sn € B(Sn)}].

By continuity of ¢ on As(x), |¢(S,)| < M on B(S,) for some constant M independent
of n. It follows by Markov’s inequality

Elp(Sn)I{Sn € B(Sn)}] < MP(Sy € B(Sn)) < MP(||Sn — 0]|2 = 6)

M J—
< s ELIS, — 05" V) = 0@ ), (8.4.17)
where (8.4.12) is used in the last equality. On B(S,,), |¢(Sn)| < C exp(a||Sy||+6/]|Q2(z)||)

and it follows

Elp(Sn)I{Sn € B(Sn)}] < CElexp(el|Snll + 5/|Q2(Sn)|)1{Sn € B(Sn)}]
< CEYP exp(p1a|Sul| + p15/1|Q2(S) NI P(I[Sn = 6]f2 > N))VP2,

where the second inequality is by Hoélder’s inequality. Since Sy, Ll 0:, ||Snl| Ll [160]| and
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1Q2(Sn)| = [|Qa(6)]]- By continuity of exp(p1/||Q2(z)||) and exp(pial|a|]) at 6, it fol-
lows by proposition A.18, exp(p1a||Sy||+p15/]|Q2(Sn)||) Lt exp(pra||0||+p18/]|Q2(0)]|)-

Furthermore, assumption 8.17 implies, by the dominated convergence theorem,

Elexp(pral[Sn|| + p16/|Q2(Sn)|))]— Elexp(pre 0] + p18/1|Q2(0)[])] as n — oo,
and Elexp(pia||Sy|| + p18/]1Q2(Sn)])] = O(1). It follows
Ellp(Si)lI{B(S2)}] < O)(P(ISy — 0] > N))V/P2 = O(n~(@¥D/ez). - (8.4.18)

The result follows from 8.4.17 and 8.4.18. m

Lemma 8.19 (Martinez) Under assumptions 8.1,8.10,8.11,8.12, 8.17 and 8.18
E[o(Sn)I{Sn € A3(Sp)}] = O(n~atD/p2),

Proof. Since ¢ € J, 3, 3 a finite C' such that |¢(S,)| < Cexp(a||Sy|| + /]|Q2(Sn)||) on

As and we have

Ello(Sn)|I{Sn € A2}] < CElexp(a|Snll + 5/[|Q2(Sn)[)I{Sn € Az}]
< CEYP exp(pral|Sul| + p15/11Q2(Sa) NI (P(I{Sn € A}))V/72
< CEYP exp(pral|Sul| + p18/11Q2(Sa) INI(P(I{]]Sn — 6][2 = 61))"/72,

where the second inequality follows from Holder’s inequality. By the same arguments

given in lemma 8.18, Elexp(p1c||Sy|| + p15/]|Q2(S»)||)] = O(1) and it follows

E[[|S, — 0]/
op2(q+1)

1/p2
E[l(Sn)|I{Sn € A2}] < O(1) ( ) = O(n~+D/P2y (8.4.19)

Theorem 8.20 (Martinez) Given

SO(Slna T 7Srn) = Q1(51n7‘ e 7Srn)/Q2(Slna T 7Srn) tACR" — R,
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where Q1 and Qo are polynomials, under assumptions 8.1, 8.10,8.11,8.12,8.16, 8.17 and
8.18, it follows

E[SO(Slna 7Srn)] = 90(917"' 797“)
q .
1 0%
+ T ... -

+ O(n—(qul)/pz)’

E[(S1n —601)" ... (Spn — 6,)"]
s=0

with iy + -+ +i, =j, s = (s1,--+,8,) and 0 = (01,--- ,0,).

Proof. The proof follows identical to that of theorem 8.17 with lemmas 8.15 and 8.16
replaced by lemmas 8.18 and 8.19, respectively. m

The moment conditions given by assumptions 8.4 and 8.12 can be quite restrictive
and might not be satisfied, for example, in situations where strong dependencies between
the variables exist. The following theorems are versions of theorems 8.17 and 8.20 with

the moment conditions removed.

Theorem 8.21 (Martinez) Given ¢(Sin, - ,Sm) : A C R" — R, under assumptions
8.1, 8.10, 8.11,and 8.13 through 8.16, it follows

E[SO(Slna 7Srn)] = 90(917"' 797“)
q .
1 o
+ f R -

1O (El/m [HS” _ 9|,22>2(q+1)]) 7

E[(S1n —01)™ ... (Srn — 0,)"]
s=0

with iy + -+, =Jj, s=(s1,-++ ,87) and 0 = (01,--- ,0,).

As can be seen from the statement of the theorem, the price paid for removing the
moment conditions from the assumptions is an order condition in the approximation of
the expected value which depends non-trivially on central moments of the statistics. In
the next chapter, we will take a closer look at these order expressions to understand their

dependence on the data size n and the correlation of the statistics.
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Chapter 9

Satisfying the conditions of the
Delta Method

In Chapter 8, we discussed algorithms for obtaining approximations of the expected value
of a function ¢ of r statistics Sip,- -, Sr. Under certain conditions, we showed such
an approximation consists of the Taylor polynomial of degree ¢, plus terms of order
O(n~(atD),

Now, consider the scalar case, k = 1, of the forecasting problem described in Chapter

6 with processes {X;} and {Y;}. II; ,, and IIy,, are given by

t—1 t—1
-1
Mg =YenXe( Y X2) D Yo X,
T=t—m T=t—m
t—1 . t—1 9
Moo= (Y X2) X Y YenXe|
T=t—n T=t—n
Define the statistics
= = =
Sin== ) YeuXVrnXe, Syn=— 3 X Sin=- ) XVrpnX.
T=t—n T=t—n T=t—n

(9.0.1)

It follows II; ,, = S1,,/S2,, and Iy, = (Sg,n/ng)Q. The objective is to apply theorem
8.20 to find approximations to E[S1,,/S2.n] and E[(S3.,/S2.,)%]. In the sections to follow,

we examine conditions necessary for the Delta method theorems of Chapter 8 to hold.
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9.1 Laws of large numbers

In this section we examine conditions on the processes {X;} and {Y;} necessary for
assumptions 8.3 and 8.11 of Chapter 8 to hold.

Assumptions 8.3 and 8.11 can be satisfied with appropriate consistency results. For
this, we consider the most general framework consisting of dependent heterogeneously
distributed observations. To obtain the adequate laws of large numbers, we require
conditions on the dependence of a sequence known as mixing conditions. We begin with

some definitions.

Definition 9.1 The Borel o-field generated by {Zy,t =n,...,n+ m}, denoted BT =

0(Zpy- .oy Zntm) i the smallest o-algebra of Q that includes

o all sets of the form x—'RY x"™ B; x2° +ma1 R, where each B; € BY;

=N
o the complement A° of any set A in BIT™;

e the union UL, A; of any sequence {A;} in BIT™.

Definition 9.2 Let B" = o(...,Z,) be the smallest collection of subsets of 2 that
contains the union of the o-fields By as a — —oo; let By, = 0(Znim,-..) be the

smallest collection of subsets of € that contains the union of the o-fields By, ,,, as a — oo.

Intuitively, B” ., can be viewed as representing all the information contained in the past

o)

moem Tepresent all the information contained in

of the sequence {Zs} up to time n and B
the future of the sequence {Z;} beginning from time n + m.
The following definition from [162] presents measures which describe weak depen-

dence or asymptotic independence of a sequence {X}.

Definition 9.3 Let G and ‘H be o-fields and define

oG, H)= sup |P(GH) - P(G)P(H)|,
{GeG,HEH}
EXY — EXFEY
p(G. H) = sup | |

XeLy(Q),Yela(H) V VarXVarY
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(G, H) = sup |\P(H|G) — P(H),
{GeG,HEH:P(G)>0}

Y(G,H) = sup 7
6. 7) (GEG, HEH:P(G) P(H)>0} P(G)P(H)

B(G, H) = E(tvargeg|P(GIH) — P(G)]),

|IEXY — EXEY)|
)\(gvH) = sup )
XeLy o @).veLy s I XyallYlliys

where tvar is total variation and ||X||, = (E|X[P)Y/?.

The following definition provides two quantities which measure the dependence existing

between two events separated by at least m time periods.

Definition 9.4 A sequence of random vectors {Zs}, with B" . and B,

"o m a8 above, is

1. a-mizing or strong mizing if a(m) = sup,, a(B", B

" o Bim) — 0 as m — o0,

2. p-mizing if p(m) = sup,, p(B" o, B3S.,,) — 0 as m — oo,

n

3. p-mizing or uniformly strong mizing if ¢(m) = sup,, @(B” o, Byo,,) — 0 as m —

o0,
4. -mizing if ¥(m) = sup, Y(B" o, ByS,,) — 0 as m — oo,
5. absolutely regular if (m) = sup,, B(B" ., B5S.,,,) — 0 as m — oo,

6. (o, B)-mizing if A(m) = sup,, A\(B" .., B

"o BiSn) — 0 as m — oo.

The following definition is required to state the law of large numbers for mixing sequences.

Definition 9.5 Let a € R. (i) If o(m) = O(m=%"¢) for some € > 0, then ¢ is of size

—a. (i) If a(m) = O(m™%"¢) for some € > 0, then « is of size —a.

The following law of large numbers, based on the concept of mixing, applies to heteroge-

neously dependent sequences.
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Theorem 9.6 (McLeish) Let {Z;} be a sequence of scalars with finite means p; =
E[Zy] and suppose that > 5 | (E|Zy — pue|'T0)/t119 < 0o for some 0 < § < r where 7 > 1.

If  is of size —r/(2r — 1) or « is of size —r/(r — 1), r > 1, then Z, — i, = 0.
Proof. See [100] (Theorem 2.10). m

Corollary 9.7 (White) Let {Z,} be a sequence with ¢ of size —r/(2r—1),r > 1, or «
of size —r/(r — 1), r > 1, such that E|Z,|"*® < A < oo for some § > 0 and all s. Then

Zy — fin =30,

Proof. See [153] (Corollary 3.48). m
We next apply corollary 9.7 to the sequences of statistics St,, S2,, and Ss, of the

forecasting problem to obtain the consistency required by the Delta method theorems.

Proposition 9.8 (Martinez) Let {X.} be a sequence of scalars with ¢ being of size
—r/(2r — 1), r > 1, or a of size —r/(r — 1), r > 1, such that u, = E[X?] < oo and

E|X2|"t < A < oo for some § >0 and all 5. Then Sop — fin =3 0.

Proof. Given the sequence {X,} is ¢-mixing of size —r/(2r — 1), r > 1, or a-mixing of
size —r/(r — 1), r > 1, by theorem A.40 {X?2} is a sequence with ¢ of size —r/(2r — 1),
r > 1, or a of size —r/(r — 1), » > 1. The result follows applying corollary 9.7 with
Z;=X2 m

Proposition 9.9 (Martinez) Let {X;} and {Y:} be sequences of scalars with ¢ of size
—r/(2r—1),r > 1, or a of size —r/(r—1), r > 1, such that pu, = E[Yi41 X: Y- Xs_1] < 00
and E]Y}HXtYTXS_l\’“M < A < oo for some 6 > 0 and all s. Then Sty — fin, = 0.

Proof. Applying theorem A.40, {Y11 X, Y;X_1} is a sequence with ¢ of size —r/(2r—1),
r > 1, or « of size —r/(r — 1), r > 1. The result follows applying corollary 9.7 with
ZT = }/%-i-lXtYTXS—l' u

Proposition 9.10 (Martinez) Let {X .} and {Y;} be sequences of scalars with ¢ of size
—r/(2r—1), r > 1, or a of size —r/(r — 1), r > 1, such that p, = E[X;Y;Xs_1] < 00
and E|XtYTXS_1|’"+5 < A < oo for some d >0 and all s. Then Ss, — fin 3 0.

Proof. The proof follows as that of proposition 9.9. m
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9.2 Moment inequalities for sums of random variables

For the application of the Delta method theorems of Chapter 8, certain moment con-
ditions must be satisfied. In the previous section, we examined laws of large numbers
for the statistics involved in the forecasting problem of Chapter 2. These laws of large
numbers essentially warranty some level of stochastic convergence of a sample mean of
statistics of the sequences {X,;} and {Y;} to population means. In this section, we ex-
amine further conditions to determine rates at which the sample means converges to the
respective population means. These rates of convergence are expressed by assumptions
8.4 and 8.12 of Chapter 8.

Consider a sequence of statistics {a,} and write S, =n~1 Y a, for the sample mean.
For identically distributed sequences, we want to understand the n dependence of the
central moments E(S,, —6)* where § = Ela,]. For heterogeneously distributed sequences
we study the central moments E(S,, — 6,)* where 0, = E[a].

We now present the most significant moment inequality, results in the literature

beginning with some covariance inequalities.

Theorem 9.11 (Theorem 17.2.3 in [77]) Suppose the strictly stationary process {X ;}
satisfies the @p-mixing condition, and let the random wvariables € and n, respectively,
be measurable with respect to B" ., and B2 If E|§|P < oo and Eln|? < oo with

n+m:*

p>1,g>1,1/p+1/qg=1, then
|E¢n — E€En| < 2¢p(m) /PEVP[gPEY|p).

Theorem 9.12 (Lemma 2.1 in [38]) Let the strictly stationary process {X;} satisfy
the strong mizing condition, and let the random variables & and n, respectively, be mea-
surable with respect to B" . and ByS.,,; moreover, assume E|(|P < oo for p > 1 and

n-+m?’

In| < C a.s. Then
|E¢n — BEEn| < 6CEVP|¢lPa(m) 1,

where q is such that 1/q+1/p = 1.
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Corollary 9.13 (Corollary in [38]) Under the assumptions of theorem 9.12, let the
moments E|EP and En|? exist with 1/q+ 1/p < 1. Then

|Eén — ESEn| < 12EYP I[P EY|p|ta(m)!— /a1 r.

Other covariance inequalities for («, 3)-mixing sequences, p-mixing sequences and
1-mixing sequences can be found in [162]. We are mainly interested in results concern-
ing moment inequalities of partial sums. The next section presents results for sums of

independent random variables.

9.2.1 Inequalities for moments of sums of independent random vari-

ables

Given an arbitrary sequence of random variables { X}, the following inequalities hold

n

BlS. P <) E|IX.P, 0<p<l1, (9.2.1)
T=1
n

B[S, [P <Y nPT'EIX. P, p>1, (9.2.2)
T=1

where S, = > ", X;. Inequalities (9.2.1) and (9.2.2) follow from the elementary in-

equalities
n p n
Yo =Y lel, 0<p<t
T=1 T=1
n p n
S| =Y el p> 1
=1 =1
for every positive integer n and real numbers ay,--- , a,. Inequalities (9.2.1) and (9.2.2)

can be strengthened with additional assumptions, as the following theorems demonstrate.

Theorem 9.14 (theorem 2.9 in [115]) Let the sequence X1,--- , X, be independent
random variables with E[X;] =0, 7=1,---,n, S, =Y | X; and let p > 2. Define

n n
My n ::j{:lﬂ)(Jp, E%LZZZE:IELXZL
T=1 T=1
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Then

E|S,[P < ¢(p)(Myn + BY?). (9.2.3)

Inequality (9.2.3) is called the Rosenthal inequality.

Theorem 9.15 (theorem 2.10 in [115]) Let Xy,---, X, be a sequence of indepen-
dent random variables with E[X;] =0, 7 =1,--- ,n, and let p > 2.Then

E|SulP < C(p)n?* ' My p, (9.2.4)

where C(p) is a positive constant depending only on p.

Theorem 9.16 (theorem 2.11 in [115]) Let Xy, -, X, be a sequence of indepen-
dent random wvariables with E[X;] =0, 7 = 1,--- ,n, S, = > .=, X; and let p > 2.
Then

n p/2—1
EIS.P < c(p) 1+<ZP<XT¢0>> My (9.2.5)

=1

If the sum Y "_, P(X; # 0) grows slower than n, then (9.2.5) is a better estimate than
(9.2.4). The following theorems generalize the previous theorems by assuming p > 1

instead of p > 2.

Theorem 9.17 (theorem 2.12 in [115]) Let Xi,---, X, be a sequence of indepen-

dent random variables and let p > 1. Define
n n
Mpn=>_ E|X.[P, Dn=> E|X,|
=1 =1
Then
E|Sn|? < c(p)(Mpn + D7), (9.2.6)

where Sy, = >""_, X, and c(p) is a positive constant depending only on p.
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Theorem 9.18 (theorem 2.13 in [115]) Let Xy, -, X, be a sequence of indepen-
dent random variables, S, =Y | X, and let p > 1. Then

n p—1

E|S,|P < c(p) |1+ <Z P(X, # 0)> My p. (9.2.7)
=1

Another type of inequality called the Marcinkiewics-Zygmund inequality is of impor-

tance. Brillinger in [26] gives a Marcinkiewics-Zygmund inequality for a sequence of

i.i.d. random variables.

Theorem 9.19 ( [26]) Let Xi,...,X,, be a sample from a distribution with cdf F(x)
having mean zero. If there exists m, m > 2, such that E|X|™ < oo, then there exists ng

such that E| X1+ -+ X,|™ < Kn™/? for all n > ng and some positive K.

9.2.2 Inequalities for moments of sums of dependent random variables

Doob in [44] presents a moment inequality for a stationary Markov sequence satisfying

Doeblin’s condition.

Theorem 9.20 (Lemma 7.4 in [44]) Let {X;} be a stationary aperiodic Markov se-
quence which is Markov ergodic and satisfies Doeblin’s condition and E|X,|" < C for all
s > 1, some v > 2, and some C < oco. Then E| Y ¢*" | X;[V < Kn'/? for all a > 0, all

n > 1 and some K < 0.

Stout in [136] obtains the same moment inequality as Doob for a martingale difference
sequence. Yoshihara in [160] provides even order moment inequalities for weighted partial

sums of p-mixing processes.

Theorem 9.21 (Theorem 1 in [160]) Let {{;} be p-mizing. We assume that for an
even integer m > 2, E[(;] =0 and E|&|" <M 7=1,2,---, and

(e}

D G+ )™M i)™ < oo
=1
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Then, for every sequence {as} and for every integer n

b+n m
E[( > ai&) ] < emAph,

i=b+1

for all b > 0,n > 1 where ¢, is an absolute constant depending only on m and Aan =
b

ZZ+ZL+1 7,2

Theorem 9.22 (theorem 3 in [46]) Let {X.} be a sequence of centered p-mizing

random variables with |X,| <1 a.s., E[X2] < M ¥n, 3¢ € N, ¢ > 2 then

la/2
[E[SA]| < K(p,q) ZnMZ

where Sp, =Y "1 X; and K(p,q) is a constant polynomial of (®o(1/2),---,P4-1(1/2))

and
o0

Da(b) = ) (i+1)%].

i=0
The first results for strong mixing processes were given by Yoshihara in [160]. The

following result is for strong mixing processes which need not be strictly stationary.

Theorem 9.23 (Theorem 3 in [160]) Let {¢;} be a strong mizing sequence with co-
efficient a(n). We assume that for some § > 0 and for an even integer m > 2, E[{;] =0,
E|& |0 < M < oo and 3.2, (i 4+ 1)™2 1a(i)%/ M+ < 0o, Then, for every sequence
{a;} and for every integer n

b+n m

E[( > aifi) ] < A,

i=b+1
with Ay, = Zfﬂ?ﬂ al for allb > 0,n > 1 where c,, is n absolute constant depending
only on m.

Yokoyama in [159] presents moment bounds for a stationary strong mixing sequence.

Theorem 9.24 (Theorem 1 in [159]) Let {X,} be a strictly stationary strong mizing
sequence with E[X;] = 0 and E|X1|"*? < oo for some r > 2 and § > 0. If S"°,(i +
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1)7/271a ()09 < oo, then there exists a constant K such that
E|S,|" < Kn"/?, (9.2.8)

withn >1 and S, =Y 11 X;.

Theorem 9.25 (Theorem 2 in [159]) Let {X;} be a strictly stationary strong mizing
sequence with E[X;] = 0 and |X1| < C < o0 a.s.. If S.5°,(i + 1)/? (i) < oo, then
(9.2.8) holds.

Theorem 9.26 (theorem 10 in [46]) Let {X,} be a strong mizing sequence with | X ;| <
1 as., E[X2] < M Vn, 3§ > 0, € N,g > 2, S, = Y| X;, Ag—2(1/2) < oo with
A (b) =32 (i + 1)%al, then

lq/2]
|E[SY]] < k(g a ZnM’.

Theorem 9.27 (theorem 11 in [46]) Let {X,} be a centered strong mizring sequence
of random wvariables and S,, = Zle X, such that

My, = sup{|[ Xz [[nys,n = 0} < oo and Ap—2(6/(h +6)) < oo,

with Aq(b) = >°52,(i + 1)%b. Then

la/2]
|E[SA]l < K(g,@ Z n' My ;o

For moment inequalities of p-mixing sequences, early work is due to Peligrad [109,
110] which was later improved and generalized by Shao in [128, 129]. Some of the proofs

to the following theorems can be found in [162].

Theorem 9.28 Let {X,} be a p-mizing sequence with E[X,] = 0, E[X?] < oo for each
7 > 1. Then for any € > 0, there exists a C = C(e) > 0 such that

llog n]

B[S (m)] < Cnexp § (146 3 p(2') o max  E[X7)],
=0
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for each k >1 and n > 1, where Si(n) = Zf;ﬁrl Xi.

Theorem 9.29 Let {X.} be a p-mizing sequence with E[X;] = 0,5 E|X;|** < oo
for some § > 0 and Sk(n) = Zf;ﬁrl X;. Then, for any € > 0, there exists a C =
C(0,p(...),€) >0, such that for each n > 2

llog n]

E|S(n)|*H < C’{(nexp{(l—{—e) Z p(2i)} max EX?

1+46/2
" k<i<k+n )
=0

[log n]

+ nexp {C Z p?/ (2 +9) (21)} k<1%1<a]3<+nE|Xi|2+5}.
i=0 =

Theorem 9.30 Let {X;} be a p-mizing sequence with E[X;] = 0,E|X.|? < oo, ¢ >
2, Sk(n) = Zfi,ﬁrl X; and E[S%(n)] < nh(n)maxg<i<pin EZ. Suppose there exists a
function h(n) and there exists a positive integer ng and a constant 0 < 6 < 21-2/(a"3)

such that
max(h([n/2]), h(n — [n/2])) < Oh(n),

for n > ng. Furthermore, when q > 3 assume that there exists a C > 0 such that

log n]

[
W) > Lo~ 0 Y @}
=0

Then there exists a constant K = K(q,ng,0,C,p(-)), such that for every k > 0,n > 1

llog n]

1< { 21q/2 { 2/q (90 ; q}_
E|Si(n)|? < K{ (nh(n) k<12n§ak>grnEXz) +nexp K ZZ:; p4(2 )k<r§1§a]€>irnE\X |
A finite family {Xy,---,X,,} of r.v.’s is associated if for any two coordinate-wise

none-decreasing functions f,g on R™, Cov(f(X1, -+ ,Xm),9(X1, -+, X)) > 0 holds
whenever the covariance is defined. An infinite family is associated if every finite sub-

family is associated.

Theorem 9.31 (theorem 1 in [21]) Let {X;} be a sequence of associated random

variables with E[X;] = 0 and supjeNE]XjV”r‘S < oo for some r > 2 and 6 > 0 and
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S, = 3" X,. Assume u(n) = O(n=(r=20+0)/20) " Then there is a constant B not

depending on n such that for allm € N

sup  E|Sp+m — Sm| < Bn"/2.
meNU{0}

For the following theorem, we define, for ¢ > 1 and any A > ¢, the class ® 4 of

Orlicz functions as follows:
Dy 4 ={¢:RT = RT;¢ convex,d(x)/x? increasing, (z)/z? decreasing}.

Theorem 9.32 (theorem 1 in [122]) Assume Ms, < 0o and let ¢ be some element
of @ 4 such that E[p(|Xo|)] < oo. Let S}, = sup;<, |S;| with S, = 3"_; X;. Then there

exists some positive constant C 5 depending only on A such that

E[p(Sp)] < Cal¢(v/nMaa) +nMg an)-

Theorem 9.33 (theorem 1 in [45]) Let {X,} be a sequence of centered random vari-
ables fulfilling for some fired ¢ € N,q > 2 Cpq = O(r=9?) as r — oo with Crq =

sup |Cov(Xy, -+ Xy, Xy -~ Xi,)| where the sumpremum is taken over all {t1,...,t,}

m—+1 :

such that 1 <ty < --- <ty and m,r satisfy tyy1 — tm = 1. Then there exists a positive

constant B not depending on n for which |E[SR]| < Bn?/? where S,, = o X,

For the theorem that follows, we define an AG sequence { X} as a sequence fulfilling the

following inequality:

0

H 0K
81137;

81137;

|Cov(Xi, X;)l,

(e}

Cov(H(Xii € A, K(X;.j € B) <33
i€A jEB

.

where A and B are arbitrary finite disjoint subsets of N, and H and K are real valued

functions having uniformly bounded first derivatives.

Theorem 9.34 (theorem 1 in [96]) Let r be a fized real number, r > 2. Let {X;} be
a strictly stationary sequence of centered and AG random variables. Suppose, moreover,

this sequence is bounded by M. Then there exists a positive constant C,. depending only
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on r, such that

S
—_

E’Sn|r < Cr {32"‘ Mr_2(i+1)r_2‘COU(X1,X1+i)’ s
k=11

Il
=)

where s2 :=nY " |Cov(X1, X14)|.

9.3 Finite moment generating functions

In Chapter 8, we encounter moment generating functions which are required to be fi-
nite for the Delta method theorems to hold. These assumptions, which include 8.5, 8.8,
8.13,8.14, 8.17, depend only on the nature of the processes involved. In this section, we
present theorems providing conditions under which different moment generating functions

are finite.

Proposition 9.35 (Martinez) Consider a sequence {X;} of r.v’s with E[X;] = 6.,
X, =1/n>"_ | X;, and E(X; — 0;)F < oo fort=1,...,n and all k. If, forc >0 a

finite constant, either of the two following conditions hold

1. Zzozock/k:!E(XT —0.)F < oo and Zﬁo(—l)kck/k!E(XT —0.)F < oo for 7 =

1,...,n,
2. 30 P /KE|X, — 0,|F < oo,
then Elexp(c|X,|)] < oo.

Proof. First, we use the fact exp(c|X,|) < exp(cX,) + exp(—cX,,). We show under

condition 1, E[exp(cX,)] < co. By Hélder’s inequality
Elexp(cX,)] < EY™[exp(cXy)]- - - EY™[exp(cX,)].

We can now prove Elexp(cX,)] < oo for 7 =1,...,n. Condition 1, Y32, c*/kIE(X, —
0:)F < oo, implies >°72, cF/k!(X; — 6,)* converges absolutely a.e. and exp(cX,) =
S R /RNX, — 0.)F ae. and Elexp(cX,)] = Y52, /kIE(X,; — 0,)*. Therefore,

we obtain the bound Elexp(cX;)] < oo for 7 = 1,...,n. Similarly, condition 1 implies
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FElexp(—cX;)] < oo for 7 = 1,...,n and result is obtained. Condition 2 implies condition
1 so no proof is required. ®

Note, even though ¢ > 0, Elexp(c|X,|)] < oo implies Elexp(—c|X,|)] < oco. Also,
condition 2 is included in the proposition only for completeness since condition 2 im-
plies condition 1. Condition 2 is weaker but more difficult to verify than condition
1. The condition of the proposition states that if the central moments of the r.v’s
X1,..., X, decay with k or grow at a rate which makes the appropriate series converge,

then Elexp(c|X,|)] < oo.

Example 9.36 Let {X;} be a sequence of i.i.d. r.v’s with {X.} ~ N(0,0). We know

the central moments are

klok
k _
BX -9 = 2/2(k/2)!

E(X -0)"=0 for k odd.

for k even,

It follows

ok 00 2%k
c ko (co)
ZEE(X_H) - Z kLl

k=0 k=0

converges by the ratio test for any ¢ and o. Similarly, the second series of condition 1 of

proposition 9.35 converges and Elexp(c|X,|)] < oo for any c,0,0. O
The result of proposition 9.35 can be extended to the multivariate case.

Proposition 9.37 (Martinez) Let each of {Z1:},...,{Zm+} be a strictly stationary
strong mizing sequence with E[Z;;]| = 0;, E|Z;; — ¢9j7|7"+‘S < oo forr>2andd >0 and
satisfying S 2020 (i + 1)/ 1 (1)) < oo for j = 1,...,m. Then Elexp(c||Z,||)] < oo

for some finite constant ¢ > 0 with ||Z;|| = Z1; + -+ + Zmr for any T > 0.

Proof. By proposition 9.35, Elexp(cj|Z;r|)] < oo, j = 1,...,m for finite constants

Cl,--.Cmp. The result follows from an application of Holder’s inequality. m



308

Chapter 10

Concluding remarks

10.1 Summary

In this thesis, we address the combined effects of misspecification and stochastic dynam-
ics on the forecasts of time series. The problem consists of using a linear regression
model in conjunction with the OLS estimator to form a forecast of a dependent vari-
able whose data generating process is unknown to the practitioner. The MSFE is the
forecast evaluation criterion of choice. The main consequence of interest is the existence
of optimal observation windows as a result of model misspecification. To determine the
existence of optimal observation windows, we need to understand the behavior of the
MSFE for finite values of the sample size variable n. The sample size dependence of
the square forecast error is implicit through the OLS and understanding the sample size
dependence of the MSFE has to be done through an approximation. To obtain an ap-
proximation of the MSFE, we construct an algorithm based on Taylor expansions of the
MSFE which do not require knowledge of the functional form of the DGP of the depen-
dent process. Three type of stochastic dynamics are studied: independent and identically
distributed processes, covariance stationary processes, and independent and identically
distributed processes which undergo a structural break at point in time ¢ — n,. An ap-
proximation for each of the three stochastic dynamics is constructed which exploits their
particular characteristics. For the independent and identically distributed processes, the
MSFE approximation depends explicitly on the sample size variable n and on popula-
tion moments of the explanatory and dependent processes. For practical applications,

the population moments can be replaced by sample moments. Numerical experiments
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are carried out under the assumption that the range of the random variables be mostly
contained inside the region of convergence of the Taylor expansions. The approximation
performs well in replicating the benchmark MSFE, even when the condition that the
range of the random variables be mostly contained inside the region of convergence is
violated. Several examples of functional misspecification are explored with all resulting
in no optimal observation windows. For the covariance stationary processes, the MSFE
approximation depends implicitly on the sample size variable n through summations of
population moments of the explanatory and dependent processes. The implicit depen-
dence on the sample size variable n complicates the analysis of the SSD, but practical
applications are still feasible with sample moments. Finally, for the independent and
identically distributed processes which undergo a temporal structural break, the MSFE
approximation depends explicitly on the sample size variable n, the known variable ng,
and on population moments of the explanatory and dependent processes. In numerical
experiments, the approximation performs well in replicating the benchmark MSFE even
when the condition that the range of the random variables be mostly contained inside

the region of convergence is violated.

10.2 Some remarks

10.2.1 Monte Carlo simulations for the MSFE and OLS process
10.2.1.1 General Principles

Monte Carlo simulation are methods to estimate the expected value of a process based
on observations of the process or to estimate the expected value of functions of processes
based on observations of the processes or on observations of the functions of the processes.
At the core of Monte Carlo simulations is the idea that as the number of observations
increases we can expect stochastic convergence. In this sense, Monte Carlo simulations
rely on the concept known as a law of large numbers. Laws of large numbers have the

general form given by the following proposition.

Proposition 10.1 Given restrictions on the dependence, heterogeneity, and moments of

a sequence of random variables {Z;}, Zym — fim = 0, where Z, = m~" > Z: and
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fm = E[Z).

Four different cases can be outlined based on dependence, heterogeneity, and moments
of the processes. The four cases are: independent identically distributed observations;
independent heterogeneously distributed observations; dependent identically distributed
observations; and dependent heterogeneously distributed observations. The following
four theorems state the conditions necessary for stochastic convergence for the four cases
outlined above.

(1) Independent identically distributed observations:

Theorem 10.2 (Kolmogorov) Let {Z;} be a sequence of i.i.d. random wvariables.

Then Zn “% p if and only if B|Z;| < 0o and E[Z,] = p where Zy, =m™' Y™ | Z,.
Proof. [119], p. 115. m (2) Independent heterogeneously distributed observations:

Theorem 10.3 (Markov) Let {Z.} be a sequence of independent random variables,
with finite means . = E[Z,]. If for some § > 0, 3.2° (E|Z; — pu,|"+°) /7140 < o0, then

Zy — fim 5 0.
Proof. [31], pp. 125-126. m (3) Dependent identically distributed observations:

Theorem 10.4 (Ergodic theorem) Let {Z,} be a stationary ergodic scalar sequence

with E|Z,| < co. Then Z, 3 n = F[Z]
Proof. [136], p. 181. m (4) Dependent heterogeneously distributed observations:

Theorem 10.5 (McLeish) Let {Z,} be a sequence of scalars with finite means p, =
E[Z.] and suppose that > 22 | (E|Z; — p |10) /7149 < 0o for some §, 0 < § < r where
r>1. If ¢ is of size —r/(2r — 1) or a is of size —r/(r — 1), r > 1, then Zy, — fim ~> 0.

¢ and « are the uniform mizing and strong mixing parameters respectively.

Proof. [100], Theorem 2.10. mThe second and fourth cases concern covariance stationary
processes as well as non-stationary (evolutionary) processes. The laws of large numbers
for these cases establish the convergence of the average of the process realizations to the
average of the population means. If the means . are a constant u, the average of process

realizations converge simply to . The first and third cases concern a particular subset of
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di.d | dhd.

Figure 10.1: Identically distributed, heterogeneously distributed

C.S.

Figure 10.2: Covariance Stationary

covariance stationary processes as well as strictly stationary processes. Depending on the
nature of the process at hand, one must chose a Monte Carlo method which appropriately
applies one of the laws of large numbers described above. In what follows, we describe two
commonly used methods to build Monte Carlo simulations. The following propositions

will be useful.

Proposition 10.6 (White) Let g : R — R! be a measurable function. (i) Let Z, and
Zy be identically distributed. Then g(Z;) and g(Z;) are identically distributed. (ii) Let
Z; and Zy be independent. Then g(Z;) and g(Zy) are independent.

Proof. [153], p.32 m
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Figure 10.3: Strictly Stationary

Proposition 10.7 (White) Let g be an F measurable function into R* and define Y; =
9(co s 21,24, Zysa, ... ), where Zy is q x 1. (i) If {Z:}; is stationary, then {Y.}, is

stationary. (it) If {Z;}; is stationary and ergodic, then {Y;}, is stationary and ergodic.

Proof. [153], p. 44. =

10.2.1.2 Method 1

To describe the first method, we consider the two cases of independent and identically
distributed processes and heterogeneously distributed processes. Furthermore, we will
illustrate the method for the sum statistic of the process and for measurable functions of
the sum statistic of the process.

Identically distributed processes

We construct a Monte Carlo method to estimate E[S,] and E[g(Sy,)] where S, = >0 | X;
and ¢ is a measurable function. The method is constructed by generating a single i.i.d.

series {X1, Xo,..., X;i4m—1}. From this series, we construct the following vectors:

Zl = (X17X27 cee 7Xn)7
Zy = (X9, X3,..., Xpt1),

Ly = (Xm’ D, CHNE PR 7Xn+m—1)'
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The sequence {Z,}, is i.i.d. m sum statistics can be constructed from these vectors as

follows:
n n+1 n+m—1
So1 =3 Xis Sn2=> Xii ...y Spm= Y X (10.2.1)
i=1 i=2 i=m

It follows by proposition 10.6, the process {Sy, ; } isi.d.d. Defining Sy, = 1/m > | Sn,

from the law of large numbers, theorem 10.2, it follows:
Snm &2 E[S, ] = p.

Next, setting Yy, » = g(Sn,-) with g a measurable function, it follows {Y}, -}, is an i.i.d.
process. With Y, ,, = 1/m > ", Y, it follows Y, ., 2% E[Y,,] = Elg(Sn.,)] = v by
the law of large numbers, theorem 10.2.

Heterogeneously distributed processes

The method is constructed by generating a single heterogeneously distributed series

{X1,X2,..., Xntm—1}- m sum statistics can be constructed from this series as follows:
n n+1 n+m—1
Spa=Y_Xi, Su2=>_Xi, ..., Spm= > X (10.2.2)
i=1 i=2 i=m

It follows that the process {S, r}. is heterogeneously distributed with E[S, ;] = p-.
Defining Sy = 1/m > i Spi and fip, = 1/m > p;, from the law of large numbers,

theorem 10.3 and theorem 10.5, it follows:

Snm_,amgo

)

Next, setting V), ; = ¢(Sp ) with g a measurable function, it follows {Y}, -}, is het-
erogeneously distributed with v, = E[Y,, ;. With Y,,,, = 1/mY %Y, and &, =
1/m>°", v, it follows Yn,m — Uy, =2 0 by the law of large numbers, theorem 10.3 and

theorem 10.5. Now suppose {X; }, is heterogeneously distributed and in addition

EX;|=FE[X{]=a, forany 7 and ¢, (10.2.3)
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all variances are constant and finite and covariances depend only on the time lag between
X, and X;. This includes a large set of weakly stationary processes. As before, the

process {5y, ;}- is heterogeneously distributed but (10.2.3) implies
pr =E[Sy | =E[Spt) =mw forany t,7, pr=p=na and [y, =p (10.2.4)

It follows S, 1, 2%, 1 by the LLN. As before, setting Y, r = g(Sn,-) with g a measurable
function, it follows {Y,, -}, is heterogeneously distributed with v, = E[Y,, ;] = E[g(Sn )]
It is important to note (10.2.4) does not imply E[g(Sy. )] = E[g(Sn+)] for t # 7. In fact,
the equality E[g(Sy,-)] = E[g(Sn,)] is unlikely to hold since the expectations depend on
the distributions of S,, » and S,,; which are heterogeneous. This construction makes the
use of method 2 and brute force methods inappropriate to estimate the expected value

of functions of weakly stationary processes.

10.2.1.3 Method 2

To describe the second method, we again consider the two cases of identically distributed
processes and heterogeneously distributed processes. We will illustrate the method for
the sum statistic of the process and for measurable functions of the sum statistic of the
process.

Identically distributed processes

We construct a Monte Carlo method to estimate E[S,] and E[g(S,)] where S, = > | X;
and g is a measurable function. The method is constructed by generating in an identical

manner m independent series of length n

{X171,X172, N 7X1,n}7

{Xm1, Xm2, s X},
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where {X ;}; is identically distributed for each fixed i. From these series, we construct

the following vectors:

Zl = (Xl’l,Xl,Q, ce 7X1,TL)7

Zm — (Xm,h Xm,2a cee 7Xm,n)-

By construction, the sequence {Z;}, is i.i.d. m sum statistics can be constructed from

these vectors as follows:
n n
Spai=Y Xiii Snp=> Xoiy v Spm=> Xy (10.2.5)
i=1 i=1 j

It follows from proposition 10.6, {S,, ; } is an i.i.d. process. Setting S, ,, = 1/m o Snis
it follows by the law of large numbers, theorem 10.2, S’n,m 25 E[Sp 7] = p. Next, setting

Y, r = g(Sn,r) with g a measurable function, from proposition 10.6, it follows {Y, -}~ is an

i.i.d process. With ?mm =1/m> ", Y,,, it follows Yn,m &3 EY, ] = Elg(Snr)] =V

by the law of large numbers, theorem 10.2.

Heterogeneously distributed processes

We construct a Monte Carlo method to estimate E[S,] and E[g(S,)] where S, = > | X;

and ¢ is a measurable function. As before, the method is constructed by generating in

the same manner, m independent series of length n

{X171,X172, . 7X1,n}7

{Xm1, Xm2, s Xmn}-
The following properties hold:
e For a fixed i, {X; ;}; is heterogeneously distributed.
e For a fixed j, {X; ;}; is identically distributed.

e For any j and k, {X,;}; and {Xj;}, are independent for i # [.
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From these series, we construct the following vectors:

Zl = (Xl’l,Xl,Q, ce 7X1,TL)7

Zm — (Xm,l’ Xm,2a cee 7Xm,n)-

The sequence {Z,}, is i.i.d. m sum statistics can be constructed from these vectors as

follows:

n n
Sp1 = ZXM, Sn2 = ZXM, coes Spm = Zsz (10.2.6)
i—1 =1 '

By proposition 10.6, {S, ;}- is i.i.d. and for 7 # t, E[S, ;] = E[Snt = p. Setting
S’n,m =1/m> " Sni, it follows by the law of large numbers, theorem 10.2, S’nm 25
E[Sp 7] = p. Next, setting Y;, ; = g(Sp,r) with g a measurable function, from proposition

a.s.

10.6, it follows {Y}, - }- is an i.i.d process. With Y,, ., = 1/m o Y, i, it follows Yom —
E[Y, ;] = Elg(Sp )] = v by the law of large numbers, theorem 10.2.

10.2.1.4 Heterogeneity of the OLS and MSFE processes

In this section, we first describe the heterogeneity (i.e. the extend to which the distri-
butions of a process X, may differ across 7) of the OLS and MSFE as processes with
respect to the forecast origin. Second, we describe the construction of Monte Carlo
simulations according to the second method described in the previous section to es-
timate the expected value of the OLS estimator and the MSFE. The OLS is given
by BAM = (X X2)7UST Y X, and the squared forecast error is given by
SFE,; = (Yis1 — BenXe)?.

Let Z; = (X4—n,- - Xt, Yi—pi1, ..., Yer1) and consider the sequence {Z,},. If {Z;},
is i.i.d., by proposition 10.6, {BAT’n}T is iid. and {SFE;,}; is iid. By the LLN,
theorem 10.2, 1/m Y™, B, =5 E[B,] and 1/m Y™, SFE, , ** MSFE,. 1f {Z.},
is stationary and ergodic, by proposition 10.7, {BTM}T is stationary and ergodic and

a.s.

{SFE.,}; is stationary and ergodic. By the LLN theorem, 10.4, 1/m > ", BAT’n =2
E[3,] and 1/m X", SFE,,, *% MSFE,.
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10.2.1.5 Monte Carlo simulations for the OLS and MSFE processes

Identically distributed observations

We construct Monte Carlo simulations to estimate the expected value of the OLS es-
timator ﬁAm and the expected value of the squared forecast error; i.e. the MSFE. We
employ the second method described in the previous section. The method is constructed
by generating, in an identical manner, m independent series of length n + 1 with forecast

origin t for the X process and the Y process:

{ X1 t=ns X1 p—ng 15 X1, X1} Mi—nt1: Y1 0—ng2, -, Y14, Yigg1 )

{Xm,t—n7 Xm,t—n—i—la s 7Xm,t—17 Xm,t} {Ym,t—n—i-la Ym,t—n+2a s 7Ym,t7 Ym,t—i—l}

X; i}4 is identically distributed for i = 1,...,m and {Y; ;}, is identically distributed for
G137 Jri

i =1,...,m. From these series, we construct the following vectors:

Zt n,l = (Xl,t—na Xl,t—’n-i—la s 7Xl,t—17 Xl,ta }/El,t—’n-i-la Yi,t—n—i—% e 7Y1,t7 Yl,t+l)7

Zt n,2 — (XQ,t—na X2,t—n+17 s 7X2,t—17 X?,ta Y2,t—n+17 YV?,t—n—i—Q, cee 7Y2,t) Y2,t+1)7

Zt,n,m = (Xm,t—na Xm,t—n—&—h cee 7Xm,t—17 Xm,ta Ym,t—n+l> Ym,t—n+2> cee 7Ym,t7 Ym,t—i—l)-

The sequence of vectors {Z;,, r}, is i.i.d. The OLS estimator @7”77 is constructed as a
measurable function from the elements of the vector Z;, .. It follows from proposition
10.6 the sequence {BM,T}T is i.i.d. and by the law of large numbers 1/m > ™", BM,T &5,
E [@tn] As shown in section 10.2.1.4, the expected value of the OLS is independent of the
forecast origin E [@tn] = ln,. In a similar manner as done for the OLS process, we con-
struct the i.i.d. process {YT,t+1XT,tﬁAt,n7T}T, the i.i.d. process {Xf,tﬁ?’nﬁ}ﬂ and the i.i.d.
process {er,t+1}7" From these processes, we form the i.i.d. SFE process {SFE},, ;}, and
from the law of large numbers 1/m Y " | SFE;,, » 25 E[SFE,,] = MSFE, which, as
shown in section 10.2.1.4, is independent of the forecast origin.

Heterogeneously distributed observations

We construct Monte Carlo simulations to estimate the expected value of the OLS es-

timator ﬁAm and the expected value of the squared forecast error; i.e. the MSFE. We
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employ the second method described in section 10.2.1.3. The method is constructed by
generating, in an identical manner, m independent series of length n 4+ 1 with forecast

origin t for the X process and the Y process:

{Xl,t—na Xl,t—’n-i—la s 7Xl,t—17 Xl,t} {Yl,t—n+17 Yl,t—n+27 s 7Yl,t7 }/El.,t-i-l}

{Xm,t—n7 Xm,t—n—i—la v 7Xm,t—17 Xm,t} {Ym,t—n—i-la Ym,t—n+2a s 7Ym,t7 Ym,t—i—l}
The following properties hold:

e For a fixed 4, {X; ;}; is heterogeneously distributed and {Y; ;}; is heterogeneously
distributed.

e For a fixed j, {X; ;}; is identically distributed and {Y; ;}; is identically distributed.

e For any j and k, {X;;}; and {X;;}, are independent for i # [ and {Y;;}; and

{Y, 1} are independent for i # [.

From these series, we construct the following vectors:

Zt,n,l = (Xl,t—na Xl,t—’n-i—la s 7Xl,t—17 Xl,ta }/El,t—’n-i-la Yi,t—n—i—% e 7Y1,t7 Yl,t-l—].)a

Zino2 = (Xot—n, Xot—ntt,- s Xot—1,X04, Yo t—nt1, Yo t—nt2s- -, Yor, Yo 141),

Zt,n,m = (Xm,t—na Xm,t—n—i—l’ cee 7Xm,t—17 Xm,ta Ym,t—n—i—l’ Ym,t—n+2, cee >Ym,t7 Ym,t—i—l)-

The sequence of vectors {Z;, ;}- is i.i.d. The OLS estimator Bt,nﬁ is constructed as a
measurable function from the elements of the vector Z; , ». The process {ﬂAt,m}T is ii.d.
and by the law of large numbers 1/m ", Bt,nﬁ 25 E[Btn] The expected value of the
OLS depends on the forecast origin and the sample size [Btn] = it In a similar man-
ner as done for the OLS process, we construct the i.i.d. process {YT,t+1XT,tBAt7n,T}T,
the iid. process {X%tﬁgnJ}T, and the iid. process {Y7?,, },. From these pro-
cesses, we form the ii.d. SFE process {SFE, ;}. and from the law of large numbers

1/mY "™ SFE;, - 25 E[SFE,;,] = MSFE;, which depends on the forecast origin.

Example 10.1 We consider two processes {X;}. and {Y;}, and construct the OLS
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estimators ﬂAt’go and ﬁt,Go at the forecast origin t as follows:

t—1 t—1 t—1 t—1
. -1 . -1
Br20 = ( > Xf) > YeuXe Buso = ( > X?) > YepX.
T=t—20 T=t—20 T=t—60 T=t—60
For a fized t, BALQO and BALGO are two random variables. Set Zy 20 = (Xi—20,...,Xt,Yi—19, ..., Yeq1)

and Z 60 = (Xt—60s - - Xt, Yeo59, ..., Yer1). If {Zr20}+ is i.i.d, identically distributed or
stationary, {@720}7 is 1.i.d, identically distributed or stationary respectively. Similarly,
if {Zr60}r is i.i.d, identically distributed or stationary, {BAT’(;O}T is 1.i.d, identically dis-
tributed or stationary respectively. It follows that either of the two Monte Carlo methods
described in section 10.2.1.1 can be used to estimate E[ﬁAmgo] = lgg or E[Btﬁo] = Lgo-
Method 1, By.20, Bro -

We begin by generating a series of the X process of length 20m for m an integer and a

series of the Y process of length 20m and constructing m OLS estimators as follows:

20 20
. ~1
{X1,..., X0}, {Yo,....,Y}, for2= (E X?) E Y 1X5,
=1

=1
) 40 40
{Xo1,..., X0}, {Yoo,....Yu}, Bauoo= ( Z XE) Z YrXs,
T7=21 =21

{Xoom-1)41:-- s Xoom}s  {Yoom—1)425- -+ Yoomt1},

A 20m 1 20m
B20m+1,20 = ( Z X?) Z Yr1 X-.
7=20(m—1)+1 T=20(m—1)+1

By the law of large numbers 1/m ZT:1 BQOT+1720 &5, 1420 -

For Bt’ﬁ(), we begin by generating a series of the X process of length 60m for m an integer
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and a series of the Y process of length 60m and constructing m OLS estimators as follows:

60 60
{X1,..., Xe0}, {Yo,..., Y61}, 361,60=(ZX3) 1ZYT+1XT,
T=1 T=1

120 120

. -1
{Xe1,..., X120}, {Ye2,.... Y}, Broreo = ( > XZ) > YeX,
T=61 T7=61

{X6o(m—1)+1>-- > Xeom}»  {Y60(m—1)+25 -+ Y60m+1},

60m 1 60m

360m+1,60 = ( Z XZ) Z Y1 X-.

7=60(m—1)+1 T=60(m—1)+1

By the law of large numbers 1/my ", 3607+1,60 2% Lgo. It is important to note 321720 +

Ba1,20 + Be1,20 # Be1,60 or more generally Ba1160(m—1),20 + Ba1160(m—1),20 + Beom+1,20 #

B60m+1,60. By the law of large numbers

=1

m m m
1/m> " Parsor—1)20 + 1/m Y Bitseor—1).20 + 1/m Y Boors1,20 == 3piso,
T=1 T=1

m
1/m> " Boor1,60 = feo-

T=1

O

Example 10.2 Let the forecaster observe a process {Y;}, such that the DGP, model and

forecast are as follow:

DGP Yy =¢1Yi1 + ¢2Yio + ¢3Yi3+ Ui, {Ur} ~IIN(0,1),
Model :Y; = BY;_1+ Vi,

X ) X t—1 -l
Forecast : Yigin = BinYt, Bin = ( Z Yf) Z Y Y5

T=t—n T=t—m
The SFE is given by SFE;, = (Yiq1 — ﬁt,nYt)z. The goal is to estimate the MSFE,
MSFE,, = E[SFE,,], by the second Monte Carlo method described in section 10.2.1.1
and extensively described in section 10.2.1.5 for the OLS and the MSFFE processes. Since

the DGP is a strong autoregressive process, we only need to generate the following set m
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of independent series:

Witmn, Yigengts - Y10 Y1 )

{Ym,t—n, Ym,t—n—l—la ) 7Ym,t, Ym,t—l—l}-

We form the i.i.d. sequence {Z;}; by defining the vectors:

Zl = (Yl,t—n7 }/El,t—’n-i-]n e 7Y1,t7 Yl,t+l)7

Zm = (Ym,t—na Ym,t—n+17 B 7Ym,t7 Ym,t—i—l)‘

From this sequence of vectors, we construct the i.i.d. sequence {SFEy, .} with SFE;,, » =
(Yrie1 — ﬁt,nﬂ.YT,t)? It follows 1/m> " | SFE;, - 25 MSFE;,. Since a strong au-
toregressive process is strictly stationary, the MSFE,, is independent of the forecast
origin t. Figure 10.4 shows the MSFEy,, as a function of the sample size n for different
forecast origins t and with AR(3) parameters ¢1 = 0.1,¢9 = 0.3,¢3 = 0.5. O

10.2.2 Taylor algorithm v.s. brute force methods

In this section, we compare the performance of the Taylor algorithm to the performance
of brute force methods for estimating the MSFE. As with Monte Carlo simulations, the
law of large numbers is the property upon which brute force methods are constructed and
can be use to approximate population quantities from sample data. Brute force methods
are constructed from a single times series of data which represents one realization of
the process under consideration. The brute force method is constructed from a single
observed series of the explanatory variable {X;_,_m+1,...,Xt}, and a single observed

series of the dependent variable {Y;_,_m42,..., Y1} From these series, we construct
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the following m vectors:

Zr = Xeen, o X, Yeeng1, .., Yeqa),
Zy = (Xt—n-1,--» Xi—1,Yien, .. ., ¥2),

Zm = (Ximn—mtt - Xemmea 1, Yien—m+2, -+ Yiem+2)-

From these vectors, we can construct m realizations of the SFE as follows:

2 A 2 52 .
SFE, ;=Y 10— 2Yi—ir2Xi—it10ni + Xi_ip1Brin 1=1,...,m,

t—i L
Bn,i:< > XE) Y YepX, i=1...,m

r=t—n—it+1 r=t—n—it+1
n is the sample size of data used in the estimation of the OLS estimator Bm n—+1is the
sample size of data used to form each of the m realizations of the SFE, SFE,, ;. If the
total length of each of the series of the explanatory variables and dependent variables is
N, it follows N = n + m and for a given n, m = N — m realizations of the SFE can be
constructed. From this construction, we want to form estimates of the expected value
E[SFE,], for a given n, based on the single series of data. From the law of large numbers

it follows:
m
1/m > SFEy; “* E[SFE,] = MSFE,.
=1

This law of large numbers holds only if the sequence {Z;}, is i.i.d or strictly stationary.
For this reason, brute force methods cannot be applied to covariance stationary processes
or to non-stationary processes such as structural break processes. The Taylor algorithm
has been developed for structural break processes with a known break time. The MSFE

approximation from the brute force method is given by
m
MSFE, ~1/m) _ SFE,;.
i=1

For each n, the accuracy of the approximation depends crucially on the amount of data

available. For a fixed data series length N, where N = m + n, m is the number of SFE
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realizations available for averaging, m = N — n. Therefore, fixing N fixes and limits the
largest value of n for which an estimate of the MSFE can be obtained. This value of n
is N — 1 and m = 1 and the approximation consists of only one realization of the SFE.
In general, as n increases, m decreases and the accuracy of the MSFE approximation
worsens. In what follows, we compare the Taylor algorithm to brute force methods for
forecasting problems involving i.i.d process and for forecasting problems involving strictly
stationary process.
Independent identically distributed processes

We compare the Taylor algorithm and the brute force method by qualitatively analyzing
the sources of error in both estimation procedures. For the case of i.i.d. process, the first
source of error for the Taylor algorithm comes from the fact that the Taylor expansion

is valid only inside a convergence region A but the MSFE is as follows:
MSFE, = E[(Yir1 = Yir1)?|A] + E[(Yegr — Yie1)?[A°].

The first approximation and source of error comes from assuming the term E[(Yiy1 —
z+1)2|AC] is negligible and that the truncated expectation E[(Y;;1 — ﬁ+1)2|A] can be
replaced by the expectation E[(Yi41 — Ytﬂ)z]. The second source of error in the Taylor
approximation comes from the remainder of the Taylor series. From numerical examples,
the fourth order Taylor polynomial appears to be a very good approximation, i.e., the dif-
ference between the third order MSFE Taylor approximation and the fourth order MSFE
Taylor approximation is practically zero. Therefore, the source of error from the Taylor
remainder, given that the first approximation dealing with the region of convergence is
acceptable, will be negligible. In numerical and empirical applications, the third source
of error comes from estimating population moments with sample moments. The MSFE

Taylor approximation up to fourth order was found to be as follows:

1 A A Q

" — ot (10.2.7)
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with A=A+2B—-D, Q=64—-6B— D+ E, w; = E[Y;11X], we = E[X?],

A = Wi BIX! ] = 201wl BV X7 4] + wy BV X 4],

B = wiws B[X} 4] = 20103 B X} ] + W3 E[Y X 4],

C = B[y} ]w3 — wiwy,

D = 9wi B*[Xi_] — 18uw1s B[V, X} || E[XiL ] + 3wi B[V XP | BX ]
+ 6w B[V, X7 ],

E =3WlE[X} |] — 6wiwa E[Y; X[ ] + 3w3E[YVAXE ).

Approximating the MSFE by a fourth order Taylor expansion requires approximating
twelve population moments, E[Y?2,], E[X?], E[X} ], E[X{ ], E[X} ], E[Y;X;-1],
E[YiX} ), EIVAXZ,), EIYiXP,), EY2X!,], BIYiX[,], E[Y2XS,], with their sample
counterparts. Once the twelve approximations of the population moments have been
obtained, the MSFE approximation can be given for any values of the sample size n.
The brute force method, on the other hand, requires one approximation of the MSFE
for every value n of the sample size. For example, if one requires approximations of
the MSFE for n = 1,2,...,500, the Taylor algorithm requires twelve approximations of
sample moments necessary in the expression 10.2.7. The brute force method requires 500
individual approximations of the MSFE. Furthermore, approximations for the brute force
method can have great deviations for different values of n as consequence of realizations
resulting in small denominators of the OLS. This type of errors are not encountered in
the Taylor algorithm. In the example that follows, we illustrate the trade-offs between

the sources of error for the Taylor algorithm and the brute force method.

Example 10.3 Let the forecaster observe a dependent process {Y;}, and an explanatory

process { X} such that the DGP, model and forecast are as follow:

DGP :Yii1 = o1 X + o X+ U1, {X;}~IIN(10,1), {U,} ~IIN(0,1),

Model :Y; = X1 + V4,
) R R t—1 =l
Forecast : Yii1n = BenXt, Bin= ( Z Xz) Z Y1 X

T=t—n T=t—n



326
The SFE is given by SFE;,, = (Yi41 — ﬂAt,nYt)? We generate a series of explanatory
data and a series of dependent data, each of length N = 500. Figure 10.5 presents the
benchmark MSFE generated with Monte Carlo simulations, the Taylor algorithm approz-
imation, and the brute force method approximation. This example illustrates that the
brute force method lacks robustness to the data as can be seen from the jaggedness of the
MSFE and the fact that the approxrimation worsens as n increases as m decreases. The

error of the Taylor algorithm is manifested in a shift from the Monte Carlo MSFE. O

MSFE for i.i.d. process

250 |

Taylor algorithn

Brute force method

Monte Carlo

200 |

150

MSFE

100

50

0 50 100 150 200 250 300 350 400 450 500
n

Figure 10.5: MSFE with DGP Y11 = X; + X? + Urpa

Stationary processes
As before, we compare the Taylor algorithm and the brute force method by qualitatively
analyzing the sources of error in both estimation procedures. For the case of stationary
process, the first source of error for the Taylor algorithm comes from the fact that the

Taylor expansion is valid only inside a convergence region A but the MSFE is as follows:

MSFE, = E[(Yer1 — Yer1)*|A] + E[(Yipr — Yie1)?| A%
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The first approximation and source of error for the Taylor algorithm comes from assuming
the term E[(Y;41 — }Aﬁ;+1)2|AC] is negligible and that the truncated expectation E[(Y;y1 —
Yi11)2|A] can be replaced by the expectation E[(Yi11 — Yi41)?]. As for the iid. case,
the second source of error in the Taylor approximation comes from the remainder of the
Taylor series. In numerical examples, we investigate a second order Taylor polynomial
approximation. As for the i.i.d. case, in numerical and empirical applications, the third
source of error in the Taylor algorithm comes from estimating population moments with
sample moments. This source of error can be more severe for the general stationary case
than in the i.i.d. case due to the fact that a larger number of covariances need to be
estimated. For a given n, 4n? + 2n + 2 moments must be estimated. This makes the
Taylor approximation computationally expensive compared to the brute force method.
The brute force method requires one approximation of the MSFE for every value n of
the sample size. The only advantage of the Taylor algorithm over the brute force method
is that, the brute force method lacks robustness to realizations of the denominator of
the OLS being close to zero. The following example illustrates the performance of both

methods.

Example 10.4 We consider the forecast problem where the DGP is generated by an
AR(1) process of the form:

Yi=p+ Y1+ U

The forecaster applies a white noise model of the form Y = [ + Vi, resulting in the
forecast Ytﬂ = ﬁAt,n. This problem has been shown to have the following analytic solution
for the MSFE:

B 2071\ 1 1—¢™ \ 1
MSFE = Var(Y;) [1+<1+ 1—¢>5_2¢<W> ﬁ]

Figures 10.6, 10.7, and 10.8 present results for values of the autoregressive parameter
of 0.1, 0.49, and 0.95, respectively. The figures show both the approzimation from the
Taylor algorithm and the approximation from the brute force method. The approrimation

from the brute force method, as in the i.i.d. case, worsens as n increases because m, the
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MSFE for AR(1) DGP,¢=0.1

2 T T T T
Analytic solution
Taylor algorithn
1.8 Brute force method |7
1.6 ]
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Figure 10.6: MSFE with AR(1) DGP, ¢ = 0.1

number of SFE realizations available for averaging, decreases. 0O
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MSFE for AR(1) DGP, ¢=0.49
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Figure 10.7: MSFE with AR(1) DGP, ¢ = 0.49
MSFE for AR(1) DGP,=0.95
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Figure 10.8: MSFE with AR(1) DGP, ¢ = 0.95
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10.2.3 Further topics on forecasting structural break processes

The Taylor algorithm to estimate the MSFE of a structural break process was developed
under the assumption that the time of the break is known to the forecaster. In this section,
we try to relax this assumption by investigating the situation in which the forecaster
believes a break has occurred at a time t —ny but in reality no break has occurred. To do
this, we compare, in the following example, the change of the the MSFE approximation

as the size of the break decreases to zero.

Example 10.5 We consider a DGP consisting of a structural break process as follows:

X +Ui;11, T<t—n
Yo = b b " (10.2.8)

ﬁ2XT + U2,T+17 T>t— ny

with B1,02 € R, Var(U1,) = 1, Var(Uz,) = 1, {X;}; = IIN(10,1). The forecast
model is given by Yir1 = BX: + Vg1, the forecast is given by fftﬂm = @t,nXt, where Bt,n
is the OLS estimator of (B2. In this example, we examine the Taylor approximation of
the MSFE for varying size of the break . The break occurs 500 time units in the past
from the forecast origin. The moments in the Taylor approrimation after the break are
estimated with 500 data points and the moments in the Taylor approximation previous to
the break are estimated with 2500 data points. The small amount of data used to estimate
moments contributes to the error in the approrimation. Figure 10.9 presents the results
for four cases: (1) 1 = 2.5 changes to B2 = 2, (2) /1 = 2.5 changes to fa = 2.3,
(8) B1 = 2.5 changes to By = 2.5, (4) 1 = 2.5 changes to (2 = 2.8. The important
case is (3). It represents what happens when the forecaster believes a break occurred at
t —500 but in reality no break occurred. The resulting Taylor approzimation of the MSFE
decreases monotonically. Figure 10.9 also shows the benchmark MSFFE if no break occurs.
The difference between the benchmark MSFE and the Taylor approximation of the MSFE
in case (3) is in the level of the MSFE but the shape of the MSFEs, which decrease
monotonically, are similar. From this example we can conclude that, when the forecaster
believes a break occurred but in reality no break occurred, the resulting MSFE Taylor
approximation would decrease monotonically, i.e., the bias of the forecast error will not

increase and the variance of the forecast error will decrease. Given this information, the



331

MSFE for Structural break process
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Figure 10.9: MSFE for different break sizes
forecaster can then re-evaluate her prediction of the occurrence of a structural break. O

The Taylor algorithm does not work well in the situation where the forecaster thinks no
break has occurred but in reality a break has occurred. This is illustrated in Figure 10.10.
The figure shows the MSFE which should result from correct prediction of the break time
as well as the MSFE Taylor approximation resulting from the erroneous prediction of the

break time.

10.3 Future directions

Many questions and problems are left open. For the forecasting problem with inde-
pendent identically distributed processes, we described the multivariate algorithm and
numerical experiments can be constructed as done for the univariate case. Furthermore,
it would be important to conduct empirical studies to verify the MSFE approximation.
For the forecasting problem with covariance stationary processes and with structural

break processes, one would require a multivariate algorithm with corresponding numeri-
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Figure 10.10: MSFE for structural break DGP with no break predicted

cal experiments and empirical studies. Another interesting problem would be to develop
a similar Taylor algorithm for a forecasting problem involving covariance stationary pro-
cesses that undergo a structural break. Finally, for empirical studies, the problem of
forecasting volatility under misspecification can be of great interest for the finance com-

munity.
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Appendix A

A.1 Identities

Many of these identities were obtained from [19].

Identity A.1 For a nonnegative random variable X and a positive number o

P(X >a) < %X].

Identity A.2 (Markov’s Inequality) For a random variable X and a positive number
o

E|Ix

PX| 2 0) < =5

Identity A.3 (Chebyshev-Bienaymé Inequality) For a random variable X with m =

E[X] and a positive number «

< Var[X]'

P(|X —m| > «) 2

Identity A.4 (Jensen’s Inequality) For a random variable X with m = E[X] and a

convex function ¢
P(E[X]) < E[p(X)].
Identity A.5 (Holder’s Inequality) Given

1 1
-+-=1, p>1l,qg>1,
p q
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it follows E[|XY|] < EVP[|X|P]EY[|Y|9].

Identity A.6 (Schwarz’s Inequality)
E[IXY]) < BV2[X?|EV2]y?)
Identity A.7 (Lyapounov’s Inequality)
BY°[1x]°] < Y[ |XP), 0<a<§.
Identity A.8 (Minkowski’s Inequality) Forp > 1,

EVP[IX + Y] < EVP[ X[ + BVP[|Y]P).

A.2 Asymptotic theory

The most fundamental concept for the study of non-random sequences and series is the

limit.

Definition A.9 Let {a,} be a sequence of real numbers. The number a is called the
limit of the sequence {an} if for every § > 0 there exists an integer N(§) such that for
alln > N(6), |a, —a| < 6.

When the limit exists, we say the sequence {a,} converges to a as n tends to oo,
a = lim,_,o an. We refer the reader to [86, 87] for a comprehensive look at deterministic
sequences and series.

When considering sequences and series of random variables, there are several concepts
of stochastic convergence. The setting for defining any stochastic convergence consists
of a probability space (2, F, P) and a sequence of random variables {X;,i > 1} defined
on (92, F, P). The modes of stochastic convergence which we will discuss include almost
sure convergence, convergence in probability, convergence in rth mean, and convergence

in distribution. We first present definitions.

Definition A.10 Let the sequence {X,,} and X be real valued random variables on the
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probability space (2, F,P). X, converges almost surely to X, X, X, if Plw :
Xp(w)— X(w)} =1.

Other terminology used for almost sure convergence includes convergence with probability

1, convergence almost everywhere, and strong consistency.

Definition A.11 Let the sequence {X,,} and X be real valued random variables on the
probability space (2, F,P). X, converges in probability to X, X, Ll X, if P{w :
| Xn(w) — X(w)] <e} — 1 asn — oo.

Convergence in probability is also referred to as weak consistency or convergence in

measure.

Definition A.12 An estimator 0, of a parameter 6 is a consistent estimator if and only

if 0, 2 0.

Theorem A.13 The mean of a random sample from any population with finite popula-

tion mean i and finite population variance is a consistent estimator of L.

Proof. See [61] p.112. m
We denote by LP(£2) the class of all measurable functions f(w) such that [, | f(w)[PdP <

oo, p > 0.

Definition A.14 Given X, € LP(Q), n=1,2,..., p> 0 and X € LP(Q), X,, converges
i LP to X, X, "2 X, if E|X, — X|P = 0 as n — .

LP convergence is also known as convergence in LP-norm or convergence in pth mean.

When p = 2 this is known as convergence in mean square and is denoted by X,, 3" X.

Definition A.15 Let {X,} be a sequence of random finite-dimensional vectors with joint
distribution functions {F,}. If F,(z) — F(z) as n — oo for every continuity point
z, where F' is the distribution function of a random wvariable Z, then X, converges in

distribution to the random variable Z, X, < 7.

Convergence in distribution is also known as convergence in law, X, Lz , or that X, is
asymptotically distributed as F', X, LF.

We now present some important theorems.
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Theorem A.16 Let X,,, X andY,, be random vectors. Then
1. IF X, Y X then X, 2 X.
2 IF X, 22 X then X, & X
3. If X, L X, and {|Xn|P}{° is uniformly integrable, then X, Iy x.
4o If X0 2 X then X, % X.
5. Xn Ze for a constant c if and only if X, 4 x.
6. if X % X and d(X,,Y,) 50, then Y, % X.
7. 4f X, L X and Y, L for a constant ¢, then (X,,Y,) <, (X, c).
8. if Xp B X and Y, B Y, then (X,,Y,) & (X,Y).
Proof. See [37], p.284, 287 and [39], p. 10. m

Theorem A.17 (Cramér’s Theorem) If X, 4 X andY, 5 a for a a constant, then
1L X, +Y, % X +a
d
2. XpYn, — aX.
9. X,/Yn % X/a, fora#0.
Proof. See [37], p. 355. m

Theorem A.18 Let g : R¥ — R be a Borel function, let Cy C R* be the set of continuity

points of g, and assume P(X € Cy) = 1.
1. If X, % X then g(X,) %3 g(X).
2. If X, 5 X then g(X,) & g(X).
3. If Xn 5 X then g(X,) 2 g(X).

Proof. See [37], p.286, 355. m
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Theorem A.19 Let {X,} denote a sequence of (n x 1) random vectors with plim ¢, and
let g(c) be a vector-valued function, g : R™ — R™, where g(-) is continuous at ¢ and does

not depend on 7. Then g(X,) £ g(c).

Proposition A.20 Let {X1,} be a sequence of (n xn) random matrices with X1, L Ch,

a nonsingular matriz. Let Xor denote a sequence of (nx1) random vectors with Xo, 5 cy.

Then [X1,] "1 Xa, £ [C1]Les.
Proof. See [64], p. 182. m

Theorem A.21 Let {X,} and {Z,} be sequences of k-vectors (not necessarily converg-
ing) and g the function defined in theorem A.18, and let P(X,, € Cy) = P(Z,, € Cy) =1

for every n.

1 If || X0 = Zall “3 0 then ||g(Xn) — g(Zn)]| “3 0.

P P
2. If || Xn — Znl|| = 0 then ||g(Xy) — 9(Zn)|| — 0.

Proof. See [37], p. 286. m

Theorem A.22 Let g : R¥ — R be a Borel function, continuous at a.
1. If X, “% a then g(X), “3 g(a).
2. If X,, L a then 9(X)n il g(a).

Proof. See [37], p. 286. m

Theorem A.23 Let a sequence {Y,}{° be bounded in probability (i.e., Op(1) as n — oo
)i if Xn 50, then XY, 2 0.

Proof. See [37], p. 287. m

Theorem A.24 Let {X,,}3° be a uniformly integrable sequence. If X, 3 X, then
FEX, — EX.

Proof. See [37], p. 183. m
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Theorem A.25 If X, L X and {X,} is uniformly integrable, then E|X| < oo and
EX, — EX.

Proof. See [37], p. 357. m

Given a sequence of random variables {X;,7 > 1} defined on the probability space
(Q,F,P) and setting S, = > -, X; for ¢ > 1, the sequence {S,,n > 1} is referred
to as the sequence of partial sums. Convergence almost surely of the series Y -2, X; is

equivalent to the convergence almost surely of the sequence of partial sums

o0
ZXZ'ZS<OO as. — 5,356
i=1
[136], presents results for almost sure convergence of the basic sequence {X;} for a

variety of dependence structures.

Definition A.26 (martigale difference sequence) A sequence of scalars {Y;}2° sat-
isfying E[Y;] = 0 for all 7 and E[Y;|Y;_1,Yr_o,...,Y1] =0, for 7 = 2,3,... is said to

be a martigale difference sequence.

Definition A.27 (L!'-Mixingale) Consider a sequence of random wvariables {Y;},
with E[Y;] =0 fort =1,2,--- Let Q. denote information available at time 7. Let {c;}2°
and {&: 122, be sequences of nonegative deterministic constants such that limy, oo §m = 0
and E|E[Y Q]| < ¢:&m for allt > 1 and all m > 0. {Y;} is said to follow an
L'-mizingale with respect to {Q,}. A zero-mean process for which the m-period ahead

forecast E[Y; |2 ] converges to the unconditional mean of zero is an L'-mizingale.

Proposition A.28 Let {Y;} be a martigale difference sequence. Let ¢, = E|Y;|, and

choose &g =1 and &, =0 form =1,2,.... Then {Y,} is an L'-mizingale sequence.

Proof. See [64], p. 190. m

Definition A.29 (uniformly integrale) A sequence {Y;} is said to be uniformly in-
tegrale if for every e > 0 there exists a number ¢ > 0 such that E [|YT|5[|YT|20]] < € for all

t, where Oy, |>¢) = 1 if |Y7| > ¢ and 0 otherwise.
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Proposition A.30 Let {Y,} be an L'-mizingale. If {Y;} is uniformly integrale and there
exists a choice for {c;} such that limp_.(1/T) Zzzl ¢r < oo then (1/T) Zzzl v, £ o.

Proof. See [4]. m

Proposition A.31 Let Y1 be the sample mean from a martigale difference sequence,

Yr=1/T)S1_, Y, with E|Y,|" < M’ for some r > 1 and M’ < oo. Then Yr L.

Proof. See [64], p.191. =

A.3 Laws of large numbers

Theorem A.32 (Kolmogorov) Let {Zs} be a sequence of independent identically dis-
tributed random variables. Then Z, “> u if and only if E|Z| < co and E[Zs] = p.

Proof. See [119], p. 115. m

Proposition A.33 Let g : R¥ — R be a continuous function. (i) Let Z; and Z, be
identically distributed. Then g(Zy) and g(Z;) are identically distributed. (ii) Let Zy and

Z, be independent. Then g(Z;) and g(Z;) are independent.

Proposition A.34 If {(Z;],X],¢)} is an independent identically distributed random
sequence, then {X, X[}, {Xie:}, {Z: XY, {Zie;}, and {Z;Z]} are also independent

identically distributed sequences.

Theorem A.35 (Markov) Let {Z;} be a sequence of independent random variables,
with finite means p; = E[Zy]. If for some o > 0, 322 (E|Zy — we|'F0) /1170 < o0, then

Zn = fin = 0.
Proof. See [31], pp. 125-126. m

Corollary A.36 Let {Z;} be a sequence of independent random variables such that
E|Z|'0 < A < oo for some § > 0 and all t. Then Z, — i, 3 0.

Theorem A.37 (Ergodic theorem) Let {Z;} be a stationary ergodic scalar sequence

with E|Z;| < co. Then Z, “> u = E[Zy].
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Proof. See [136], p. 181. m

Theorem A.38 Let g be a F-measurable function into R* and define Yy = g(...,Zs_1,
Zy,Zy1,...), where Zy is q x 1. (i) If {2} is stationary, then {Vy} is stationary. (ii)If

{Z,} is stationary and ergodic, then {)} is stationary and ergodic.
Proof. See [136], p. 170, p. 182. m

Proposition A.39 If {(Z,,X/, )} is a stationary ergodic sequence, then {X;X,},
{Xier}, {Z:X] Y, {Zse;}, and {Z,;Z]} are stationary ergodic sequences.

Theorem A.40 Let g be a measurable function into R* and define

V=82, Zitr, ..., 2L4r),

where T is finite. If the sequence of q x 1 vectors {Z} is ¢p-mizing (a-mizing) of size —a,

a >0, then {)J} ¢-mizing (a-mizing) of size —a, a > 0.

Proof. See [151] (Lemma 2.1). =
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Appendix B

Appendix for Chapter 4

The following theorems, corollaries, propositions, and their proofs can be found in [31,

119, 153).

B.1 Random power series

A random power series is a power series with some of its components represented by
random variables. In the literature, much attention has been given to the scenario with
a probability space (2, F, P) and an arbitrary sequence {an(w)}22, of complex-valued

random variables defined on it such that the series
o
D an(w)", (B.1.1)
n=0

with z an element of the complex plane C| is called a random power series. These are not
the series of interest to us but for the interested reader we refer to the many expositions
on the subject, [12, 81, 105].

We are interested in the setting consisting of a probability space (€2, F, P) and an
arbitrary sequence {X,(w)}>, of random variables defined on it. We look at the power

series given by
D enXn(w)", (B.1.2)
n=0

with {c,} a sequence of real constants.

The methods needed to study the convergence properties of (B.1.1) and (B.1.2) are
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quite different. This difference originates from the well known fact that the convergence of
a power series depends on the limit of the coefficient series {a,(w)} in the case of (B.1.1),
and {c,} in the case of (B.1.2). Since {c,} is a sequence of deterministic constants, the
convergence of (B.1.2) can be studied as its deterministic counterpart. We present the

most important theorems for power series.

Theorem B.1 Let ) cx X" be an arbitrary power series, and set lim sup ey, = a. Then
1. for a =0, the series converges for all X.
2. for a = 400, the series is divergent for every z # 0.

3. for 0 < a < +oo the series is absolutely convergent for every X with | X| <r =1/a,

divergent for every X with |X| > r.

Proof. See [86], p. 99. m

When considering a power series > ¢ (X — Xo)* with radius of convergence not equal
to 0, the series is absolutely convergent for every X with |X — Xo| < r. Its value is a
function of X and denoted ¢(X), and we say the power series represents the function
¢(X), or conversely, that the function ¢(X) is expanded in a power series. We now

present some theorems regarding such functions.

Theorem B.2 The function represented by a power series is continuous at the center

Xo of its circle of convergence.
Proof. See [86], p. 102. m

Theorem B.3 Let ) e XF be a power series with positive radius r. If X1 is an interior
point of its circle of convergence, then the function ¢(X) represented by this series can

also be expanded in a power series
B(X) =D bp(X — X1)F, (B.1.3)
k=0

in a neighborhood of X1. Every coefficient by, is represented by the absolutely convergent
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series

X [ k+wv
bk:Z Ck_,_va, k':O,l,...,
v=0 v

which, regarded as a power series, again has the exact radius r. Furthermore, the radius

r1 of (B.1.3) is at least equal to r — | X1].
Proof. See [86], p. 105. m

Theorem B.4 A function represented by a power series Y cx X" is continuous at every

interior point of its circle of convergence.
Proof. See [86], p. 107. m

Theorem B.5 A function represented by a power series is differentiable arbitrarily often
at every interior point of its circle of convergence, and its derivatives may be obtained by

term-by-term differentiation.
Proof. See [86], p. 107. m

Corollary B.6 Given a function represented by a power series with a radius of conver-

gence r, $(X) =322 cn(X — Xo)¥, then ¢, = %qb(k)(Xo).

Proof. See [86], p. 108. m

B.2 Theorems

Theorem B.7 (Ratio Test) Given a series Y a, of nonzero complex terms, let

Anp41
Qp

An+1
an |

,  R= lim sup

n—~o0

r = lim inf
n—oo

1. The series Y a, converges absolutely if R < 1.
2. The series Y a, diverges if r > 1.

3. The test is inconclusive if r < 1 < R.
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Proof. See [7], p. 193. =

Theorem B.8 (Comparison Test) Ifa, >0 and b, >0 forn=1,2,..., and if there
exists positive constants ¢ and N such that a, < cb,, for n > N, then convergence of

> by, implies convergence of > ay,.
Proof. See [7], p. 190. =

Theorem B.9 If )" f, converges almost everywhere and | Y _, fx| < g almost every-

where, where g is integrable, then Y f, and the f, are integrable and [, fndp =

Theorem B.10 If > [|fuldp < oo, then Y. fn converges absolutely almost every-
where and is integrable, and [ >, fodpu =3, | fndp.

Proof. See [19], corollary to theorem 16.7, p. 211. m

Theorem B.11 Let {X,}° be a uniformly integrable sequence. If X, 3 X, then
FEX, — EX.

Proof. See [37], theorem 12.8, p. 188. m
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Appendix C

Appendix for Chapter 5

C.1 Convergence and probability sets

When applying the Taylor series approximation method developed in Chapters 5, 6, and
7, two sets are of importance; a convergence set and a probability set. For the ap-
proximation of the expectation of a function of random variables or statistic by means
of a Taylor series, the convergence set describes the region where the Taylor series
converges. If B is such a convergence set, the expectation of a function f of n ran-
dom variables X1,...,X,, with domain R", can be written with truncated expectations
Elf(X1,...,X,)] = E[f(X1,...,X,),B] + E[f(X1,...,Xn), B, where BU B¢ = R".
The approximation of interest is E[f(X1,..., X,)] ~ E[f(X1,...,Xy), B] = E[Q(f,m), B]
where Q(f,m) is the mth order Taylor polynomial of f. There might be situations in
which the convergence set B is such that the truncated expectations are difficult to cal-
culate. In such cases, we are interested in defining a probability set A. The probability
set A is a region of the domain of the random variables R™ chosen to ease the calculation

of truncated expectations. For the Taylor series approximation method to work, the

probability set must be a subset of the convergence set A C B.

C.1.1 Convergence set for the approximation of the OLS

We begin by assuming |E [BMH < 0o and consider the scalar case k = 1. Recall the OLS
for the forecasting problem described in Chapter 5 as given by (5.4.2) and (5.4.6) is as
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follows:

t—1 -1/
B = ( > XTX;) ( > XTYTH) = Sy 2 Sin:
T=t—n T=t—n

In Chapter 5 we described the approximation of the expectation of ﬁt,n by means of a
Taylor series with respect to the variables S, and Sy, about the points w; and wy. The
approximation given is E[Btn] ~~ E[Q(BM,M),A], where Q(ﬁt,n,M) is the Mth order
Taylor polynomial of ﬁt,n. Presently, we are interested in determining the set A of the
truncated expectation involved in the approximation. To do so, we assume the random
variable Y; depends on the mutually independent processes {X;} and {U,} for 7 < ¢. It
follows ﬁt,n is a function of the random variables X;_,,,..., X;_1,Usi_p, ..., Us_1. Next,

we write the decomposition (5.4.8) as follows:

E[ﬁt,n] :/ e / Bt,n(Xt—na L 7Xt—17 Ut—n7 ceey Ut—l)
R R
f(Xemny o, X1, Uy oo, Up1)d X gy oo o d X —1dU—y, .. dU
:/ / |:/ ﬁt,n(Xt—nw”7Xt—laUt—n7"-7Ut—l)fl(Xt—n7‘~7Xt—1)
R RLJ I
X dX o+ / oo | Bon(Xim e s X1, Uy o, U
c I"(’:L
1Ko XA dXo | Ui U )dU g dUs
:/// ﬁt,n(Xt—nw”7Xt—laUt—n7"-7Ut—l)fl(Xt—n7‘~7Xt—l)
R RJI In
fo(Upiepy oo o, Up1)d Xy oo . dXp—1dUp—y, ... dUp—q
/ / / ﬁtn Xt ns - '7Xt—17Ut—n7"'7Ut—1)f1(Xt—1’L7"'7Xt—1)
c Ic
fo(Up—py oo, Up1)d Xy oo . dXp—1dUp—y, ... U4
—E[Bt,ny A] + E[Bt,?h AC]’
where f is the joint distribution of the random variables Xy, ..., X;—1,Us—n, ..., Us_1,
f1is the joint distribution of the random variables X;_,,, ..., X;_1, fo is the joint distribu-

tion of the random variables Uy, ..., U1, I; isan interval in R for¢ = 1,...,n, and I is

the respective complement. From the above development, it follows A = R" x Iy x---x I,
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and A¢ =R" x If x --- x I;. The objective is to specify the intervals I; for i =1,...,n
in a manner such that the Taylor series of Bt,n converges in the region Iy X --- x I,,. The

Taylor series of Bt,n will converge in the set

B = {(Sl’n,SQ’n) :0< 52 < 2w2}.

Since S 5, is a function of the random variables X;_,,,..., X;—1,Ui—p, ..., Ui—1, and Sz,
is a function of the random variables X;_,, ..., X;_1, it follows the set B can be rewritten
as follows:
t—1
B={(Xin, s Xt 1,Upn,...,Up1) €ER:0< > X2 < 20wy} (C.1.1)
T=t—n
The integrals involving the intervals I; for ¢ = 1,...,n are parametrized such that the

volume enclosed coincides with the hyper-sphere ZtT_:lt_n X2 = 2nw, less the origin. For

this, we make use of the following hyper-spherical coordinates:

X1 7 COS @1
Xi o 7 8in ¢ cos Pa
_ k—1 .
X | = r (Hi:l sin gbi) cos ¢y, ,
Xi_n_1 7 8in ¢ sin ¢ - - - sin ¢, _o cos 6
Xi_n 7 8in ¢1 sin ¢ - - - sin ¢,,_o sin 0
where ¢; € [0,7] for i = 1,...,n — 2 are polar angles and 0 € [0,2m) is the azimuthal

angle. The transformation can be carried out with the following differential relations:

dXy_1 = cos ¢1dr — rsin ¢1dey,

dX;_o = sin ¢ cos ¢adr + 1 cos ¢ cos padd1 — 7 sin ¢1 sin Padeps,

k-1 k-1
dXi_p = (H sin gbi) cos ¢pdr + 1 Z cos ¢; H sin ¢; | cos ¢rdo;

i=1 i=1 i
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|
—

sin ¢z’) sin ¢ doy,

|
[ SR

k

dXt—n—l = <

—-r ( sin QSZ') sin 6d#,
i=1

n—2 n—2
dXi_pn = (H sin qﬁi) sinOdr +r Z coS @; H sin ¢; | sinfdg;

i=1 i=1 J#i

n—2
sin QSZ') cosfdr +r Z coS @; H sing; | cos 0d¢;

i=1 j#i

Il
—

i
[N}

<
Il

n—2
+7r (H sincﬁi) cos 6df.

i=1
The integrals involving the intervals I; for ¢ = 1,...,n are replaced by integrals involving
the variables ¢1,...,¢,—2,0,r with respective intervals ¢; € [0,7] for i = 1,...,n — 2,

0 € [0,27) and r € [0, v/2nw2 |. The above analysis follows exactly for the approximation
of E[Bfn] by E‘[Bfm A] where A is the same set.

C.1.2 Probability sets for the approximation of the OLS

Of particular interest is the probability set A, defined as follows:

A= {(Xt—n7 s 7Xt—17 Ut—?’w HE 7Ut—1) € R2n : Xt—n S It—m s 7Xt—1 € It—1}7

I =[E[X;] - 6, E[X;] + 6] €R for i=t—mn,...,t—1,

such that A C B where B is as defined in (C.1.1). To determine if A C B, it suffices to

show A C B where

A

{(Xt—?% s 7Xt—1) e R™: Xt—n € It—na s 7Xt—1 € It—1}7

t—1
B={(Xi—n,.... X;—1) ER": > X2 < 2nwy}.

T=t—n

The center of the polytope A is the point p = (tty—n,- .-, 1) with p; = E[X;] for

i=t—mn,...,t —1. The distance between the origin and u is r = \/u%_n +tu? .
The radius of the hypersphere B is R = \/2nw,. Clearly u € B, since r = \/wy < R.
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Without loss of generality, we assume p > 0. We are interested in giving conditions on §;
to ensure the polytope A is the largest polytope completely contained in the hyper-sphere
B. The square distance from x to the closest point on the hyper-sphere is given by the

following optimization problem:

t—1
: 2
§ = min E (Xi — i)™,
XeB .
1=t—n

and the point on B nearest to p is as follows:

_ <Mt—nR Mt—lR>
v=|"—,... .

)
r r

The largest polytope centered at p completely contained in the hyper-sphere B is the
polytope with /s as the largest distance from its center. For the case n = 2, the

largest polytopes are rectangles, as shown in Figure C.1. For a general n and the case

li—n = -+ = W_1, the polytope is a hyper-cube and the nearest point to y on B is
V= Tton,-- s Tt—1), T;=1/2(p2 {+02,), for i=t—mn,...,t—1,
and §; = &; — p; fori =t —n,...,t — 1. The interval I; is centered at the mean p,; and

has width 20;. We are interested in understanding the probability P(X; € I;). To do

this, we examine the following ratio:

The limit of §;/0; as 0; — o0 is /2, and the minimum is d;/0; = 1, which occurs at
o; = p;. Figure C.2 shows §;/0; as a function of o; for three different values of p;. Figure

C'.2 also shows the probability P(X; € I;) as a function of o; for three different values of

i
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Figure C.1: Probability sets for n = 2
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C.2 Expansion of truncate central moments for the scalar
problem
We begin by expanding powers and products of the statistics S7, and S, and the

corresponding truncated expectations.

. E[Sl,n,A]:%E[ > Ve Xe A = B[YiXi, 4]
T=t—m
t—1
o E[Som Al _%E[ S x2A| = B[x}, 4]
T=t—mn

Next we expand E[S7,,, AJ:

T=t—n 1#£]

t—1 2 =1
1 1
sta=ip (3 rux) =5 3 vxe Dwaxvax

T=t—n
The truncated expectation of the two terms are as follows:
t—1
E|: Z Y7'2+1X7%7A:| =nk [YVt2Xt2—17A] 5
T=t—mn

B[ > Vi X1 X5, A| = (02 = ) B [YiXs-1Yi1 X2, 4]
i#j

The truncated expectation of Sin is as follows:

_ _ 1\ _
o Bt Al = LB [PXE A+ (1o 1) BNV Xioa 4],

3=

Next we expand E[S3,,, AJ:

t—1 2 t—1
1 1
2 2 _ 4 2v2
Sz,n_m<§ XT> =1 XT+§' XX
T=t—n T=t—mn i#£j
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The truncated expectation of the two terms are as follows:

t—1

E[ 3 X;%,A} = nE X}, 4],
T=t—n

E[ZXZ?Y]-HX;,A] = (n? —n)E [X2 X2, A].
i#j

The truncated expectation of S%n is as follows:
_ 1 - 1Y\ =
o LS5, A= —E[X[ A+ <1 -~ E) E[X} X} 5, A].

Next we expand E[SLHSQ’n, Al

= t—1
S1.nS2.n = ( Z YT+1XT> < Z XZ)

T=t—n T=t—n
1 t—1
=— Z Ve X2+ Z Vi Xi X7
" T=t—n i#£j

The truncated expectation of the two terms are as follows:

t—1
E[ 3 YTHX;”:A} —nE [V, X} |, A],

T=t—n
B[ > Vi XiX3, A = (n? = n)E [V X, 1 X} o, A].
i#j

The truncated expectation of S1,952, is as follows:

_ 1\ -
E VX7, Al + <1 - E) E[YiX; 1 X7 5, A

S

L E[Sl,nSQ,n7 A] =

Next we expand E[S3,,, AJ:

t—1 3 t—1
1 1
Sg’yn:$<§jxf) = Y OXEHN XX+ Y XPXIX?

T=t-n i ik

T=t—n
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The truncated expectation of the three terms are as follows:

o t—1
E[ Y XE,A}:nE[Xf_l,A],
“T=t—-n

E[Y xix2, A} =3(n? —n)E [X} X2, A],
7

El Y XIXIX7, A} = (n® = 3n2 + 20)E [X2 X2 ,X2 5, A].
ik

The truncated expectation of Sg,n is as follows:

_ 1 1 1) -
o E[S3,,A] ZmE (X7 1, A] +3 <E - ﬁ) B [X{1 X7 5, A]
1 1Y -
+ (1 —3—+ 2§> E X} X}, XE g A

Next we expand E[S},53 ,, Al:

1 t—1 t—1 2
51,053 =— ( > YTHXT) ( > XE)

T=t—n T=t—n
A=
=3 Z Yo X2+ ZYiHXiX;l + ZYH-lX?XJZ + Z Yz‘+1X¢X]2Xi%
r=t-n oy oy i£i#k

The truncated expectation of the four terms are as follows:

1
E[ Y YT+1X§’,A] —nE [V, X} |, A],
T Tr=t—m
B[S Vi Xxix}, A} = (0% —n)E [ViX, 1 X1, A]
]
B[S Vi XPX2, A} =2(n® —n)E [V, X3 X2 5, A],
i#j
B[ 3 Vi XiX2X7, A] = (n® = 3n2 + 20)E [V; X; 1 X2 , X2 4, A].
itk

The truncated expectation of SlynS%n is as follows:

1 1
n n?

ey

[ ] E[SLHSS,”, A]

ey
=
2
|
>
+
/I\
|
|

1
:ﬁ [}QXt_lX;l_27Aj|
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1 1\ =
+2 <E — m) E[Y X} 1 X7 5, Al
1 1Y = 2 2
+ 11— 3E + 2@ E [EXt—lXt—th—:aa A} :

Next we expand E[S7, 5o, Al:

1 t—1 2/t
st =5 (5 v ) (5 22)

T=t—n T=t—n
=
=3 D OYPLXP D) YAIXIXI 4D Vi XoYnX]
r=t=n i i

+ Z Vi1 XY X, X}
ik

The truncated expectation of the four terms are as follows:

1

B[ Y v2.xhA| =nB[PX1, 4],

CT=t—n

E _Z Yf}-le2X327 A] = (n2 - TL)E [Y?XE—IXE—% A] )

i#j

B[ Vi X X}, A =20 = n)E [ViXi 1 Vi1 Xy, 4],
i

E[ Y }Q+1Xi)/j+1XjX,f,A] — (n3 —3n% + 2n)E[nXt_1n_1Xt_2X3_3,A .
itk

The truncated expectation of S%nng is as follows:

_ 1 - 1 1\ =
o (87 Sun Al =B [VXE A+ (3= L) B VNP X 4]

1

1 — 3
+2 <E — m) E [YtXt—1Yt—1Xt—2’A]

1 1 —
+ <1 — 3E + 2?) E [YtXt—lﬁ—lXtﬁth—&A] :

Next we expand E[S3,,, AJ:

1 t—1 4
S5 n = ( > XE)

T=t—n
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1 t—1
I DIECED TS SN ST
T=t-n i#] i ij#k

+ > XIXIXEXT
i#j £k

The truncated expectation of the five terms are as follows:

1

B[ Y XA =nE[X},, 4)
T r=t—n

E| Y XPX} A| = dn(n— DEIX{ X7, A,
i)

E fox;,A] = 3n(n— 1)E[X: X1, A
iy

B[ > XIX2XP, A = 6(n® — 3n% + 20)) BIX[ X2 ,XP 5, A),
itk

El Y XIXIXIXP, A] = (n* — 6n° + 11n2 — 6n) E[X2, X2 , X2 ,X2 ,, A.
ik A

The truncated expectation of S;{n is as follows:

_ 1 - 1 1) =
o ISt Al =g B0 Al 4 (g - ) BIXEAXE 5, A
3| 5~ g | ElXia X, Al

1 3 2
RTEREREA PRI

Next we expand E[517HS§’7n, Al:

T=t—n T=t—n

t—1 t—1 3
1
S1,0S3 =— ( > YTHXT) ( > XE)

t—1
== | D Ve XT 4> ViaXiXP+ > Vi XPX7 4+ Vi X X]
T=t-n i i i
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+ ) Vi X XJXE+ ) Vi XPXIXE+ Y Vi X XTXEX?
ik ik i Ak

The truncated expectation of the seven terms are as follows:

E[ Y YaxXT, A} = nE[Y;X]_,, A],

T T=t—n

B[S Vi XiXS, A] = n(n — 1)B[Y;X,_1 X5 ,, A],

i#j

B[S Vi XPX2, A} = 3(n? — n)E[Y, X7 , X2 ,, A,

i

B Vi XPX}, A] = 3(n = n) EYiXP Xy, Al

i#j

B[ 3 Vi XiX!X?, A] = 3(n® — 302 + 20) E[Y; X1 X2, X2 4, A,
itik

El Y Vi XiXIXZ, A] = 3(n® — 3n% + 20) B[V, X3, X2 ,X2 4, A],
itk

Bl Y Vi X X3XEXE Al = (n* = 60® + 11n% — 6n)E[Y; X1 X2 o X7 5 X7 4, Al.

it kA

The truncated expectation of SLnS%n is as follows:

D L~ 11\ -
¢ BlSinSin Al :ﬁE[Yth_l’ A+ <m - ﬁ) E[Y;X; 1 X[ 5, Al
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Next we expand E[S7, 53, Al:

T=t—n

2,4 2
83 = (z vax) (3 x2)
T=t—n

1

6 v2 x2xt 432 V2 x2x?
=— Z YV2OXS 4 YVAXIX] + ) YVAXIXT + ) YA XXX
T=t—n i#] i#] i#j#k
+ZYi+1Xz'5Yj+1Xj+ Z Vi1 XV X; X5 + Z Vi1 XY X X7
i#j i#j#k i#j#k

Y Vi XY X+ > Vi XY X XPX]
i it Al

The truncated expectation of the nine terms are as follows:

E Z 7'+l } - nE[Y2Xt 1» A]7
S T=t—n
B[ Y VA XEX], A = (0 = n) EVAXE Xy, Al
i
B[S VA XIX2, A =2(n? ) EVAXE Xy, Al
i)
E Z 1X2X2Xk7 A} = (n® = 3n® + 2n) EY? X7 X7 5 X7 5, Al
i#j#k
B[S Vi XPY;X;, A} —2n(n — DE[Y;X? Y1 Xe_o, Al
]
E| Y Vi XY XXE, A] = (n® — 302 + 20) B[V, X, 1Yi 1 Xy o X2 4, A],
itk
E| ) YinXYiaX; Xk,A] = 4(n® — 302 + 20)E[Y; X2 Y 1 Xy 2 X7 5, Al
i#jFk
E Z E+1X§Y}+1X§)7 A} = 2”(” - 1)E[YtXt3—1Yi—lXt3—27 A]?
i
El ) Y XY X;XpX7 A}
CitjERA

= (n? = 6n® + 11n? — 6n)E[Yi X; 1Yi 1 Xy 2 X7 3 X724, Al
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The truncated expectation of SinS%n is as follows:

_ 1 - 1 1\ =
o ISt Al =g BYPXE 1 AL+ (g - o ) BIVPXZ XA

1 1\ =
i (ﬁ - ﬁ) B X Xip A

13 2 -
+ (5 — Tyt o ) BIYPXE XD, XE g 4]

1 1 —
+92 <ﬁ — $> E[Y%Xf_lyi—lXt—%A]

YViX, 1Y 1 X o X} 5, Al

6 11 6\ =
+ (1 - $> ElY;X: 1 Vi1 Xy o X2 3 X2 4, Al

The expressions for powers and products of the statistics Sy, and Sa,, given above are

used to expand truncated central moments of first, second, and third order. We expand

E[(Sl,n —w1),A]:
° E[(Sl,n —w1), Al = E[Y;X; 1, Al —w P(X € A).
The truncated expectation of (S2, — ws) is as follows:
o E[(Son—w2), Al = E[X} 1, A] —woP(X € A).
We expand E[(S1,, — w1)?, Al
1 - 1\ -
:nE [ytzxf_l,A] + (1 — E) EY; X 1Y 1 X9, A]

E[(S1,n —w1)?, A] =E[S} ., A] — 2w1 E[S1 1, A] + wiP(X € A)

— 2w E[YV; X1, Al + wiP(X € A).
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2

The truncated expectation of (S1, —wi)” is as follows:

o E[(Sin—w)? Al = [met_lyt_lxt_g,A] — 2w B[V X1, A] + w?P(X € A)

1r- _
+ = |B[Y2XP 1 A] - E[YiXe1 Vi1 Xe2, A
We expand E[(S2,, — wo)?, Al:

[522,71’ A] - 2(4)2[‘7[527”, A] + w%P(X S A)

BXi A+ <1 - %) E[X2, X2, A] — 20,B [X2, A]

The truncated expectation of (S, — wy)? is as follows:

o E[(Spn—w:)? Al = [E (X2 X2 5, A] — 2wy [X2 |, A] + w2P(X € A)]

1r_ _
- [E (X2, A] - B [X2, X2, A] ]

We expand E[(S1, — w1)(S2n — wa), AJ:

E[(Sl,n - wl)(SQ,n - w2)7 A] :E[Sl,TLSQ,TL’ A] - le[SQ,na A] - WQE[Sl,na A]
+ LU1LU2P(X S A)
1= 1\ =

—wi B [X7 1, A] —wE [V, X;_1, A] + wiwa P(X € A).
The truncated expectation of (S, —w1)(S2,, —w2) is as follows:

° E[(Sl,n - wl)(SQ,n - w2)7A] =

—

EY, Xy 1 X} 5, Al —wn B [XP 4, A]
— B Y X; 1, A + wiws P(X € A)}

1ro _
+ = |B[YiX[ A] - B[YiXe XP 5, A] |-
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We expand E[(S1,, — w1)(S2,n — w2)?, A:

E[(Sl,n_wl)(SZn - w2)2, A] = E[Sl,ns%m A] - 2&]2E[Sl7n527n, A] - le[S%,m A]
+ WEE[S1 1, Al 4 2w1wo E[So n, A] — w1wiP(X € A)
1 - 1 1)\ -
=—E VX7 1, A] + <E - P) E[YViXe1 X[, A]
1 1 _ 3 9
+2(———)E Vi X} XE 5, A

1 1Y -
+ (1 —3-+ 2$> E Y X; 1 X7, X7 5, A

— 2wy <%E [ViX7P ), A] + <1 - %) E [)@Xt_le_%A])

1 1\ &
—w <EE (X, Al + <1 - E) E [XtQ—lXE—QaAD

+ Wi E Vi Xyo1, Al + 2wiwo B [X7 1, A] — wiwi P(X € A).
The truncated expectation of (S, —w1)(S2,n — wy)? is as follows:

o B[(Spu—w1)(Son — wa)? Al = [E[Y;Xt_le_2Xt2_3, Al = 20, B[V, Xy_1 X2 5, A]
—wB[XE  X}? o, Al 4+ W3E[Yi Xt 1, A] + 2wiwa E[X? 1, A]
—wwiP(X € A)}
2 [BYiXe 1 Xy, 4]+ 2B X X o, 4]
—3E[YiX; 1 X? o X2 3, Al — 2 E[Vi X} |, A
+ 2w B[V X1 X2 o, Al — i B[XE |, A] + w1 B[X2 X2, A]]
o[ BIYXE 4] - BIYXoa X, A

— 2B[YViX{ XEg, Al + 2B [YiXe 1 XP o X7y, A
We expand E[(Sl,n - wl)2(S2,n - w2)7 A]

E[(S1,n—w1)*(S2,n — w2), A] = E[S},,S2,n, A] — 2w1 E[S1 52,0, A] — wa E[ST,,, A]
+ w%E[ng, A] + 2w1w2E[SLn, A] — w%wgP(X S A)

1 - 1 1 _
:ﬁE [}/%2X;1_1,Aj| + <E - ﬁ) E [Y;thz—le?—Q?A]
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I 1Y -
+2 (‘ B ﬁ) B [YiXi1Yio1 Xi g, A]

n

1
n2

1 _
+ <1 _ 3E ) > EYiXio1Yio1 X2 X7 5, A

_ 1\ _
- 2w1<%E [ViXP Al + <1 - E) E Y X, 1 X7, A )

1 1) &~
— W2<EE [Y?ng—l? A] + <1 — E) E [Y;Xt—lyz—lxt—%A])

+WiE [ X7 1, A] + 201w E [V Xi—1, A] — wiws P(X € A).

The truncated expectation of (S, — wl)Q(ng — wy) is as follows:

o E[(S1n—wi)?*(San —wa), A
=B [YiXi1Yi 1 Xi2XE 5, A] = 201 B [YiX; 1 X2y, 4]

— waB Vi X 1Yi-1 X0, Al + WIE [Xf_l, Al 4 201w E [V X1, A
—wWwP(X € A)}
+% [E [Y2X2X}? 5, A] 4+ 2 [YiX; Y1 X}, A]
—3E [YiXy 1Y 1 Xy o X2 5, A] — 201 E [YViX} ), A]
+ 201 B [ViXi 1 X7 o, A] — wo B [Y2XE 1, A]
+ W B [YiX; 1Yi 1 X2, A])]
+$ B [V2X1 A] - B [V2XE XPp, A] = 2B [ViXi 1 Vi1 X}y, A]

+ 2B [ViXi1 Vi Xoma X2 5, A] |-

We expand E|[(S2n, — w2)?, AJ:

E[(Som — w2)?, A] =E[S3,,, A] — 3w E[S3 ,,, A] + 3w3 E[So.5, A] — wi P(X € A)

E
(-3t l E[X? X} X} 5, A
n n2 t—13t—231—3»
1 1\ -
— 3wz (EE (X, Al + <1 - E) E[X? X7 4, A )

+3wsE [X7 1, A] —wiP(X € A).
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3

The truncated expectation of (S2, — ws)” is as follows:

o E(Son—wi)’ A = B [XZ XZ,XP 5, A] - 3B [XZ X2y, A]
+ 3wl X2, A] — wiP(X € A)}
1

3B X X7 5. A] - 8B [X7 X7 X7 5. 4]

— 3wy B [X1 1, A] + 3wsE [X2 X2 o, A] ]

17 _ -
+= [E (XS A] — 3B [X} X2, A] + 2B [X2 X2 ,X2 4 A ] .

We expand E[(S2n, —w2)?, AJ:

E[(SQ,TL - w2)47 A] :E[Sé,n’ A] - 4w2E[S§,n’ A] + ngE[SS,TU A] - 4w§E[S27n’ A]
+wiP(X € A)
L axt A L) Exe x4
_’I’L3 t—1> n2 n3 t—1<4¢—2>

1 1 _
+3 <ﬁ - ﬁ) EX} X}y, Al

1 3 2\ =
16 <_ -+ $> E[X X7 o XP 5, Al
6 11 6\ -
+ <1 - + w2 ﬁ) E[XE—1Xt2—2Xt2—3Xt2—4,A]

4 _ 1 1 _
- ﬁMQE[XE_I, Al —12 (5 - ﬁ) wB[X{ X7 5, A

3 2 _ 6 -
(-5 + ) wnBIXE XX g, A+ R ELXE 1 4]

1 _ _
+6 <1 - E) WiB[X}?  X? 5, Al — 4w3E[X? |, Al +wyP(X € A).
The truncated expectation of (S, — wy)t is as follows:

* E[(SM - w2)4,A] = |:E[Xt2—lXt2—2Xt2—3Xt2—47A] - 4W2E[XE—1XE—2XE—37 Al
+ 6wWiE[X? (X2 5, Al — 4wSE[XE |, Al + wiP(X € A)
11, - _
2 [OBIXE XP o X7 g, 4] = 6BIX7 X o XP 4 X7 A]

— 120 E[X} | X7 o, A] + 1200 B[ X7 | X7 5 X7P 5, A] + 6W3E[X] |, A]
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— 63 E[X{ X7 5, Al
o[BI X7, A] 4 BBIXE Xy, A] — 18B(X, X2, X7, A
+UBXE X} 5 X7 3 X7P 4, Al — dwn E[X] 4, A]
120, E[X{ X7 g, A] - 8up BIXE X2, X7 5, Al
o [BIXE,, A~ 4BIXE X7y, A] - BBIXL, XEy, 4]

+12B[X X7 5 X7 5, A] - 6E[X132—1Xt2—2X132—3Xt2—47A]]’
We expand E[(SLn —w1)(S2n — ws)3, Al:

E[(S1n — w1)(Son — w2)?, A] = E[S1,055 ., A] — w1 E[S3 ., A] — 3wz E[S1,1.55 . A]
+ 3UJ1WQE[S22W, A] + 3w%E[Sl,nS2,m A] - 3WIW§E[52,m A] - ng[Sl,m A]

+wiwsP(X € A)
1
nd

1 1 _ 1 1 _
+3 (m - m) EY,X] | X7 5, A]+3 (ﬁ - ﬁ) ElY, X} 1 X!, A

_ 1 1
BN 1AL+ (-

) EIYi X, 1 X0, A]

1 3 2\ - 4 2

1 3 2\ =
+3 (— -5+ $> B, XP 1 X7 5 X} 3, A

1 _
— ﬁ> wB[X}! X2, A
1 _ 1 =
_ (1 —3-+ 2ﬁ> w1 E[X? | XP o X2 5, A] — Bwy— (Vi X7P 1, A
1 1 _ 4
-3 E — m WQED/;?Xt—lXt_Qa A]
L1 - 3 32
-6 P wo B Xy 1 Xi o, Al
1 1 = 2 2
—-3(1- SE + 2? wo BlY; Xy 1 Xi 1 X o, A]
_ 1 -
+ %wlng (X}, Al +3 <1 — E) wiwr B [ X7 1 XP 5, A]

_ 1 _
+ %ng Vi X}, Al +3 <1 — E) wiE [ViXi 1 X7 5, A
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— 3W1W§E[Sg,m A] — w%E[Sl,m A] + wlwg’P(X S A)
The truncated expectation of (S1, —w1)(S2,n — wy)? is as follows:

o E[(Si,0—w1)(Sa —w2)?, A] = BV Xy 1 XPoXP 4 XP 4, A]
— i B[X? X2 5 X2 5, Al = 3w E[Y: X, 1 X2 X7 o, Al
+ 3wiwe B[X? 1 XP 5, Al + 3W3E[Y: X, 1 X2 5, A]
— 3wwlB[X2 |, A] — WRE[Yi X1, A] + wiw?P(X € A)]
+% BEY; X, 1 X o X7 5, Al + 3E[Y, X} X7 5 X[ 5, A
— 6BV, X 1 X7 o X7 3 X7 4, Al = 3w E[X[ X7 5, A
+ 3w E[X2 X2 0 X2 5, Al — 3ws E[Y; Xy 1 X[ o, A]
— 6w B[V X7 1 X2 o, Al + 9o E[Y: X1 XP 0 X7 5, Al
+ 3wiwe B[ X} 1, A] — 3wiwo B[ X2 | X7 o, A]
+ 3w B[V, X} 1, A] — 3w3 E[Y; Xy 1 X} 5, A]
+% [E[Y;Xt_le_2, Al + 3E[Y,XP_ X2 ,, A]
+3EY, X} X} o, Al - 9E[Y, Xy 1 X} X7 5, A
—9E[Y, X} 1 X7 X7 3, Al + 1LE[Y; X, 1 X7 X7 X7 4, Al
— w1 E[X] 1, Al + 3w E[X} X7 o, Al = 201 E[X] 1 X7 5 X} 3,4
— 3wa B[V; X7 1, Al + 3wa E[Y; Xy 1 X}y, A
+ 6wa E[Y; XP 1 X2 o, A — 6wo E[Y; Xy 1 X7 5 X7 5, A
+% [E[Y%Xz_l, Al - EY,; X, 1 XP 5, A]
— 3BV, X; 1 X{ 0, A] = BE[ViX] 1 X} o, A]
+ 6BV X1 X[ 5 X7 5, Al + 6E[Y, X7 X7 5 X 5, A]

— 6BV, X 1 X7 o X} 3 X7 4, Al
We expand E[(Sl,n - wl)2(S2,n - w2)27 A]

E[(Sl7n - wl)z(SQ,n - w2)27 A] = E[Sins%na A] - 2W1E[S1,n‘s§,n7 A] + W%E[S%nw A]
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— 2w2E[5%n527n, A] + 4W1W2E[51,n52,n7 A] - QW%W2E[S2,m A]

+ WiE[S} Al — 2w1WEE[S1 pn, Al + wiwiP(X € A)

1 1 1

S EEXE AL+ (2 - ) BUZXE Xy A

1 3

1 1Y\ - 2\ =
12 <ﬁ — $> EY2X} (X2 5, Al + (5 st ﬁ) EY?X? (X7 X7 3, 4]

1 1\ -
+2<ﬁ_n >E[Y2Xt 1Yi 1 Xt 27A]

1 3 2
- <___2+ > ViXia Vi1 Xp o X5, A]
n n n

E
1 3 2
+4<5_ﬁ+n > ViXP Y1 X2 X 5, A]

1 1
+2<ﬁ—n ) B, X3, Y1 XDy, A]
1
2

6 1 6\ -
+ <1 -t s m) EYi X 1Y X o X7 3X7 4, A

2 1 1 _
_ n_le VX7, Al -2 <E — F) w1 B [V, X 1 X}y, Al

1 1 -

—4 <E — m) w1 B [YZXEAXE—%A]
1 1 = 2 32

—211-— 35 + 2? wl [YZXt—lXt—th—iaa A}

1, 1 -
+ EW%E [Xiy, A] + (1 - E) WP E [XP X, Al

2 11 _
— SwE [YPX!,A] -2 <— — —2> woE [YAXE | XP 5, Al
n n n
11
-4 <— - —> weE [V, X 1Y 1 X} 5, A
n n

1 1 _
-2 <1 — 35 + 2?) woE [V, Xy 1Y 1 X0 X7 5, Al
1 — 3 1 n 2
+ 4w1w25E[YtXt_1a Al +4(1- - wiwe B[V Xy 1 X o, A
— 202wy E[X? o, A] + W2E[Yt X7 4, 4]

1 _ _
- <1 - E) WIE Y X, 1Y 1 Xy 0, A] — 2013 E[Y; X1, A] + wiwdP(X € A).
The truncated expectation of (S, — wl)z(ngn — w9)? is as follows:

[ E[(Sl,n — w1)2(Sg,n - UJ2)2, A] = E[Y;tXt—I}/t—lXt—2th—2th—3’ A]
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— 20 B, Xo 1 X7 o X7 g, A] + WIE[X? X7 5, A
— 2wy B[V Xy 1Y 1 Xy o X7 g, A] + dw1wo E[Y, Xy 1 X7y, Al
— 2 E[X}E o, Al + W3E[Y; Xt 1Yo 1 X;— 2, A] — 2013 E[Y; X3 1, A
+wiwiP(X € A)

+% ([BIY2XZ\ X5 XE o, Al + B[YiXe 1Y Xia Xy, 4]
+AEYXP Y, 1 Xy 0 X7 5, Al = 6E[Yi Xy 1Y 1 Xy 2 X7 X7 3, A
— 21 B[V, X 1 X{ o, A] — 4w E[Y; X2 X2 5, A]
+ 61 B[V, X1 X7 5 X7 5, Al + WIE[X[ 5, A] = WE[X? 5 X7 5, A]
— 2w B[Y2X}E X2 5, Al — 4w E[Yi X, 1Y 1 X} 5, A
+ 6w B[V X 1Y 1 Xy 0 X2 o, Al 4+ 4w E[Y; X3 |, A]
— 4w E[Yi Xt 1 X2 o, A] + w3E[Y2X? |, A]
— W3 B[V, Xy 1Yio1 X2, A]

+% [E[Y?Xf—le—% Al + 2BV X X7 5, Al
—3B\YP X X7 X 5, Al 4+ 2E[Y, X)) 1 Yio1 Xe9, A]
—3E[YiX; 1Y 1 Xs o X} o, Al — 12E[V;XP |V 1 Xy o X? 5, A
+2E[YVi X3 Y, 1 X2 o, Al + 11E[Y; X, 1Yy 1 Xy 2 X2 X2 4, Al
— 2 B[Y; X} 1, Al + 20 E[Y; Xy 1 X} o, A] + 4 E[Y; X7 | X? 5, A]
— 4 E[Y; X, 1 X2 X2 5, Al — 2w E[Y2 X! |, A
+ 2w B[Y2AX? 1 X2 0, Al + 4BV Xy 1 Y1 X} o, Al
— 4 B[YiX; 1 Yi1 X2 XE 5, 4]

o [BIVZXE 4] - BIVAXE X, A
—2B\Y? X, X7 5, Al + 2B[Y2X]  XP 0 X7 5, Al
— 2E[Y; X} Vi1 Xe 9, Al + 2BV, Xy 1Y 1 Xy o X} 5, A]
+8E[YiXP Vi1 Xe o X7 5, A] = 2B[Yi X[ Vi1 XP 5, 4]

—6EY; Xy 1Y 1 Xt o XP 3 X2 4, Al
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C.3 Proof of proposition 5.3

We begin with some lemmas.

Lemma C.1 Given x,y real and x > 0, x > |y| implies > > y? or 2% > |y|>.
Proof. Draw a picture of 2. m

Lemma C.2 E?[|Y;11Xy|] > E?[Yi41Xy).

Proof. Follows by the lemma above setting © = E[|Y;41X;|] and y = E[Yi41X]. =
Lemma C.3 (BY2[Y2,JEV2[X2)? > E¥{|Vis X

Proof. Schwarz’s inequality is EY/2[Y,2 | |EV2[X?] > E[|Yi41X:|] = |E[|Yis1Xe[]]. Now
apply the first lemma. m
Proof of Proposition 5.3

Proof. We write
C = E[Yjj,|w; — wiw] = w3 (B[Y Jws — o),
and since wy > 0 it is enough to prove E[Y,2,|ws — w? > 0. It follows

E[Y? ]ws — wi = EY7,]E[X7] — E* (Y11 X{]
> E[Y2E[X?] — B*[|Yig1 X ]

> EY2LEIX}] - (BV2[Y2L]EV2IXT])? = 0,

where the inequalities follow from the lemmas above and Schwarz’s inequality. m

C.4 Matrix calculus

Most of the definitions that follow can be found in [148]. We begin with some general
notation.
1. A - a general matrix A = [a;;]
pXq

2. I - identity matrix, p-dimensioned
p



369

3. €* - the kth elementary vector, p-dimensioned, all zeros except for a 1 in the kth
p

position

4. E* - the klth elementary matrix, p x g-dimensioned, all zeros except 1 in the klth

PXq

position

o. ngx;; - a permutation matrix, pg X pg-dimensioned, consisting of a ¢ x p array of

q X p-dimensioned elementary submatrices

(11 g2t .. pot]
pXq pPXq PXq
E21 E22
PXq — | pxq pXq
EqXp o . .
El g2 ... Ew
L pXq pXq pXq |

6. A® B - Kronecker, direct, or tensor product of two matrices A and B, ps X qt-
pXq sXt
dimensioned

anB a12B aqu

AB= a1 B ax»B

_aplB apr aqu

7. A®F _ the kth Kronecker power of A

AP =ApAR - A
k factors

A®0 =1, A®l=4

8. ¢sA - the column string of A, the column sequenced vector structure of the elements

of A

pPXq

q
csA = Z(ej ®I)A e
j=1"

pgXx1l P pPXq q
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9. rsA - the row string of A, the row sequenced vector structure of the elements of A
PXq

1Xpq p pPXq p q

P
rsA = ZejT A (ejT ® 1)
J=1

10. The derivative of a matrix-valued function A (B) with respect to a scalar by:
pPXq

da11  Darz ... Oaig
Oby; Obyy Oby

Oaz1  Oaga

Dy, A(B) = | P O

Oapr  Oagz  Oapg
L 8bkl 8bkl abkl -

11. The derivative of a matrix-valued function A (B) with respect to a matrix B':

pPXq sXt
DbuA DbmA T DbltA
- Dy, A Dy, A
DpA(B) =Y EieD, A= " T ,

ij

Dy, A Dp,A - Dy, A

12. Matrix derivative composition:

DpnA(B) = Dp(Dp(--- (D A(B)) ),
—_————
n derivatives
D} A(B,C) = Do(Dp(Dyr 4)),
Diy(s7 5 A(B) = Dp(Dpr (Dp(Dpr (DpA))),
13. Matrix Taylor expansion: The Taylor expansion for a matrix-valued function A(b)

of a vector b, where b may be the row string or column string of a matrix B:

M
AW =AD)+ 3 — (D AB),_(0=5)" & 1)+ Rura6.0),
m=1

pPXq s

b
Ruabh) = o [ (DEL4©) Te b~ 9" o Dd = D).
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C.5 The multi-variate problem

In this section we present the calculations needed to re-express the term (b — b)®? for

i =2,3,4. We begin by writing the terms needed for the second order expansion.

C.5.1 Expansion of the central moments for the multi-variate problem

o E[Sin] = Z XY | = E[X] V3] = wy,
T=t—n
o E[Syjn] = E Z XiX,| =B [X]_ 1 Xi-1] = waij,
T=t—n
1 — ‘ t—1 ‘
o E[S1inSijnl ==FE Z XiYr Z XIYr
n LT=t—n T=t—mn
:n2E XY XiYep 4 Y XLV XL Yo 0
_T:t—n T17#T2

1 o 1
—_E [YQXZ X/ } 1— 2 ) wiwr
n R CIEP. CARY ey n W1iW1j

1
o E[S1inS2jk.n] :EE Z XY, Z XJXk]

LT=t—n T=t—n
1 t—1
= E Z Yo XEXIXE+ ) Yo X X3 XE
T=t—n TI#T2

1 , , 1
:ﬁE [YZXtZ—ng—le—l] + <1 - ;) W1iW2ik

t—1 t—1
> oXixi > XfXL]

T=t—n T=t—n

o E[S%nS%n] :ﬁE
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1 t—1
] i vk vl i j k vl
=—E > OXIXIXEXL4+ Y XD X XE XL
T=t—n T1F#T2

1 — 1
=-E [Xi_le_lequ_l} + (1 - 5) W23 Wkl

We can now expand the second order central moments and with a superscript 2 to

indicate these second order terms, we define the quantities Vfij, V22ijk, and V32Z- ki

o E[(Stin —w1i)(Sijn —wij)] =E [S1inS1jn — w1iS1jm — w1S1im + wiiwi;]

1 : :
= (E[Y?th—lxtj—l] - Wliwlj)
_1.s

:EVLU

o E[(S1in — wii)(S2jkn — w2ik)] =FE [S1inS2jkn — W1iS2jkn — W2ikS1in + Wiiw2jk)

1 _

1
=_V2.
n 2,15k

o E[(S2jn — w2ij)(Soktn — woki)] =E [S2ij,nS2%1n — W2ijS2kin — WokiS2ij.n + w2ijwakl)

1 , .
= (E[XZ_IXg_lth_lth_l] - W2ijw2kl>

1
=_V2.
n 3,15kl

We proceed with the terms needed for the third order term:

t—1 t—1 t—1
Yo XiYen Y XiYen Y Xy,

T=t—mn T=t—mn T=t—mn

1
o E[S1inS1jnSikm) = EE

t—1
1 o . .
=5 F Yo VAXIXIXE 4 Y Ve XL YR X XE

T2
T=t—n T1#£To

+ Z Y7'21+1X77‘.'1X7IE:1YT2+1X‘7];2 + Z YT21+1X7Z"1X‘7]"1YT2+1X7I?2

TIF£T2 TI#To
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+ Z Y7—1+1X72.'1YT2+1X‘7]"2Y73+1X7I?3
TIF£To#£T3
1 . . 1 :
=5F [}/thZ—ng—l‘Xf—l] + <1 - ﬁ) E[Y2X]_ X{ Jon

+ <1 - ﬁ) E[Ytht—1th—1]W1j + (1 - ﬁ) E[Ytht—lXt]—l]wlk

3 2
+ 1—— + ) wliwljwlk
n n

t—1 t—1 t—1
o XiYe Y XiYen Y XEXL

T=t—n T=t—n T=t—n

1
o E[S1inS1jnS2%in] = ﬁE

t—1
= 5L Y | Y2 XIXIXEXD 4+ Y Ve X] Yo X, X X
T=t—n TIFT2
§ i k yl j § ; j k yl
+ Y7—1+1X72'1XT1XT1YT2+1X‘7]'2 + YT21+1X7Z'1X‘7]'1XT2XT2

TIF#T2 TIF#T2

bY VXLV XXX
TIET2FT3
1 , . 1 .
:ﬁE |:}/;2th—lXt]—1th—lef—li| + <1 - ﬁ) E[}QXt]—le—lxtl—l]wli

1 . 1 ) )
+ (1 - m) E[YtXtZ—le—1th—1]W1j + (1 - ﬁ) E[YthtZ—lth—ﬂw%l

3 2
+ 1—— + - wliwljw%l
n n

1
o E[Sli,nSij,nSQlo,n] = EE

t—1 t—1 t—1
> v 3 it 3 i)

T=t—n T=t—mn T=t—n

E Z YT"rlXﬂZ'X‘ﬂ]'XfXﬂl'Xg_‘_ Z YTI+1X:'1X¥2X71?2X7Z'2X7?2
T=t—n T17#T2

+ Z Y71+1X;L;1X7l’1X7?1X12X7]?2 + Z Y7'1+1X77;'1X%7"1X7]i31X7l'2X7?2

TIF#T2 TIF#T2

1
=3

+ Z Y71+1X77‘;1X‘7]'.2X7IE:2X7Z'3X7?3
TIET2FT3
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1

1 i j o 1 j o
ZmE [Y%Xt—1Xg—1Xf—1th—1Xt—1] + <E - m) EIX] X X X Jw
1 1 i l o 1 1 ) J k
tlo 02 BY; X 1 Xp 1 X7 |wajk + ST EYi X 1 X Xi-Jwao

3 2
+(1— =+ = | wiiwzkwao
n n

1
o E[S2ij,ns2kl,ns20p,n] = EE

t—1 t—1 t—1
dooxixi > XxExh Y X$X£]

T=t—n T=t—m T=t—n
1 it o
——B | Y XIXIXEXIXZXP+ Y XL X XL XL X0 XD,
T=t—n T1F#T2

i i yo k i i vk oyl o
+ > XX xexp xEXL + > XEXT xF XL Xe X

TI#T2 T1#T2

+ ) X0 X XEXL X0 XD

TIF#To#£T3
L elxi X xE Xl x0T L L) Bl XX XP Jwn
ey P CEEP (AP, CIED, S P, (R By 2 [Xii 1 X1 X1 Xp g |waig
Wi xi xo xv oW\ xi xk xt!
+ . (X1 X X X Jwar + I, (X1 X7 X1 X Jwop

3 2
+(1- - + 3 | WaijWakiW2op

We can now expand the third order central moments and with a superscript 3 to indicate

: i 3 3 3 3 )
these third order terms, we define the quantities Vlﬂ-jk, Vm-jkl, V37Z-jklo, and V37Z-jkl0p.

o E[(S1in —w1i)(S1jn — wij)(Sikn — wik)]
=E[51i nS1j.nS1kn] — w1iE[S1jnS1kn) — w1 E[S1i0S1k 0] — w1k E[S1i.051),n]

+ wijw1; E[S1kn] + wiiw1k E[S1j,n) + wijwi1kE[S1in] + wiiwijwik
= [BIVEXI X X - B XE e BYVXL X o
—E[Y?Xti—lxg_ﬂwlk + 2w1iw1 Wik
E%ijijk
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o E[(S1imn— wii)(Sijn — wij)(Sokin — wakl)]
=E[S1inS1j,nS2%1,n] — Wi E[S1j,nS2%k1.n) — w1 E[S1imS2k1n] — w2k E[S1i,051),n)]

+ wijw1; B[Skt n) + wiiwaki E[S1jn] + wijwori E[S1in] + wiiwijwak
1 . ) .
L [ XX~ B X X
—E[YtXti—le—lXé—l]wlj - E[Ythi_ng_l]w%l + 2w1w1jwap
1

1.3
:§V2,z‘jkl

o E[(Siimn — wii)(S2jkn — w2jk) (S2n0,m — wato)]
=FE[S1i,052jk,n5%0.n) — W1iE[S2jk,n5%0m) — W2k E[S1i,nS20,m] — W20 E[S1i,n 52k n)]

+ w1iw2k E[S210,n] + wiiw210E[S2jk 0] + w2ikw210E[S1in] + wiiwjrwale

1

= [BYVX{ X0, XX X7 = BIXT XE L XX

—E[YiX{  X|_ X7 Jwaj — BV, X]  X] XF (Jware + 2w1iw2jkw2lo]

ivi”,.
n2 3,ijklo

o E[(S2ijn — w2ij)(S2ri,n — wari)(S20p.n — wWaop)]
:E[S2ij,n52kl,ns2op7n] - w2ijE[S2kl,nS2op7n] - W2klE[S2ij7nS2op7n] - W2opE[S2ij,nS2kl,n]

+ waijwar E[S20pn] + w2ijwaopE[Sokn] + wakiwaopE[S2ij.n] + waijwakiwaop

1 . .
:m E[XZ—1XtJ—1th—lth—1Xf—1Xf—1] - E[Xf—1th—1Xf—1Xf—1]w2ij

—E[X{_ X] X{ XPJwaw — BIX(_ X)L XE X Jwaop + 2wsijwariwaop
1

= m V;l,ijklop
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We proceed with the terms needed for the fourth order term:

. E[Slinslj nS1knS11,n]

e[S xivn Y v Y v S xiv,

LT=t—n T=t—n T=t—n T=t—m

t—1
Z YAXIXIXEXL 4+ N v2 X XD Y2 XE XL

Ttn

T1I#T2

i vk 2 i vl iyl 32 i vk
1+1X71XT1Y72+1X72X 1+1X71X71Y72+1XT2X72

D>

TI#T2
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TI#T2 TIFT2
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T1F#ToF£T3 TIFToFT3

+ > VXL XLV, XY XE Y YR XE XL Y, 1 XD Y 1 XD
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+ Z YTI+1X7Z"1Y72+1X‘7];2YT3+1X71?3Y7'4+1X71'4
TIAT2AT3#T4

1

— XX XX+ (o - 7 ) BV X B X X

n3
1 25i vk 2% yl

+ 23 B, X{ X | EYy X XG ]
1 1 ; j

+ (m - ﬁ) E[YtQXtZ—1th—1]E[Ytht]—1Xf—1]
1 1 3 g 1 3

+ ﬁ ﬁ E }ft Xt 1Xt 1Xt 1]wlz + | = - ﬁ E Y;& Xt lXt lXt l]wlj
11 j 1 i i yk

+ 2 3 E[Yt Xt 1 X 1Xt 1wtk + nZ  nd E Yt X Xy 1 X o
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377

6 11 6
+(1= E + ﬁ — ﬁ W1iW1W1EwWi1l
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+ Z Y7'1+1X57"1X7l’1X7?1YT2+1X7i’2YT3+1X7]f3
TIET2FTS
+ Z Y71+1X71?1X7l'1X7(')1Y7'2+1X7Z;2Y7'3+1X‘7];3
T1F#To#£T3

+ Z Y7'1+1X7Z"1Y7'2+1X7]"2YT3+1X7IE:3X7Z’4X7?4
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1 3 2
+ <E 2 + ﬁ) E[X{  X{ X X[ Jwaijwaep
1 3 2 i j o »
+ n_ n2 + n3 E[Xt—lXt—IXt—lXt—l]Wij:Wqu
1 3 2
+ <E T2 + ﬁ) E[X{  X] 1 X)  XP Jwaijwagr
1 3 2 q . o wp
o g g ) Bl X X X Jwaijwan

6 11 6
+(1- - +— - 3 | W2ijWakiW20pw2qr
We can now expand the fourth order central moments:

o E[(Stimn — wii)(S1jn — wij)(S1kn — wik) (Sun — wi1))
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=E[51in515,nS1kn51,n] — W1 E[S1,0 516 n511,0) — W15 E[S15mS1k,nS11.n)

— w1KE[S1i,n51505,n) — Wi E[S15,051j,0S1k,n) + w1iw1; E[S1,0511,n]

+ w1jw1kE[S1jnS11.n] + w1;w1kE[S1inS110] + wiiwi E[S1,nS1kn)]

+ w1;w1E[S1inS1kn) + w1kw11 E[S1i05150] — wiiwijwikE[S11n]

— wiw1jw1 E[S1kn) — wiiwikw1 E[S1jn] — wijwikwi E[S1in] + wiiwijwikwi
= (Bt X xE X - B X B X
— E[YX{_ X B X)X — BV X{ X{ B X] XE
- E[Ythg—lth—lXé—l]wli - E[Yngti—1Xf—1th—1]w1j
- E[Y%?’Xti—ngqXé—l]wlk - E[nng—ng—1Xf—1]wll
+2B[YPX{_ X] Jonwn + 2B[Y2X] XEJwywn + 2B[Y2 X XE Jonwn
+ 2B [V Xy X{_Jwrjen + 2BYPXT Xy Jwnwn + 2BV XE X[ Jwiiwn
- 6W1iwljwlkwll}
+ % {E[YEXZ—1Xg—1]E[YtQXf—1X£—1] + B2 X] XFEY2X] X[ ]
+ E[K2X§—1th—1]E[Yt2Xg—1Xf—1] - E[Ethi—ng—l]wlkwll
— BV} X{_ 1 X}y Jwrjwn — BYPX] XE Jenwn — BYPX] X{gJwnjon
— B X]_, X}y Jwnwn — B[V XE 1 X[ oo + 3wiwnwkwn

1 1
= Ui+ = Vi
n3 1,i5kl n2 1,i5kl

o E[(Stin — wii)(S1jn — wij)(S1kn — wik)(S210.n — walo)]
=E[51i nS1j.n51knS20n) — Wi E[S1,n51kn5%0n) — W1 E[S1imS1knS20m)
— w1k E[S1i,0515,050.n] — W20 E[S1in 515,051k n] + w1iw1; E[S1k,nS%0,n]
+ w1W1kE[S1jn5%0,n] + w1;W1kE[S15,n520,n] + w1iw20E[S15,nS1k,n]
+ w1wWao E[S1inS1k 0] + Wi1kw21oE[S1inS1jn) — wiiwijwikE[S210.n]
— W1w1jw2ro E[S1k,n] — wiiwi1kw2o E[S1j,n] — wijwikw2oE[S1in] + wiiwtjwikwaio
1

:ﬁ |:E[YVt3XZ;—1Xg—lth—lXé—lXto—l] - E[YiQXz—ng—l]E[thXf—lth—1X1?—1]
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— E[Y2X[_ X BV X]  X]_ X{ ] - BYiX{_ X[, X0 B[V X] XF )]
- E[KQX5—1XZ€—1X£—1X£)—1]W12‘ — BIY2X{_ X{ 4 X{ o X7 Jwn;
- EMQXf—ngﬂXf—le—l]wlk - EDQ?’XZ_lX?_le_ﬂwzzo
+ 2BV X[ X] | Jwiswaio + 2BV X{_ XIyJwjwaie + 2BY2X] XP Jwniwaro
+ 2B, X} XL X? Jwrjwin + 2BV XD XL X Jwriwik
+ 2BV X P XL XPJwriw; — 6wiiwrjwikwale
+ % [E[E2X§—1Xg—1]E[Ytth—lXéAXf—ﬂ + EYAX]  XPEY, X)X XP ]
+ BYiX{_ X[ X)) EY2X]  XP ] — BYP X, X] Jwnwar
— B[Y2 X[ X[ Jwrjwae — EYPX] XF Jwiwao — E[Yi X[ X)_y X7 Jwrjwik
— B X)X X2 Jwwn, — B X X X2 Jwiiwn + 3w1iw1jw1szlo]

1 1
= Ul VA
n3 2,ijklo n2 2,ijklo

E[(S1in — w1i)(S1jn — wi)(S2ki,n — wakt) (S20p,n — Wop)]
E[S1i,n51j,n52k1,n520p,n) — Wi E[S1j,nS%1,n520p,n) — W1 E[S15,n.52k1,nS20p,n]
— Wkt E[S15,n.51j,n520p,n] — WopE[S1i,n51j,nS2ki1 n] + w1iw1; E[S2k17S20p,n)]
+ wiworI E[S15,nS20p,n] + w1jwW2k1 E[S15,n:520p,n) + W1iwWop £ [S15,nS2%k1,n]

+ w1Wop E[S1i nS2k1.n] + WokiwWopE[S1i,nS1j.m] — wiiwt jw2ki E[S20p,n)]

— W1W1jWop B [Sok1n] — wiiwakiwop E[S1j.n] — wijwokiwop E[S1in] + wiiw1 jwakiWop

B2 X XX XE XE) — B2 X BIXE XL X, X
— B, X{_ X} X[ B X]  XP XT )]

— BV, X[\ X7 X} EYiX]  XF L X{ ]

- E[Ytth—1Xf—1th—1Xf—1Xf—1]wli - E[YtXti—1Xf—1th—1Xf—1Xf—1]wlj

— BV X[ X] X7 XD Jwa — E[Y?Xti—lXijqXf—lXé—l]w%p

+ 2E[Y}2X§—1Xg—1]w2klw20p + 2E[YtX§—1Xf—1X£—1]W1jW20p

+ 2BV, X]_ XF X] Jwiiwaep + 2BV X[ X X Jwijwor
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+ 2E[Y%Xg—1Xf—1Xf—1]wliW2kl +2B[XE Xy X7 X Jwiiwn;
— 6w1iwljw2klw2op}
b o[BIV X X BIXE XL X7 X
+ EYiX{ X X B X X7 X
+ E[YtXti—1Xf—1Xf—1]E[nXg—1Xf—1th—1] - E[YEXti—ng—l]w?klw%p
- E[YtXti—le—lth—l]wljw%p - E[nXg—1Xf—1th—1]wliw20p
— EViX{_ 1 X{ X] Jwrjwon — B, X X0 XE Jwriwan

k l
— B[X; 1 Xy XP 1 XP Jwiiw; + 3w1iwljw2klwzop]

1 1
_ 4 4
= ﬁUg,ijkzop + ﬁvi’;,z'jklop

E[(S1i,n — w1i)(S2jk,n — w2ik) (Sato,n — Wato) (S2pg,n — Wopg)]
=E[S1i,n52jk,n5%0.n52pg,n) — W1iE[S2jk,n520,nS2pgn] — w2k E[S1in:5%0,nS2pg,n)]

— Wt B [S1i,052jknS2pg,n] — Wopg E[S1i,052jk nS20,m) + wW1iw2ik E[S210,nS2pg,n]

+ wW1iw21o B [S2jk,nS2pg,n) + w2kw210E[S1i,0S2pg,n) + wW1iwapg E[S2jk nS210.1)

+ w2 kwapg E[S1in5%0,m) + Wa1ow2pg E[S1inS2jk.n) — W1iwkwatoF [S2pgn)

— W1W2ikwW2pg E[S210.m] — w1iwiowopg E[S2jk.n] — W2ikw2t0w2pg B [S1im)

+ W1iW2;kW2i0W2pq

1
=

B Xy X\ XE XL X XE X

- E[YtXti—lth—lXf—l]E[Xé—le—le—lth—l]

- E[YtXti—1th—1Xf—1]E[Xg—1Xf—1Xf—1th—1]

— B, X{ XP X)L BIX X X X

- E[th—1Xf—1th—1Xf—1Xf_1Xf_1]wli - E[YtXti—1th—1Xf—1Xf_1Xf—1]w2jk
- E[YtXti—lth—1Xf—1Xf—1th—1]w2lo - E[YtXti—lth—le—lXé—lXto—l]w%q
+ 2BV X[ X XE Jwaiowapg + 2B[ViX{_ X{_ ) X7 |wajheopg

+ QE[th—le—lth—lXto—1]w1iw2pq + QED/tXf—lXf—ng—l]ijw?lo
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+ 2E[th—1Xf—lethq—ﬁwliwﬂo +2B[X)_ X XY X Jwriwa
— 6W1iw2jkw2low2pq]
+ % EY, X{_ X]_ | XL BX,_ X XE X[ ]
+ BYiX|_ X{ X BIX] X2 X X ]
+ BV, X{_ XP X EIX]  XE X X7 0] = EYiX] X] XFJwatowapg
- E[Y%Xti—1th—1Xf—1]w2jkw2pq - E[th—1th—lth—1Xf—1]wliw2pq
— EYViX{ 1 X7 X[ Jwajhwnio — EIX] XE XP X[ Jwniwar

! o p q
— BIXG X7 1 X X Jwriwai + Bwiiwajrwaiowapg

1 1

4 4
= $U4,ijklopq + ﬁ‘/zl,ijklopq

o  E[(S2ijn — w2ij) (S2kin — wakt) (S20p,n — W2op) (S2grm — wogr)]
=FE[52%j nS2k1.n5%p,nS52gr.n] — w2ii E[S2k1.05%p.nS2qrn] — W2k1 E152i,n520p.n52qrn)
— wWoop [, S2k1,nS2gr,n] — WagrE[S2i5,nS2k1,1.520p,n) + W2ijwWari E[S20p,nS2qrn]
+ w2 jwaop E[S2k1,nS2r,n] + wWorkiw2op £ [S2ijnS2grn] + waijwoqr E[S2k1nS20p,n)
+ wakiw2gr E[52ij,nS2p,n] + waopwaqr E[S2ij.nS2k1n] — w2ijwakiwaop E[S2grn]
— Wi wWariwagr E[S20pn] — waijwaopwagr E[Sakin] — woriwaopwagrE[S2ij,n)

+ WoijWakIW20pW2gr

1
=

| B0V X X XE XL X X XY X

— E[YiX{_ X XE X BIX) XE X X

- Ethi—ng—le—1Xf—l]E[Xf—lth—ng—le—l]

— Bl Xy X X X B X X X

- E[Xf—1th—1Xf—1Xf—1X§—1XZ—1]W2ij - E[YtXti—1th—1Xf—1Xf—1Xg—1Xf—1]w2kl

- E[YtXf—1Xg_1Xf—1Xé—1Xf—1XZ—1]W2op - E[YtXf—1th_1Xf—1X£—1Xf—1Xf_1]W2qr
+ 2BV, X X] XE X Jwaopwagr + 2EVi X[ X] X7 XD Jworiwagr

+ 2E[Xf—1X£—1Xf—1Xf—1]w2ijw2qr + 2E[EXti—ng—1Xg—1Xf—1]W2le20p
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+2B[X{ X[ X[ X Jwaijwaop + 2B[X7 XP X[ X Jwaijwan
— 6w2¢jw2k1w2opw2qr]
+ % EY, X{_ X]_ X X{ | B(X XE X X
+ B[V, X{ X XP XP B X X X))
4 BIVIXE, XY, X0 X BIXE XL, XE X
- E[YtXti—1Xg—1Xf—1th—1]w2opw2qT
— BV, X]_ X X0 XP Jwamwagr — BIXF X1 X0 XD Jwaijwagr
- E[YtXf_lth_le_le_l]kazmap — BIXF X{ X X Jwaijwaop

— BIX7 XY X X Jwaijwar 4 3waijwariw2epwagr

1 1

— 4 4
= EUS,ijklopqr + ﬁ%,zjklopqr'

C.5.2 Re-expressing E[(b, — b)*']

In this section, we derive an expression for the term E[(b, — b)®?] for i = 2,3,4 with an
explicit dependence on the sample size n. To obtain this expression, we make use of the
central moments derived in Section C.5.1. We assume k& = m, the number of independent

variables, X}, ..., X/ Recall the statistics S1n and Sa,, defined as follows:
1
XinYin €R™D, S5 = — X, Xy € R, (C.5.1)

These can be expressed as follows:

1 t—1 1
n ZT:t_n XTYT+1 Sll,n
Sl,n = :

1 t—1
w 2r=tn X7 Yri1 Stmn



(1 -1 1yl 15~t-1 1y2 1 xt-1 1ym |
n ZT:t—n X7 X7 n Zr:t—n X7 X7 n ZTZt—TL X7 X7
1 t—1 2yv1 1 t—1 2v2 1 t—1 2ym
n Zq—:t—n XTXT n ZT:t—n XTXT n ZT:t—n XTXT

S2,n =

1 t—1 myl 1 t—1 m y2 1 t—1 mym

Ln ZT:t—n XT XT n ZT:t—n XT XT tton ZT:t—n XT XT |
So11n Sotzm 0 S2Umn

[ S2210 S22 0 S22mm
_S2m1,n S2m2,n to SQmm,n_

One can now express the vectors b, and b as follows:

S1in w11
Sl,n Slm,n - w1 Wim
bTL = = , b = =
cs Sop S211,n S Wo wo11
S2mm7n Wamm

To find an expression for (b, — l_))® 2 we define 6; = b, — b and it follows:

(S11,n —w11)01

(bn _ l_))®2 _ (Slmm - wlm)51 =5 € Rm2(m+1)2><1.

(S211,n — w211)01

(S2mm,n — Wamm ) 51

In Section C'.5.1, we defined the terms Vfi 0 V22,Z- e and V32Z Kl In what follows, we present
notation to express E[(b, — b)®?] in terms of Vfij, V22¢jk7 and V?fijkl. To begin, we note,
given 1,4, k,l =1,...,m, that Vfij represents m? elements, sz’ij i Tepresents m? elements
and V32Z i Tepresents m? elements. Our notation is meant to manipulate the the different

elements of Vfij, V22ijk, and V32ijkl into matrices and vectors of different shapes and sizes.
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To illustrate the notation, we define the following m m x 1 vectors and one m X m matrix

as follows:

Vi

Vfim = : eR™1 i=1,...,m,
‘/12,11 V12,1m

VEW]E € RMxm,
Vvl%ml T V12,mm

In this notation, the index within the bracket runs from 1 to m. Nested brackets are

evaluated from the outside in as in the following case:

Vi

V2
2 — 172[7’] m2 1
Viggn=|— [ eR™ ™.

2
Vl,m[z']

cs [ij] indicates the column string of the matrix indexed by ij, as follows:
‘/12,11

2
V2 — ‘/]-721 RmQXI
L.cs [ij] = < :

2
Vl,mm



Given the symmetry Vf’ij = Vfﬂ, it follows Vf[i[j” = V12

matrices:

Eiq

mXxXm

m2xm

mXxXm

m2xm

mXxXm

m2xm

0

m3(m+l)><m2

0

mxm?2

I

m2xm

0

mXxXm

0

m2xm?2

2

2

mxm?2

m2xm?2

0

m3 (m+1)xm3

)

9
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mxXm

m2xm

Eiq

Z11

E271 =

0

0

mxm?2

m2xm?2

E272 =

,C8 [ig]"

e Rm2 (m4+1)xm?

e ]RmQ(m—i—l)2 xm?

e Rmz(m—i-l) xm?3

We define a set of



391

mxm
m2xm
mXm mxXm

B3 = 0 0 -~ 0 € R (mAl)xm?

m2xm

mXxXm mxXm

m2xm m2xm

Z13

Zlg = 0 y E273 =
m2(m+l)><m3 El 3

mxm?2

m2xm?2

mxm?2 2

Ei4= 0 I ... 0 € RM (mA1)xm?

)

mxXm

m2xm?2 m2xm?2

0 0 0
mxm?2 mxm?2
0 0 I
m2xm?2 m2xm?2
Z14 2 2 4
Zyy = 0 , FEaa= e R™ (mAD=xm?,
m2(m+1)xm4 El 4

With these matrices we rewrite the term E[(b,, — b)®?] as follows:

= 1
Bl(bn ~8)° ) = [ Bax Vi + B2 Vs s 1wy & P23 V3, cs s

2
+ Eoy V},, cs [ij ¢s [K]] |-
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3

Next, to find an expression for (b, — b)®3 we have

(S11,n — w11)02

(S211,n — wa11)02

(SQmm,n - w2mm)52

In Section C.5.1, we defined the terms V13Z.jk, VQ?’Z,]-M7 V33ijklo, and Vf’ Given each of

ijklop®
. . . . 3 3 3
the index 1, j,k,l,0,p run from 1 to m, it follows Vl’ijk represents m° elements, V2,z'jkl

represents m* elements, V33Z-jkl , represents m?® elements, and V43Z-jkl op TePresents mS ele-

ments. We use the previous subscript notation on the index elements to form matrices

and vectors of different sizes. We define another set of matrices:

. 3 2 3
Bs1 = Diag|Bay -+ Epy] € R™ (mHD>m™ 7, = 0 ,
m4(m+1)2 xm3
E'4 = E3,1 c Rm3(m+1)3><m3
L T )
Zn
. 3 25 d
E3,2 = DZag[EQ,Q s EZQ] cR™ (m+1)=xm ,  Lyo = 0 s
m4(m+1)2xm4
E'4 )= E3,2 c Rm4(m+l)2><m4
e )
Zyo

FE33 = Diag[E2’3 ... E2,3] c Rm?’(m-i-l)2 ><m4’

Ey3 = Bas e R (mH1)?xmt
Z2
E3,4 = Diag[EgA s E274] S ng(m+1)2 ><m5’ Z23 = 0 5
m4(m+1)2xmb
Eyq = Esa € R™ (mH1)*xm®
Za3
Ess = Diag[Ey; --- Ey] € R mHD?xm? 7, = 0 ,

m3(m+1)2 xm4
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Ey5 = Zos c R (m+1)°xm?
) T 9
E35
. 4 2 5
E36 = Diag[E232 - -- E29] € R™ (mA1)>xm® = 7 = 0 ,
m3(m+1)2xmb
Eyg= % € R (m+1)?xm?
O T b
Esg

E37 = Diag[Eas - Ea3) € Rm4(m+1)2><m5’

Ey7 = 25 € R™’ (mA1)?xm?
E37
E3,8 = Diag[EgA e E274] S Rm4(m+1)2 ><m6’ Z26 = 0 s
m3(m+1)2xmb
E4 g = Z26 c Rm3(m+l)5 xm8
Ess
With all the previously defined matrices, we rewrite the term E[(b,, — b)® 3] as follows:

_ 1
E(b, = )®%] =— [EM Ve + Bz Valy esi + Bas Vali esijw)

+ B34 V3 esijk esiiol)) + B Vainen + a6 Vs esis esirllio

+ E17 Vs csp esiilirgio] + Fas Vi csiij esih CS[op]]]]'

4

Next, to find an expression for (b, — b)®*, we have

(S11,n — w11)03

(b — 13)@4 _ (Slm,n — W1im)03 =0, € Rm4(m+1)4x1_

(S211,n — w211)03

(S2mm,n - w2mm)53

. 4 4 4 4 4
In section C.5.1, we defined the terms Vl,ijkl’ V27ijklo, V. V47ijklopq, and V57ijklopqr.

3,ijklop’
Given each of the index 4, j, k,l,0,p,q,r run from 1 to m, it follows foz-jkl represents

represents mY elements, V!

4 4 5 4
m* elements, V5, .., represents m” elements, V3 Lijklopg

ijklop



represents m’ elements, and V54
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ijklopqr

represents m® elements. We use the previous

subscript notation on the index elements to form matrices and vectors of different sizes.

We define another set of matrices:

Es 1

Eg2

E53

Eg 3

E5 4

Es ¢

Eg6

E57

Diag[E4,1

B, 1] c Rm4(m+1)3><m

e ]R1n4(7n—|—1)4 xm?

)

. By, € R (m+1)? xm

e Rm4(m+1)4 xmd

)

. Ey) € R (m+1)? xm

e Rm4(m+1)4 xmd

)

. B4l € R (m41)? xm

e Rm4(m+1)4 xmb

I

R 5] c Rm4(m+1)3><m

e Rm4(m+1)4 xmb

9

By 6] c Rm4(m+1)3><m

e Rm4(m+1)4 xm8

)

.+ By 7] € RM (mH1)?xm

e Rm4(m+1)4 xm8

)

Y

)

5
’

6
’

9

6
Y

)

Z31 = 0 s

m5(m+1)3 xm4

Z32 = 0 ;

m5 (m+1)3 xm5

Z33 = 0 ;

mB (m+1)3 xm6

. E4,8] c Rm4(m+1)3><m7’ Ty = 0 ,

mS (m+1)3 xm7
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c Rm4(m+1)4 xm7

Dz’ag[EAt,l tee E471] c Rm5(m+1)3><m5’

c Rm4(m+1)4 xmd

DiagEyo -+ Eyq] € R (1) xm®

Z36 ) c Rm4(m+l)4><m6
Dz’ag[E4,3 e E473] c Rm5(m+1)3><m6’

Z36 ) c Rm4(m+l)4><m6

Dz’ag[E4,4 e E474] c Rm5(m+1)3><m7’

Z37 ) c Rm4(m+1)4><m7
Dz’ag[E4,5 e E475] c Rm5(m+1)3><m6’

Z36 ) c Rm4(m+l)4><m6’

Dz’ag[E4,6 e E476] c Rm5(m+1)3><m7’

Z37 ) c Rm4(m+l)4><m7’

Dz’ag[E4,7 e E477] c Rm5(m+1)3><m7’

Z37 ) c Rm4(m+l)4><m7’

Dz’ag[E4,g e E478] c Rm5(m+1)3><m8’

Z38 ) c Rm4(m+1)4><m8.

Zgg, =

Z36 =

237 =

Zgg =

0

m4(m+1)3 xmb

0

m4(m+1)3 xmb

m4(m+1)3 xm7

0

m4(m+1)3 xm8

)

Y
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With all the previously defined matrices, we rewrite the second order term of E[(b, —

b)®4] as follows:
E[(bn = 0)**2] :% [Eﬁxl Vittgteunn + o2 Vapie s + Fos Vagity esiisiio)
+ Bo.a Vi espa esonll]) + E65 Vali esipimia + P66 Vi esiy esieio]
+ B Vals ot esiijkton] + F68 Vil csiji csito esppal]
+ Bo.9 Vi, esfisiaiiol T E6.10 Vs, csfliy csinjon]
+ E611 V5, s esiiipron] T F6.12 Vi esiis esij csfilllpa
+ Es13 Vs, cs{ esfifilktlop] T 2614 Vi, cs{ esfls csjklliolpa

+ Bo.15 Vi, s cs{ cslfilikliolpa) T 26,16 Vs, cslij csikt cslop cspal]

ofz)
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Appendix D

Appendix for Chapter 6

D.1 Expansion of central moments for the scalar problem

We present expressions for powers and products of the statistics S1,,, S2,, and 53, and

the corresponding expectations. The expectation of S ,, Sa,, and S5, are as follows:

t—1
_ 1 _
i E[Sl n:A] = E E E[Y;f-i—lXtYT-l—lXﬁA]

)

T=t—n

_ 1
o E[Son, 4] = = [ Z X2 A] E[X2 |, A]
s=t—n

_ 1 =
o B[Sy, A] =~ > E[XiYr1 X, Al

T=t—n
The expectation of S%H is as follows:
t—1
e (5%, Al = B[( 3 Vi XVonX:) 4]
T=t—m

t—1 t—1
=[S BVAIYVZXR A e YD BV IV XY X, Al

T=t—n Z#J’t_n
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The expectation of S%n is as follows:

o Bl =SB S x2) A

T=t—n
= t—1
:F[ > EIXi A+ Y B[XIX3A]).
T=t—n i1#£j,t—n

The truncated expectation of S?%,n is as follows:

t—1

hd E[S?%,mA] :%E[( z_: XtYT+1XT)2,A}
, o o
=[S BlvexE LAl S BXaXaxA] .
T=t—n itjt—n

The truncated expectation of S ,5, is as follows:

_ 1 _
o E[S1nS, Al = or ( Z Yt+1XtYT+1XT)( Z Xf),A
T=t—n T=t—n
= -
=[S B XAl ¢ Y B VaXviaXix? 4]
T=t—n i#jt—n

The truncated expectation of S3,,553, is as follows:

t—1

(> x2)( S X Ve X, ), A

T=t—n T=t—n
t—1 i—1
1 | > BXveaxi A+ Y BV XiX2 4] ).

2
n
T=t—n i1#£jt—n

_ 1 _
o E[S2,55n, 4] :mE

The truncated expectation of Sg’m is as follows:

e Bist A =SB S x2)

T=t—n
1 t—1 t—1 t—1
:ﬁ[ S OEXS A+ Y BXIxZ A+ Y EIXZX2XE 4]
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The truncated expectation of SLnS%m is as follows:

t—1
_ 1 -
o B[S1,5%,, Al ——SE[( Vi1 XoYoi1 X, )( Z X2) }
n T=t—n T=t—n
1 t—1
(& i) (8wt ¥ xxg)
T=t—n T=t—n z;é]t n
1 t—1 t—1
| Y EMen X X2 A+ Y B XY XX, 4]
T=t—n i#jt—n
t—1
+ EYi XY X7 X3, Al
i#jt—n
t—1
+ EYi 1 XoYinn X X7 X7, A]|.
i1#jF#k,t—n

The truncated expectation of 522771537” is as follows:

X3)2< ti XtYTHXT) , A]

n T=t—n

x4y ti XZ?X]?)( ti XtYTHXT),A}

T=t—n i#jt—n T=t—n
t—1 -1
_1 [ E[XYra X2 A+ Y E[XiYi1 X, X1 Al
—_n 1#£j,t—n

o+
I\g
&

(XY 1 XP X3, Al
+ E[X:Yi X, X2 X7, A]] .

The truncated expectation of Sinng is as follows:

t—1

. E[SinSM,A]:%E[( Y YiaX T+1X) ( Z X2) }
T=t—n T=t—n
1 t—1 t—1
(5 v S i) ( 3 %)
T=t—n 7,75] t—n T=t—n
t—1 t—1

1 —_
:ﬁ[ Z B2 X7V X7, Al + Z E[Yt%rlXQY%rlX2XJ27A]

T=t—n Z#jﬂt_n
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+ Z B XPYi XY X3, Al
i£j,t—n

+ > ENAXPYia XY 0 X XE, A
i#jF#k,t—n

The truncated expectation of Sinng is as follows:

o B8 Sl = SB[ X X ) (D x2).4

T=t—n T=t—n
t—1 t—1
[( Z XY2Lx2+ Y X YZHXY]HX)( 3 Xﬁ),A]
T=t—n z;éjt n T=t—n
1 t—1 B t—1
zﬁ[ BIXPY2 XL A+ S BIXAYA,XPX0, A
T=t—n Z#jﬂt_n
t—1 B
+ > EXPYin XY XE Al
t—1 B
+ BXPYi1 XiYj 1 X XE, A
1£j#kt—n

t—1
_ 1 - 4
4 _ 2
i E[S2 n7A] _EE[< Z XT) 7A]
T=t—m
= t—1 =1
:F[ Yo B A+ Y BIXSXZ A+ Y BlXiX!
t—1 t—1
+ Y BXIXIXZ A+ Y E[XZ?XJ?X%X?,A]]
i#j#kyt_n i7éj7ék;él7t_n
The truncated expectation of SLnS%n is as follows:
1 t—1
. E[SL”S%’”,A] =7 [( Zt: Y1 Xi Y1 X5 )( t ) ]
T= n T=1l—n

1 t—1

=7 K Z Vi XeYr1 X5 )( Z XS+ Z X4X2

T=t—n T=t—n i1#£jt—n
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t—1
Y XXIXR). A
i£j£k,t—n

1L 1
:ﬁ{ Z B[V XiYrn X7, A+ Z E[n—letY;—HXngﬁaA]
t=n i#j’t_n

=1
n Z ElYen XY XPX2, A1+ 3 EYin XY X3X4, A

i£j,t—n itgt—n

=

t—1
+ > EVin XY X X{XE A+ Y BV XY XPXGXE A]
1£j#kt—n 1#j#kt—n
t—1
+ Y E[mlxtmlxixfx,fxf,A]]
i£j£k#Lt—n

The truncated expectation of ngS%n is as follows:

- 1 _ t—1 t—1 3
o E[S3,5%,, 4] :FE[( 3 XtYTHXT)( Y XE) ,A]

T=t—mn T=t—n

t—1 t—1 t—1 t—1
:%E[( 3 XtYTHXT)( oxie Y xixie Y XfoX,f),A]
T=t—n T=t—n i#£jt—n 1#j#£kt—n
1 t—1 B - t—1 B .
—— | ¥ Blxvenxl A+ E[X,Yi1 X; X8, 4]
=t—n 1#jt—n
—1 t—1
+ Y EXYin XX A+ > E[XYin XPX] Al
i£j,t—n
t—1
+ > EXYia XiX{XP A+ Y EXYia XPXXE Al

Z7éJ7ék7t_n 7:7£j7£k’t_n

+ Z E[XYin Xi X7 XPX?, A]} :
i j kALt —n

The truncated expectation of SinS%n is as follows:

. E[Sinsgm,A]—i4 [( Z Y1 XoYr1 Xr )2( ti Xf)z,A}

T=t—n T=t—n
1 t—1 t—1
== | >0 BVERXIYRLXS AL+ Y BIVAXPYA XX A

T=t-n i#jt—n
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t—1
+ Z BIY 0 XPYA XX, Al + Z B XPYRXEXT X, Al
z;éj,t n 1£j#kt—n
t—1 ~
b Y BV XXX A S B XY XY XX A
z;éj,t n 1£j#kt—n
t—1 ~
+ Z EYZ XPYin XPYin X) A+ Y BV XPYin XPYin X; X7, A
i#£jt—n 1£j#kt—n
t—1 ~
+ ) ENVAXYin XY X XPX7 A]]-
i j £kt t—n

The truncated expectation of SinS%n is as follows:

t—1 t—1
:_[ EX2Y2 X8 A+ Y E[XPY2,X2X1 A
t—1 B t—1
+ Y EXYVALXIXD A+ D> EBIXPYAXIXGXE Al
Z’#jvt_n Z#j#k,t—n

t—1 B t—1 B
+ Y BV X0V X Al+ ) BIXPYin XY XX Al
Z’#jvt_n Z7éJ7ék7t_n

t—1 t—1
FOY B XIaXE ALY Y BIXPYXIY XX A
Z’#jvt_n Z7éJ7ék7t_n

t—1
+ Z E[XEYE+1Xin+1XjXI§Xz27A]]
i£j£k#lLt—n

The expressions for powers and products of the statistics S1,, S2,, and S3, given
above are used to expand truncated central moments of first, second, and third order.

The truncated expectation of (51, —wi,y) is as follows:

t—1
o E[(S1n—win), A =

The truncated expectation of (S3, — ws) is as follows:

o E[(Son—w2), Al = E[X} |, A] —woP(X € A).
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The truncated expectation of (53, —wsy) is as follows:

t—1
Y E[XiYri1 X, Al - wsnP(X € A).

T=t—n

[ E[(Sg,n — (,dg,n), A] =

The truncated expectation of (S5, — cul,n)2 is as follows:

t—1
o E[(Sin—win) Al = —[ Z B2 X7V X2, Al

T=t—n

_l_
s

Y2 XY XY X, A

— t—1

t—1 t—1

1 _ _
7[ > ENVAXPYEXZ A+ Y BV XY XiYin X, Al
T=t—n i#j,t—n

-2 Z E[Yi1XYr 1 X, AJE[Yi 1 X4 Y11 X
T=t—n
t—1

-2 Y EVi 1 XY X, AJE[Yi1 XY 41X
i#jt—n
t—1

+ > BV XyY, o X |P(X € A)

T=t—n

+ Z EY 11 XY Xi] E[Yi 1 Xo Y X P(X € A) .
i#£jt—n

The truncated expectation of (S, — wy)? is as follows:

t—1 i—1
_ 1 = -
° E[(527n_w2)2,14] = ﬁ[ Z E[Xﬁ’A] + Z E[XEXE’A]
T=t—n 1£j,t—n

— 2B[X{ ] BIX? . Al + E*[X?,]P(X € A).
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The truncated expectation of (53, — cug,,n)2 is as follows:

t—1
= 1
o E[(S3n—wsn)’, Al = —2[ Z E[XQYr2+1X2 Al

n
T=t—n

+ Z EX?Y;in XY Xj, A

z;é]t n
t—1
-2 Z Xt T+1XT7A] Z E[XtYT"rlXT]
T=t—n T=t—n
t—1 9
+ (Y Bl X)) P(X € 4)]
T=t—mn
1 =1 _ t—1 ~
:ﬁ[ Y EPY2X2 A+ ) EXYin XY X, Al
T=t—n i1#£jt—n

-2 Z Xt T+1XT7A] [XtYT+1XT]

T=t—n

—2 Z E[XiYi11Xi, AIE[X,Yj11X]]
z;éjt n

+ Z 2[X, Y, 1 X,]P(X € A)

T=t—n

+ Z B[X:Yi X)) ELX, Y11 X, P(X € A)]
i#£j,t—n

The truncated expectation of (S1, —win)(S2,n — w2) is as follows:

_ 1 =2
o E[(S1n—win)(S2n —wa), Al = m[ Z E Y1 X Ve 1 X2, Al

T=t—n

+ Z Vi1 Xi Vi1 X X]?,A]]
i1#£j,t—n

t—1

X _

+g[— > BN XiYe o XA B[XF ) A]
T=t—n

t—1
— E[X? 1] ) EYi 1 XiYr 1 Xr, A
T=t—n
t—1
+ Y EYin XY, X, E[XP|P(X € A)].

T=t—n
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The truncated expectation of (53, — wsy)(S2,n — w2) is as follows:
_ 1 =
o El(Ssn—wsn)(San—wa) Al = —| 3 B[XiYr1 X2 A]
T=t—n

+ Z X, ZHXX]?,A”

i£j,t—n
) t—1 ) -1
+E[_ S EX Y, XEXZE L Al - EIX2] S E[X Y X,y Al
T=t—n T=t—n
t—1
+ Z B[X,Yr 1 X | E[X{|P(X € A)]
T=t—n

The truncated expectation of (S1, —win)(S2,n — wy)? is as follows:

t—1
_ 1 _
i E[(Sl,n - Wl,n)(52,n - w2)2’ A] = E [ Z E[Y;f-l-IXtYT-l-lXE’ A]
T=t—n
t—1 ~
+ Z EYi 1 XoYip1 Xi X5, Al + EY 1 XiYi 1 X) X3, A
i£j,t—n i£j,t—n

+ Y E[)QHXtYiHXZ-X]?X,f,A]]

1£j#kt—n
9 t—1 ~ t—1 ~
_EE[Xf_l][ Y BV XY Xi A+ Y E[YHlXtY;HXiX]?,A”
T=t—n i#j,t—n
1 t—1 1 t—1 t—1
n 4 n 2v2
DY E[YtHXtYTHXT]m{ Y ExA A+ Y E[X] Xj,A]}
T=t—n T=t—n i#j,t—n
1 t—1 ~
+EAXT )= Y BV XY Xe, Al
T=t—m
1 t—1 B
+2- EYi 1 X Ve XA E[XE L | E[XG ), Al
T=t—mn
1 t—1
- E[Yi1 XoY, 11 X | B[ X7]P(X € A)
T=t—n
1 t—1 ~ t—1 ~
| 3 EMaXien XL A+ Y B XYin XiX) A]
" T=t—n i#j,t—n
t—1 t—1 ~
+ EYinXpYin XPX7, A+ Y EYin XY X, X7 X7, A
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t—1

- Z ElY; 11 XiYr 1 XA E[X} A]
T=t—n
t—1

(]!

ElY, 11 X:Yi Xi|E[X], A]
i t—n
t—1
- Z EY; 1 XYin Xi)E [ X7 X7, Al
i#jt—n
t—1
- Z ElY; 1 XiYi1 XG|E [X?X%,A]]

|
i
b
o}
2%
|
]
ey

(Vi1 X Y1 X2, A]

+
)

E

2%
ey

(Vi1 X, Y1 X3 X7, Al ]

+

&
%,
El
=
x
ks
=
x
e
=

~B(x7,] Y EYin XYrn X P(X € A)].

T=t—n

The truncated expectation of (53, —wsy)(S2,n — wy)? is as follows:

t—1
_ 1 _
o Bl(San —won)(Sam —w2): Al = —| D E[XeYrn X2 A
T=t—n

t—
+ Z E[XYi1 Xi X}, Al +

1
E[XYi1 X7 X3, Al
Z#]vt n Z#]vt_n

+ Y EXYiXiX2XE, A]}

i£j#k,t—n
9 t—1 t—1
- SEXE] Y B[XYenXEAl+ Y B[XiYin XX 4]
T=t—n i#£j,t—n
1 t—1 t—1 t—1
S BV X o[ Y B Al Y B[x2x2, 4]
r=t-n r=in it n

t—1
1 _
+ Ez[Xf_l]E Y E[X\Yr 11X, A

T=t—mn
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t—1
1
E Z E[X)Yr 1 XA E[X? | |E[X} 4, A

T=t—n
1 t—1
- E[X:Y; 1 X, |E*[X? ]P(X € A)
T=t—mn
1 t—1 t—1
:—3[ EXYrn X2 A+ Y EIXYin XX}, A
n T=t—n i#j,t—n
t—1 ~ t—1 ~
+ ) EXYiaXPXF A+ ) E[XYia XXX}, A
i£j,t—n 1£j#kt—n
t—1 ~ t—1 ~
- > EXyYru X EIXH A - ) E[XYi1 X E[X], A
T=t—n i#j,t—n
t—1 t—1
- EXYin Xi|E XX, A - Y E[X,YinX)E [X2Xk,AH
i£j,t—n 1£j#kt—n
1 t—1 =1
__[2EXt 0 Y EXYea X2 Al 2ExE ] Y E[XtYiHXiXJZ,A]]
T=t—n 1£j,t—n
1 t—1 ~ t—1
"‘E {EQ [Xt2—1] T:zt;n [XtYT-i-lXTa A] + 2E[Xt2—1]E[Xt2—17 A] T:zt;n E[XtYT-i-lXT]

t—1
— E’[X? ] ) E[X;Yr1 X,]P(X € A)|.

T=t—n

The truncated expectation of (S5, — wl,n)2(527n — wy) is as follows:

° E[(Sl n — W1 n)2(S2,n - w?)a A]

t—1 t—1
[ Z E[Y2, XPY2 XL A+ Y B2, XPY2,XPX2, Al
T=1—nN Z’#jvt_n

t—
+ Z EYA XY XY X3, Al
z;ﬁ],t n
-1

+ E[)Q%rleEHXiY}HXin%aA]]

t—1 t—1
— 5 Y BV XYen X[ Y B Vi XoYe i X2, 4]

T=t—n T=t—n

+ Z E Vi1 XY Xi X?,AH
i#£j,t—n
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t—1
BIX7)[ Y BIYA. X2V, X7, 4]

T=t—n

1

+ ) E[YﬁrleYiHXz‘YjﬂXj,A]}

t—1

t
-1 t—1 B
ElYin1 XYr 1 XA|B[X7 ] Y BV XeYr 1 Xr, Al

=t—n T=t—m

1 ! 2

— 5| Y Bl XeYen Xo)| BIXZP(X € 4)
t—1 t—1

VELXPY2LXAAE Y BIVA,XPYE XEXE A

—n i#£j,t—n

Il
|»—~
s

+ Y B XPYin XY X;XE, Al
i;éj;éktn

-2 Z B 1 XoYr 1 XA E [V XY X2, A

T=t—n

—2 Z EYi1XYi1 Xl E [V XeVi 1 X3, Al
z;ﬁ]t n

-2 Z E[Yi1 XeYip1 Xi E[Yi1 Xi Vi1 Xi X3, A]
z;ﬁ]t n

—2 Z EYi 11X Yi1 Xi| E[Yi1 Xi Yy X; X2, A
1£j,t—n
t—1 ~
—2 3 B XYin X B[Yi XY X, X7, A
1£j#kt—n
1 t—1 ~
[ - B YD BIYEXPYZXE A
T=t—n
t—1 -
—BIX7] Y BNV XPYin XiYinX;, Al
i#£j,t—n
- t—1
+EX? A Y BV XyYea X,

T=t—n
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+ E[X} 1, A Z EYi1 XeYip1 Xo] E[Y1 11 XY 11X
+2E[X2 ] Y BV X Yr 1 XA B[V Xy Ye 1 Xo, A]

+2E[X7? ] Z E[Yi 1 XeYin1 X B[V Xi Y X5, A
i#jt—n
-1
- BIX}? ] Z E* Y1 XeYe 1 X, |P(X € A)
T=t—n
—1

—BIX2] Y BNV XY XiE[Yin XY X P(X € A)|.

The truncated expectation of (53, — W3’n)2(527n — wy) is as follows:

o E[(S35 —wsn)*(Som — wa), Al
= -1
—— | ¥ BxpvZaxi A+ Y EIXPYAXPXDA
T=t—n i1#£j,t—n
t— t—1 B
+ Z E[XPYi1 XY X7, Al + Z E[X}Yin XiYi X; X}, Al
i£j,t—n 1£j#kt—n
2 =1
Z BXYrnX,]| 3 B [Xi¥r X2 4]
T—t n T=t—n
-1
+ Z E[Xth'HXiX]ZaA”

i#jt—n
t—1 t—1

1 _ _
- SEIXE] Y BXIYEAXE AL+ Y BIXPYia XY X, A
r=t—n it
t—1
[ 3 E[X Yy X, ]} E[X2 ,, A]
=t—
1

n
t—1

p _
+ E[XtYTHXT]E[Xf_l] > E[XiYr1 X, A

T= T=t—n

il
n2

t—1 1
{ 3 EIXPYZ XA A+
r=tn it

S BNV X, || BixzP(x € 4)

T=t—n
t—

E[XPY72 L X2XZ, A
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o

E[X?Yi1XiYj1 X}, A

i£j,t—n
t—1 ~ t—1 ~
+ ) EXYia XY XX Al -2 Y EX\ Y X, E [ XY X3 Al
z';éj;ékt n T=t—n
-2 Z E[XyYi1 Xi|E [XiY;1 X3, A]
z;é]t n
—2 Z E[X;Y;i 1 X E[X¢Yi1 Xi X7, A
z;é]t n
-2 Z E[X:Yi 1 Xi|E[X:Yj 1 X, X2, A
i#£j,t—n
t—1 ~
-2 > EXYiuXi]E[X,Y; 1 X; X7, A
i£j#k,t—n
1 t—1 ~
+— | - BIXE] Y BIXPYZ, X2 A
T=t—m
t—1 t—1

—BIXP] ) BIXPYin XX, Al + BIX7 1, Al > E*[X Y, XS]

i#jt—n

=t—n
t—1

T=t—mn

t—1
+E[X7 1, Al Y EXYin X BIX Y X))
i#j,t—n
t—1
+2E[X7 ] Y EXYr 1 XA E[X, Y1 X, A
]

+2E[X7 ] Y EXYin X B[X,Y; X, Al

t—1

—E[X7 ] Y E’[XYr1X,|P(X € A)

T=t—n
t—1

~EIXZ.] Y BlXYin XJE[XY0 X]P(X € 4)].

i#jt—n
The truncated expectation of (Sz, — wy)?

t—1

o Bl(Sn-w) A= 5| Y EXS A+ Y

3

T=t—n

n

is as follows:

t—1

n 42
BIXiX2, 4]
i#£j,t—n
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+ Y EIXIXIXE, A]}
1£j#kt—n
t—1

_3E[Xg_l]%[ > EIXE A+ z_: E[X?X?afl]}

T=t—n i#jt—n

+ 3B [XPLE[X? 4, A] - BP[X7 | P(X € A).

The truncated expectation of (S, — wy)t is as follows:

t—1 t—1 t—1

_ 1 _ _ _
o E[(Son—ws)t Al = —[ E[X5, A + E[XSX2 A + E[X4x4 A
[ = T;n [ ] w;:_n (X7 X5, Al th:_n (X7 X5, Al
t—1
+ Y EXIXIXE A+ Y E[XfoX,fo,A]]
i£j#k,t—n 1#j#k#lt—n
4 2 — n 6 — n 432 — n 2v2v2
_EE[Xt—l][ EIXZ, Al + Z EX; X5, Al + Z E[XinkaA]]]
T=t—n 1#j,t—n i#j#k,t—n
6 t—1 t—1
+mE2[Xf_1][ EXH A+ Y E[Xfo,AH
T=t—n i#£j,t—n

—AEP[XPE[X] ), Al - BYXPL]P(X € A).

3

The truncated expectation of (S1, — w1 n)(S2,n — w2)” is as follows:

t—1
_ 1 _
o E[(Sin—win)(S2n —w2)’ Al = —4[ EYi1 XY 1 X], Al
n T=t—m
_ t—1
Z EYpn XYin XiXJ, A+ B XiYin X7XG, A]
t—1 t—1
+ Y BV XY XPX) Al + EYi1 XY Xi X[} X}, Al
t—1
+ ) EMia XY XPXIXE A
i£j#k,t—n
t—1
+ Y E[Y;HXtYiHXiX]?X,?XE,A]}
i£j£k#Lt—n
t—1 t—1
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t—1
+ Z EXix3 A+ Y E[XfX]?X,f,A]H
i£j,t—n z;éj;ék,t—n
1 t—1 t—1
—3E[Xf_1]${ N BN XYen X2 A+ Y BV X Vi XX A
T=t—n i#jt—n
t—1 i—1
+ 3 BV XY XPxZ A+ Y E[)QHXAQHXZ-X]?X,&A]}
Z’#jvt_n Z7éJ7ék7t_n
3 t—1 1 t—1 t—1
+2 3 ENin XY n X EIXE )5 | S BIXLAl+ Y E[XEXF, A
" T=t—n " T=t—n i#j,t—n
1 t—1 t—1
+3E2[Xf_1]ﬁ[ 3N BV XY XA+ S E[YthleiX]?,A]]
T=t-n i#jt—n
1 t—1
- 3= Z E[Yt-l-lXtYT-i-lXT]Ez[XE—I]E[XE—DA]
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1 t—1
- BIXEA)= D B XaYen Xe, Al
T=t—mn
1 t—1
+= Y EYi 1 XYoo X, B X7 |P(X € A)
nT:t—n
t—1 t—1
1 — 6
——| ¥ B XY XL A+ Y EYinXeYinXiXJ A
T=t—n i#£jt—n
t—1 t—1
+ EYin X Yin X7 X7 A+ Y BV XY X7 X[, A
t—1 t—1
+ EYin XY XiX) X2 A+ Y BV XV XP X2 XE, Al
i#j#h t—n i#i#kt—n
t—1
+ Y ENVeaXyYin X X XPXE A
i£j£k#Lt—n
t—1 t—1
- > BN XiYon XAEXS Al = Y BV XyYi Xi E[X], Al
T=t-n i#jt—n
t—1 i—1
Z EYi1 XoYin Xi)E[X} X7, A] - Z EYi 1 XeYin1 Xi E[X; X7, A
t—1
- Z EYi1 XoYin1 Xi E[X[ X7, A]
i£j#k,t—n
t—1

- Z E[Yi1 XeYi1 Xi|E[X7 X X}, Al
i£j#k,t—n
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t—1
- Z EYi 1 XoYin1 X E[XFXPXE, A]]
itk
1 t—1 ~
+$[—3E[Xf_1] 3 E[Yin XiYre1 X2, 4]
T=t—m
t—1
—3E[X7,] Y ENinXiYin XX}, Al
i#£j,t—n
t—1
—3E[X7 4] Y B XiYin XPX7, Al
i#£j,t—n
t—1
CBEXEL) S BV XY XXPXE A
i£j#k,t—n
t—1
+3B[X74) > BV Xy Ve XA E[X] A]
T=t—n
t—1
+3E[X7 ] Y EVin XiYin X)) E[X}, Al
1£j,t—n
t—1
+3E[X7 ] Z E[Yi1 XoYir1 X, E[X7 X7, A
i£j,t—n
t—1
+3E[X} 4] Z E[YtHXtYiHXi]E[X]?XI%aA]]
1£j#kt—n
1 t—1 ~
+= [3E2[X§_1] 3 EYen XiYesi X2, 4]
T=t—n
t—1
+3E2(XE ] Y E[Yt+1XtYi+1Xz‘X]2,A]}
i#£j,t—n
1 B t—1
| = SEUXZEIXE 1 Al Y EYin XeYon X
T=t—n
t—1
- B°[X7 )] E[Yi1 XiYr 1 X7, A

+ B3[X2 ] ElYii1 X,V 1 X, |P(X € A)].

The truncated expectation of (S3, — wsn)(S2,n — wy)? is as follows:

t—1

_ 1 _
o E[(S3n—wsn)(Som —w2)’, A] = ﬁ[ > E[XYr1 X, Al
T=t—n
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t—1

+ Z EXYinXiX$, A+ ) E[X,Yin X) X7, Al

27’5],15 n

t—1

+ Z EXYin X)X} A+ ) E[XYin XX X7, A

i#£jt—n

t—1
DY

ikt

1 t—1

1£j#kt—n
t—1
EXYin XPXEXE A+ Y EXYin X, X;Xp X7, A]]
n 1£j#EkFELt—n
= t—1
1y Sl A 2
E[XtYTHXT]ﬁ[ S OEXS A+ Y BIX!X2 A

T=t—n T=t—n i;ﬁj,t—’l’L

t—1
DY

ikt

— 3E[X2

E[XZX}’X,%,A]H

t—1 i—1
1 _ _
l]ﬁ[ N EXYen XA+ Y EIXYi X, X), Al
T=t—n i#j,t—n
t—1

+ Z EXYin XPX2 A+ Y E[XmHXZ-XJ?X,f,A]}

i1#j,t—n 1#jF#k,t—n
3 t—1 1 t—1 t—1
2 n 4 n 2y 2
to Y BN XAEX ] Y BIXL Al YD BXPX].A)
T=t—n T=t—m i#£j,t—n
t—1 t—1

1 _ _
+3E%[X? l]n [ Z E[X; Y1 X2, Al + Z E[XtYiJrlXiXJZ,A]]

T=t-n i#jt—n

1 _
—3= ) BIXYr X, E*[XP | BIXE ), A

1 _
—1]5 > E[XiYr1 X, Al +

t—1 t—1
> E[XiYr1 X, B X} | |P(X € A)
T=t—n T=t—n
t—1 ~
(XY, XA+ Y EX Y XX, Al
1£j,t—n
t—1

ey

+ ) EXYiaX)X7 A+ ) E[XY; 1 XX}, A

i1#£j,t—n i1#£jt—n
t—1 t—1
+ ) BXYin XiX{XP A+ ) EXGYia XPXFXE A
1#£j#kt—n 1£j#kt—n
t—1 t—1
+ Y EXYin X X;XPXP Al - ) E[XyYr1 X, E[XS, Al
1#j£k#ElLt—n T=t—n
t—1 t—1

>

E[XY;in Xi|E[X5, Al — > E[X,Y;1 Xi|E[X/ X}, A
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t—1 t—1
- ) EXYinXJEX]X2 Al - > E[X)Yi X E[X] X}, A
i1#£jt—n 1£j#kt—n
t—1 ~
— Y EXYinXJEX?X]X}, A
1£j#kt—n
t—1 ~
- Y B X BX2XEXP, A
i£jAkALt—n
1 t—1 ~ t—1 ~
+$[—3E[Xf_l] BIXYr1 X2, Al = 3B(X2] Y E[X,Yin X X2, A
t—n i#j,t—n

t—1

- 3B[X} 4] E[X:Yi1 X7 X7, Al
i#£j,t—n

t—1

—3E[X? ] E[XYin XiX; X, Al

+3E[X7 ] ) E[X Ve X, |E[X], A
T=t—n
t—1

+3E[X7 ] > EXYinXi|E[XX, Al
it
t—1
+3EX7,] Y E[Xt}QHXZ-]E[X]?X,f,A]]
i£j#k,t—n
1 t—1 t—1
+m[3E2[XE_1] N EX Yo X3 A 4 3E%X7 ) Y E[XYi X,X2, A
r=in it
1 t—1
+— [ = 3EPXEEIXE 4] Y E[XYr X
n T=t—n
t—1
—BX}7] Y E[XYr1X,, A
—t—
t—1
+BIXP) Y E[XtYTHXT]P(XeA)].

T=t—n

T n

The truncated expectation of (S5, — wl,n)2(527n — w9)? is as follows:

t—1
o E[(S1n—win)(S2n —wa)? A = —[ > BV XPY2 XS A

T=t—n
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t—1
+ Z B XPYR XX, Al + Z ElY  XPYA. X XF, Al
1#£j,t—n 1£j,t—n
+ Z BY  XPYAXEXFXE, Al + Z EYZ XPYi11 XY X5, A
1£j#kt—n i£j,t—n
Y BNV XPYia XY XXe A+ ) BV XY XY XG4
i1£j#kt—n i1#£jt—n

+ Z EYA XY XY X X3, A

1£j#kt—n
t—1
+ ) ENVAXYin XY X X X7 A]]
i#j£k#Lt—n
1 t—1 1 t—1
—2= 3 B XiYen Xl = Y BlYinXYon X2 A
T=t—n T=t—m
t—1 t—1
+ EYin XY XX, Al + EYi1 XY X7 X3, Al
t—1

+ Z E[}/}_‘_lXt}/Z—HXZX]zXI%’A]}

i1#jF#k,t—n
- 21 L -
"'ﬁ[ E[Y%+1XtYT+1XT]:| ﬁ[ Z E[X% A] + B [XZ?X]?,A]]
= r=t-n it n
= i
2B S EDRNPEXL ALY S BN A
T=t—n it t—n

+ Z EYA XY X;Yin X3, A]
i#jt—n

b B XY XYy X, X 4]

i1#jF#kt—n
1 t—1 1 t—1
+4= 3 BV XY X EXE 55| Y B [YinXeYon X2 4]
T=t—nm T=t—n

+ Z E Vi1 X, z+1XX]2,A”
i1#£j,t—n
= ) )
—25 [ 3 Bl XoYen Xl BIXZLEIXE 4]
T=t—m

t—1 t—1
1 _ _
+E2[Xt2—1]m[ > ENVZIXPYILXZ A+ Y BV XY XY X, Al

T=t—m i#£j,t—n
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t—1 t—1
1 1 _
—2- ) BN XVen XGE X Y B XiYe X, A]
T=t—n T=t—m
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+ﬁ[ E[Yi1 X1 X,)| E2X2)P(X € 4)
T=t—mn
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= X B XYL XS A
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t—1
+ Z B2 XY XY X, X, Al
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+ Y EYAXPYin XV X XpX7, Al
i#£j£k#Lt—n
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T=t—n
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—2 Y BV XY X EYi1 X, Y1 X5, Al

—2 Y BV XY X EYi 1 X, Y X X5, A
—2 Y BV XY X EYi 1 XY X, X Al
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t—1
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+ Z Vi1 XeYinn Xil E[X7 X7, A
i1#£j,t—n

+ Y EYVia XY XiE[X7X}, Al
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+ Z EYi1 X Yi1 Xi| EYi 1 XiY; 1 X E[X7 X, Al
i#£j,t—n

+ Y BNV XY X BV XY 0 X E[XG X7, A
1#jF#k,t—n
t—1 ~
+ Y ENin XY X EYin XY X E[XP X7, Al
itk t—n
1 t—1 ~
5| —2BIX2,] YD BIYA,XPY2, XA
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H.

amxi) Y BMAGYAXX A
i#jt—n
t—1

—2B[X7 ] Y BN X{Yin XY X], Al
Z#J,t

B Y BV Xer XY XX A
i1#jF#k,t—n
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t—1
+4E[X? ] Y BV XY X E[Y 1 XY 1 X3, A]
i#j,t—n
t—1 B
H4EX2 ] Y EYen X Yin X)) E[Yi X, Vi X X2, A]
i#j,t—n
t—1 B
+4E[X? ] Y BV XY X E[Y, 1 XY 11X, X7, A
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t—1 B
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e [ — 2B[X{ | E[X] Al E Y1 Xy Y1 Xo]

—2E[X} |E[X} 1, A] Bl 11 XY Xil B[V X Y1 X
i#j,t—n
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+ E?[X7 ) Z B XiY2a X2, Al

—2F(X7 ] Y BV XY X B[V 1 Xy Y1 Xy, A
T=t—m
t—1
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+ E?[X7 ] Z EYi 11 X Y1 X E[Ye1 Xe Y1 X5 P(X € A)]-

The truncated expectation of (53, — W37n)2(527n — w9)? is as follows:

t—1

_ 1 >
o E[(San —wan)*(San — )’ Al = S| D BIXPY2, XY, A]
T=t—mn
=1 =
+ > EAVE XX A+ YD B[PV X!X2 A
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1£j,t—n
t—1 ~
+ EIXYin X)) B[X, Y1 Xj) E[X};, A]
1£j#kt—n
t—1 t—1
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—t—
t—1
—2E(X7 ] > EXYin XiE[XYj1X;, Al
i#£j,t—n
t—1
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Appendix E

Appendix for Chapter 7

E.1 Expansion of truncated central moments

We begin by expanding powers and products of the statistics Sy, S2,, and 53, and

the corresponding truncated expectations:

[t—np—1

_ 1_ _
o ElSinAl=—E| Y YieaXnA| = (1-22) EVienXin-1 4
LT=t—n
_ 1 -
© B[S, Al=—E Z E[X? | A
LT=t—n
1 [ =4 n
o ES3nAl=-E| > YorX; Al = 2E[Yy; X1, 4]
n n
LT=t—ny
rot—1
_ 1 - _
o E[SimAl=-E| > YornX, Al =EYo X, 1, Al
n LT=t—n
Next, we expand E[S1,5%.,, Al:
t—np—1
S1.nS2n =—5 Z Yir01Xr Z X?
T=t—n T=t—n
1 [t—mp—1 t—nmp—1 t—np—1
S e Y e Y vax Y x
L T=t—n T=t—n T=t—n T=t—ny

tnbl t—np—1

S VXY XX Y Vi X, Z X2

T=t—n i#j T=t—n T=t—ny
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The truncated expecation of the three terms are as follows:

_t—’l’Lb—l
> Vi XhA] = (0= ) B0, Xi 1 AL

S T=t-n

> Vi XX, A} = ((n—np)* = (n = 1)) ENY1 -y Xt—niy—1 X7y 2, Al
i
t—mnp—1

3 YienX, Z 2,4 = nyfn = m) E[Y1 -, Xo-ny 1 X2, A).
T r=t—n

T=t—ny

ey

ey

ey

The truncated expectation of S1 52, is as follows:

o E[S1,Sm,A] = (- — —> EY14n, X7 15 Al
1 ny ~ 2
+ (11— E(an + ].) + ﬁ(nb + 1) E[Ylyt—ant—nb—lXt—nb—% A]

1 ny
+ np <E n2 > [Ylt ant ny— lXt 1,A]

Next we expand E[S3 .55, AJ:

t—1
1
S2nS3n =3 Et X2 Yo rp1Xr
T=

t—1
n T=t—ny

t—np—1
1 b

=3 Z Yo r1Xs Z X2+ Z Yo 1 Xs Z X2

Ttnb T=t—ny T=t—ny T=t—n

t—nmp—1
:% Z Yo ry1 X3 "’ZYWHXX + Z Yort1Xr Z X?

_Ttnb 1#£] T=t—ny T=t—n

The truncated expecation of the three terms are as follows:

El Y YQ,THXE,A} = npE[Va, X3, Al
-T:t—nb
E Zn,mXin’A] = (nj — np) E[Yau Xe-1 X7 5, A,
'z‘#j
B t—np—1
E Z Yo 1 Xs Z ] —nb(n_nb)E[Y2,tXt—1Xt2—nb—lvA]‘

CT=t—ny T=t—n
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The truncated expectation of S3, 553, is as follows:
— nb — 3 nb — 2
o F [52,7153,717 A] :ﬁE[YQ,tXt—la A] + ﬁ(nb — 1)E[Y27tXt_1Xt_2, A]

n —
+—2(n— ny)E[Ya Xe 1 X7, 1, Al

3
The truncated expectation of S35, is as follows:

_ _ 1\ _
o E[S9,Sin, Al =—E[Yo,; X} 1, Al + (1 — E) ElY2,; Xt 1 X2 5, Al

Sl

Next we expand E[SLHS&H, Al:

1 t—np—1 t—1
Sl,nSS,n = m E Y1,7+1X7' E B,T+1XT-
T=t—n T=t—ny

The truncated expectation of 5,953, is as follows:

_ 1 n _
o Ik [Sl,nS?),na A] =Np <E - n_;)> E[Yl,t—ant—nb—lYé,tXt—hA]

Next we expand E[S7,,, AJ:

1 t—np—1 2 1 t—np—1
Sin =3 [ Z Yl,T+1XT] =3 Z Y12,7’+1X7%+Z)/17i+1X7:Y1,j+1Xj

T=t—n T=t—n i£j

The truncated expectation of the two terms are as follows:

t—np—1
E[ Z Y12,T+1X3,A] =(n- nb)E[le,t—antz—nb—lvA]?

T=t—m

E [ Z Y101 XiY1 11X, A]
i#]
= ((n - nb)2 - (TL - nb))E [Yl,t—ant—nb—lYI,t—nb—lXt—nb—Q7 A] .

The truncated expectation of Sin is as follows:

_ 1 n _
o Bt = (3 - 28) B0 X 1o
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1 n =
+ <1 — E(an + 1) + n_g(nb + 1)> E [Yl,t—ant—nb—lYl,t—nb—lXt—nb—27A] .

Next we expand E [S%n, Al:

= 2 RE=
S3n=3| 2 XE] = | D XP+) XX

T=t—n T=t—n 1#£]

The truncated expectation of 522,n is as follows:

_ 1 - 1\ -
i E[Sg,naA] = EE[le—laA] + <1 - E) E[th—lth—%A]'

Next we expand E[S3,,, AJ:
1 t—1 2 1 t—1
Sin="s [ > Y2,T+1XT] = | D Ve XP+) Vi XiYanX;
T=t—ny T=t—ny z;ﬁ]
The truncated expectation of the two terms are as follows:

t—1
Bl Y ¥ XA =nE VXL, A]

T:t—TLb

E{Z Y11 X:Yo 111X, A} = (n% - nb)E Yo, X 1Yo, 1X; 9, A].
i£

The truncated expectation of Sin is as follows:

_ Ny — n =
o E[S3,,A]= n—;’E [Y2,X2 1, A] + n_gm,, —1)E [YouXi 1Yoy 1Xs-2, A
The truncated expectation of 5427n is as follows:

. E[sin, Al =

S|

_ 1\ _
E [}/22,tXt2—17A] + (1 - E) EYo: Xe 1Yo 1X¢ 9, A].

Next we expand E[S},53 ,, Al:

T=t—n

| [mot t—1 2
S1nS3, = 3 [ > Yl,r+1Xr] [ > X?]



L [rmot rt—ny—1 t—1 2
SRR v
n L T=t—n L T=t—n T=t—ny
1 [t—np—1 [ t—np—1 9 t—1 9 t—np—1 t—1
[ 3 vieax ( 3 XE) +( 3 XE) ) x2 Y X2
LT=t—n L 7=t—n T=t—ny T=t—n T=t—ny
| [t -t—nb—l t—np—1 t—1 t—1
R DR S A ST NI DD S
LT=t—n | T=t—n i#£j, t—n T=t—ny 1], t—mny
t—np—1
23 ey X2]
T=t—n T=t—ny
1 t—np—1 t—np—1 t—np—1
= | 2 VieaX?+ Y Y XX+ Y Vi XPX]
T=t—n i#j, t—n i#j, t—n
t—np—1 t—np—1 t—1
+ Z Y1,z‘+1Xz'X]2X;3+ Z Y11 X7 Z X}
1#jF#k, t—n T=t—n T=t—ny
t— ny— 1 t— ny— 1
+ Y YieaX, Z XPXZ24+2 ) YipaX? Z X2
T=t—n i, t—nyp T=t—n T=t—np
t—np—1
+2 ) Vi XiX] Z X7
1#£j t—n T=t—ny
The truncated expectation of the eight terms are as follows:
t—np—1
E Z Yl,T+1X£7A:| = (n_nb)E[Yl,t—antS—nb—lvA]?
T r=t—n
t—np—1
E Z }/i,i+1XiX;'l,A] = ((n—mp)* = (n = 1)) E[Y1t -y Xty 1 X; 0 Al
i), t—n
t—np—1
E Z YLZ'-"-lX?X]Zv A:| = 2((” - nb)2 - (n - nb))E[Yl,t—anf—nb—Ith—nb—27 A]7
i), t—n
~ t—nb—l
El Y Yl,MXZ-X]?X,?,A]
ik, t-n
=((n— nb)3 —3(n— nb)2 +2(n —ny))
E[Yl t—ant—nb—lXt2—nb—2Xt2—nb—37 A]7
t—np—1
[ Z Y11 Xs Z ]:nb(n_nb)E[Yl,t—ant—nb—IX;l_laA]a

T=t—n T=t—ny
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t— ny— 1
B3 vx 3
T=t—n 1], t—mny
= (n =) (n§ — 1) EY1t—n, Xty 1 X7 1 X7 o, Al
t— ny— 1
[ Z HT+IX Z } = an(n - nb)E[Ylyt—antg—nb—lXE—lﬂA]?
T=t—n T=t—ny
t—np—1
[ Z Yy z+1XX Z ]
i£j t—n T=t—ny

= 2ny((n — np)* = (0 — 1)) E[Y1,—ny Xi—ny—1 X7, 2 X7 1, Al

The truncated expectation of SLHS%H is as follows:

_ 1 ny\ =
L] E[Sl,nSS,n, A] = <m - ﬁ) E[Yl,t—anE—nb—l’A]

1 _
+ <ﬁ - _(an +1) + —nb(nb + 1)> EY1t-n, Xt—ny—1X{p,—2, A]

1 1
+2 <E — n—(2nb +1)+ —nb ny + 1) > Yl,t—antg—nb—lXtQ—nb—%A]

3 1
+ <1 - E(nb—l—l)—i— (2+6nb+3nb) (2+3nb—|—nb)>

EY1pny Xiony 1 X7

—np—2

X7

—np—3» A]
1 ny\ £
_ <n_ B n—§> B[Yipn, Xomy 1 Xy, 4]

1 n
+ np(np — 1) <m — nb> [Ylt 1y Xt —np— lXt lXt 9, Al

1 ny
+ 2ny <ﬁ_ 3 > [Ylt ant ny— lXt 1, 4]

1 1 1 _
+ 2ny <E - m@nb +1) + ﬁnb(nb + 1)) E[Yl,t—ant—nb—lXE—nb—2Xt2—1, A]~

Next we expand E[S7,, 5o, Al:

t np 1 t—1
2 2
S50 = me]Zx
T=t—n T=t—n
t—np—1 t—np—1 t—np—1
_1 Y2 X2 Y11 XYl X X2 4 X2
3 Lr187 T 1,i+1X: Y1 511X
T=t—n 1#£j, t—n T=t—n T=t—ny
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t—np—1 t—np—1 t—np—1 t—1

1 2 4 2 2 2 2 2 9
—— | Y vEaxie Y vEaXEXG+ Y vR xR Y XD
T=t—n i#j t—n T=t—n T=t—ny

t—np—1 t—ny—1
t Z Y11 X7 Vi X, + Z V11 XiY1 01X, X7
#iton ik t—n

t—np—1 t—1
+ Y Y XiYiaX, Y X2

Z;é] 7t_n T:t—nb

The truncated expectation of the six terms are as follows:

_t—nb—l
E Z }/12,7+1Xﬁ’ A] = (n - nb)E[le,t—anzl—n—i-b—l’ A]a
S T=t—n
t—np—1
E Z Y12,i+1Xz'2X]2’ A] = ((n - nb)2 - (n - nb))E[le,t—antz—nb—lth—nb—27 A]7
i t-n
_t—nb—l t—1
E Z }/12,7'+1X3 Z X?v A:| = nb(n - nb)E[Yi%t—anE—nb—lXE—lv A]7
T r=t—m T=t—ny
N t—nb—l
E| Y Y XY nX;, A]
_Z7é] ,t—TL
=2((n —m)* = (n = 1)) EV1 4y X¢ 1 Y1ty 1 Xty 2, Al
t—nb—l
E[ Z Yl,i—i—lXiYI,j-i-lXlegaA}
1£j#Ek t—n
= ((n—mp)® = 3(n — mp)* + 2(n — ny))
: E[Yl,t—ant—TLb—l}q,t—nb—lXt—TLb—2Xt2—nb—37 A]?
t—nb—l t—1
E[ Z Y1,i41XiY1 j1 X Z X2, A} =
i#j t—n T=t—"np

nb((n - nb)2 - (n - nb))E[Yl,t—nbXt—nb—1Y1,t—nb—1Xt—nb—2Xt2—17 A]

The truncated expectation of Sinng is as follows:
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1 np
+tnp | — — TL3 [Ylt ant np— lXt 17A]
1 1 1 _ 3
+2 E - n—(2nb + ].) + ﬁnb(nb + ]-) E[Yl,t—ant—nb—lmyt—nb_lXt_nb_2’ A]
+(1- §(nb+ 1)+ i(2+6m,+3n2) — (9 4 3ny +n2)
n n? b n3 b
EY1 o, Xt ny 1 Y1tny 1 Xt ny—2 X7y 35 Al
1 1 1
- = 2mp+ 1)+ = 1
+ ny <n n2( ny+ 1) + n3nb(nb+ ))

: E[Yl,t—ant—nb—1Y1,t—nb—1Xt—nb—2Xt2—17 A]

Next we expand E|[S3,53 ,, Al:

t—1 t—1 2
1
S3.n95, = =5 Z Y2,T+1Xr] [ Z XZ]
T=t—ny T=t—n
1 t— ny— 1
S x| [ £ e S xz]
n LT=t—ny LT=t—ny T=t—n
1 i t—1 9 t—np—1 9 t—1 t—np—1
LIS veax, < > oy (Y )y ey e
n LT=t—ny L 7=t—ny T=t—n T=t—mny T=t—n
1 t—1 t—1 i—1
=3 Z Yo 1 X2 + Z Yo Xi X + Z Yo, X] X7
| T=t—m 1#£j, t—mny 1#£j, t—ny
t—1 t—1 t—np—1
+ Z Y2,z'+1Xz'X]2X;§+ Z Yo 41 X7 Z X}
Z;ﬁj;ﬁk’ t—ny T=t—mny T=t—n
t— ny— 1 t— ny— 1
+ Z YorXe Y XPX7 42 Z Yar X2 ) X2
T=l—np i#j, t—n T=t—ny T=t—n
t—np—1
+2 Z Yoinn XiX; > X2
1#£], t—ny, T=t—n

The truncated expectation of the eight terms are as follows:

Z YQ,THXE,A} =, E[Ya, X7 1, Al

T:t—TLb

E|: Z }67i+1XiX;l, A] = nb(nb — 1)E[Y27tXt_1X;1_2, A],
7’#]7 t_nb
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B[ Y Ve XPX2 Al = 2m(m — DEY2 X7 XE 5, 4]
1], t—mny
~ t—1
B[ Y Yo XXPXPA| = (0] - 3nF + 2m) E[Yo Xy 1 X7, X7 5, A],
2'75]'75’%‘ t—np
-~ t—np—1
E Z Yo 1 Xr Z ]—nb(n_nb)E[Y2,tXt—1Xt4—nb—l7A]v
T=t—"n T=t—n
B ' t—nmp—1
E Z YorniXe > XX }
T=t—mny i#£j, t—n
= np((n—mp)® — (n— ) EYau Xo 1 X7, 1 X7 0,0, Al
t—np—1
[ Z Vo1 X2 ) X } = 2my(n — mp) E[Ya, X7 X7, 1, Al
T=t—n T=t—n
’ t—np—1
E[2 Z Vo XiX? Y. X24,4]
i#£j, t—np T=t—n

= 2np(np — 1)(n — np) E[Yo X 1 X7 o X7

—np—1

Al
The truncated expectation of 537"522,n is as follows:

_ ny = n —
o E[S;3,53, 4] = n—gE[Yuxf_l, Al + n—g(nb — 1) E[Ya X1 X1, A

n — n —
+ Qn—g(nb —DE[Y2: X} | X7 9, Al + n—gmg — 3ny + 2)E[Ya X1 X2 5 X2 5, A

1 np
+ np <ﬁ - n_> ElYy 1 X 1Xt np— 1, 4]
1 1 1 = 2 2
+ np . ﬁ(2nb +1)+ ﬁnb(nb +1) ) E[Y2: Xe 1 Xi 1 Xi 2, 4]
1 n _
+ 2np <ﬁ - n_§> E[Y2,tX?—1Xt2—nb—17A]

1 n
+ an(nb — ].) <m - nb> [Y2 tXt lXt 2Xt ny— l?A]

The truncated expectation of S47HS227n is as follows:

_ 1 - 1 1) =
o BlSunShu Al = EWaXE 1 A+ (- ) BlaXi XA

1 1) - 32\ &
+92 <E — ﬁ) E[ngtXf’_le_% Al + <1 - + ﬁ) E[YQ,tXt—lXtQ—2Xt2—3a Al
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Next we expand E[S3,, 59, Al:

1 t—1 21 41
2 2
S3nS2n = 3 Y YarnX, X2
T:t—’rLb T=t—n
t—1 t—1 t—np—1
1 2 2 Vo1 X X2 X2
= | X YVenXi+ Y VXX, Z + >
T=t—ny i#£j, t—nyp T=t—ny T=t—n
1 [t t—1 t—1 t—np—1
_ Z 2 4 Z 2 2 2 Z 2 2 Z 2
_ﬁ }/2,7'+1X7' + Y2,7L+1Xi Xj + Y2,7’+1X7' XT
T=t—ny i#j, t—ny T=t—mny T=t—n
t—1 t—1
3 2
+ g Yor1 X Yo j11 X5 + E Yo,it1Xi Y2 j+1 X X}
Z#]v t—nyp Z#];ékv t—mnyp
t—1 t—nmp—1
2
+ ) YiaXiYonX; Y X7
i#j, t—nyp T=t—n

The truncated expectation of the six terms are as follows:

E Z }62,7+1X$7 A] = nbE[Y22,tXt4—l7 A]v

T T=t—ny

E _ Z Y22,i+1Xi2XJ2’A] = np(np — 1)E[Y22,tXt2—1Xt2—27 Al

-7:7£j’t_nb
_ t—nmp—1
E Z Y2T+1X2 Z :|_nb(n_nb)E[Y22,tth—1Xt2—nb—1’A]v
T Tr=t—ny T=t—m
1 )
El Y Y2,¢+1X?Y2,j+1Xj,A] = 2np(np — 1) E[Y2: X7 1Yo 11 X¢—2, Al
-i#jvt_nb
-1
E Z Y2,z'+1Xz'Y2,j+1XjX1§,A}
S ik, -,
= ny(nf — 3np + 2)EB[Ya X 1Yo, 1 Xt o X7 5, A],
t— np— 1
Z Y211 XiYo j 11X Z }
1#£j, t—ny T=t—m

=ny(np — 1)(n — nb)E_[YQ,tXt—lY2,t—1Xt—2Xt2_nb_17 Al.
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The truncated expectation of S§7n527n is as follows:
_ ny = ng _
o E[Sg,nSZ?wA] = EE[Y;,tXf—la Al + ﬁ(”b - 1)E[Y22,tXt2—1Xt2—2a A
1 n n _
+ Ny <m nb> [Y2 tXt lXt np— 1,A] + 2n—g(nb - 1)E[Y27tX§_1Y2,t_1Xt_2, A]
n _
g (nf — 3y + 2 BYa, X1 Yo, 1 Xi2 X[ . A]

1 n
+’I’Lb(’l’Lb — 1) <n2 nb> E[Y2 + X 1Y2t 1X— 2Xt nb_l,A].

The truncated expectation of SZ,nSZn is as follows:

_ _ 1 1 _
o E[Si,nSQ,na Al = ﬁE[Yz%tXf—uA] + <E - ﬁ) E[Y22,tXt2—1Xt2—27A]

e

1 1\ -
+2 <_ B ﬁ) Yo XP 1 Yap1Xi-2, 4]
2
’I’L

(Yo Xt 1Yo 1X: oX7P 5, Al

Next we expand E[S],,52.153.n, A]:

1 t—np—1 t—1 t—1
2
Sl,nSQ,nSS,n = ﬁ Z Y177'+1X7' Z XT Z Y2,T+1XT
T=t—n T=t—n T=t—ny
1 t—np—1 t—1 t—np—1
2 2
=7 2 VieaXe 3 Yz’T“XT[ S xe Y X]
T=t—n T=t—ny T=t—n T=t—ny
1 t—np—1 t—1 t—np—1
= Z VariiXe D VippXi+ 3 YornX, D Vi XX}
T=t—np T=t—n T=t—ny i£jt—n
t—nb—l t—1 t—nb—l t—1
3 2
T Z Vi1 Xr Z Yor1 X7 + Z Vi1 X7 Z Y21 Xi X5
T=t—n T=t—ny T=t—n 1#£j,t—nyp

The truncated expectation of the four terms are as follows:

t— ny— 1
B| Z Vart1Xe > YirnnX2| = np(n— n) B[Yau Xi 1 Y100, X1 Al
T=t—ny T=t—n
t—1 t—np—1
E[ D YoruX, Y Y1,¢+1X¢X]2] = ny((n —mp)* — (n —mp))
T=t—"np i#j,t—n

E[Y2,tXt—lYI,t—ant—nb—lth—nb—27 A]?
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t—nb—l t—1
B[ Y VieuXe D YernnXE| = nmu(n = m) EVign, X, 1YouXPy, AL
T=t—n T=t—ny
t—np—1 t—1
E[ Z i1 X; Z Y2,i+1XiX]2:| = (n —np)(nj — nyp)
T=t—n Z#]vt_nb

EY1tony Xt—ny-1Yo s Xe 1 X7 o, Al

The truncated expectation of S1,52 953, is as follows:

_ 1 n
o E[S1052,S3n, A = ny <ﬁ - nb> EYo Xt 1Y1-n, Xipy—1, 4]

1 _
+np (— — (2ny + 1) +np(ny +1)— > E[Y2t Xe-1Y1 4, Xty —1 X7, 2, A]

1 n =
+ ny, (ﬁ B n_g> B t-n, Xt—n,—1Y2, Xi 1, 4]

1 Ny

+nb(nb—1) <TL2 >E[Y1t ant np— IYVQtXt 1Xt 27‘4]

n3

Next we expand E'[Sl,nSg’vn,A]:

t—np—1 t—1 3
Sl,nsé‘,nz > YirnXe [Z XE]
T=t—m T=t—n

1 [t—np—1 rt—mp—1
S ] [ S e v XZ]
1

n LT=t—n LT=t—n T=t—ny
1 [t—np—1 [ t—np—1 3 t— 3 t—np—1 t—1
= | > VirnXs ( S o) (X x) s Y )Y ke
LT=t—n L 7=t—n T=t—ny T=t—n T=t—ny
t—np—1 t—1 9
3 Y x2( Y XE)]
T=t—n T=t—ny
1 t—np—1 t—np—1 t—np—1 t—np—1
:ﬁ[ 3 YLTHXT] dooxXb4+ Y XIXP+ ) XPXJXP+ Z X6
T=t—n T=t—n i#£j, t—n 1#j#£k, t—n T=t—ny
t—1 t—1 t—np—1 t—np—1 t—1
+ xXixz+ Y XfX]?X,§+3( Yoxty Y XfX]?) 3 X2
i, t—mp i gk, t—my T=t—n i#j, t—n T=t—n,
t—np—1

t—1 t—1
+3( bEEEDY XEX}) 3 X2

T=t—ny 1#j, t—nyp T=t—n
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1 t—np—1 t—np—1 t—np—1
=1 Z Y1,T+1XT7+4 Z Y1,z'+1X¢X]6+' Z Yl,i+1XZ'5X]2
T=t—n 7'#]7 t—n Z#]v t—n
t—nb—l t—nb—l t—nb—l
+ Z Y'17i+1X§X;-l+ Z Y17i+1XZ'X;1X]3+ Z Y'17i+1X§X]2XIg
i#], t—n i#j#k, t—n i#j#k, t—n
t—nb—l t—nb—l t—1
+ ) YaaXXIXEXP+ ) YienXe ) X7
1#j#k#L t—n T=t—n T=t—ny
t—np—1 t—1 t—np—1 t—1
+ Y VieaX, D XX+ ) YipaXe ) XXX}
T=l—n 175.]7 t—nyp T=l—n 7'75.77£k’ t—nyp
t—np—1 t—nmp—1 t—np—1
3( Z Vi1 X2+ Z Y1,z‘+1X¢X;~l+ Z Y1,z'+1Xf’X]2
T=t—n 175.]7 t—n 7‘75.7’ t—n
t—np—1 t—1 t—np—1 t—np—1
+ Z Yl,i+1XiX]2X]3) Z X3+3< Z Vi1 X2+ Z Y1,z‘+1Xz'X]2)
i#j#k, t—n T=t—np T=t—n i#], t—n
t—1 t—1
(5 x5 )
T=t—ny 1#£], t—ny,
1 t—nb—l t—nb—l t—nb—l
v Z Vi XD+ Z Yl,i—i—lXiX](‘j"‘ Z Yl,i—Q—lXZ‘SXJZ
t—np—1 t—np—1 t—np—1
+ Z m7i+1X§X;~l+ Z Y17i+1XZ'X;-1X]§+ Z Y'17i+1X143X]2X]%
7‘75.7’ t—n 7'75.77£k’ t—n Z7éj5£k7 t—n
t—np—1 t—np—1 t—1
Y NmXXIXEXP A+ ) YieaXe Y X7
1#£j#k#l t—n T=t—n T=t—mny
t—np—1 i—1 t—np—1 t—1
+ > YienXe Y XIXT+ Y YieaXe Y XXX}
T=t—n i#]} t_"b T=t—n i#j#k’ t—nb
t—np— 1 t—np— 1
+3 ) YiaX] Z X243 Y YiiaXX] Z X2
T=t—n T=t—ny i#j, t—n T=t—mny
t—nb—l t—1 t—nb—l t—1
+3 ) YV XPX7 Y X243 ) Vi XiX;XP ) X2
i#j, t—n T=t—mny i#j#k, t—n T=t—mny
t—np—1 t—np—1
+3 ) ViaX? Z X143 ) VioaXx? Z X?X?
T=t—n T=t—ny T=t—n 1], t—mny
t—nb—l t—1 t—nb—l t—1

+3 ) Vi XX] ) XP43 ) YiiaXX; ) XX

Z#]v t—n T=t—nyp 7'#]7 t—n 7'#]7 t—nyp
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The truncated expectation of the eighteen terms are as follows:

ey

ey

N t—nb—l

> Vi XL A| = (0= ) BN, X[, -1, AL
T r=t—n
N t—nb—l
Z Yl,i-i-lX’iX]Ga A:| = ((n - nb)2 - (n - nb))E[Yl,t—’nbXt—nb—lXtG—nb—27 A]7

Ci#j, t—n
N t—nb—l
Y VXX, A] =3((n—m)* = (n =) E[Y1,4-n, Xy 1 X7y 25 Al
Ti#j, t—n
N t—nb—l

B[ Y vianXPX} A = 3(0n = m)? = (0= ) EYVi o, X1 Xi 2, ),
1#£j, t—n
o ten—1
Bl Y VinXX{xg Al
1£j#Ek, t—n
= 3((n —np)* = 3(n —ny)” +2(n — 1)) E[Y1 1y Ximny 1 Xi i, 2 X7, 30 Al
t—np—1
E[ Z Yl,z'+1Xi3X]2Xi%a A}
1£j#Ek, t—n
= 3((” - nb)3 - 3(7”L - nb)2 + 2(7”L - nb))E[Yi7t—nbX?—nb—leg—nb—2Xt2—nb—37 A]?
t—np—1
El Y VimXXIXEXP, A}
i#j#kAl, t—n
=((n—mnp)t—6(n—np)> + 11(n —np)? — 6(n —np))
’ E[YI t—nbXt—nb—1Xt2—nb—2Xt2—nb—3Xt2—nb—47 A]?
t—np—1
B[ 3 VieaX, > x 8, A] =m0 = 1) B[V gy Xoy 1 XE o, Al
T=t—n T=t—ny
t—np—1
B[ 3 VieaX, S xix: ?,4]
T=t—n i#j, t—nyp

= 3np(n — np)(np — 1)E[Y1,t—ant—nb—1Xt4—1Xt2—2» Al

t—?’Lb -1

t—1
E_'|: Z Yl,T-i-lXT Z XZQXJQXlzﬂA}

T=t—n i#jF#k, t—nyp

= nb(n - nb)(nz —3np + 2)E[Yl,t—ant—nb—1Xt2—1Xt2—2Xt2—3> A]v
t— ny— 1

|: Z Y1 T+1X Z ] = np(n — nb)E[YLt—ants—nb—le—l’ Al,

T=t—n T=t—ny
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t—np—1
B[ Y viinXix) S x 2,4]
1#£j, t—n T=t—ny

= np((n —np)* = (n = 13)) ENV1 4y Xt—ny—1 X7y 2 X7 1, Al

t— ny— 1
B[ Y viinXix? y x
i#j, t—n T=t—mp
= 2np((n —np)* — (n = mp))ENV1 4, X7y 1 X7y 2 X7 1, Al
t— ny— 1
B xS xnd
1£j#k, t—n T=t—ny

— ny((n — ) — 3(n — mp)? + 2(n — ny))

E[Yl t—nbXt—nb—lXE—nb—QXtQ—nb—SXtQ—l7 A]7

tnbl

B[ Y Vipax? Z 2, A] = np(n = n) B[Yip, X1 Xy, Al
T=t—n T=t—ny
t— ny— 1
B[S e 3 xi
T=t—n Z#]vt np
= nb(n - nb)(nb - 1)E[Yi t—an?—nb—leg—Ith—% A]7
t— ny— 1
[ Z le-i—lXX Z ]
i#j, t—n T=t—ny
= np((n—np)* — (0 =) ENV1 ity Xo oy 1 X7y 2 X3 1, Al
t—nb—l t—1
E[ S Vi XX: Y X;A’X]?,A}
Z#]v t—n 7'#]7 t—nyp

= np(np = D)((n = n)* = (= 1)) BV 1, Xony -1 X, o X3 X7 9, Al
The truncated expectation of Sl,nsg,n is as follows:

i E[Sl,nsg,mA] = <$ - _4> E[Yl,t—anz—nb—lﬂA]

1 1 n
+ (ﬁ — E(an +1)+ n—Z(nb + 1)) [Yl,t—ant—nb—lXtﬁ—nb—Qﬂ Al

E
1 1 n _ 5 9
+3 m - $(2nb + 1) + H(nb + 1) [Yl,t—ant—nb—lXt—nb—% A]
> 2 [Yl,t—anf—nb—lX;l—nb—% A]
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1 3
+3( = S+ 1)+ (3nb+6nb—|—2) n(nb+3nb+2)
: E[Yl,t—nbXt—nb—lel—nb—2Xt2—nb—37 A]
1 3
+3 <E — m(nb+ 1)+ (3nb +6np +2) — (nb +3nb+2)>
’ E[Yl,t—nbXz?—nb—leg—nb—2th—nb—37 A]
1 1 1
+ (1 — —(4ny + 6) + — (6nj + 18ny + 11) — —(4nj + 18nj + 22n; + 6)
n n n
n _
+n_i(n§ + 671% + 1lny + 6)) E[Yl,t—ant—nb—1th—nb—2th—nb—3th—nb—4v A]
1 ny
+ nyp <$ A > [Ylt np Xt —np— lXt 17A]
1

n
—|—37’Lb(’l’Lb — 1) <n— - nb> E[Ylt ant ny— IXt lXt 27A]

1 n
+ ny(ni — 3np + 2) <$ - nb> EY1 ity Xty 1 X1 Xi o X7 5, A

1 Ty

+ 3ny o R > E[Yy ant np— lXt 1A
1 1 ny — 4 2

+ 3ny, o ﬁ@nb +1) + H(nb + 1) ) EY1t—ny Xt—ny—1 X4, —2Xi—1, 4]
1

+ 67”Lb

N

1 ny —
(2nb + 1) + F(nb + 1)) E[YLt—nbX?—nb—leg—nb—2Xt2—17 A]

7 N\ 7 N7 N NN

n2  nd
1 3 1 2 9
+ 3ny, i —2(nb +1)+ $(3nb +6np +2) — ﬁ(nb + 3np + 2)>
E[Ylt ant ny— 1Xt np— 2Xt ny— 3Xt 17A]
1 np
-+ 3ny poc Sy s ElYy, ant np— X, Al
1 n
+ 3ny(ny — 1) <—3——b> EY1p-n, X7 ny— (X7 X7 o, Al

1 1 n -
+ 37’Lb <ﬁ — $(2nb + 1) + n_Z(nb + 1)) E[YLt_nbXt_nb—lXE_nb_QX;l_l7 A]

+3nb(nb—1)<% Lo +1) + n(nb—i—l))

' E[Yl,t—nbXt—nb—leg—nb—2th—1Xt2—27 A] :

Next we expand E'[ngS%n, Al

t—1 t—1 3
1
0880 = | 3 o] | 3 2

T:t—TLb



rt—mp—1
=i4 Z Yorp1Xr Z X2+ Z XZ]

n
LT=t—ny —-n T=t—ny
1 t—np—1 t— t—np—1 9 t—1
T ] () (8 (3 5
LT=t—ny T=t—n T=t—ny T=t—n T=t—ny
t— ny— 1 t—1 2
Y (Y Xz)]
T=t—n T=t—ny
1 t—1 t—np—1 t—np—1 t—np—1 t—1
| veax|| 3 e 3 w3 e ¥
T=t—mny T=t—n i#j, t—n 1#jF#k, t—n T=t—mny
t—1 t—1 t—np—1 t—np—1 t—1
4 2 2v2vy2 4 2y 2 2
+ Y XX Sooxiexges( Y X+ Y X)) 3 X2
Z;éjvt ny Z;éj#kvt_nb T=t—n Z#jvt_n T=t—ny
t—1 t—1 t—np—1
4 232 2
Gl Y e Y w) Y
T=t—ny 1], t—ny T=t—n
1 t—1 t—np—1 t—np—1
== YornX, > XS+ Z YormXe Y. XPX7
n T=t—ny T=t—n T=t—ny i#£j, t—n
_ t—ny—1 t—1 t—1
+ Z Yo rp1Xr Z XPXFXE+ Z Yo 1 X7+ Z Vo1 X X0
T=t—ny 1#jF#k, t—n T=t—ny i#£j, t—nyp
t—1 t—1 t—1
+ Z Y2,z'+1X{5X]2+ Z Yz,z‘+1X¢3X;1+ Z Y2,z'+1X¢X;'1X;3
7'#]7 t—mnyp 7'#]7 t—nyp Z#];élﬁ t—ny
t—1 t—1
+ Y YuaXPXIXP+ D Yo X X[XPX?
t—1 t—1 t—nb—l t—nb—l
30 VXt Y M) (Y Xt S X2
T_t_nb Z#]v t_nb T=t—n Z#]v t—n
t—1
Z Yar1 X7 + Z Vi XiXj+ ), Yo X)X]
T=t— ny Z;é]vt ny Z;éjvt ny
t—1 t—np—1
+ Y YQ,MXZ-X}X,f) 3 x?
1#£jF#k, t—ny, T=t—n
1 t—np—1 t—np—1
D SR S R SR A T
T=t—mny T=t—n T=t—ny i#j, t—n
t—1 t—np—1 t—1 t—1

+ Y YernXe Y XPXEXP4 ) VaruXT4 ) YainXiX]
T=t—np i#jFk, t—n T=t—np i, t—np
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t—1 t—1 t—1
Z Y2,z'+1)QL—)X]2 + Z Y2,i+1X¢3X;’1 + Z Y2,z'+1XiX;'1X13
i#J, t—np i#j, t—np i#£j#k, t—np
t—1 t—1
+ Y Y XPXIXE+ Y Yo XiXJXPXT
i#£j#k, t—np i£j£k#L t—np
t—np—1 t—np—1
+3 ) X} Z Yorm X243 ) X} Z Yo 41X X7
T=t—n T=t—ny T=t—n i#£j, t—np
t—np—1 t—1 t—np—1 t—1
+3 Y XX Y VornXP43 ) XPXD > Y XiX]
i#£j, t—n T=t—ny i#£j, t—n 1#£], t—ny,
t—np—1 t—np—1
+3 > X2 Z YornX2+3 > X2 Z Vo1 Xi X}
T=t—n T=t—mny T=t—n i#£j, t—nyp
t—np—1 t—np—1 t—1
+3 > X7 Z Yot XPXZ+3 > X2 > Yo XiXJX}
T=t—n 1#£], t—ny T=t—n i#£j#£k, t—ny

The truncated expectation of the eighteen terms are as follows:

t—np—1

[ Z Yo r1Xr Z ]_nb(n_nb)E[Y2,tXt—1Xt6_nb_1aA]7
T=t—ny T=t—n
t— np— 1
B| S VX, 3 xix 2, 4] = 3ny((n —np)? = (n =)
T=t—ny i#j, t—n
B Xt 1 Xy 1 X7 -2, Al
t—np—1

E[ Y YaornXe D X¢2X]2X13,A] = np((n — np)* = 3(n — np)* +2(n — ny))
T=t—n, ik, t—n

E[Y27tXt_1Xt2—nb—].Xt2—nb—2Xt2—nb—37 A]7

E| Y Y2,T+1XZ~4} = mE[Ya X[y, Al,
_T:t—TLb

El > Y2,z'+1Xz'X]6>A] = np(ny — 1) E[Yo, Xe-1X{ 5, A,
-i;éjv t—mnyp

Bl Y Vi XPX2 Al = 8ny(ny — D2 X7 XE, 4]
-i;éjv t—mny

Bl Y Ve XPX}A| = 8n(ny - DB X X, A)

i 7'#]7 t—mnyp
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t—1
El Y YQ,HlXZ-XjX,f,A} = 3ny(nj — 3np + 2) E[Yo Xo1 X/ 0 X7 5, Al
_7:7£j7£k’t_nb
ot B
El Y Yo XPX2XZ, A] = 3np(n? — 3np + 2) B[Va, X3 | X2 ,X2 4, A,
_7:7£j7£k’t_nb
i t—1
El Y Ve XiXIXPXP, A] = (nd — 603 + 11n2 — 6my)
it kAL -,
EYau Xe 1 X7 o X7 3 XP 4, Al
_ t— ny— 1
E Z Y 7'+1X Z ] = nb(n - nb)E[YQ,tth—lXtZl—nb—lﬂ A]?
CT=t—mny T=t—n
-~ t—np—1
E Z Ve XiX? Y X } = ny(n — ) (np — 1) B[Yay X 1 X2 o X1, A,
Qg t—ny T=t—n
t—np—1 t—np—1
E Z Y2,T+1X7?’) Z X?X]?a A} = np((n — ”b)2 —(n—m))

N T:t—TLb

E[Y2 tX?—lth—nb—le?—nb—Q’ A,

t—np—1

B Z VoirtXiX? Y XEXP, A = mynp = 1)((n = m)? — (n—my))

Z#]’t ny Z#]v t—n
’ E[Y2 tXt—1Xt2—2Xt2—nb—1Xt2—nb—2v A]7
-~ t—np—1
E Z Yy 7'+1X Z ] = np(n — nb)E[YQ,tth—lXtQ—nb—la AL
CT=t—mny T=t—n
B t—np—1
E Z Voirt XX} > X2 A| = nmon—m)(my — V) EYVau Xe 1 Xy X, 1, 4]
-Z#]vt ny T=t—"n
_ t— ny— 1
E Z Voirt XPX? S0 X2 A] = 2my(n —m)(my — D) EYa, XP 1 X2, X2, 1, Al
-Z#]vt Ny T=t—n
_ t— ny— 1
E Z Yo XiX2X2 S X ] = ny(n? — 3np + 2)(n — 1)
CitjAEk, t—ny T=t—n

CEYa  Xe 1 X X 3 X7

Al.

ny—19

The truncated expectation of ngSg’m is as follows:

1

_ n
° E[Sg,nS;n,A] =ny <$ — nb> ElYy; X, 1Xt np— 1, A]
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1 1 nyg = 4 2
+ 3ny ol E(an +1) + ﬁ("b +1) ) ElY2: Xe 1 Xy, 1 Xi 05 Al
1 3 1 2 T, 2 92
R e ﬁ(nb+1)+$(3nb + 6ny, + 2) — H(nb + 3np + 2)
E[YQ,tXt—1Xt2—nb—lXt2—nb—2Xt2—nb—37 A]
_ n —
_ZE[Y2,tXZ—17A] + n_i(nb - 1)E[Y2,tXt—lXt6—27A]
n = n I
+ 3n—2(nb — 1) E[Ya XD X2 5, Al + 3n—3(nb —DE[Y2, X} X}, A]
n _
+ 3n—Z(n§ — 3np + 2)E[Ya,: Xy 1 X 5 X7 5, A
n _
+ 3n—2(n§ — 3y + 2)E[Yo X7 X7 9 X7 5, Al
—(ng —6nf + 11ny — 6)E[Yo, Xt 1 X7 o X7 3 X2 4, A
1
+ 3ny <$ T A > E[Ys, tXt 1Xt np— 1, Al
1 ny
+ 3np(np — 1) e B s [Yz 1 X lXt 2Xt np— 15 Al
1 1 = 3 2 2
+ 3ny o (27% +1) "’ (nb +1) | B[Y2,: X1 Xi— -1 XG5 Al
1 Np
Bnp(ny — 1) [ = — —(2np + 1) + —2(np + 1
+ 3np(ny )<n2 n3( ny + )+n4(nb+ )>
EY2, Xe 1 X7 o X7y 1 XE 05 4]
+3nb< Z> [Ys tXt 1Xt np— 1A
L
+ 3np(np — 1) ( > (Yo, X lXt 2Xt np— 1, 4]

+ an(nb - 1) <’I’L3 nt > E[YZtth—lXE—QXtQ—nb—lv A]

1 n
+ 3ny(n? — 3ny + 2) <$ — nb> E[Ya Xy 1 X7 5 X7 3 X7 10 Al

The truncated expectation of 5477155’7” is as follows:

1

_ _ 1
. E[S47nS§’7n,A] = EE[Y%XZ_DA] + <

1)\ =
m - E) E[YZtXt—lXtG—Qv A]
1 1) - 5 12 1 _1)\& 3 x4
+3 2 ElY2 XP 1 Xi 9, Al +3 23 ElYy: Xy 1 Xy, Al

1 3 2\ -
+3 (E -+ $> ElYo, Xi 1 X{ o X2 5, A
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1 3 2
+3<———+n > EYo, XP | XP o X7 5, A

6 11 6\ =
+ (1 5 $> ElYo Xy 1 XP o X2 3 X7 4, Al

Next we expand E[S7, 53, Al:

t—np—1 21 41 2
5283 = 5 | Y”HX] > X
T=t—n T=t—n
1 -t—nb—l t—nb—l 1 [t— ny— 1
- SoYE X2+ D YiaXViaX| | Y X2+ Z X2]
| T=t—n i#j, t—n | Lr=t-n T=t—ny
1 [t —ny—1 t—np—1 1 t—np—1 t—1 5
LS e 3 s (35 ) (5 )
" _T:t—n i#j,t—n ) T=t—n T=t—mny
t— ny— 1
2 2
Yy
T=t—n T=t—ny
1 t—nb—l t—nb—l t—TLb—l t—nb—l
2 2 4 2y2
=1 SoOYZ X2+ DY Y XiYiiaX| | Y X+ Y XX
T=t—n i#j, t—n T=t—n iZ£j, t—n
t?’Lb 1
+ Z X4+ Z XPX?+2 ) X2 Z X2
T=t—ny z;éj,t ny T=t—n T=t—ny
1 t—np—1 t—np—1 t—np—1
2 6 2 2y 4 2 42
= Z YirnXe + Z Vi X3 X5 + Z Vi X5 X
t—nb—l t—TLb—l
+ Y YR XEXGXP+ ) Y XY X;
Z#]#’“ t—n 7’#]7 t—n
t—np—1 t—np—1
+ Y Y XYiaXXi+ Y Vi XY X]
Z7éj5£k7 t—n 7‘75.7’ t—n
t—np—1 t—np—1
+ Y Y XiViaX0Xi+ ) Vi XV a X XpX7
1£j#Ek, t—n 1£j#k#lL t—n
t—np—1 t—np—1
2 4 2 2y 2
+ Z Vi X? Z X7+ Z Y X7 Z X7 X
T=t—n T=t—ny T=t—n 1#£j, t—ny
t—np—1 t—1 t—np—1 t—1

+ Z Y1,i+1X:Y1 j1 X Z X} + Z Y1,i+1X:Y1 j1 X Z X} X7

Z#]v t—n T=t—nyp Z#]v t—n Z#]v t—nyp
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t—nb—l t—1 t—nb—l t—1
2 4 2 2 2y 2 2
+2 Z YirXs Z X7 +2 Z Vi Xi X Z X7
T=t—n T=t—ny i#j, t—n T=t—ny
t—np—1 t—1
+2 ) Y XViiaX; > X7
7’75.]7 t—n T:t_nb
t—TLb—l t—1
+2 ) Y XiVigaXXp ) X7
1#j#k, t—n T=t—mny

The truncated expectation of the seventeen terms are as follows:

t—np—1
E Z Y12,7'+1X76'7A} =(n— ”b)E[Yﬁt—antﬁ—nb—laA]a
S T=t—n
B t—nb—l
E Z Y12,z'+1X¢2X]27 A} =((n— ”b)2 —(n— nb))E[Yl%t—antz—nb—lel—nb—%A]v
_7:7£j’ t—n
B t—nb—l
Bl >0 YEAXIXE A = 2((n = n)? = (0= m) EYVE X 1 XE AL
_7:7£j’ t—n
o t—np—1
E Z Y12,i+1Xi2X]2XI§’ A] =((n— nb)3 —3(n— nb)2 +2(n —np))
CitjAk, t—n
: E[Yi%t—nbxf—nb—lXt2—nb—2Xt2—nb—3’ A]?
t—np—1
B[S VianXPYignXp,A] = 20— ) — (0 —m))
: E[Yi,t—ants—nb—1Y1,t—nb—1Xt—nb—27 A]7
t—nb—l
B[ Vi XV XXEA] = (- m)® — 300 —m)” +2(n — )
1#£jF#k, t—n
: E[Yi,t—ant—nb—1Y1,t—nb—1Xt—nb—2X;1_nb_37 A])
t—nb—l
E[ Y Vi XY X3, A} = 2((n —mp)* = (n —mp))
BV, X7 o1 Y11 X7y 2, Al
t—nb—l
Bl Y Vi XY X3XE A] = (0 —m)? = 3(n = ny)* + 2(n — my))
1#jF#k, t—n

. E[Yi,t—ant—nb—1Y1,t—nb—1Xt?’_nb—2Xt2— A]?

nb—37
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t—TLb—l
E[ > Vi XV XXX A
i#j#kAL t—n
= ((n—mnp)t = 6(n —np)> +11(n —np)* — 6(n —np))
’ E[Yl t_ant_”b_1Y1,t_nb_1Xt—nb—2Xt2—nb—3Xt2—nb—47 A]?
t— ny— 1
{ Z Yy T+1X2 Z ] = np(n — nb)E[le,t—anz?—nb—lX;l—h A,
T=t—m T=t—ny
t—np—1
{ Z Y17+1X2 Z XX ] =np(ny — 1)(n — np)
T=t—n Z#]’t ny
: E[Y12t—ant2—nb—1Xt2—1th—2’ A]a
t—np—1
B[ Y Vi XiVigaX Z 1A] =ny((n = m)? = (n =)
i#£j, t—n T=t—ny

I 4
. E[YI t—ant—nb—1Y1,t—nb—1Xt—nb—2Xt—1) A]?
t— np— 1

B[ Y VienXdigaX; S xix 2 A] = mony = (0 = 1) = (n = my))
i#j, t—n i#j, t—np

Bty Xt—ny 1 Y14y 1 Xty 2 XP 1 XP o, Al

tTLbl

{ Z Y17+1X4 Z ]_nb(n_nb)E[le,t—anzl—nb—lth—hA]7
T=t—m T=t—ny
t—np—1
[ > VXX Z }—nb((n_nb)Q_(n_nb))
i#j, t—n T=t—np
E[Yl2t—ant2—nb—1Xt2—nb—2Xt2—17 A]7
t—np—1
B[ Y Vi XX, S x 2,A] = 2np((n—np)? = (n —my))
i#£j, t—n T=t—ny
EY1 0, Xi 1 Y11 Xt ny—2 X7, Al
t—nb—l t—1
E{ Z V91 XiY1 j 1 X X7 Z XE,A}
1#£jF#k, t—n T=t—ny

— ny((n = ) = 3(n — m)? + 2(n — ny))

: E[Yi,t—ant—nb—1Y1,t—nb—1Xt—nb—2Xt2_ Xt2—]_) A]

ny—3
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The truncated expectation of SinS%n is as follows:

_ 1 _
o BIS2uSh0Al = (g 2 ) BV X 1o

A
1 1 _
# (2~ a4 )+ 2l + 1)) BV, Xy 1 Xy a0d
1 ]. nb _
+2 <m - $(2nb + 1) + ﬁ(nb + 1)> E[Ylgt—nbxf—nb—lXtQ—nb—% A]
1 3
+ ﬁ_ﬁ(nb—i_l) (3nb+6nb+2) > (nb+3nb+2)
: E[Y12t—nbXt2—nb—1Xt2—nb—2Xt2—nb—37 A]
1 _
+2 (n 32y +1) + 5 ™ (g, + 1)> E[Y1,t-ny X7y~ 1 Y1 -y —1 Xt—ny—2, A]
1 3
(- Sm++ (3nb—|—6nb+2) = (nb+3nb+2)
E[Ylyt—ant—nb—1Y17t—nb—1Xt_nb_2Xt4—nb—3’ A]

1 ]. Ny _
+2 <— - ﬁ(%b +1) + g(nb + 1)> E[Yl,t—anf—n,,—1Y1,t—nb—1Xf’—n,,—27A]

n2
A 1 3 1

-E [Yl,t—nbXt—nb—1Y1,t—nb—1Xf’-n,,-2Xt2_ Al

nb—37

1 1 1
+ (1 — —(4np + 6) + — (6nj + 18ny, + 11) — —(4nj + 18n] + 22n, + 6)
n n n
3 2
+H(nb + 6nj + 11np + 6))

n 2 2
“EY1 1, Xt—ny—1Y1 40,1 Xt—n,—2Xi 3 XG4 Al

1 _
+np <$ nA > E[Ylt antQ—nb—lX;l—lv A]

1 np

+ny(ny — 1) <n3 >E[Y1t ant np— lXt lXt 2, A

n4

1 1 ny

2+ Py 41
+ ny <n2 n3( ny+ 1)+ n4(nb+ )>

E[Yl t—’nbXt—nb—1Y1,t—nb—1Xt—nb—2X;l—17 A]
1
-1 2 1 1

+ np(ny )<n2 —(2np +1) + - (nb—i- )>
E[Yl,t—nbXt—nb—1Y1,t—nb—1Xt—nb—2th_1Xt2_27 A]

1 Ny —
+ 2ny, (ﬁ - —> E[Ylt ant ny— X7, A
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1 1 np Bry2 X2 X2 X2 . A
+ 2ny 7z 5(2% +1) + H(”b + 1) ) EIY oy Xiony -1 Xi—ny—2Xi—1, 4]
(== @m0+ P+ 1)
ny | — — —=(2n —\n
b2 = e nA\th
E[Yl teny Xi oy 1 Y1, t—nb_lXt_nb_2Xt2—l’ Al
1 3
+ 2ny (E - ﬁ(nb +1) + (3“b +6np +2) — o (”b + 3np + 2)>

E[Yl,t—nbXt—nb—1Yl,t—nb—lXt—nb—2Xt2—nb—3Xt2—17 A] .

Next we expand E[S3, 55, Al:

t—1 2
St = L] S YX] S x:
T=t—ny T=t—n
1 [ -1 t—1 1 rt—ny—1
:wz@m+2mmmszmzﬂ
_T:t—nb 1#£j, t—ny ] T=t—n T=t—ny
1 [ -1 t—1 11 t—np—1 ) t—1 N
2 2 2 2
=7 Y YE X2+ ) YoinXiYaiaX; ( > XT) +< > XT)
| 7=t 1#j, t—ny | L T=t-n T=t—ny
t—np—1
EHIED W
T=t—n T=t—ny
1 t—1 t—1 t—np—1 t—np—1
= Z Y3 X2+ Z Y21 XiY2 j11X; Z X} + Z X7X?
T=t—ny i#j’t_nb T=t—n Z’#jvt_n
t—1 t— ny— 1
4 2 2 2 2
+ZXT+ZXX+2ZXZX
T=t—ny 1#j, t—nyp T=t—n T=t—ny
1 t— ny— 1 t— np— 1
2 4 2 2 2
= Y2T+1X > OXi+ Z Vi o X2 Y XX
T=t—ny T=t—n T=t—mny i#j, t—n
t—1 t—np—1 t—1 t—np—1
+ Y YVuaXYainX; Y XE+ DY Yo XiYonX; Y XPX]
175.]7 t—ny T=t—n 7‘75.7’ t—ny 175.]7 t—n
t—1 t—1 t—1
2 6 2 2 4 2 442
+ Z Yo X7 + Z Yo i Xi X5 + Z Y i1 Xi Xj
T=t—ny 1#£j, t—ny, 1#£7, t—nyp
t—1 t—1

+ Z Yo XPXFX} + Z Yo,i11X, Y2 41X
i#£j#k, t—np i, t—ny
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t—1 t—1
+ Y VXY X X+ Y Yo XY X)
i#jk, t—mp i, t—ny
t—1 t—1
+ Z Yz,i+1XiY2,j+1X§’X;§+ Z Yoi41XiYa j 1 X; XP X}
i?'fj#k t—nyp i?’fj#k#l t—nyp
t— ny— 1 t— ny— 1
+2 Z Vi X Y X242 Z Y XPX7 Y X2
T=t—ny T=t—n i#j, t—nyp T=t—n
t—1 t—np—1
+2 Z Vo1 X} Y2 501X Z X2
Z#]v t_nb T=t—n
t—1 t—nb—l
+2 ) VXY XpXP ) X7
i ik, t—mp T=t—n

The truncated expectation of the seventeen terms are as follows:

t— ny— 1
|: Z }67+1X Z } - le(n - nb)E[Y22,t—ant2—nb—lX;1—17A]a
T=t—ny T=t—n
t—np—1
E| Z YZa X2 Y XEXEA| = nyl(n—m)? — (n—my))
T=t—ny i#£j, t—n
E[YQQtXE—lXtQ—TLb—IXtQ—TLb—27 A]7
t—np—1
[ Z Y211 XiYo j 11X Z } = np(ny — 1)(n —np)
Z;é]vt np T=t—n
E[YQ,tXt—l}/é,t—lXt—QXt[l—nb—l7A]7
t—1 t—np—1
E[ Y Yo XiYo X, Y XPXG A} = np(np — 1)((n — np)* — (n — 1))
Z#]v t—nyp Z#]v t—n

EYa  Xe 1Yoy 1Xe o X7 o, 1 X7 0, 2, Al

E Z }3%7+1X£7 A] = nbE[Y22,th?—17 A]7

S T=t—ny

E Z Y22,i+1Xi2X]27 A] = ”b(”b - 1)E[Y2%tXf_1Xf_2, A],
_Z'#jv t—mnyp

t-1 B

E Z Y22,i+1X;1X927A] = 2”b("b - 1)E[Y22,tX;1—lXt2—27A]v
_Z'#jv t—mnyp
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-1
E Z Y22,z'+1Xz‘2X]2Xi§a A} = (”2 - 3”3 + 2“b)E[Y22,tXt2—1Xt2—2Xt2—3a Al
_Z;£]7ék7 t—ny
-1
El Y Y2,i+1Xz'5Y2,j+1Xj7A] = 2np(np — 1) E[Y2, X} Yoy 1Xi9, A,
_Z'#jv t—mnyp
t-1
El Y Yo XiVonX;XL A} = (nd — 302 + 2np)
_Z;£]7ék7 t—nyp
EYo,; Xt 1Yo 1 X 2 X} 5, A
-1
E[ > Y2,z‘+1X?Y2,j+1X§’,A] = 2np(np — DE[Y2, X1 Va1 X7, A,
Z#]v t—nyp
t-1
E[ 3 YZZ-HXZ-YQJHX;’X,f,A} = 4(nd — 3n2 + 2mp)
ik, t—n

EYo; X 1Yo 1 X} o X7 5, Al
t—1
E[ Y Yo XiYa X XPXP, A} = (nd — 6 — nd + 11n2 — 6ny)
itk t-m,
B[Yau Xi1Yoy-1 X2 XP 5 X7 4, A],

t—np—1

|: Z }67+1X4 Z } = nb(n_nb)E[Y22,tX;l—let2—nb—17A]v
T=t—ny T=t—n

t—np—1
[ Z Yo XPX: Y X } = np(np — 1)(n —nyp)
Z;é]vt np T=t—n

B[V, XA XP 5 XE 1, Al

t—np—1

[ Z YoinXiYo,nX; Y X } = 2ny(ny — 1)(n — np)
Z;é]7t np T=t—n

E[Y27tX?_1}/2,t—1Xt—2Xt2—nb—17 A]?
—1 t—np—1

E{ Y Ve XiYain X X7 Y XE’A] = (n —mp)(nj — 3nj + 2ny)
1£j#Ek, t—ny T=t—n

EYou X-1Yo 1 Xt 2 X7 3 X7 01, Al

The truncated expectation of SinS%n is as follows:

— 1 Ny
i E[Sg,n‘sg,mA] =Ny <’I’L3 >E[Y2t ant ny— 1Xt I’A]

n4
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1 1 ’I’Lb —
+ <ﬁ = —5 (2 + 1) + 3 (m + 1)> Bl XE 1 X7y 1 Xty 20 4]

1 n _
+np(np — 1) <$ — n—Z) E[Y2,tXt—1Y2,t—1Xt—2X;1—nb—17A]

1 1 n

. E[Y2,tXt—1Y2,t—lXt—2Xt2_nb_1Xt2_nb—27 Al
ny — Ny —
+ HE[Y;,tXtG—la Al + H("b - 1)E[Y22,tXt2—lX;1—27A]

n = n _
+ 2 (my — DEYZ X1 XP o, A+ (] — 3my + 2) BIYE,XP 1 X7 5 X7 5, 4]

n _
+ 2n_Z(”b - 1)E[Y2,tXf—1Y2,t—1Xt—27 A]

n —
+ n—b(ng —3np + 2)E[Yo,; Xy—1Yo 11 Xi—2 X/ 5, A

4
n _
220 (ny = VY2 X7y Va1 XDy, A]

n _
+ 4;2(”5 —3np + 2)E[Y2,tXt—1Y2,t—1Xt3_2Xt2_3, Al

n —
+ n—Z(n‘Z’ —6n2 + 11ny — 6)E[Yo, Xy 1Yoy 1 X1 2 X2 3 X7 4, A

1 TNy —
+ 2ny (ﬁ - ﬁ) EY$ X X7, 1, Al

1 ny —
+ 2ny(np — 1) <$ - ﬁ) E[Y22,tXt2—1Xt2—2Xt2—nb—1’A]

1 n _
+ dny(ny — 1) <$ - n—i> EYo X} Yoy 1 X 2 X7 5,1, A
1 n _
+ 2ny(n? — 3ny + 2) <$ — n—Z) E[Yo  Xi1Ya 11 X2 X7 5 X7, 1. Al

The truncated expectation of SinSin is as follows:

11
n  nd

1 1 _ 1 3 2 _
+2 <§ - ﬁ) E[Y22,tX;1—1Xt2—27A] + <E 2 + ﬁ) E[Y22,tXt2—1Xt2—2Xt2—37 Al

_ 1 _ _
o BIStuSh0 Al = EWRXE 1 A+ (o - ) BDZXE XA

1 1\ =
+2 <ﬁ B ﬁ) E[Y2: X} 1Yo 1Xi2, A]

2\ _
+ <— -+ EY2, X 1Yo 1 X2 X} 5, Al

n
> E[Y2, XP Yo, 1 X7 5, Al
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1 3 2\ = 3 y2
+4(=— St ElY2 X 1Ya 11Xy o X 5, A

6 11 6 =
+ <1 5 $> ElYo Xi 1Yo 1 Xy 2 X7 X2 4, Al

Next we expand E[SLHS%”S&”, Al:

t—np—1 t—1 2 ¢
S = L 3 Viras [z XE] S VX,

T=t—n T=t—n T=t—ny

t—np—1 [t—mp—1
Y VX Z YoriXe | D X2+ Z X?]

T=t—n T=t—ny LT=t—n T=t—ny
t—np—1 t—1 [ t—mp—1 t—1
1 2 2 2
:ﬁ Z Y1,7+1X7' Z B,T+1XT ( X7-> +( X7—>
T=t—n T=t—"ny L 7=t—n T=t—ny
t—np—1
23 ey X
T=t—n T=t—ny
t—nb—l t—1 t— ny— 1 t— ny— 1
_ L Vi X Vo1 X X+ X7X3 + X}
—n4 1,7+1AT 2,74+1AT
T=t—n T=t—mny T=t—n i#j,t—n T=t—mny
t—np—1
+ Z Xx2+2 Y x? Z x2|
z;éjt ny T=t—n T=t—ny
1 t—np—1 t—1 t—np—1
= S VX 3 VeaXit Y YXe 30 Viaxxd
T=t—ny T=t—n T=t—ny i#£jt—n
t—1 t—np—1 t—1 t—np—1
3 v2 2y 2
+ Z Yo rp1Xr Z Y1, X X5 + Z Yo p1X7 Z Y1, Xa X5 X
T:t_nb Z#]vt_n T:t_nb Z#]vt_n
t—nb—l t—1 t—nb—l t—1
5 4
Z Y111 X7 Z Yo 1 X7+ Z Y1, 1X7 Z Y2,i+1X: X
T=t—n T=t—ny T=t—n i#£j,t—ny
t—nb—l t—1 t—nb—l t—1
3 v2 2y 2
+ Z Y141 X7 Z Y21 X7 X5 + Z Y111 X5 Z Y21 Xi X5 X},
T=t—n i#j t—nyp T=l—n i#j#kt—ny
t—nb—l t—1 t—nb—l t—1
3 3 3 2
+2 Z Y141 X7 Z Yo 1 Xy +2 Z Y141 X7 Z Y51 Xi X
T=t—n T=t—ny T=t—n 1#£j,t—nyp
t—np—1 t—1 t—np—1 t—1

+2 Z Vi1 X X5 Z Yor41X7 +2 Z Vi X X7 Z Yoir1 XiX;
i#£jt—n T=t—ny i#jt—n #t=my
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The truncated expectation of the twelve terms are as follows:

t—1
E{ Z Y2,7’+1X7'

T=t—ny

t—1

Z Y2,T+1XT

T:t—nb

|

t—1
E{ Z Y2,T+1XT

T:t—TLb

t—1
Z Y2,7’+1X7'

T=t—ny

|

t—TLb—l

Z Y1,7+1X7'

T=t—n

|

t—np—1

Z Yl,T+1XT

T=t—n

|

t—np—1

Z Yl,T+1XT

T=t—mn

2|

t—np—1

E{ Z Y111 X5

T=t—n

t—nb—l

Z Vi1 X2

T=t—n

|

t—np—1

Z Vi1 X2

T=t—n

2|

t—nb— 1

> Vi X3| = moln — ) EVa i Xe 1 Yigon, X7, 1, AL

T=t—n

t—np—1
Z Yl,i+1XiX;'1:| =np((n —np)* — (0 — np))
i#jt—n
B[V, X1 Vipny Xe—ny—1 X{ o, 0, Al
t—np—1
> Vi XPXE| = 2my((n = o) = (n = my))
i#£jt—n
: E[Y2,tXt—1Y1,t—anz€3—nb—1Xt2—nb—27 Al
t—nmp—1
> Vi XiX2XE] = mal(n = np)* = 3(n = m)? + 2(n — )
i#jt—n

: E[YZtXt—lYl,t—ant—nb—leg—nb—2Xt2—nb—3v A]?
t—1
> Y2,7+1X§} = np(n — 1) E[Y1 1y Xty —1Y2: X[ 1, Al

T=t—ny

-1
> Y2,¢+1X¢Xﬂ = np(np — 1)(n — np)
i#jvt_nb
Bty Xieny—1Yo: X1 X o, Al
-1
> Y2,z‘+1X§X]2] = 2np(np — 1)(n — mp)
Z’#jvt_nb

B4y Xi—ny—1Y2: Xp 1 X7 o, Al

t—1
Z Yz,z’+1XiX]2X13] = ny(nj — 3np + 2)(n — np)
Z#];Aki_nb
B9ty Xtony1Y2 X 1 X7 0 X7 5, Al

t—1

> Y2,T+1X§} = np(n — ) BY1 4, Xib 1 Y20 X701, Al
T=t—ny

-1

Z Y2,z'+1Xz‘Xﬂ = ny(ny — 1)(n —ny)

i#jvt_nb

E[Y1 e, X{ oy 1Yo Xe1 X7 o, Al
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t—nb—l t—1
B[ 3 Vi XiX? > YornXE] =m((n—np)? — (n—m))
i#j,t—n T=t—ny
E[Ylt ant ny— 1Xt np— 2Y2tXt 17‘4]7
t—nb—l t—1
B > Vi XiX? Y YaunXiXZ| =myny — 1)((n = m)? — (n—ny))
i#jt—n i#j =y

Bty Xtny 1 Xy 2 V2, X1 X7 5, Al

The truncated expectation of 517115227”53,” is as follows:

_ 1 n
¢ 11830 Al = (i~ ) BV X1 Yign, Xy 1A

n3
1 1 ngy = 4
+ ny m — $(2nb + 1) + ﬁ(nb + 1) E[Y2,tXt—1}/i,t—ant—”b—1Xt—ﬂb—2’ A]
1 1 n 7
+ 2ny <ﬁ - E(an +1) + n_i(nb + 1)> E[Yz,tXt—1Y1,t—ant3—nb—1Xt2—nb—2’ Al
1 3 1 Np
+ <E = 5 + 1)+ — (30 + 6mp +2) = 2 (nf + 3ny + 2)>
EYo Xt 1Y -y Xt—ny—1 X2y 0 X7 p—3+ A]
1 n _
+my, <_3 - _Z> V1t Xy 1 Y20 X7, A]
n n
1 n
i nb> E[YM nyXt—np—1Y2,4 X4 1Xt 9, 4]

3
1 nb
+ 2np(np — 1) i EY1 -y Xt—ny— 1Y2tXt 1 X7 o, Al

1 n
T ny(n? — 3ny +2) <$ n”) Y1ty Xty 1Yo Xo 1 X2y X2, A]

1 n
20 (5 = 20 BV X, YarXE A

1 np

2 1) | —
+ nb(nb )<’I’L3

n4> EY14on, X}y 1YouXe 1 X7 5, A

1 _
+ 2ny, <§ —(2np +1) + (nb + 1)> EY1 oy Xtny—1X7 22, X)) 1, Al
+ oyl — 1) = — L 2n +1)+nb(n +1)
np(ny — — — — —
b(7 7~ 52 3l

E[Y14—ny Xt—ny—1 X7y 2 Y2u Xt 1 X7 o, Al
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The expanded expressions for powers and products of the statistics S1,,, S2,,, and S3,
given above are used to expand truncated central moments of first and second order. We

expand E'[(Sl,n —win), Al

E[(S1,n—w1,n), A] = E[S1,n, A] = Elwin, 4]
n _
= (1 — gb) E[Yl,t—ant—nb—l,A] — wLnP(X € A)
The truncated expectation of (S1, —wi,y) is as follows:
o E[(Sin—win) Al = [E[Yl,t—ant—nb—laA] — EY1 4, Xi—n,—1]P(X1 € A)}

+ 22| By Xemny 1 |P(X1 € A) = B[Yi4mn, Ximn,1,4].
Next, we expand E[(S2,, — wa), A]:
o E[(Son —wn), Al = E[X? |, A] —waP(X; € A).
Next, we expand E[(S3, — ws), A:
E[(Ss.0 — w3)s Al =E [S3.0, A] = Elwsn, A] = “L B[V X1, A] - w30 P(Xi € A).
The truncated expectation of (S3, —ws ) is as follows:

_ n
o E[(S3n—wsn) Al = —

)

Z E[YZtXt—la A] — E[YZtXt—l]P(Xl S A) .
The truncated expectation of (S4, — wy) is as follows:
° E[(S47n — w4), A] = E[Y2,tXt—l7 A] — E[YQJXt_l]P(Xl S A)

Next, we expand E[(S1., — w1.5)(S2n — wa), Al:

E[(Sl,n_wl,n)(SQ,n - w2)7 A] = E[Sl,ns2,n7 A] - wl,nE[SQ,na A] - W2E[S1,na A]

+ UJl,n(JJQP(Xl S A)
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1 nb = 3
=\ -~ E[Yl,t—ant—nb—lﬂ A]
1 np = 2
+ 11— 5(271{, + 1) + ﬁ(nb + ].) E[Yl,t—ant—nb—lXt—nb—27 A]
+ np <n - _2> E[Yl,t—ant—nb—IXtQ—l,A] - wl,nE[XtQ—l’A]

1- —) EYi4ny Xi-my1, A] + w1 pws P(X € A).
The truncated expectation of (51, — win)(S2,n — w2) is as follows:

L4 E[(Sl,n_wl,n)(SZn - w2)7 A] = {E[Yl,t—ant—antz_nb_% A]
- E[Yl,t—ant—nb—l]E[ng—lv A] - WQE[YLt—ant—nb—l’ A]

W B[V 4y Xt—my—1] P(X € A)}
1
n

+ nbE [Yl,t—nb Xt—nb— 1 Xt2—1 ) A]

+ E[Yl,t—antg—nb—l? A] - (2nb + 1)E[Yl,t—ant—nb—lXE—nb—% A]
+ nbE[Yl,t—nb Xt—nb—l]El:XE—l7 A] + w2nbE[Yl,t—’nb Xt—nb—h A]
— nywa B[Vi 4y Xty 1] P(X € A)]
n — _
+n_g |:(nb + 1)E[Y1,t—ant—1’Lb—lXtQ—nb—27 A] - nbE[Yl,t—TLbXt—TLb—IXtQ—]_) A]

— BYi4n, X1, A
Next, we expand E[(Sa., — wa)(S3.n — w3.n), A:

E[(S9.n—w2)(S3.n — w3n), Al = E[S9.,.S3 1, A] — waE[S3.n, A] — w3 n E[S2.0, A]

+ Wng,nP(X S A)

ny = n L
=SB, Xy A+ 5y~ DEY Xia X7, A]
n = ™ g
n n_g(n _ nb)E[Yz,tXt—Ith—nb—l’ Al — wo nbE[YQ,tXt—la A|

— W3,nE[Xt2_1, A] + WQ(JJ?,’”P(X € A)

The truncated expectation of (S2, — w2)(S3,, — w3 ,) is as follows:

_ ny - _
o E[(Son—w2)(S3n —w3n), Al = —° |:E[Y2,tXt—1Xt2_27 Al —woE[Y2 1 X1, Al

n
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— E[Y: X 1]E[X2 |, Al + wo E[Ya; Xy_1]P(X € A)]

n _ _ _
+ n—;’ [E[Yg,txf_l,A] + (ny — V) E[Y2, X4 1 X7 o, Al — mpE[Y2, Xe 1 X7, 1, Al
The truncated expectation of (S2, — w2)(Ss,, —ws) is as follows:

o E[(So, —w2)(San —wa), Al = [E[Y2,tXt—1Xt2_2a Al — woE[Y21 Xt 1, A
— E[Yo: X 1]E[X? 1, Al + w2 E[Y2, X, 1]P(X € A)
— B[Ya Xy 1 X2 1, A + E[Ya Xy 1 X7, A]}

17= _
+o [E[Yg,txf_l, A — E[Ya X 1 X2, A]} .
Next, we expand E[(S1, — w1.4)(S3.n — w3n), A:

E[(S1n—w1n)(S5n —wsn), Al = E[S1,.S51, A] — w1 E[Ss31, A] — w3 n E[S1 1, A]
+ wl,nw;),,nP(X S A)

="y <— - —> EYytn, Xt—n,—1Y2: Xe—1, A] — wal,nE[YZtXt—l,A]

n
- (1 - gb) W3 E[Y1 4y Xi—ny—1, A] + w1 nws o P(X € A).

The truncated expectation of (S1, —wi,n)(S3, — wsy) is as follows:

_ nn T —
L4 E[(Sl,n_wl,n)(s&n - w3,n)7A] = gb E[Yl,t—ant—nb—lYé,tXt—hA]

— EY1t—ny Xt—ny—1)E[Y2, X1, A] — E[Y24 X4 1) E[Y1 1—ny Xt—ny—1, A]
+ E[Yi gy Xtomy 1) E[Yau Xi 1] P(X € A)}

+Z—§ — EY1t-ny Xt—ny-1Y2: X1, Al + E[Y1 4y Xt—ny—1]E[Yo: Xi—1, A
+ EY2,: X4 1] E[Y1 t—ny Xt—ny—1, 4]

— B[Yi4ony Xt—ny1]E[Yo Xi—1]P(X € A)]
Next, we expand E[(S1, — w1,)?, Al:

E[(S1n—win)? Al = E[S],,, A] — 201 o E[S1 0, A] + w0, P(X € A)



458

1 Ny \ =2 2
N <E B m) E[Yl,t—ant—”b_l’A]

1 n _
+ (1 ——(2np+1) + n—;’(nb + 1)> E Y1ty Xt—ny—1Y1t—ny—1Xt—ny—2, 4]

n
n _
— 2w, (1 _ f) E[Y1 sy Xiny—1, A + w2, P(X € A).

The truncated expectation of (S, — wl,n)2 is as follows:

o E[(Sin—win)? Al = [E Vit Xty 1 Yty 1 Xty 2, A]
—2B[Y1 4y Xty | E[Y1t -y Xt—ny—1, Al + E?[Y1 4y Xy, | P(X € A)
+% [E[Yl%t_nbxf_nb_l, Al = 20y + DE [V 4oy Xt—np—1Y1 41 Xt—ny—2, Al
+ Anp E[Y1 4y Xt—ny—1] E[Y1 t—ny Xt—ny—1, A]
— 2y B2 Vi 4y Xty 1] P(X € A)}

n — _
2 [+ DB Yatmm X1 Vaimy 1 X2, A] = B[V, X7

t—np—1»

A]

- 2nbE[Y1,t—nb Xt—nb— I]E[Yl,t—nb Xt—nb— 15 A]

1 E2[Y1 gy Xi—ny 1] P(X € A)].
Next, we expand E[(Sa, — w2)?, Al:

E[(San—w2)?, A] = E[S3 ., A] — 2w3 E[S2 5, A] + w3 P(X € A)

1 - 1\ = _
LB A+ (1= 1) BIXZ X2 50 4] - 260 BIXE 1 Al + w3 P(X € 4).
The truncated expectation of (S, — wy)? is as follows:

o El(Son—w2)?, A] = |EIXE, XPp, A] - 25 EIXEy, A] + w3P(X € A)

11 _
+ = |BIX{, A - BIXE, XP . 4]
Next, we expand E[(S3, — w3 )2, Al:

E[(S3 — wsn)®, Al =E[S3,,, A] — 2w3 , E[S3 0, A] + w3, P(X € A)

2
Ny = n Ny
:ﬁE [V, X7 1, Al + (n—g — m) EY2;: Xi 1Yo 1Xi—9, A
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—2w3p E[Y2 1 Xi-1, Al + w3, P(X € A).
The truncated expectation of (53, — (,U37n)2 is as follows:

o E[(S30—wsn) Al =
n _
o |:E [YQ tXt2 15 A] + (nb — 1)E [YZtXt_lYQ,t_lXt_Q, A]

— 20, E[Y2,, Xy 1) E[Yo, Xy—1, Al + np E*[Y2, X, 1]P(X € A)|.
The truncated expectation of (S4, — wyq)? is as follows:

o E[(Sin—wi)? Al = [E Yo Xe 1Yo 1Xi0, Al — 2E[Y2,; Xy 1|E[Y2,X;—1, Al
+ E[Yo, X 1]P(X € A)

1 _ _
[E[thxf_l, Al — E[Ya, Xs-1Yas 1 X120, A]].
Next, we expand E[(S1, — wi,)(S2n — wo)?, Al:

E[(S1,n—w1,0)(S2 — w2)?, Al = E[S1,55 ., A] — w10 E[S3 ., A] — 203 E[S1 20, A]

+ 2w17nw2E[Sg,n, Al + w%E[SLn,A] — wlvnwgP(X €A
1 ny
(2~ %) EVarn XE 1.4

1 1 1
+ <— - m@nb +1) + Enb(nb + 1)) [Yl,t—ant—nb—1Xf_nb_2,A]

E
11 1 , )
+2( == 5@ +1)+ Zn(ng +1) ) E[Y1-0, X, 1 X5y 2, Al
n n n

) —

3
+ <1—E(nb+1) —(2+ 6ny + 3n} §(2+3nb+n2)>

: E[Yl,t—nbXt—nb—leg—nb—2Xt2—nb—37 A]

1 n —
+ ny <ﬁ B n_g> E[Yl,t—ant—"b—le—l’ Al

1 n _
+ ny(ny — 1) (n— - n—é) Bty Xtny1 X7 1 X9, A

2
1 ny
+ 2ny 273 B o, X7 np— XE 1L A
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1 1 1 _
+ 2ny (H — ﬁ(2nb +1) + Enb(nb + 1)) EY1t—ny Xt—ny—1 X7, 2 X7 1, 4]

Wln = 1 _
Gl A, (1 - —) EIX2 X7, 4]
n n
]. nb — 3
— 2&)2 <E — m) E[Yl,t_ant—TLb—].’ A]

1 n _
— 2wo <1 — 5(2% +1)+ n—;’(nb + 1)> E[Yt_ant_nb_le_nb_z, A

1 n _ _
— 2w2nb <E — n—g) E[Yl,t—ant—nb—lXE—lﬂ A] + 2w17nw2E[Xt2_l, A]

+ 03 (1= 22) BlYi o Xtony-1, Al — 0103 P(X € A).
The truncated expectation of (51, —win)(S2,n — wy)? is as follows:

o Bl(Stn—win)(Son —w2)% Al = | BVt Xiony ot Xy o XP 5, A]
— E[Y4—ny Xt—ny 1| E[X7 1 X7 0, A] = 202 E[Y1 4y Xy -1 X7y 05 Al
+ 209 B[V 4y Xty 1| E[ X1, A] + W3 E[Y1 4y Xt—ny—1, 4]
— WBE[V1 4y Xt—my—1]P(X € A)]
—1—% E[Yl’t_ant_nb_lX;l_nb_27 Al + QE[Yi,t—an?—nb—lXE—nb—2’ A
—3(np + 1)E[Y1,t—ant—nb—lXt2—nb—2Xt2—nb—37 Al
+ 20 E[Y1 iy Xty <1 X7y 0 X7 1, Al = E[Y1 4, Xty 1] E[X] 1, A]

+ (np+ DENY1 -0y Xty 1| E[X7 1 X7 5, A] = 200 E[Y1 4y X7

t—np—1»

Al
+2(2np 4+ Vw2 E[Yi—p, Xt—ny—1 X7, 0, Al
— 20onp E[Y1 41y Xt—ny—1X7 1, A] — 20pwo E[Y1 4y Xt—ny—1]E[XP 1, A
— w3 B[V 4—ny Xt—ny—1, Al + w3 E[Y1 4y Xi—ny—1]P(X € A)

+% [BVisn XE 10 A] — @0+ DELYi gy Xy 1 X, o Al
—2(2ny + D EY1 -0, Xiy 1 X7y 20 Al
+ (24 6np + 3”%)E[Yl,t—ant—nb—lth—nb—2Xt2—nb—3’ A]
+ M E[Y1 4y Xty 1 X715 Al + np(np — D E[Yipy Xty 1 X7 1 X7 o, A

+ 20y E[Y1 4y X7

t—mp—

1Xt2—1’ A]

—2n(2n + D EY1 1, Xtny—1 X7y 2 X7 1, Al
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+ Y1ty Xty 1| E[X 1 Al = mp E[Y1 4y Xy 1] E[X7 1 X7 5, Al

+ 2an2E[Y1,t—nb X3

Doy 10 Al = 2np(ny + D E[Yy 0, Xy oy 1 X7 A]

np—27
+ 20203 (Vi 4y Xpmy 1 X2 1, A]]

+% [ —mpEY1 10y XP -1 Al + (0 + DEYL 0, Xi oy 1 X( o, Al
+ 2ny(ny + D) E[Y1 -0, Xi oy 1 X7y 20 Al
— np(ng + 34 + 2) E[Y1 4y Xo—ny—1 X¢ iy 2 X1y 3, Al
—NEEV 4y Xty -1 X115 Al + 1p (np — DEYi—py Xy 1 X7 1 X7 0, Al

- 2”2E[Yl7t—an3

t—np—1

Xt2—17 A]

+ 205 (1 + D) EY1 -y Xty 1 Xy o X715 Al
Next, we expand E[(S3, — ws.5)(S2.n — wa)?, Al:

E[(ng — w;),,n)(ng — (,UQ)Q, A] = E[Sg7nsg7n, A] - wng[Sin, A] — 2&)2E[527n537n7 A]

+ 2&)2&)3771.@[52’”, A] + w%E[S&n, A] - w%wg,nP(X € A)

ny = n E
:n_gE[Yz,tXf_b Al + n_g(nb ~ DE[Y2, X;-1X] 5, A]

n

n — _
+ 2n—§(nb — DEY2, X7 1 X7 o, Al + n—é(n% — 3y + 2)E[Yo, Xe 1 X7 9 X7 3, Al

1 ny\ =
+ ny <ﬁ - m) E[Y2,tXt—lX;1—’nb—17A]

A]

nb—27

1 1 1 =
+ ny <E - ﬁ@nb +1) + ﬁnb(nb + 1)) E[Y27tXt—1Xt2—nb—1Xt2—

1 n _
+ 2ny, <—2 - —§> E[Y2,tX?—1th—nb—lv Al
n n
1 n\ = 2 2
+ 2np(ngy — 1) e ElYo Xe 1 Xi o Xi p, 1, A
1 - 4 1 n 2 2
- w3,nEE[Xt—17 A] —(1- n W3,nE[Xt—1Xt—2a A]
ny = n _
E 2w2n—gE[Y2,tXf’_1, Al - 2n—;’(nb — Dwr E[Y2, Xy 1 X7 5, A
n _ _
_ Qn_g(n — nb)WQE[YQ,tXt—lXE—nb—la A] + 2&)2w37nE[Xt2_1, A]

+ %wgﬁ[yg,txt_l, A] — wlws o P(X € A).
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2

The truncated expectation of (53, —wsy)(S2,, — w2)” is as follows:

_ ny =
o E[(S3n—wsn)(Som —wa)?, Al = gb EYau Xy 1 X7y 1 X7 2 A

— E[Y2, X4 1]E[XP | X7 o, Al = 200 E[Y2 Xy 1 X[, 1, Al
+ 2wy B[Yo 1 Xy 1] E[X? 1, A] + WiE Y2, Xt 1, A] — wiE[Y2,; X 1]P(X € A)

1 _ _
+— [nbE[Yz,tXt_1Xf‘_nb_1, Al = np(2np + DEY2, Xe 1 X7, XP 90 Al

+ 2y E[Yo, X} | X2 Al 4 2ny(ny — V) E[Yo, Xy 1 X7 o X7 A

ny—1»

— mp B[Ya X 1] BIX(Ly, Al + mpE[Yo Xo 1 |E[X7 X7 5, Al

ny—19

_ ansz[Yg,tXf’_l, A] = 2np(ny — 1)W2E[Y2,tXt—1Xt2_2, Al
+ 2002 E[Ya X1 X2, 15 Al

—l—% [nbE[YQ,tXE_l, Al + np(ny — 1)E_[Y2,tXt_1Xf_2, A]
+ 2np(np = 1)E[Y2’tX?_1Xt2—2’ Al + nb(nz —3ny + 2)E[Y2,tXt—1Xt2—2Xt2—37 A
N an[YZtXt—le—nb—b Al +n2(ny + 1)E[Y2thf—1Xt2—nb—1Xt2_nb_2, Al
— 203 E[Y2, X7 1 X}

Al - 2n§(nb — 1)E[Y2,tXt—1Xt2—2Xt2— A].

ny—1s ny—19

2

The truncated expectation of (S4, — w4)(S2,n, —w2)” is as follows:

o E[(Sin—wi)(Som —w)? Al = | — E[You Xy 1|E[X7 1 X[ o, Al
+ 2wy E[Yo: Xy 1] E[X? 1, A] + WiE Y2, Xt 1, A] — WiE[Y2,; X 1]P(X € A)
— 2wy E[Y2 Xy 1 X7 o, Al + E[Ya X4 1 X7 9 X7 3, Al

Al — E[Y2, X 1|E[X} 1, A

ny—1»

+% E[Y2,tXt—1Xt4_
+ E[Yo Xy 1|E[X? | X7 o, A] — 200 E[Yo,: X7 1, A
+ 2w E[Ya Xy 1 X7 o, Al + E[Ya, X4 1 X} o, Al + 2E[Yo X7 1 X7 5, A]
— 3E[Yau X4 1 X2 4 X2, A]}

+% [E[Yz,txf_l, Al = E[Ya, X 1 X} 5, A] = 2E[Yo, X7 1 X2 5, A

+ 2B (Yo, Xo 1 X2 4 X2 4, A]} .
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Next, we expand E[(S1, — w1.5)?(S2.n — w2), A:

E[(Sl,n - wlm)z(ng - wg), A] = E[ansln, A] - 2wl7nE[517n527n, A] - u)gE[Sim A]

+ Wi, E[Son, A] + 2w1 w2 B[S n, A] — wi ,waP(X € A)

1 Ny \ =
N <W B ﬁ) EY? 0, Xi s, 4]

1 1 1 _
(= a4 )+ gt 1)) BV 0, X gy X 20

I mp =
+np <F - ﬁ) E[Yl%t—anE—nb—lXE_l’ Al

1 1 1 _
+2 <E - m(2nb +1) + ﬁnb(nb + 1)> EY1-n, X7y 1Y1-ny—1 Xty —2, 4]

3 1 Ny
- (1 =~ + 1) + —(2+ 6m + 3n}) — (24 3 +n§)>

: E[Yl,t—ant—nb—1Y1,t—nb—lXt—nb—2th_nb_3a A]

1 1 1
1)+ — 1
+ ny, <n n2( np + 1) + ngnb(nb—l- )>

: E[Yl,t—nbXt—nb—1Y1,t—nb—lXt—nb—2th_17 A]

1 Ny —
-2 <E - ﬁ) wlvnE[Ylyt—antg—nb—l? A]

1 n _
-2 <1 — E(?nb + 1) + n—g(nb + 1)> wlvnE[Ylyt—”bXt—”b—lXE—nb—Q’ A]

1 n =
— 2ny, (ﬁ B n_g> wl,nE[YLt—ant—”b_lXE—l’ A]

L m\ mn2 2
— W2 <E - ﬁ) E[Yl,t—ant—nb—la Al

1 n _
- (1 - E(an +1) + n—g(nb + 1)) w2 B (Y1 ¢y Xy —1Y1,0—my—1 Xt —2, A

_ n _
+ Wl BIX2 1, A+ 2wy pws (1 - gb) E[Y1 sy Xiny 1, A] — w? s P(X € A).
The truncated expectation of (S, — wl,n)2(527n — wy) is as follows:

L E[(Sl,n - wl,n)2(S2,n - w2)7 A] = |:E[Yl,t—nbXt—nb—lYl,t—nb—lXt—nb—Qth_nb_;J,a A]

—2B[Y1 -y Xty 1 EY1 0 ny Xty 1 X7y 0, Al

nb—27

- sz [Yi,t—ant—nb—l}q,t—nb—lXt—nb—% A] + E2 [Yl,t—ant—nb—l]E[XE—lv A]

+ 2w2E[Y1,t—ant—nb—l]E [Yl,t—ant—nb—hA] - C()QEQ[YLt_ant_nb_]_]P(X € A)
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+% [E[le,t—anzg—nb—leg—nb—27 Al + 2E[Yl,t—antg—nb—1Y1,t—nb—1Xt—nb—2’ A
= 3(np + 1) E[Y1 11, Xi—ny—1Y1,1—ny -1 Xt—ny—2 X7y 35 A
+ B[V, Xty 1 Y10y —1 Xy —2 X7 1, Al

—2E[Y1 4 -ny Xty 1| E[Y1 40, X

t—np—1»

Al
+2(3np + 1) E[Y1 -, Xt—ny—1) E[Y1 -y Xt—ny—1 X7y 20 A
— 20 E(Y1 4y Xt—np—1) BV 4y Xt—ny—1 X7 1, A — wo E[YE, 0 X7 1, Al
+ (2np + Dwa B [V t—ny Xt—ny—1Y1 t—np—1 Xt—ny—2, 4]
— 20y E2[Y1 4y Xi—ny—1) E[XP 1, A]
— Ao E[Y1 4y Xt—ny—1) E[Y1 1y Xi—ny—1, A
+ 2pwa B[V 4y Xty 1] P(X € A)]
b (B X, Al = @0+ DBV, X2y 1 Xy o A
+ M EY? 0 XE oy 1 XE 1 Al = 220 + D) EY im0, X7y 1 V1 —my—1 Xty —2, A
+ (24 615 + 303 E[Y1 1y Xt—np—1 Y1 1—np—1 Xt—ny—2 X7, 3, Al
—np(2np + D) E[Y1t—ny Xt—ny—1Y1 4—ny—1 Xt—ny—2 X7 1, Al
+ A, E(Y1 4=y Xt—ny—1 | E[Y1,0—n, X7y 15 4]
— 2np(3ny + 2) E[Y11—1y Xt—np— 1) E[Y1,0—10y Xt -y 1 X7y 20 A]
+ A E[Y1 iy Xty 1) BV 1=y Xty -1 X715 Al + mpw2 E[Y?, 0 X7P 1, Al
— np(np + Dwa B [Y1 1y Xt—ny—1Y14—ny—1Xt—ny—2, A]
+ n%E2 [Yiyt—ant—”b—l]E[XE—l’ Al
+ 212 wo E[Y1 4y Xt —ny—1) E[Y1 4y Xt—ny—1, A
— 2wy B2V 4y Xi—my1]P(X € A)]
+% [ - nbE[YI%t—an;l—n+b—17 Al + np(np + 1)E[Y12,t—ant2—nb—1Xt2—nb—27 A
- ngE[Yl%t—anzg—nb—le?—lﬂ A
+2n4(np + D ENV1 -, X7y 1 Y10-nmy—1X4—ny—2, A]
— (24 30y + n3) EIY1 -y Xtny—1 V10— np—1 Xt—ny—2 X7y 3 Al

+ ng(nb + 1)E[Yi,t—nbXt—nb—lyl,t—nb—lXt—nb—2Xt2—1) A]
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- 2n§E[Y1,t—ant—nb—1]E[Y1,t—ant3—nb—l7 A]
+ 203 (ny + D) EY1 -0y Xt-ny 1) EY1 - ny Xeny 1 X7y 9, Al

- QHZ)E[YI,t—ant—nb—l]E[Yl,t—ant—nb—lXtQ—]_7 A] .
Next, we expand E[(S3, — ws5)?(S2.n — wa), A:

E[(ng - W37n)2(S27n - wg), A] = E[S§7n527n, A] - 2&)37”E[537n527n, A] - LUQE[ng, A]
+ w3, E[So.n, A] + 2w3 nwo E[S3 0, A] — w3 ,waeP(X € A)

ny = np =
:ﬁE[thX;l—p Al + ﬁ(nb — 1)E[Y22,tXt2—1th—2’ Al

1 n _ n _
+ny <ﬁ - n—§> B3, X XE 1, A+ 2n—§(nb —1)E[Yo, X} Yoy 1Xi 2, 4]
n _
T n—g(ng — 3np+ 2)E[Ya Xy 1Yoy 1 Xt 0 X? 5, A

1 n _
+np(np — 1) <ﬁ — n_§> E[Yz,tXt—lY2,t—1Xt—2Xt2—nb—17A]

ny — n _
— 2(,037nn—l2)E[Y27th’_1, A] — 2n_l2)(nb — 1)w37nE[Y27tXt_1Xt2_2, A]

n _
_ 2n—g(n — nb)w?’,nE[YQtht—leg—nb—l7 A]

o = 1v2 2 np _ A
- w2ﬁE (Yo Xi1, A] = w2ﬁ(”b —DE Yy X; 1Yo 1X; o, A]

w3 W BIXE 1 Al + 2003, BlYo, Xoo1, A] - w3 2 P(X € A).

The truncated expectation of (S5, — W3,n)2(527n — wy) is as follows:

1

o E[(S35 —w3n)?(Sam —ws), Al = 2

M BIYEXE A X, 1, A]

ny—1s

+np(np — DEYa Xy 1Yo 1 X 2 X[, 1, Al

ny—1s

— 2B Yo Xy 1|E[Yo,: Xs 1 X2 A

np—1s
— mpwo B [Y3, X7 1, A] — wonp(np — 1) E Yo, X4 1Yo—1 X420, A]
+nEE2 Yo, Xy 1] E[XE 1, Al + 2niws E[Yo 1 Xy 1] E[Ya 1 Xi—1, A
— nwy B2[Ya, Xy 1] P(X € A)}

b [ MBIV X1, A] 4 (g — DEVE X, X, 4]

- an[Y22,tth—1Xt2—nb—1’ A] + 2np(np — 1)E[Y2,tX?—1Y2,t—1Xt—2, A]
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+ np(ng — 3np + 2)E[Ya 1 X¢—1Ya 1 1 Xt 2 X7 5, Al

— ng(nb — 1)E[Y2,tXt—1Y2,t—1Xt—2Xt2_ A]

ny—1»

— 23 EYo X 1|E[Ya X3 1, A] — 202 (np — 1) E[Yo, Xi1|E[Ya, Xi 1 X7 5, A

+ 203 E[Ya, Xy 1] E[Yay X1 X2 0, 1, A]] .
The truncated expectation of (S4, — w4)2(527n — wy) is as follows:

o E[(Sin— wi)*(Son — wa), Al = [— woB [Ya, Xy 1Yo 1Xi—o, A
+ B2Yo, Xy 1) E[X? 1, A + 2w B[Yo 1 Xy 1| E[Ya, X1, A]
— wo F2[Yo,; Xy 1]P(X € A) + E[Yo X;1Yoy 1 Xt 2 X7 5, A
— 2E[Ya Xy 1) E[Ya X 1 X2, A]]
+% — W E[Y3 X7 1, Al + waE[Y2 Xy 1Yo 1 X2, Al
+ E[Y22,tXt2—1th—2’ A+ 2E[Y9, X} Yo 1 Xt 9, Al
—3E[Yo, Xy 1Yoy 1X; 2 X}P 5, Al — 2E[Yo: X 1) E[Yo: X} 1, A]
+ 2E[Y2: Xt 1|E[You Xt 1 X7 o, Al + 2E[Ya, Xy 1| E[Ya,: X 1 X2 5, A]}
o[BIV A] - BIYAXE X2y, A

— 2B (Yo X Va1 Xe 2, A] + 2B (V2 X 1Yo 1 X 2 X7 5, A]].
Next, we expand E[(S1, — w1 n)(S2n — w2)(S3.0 — w3n), A

E[(Sl,n - wl,n)(SQ,n - WQ)(SS,n - w3,n)7 A] = E[Sl,nSZnSS,na A] - wl,nE[S2,nSS,na A]
— woB[S1 0 S3.m, Al — w3 n E[S1,082.n, A] + wi,nw2 B[S3.n, A] + w1 nws n B[S, A]

+ waw3 n E[S1 0, A] — w1 pwows n P(X € A)

1 Ny =
=Np (m - ﬁ) EYou Xi 1 Yig-n, Xi -1, Al

1 1 1)\ -
+ ny <E — (271{, + 1)@ + nb(nb + 1)@) E[Y2,tXt—lYI,t—ant—nb—lth_nb_27 A]

1 n =
+ ny, <ﬁ B n_g> BY1-n, X—ny—1Y2,1 Xi 1, 4]

1 n —
+ nb(nb — 1) <m — n—g> E[Yl,t—nbXt—nb—IYQ,tXt—lth—2’ A]
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ny —

n
- le,nE[YZtXf’_l, A-

ﬁ(nb — Dwi nEY2 Xi 1 X7 5, A]

np

- —(n— nb)wl,nE[Y2,tXt—1Xt2_

n2 A]

ny—1s

1 n =
—_ nb <E — n_12)> UJQE[Yl,t—ant—nb_l}/étht_l7 A]

1 Ty

— <E — m) w3,nE[Yl,t—anf—nb—17 A]

1 n _
- <1 - E(2nb + 1) —'l— n_g(nb + 1)> W3,nE[Y1,t—ant—nb—IXtQ—nb—2) A]

1 n =
— Ny <E B TL_12)> w3,nE[Y1,t—ant—”b_1X3—1’A]

n — —
+ wl,nw2ZbE[Y2,tXt—la Al + w1 pw3 n E[X7 1, A

n _
+ waws p (1 - Zb) EY1t—ny Xt—ny—1, A] — w1 nwowz , P(X € A).
The truncated expectation of (57, — w1 n)(S2,n —w2)(S3, — w3 ) is as follows:

. E[(Sl,n —win)(S2n —w2) (S35 — w3 ), A
=2 B[Vt X1 Yoy Xyt Xy 20 A]
- E[Yl,t—ant—nb—l]E[Y2,tXt—1th_nb_17 Al — W EYq 4y Xt—ny—1Y2: X1, A]
— E[Y2, Xe—1)EY1 4=y Xt—ny—1 X7, 2, Al
+ W B[Y1 4y Xty 1| E[Y2u Xt 1, Al + E[Y14—ny Xt—ny1)E[Yor Xt 1] E[XE 1, A]
+ woB[Y2 t Xt—1]E[Y1 t—ny Xt—ny—1, A]
— Wy EV1 4y Xty 1) E[Ya, X;—1]P(X € A)
+% E[Yau X; 1 Vigny X2 1, Al
— (2np + ].)E[Y27tXt_1}/17t—ant—nb—lXt2—nb—27 A
+ EY1 4y Xty 1Y2u X2 1, Al + (np — DE[Y1 40y Xty 1Yo X 1 X7 5, A
— B[V 4y Xt—ny—1)E[Yo: X} 1, A
— (npy — VEY14—ny Xt —ny 1] E[YorXe 1 X7 5, A]

+ 20, E[Y1 ¢y Xty 1) E[Yo, X 1 X2 A]

ny—1»

+ w2 (Y1, Xo—ny—1Y24 Xe-1, Al = EY2: X4 1] E[Y14-n, X}y 1, Al

+ (2np + D EY2, X4 1] E[Y1 40y Xt—ny—1 X7y 25 Al
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— Y2, Xy 1) EV1 -y Xty 1 X7 1, Al

— mpwo B[Vt Xt —ny—1) E[Y2,: Xi -1, Al

— yE[Y1 4y Xt—ny 1) E[Yor Xt 1| E[ X7 1, A]
— w2 B[Y2 1 Xt 1) E[Y1 t—ny Xt—ny—1, A

+ 1w B[V 4y Xty 1) E[Yau Xo 1) P(X € A)]

2

n _

+-b ] = EY5, X1 Y14, X}
n

Pny—10 Al

+ (i + D EYo X4 1Y1 4y Xty -1 X7y 25 Al = BV gy Xo—ny—1 Y2, X7 1, A]
— (np — VD E[Y14—ny Xt—np—1Yo 1 Xt 1 X2 o, Al + B[Y1 4y Xty 1) E[Yo 1 X7 1, A

+ (np = DE[Y1 10, Xty 1BV, Xi 1 X7 5, A]

— M E[Y1 -y Xt—ny—1 | E[Y2 Xem1 X7y 1, Al + EY2 1 Xy | E[Y1 -, Xi oy 1, Al

— (np + 1) EYay X4 1] E[Y1,0-1y Xt—ny—1 X7y 20 A]

+ Y2 Xi 1 EY1 4, Xi oy 1 X7 1, A]] -
Next, we expand E[(S1, — win)(S2.n — wo)3, Al:

E[(S1n — win)(S2n — w2)?, A] = E[S1,,53 ., A] — w12 E[S3,,, A] — 3wa E[S1,,53 ,,, Al
+ 3w w2 E[S3 ., Al + 3w3 E[S1,0S2,n, A] — 3w nw3 B[S, Al

— w%E[Sl,n, A] + wq anP(X S A)

_ <% - Zj) By ny X1, Al
+ <% - %(2% +1) + %(nb + 1)) EY1t—ny Xt—ny—1 X 1, 0, Al
+3 <% - %(27% + 1)+ + 1)) Yty X5y 1 X2y 25 Al
+3 % - %(2% +1)+ %(nb + 1)> EY1 -y X7y 1 X5y 25 Al

1 3
+3 <E — ﬁ(nb—i— 1)+ (3nb +6np +2) — (nb +3nb+2)>
E[Yl,t—ant—nb—lXt4—nb—2Xt2—nb—37 A]

1 3
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’ E[Yl,t_anE—nb—lXtQ—nb—2Xt2—nb—37 A]

1 1 1
+ <1 — —(4np + 6) + — (6n + 18ny, + 11) — — (4nj) + 18n7 + 22n;, + 6)
n n n

n _
+n_Z(n2 + 6”2 + 1lny + 6)) E[Yl,t—ant—nb—1Xt2—nb—2Xt2—nb—3Xt2—nb—4’ A]

1 ny\ =
+ 1y <$ a n_i> Bty Xp 1 X( oy, A]

1 n _
+ 3nb(nb — 1) <$ — n—Z> E[Yl,t—ant—nb—lX;l—lXtQ—27A]

1 ny\ =
+ ny(ng — 3ny + 2) <$ - n—Z) ENV1tny Xtny 1 X7 1 X7 0 X[ 3, Al

1 np \ =
+ 3, <_3 - _4> EY1 4, X} 1 X{ 1, A]
n n
1 1 np L 4 2
+ 3y, n? E(an +1) + H(nb + 1)) EYL o, Xeony -1 X4y —2 X1, Al
11 ny 5 3 2 ;
+6m ( —5 = — 2y + 1)+ —2(np + 1) ) B, Xiy 1 Ko, 2 XKoo 4]
am (L3 1)+ —(3n2 + 6ny +2) — —2 3np + 2
+ nb<n n2(’ﬂb+ )+n3( ny + 6ny, + 2) n4(nb+ np + )>
. E[Yl,t—ant—nb—1X132—nb—2th—nb—3Xt2—1’ Al
1 n —
+ 3, <$ = =1 ) Vim0, Xi, 1 X010 A

ny —
- ) BlYasn XE gy XE 1 X A
1 np = 2 4
+ 3np 3 $(2nb +1)+ H(nb + 1) ) EY1t—ny Xty -1 Xy —2 X1, A
1 Ny
+ 3nb(nb — 1) <m — $(2nb + 1) + F(nb + 1)>
’ E[Yl,t—ant—nb—IXtQ—nb—2Xt2—lXt2—2’ A]
1 1

S XD, A] -3 (5 - ﬁ> w10 B [X) XP g, A

1 1 —
— <1 — 35 + 2ﬁ> Wl,nE [X3—1X3—2Xt2—37 A]
1 Ny =
-3 <ﬁ — ﬁ) W2E[Y1,t—ant5—nb—la A]
11 1 5 4
-3 o m(an +1)+ ﬁnb(nb +1) WQE[Yl,t—ant—nb—lXt—nb—2’ A]

1 1 1 -
-6 <E - F(an +1) + ﬁnb(nb + 1)> WoB[Y1 4y Xi iy 1 X7y 20 Al
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3 1 2 np 2
-3(1- E("b+1)+ﬁ(2+6”b+3“b) — E(Z—i-?mb—i-nb) wo
E[Yl t— ant ny— 1Xt ny— 2Xt ny— 3’A]
1 ny
— 3ny <— ~ 3 > 2E[Y1t X t—np— lXt 1, A]
1 n
— = nb> W B[Vt Xty —1 X7 1 X7 o, Al
1 np
— 6ny, <_ _3> WQE[Ylt ﬂb‘Xt3 ny— lXt2—17 A]
n n
1 1 1 = 2 2
= Onp = 5 (2 + 1) + —gnp(np + 1) | w2 EY1 -, Kooy -1 X, 2 Xz, A]

1 - 1\ -
+ 3wl,nw2EE[X;1—17 A] + 3w pwo (1 — ﬁ) E[X7? 1 X} 5, Al

1 n
+ 3w2 <_ - n_b> E[Ylt antg—nb—lvA]

1 n _
#5303 (1= L2+ 1)+ 2200+ 1)) BV Xy 1 X, 504
1 n _
+ 3winy, (g nb> EY14ny Xi—ny-1 X7 1, A] — 3w nw3 E[X? 1, A]

1 n
— w% <E — n_b> [Ylt ant ny— laA] +w1,nw§P(X € A)
The truncated expectation of (S1, —win)(S2,n — wy)? is as follows:

o E[(Sin—win)(Son —w2)? Al = |ENV1tony Ximny—1X7 2 X7y 3X7 1y Al
- E[YLt—nbXt—nb—l]E[XtQ—lXE—QXtQ—S’ A]

- 3w2E[Y1,t_nb Xt_nb_ 1Xt2—nb—2Xt2—nb -3 A]

+ 3w B4 4y Xt—ny—1 ) E[X7 1 X7 9, Al 4 303 E[Y1 4y Xty -1 X7y 0 Al
—~ BWEEY 4y Xi—ny 1| E[ X1, A] — W3 E[Y1 4y Xt—ny—1, A
+ WS E[Y1 4—ny Xi—ny—1]P(X € A)
+% [3E[Yl,t_nbxt_nb_IXf_nb_QXE_nb_g, 4]
+ 3E[Y1,t—ant3—nb—1Xt2—nb—2Xt2—nb—3, A
— (41 4+ 6)E[Y1 41y Xty 1 X7y 0 X7y —3X 1y a0 Al
+ 30 B[V 4y Xty 1 X7 0 X2 3 X7 1, A

ny—2 ny—3

— 3BV —ny Xt—ny—1| E[ X} X7, Al
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+ (0 + 3)EY1 -y Xony 1| E[X7 X7 5 X7 5, Al
— 3w2E'[Y1,t_ant_nb_1Xt4_nb_2, Al — 6W2E[Yi,t—ang’—nb—lXE—nb—Q7 A
+9(np + DwsE[Y 4—ny Xt—ny -1 X7y 2 X7y 3 Al

— 6npw2 E[Y1 4y Xi—ny—1 X7y 2 X715 Al + 3w E[Y1 ¢y Xty 1] E[X] 1, A]
— 3(np 4+ 1)w2 EY1 4y Xt—py—1] E[XE | X7 5, Al + 3w E[Y1 4—n, X}, 1, 4]

— 3w (2np + 1) E[Y1 1, Xi—ny—1 X7y 20 A] + 3w3np EY1 4y Xty -1 X7 1, A]
+ 3w, E[Y1 .ty Xt—ny 1) E[XP 1, Al + w3y E[Y1 ¢y Xt—ny—1, 4]

— BN E[Y14ny Xty 1] P(X € A)]

b [ BV Xy 1 X8y A] 4 BBV, XE 1 Xy A]

+ BE[Y11—ny X7y 1 X1y 25 Al

—9(np + DEY1 1ty Xtny—1 X7y 2 X7y 30 Al

—9(np + 1)E[Yl,t—antg—nb—1Xt2—nb—2Xt2—nb—37 A

+ (60 + 18ny + 11) E[Y1 -y Xi—ny<1 X7y 0 X7y 3 X7y a0 Al

+ 3 E[Y1 4y Xt—ny -1 Xy 0 X7 1, Al + 60 EY 40y Xp oy 1 X7y 2 X715 Al
— Inp(ny + 1) E[Y1 1, Xty -1 X7y -0 X7y 3 X115 A

+ 3 E[Y1 4y Xty -1 X7y 2 X1, A

+ 3np(np — D EYV1 -y Xt—ny—1X7 o X7 1 X7 0, A

— EY14—ny Xt—ny—1]E[ X}, A]

+3(np + V) E[Y1 4y Xt—ny 1| E[ X} X7 o, A]

— (3np + 2)E[Y1 4y Xt—ny—1)E[XP 1 X7 5 X7 5, A]

— 302 B[Y1pmny Xy 15 Al 4 320y + Dwa B[Y1 4y Xony—1 X1, 2, A]
+6(2np + Dwa E[Y1 t 0, Xi oy 1 X7y 20 4]

— 3(3nj + 61 + 2)w2 (Y14, Xe—ny—1 X7y 2 X1y 30 A

— 3npwo B[V ¢y Xty 1 X7 1, 4]

— 3np(np — Vw2 E[Y14—ny Xt—ny 1 X7 1 X7 o, A]

— 6w E[Y1 -, X7y 1 X7 1, Al

+ 615 (20 + Dwa E[Y1 4, Xi—ny—1 X7y 2 X7 1, Al
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— 3npwo B[Y1 1y Xi—ny—1)E[X{ 1, Al

+ 302 (Y1, X, —1 | E[X7 1 X7 o, A] = 3np3 B[Y1 1, X7

tny—1> 4]
+ 3np(np + Vw3 E[Y1 1, Xtny—1 X7, 20 4]
— 3n3WEEY 4y Xiny1 XP1, A]
— | EY1tmn, X{ 1, Al = 2 + D EY1 gy Xty -1 X{y 9, Al

= 3(2np + 1) E[Y1 10, X7y 1 X7y 20 A
= 3(2np + 1) E[Y1 10, Xi y 1 X1y 20 4]
+3(3n3 + 61y + 2)E[Y1 4y Xt —ny 1 X7, o X7

+ 3(

—nb—3’

A

ny—2

+3(3n2 + 6ny + 2)E[Y1 4, X} A

t—mp—

D GENED GES
— (403 4+ 18nj + 22n + 6) E[Y1 100, Xty —1 X7y 2 X7y 3X7 1y a0 A
Y1ty Xt—ny—1 X0 1, Al + 304 (0 — 1) E[Y14—ny Xt—ny—1 X1 1 X7 o, 4]
+np(ng — 3np + 2)E[Y14—ny Xi—ny 1 XF 1 XP o XP 5, A

+ 3nbE[Y17t_anf_nb_1Xt2_1, Al — 3np(2np + 1)E[Yl,t—ant—nb—1Xt4—nb—2Xt2—17 A
— 6n(2np + 1)E[Yl,t—nbX?—nb—lXE—nb—2X3—1a A

+ 3np(3nf + 614 + 2) E[Y11—1y Xi—ny-1 X7y -0 X1y 3 X115 A]

+ 3y E[Y1 ¢y X7

t—np—1

X;l_l, A] + 3nb(nb — 1)E[Y1’t_an3

t—np—1

Xt2—lX1f2—27 A]

— 3np(2ny + D E[Y1 4y Xty 1 X720 o Xi 1, A

np—2
— 3np(np — 1)(2np + 1) E[Y1p—y Xi—ny—1 X7y 2 X7 1 X7 0, 4]

+ M E[Y1 4y Xt—ny—1)E[X7_1, Al = 30, E[Y1 4y Xi—ny—1) E[X{ 1 XP o, A]
+ 20, (Y1 4y Xy =1 | E[X7 X7 0 X7 3, Al + 3npwo EY1 4, X{ . 1, A
— 3np(np + Vw2 E[Y1 4—ny Xt—ny—1X7 , 2, Al

— 6np(np + Vw2 EY1 40, Xy 1 X7y 2 Al

+ 3ny(n3 + 3ny + 2)UJ2E[Y1,t—ant—nb—lXtQ—nb—2Xt2—nb—3> A

+ 3n2wa E[Y1 4y Xt—ny 1 X1, 4]

+ 305 (ny — Dwo E[Y1 4y Xi—ny—1 X7 1 X790 Al + 6npwo E[Y1 40, X7 1 X7 1, Al

— 60 (np + Dwo E[Y1t—n, Xi—ny—1 X7, 2 X7 1, A]]
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1 - _
+ﬁ - nbE[YI,t—anz—nb—l’ A] + ny(np + 1)E[YLt—ﬂbXt—”b—lXtG—nb—Q’ A]
+ 3np(np + 1) E[Yy 4 ant np— X7 np—2+ Al

+ 3np(np + DEY1 -, X7y 1 X1 A]

nb—27

2
nb—2Xt—nb—3’ A]

(

(
— 3np(nd + 3npy + 2)E[Y1 4y Xi—ny—1 X7
— 3np(ng + 3np + 2) EY14—ny, Xib oy 1 X7y 2 X7y 30 Al
+np(ny 4 6ng + 1ng + 6) E[Y1 i, Xtny—1 X7y 0 X7y 3X7 -y a0 A
~ EEYV 4y Xty -1 X2 1, Al = 302 (np — DVEY14—ny Xi—ny—1 X1 1 X2, A
—ng(ng —3ny + 2)E[Y14—n, Xi—ny—1 XF 1 XP o X7P 5, A]
— 3Ny EY1 4y X{ 1 X710 A] 4 305 (np + 1) EY1 -y Xty -1 X1y 2 X715 Al
+ 6n (ny, + 1)E[Yl,t—antg—nb—1Xt2—nb—2Xt2—1a A

—3n2(n + 3np + 2)E[Y1t—ny Xty 1 X7

—np—2

X7

—np—3

XtQ—I’A]
- 3”2E[Y1,t—ant3—nb—lXt4—lﬂ A] - Sng(nb - 1)E[Yl,t—antg—nb—lXtQ—lXtQ—27 A]
+ 305 (np + D EY1 -0, Xiny -1 X7, 2 Xi 1, A

+ 303 (np — 1) (np + DEY1 0y Xony 1 X7, o X7 1 X7, Al
Next, we expand E[(S3, — ws5)(S2.n — wa)?, Al:

E[(S3n — w3n)(Son — w2)®, Al = E[S3,55 ., A] — ws n E[S3,,, A] — 3wy E[S30,53 ,,, A]
+ 3w37nw2E[Sin, A] + 3W§E[S3,ns2,m A] - 3w3,nw%E[S2,m A]
— W%E[ng, A] + W37nw%P(X € A)
1 Ny
=Np (ﬁ Y ) E[Y2 1 X 1Xt nb—lvA]
1 1 np = 4 2
+ 3np ol ﬁ@nb +1) + m(nb +1) ) E[Y2: Xe1 Xy, 1 Xy, -0, A
1 3 1 2 Ny, 2
o (== =5+ 1) + —5(3nf + 6y +2) — 5 (n + 3mp, + 2)
E[YQ,tXt—1Xt2—nb—1Xt2—nb—2Xt2—nb—37 A
_ n —
_ZE[Yz,th—hA] + n_i(nb - 1)E[Y2,tXt—lXt6—27A]

n — n _
+ 3n—3(nb —D)E[Yau XP X2 5 Al + Sn—j(nb — ) E[Ya X} X1, A
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n —
+ 3n—3(n§ — 3np + 2)E[Ya Xy 1 Xi o X2 5, Al
n —
+ 3n—3(n§ — 3np + 2)E[Ya X2 | X2 5 X2 5, Al
np

—(ng —6nF + 11ny — 6)E[Yo,; Xy 1 X2 o X2 3 X7 4, A

+n4

1 ny
+ 3ny (ﬁ A )E[Y2tXt lXt np— 1, Al
1 nb
+ 3np(np — 1) 3 [Yz 1 X4 lXt 2Xt np— 15 Al
1 1 g - 3 2 2
+ 3y ol E(an +1) + H("b +1) ) E[Yo: Xi  Xi— 1 Xy, —0, Al

1 1 Ny
+ 3np(ny — 1) (ﬁ — $(2nb +1)+ m(nb + 1))

CEYa Xe 1 X7 o X7y 1 XDy 20 Al
—|—3nb< )EYth X7 ny—1>A]
1 np
+ 3np(np — 1) 3T [Yz 1 X¢— lXt 2Xt np— 15 Al

1 n _
+ 6np(np — 1) (ﬁ - n_z> E[Y2,tXt3—1Xt2—2Xt2—nb—la Al

1 n
+ 3ny(nj — 3np + 2) (ﬁ - nb> E[Y2  Xe 1 X7 0 X7 3 X7 1, Al
w3n 1 4 9
E [Xt 17‘4] -3 E T2 w3, nE [Xt—lXt—2vA]

1 1 =
B <1 —3-+ ﬁ) wsnB [XP 1 XP 2 X7 5, A]
ny = 5 " D ;
= 3 gwa B Yo, X, y, Al = 35 (np — Dw2 B[, Xe-1Xi o, 4]

n —
— 6—b(nb — 1)w2E[Y27tX?_1Xf_2, A]

n
- 3n—§(n§ 3np + 2)wa E[Ya 1 Xi 1 X7 o X7 5, A
1 n _
- 3nb <—2 _§> W2E[Y2,tXt—1Xt4_nb_17 A]
n n
1 1 1 = 2 2
— 3ny E (2nb + 1) +— n3 (nb + 1) WQE[YZtXt—lXt—nb—lXt—nb—Q’ A]
1 n -
— 6y, (m n_§> W2E[Y2,tX?—1Xt2—nb—17A]

1 n _
— 6np(ny — 1) (n_ — n_§> W2E[Y2,tXt—1Xt2—2Xt2—nb—lﬂ Al
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p
2

_ n _
+ 3w§n—E[Yg,tXf’_1, Al + 3w§n—’2’(nb — 1) E[Ya1 X1 X2 5, A

1 n _ _
+ 3winy, (5 — n—é’) E[Y2, X; 1 X7, -1, A] — 3wiws o E[XE |, A]

ny —
— wg’;bE[YitXt_l, Al + wiws , P(X € A).

The truncated expectation of (S3, — wsn)(S2,n — wy)? is as follows:

1

o E[(S3n —wsn)(Som —ws)?, A] = " [nbE[YQ,tXt—lXtQ—nb—lXtQ—nb—2Xt2—nb—3’ Al

— 3w BYa 1 Xy 1 X7y 1 X7y 20 Al — npE[Ya, Xy 1] E[XP 1 X}y X7 5, Al
+ 3w B[Ya X1 XP o, 1, Al + 3npwn E[Ya, Xo 1| E[X2 1 X2 5, A]
— mpws E[Ya, Xy 1, A] — 3npw3 E[Ya, Xy 1| E[X? 1, A]
+ w3 E[Ya X1 ]P(X € A)]
+% [3nbE[Yg,tXt_le_nb_le_nb_z, A
— 3np(ny + 1) E[Yo Xeo1 X7y 1 X7y 0 X7y 30 Al

+ 3nbE[Y2,tXE_1Xt2—nb—1Xt2—nb—27 A]

+ 3np(np — DEYo, Xe 1 X7 0 X7, 1 XE A] = 3npwa E[Yo: Xp 1 X;H A

nb—2’ ny—1s

+ 3np(2np + Dwo E[Y2 X1 X7y 1 XP 00 Al — 6mywa E[Ya X2 X7, 1, Al
— 6np(np — DwoB[Ya 1 Xe 1 X7 5 X7 1, A] — 3mpE[Ya, Xo 1] E[X] | X7 5, Al
+ 3y E[Ya, Xy 1| E[X? | X7 o X7 5, A] + 3npwi E[Yo X7 1, A]
+ 3np(ny — Vw3 E[Y2 Xi 1 X7 o, Al = 3njwi E[Y2, Xe 1 X7, 1, Al
+ 3nyws E[Ya Xo 1 E[XE 1, A] — 3nywo E[Ya, X 1] B[X2 | X2 ,, A]]

+% [nbE[Yz,tXt_le_

Al = 3ny(2ny + 1) E[Yau Xe 1 X}, 1 XP A

ny—17 nb—2’

+np(3np + 60y + 2) EYay Xo 1 X7, 1 X7y 2 XT oy 30 Al

+ 3nbE[Y27tXf_1Xf_nb_1, Al + 3ny(ny — 1)E[Y2,tXt—lXt2—2Xt4—nb—lﬂ A
— 3np(2ny, + D EYo, X7 X7 1 X7 00 Al

— 3np(ny — 1)(2np + 1) E[Ya Xe 1 X7 0 X7y 1 X7y 2, Al

+ 3, E[Yo X)) 1 XE 1, 4]

+ 3np(np — DEY2, Xe 1 X 0 X7 1, Al
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+ 6ny(ny — 1) E[Yo X7 X2 o X2 A

ny—1s

+ 3ny(ng — 3ny + 2)E[Yo Xy 1 X7 o X7 s X7 A] = 3npwo E[Yo 1 X7 1, A

ny—1»

— 3nb ny — )ng[YQ tXt 1Xt 2 A] — an(nb — 1)CU2E_1[Y27tXt3_1Xt2_2, A]

3ng(np + Dwo E[Yo Xy 1 XP 0, 1 X7 00 Al + 6njwa E[Y2 X7 X2 1, Al

(
(nj
(
— 3np(nj — 3np + 2)w2 B[Ya Xo 1 X7 5 X7 5, Al + 3nfwe E[Yo, Xp 1 X, 1, Al
i (
+6np(np — Dwo B[V X4 1 X7 0 X7, 1, Al — mpE[Y2, Xy 1] E[X] 1, A]

+ 3y E[Ya Xe 1 B[XP X2 o, A — 20 E[Ya, Xo 1| E[X2 X2 X2 4, A]]
+% [ — n%E[Yz,tXt_le_

Al + 30 (ny + D E[Yau X1 Xy, 1 X720 Al

ny—1» nb—2’

—np(ng + 3np + 2)E[Yo Xe 1 X7y 1 X7y 2 X7 A

np—37
+pE[Yo, X[ 1, Al +ny(ny — 1) E[Ya, Xi 1 X7 5, A

+ 3np(np — 1) E[You X7 1 X7 o, A] + 3np(np — V) E[Yo, X2 1 X} o, A]

+ 3np(ng — 3np + 2)E[Yo, Xy 1 Xi 5 X7 5, Al

+ 3ny(ni — 3ny + 2)E[Ya, X7 | X7P o X7 5, A]

+np(ny — 60 4 11ny — 6)E Yo, Xy 1 X7 o X7 3 X7 4, A]

- 3”§E[Y2,tX?—1Xf—nb—1a Al - 3”2 (ny — 1)E[Y27tXt—1Xt2—2Xt4—nb—lv A
+3nf(np + DEY2, X7 X7, 1 X7

—nb—2’

A]

ny—1

+3np (ny — 1) (np + D) E[Yo Xe 1 X7 0 X7y 1 X2 A

nb—27
— 3ng EYa, X; 1 X7, 1, Al = 30 (np — 1) EYa, Xp 1 X[ X7 1, Al
- 6”b(”b - 1)E[Y2,tXt—1Xt—2Xt2—nb—1a Al

—3nj(ng — 3ny + 2)EYa X4 1 X7 0 X7 X7 1. Al
The truncated expectation of (S4, — w4)(S2,n — wy)? is as follows:

o E[(Sin—wi)(San—wn) Al = | — E[Yo, X; 1)E[X] 1 X} X7 5, Al
+ 3w EYa Xy 1] E[XE 1 X7 o, A] — w3 E[Ya: X;_1, A
— 3wiE[Ya, Xy 1|E[X? |, Al + WiE[Ys, X, 1]P(X € A)

+ w3 E[Ya, Xy 1 X} 9, Al — 3w E[Ya, Xy 1 X7 o X7 4, A]
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+ EYo Xy 1 X7 X7 3 X7 4, Al
% [ 3E[Y2,: Xt 1|E[X, 1 X7 o, Al + 3E[Ya, X; 1 E[XP | X7 5 X[ 5, Al
+ 3w3E[Yo X2 1, Al — 3w3E[Ya X 1 X2 o, A]
+ Bwp E[Yo, Xy 1| E[X{ 1, A — 3wy E[Yo 1 Xy 1 E[X7 1 X7 9, Al
— 3woB[Ya Xy 1 X} o, Al — 6waE[Yo X2 | X7 o, A]
 Qwn E[Yo Xp 1 X2 o X2 5, Al + 3E[Yo, Xo 1 X7 o X2 5, A]
+ 3E(Ya Xiy X2 X2 5 A] = 6B (Vo Xiot X2 X3 X Py, A
+% — 3wy E[Yo: X7 1, A] + 3w E[Yo: Xp 1 X} o, Al
+ 6w E[Ya, X} 1 X7 o, Al — 6w B[Yo, Xy 1 X7 o X7 5, A
— B[Yo Xy 1]|E[X{ |, Al + 3E[Y2, X; 1|E[X} 1 X2 5, A
—2E[Yo Xy 1|E[XP X o X}E 5, Al + E[Yo, X1 X o, A]
+3E[Yo, X) | XP o, Al + 3E[Yo, X} | X}, A
—OE[Yo, Xy 1 X} o X2 5, Al — 9E[Yo, X} | X7 o X7 4, A]
+ 1E[Yo, Xy 1 XP o X7 3 X7 4, A
+% ElYa,; X[ 1, Al — E[Yo: X4 1X? o, A] — 3E[Yo, X7 1 X}P 5, A
—3E[Yo X} 1 X o, Al + 6E[Yo, Xy 1 X} 5 X7 5, Al

+6EY2 X7 | X7 9 X7 3, A] = 6E[Y2, Xy 1 X7 9 X7 3 X7 4, A]] .
Next, we expand E[(S1, — w1.,)?(S2.n — w2)?, A]:

E[(Sl,n - wl,n)Q(SZn - w2)27 A] = E[S%,nsg,n7 A] - 2w2E[S%,nS2,na A]
— 201 E[S1,0595 . Al + w3 E[S3 1, A] + 4w nw2 E[S1,252.5, A]

+ WiE[S? Al — 2w%7nw2E[527n, A] — 2w1 nW3 E[S1 1, A] + Wi nsz(X €A

1 np
= <$ n4> [Ylt TLbXt ny— 17A]

1 1 _
+ (- mnan <nb+1>) BNV, Xy 1 Xy 20 A]
1)

1 1
+2 <n2 - $(2nb +1) ”b + Yl,t—anzl—nb—Ith—nb—% Al
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1 3
+ (5 — ﬁ(nb +1)+ (3nb + 6np +2) — I (nb + 3np + 2)>

: E[Y12t—nbXt2—nb—1Xt2—nb—2Xt2—nb—3’ A]
+2<$ — (2np 4+ 1) + n(ny+n>ED@F%Xgmﬁﬁipwqxgﬂr%A]
+ (l - %(nb +1)+ (3nb + 6ny, + 2) — (nb + 3np + 2)>
n n n
E[Yl,t_m,Xt_m,_1Y1,t_n,,_1Xt_nb_QXf:n,,_g, Al

1 ]. Ny _
+2 <— - ﬁ(%b +1) + g(nb + 1)> E[Yl,t—anf’—nb—lYl,t—nb—lXt?’—n,,—z7 Al

3 1

-E [Yl,t—nbXt—nb—1Y1,t—nb—1Xf’_nb_2Xt2_ Al

nb—37

1 1 1
+ (1 — —(4np + 6) + —2(6n§ + 18np + 11) — —3(4n2 + 18nj + 22n; + 6)
n n n
o, 3 2
+H(nb + 6nj + 11np + 6))

n 2 2
“EY1 1, Xt—ny—1Y1 40y, -1 Xt —n,—2.Xp 3 XG4 Al

1 _
+np <$ nA >E[Y1t ant2 np— lXtZl—l’A]

1 np

+ny(ny — 1) <n3 >E[Y1t ant np— lXt lXt 2, A

n4
1 1 ny
- (1) + 2 1
+ ny <n2 n3( ny + 1) + n4(nb+ )>
E[Yl,t—’nbXt—nb—1Y1,t—nb—1Xt—nb—2X;l—17 A]
1 1 ny
(= - —=Cu+1)+2 1
+ np(np )<n2 n3( ny + )+n4(nb+ )>

E[Yl,t—nbXt—nb—1Y1,t—nb—1Xt—nb—2X132_1Xt2_27 A]

1 _
+ 2np <$ n4> E[Ylt anZl—nb—lXtQ—l7A]
1 1 np iy 2 P 2 2 4
+ 2nb m $(2nb + 1) + ﬁ(nb + 1) E[Yl,t—ant—nb—lXt—nb—QXt—l7 ]
1 1 ny
4 — — (2 1 — 1
" nb<n2 n3(nb+ )+n4(nb+ )>
E[Y1 1, X{ oy 1 Y1-ny—1 Xty —2 X7 1, A
1 3 1 ny
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Bty Xty 1Y1 4y 1 Xt —ny 2 X2, 3 X7 1, A]

ny—3
1 ny —
— 2wo <m - ﬁ) E[Yl%t—anzl—n-i-b—l’ Al
1 1 _
- 2w2 <E (2nb + 1) n (nb + 1)> E[le,t—anzg—nb—leg—nb—% A]
1 Ty
— 2womny (ﬁ - n3 > [Ylt ant np— lXt 17A]
1 1 1 _ 3
— 4wy — - ﬁ@nb +1)+ ﬁnb(nb +1) ) EY1t-n, X3y —1 Y140y~ 1Xt—ny—2, 4]
2 (1= 2 (np+1) + — (2 4+ 6np + 302) — “2(2 + 3y + n)
— 2w ——(n — n ng) — — ny +n
2 n b n2 b b n3 b b
. E[Yl,t—ant—nb—1Y1,t—nb—1Xt—nb—2th—nb—37 A]
2 L L o)+ Sy + 1)
—2wony | — — = (2n —np(n
2m | b 3 {7

Bty Xty 110y -1 Xt —ny—2 X7 1, A]

1 Ty

—2win <m - n3> E[Ylt ant ny— 17A]
1 1 1 _ 4

— 2&)17” E (an + 1) n—nb(nb + 1) E[Yl,t—ant—ﬂb—lXt—nb—27 A]
1 1 1 _ 3 9

- 4w1,n E - ﬁ(2nb + 1) + ﬁnb(nb + 1) E[Yl,t—ant—nb—lxt—nb—27 A]

3 1 n
— 2wy p, <1 — E(nb +1)+ E(Z + 6ny, + 3n7) — n—g(Z + 3np + n%))

: E[Yl,t—nbXt—nb—leg—nb—2Xt2—nb—3’ A]

1 n
— 2wy <ﬁ — n”) E[Y14ny Xty 1 X1 1, Al

1 n
—2w1,nnb(nb_ 1) <ﬁ - nb> [Ylt ant ny— lXt lXt 27A]

1 n
- 4w1,nnb <m - nb> E[Yl t— antg—nb—lXtQ—l’A]

1 1 1 _
— dwy (n 32y 1) + —gnp(np + 1)> EY1tony Xt—ny—1 X7, 2 X7 1, Al

1 - 1\ -
+w1 nﬁ [Xt laA] +w%,n <1 - E) E[XE—IXE—%A]

1 Ty
+ 4w1,nw2 <n - n_> [Ylt ant ny— 17A]

1 n -
+ 4wy pwo <1 - 5(2711, +1)+ n_g(nb + 1)> E[Yl,t—ant—nb—lxtz—nb—% A
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1 n _
+ 4w1,nw2nb (E - ’I’L_l2)> E[Yl,t—ant—nb—lXE—la A]
1 ny —
vt (7~ ) B0 XE gy 1A

1 n _
+ w% (1 - E(2nb + 1) + n_g(nb + 1)) E [Yi,t—nbXt—nb—lyl,t—nb—lXt—nb—27 A]

_ n _
— 2winw2E[Xt2_1,A] — le,nwg (1 — gb) EY1t—ny Xt—n,—1,A] + winw%P(X € A).

The truncated expectation of (S5, — wl,n)2(527n — w9)? is as follows:

4 E[(Sl,n - wl,n)2(52,n - w2)27 A]
= E[Yl,t—ant—nb—].m,t—nb—lXt—nb—QXE—nb—3Xt2—nb—47 A]

— 209 E(Y1 4y Xt—ny—1 Y1ty -1 Xt—ny—2 X7 Al

nb—3’

—2EY1 4y Xty 1| EY1t iy Xty 1 X2 o X7 A]

nb—2 nb—37

+ E? [Yl,t—ant—nb—l]E[Xt2—lXt2—27 A
+ 4w2E[Yl,t—nbXt—nb—1]E[Yl,t—ant—nb—lXE—nb—Q7 A]
+ W%E[Yl,t—ant—nb—1Y1,t—nb—1Xt—nb—27 A] - 2‘*‘)2E2 [Yl,t—ant—nb—l]E[Xlg—h A]

- 2w§E[Ylﬂf—nbXt—ﬂb—l]E[Yli—ant—"b—l’A] + W%EQ [Yl,t_ant—”b—l]P(X € A)]

1r-
+E E[Yi%t—antz—nb—lXt2—nb—2Xt2—nb—3’ A]

+ EY1tny Xty 1Y1tny1 Xty 2 X A

nb—3’

FAB Y1 ny, Ximny—1 Y1ty -1 X0y -2 Xy 30 Al

— (4ny + 6) EY1 -y Xt—niy—1 Y1t niy—1 Xt ny—2 X7y 3 X7 45 Al
+ 2nbE[Yl,t—ant—nb—1Yl,t—nb—lXt—nb—2Xt2—nb—3Xt2—l7 A

- 2w2E[le,t—anzg—nb—lth—nb—27 A

- 4w2E[Y1,t—an?_nb_1Y1,t—nb—1Xt—n,,—27 A]

+6(np + Dwa E[Y1 1y Xi—ny—1Y1,1—np -1 Xt—ny—2 X7y 35 4]

— 22 E[Y1 4y Xi—ny—1Y1,1—ny -1 Xty —2 X7 1, A]

—2EY1 4y Xty 1| E[Y1t—ry Xty 1 X (- A]

nb—27

— AE[Y 4y Xty =1 | EY1 1m0y X7y 1 X7y 2 A]
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+ (Snb + G)E[Yl,t—ﬂbXt—”b—1]E[Yl,t—ant—nb—1Xt2—nb—2Xt2—nb—37 A]

— A E[Y1 iy Xty 1 | EY1 4y Xty 1 X7y 2 X7 1, A]

+ B Y14y Xt—ny—1) E[ X}, A]

— (2np + 1)E2 [Yl,t—ant—nb—1]E[Xt2—1Xt2—2a A

+ 4w E[Y1 4 -y Xt—ny—1 | E[Y1 40, Xi 1, Al

— 4(3ny + Dwa E[Y7 4y Xi—ny—1) EY1 11y Xt—ny—1 Xy — 20 4]
+ 47”LbWQE[Y1,t_ant_nb_1]E[Yl,t—ant—nb—le—l’ Al

+ Wi B[V, X7

t—nmp—1>

Al
— (2np + Vw3 E[Y1 t—ny Xt—ny—1Y1 t—ny—1 Xt—ny—2, A]
+ dnpwo B Y1 4y Xt—ny—1) E[ X7 1, A]
+ 43S E[Y1 4y Xty 1) E[Y1 4y Xt—ny—1, 4]
— 23 E2Y1 4y Xi—ny—1]P(X € A)
b [ BV XE 0y Xy AL 4 2BV X (X0, 4]
—3(np + 1)E[le,t—anf—nb—lXt2—nb—2Xt2—nb—37 A
+ 2BV 4oy Xi iy 1 Y1 -y -1 Xt—ny—2, 4]

—3(np + DENY 4y Xt—ny—1Y1,t—ny—1 Xt—ny—2. X/ Al

np—3
+ 2B[Y1 oy Xy 1 Y1tmny—1 Xp 20 A]

—12(np + D EN -y Xt—np—1Y10-np—1 X5y 2 X7 -3 A

+ (6nf + 18ny + 11) E[Y1 -y Xi—ny—1Y11—ny—1 Xt —ny—2 X7y -3 X 7y Al
+ M E[Y1 4y Xty -1 Y1ty 1 Xty -2 X 1, A

+ np(np — 1) E[Y1 1y Xt—ny—1 Y1 t—ny—1 Xt —ny—2 X7 1 X7 9, A

+ 27’LbE[th_anf—nb—1Xt2—nb—2Xt2—17 Al

+ 4nbE'[YLt_anf’_nb_1Y1,t—nb—1Xt—nb—2Xt2—1’ A

—6ny(np + D E[Y1tny Xt —ny—1 Y1ty 1 Xty 2 X2 3 X2 1, A

ny—3
- 2w2E_'[Y12,t—an;1—nb—17 A] +2(2np + 1)w2E[Y12,t—ant2—nb—lXtQ—nb—27 A]
- 2nbw2E[Yl2,t—’ant2—nb—].Xt2—17 A]

+ 4(2nb + 1)W2E_|[Yl,t—nbX?_nb_lyl,t—nb—lXt—nb—27 A]
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—2(3n2 + 61y + 2)w2 E[Y1t—ny Xty 1Yty 1 Xt—ny 2 X2 A

np—37
+ 203 (20 + Vw2 E[Y1 1y Xi—ny—1Y1,0—ny -1 Xt —ny—2 X7 1, Al

= 2BE[Y1 4=y Xt—niy—1 | E[Y1,t—00, X7y 1, Al

+2(3np 4+ 1) E[Y1t—n, Xt—ny—1 ) E[Y1t—1y Xt—ny—1 X7y 25 A]
+4(3ny + 1) E[Y1 -y Xty =1 E[Y1,0—ny Xi iy 1 X7y 20 A
—2(6n3 + 9np + 2) E[Y1 11y Xi—ny—1) EY1 11y Xty -1 X7y -2 X7y 31 Al
— 20, B[Y1 4y Xty 1) E[Y1 4y Xty -1 X1 1, A]

—2ny(ny — VDE[Y14—ny Xt—ny 1) E[Y1t—ny Xt—ny 1 X7 1 X2 o, A

— A Y1ty Xty 1] E[Y140, X7

t—np—1

X1, 4

+ dny(3np + 1) E[Y1 -y Xi—ny—1 ] EV1t—y Xt—ny—1 X7y 2 X7 1, Al
— 20, B2 (Y1 4y Xty 1| E[ X} 1, A]

+np(np + 2) B2 (Y1 4oy Xty 1| E[XE 1 X7 o, A]

— 8npw2 E[Y1 -y Xt—ny—1 1 E[Y1,t—n, Xi 1, Al

+ 4(3np + 2)wo B[Y1 11, Xi—ny—1) EY1 11y Xt—ny—1 X7y 25 4]

— 812w E[Y1 4y Xt—ny 1) E[Y1 4y Xty -1 X715 A]

BB XE 1A

t—np—1>
+ np(np + Vw3 B[V, Xi—ny—1 Y1 t—np—1Xt—ny -2, Al
— 2n2wo E2[Y1 4y Xt—ny 1) E[XP 1, A
— 2023 EY1 4y Xty 1) E[Y1 -y Xt—np—1, A
+ 2R B[V, Xony 1] P(X € A)]

o[BIV, XE 1 A] = @0+ DB X1 Xy 4]
—2(2ny + 1)E[Y12,t—ant4—nb—1Xt2—nb—2a A
+ (3nf + 61y + 2)E[YE_ 0, X7y 1 X1y 2 X7y 30 Al

nb—3’

- 2(2nb + 1)E[YVLt—nbXf—nb—lyl,t—nb—lXt—nb—27 A]
+ (377% + 6nb + Q)E[Y].,t—’ant—nb—].m,t—’nb—lXt—nb—QX;l—nb—?,7 A]
=220y + DEY 110, Xi iy 1 Y1 -y 1 Xy o, Al

+4(3nf + 6np + 2) E[Y1t—ny Xt—ny—1Y10-ny—1 X7y 2 X7y 35 Al
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— (4n§ + 180 + 2214 + 6) E[Y1 4, Xty 1 Y1ty 1 Xtmny—2 X7y 3 Xy Al

+ nbE[le%t—an2

t—ny

XA+ np(ng + 1)E[Yl2,t—an2

t—mp—

(XD X o, Al
—np(2np + D E[Y1t—ny Xty 1Y t—ny—1Xt—ny—2 X1 1, 4]

—np(ny — 1)(2np + D E[Y14—ny Xt—np—1Y1 t—np—1Xt—ny—2 X7 1 X7, Al

+ 2 E[Y 0, X 1 XP 1, A

— 2np(2np + 1)E[Y12,t—ant2—nb—lXt2—nb—2Xt2—17 A

— dny(2ny + D EY1 -0, X7y 1 Y101 Xt—ny—2 X7 1, Al

+ 214 (30 + 61 + 2) E(Y1 4y Xty 1 Y1—ny—1 Xty -2 X1y, —3X 71, Al

+ 2nbw2E[le2,t—’ant4—nb—l’ A] - 2nb(2nb + 1)w2E[Y12,t—ant2—nb—lXtQ—nb—27 A]

+ 2w B[YY 0 X7 1 X7 1, Al

— dny(np + DwaEY1—n, X7y, 1 Y10-ny—1Xt—ny—2, Al

+ 2ny(n + 3ng + 2) E[Y11—ny Xt—ny—1Y1,1—ny—1 Xt —ny—2 X7, 3. 4]
— 2n2(ny + Vw2 B[V1 -y Ximniy—1Y1t-ny—1 Xt—ny—2 X7 1, A

+ A, EY1 gy Xy~ 1) EY1 40—y X7y 15 4]

— (614 + 4) E[Y11—y Xt—nip—1 1 E[Y1,t—10y Xt —niy 1 X7y 20 A]

— 20 (61 + 4) E[Y1 40y Xt -y~ 1] E[Y1,t-0, X7y 1 X7y 20 Al

+ 2ny(4ng + I, + 4 E[Y1 1y Xi—ny 1 EY1 1y Xty -1 X7y 2 X7y 3 Al
+ AnZ BV 4y Xi—ny 1BV 4y Xi—ny—1 X7 1, A]

+4ni(np — VEY1—ny Xt—ny—1)E[Y14—ny Xt—ny-1 X7 1 X7P o, A

+ 803 E[Y1 4y Xt—ny—1 | E[Y1 40, Xi oy 1 X1, Al

— 4n3 (3np + 2) ENV1 4y Xty 1) ENV ity Xty -1 X7y -2 X1, Al

+ n§E2 [Yl,t—ant—nb—l]E[le—lv Al - n§E2 [Yl,t—ant—nb—I]E[XE—1X3—2» Al

+ 43w B[Y1 ¢y Xty 1) E[Y1 ¢y X7

t—np—1»

A]

—4nZ(ny + Dwo B[V ¢y Xi—ny 1) EY1 by Xty 1 X2 A]

nb—27
+ 4n2w2E[Yl,t—nbXt—nb—1]E[Yl,t—ant—nb—1Xt2—17 A]:|
1 _ _

toalT M EY T, Xp 15 Al + 10 (np + DEYE,p X7y 1 Xy -2, A]

+ 2nb(nb + 1)E[Y12,t—nble—nb—leg—nb—% A]
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- nb(ng + 3np, + 2)E[Y12,t—ant2—nb—lXtQ—nb—2Xt2—nb—37 A]

+ 2np(np + 1)E[Yu_nbXf’_nb_1Y1,t—nb—1Xt—nb—2, A]

— np(ng + 3np + 2) EIY1 4y Xi—ny—1Y1,0—np—1 Xt—ny—2 X7, 3, Al

+ 2np(np + D) EY1 im0, Xi -y 1 Vt—ny—1 X5y 20 A

— dny(ni + 3ny + Q)E[Yl,t—ant—nb—1Y1,t—nb—1Xt3_nb—2Xt2—nb—37 A

+ np(nj + 6np + 11ng + 6)E[Y1 1, Xi—ny—1Y10—np—1 Xt—ny—2 X7y -8 X7y a0 Al
- an[th—anf—nb—1Xt4—nb—2, A

- ’I’L% (nb - 1)E[Y12,t—an2

t—mp—

(XD X o, Al

+nZ(np + V) E[Y1 4y Xt—ny—1Y1 1y -1 Xt—np—2 X711, A

+nd(np + 1) (np — DEY 4y Xt—np—1Y1.t-ny—1 Xty -2 X7 1 X7 9, 4]

- 2ngE_|[Y12,t—an;1—nb—lXt2—l7 Al

+ 2ng (ny + 1)E[Y12,t—ant2—nb—lXt2—nb—2Xt2—17 Al

+ 4ng(np + 1) EY 1=, Xi -y -1 YV10—np—1 Xt—ny—2 X7 1, A

—2n3(ng + 3np + 2) E[Y1 4y, Xi—ny—1Y1,0-ny—1 Xt—ny—2 X7y 3 X7 1, A]
- 2n§E[Yl,t—nbXt—nb—l]E[Yl,t—anz?—nb—l’ Al

+2n2(np + DE[Y14—ny Xty 1) E[Y14—ny Xty 1 X1 A]

np—27
+ 413 (ny + 1) EY1 —ny X—ny—1) EY1 -0, Xi -y 1 X7y 2, Al

— 203 (ng + 31 + 2) E[Y1 10y Xty — 1| E[Y1 40y Xty =1 X7y 2 X7y 30 4]
— 203 E[Y1 4y Xty 1| E[Y10—ny Xt—ny—1 X1 1, A

—2n3(np — VB[V 4y Xt—np—1)E[Y14—ny Xt—ny—1 X7 1 X7 o, A]

- 4”2E[Yl,t—nbXt—nb—l]E[Yl,t—an?—nb—le?—la A

+4ng(ny + 1) EY1 1 ny Xeony ) EY1tny Xoony 1 X7, o X7 1, Al
Next, we expand E[(S3., — w3.5)?(S2n — w2)?, Al:

E[(S3 — wyn)*(San — w2)?, A] = E[S3,,53 ., A] — 2w2 E[S5 .52 5, 4]
— 2w3 , E[S5,,95 ., Al + w3, E[S3 ., A] + dws nw2 E[S3,,92 5, A]

+ w%E[ng, Al — 2w§’nw2E[Sg7n, A] — 2w3 W3 E[S3 1, A] + w?,,nwgP(X €A
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bXt ny— lXt 17A]

1 1 n _
+m <§ — (2 + 1)+ g + 1)> B Xia X1 Xi 20 4]

4
3
=
3
o
|
=
oo|’_‘
|
3
»&@‘
N———
sl

(Vo Xt 1Yo 1 Xt oX;h A]

ny—19

1 Ty
5 5(2711, +1)+ F(nb + 1)>

. E[YZtXt—lY2,t—1Xt—2Xt2—nb—1th—nb—27 Al

Ny —
F(nb - 1)E[Y22,tXt2—1Xt4—2a A]

ny = ny =
+ 2m(”b - 1)E[Y22,tX;1—1Xt2—2’ Al + —(nj — 3ny + 2)E[Y22,tXt2—lXt2—2Xt2—3’ Al

n _
+ 2H(nb —DE[Y2, X))

nt

1}/2,15—1Xt—27 A]

n —
+ n—Z(n% —3np + 2)E[Yo,; Xy 1Yo 1 X 20X} 5, A

Ny —
+ 2H(nb — 1)E[Y2¢th_

Ty —
- 4H(n§ —3ny +2)E

o, 3 2
+ ﬁ(nb — 6nb + 117’1{)

1B,t—1XE_27 A]
[YouXi 1Yo, 1Xp o X7 5, Al

— 6)E[Y2,: X—1Ya 11Xt 2 X7 3 X7 4, Al

1 Ny
+ 2ny (ﬁ " >E[Y2tX;1 X7 ny—15 4]

1

ny
+ 2ny(np — 1) <n3 " >E[Y2tXt X7 X7 ny—1>A]

1

+ 4np(np — 1) <$ — n_> E[YQ tXt 1Yo 1 X 2Xt np— 1, A]

1
2 2_3 2 [ =
2l —3m+2) (o

— 2, R BVE, Xy, A] -

1
— 2UJ2’I’Lb <ﬁ — Zg) E

n _
- 4w2n—g(nb —1)E[Ya,

np
——> EYo X 1Yoy 1 X 2 X7 3 X7

1 A]

ny—1»
%o 2 (ny — 1) E[YZ. X2 X2 .. A
W2n3(nb VEY;, XP 1 Xi o, Al
[Y2tXt 1Xt ny— lvA]

X} Yo 1Xi 9, Al

n _
- 2w2n—§(n2 —3ny +2)E[Yo, X 1Yo 1 Xy 2 X2 5, A

1

Ny

— QCUan(TLb — 1) <ﬁ - —> E[YQ,tXt—l}/2,t—1Xt—2th—nb—l7A]

n3

ny = n —
n—bE[Yz,tXf_u Al - 2W:mn—g(nb — DE[Y2: X1 X} o, A

n _
n—b(nb — DEY2, X7 1 X7 o, A
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n —
- 2w3,nn—b(n§ —3np + 2)EYo Xy 1 X7 5 X7 3, A
1 n _
— 2w3 Ny <—2 - —§> E[Y2,tXt—1X;l—nb—lv A
n n
1 1 1 = 2 2
— 2ws3 My o m@nb +1) + ﬁnb(nb +1) ) E[Y2 Xe 1 Xip, 1 Xiy—2, A
1 ny —
— 4ws pnp (ﬁ - ﬁ) E[Y2,tXt3—1Xt2—nb—lv A

1 ny —
— dws pny(ny — 1) <ﬁ — $> EY2, X4 1 X7 0 X7 1, Al

1 - 1\ -
F B A+ o (1 1) BIXEXE 5. A

ny — n —
;)E[Y27tX?_1, A] + 4&)2&)37””—;(71(, — 1)E[Y27tXt_1Xt2_2, A]

+ 4w2w37n—
n

n _
+ 4(4}2(,037””—12)(71 — nb)E[YQ,tXt—leg—nb—la A]

ny —

n _
+ w3 B [Y3XE,, A + wgn—;’(nb —1)E [Ya Xy 1Yo 1 X9, Al

=

n
_ ny —

— 2wywd  B[X2 1, A] - ngwg,nzbE[Yg,tXt_l, Al +wdw?  P(X € A).

The truncated expectation of (S5, — W3,n)2(527n — wy)? is as follows:

_ 1 _
o E[(S3n —wsn)?(Son —w2)?, A = — Y3 X\ X7 1 X7y 20 Al

+ np(np — 1)E[Yz,tXt—1Y2,t—1Xt—2Xt2_nb_1Xt2_nb_2, A]

- 2”bW2E[Y22,tXt2—1Xt2—nb—17 A]
— 2np(np — 1)W2E[Y2,tXt—lY2,t—1Xt—2Xt2—nb—l7 A
— 2 E[Ya Xy | E[Yo Xe 1 X7y 1 X7y 20 Al
+np B?[Yo, Xy 1] E[X7 1 X7 9, Al + Anjwo E[Y Xy 1| E[Ya Xo o1 X7y -1, Al
+ w3 E[Y5, X7 1, Al + ny(np — Vw3 E[Ya Xy -1Ya-1 X2, A]
— 2nZwy B2Yo X 1|E[XE 1, Al — 203W3E (Yo, X 1] E[Ya: X1, A]
+ njwiE2(Ye,: X 1|P(X € A)
+% [”bE[Y;,tXtQ—le—nb—la Al =y (2 + D EY5, X7 X7y 1 X7y -2, Al
+rp(np — DE[Yo, Xe1Ya 1 X2 X7, 1, Al

— np(ny — 1) (2np + 1) E[Yay Xi 1Yo i1 X2 X7y 1 X7y 20 Al
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+ 2 B3 X3y X, 1 AL+ 200 (i — DEYG XE XE 5 X2, 1, Al

ny—19 ny—1»

+ dnp(ny — 1) E[Yo Xy 1Yo 1 X7 o X7 A]

np—1s
+ 2ny(nj — 3ny + Q)E_[YQ,tXt—lY2,t—1Xt—2Xt2_3Xt2_nb_1, A

- 2nbw2E[Y2%tXf‘_l, Al = 2ny(ny — 1)w2E[Y2%tXt2_le_2, Al

+ 2njwo E[Y5 X7 X7 1 Al — Ang(ny — Dwa E[Y2, X7 Yo 1 X2, Al
— 2ny(ng — 3np + 2)wa E[Yo Xo 1Yoy 1Xs- 2 X7 3, Al

+2n7 (ny — Vw2 E[Ya Xy 1Yoy 1 X2 X7, 1, Al

— 2IE Yo Xy 1|E[Yo,: X 1 X}- A

ny—1»

+ 203 (20, + 1) EYay Xo 1| EYay Xe 1 X7, 1 Xy 20 Al

— A E[Y2 Xy | E[Yo X} X7y 1, Al
— dng(ny — 1)E[Yo, Xy 1] E[Yo X4 1 X7 5 X7 1,1, Al
+ B [Yo X; | E[X[y, Al — nf B?[Ya, X | E[X7 1 X[ o, A
+ dntws E[Yo, Xy 1) E[Yo, X} 1, A]
+4ni(ny — DwoE[Ya Xy 1| E[You Xt 1 X7 o, Al
— Anduwn E[Ya Xy 1] E[Ya X 1 X2, 1, A]]
o[- mEEDEXE XL

Al + nj(ny + 1)E[Y§2,tXt2—1th2—nb—1th2— A

ny—1» nb—27

—ni(ny — 1)E[Yo,; Xt 1Yo 1 X 2 X} A]

np—1s
+np(ny — 1) (ny + D E[Ya Xy 1Yoy 1 X2 X7, 1 X7 ny—2 Al
+ nbE[Y22,tXtG—17 Al + np(ny — 1)E_[Y22,tXt2—1Xt4—27 Al

+ 2ny(ny, — DE[Y5, X XP 5, A

+ np(ng — 3np + 2)E[Y22,tXt2—1Xt2—2Xt2—3’ Al

+ 2ny(ny — 1) E[Yo 1 Xt 1Yo 1 X7 o, Al

+ np(ng — 3np + 2) E[Ya 1 X¢—1Ya 1 1 Xi—2 X[ 5, Al

+ 2ny(ny — 1) E[Yo X7 Yor 1 X7 o, Al

+ dny(ng — 3np + 2)E[Ya Xi—1Ya 11X o X7 5, Al

+np(ng — 6nf 4+ 11ny — 6)E[Yo Xy 1Yo 1 X 2 X7 3 X7 4, A

- QHEE[YS,tX;l—lXE—nb—h Al - 2“3(7% - 1)E[Y22,tXt2—1Xt2—2Xt2—nb—17 A



488

—dni(ny — V)E[Yo Xy 1Yoy 1 X2 X7 A

ny—19

—2nZ(nd —3np + 2)E[Ya, Xy 1Yoy 1 Xy o X7 3 X7 A

ny—1s
— 23 EYo X 1|E[Ya X7 1, A] — 202 (np — 1) E[Yo, Xi1|E[Ya, Xi 1 X/, A
—dnd(np — 1) B[Yo X 1| E[Ya, X2 1 X7 5, A

—2nZ(ng — 3np + 2)E[Ya, Xy 1| E[Yo, X 1 X2 5 X} 5, A

+ 20y E[Y2 Xy 1] E[Yo Xo1 X{,, 1, Al

— 203 (np + 1) E[You Xo 1) E[Yay Xe-1 X7y 1 X7y —20 4]

A BYa Xo 1| E[Ya  Xiy Xy, 1, Al

ny—1»

+4nd(ny — 1) E[Yo, X; 1) E[Ya,: Xs 1 X2 o X2 All.

nb—l’
The truncated expectation of (S4, — W4)2(527n — w9)? is as follows:

o E[(Syn—wa)*(Som —w2)?, Al = [WSE[thXt—le,t—lXt—z, A]
— 2wy F2(Yo,; X 1|E[X}? 1, A] — 2W3E Y2, X 1| E[Yo: Xt 1, Al
+ WIFE?(Yo, Xt 1]P(X € A) — 2waE[Ya Xy 1Yoy 1 Xy 2 X7 5, A]
+ 4w E[Yo Xy 1]E[Yo Xy 1 X7P o, Al + E[Yo, Xy 1Yoy 1 X o X2 3 X7 4, A
— 2B[Yo Xt 1|E[Ya Xy 1 X7 o X2 5, A]
+% [ng[Yz%tXE_l, A — w2E[Ya Xy 1Yoy 1Xs—a, Al
— 2w E[YZ, XP 1 X} 5, Al — 4ws E[Y2, X} | Yoy 1 Xy 2, Al
+ 6wa E[Y2 1 Xe 1Yoy 1 X4 9 X} 3, A] — 2E[Y, Xy 1]E[Yo, X; 1 X}, 1, A]
+ E*[Yo Xy 1] E[X} 1, A] + 4wa E[Yo: Xy 1) E[Yo, X} 1, A
— 4w E[Ya Xy 1|E[Ya 1 Xy 1 X7 o, A + E[Y5, X7 X7 5 X7 5, A
+ E[Y2y X 1Yo 1 X o X} g, Al + AE[Y2, Xy 1Yo 1 X} o XP 5, Al
—6E[Yo Xy 1Yoy 1 Xt o X7 3 X7 4, A] = 2E[Yo X 1| E[Ya, Xi 1 X1, A
— AB[Yy Xy 1) E[Ya, X2 | X2 o, Al + 6E[Va, Xi_1]E[Va, X1 1 X2 o X2 A]]
+% — 2w B3 X1, Al + 2w E[YZ, XP 1 X7 5, Al

+ 4w E[Y2 X} 1Yoy 1Xi—0, Al — dwa E[Yo Xo 1Yo 1 X4 2 X7 5, A]
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+ E[Y22,tXt2—1Xt4—2’ Al + QE[YQQ,thl—lXtQ—% A
— 3E[Y5, Xi 1 Xi o X5, Al + 2B (Y2, Xy 1Yo -1 X7 o, Al
— 3E[Yo Xt 1Yoy 1 Xt oXi 5, Al + 2E[Yo, X2 Yo, 1 X2 5, A]
—12E[Y2, Xy 1Yo 1 X7 o X7 5, Al + 1E[Yo, Xy 1Yoy 1 Xy o X7 3 X7 4, Al
—2E[Y2, Xy 1|E[Yo X7 1, Al + 2E[Ya, Xy 1| E[Y2, X 1 X} 5, A
+4E[Y2; X 1| E[You X7 | X7 o, A] — 4E[Yo, Xy 1| E[Ya, X 1 X} o X7 5, A]]
‘1‘% E[Y3, X 1, Al = B3 X7 1 X; o, A] = 2E[Y34, X1 X7 5, Al
+ 2E[Y22,tXt2—1Xt2—2Xt2—37 Al = 2E[Y24 Xy 1Yo 1 X} 5, Al
+2E[Y2 1 Xe 1Yoy 1 Xe 0 X} 3, A] = 2E[Y5, X7 Yoy 1 X} 5, A

+8E Yo Xy 1Yo 1 X} o X7 5, Al — 6E (Yo, Xy 1Yo 1 X o X7 3 X7 4, Al
Next, we expand E[(S1, — win)(S2n — w2)?(S3.0 — w3n), A

E[(Sl,n - wl,n)(52,n - w2)2(S3,n - W3,n)a A] = E[Sl,nsg,ns&m A] - wl,nE[S%,nS?’v"’ A]
— 2W2E[Sl,n52,ns3,n, A] — W3,nE[Sl,nS§,m A] + 2(4)1,11(02E[S2,n53,n) A]
+ w%E[Sl,nS&n, A] + wan?,,nE[S% n A] + 2w2w3,nE[Sl,nS2,m A] - wl,nng[S&m A]

— 201 yWaw3 B[Sy A] — wW3w3 0 E[S1 5, A] + w1 nwiws n P(X € A)
1 n
=ny, (—3 — b) EY2y X4 1Y1pn, X7 15 A
n nt
1 1 - 4
+np 2 (2nb +1)+ " (nb +1) ) EY2,: Xe-1Y10-n, Xt—ny -1 X4, 25 A
1 1 ngy — 3 2
+ 2ny, i $(2nb +1)+ H(nb +1) E[YQ,tXt—lYl,t—ant—nb—lXt—nb—27 A
1 3 1

: E[Yz,tXt_lYl,t_nbxt_m,_1X5_n,,_2XE_nb_3, Al

+ g < > V1t Xty 2 Y2 X7y, A]

1 n
+ np(n b—1)< B nb> [Ylt ny Xt—ny-1Y2,0 X 1Xt 2 4]

1 n _
+ 2np(np — 1) <$ — n—Z) E[Yl,t—nbXt—nb—IYQ,tth—lXE—Q7A]
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1

Ny
+nb(n§—3nb+2) <$— ’I’L_> [Ylt ant ny— l}/étXt lXt 2Xt 37A]

1 n
-+ 2ny <$— nb> [Ylt ant np— 1Y2tXt 15 A]

1 n
+ 2np(ny — 1) (ﬁ - nb> E[Y1- anf’_nb_lYg,tXt_le_%A]
1 1 np — 2 3
+2np | 5 = 5@y + 1) + 7 (np + 1) | B0, Xe—n, 1 Xi"n, 2 V20 X071, 4]
1
2 -1 2 1 1
+ 2 (np )(nz 32+ 1) + (nb+ )>

E[Y1 1y Xt—ny—1 X7y —2Y2u Xt 1 X7 9, Al

p
n3

_ n _
winE[Ya X7 1, Al - n—g(nb — DwinBY2 1 Xi-1X; o, A]

n —
— Zn—g(nb — D1 o E[Yay X 1 X7 o, Al

n —
- n—é(ni = 3np + 2w E[Ya Xe 1 X7 5 X7 5, A
1 Ty =
— Ny <ﬁ — m) Wl,nE[YQ,tXt—lX;l—nb—la A]

1 1 1 _
—ny, <E —3 2y 1) + —gmp(n + 1)> Wi BYa Xe 1 XP o, 1 Xy, o, Al
1 n _
— 2ny, <_2 - _g> wl,TLE[YZtXE—lXE—nb—l’ A]
n n
T ny = 2 2
—2np(np — 1) 573 Wl,nE[YQ,tXt—lXt—2Xt—nb—17A]
1 n _
- 2nb <ﬁ - Tl_g> WQE[Y2,tXt—lY1,t—ant3—nb—l7 A]

1 1 1 _
— 2 <E = (2np + 1)+ (np + 1) 5 > W2 B (Y2 Xe 1 Vitny Xty -1 X7, o, A]

1 n
— 2ny, <ﬁ n§>w2E[Y1t iy Xt—ny—1Y2: X7 1, A

1 n
— 2nb(nb — 1) <— ng) WQE[Ylt ant ny— 1Y tXt lXt 27A]
1 Ny =
— <m - ﬁ) w3,nE[Y1,t—ant5_nb—lv A]
1 1 1 = 4
— (=~ —(an +1)+ n—nb(nb +1) ) w3 Y1ty Xt—ny-1X4—p, —25 A

1 1 1 —
) <E - —(an +1)+ = np(ngy + 1)> wS,nE[Yl,t—anf—nb—lXt2—nb—27A]

3 1 Ny
- <1 — E(nb +1)+ E(Z + 6ny, + 3n7) — 5(2 + 3ny, —I—ng)>
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n 2 2
w3 n Bty Xty —1XG 0 Xi 35 Al

1 n —
— Ny <_ B Tl_g> w3,nE[Y1,t—ant—”b_1X;l—1’A]

1 n —
- nb(nb - ]-) <m - n_§> W3,nE[Y1,t—ant—nb—lth_1Xt2_27 A]

1 ny —
— 2ny <— - —> W30 EY1 -, X7y 1 X7 1, Al
n n
1 1 1 = 2 2
— 2ny, E - ﬁ@nb + 1) + ﬁnb(nb + 1) w3,”E[Yl,t—ant—nb—1Xt—nb—2Xt—l’ A]

n — n —
+ 2n_gw1,”w2E[Y27tXt3—l’ A] + Qn—g(nb — 1)UJ1,”LU2E[Y2,tXt_1Xt2_2, A]

A

ny—1s

n _

+ 2n—;’(n — np)wi1nwaB[Yo 1 X1 X7
1 n =

+ nyp <ﬁ - n_l2)> W3 EY1 iy Xi—ny—1Y2,: X1, Al

1 _ 1 _
+ gwl,nws,nE[Xf_uA] + (1 - 5) winw3n BIX7 1 X7 5, Al

1 n _
+2 <E - n—é’) wWow 0 B[Y1 iy X1, Al

1 n _
+2 <1 - 5(27% +1)+ n—g(nb + 1)) wow3 n EY1 4y Xi—ny—1X7 ny 2, Al

1 n — ny —
+ an <E - n_12)> w2w3,nE[Y1,t—ant—nb—].th—l7 A] - C()l’nw%zbE[YZtXt_l, A]

_ n _
— Qw1 pwows W B[XE |, A] - (1 - Zb) 2w E[Y1tny Xtomy—1, Al

+ wl,nw%wg,nP(X S A)
The truncated expectation of (S, — win)(S2n — wg)Q(ng — ws3p) is as follows:

o E[(S1n—win)(Som— wg)Q(ng —w3p), A
z% [E[YQ,tXt_1Yl,t_ant_nb_1X§_nb_2X§_nb_3, Al
— EY14—ny Xt—ny—1) EYou Xe 1 X7y 1 X7y 2 Al
— 2w E[Yo X1 Y1ty Xty -1 X7y 20 Al
— E[Y2, Xe—1)EV1 =y Xt—ny=1 X7y 2 X7y 35 Al
+ 2W2E[Y1,t—ant—nb—1]E[Y2,tXt—1th_nb_1, Al 4+ W3EY1 4y Xty 1Yo, Xi 1, A

+ E[Y1t—ny Xt—ny—1|EY2: Xe 1] E[X7 1 X7 5, A]
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+ 2w E[Y2 4 Xo 1] EY1 t -y Xt—ny—1 X7y 20 Al

np—27
— W3 B4y Xt—ny—1]E[Yo1 Xi—1, A]

— 209 E[V1 4y Xty 1) E[Yor Xs 1| E[ X7 1, A]
— WSE[Yo Xt 1|E[Y1 4y Xi—ny—1, A

+ W E[Y1 4y Xi—ny—1)E[Y2: Xi—1]P(X € A)

ny

+3 EYo: Xt 1 Y14y Xt—ny 1 X1 A

nb—2’

+ 2E[Vo 1 Xt 1Y14—ny X} X2

t—mp—

ny—2> Al

—3(np + D E[Y2, X1 Y11y Xt—ny—1 X7y -2 X7y 5 Al

+ 2BYo, X7 Y1ty Xtmny—1 X7y 20 Al

+ 2(np — 1)E_[YQ,tXt—lth_QYl,t—ant—nb—lth—nb—27 A

— E[Ylvt_nbXt—nb—l]E[YQ,tXt—lel—nb—17 A

+ nbE[YLt_ant_nb—1]E[Y2,tXt—1Xt2_nb—1Xt2—nb—2v A]

+ (2np + 1)E[Y1,t—nbXt—nb—l]E[Y2,tXt—1Xt2—nb—1Xt2—"b—2’ Al

— 2E[Y1 4y Xty 1| E[Y2: X7 | X7 A

ny—1

= 2(np = V) E[Y1t—n, Xe—ny 1] E[Yo, Xe1 X7 5 X710 A

ny—1s
— 2wy E[Yo X4 1 Y140, Xy 15 4]

+2(2np + Vw2 E[Y24 Xi-1 Y1 1—ny Xt—np—1 X7y 2, Al
— 2w E[Yo 1 X7 Y14y Xi—ny—1, A

—2(ny — Dwa E[Ya, Xy 1 X2 9Y1 4y Xtny—1, A

— E[Y2, Xe-1)EY1—ny Xt—np—1 X1y 2, Al

— 2E[Y24 Xt 1) EY14—n, X{ 1 X7E A

nb—27

+3(np + D EY2 1 Xt 1 EY1 ity Xtny 1 X7y, 0 Xy 5, Al

— 2n B(Y2 Xt 1) EMV1 gy Xt—ny—1 X7y 2 X7 1, Al
+ 2w B[Y1 4y Xt —ny—1|E[Y2, X3 1, A]

+2(np — w2 B[Y1 t—ny Xi—ny—1|E[Y2,: X1 X7 5, A]
— 2mpw2 E[Y1 t—py Xi—ny—1 ) E[Y2, Xem1 X7y 1, Al

- anng[YLt_ant_nb_1]E[Y2,tXt—1Xt2—nb—1» Al
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— w3 E[Yo : Xi 1Y1 4y Xtny—1, Al + EY1.4—ny Xty 1] E[You Xe 1) E[X} 1, A
— i EY1t -, Xt ny 1) EYa Xy 1] E[X7 X7 o, Al
— EY14-ny Xt—ny—1)E[You X 1| E[X? 1 X2 o, A]
+ 2wy E[Yo Xy 1] E[Y1 -, Xi y 1, A
—2(2np + Do B[Ya, Xy 1) EY1 4y Xo—ny—1 X2y _o, Al
+ 2nywo B[Y2 Xy 1) E[Y1 -y Xt —ny—1 X7 1, Al
+ w3 B[Y1 4y Xty 1] E[Y2: Xy 1, A]
+ 204w E[Y1 ¢y Xo—ny—1) E[Yo 1 Xy 1] E[X7 1, A]
+ npws B[Ya Xi 1) E[Y14—ny Xt—ny—1, A
— R B[Y1 4y Xt—ny—1]E[Y2,: X 1]P(X € A)
"‘% EY2 Xi-1Y14—n, Xi -1, 4]
— (2np + 1) E[Y2, X4 1Y1,—ny Xt—ny—1X7p, 2, A]
—2(2np + 1) E[Y2, X4 1Y1,0-n, Xi -y 1 X7y 20 Al
+ (3n2 4 6np + 2) E[Yo s Xt 1Y1tony Xty 1X2 1 0 X2 1 3, A

nb—2 nb—37

+ BNty Xtny-1Y22 X7 1, Al + (ny — DEY1 4, Xyony—1Y2, X1 X[ o, Al
+2(np — 1) E[Y 4y Xt—ny—1Yo,: Xp 1 X7 0, Al

+ (nF — 3np + 2)E[Y1 4y Xt—np—1Yo s Xe 1 X7 o X7 5, A]

+ 2BV 4, X7y 1Yo, X7 1L A

+2(ny — DE[Y1 10, Xi oy 1 Y20 X1 X7 o, Al

—2(2np + 1) E[Y1 t—n, Xi—ny-1 X7y 2 Yo, X7 1, A]

—2(np — 1)(2np + 1) EY1 p—ny Xi—ny—1 X7, 2V2: Xe 1 X7 5, Al
— EY14ny Xi—ny—1)E[Y2, X7 1, A]

— (np — V) E[Y14-ny Xt—ny—1)E[Your X 1 X} o, A]

—2(np — 1) E[Y1 4y Xt—ny 1) E[Yor X7 1 X2 o, A]

— (nf = 3ny +2)E[Y14—ny Xi—ny—1)E[Yo 1 Xo 1 X7 o X7 5, A]

+ B [Y1t—y Xi—ny—1 | E[Yo, Xe—1 X[, 1, Al

+ 0 E[Y1 4y Xi—ny 1| E[Yo, Xeo1 X[, 1, Al
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—np(2np + D E[Y14n, Xt—ny—1]E[Y2s Xe 1 X7y 1 XP 00 Al

— np(np + DEY1t—ny Xt—ny 1] E[Yo, Xe 1 X7y 1 X7y 00 Al
+ 20, B[Y1 iy Xty 1| E[You X7 1 XP 0, 1, Al

+ 20, B[Y1 iy Xty 1| E[You X7 1 XP 0, 1, Al

+ 2np(ny — D) E[Y1t—p, Xe—ny—1|E[Yo, Xem1 X7 0 X7y 10 Al
+ 2np(ny — D E[Y1 0y Xo—ny 1| E[Yo, Xeo1 X7 0 X7y 1, Al
+ 2npwo E[Y2 X 1 Y1 4ony Xi 15 4]

— 2n(np + Dws EY21 X0 1Y 4y Xomny—1 X7, 0, Al

np—27
+ 2n4wo E[Y1 4y Xty 1Yot X7 1, Al

+ 2np(np — D)wa B[Y1 -y Xi—ny—1Y21 Xi—1 X7 o, A
— E[Y2,: Xe—1]EY14—n, Xy 15 4]

+ (2np + 1)E[Y2,tXt—1]E[Yl,t—ant—nb—lel—nb—27 A

+2(2ny + D) E[Y2, X4 1]EY1 40, X7y 1 X7y 2, Al

— (3ng + 61y + 2) ENYu Xy 1) E[Y1 11y Xi—ny—1 X7y -0 X7y 3, Al
— B (Y2 X1 EY1 1y Xtmny—1 X7 1, Al

—np(np — D E[Yo Xy 1| E[Y 4y Xty 1 X7 1 X7 o, A]

— 2y E[Yau Xt 1) EV1 4oy Xib oy 1 X7 1, Al

+ 214 (2ny + 1)E[Y2,tXt—1]E[Yl,t—ant—nb—1Xt2_nb—2Xt2—17 A

— 2npwo B Y1 4y Xty 1) E[Y2, X} 1, A

— 2np(np — Vw2 E[Y1 4—ny Xi—ny—1]E[Yo 1 Xt 1 X7 o, A]

+ 203w EY1 t—py Xy 1) EYo, Xe 1 X7, 10 A

— BVt Xt—ny—1) EY2, X 1] E[X} 1, A

+ BVt Xty 1| E[Ya X 1] E[XP X7 o, Al

— 2mpwa E[Ya 1 Xy 1] E[Y1 40, X}

t—np—1»

+ 2n(np + Dws E[Y21: Xo 1) BV gy Xt—ny—1 X7y 2, Al

A]

— 23wo B [Ya 1 Xt 1| E[Y14—ny Xi—ny-1 X7 1, 4]
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_l’_

|3
N (Sl V]

v B2 X4 1Y14—n, Xy 15 4]

+ (np + D EY2 1 X0 1Y 4oy Xty -1 X7y 20 A]

+2(np + 1)E_[Y2,tXt—1Y1,t—nbXf’_nb—1Xt2—nb—27 A

— (3ng + 61y + 2) E[Ya 1 Xy 1 Y140, Xt—ny—1 X7y 2 X7 -y 30 Al
— E[Y1 4y Xt—ny—1Y21 X7 1, Al — (np — DVEY1 t—ny Xt—ny—1 Y21 Xe—1 X7 o, A
—2(np — 1) E[Y1 1y Xi—ny—1You Xp 1 X7 9, Al

— (g = 3np + 2)E[Y 1y Xt—ny—1Yo,: X1 X7 0 X7 5, Al

= 2E[Y1 1m0, X{ 1y 1 Y2u X{ 1, A

—2(np — 1)E_'[Yl,t_antg_nb_1Y2,tXt—1Xt2—27 A

+2(np + 1)E_[Y1,t—ant—nb—1Xt2—nb—2Y2,tXt3—17 A

+2(ny — 1) (np + 1) E[Y1 1y Xt—ny—1 X7y 2 Y20 Xe—1 X7 o, Al
+ E[Y1 -y Xt—ny—1)E[Yo X7 1, Al

+ (np — V) E[Y1 4y Xt—ny—1)E[Ya 1 Xi—1 X} o, A]

+2(np — 1)E[Yi 4y Xp—ny—1] E[Yo, X7 1 X7 g, Al

+ (nf — 3np + 2)ENV1 1, Xiny 1| EYa Xy 1 X7 0 X7 3, A

— pEY1 4y Xty 1] E[Y2u Xe 1 XiE o, Al

ny—1°
+ (i + DEY1tny Xeny—1 | E[Yo, Xe 1 X7y 1 X7y -2 Al
— 20 E(Y1 4y Xi—ny—1) E[Y2u X7 1 X7, 1, Al

= 2ny(ny — 1) E[Y1 4y, Xi—ny—1 | E[Yo, Xem1 X7 0 X7y 1, Al
+ E[Y2, X4 1]EY 40y X{ y 15 Al

— (np + 1) EYay X4 1] E[Y1,0-1y Xt—ny—1X7p, 20 A]

—2(ny + 1) E[Yo, X¢ 1] B[V 4n, X}

1 X2, Al

nb—27

+ (nj + 30y + 2)ENY2 3 X4 A]EY1 4y Xo—ny—1 X7y 2 X7y 3 Al
+ B [Y21 Xy 1] EYpny Xtny 1 X1, Al

+np(ny — V)E[Ya Xi 1] E[Y14—ny Xt—ny—1 Xp 1 XP o, A

+ 2y E[Y2 1 Xo 1) E[Y1 40, X{ 1 X715 Al

— 2np(np + 1)E[Y2,tXt—l]E[Yl,t—ant—nb—lXt2—nb—2Xt2—17 Al
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Appendix F

Appendix for Chapter §

The following proposition was obtained from [18].
Proposition F.1 Let X1,---, X, be i.i.d. real valued random variables. If E| X1}/ < oo,
J = 2, then there are constants C; > 0 and D; > 0 such that
E|X — uf < CE|X1Pn79/2,
|E(X — p)| < D;E|X1[in~UFD2 5 odd,
The following lemma is from [76].

Lemma F.2 (Hurt) Let i1,---,i, be nonnegative real numbers, > _ i = j, j > 0,

and X1, -+, X, be random variables. Then

. . L . Y1/4
BLIX 1% < {[BIX P (B P

assuming only that the moments exist.
The following theorem was obtained from [94], p.154.

Theorem F.3 If X, L X and | Xn| <Y with Y integrable, then X is integrable, and
E[X,] — E[X].
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