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Abstract

We investigate the effects of model misspecification and stochastic dynamics in the prob-

lem of forecasting. In economics and many fields of engineering, many researchers are

guilty of the dangerous practice of treating their mathematical models as the true data

generating mechanisms responsible for the observed phenomena and downplaying or omit-

ting all together the important step of model verification. In recent years, econometri-

cians have acknowledged the need to account for model misspecification in the problems

of estimation and forecasting. In particular, a large body of work has emerged to ad-

dress properties of estimators under model misspecification, along with a plethora of

misspecification testing methodologies. In this work, we investigate the combined effects

of model misspecification and various types of stochastic dynamics on forecasts based on

linear regression models. The data generating process (DGP) is assumed unknown to the

forecaster except for the nature of process dependencies, i.e., independent identically dis-

tributed, covariance stationary, or nonstationary. Estimation is carried out by means of

ordinary least squares, and forecasts are evaluated with the mean squared forecast error

(MSFE) or mean square error of prediction. We investigate the sample size dependence

of the MSFE. For this purpose, we develop an algorithm to approximate the MSFE by

an expression depending only on the sample size n and moments of the processes. The

approximation is constructed by Taylor series expansions of the squared forecast error

which do not require knowledge of the functional form of the DGP. The approximation

can be used to determine the existence of optimal observation windows which result in

the minimum MSFE. We assess the accuracy of the approximating algorithm with Monte

Carlo experiments.
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Chapter 1

Introduction

The two main objectives in the fields of engineering, the social sciences, and the natu-

ral sciences are description of phenomena and prediction of phenomena. In engineering

and most of the natural sciences, the ability to perform controlled experiments is of fun-

damental importance for testing theories and building models that explain underlying

relationships. For most of the social sciences, and in particular for economics, researchers

lack the important tool of repetitive experimentation. This missing link between empir-

ical reality and theoretical modeling has been regarded as a considerable handicap in

the development of economics as a science. Two influential developments in the early

twentieth century addressed this quandary: the introduction of formal probability the-

ory in economic modeling, and the development of the field of econometric forecasting.

Probability based models allow for statistical hypothesis testing to evaluate results from

estimation. Econometric forecasting, and in particular the use of out of sample forecasts,

have become indispensable in the use of empirical studies to validate theoretical models.

The aim of this thesis is to answer the question: How much past data is optimal to

use in the construction of a forecast? Our approach to the subject is to use tools from

econometrics to determine the dependence of a common evaluation scheme, the mean

square forecast error, on the sample size.

Many forecasting methodologies have been developed, with the most commonly used

being time series and econometric models [9, 32]. A strategy for building forecasts must

include three major steps: specification, estimation, and verification. In the work that

follows, we keep with the convention of simplicity and specify linear models. Standard

practice in estimation makes use of three possible mechanisms to determine the temporal
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significance of data: one is to use an expanding window, which includes all available data

to form estimators; a second is to apply a rolling window of fixed size; the third applies

a predetermined monotonic decreasing weighting function. These procedures are ad hoc

with no basis for their application other than the researcher’s intuition. Verification can

consist of evaluating a forecast constructed with the estimated model by comparing the

forecast to realizations outside the estimation sample.

Determining the temporal significance of data for the problems of estimation and

forecasting is of great consequence for optimal accuracy. The most intuitive reason for

this is that data may simply “get too old” to be informative, and in many cases may,

in fact, hinder the discovery of the underlying relationships. This phenomena manifests

itself, for example, in certain types of bias of estimators. The characteristic which encom-

passes the evolving nature of data is the dynamics of the data generating process. For

the mathematical description of stochastic processes, the dynamics are summarized by

the probability joint distribution. Mathematical convention categorizes process dynamics

based on the joint distribution as either stationary or nonstationary. Proper selection

of data is clearly an important matter for estimation and forecasting when considering

nonstationary processes which are characterized by the dynamic nature of the joint dis-

tribution. For example, structural breaks in economic data due to institutional, political,

financial, and technological changes are well documented [3, 13, 32, 33, 53, 139] and can

lead to serious bias in estimation and unacceptable prediction errors. Less intuitive is the

need to be concern about the temporal significance of data in the case of stationary pro-

cesses which are generated by constant probability structures. Data temporal significance

has ramifications for the treatment of stationary processes when model misspecification

is inevitable. The concept of misspecification arises from the acknowledgment that re-

searchers in general work with models of the data generating processes which suffer from

discrepancies. For the treatment of economics, this idea is best described by White in

[152],

Because of the exceeding complexity of economic behavior, because of

the extreme difficulty of measuring or even properly defining relevant aspects

of economic phenomena, and because the economist typically has little or

no control over the economic phenomenon under study, economic theory is
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fundamentally and inherently limited in the degree to which it can describe

economic reality or make legitimate falsifiable statements about economic

reality. Because the empirical economist must deal with nature in all her

complexity, it is optimistic in the extreme to hope or believe that standard

parametric economic models or probability models are sufficiently adequate

to capture this complexity.

A realistic attitude in such circumstances is that an economic model or a

probability model is in fact only a more or less crude approximation to what-

ever might be the ”true” relationships among the observed data, rather than

necessarily providing an accurate description of either the actual economic

or probabilistic relationships. Consequently, it is necessary to view economic

and/or probability models as misspecified to some greater or lesser degree.

The ramifications of model misspecification for estimation have been studied mainly

for linear regression models of non-stochastic variables under a very restricted class model

misspecifications [20, 72, 73, 80, 98, 108, 120, 121, 124, 145, 146, 157]. More generally,

the work in [43, 149, 150, 152] addresses stochastic process and provides large sample

properties of estimators, such as the quasi-maximum likelihood estimator, ordinary least

squares and weighted least squares, in the presence of general model misspecifications.

In this work, the goal is to construct a data based procedure for determining the tem-

poral significance of data for the problem of forecasting. In particular, we are interested

in the behavior of forecast evaluating schemes for finite size samples. To do this, we

develop a forecasting strategy which integrates the estimation and verification steps into

one step. We now describe this strategy. As mentioned, the model is specified as a linear

regression of observed stochastic processes, {Xτ}, that act as explanatory variables for

the dependent stochastic process, {Yτ}. The regression parameters are estimated with

the ordinary least squares (OLS) estimator. At this point in most forecasting strategies,

the OLS estimator is completely defined as a function of the most recent or available n

observations of the processes, and the estimation procedure is finished. In our strategy,

the value of n is a variable to be determined in the verification step. As such, the OLS

estimator is implicitly a function of the variable n. The one step ahead forecast Ŷt+1,n at

the origin t of the variable Yt+1 is given by the linear form of the regression and by using
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the OLS. Again, the forecast, through the OLS, is implicitly a function of the variable n.

As in much of the literature, [32, 33], the forecast evaluating scheme of choice is the mean

square forecast error (MSFE), defined as MSFEt,n = E[(Yt−1 − Ŷt+1,n)2], and, through

the forecast, the MSFE is implicitly a function of the variable n. The verification and

estimation steps are linked together by the determination of n. The optimal value of n is

determined in the verification stage by evaluating the forecast performance by means of

the MSFE. For this, we define an optimal observation window of size n?, as the solution

to the optimization problem:

min
n∈N+

MSFEt,n.

n? can be either finite or infinite1. The case when n? is infinite implies all data available

should be used for forecasting. The case when n? is finite describes the optimal continuous

compact observation window to be used for forecasting. The key question is therefore to

study the behavior of the MSFE as a function of the sample size variable n. Analyzing

the sample size dependence (SSD) of the MSFE is a difficult task, especially under the

assumption of misspecification. The significance of misspecification in forecasting has

been studied in [16, 17, 91, 126]. This work gives expressions for the MSFE that only

apply to the case where the data generating process is known to be an autoregressive

process of order m and the forecast is constructed with a model which is an autoregressive

process of order p 6= m. Clearly this violates our assumption of not knowing the functional

form of the data generating process in the course of the analysis.

Up to now, no method has been developed to study the SSD of the unconditional

MSFE2. In the chapters to follow, we construct an approximation of the MSFE for

forecasting problems involving processes with different types of stochastic dependencies

which can be used to study the SSD under the assumption arbitrary misspecifications.

1If the minimum MSFE occurs at more than one value of n, n
? refers to the smallest value of n.

2In [113] the authors obtain a first order approximation for the MSFE under the assumption of i.i.d.
normally distributed processes.
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1.1 Outline and contributions

The thesis is organized into nine chapters. Chapter 2 presents basic concepts of fore-

casting, e.g. methodologies, principles, and definitions, and introduces the main problem

of interest. Section 2.2 provides a historic exposition of important developments in eco-

nomic forecasting. Section 2.3 describes different forecasting methodologies. Section 2.4

describes the forecast problem of predicting an unknown data generating process us-

ing a linear forecasting model. Section 2.5 provides a short exposition on the subject

of misspecification in terms of density functions. Section 2.6 presents some motivating

examples and section 2.7 provides theoretical intuition for the problem of determining

optimal observation widows.

Chapter 3 presents notation of probability, random variables, and expectations. The

concept of truncated expectation, and properties based on the standard notation of ex-

pectations are developed. Truncated expectations are crucial to the development of the

forecasting algorithms based on Taylor approximations which are presented in chapters

to follow.

Chapter 4 presents an algorithm to approximate the expectation of functions of ran-

dom variables based on Taylor series expansions. The technique is used in Chapters 5,

6, and 7 to approximate the mean square forecast error (MSFE).

Chapter 5 presents the algorithm which yields an approximation of the MSFE for

a forecasting problem involving independent and identically distributed processes. This

Taylor algorithm approximation is meant to be used as a tool to describe the sample

size dependence (SSD) of the MSFE. Section 5.2 reviews some properties of the OLS and

MSFE under the assumption of a correctly specified forecast model. Section 5.3 describes

properties of the ordinary least squares (OLS) under the assumption of a functionally

misspecified model. Section 5.4 presents the derivation of the Taylor algorithm for the

scalar case, and Section 5.5 presents the derivation for the multi-variate case. Section 5.6

evaluates the performance of the Taylor algorithm for the MSFE of a scalar forecasting

problem with Monte Carlo experiments.

Chapter 6 presents the algorithm which yields an approximation of the mean square

forecast error for a forecasting problem involving stationary processes. Section 6.2
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presents results in the literature concerning estimation under misspecification with de-

pendent observations. Section 6.3 presents the algorithm and Section 6.4 presents Monte

Carlo experiments to evaluate the MSFE approximation.

Chapter 7 presents the algorithm which yields an approximation of the mean square

forecast error for a forecasting problem involving independent and identically distributed

processes which undergo structural breaks. Section 7.2 presents the algorithm and Section

7.3 presents Monte Carlo experiments to evaluate the MSFE approximation.

Chapter 8 presents a literature review of the Delta method as well as new results for

a wider class of functions. Chapter 9 discusses the conditions needed for application of

the Delta method results presented in Chapter 8.

The main contributions of this thesis are as follow:

• We develop an algorithm to approximate the MSFE in forecasting problems for-

mulated with models which may be misspecified. Unlike anything in the literature,

our algorithm makes no assumptions on the specific form of the data generating

process and can be applied to real empirical problems.

• We employ the MSFE approximation to investigate the sample size dependence of

the MSFE and determine the existence of optimal observation windows for three

classes of processes: i.i.d. processes, covariance stationary processes, and structural

break processes.

• We prove some Delta method theorems for unbounded functions which provide

bounds on the error of approximation.

• We provide an extensive treatment on the use of Taylor series to approximate

statistics.
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Chapter 2

Forecasting

2.1 Introduction

In this chapter, we present basic concepts of forecasting, e.g., methodologies, princi-

ples, and definitions, and introduce the main problem of interest. Section 2.2 provides

a historic exposition of the most important developments and contributions in economic

modeling and forecasting. Section 2.3 describes different forecasting methodologies. The

two main methodologies of interest are time series models and econometric models. Sec-

tion 2.4 describes the forecast problem of predicting an unknown data generating process

using a linear forecasting model, with Section 2.4.4 focusing on the analysis of the mean

square forecast error (MSFE). Section 2.5 provides a short exposition on the subject

of misspecification in terms of density functions. Section 2.6 presents some motivating

examples and Section 2.7 provides theoretical intuition for the problem of determining

optimal observation widows.

2.2 History and background

Many would agree that the two main goals in the study of econometrics are optimal

estimation and forecasting. To provide a clear prospective of the contribution of this

thesis to the field of forecasting, we present a short overview of the history and methods

of forecasting in economics. In the broadest sense, forecasting is any set of rules or

procedure which is carried out with the intent of predicting the outcome of a future

event, or some particular characteristic of a future event. We refer the reader to the
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references [32, 41, 62, 99, 103] for further details on the survey that follows.

To realize a comprehensive understanding of the development and present state of

economic forecasting, it is paramount to assess the progression of macroeconomic theory

and modeling. The reason for this is that the first attempts at forecasting came about as

methods for evaluating macroeconomic models. The origins of economic forecasting can

be traced to the work of economists of the nineteenth and early twentieth centuries in the

two main branches of macroeconomics, business cycle and demand analysis. Morgan [103]

gives an account of attempts by early econometricians to model these economic phenom-

ena. William Stanley Jevons and Henry Ludwell Moore were two of the first economists

to apply the econometric approach of combining economic theory with statistical tools

to give evidence for hypotheses concerning the business cycle.

Jevons was one of the first economists to combine theory with statistical data on many

events to explain the business cycle. Jevons’ initial hypothesis on trade cycles was that

the sunspot cycle of 11.1 years was responsible for a weather cycle which in turn caused

a harvest cycle and ultimately led to a price cycle ([79] in paper VI). Jevons’ analysis

consisted of laying out data for a number of price series for different crops over a 140 year

period on an 11 year grid. The analysis, based on agricultural data from the thirteenth

and fourteenth centuries, showed similar patterns of variation in the prices of each of

the crops. The results of this work were inconclusive since the analysis revealed similar

patterns for grids of 3,5,7,9 and 13 years. Jevons also investigated cycles in commercial

credit. His analysis of nineteenth century financial crises exhibited an average cycle of

10.8 years, short of the sunspot cycle of 11.1 years. Jevons suggested that his sunspot

theory combined with the theory of credit cycle would produce the observed averaged

cycle for financial crises. Most of his contemporaries dismissed the work of Jevons.

Some of the strongest criticism concerned the lack evidence and weak explanation of the

casual mechanisms of his theory. Nonetheless, the idea behind Jevons’ work of combining

endogenous and exogenous causes became an important element in econometric models

of the business cycle in the 1930’s.

Much like Jevons, Henry Ludwell Moore developed theories on the exogenous causes

of the business cycle. Moore [101] found evidence to attribute the business cycle to

weather cycles, and later [102] extended the casual reasoning back to movements of the
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planet Venus. For Moore, the casual chain of explanation between the weather cycle

and the business cycle was the primary subject of study. He abandoned the standard

methodologies of the time on the grounds that the real dynamic factors of the economy

could not be captured by comparative statistics. Morgan [103] gives as example of the

contemporary mainstream methods, the work by Robertson [123] on the business cycle,

which made use of comparative static arguments with statistical data but without any

statistical analysis or explanation of the dynamic path of the economy. Moore’s efforts

focused on discovering and verifying statistically the casual connections in the chain of

evidence in order to explain the business cycle. His treatment of evidence, according to

Morgan [103], was highly technological compared to his predecessors and contemporaries.

Moore’s statistical methods included harmonic analysis, correlation, multiple regression,

and time series decomposition. His analysis of business cycles was far superior to any

other statistical treatment of the period.

In a 1933 paper, Ragnar Frisch [52] made important progress in the application of

the econometric method by developing a dynamic mathematical model of the business

cycle, which not only enabled theorists to explore for insights into how the economy

might work but also was amenable to econometric analysis. The work of Moore and

others explained and estimated the business cycle by fitting the dynamic patterns of a

particular time. Frisch’s model was not built to fit any particular data set, instead, the

purpose of the model design was to generate economic cycles through the interactions of

the equations in the system by estimating parameters based on the particular data set at

hand. The second important econometric design of Frisch’s model was the interaction of

random shocks with a deterministic system. The role of random shocks transformed the

model from a solely theoretical model producing the cyclical components to one which

could produce the jagged appearance of economic data. The shocks changed the dynamic

economic model into a formal econometric stochastic model of how real economic data

might be produced [103].

The first crucial event in the annals of forecasting was the formulation of the first

practical macroeconomic model of the business cycle by Jan Tinbergen in 1936. Morgan

[103] examines in detail the work and contribution of Tinbergen’s macrodynamic models.

The following summarizes Morgan’s account. Tinbergen’s contribution consists of three
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major reports in which he estimates and tests models of economies and the business

cycle. The first of these reports was published in 1936 in response to a request by the

Dutch Economic Association to study policies to help relieve the depression [140]. In

it, Tinbergen builds and estimates the first macrodynamic model of the business cycle.

The model is also used to simulate the likely impact of policies. As his starting point,

Tinbergen takes the basic idea of Frisch [52] that a business cycle should consist of two

parts, an economic mechanism and the outside influences or shocks. The Dutch model

contained 31 variables and 22 relationships which were divided into technical equations,

definitional equations, and direct casual relationships which provided explanations of

price movements, sales, competition, and the formation and disposal of incomes. Each of

the equations was estimated separately. The formation of each individual equation and

the choice of variables were found by iterating between theoretical ideas and empirical

evidence. Graphical methods were used by plotting dependent and explanatory variables

to reveal specific causes of a crisis or revival. To understand the behavior of the model,

Tinbergen reduced the system of 22 equations to one difference equation of one variable,

non-labor income, by a process of substitution and elimination. The final equation gave a

representation of the structure of the Dutch economy which Tinbergen in turn used to find

the time path of the system. The Dutch model showed that the economy had a damped

cyclic path which would tend to an equilibrium provided there were no disturbances. In

practice, determining the dynamic character the model was complicated by the presence

of disturbances. Extrapolation of the model was used as a test of the power of the

model to provide a theory of the business cycle and led to the investigation of optimal

policy based on the model predicted time paths. Policy changes affected the relations

in the model through additive disturbance terms or by changing coefficients and causing

structural change. In this way, Tinbergen’s model originated the practice of determining

policy based on econometric forecasts. The second report made by Tinbergen [141] was a

commission made by the League of Nations to undertake statistical tests of business cycle

theories presented by G. Haberler [63]. Tinbergen developed and estimated mathematical

models for verbally expressed theories of the business cycle, but the emphasis of this

report was on testing using procedures involving economic and statistical criteria. The

first of these procedures involved testing the models on different countries and time
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periods. Second, Tinbergen tried the models on different subperiods to test for for

structural changes. Third, prediction tests were carried out by extrapolating the fitted

equations. The third important report made by Tinbergen was also part of the League of

Nations report [141]. In it, Tinbergen developed a three-stage procedure for evaluating

theories of the business cycle. The stages were first to test whether the verbal model

could be expressed as an econometric model; second to statistically verify the relations

of the model; and third to test and verify if the final equation had a cyclic solution.

To evaluate his procedure, Tinbergen built the first large scale macroeconometric model

of the USA. Tinbergen’s general conclusion was that a depression can originated from

inherent disproportionalities in the economy, and that policy changes might intervene

to prevent the rise or fall of a depression. By the 1940s, the war had vanquished the

depression and theories of the business cycle had gone out of fashion. Nonetheless,

the econometric methods for estimation and testing set forth by Tinbergen had great

influence on the work of economists in the second part of the twentieth century.

As we have noted, since the beginning of the twentieth century, econometricians had

been using statistical methods to measure and verify economic theory. And yet, it was

the prevalent belief at the time that probability theory was inapplicable to economic data.

The paradox lay in the theoretical basis for statistical methods being probability theory,

and economists using statistical methods at the same time they rejected probability

theory. Applied economists at this time believed in the existence of real laws of economics

waiting to be discovered. Thus, the primary goal in early econometric work was that of

measurement. No importance was paid to inference, so that if measured values were put

in question, blame was attributed to the quality of the data and no doubt was cast on

the theory.

In areas where a generally agreed theory existed, i.e., demand theory, statistical

methods were simply tools to measure the parameters of the laws. The theory was not in

doubt, the measured laws were taken to be true, and questions of inference did not arise.

In other areas where theoretical laws were in doubt, such as business cycle research, sta-

tistical methods were used to uncover the true laws from the data. Inference again found

a limited role. Therefore, inference methods based on probability theory as tools to com-

pare theoretical laws to empirical relationships were neglected and deemed unnecessary
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by the economists of the time. This neglect was due in part to econometricians’ belief

that economic data did not meet the criteria necessary for the application of probability

reasoning. In work on demand, for example, the least squares method was used as an

estimation device without any reference to probability distributions. This is due to the

fact that the relationship between two variables can be measured by a least squares line,

and the distribution of the variables does not come into question unless one is interested

in inference about whether it is a good measure. The application of probability theory

was rejected in such work, based on the argument that observations were rarely the result

of sampling procedures. One of the earliest rejections of the application of probability

theory to economics was that offered by Warren Persons, [112, 111], in his 1923 presi-

dential address to the American Statistical Association. Persons rejected mathematical

probability theory in business cycle analysis and forecasting, and cited as a reason the

fact that economic data are time-related and “cannot be considered a random sample

except in an unreal, hypothetical sense.”

The first comprehensive discourse on the rejection of the application of probability

theory in economics and the validity of economic forecasting is the work of Morgenstern

(1928) [104]. Morgenstern delineated the problems with probability theory as the lack

of homogeneity of the underlying conditions, the non-independence of observed time

series and the limited availability of data. Besides his objections towards probability

theory, Morgenstern also argued against economic and business forecasting on the basis

that forecasts would be invalidated by reactions to them. This is reminiscent of the

“Lucas critique” [97]. Because of the impossibility of economic forecasts and the impact

of adverse effects of decisions made based on them, Morgenstern censured the use of

forecasting for stabilization and social control.

The work of Morgenstern was critically reviewed by Marget (1929) [99]. In his work,

Marget outlines the following three main propositions offered by Morgenstern:

I. Forecast in economics by the methods of economic theory and statistics is

“in principle” impossible.

II. Even if it were possible to develop a technique of economic forecasting,

such a technique would be incomplete, by virtue of its necessary limi-
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tation to methods based on a knowledge of economics alone; it would

therefore be incapable of application in actual situations.

III. Moreover, such forecasts can serve no useful purpose. All attempts to

develop a formal technique for forecast are therefore to be discouraged.

Morgenstern provides support for each these propositions with further subsidiary sub-

propositions. We review the arguments given by Morgenstern for these propositions and

the counter arguments of Marget.

The sub-propositions given by Morgenstern for the first proposition, I, that “forecast-

ing in economics, by methods of economic theory and statistics, is in principle impossible”

are as follows:

A. The data with which the economic forecaster must deal are of such a

nature as to make it certain that the prerequisites for adequate induction

must always be lacking.

B. Economic processes, and therefore the data in which their action is regis-

tered, are not characterized by a degree of regularity sufficient to make

their future course amenable to forecast, such “laws” as are discoverable

being by nature “inexact” and loose, and therefore unreliable.

C. Forecasting in economics differs from forecasting in all other sciences in

the characteristic that, in economics, the very fact of forecast leads to

“anticipations” which are bound to make the original forecast false.

For sub-proposition A, Morgenstern first argues on the incompatibility of economic

data and probability analysis, as a method of scientific induction, as a major obstruc-

tion to the problem of economic forecasting. The criteria required by Morgenstern on

economic data for the application of formal probability theory include homogeneity and

independence. Marget argues that the level of homogeneity and independence required

by Morgenstern is so extreme as to make use of probability theory in other scientific areas

– where its usefulness is well established – inconceivable. Marget, like most economists

of the time, agrees with Morgenstern on the partial failure of probability theory as a

tool for induction in economic forecasting. Nonetheless, Marget does not see this failure
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as a coup de grace for the principle of forecasting, and argues probability analysis is by

no means the only tool available for scientific forecasting. For instance, prediction of

day to day weather is cited by Marget as an example of forecasting which is primarily

based on a theory of causation rather than techniques of probability. As a second point

in support of his argument, Morgenstern points to the inadequacy of economic statistics

in providing a complete description of economic processes and ultimately being used for

forecast. Marget argues that even if economic statistics alone can not provide a basis for

induction, which in turn serves as basis for forecast, there is no reason why new methods

can not be developed which can further the paths of progress in forecasting.

For sub-proposition B, Morgenstern addresses the concept of an “economic law” by

distinguishing between two types of “law.” The first interpretation given is in the sense of

a “rule of adequate causation”, and the second as a tendency to “continuous repetition.”

The latter description of “law” is used by Morgenstern to refer to a tendency of data

to conform to measurable patterns that can be predicted by mathematical formulas.

According to Morgenstern, by the nature of economic processes, one can not expect to

discover regularities of the kind described by the second type of economic “law” and

furthermore

The discovery of such regularities by purely empirical means would carry

with it no assurance of the indefinite continuance of these regularities, and so

would represent no reliable basis for forecast.

Marget views the second type of “law”, which concerns itself with regularities, to be in

some sense naive, and argues that the concept of law which best exemplifies the basis

for most scientific endeavor is a law as a “rule of adequate causation.” Marget views

as reasonable the possibility of explaining movements in statistical data based on the

concept of causation. Indeed, if this were not the case, Marget explains, all validity of

scientific explanation in economics would be futile. Marget presents the explanation of

processes based on causation as the path to follow in order to make progress in the lines

forecasting, and ties such rules of causation to the study of economic theory.

The third sub-proposition, C, of Morgenstern is seen by Marget as the most im-

portant. If the third sub-proposition of Morgenstern is found to be sound, all other
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arguments in favor of the possibility of forecasting in economics become irrelevant. Mar-

get’s position on the third sub-proposition — regarding the invalidity of a forecast due

to the causal influence of the forecast itself — is that forecasting should be feasible by

including the possible reactions to the forecast as one of the potential factors affecting

the final result. Marget also questions whether the anticipatory actions need necessarily

to be of the disruptive sort which invalidates the original forecast. In some instances,

Marget argues, all that might result from these anticipations is an “intensification, in-

stead of a contradiction, of the actions that would have been inaugurated in any case.”

Furthermore, Marget insists there is no reason to assume that the new datum from the

forecast must outweigh all other data available, and necessarily cause agents to abandon

the course of action that would be taken in the absence of the original forecast.

In his second principal proposition, II, Morgenstern argues that even if a “positive

theory of forecasting in economics” were possible, it would not be adequate in practice,

since the data in use are the result of forces other than just economic forces. Marget

begins his counterpoint by suggesting that the objection is as valid against explanation of

economic theory as it is for attempts at forecasting. Morgenstern sees as a major obstruc-

tion to further progress in economic forecasting the ramifications that can be attributed

to different branches of knowledge. Sociology, for example, is cited by Morgenstern as a

field not yet sufficiently advanced to be of practical use to a business forecaster. Marget

responds that the incompleteness of knowledge cannot be used to deny the possibility of

the attainment of further knowledge. Morgenstern argues that, for an economic forecast,

only economic theory and the data refined by economic statistics may be used, while at

the same time stating that economic data is not sufficient for the problem in practice.

Marget states there is no reason why an economist interested in forecasts of cotton prices,

for example, should not combine her own knowledge on how to economize on the basis of

a particular situation with the first hand knowledge of meteorologists and agronomists

as to what the situation might be.

In his third and final proposition, III, Morgenstern asserts that the attempt to fore-

cast economic events is “without purpose.” Morgenstern concludes that the possible use

of forecasting as an instrument for social control of industry, in particular the possibility

of stabilization, may well endanger those efforts by threatening the “rationality” of the
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economic processes. For this proposition, Marget does not refer back to the earlier anal-

ysis of the disruptive feedback effects between the forecast and anticipations. Instead,

Marget challenges the fundamental argument that presents stabilization as a test for the

usefulness of attempts at forecast, and the view that forecast itself can have significance

only for economic policy and not for the development of economic theory. Marget be-

lieves Morgenstern fails to recognize the value which persistent attempts to forecast have

for the development of economic theory. Marget sustains that failures in forecasting,

like failures in attempts at verification of economic theory, should be greeted with en-

thusiasm, since it is likely such failures are due to inadequate attention to important

factors. Marget believes the test of successful forecasting has the inestimable advantage

of pointing out new variables and new possibilities of mechanisms which might never

have otherwise been discovered or estimated.

The views expressed by Morgenstern and Marget regarding the validity of economic

forecasting set the stage for further development at a time where forecasting techniques

were at their infancy. Economic forecasting was not doomed as Morgenstern might have

one believe, but at the same time, the arguments of Marget needed to be substantiated by

formal protocols. In 1944, the publication of Trygve Haavelmo’s The probability approach

in econometrics [62] provided the first basis for such protocols in the form of probability

techniques. According to Haavelmo, econometric research aims at a conjunction of eco-

nomic theory and actual measurements through the use of the theory and techniques of

statistical inference. Haavelmo summarizes the state of the art in econometrics.

So far, the common procedure has been, first to construct an economic

theory involving exact functional relationships, then to compare this theory

with some actual measurements, and, finally, “to judge” whether the corre-

spondence is “good” or “bad.” Tools of statistical inference have been intro-

duced, in some degree, to support such judgment, e.g., the calculation of a

few standard errors and multiple-correlation coefficients. The application of

such simple “statistics” has been considered legitimate, while, at the same

time, the adoption of definite probability models has been deemed a crime in

economic research, a violation of the very nature of economic data. That is

to say, it has been considered legitimate to use some of the tools developed
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in statistical theory without accepting the very foundation upon which sta-

tistical theory is built. For no tool developed in the theory of statistics has

any meaning — except, perhaps, for descriptive purposes — without being

referred to some stochastic scheme.

Haavelmo attributes the reluctance of economists to accept probability theory as a basis

for economic theory to a very narrow concept of probability theory. Most economists of

the time believed probability schemes applied only to phenomena consisting of series of

observations where each observation originated as an independent drawing from a single

population. Economic time series do not conform to such a narrow model of probability

“because the successive observations are not independent.” Haavelmo’s premise is that it

is not necessary for observations to be independent or to follow the same one-dimensional

probability law, that in fact, it is sufficient to consider the whole set of n observations as

one observation of n variables following an n-dimensional joint probability law. One can

test the hypothesis regarding the joint probability law and draw inference as to its form

based on one n-dimensional sample point.

The general principles of statistical inference introduced by Haavelmo are based on

the Neyman-Pearson theory of testing statistical hypotheses. Haavelmo addresses many

issues including: a general discussion on the connection between abstract models and

economic reality; the question of establishing “constant relationships” in economics, and

the degree of invariance of economic relations with respect to changes in structure; the

nature of stochastic models and their applicability to economic data; demonstration

that a hypothetical system of economic relations can be expressed as statements of the

joint probability law of the economic variables involved, and that such a system can be

regarded as a statistical hypothesis in the Neyman-Pearson sense; the well posed problem

of estimation; and an outline of the problem of predictions.

We describe the general probability formulation of Haavelmo’s prediction problem.

By a statistical prediction or forecast, one means a probability statement about the

location of a sample point to be observed in the future. If one considers n random

variables, X1, X2, . . . , Xn, with a known joint probability law, one may calculate the

probability of a sample point falling into a given region of the sample space. If the actual

joint probability law of the variables to be predicted is known, the problem of deriving a
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prediction formula is one of probability calculus, while the question of choosing a “best”

prediction formula is subjective matter. More often, the probability law is not known and

the prediction problem becomes closely connected with the problems of testing hypotheses

and estimation.

Consider n time series of random variables Xi,t, i = 1, 2, . . . , n observable from t = 1

on. Suppose we can observe values up to some time, t = si, for each of the n series,

and the problem is to predict later observations. The total of random variables to be

considered are

Xi,t = (Xi,1, Xi,2, . . . , Xi,si , Xi,si+1 , Xi,si+2 , . . . ), i = 1, 2 . . . , n.

One might want to predict any joint system of M variables among the variables Xi,si+τ

for i = 1, 2, . . . , n; τ = 1, 2, . . . . The M to be predicted variables, relabeled as XN+1, . . . ,

XN+M , together with the s1 + s2 + · · · + sn = N observed variables, relabeled as

X1, . . . , XN , form a system of N + M variables. We assume, regardless of the values

s1, . . . , sn, and regardless of the set of M future variables, the joint probability law of

the N + M variables exists even if it might not be known to the forecaster. Let this

joint probability be denoted as p = p(X1, . . . , XN , XN+1, . . . , XN+M ), which usually can

be described implicitly by a system of stochastic relations between the variables. Let

p1 = p1(X1, . . . , XN ) denote the joint probability law of the N variables X1, . . . , XN ,

and denote the conditional probability law of the M variables XN+1, . . . , XN+M , condi-

tional on the N variables X1, . . . , XN by p2 = p2(XN+1, . . . , XN+M |X1, . . . , XN ). If p is

known, one can calculate p2, given the N variables X1, . . . , XN and p = p1 · p2.

Let E1 denote any sample values of the observable variables X1, . . . , XN , and E2

denote any sample values of the future variables XN+1, . . . , XN+M . Any E1 can be

represented by a point in the N dimensional sample space R1 of the variables X1, . . . , XN ,

and any E2 can be represented by a point in the M dimensional sample space R2 of the

variables XN+1, . . . , XN+M . Similarly, we let E denote a point in the sample space R

of all N + M variables. Now, given any particular E1, one can calculate from p2 the

probability that E2 will fall in a given point set of the sample space R2. The resulting

probability would be a function of E1. Furthermore, for any given E1 and any given
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probability level P , one can derive a system of point set regimes in R2 with probability

of E2 falling in one of such sets equal to P . Any such point set in R2 is referred to

as a region of prediction and denoted by W2. One is usually interested in a region

W2 of probability P , which is in some sense the “narrowest” possible. The choice of

probability level and region W2 will depend on the particular intended use, and such

choice is therefore is not a problem of statistics.

If p2 is known, the problem of prediction is one of probability calculus and not one

of statistical inference from a sample. In practice, p2 is unknown and information about

p2 must be obtained from samples E1 of previous observation. This procedure is made

possible by the following important basic assumption:

The probability law, p, of theN+M variablesX1, . . . , XN , XN+1, . . . , XN+M

is of such a type that the specification of p1 implies the complete specification

of p and, therefore, of p2.

That is, if p is characterized by a number of unknown parameters, then all these parame-

ters must also characterize p1 so that p2 contains no other parameters. This assumption

therefore implies that for prediction to be possible, a certain persistence in the mechanism

which produces the data must be present.

Haavelmo also describes a method by which to derive prediction formulae. Given that

E2 denotes a point in the sample space R2 of XN+1, . . . , XN+M , we denote by Ê2 a point

in R2 to be used as a prediction of E2. The problem is one of defining Ê2 as a function of

X1, . . . , XN , such that the probability of Ê2 being close, in some sense, to E2 is high. Ê2

is called a prediction function. Furthermore, one can assign a system of weights to the

possible errors in prediction by defining a weight or loss function L(E2, Ê2), such that

L(E2, E2) = 0 and L(E2, Ê2) > 0 for E2 6= Ê2. The expected value of the loss function

in repeated samples is given by:

r =

∫

R
L(E2, Ê2)pdE.

The choice of Ê2 as a function of X1, . . . , XN should be so that r is as small as possible.

The problem of deriving the best prediction function is closely related to the problem of

deriving best estimates. Although there is always some level of subjectivity when it comes
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to choosing a prediction function and loss function, the procedure given by Haavelmo

describes precisely where and how the subjective elements enter the prediction problem.

Haavelmo’s interpretation of economic processes as realizations of stochastic processes

rather than realizations of independent processes gave way to the acceptance of probabil-

ity theory for modeling in economics. Furthermore, his methodology for prediction based

on the concepts of probability laws, prediction formulae, and loss functions set forth the

development of mathematically precise protocols to study the validity of forecasting.

By the end of the 1940s, Haavelmo’s probability approach had been generally accepted

in the USA, and became the basis for the macroeconomic model built by Lawrence R.

Klein for the Cowles Commission in 1950 [85]. Klein recognized the importance of the

contributions made by Tinbergen in his two League of Nations reports, and considered

his own work an extension of Tinbergen’s work. The structural form of Klein’s models

also reflects the influence of Keynes’ “General Theory.” Klein sought to emphasize the

discovery of economic theories through his models as well as performing forecasts.

If we know the quantitative characteristics of the economic system, we

shall be able to forecast with a specified level of probability the course of

certain economic magnitudes such as employment, output, or income; and we

shall also be able to forecast with a specified level of probability the effect

upon the system of various economic policies. ([85], p.1)

Klein considers as his main contribution the ability to accept or reject admissible hy-

potheses of economic theory based on their suitability for the purpose of forecasting.

Klein classifies the variables to be used in the model as endogenous or exogenous. En-

dogenous variables are those determined by the economic system and include output, em-

ployment, prices, profits, rents, investment. Exogenous variables are those representing

forces outside the economic system such as those originating from natural, technological,

sociological, political, or institutional events. Klein argues, economists have developed

theories of economic behavior which can be used to determine the endogenous variables

and their relations expressed as structural equations. Klein defines yi,t−k as the ith en-

dogenous variable in the t − k period, zi as the ith exogenous variable, uit as the ith

random disturbance of the tth period and the model of the economic system is given as
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follows:

fi(y1,t, . . . , yn,t, . . . , y1,t−p, . . . , yn,t−p, z1, . . . , zm) = uit, i = 1, . . . , n. (2.2.1)

The fi functions define the structural equations, which equal in number to the endogenous

variables, and the econometric problem of interest is the estimation of the structural

parameters of the fi functions. Klein also offers an alternative problem when the main

aim at hand is forecasting rather than explanation and description. The argument for

the alternative procedure is that not all structural parameters in (2.2.1) might be needed

to construct a forecast. Klein solves (2.2.1) for the endogenous variables to be forecasted,

such that the new set of equations, referred to as the reduced form, are as follows:

yit = gi(y1,t−1, . . . , yn,t−1, . . . , y1,t−p, . . . , yn,t−p, z1, . . . , zm, u1t, . . . , unt), i = 1, . . . , n.

(2.2.2)

The parameters of (2.2.2) will be different from the parameters of (2.2.1). Klein studies

three statistical models. The first of these models is a simple three equation system by

which he “sacrificed details of economic behavior patterns in order to illustrate different

methods of structural estimation in dynamical economic systems” (p. 84). In his second

model, Klein estimated parameters which were deemed necessary for purposes of fore-

casting. Finally, in his last model, Klein developed the same procedures, but for a large

structural model of the economy.

The importance of econometric modeling and forecasting was further strengthened

by the work of H. Theil in the 1960s [137, 138]. In [137], Theil outlines the three main

problems of forecast analysis: verification and accuracy analysis; the analysis of the gen-

eration of predictions; and the use of forecasts for policy purposes. Furthermore, Theil

provides new measures to evaluate forecast accuracy with empirical application for the

Dutch and Scandinavian economies. Theil also addresses two problems of methodology:

the particular type of data analyzed, and statistical inference. For the problem of sta-

tistical inference, Theil discusses the desirable properties of econometric and statistical

approaches, and generalizes the method of least-squares for the complications of auto-

correlated disturbances and simultaneous equations. Finally, Theil turns to the problem
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of determining the relationship between forecasting and policy by addressing the uncer-

tainty characterizing decision processes. In [138], Theil deals with general problems of

methodology and the consequences of prediction errors at the decision-making level. In

several chapters, Theil introduces information theory as a tool for evaluation of forecasts

and to deal with data obtained from surveys.

In the post-war period, apart from the work of Klein and Theil, the development of

theoretical methods for forecasting focused on time series analysis [32]. Among others,

the work on time series analysis can be exemplified by that of Wiener [156], Kalman [82],

Whittle [154], Box and Jenkins [25] and Harvey [67, 68]. Also, by the end of the 1970s,

Keynesian macroeconomic models such as those of Tinbergen, Kelin, and Theil were in

decline, as was structural Keynesian macroeconomic forecasting [41]. In response to the

failures of Keynesian structural models, econometricians began to explore nonstructural

forecasting methods. Work on nonstructural methods predates the Keynesian period, but

this work was overlooked mainly for the popularity of Keynesian methods. Beginning in

the 1920s, the work of Slutsky [132] and Yule [161] focused on the use of simple linear

difference equations driven by random stochastic shocks, autoregressions, for modeling

and forecasting a variety of economic and financial time series [41]. The key insight in

the use of autoregressions is that system dynamics convert random inputs into serially

correlated outputs, a phenomenon called the Slutsky-Yule effect. In the 1930s, H. Wold

[158] made a ground breaking contribution by showing that given sufficient stability of

the underlying probabilistic mechanism generating the series, the stochastic part can be

represented as a model of the Slutsky-Yule type. N. Wiener [156] and A. Kolmogorov

[88, 89] worked out the mathematical formulae for optimal forecasts from models of the

type studied by Slutsky, Yule, and Wold. In the late 1950s and late 1960s, R. Kalman

extended the theory by relaxing conditions imposed by Wiener and Kolmogorov. His

forecasting formula is known as the Kalman filter, which is designed to work with a

state-space representation of the system. The Wold-Wiener-Kolmogorov-Kalman theory

is exposited in Whittle [155]. A major push in the direction of nonstructural methods

came in 1970 with the publication of Box and Jenkins’ book [25] on nonstructural time

series analysis and forecasting.

Box and Jenkins’ model allowed for stochastic trends to be driven by cumulative
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effects of the random shocks, rather than just modeling trends via a linear determinis-

tic function of time. The concept of stochastic trends had wide-range implications, since

shocks to series have permanent effects. The most important contribution of the Box and

Jenkins methodology consists of a framework for nonstructural forecasting formulated as

iterative cycles of model formation, estimation, diagnostic testing, and forecasting. The

main tool at the core of the Box-Jenkins framework are autoregressive moving average

(ARMA) models. The need for modeling cross-variable relationships in macroeconomics

led to the expansion of the Box-Jenkins program by the creation of vector autoregressions

(VAR) to handle multivariate modeling and forecasting. VAR models are less restrictive

than the system-of-equations used in structural models, because variables do not need to

be label as endogenous or exogenous. Instead, with VAR models, all variables are con-

sidered to be endogenous. Early contributions to multivariate work of time series include

the work of Granger [57] and Sims [130, 131]. Dynamic factor models originated from

a need to make VAR models more flexible. In dynamic factor models, some economic

shocks are common across sectors while others are particular to only a few sectors. Con-

tributions to dynamic factor models include the work of Sargent and Sims [127], Geweke

[54], Stock and Watson [134, 135], Quah and Sargent [118], and Forni and Reichlin [50].

The concept of cointegration, where two or more series contain a stochastic trend but

their linear combination does not, was developed by Granger [58], and Engle and Granger

[48].

As for nonlinear models, one of the most important applications of the time series

Box-Jenkins methods is the modeling of volatility dynamics, which allows forecasting of

the unobservable volatility of observable processes. The literature of volatility forecasting

began with the seminal papers of Engle in 1982 [47] and Bollerslev in 1986 [22]. Their

models allow the conditional variance of the shocks to vary with time, as a function of

past errors in the case of the former, and as a function of past errors and past condi-

tional variances in the case of the latter. These nonlinear models have become of great

importance in finance, and extensive surveys of volatility forecasting include Bollerslev,

Chou and Kroner [23], Bollerslev, Engle and Nelson [24], and Poon and Granger [117]. A

second important category of nonlinear time series models is regime-switching models. In

regime-switching, or threshold models, an indicator variable determines the occurrence
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of a switch. Important contributions to threshold models include the work of Tong [142],

Granger and Teräsvirta [60], and Hamilton [65].

We thus conclude this survey of some of the most important developments and con-

tributions in economics and econometrics to the problem of forecasting. This survey,

although not exhaustive, attempts to give a taste of the progression in modeling and

forecasting that has led to the methodology applied in the work to follow. We note many

important areas of research have not been covered, such as neural networks and machine

learning. We refer the interested reader to other more extensive surveys of economic

forecasting [9], [147].

2.3 Forecasting methodologies

We next provide an overview of forecasting methodologies, and extensively describe the

one particular methodology which is put into practice in the core of this thesis. A most

extensive catalog of forecasting methodologies can be found in Armstrong’s book [9], and

the following sketch of methodologies is based on his work.

Forecasting methodologies can be categorized into two classes: judgmental and sta-

tistical. The first class of methodologies described by Armstrong, judgmental methodolo-

gies, include role playing, intentions, and expert opinions. Role playing is a forecasting

methodology which attempts to predict decisions and actions of people and groups by

requiring participants to act and respond to fictitious situations that replicate possible

conflicts. Role playing is most effective in prediction when the conflicting parties must

respond to large changes. Examples of situations where role playing might be applicable

include companies designing product and predicting consumer reactions, labor issues, mil-

itary strategies, forming strategies in court cases, and negotiating contracts. Intentions,

as a methodology, outlines procedures to use individuals’ plans, goals, or expectations

about the future to forecast individuals’ actions. Basic principles of intentions measure-

ment require that intentions should be quantified using probability scales, that intentions

should be adjusted to remove biases, that respondents should be segmented, and that

intentions can be used to form best and worst case forecasts. Intentions can be applied

to problems such as marketers measuring consumers’ purchase intentions, and the design
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of political polls. Expert opinion, as a forecast methodology, consists of principles using

a collection of experts’ forecasts to construct one unifying forecast.

The second class of forecasting methodologies outlined by Armstrong, statistical

methodologies, can be divided into two subcategories: extrapolation models and econo-

metric models. These two subcategories have been addressed in the history survey of

the previous section. Extrapolation models are also known as nonstructural models, and

econometric models are also referred to as structural models.

Armstrong [11] presents an extensive account on principles and strategies for fore-

casting with extrapolation models, and the following is a summary of time series models.

The main principle behind extrapolation of time series is that all necessary information

is contained in the historical values of the time series being forecasted, while the prin-

ciple behind cross-sectional extrapolation is that characteristics of one set of data can

be generalized to another set. The strengths of using extrapolation of time series are

that past behavior tends to be a good indicator of future behavior, it is objective, it is

replicable, and its is inexpensive. Time series extrapolation is also known as univariate

time series forecasting. Armstrong’s first principle for extrapolation of time series is that,

when selecting data, one should use all relevant data and adjust the data for important

past events. Second, one should make seasonal adjustments when seasonal effects are

expected. A third principle, when extrapolating, is the use of simple functional forms.

By far, the most influential models of time series are the univariate models proposed by

Box and Jenkins [25]. Most time series models can be expressed as Box-Jenkins models.

The dominant class of scalar time series models are integrated autoregressive moving

average models (ARIMAs). There are several reasons for the success of the Box-Jenkins

framework. Generally, the order of the AR and MA polynomials required for adequate fit

of time series is relatively low. Many economic time series are non-stationary but in many

cases can be made stationary by differencing; in such cases, ARIMA models are amenable

for analysis. Excellent surveys of the Box-Jenkins framework include [25, 27, 64, 67].

The following summary of principles and strategies for econometric forecasting is

based on the work of P. Allen and R. Fildes [2]. At the core of econometric methods

lie statistical procedures which are employed to estimate models specified primarily by

economic theory. Early econometric models focused on collecting as many casual vari-
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ables as possible, if deemed by theory as relevant. This strategy led to much failure

because little attention was given to the dynamic structure. The application of vector

autoregression (VAR) methods in the 1980s resolved much of the problem. Contemporary

econometricians use economic theory as a guide to describe long-term cause and effect

relationships, and use data to determine the structure of the model, in terms of lags on

variables and differencing, which best describes the short-term dynamics. The principal

tool available to the econometrician is regression analysis. Allen and Fildes suggest the

fundamental principle for econometric forecasting is to aim for a relatively simple model

specification. We now describe an eight-step strategy for forecasting, as proposed by

Allen and Fildes, based on time series econometrics. The eight steps comprise: defining

the objectives, determining the set of variables, collecting the data, forming an initial

specification, estimating the model, misspecification testing, model simplification, and

comparing the out-of-sample performance.

By defining the objective, Allen and Fildes refer to deciding whether the purpose of

the study is to explain or to forecast. For the purpose of explanation, such as analyzing

policy, model structure is the important factor, and conditional forecasts should be used

to test the model. For the purpose of forecasting, one must be able to forecast the

explanatory variables used in the model with certain level of accuracy. When it comes

to determining the set of variables to be included in the model, it is suggested that

one considers casual variables based on guidelines from theory and previous empirical

research. Armstrong [10] gives four criteria for including a variable in a model:

1. a strong casual relationship is expected,

2. the casual relationship can be estimated accurately,

3. the casual variable changes substantially over time,

4. the change in the casual variable can be forecasted accurately.

For collecting data, Allen and Fildes suggest gathering all data available. This does not

imply that all data is ultimately used for estimation and forecasting, but rather, the claim

is that knowledge of factors such as structural breaks can result in improved models and

superior forecast accuracy.
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Once the list of variables to be used in the model has been determined, in the step of

initial specification, the econometrician designates the variables that occur in a specific

equation and the functional form of the equation. Part of determining the functional

form consists of deciding on the number of lags on each variable. Determining what

variables to include in an equation is usually based on theory. The use of a vector

autoregression model avoids the task of assigning variables as dependent or explanatory,

since each left hand side variable depends on lags of itself and the other variables on the

right hand side. Allen and Fildes suggest one must take into account all previous work

when specifying a preliminary model. This concept of encompassing can be described as

follows: a theory encompasses a rival theory if the former explains at least as much as

the latter explained. [106] and [49] are examples of work on forecast encompassing. The

common approach used by time series econometricians (e.g., [70],[69]) to model building

relies upon a general-to-specific principle. In this approach, a model with certain degree

of generality is tested for misspecification, and failure leads to a new simpler model for

testing.

For the step of estimation, Allen and Fildes suggest there seems to be no advantage

in using any other procedure other than ordinary least squares (OLS). Some support for

this conclusion is that OLS seems to be robust to violations of underlying assumptions.

OLS has stood up well against theoretically superior estimation methods. In the case

of estimating systems of equations, OLS is biased, but according to Kennedy [83], this

bias is not much worse that that of other methods. OLS is robust to misspecification,

and OLS has the smallest variance among estimators. Monte Carlo studies have shown

OLS to be less sensitive than other estimators to problems of multicollinearity, errors in

variables, and misspecification in small samples. Dielman and Rose [42] compare out-of-

sample forecasts from OLS, least absolute value (LAV), and Prais-Winsten methods on a

bivariate model with first order autocorrelated errors and find that OLS was frequently

better.

Once a model has been estimated, misspecification tests can be applied. The failure of

a specification test is an indication that the model as estimated is an inadequate summary

of the data. Unfortunately, Allen and Fildes point out, there is not much evidence to tie

misspecification tests to forecasting performance. Some econometricians view the failure
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of a misspecification test as a reason to explore new specifications rather than focus on

new estimation methods. Such econometricians view theory as a guide, although incom-

plete, for selecting casual variables, and consider testing essential in the construction of

models. When a model fails a number of misspecification tests, the econometrician must

consider additional casual variables, restructure the dynamic interdependencies, or re-

evaluate the functional form. Some important misspecification tests include parameter

stability, specification error, omitted variables, nonlinearities, autoregressive residuals,

and linear versus log-linear specification. Once a model satisfies a number of misspec-

ification tests, one can consider simplifying the model. As mentioned, for the purpose

of forecasting, one should aim towards simplicity rather than correct specification. In

time series, reducing the lag length is the primary method of simplification and should

be done one equation at a time in VAR models. Beginning with a general equation,

reducing the lag successively guarantees the residual sum of squares of the new restricted

model will not be statistically worse than the residual sum of squares for the previous

more general model. Finally, it is important to test model performance with data not

used for estimation. This out-of-sample forecasting method gives clues to the generality

of the model since, it might do well in explaining the past but it may perform poorly

in predicting the future. Much of the work presented in this thesis is mainly concerned

with univariate time series in the Box-Jenkins framework, although some treatment of

multivariate processes is presented in Chapter 5. The reason for restricting mainly to

univariate processes is to maintain simplicity in computation and exposition. There are

no theoretical obstructions to expand the computational work to VAR models.

Econometricians making use of ARIMA or VAR models face four main sources of

error. Specification error can be present due to inappropriate choice of explanatory

variables, use of an incorrect functional form, or the presence of structural breaks. Con-

ditioning error results from inaccuracies in the information used to form the conditional

forecast. When constructing a forecast, parameters are estimated based on a sample of

observations; the inaccuracies involved in estimating these parameters result in sampling

error in the forecast. Finally, random error is present in a forecast, even under correct

specification, due to the residuals used in the modeling and estimation.

The evaluation of forecasts is a critical step that must be carried out before implement-
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ing a forecast. Clements and Hendry [32] provide a complete and systematic treatment

of forecast evaluation for time series models, and we summarize their primary principles.

Granger and Newbold [59] presented a critique of evaluation methods available at the

time, and Clements and Hendry summarize the main contention:

Methods for gauging forecast accuracy cannot usefully be based on com-

parison of the time series, or the distributional properties, of the actual and

predicted series. It makes more sense to analyze the difference between the

two.

A general criterion to measure ex post forecast accuracy, based on the actual values

(At) of a series and the predicted values (Pt), can be given as follows:

I(Pt, At). (2.3.1)

An optimal prediction is one for which (2.3.1) obtains an extremum. Based on the main

contention of Granger and Newbold, the criterion can be made more specific by writing

it as follows:

I(Pt, At) = I(At − Pt, At) = I(εt, At) = C(εt), (2.3.2)

with εt = At − Pt, and the costs are only a function of the forecast error, εt. If C(·) is a

quadratic function, the criterion is squared in the error and averaging over errors leads to

the mean square forecast error (MSFE) criterion. Reasons for choosing a quadratic form

for C include mathematical tractability, large errors are proportionately more serious

than small errors, and in many situations over and under prediction have similar costs.

We list other measures of forecast accuracy:

1. Mean absolute error (MAE): This is the average of the absolute values of the forecast

error, and is best applicable when the cost of forecast errors is proportional to the

absolute size of the forecast error.

2. Root mean square error (RMSE): This is the square root of the average of the

squared values of the forecast error. This measure implicitly weights large errors

more than small errors. This is simply the square root of the MSFE.
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3. Mean absolute percentage error (MAPE): This is the average of the absolute values

of the percentage errors. It is dimensionless, and its use is appropriate when the cost

of the error is closely related to the percentage error, rather than to the numerical

size of the error.

4. Median absolute percentage error (MdAPE)

5. Relative absolute error (RAE): This measure compares the error for a proposed

forecasting model to that for the naive forecast.

6. Correlation of forecasts with actual values: In this measure, changes, rather than

levels of the variable being forecasted are regressed on the forecasts of these changes

and the resulting R2 is used as a measure of forecast accuracy. Armstrong [9] warns

against using R2 to compare forecasting models.

7. Conditional efficiency: A forecast A is conditionally efficient relative to forecast

B if B contributes no useful information beyond that contained in A, and can be

evaluated by regressing the variable being forecasted on A and B and testing the

null that the coefficient of B is zero.

The work in this thesis evaluates forecasts using the MSFE. One reason for using the

MSFE is its computational tractability. Another reason for using the MSFE is due to

the generality of our methods. Since no specific economic phenomena is considered in

developing our algorithms, we select the MSFE for its generality over other context-

specific loss functions.

The first assumption we adhere to in the work to follow is that the observed process to

be forecasted originates from a data generating process (DGP) which might depend on a

parameter vector θ ∈ Θ ⊂ R
k. Clements and Hendry ([32], p.11) present a framework for

the forecasting problem with six facets: (A) the nature of the DGP; (B) the knowledge

level about the DGP; (C) the dimensionality of the system to be studied; (D) the form of

the analysis; (E) the forecast horizon; and (F) the linearity of the system. The principal

aim of this thesis is to develop algorithms, under the assumption of unknown DGP and

unknown θ, for different dynamic structures of the DGP.
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2.4 Forecast problem

As described in section 2.3, the two principal forecasting methodologies used in economics

and finance are univariate time series models in the Box-Jenkins tradition, and vector

autoregressive (VAR) econometric models. In what follows, we describe the forecast

problem of interest. The scope of our approach in constructing the problem is general

enough to allow for application of both the univariate time series and VAR methodologies.

2.4.1 Notation and setup

Consider a stochastic process Z ≡ {Zτ : Ω −→ R
m+1,m ∈ N, τ = 1, . . . , T + 1}, defined

on a complete probability space (Ω,F ,P), where F = {Fτ , τ = 1, . . . , T+1} and Fτ is the

σ-field Fτ ≡ σ{Zs, s ≤ τ}. In what follows, we denote by Yτ the component of interest of

the observed vector Zτ , Yτ ∈ R, and interpret the remaining components, denoted Wτ ,

as being an m× 1 vector of other variables. In other words, we let Zτ ≡ (Yτ ,W
>
τ )>. The

random variable Yτ is further assumed to be continuously distributed.

The forecasting problem considered involves forecasting the variable Yt+s, where s is

the prediction horizon of interest, s ≥ 1, and t is the forecast origin with t < T . In what

follows, we set s = 1 and examine the one-step-ahead predictions of Yt+1, knowing that

all results developed in this case can readily be generalized to any s > 1. In standard

notation, the subscript τ on the expectation, Eτ [·], denotes conditioning on the entire

information set Fτ . In particular, we shall assume the forecaster employs the expected

value of Yt+1 conditional on the entire information set Ft, Et[Yt+1] to specify the forecast

model. We denote by Xt an m×1 column vector of Ft-measurable variables that are used

to forecast Yt+1, Xt = (X1
t , . . . , X

m
t )>. For the case m = 1, Xt = X1

t . In applications,

Xt can contain (1) various lags of the variable of interest Yτ , (2) realizations of the other

variables Wτ , as well as (3) any function of the previous two. As such, our setup will

allow for applications involving both time series and cross-section data. In what follows,



32

we use the following notation for the time series {Yτ}t
τ=t−n+1 and {Xτ}t−1

τ=t−n:

Xt,n ≡ (Xt−n, ..., Xt−1)
> ∈ R

n×m,

Yt,n ≡ (Yt−n+1, . . . , Yt)
> ∈ R

n×1,

Qt,n ≡ X>
t,nXt,n ∈ R

m×m.

We assume the forecaster does not know the data generating process (DGP) responsible

for the observed time series {Yτ}. Instead, she uses some, possibly misspecified, forecast-

ing model to produce her forecasts, which are then evaluated using a loss function L. In

practice, the most commonly encountered situation is the one in which the forecasting

model employed is linear and the loss function is quadratic. In what follows, we derive

the mean square forecast error (MSFE) for linear forecasting models under the possible

presence of model misspecification.

2.4.2 Forecast construction

As mentioned, we assume the forecaster specifies the forecast model based on the condi-

tional expectation Et[Yt+1] of the observed process {Yτ}. This is as a consequence of the

well known fact that the prediction with the smallest MSFE is, in fact, the conditional

expectation Et[Yt+1], ([64], p. 72). For example, for a DGP with additive innovations of

the form

DGP : Yt+1 = ψ(Xt) + Ut+1, (2.4.1)

where {Uτ} is the innovation process with Eτ [Uτ ] = 0 and V ar(Uτ ) = σ2
U < ∞ for

all τ , Et[Yt+1] = ψ(Xt). It is common practice in econometrics to assume a specific

form for Et[Yt+1] in estimation and forecasting. In what follows, we use the notation

Ψt,n ≡ (Et[Yt−n+1], . . . , Et[Yt])
> ∈ R

n×1 and Ut,n = (Ut−n+1, . . . , Ut)
> ∈ R

n×1, so that

Yt,n = g(Ψt,n, Ut,n), (2.4.2)

for some functional form g. Not knowing the exact form of the DGP, we assume the

forecaster’s prediction of Yt+1 is based on a model for Et[Yt+1] which is linear in Xt, and
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an innovation process {Vτ} such that

Yt+1 = β>Xt + Vt+1, (2.4.3)

where β is an m × 1 parameter vector, β ∈ B, B compact in R
m, and Vτ is such that

Eτ [Vτ ] = 0.

It is important to note that — while being linear — the forecasting model is not

assumed to be correctly specified. In other words, we do not make the assumption that

Et(Yt+1) is a linear function of Xt. In fact, a major aim of the work in this thesis is

to investigate the ramifications of the phenomena of misspecification in the context of

forecasting. Misspecification of the forecasting model can result from a variety of causes.

For example, in her choice of Xt, the forecaster might omit some of the Ft–measurable

variables that enter Et(Yt+1); in this case, the forecasting model is dynamically misspec-

ified. Moreover, even if Et(Yt+1) is a function of Xt alone, its functional form might be

highly nonlinear; in this case the forecasting model is functionally misspecified.

The parameter β is assumed to be estimated by an ordinary least squares (OLS)

estimator. The OLS estimator of β can be computed by using sample sets of various sizes.

When the sample set is a continuous interval in time, we refer to it as an observation

window. In the construction of a forecast, one important aspect to determine is the

nature of the sample used for the estimation of the forecast model. In the case of an

observation window, this corresponds to determining its length. In chapters to follow,

we develop quantitative methods for determining the length of an observation window

used in the forecasting problem. Two prevalent methods found in the literature are:

(1) a rolling window forecasting scheme, or (2) a recursive (also known as expanding

window) forecasting scheme. Under the rolling window forecasting scheme, the forecaster

re-estimates the parameter β of the linear forecasting model in (2.4.3) at each point t,

T − R ≤ t < T . The estimation sample contains the n most recent observations—Xt−n

to Xt−1 and Yt−n+1 to Yt— so the OLS estimator of β has the form

β̂t,n ≡ Q−1
t,nX

>
t,nYt,n. (2.4.4)

For example, in the single regressor case, the above expression for β̂t,n reduces to β̂t,n =
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(
∑t−1

s=t−nX
2
s )−1 (

∑t−1
s=t−n Ys+1Xs). The above OLS estimator β̂t,n is then used to con-

struct the forecast Ŷt+1,n of Yt+1 as follows

Ŷt+1,n = β̂>t,nXt. (2.4.5)

This procedure is repeated R times over the out-of-sample period [T − R, T ], and the

forecaster re-estimates β each time there are new observations available. The value of

n — which enters the forecast Ŷt+1,n through the OLS estimator β̂t,n — is most often

chosen in an ad hoc manner, since there are no systematic methods in the literature to

obtain an optimal value.

The recursive (or expanding) window scheme involves using all past observations

available, i.e., the observations from date 1 to t. Hence, if the forecaster uses a recursive

window forecasting scheme, at any time t, T−R ≤ t < T , she computes β̂t,t ≡ Q−1
t,t X

>
t,tYt,t,

and constructs Ŷt+1,t = β̂>t,tXt. In other words, the recursive scheme corresponds to the

case where n = t in the OLS expression (2.4.4) above. As previously, the OLS estimator

β̂t,t is computed T times, only now the estimate of β relies on all the data prior to time t.

Both the rolling window and recursive forecasting schemes have great shortcomings. For

instance, neither of these schemes is likely to be optimal if the DGP for the time series

{Ys} undergoes a structural break. A rolling window of a short fixed size might work well

immediately after the break but valuable information will be lost as the distance from

the break increases. The recursive scheme will produce significantly biased forecasts after

the break, until the post break information out weighs the pre-break information. It is

our ultimate goal to develop and evaluate a new optimal forecasting scheme which relies

on the nature of the processes {Ys} and {Xs} for the choice of the forecasting window.

Before tackling this in the chapters that follow, we examine forecast evaluation based on

the decomposition of the MSFE.

2.4.3 Forecast evaluation

In our evaluation of the accuracy of the forecasts Ŷt+1,n, we abide by common practice,

and represent the accuracy criterion by means of a cost or loss function. Assuming the

forecast evaluator uses a quadratic loss function, an optimal forecasting scheme consists
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of minimizing mean square forecast error (MSFE). Hence, we are interested in examining

the dependence of the expected squared forecast error on the window size n. Following

the standard approach [56, 32], the expected squared forecast error can be defined in one

of two ways, depending on its intended use. For calculating specific errors given past

realizations of the explanatory variables, Xt = σ{Xt−n, . . . , Xt}, we define the criterion

CMSFEt,n ≡ E[(Yt+1 − Ŷt+1,n)2|Xt], (2.4.6)

where Ŷt+1,n is as defined in (2.4.5). We refer to this criterion as the conditional MSFE.

On the other hand, if we wish to analyze general properties of the MSFE, independent

of specific realizations of the explanatory variables, the unconditional MSFE or simply

the MSFE, is given by

MSFEn ≡ E[(Yt+1 − Ŷt+1,n)2] = E[ε2t+1,n], (2.4.7)

where εt+1,n is the time-t+1 forecast error, εt+1,n ≡ Yt+1 − Ŷt+1,n. In the work to follow,

as in [113, 114], we use the latter form of the MSFE for forecast accuracy evaluation.

2.4.4 Decomposition of the MSFE

It is common for analysis to decompose the MSFE into component parts. The squared

bias and variance decomposition consists of the sum of two terms, as traditionally done

in the forecasting literature (see, e.g., [56, 32, 113]), and has the following form:

E[ε2t+1,n] = b2n + vn, (2.4.8)

where b2n ≡ (E[εt+1,n])2 is the squared bias of the forecast error, and vn ≡ V ar(εt+1,n)

is the variance of the forecast error. (2.4.8) is easily derived from the definition of the

variance.

Writing the MSFE as the sum of the squared bias and variance of the error allows for

a revealing analysis of the first two moments of the error in the forecast. The bias term

refers to the level of model misspecification in the forecast, while the variance captures

the level of homogeneity in the processes. Both the bias and variance terms are affected
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by the accuracy of the estimator employed. In what follows, we present some properties

of the CMSFE and the MSFE which concern their sample size dependence (SSD), i.e.,

properties regarding the observation window size n.

We assume the DGP has the general form Yt,n = Ψt,n + Ut,n, and rewrite the OLS

estimator in (2.4.4) as β̂t,n = Θt,n + Λt,n, where

Θt,n ≡ Q−1
t,n X

>
t,n Ψt,n, Λt,n ≡ Q−1

t,n X
>
t,n Ut,n. (2.4.9)

The forecast error evaluated at t+ 1 is given by

εt+1,n = ψ(Xt) + Ut+1 − (Θt,n + Λt,n)>Xt. (2.4.10)

The CMSFE can be written as the sum of a conditional squared bias term and a condi-

tional variance term as follows:

CMSFEt,n = b2Xt,n + vXt,n, (2.4.11)

b2Xt,n = E2[εt+1,n|Xt] =
(

ψ(Xt) − Θ>
t,nXt

)2
, (2.4.12)

vXt,n = V ar(εt+1,n|Xt) = σ2
U + var(Λ>

t,nXt) = σ2
U + σ2

UX
>
t Q

−1
t,nXt. (2.4.13)

It is clear that both components depend on the particular realization Xt. The following

proposition describes the n dependence of the conditional variance component.

Proposition 2.1

(i) For a given realization Xt, vXt,n ↓ n.
(ii) For a correctly specified linear model and a given realization Xt, the optimal forecast-

ing scheme is recursive.

The proposition implies the variance decreases as the amount of data used to form the

forecast increases. To gain some intuition on the variance decay with n, consider the

scalar case m = 1. In this case, Q =
∑t−1

i=t−nX
2
i and the conditional variance is

vXt,n = σ2
U + σ2

U (

t−1∑

i=t−n

X2
i )−1X2

t . (2.4.14)
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The variance decay is clear from the fact the denominator increases as n increases, while

the numerator is constant. The monotonic behavior of the conditional variance suggests

that any interesting behavior of the CMSFE as the sample size increases is due entirely

to the conditional squared bias term.

The conditional squared bias component for a misspecified model (2.4.12), on the

other hand, does not exhibit a clear monotonic dependence on n. In fact, the conditional

squared bias for a misspecified model inherits the erratic nature of the particular real-

ization Xt, making the CMSFE unfit for any analysis of an optimal observation window.

We can see this clearly in the scalar case m = 1 where the term Θ>
t,nXt in the conditional

squared bias is given by

Θ>
t,nXt = Xt(

t−1∑

i=t−n

X2
i )−1

t−1∑

i=t−n

ψ(Xi)Xi. (2.4.15)

The absence of an n dependent decay in the squared bias can be seen by comparing

(2.4.14) and (2.4.15). The following example illustrates these ideas.

Example 2.1 Consider the nonlinear univariate DGP given by Yt+1 = X2
t +Ut+1, where

{Uτ} ∼ IIN(0, 1). Furthermore, assume the process {Xτ} follows an AR(1): Xt+1 =

(1 − a) + aXt + Vt+1, where a = 0.9 and {Vτ} ∼ IIN(0, 0.4). We investigate the SSD of

the conditional variance and the conditional bias through a Monte Carlo experiment for

three realizations of the process {Xτ}. The results of the experiment, given in figure 2.1,

show the erratic nature of the conditional squared bias component. ut

Due to the failure of the CMSFE in revealing optimal forecasting schemes, we turn

to the unconditional MSFE as defined in (2.4.7), written in terms of the squared bias

and variance components. The forecast error evaluated at t + 1 given by (2.4.10) leads

to the unconditional squared bias component

b2n = E2[εt+1,n] =
(

E[ψ(Xt)] −E[Θ>
t,nXt]

)2
, (2.4.16)
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Figure 2.1: Conditional squared bias, conditional variance and CMSFE for three realiza-
tions of the process {Xt}

and the unconditional variance component

vn = V ar(εt+1,n) = σ2
U + Var(ψ(Xt)) + Var(Θ>

t,nXt) + var(Λ>
t,nXt)

− 2Cov(ψ(Xt),Θ
>
t,nXt), (2.4.17)

where Var(Λ>
t,nXt) = σ2

UE[(X>
t Q

−1
t,nXt)]. As expected, neither component depends on a

particular realization of the process {Xτ}.
The unconditional variance component, (2.4.17), of the MSFE under misspecifica-

tion contains noise from parameter estimation, σ2
U + σ2

UE[(X>
t Q

−1
t,nXt)], as well as vari-

ance terms which are associated with the misspecification of the model, Var(ψ(Xt)) +

Var(Θ>
t,nXt) − 2Cov(ψ(Xt),Θ

>
t,nXt). The presence of these latter terms makes the SSD

of the unconditional bias and variance ambiguous. We note that the SSD of both the

squared bias and variance components is manifested in the terms Θ>
t,nXt and X>

t Q
−1
t,nXt.

To understand some aspects of the SSD, the following proposition characterizes the SSD

of the term E[X>
t Q

−1
t,nXt] and the SSD of the unconditional variance in the case of a

linear DGP.



39

Proposition 2.2

(i) E[X>
t Q

−1
t,nXt] > E[X>

t Q
−1
t,n+1Xt] for any n and t.

(ii) When the DGP is linear, vn ↓ n .

Proof. (i) First we show X>
t Q

−1
t,nXt > X>

t Q
−1
t,n+1Xt a.s-P. We write

X̄t,n+1 =
[

Xt−n−1X̄
>
t,n

]

∈ R
n+1×k,

and substitute in the expression for Qt,n+1 so that

X>
t Q

−1
t,n+1Xt = = X>

t

(

X̄>
t,nX̄t,n +Xt−n−1X

>
t−n−1

)−1
Xt, a.s-P (2.4.18)

Using the following inverse formula

(A11 −A12A
−1
22 A21)

−1 = A−1
11 +A−1

11 A12(A22 −A21A
−1
11 A12)

−1A21A
−1
11 ,

we can rewrite (2.4.18) as

X>
t Q

−1
t,n+1Xt = X>

t Q
−1
t,nXt −X>

t Q
−1
t,nXt−n−1(1 +X>

t−n−1Q
−1
t,nXt−n−1)

−1X>
t−n−1Q

−1
t,nXt, a.s-P,

where we used A11 = Qt,n, A12 = Xt−n−1, A21 = X>
t−n−1 and A22 = −1. It follows, since

Qt,n is positive definite, Q−1
t,n is positive semidefinite so X>

t−n−1Q
−1
t,nXt−n−1 is positive

semidefinite and 1 +X>
t−n−1Q

−1
t,nXt−n−1 and its inverse are positive scalars. Finally we

have

X>
t Q

−1
t,nXt−n−1X

>
t−n−1Q

−1
t,nXt = (X>

t−n−1Q
−1
t,nXt)

>(X>
t−n−1Q

−1
t,nXt) ≥ 0, a.s-P

and the result follows.

(ii) Substituting F̄t,n = X̄t,nβ in the expression for Θt,n one obtains Θt,n = β. Substi-

tuting Θt,n = β and f(Xt) = β>Xt in (2.4.17) one obtains vn = σ2
U + 2Var(β>Xt)) +

σ2
UE[(X>

t Q
−1
t,nXt)] − 2Cov(β>Xt, β

>Xt) = σ2
U + σ2

UE[(X>
t Q

−1
t,nXt)]. The result follows

from part (i).

The proposition implies the term E[X>
t Q

−1
t,nXt] of the variance decreases as more data

is used to construct the forecast. Next, we look at the term Θ>
t,nX . The term Θ>

t,nXt can
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Figure 2.2: Terms of bias components of the MSFE for a misspecified linear model for a
quadratic DGP

be found in both the bias and variance components in the expectation, E[Θ>
t,nXt], the

variance, Var(Θ>
t,nXt), and the covariance with ψ(Xt), Cov(ψ(Xt),Θ

>
t,nXt). The presence

of the term Θ>
t,nXt in both the squared bias component and the variance component

makes it difficult to establish a trade-off with respect to the window size n. In fact, as

the following example demonstrates, a trade-off between the unconditional bias and the

unconditional variance is not warrantied to exist.

Example 2.2 Consider the nonlinear DGP and process {Xτ} given in example 2.1. We

investigate the SSD of the variance covariance terms Var(Θ>
t,nXt), Cov(ψ(Xt), Θ>

t,nXt),

and σ2
UE[(X>

t Q
−1
t,nXt)] through a Monte Carlo experiment. For each value of window

size n, n = 1, . . . , 100, we compute the probability limits of different components of

Var(Θ>Xt), as sample averages across 10, 000 replications of the series {Xt}, {Yt}, and

{Ut}. The results of the experiment are shown in figure (2.2). ut

Furthermore, the following proposition shows that the only conclusions about optimal

forecasting schemes which one can arrive at are for the simple correctly specified linear
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Figure 2.3: The three plots correspond to the unconditional bias, variance, and MSFE,
respectively, for a misspecified linear model for a quadratic TDGP.

case.

Proposition 2.3 If the DGP (2.4.1) is linear, the squared bias b2n is zero and it is mean

square optimal to use a recursive forecast scheme.

Proof. Since ψ(Xt) = Θ>
t,nXt, the unconditional bias in (2.4.16) is zero and the uncon-

ditional variance in (2.4.17) reduces to σ2
U + σ2

UE[(X>
t Q

−1
t,nXt)]. The result follows from

proposition 2.2.

Concluding, we have seen there are two possible ways to define the MSFE, a con-

ditional form and an unconditional form. We examined the squared bias and variance

decomposition for both conditional and unconditional forms. For the conditional form,

the dependence of the conditional squared bias on the particular realization Xt made

the conditional MSFE unfit for analyzing optimal forecasting window schemes. Further-

more, for the unconditional bias and variance decomposition, the presence of variance

covariance terms made the SSD ambiguous and its analysis infeasible. The work in the

chapters to follow provide tools to assist in the analysis of the SSD of the MSFE.
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2.5 Misspecification

Economic and econometric models are parsimonious mathematical devices used to ap-

proximate complex generating processes. As such, models fail to capture the complete

dynamic relationships responsible for the observed behavior and misspecification be-

comes ubiquitous. One of the main goals of this thesis is to understand the ramifications

of misspecification for the problem of forecasting. In particular, we are interested in the

nature of the sample size dependence of the mean square forecast error under misspecified

conditions. This subject is addressed in Chapters 5, 6, and 7.

Some common types of misspecification include the omission of relevant variables,

inclusion of irrelevant variables, incorrect functional form, errors-in-variables, autocor-

relation, heteroscedasticity, incompleteness of systems, and incorrect distributional as-

sumptions. A formal and concrete treatise of misspecification can be conducted by the

use of maximum likelihood techniques in the tradition of Cox [34, 35], Berk [14, 15],

Huber [74], and White [152]. The following is based on [152].

Empirical phenomena is viewed as the realization of a stochastic processes as given

in the following assumption.

Assumption 2.1 The observed data are a realization of a stochastic process Z ≡ {Zτ :

Ω → R
v, v ∈ N, τ = 1, 2, ...} on a complete probability space (Ω,F , P0), where Ω = R

v∞ ≡
×∞

τ=1R
v and F = Bv∞ ≡ B(Rv∞).

As an element ω of Ω ranges over Ω, the realization Zτ (ω) ranges over R
v. For

concreteness and convenience the choice Ω = R
v∞ is made so that Zτ is the projection

operator that selects zτ as the τth coordinate of ω, Zτ (ω) = zτ . The v × 1 observation

vector Zτ is often partitioned as Zτ = (Y >
τ , X>

τ )>, where Yτ is l× 1 and Xτ is v − l× 1,

where Yτ is a set of dependent variables to be determined, explained or forecasted partly

on the basis of other variables Xτ .

The probability measure P0 provides a complete description of the stochastic behavior

of the sequence Z and is viewed as the true data generating mechanism or data generating

process. The problems of estimation and inference arise because P0 is unknown. Given a

realization of the of the sequence Z, knowledge of P0 can be inferred from Z. Usually, one

has available a realization zn of a finite history, Zn ≡ (X>
1 , . . . , X

>
n )>, referred to as a
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sample of size n. The stochastic generating process of any sample of size n is completely

described by its distribution P n
0 (B) ≡ P0[X

n ∈ B] for B ∈ Bvn. The goal of estimation

and inference is to learn about P n
0 from information contained in the sample generated

by Zn. A description of the stochastic nature of any sample equivalent to that provided

by P n
0 is given by the Radon-Nikodýn density.

Theorem 2.4 (Theorem 2.1 in [152]) Given assumption 2.1 and if P n
0 is absolutely

continuous with respect to given σ-finite measures vn on (Rvn,Bvn), there exists a mea-

surable non-negative Radon-Nikodýn density gn ≡ dP n
0 /dv

n, unique up to a set of vn-

measure zero, such that

P n
0 (B) =

∫

B
gndvn,

for all B ∈ Bvn.

As long as vn is properly chosen, the theorem warranties the existence of the relevant

density function. Given vn, knowledge of gn is tantamount to knowledge of P n
0 . One can

recover P n
0 by using the sample to learn about gn. This can be done by constructing an

approximation to gn based on Zn. A criterion to evaluate such an approximation was

introduced by Kullback and Leibler [90].

Definition 2.5 (KLIC) Let (Ω,F , v) be a measure space, let g : Ω → R
+ be a measur-

able function satisfying
∫
gdv <∞ and

∫

S g log gdv <∞, where S ≡ {ω ∈ Ω : g(ω) > 0},
and let f : Ω → R

+ be a measurable function satisfying
∫

S g log fdv <∞. The Kullback-

Leibler Information Criterion (KLIC) is defined as

I(g : f) ≡
∫

S
g log(g/f)dv.

The KLIC measures the discrepancy between g and f as described by the information

inequality.

Theorem 2.6 (Information inequality, theorem 2.3 in [152]) Let f, g, v, S and I

be as in definition 2.5. If
∫

S(g − f)dv ≥ 0, then I(g : f) ≥ 0 and I(g : f) = 0 if and only

if g = f almost everywhere -v on S.
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I(g : f) can serve as a measure of the closeness of f to g as discussed by Akaike [1].

Comparison of the adequacy of two approximations f1 and f2 by means of the KLIC is

based on

I(g : f1) − I(g : f2) =

∫

S
log(f2/f1)gdv,

where the latter quantity can be estimated without knowledge of g.

Approximations of gn can be based on a probability model as defined below.

Definition 2.7 (Probability model) Let (Ω,F) be a measurable space. A probability

model is a collection P of distinct probability measures on (Ω,F).

An element P of P is a model element.

Definition 2.8 (Correctly specified probability model) The probability model P is

correctly specified for Z if P contains P0, the data generating process of assumption 2.1.

Otherwise, P is misspecified for Z.

In many cases, P0 is assumed to belong to some probability model with elements indexed

by a finite parameter vector, P = {Pθ : θ ∈ Θ ⊆ R
p, p ∈ N}. Such a model is referred

to as a parametric probability model and written P = {Pθ}. A parametric probability

model tends to be a small subset of P∗, the collection of all probability measures on

(Ω,F).

Theorem 2.9 (Theorem 2.6 in [152]) Let P = {Pθ} be a parametric probability model.

Define P n
θ as P n

θ (B) ≡ Pθ[Z
n ∈ B], B ∈ Bvn, n = 1, 2, . . . , θ ∈ Θ. Suppose there exists a

σ-finite measure ηn on (Rvn,Bvn) such that for each θ in Θ, P n
θ is absolutely continuous

with respect to ηn, n = 1, 2, . . . . Then there exists a nonnegative Radon-Nikodýn density

fn(·, θ) = dP n
θ /dη

n measurable-Bvn for each θ in Θ, n = 1, 2, . . . .

The density fn(·, θ) is said to be constructed “from the top down” by first positing a

parametric probability model P and then applying theorem 2.9. In economics, approxi-

mations to gn are rarely constructed from the top down. The mapping f n(xn, ·) : Θ → R
+

is referred to as the likelihood function generated by the probability model P with re-

spect to ηn for the realization zn, or simply the likelihood function generated by P. An
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important representation of gn for the construction of approximations is given in the next

theorem.

Theorem 2.10 (Theorem 2.7 in [152]) Given assumption 2.1 and given P n
0 is abso-

lutely continuous with respect to given σ-finite measures vn on (Rvn,Bvn), the densi-

ties gn, n = 1, 2, . . . can be chosen such that zn ∈ Sn ≡ {zn : gn(zn) > 0} implies

zn−1 ∈ Sn−1 for all zn in Sn. We refer to densities gn with this property as standard.

Then for all zn in Sn

log gn(zn) =
n∑

τ=1

log gτ (x
τ ), n = 1, 2, . . . ,

where gτ (z
τ ) ≡ gτ (zτ )/gτ−1(zτ−1), τ = 1, 2, . . . , and g1(z

1) ≡ g1(z1) = g1(x1).

Often, gτ can be interpreted as a conditional density of Zτ given Zτ−1 with respect to

a measure vτ . An approximation to gn can be constructed “from the bottom up” with

functions fτ : R
vτ × Θ → R

+ as approximations to gτ , τ = 1, 2, . . . as follows:

fn(zn, θ) ≡
n∏

τ=1

fτ (z
τ , θ).

This approximation is referred to as a quasi-likelihood function. A probability model P
is constructed “from the bottom up” if the model is generated by a sequence of function

{fn =
∏n

τ=1 fτ} as defined below.

Definition 2.11 Let ηn be a measure on (Rvn,Bvn) and let fn : R
vn × Θ → R

+ be

measurable-Bvn for each θ in Θ, an arbitrary set, n = 1, 2, . . . . For each θ in Θ, define

the measure

P n
θ (B) =

∫

B
fn(zn, θ)dηn(zn), B ∈ Bvn,

We say that {fn} generates the probability model P = {Pθ} with respect to {ηn} if for

each θ in Θ there exists a probability measure Pθ on (Rv∞,Bv∞) such that for each n the

restriction of Pθ to (Rvn,Bvn) is given by P n
θ , n = 1, 2, . . . .

To generate a probability model, it is necessary that fτ be a conditional density for Zτ ,

given Zτ−1 for all θ in Θ and all τ . This requirement is often violated in economet-
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ric practice, rendering probability models too narrow a class of approximations to P0.

For this reason, attention is focused to a wider class of approximations referred to as

parametric stochastic specifications.

Definition 2.12 (Parametric stochastic specifications) A parametric stochastic spec-

ifications on (Ω,F) is a collection S of sequences of functions f(θ) ≡ {fτ (·, θ) : R
vτ →

R
+, τ = 1, 2, . . . } obtained by letting θ range over Θ ⊆ R

p, p ∈ N where for each τ =

1, 2, . . . and each θ ∈ Θ, fτ (·, θ) : R
vτ → R

+ is measurable-Bvτ , i.e. S ≡ {f(θ) : θ ∈ Θ}.

S = {fτ} is a specification for Z when the conditions of the definition are met and f n =
∏n

τ=1 fτ is referred to as the quasi-likelihood specified by S. Stochastic specifications

may be correctly or incorrectly specified to varying degrees. For some applications, fτ is

allowed to depend on n, {fnτ : R
vτ ×Θ → R

+, n, t = 1, 2, . . . }. The following assumption

is useful in construction specifications.

Assumption 2.2 The functions fτ : R
vτ ×Θ → R

+ are such that fτ (·, θ) is measurable-

Bvτ for each θ in Θ, a compact subset of R
p, p ∈ N, and fτ (Z

τ , ·) is continuous on

Θ a.s.-P0, i.e., fτ (z
τ , ·) is continuous on Θ for all zτ in some Fτ ∈ Bvτ , P τ

0 [Fτ ] = 1,

τ = 1, 2, . . . .

Under assumption 2.2, the quasi-likelihood f n =
∏n

τ=1 fτ can be viewed as an approxi-

mation to gn as measured by the KLIC

I(gn : fn; θ) ≡
∫

Sn

[log gn(zn)/fn(zn, θ)] gn(zn)dvn(zn).

Choosing θ to minimize I(gn : fn; θ) is equivalent to choosing θ to maximize the following

L̃n(θ) =

∫

Sn

log fn(zn, θ)gn(zn)dvn(zn)

=

∫

Sn

log fn(zn, θ)dP n
0 (zn)

= E[log fn(Zn, θ)].

When fn(zn, θ) is correctly specified, fn(zn, θ0) = gn(zn) for a unique vector θ0 in Θ so

that choosing θ to maximize L̃n(θ) yields θ0 by the information inequality. In practice, θ

cannot be chosen in this way since L̃n(θ) is an expected value determined by the unknown
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gn. This can often be solved approximately using sample information. For this purpose,

note that maximizing L̃n(θ) is equivalent to maximizing

L̄n(θ) ≡ n−1L̃n(θ) = E[n−1 log fn(Zn, θ)].

Furthermore, it follows that

n−1 log fn(Zn, θ) = n−1
n∑

τ=1

log fτ (Z
τ , θ).

If a law of large numbers applies to the sum, for n sufficiently large, E[n−1 log fn(Zn, θ)]

can be approximated by Ln(Zn, θ) ≡ n−1 log fn(Zn, θ). Therefore, the value of θ which

provides the best approximation to gn can be approximated by the solution θ̂n to the

problem

max
θ∈Θ

Ln(Zn, θ) ≡ n−1
n∑

τ=1

log fτ (Z
τ , θ).

Ln is the quasi-log-likelihood function and θ̂n is the quasi-maximum likelihood estimator

(QMLE). We give an existence theorem.

Theorem 2.13 (Theorem 2.12 in [152]) Given assumptions 2.1 and 2.2 and a se-

quence {Θn} of compact subsets of Θ, for each n = 1, 2, . . . there exists a function

θ̂n : R
vn → Θn measurable-Bvn and a set Fn ∈ Bvn with P n

0 (Fn) = 1 such that for all zn

in Fn

Ln(zn, θ̂(zn)) = max
θ∈Θn

Ln(zn, θ).

θ̂n is a random variable with stochastic properties such as consistency and an asymptotic

distribution. White [149, 152] studies the consistency of the QMLE. The idea is that

because θ̂n maximizes Ln(Zn, θ) and Ln(Zn, θ) tends to L̄n(θ) ≡ E[Ln(Zn, θ)], then θ̂n

should tend to the value of θ, θ∗n, which maximizes L̄n. Under assumptions 2.1 and 2.2

and assumptions on the continuity of E[log fτ (Z
τ , ·)], {log fτ (Z

τ , θ)} obeying a law of

large numbers and a uniqueness of the maximizers of {L̄n}, White proves θ̂n − θ∗n → 0 as

n → ∞ a.s.-P0. We note L̄n depends on the chosen parametric stochastic specification

S = {fτ} and as such, θ∗n does not necessarily coincide with the parameter θ0 of the
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correctly specified parametric stochastic specification. White [152] and Domowits and

White [151] give conditions for the asymptotic normality of the QMLE.

In chapters 5 and 6, we review some large sample results for the OLS under as-

sumptions of misspecification and develop approximations to understand finite sample

properties of the OLS and the MSFE under misspecification. For sake of brevity, we omit

a description of the vast field of misspecification tests but direct the interested reader to

the comprehensive monograph by Godfrey [55].

2.6 Motivating examples

The following examples serve as motivation for the work in chapters to follow by illus-

trating the sample size dependence (SSD) of the MSFE under different circumstances.

The principal phenomena that we try to capture with these examples is the effect of

model misspecification on the SSD of the MSFE.

In this first example, we investigate the SSD of the MSFE for the forecast of a DGP

consisting of a linear regression with a correctly specified model.

Example 2.14 We consider the forecast problem where the DGP is generated by a re-

gression process of the form:

Yt = φXt−1 + Ut,

with {Uτ} ∼ IIN(0, σU ) and {Xτ} ∼ IIN(µ, σx). The forecaster applies a correctly

specified model of the form Yt = βXt−1 + Vt, resulting in the forecast Ŷt+1 = β̂Xt. The

OLS formed from the n most recent observations is given by the following:

β̂t,n =
[ t−1∑

τ=t−n

X2
τ

]−1
t−1∑

τ=t−n

Yτ+1Xτ = φ+
[ t−1∑

τ=t−n

X2
τ

]−1
t−1∑

τ=t−n

Uτ+1Xτ ,

and its expectation is E[β̂t,n] = φ. The square of the OLS is as follows :

β̂2
t,n = φ2 + 2φ

[ t−1∑

τ=t−n

X2
τ

]−1
t−1∑

τ=t−n

Uτ+1Xτ +
[ t−1∑

τ=t−n

X2
τ

]−2[
t−1∑

τ=t−n

Uτ+1Xτ

]2
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Figure 2.4: MSFE with σU = 1 and µ = 1 and σx = 1

and its expectation is E[β̂2
t,n] = φ2 + σ2

UE[1/
∑t−1

τ=t−nX
2
τ ]. The MSFE is as follows:

MSFE =E[Y 2
t+1] − 2E[Yt+1Xt]E[β̂t,n] +E[X2

t ]E[β̂2
t,n]

=σ2
U

(

1 +E[X2
t ]E

[
( t−1∑

τ=t−n

X2
τ

)−1
])

.

To investigate the sample size dependence of the MSFE expression above, we conduct a

Monte Carlo experiment. The conditional MSFE is given by

CMSFE =σ2
U

(

1 +X2
t

( t−1∑

τ=t−n

X2
τ

)−1
)

.

We produce one hundred thousand i.i.d realizations of the sequence {X1, . . . , X80} with

{Xτ}80
τ=1 ∼ IIN(1, 1) and σU = 1. The MSFE from the Monte Carlo experiment is

shown in Figure 2.4. As expected, the MSFE decreases monotonically with increasing

sample size and it is optimal to use as much data as available.

ut

In the second example, we investigate the sample size dependence of the MSFE for the
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forecast of a DGP consisting of the same regression process as in example 2.14. In

contrast to the previous case, we assume the forecaster uses a misspecified model.

Example 2.15 We consider the forecast problem where the DGP is generated by a re-

gression process of the form:

Yt = φXt−1 + Ut,

with {Uτ} ∼ IIN(0, σU ) and {Xτ} ∼ IIN(µ, σx). The forecaster applies a misspecified

white noise model of the form Yt = β + Vt, resulting in the forecast Ŷt+1 = β̂. The OLS

formed from the n most recent observations is given by the following:

β̂t,n =
1

n

t−1∑

τ=t−n

Yτ+1,

and its expectation is E[β̂t,n] = E[Yt]. The square of the OLS is as follows:

β̂2
t,n =

1

n2

( t−1∑

τ=t−n

Yτ+1

)2
=

1

n2

( t−1∑

τ=t−n

Y 2
τ+1 +

t−1∑

i6=j,t−n

Yi+1Yj+1

)

,

and its expectation is

E[β̂2
t,n] =

1

n
E[Y 2

t ] +

(

1 − 1

n

)

E2[Yt].

The MSFE is given by

MSFE =E[Y 2
t+1] − 2E[Yt+1]E[β̂t,n] +E[β̂2

t,n]

=V ar(Yt)

(

1 − 1

n

)

.

The MSFE decreases monotonically with increasing sample size and it is optimal to use

as much data as available.

ut

Example 2.16 We consider the forecast problem where the DGP is generated by an
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AR(1) process of the form:

Yt = µ+ φYt−1 + Ut.

The forecaster applies a white noise model of the form Yt = β + Vt, resulting in the

forecast Ŷt+1 = β̂t,n. The MSFE takes the following form:

MSFE = E[Y 2
t+1] − 2E[Yt+1β̂t,n] +E[β̂2

t,n].

We are interested in the sample size dependence of the MSFE, which translates in part

to the sample size dependence of the OLS. The OLS formed from the n most recent

observations is given by the following:

β̂t,n =
1

n

t−1∑

τ=t−n

Yτ+1.

The second term of the MSFE is as follows:

E[Yt+1β̂t,n] =
1

n

t−1∑

τ=t−n

E[Yt+1Yτ+1] = E2[Yt] +
1

n

n∑

i=1

γi,

where γi = Cov(Yt, Yt−i). Substituting the expression for the autocovariance of the process

{Yτ}, γi = φiσ2
U/(1 − φ2), the expression for the variance of Yt, V ar(Yt) = σ2

U/(1 − φ2),

and the summation

n∑

i=1

φi = φ
(1 − φn)

(1 − φ)
,

we obtain the following expression

E[Yt+1β̂t,n] = E2[Yt] +
1

n
V ar(Yt) φ

(
1 − φn

1 − φ

)

. (2.6.1)

The square of the OLS is as follows:

β̂2
t,n =

1

n2

( t−1∑

τ=t−n

Yτ+1

)2
=

1

n2

( t−1∑

τ=t−n

Y 2
τ+1 +

t−1∑

i6=j,t−n

Yi+1Yj+1

)

,
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and its expectation is

E[β̂2
t,n] =

1

n
E[Y 2

t ] +
1

n2

t−1∑

i6=j,t−n

E[Yi+1Yj+1].

For the second term we have

t−1∑

i6=j,t−n

E[Yi+1Yj+1] =
t−1∑

i6=j,t−n

[

Cov(Yi+1, Yj+1) +
µ2

(1 − φ)2

]

=2

n−1∑

i=1

(n− i)γi + (n2 − n)
µ2

(1 − φ)2
.

Substituting the expression for the autocovariance γi = φiσ2
U/(1−φ2), the expression for

the variance V ar(Yt) = σ2
U/(1 − φ2), and the summations

n−1∑

i=1

φi = φ
(1 − φn−1)

(1 − φ)
,

n−1∑

i=1

iφi =
φ− nφn − φn+1 + nφn+1

(φ− 1)2
,

we obtain

E[β̂2
t,n] = E2[Yt] +

1

n
V ar(Yt)

(

1 +
2φ

1 − φ

)

− 2

n2
V ar(Yt) φ

(
1 − φn

(1 − φ)2

)

. (2.6.2)

Substituting expressions (2.6.1) and (2.6.2) in the MSFE, we obtain the following expres-

sion for the MSFE:

MSFE = V ar(Yt)

[

1 +

(

1 +
2φn+1

1 − φ

)
1

n
− 2φ

(
1 − φn

(1 − φ)2

)
1

n2

]

.

Figures 2.5 through 2.9 show the MSFE for the case with σU = 1 and different values of

φ.

ut

Example 2.17 We consider the forecast problem where the DGP is generated by an
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Figure 2.5: MSFE for a constant forecast model which misspecifies an AR(1) DGP with
σU = 1
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Figure 2.6: MSFE for a constant forecast model which misspecifies an AR(1) DGP with
σU = 1
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Figure 2.7: MSFE for a constant forecast model which misspecifies an AR(1) DGP with
σU = 1
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Figure 2.8: MSFE for a constant forecast model which misspecifies an AR(1) DGP with
σU = 1
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Figure 2.9: MSFE for a constant forecast model which misspecifies an AR(1) DGP with
σU = 1
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φ Figure

A B C D

φ1 0.08 0.3 0.4 0.6
φ2 0.08 0.1 0.3 0.2
φ3 0.08 0.05 0.2 0.01
φ4 0.08 0.05 0.01 0.01
φ5 0.08 0.05 0.01 0.01
φ6 0.08 0.05 0.01 0.01
φ7 0.08 0.05 0.01 0.01
φ8 0.08 0.05 0.01 0.01
φ9 0.08 0.05 0.01 0.01
φ10 0.08 0.05 0.01 0.01
φ11 0.08 0.05 0.01 0.01
φ12 0.08 0.05 0.01 0.01

Table 2.1: Autoregressive parameters

AR(12) process of the form:

Yt =φ1Yt−1 + φ2Yt−2 + φ3Yt−3 + φ4Yt−4 + φ5Yt−5 + φ6Yt−6

+ φ7Yt−7 + φ8Yt−8 + φ9Yt−9 + φ10Yt−10 + φ11Yt−11 + φ12Yt−12 + Ut,

where Ut is zero mean white noise. The forecaster applies an AR(1) model of the form

Yt = βYt−1 + Vt, resulting in the forecast Ŷt+1 = β̂t,nYt. The table below provides the

parameter values for the plots shown in Figure 2.10. The MSFEs are generated by means

of Monte Carlo simulations.

ut

Example 2.18 We consider the forecast problem where the DGP is generated by a de-

terministic trend process of the form:

Yt = µ+ δt+ Ut.

The forecaster applies a white noise model of the form Yt = β + Vt, resulting in the

forecast Ŷt+1 = β̂t,n. The MSFE takes the following form

MSFE = E[Y 2
t+1] − 2E[Yt+1β̂t,n] +E[β̂2

t,n].
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Figure 2.10: MSFE for an AR(1) forecast model which misspecifies an AR(12) DGP with
σU = 1
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The OLS formed from the n most recent observations is given by the following

β̂t,n =
1

n

t−1∑

τ=t−n

Yτ+1.

The first term of the MSFE is as follows:

E[Y 2
t+1] = (µ+ δ(t+ 1))2 + σ2

U .

The second term of the MSFE is as follows:

E[Yt+1β̂t,n] = (µ+ δ(t+ 1))(µ+
δ

2
+ δt− δn

2
).

The square of the OLS is as follows:

β̂2
t,n =

1

n2

( t−1∑

τ=t−n

Yτ+1

)2
=

1

n2

( t−1∑

τ=t−n

Y 2
τ+1 +

t−1∑

i6=j,t−n

Yi+1Yj+1

)

,

and its expectation is

E[β̂2
t,n] =

1

4
(2µ+ δ + 2δt)2 +

σ2
U

n
− δ

2
(2µ+ δ + 2δt)n+

δ2

4
n2.

Combining terms, the MSFE has the following form

MSFE =
δ2

4
+ σ2

U +
σ2

U

n
+
δ2

2
n+

δ2

4
n2.

ut
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Figure 2.11: MSFE with σU = 1 for the deterministic trend example
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2.7 Intuition behind our approach

In Section 2.4, we construct the forecasting problem based on a linear regression model.

The explanatory variables can consist of casual variables, as well as time lags of the

dependent variable. In the latter case, the resulting formulation is a time series model.

Restricting the problem by selecting a linear model is in line with common practice in

the forecasting literature, which favors in most situations simple models over correct

specification ([2], p. 306). For estimation, ordinary least squares (OLS) is the estimator

of choice. The evaluation of forecasts is to be carried out by means of the MSFE. The

methods chosen for estimation and evaluation allow for the most general framework

possible in the sense of the processes being analyzed.

The primary aim of this thesis is to understand how the accuracy of a forecast might

depend on the amount of data used in the estimation of the model. By amount of data, we

refer to the temporal element of the series. Should we use the last month, quarter, year,

or decade of a particular time series in formulating a forecast? In some of the literature,

this is referred to as selecting an observation window. We do not try to address the

question of determining casual dependencies of different cross-sectional data.

To better understand how one might go about determining such an observation win-

dow, we recall the eight step strategy outlined by Allen and Fildes [2] to construct econo-

metric forecasts. For the first step, the objective is forecasting. For determining the set

of variables, we assume the relevant casual relationships have been established and the

list of variables to be used in the problem are given. We further assume the forecaster

has access to the longest available series for each of the variables and has some relative

knowledge of events such as past structural breaks. The specification of the model as

a linear regression has been established as well as the use of OLS for estimation. It is

at the stage of estimation that the issue of an observation window can first be raised.

This is made particularly simple by the use of the OLS, which depends on an estimation

sample consisting of the last n observations, as can be seen in (2.4.4). The question

to ask is: Can we determine an optimal observation window at the stage of estimation

alone? The answer is no. To understand why this is so, consider what the estimation

problem entails. For the case of least squares, the estimation problem is given by the
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optimization problem:

β̂t,n = argminβ∈B

t−1∑

τ=t−n

(Yτ+1(θ) − βXτ )
2. (2.7.1)

The aim of the estimation problem (2.7.1) is to choose a β̂t,n which, on average, replicates

the process as close as possible with the linear model, i.e., the aim is optimal fit and

explanation. Since the objective of the forecast problem is not explanation, but rather

prediction, one must question the appropriateness of choosing an observation window

at this stage. Consider for example, a process with unstable parameters which has

undergone a structural break in the past and is modeled with a correct functional form.

If the observation window is determined at the estimation stage, the answer would be, in

most situations, to use all post-break data and to ignore all pre-break data. This would

assure that the model fits the post-break process as close as possible. Nonetheless, it

is well known that, in many situations, such as having a short post-break data history,

optimal forecasts make use of pre-break data. In the case of the MSFE, this is due to the

bias-variance trade-off. Consequently, the task of evaluating the temporal significance of

data for the purpose of forecasting must be carried beyond the estimation stage.

The existing methods used to discriminate data based on a temporal criteria include:

using an expanding window; using a fixed-size window; and using exponential declining

weights. These methods are ad hoc and are always applied at the estimation stage,

making them sub-optimal for the purpose of forecasting. A major contribution of this

thesis is the reformulation of the standard forecasting strategies to allow for evaluation

of the temporal significance of data in a setting more appropriate than the estimation

problem. This reformulation of forecasting strategies is essential to make the temporal

evaluation of data a systematic procedure which relies on the dynamic nature of the

observed processes.

The standard way of solving the estimation problem (2.7.1) assumes the use of series

{Xt−n, . . . , Xt−1} and {Yt−n+1, . . . , Yt} of a predetermined length n and possibly with

predetermined weights. The selection of this length n and weights, as noted earlier, is

done in an ad hoc manner by qualitative means which are very loosely based on some

theoretic aspects of the processes being observed. For example, a forecaster might be
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aware the economic phenomenon of interest undergoes small but frequent structural

shifts, and she might choose to use a fixed size observation window of length equal to the

average length of the periods between shifts.

Once the estimation problem (2.7.1) is solved, β̂t,n is a fixed quantity leading to the

forecast Ŷt+1 = β̂t,nXt. This estimation problem does not evaluate data directly in terms

of its temporal significance, and at no point during the eight steps of the forecasting

strategy is the accuracy of the forecast tested for sensitivity to the length of the data set.

We intend to make the selection of an observation window systematic and quan-

titative. Instead of blindly predetermining the length of the series in the problem, we

propose a reformulation of the estimation problem which treats the length n as a variable

to be determined simultaneously with the estimator β̂t,n. The criteria for determining the

length of the series is maximizing accuracy of the forecast as a function of n. In the case

of forecast evaluation with the MSFE, this criteria translates to minimizing the MSFE

as a function of n. For evaluation by means of the MSFE, the reformulated estimation

problem is as follows:

n∗ = argminn∈N E[(Yt+1 − β̂t,nXt)
2], (2.7.2)

β̂t,n = argminβ∈B

t−1∑

τ=t−n

(Yτ+1(θ) − βXτ )
2. (2.7.3)

These ideas can be developed in a more general setting. Consider the forecast problem

of predicting the variable Yt+1 where the DGP and forecast model are as follows:

DGP : Yt = g(Wt, θ), Model : Yt = f(Xt, β). (2.7.4)

We assume Wt ∈ R
m and Xt ∈ R

k are t-measurable vectors of random variables and

θ ∈ R
p and β ∈ R

q are parameter vectors. The vectors Wt and Xt can contain any set of

causal cross-sectional variables, as well as time lags of the dependent variable Yt. This

setup allows for modeling of any degree of misspecification. Up to this point, the problem

does not differ from standard strategies. We solve the forecast problem by means of the
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following forecast equation and error:

Forecast equation : Ŷt+1,n(Kn) = f(Xt, β̂t,n(Kn)),

Error : εt+1,n(Kn) = Yt+1 − Ŷt+1,n(Kn).

β̂t,n is the estimator of β, and Kn is a real valued function Kn : R
n → [0, 1], which

plays the role of a kernel assigning weights with values in the interval [0, 1] to each of

the datum used in forming β̂t,n. Kn has as domain R
n because each particular weight

in [0, 1] assigned to a variable must be determined based on the information contained

by all of the explanatory variables {Xt−n, . . . , Xt−1}. In particular, we will demonstrate

autocovariances among the data play an important role in determining the kernel Kn.

It is important to note the kernel Kn is a time or temporal kernel, as opposed to the

typical spatial kernels used in nonparametric econometrics. Spatial kernels weight data

according to the distance of the value of a particular datum to a mean. We make explicit

the dependence of the forecast Ŷ and the error ε on the kernel Kn to emphasize how

our strategy differs from contemporary forecasting strategies which do not analyze the

temporal dependence of a forecast.

Under the unrealistic assumption of correct specification, the DGP and model co-

incide and are given by Yt = g(Wt, θ). The forecast equation becomes Ŷt+1,n(Kn) =

g(Wt, θ̂t,n(Kn)). Under reasonable assumptions, an unbiased, E[θ̂t,n] = θ, and consis-

tent, θ̂t,n
P→ θ, estimator θ̂t,n can be obtained. The forecast evaluation under these

conditions should lead us to the choice of the trivial kernel Kn = 1. The reason being

that using the trivial kernel, one obtains the following highly desirable relations:

Ŷt+1,n
P→ Yt+1, εt+1,n

P→ 0.

Under misspecification, the DGP and model would be given by (2.7.4). The forecast

equation becomes Ŷt+1,n(Kn) = f(Xt, β̂t,n(Kn)). Estimators for this problem will be

biased and the kernel is determined, for a chosen estimator β̂t,n and a chosen cost function
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L, by the following optimization problem:

min
n

L(εt+1,n(Kn)).

For the work presented in this thesis, we focus attention to step kernels of the form

Kn = 1I(n) =







1 if I(n) is true

0 otherwise
.

The kernel is the indicator function which is one if condition I(n) is satisfied, and zero

otherwise. Returning to the case of estimation with OLS and evaluation with the MSFE,

the estimation problem described in (2.7.2) and (2.7.3) can be written in terms of a

temporal step kernel as follows:

n∗ = argminn∈N E[(Yt+1 − β̂t,n(Kn)Xt)
2],

β̂t,n(Kn) = argminβ∈B

t−1∑

τ=t−n

(Kt−τYτ+1(θ) − βXτ )
2,

Kn =







1, n < n∗

0 n > n∗
.

This system of relations cannot be solved explicitly for n∗. Instead, one can apply a search

method for the optimal window size n∗ by calculating the MSFE, E[(Yt+1−β̂t,n(Kn)Xt)
2],

for different values of n starting with n = 1. This procedure would reveal the sample size

dependence (SSD) of the MSFE. The difficulty in applying the search method as suggested

lies in that the squared forecast error is a non-trivial function of the explanatory variables.

This function can not be simplified with the usual properties of the expectation in order

to obtain a functional form depending explicitly on the value of n. To tackle the problem

of discerning the SSD of the MSFE, we propose an approximation method. This method

has as a main goal to approximate functionally complex statistics such as the squared

forecast error by simple statistics with tractable expectations.

In the work of this thesis, we consider a Taylor polynomial of order m, Pm, to ap-
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proximate the squared forecast error,

ε2t+1,n = (Yt+1 − β̂t,n(Kn)Xt)
2 ≈ Pm(Xt−n, . . . , Xt−1, Yt−n+1, . . . , Yt).

A main contribution of this thesis is to provide an extensive exposition on the use of Taylor

polynomials to approximate statistics and apply those approximations in the context of

forecasting. Of particular interest is that, in general, the resulting approximation can be

written as a linear combination of moments and real autocovariances which can easily

be approximated, making the method suitable for empirical applications. To carry out

approximations of statistics with Taylor polynomials, attention must be given to the fact

that there has to be some agreement between the radius of convergence and the range

of the random variables involved in the statistic. Chapter 3 and Chapter 4 address this

and related questions.
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Chapter 3

Expectations and truncated

expectations

3.1 Introduction

This chapter presents basic standard notation of probability, random variables, and ex-

pectations. We develop the concept of truncated expectation and describe properties

based on the standard notation of expectations. Truncated expectations are crucial to

the development of the forecasting algorithms based on Taylor approximations which are

presented in chapters to follow.

3.2 Expectations

Let (Ω,F , P ) be a probability measure space and (R,B) a measurable space. A random

variable X is an F/B measurable function X : Ω → R. That is, X(ω) induces an inverse

mapping from B to F such that X−1(B) ∈ F for every B ∈ B, where B is the linear

Borel field. The symbol µ will denote a probability measure on the real line, while P

is used for the probability measure on the underlying space Ω. The following theorem

relates P and µ.

Theorem 3.1 (Theorem 3.1.3 in [31]) Each random variable on the probability space

(Ω,F , P ) induces a probability space (R,B, µ) by means of the following correspondence:

µ(B) = PX−1(B) = P (X−1(B)) = P (ω : X(ω) ∈ B), ∀B ∈ B.
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ut

The measure µ, induced by X, is called the probability distribution or law, and has an

associated distribution function FX given by

FX(x) = µ((−∞, x]) = P (ω : X(ω) ≤ x).

If X is a r.v. on (Ω,F , P ) which induces the space (R,B, µ) and g : R → R is a

Borel function, then g ◦X(ω) = g(X(ω)) is a random variable on the probability space

(R,B, µg−1). The distribution of g(X) is µg−1 with

µg−1(A) = µ(g−1A) = P (ω : g(X(ω)) ∈ A) = P (ω : X(ω) ∈ g−1A).

We now define the integral of a measurable function and present some properties of

integrals which are essential to define the expectation of functions of random variables.

Let φ denote a real measurable function on the probability space (Ω,F , P ). If φ is

nonnegative, the integral of φ with respect to the measure P is defined as follows:

∫

Ω
φ(ω)dP (ω) = sup

∑

i

[

inf
ω∈Λi

φ(ω)

]

P (Λi),

where the supremum extends over all finite decompositions {Λi} of Ω into F -sets. For a

general function φ, define its positive part, φ+, and negative part, φ− as follows

φ+(ω) =







φ(ω), 0 ≤ φ(ω) ≤ ∞
0, −∞ ≤ φ(ω) ≤ 0

,

φ−(ω) =







−φ(ω), −∞ ≤ φ(ω) ≤ 0

0, 0 ≤ φ(ω) ≤ ∞
,

so that φ = φ+ − φ−. The general integral is defined by

∫

Ω
φ(ω)dP (ω) =

∫

Ω
φ+(ω)dP (ω) −

∫

Ω
φ−(ω)dP (ω).
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For a set Λ ∈ F , the integral of φ over Λ is defined by

∫

Λ
f(ω)dP (ω) =

∫

Ω
1ω∈Λ · φ(ω)dP (ω),

where 1ω∈Λ is the indicator function of the set Λ. Given δ is a nonnegative measurable

function on the measure space (Ω,F , P ), a measure ν defined by

ν(Λ) =

∫

Λ
δ(ω)dP (ω), Λ ∈ F

is said to have density δ with respect to P . A random variable X on (Ω,F , P ) and its

distribution µ have density f with respect to the Lebesgue measure λ if f is a nonnegative

Borel function on R and

P (ω : X(ω) ∈ A) = µ(A) =

∫

A
f(x)dx, A ∈ R.

For any random variable the density is assumed to be with respect to the Lebesgue

measure λ if no other measure is specified. The density f and distribution function FX

of a random variable X are related by the following Lebesgue integral

F (x) =

∫ x

−∞
f(t)dt.

The following theorem presents important relations involving integration and the density

of a measure.

Theorem 3.2 (Theorem 16.11 in [19]) If ν has density δ with respect to P , then

∫

Ω
φ(ω)dν(ω) =

∫

Ω
φ(ω)δ(ω)dP (ω), (3.2.1)

holds for nonnegative φ. Moreover, φ, not necessarily nonnegative, is integrable with

respect to ν if and only if φδ is integrable with respect to P , in which case (3.2.1) and

∫

Λ
φ(ω)dν(ω) =

∫

Λ
φ(ω)δ(ω)dP (ω),

both hold. ut



71

We now address change of variables by a mapping and integration. Let (Ω,F) and (Ω ′,F ′)

be measurable spaces and T : Ω → Ω′ a F/F ′ measurable mapping. For a measure P

on F , PT−1 defines a measure on F ′ given by PT−1(Λ′) = P (T−1Λ′), for Λ′ ∈ F ′. The

following theorem gives change of variable formulas for integration.

Theorem 3.3 (Theorem 16.13 in [19]) If φ is nonnegative, then

∫

Ω
φ(Tω)P (dω) =

∫

Ω′

φ(ω′)PT−1(dω′). (3.2.2)

A function φ, not necessarily nonnegative, is integrable with respect to PT −1 if and only

if φT is integrable with respect to P , in which case (3.2.2) and

∫

T−1Λ′

φ(Tω)P (dω) =

∫

Λ′

φ(ω′)PT−1(dω′),

hold. ut

We can now use all the concepts of integration to define expectation. The expected value

of a random variable X on (Ω,F , P ) is the integral of X with respect to the measure P :

E[X] =

∫

Ω
X(ω)dP (ω).

For each Λ in F , the truncated expectation is given by

E[X(ω) · 1ω∈Λ] =

∫

Λ
X(ω)dP (ω). (3.2.3)

The following assumptions are made in the theorem that follows which shows different

representations of the expectation.

Assumption 3.1 The r.v. X on (Ω,F , P ) induces the probability space (R,B, µ).

Assumption 3.2 g : R → R is a Borel function so that g(X) is a r.v. on (R,B, µg−1).

The following theorem shows the dual characterization of the expectation of a function.

Theorem 3.4 (Theorem 3.2.2 in [31]) Under assumptions 3.1 and 3.2

E[g(X)] =

∫

Ω
g(X(ω))dP (ω) =

∫

R

g(x)dµ(x). (3.2.4)
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(3.2.4) follows directly from theorem 3.3, replacing T : ω → Ω′ with X : Ω → R, φ

by g, setting ω′ = x, and noting PX−1(dω′) = µ(dx) = dµ(x). Furthermore, under

assumptions 3.1 and 3.2 and if X has density f with respect to the Lebesgue measure,

we have

E[g(X)] =

∫

R

g(x)dµ(x) =

∫

R

g(x)f(x)dλ =

∫ ∞

−∞
g(x)f(x)dx. (3.2.5)

(3.2.5) follows from theorem 3.2 by replacing ν with µ, P with λ, ω with x, φ with g, Ω

with R and δ with f . If X has distribution function FX with continuous derivatives we

have dFX(x) = f(x)dx and

E[g(X)] =

∫ ∞

−∞
g(x)f(x)dx =

∫ ∞

−∞
g(x)dFX (x).

We now extend the results and definitions to multiple random variables. In R
k,

the k-dimensional Borel field Bk is σ(Rk), where R
k denotes the measurable rectangles,

B1 ×B2 × · · · ×Bk where Bi ∈ B for i = 1, . . . , k, of R
k. We call a measurable mapping

X into R
k, X : Ω → R

k a random vector on the space (Ω,F , P ) and write X(ω) =

(X1(ω), . . . , Xk(ω))>. X is measurable F if and only if each component mapping Xi is

measurable F . For a k-dimensional random vector X = (X1, . . . , Xk)>, the distribution

µ, which is a probability measure on Bk, and the distribution function are given by

µ(A) = P (ω : (X1(ω), . . . , Xk(ω)) ∈ A), A ∈ Bk,

F (x1, . . . , xk) = P (ω : X1(ω) ≤ x1, . . . , Xk(ω) ≤ xk) = µ(Sx),

where Sx = {y : yi ≤ xi, i = 1, . . . , k}. A random vector X and its distribution µ have

density f with respect to the k-dimensional Lebesgue measure λ if f is a nonnegative

Borel function on R
k and

P (ω : X(ω) ∈ A) = µ(A) =

∫

A
f(x1, . . . , xk)dx1 · · · dxk, A ∈ R

k.
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If X is a k-dimensional random vector with distribution µ and g : R
k → R

i is measurable,

then g(X) is an i-dimensional random vector with distribution µg−1. If gj : R
k → R

is defined by gj(x1, . . . , xk) = xj, it follows gj(X) = Xj has distribution µj = µg−1
j

given by µj(A) = µ[(x1, . . . , xk) : xj ∈ A] = P (ω : Xj(ω) ∈ A), for A ∈ R. The µj

are referred to as the marginal distributions of µ. If µ has density f with respect to the

k-dimensional Lebesgue measure, µj has density fj with respect to the one dimensional

Lebesgue measure given by

fj(x) =

∫

Rk−1

f(x1, . . . , xj−1, x, xj+1, . . . , xk)dx1 · · · dxj−1dxj+1 · · · dxk.

The random variables X1, . . . , Xk are defined to be independent if the σ-fields they

generate σ(X1),. . . ,σ(Xk) are independent. X1, . . . , Xk are independent if and only

if P (X1 ∈ H1, . . . , Xk ∈ Hk) = P (X1 ∈ H1) · · ·P (Xk ∈ Hk), and if and only if

P (X1 ≤ x1, . . . , Xk ≤ xk) = P (X1 ≤ x1) · · ·P (Xk ≤ xk).

Given the random vector (X1, . . . , Xk) with distribution µ having density f and dis-

tribution function F and each Xi with marginal distribution µi having density fi and

marginal distribution function Fi, X1, . . . , Xk are independent if and only if µ is the

product measure with µ = µ1 × · · · ×µk, if and only if F (x1, . . . , xk) = F1(x1) · · ·Fk(xk),

and if and only if f(x) = f1(x1) · · · fk(xk). For Borel measurable function g : R
k → R

with g−1(B) ∈ Bk for every B ∈ B, h(ω) = g(X1(ω), · · · , Xk(ω)) is a F/B measurable

r.v. and we have the expectation

E[g(X1(ω), . . . , Xk(ω))] =

∫

Ω
h(ω)dP (ω).

Similarly, applying theorem 3.3,

E[g(X1(ω), . . . , Xk(ω))] =

∫

Rk

g(x1, . . . , xk)dµ(x1, · · · , xk),

and if µ has density f with respect to the k-dimensional Lebesgue measure λ by theorem

3.2 and Fubini’s theorem

E[g(X1(ω), . . . , Xk(ω))] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
g(x1, . . . , xk)f(x1, . . . , xk)dx1 · · · dxk.
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3.3 Truncated expectations

Under assumptions 3.1 and 3.2 for each A ∈ B

E[g(X) · 1ω∈X−1A] =

∫

X−1A
g(X(ω))dP (ω) =

∫

A
g(x)dµ(x). (3.3.1)

(3.3.1) follows from theorem 3.3 by replacing T : ω → Ω′ with X : Ω → R, φ by g,

Λ′ by A, setting ω′ = x and noting PX−1(dω′) = µ(dx) = dµ(x). Furthermore, under

assumptions 3.1 and 3.2 and if X has density f with respect to the Lebesgue measure

and A = [a, b], we have

E[g(X) · 1ω∈X−1A] =

∫

A
g(x)dµ(x) =

∫

A
g(x)f(x)dλ =

∫ b

a
g(x)f(x)dx. (3.3.2)

(3.3.2) follows from theorem 3.2 by replacing ν with µ, P with λ, ω with x, φ with g, Λ

with A and δ with f . If X has distribution function FX with continuous derivatives we

have dFX(x) = f(x)dx and

E[g(X) · 1ω∈X−1A] =

∫ b

a
g(x)f(x)dx =

∫ b

a
g(x)dFX (x). (3.3.3)

We refer to the expectation given by (3.3.1), (3.3.2), and (3.3.3) as the truncated expec-

tation of g(X) to A and write

Ē[g(X), A] = E[g(X) · 1ω∈X−1A].

Truncated moments to A and truncated central moments to A about x0 are

Ē[Xk, A] =

∫

X−1A
Xk(ω)dP (ω) =

∫

A
xkdµ(x),

Ē[(X − x0)
k, A] =

∫

X−1A
(X(ω) − x0)

kdP (ω) =

∫

A
(x− x0)

kdµ(x),

respectively. When the interval A is clear from context, we write Ē[X] for (3.2.3). For

A ∈ R
k and A = A1 × · · · × Ak, the truncated expectation of g(X1(ω), . . . , Xk(ω)) to A



75

is given by

E[g(X1(ω), . . . , Xk(ω)) · 1ω∈X−1A] =

∫

X−1A
g(X1(ω), · · · , Xk(ω))dP (ω)

=

∫

A
g(x1, . . . , xk)dµ(x1, . . . , xk)

=

∫

A1

· · ·
∫

Ak

g(x1, . . . , xk)f(x1, . . . , xk)dx1 · · · dxk.

This expectation will be denoted as follows

Ē[g(X1(ω), . . . , Xk(ω)), A] = E[g(X1(ω), . . . , Xk(ω)) · 1ω∈X−1A].

We now present some properties of truncated expectations.

Assumption 3.3 X = (X1, . . . , Xk) is a random vector on the space (Ω,F , P ) into R
k.

Assumption 3.4 A ∈ R
k and A = A1 × · · · ×Ak where each Ai is an interval in R.

Proposition 3.5 (Martinez) Given c is a real constant:

1. Under assumption 3.3, Ē[c, A] = cP (ω : X(ω) ∈ A),

2. Under assumptions 3.3 and 3.4, for X1, . . . , Xk independent, Ē[c, A] = cP (X1 ∈
A1) · · ·P (Xk ∈ Ak) .

Proof. For 1, we write

Ē[c, A] =E[c · 1ω∈X−1A] =

∫

X−1A
cdP (ω) =

∫

A
cdµ(x1, . . . , xk)

=

∫

A1

· · ·
∫

Ak

cf(x1, . . . , xk)dx1 · · · dxk = cP (ω : X(ω) ∈ A).

For 2, with X1, . . . , Xk independent, it follows

∫

A1

· · ·
∫

Ak

cf(x1, . . . , xk)dx1 · · · dxk =

∫

A1

· · ·
∫

Ak

cf1(x1) · · · fk(xk)dx1 · · · dxk

=c

∫

A1

f1(x1)dx1 · · ·
∫

Ak

fk(xk)dxk = cP (X1 ∈ A1) · · ·P (Xk ∈ Ak).
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Proposition 3.6 (Martinez) Given assumptions 3.3 and 3.4, for X1, . . . , Xk indepen-

dent

Ē[Xi, A] = Ē[Xi, Ai]P (X1 ∈ A1) · · ·P (Xi−1 ∈ Ai−1)P (Xi+1 ∈ Ai+1) · · ·P (Xk ∈ Ak),

for i = 1, . . . , k.

Proof. For X1, . . . , Xk independent

Ē[X1, A] =

∫

A1

· · ·
∫

Ak

x1f1(x1) · · · fk(xk)dx1 · · · dxk

=

∫

A1

x1f1(x1)dx1

∫

A2

f2(x2)dx2 · · ·
∫

Ak

fk(xk)dxk

= Ē[X1, A1]P (X2 ∈ A2) · · ·P (Xk ∈ Ak).

The general result follows if X1 is replaced by any of the Xi’s.

Proposition 3.7 (Martinez) Given assumptions 3.3 and 3.4, it follows:

1. Given assumption 3.3, Ē
[
∑k

i=1 ciXi, A
]

=
∑k

i=1 ciĒ[Xi, A].

2. Given assumptions 3.3 and 3.4, for X1, . . . , Xk independent

Ē

[
k∑

i=1

ciXi, A

]

=
k∑

i=1

ciĒ[Xi, Ai]P (X1 ∈ A1) · · ·P (Xi−1 ∈ Ai−1)

· P (Xi+1 ∈ Ai+1) · · ·P (Xk ∈ Ak).

Proof. For 1,

Ē

[
k∑

i=1

ciXi, A

]

=

∫

A1

· · ·
∫

Ak

k∑

i=1

cixif(x1, . . . , xk)dx1 · · · dxk

=
k∑

i=1

ci

∫

A1

· · ·
∫

Ak

xif(x1, . . . , xk)dx1 · · · dxk =
k∑

i=1

ciĒ[Xi, A].

For X1, . . . , Xk independent or i.i.d the result follows from

Ē

[
k∑

i=1

ciXi, A

]

=

k∑

i=1

ci

∫

A1

f1(x1)dx1 · · ·
∫

Ai

xifi(xi)dxi · · ·
∫

Ak

fk(xk)dxk.
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Proposition 3.8 (Martinez) Given assumptions 3.3 and 3.4, for X1, . . . , Xk indepen-

dent, it follows:

1. Ē[X1X2, A] = Ē[X1, A1]Ē[X2, A2]P (X3 ∈ A3) · · ·P (Xk ∈ Ak),

2. Ē[X1 · · ·Xk, A] = Ē[X1, A1] · · · Ē[Xk, Ak].

Proof. For X1, . . . , Xk independent or i.i.d

Ē[X1X2, A] =

∫

A1

x1f1(x1)dx1

∫

A2

x2f2(x2)dx2

∫

A3

f3(x3)dx3 · · ·
∫

Ak

fk(xk)dxk.

2 is a simple extension of 1.
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Chapter 4

Taylor series approximations of

expectations

4.1 Introduction

Evaluating the expectation of a function of random variables is an important problem

with many applications. In econometrics, for estimators, which are functions of random

variables, determining their moments is important to understand small and large sample

properties. In economics and finance, approximating the expectation of utility functions

is necessary to solve portfolio optimization problems, [95, 93, 71, 40]. This chapter

presents an algorithm to approximate the expectation of functions of random variables

based on Taylor series expansions. These techniques will be used in later chapters to

approximate the expectation of functions with complicated dependencies on sums of

random variables and other statistics.

4.2 Algorithm

We begin by considering univariate functions. Given a random variable X defined on a

probability space (Ω,F , P ) with continuous density function f(x) and a Borel function

ϕ : R → R, the expected value of Y ≡ ϕ(X) is given by

E[Y ] =

∫ ∞

−∞
sg(s)ds,
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where g is the density function of Y . This expectation can be rewritten, as presented in

(3.2.5), in the following form:

E[ϕ(X)] =

∫ ∞

−∞
ϕ(s)f(s)ds.

Obtaining an explicit analytic expression for this expectation by integration can be

done in very few cases. Numerical integration is the most viable option. Most numerical

procedures would involve knowing the functional form of the density. Such algorithms

applied to real empirical problems would require estimating the distribution from data.

In many situations, one would prefer to work with an expression of the expected value

E[ϕ(X)], which consists of a function of moments of the argument variable X. We

study algorithms based on Taylor approximations which require estimation of only a few

central moments. Such algorithms have been a standard device for computing expected

utilities for portfolio optimization [125, 143]. In this literature, there has been much

debate on the accuracy of approximating expectation of functions by means of a Taylor

series expansion. But as we will discuss, much of the confusion can be settled with some

basic theorems of integration and by putting aside issues concerning the appropriateness

of utility functions.

The idea of approximating the expectation of a function by means of a Taylor series

relies on the hope that taking the expectation of the function is equivalent to taking the

expectation of its series representation, and in turn that the expectation of the series

expansion is equivalent to summing the series of expected values of the series elements.

There are two important mathematical issues which must be addressed to assess the

viability of such an approximation. The first issue is the convergence of a Taylor series

to the function it represents. The second issue has to do with term-by-term integrability

of an infinite series. We begin by reviewing some concepts of convergent power series.

From the theory of infinite series of non-random variables, the Taylor series

∞∑

k=0

ϕ(k)(x0)

k!
(x− x0)

k, (4.2.1)

is a particular type of power series, and can represent the function ϕ(x) in a neighborhood
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of x0. Such neighborhood is referred to as the neighborhood of convergence of the series

and is defined by the radius of convergence. The radius of convergence of (4.2.1) is given

by

r = 1/α with α = lim
k→∞

(|ϕ(k)(x0)/k!|)1/k . (4.2.2)

For any x ∈ B = {x : |x − x0| < r|}, the series (4.2.1) converges to ϕ(x). For any

x ∈ Bc = {x : |x− x0| ≥ r|}, the series (4.2.1) diverges.

We would like to understand a similar relation between a function of a random variable

and a Taylor series with random elements. When considering random variables X and

ϕ(X) with density functions f(x) and g(x) respectively, the Taylor series

∞∑

k=0

ϕ(k)(x0)

k!
(X − x0)

k, (4.2.3)

has radius of convergence as defined by (4.2.2). The almost sure convergence of (4.2.3)

with a finite radius of convergence r can be written as

ϕ(X)I(X ∈ B) =

∞∑

k=0

ϕ(k)(x0)

k!
(X − x0)

kI(X ∈ B) a.s., (4.2.4)

where I(·) is the indicator function. For r = ∞ we have simply

ϕ(X) =

∞∑

k=0

ϕ(k)(x0)

k!
(X − x0)

k a.s.. (4.2.5)

When considering the approximation of a function of non-random variables by a

Taylor series, the approximation is only true within the radius of convergence. When

considering the approximation of the expectation of a function of a random variable by a

Taylor series, we must take into account not only the radius of convergence of the series

but also the range of the random variable in question. The algorithm for computing the

expected value of a function of a random variable based on a Taylor series approximation

is therefore based on the following expression

E[ϕ(X)] = T1 + T2, (4.2.6)
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T1 = E

[
∞∑

k=0

ϕ(k)(x0)

k!
(X − x0)

kI(X ∈ A)

]

=

∫

A

[
∞∑

k=0

ϕ(k)(x0)

k!
(s− x0)

k

]

f(s)ds,

T2 = E[ϕ(X)I(X ∈ Ac)] =

∫

Ac

ϕ(s)f(s)ds.

In (4.2.6), the interval of integration of the expectation is split. T1 represents an integral

whose interval A is a compact strict subset of the region of convergence B of the Taylor

series of ϕ, and T2 represents an integral over the complement of A denoted by Ac.

The objective is, given (4.2.6), to view T1 as an approximation of E[ϕ(X)] provided

T2 is small

E[ϕ(X)] ≈ T1.

T1 gives an expression based on the central moments of the random variable X if

the integral and summation can be interchanged. This is also known as integrating the

series term-by-term. Therefore, the applicability of a Taylor’s series expansion of ϕ(X)

to approximate the expectation E[ϕ(X)] depends on the circumstances which allow for

the following equality

∫

A

[
∞∑

k=0

ϕ(k)(x0)

k!
(x− x0)

kf(x)

]

dx =

∞∑

k=0

ϕ(k)(x0)

k!

∫

A

[

(x− x0)
kf(x)

]

dx. (4.2.7)

Well known sufficient conditions concerning uniform convergence of series exist which

allow the integral of a series to be computed term by term. Such conditions will be fun-

damental to the approximating algorithm we develop, and we state them in the following

theorem.

Theorem 4.1 (Knopp, [87]) The series F (x) =
∑
fn(x) is assumed uniformly con-

vergent in the interval J , and all the functions fn(x) are supposed integrable over the

closed subinterval J ′: a ≤ x ≤ b, so that F (x) is also continuous in that subinterval.

Then F (x) is also integrable over J ′ and the integral of F (x) over the interval J ′ may be

obtained by term-by-term integration

∫ b

a

[
∞∑

k=0

fn(x)

]

dx =

∞∑

k=0

[∫ b

a
fn(x)dx

]

. (4.2.8)
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Similar sufficient conditions can be found in [7, 8, 51, 133]. The following theorem

concerns uniform convergence of a Taylor series.

Theorem 4.2 (Apostol, [7]) A power series converges uniformly on every compact

subset interior to the neighborhood of convergence.

The following theorem is necessary for the proposition to follow.

Theorem 4.3 (Knopp, [87]) If
∑
fn(x) is uniformly convergent in J , so is the series

∑
g(x)fn(x), where g(x) denotes any function defined and bounded in the interval J .

We can now state a proposition.

Proposition 4.4 (Martinez) Let ϕ(x) : R → R be a function whose Taylor series

representation about the point x0 has neighborhood of convergence B = {x : |x−x0| < r}.
Let X be a random variable defined on the probability space (Ω,F , P ) with bounded density

function f , mean E[X] = µ, with E(X − µ)k < ∞ for k = 1, 2 . . . , and E[ϕ(X)] < ∞.

Then

E[ϕ(X)] =

∞∑

k=0

ϕ(k)(x0)

k!
Ē[(X − µ)k, A] +E[ϕ(X)I{X ∈ Ac}], (4.2.9)

where A ⊂ B and

Ē[(X − µ)k, A] =

∫

A
(s− µ)kf(s)ds, k = 1, 2, . . .

will be referred to as truncated central moments. Truncated expectations are defined in

section 3.3.

Proof. E[ϕ(X)] can be written as (4.2.6). It is only left to prove that (4.2.7) holds.

By theorem 4.2, the Taylor series representation of ϕ(x) converges uniformly on every

compact subset A′ of the neighborhood of convergence B. By theorem 4.3, the series

∞∑

k=0

ϕ(k)(x0)

k!
(x− x0)

kf(x),

converges uniformly on the compact subset A′. By theorem 4.1, (4.2.7) holds with A a

compact subset of A′.
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It is important to note that the conditions of the proposition are sufficient and not

necessary. Every time truncated central moments are used with A ⊂ B, the series in

(4.2.9) will converge. The necessity of the conditions fail because there are series that

can be integrated term-by-term which do not converge uniformly. Furthermore, the

conditions of uniform convergence restrict the interval A to be compact.

4.3 Examples

Given a random variable X, the relevance of the radius of convergence of the Taylor series

representation of a function ϕ when approximating the expected value of ϕ(X) was first

pointed out in [95]. Unfortunately, the author provides misleading explanations for the

conclusion reached. The author concludes:

The counterexamples confirm the analytic result that the interval of conver-

gence prohibits the application of a Taylor’s series expansion for a logarithmic

and power utility function. Regardless of what sort of probability distribu-

tion is involved, the approximation does not work.... We can conclude that

the hitherto common Taylor’s series expansion yields an exact result for the

normal distribution, exponential utility combination only.

The main problem with the author’s conclusions is applying the uniform convergence

conditions of theorem 4.1 as necessary rather than sufficient conditions.

The integral of an infinite sum is equal to the sum of an infinite series of

integrals only if the series converges uniformly.

Furthermore, the author fails to realize the need to use (4.2.6) and (4.2.7) in the approx-

imation. No satisfactory alternative solution is given in [95] to the problem of erroneous

approximations resulting from inappropriate use of the Taylor’s series. Proposition 4.4

provides such alternative solution. In the following examples, we apply the results of

proposition 4.4 to the numerical cases studied in [95].

We consider the utility functions examined in [95]. These include an exponential, a

power, and a logarithmic utility function as given below:

U(x) = 1000(1 − exp(−0.05x)), (4.3.1)
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U(x) =







x0.5

.5 , x > 0

0, x = 0

−x2

2 , x < 0

, (4.3.2)

U(x) = lnx, x > 0. (4.3.3)

The radius of convergence for the exponential utility is infinity. For the power utility

as well as the logarithmic utility, the radius of convergence is equal the point x0 around

which the series expansion is made. In our examples, x0 is equal to the mean of the

random variable X.

As in [95], we investigate normally distributed returns with probability density func-

tion:

f(x) =
1

σ
√

2π
exp

[

−1

2

(
x− µ

σ

)2
]

, −∞ < x <∞,

with numerical parameters µ = 10 and σ2 = 82 and lognormally distributed returns with

mean m = 10 and variance s2 = 82 with probability distribution:

f(x) =
1

xσ
√

2π
exp

[

−1

2

(
log(x) − µ

σ

)2
]

, 0 < x <∞.

The parameters of the lognormal distribution are

µ = log

[
m2

(s+m2)1/2

]

≈ 2.0032, σ2 = log
[ s

m2
+ 1
]

≈ 0.5988.

The central moments of the normal distribution are given by

m2k−1 = 0, m2k =
(2k)!σ2k

k!2k
, k = 1, 2, . . . .
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The central moments, mj , of the lognormal distribution can be obtained from the raw

moments Mj

Mj = exp

(

jµ+
(jσ)2

2

)

, mj =

j
∑

k=0




j

k



 (−1)kMj−kM
k
1 .

We compare the approximations obtained using the inappropriate Taylor series algorithm

in [95] to approximations obtained using the algorithm in proposition 4.4.

In table 4.1, we present results for the power utility function (4.3.2) and normally

distributed returns. The second of five columns labeled central moments presents the

approximation to the expected value of E[ϕ(X)] obtained using the algorithm in [95].

Columns three, four, and five present the approximations to the expectation E[ϕ(X)I{X ∈
A}] given by the expression

n∑

k=0

ϕ(k)(x0)

k!
Ē[(X − µ)k, A],

which forms part of the expected value E[ϕ(X)] according the algorithm in proposition

4.4 with µ = 10, A = {x : a ≤ x ≤ b}, a = 1 × 10−10, and b = 40, b = 19, and b = 10

respectively.

The row labeled EUint presents the expected value of utility computed by numerical

integration. The entries below the label EUmoment in column two are the expected value of

utility computed with the algorithm in [95], aggregating even order central moments from

the second to the twentieth and the sixtieth. The entries below the label EUmoment in

column three are the expected value of the truncated utility computed with the algorithm

in proposition 4.4 using truncated central moments with A = {x : 1 × 10−10 ≤ x ≤ 40}.
Similarly for columns four and five with b = 19 and b = 10, respectively.

The results of Table 4.1 column two demonstrate as stated in [95] that the inappro-

priate algorithm provides diverging approximations to the expectation as the number

of Taylor series terms increases. The results of table 4.1, column three, with truncated

moments with b = 40, demonstrate approximations of E[ϕ(X)I{X ∈ A}] will diverge

when the condition A ⊂ B is violated which is the case for column three, since for the

power utility B = {x : 0 < x < 20}.
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Table 4.1: Expected utility for the power function with normal distribution of returns

Central moments Truncated central moments
b=40 b=19 b=10

EUint 3.29127 5.72865 4.17849 1.63261
EUmoment

n
2 5.67629 5.68382 4.23834 1.70708
4 5.17793 5.63197 4.20645 1.66358
6 4.10522 5.46344 4.19525 1.65037
8 0.17441 4.81374 4.18990 1.64443
10 -20.3739 1.88376 4.18687 1.64119
12 -160.436 -13.0124 4.18497 1.63920
14 -948.491 -95.9590 4.18369 1.63787
16 -8694.25 -590.983 4.18278 1.63693
18 -97456.3 -3707.77 4.18211 1.63625
20 −1.26 × 106 -24175.8 4.18159 1.63572
60 −1.75 × 1035 −1.32 × 1022 4.17910 1.63322

Table 4.2: Expected utility for the exponential function with lognormal distribution of
returns

Central moments Truncated central moments
b=250 b=40 b=10

EUint 348.45852 348.45579 334.95660 149.78575
EUmoment

n
2 331.30006 331.45016 331.10499 151.35090
4 332.96127 334.91574 334.64081 149.79519
6 298.42314 332.66927 334.94485 149.78578
8 -49.125352 330.33387 334.95632 149.78575
10 -4065.2351 331.54319 334.95659 149.78575
12 -46885.083 336.12332 334.95660 149.78575
14 -431291.72 341.38923 334.95660 149.78575
16 −3.27 × 106 345.21978 334.95660 149.78575
18 −2.06 × 107 347.24970 334.95660 149.78575
20 −1.31 × 108 348.08368 334.95660 149.78575
60 −2.86 × 1011 348.45579 334.95660 149.78575
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Table 4.3: Expected utility for the power function with lognormal distribution of returns

Central moments Truncated central moments
b=40 b=19 b=10

EUint 5.86842 5.65357 4.67461 2.934209
EUmoment

n
2 5.67629 5.64162 4.75615 3.023612
4 1.71872 5.51842 4.69837 2.959522
6 -689.208 5.16860 4.68431 2.944414
8 -724895 3.57674 4.67933 2.939136
10 −2.02 × 109 -4.75683 4.67717 2.936872
12 −8.75 × 1012 -52.4990 4.67611 2.935765
14 −4.70 × 1016 -344.679 4.67555 2.935173
16 −2.86 × 1020 -2224.52 4.67522 2.934834
18 −1.90 × 1024 -14798.9 4.67502 2.934629
20 −1.32 × 1028 -101559 4.67489 2.934500
60 −3.9 × 10106 −7.53 × 1022 4.67461 2.934212

Table 4.4: Expected utility for the logarithmic function with lognormal distribution of
returns

Central moments Truncated central moments
b=40 b=19 b=10

EUint 2.00317 1.94496 1.63163 1.01679
EUmoment

n
2 1.89259 1.96099 1.71776 1.10915
4 -2.28348 1.80780 1.66498 1.05186
6 -895.907 1.30455 1.64785 1.03370
8 −1.096 × 106 -1.25812 1.64059 1.02608
10 −3.450 × 109 -16.0976 1.63701 1.02234
12 −1.65 × 1013 -108.832 1.63506 1.02032
14 −9.59 × 1016 -720.681 1.63392 1.01914
16 −6.26 × 1020 -4925.26 1.63321 1.01841
18 −4.40 × 1024 -34743.5 1.63276 1.01794
20 −3.24 × 1028 -251570 1.63245 1.01763
60 −1.7 × 10107 −3.25 × 1023 1.63165 1.01681
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The results of columns four and five show approximations which converge towards

the quantities obtained by numerical integration as the number of Taylor series terms

increases. These results validate proposition 4.4.

Table 4.2 has the same format as table 4.1, and presents results for the exponen-

tial utility function with lognormally distributed returns. Again the results in column

two demonstrate as stated in [95] that the inappropriate algorithm provides diverging

approximations to the expectation of the exponential function as the number of Tay-

lor series terms increases. For the exponential function we know B = R. Therefore,

proposition 4.4 implies any compact subset A will result in converging approximations

to E[ϕ(X)I{X ∈ A}]. This is indeed confirmed by the results of columns three, four,

and five.

Tables 4.3 and 4.4 provide similar results for the power function with lognormal re-

turns, and for the logarithmic function with lognormal returns respectively. To conclude,

all four numerical examples demonstrate that when the radius of convergence of ϕ(x) is

finite, the algorithm of proposition 4.4 with truncated moments and with A a compact

subset of B provides a convergent Taylor series approximation of E[ϕ(X)I{X ∈ A}].
Otherwise, for the case of exponential utility and infinite radius of convergence, one

can still choose a compact set A to obtain a convergent Taylor series approximation of

E[ϕ(X)I{X ∈ A}].

4.4 Approximation error

As stated above, using truncated expectations we can write

E[ϕ(X)] = Ē[ϕ(X), A] + Ē[ϕ(X), Ac],

whereA is a compact subset of the neighborhood of convergence andAc is its complement.

Furthermore, for any finite n, and under the assumptions of proposition 4.4, we can write

Ē[ϕ(X), A] =
n∑

k=0

ϕ(k)(µ)

k!
Ē[(X − µ)k, A] + Ē[R(n), A],



89

where R(n) is the Lagrange remainder of the Taylor series. It follows, the approximation

error is given by

E[ϕ(X)] −
n∑

k=0

ϕ(k)(µ)

k!
Ē[(X − µ)k, A] = Ē[R(n), A] + Ē[ϕ(X), Ac]. (4.4.1)

Proposition 4.4 and the examples in the previous section provide and demonstrate

the methodology to approximate E[ϕ(X)I{X ∈ A}] by means of converging Taylor

series approximations. The accuracy of the approximation E[ϕ(X)] ≈ E[ϕ(X)I{X ∈
A}] depends on the size of E[ϕ(X)I{X ∈ Ac}]. In what follows, we attempt to find

bounds for E[ϕ(X)I{X ∈ Ac}] in order to make improvements on the approximation

E[ϕ(X)] ≈ E[ϕ(X)I{X ∈ A}] by using an approximation which incorporates a measure

on the size of E[ϕ(X)I{X ∈ Ac}]. To accomplish this, we must define a particular class

of functions.

Consider a random variable X defined on a complete probability space (Ω,F , P ) with

E[X] = θ < ∞. Let A ⊂ R be an interval, possibly unbounded, with P (X ∈ A) = 1.

Define Gα as the class of functions defined on A such that ϕ ∈ Gα implies ϕ has a Taylor

series expansion about θ with a possibly unbounded neighborhood of convergence B ⊆ A
and with

|ϕ(x)| = O(|x|α) as |x| → ∞.

Therefore, given ϕ ∈ Gα, there exists an N > 0 such that |ϕ(x)| ≤ c|x|α for some constant

c for all x with |x − θ| ≥ N . Otherwise, |ϕ(x)| ≤ M for |x − θ| < N for some constant

M . We now present a number of assumptions followed by a proposition which provides

an approximation of E[ϕ(X)] in terms of the infinite Taylor series and which takes into

account a bound on the approximation error Ē[ϕ(X), Ac}].

Assumption 4.1 ϕ ∈ Gα.

Assumption 4.2 X is a random variable with E[X] = θ and E(X − θ)k < ∞ for

k = 1, 2, . . . .

Assumption 4.3 E[ϕ(X)] <∞.
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Assumption 4.4 A = {x : a ≤ x ≤ b} is a compact subset of the neighborhood of

convergence B of ϕ(x), θ +N1 ≥ b and θ −N2 ≤ a.

Proposition 4.5 (Martinez) Under assumptions 4.1 through 4.4

E[ϕ(X)] ≤
∞∑

k=0

ϕ(k)(θ)

k!
Ē(X − θ)k +R1 +R2,

where R1 = MP (X ∈ Λ), R2 = cE[|X|αI{X ∈ Λc}], and

Λ = {x : θ −N2 < x < a} ∪ {x : b < x < N1 + θ},

Λc = {x : x ≥ N2 + θ} ∪ {x : x ≤ θ −N1},

Ē(X − µ)k =

∫

A
(s− µ)kf(s)ds, k = 1, 2, . . . .

Proof. We write E[ϕ(X)] = T1 + T2 where,

T1 = E[ϕ(X)I{X ∈ A}], T2 = E[ϕ(X)I{X ∈ Ac}].

We find expressions for T1 and T2 beginning with T2. Since ϕ ∈ Gα,

E[ϕ(X)I{X ∈ Λ}] ≤MP (X ∈ Λ),

where the constantM depends on b andN . SimilarlyE[ϕ(X)I{X ∈ Λc}] ≤ cE[|X|αI{X ∈
Λc}]. It follows T2 ≤ MP (X ∈ Λ) + cE[|X|αI{X ∈ Λc}]. For T1, by proposition 4.4 we

can write

T1 =

∞∑

k=0

ϕ(k)(x0)

k!
Ē(X − µ)k (4.4.2)

and the theorem is proven.

R1 and R2 are in terms of absolute moments and probabilities of the random variable

X, both of which can be calculated or estimated easily with knowledge of X. The

corollary that follows gives a bound similar to proposition 4.5 but with the infinite series

replaced by a finite sum and a bounded remainder.
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Assumption 4.5 Mq is a number such that |ϕ(q+1)(x)| ≤Mq for every x ∈ A

Corollary 4.6 Under assumptions 4.1 through 4.5

E[ϕ(X)] ≤
q
∑

k=0

ϕ(k)(θ)

k!
Ē(X − θ)k +R1 +R2 +R3,

where R1 = MP (X ∈ Λ), R2 = cE[|X|αI{X ∈ Λc}],

R3 =
Mq

(q + 1)!
Ē|X − θ|q+1,

Λ = {x : θ −N2 < x < a} ∪ {x : b < x < N1 + θ},

Λc = {x : x ≥ N2 + θ} ∪ {x : x ≤ θ −N1},

Ē(X − µ)k =

∫

A
(s− µ)kf(s)ds, Ē|X − µ|k =

∫

A
|s− µ|kf(s)ds k = 1, 2, . . . .

Proof. This follows from equating the Taylor series and the Taylor polynomial plus

remainder as follows

∞∑

k=0

ϕ(k)(θ)

k!
(x− θ)k =

q
∑

k=0

ϕ(k)(θ)

k!
(x− θ)k +Rq(x),

where Rq(x) = ϕ(q+1)(c)(x − θ)q+1/(q + 1)! for some c in the interval (a, x). The result

follows since |Rq(x)| ≤Mq|x− θ|q+1/(q + 1)! for every x ∈ A

Example 4.7 We revisit two of the numerical examples studied in section 4.3. We

apply the result of proposition 4.5 to the example of an exponential utility function with

lognormal distribution of returns and to the example of a power utility function with

lognormal distribution of returns. The results are presented in tables 4.5 and 4.6.

There are two main ways to improve on the error from R2. For functions in general,

one is to do piecewise linear approximations of ϕ is Λc. Another, simpler, method can be

applied to functions like the power and logarithmic utilities. These functions have radius

of convergence equal to the point at which the Taylor series expansion is taken. Instead

of evaluating the Taylor series around the mean θ, one can do the evaluation at some

large value x0. This effectively reduces the size of Λc.
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Table 4.5: Expected utility for the exponential function with lognormal distribution of
returns

Truncated central moments
b=250 b=40 b=10

EUint 348.45852
EUmoment R1, R2 R1, R2 R1, R2

n
2 331.45289 345.79466 500.75764
4 334.91847 349.33048 499.20193
6 332.67200 349.63452 499.19252
8 330.33660 349.64600 499.19249
10 331.54591 349.64626 499.19249
12 336.12605 349.64626 499.19249
14 341.39195 349.64626 499.19249
16 345.22251 349.64626 499.19249
18 347.25243 349.64626 499.19249
20 348.08641 349.64626 499.19249
60 348.45851 349.64626 499.19249

Table 4.6: Expected utility for the power function with lognormal distribution of returns

Truncated central moments
b=19 b=10

EUint 5.86842
EUmoment R1, R2 R1, R2

n
2 6.26983 7.18741
4 6.21205 7.12332
6 6.19798 7.10821
8 6.19300 7.10293
10 6.19085 7.10067
12 6.18979 7.09956
14 6.18922 7.09897
16 6.18889 7.09863
18 6.18869 7.09843
20 6.18857 7.09830
60 6.18829 7.09801
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Table 4.7: Expected utility for the power function with lognormal distribution of returns

Truncated central moments

EUint 5.86842
EUmoment x0 = 5 x0 = 10 x0 = 50 x0 = 100 x0 = 500

b = 9 b = 19 b = 99 b = 199 b = 999
n
2 2.62402 4.75615 7.28777 8.95420 17.43726
4 2.61850 4.69837 6.50790 7.48044 13.18943
6 2.61721 4.68431 6.22911 6.89060 11.26424
8 2.61679 4.67933 6.09514 6.57976 10.13221
10 2.61661 4.67717 6.02043 6.39213 9.37765
12 2.61654 4.67611 5.97474 6.26909 8.83565
14 2.61649 4.67555 5.94496 6.18372 8.42643
16 2.61647 4.67522 5.92462 6.12200 8.10619
18 2.61646 4.67502 5.91021 6.07593 7.84872
20 2.61645 4.67489 5.89971 6.04066 7.63732
50 2.61644 4.67462 5.86317 5.89335 6.42874
100 2.61644 4.67461 5.85984 5.87196 6.05069
200 2.61644 4.67461 5.85949 5.86848 5.91294
5000 2.61644 4.67461 5.85947 5.86809 5.86842

Example 4.8 We revisit one of the numerical examples studied in section 4.3. We apply

the result of proposition 4.5 to the example of a power utility function with lognormal

distribution of returns. The Taylor series is expanded at the point x0. We evaluate

different approximations as the point x0 and the end point b of the interval A get larger.

The results presented in table 4.7 demonstrate the approximation improves as n and the

value of x0 increase.

In later chapters we present Delta method results where one is interested in how the

expectation depends on some parameter. In these cases the results are equalities rather

than the bound given in the above theorem. These equalities are obtained by including

big-O expressions of certain order of the parameter.
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Chapter 5

Taylor algorithm for independent

identically distributed processes

5.1 Introduction

In this chapter, we construct an algorithm which yields an approximation, based on Tay-

lor series, of the mean square forecast error (MSFE) for a forecasting problem involving

independent and identically distributed processes. This Taylor algorithm approximation

is meant to be used as a tool to describe the sample size dependence (SSD) of the MSFE.

Sample size dependence refers to the dependence of a statistic on a parameter or pa-

rameters which embody information concerning the amount of data involved in the forma-

tion of the statistic. For example, consider a stationary stochastic process {Xτ}N
τ=1 with

E[Xi] = µx and variance σ2
x ∀i. The sample mean of the process, µ̄x,n = 1/n

∑n
i=1Xi,

is a random variable and a statistic with n describing the sample size. One might be

interested in the behavior of this random variable for different values of n. Large sample

theory would tell us µ̄x,n is consistent, µ̄x,n
P→ µx. Of more interest is the behavior of

µ̄x,n for finite values of n. For this, we investigate the SSD of two moments of the sample

mean: the expected value of µ̄x,n, and the mean square error (MSE) of µ̄x,n and µx. The

expected value of µ̄x,n, E[µ̄x,n] = µx, is independent of n. This is the unbiased property

of the sample mean and, again, not of much use for the purpose at hand. The MSE

between µ̄x,n and µx, MSE = E[(µ̄x,n − µx)2], gives a measure of the average squared

deviation of µ̄x,n from µx. This can be helpful to understand, on average, how much of
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µ̄x,n differs from µx for finite values of n. This SSD can be derived explicitly. First

E[µ̄2
x,n] = E

[

1

n2

( n∑

i=1

Xi

)2
]

=
1

n2

( n∑

i=1

E[X2
i ] +

∑

i6=j

E[XiXj ]
)

=
1

n
(σ2

x + µ2
x) +

(

1 − 1

n

)

(γ1,2 + µ2
x),

where γ1,2 = Cov(X1, X2) and we make use of the stationarity assumption.

MSEn = E[(µ̄x,n − µx)
2] = E[µ̄2

x,n − 2µ̄x,nµx + µ2
x] = E[µ̄2

x,n] − µ2
x,

and finally we obtain

MSEn =
1

n
(σ2

x − γ1,2) + γ1,2. (5.1.1)

(5.1.1) gives the explicit dependence of the MSE on the sample size n. We can see that

on average, the square difference between µ̄x,n and µx decays as 1/n to γ1,2.

Just as the sample mean is a statistic, a forecast, in a forecasting problem as described

in Chapter 2, is a statistic constructed from some predetermine functional form and an

estimator, scalar, or vector. This estimator, another statistic, will depend on a variable n,

describing the size of the sample used to form the estimator. Therefore, given a stochastic

process {Yτ}, and a forecast Ŷt+1,n of Yt+1, we are interested in understanding how the

average squared difference between Ŷt+1,n and Yt+1 behaves for different values of the

sample size n. We are interested in the SSD of the MSFE. In forecasting, understanding

the SSD of the MSFE can be of great importance. This is especially true if we can find

classes of processes for which analyzing the SSD results in an optimal observation window

which provides the best forecast possible for a particular estimator.

In this chapter, we propose to understand the SSD of the MSFE for a forecasting

problem involving independent processes. The forecasting model is assumed linear and

the estimator of choice is the OLS. Unlike the motivating example of the sample mean

given above, determining the SSD of the MSFE can not be done explicitly. This is due,

in the scalar case, to the fractional functional form of the OLS and, in the multi-variate

case, to the inversion of a matrix of sample data. This complication can not be simply



96

solved by a different choice of estimator, since the OLS tends to be the simplest estimator

available. One of the main contributions of this thesis is to overcome this difficulty by

developing a methodology to extract the SSD from a statistic such as the MSFE with a

complicated functional form.

The methodology proposed consists of writing the square forecast error (SFE) as a

function of two statistics. This function is approximated by a Taylor expansion with

respect to the two statistics about two points, the expectation of the two statistics. We

obtain an approximation of the MSFE by taking the expectation of the Taylor approxima-

tion of the SFE. The expected value of the resulting Taylor approximation is a polynomial

of central moments of the two statistics. These central moments are subsequently ex-

panded and simplified to extract the explicit sample size dependence which is manifested

in the sample size variable n. The final expression for the approximation of the MSFE is

a polynomial in 1/n with coefficients consisting of functions of moments of the observed

dependent and explanatory processes. The algorithm makes no assumptions on the form

of the DGP for the dependent variable. This allows us to investigate the ramifications of

misspecification in the forecasting problem and how these might manifest themselves in

the SSD.

The rest of the chapter is organized as follows. In Section 5.2, we review some

properties of the OLS and MSFE under the assumption of a correctly specified forecast

model. Section 5.3 describes properties of the OLS under the assumption of a functionally

misspecified model which have repercussions for the forecasting problem. Section 5.4

presents the derivation of the Taylor algorithm for the scalar case, and Section 5.5 presents

the derivation for the multi-variate case. Finally, in Section 5.6, the performance of the

Taylor algorithm for the MSFE of a scalar forecasting problem is evaluated with Monte

Carlo experiments, and Section 5.7 concludes.

5.2 Properties for the OLS and MSFE under correct spec-

ification

Let {Yτ} be an observable scalar process of interest to a forecaster. In general, the DGP

is not known to the forecaster and therefore, in order to forecast, she must construct
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mathematical models which best capture empirical characteristics of the observed process.

The forecaster might be interested in formulating her predictions based on linear models

of the process. A linear regression model is a correspondence which relates the dependent

variable Yt+1 to a (m× 1) vector of explanatory variables, Xt as follows:

Yt+1 = X>
t φ+ Vt+1, (5.2.1)

where {Vτ} is a scalar innovation process and φ is a vector of parameters. If we iden-

tify t as the present time, we consider the sample of the n most resent observations

(yt−n+1, . . . , yt, xt−n, . . . , xt−1). The OLS estimate based on such a sample is the value

of φ which minimizes the residual sum of squares (RSS):

RSS ≡
t−1∑

τ=t−n

(yτ+1 − x>τ φ)2. (5.2.2)

In this section, as in most literature treatments of linear regression, we make the dra-

conian assumption that the DGP can be described by a mathematical relation of the

process {Yτ} which coincides with the form of the regression model (5.2.1):

DGP : Yt+1 = X>
t β + Ut+1, (5.2.3)

where Ut is a scalar innovation process and β is a vector of parameters. In other words, we

assume the model (5.2.1) is correctly specified. β is often refereed to as the true parameter

vector and the objective of it is to obtain the best possible estimate for this parameter

vector, based on the observed sample. Under condition (5.2.3), the OLS estimate of β

obtained from the minimization of the RRS is given by:

β̂t,n =
[ t−1∑

τ=t−n

xτx
>
τ

]−1
t−1∑

τ=t−n

xτyτ+1. (5.2.4)
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The OLS sample residual for observation t is v̂t ≡ yt − x>t β̂t,n. We now return to deal

with the random processes and define the following objects:

Xt,n ≡ (Xt−n, ..., Xt−1)
> ∈ R

n×m,

Yt,n ≡ (Yt−n+1, . . . , Yt)
> ∈ R

n×1,

Qt,n ≡ X>
t,nXt,n ∈ R

m×m,

Ut,n ≡ (Ut−n+1, . . . , Ut)
> ∈ R

n×1.

As a function of the random processes, the OLS is a statistic and can be written as

follows:

β̂t,n = β +Q−1
t,nX

>
t,nUt,n. (5.2.5)

(5.2.5) gives the relation between the true parameter β and the OLS estimator β̂t,n. This

relation is true because of the correctly specified assumption given by condition (5.2.3).

Many results concerning the OLS exist based on different assumptions on the explanatory

variables and the innovation process [61, 64]. We will focus on result for a specific set of

assumptions.

Assumption 5.1 Xt is stochastic and independent of Us for all t, s.

Assumption 5.2 Ut is i.i.d with mean zero and variance σ2
u.

Taking expectations of (5.2.5) and exploiting assumption 5.2,

E[β̂t,n] = β +E[Q−1
t,nX

>
t,n]E[Ut,n] = β,

so that the OLS estimator is unbiased.

For asymptotic results, our interest is in the behavior of β̂t,n as n becomes large. We

begin by establishing consistency of the OLS for which we need the following assumption.

Assumption 5.3 (1/n)
∑t−1

τ=t−nXτX
>
τ

P→ Q, a positive definite matrix.
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From (5.2.5), we write

β̂t,n − β =
[

(1/n)
t−1∑

τ=t−n

XτX
>
τ

]−1[

(1/n)
t−1∑

τ=t−n

XτUτ+1

]

. (5.2.6)

For the first term of (5.2.6), assumption 5.3 and theorem A.19 imply

[

(1/n)

t−1∑

τ=t−n

XτX
>
τ

]−1 P→ Q−1. (5.2.7)

For the second term of (5.2.6), note XτUτ+1 is a martingale difference sequence with

a finite variance-covariance matrix given by E[XτUτ+1X
>
τ Uτ+1] = σ2

uE[XτX
>
τ ]. By

proposition A.31,

[

(1/n)
t−1∑

τ=t−n

XτUτ+1

]
P→ 0. (5.2.8)

Applying proposition A.20 to (5.2.6), (5.2.7) and (5.2.8),

β̂t,n − β
P→ Q−1 · 0 = 0,

confirming the consistency of the OLS estimator. For the asymptotic distribution of the

OLS we require a further assumption.

Assumption 5.4 E[XτX
>
τ ] = Qτ , a positive definite matrix with (1/T )

∑T
τ=1Qτ → Q.

Under the assumptions above, it can be shown (see [64], p . 210) that

√
T (β̂t,n − β)

L→ N(0, σ2
uQ

−1). (5.2.9)

Furthermore, the OLS estimate of the variance of the innovations, σ2
u, is given by s2n =

RSS/(n−m), which is unbiased, consistent, and satisfies

√
T (s2n − σ2

u)
L→ N(0, µ4 − σ4

u).
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We now turn to properties of the MSFE under the assumption of a correctly specified

model. For the scalar case, the OLS reduces to

β̂t,n = β +
( t−1∑

τ=t−n

X2
τ

)−1
t−1∑

τ=t−n

Uτ+1Xτ .

We calculate the large sample properties of the SFE. Substituting the OLS estimator in

the expression for the SFE we obtain:

SFEn =(Yt+1 − Ŷt+1)
2 = (β − β̂t,n)2X2

t + 2(β − β̂t,n)XtUt+1 + U2
t+1

=
( t−1∑

τ=t−n

X2
τ

)−2(
t−1∑

τ=t−n

Uτ+1Xτ

)2
X2

t

− 2
( t−1∑

τ=t−n

X2
τ

)−1
t−1∑

τ=t−n

Uτ+1XτXtUt+1 + U2
t+1.

By theorem A.13 it follows

1

n

t−1∑

τ=t−n

Uτ+1Xτ
P→ E[Ut+1Xt] = 0,

1

n

t−1∑

τ=t−n

X2
τ

P→ E[X2
t ]. (5.2.10)

Multiplying and dividing the first term of the SFE by 1/n2, multiplying and dividing the

second term of the SFE by 1/n, applying (5.2.10) and theorem A.18 part 2, we obtain:

SFEn
P→ U2

t+1, MSFEn
P→ σ2

u.

We can derive a simplified expression for the MSFE for the case where the elements of

the explanatory process {Xτ} are mutually independent, i.e., E[XiXj ] = E[Xi]E[Xj ] for

i 6= j. First, we know the OLS is unbiased, E[β̂t,n], and the expected value of the square

of the OLS is given as follows:

E[β̂2
t,n] = σ2

uE
[( t−1∑

τ=t−n

X2
τ

)−1]

.
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Given these expressions for E[β̂t,n] and E[β̂2
t,n], the MSFE is as follows:

MSFE = σ2
u + σ2

uE
[( t−1∑

τ=t−n

X2
τ

)−1]

.

This expression is simple, yet, the SSD is not transparent. Even under the assumption of

correct specification, one can see the difficulty of determining the SSD of a statistic such

as a MSFE which incorporates the OLS. In the next section, we present large sample

results for the OLS under the assumption of misspecification.

5.3 Misspecification and the OLS

Much of what is known about estimation and inference relies on the assumption that

the model in question coincides with the data generating process. For this reason, it is

important to understand properties of commonly used estimators under the assumption

of misspecification. The most important results in the literature regarding properties of

the OLS when the regression model is misspecified were developed by White in [150].

These results are large sample properties of the OLS under functional misspecification.

In this section, we present the assumptions and the main results of [150]. The first

assumption describes the class of DGPs under consideration.

Assumption 5.5 The true model is

Yτ = g(Zτ ) + ετ , τ = 1, . . . , n,

where g is an unknown function and (Zτ , ετ ) are i.i.d. random 1 × (p+ 1) vectors such

that E[Zτ ] = 0, E[Z>
τ Zτ ] = Mzz is finite and nonsingular, E[ετ ] = 0, E[ε2τ ] = σ2

ε < ∞,

E[Z>
τ ετ ] = 0 and E[g(Zτ )2] = σ2

g <∞.

The linear model is of the form

Yτ = Xτβ + uτ , τ = 1, . . . , n,

where uτ ≡ g(Zτ ) − Xτβ + ετ is a random variable and the 1 × k vector Xτ has ele-

ments which are functions of elements of Zτ but some elements of Zτ may be omitted.
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Let Fz,ε denote the joint distribution of Zτ , ετ . White writes the mean square error of

approximation prediction as follows:

σ2(β) =

∫

[g(z) − xβ + ξ]2dFz,ε(x, ξ).

With the i.i.d assumption, this coincides with the definition of the MSFE at an arbitrary

forecast origin. The OLS estimator is β̂OLS,n = (X>X)−1X>Y , where X is the n × k

matrix with rows Xτ . Further assumptions are as follows.

Assumption 5.6 g and X are measurable functions of Z.

Assumption 5.7 E[g(Zτ )ετ ] = 0, E[X>
τ ] = 0, E[X>

τ Xτ ] = Mxx is finite and nonsingu-

lar.

β∗ is defined as the parameter that uniquely solves the following optimization

min
β
σ2(β). (5.3.1)

The main result is given in the following theorem.

Theorem 5.1 (Theorem 2 in [150]) Under assumptions 5.5, 5.6, and 5.7, β̂OLS,n
a.s.−→

β∗ and s2
a.s.−→ σ2(β∗) where s2 = (n− k)−1

∑n
τ=1(Yτ −Xτ β̂OLS,n)2.

If g(z) = xβ0, then β∗ = β0 for any distribution of the Zτ otherwise, β∗ depends crucially

on the distribution of the Zτ . As the sample size goes to infinity, β̂OLS,n is approximately

normally distributed, as shown in the next theorem.

Theorem 5.2 (Theorem 3 in [150]) Under assumptions 5.5, 5.6, and 5.7,

√
n(β̂OLS,n − β∗)

A∼ N(0,M−1
xx V (β∗)M−1

xx ),

provided E[Y 2
i X

>
i Xi] and E[X2

ijX
>
i Xi], j = 1, . . . , k are finite. Moreover, (X>X/n)

a.s.−→
M−1

xx and

V̂OLS = n−1
n∑

τ=1

(Yτ −Xτ β̂OLS,n)2X>
τ Xτ

a.s.→ V (β∗),

so that

(X>X/n)−1V̂OLS(X>X/n)−1 a.s.−→M−1
xx V (β∗)M−1

xx .
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Theorem 5.1 is of great consequence for the problem of forecasting under misspecification.

To see this, by its definition, β∗ is the value attained by the linear parameter of the model

which results in the smallest value of the MSFE, i.e., σ2(β∗). The objective of analyzing

the SSD of the MSFE is to find the values of the sample size variable n for which the

MSFE attains the value σ2(β∗). Theorem 5.1 describes the behavior of the MSFE as

n goes to infinity by characterizing the behavior of β̂OLS,n as n goes to infinity. Since

β̂OLS,n attains the value β∗ at infinity, σ2(β) attains the value σ2(β∗) at infinity. Although

theorem 5.1 is a good first start in understanding the SSD of the MSFE, the next issue

one would like to address is the behavior of the MSFE for finite values of n. We would

like to answer the question: Does there exist an n∗ < ∞ so that σ2(β̂OLS,n∗) = σ2(β∗).

The main purpose of the work in this thesis is to understand the SSD for finite values of

n.

In the next section, we develop an algorithm that can be used to construct an ap-

proximation of the MSFE in order to analyze the sample size dependence and determine

the possible existence of optimal observation windows of finite length.

5.4 The algorithm: scalar case

As presented in chapter 2, the forecasting problem of interest consists of predicting the

observed process {Yτ} at τ = t + 1, Yt+1 ∈ R, by means of a linear regression of the

k × 1 column vector Xt of Ft-measurable variables. In this section we assume k = 1.

The forecaster does not know the DGP which generates the series {Yτ} and uses a linear

model in Xt to approximate the conditional expectation Et[Yt+1]. The linear model used

to forecast Yt+1 is of the form

Yt+1 = βXt + Vt+1, (5.4.1)

in which the parameter β, β ∈ B, B compact in R, is estimated by OLS. The estimation

sample contains the n most recent observations, {Yt−n+1, . . . , Yt} and {Xt−n, . . . , Xt−1},
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and the OLS estimator of β has the form

β̂t,n =

(
t−1∑

τ=t−n

XτX
>
τ

)−1( t−1∑

τ=t−n

XτYτ+1

)

. (5.4.2)

The OLS estimator β̂t,n is used to construct the forecast of Yt+1, denoted Ŷt+1,n, given

by

Ŷt+1,n = β̂t,nXt.

Using as cost function a squared loss function, the criterion which provides a measure of

forecast accuracy is the MSFE given by

MSFEn = E[(Yt+1 − Ŷt+1,n)2] = E[Y 2
t+1] − 2E[Yt+1Ŷt+1,n] +E[Ŷ 2

t+1,n]. (5.4.3)

The MSFE is the expected value of statistics which depend on the sample size parameter

n. We construct a Taylor algorithm, as developed in Chapter 4, to approximate the

MSFE in order to investigate the existence of an optimal observation window. The

existence of such optimal observation window can be revealed by assessing the SSD of

the MSFE. For this purpose, we begin the construction of the algorithm by focusing on

the expectation of the following n-dependent terms

Π1,n ≡ Yt+1Ŷt+1,n = Yt+1Xtβ̂t,n, (5.4.4)

Π2,n ≡ Ŷ 2
t+1,n = X2

t β̂
2
t,n. (5.4.5)

Substituting the scalar form of the OLS estimator β̂t,n, Π1,n and Π2,n become, respec-

tively,

Π1,n = Yt+1Xt

( t−1∑

s=t−n

X2
s

)−1
t−1∑

s=t−n

Ys+1Xs, Π2,n =
[( t−1∑

s=t−n

X2
s

)−1
Xt

t−1∑

s=t−n

Ys+1Xs

]2
.

By defining the statistics S1,n and S2,n as follows:

S1,n ≡ 1

n

t−1∑

τ=t−n

Yτ+1Xτ , S2,n ≡ 1

n

t−1∑

τ=t−n

X2
τ ,
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the OLS estimator can be rewritten

β̂t,n =
S1,n

S2,n
, (5.4.6)

and (5.4.4) and (5.4.5) become respectively

Π1,n = Yt+1Xt
S1,n

S2,n
, Π2,n = X2

t

(
S1,n

S2,n

)2

.

We assume the sequence of regressors {Xτ} to be independent and identically distributed.

By independence, we can write

E[Π1,n] = E[Yt+1Xt]E[β̂t,n], E[Π2,n] = E[X2
t ]E[β̂2

t,n]. (5.4.7)

We take a slight detour to explain a settle point involving (5.4.7). In an empirical

situation, the independence assumption of the explanatory process {Xτ} can be tested.

But (5.4.7) has the stronger implication that the random variable Yt+1 is independent

of the random variables {Xt−n, . . . , Xt−1}. In an empirical situation, this independence

would have to be tested. The existence of such independence in the data would be the

motivating force for constructing the forecasting model in the specification stage of the

forecast methodology. In the case the independence between Yt+1 and {Xt−n, . . . , Xt−1}
cannot be established, the algorithm would need to be modified. Chapter 6 develops a

Taylor algorithm applicable for more general dependencies between the dependent and

explanatory processes.

Continuing with our exposition, the next step in the construction of the algorithm is

to apply the techniques of Chapter 4 to find approximations of E[β̂t,n] and E[β̂2
t,n]. Such

approximations are conducted by means of Taylor series expansions of β̂t,n and β̂2
t,n with

respect to the statistics S1,n and S2,n about some points ω1 and ω2 respectively. From

the theory developed in Chapter 4, we learned that approximating the expectation of a

function of random variables by means of Taylor series requires one, in many instances, to

approximate the expectation by a truncated expectation. Using truncated expectations

is necessary because Taylor series approximations are valid only within the region of

convergence and, at the same time, the random variables involved take values on a
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specific range. In the case of β̂t,n and β̂2
t,n, the approximations will depend on truncated

central moments of S1,n and S2,n. Let A be a set inside the region of convergence B
of the Taylor series of β̂t,n with respect to the statistics S1,n and S2,n. Appendix C.1.1

provides details on the nature of the region of convergence of the Taylor series expansion

of the OLS and on the nature of convergence sets such as A. We write the expectation

of the OLS estimator and its square as follows

E[β̂t,n] = Ē[β̂t,n,A] + Ē[β̂t,n,Ac], E[β̂2
t,n] = Ē[β̂2

t,n,A] + Ē[β̂2
t,n,Ac], (5.4.8)

where Ac is the complement of A. Taylor series can be used within A to approximate

β̂t,n and β̂2
t,n. To obtain further analytic results, we assume P (X ∈ A) ≈ 1 so that

E[β̂t,n] ≈ Ē[β̂t,n,A] and E[β̂2
t,n] ≈ Ē[β̂2

t,n,A]. We define the points about which to

calculate the Taylor series as follows:

ω1 ≡ E[S1,n] = E[Yt+1Xt], ω2 ≡ E[S2,n] = E[X2
t ],

where the equalities follow from the i.i.d. assumption. The fourth order Taylor polyno-

mial of β̂t,n about the points ω1 and ω2 is as follows:

Q(β̂t,n, 4) =
ω1

ω2
+

1

ω2
(S1,n − ω1) −

ω1

ω2
2

(S2,n − ω2) −
1

ω2
2

(S1,n − ω1)(S2,n − ω2)

+
ω1

ω3
2

(S2,n − ω2)
2 +

1

ω3
2

(S1,n − ω1)(S2,n − ω2)
2 − ω1

ω4
2

(S2,n − ω2)
3

+
ω1

ω5
2

(S2,n − ω2)
4 − 1

ω4
2

(S1,n − ω1)(S2,n − ω2)
3.

The fourth order Taylor polynomial of β̂2
t,n about the points ω1 and ω2 is as follows:

Q(β̂2
t,n, 4) =

ω2
1

ω2
2

+ 2
ω1

ω2
2

(S1,n − ω1) − 2
ω2

1

ω3
2

(S2,n − ω2) +
1

ω2
2

(S1,n − ω1)
2

− 4
ω1

ω3
2

(S1,n − ω1)(S2,n − ω2) + 3
ω2

1

ω4
2

(S2,n − ω2)
2

− 2
1

ω3
2

(S1,n − ω1)
2(S2,n − ω2) + 6

ω1

ω4
2

(S1,n − ω1)(S2,n − ω2)
2

− 4
ω2

1

ω5
2

(S2,n − ω2)
3 +

3

ω4
2

(S1,n − ω1)
2(S2,n − ω2)

2
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− 8
ω1

ω5
2

(S1,n − ω1)(S2,n − ω2)
3 + 5

ω2
1

ω6
2

(S2,n − ω2)
4.

We take expectations of the fourth order polynomials to obtain the approximations

E[β̂t,n] ≈ Ē[β̂t,n,A] ≈ E[Q(β̂t,n, 4)],

E[β̂2
t,n] ≈ Ē[β̂2

t,n,A] ≈ E[Q(β̂2
t,n, 4)].

Using these approximations, the MSFE approximation becomes

MSFEn ≈ E[Y 2
t+1] − 2E[Yt+1Xt]E[Q(β̂t,n, 4)] +E[X2

t ]E[Q(β̂2
t,n, 4)]. (5.4.9)

The central moments involved in the expectation of the Taylor polynomials are expanded

and simplified to derive the SSD in terms of the sample size variable n. Appendix C,

Section C.2, presents the derivation of the central moments for the general case without

assuming P (X ∈ A) ≈ 1. With P (X ∈ A) ≈ 1, the expectation of the term (S1,n − ω1)

is as follows:

E[(S1,n − ω1)] =
1

n

t−1∑

τ=t−n

E[Yτ+1Xτ ] − ω1 = E[YtXt−1] − ω1 = 0,

where the second equality follows from the i.i.d assumptions. We write the rest of the

central moments involved in the expectation of Q(β̂t,n, 4) and Q(β̂2
t,n, 4) under the i.i.d

and P (X ∈ A) ≈ 1 assumptions:

E[(S2,n − ω2)] = E[X2
t−1] − ω2 = 0,

E[(S1,n − ω1)
2] =

1

n

[

E[Y 2
t X

2
t−1] −E2[YtXt−1]

]

=
1

n
Var(YtXt−1),

E[(S2,n − ω2)
2] =

1

n

[

E[X4
t−1] −E2[X2

t−1]
]

=
1

n
Var(X2

t ),

E[(S1,n − ω1)(S2,n − ω2)] =
1

n

[

E[YtX
3
t−1] −E[YtXt−1]E[X2

t−1]
]

=
1

n
Cov(YtXt−1, X

2
t−1),

E[(S2,n − ω2)
3] =

1

n2

[

E[X6
t−1] − 3E[X4

t−1]E[X2
t−1] + 2E3[X2

t−1]
]

,

E[(S1,n − ω1)(S2,n − ω2)
2] =

1

n2

[

E[YtX
5
t−1] −E[YtXt−1]E[X4

t−1]

− 2E[YtX
3
t−1]E[X2

t−1] + 2E[YtXt−1]E
2[X2

t−1]
]

,
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E[(S1,n − ω1)
2(S2,n − ω2)] =

1

n2

[

E[Y 2
t X

4
t−1] −E[Y 2

t X
2
t−1]E[X2

t−1]

− 2E[YtXt−1]E[YtX
3
t−1] + 2E2[YtXt−1]E[X2

t−1]
]

,

E[(S1,n − ω1)(S2,n − ω2)
3] =

3

n2

[

E[YtX
3
t−1]E[X4

t−1] −E[YtXt−1]E[X2
t−1]E[X4

t−1]

−E2[X2
t−1]E[YtX

3
t−1] +E[YtXt−1]E

3[X2
t−1]

]

+
1

n3

[

E[YtX
7
t−1] −E[YtXt−1]E[X6

t−1] − 3E[YtX
5
t−1]E[X2

t−1]

− 3E[YtX
3
t−1]E[X4

t−1] + 6E[YtXt−1]E[X2
t−1]E[X4

t−1]

+ 6E[YtX
3
t−1]E

2[X2
t−1] − 6E[YtXt−1]E

3[X2
t−1]

]

,

E[(S1,n − ω1)
2(S2,n − ω2)

2] =
1

n2

[

E[Y 2
t X

2
t−1]E[X4

t−1] −E[Y 2
t X

2
t−1]E

2[X2
t−1]

−E2[YtXt−1]E[X4
t−1] − 4E[YtXt−1]E[X2

t−1]E[YtX
3
t−1]

+ 2E2[YtX
3
t−1] + 3E2[YtXt−1]E

2[X2
t−1]

]

+
1

n3

[

E[Y 2
t X

6
t−1] −E[Y 2

t X
2
t−1]E[X4

t−1] − 2E[Y 2
t X

4
t−1]E[X2

t−1]

+ 2E[Y 2
t X

2
t−1]E

2[X2
t−1] − 2E[YtX

5
t−1]E[YtXt−1]

+ 2E2[YtXt−1]E[X4
t−1] + 8E[YtX

3
t−1]E[YtXt−1]E[X2

t−1]

− 2E2[YtX
3
t−1] − 6E2[YtXt−1]E

2[X2
t−1]

]

,

E[(S2,n − ω2)
4] =

3

n2

[

E2[X4
t−1] − 2E[X4

t−1]E
2[X2

t−1] +E4[X2
t−1]

]

+
1

n3

[

E[X8
t−1] − 4E[X6

t−1]E[X2
t−1] − 3E2[X4

t−1] + 12E[X4
t−1]E

2[X2
t−1]

− 6E4[X2
t−1]

]

.

These central moments can be derived from the general central moments given in C.2

by replacing truncated expectations with expectations and simplifying. Substituting the

above central moments in the expression for E[Q(β̂t,n, 4)], one obtains

E[Q(β̂t,n, 4)] =
ω1

ω2
+

1

n

[
ω1

ω3
2

E[X4
t−1] −

1

ω2
2

E[YtX
3
t−1]

]

+
1

n2

[

−ω1

ω4
2

E[X6
t−1] −

ω1

ω3
2

E[X4
t−1] +

1

ω3
2

E[YtX
5
t−1] − 2

1

ω2
2

E[YtX
3
t−1]

+ 3
ω1

ω5
2

E2[X4
t−1] −

3

ω4
2

E[YtX
3
t−1]E[X4

t−1] +
3

ω2
2

E[YtX
3
t−1]

]



109

+
1

n3

[
ω1

ω5
2

E[X8
t−1] − 3

ω1

ω4
2

E[X6
t−1] − 3

ω1

ω5
2

E2[X4
t−1] + 6

ω1

ω3
2

E[X4
t−1]

− 1

ω4
2

E[YtX
7
t−1] +

3

ω3
2

E[YtX
5
t−1] +

3

ω4
2

E[YtX
3
t−1]E[X4

t−1]

− 6

ω2
2

E[YtX
3
t−1]

]

.

Similarly, substituting the above central moments in the expression for E[Q(β̂2
t,n, 4)], one

obtains

E[Q(β̂2
t,n, 4)] =

ω2
1

ω2
2

+
1

n

[

3
ω2

1

ω4
2

E[X4
t−1] − 4

ω1

ω3
2

E[YtX
3
t−1] +

1

ω2
2

E[Y 2
t X

2
t−1]

]

+
1

n2

[

−4
ω2

1

ω5
2

E[X6
t−1] − 3

ω2
1

ω4
2

E[X4
t−1] + 6

ω1

ω4
2

E[YtX
5
t−1] + 4

ω1

ω3
2

E[YtX
3
t−1]

− 2

ω3
2

E[Y 2
t X

4
t−1] −

1

ω2
2

E[Y 2
t X

2
t−1] + 15

ω2
1

ω6
2

E2[X4
t−1]

− 24
ω1

ω5
2

E[YtX
3
t−1]E[X4

t−1] +
3

ω4
2

E[Y 2
t X

2
t−1]E[X4

t−1] +
6

ω4
2

E2[YtX
3
t−1]

]

+
1

n3

[

5
ω2

1

ω6
2

E[X8
t−1] − 12

ω2
1

ω5
2

E[X6
t−1] − 15

ω2
1

ω6
2

E2[X4
t−1] + 18

ω2
1

ω4
2

E[X4
t−1]

− 8
ω1

ω5
2

E[YtX
7
t−1] + 18

ω1

ω4
2

E[YtX
5
t−1] + 24

ω1

ω5
2

E[YtX
3
t−1]E[X4

t−1]

− 24
ω1

ω3
2

E[YtX
3
t−1] +

3

ω4
2

E[Y 2
t X

6
t−1] −

3

ω4
2

E[Y 2
t X

2
t−1]E[X4

t−1]

− 6

ω3
2

E[Y 2
t X

4
t−1] +

6

ω2
2

E[Y 2
t X

2
t−1] −

6

ω4
2

E2[YtX
3
t−1]

]

.

The construction of the algorithm is completed by substituting the expressions forE[Q(β̂t,n, 4)]

and E[Q(β̂2
t,n, 4)] in the MSFE approximation (5.4.9). The approximation of the MSFE

is as follows:

MSFEn ≈ E[Y 2
t+1] − 2ω1E[Q(β̂t,n, 4)] + ω2E[Q(β̂2

t,n, 4)]

=
1

ω5
2

[

C +
A

n
− ∆

n2
+

Ω

n3

]

(5.4.10)

with ∆ = A+ 2B −D, Ω = 6A− 6B −D +E,

A = ω2
1ω

2
2E[X4

t−1] − 2ω1ω
3
2E[YtX

3
t−1] + ω4

2E[Y 2
t X

2
t−1],
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B = ω2
1ω2E[X6

t−1] − 2ω1ω
2
2E[YtX

5
t−1] + ω3

2E[Y 2
t X

4
t−1],

C = E[Y 2
t+1]ω

5
2 − ω2

1ω
4
2,

D = 9ω2
1E

2[X4
t−1] − 18ω1ω2E[YtX

3
t−1]E[X4

t−1] + 3ω2
2E[Y 2

t X
2
t−1]E[X4

t−1]

+ 6ω2
2E

2[YtX
3
t−1],

E = 3ω2
1E[X8

t−1] − 6ω1ω2E[YtX
7
t−1] + 3ω2

2E[Y 2
t X

6
t−1].

The fourth order MSFE approximation given in (5.4.10) depends on the sample size

n up to a cubic term 1/n3. It can be shown the central moments E[(S2,n − ω2)
5],

E[(S1,n − ω1)(S2,n − ω2)
4], and E[(S1,n − ω1)

2(S2,n − ω2)
3] involved in the fifth order

term of the Taylor series of β̂t,n and β̂2
t,n do not alter the constant term, the 1/n term

or the 1/n2 term of the fourth order MSFE approximation. In fact, the fifth order terms

of the Taylor series approximation of β̂t,n and β̂2
t,n only contribute a 1/n3 term and a

1/n4 term. Although the Taylor series approximation of the MSFE can be found up to

any order required, further analytic results can be obtained by focusing on the MSFE

approximation up to quadratic terms given by

MSFEn ≈ 1

ω5
2

[

C +
A

n
− ∆

n2

]

≡MSFEn. (5.4.11)

To determine the existence of an optimal observation window, we examine the solution

to the following optimization problem

min
n

{

C +
A

n
− ∆

n2

}

.

The extremum of the MSFE approximation (5.4.11) is given by

no = 2
∆

A
. (5.4.12)

By analyzing this extremum, we can determine an approximation for the optimal obser-

vation window. Let n̄∗ denote the size of the observation window which minimizes the

MSFE approximation MSFEn. n̄∗ is the approximation to the optimal observation win-

dow n∗ which minimizes the true MSFE. Since in most practical applications the amount
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of data available is finite, we denote by n̄ the size of the largest data window available

for forecasting and estimation. To understand the SSD of the MSFE, we determine some

properties of the MSFE approximation, MSFEn. First, the limit of MSFEn as n→ ∞
is given by C/ω4

2 and C > 0.

Proposition 5.3 C ≥ 0.

Proof. See Appendix C.3.

Define n = ∆n̄/(An̄ − ∆). The main conclusion about the existence of an optimal

observation window when the processes in question are i.i.d is summarized in the following

proposition and its proof presents the analysis of the SSD of MSFEn.

Proposition 5.4 If {Xs} and {Ys} are i.i.d. processes and n < 1, then n̄∗ = n̄.

Proof. First we rewrite A as follows

A = ω2E
[

(ω1X
2
t − ω2Yt+1Xt)

2
]

.

Since ω2 > 0, it follows A > 0. The partial derivative of the MSFE approximation

(5.4.11) with respect to n is

∂

∂n
MSFEn =

1

ω5
2

[−A
n2

+ 2
∆

n3

]

, (5.4.13)

and the extremum is given by (5.4.12). We analyze the two cases no ≤ 0 and no > 0.

Case no ≤ 0:

Since the size of the forecasting window must be a positive integer, no ≤ 0 is not

a solution to the optimal forecasting window problem. Nonetheless, we examine the

behavior of MSFEn for positive values of n when no ≤ 0. From the expression for

no, no ≤ 0 if and only if ∆ ≤ 0 and, as a consequence, MSFEn → +∞ as n+ → 0,

MSFEn → C/ω4
2 as n→ ∞, and by (5.4.13) ∂

∂nMSFEn < 0 whenever n > 0. Therefore,

MSFEn decreases monotonically as n→ ∞ suggesting it is optimal to use all available

data to estimate β̂t,n and obtain the smallest value of the MSFE.

Case no > 0:

First, note no > 0 if and only if ∆ > 0. To determine if no is a minimum or a

maximum of MSFEn, we write the second partial derivative of MSFEn with respect to
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Figure 5.1: MSFE approximation for no > 0

n
∂2MSFEn

∂n2
=

1

ω5
2

[

2
A

n3
− 6

∆

n4

]

. (5.4.14)

Substituting (5.4.12) in (5.4.14) leads to

∂2MSFEn

∂n2

∣
∣
∣
n∗

= − 1

8ω5
2

A4

∆3
< 0,

and it follows no is a maximum of MSFEn whenever no > 0 and therefore n̄∗ 6= no. n is

defined as the value of n, which is less n̄, at which MSFEn has the same value as at n̄.

The general shape of MSFEn for no > 0 is illustrated in figure 5.1. Since n̄∗ must be a

positive integer, the result follows, n̄∗ = n̄ when n < 1.

As noted earlier, MSFEn is an approximation of the MSFE truncated at the 1/n2

term. MSFEn was implemented to provide further analytic results. Nonetheless, the

approximation (5.4.10) can be used to graphically analyze the SSD of the MSFE, given

the necessary moments.

5.5 The algorithm: multi-variate case

We now construct the approximation of the MSFE for the multi-variate case with k = m.

As before, we denote byXt am×1 column vector, Xt = (X1
t , . . . , X

m
t )>, of Ft-measurable
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variables that are used to forecast Yt+1 ∈ R. As in the scalar case, using as cost function

the squared loss function, the criterion which provides a measure of forecast accuracy is

the MSFE given by

MSFEn = E[(Yt+1 − Ŷt+1,n)2] = E[Y 2
t+1] − 2E[Yt+1Ŷt+1,n] +E[Ŷ 2

t+1,n]. (5.5.1)

The MSFE is the expected value of statistics, Ŷt+1,n and Ŷ 2
t+1,n, which depend on the

parameter n. To begin the construction of the algorithm, and since we are interested in

the SSD of the MSFE, we restrict attention to the expectations of the following terms

Π1,n ≡ Yt+1Ŷt+1,n = Yt+1X
>
t β̂t,n, (5.5.2)

Π2,n ≡ Ŷ 2
t+1,n = (β̂>t,nXt)

2 = X>
t β̂t,nβ̂

>
t,nXt. (5.5.3)

Substituting the vector form of the OLS estimator β̂t,n, Π1,n and Π2,n become, respec-

tively,

Π1,n = Yt+1X
>
t

(

X>
t,nXt,n

)−1
X>

t,nYt,n,

Π2,n = X>
t (X>

t,nXt,n)−1X>
t,nYt,nY

>
t,nXt,n(X>

t,nXt,n)−1Xt.

By defining the statistics S1,n and S2,n as follows

S1,n ≡ 1

n
X>

t,nYt,n ∈ R
m×1, S2,n ≡ 1

n
X>

t,nXt,n ∈ R
m×m,

we rewrite the OLS estimator

β̂t,n = S−1
2,nS1,n ∈ R

m×1, (5.5.4)

and (5.5.2) and (5.5.3) become respectively

Π1,n = Yt+1X
>
t S−1

2,n S1,n , Π2,n = X>
t S

−1
2,n S

>
1,n S1,n S

−1
2,nXt.

We assume Xt and Xs are independent for all t 6= s and Xt has the same distribution

for all t. Furthermore, for each t, X i
t and Xj

t are independent for all i 6= j. By the
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independence assumptions, we can write

E[Π1,n] = E[Yt+1X
>
t ]E[β̂t,n] = E[Yt+1X

>
t ]E[S−1

2,n S1,n],

E[Π2,n] = E[(cs (XtX
>
t ))>]E[cs (β̂t,nβ̂

>
t,n)]

= E[(cs (XtX
>
t ))>]E[cs (S−1

2,n S
>
1,n S1,n S

−1
2,n)],

where cs stands for column string. The next step in the construction of the algorithm is to

apply the techniques of Chapter 4 to find approximations of E[β̂t,n] and E[cs (β̂t,nβ̂
>
t,n)].

Such approximations are conducted by means of Taylor series expansions of β̂t,n and

cs (β̂t,nβ̂
>
t,n) with respect to the statistics S1,n and S2,n about points ω1 and ω2, respec-

tively. From the theory developed in Chapter 4, and as in the scalar case, approximating

the expectation of a function of random variables by means of Taylor series requires

one, in many instances, to approximate the expectation by a truncated expectation. In

the case of β̂t,n and cs (β̂t,nβ̂
>
t,n), the approximations will depend on truncated central

moments of S1,n and S2,n. We write the expectation of the OLS estimator β̂t,n and

cs (β̂t,nβ̂
>
t,n) as follows

E[β̂t,n] = Ē[β̂t,n,A] + Ē[β̂t,n,Ac],

E[cs (β̂t,nβ̂
>
t,n)] = Ē[cs (β̂t,nβ̂

>
t,n),A] + Ē[cs (β̂t,nβ̂

>
t,n),Ac],

where A is a region where Taylor series can be used to approximate β̂t,n and cs (β̂t,nβ̂
>
t,n).

To obtain further analytic results, we assume P (X ∈ A) ≈ 1 so that E[β̂t,n] ≈ Ē[β̂t,n,A]

and E[cs (β̂t,nβ̂
>
t,n)] ≈ Ē[cs (β̂t,nβ̂

>
t,n),A]. We define

ω1 ≡ E[S1,n] = E[XtYt+1] ∈ R
m×1, ω2 ≡ E[S2,n] = E[XtX

>
t ] ∈ R

m×m,

where the expectation of a matrix is equal to the matrix of the expectation of the elements

and, similarly, for the expectation of a vector. We write matrix Taylor polynomials,

applying notation, given in Appendix C.4, for derivatives of matrix valued functions of

matrices with respect to matrices and vectors as defined in [144]. We define the vector

bn by stacking the m × 1 vector S1,n and the column string of the m ×m matrix S2,n,
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and similarly define the vector b̄ by stacking the m× 1 vector ω1 and the column string

of the m×m matrix ω2.

bn ≡




S1,n

cs S2,n



 ∈ R
m(1+m)×1, b̄ ≡




ω1

cs ω2



 ∈ R
m(1+m)×1.

The Mth order Taylor polynomial approximating β̂t,n, with respect to bn and about the

point b̄, is as follows:

Q(β̂t,n,M) = ω−1
2 ω1 +

M∑

i=1

1

i!

(

Di
b>i
n
β̂t,n

)

bn=b̄

(

(bn − b̄)⊗ i ⊗ I
)

.

The Mth order Taylor polynomial approximating cs (β̂t,nβ̂
>
t,n) about the point b̄2 is as

follows:

Q(cs (β̂t,nβ̂
>
t,n),M) = cs (ω−1

2 ω>
1 ω1ω

−1
2 )+

M∑

i=1

1

i!

(

Di
b>i
n

cs (β̂t,nβ̂
>
t,n)
)

bn=b̄

(

(bn − b̄)⊗ i ⊗ I
)

,

where ω>
2 = ω2. We take expectations of the Mth order polynomials to obtain the

approximations

E[β̂t,n] ≈ Ē[β̂t,n,A] ≈ E[Q(β̂t,n,M)],

E[cs (β̂t,nβ̂
>
t,n)] ≈ Ē[cs (β̂t,nβ̂

>
t,n),A] ≈ E[Q(cs (β̂t,nβ̂

>
t,n),M)].

The expectations of the Mth order Taylor polynomials of β̂t,n and cs β̂t,nβ̂
>
t,n are respec-

tively

E[Q(β̂t,n,M)] = ω−1
2 ω1 +

M∑

i=2

1

i!

(

Di
b>i
n
β̂t,n

)

bn=b̄
E
[

(bn − b̄)⊗ i
]

⊗ I, (5.5.5)

E[Q(cs (β̂t,nβ̂
>
t,n),M)] = cs (ω−1

2 ω>
1 ω1ω

−1
2 )

+
M∑

i=1

1

i!

(

Di
b>i
n

cs (β̂t,nβ̂
>
t,n)
)

bn=b̄
E
[

(bn − b̄)⊗ i
]

⊗ I. (5.5.6)
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In this exposition, we use fourth order polynomials M = 4. We take expectations of the

fourth order polynomials to obtain the approximations

E[β̂t,n] ≈ E[Q(β̂t,n, 4)], E[cs(β̂t,nβ̂
>
t,n)] ≈ E[Q(β̂2

t,n, 4)].

Using these approximations, the MSFE approximation becomes

MSFEn ≈ E[Y 2
t+1]−2E[Yt+1X

>
t ]E[Q(β̂t,n, 4)]+E[(cs(XtX

>
t ))>]E[Q(cs(β̂t,nβ̂

>
t,n), 4)].

(5.5.7)

In order to analyze the SSD of the MSFE approximation, we are interested in the n

dependence of (5.5.5) and (5.5.6). First, we note, as before, ω1 and ω2 are n-independent.

Next we examine the derivative terms

(

Di
b>i
n
β̂t,n

)

b,n=b̄
,
(

Di
b>i
n

cs (β̂t,nβ̂
>
t,n)
)

bn=b̄
. (5.5.8)

The n dependence of β̂t,n and cs (β̂t,nβ̂
>
t,n) occurs through the statistics S1,n and S2,n.

S1,n is a m× 1 vector with terms of the form

S1i,n =
1

n

t−1∑

τ=t−n

Xi
τYτ+1, i = 1, . . . ,m.

S2,n is a m×m matrix with terms of the form

S2ij,n =
1

n

t−1∑

τ=t−n

Xi
τX

j
τ , i = 1, . . . ,m, j = 1, . . . ,m.

By the definition of the vectors bn and b̄, β̂t,n evaluated at bn = b̄ is n-independent.

Similarly, cs (β̂t,nβ̂
>
t,n) evaluated at bn = b̄ is n-independent. This is clear from the

zeroth order terms of the Taylor expansions (5.5.5) and (5.5.6). The first derivative of

β̂t,n with respect to b>n is given by

Db>n
β̂t,n =

(

Db1,n β̂t,n Db2,n β̂t,n · · · Dbm(1+m),n
β̂t,n

)

∈ R
m×m(1+m),
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where b>n = (b1,n · · · bm(1+m),n). Each of the m elements of β̂t,n is a rational function of

the elements S1i,n i = 1, . . . ,m and the elements S2ij,n i = 1, . . . ,m, j = 1, . . . ,m and

the only n dependence is through these m(1 +m) terms. Consequently, each of the m

elements of Dbh,n
β̂t,n, by the definition of bn, is a rational function of the elements S1i,n

i = 1, . . . ,m and the elements S2ij,n i = 1, . . . ,m, j = 1, . . . ,m for h = 1, . . . ,m(m+ 1).

The n-dependence of Dbh,n
β̂t,n is also only through the m(1 +m) terms S1i,n and S2ij,n.

When evaluated at bn = b̄, Db>n
β̂t,n is n-independent. The same arguments are true

for any derivative of β̂t,n with respect to b>n and for any derivative of cs (β̂t,nβ̂
>
t,n) with

respect to b>n .

Proposition 5.5 Both expressions in (5.5.8) are n-independent for i = 0, 1, . . . .

By the proposition, the SSD dependence of (5.5.5) and (5.5.6) is restricted to the expec-

tation term E
[

(bn − b̄)⊗ i
]

∈ R
mi(m+1)i×1, which corresponds to the central moments of

the scalar case. The elements of the mi(m + 1)i × 1 vector E
[

(bn − b̄)⊗ i
]

are central

moments of the statistics S1i,n and S2ij,n. We write these central moments, which are

involved in the fourth order polynomials Q(β̂t,n, 4) and Q(cs (β̂t,nβ̂
>
t,n), 4). For the second

order Taylor terms, with indexes i, j, k, l running from 1 to m, the central moments are

as follows:

E[(S1i,n − ω1i)(S1j,n − ω1j)] =
1

n
V 2

1,ij ,

E[(S1i,n − ω1i)(S2jk,n − ω2jk)] =
1

n
V 2

2,ijk ,

E[(S2ij,n − ω2ij)(S2kl,n − ω2kl)] =
1

n
V 2

3,ijkl .

For the third order Taylor terms, with indexes i, j, k, l, o, p running from 1 to m, the

central moments are as follows:

E[(S1i,n − ω1i)(S1j,n − ω1j)(S1k,n − ω1k)] =
1

n2
V 3

1,ijk ,

E[(S1i,n − ω1i)(S1j,n − ω1j)(S2kl,n − ω2kl)] =
1

n2
V 3

2,ijkl ,

E[(S1i,n − ω1i)(S2jk,n − ω2jk)(S2lo,n − ω2lo)] =
1

n2
V 3

3,ijklo ,

E[(S2ij,n − ω2ij)(S2kl,n − ω2kl)(S2op,n − ω2op)] =
1

n2
V 3

4,ijklop .
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For the fourth order Taylor terms, with indexes i, j, k, l, o, p, q, r running from 1 to m,

the central moments are as follows:

E[(S1i,n − ω1i)(S1j,n − ω1j)(S1k,n − ω1k)(S1l,n − ω1l)] =
1

n2
V 4

1,ijkl +
1

n3
U4

1,ijkl ,

E[(S1i,n − ω1i)(S1j,n − ω1j)(S1k,n − ω1k)(S2lo,n − ω2lo)] =
1

n2
V 4

2,ijklo +
1

n3
U4

2,ijklo ,

E[(S1i,n − ω1i)(S1j,n − ω1j)(S2kl,n − ω2kl)(S2op,n − ω2op)] =
1

n2
V 4

3,ijklop

+
1

n3
U4

3,ijklop ,

E[(S1i,n − ω1i)(S2jk,n − ω2jk)(S2lo,n − ω2lo)(S2pq,n − ω2pq)] =
1

n2
V 4

4,ijklopq

+
1

n3
U4

4,ijklopq ,

E[(S2ij,n − ω2ij)(S2kl,n − ω2kl)(S2op,n − ω2op)(S2qr,n − ω2qr)] =
1

n2
V 4

5,ijklopqr

+
1

n3
U4

5,ijklopqr .

We present the expansion of the above central moments for orders one through four and

the definition of the variables V 2
1,ij , . . . , V

4
5,ijklopqr and U4

1,ijkl, . . . , U
4
5,ijklopqr in Appendix

C.5.1. The vectors E
[

(bn − b̄)⊗ i
]

i = 2, 3, 4 are reformulated in Appendix C.5.1 in

a form which emphasizes the SSD. The resulting expressions consist of n-independent

terms multiplying 1/n, 1/n2 and 1/n3. These expressions are as follows:

E[(bn − b̄)⊗ 2] =
1

n

[

E2,1 V
2
1,[i[j]] +E2,2 V

2
2,[i cs [jk]] +E2,3 V

2
2, cs [[i]jk]

+E2,4 V
2
3, cs [ij cs [kl]]

]

≡ 1

n
V 2,

E[(bn − b̄)⊗ 3] =
1

n2

[

E4,1 V
3
1,[i[j[k]]] +E4,2 V

3
2,[i[j cs[kl]]] +E4,3 V

3
2,[i cs[[j]kl]]

+E4,4 V
3
3,[i cs[jk cs[lo]]] +E4,5 V

3
2,[[i[j]]kl] +E4,6 V

3
3, cs[[i cs[jk]]lo]

+E4,7 V
3
3, cs[ cs[[i]jk]lo] +E4,8 V

3
4, cs[ij cs[kl cs[op]]]

]

≡ 1

n2
V 3,

E[(bn − b̄)⊗ 4] =
1

n2

[

E6,1 V
4
1,[i[j[k[l]]]] +E6,2 V

4
2,[i[j[k cs[lo]]]] +E6,3 V

4
2,[i[j cs[[k]lo]]]

+E6,4 V
4
3,[i[j cs[kl cs[op]]]] +E6,5 V

4
2,[i cs[[j[k]]lo]] +E6,6 V

4
3,[i cs[[j cs[kl]]lo]]
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+E6,7 V
4
3,[i cs[ cs[[j]kl]op]] +E6,8 V

4
4,[i cs[jk cs[lo cs[pq]]]]

+E6,9 V
4
2, cs[[i[j[k]]]lo] +E6,10 V

4
3, cs[[i[j cs[kl]]]op]

+E6,11 V
4
3, cs[[i cs[[j]kl]]op] +E6,12 V

4
4, cs[[i cs[jk cs[lo]]]pq]

+E6,13 V
4
3, cs[ cs[[i[j]]kl]op] +E6,14 V

4
4, cs[ cs[[i cs[jk]]lo]pq]

+E6,15 V
4
4, cs[ cs[ cs[[i]jk]lo]pq] +E6,16 V

4
5, cs[ij cs[kl cs[op cs[pq]]]]

]

+O

(
1

n3

)

≡ 1

n2
V 4 +

1

n3
U4.

The definition of all matrices E2,1, . . . , E6,16, as well as a description of the subscript

indexing notation used for the V variables, can be found in Appendix C.5.1. Substituting

the above expressions for E[(bn− b̄)⊗ 2], E[(bn− b̄)⊗ 3], and E[(bn− b̄)⊗ 4] in the expression

for the expectation of the fourth order Taylor polynomial of β̂t,n, E[Q(β̂t,n, 4)], we obtain

E[Q(β̂t,n, 4)] =ω−1
2 ω1 +

1

2n

(

D2
b> 2
n

β̂t,n

)

bn=b̄
V 2 ⊗ I

+
1

n2

[
1

3!

(

D3
b> 3
n

β̂t,n

)

bn=b̄
V 3 ⊗ I +

1

4!

(

D4
b> 4
n

β̂t,n

)

bn=b̄
V 4 ⊗ I

]

+
1

4!n3

(

D4
b> 4
n

β̂t,n

)

bn=b̄
U4 ⊗ I.

Similarly, substituting the above expressions for E[(bn− b̄)⊗ 2], E[(bn− b̄)⊗ 3] and E[(bn−
b̄)⊗ 4] in the expression for the expectation of the fourth order Taylor polynomial of

cs (β̂t,nβ̂
>
t,n), E[Q(cs (β̂t,nβ̂

>
t,n), 4)], we obtain

E[Q(cs (β̂t,nβ̂
>
t,n), 4)] = cs (ω−1

2 ω>
1 ω1ω

−1
2 ) +

1

2n

(

D2
b> 2
n

cs (β̂t,nβ̂
>
t,n)
)

bn=b̄
V 2 ⊗ I

+
1

n2

[
1

3!

(

D3
b> 3
n

cs (β̂t,nβ̂
>
t,n)
)

bn=b̄
V 3 ⊗ I +

1

4!

(

D4
b> 4
n

cs (β̂t,nβ̂
>
t,n)
)

bn=b̄
V 4 ⊗ I

]

+
1

4!n3

(

D4
b> 4
n

cs (β̂t,nβ̂
>
t,n)
)

bn=b̄
U4 ⊗ I.

Substituting the above expressions of E[Q(β̂t,n, 4)] and E[Q(cs (β̂t,nβ̂
>
t,n), 4)] in expres-

sion (5.5.7) for the MSFE fourth order approximation, we obtain the following expression
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for the MSFE approximation with explicit SSD

MSFEn ≡
[

E[Y 2
t+1] − 2ω>

1 ω
−1
2 ω1 + (cs ω2)

>cs (ω−1
2 ω>

1 ω1ω
−1
2 )
]

+
1

2n

[

−2ω>
1

(

D2
b> 2
n

β̂t,n

)

bn=b̄
+ (cs ω2)

>
(

D2
b> 2
n

cs (β̂t,nβ̂
>
t,n)
)

bn=b̄
V 2 ⊗ I

]

+
1

n2

[
1

3!

(

−2ω>
1

(

D3
b> 3
n

β̂t,n

)

bn=b̄
+ (cs ω2)

>
(

D3
b> 3
n

cs (β̂t,nβ̂
>
t,n)
)

bn=b̄

)

V 3 ⊗ I

+
1

4!

(

−2ω>
1

(

D4
b> 4
n

β̂t,n

)

bn=b̄
+ (cs ω2)

>
(

D4
b> 4
n

cs (β̂t,nβ̂
>
t,n)
)

bn=b̄

)

V 4 ⊗ I

]

≡ C +
A

n
− ∆

n2
.

The analysis of the SSD of the MSFE approximation above follows as in the scalar case.

5.6 Monte-Carlo evidence

In this section, we present two sets of Monte Carlo experiments designed to test the

Taylor algorithm method developed above.

5.6.1 Robustness of the approximating algorithm

In the first set of Monte Carlo experiments, our goal is to assess qualitatively the robust-

ness of the Taylor algorithm to changes in the region of convergence of the Taylor series

employed in the approximation. The Taylor algorithm relies on specifying a set A ⊆ B
where B is the region of convergence of the Taylor series of β̂t,n so that

E[β̂t,n] = Ē[β̂t,n,A] + Ē[β̂t,n,Ac].

Within B, and therefore within A, the Taylor series of β̂t,n converges. Letting Q(β̂t,n, 4)

be the 4th order Taylor polynomial of β̂t,n, the approximation of the OLS and the MSFE

are as follows:

E[β̂t,n] ≈ Ē[Q(β̂t,n, 4),A], (5.6.1)

MSFEn ≈ E[Y 2
t+1] − 2E[Yt+1Xt]Ē[Q(β̂t,n, 4),A] +E[X2

t ]Ē[Q(β̂2
t,n, 4),A]. (5.6.2)
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Clearly, if P ((Xt−n, . . . , Xt−1) ∈ A) ≈ 1, Ē[β̂t,n,Ac] will be small and (5.6.1) and (5.6.2)

can be considered good approximations. In what follows, we evaluate the accuracy of

(5.6.2) for varying values of the probability P ((Xt−n, . . . , Xt−1) ∈ A). This evaluation

is carried out by constructing the approximation (5.6.2) with the truncated expectations

of Q(β̂t,n, 4) and Q(β̂2
t,n, 4). The truncated expectations of Q(β̂t,n, 4) and Q(β̂2

t,n, 4) are

constructed using the truncated central moments in Appendix C, Section C.2. The

resulting approximation is compared to a benchmark MSFE.

We choose the following DGP for the experiment

Yt+1 = X2
t + Ut+1, (5.6.3)

with the process {Uτ} ∼ IIN(0, σu) and {Xτ} ∼ IIN(µx, σx). We set µx = 1, σx =

0.1, σu = 1. The forecast model is given by Yt+1 = βXt + Vt+1, the forecast is given

by Ŷt+1,n = β̂t,nXt, where β̂t,n is the OLS estimator (5.4.2), and the forecast error is

εt+1,n = Yt+1 − Ŷt+1,n.

Since the MSFE can not be evaluated analytically, we calculate the benchmark MSFE

by means of Monte Carlo simulations. The motivation behind using Monte Carlo simu-

lations to determine a benchmark MSFE lies in that the MSFE is equal to the expected

value of the conditional mean square forecast error (CMSFE)

MSFE = E[CMSFE], CMSFE = Et[ε
2
t+1,n].

Given a realization of the processes {Xτ}t−1
τ=t−n and {Yτ}t

τ=t−n+1, it is simple to compute

the CMSFE conditional on the given sample. Generating many such samples, M , by

Monte Carlo simulations, we can construct M CMSFEs, {CMSFEi}M
i=1, and approxi-

mate the MSFE by the sample mean of the simulations

MSFE ≈ 1

M

M∑

i=1

CMSFEi.

We now describe the details involved in the construction of the benchmark MSFE. For

the given set of values of the parameters P = {µx, σx, σu}, twenty thousand Monte Carlo

simulations are conducted (M = 20000). We use the index m to denote a particular
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Monte Carlo simulation. For themth simulation, we generate the sample series {xτ,m}T
τ=1

of length T = 101 as a realization of the explanatory process {Xτ}t
τ=t−n such that the

first element of the series is the first observation, 1 ↔ t− n, and the last element of the

series is the last observation, 101 ↔ t. Each x is a realization of a normally distributed

random variable, X ∼ N(µx, σx), and the population series is independent and identically

distributed, {Xτ}t−1
τ=t−n ∼ IID. From this sample series, we calculate the sample series

{fτ,m}T
τ=1 by means of the relation fτ,m = x2

τ,m, according to the DGP (5.6.3). Finally,

with the sample series {xτ,m}T
τ=1, and {fτ,m}T

τ=1, at the forecast origin τ = T − 1, we

construct the CMSFE as follows:

CMSFEm,n = b2χt,n,m + vχt,n,m,

b2χt,n,m =

[

ft,m − xt,m

∑T−1
τ=T−n fτ,mxτ,m
∑T−1

τ=T−n x
2
τ,m

]2

,

vχt,n,m = σ2
u +

σ2
ux

2
t,m

∑T−1
τ=T−n x

2
τ,m

,

where b2χt,n,m and vχt,n,m are the conditional squared bias and conditional variance of

the forecast error, respectively. For each simulation, we obtain T − 1 = 100 values of the

CMSFE. One for each value of n starting from n = 1 to n = 100. The case n = 1 refers

to estimation of the OLS carried out with only one observation. For a particular set of

parameters P, we obtain an array of size M × T − 1 of CMSFEs, {CMSFEi,j}M,T−1
i=1,j=1.

Finally, the benchmark MSFE for a set of parameters P and for an observation window

of size n is given by the following:

MSFEn ≈ 1

M

M∑

i=1

CMSFEi,n. (5.6.4)

The benchmark Monte Carlo MSFE is compared with the MSFE approximation ob-

tained with the Taylor algorithm given by (5.6.2). The approximation (5.6.2) is con-

structed using the truncated central moments presented in Appendix C.2. Substituting

the DGP in these central moments, the necessary truncated expectations are calculated
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by numerical integration. For example:

Ē[(S1,n − ω1),A] = Ē[YtXt−1,A] − ω2
1P (X ∈ A)

= Ē[X3
t−1,A] + Ē[UtXt−1,A] − ω2

1P (X ∈ A)

= Ē[X3
t−1,A] − ω2

1P (X ∈ A)

= Ē[X3
t−1, I]P (Xt−1 ∈ I)n−1 − ω2

1P (Xt−1 ∈ I)n,

where the probability set A is as defined in Appendix C.1.2. We note that, for this Monte

Carlo experiment, knowledge of the DGP is necessary to calculate the truncated central

moments. Knowledge of the DGP is not necessary in the Monte Carlo experiments in

the next section or for empirical applications. To assess the robustness of the Taylor

approximation, we change the size of A by changing the size of Ii for i = t− n, . . . , t− 1

by changing the size of δi. For µx = 1 and σx = .1, the largest possible value of

δi is δi ≈ 4.21267σx and P (Xi ∈ Ii) ≈ 0.9999747. By reducing the size of δi, the

intervals Ii and the region A shrink. The other values of δi used are 2.8σx, 2.5σx, 2σx,

and the respective probabilities are P (Xi ∈ Ii) ≈ 0.99488974, P (Xi ∈ Ii) ≈ 0.98758, and

P (Xi ∈ Ii) ≈ 0.9544979. The resulting MSFE approximations are presented in Figure

5.2. This shows that the MSFE approximation given by (5.6.2) is not robust for large n.

Next, in what follows, we assess the robustness of the Taylor algorithm given by

(5.4.11). This approximation is obtained through the assumption that the range of

the explanatory random variable is contained inside a set A, P (X ∈ A) = 1, which

is inside the region of convergence B of the Taylor series of the OLS. This results in

E[β̂t,n] = Ē[β̂t,n,A] and Ē[β̂t,n,Ac] = 0. We want to evaluate the performance of the

MSFE approximation (5.4.11) when applied to circumstances that violate the contain-

ment assumption, i.e., when the range of the explanatory random variable goes beyond

the region of convergence and P (X ∈ A) < 1. We conduct two experiments with the

explanatory process {Xτ} ∼ IIN(µx, σx). Clearly, this process does not satisfy the

containment condition since P (X ∈ A) < 1 for any compact A. The DGP used is

Yt+1 = θ1Xt + θ2X
2
t +Ut+1 with {Uτ} ∼ IIN(0, σu). The set of parameters investigated

are given in Table 5.1. The benchmark MSFE is obtained by Monte Carlo simulations

as described in the previous set of experiments. As derived in Section C.1.1, the radius
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Figure 5.2: Benchmark Monte Carlo MSFE and Taylor algorithm MSFE approximation
for different probability sets
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of convergence in terms of the explanatory variable is Rn =
√

2n(µ2
x + σ2

x). The exper-

iments are designed by keeping all parameters fixed except for µx and σx. In the first

experiment, µx = 10 and σx = 0.1. In the second experiment µx = 0.1 and σx = 10.

Clearly, the radius of convergence Rn remains fixed in the two experiments by the choice

of µx and σx. In the first experiment, the probability with n = 1 of X ∈ B is almost one,

since σx is small. In the second experiment, this probability decreases to 0.8427. Figures

5.3 and 5.4 present the benchmark MSFE and the Taylor algorithm approximation MSFE

for the two experiments. From these, we can see that the MSFE approximation (5.4.11),

under violation of the containment assumption, remains robust for large values of n, but

fails to replicate the benchmark MSFE for small values of n. The MSFE approximation

given by (5.4.11) outperforms the MSFE approximation given by (5.6.2) and therefore

validates making the containment assumption P (X ∈ A) ≈ 1.

θ1 = 1, θ2 = 1,
σu = 1, R1 = 14.1428

µx 10 0.1

σx 0.1 10

P (X ∈ B) 1 0.8427

Table 5.1: Set of parameters for the experiments to assess the containment condition
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Figure 5.3: MSFE for a quadratic DGP with θ1 = 1, θ2 = 1, µx = 10, σx = 0.1, σu = 1
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5.6.2 Assessing misspecification

In this section, we present Monte Carlo experiments to investigate the ramifications of

misspecification in the forecasting problem described in Section 2.4 with independent

identically distributed processes and to evaluate the ability of the Taylor algorithm to

capture these effects. The paramount assumption made in this chapter, that of indepen-

dence of the explanatory variables, is imposed on the simulations that follow. To carry

out this endeavor, we construct a benchmark MSFE by means of Monte Carlo simula-

tions. This benchmark MSFE is then compared to the MSFE approximation obtained

with the Taylor algorithm and given by (5.4.11). For the analysis, we consider several

DGPs each of the general form

Yt+1 = ϕ(Xt, θ) + Ut+1,

where {Uτ} ∼ IIN(0, σu) is an innovation process, {Xτ} ∼ IIN(µx, σx), and θ is a vector

of parameters. The DGPs considered differ in the functional form of ϕ. The functions

we consider are as follows:

ϕ1(Xt, θ) = θ1Xt + θ2X
θ3
t ,

ϕ2(Xt, θ) = θ4 − θ3 log[1 + exp(−θ2/θ3 − θ1Xt/θ3)],

ϕ3(Xt, θ) = θ1Xt + θ2(Xt + θ3)
2 + sin(π(Xt − 1)/θ4),

ϕ4(Xt, θ) = θ1Xt + θ2Zt.

(5.6.5)

As described in the previous section, the MSFE cannot be evaluated analytically, so we

calculate the benchmark MSFE by means of Monte Carlo simulations. The motivation

behind using Monte Carlo simulations to determine a benchmark MSFE lies in the fact

that the MSFE is equal to the expected value of the CMSFE. Given a realization of the

processes {Xτ}t−1
τ=t−n and {Yτ}t

τ=t−n+1, it is simple to compute the CMSFE conditional on

the given sample. Generating many such samples, M , by Monte Carlo simulations, we can

construct M conditional mean square forecast errors, {CMSFEi}M
i=1, and approximate

the MSFE by the sample mean of the simulations.

We now describe the details involved in the construction of the benchmark MSFE.

For the given set of values of the parameters P = {µx, σx, σu, θ} and a particular func-
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tional form of ϕ from the given in (5.6.5), twenty thousand Monte Carlo simulations are

conducted (M = 20000). We use the index m to denote a particular Monte-Carlo simula-

tion. For the mth simulation, we generate the sample series {xτ,m}T
τ=1 of length T = 501

as a realization of the explanatory process {Xτ}t
τ=t−n, such that the first element of the

series is the first observation, 1 ↔ t − n, and the last element of the series is the last

observation, 501 ↔ t. Each x is a realization of a normally distributed random variable,

X ∼ N(µx, σx), and the population series is independent and identically distributed,

{Xτ}t−1
τ=t−n ∼ IID. From this sample series, we calculate the sample series {fτ,m}T

τ=1 by

means of the relation fτ,m = ϕi(xτ,m, θ) for each of the DGPs in (5.6.5).

Finally, with the sample series {xτ,m}T
τ=1, and {fτ,m}T

τ=1, at the forecast origin τ =

T − 1, we construct the CMSFE as follows:

CMSFEm,n = b2χt,n,m + vχt,n,m,

b2χt,n,m =

[

ft,m − xt,m

∑T−1
τ=T−n fτ,mxτ,m
∑T−1

τ=T−n x
2
τ,m

]2

,

vχt,n,m = σ2
u +

σ2
ux

2
t,m

∑T−1
τ=T−n x

2
τ,m

,

where b2χt,n,m and vχt,n,m are the conditional squared bias and conditional variance of

the forecast error, respectively. For each simulation, we obtain T − 1 = 500 values of the

CMSFE. One for each value of n starting from n = 1 to n = 500. The case n = 1 refers

to estimation of the OLS carried out with only one observation. For a particular set of

parameters P, we obtain an array of size M × T − 1 of CMSFEs, {CMSFEi,j}M,T−1
i=1,j=1.

Finally, the benchmark MSFE for a set of parameters P and for an observation window

of size n is given by the following:

MSFEn ≈ 1

M

M∑

i=1

CMSFEi,n. (5.6.6)

The benchmark Monte Carlo MSFE is compared with the MSFE approximation ob-

tained with the Taylor algorithm given by (5.4.11). The approximation (5.4.11) is con-

structed by use of sample moments in place of their population counterparts. For this,

we generate the sample series {xτ}N
τ=1 of length N = 5000 as a realization of the explana-
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tory process {Xτ}t
τ=t−n such that the first element of the series is the first observation,

1 ↔ t − n, and the last element of the series is the last observation, 5000 ↔ t. Each x

is a realization of a normally distributed random variable, X ∼ N(µx, σx), and the pop-

ulation series is independent and identically distributed, {Xτ}t−1
τ=t−n ∼ IID. Similarly,

we generate the sample series {uτ}N
τ=1 of length N = 5000 as a realization of the innova-

tion process {Uτ}t
τ=t−n such that the first element of the series is the first observation,

1 ↔ t−n, and the last element of the series is the last observation, 5000 ↔ t. Each u is a

realization of a normally distributed random variable, U ∼ N(0, σu), and the population

series is independent and identically distributed, {Uτ}t−1
τ=t−n ∼ IID. Finally, the sample

series {yτ}N
τ=1 is generated by means of the relation yτ = ϕi(Xτ , θ) + uτ for each DGP

in (5.6.5).

The population moments in (5.4.11) are estimated by generating their sample coun-

terparts. For example:

E[YtX
3
t−1] ≈

1

N

N∑

τ=1

yτx
3
τ ,

E[Y 2
t X

2
t−1] ≈

1

N

N∑

τ=1

y2
τx

2
τ .

Therefore, for a given set of the parameters, P = {µx, σx, σu, θ}, we can generate the

necessary sample moments and ultimately evaluate (5.4.11) for different values of the

observation window size n. The resulting MSFE can be compared to the benchmark

MSFE (5.6.6). In the next section, we discuss results for different sets of values of the

parameters involved for the four DGPs given in (5.6.5).

5.6.3 Discussion

The sets of parameter values investigated and the reference to their corresponding MSFE

plots are given in tables 5.2, 5.3, 5.4, 5.5 for the four functional forms of the DGP given

in (5.6.5). We first describe the results for the DGP with ϕ1(Xt, θ) = θ1Xt + θ2X
θ3
t . The

values θ1 = 2, θ2 = 0.05, θ3 = 2 are fixed. For these parameter values, the misspecification

is due to the quadratic term. The variance of the explanatory variable σ2
x and the variance

of the innovation σ2
u are evaluated at different values, as shown in Table 5.2, columns
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one and two. For the nine experiments conducted, the extremum value is negative,

n0 < 0. These are given in the fourth column of the table. With this, the approximation

(5.4.11), by proposition 5.4, suggests there exists no optimal observation window and all

data available must be used to forecast. In all nine experiments, the benchmark MSFE

monotonically decreases with minimum value at the last value of n = 500. In the figures,

we plot both the SSD of the benchmark Monte Carlo MSFE and the SSD of the Taylor

approximation MSFE for values of n from zero to one hundred. Qualitatively, in all nine

experiments, the Taylor algorithm provides an MSFE approximation which replicates

the form of the benchmark MSFE. For a given value of the explanatory variable variance

σ2
x, as the variance of the innovation σ2

u increases, the level of the benchmark MSFE and

the level of the Taylor approximation MSFE increase but the SSD remains monotonic

decreasing. Continuing with the DGP with ϕ1(Xt, θ) = θ1Xt + θ2X
θ3
t , we conduct nine

more experiments with fixed new values of θ1 = 1, θ2 = 2, θ3 = 2. By increasing the

value of the parameter θ2, we increase the influence of the quadratic term in the DGP

and therefore increase the misspecification of the linear forecast model employed by the

Taylor algorithm. The same values of the variance of the explanatory variable σ2
x and the

variance of the innovation σ2
u are used as in the previous nine experiments. For this second

set of nine experiments, the extremum values are also negative, n0 < 0. These values are

given in the seventh column of the table. Again, the approximation (5.4.11) suggests there

exists no optimal observation window and all data available must be used to forecast.

As before, in all nine experiments, the benchmark MSFE monotonically decreases with

minimum value at the last value of n = 500. Qualitatively, the results are similar

to those of the previous nine experiments. The Taylor algorithm provides an MSFE

approximation which replicates the form of the benchmark MSFE. Nonetheless, compared

to the previous nine experiments, the Taylor approximation appears less accurate, as

can be seen in Figures 5.17, 5.18, 5.19. This should be attributed to an increase in the

variance of the dependent process {Yτ}, rather than viewed as an effect of the “increase”

in misspecification.

Similar analysis is carried out for the other three DGPs, as given in (5.6.5). For

each of these three functional forms of the DGP, two sets of experiments are conducted.

For ϕ2(Xt, θ) = θ4 − θ3 log[1 + exp(−θ2/θ3 − θ1Xt/θ3)], the first set of experiments has
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parameters θ1 = 1, θ2 = 0.01, θ3 = 1, θ4 = 0.001 and the second set of experiments has

parameters θ1 = 1, θ2 = 2.5, θ3 = 1, θ4 = 1.5. For ϕ3(Xt, θ) = θ1Xt + θ2(Xt + θ3)
2 +

sin(π(Xt − 1)/θ4), the first set of experiments has parameters θ1 = 1, θ2 = 0.001, θ3 =

1, θ4 = 1 and the second set of experiments has parameters θ1 = 0.1, θ2 = 2, θ3 =

0.1, θ4 = 1. For ϕ4(Xt, θ) = θ1Xt + θ2Zt, the first set of experiments has parameters

θ1 = 1, θ2 = 0.001 and the second set of experiments has parameters θ1 = 1, θ2 = 2.

For each of these six sets of experiments, the variance of the explanatory variable σ2
x is

evaluated at three different values, and the variance of the innovation σ2
u is evaluated

at nine different values, for a total of fifty-four experiments. For all experiments, as

presented in the tables, the extremum values are negative, n0 < 0. This implies, that

for all examples studied, the approximation (5.4.11) suggests there exists no optimal

observation window and all data available must be used to forecast. Furthermore, for all

experiments, the benchmark MSFE monotonically decreases with minimum value at the

last value of n = 500. Regardless of the level of misspecification achieved by the different

sets of parameters, the general shape of the SSD of the benchmark MSFE, and that of

the SSD of the Taylor approximation MSFE, is monotonic decreasing. The results of

the experiments point to the conclusion that, when the processes involved in the forecast

problem are temporally independent, there exists no optimal observation window and it

is optimal to use all data available to form a forecast.

5.7 Conclusions

In this chapter, we analyze the SSD of the MSFE for a forecasting problem with a forecast

model consisting of a linear regression which misspecifies the data generating problem.

The observed processes are assumed to be i.i.d. As described in section 5.3, the most im-

portant result in the literature on the SSD of the MSFE under misspecification and with

i.i.d. processes is given by White [150]. This result describes the behavior of the MSFE

as the sample size n goes to infinity. By developing a Taylor algorithm, we formulate an

approximation of the MSFE which can be used to explain the SSD of the MSFE for finite

values of the sample size variable n. We evaluate this algorithm by numerical experi-

ments and a benchmark MSFE constructed by Monte Carlo simulations. For the cases of
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functional misspecifications studied, the Taylor algorithm MSFE replicates the behavior

of the benchmark MSFE for finite values of n. Furthermore, the experiments reveal the

MSFE, for the cases studied, decreases monotonically, leading to the conclusion that no

optimal observation windows of finite size exist.
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ϕ1, µx = 10

σx σu θ1 = 2, θ2 = 0.05, θ3 = 2 θ1 = 1, θ2 = 2, θ3 = 2
Figure no n Figure n0 n

0.1 0.01 5.5 -0.0040 NA 5.14 -0.0029 NA
0.1 5.6 -0.0042 NA 5.15 -0.0032 NA

1 5.7 -0.0019 NA 5.16 -0.0050 NA

1 0.1 5.8 -0.0439 NA 5.17 -0.0334 NA
1 5.9 -0.0886 NA 5.18 -0.0356 NA
5 5.10 -0.0824 NA 5.19 -0.0468 NA

10 1 5.11 -1.1851 NA 5.20 -1.1953 NA
10 5.12 -1.6691 NA 5.21 -1.1913 NA
30 5.13 -2.3033 NA 5.22 -1.1859 NA

Table 5.2: NA indicates not applicable by definition

ϕ2, µx = 10

σx σu θ1 = 1, θ2 = 0.01, θ1 = 1, θ2 = 2.5,
θ3 = 1, θ4 = 0.001 θ3 = 1, θ4 = 1.5

Figure no n Figure n0 n

0.1 0.01 5.23 -0.0016 NA 5.32 -0.0019 NA
0.1 5.24 -0.0016 NA 5.33 -8.8952e-04 NA

1 5.25 -0.0016 NA 5.34 -0.0016 NA

1 0.1 5.26 -0.0781 NA 5.35 -0.2303 NA
1 5.27 -0.0781 NA 5.36 -0.0769 NA
5 5.28 -0.0781 NA 5.37 -0.0770 NA

10 1 5.29 -6.0039 NA 5.38 -5.1178 NA
10 5.30 -2.8170 NA 5.39 -2.6739 NA
30 5.31 -2.5644 NA 5.40 -2.5453 NA

Table 5.3: NA indicates not applicable by definition
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ϕ3, µx = 10

σx σu θ1 = 1, θ2 = 0.001, θ1 = 0.1, θ2 = 2,
θ3 = 1, θ4 = 1 θ3 = 0.1, θ4 = 1

Figure no n Figure n0 n

0.1 0.01 5.41 -0.0056 NA 5.50 -0.0024 NA
0.1 5.42 -0.0037 NA 5.51 -0.0027 NA

1 5.43 -4.8605e-04 NA 5.52 -0.0048 NA

1 0.1 5.44 -0.0755 NA 5.53 -0.0278 NA
1 5.45 -0.0763 NA 5.54 -0.0300 NA
5 5.46 -0.0777 NA 5.55 -0.0416 NA

10 1 5.47 -2.6647 NA 5.56 -1.1961 NA
10 5.48 -2.5121 NA 5.57 -1.1920 NA
30 5.49 -2.5160 NA 5.58 -1.1866 NA

Table 5.4: NA indicates not applicable by definition

ϕ4, µx = 10, µz = 8

σx σz σu θ1 = 1, θ2 = 0.001 θ1 = 1, θ2 = 2
Figure no n Figure n0 n

0.1 0.15 0.01 5.59 -0.0012 NA 5.68 -1.0718e-04 NA
0.1 5.60 -0.0012 NA 5.69 4.9040e-04 NA

1 5.61 -0.0012 NA 5.70 -2.2814e-04 NA

1 1.5 0.1 5.62 -0.0916 NA 5.71 -0.1124 NA
1 5.63 -0.0922 NA 5.72 -0.1011 NA
5 5.64 -0.0923 NA 5.73 -0.0801 NA

10 15 1 5.65 -3.2029 NA 5.74 -2.8364 NA
10 5.66 -3.2129 NA 5.75 -2.7043 NA
30 5.67 -3.2137 NA 5.76 -2.6989 NA

Table 5.5: NA indicates not applicable by definition
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Figure 5.5: MSFE for ϕ1(x), θ1 = 2, θ2 = 0.05, θ3 = 2, µx = 10, σx = 0.1, σu = 0.01
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Figure 5.6: MSFE for ϕ1(x), θ1 = 2, θ2 = 0.05, θ3 = 2, µx = 10, σx = 0.1, σu = 0.1
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Figure 5.7: MSFE for ϕ1(x), θ1 = 2, θ2 = 0.05, θ3 = 2, µx = 10, σx = 0.1, σu = 1
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Figure 5.8: MSFE for ϕ1(x), θ1 = 2, θ2 = 0.05, θ3 = 2, µx = 10, σx = 1, σu = 0.1
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Figure 5.9: MSFE for ϕ1(x), θ1 = 2, θ2 = 0.05, θ3 = 2, µx = 10, σx = 1, σu = 1
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Figure 5.10: MSFE for ϕ1(x), θ1 = 2, θ2 = 0.05, θ3 = 2, µx = 10, σx = 1, σu = 5
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Figure 5.11: MSFE for ϕ1(x), θ1 = 2, θ2 = 0.05, θ3 = 2, µx = 10, σx = 10, σu = 1
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Figure 5.12: MSFE for ϕ1(x), θ1 = 2, θ2 = 0.05, θ3 = 2, µx = 10, σx = 10, σu = 10
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Figure 5.13: MSFE for ϕ1(x), θ1 = 2, θ2 = 0.05, θ3 = 2, µx = 10, σx = 10, σu = 30
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Figure 5.14: MSFE for ϕ1(x), θ1 = 1, θ2 = 2, θ3 = 2, µx = 10, σx = 0.1, σu = 0.01
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Figure 5.15: MSFE for ϕ1(x), θ1 = 1, θ2 = 2, θ3 = 2, µx = 10, σx = 0.1, σu = 0.1
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Figure 5.16: MSFE for ϕ1(x), θ1 = 1, θ2 = 2, θ3 = 2, µx = 10, σx = 0.1, σu = 1
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Figure 5.17: MSFE for ϕ1(x), θ1 = 1, θ2 = 2, θ3 = 2, µx = 10, σx = 1, σu = 0.1

0 10 20 30 40 50 60 70 80 90 100

400

450

500

550

n

M
S

F
E

MSFE for DGP with φ
1
, σ

x
=1, σ

u
=1

 

 
Monte Carlo
Taylor Algorithm

Figure 5.18: MSFE for ϕ1(x), θ1 = 1, θ2 = 2, θ3 = 2, µx = 10, σx = 1, σu = 1
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Figure 5.19: MSFE for ϕ1(x), θ1 = 1, θ2 = 2, θ3 = 2, µx = 10, σx = 1, σu = 5
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Figure 5.20: MSFE for ϕ1(x), θ1 = 1, θ2 = 2, θ3 = 2, µx = 10, σx = 10, σu = 1
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Figure 5.21: MSFE for ϕ1(x), θ1 = 1, θ2 = 2, θ3 = 2, µx = 10, σx = 10, σu = 10
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Figure 5.22: MSFE for ϕ1(x), θ1 = 1, θ2 = 2, θ3 = 2, µx = 10, σx = 10, σu = 30
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Figure 5.23: MSFE for ϕ2(x), θ1 = 1, θ2 = 0.01, θ3 = 1, θ4 = 0.001, µx = 10, σx =
0.1, σu = 0.01
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Figure 5.24: MSFE for ϕ2(x), θ1 = 1, θ2 = 0.01, θ3 = 1, θ4 = 0.001, µx = 10, σx =
0.1, σu = 0.1
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Figure 5.25: MSFE for ϕ2(x), θ1 = 1, θ2 = 0.01, θ3 = 1, θ4 = 0.001, µx = 10, σx =
0.1, σu = 1
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Figure 5.26: MSFE for ϕ2(x), θ1 = 1, θ2 = 0.01, θ3 = 1, θ4 = 0.001, µx = 10, σx = 1, σu =
0.1
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Figure 5.27: MSFE for ϕ2(x), θ1 = 1, θ2 = 0.01, θ3 = 1, θ4 = 0.001, µx = 10, σx = 1, σu =
1
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Figure 5.28: MSFE for ϕ2(x), θ1 = 1, θ2 = 0.01, θ3 = 1, θ4 = 0.001, µx = 10, σx = 1, σu =
5
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Figure 5.29: MSFE for ϕ2(x), θ1 = 1, θ2 = 0.01, θ3 = 1, θ4 = 0.001, µx = 10, σx =
10, σu = 1
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Figure 5.30: MSFE for ϕ2(x), θ1 = 1, θ2 = 0.01, θ3 = 1, θ4 = 0.001, µx = 10, σx =
10, σu = 10
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Figure 5.31: MSFE for ϕ2(x), θ1 = 1, θ2 = 0.01, θ3 = 1, θ4 = 0.001, µx = 10, σx =
10, σu = 30
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Figure 5.32: MSFE for ϕ2(x), θ1 = 1, θ2 = 2.5, θ3 = 1, θ4 = 1.5, µx = 10, σx = 0.1, σu =
0.01
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Figure 5.33: MSFE for ϕ2(x), θ1 = 1, θ2 = 2.5, θ3 = 1, θ4 = 1.5, µx = 10, σx = 0.1, σu =
0.1
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Figure 5.34: MSFE for ϕ2(x), θ1 = 1, θ2 = 2.5, θ3 = 1, θ4 = 1.5, µx = 10, σx = 0.1, σu = 1
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Figure 5.35: MSFE for ϕ2(x), θ1 = 1, θ2 = 2.5, θ3 = 1, θ4 = 1.5, µx = 10, σx = 1, σu = 0.1
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Figure 5.36: MSFE for ϕ2(x), θ1 = 1, θ2 = 2.5, θ3 = 1, θ4 = 1.5, µx = 10, σx = 1, σu = 1
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Figure 5.37: MSFE for ϕ2(x), θ1 = 1, θ2 = 2.5, θ3 = 1, θ4 = 1.5, µx = 10, σx = 1, σu = 5
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Figure 5.38: MSFE for ϕ2(x), θ1 = 1, θ2 = 2.5, θ3 = 1, θ4 = 1.5, µx = 10, σx = 10, σu = 1
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Figure 5.39: MSFE for ϕ2(x), θ1 = 1, θ2 = 2.5, θ3 = 1, θ4 = 1.5, µx = 10, σx = 10, σu = 10
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Figure 5.40: MSFE for ϕ2(x), θ1 = 1, θ2 = 2.5, θ3 = 1, θ4 = 1.5, µx = 10, σx = 10, σu = 30
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Figure 5.41: MSFE for ϕ3(x), θ1 = 1, θ2 = 0.001, θ3 = 1, θ4 = 1, µx = 10, σx = 0.1, σu =
0.01
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Figure 5.42: MSFE for ϕ3(x), θ1 = 1, θ2 = 0.001, θ3 = 1, θ4 = 1, µx = 10, σx = 0.1, σu =
0.1
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Figure 5.43: MSFE for ϕ3(x), θ1 = 1, θ2 = 0.001, θ3 = 1, θ4 = 1, µx = 10, σx = 0.1, σu = 1
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Figure 5.44: MSFE for ϕ3(x), θ1 = 1, θ2 = 0.001, θ3 = 1, θ4 = 1, µx = 10, σx = 1, σu = 0.1
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Figure 5.45: MSFE for ϕ3(x), θ1 = 1, θ2 = 0.001, θ3 = 1, θ4 = 1, µx = 10, σx = 1, σu = 1
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Figure 5.46: MSFE for ϕ3(x), θ1 = 1, θ2 = 0.001, θ3 = 1, θ4 = 1, µx = 10, σx = 1, σu = 5
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Figure 5.47: MSFE for ϕ3(x), θ1 = 1, θ2 = 0.001, θ3 = 1, θ4 = 1, µx = 10, σx = 10, σu = 1
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Figure 5.48: MSFE for ϕ3(x), θ1 = 1, θ2 = 0.001, θ3 = 1, θ4 = 1, µx = 10, σx = 10, σu =
10
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Figure 5.49: MSFE for ϕ3(x), θ1 = 1, θ2 = 0.001, θ3 = 1, θ4 = 1, µx = 10, σx = 10, σu =
30
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Figure 5.50: MSFE for ϕ3(x), θ1 = 0.1, θ2 = 2, θ3 = 0.1, θ4 = 1, µx = 10, σx = 0.1, σu =
0.01
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Figure 5.51: MSFE for ϕ3(x), θ1 = 0.1, θ2 = 2, θ3 = 0.1, θ4 = 1, µx = 10, σx = 0.1, σu =
0.1
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Figure 5.52: MSFE for ϕ3(x), θ1 = 0.1, θ2 = 2, θ3 = 0.1, θ4 = 1, µx = 10, σx = 0.1, σu = 1
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Figure 5.53: MSFE for ϕ3(x), θ1 = 0.1, θ2 = 2, θ3 = 0.1, θ4 = 1, µx = 10, σx = 1, σu = 0.1
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Figure 5.54: MSFE for ϕ3(x), θ1 = 0.1, θ2 = 2, θ3 = 0.1, θ4 = 1, µx = 10, σx = 1, σu = 1
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Figure 5.55: MSFE for ϕ3(x), θ1 = 0.1, θ2 = 2, θ3 = 0.1, θ4 = 1, µx = 10, σx = 1, σu = 5
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Figure 5.56: MSFE for ϕ3(x), θ1 = 0.1, θ2 = 2, θ3 = 0.1, θ4 = 1, µx = 10, σx = 10, σu = 1
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Figure 5.57: MSFE for ϕ3(x), θ1 = 0.1, θ2 = 2, θ3 = 0.1, θ4 = 1, µx = 10, σx = 10, σu = 10
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Figure 5.58: MSFE for ϕ3(x), θ1 = 0.1, θ2 = 2, θ3 = 0.1, θ4 = 1, µx = 10, σx = 10, σu = 30
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Figure 5.59: MSFE for ϕ4(x), θ1 = 1, θ2 = 0.001, µx = 10, µz = 8, σx = 0.1, σz =
0.15, σu = 0.01
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Figure 5.60: MSFE for ϕ4(x), θ1 = 1, θ2 = 0.001, µx = 10, µz = 8, σx = 0.1, σz =
0.15, σu = 0.1
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Figure 5.61: MSFE for ϕ4(x), θ1 = 1, θ2 = 0.001, µx = 10, µz = 8, σx = 0.1, σz =
0.15, σu = 1
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Figure 5.62: MSFE for ϕ4(x), θ1 = 1, θ2 = 0.001, µx = 10, µz = 8, σx = 1, σz = 1.5, σu =
0.1
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Figure 5.63: MSFE for ϕ4(x), θ1 = 1, θ2 = 0.001, µx = 10, µz = 8, σx = 1, σz = 1.5, σu =
1
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Figure 5.64: MSFE for ϕ4(x), θ1 = 1, θ2 = 0.001, µx = 10, µz = 8, σx = 1, σz = 1.5, σu =
5



165

0 10 20 30 40 50 60 70 80 90 100

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

n

M
S

F
E

MSFE for DGP with φ
4
, σ

x
=10, σ

z
=15, σ

u
=1

 

 
Monte Carlo
Taylor Algorithm

Figure 5.65: MSFE for ϕ4(x), θ1 = 1, θ2 = 0.001, µx = 10, µz = 8, σx = 10, σz = 15, σu =
1
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Figure 5.66: MSFE for ϕ4(x), θ1 = 1, θ2 = 0.001, µx = 10, µz = 8, σx = 10, σz = 15, σu =
10
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Figure 5.67: MSFE for ϕ4(x), θ1 = 1, θ2 = 0.001, µx = 10, µz = 8, σx = 10, σz = 15, σu =
30
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Figure 5.68: MSFE for ϕ4(x), θ1 = 1, θ2 = 2, µx = 10, µz = 8, σx = 0.1, σz = 0.15, σu =
0.01
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Figure 5.69: MSFE for ϕ4(x), θ1 = 1, θ2 = 2, µx = 10, µz = 8, σx = 0.1, σz = 0.15, σu =
0.1
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Figure 5.70: MSFE for ϕ4(x), θ1 = 1, θ2 = 2, µx = 10, µz = 8, σx = 0.1, σz = 0.15, σu = 1
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Figure 5.71: MSFE for ϕ4(x), θ1 = 1, θ2 = 2, µx = 10, µz = 8, σx = 1, σz = 1.5, σu = 0.1
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Figure 5.72: MSFE for ϕ4(x), θ1 = 1, θ2 = 2, µx = 10, µz = 8, σx = 1, σz = 1.5, σu = 1
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Figure 5.73: MSFE for ϕ4(x), θ1 = 1, θ2 = 2, µx = 10, µz = 8, σx = 1, σz = 1.5, σu = 5
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Figure 5.74: MSFE for ϕ4(x), θ1 = 1, θ2 = 2, µx = 10, µz = 8, σx = 10, σz = 15, σu = 1
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Figure 5.75: MSFE for ϕ4(x), θ1 = 1, θ2 = 2, µx = 10, µz = 8, σx = 10, σz = 15, σu = 10
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Figure 5.76: MSFE for ϕ4(x), θ1 = 1, θ2 = 2, µx = 10, µz = 8, σx = 10, σz = 15, σu = 30
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Chapter 6

Taylor algorithm for stationary

processes

6.1 Introduction

In Chapter 5, we studied a forecasting problem involving independent and identically

distributed (i.i.d.) processes. In the present chapter, we allow for more general processes

and construct an algorithm which yields an approximation, based on Taylor series, of

the mean square forecast error (MSFE) for a forecasting problem involving stationary

processes. This Taylor algorithm approximation is meant to be used as a tool to describe

the sample size dependence (SSD) of the MSFE. We begin by defining two types of

stationarity.

Definition 6.1 Let G1 be the joint distribution function of the sequence {Z1, Z2, . . . },
where Zτ is a q× 1 vector, and let Gt+1 be the joint distribution function of the sequence

{Zt+1, Zt+2, . . . }. The sequence {Zτ} is strictly stationary if G1 = Gt+1 for each t ≥ 1.

Definition 6.2 If a sequence has constant variance and has covariances that depend only

on the time lag between Zt and Zt+τ , the sequence is said to be covariance stationary.

Clearly, every strictly stationary process is covariance stationary but not vice versa, and

an i.i.d. process is both strictly stationary and covariance stationary. To encompass as

many different dependencies of stationary processes as possible, the algorithm developed

in this chapter assumes covariance stationarity of the processes.

As is evident from the motivating examples given in Section 2.6, one of the possi-

ble ramifications of the presence of model misspecification is the existence of optimal
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observation windows for the problem of forecasting. In Chapter 5, results from the

approximation of the MSFE by the Taylor algorithm and from the benchmark MSFE

obtained with Monte Carlo simulations suggest no optimal observation window exists

for the functional misspecifications studied. These experiments were carried out under

the assumption that the processes in question were temporally independent. One can

attribute the fact that no optimal observation windows exist under misspecification to

the static nature of those processes.

The rest of the chapter is organized as follows. In Section 6.2, we present the only

relevant results in the literature concerning estimation under misspecification with de-

pendent observations. These consist of some large sample results for the OLS under

assumptions of misspecification. In Section 6.3, we construct an algorithm to study the

effects of model misspecification on the SSD of the MSFE for the forecasting problem

involving covariance stationary processes. In Section 6.4, we present Monte Carlo exper-

iments to evaluate the MSFE approximation.

6.2 Misspecification and the OLS

In Chapter 5, we analyze the SSD of the MSFE for a forecasting problem which involves

i.i.d. observations. In Section 5.3, we present the most relevant result in the literature

on the SSD of the MSFE for a forecasting problem with a regression model with i.i.d.

observations. In this section we present the most relevant result on the properties of

the OLS in a forecasting problem with dependent observations under model functional

misspecification.

Domowitz and White, in [43], present large sample properties of the OLS for an

estimation problem under misspecification of the DGP. We begin with a description of

the DGP.

Assumption 6.1 Let the probability space (Ω,B, P ) be given. A sequence of real valued

responses Yτ is generated as

Yτ = gτ (Zτ ), τ = 1, 2, . . . , n,
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where the gτ are unknown measurable functions of the real valued random vector Zτ . The

vector Zτ is finite dimensional and jointly distributed with distribution function Fτ on Ω,

a Euclidean space.

Yτ and Zτ are not assumed to be stationary.

Assumption 6.2 The researcher chooses a sequence of functions hτ to approximate the

data generating process. hτ (z, θ), τ = 1, 2, . . . , n, are continuous functions of θ for each

z in Ω uniformly in τ , a.s-P , and measurable functions of z for each θ ∈ Θ, a compact

subset of a finite dimensional Euclidean space.

The nonlinear least squares (NLS) estimator θ̂n solves the following problem

min
θ∈Θ

σ2
n(θ) = n−1

n∑

τ=1

(Yτ − hτ (Zτ , θ))
2.

The OLS is obtained when the hτ are linear. The parameter θ∗n is defined as the vector

which minimizes the average prediction mean square error

σ̄2
n = n−1

n∑

τ=1

∫

(gτ (z) − hτ (z, θ))2dFτ . (6.2.1)

Note the prediction mean square error is the same as the MSFEτ evaluated at the

forecast origin τ . The average given in (6.2.1) over τ is the average of the MSFEτ

evaluated at different forecast origins τ = 1, 2, . . . , n. We give a definition and two

assumptions needed for the main result.

Definition 6.3 Let Q̄n(θ) be continuous on a compact set, Θ, such that Q̄n(θ) has a

minimum at θ∗n, n = 1, 2, . . . . Let Jn(ε) be an open sphere centered at θ∗n with fixed

radius ε > 0. For each n = 1, 2, . . . , define the neighborhood Nn = Jn(ε) ∩ Θ, such that

its complement in Θ, N c
n, is compact. The minimizer θ∗n is said to be identifiably unique

if and only if

lim inf
n

[

min
θ∈N c

n

Q̄n(θ) − Q̄n(θ∗n)
]

> 0

for any fixed ε > 0.

Assumption 6.3 The random vectors {Zτ} are either (a) φ-mixing, with φ(m) of size

r1/(2r1 − 1), r1 ≥ 1; or (b) α-mixing, with α(m) of size r1/(r1 − 1), r1 > 1.
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Assumption 6.4 {(gτ (Zτ )− hτ (Zτ , θ))
2} is dominated by uniformly (r1 + δ)-integrable

functions, r1 ≥ 1, 0 < δ ≤ r1.

Assumption 6.5 σ̄2
n has a minimizer at θ∗n which is identifiably unique.

Theorem 6.4 (Corollary 3.1 in [43]) Under assumptions 6.1 through 6.5, θ̂n−θ∗n −→
0, a.s., as n→ ∞.

The theorem establishes the least squares estimator as a strongly consistent estimator of

the parameter vector which minimizes the average MSE of prediction. The result of the

theorem describes the behavior of the NSL or OLS as n goes to infinity.

As in Chapter 5, we are interested in the sample size dependence of the MSFE.

Allowing for dependent observations, in the next section we develop an algorithm that

can be used to construct an approximation of the MSFE, in order to analyze the sample

size dependence for finite values of the sample size variable n and determine the possible

existence of optimal observation windows of finite length.

6.3 The algorithm: scalar case

As presented in Chapter 2, the forecasting problem of interest consists of predicting the

observed process {Yτ} at τ = t + 1, Yt+1 ∈ R, by means of a linear regression of the

k × 1 column vector Xt of Ft-measurable variables. In this section, we assume k = 1.

The forecaster does not know the data generating process (DGP) which generates the

series {Yτ}, and uses a linear model in Xt to approximate the conditional expectation

Et[Yt+1]. The process {Yτ+1, Xτ} is assumed to be either covariance stationary or strictly

stationary. We obtain the following proposition as a straight forward application of

theorem A.38 in Appendix A.

Proposition 6.5 Given the process {Yτ+1, Xτ} is strictly stationary, processes of the

form {∏l
j=0 Y

ij
τ−jX

kj

τ−j−1}, where ij and kj are integers, are also strictly stationary .

The linear model used to forecast Yt+1 is of the form

Yt+1 = βXt + Vt+1,
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in which the parameter β, β ∈ B, B compact in R, is estimated by OLS. The estimation

sample contains the n most recent observations, {Yt−n+1, . . . , Yt} and {Xt−n, . . . , Xt−1},
and the OLS estimator of β has the form

β̂t,n =

(
t−1∑

τ=t−n

XτX
>
τ

)−1( t−1∑

τ=t−n

XτYτ+1

)

.

The OLS estimator β̂t,n is used to construct the forecast of Yt+1, denoted Ŷt+1,n, given

by

Ŷt+1,n = β̂t,nXt.

The criterion used to evaluate forecast accuracy is the MSFE given by

MSFEn = E[(Yt+1 − Ŷt+1,n)2] = E[Y 2
t+1] − 2E[Yt+1Xtβ̂t,n] +E[X2

t β̂
2
t,n].

The MSFE is the expected value of statistics which depend on the sample size parameter

n. We construct a Taylor algorithm, as developed in Chapter 4, to approximate the

MSFE in order to investigate the existence of an optimal observation window. The

existence of such optimal observation window can be revealed by assessing the SSD of

the MSFE. For this purpose, we begin the construction of the algorithm by focusing on

the expectation of the following n dependent terms

Θ1,n ≡ Yt+1Xtβ̂t,n =
S1,n

S2,n
, Θ2,n ≡ X2

t β̂
2
t,n =

S2
3,n

S2
2,n

,

where

S1,n ≡ 1

n

t−1∑

τ=t−n

Yt+1XtYτ+1Xτ , S2,n ≡ 1

n

t−1∑

τ=t−n

X2
τ , S3,n ≡ 1

n

t−1∑

τ=t−n

XtYτ+1Xτ .

The next step in the construction of the algorithm is to apply the techniques of

Chapter 4 to find approximations of E[Θ1,n] and E[Θ2,n]. Such approximations are

conducted by means of Taylor series expansions of Θ1,n and Θ2,n, with respect to the

statistics S1,n, S2,n and S3,n about some points ω1,n, ω2 and ω3,n respectively. From
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the theory developed in Chapter 4, we learned that approximating the expectation of a

function of random variables by means of Taylor series requires one, in many instances, to

approximate the expectation by a truncated expectation. Using truncated expectations

is necessary because Taylor series approximations are valid only within the region of

convergence and, at the same time, the random variables involved take values on a specific

range. In the case of Θ1,n, the approximation will depend on truncated central moments

of S1,n and S2,n and in the case of Θ2,n, the approximation will depend on truncated

central moments of S2,n and S3,n. Let A be a set inside the region of convergence B of

the Taylor series of Θ1,n with respect to the statistics S1,n and S2,n. Appendix C.1.1

provides details on the nature of the region of convergence of the Taylor series expansion

of the OLS, and on the nature of convergence sets such as A. We write the expectation

of Θ1,n and Θ2,n as follows:

E[Θ1,n] = Ē[Θ1,n,A] + Ē[Θ1,n,Ac], (6.3.1)

E[Θ2,n] = Ē[Θ2,n,A] + Ē[Θ2,n,Ac], (6.3.2)

where Taylor series can be used in A to approximate Θ1,n and Θ2,n. Within A, we look

at Taylor approximations of Θ1,n with respect to S1,n and S2,n about the points ω1,n, ω2,

and Taylor approximations of Θ2,n with respect S2,n and S3,n about the points ω2, ω3,n,

where

ω1,n ≡ E[S1,n] =
1

n

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ],

ω2 ≡ E[S2,n] = E[X2
t−1],

ω3,n ≡ E[S3,n] =
1

n

t−1∑

τ=t−n

E[XtYτ+1Xτ ].

The fourth order Taylor polynomial of Θ1,n is as follows:

Q(Θ1,n, 4) =
ω1,n

ω2
+

1

ω2
(S1,n − ω1,n) − ω1,n

ω2
2

(S2,n − ω2) −
1

ω2
2

(S1,n − ω1,n)(S2,n − ω2)

+
ω1,n

ω3
2

(S2,n − ω2)
2 +

1

ω3
2

(S1,n − ω1,n)(S2,n − ω2)
2 − ω1

ω4
2

(S2,n − ω2)
3
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+
ω1,n

ω5
2

(S2,n − ω2)
4 − 1

ω4
2

(S1,n − ω1,n)(S2,n − ω2)
3.

The fourth order Taylor polynomial of Θ2,n is as follows:

Q(Θ2,n, 4) =
ω2

3,n

ω2
2

+ 2
ω3,n

ω2
2

(S3,n − ω3,n) − 2
ω2

3,n

ω3
2

(S2,n − ω2) +
1

ω2
2

(S3,n − ω3,n)2

− 4
ω3,n

ω3
2

(S3,n − ω3,n)(S2,n − ω2) + 3
ω2

3,n

ω4
2

(S2,n − ω2)
2

− 2
1

ω3
2

(S3,n − ω3,n)2(S2,n − ω2) + 6
ω3,n

ω4
2

(S3,n − ω3,n)(S2,n − ω2)
2

− 4
ω2

3,n

ω5
2

(S2,n − ω2)
3 +

3

ω4
2

(S3,n − ω3,n)2(S2,n − ω2)
2

− 8
ω3,n

ω5
2

(S3,n − ω3,n)(S2,n − ω2)
3 + 5

ω2
3,n

ω6
2

(S2,n − ω2)
4.

Using the fourth order Taylor polynomials Q(Θ1,n, 4) and Q(Θ2,n, 4) to approximate

Θ1,n and Θ2,n respectively inside A, (6.3.1) and (6.3.2) become

E[Θ1,n] ≈ Ē[Q(Θ1,n, 4),A] + Ē[Θ1,n,Ac], (6.3.3)

E[Θ2,n] ≈ Ē[Q(Θ2,n, 4),A] + Ē[Θ2,n,Ac]. (6.3.4)

Using these approximations, the MSFE approximation can be written as follows:

MSFEn ≈ E[Y 2
t+1] − 2(Ē[Q(Θ1,n, 4),A] + Ē[Θ1,n,Ac]) + Ē[Q(Θ2,n, 4),A] + Ē[Θ2,n,Ac].

The central moments involved in the expectation of the Taylor polynomials are ex-

panded and simplified to derive the SSD in terms of the sample size variable n. Appendix

D, SectionD.1 presents the derivation of the central moments for the general case without

assuming P (X ∈ A) ≈ 1. With the assumption P (Xτ ∈ A) ≈ 1 for all τ , the approxima-

tions for Θ1,n and Θ2,n given in (6.3.3) and (6.3.4) become E[Θ1,n] ≈ E[Q(Θ1,n, 4)] and

E[Θ2,n] ≈ E[Q(Θ2,n, 4)], respectively, and the MSFE approximation is as follows:

MSFEn ≈ E[Y 2
t+1] − 2E[Q(Θ1,n, 4)] +E[Q(Θ2,n, 4)]. (6.3.5)
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We write the central moments involved in the expectation of Q(β̂t,n, 4) and Q(β̂2
t,n, 4)

under the assumptions of covariance stationarity and P (X ∈ A) ≈ 1:

E[(S1,n − ω1,n)] = 0, E[(S2,n − ω2)] = 0, E[(S3,n − ω3,n)] = 0,

E[(S2,n − ω2)
2] =

1

n2

[ t−1∑

τ=t−n

E[X4
τ ] +

t−1∑

i6=j,t−n

E[X2
i X

2
j ]
]

−E2[X2
t−1],

E[(S3,n − ω3,n)2] =
1

n2

[ t−1∑

τ=t−n

E[X2
t Y

2
τ+1X

2
τ ] +

t−1∑

i6=j,t−n

E[X2
t Yi+1XiYj+1Xj ]

−
t−1∑

τ=t−n

E2[XtYτ+1Xτ ] −
t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1Xj ]
]

,

E[(S1,n − ω1,n)(S2,n − ω2)] =
1

n2

[ t−1∑

τ=t−n

E[Yt+1XtYτ+1X
3
τ ]

+

t−1∑

i6=j,t−n

E[Yt+1XtYi+1XiX
2
j ]
]

− 1

n
E[X2

t−1]

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ],

E[(S2,n − ω2)(S3,n − ω3,n)] =
1

n2

[ t−1∑

τ=t−n

E[XtYτ+1X
3
τ ] +

t−1∑

i6=j,t−n

E[XtYi+1XiX
2
j ]
]

− 1

n
E[X2

t−1]

t−1∑

τ=t−n

E[XtYτ+1Xτ ],

E[(S1,n − ω1,n)(S2,n − ω2)
2] =

1

n3

[ t−1∑

τ=t−n

E[Yt+1XtYτ+1X
5
τ ]

+

t−1∑

i6=j,t−n

E[Yt+1XtYi+1XiX
4
j ] +

t−1∑

i6=j,t−n

E[Yt+1XtYi+1X
3
i X

2
j ]

+

t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1XiX
2
jX

2
k ] −

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]E[X4
τ ]

−
t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E[X4
j ] −

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E
[
X2

i X
2
j

]

−
t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]E
[
X2

jX
2
k

] ]

− 2

n2
E[X2

t−1]
[ t−1∑

τ=t−n

E
[
Yt+1XtYτ+1X

3
τ

]
+

t−1∑

i6=j,t−n

E
[
Yt+1XtYi+1XiX

2
j

] ]
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+
2

n
E2[X2

t−1]
t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ],

E[(S3,n − ω3,n)(S2,n − ω2)
2] =

1

n3

[ t−1∑

τ=t−n

E[XtYτ+1X
5
τ ] +

t−1∑

i6=j,t−n

E[XtYi+1XiX
4
j ]

+

t−1∑

i6=j,t−n

E[XtYi+1X
3
i X

2
j ] +

t−1∑

i6=j 6=k,t−n

E[XtYi+1XiX
2
jX

2
k ]

−
t−1∑

τ=t−n

E[XtYτ+1Xτ ]E[X4
τ ] −

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[X4
j ]

−
t−1∑

i6=j,t−n

E[XtYi+1Xi]E
[
X2

i X
2
j

]
−

t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]E
[
X2

jX
2
k

] ]

− 2

n2
E[X2

t−1]
[ t−1∑

τ=t−n

E
[
XtYτ+1X

3
τ

]
+

t−1∑

i6=j,t−n

E
[
XtYi+1XiX

2
j

] ]

+
2

n
E2[X2

t−1]

t−1∑

τ=t−n

E[XtYτ+1Xτ ],

E[(S3,n − ω3,n)2(S2,n − ω2)] =
1

n3

[ t−1∑

τ=t−n

E[X2
t Y

2
τ+1X

4
τ ] +

t−1∑

i6=j,t−n

E[X2
t Y

2
i+1X

2
i X

2
j ]

+

t−1∑

i6=j,t−n

E[X2
t Yi+1XiYj+1X

3
j ] +

t−1∑

i6=j 6=k,t−n

E[X2
t Yi+1XiYj+1XjX

2
k ]

− 2

t−1∑

τ=t−n

E[XtYτ+1Xτ ]E[XtYτ+1X
3
τ ] − 2

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1X
3
j ]

− 2

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYi+1XiX
2
j ] − 2

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1XjX
2
i ]

− 2

t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]E[XtYj+1XjX
2
k ]
]

+
1

n2

[

2E[X2
t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1Xj ] + 2E[X2
t−1]

t−1∑

τ=t−n

E2[XtYτ+1Xτ ]

−E[X2
t−1]

t−1∑

τ=t−n

E[X2
t Y

2
τ+1X

2
τ ] −E[X2

t−1]

t−1∑

i6=j,t−n

E[X2
t Yi+1XiYj+1Xj ]

]

,
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E[(S2,n − ω2)
3] =

1

n3

[ t−1∑

τ=t−n

E[X6
τ ] +

t−1∑

i6=j,t−n

E[X4
i X

2
j ] +

t−1∑

i6=j 6=k,t−n

E[X2
i X

2
jX

2
k ]
]

− 3

n2
E[X2

t−1]
[ t−1∑

τ=t−n

E[X4
τ ] +

t−1∑

i6=j,t−n

E[X2
i X

2
j ]
]

+ 2E3[X2
t−1],

E[(S2,n − ω2)
4] =

1

n4

[ t−1∑

τ=t−n

E[X8
τ ] +

t−1∑

i6=j,t−n

E[X6
i X

2
j ] +

t−1∑

i6=j,t−n

E[X4
i X

4
j ]

+
t−1∑

i6=j 6=k,t−n

E[X4
i X

2
jX

2
k ] +

t−1∑

i6=j 6=k 6=l,t−n

E[X2
i X

2
jX

2
kX

2
l ]
]

− 4

n3
E[X2

t−1]
[ t−1∑

τ=t−n

E[X6
τ ] +

t−1∑

i6=j,t−n

E[X4
i X

2
j ] +

t−1∑

i6=j 6=k,t−n

E[X2
i X

2
jX

2
k ]
]

+
6

n2
E2[X2

t−1]
[ t−1∑

τ=t−n

E[X4
τ ] +

t−1∑

i6=j,t−n

E[X2
i X

2
j ]
]

− 5E4[X2
t−1],

E[(S1,n − ω1,n)(S2,n − ω2)
3] =

1

n4

[ t−1∑

τ=t−n

E[Yt+1XtYτ+1X
7
τ ]

+

t−1∑

i6=j,t−n

E[Yt+1XtYi+1XiX
6
j ] +

t−1∑

i6=j,t−n

E[Yt+1XtYi+1X
5
i X

2
j ]

+

t−1∑

i6=j,t−n

E[Yt+1XtYi+1X
3
i X

4
j ] +

t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1XiX
4
jX

2
k ]

+

t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1X
3
i X

2
jX

2
k ] +

t−1∑

i6=j 6=k 6=l,t−n

E[Yt+1XtYi+1XiX
2
jX

2
kX

2
l ]

−
t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]E[X6
τ ] −

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E[X6
j ]

−
t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E[X4
i X

2
j ] −

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E[X4
jX

2
i ]

−
t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]E[X4
jX

2
k ] −

t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]E[X2
i X

2
jX

2
k ]

−
t−1∑

i6=j 6=k 6=l,t−n

E[Yt+1XtYi+1Xi]E[X2
jX

2
kX

2
l ]
]
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+
1

n3

[

− 3E[X2
t−1]

t−1∑

τ=t−n

E[Yt+1XtYτ+1X
5
τ ] − 3E[X2

t−1]
t−1∑

i6=j,t−n

E[Yt+1XtYi+1XiX
4
j ]

− 3E[X2
t−1]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1X
3
i X

2
j ]

− 3E[X2
t−1]

t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1XiX
2
jX

2
k ]

+ 3E[X2
t−1]

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]E[X4
τ ]

+ 3E[X2
t−1]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E[X4
j ]

+ 3E[X2
t−1]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E[X2
i X

2
j ]

+ 3E[X2
t−1]

t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]E[X2
jX

2
k ]
]

+
1

n2

[

3E2[X2
t−1]

t−1∑

τ=t−n

E[Yt+1XtYτ+1X
3
τ ] + 3E2[X2

t−1]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1XiX
2
j ]
]

− 3

n
E3[X2

t−1]

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ],

E[(S3,n − ω3,n)(S2,n − ω2)
3] =

1

n4

[ t−1∑

τ=t−n

E[XtYτ+1X
7
τ ]

+

t−1∑

i6=j,t−n

E[XtYi+1XiX
6
j ] +

t−1∑

i6=j,t−n

E[XtYi+1X
5
i X

2
j ]

+

t−1∑

i6=j,t−n

E[XtYi+1X
3
i X

4
j ] +

t−1∑

i6=j 6=k,t−n

E[XtYi+1XiX
4
jX

2
k ]

+

t−1∑

i6=j 6=k,t−n

E[XtYi+1X
3
i X

2
jX

2
k ] +

t−1∑

i6=j 6=k 6=l,t−n

E[XtYi+1XiX
2
jX

2
kX

2
l ]

−
t−1∑

τ=t−n

E[XtYτ+1Xτ ]E[X6
τ ] −

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[X6
j ]

−
t−1∑

i6=j,t−n

E[XtYi+1Xi]E[X4
i X

2
j ] −

t−1∑
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E[XtYi+1Xi]E[X4
jX

2
i ]
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−
t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]E[X4
jX

2
k ] −
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i6=j 6=k,t−n
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i X

2
jX

2
k ]

−
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2
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2
l ]
]

+
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− 3E[X2
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5
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τ=t−n

E[XtYτ+1X
3
τ ] + 3E2[X2

t−1]
t−1∑
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]
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n
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τ=t−n

E[XtYτ+1Xτ ],

E[(S3,n − ω3,n)2(S2,n − ω2)
2] =

1

n4

[ t−1∑
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+

t−1∑
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+
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i6=j,t−n

E[X2
t Yi+1X

3
i Yj+1X

3
j ] +

t−1∑
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i6=j 6=k 6=l,t−n

E[X2
t Yi+1XiYj+1XjX

2
kX

2
l ] − 2

t−1∑

τ=t−n

E[XtYτ+1Xτ ]E[XtYτ+1X
5
τ ]

− 2

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1X
5
j ] − 2

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYi+1XiX
4
j ]



183

− 2
t−1∑
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t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1X
3
j ]

+ 4E[X2
t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYi+1XiX
2
j ]

+ 4E[X2
t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1XjX
2
i ]

+ 4E[X2
t−1]

t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]E[XtYj+1XjX
2
k ]
]

+
1

n2

[

− 3E2[X2
t−1]

t−1∑

τ=t−n

E2[XtYτ+1Xτ ] +E2[X2
t−1]

t−1∑

τ=t−n

E[X2
t Y

2
τ+1X

2
τ ]

+E2[X2
t−1]

t−1∑

i6=j,t−n

E[X2
t Yi+1XiYj+1Xj ]

− 3E2[X2
t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1Xj ]
]

.

6.4 Monte Carlo evidence

6.4.1 The experiment

In this section, we present Monte Carlo experiments to investigate the ramifications of

misspecification in the forecasting problem described in Chapter 2 and to evaluate the

ability of the Taylor algorithm to capture these effects. In particular, we focus on the

case where the explanatory and dependent variables are covariance stationary processes.

To carry out this endeavor, we construct a benchmark MSFE by means of Monte Carlo

simulations. This benchmark MSFE is then compared to the MSFE approximation
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obtained with the Taylor algorithm and given by (6.3.5). For the analysis, we consider

the DGP given in the motivating example 2.16

Yt = µ+ φYt−1 + Ut,

where {Uτ} ∼ IIN(0, σu) is an innovation process and φ is a scalar parameter. The

forecasting model in the example is given by Yτ = β + Vτ , so that the sequence of

explanatory variables {Xτ} is a sequence of ones.

As described in the previous chapter, the MSFE cannot be evaluated analytically,

so that we calculate the benchmark MSFE by means of Monte Carlo simulations. The

motivation behind using Monte Carlo simulations to determine a benchmark MSFE lies

in that the MSFE is equal to the expected value of the conditional mean square forecast

error (CMSFE). Given a realization of the process {Yτ}t
τ=t−n+1, it is simple to compute

the CMSFE conditional on the given sample. Generating many such samples, M , by

Monte Carlo simulations, we can construct M conditional mean square forecast errors,

{CMSFEi}M
i=1, and approximate the MSFE by the sample mean of the simulations.

We now describe the details involved in the construction of the benchmark MSFE.

For the given set of values of the parameters P = {µ, σu, φ}, one hundred thousand

Monte Carlo simulations are conducted (M = 100000). We use the index m to denote

a particular Monte Carlo simulation. For the mth simulation, we generate the sample

series {uτ,m}T
τ=1 of length T = 251 as a realization of the innovation process {Uτ}t

τ=t−n,

such that the first element of the series is the first observation, 1 ↔ t − n, and the

last element of the series is the last observation, 251 ↔ t. Each u is a realization of

a normally distributed random variable, U ∼ N(0, σu), and the population series is

independent and identically distributed, {Uτ}t−1
τ=t−n ∼ IID. From this sample series of

the innovation process, we calculate the sample series {yτ,m}T
τ=1 by means of the relation

yτ,m = φyτ−1,m + uτ with the starting value y1,m = 0. The first 50 values of y are

discarded.

Finally, with the sample series {yτ,m}T
τ=51, at the forecast origin τ = T − 1, we
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construct the CMSFE as follows:

CMSFET−1,m,n = y2
T − 2yTβT−1,n,m + β2

T−1,n,m,

βT−1,n,m =

∑T−1
τ=T−n yτ,myτ−1,m
∑T−1

τ=T−n y
2
τ,m

.

For each simulation, we obtain T −1−50 = 200 values of the CMSFE, one for each value

of n starting from n = 1 to n = 200. The case n = 1 refers to estimation of the OLS

carried out with only one observation. For a particular set of parameters P, we obtain

an array of size M × T − 51 of CMSFEs, {CMSFEi,j}M,T−51
i=1,j=1 . Finally, the benchmark

MSFE for a set of parameters P and for an observation window of size n is given by the

following:

MSFEn ≈ 1

M − 50

M∑

i=51

CMSFEi,n. (6.4.1)

The benchmark Monte Carlo MSFE is compared with the MSFE approximation ob-

tained with the Taylor algorithm given by (6.3.5). The approximation (6.3.5) is con-

structed by use of sample moments in place of their population counterparts. For this,

we generate the innovation series {uτ}N
τ=1 of length N = 3100 as a realization of the

innovation process {Uτ}t
τ=t−n, such that the first element of the series is the first obser-

vation, 1 ↔ t − n, and the last element of the series is the last observation, 3100 ↔ t.

Each u is a realization of a normally distributed random variable, u ∼ N(0, σu), and

the population series is independent and identically distributed, {Uτ}t−1
τ=t−n ∼ IID. The

sample series {yτ}N
τ=1 is generated by means of the relation yτ = φyτ−1 + uτ with the

starting value y1 = 0. The first 100 values of y are discarded.

The population moments in (6.3.5) are estimated by generating their sample coun-

terparts. For example:

E[X2
t−1X

2
t−2] ≈

1

N − 101

N∑

τ=102

x2
τx

2
τ−1,

E[X2
t Y

2
t X

2
t−1] ≈

1

N − 101

N∑

τ=102

x2
τy

2
τx

2
τ−1.
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Therefore, for a given set of the parameters, P = {µ, σu, φ}, we can generate the necessary

sample moments and ultimately evaluate (6.3.5) for different values of the observation

window size n. The resulting MSFE can be compared to the benchmark MSFE (6.4.1).

6.4.2 Discussion

The parameters µ = 0, σu = 1 were fixed for four experiments in which we varied the

value of the parameter φ. The values of φ studied were 0.1, 0.5, 0.8, and 0.95. For

φ = 0, the model is correctly specified so that as φ increases, misspecification in some

sense increases. The benchmark MSFE and the Taylor approximation of the MSFE are

compared for each value of φ in Figures 6.1, 6.2, 6.3, and 6.4. The results show that

the Taylor approximation of the MSFE captures the general behavior of the benchmark

MSFE, but the results are not as accurate as the results for i.i.d. processes presented in

the previous chapter. The results are best for the case with φ = 0.1, which is the process

nearest to being i.i.d. of the processes studied. The lack of accuracy in the experiments

might be attributed to the method of approximating population moments with sample

moments. Future work will employ Newey-West estimators.
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Figure 6.1: MSFE for σu = 1, φ = 0.1
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Figure 6.2: MSFE for σu = 1, φ = 0.5
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Figure 6.3: MSFE for σu = 1, φ = 0.8
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Figure 6.4: MSFE for σu = 1, φ = 0.95
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Chapter 7

Taylor algorithm for structural

break processes

7.1 Introduction

As noted in the historical exposition of forecasting in Chapter 2, one major obstacle for

the subject of forecasting to gain acceptance in the economic community has been the

lack of homogeneity of economic data. Much work has been done to understand the level

of regularity in economic data and, in particular, the presence of structural changes. The

literature which deals with testing for structural breaks includes: the work of Chow [29],

for linear regression models when the point of the break is known; the work of Brown,

Durbin, and Evans [28], applicable when the point of the break is unknown; and the

application of tests to dynamic models and tests for the estimation of the size and timing

of the break by Plobeger, Kramer and Kontrus [116], Hansen [66], Andrews [5], Inclan

and Tiao [78], Andrews and Ploberger [6], Chu, Stinchcombe and White [30] and Bai

and Perron [13]. This plethora of work has led to abundant evidence of structural breaks

in economic series, [3, 13, 32, 33, 53, 139].

The problem of forecasting a process which has undergone a structural change presents

an ideal circumstance to address the premise of this thesis by asking the question: How

much data should one use to forecast such a series. Using only post-break data for

the estimation of the forecasting model would result in unbiased forecast errors. If,

in addition, pre-break data is used in the estimation of the forecasting model, forecast

errors would no longer be unbiased, although the variance would be lower than in the
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post-break-only case. In this chapter, we present a methodology to quantify this trade

off and answer the question of how far back one should look when making a forecast.

Modern economies undergo major institutional, political, financial, and technological

changes which manifest themselves in the data employed by econometricians. These

manifestations are modeled by use of structural breaks in the form of parameter shifts.

The significance of the presence of structural changes in the context of the forecasting

problem has been addressed by Clements and Hendry,

Deterministic shifts (changes in equilibrium means and steady-state trends)

in the model relative to the DGP are a dominant source of forecast failure.

([33], p. 69)

[Clements and Hendry] present taxonomies of forecast errors in both I(0)

and I(1) systems, which suggest that structural breaks are the main culprit

for systematic forecast failure. ([33], p. 36)

The most commonly used procedures developed to handle non-stationarities use a rolling

window of a fixed size, an expanding window (recursive method), or apply exponentially

decreasing weights. None of these schemes are likely to be optimal if the DGP undergoes

a structural break. A rolling window of a short fixed size might work well immediately

after the break, but valuable information will be lost as the distance from the break

increases. The recursive scheme and the exponential scheme with long memory will

produce significantly biased forecasts after the break until the post break information

significantly outweighs the pre-break information.

Work on forecasting in the presence of structural changes has only recently began to

be addressed by econometricians. Clements and Hendry [32, 33] address the analysis of

forecast errors from autoregressive models subject to structural change. However, the

authors assume the parameters of the AR model remain constant during the estima-

tion period. Pesaran and Timmermann [114] develop a theoretical framework for the

analysis of small-sample properties of forecasts from general autoregressive models under

structural breaks. They determine conditions under which the forecast errors are un-

biased and demonstrate some of their theoretical results with Monte Carlo simulations.
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To our knowledge, the only work, besides our own, which explores the subject of deter-

mining quantitatively optimal observation windows for processes that undergo structural

changes is that of Pesaran and Timmermann [113]. In [113], Pesaran and Timmermann

analyze the sample size dependence for the conditional and unconditional MSFE when

the DGP is linear with a singular structural break and the forecasting model is linear.

Hence misspecification arises from not modeling the break when using pre-break data to

estimate the post-break model. Under the assumption of strictly exogenous regressors,

the authors obtain stylized facts describing the appropriate use of pre-break observations

for the conditional MSFE. For the single regressor case, the authors apply the restrictive

conditions of identically independent and jointly normally distributed disturbances and

regressors to obtain an analytic expression for the unconditional MSFE.

The analyses of Clements and Hendry [32, 33], and Pesaran and Timmermann [113,

114] assume that the estimation is carried out based on a correctly specified post-break

model; i.e, the functional form of the model and DGP after the break occurs are AR

models with the same autoregressive parameter. The only misspecification in estimation

comes from effectively “ignoring” the break when using pre-break data. Our work allows

for such break misspecification but further accommodates other forms of misspecification

by refraining from putting any assumptions on the DGP. We note that the work that

follows focuses on the treatment of independent and identically distributed processes

which undergo a structural break. However, the theory and methodology presented here

can be extended to the problem of forecasting with time series models which undergo a

structural break. This is subject for future research.

7.2 Forecasting a general structural break process

As presented in Chapter 2, the forecasting problem of interest consists of predicting the

observed process {Yτ} at τ = t+1, Yt+1 ∈ R, by means of a linear regression of the k× 1

column vector Xt of Ft-measurable variables. In this section we assume k = 1. We apply

the techniques of Chapter 4 to approximate the optimal observation window to forecast

the process {Yτ} generated by a DGP with a temporal structural break. The DGP is as
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follows:

Yτ+1 =







Y1,τ+1, τ ≤ t− nb

Y2,τ+1, τ > t− nb

. (7.2.1)

We assume the forecaster knows the process {Yτ} undergoes a structural break at time

t−nb. Beyond the occurrence of a structural break at time t−nb, the forecaster does not

know the nature of the DGP which generates the process {Yτ} and uses a model for the

conditional expectation of Yt+1, Et[Yt+1], which is linear in Xt. The linear model used

to construct the forecast of Yt+1 is of the form

Yt+1 = β>Xt + Vt+1,

in which the parameter β, β ∈ B, B compact in R, is estimated by ordinary least squares

(OLS). The estimation sample contains the n most recent observations and the OLS

estimator of β has the form

β̂t,n ≡
(

t−1∑

τ=t−n

X2
τ

)−1( t−1∑

τ=t−n

XτYτ+1

)

.

7.2.1 The MSFE for n ≥ nb

As explained in Section 2.7, to understand the sample size dependence (SSD) of the

MSFE, we seek to construct an approximation consisting of a function which depends

only on moments of the explanatory and dependent variables, and on the variable n. In

this way, given the necessary moments or their sample counterparts, one can compute

and compare different values of the MSFE for any desired window size n. The OLS

estimator has different functional forms for the two cases n ≥ nb and n < nb. For n ≥ nb,

the OLS estimator can be written as the sum of two terms β̂t,n = Θt,n + Λt,n, where

Θt,n = Q−1
t−nb−1
∑

τ=t−n

XτY1,τ+1, Λt,n = Q−1
t−1∑

τ=t−nb

XτY2,τ+1, Q =

t−1∑

τ=t−n

X2
τ .

The above OLS estimator β̂t,n is then used to construct the forecast of Yt+1, denoted

Ŷt+1,n, given by Ŷt+1,n = β̂t,nXt = (Θt,n + Λt,n)Xt. Using as cost function the squared



194

loss function, the criterion which provides a measure of forecast accuracy is the MSFE

given by

MSFEn = E[(Yt+1 − Ŷt+1,n)2] = E[Y 2
t+1] − 2E[Yt+1Ŷt+1,n] +E[Ŷ 2

t+1,n]. (7.2.2)

In this chapter we assume, for the sequence of regressors {Xτ}, Xs and Xt to be inde-

pendent and identically distributed for s 6= t. By independence, we can write

MSFEn =E[Y 2
t+1] − 2E[Yt+1Xt](E[Θt,n] +E[Λt,n])

+E[X2
t ](E[Θ2

t,n] + 2E[Θt,nΛt,n] +E[Λ2
t,n]).

The MSFE consists of the expected value of functions of statistics which depend on the

parameter n. In the sections to follow, we apply Taylor algorithms developed in Chapter

4 to approximate the MSFE in order to find estimates for the optimal observation window

size n. Θt,n and Λt,n can be written as functions of three statistics S1,n, S2,n, and S3,n

as follows

Θt,n =
S1,n

S2,n
, Λt,n =

S3,n

S2,n
,

where

S1,n =
1

n

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ , S2,n =
1

n

t−1∑

τ=t−n

X2
τ , S3,n =

1

n

t−1∑

τ=t−nb

Y2,τ+1Xτ . (7.2.3)

The objective is to apply the techniques of Chapter 4 to find approximations of E[Θt,n],

E[Θ2
t,n], E[Λt,n], E[Λ2

t,n], and E[Θt,nΛt,n]. Such approximations are conducted by means

of Taylor series expansions of Θt,n and Θ2
t,n with respect to the statistics S1,n and S2,n

about some points ω1,n and ω2; by means of Taylor series expansions of Λt,n and Λ2
t,n

with respect to the statistics S3,n and S2,n about some points ω3,n and ω2; and by

means of Taylor series expansions of Θt,nΛt,n with respect to the statistics S1,n, S2,n,

and S3,n about some points ω1,n, ω2, and ω3,n. Once these Taylor approximations are

obtained, we can approximate the expectations E[Θt,n], E[Θ2
t,n], E[Λt,n], E[Λ2

t,n], and

E[Θt,nΛt,n]. From the theory developed in Chapter 4, we learned that approximating
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the expectation of a function of random variables by means of Taylor series requires one,

in many instances, to approximate the expectation by a truncated expectation. The

need for truncated expectations arises from the fact that the Taylor approximation is

valid only in the region of convergence of the Taylor series. In the case of Θt,n and Θ2
t,n,

the approximations will depend on truncated central moments of S1,n and S2,n; in the

case of Λt,n and Λ2
t,n, the approximations will depend on truncated central moments of

S3,n and S2,n; and in the case of Θt,nΛt,n, the approximations will depend on truncated

central moments of S1,n, S3,n, and S2,n. Let A be the region of convergence for the

Taylor series of Θt,n with respect to the statistics S1,n and S2,n, let B be the region of

convergence for the Taylor series of Λt,n with respect to the statistics S3,n and S2,n, and

let C be the region of convergence for the Taylor series of Θt,nΛt,n with respect to the

statistics S1,n, S3,n, and S2,n. Appendix C.1.1 provides details on the nature of the region

of convergence for the Taylor expansion. We write the expectation of the components

Θt,n,Λt,n,Θ
2
t,n,Λ

2
t,n,Θt,nΛt,n of the MSFE as follows:

E[Θt,n] = Ē[Θt,n, A] + Ē[Θt,n, A
c], E[Θ2

t,n] = Ē[Θ2
t,n, A] + Ē[Θ2

t,n, A
c],

E[Λt,n] = Ē[Λt,n, B] + Ē[Λt,n, B
c], E[Λ2

t,n] = Ē[Λ2
t,n, B] + Ē[Λ2

t,n, B
c],

E[Θt,nΛt,n] = Ē[Θt,nΛt,n, C] + Ē[Θt,nΛt,n, C
c],

where Ac is the complement of A, Bc is the complement of B, and Cc is the complement of

C. Taylor series can be used in A to approximate Θt,n and Θ2
t,n, and similarly Taylor series

can be used in B to approximate Λt,n and Λ2
t,n. To obtain further analytic results, we

assume P (X ∈ A) ≈ 1, P (X ∈ B) ≈ 1, and P (X ∈ C) ≈ 1 so that E[Θt,n] ≈ Ē[Θt,n, A],

E[Θ2
t,n] ≈ Ē[Θ2

t,n, A], E[Λt,n] ≈ Ē[Λt,n, B], E[Λ2
t,n] ≈ Ē[Λ2

t,n, B], and E[Θt,nΛt,n] ≈
Ē[Θt,nΛt,n, C]. We define the points about which to calculate the Taylor series as follows:

ω1,n ≡ E[S1,n] = (1 − nb

n
)E[Y1,t−nb

Xt−nb−1],

ω2 ≡ E[S2,n] = E[X2
t−1],

ω3,n ≡ E[S3,n] =
nb

n
E[Y2,tXt−1],
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where the equalities follow from the i.i.d. assumption. The fourth order Taylor polyno-

mials of Θt,n and Λt,n about the points ω1,n and ω2 are as follows:

Q(Θt,n, 4) =
ω1,n

ω2
+

1

ω2
(S1,n − ω1,n) − ω1,n

ω2
2

(S2,n − ω2) −
1

ω2
2

(S1,n − ω1,n)(S2,n − ω2)

+
ω1,n

ω3
2

(S2,n − ω2)
2 +

1

ω3
2

(S1,n − ω1,n)(S2,n − ω2)
2 − ω1,n

ω4
2

(S2,n − ω2)
3

+
ω1,n

ω5
2

(S2,n − ω2)
4 − 1

ω4
2

(S1,n − ω1,n)(S2,n − ω2)
3,

Q(Λt,n, 4) =
ω3,n

ω2
+

1

ω2
(S3,n − ω3,n) − ω3,n

ω2
2

(S2,n − ω2) −
1

ω2
2

(S3,n − ω3,n)(S2,n − ω2)

+
ω3,n

ω3
2

(S2,n − ω2)
2 +

1

ω3
2

(S3,n − ω3,n)(S2,n − ω2)
2 − ω3,n

ω4
2

(S2,n − ω2)
3

+
ω3,n

ω5
2

(S2,n − ω2)
4 − 1

ω4
2

(S3,n − ω3,n)(S2,n − ω2)
3.

The fourth order Taylor polynomials of Θ2
t,n and Λ2

t,n about the points ω1,n and ω2 are

as follows:

Q(Θ2
t,n, 4) =

ω2
1,n

ω2
2

+ 2
ω1,n

ω2
2

(S1,n − ω1,n) − 2
ω2

1,n

ω3
2

(S2,n − ω2) +
1

ω2
2

(S1,n − ω1,n)2

− 4
ω1,n

ω3
2

(S1,n − ω1,n)(S2,n − ω2) + 3
ω2

1,n

ω4
2

(S2,n − ω2)
2

− 2
1

ω3
2

(S1,n − ω1,n)2(S2,n − ω2) + 6
ω1,n

ω4
2

(S1,n − ω1,n)(S2,n − ω2)
2

− 4
ω2

1,n

ω5
2

(S2,n − ω2)
3 +

3

ω4
2

(S1,n − ω1,n)2(S2,n − ω2)
2

− 8
ω1,n

ω5
2

(S1,n − ω1,n)(S2,n − ω2)
3 + 5

ω2
1,n

ω6
2

(S2,n − ω2)
4,

Q(Λ2
t,n, 4) =

ω2
3,n

ω2
2

+ 2
ω3,n

ω2
2

(S3,n − ω3,n) − 2
ω2

3,n

ω3
2

(S2,n − ω2) +
1

ω2
2

(S3,n − ω3,n)2

− 4
ω3,n

ω3
2

(S3,n − ω3,n)(S2,n − ω2) + 3
ω2

3,n

ω4
2

(S2,n − ω2)
2

− 2
1

ω3
2

(S3,n − ω3,n)2(S2,n − ω2) + 6
ω3,n

ω4
2

(S3,n − ω3,n)(S2,n − ω2)
2

− 4
ω2

3,n

ω5
2

(S2,n − ω2)
3 +

3

ω4
2

(S3,n − ω3,n)2(S2,n − ω2)
2

− 8
ω3,n

ω5
2

(S3,n − ω3,n)(S2,n − ω2)
3 + 5

ω2
3,n

ω6
2

(S2,n − ω2)
4.
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The fourth order Taylor polynomial of Θt,nΛt,n about the points ω1,n, ω2 and ω3,n is as

follows:

Q(Θt,nΛt,n, 4) =
ω1,nω3,n

ω2
2

+
ω3,n

ω2
2

(S1,n − ω1,n) − 2
ω1,nω3,n

ω3
2

(S2,n − ω2)

+
ω1,n

ω2
2

(S3,n − ω3,n) +
1

ω2
2

(S1,n − ω1,n)(S3,n − ω3,n)

− 2
ω3,n

ω3
2

(S1,n − ω1,n)(S2,n − ω2) − 2
ω1,n

ω3
2

(S2,n − ω2)(S3,n − ω3,n)

+ 3
ω1,nω3,n

ω4
2

(S2,n − ω2)
2 − 4

ω1,nω3,n

ω5
2

(S2,n − ω2)
3

− 2

ω3
2

(S1,n − ω1,n)(S2,n − ω2)(S3,n − ω3,n)

+ 3
ω3,n

ω4
2

(S1,n − ω1,n)(S2,n − ω2)
2 + 3

ω1,n

ω4
2

(S3,n − ω3,n)(S2,n − ω2)
2

+ 5
ω1,nω3,n

ω6
2

(S2,n − ω2)
4 +

3

ω4
2

(S1,n − ω1,n)(S3,n − ω3,n)(S2,n − ω2)
2

− 4
ω3,n

ω5
2

(S1,n − ω1,n)(S2,n − ω2)
3 − 4

ω1,n

ω5
2

(S3,n − ω3,n)(S2,n − ω2)
3.

We take expectations of the fourth order polynomials to obtain the approximations

E[Θt,n] ≈ Ē[Θt,n, A] ≈ E[Q(Θt,n, 4)],

E[Λt,n] ≈ Ē[Λt,n, B] ≈ E[Q(Λt,n, 4)],

E[Θ2
t,n] ≈ Ē[Θ2

t,n, A] ≈ E[Q(Θ2
t,n, 4)],

E[Λ2
t,n] ≈ Ē[Λ2

t,n, B] ≈ E[Q(Λ2
t,n, 4)],

E[Θt,nΛt,n] ≈ Ē[Θt,nΛt,n, C] ≈ E[Q(Θt,nΛt,n, 4)].

Using these approximations, the MSFE approximation becomes

MSFEn ≈E[Y 2
t+1] − 2E[Yt+1Xt]E[Q(Θt,n, 4)] − 2E[Yt+1Xt]E[Q(Λt,n, 4)]

+E[X2
t ]
(

E[Q(Θ2
t,n, 4)] + 2E[Q(Θt,nΛt,n, 4)] +E[Q(Λ2

t,n, 4)]
)

.

The central moments involved in the expectation of the Taylor polynomials are expanded

to derive the n dependence. We write the central moments involved in the expectation
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of Q(Θt,n, 4), Q(Λt,n, 4), Q(Θ2
t,n, 4), Q(Λ2

t,n, 4), and Q(Θt,nΛt,n, 4):

E[(S1,n − ω1,n)] = 0, E[(S2,n − ω2)] = 0, E[(S3,n − ω3,n)] = 0,

E[(S1,n − ω1,n)(S2,n − ω2)] =
1

n

[

E[Y1,t−nb
X3

t−nb−1] −E[Y1,t−nb
Xt−nb−1X

2
t−nb−2]

]

+
nb

n2

[

E[Y1,t−nb
Xt−nb−1X

2
t−nb−2] −E[Y1,t−nb

X3
t−nb−1]

]

,

E[(S1,n − ω1,n)(S3,n − ω3,n)] = 0,

E[(S2,n − ω2)(S3,n − ω3,n)] =
nb

n2

[

E[Y2,tX
3
t−1] −E[Y2,tXt−1X

2
t−2]

]

,

E[(S1,n − ω1,n)2] =
1

n

[

E[Y 2
1,t−nb

X2
t−nb−1] −E[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2]
]

+
nb

n2

[

E[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2] −E[Y 2

1,t−nb
X2

t−nb−1]
]

,

E[(S3,n − ω3,n)2] =
nb

n2

[

E[Y 2
2,tX

2
t−1] −E[Y2,tXt−1Y2,t−1Xt−2]

]

,

E[(S1,n − ω1,n)(S2,n − ω2)
2] =

1

n2

[

E[Y1,t−nb
X5

t−nb−1] −E[Y1,t−nb
Xt−nb−1]E[X4

t−1]

− 2E[Y1,t−nb
X3

t−nb−1]E[X2
t−1] + 2E[Y1,t−nb

Xt−nb−1]E
2[X2

t−1]
]

+
nb

n3

[

−E[Y1,t−nb
X5

t−nb−1] +E[Y1,t−nb
Xt−nb−1]E[X4

t−1]

+ 2E[Y1,t−nb
X3

t−nb−1]E[X2
t−1] − 2E[Y1,t−nb

Xt−nb−1]E
2[X2

t−1]
]

,

E[(S3,n − ω3,n)(S2,n − ω2)
2] =

nb

n3

[

E[Y2,tX
5
t−1] −E[Y2,tXt−1]E[X4

t−2]

− 2E[Y2,tX
3
t−1]E[X2

t−2] + 2E[Y2,tXt−1]E
2[Xt−2]

]

,

E[(S1,n − ω1,n)2(S2,n − ω2)] =
1

n2

[

E[Y 2
1,t−nb

X4
t−nb−1] −E[Y 2

1,t−nb
X2

t−nb−1]E[X2
t−1]

− 2E[Y1,t−nb
X3

t−nb−1]E[Y1,t−nb−1Xt−nb−2]

+ 2E2[Y1,t−nb
Xt−nb−1]E[X2

t−1]
]

+
nb

n3

[

−E[Y 2
1,t−nb

X4
t−n+b−1] +E[Y 2

1,t−nb
X2

t−nb−1]E[X2
t−1]

+ 2E[Y1,t−nb
X3

t−nb−1]E[Y1,t−nb−1Xt−nb−2]

− 2E2[Y1,t−nb
Xt−nb−1]E[X2

t−1]
]

,

E[(S3,n − ω3,n)2(S2,n − ω2)] =
nb

n3

[

E[Y 2
2,tX

4
t−1] −E[Y 2

2,tX
2
t−1]E[X2

t−2]

− 2E[Y2,tX
3
t−1]E[Y2,t−1Xt−2] + 2E2[Y2,tXt−1]E[X2

t−2]
]

,

E[(S1,n − ω1,n)(S2,n − ω2)(S3,n − ω3,n)] = 0,
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E[(S1,n − ω1,n)(S2,n − ω2)
3] =

3

n2

[

E[Y1,t−nb
X3

t−nb−1X
4
t−nb−2]

−E[Y1,t−nb
Xt−nb−1X

4
t−nb−2X

2
t−nb−3] − ω2E[Y1,t−nb

X3
t−nb−1X

2
t−nb−2]

+ ω2E[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3]

]

+
1

n3

[

E[Y1,t−nb
X7

t−nb−1] −E[Y1,t−nb
Xt−nb−1X

6
t−nb−2]

− 3E[Y1,t−nb
X5

t−nb−1X
2
t−nb−2] − 3(nb + 1)E[Y1,t−nb

X3
t−nb−1X

4
t−nb−2]

+ (3nb + 6)ω2E[Y1,t−nb
Xt−nb−1X

4
t−nb−2]

+ (3nb + 6)ω2E[Y1,t−nb
X3

t−nb−1X
2
t−nb−2]

− 3(nb + 2)ω2E[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3]

]

+
nb

n4

[

−E[Y1,t−nb
X7

t−nb−1] +E[Y1,t−nb
Xt−nb−1X

6
t−nb−2]

+ 3E[Y1,t−nb
X5

t−nb−1X
2
t−nb−2] + 3E[Y1,t−nb

X3
t−nb−1X

4
t−nb−2]

− 6E[Y1,t−nb
Xt−nb−1X

4
t−nb−2X

2
t−nb−3]

− 6E[Y1,t−nb
X3

t−nb−1X
2
t−nb−2X

2
t−nb−3]

+ 6E[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3X

2
t−nb−4]

]

,

E[(S3,n − ω3,n)(S2,n − ω2)
3] = 3

nb

n3

[

−E[Y2,tXt−1X
4
t−nb−1X

2
t−nb−2]

+E[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2X

2
t−nb−3] +E[Y2,tX

3
t−1X

4
t−nb−1]

−E[Y2,tX
3
t−1X

2
t−nb−1X

2
t−nb−2]

]

+
nb

n4

[

−E[Y2,tXt−1X
6
t−2] + 6E[Y2,tXt−1X

4
t−2X

2
t−nb−1]

− 6E[Y2,tXt−1X
2
t−2X

2
t−3X

2
t−nb−1] +E[Y2,tX

7
t−1] − 3E[Y2,tX

5
t−1X

2
t−2]

− 3E[Y2,tX
3
t−1X

4
t−2] + 6E[Y2,tX

3
t−1X

2
t−2X

2
t−nb−1]

]

,

E[(S1,n − ω1,n)2(S2,n − ω2)
2] =

1

n2

[

E[Y 2
1,t−nb

X2
t−nb−1X

4
t−nb−2]

−E[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2X

2
t−nb−3]

−E[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

4
t−nb−3]

+ 2E[Y1,t−nb
X3

t−nb−1Y1,t−nb−1X
3
t−nb−2]

− 4E[Y1,t−nb
Xt−nb−1Y1,t−nb−1X

3
t−nb−2X

2
t−nb−3]

+ 3E[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−nb−4]

]

+
1

n3

[

E[Y 2
1,t−nb

X6
t−nb−1] − (nb + 1)E[Y 2

1,t−nb
X2

t−nb−1X
4
t−nb−2]
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− 2E[Y 2
1,t−nb

X4
t−nb−1X

2
t−nb−2]

+ (nb + 2)E[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2X

2
t−nb−3]

− 2E[Y1,t−nb
X5

t−nb−1Y1,t−nb−1Xt−nb−2]

+ (nb + 2)E[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

4
t−nb−3]

− 2(2nb + 1)E[Y1,t−nb
X3

t−nb−1Y1,t−nb−1X
3
t−nb−2]

+ 8(nb + 1)E[Y1,t−nb
Xt−nb−1Y1,t−nb−1X

3
t−nb−2X

2
t−nb−3]

− (5nb + 6)E[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−nb−4]

]

+
nb

n4

[

−E[Y 2
1,t−nb

X6
t−nb−1] +E[Y 2

1,t−nb
X2

t−nb−1X
4
t−nb−2]

+ 2E[Y 2
1,t−nb

X4
t−nb−1X

2
t−nb−2] − 2E[Y 2

1,t−nb
X2

t−nb−1X
2
t−nb−2X

2
t−nb−3]

+ 2E[Y1,t−nb
X5

t−nb−1Y1,t−nb−1Xt−nb−2]

− 2E[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

4
t−nb−3]

+ 2(nb + 1)E[Y1,t−nb
X3

t−nb−1Y1,t−nb−1X
3
t−nb−2]

− 4(nb + 2)E[Y1,t−nb
Xt−nb−1Y1,t−nb−1X

3
t−nb−2X

2
t−nb−3]

+ 2(nb + 3)E[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−nb−4]

]

,

E[(S3,n − ω3,n)2(S2,n − ω2)
2] =

nb

n3

[

E[Y 2
2,tX

2
t−1X

4
t−nb−1] −E[Y 2

2,tX
2
t−1X

2
t−2X

2
t−3]

−E[Y2,tXt−1Y2,t−1Xt−2X
4
t−nb−1]

+E[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1X

2
t−nb−2]

]

+
nb

n4

[

−E[Y 2
2,tX

2
t−1X

4
t−2] + 2E[Y 2

2,tX
2
t−1X

2
t−nb−1X

2
t−nb−2]

+ 2E[Y2,tXt−1Y2,t−1Xt−2X
4
t−nb−1]

+ 2(nb − 3)E[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1X

2
t−nb−2] +E[Y 2

2,tX
6
t−1]

− 2E[Y 2
2,tX

4
t−1X

2
t−2] − 2E[Y2,tXt−1Y2,t−1X

5
t−2]

+ 2(nb − 1)E[Y2,tX
3
t−1Y2,t−1X

3
t−2]

− 4(nb − 2)E[Y2,tXt−1Y2,t−1X
3
t−2X

2
t−3]

]

,

E[(S1,n − ω1,n)(S2,n − ω2)
2(S3,n − ω3,n)] = 2

nb

n3

[

ω2
2E[Y2,tXt−1]E[Y1,t−nb

Xt−nb−1]

+E[Y1,t−nb
X3

t−nb−1]E[Y2,tX
3
t−1] − ω2E[Y2,tXt−1]E[Y1,t−nb

X3
t−nb−1]

− ω2E[Y2,tX
3
t−1]E[Y1,t−nb

Xt−nb−1]
]
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+ 2
n2

b

n4

[

ω2E[Y2,tXt−1]E[Y1,t−nb
X3

t−nb−1]

− ω2
2E[Y2,tXt−1]E[Y1,t−nb

Xt−nb−1]

+ ω2E[Y2,tX
3
t−1]E[Y1,t−nb

Xt−nb−1] −E[Y2,tX
3
t−1]E[Y1,t−nb

X3
t−nb−1]

]

.

Substituting the above central moments into the expressions for the expectation of

the fourth order Taylor polynomials Q(Θt,n, 4), Q(Λt,n, 4), Q(Θ2
t,n, 4), and Q(Λ2

t,n, 4),

and substituting the expressions for these expectations in the expression for the MSFE

approximation, we obtain the following:

MSFEn ≈ C +
A

n
+
B

n2
+
D

n3
+
E

n4
+
F

n5
≡MSFEn, (7.2.4)

where

A =
1

ω3
2

[

− 2(E[X4
t−1] − nbω

2
2)E[Yt+1Xt]E[Y1,t−nb

Xt−nb−1]

+ 2ω2E[Yt+1Xt]E[Y1,t−nb
X3

t−nb−1] − 2nbω
2
2E[Yt+1Xt]E[Y2,tXt−1]

+ ω2
2E[Y 2

1,t−nb
X2

t−nb−1] − 2nbω
2
2E

2[Y1,t−nb
Xt−nb−1] + 3E[X4

t−1]E
2[Y1,t−nb

Xt−nb−1]

− 4ω2E[Y1,t−nb
Xt−nb−1]E[Y1,t−nb

X3
t−nb−1] + 2nbω

2
2E[Y1,t−nb

Xt−nb−1]E[Y2,tXt−1]
]

,

B =
1

ω5
2

[

(15E2[X4
t−1] − 4ω2E[X6

t−1] − 3ω2
2E[X4

t−1](1 + 2nb)

+ nbω
4
2(nb − 1))E2[Y1,t−nb

X,t−nb−1]

+ (4ω3
2(2nb + 1) − 24ω2E[X4

t−1])E[Y1,t−nb
X3

t−nb−1]E[Y1,t−nb
Xt−nb−1]

+ 6ω2
2E

2[Y1,t−nb
X3

t−nb−1] + (3ω2
2E[X4

t−1] − ω4
2(nb + 1))E[Y 2

1,t−nb
X2

t−nb−1]

+ 6ω2
2E[Y1,t−nb

X5
t−nb−1]E[Y1,t−nb

Xt−nb−1] − 2ω3
2E[Y 2

1,t−nb
X4

t−nb−1]

− 4nbω
3
2E[Y2,tX

3
t−1]E[Y1,t−nb

Xt−nb−1] + nbω
4
2E[Y 2

2,tX
2
t−1]

+ (2ω2E[X6
t−1] − 6E2[X4

t−1] + 2ω2
2E[X4

t−1] + 8nbω
2
2E[X4

t−1]

+ 2nbω
4
2(1 − nb))E[Y1,t−nb

Xt−nb−1]E[Y2,tXt−1]

+ (6ω2E[X4
t−1] − 2ω3

2(2nb + 1))E[Y1,t−nb
X3

t−nb−1]E[Y2,tXt−1]

− 2ω2
2E[Y1,t−nb

X5
t−nb−1]E[Y2,tXt−1]

+ 2nbω
3
2E[Y2,tX

3
t−1]E[Y2,tXt−1]
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+ (−2nbω
2
2E[X4

t−1] − nbω
4
2(1 − nb))E

2[Y2,tXt−1]
]

,

C =
1

ω2

[

E[Y 2
t+1]ω2 − 2E[Yt+1Xt]E[Y1,t−nb

Xt−nb−1] +E2[Y1,t−nb
Xt−nb−1]

]

,

D =
1

ω5
2

[

(5E[X8
t−1] − 15E2[X4

t−1](2nb + 1) + ω2E[X6
t−1](8nb − 12)

+ 3ω2
2E[X4

t−1](n
2
b + nb + 6) + nbω

4
2(nb − 1))E2[Y1,t−nb

Xt−nb−1]

− 8ω2E[Y1,t−nb
Xt−nb−1]E[Y1,t−nb

X7
t−nb−1]

+ (24ω2E[X4
t−1](2nb + 1) − 4ω3

2(n
2
b + nb + 6))E[Y1,t−nb

Xt−nb−1]E[Y1,t−nb
X3

t−nb−1]

− 6ω2
2(2nb + 1)E2[Y1,t−nb

X3
t−nb−1] + 12nbω

2
2E[Y1,t−nb

X3
t−nb−1]E[Y2,tX

3
t−1]

+ 3ω2
2E[Y 2

1,t−nb
X6

t−nb−1] + (3ω2
2E[X4

t−1](1 − nb) + ω4
2(nb + 6))E[Y 2

1,t−nb
X2

t−nb−1]

+ nbω
2
2(3E[X4

t−1] − ω2
2)E[Y 2

2,tX
2
t−1]

+ ω2
2(18 − 12nb)E[Y1,t−nb

Xt−nb−1]E[Y1,t−nb
X5

t−nb−1]

+ 6nbω
2
2E[Y1,t−nb

Xt−nb−1]E[Y2,tX
5
t−1] + 2ω3

2(nb − 3)E[Y 2
1,t−nb

X4
t−nb−1]

− 2nbω
3
2E[Y 2

2,tX
4
t−1] + 4nbω2(nbω

2
2 − 6E[X4

t−1])E[Y2,tX
3
t−1]E[Y1,t−nb

Xt−nb−1]

+ (6E2[X4
t−1](6nb + 1) − 2E[X8

t−1] + ω2E[X6
t−1](6 − 10nb)

− 2ω2
2E[X4

t−1](3n
2
b + nb + 6) + 2nbω

4
2(1 − nb))E[Y1,t−nb

Xt−nb−1]E[Y2,tXt−1]

+ 2ω2E[Y1,t−nb
X7

t−nb−1]E[Y2,tXt−1]

+ (−6ω2E[X4
t−1](1 + 5nb) + 2ω3

2(2n
2
b + nb + 6))E[Y1,t−nb

X3
t−nb−1]E[Y2,tXt−1]

+ (6nbω2E[X4
t−1] + 2nbω

3
2(1 − 2nb))E[Y2,tX

3
t−1]E[Y2,tXt−1]

+ ω2
2(8nb − 6)E[Y1,t−nb

X5
t−nb−1]E[Y2,tXt−1] − 2nbω

2
2E[Y2,tX

5
t−1]E[Y2,tXt−1]

+ (2nbω2E[X6
t−1] − 6nbE

2[X4
t−1] + nbω

2
2E[X4

t−1](3nb − 1)

+ nbω
4
2(nb − 1))E2[Y2,tXt−1]

]

,

E =
1

ω5
2

[

(15nbE
2[X4

t−1](nb + 2) − 10nbE[X8
t−1] + 4nbω2E[X6

t−1](6 − nb)

− 30nbω
2
2E[X4

t−1] + nbω
4
2(nb − 18))E2[Y1,t−nb

Xt−nb−1]

+ 16nbω2E[Y1,t−nb
Xt−nb−1]E[Y1,t−nb

X7
t−nb−1]

− 8nbω2E[Y1,t−nb
Xt−nb−1]E[Y2,tX

7
t−1]

+ (72nbω
3
2 − 24nbω2E[X4

t−1](2 + nb))E[Y1,t−nb
Xt−nb−1]E[Y1,t−nb

X3
t−nb−1]

+ (24nbω2E[X4
t−1](nb + 1) − 48nbω

3
2)E[Y1,t−nb

Xt−nb−1]E[Y2,tX
3
t−1]
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+ 6nbω
2
2(nb + 1)E2[Y1,t−nb

X3
t−nb−1] − 12n2

bω
2
2E[Y1,t−nb

X3
t−nb−1]E[Y2,tX

3
t−1]

+ 6nbω
2
2(nb − 1)E2[Y2,tX

3
t−1] − 3nbω

2
2E[Y 2

1,t−nb
X6

t−nb−1] + 3nbω
2
2E[Y 2

2,tX
6
t−1]

+ 3nbω
2
2(E[X4

t−1] − 2ω2
2)E[Y 2

1,t−nb
X2

t−nb−1]

+ 3nbω
2
2(2ω

2
2 −E[X4

t−1])E[Y 2
2,tX

2
t−1] − 6nbω

3
2E[Y 2

2,tX
4
t−1]

+ 6nbω
2
2(nb − 7)E[Y1,t−nb

Xt−nb−1]E[Y1,t−nb
X5

t−nb−1]

+ 6nbω
2
2(4 − nb)E[Y1,t−nb

Xt−nb−1]E[Y2,tX
5
t−1] + 6nbω

3
2E[Y 2

1,t−nb
X4

t−nb−1]

+ (12nbE[X8
t−1] − 6nbE

2[X4
t−1](6 + 5nb) + nbω2E[X6

t−1](8nb − 30)

+ 36nbω
2
2(E[X4

t−1] + ω2
2) − 2n2

bω
4
2)E[Y1,t−nb

Xt−nb−1]E[Y2,tXt−1]

− 10nbω2E[Y1,t−nb
X7

t−nb−1]E[Y2,tXt−1] + 2nbω2E[Y2,tXt−1]E[Y2,tX
7
t−1]

+ (6nbω2E[X4
t−1](4nb + 5) − 60nbω

3
2)E[Y1,t−nb

X3
t−nb−1]E[Y2,tXt−1]

+ (36nbω
3
2 − 6nbω2E[X4

t−1](4nb + 1))E[Y2,tX
3
t−1]E[Y2,tXt−1]

+ 6nbω
2
2(5 − nb)E[Y1,t−nb

X5
t−nb−1]E[Y2,tXt−1]

+ 6nbω
2
2(nb − 2)E[Y2,tX

5
t−1]E[Y2,tXt−1]

+ (nbE
2[X4

t−1](15nb + 6) − 2nbE[X8
t−1] + nbω2E[X6

t−1](6 − 4nb) − 6nbω
2
2E[X4

t−1]

+ nbω
4
2(nb − 18))E2[Y2,tXt−1]

]

,

F =(5n2
bE[X8

t−1] − 15n2
bE

2[X4
t−1] − 12n2

bω2E[X6
t−1] + 12n2

bω
2
2E[X4

t−1]

+ 18n2
bω

4
2)E

2[Y1,t−nb
Xt−nb−1] − 8n2

bω2E[Y1,t−nb
Xt−nb−1]E[Y1,t−nb

X7
t−nb−1]

+ 8n2
bω2E[Y1,t−nb

Xt−nb−1]E[Y2,tX
7
t−1]

+ 24n2
bω2(E[X4

t−1] − 2ω2
2)E[Y1,t−nb

Xt−nb−1]E[Y1,t−nb
X3

t−nb−1]

+ 24n2
bω2(2nbω

2
2 −E[X4

t−1])E[Y1,t−nb
Xt−nb−1]E[Y2,tX

3
t−1]

+ 24n2
bω

2
2E[Y1,t−nb

Xt−nb−1]E[Y1,t−nb
X5

t−nb−1]

− 24n2
bω

2
2E[Y1,t−nb

Xt−nb−1]E[Y2,tX
5
t−1]

+ (30n2
bE

2[X4
t−1] − 10n2

bE[X8
t−1] + 24n2

bω2E[X6
t−1] − 24n2

bω
2
2E[X4

t−1]

− 36n2
bω

4
2)E[Y1,t−nb

Xt−nb−1]E[Y2,tXt−1]

+ 8n2
bω2E[Y1,t−nb

X7
t−nb−1]E[Y2,tXt−1] − 8n2

bω2E[Y2,tX
7
t−1]E[Y2,tXt−1]

+ 24n2
bω2(2ω

2
2 −E[X4

t−1])E[Y1,t−nb
X3

t−nb−1]E[Y2,tXt−1]

+ 24n2
bω2(E[X4

t−1] − 2ω2
2)E[Y2,tX

3
t−1]E[Y2,tXt−1]
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− 24n2
bω

2
2E[Y1,t−nb

X5
t−nb−1]E[Y2,tXt−1] + 24n2

bω
2
2E[Y2,tX

5
t−1]E[Y2,tXt−1]

+ (5n2
bE[X8

t−1] − 15n2
bE

2[X4
t−1] − 12n2

bω2E[X6
t−1] + 12n2

bω
2
2E[X4

t−1]

+ 18n2
bω

4
2)E

2[Y2,tXt−1].

Now we proceed to estimate the MSFE for the case when n < nb.

7.2.2 The MSFE for n < nb

For n < nb, the OLS estimator can be written as follows

β̂t,n = Q−1
t−1∑

τ=t−n

XτY2,τ+1, Q =

t−1∑

τ=t−n

X2
τ .

By independence, we can write

MSFEn =E[Y 2
t+1] − 2E[Yt+1Xt]E[β̂t,n] +E[X2

t ]E[β̂2
t,n].

β̂t,n can be written as a function of the two statistics S2,n and S4,n as follows:

β̂t,n =
S4,n

S2,n
,

where

S2,n =
1

n

t−1∑

τ=t−n

X2
τ , S4,n =

1

n

t−1∑

τ=t−n

Y2,τ+1Xτ . (7.2.5)

As before, we write the expectation of the OLS estimator and its square as follows:

E[β̂t,n] = Ē[β̂t,n, A] + Ē[β̂t,n, A
c], E[β̂2

t,n] = Ē[β̂2
t,n, A] + Ē[β̂2

t,n, A
c],

where Ac is the complement of A. Taylor series can be used in A to approximate β̂t,n

and β̂2
t,n. To obtain further analytic results, we assume P (X ∈ A) ≈ 1, so that E[β̂t,n] ≈

Ē[β̂t,n, A] and E[β̂2
t,n] ≈ Ē[β̂2

t,n, A]. The Taylor series of β̂t,n and β̂2
t,n are calculated about

the points ω2 and ω4 for the statistics S2,n, S4,n. We define the points about which to
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calculate the Taylor series as follows:

ω2 ≡ E[S2,n] = E[X2
t−1], ω4 ≡ E[S4,n] = E[Y2,tXt−1],

where the equalities follow from the i.i.d. assumption. The fourth order Taylor polyno-

mials of β̂t,n and β̂2
t,n about the points ω2 and ω4 are as follows:

Q(β̂t,n, 4) =
ω4

ω2
+

1

ω2
(S4,n − ω4) −

ω4

ω2
2

(S2,n − ω2) −
1

ω2
2

(S4,n − ω4)(S2,n − ω2)

+
ω4

ω3
2

(S2,n − ω2)
2 +

1

ω3
2

(S4,n − ω4)(S2,n − ω2)
2 − ω4,n

ω4
2

(S2,n − ω2)
3

+
ω4

ω5
2

(S2,n − ω2)
4 − 1

ω4
2

(S4,n − ω4)(S2,n − ω2)
3,

Q(β̂2
t,n, 4) =

ω2
4

ω2
2

+ 2
ω4

ω2
2

(S4,n − ω4) − 2
ω2

4

ω3
2

(S2,n − ω2) +
1

ω2
2

(S4,n − ω4)
2

− 4
ω4

ω3
2

(S4,n − ω4)(S2,n − ω2) + 3
ω2

4

ω4
2

(S2,n − ω2)
2

− 2
1

ω3
2

(S4,n − ω4)
2(S2,n − ω2) + 6

ω4

ω4
2

(S4,n − ω4)(S2,n − ω2)
2

− 4
ω2

4

ω5
2

(S2,n − ω2)
3 +

3

ω4
2

(S4,n − ω4)
2(S2,n − ω2)

2

− 8
ω4

ω5
2

(S4,n − ω4)(S2,n − ω2)
3 + 5

ω2
4

ω6
2

(S2,n − ω2)
4.

We take expectations of the fourth order polynomials to obtain the approximations

E[β̂t,n] ≈ Ē[β̂t,n, A] ≈ E[Q(β̂t,n, 4)],

E[β̂2
t,n] ≈ Ē[β̂2

t,n, A] ≈ E[Q(β̂2
t,n, 4)].

Using these approximations, the MSFE approximation for n < nb becomes

MSFEn ≈E[Y 2
t+1] − 2E[Yt+1Xt]E[Q(β̂t,n, 4)] +E[X2

t ]E[Q(β̂2
t,n, 4)].

The central moments involved in the expectation of the Taylor polynomials are expanded

to derive the n dependence. We write the central moments involved in the expectation
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of Q(β̂t,n, 4) and Q(β̂2
t,n, 4):

E[(S2,n − ω2)] = 0, E[(S4,n − ω4)] = 0,

E[(S2,n − ω2)(S4,n − ω4)] =
1

n

[

E[Y2,tX
3
t−1] −E[Y2,tXt−1X

2
t−2]

]

,

E[(S4,n − ω4)
2] =

1

n

[

E[Y 2
2,tX

2
t−1] −E[Y2,tXt−1Y2,t−1Xt−2]

]

,

E[(S4,n − ω4)(S2,n − ω2)
2] =

1

n2

[

E[Y2,tX
5
t−1] −E[Y2,tXt−1]E[X4

t−2]

− 2E[Y2,tX
3
t−1]E[X2

t−2] + 2E[Y2,tXt−1]E
2[Xt−2]

]

,

E[(S4,n − ω4)
2(S2,n − ω2)] =

1

n2

[

E[Y 2
2,tX

4
t−1] −E[Y 2

2,tX
2
t−1]E[X2

t−2]

− 2E[Y2,tX
3
t−1]E[Y2,t−1Xt−2] + 2E2[Y2,tXt−1]E[X2

t−2]
]

,

E[(S4,n − ω4)(S2,n − ω2)
3] = 3

1

n2

[

−E[Y2,tXt−1X
4
t−nb−1X

2
t−nb−2]

+E[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2X

2
t−nb−3] +E[Y2,tX

3
t−1X

4
t−nb−1]

−E[Y2,tX
3
t−1X

2
t−nb−1X

2
t−nb−2]

]

+
1

n3

[

−E[Y2,tXt−1X
6
t−2] + 6E[Y2,tXt−1X

4
t−2X

2
t−nb−1]

− 6E[Y2,tXt−1X
2
t−2X

2
t−3X

2
t−nb−1] +E[Y2,tX

7
t−1] − 3E[Y2,tX

5
t−1X

2
t−2]

− 3E[Y2,tX
3
t−1X

4
t−2] + 6E[Y2,tX

3
t−1X

2
t−2X

2
t−nb−1]

]

,

E[(S4,n − ω4)
2(S2,n − ω2)

2] =
1

n2

[

E[Y 2
2,tX

2
t−1X

4
t−nb−1] −E[Y 2

2,tX
2
t−1X

2
t−2X

2
t−3]

−E[Y2,tXt−1Y2,t−1Xt−2X
4
t−nb−1]

+E[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1X

2
t−nb−2]

]

+
1

n3

[

−E[Y 2
2,tX

2
t−1X

4
t−2] + 2E[Y 2

2,tX
2
t−1X

2
t−nb−1X

2
t−nb−2]

+ 2E[Y2,tXt−1Y2,t−1Xt−2X
4
t−nb−1]

+ 2(nb − 3)E[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1X

2
t−nb−2] +E[Y 2

2,tX
6
t−1]

− 2E[Y 2
2,tX

4
t−1X

2
t−2] − 2E[Y2,tXt−1Y2,t−1X

5
t−2]

+ 2(nb − 1)E[Y2,tX
3
t−1Y2,t−1X

3
t−2]

− 4(nb − 2)E[Y2,tXt−1Y2,t−1X
3
t−2X

2
t−3]

]

.

Substituting the above central moments into the expressions for the expectation of the

fourth order Taylor polynomialsQ(β̂t,n, 4) andQ(β̂2
t,n, 4), and substituting the expressions
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for these expectations in the expression for the MSFE approximation, we obtain the

following:

MSFEn ≈ C +
A

n
+
B

n2
+
D

n3
≡MSFEn, (7.2.6)

where

A =
1

ω3
2

[

ω2
2E[Y 2

2,tX
2
t−1] − 2ω2E[Y2,tXt−1]E[Y2,tX

3
t−1] +E[X4

t−1]E
2[Y2,tXt−1]

]

,

B =
1

ω5
2

[

6ω2
2E

2[Y2,tX
3
t−1] + (3ω2

2E[X4
t−1] − ω4

2)E[Y 2
2,tX

2
t−1]

− 2ω3
2E[Y 2

2,tX
4
t−1] + 4ω2

2E[Y2,tX
5
t−1]E[Y2,tXt−1]

+ 2ω2(ω
2
2 − 9E[X4

t−1])E[Y2,tX
3
t−1]E[Y2,tXt−1]

+ (9E2[X4
t−1] − 2ω2E[X6

t−1] − ω2
2E[X4

t−1])E
2[Y2,tXt−1]

]

,

C =E[Y 2
2,t] −

1

ω2
E2[Y2,tXt−1],

D = − 6ω2
2E

2[Y2,tX
3
t−1] + 3ω2

2E[Y 2
2,tX

6
t−1] + 3ω2

2(2ω
2
2 −E[X4

t−1])E[Y 2
2,tX

2
t−1]

− 6ω3
2E[Y 2

2,tX
4
t−1] − 6ω2E[Y2,tX

7
t−1]E[Y2,tXt−1]

+ 2ω2(9E[X4
t−1] − 6ω2

2)E[Y2,tX
3
t−1]E[Y2,tXt−1] + 12ω2

2E[Y2,tX
5
t−1]E[Y2,tXt−1]

+ (3E[X8
t−1] − 9E2[X4

t−1] − 6ω2E[X6
t−1] + 6ω2

2E[X4
t−1])E

2[Y2,tXt−1].

7.3 Monte Carlo evidence

7.3.1 The experiments

In this section, we assess the approximation of the MSFE given by the two equations

(7.2.4) and (7.2.6) by means of Monte Carlo simulations. This is carried out in two sets

of experiments. For the two sets of tests, we analyze robustness of the accuracy of the

algorithm to the variance of the processes involved. For the exposition, we adopt a linear

structural break DGP with a shift in the linear parameter and a shift in the variance of
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the innovation process given by the following expression:

Yτ+1 =







θ1Xτ + U1,τ+1, τ ≤ t− nb

θ2Xτ + U2,τ+1, τ > t− nb

, (7.3.1)

with θ1, θ2 ∈ R, V ar(U1,τ ) = σ2
1 , V ar(U2,τ ) = σ2

2, E[Xτ ] = µx, and V ar(Xτ ) = σ2
x. The

forecast model is given by Yt+1 = βXt + Vt+1, the forecast is given by Ŷt+1,n = β̂t,nXt,

where β̂t,n is the OLS estimator, and the forecast error is εt+1,n = Yt+1 − Ŷt+1,n. The

misspecification arises from not modeling the break. We want to compare the MSFE

approximation obtained with the Taylor algorithm to a benchmark MSFE determined

by Monte Carlo simulations. The motivation behind using Monte Carlo simulations to

determine a benchmark MSFE lies in the fact that the MSFE is equal to the expected

value of the conditional mean square forecast error (CMSFE)

MSFE = E[CMSFE], CMSFE = Et[ε
2
t+1,n].

Given a realization of the processes {Xτ}t−1
τ=t−n and {Yτ}t

τ=t−n+1, it is simple to compute

the CMSFE conditional on the given sample. Generating many such samples, M , by

Monte Carlo simulations, we can construct M conditional mean square forecast errors,

{CMSFEi}M
i=1, and approximate the MSFE by the sample mean of the simulations

MSFE ≈ 1

M

M∑

i=1

CMSFEi.

We now describe the details involved in the construction of the benchmark MSFE. For a

given set of values of the parameters P = {µx, σx, σ1, σ2, θ1, θ2, nb}, ten thousand Monte

Carlo simulations are conducted (M = 10000). Each of the M simulations is constructed

as follows. First, we generate the series {xτ}N
τ=1 of length N = 501 as a realization of

the explanatory process {Xτ}t
τ=t−n such that the first element of the series is the first

observation, 1 ↔ t−n, and the last element of the series is the last observation, 501 ↔ t.

Each x is a realization of a normally distributed random variable, X ∼ N(µx, σx), and

the population series is independent and identically distributed, {Xτ}t−1
τ=t−n ∼ IID. We

split the series into two, S1 = {xτ}
tnb
τ=1 and S2 = {xτ}501

τ=tnb
+1, with tnb

= 500 − nb. S1
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includes the values of X which occur prior to the break, and S2 includes the values of

X subsequent to the break. With S1 and S2, we construct another two series. With

S1, we construct {f1,τ}
tnb
τ=1 by means of the relation f1,τ = θ1xτ . With S2, we construct

{f2,τ}501
τ=tnb

+1 by means of the relation f2,τ = θ2xτ . Finally, with the sample series

{xτ}501
τ=1, {f1,τ}

tnb
τ=1 and {f2,τ}501

τ=tnb
+1, at the forecast origin t = N − 1, we construct the

CMSFE for n > nb as follows:

CMSFEn = b2χt,n + vχt,n,

b2χt,n =

[

f2,t − xt

∑N−nb−1
τ=N−n f1,τxτ
∑N−1

τ=N−n x
2
τ

− xt

∑N−1
τ=N−nb

f2,τxτ
∑N−1

τ=N−n x
2
τ

]2

,

vχt,n = σ2
2 + σ2

1x
2
t

∑N−nb−1
τ=N−n x2

τ

(
∑N−1

τ=N−n x
2
τ )

2
+ σ2

2x
2
t

∑N−1
τ=N−nb

x2
τ

(
∑N−1

τ=N−n x
2
τ )

2
,

and for n ≤ nb, the CMSFE is as follows:

CMSFEn = b2χt,n + vχt,n,

b2χt,n =

[

f2,t − xt

∑N−1
τ=N−n f2,τxτ
∑N−1

τ=N−n x
2
τ

]2

,

vχt,n = σ2
2 +

σ2
2x

2
t

∑N−1
τ=N−n x

2
τ

,

where b2χt,n and vχt,n are the conditional squared bias and conditional variance of the

forecast error, respectively. For each simulation, we obtain N − 1 = 500 values of the

CMSFE, one for each value of n starting from n = 1 to n = 500. The case n = 1 refers

to estimation of the OLS carried out with only one observation. For a particular set of

parameters P, we obtain an array of size M ×N − 1 of CMSFEs, {CMSFEi,j}M,N−1
i=1,j=1.

Finally, the benchmark MSFE for a set of parameters P and for an observation window

of size n is given by the following:

MSFEn ≈ 1

M

M∑

i=1

CMSFEi,n. (7.3.2)

As mentioned previously, we conduct two set tests. These two sets of tests use the same

procedure to calculate the benchmark MSFE, but differ in method by which the Taylor



210

approximation, given by (7.2.4) and (7.2.6), is computed. In the first set of experiments,

the goal is to test the Taylor approximation in the best-case scenario possible. The

best-case scenario would be for the forecaster to have access to the population moments

and population real autocovariances involved in the expressions (7.2.4) and (7.2.6). To

simulate this best-case scenario, we use Monte Carlo simulations to approximate the

population moments and population real autocovariances in question with their sample

counterparts. Since the goal is to obtain close representations of population moments,

we use large samples of the processes. Although the legitimacy of this practice must be

questioned, we recall the goal of the first set of tests is to evaluate the mathematical

adequacy of the Taylor algorithm, even if it is done in an unrealistic setting. The second

set of tests will evaluate the Taylor algorithm under more realistic conditions reminiscent

of empirical applications.

For the first set of tests, the Taylor algorithm is constructed by first generating a

realization of the explanatory process {Xτ} ∼ IIN(µx, σx). This realization is given by

the series {xτ}L
τ=1 with L equal to one million. This series is divided into two series

X1 = {xτ}[L/2]
τ=1 and X2 = {xτ}L

τ=[L/2]+1 ([ · ] stands for the integer part of the argument).

Next, we generate a realization of the innovation processes {U1,τ} ∼ IIN(0, σ1) and

{U2,τ} ∼ IIN(0, σ2) given by U1 = {u1,τ}[L/2]
τ=1 and U2 = {u2,τ}L

τ=[L/2]+1, respectively.

Finally, we construct a realization of the dependent process {Yτ} using X1, X2, U1, and

U2. This realization of the dependent variable is given by the two series Y1 = {y1,τ}[L/2]
τ=1

and Y2 = {y2,τ}L
τ=[L/2]+1. Y1 is constructed by means of the relation y1,τ = θ1xτ + u1,τ

for xτ ∈ X1, and Y2 is constructed by means of the relation y2,τ = θ2xτ +u2,τ for xτ ∈ X2.

The population moments in (7.2.4) and (7.2.6) are estimated by generating their sample

counterparts with X1, X2, Y1, and Y2. For example:

E[Y1,t−nb
X3

t−nb−1] ≈
1

[L/2]

[L/2]
∑

τ=1

y1,τx
3
τ ,

E[Y 2
2,tX

2
t−1] ≈

1

[L/2]

L∑

τ=[L/2]+1

y2
2,τx

2
τ .

Therefore, for a given set of the parameters, P = {µx, σx, σ1, σ2, θ1, θ2, nb}, we can gen-

erate the series X1, X2, Y1, Y2, the necessary sample moments, and ultimately evaluate
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(7.2.4) and (7.2.6) for different values of the observation window size n. The resulting

MSFE can be compared to the benchmark MSFE (7.3.2). The sets of parameter values

investigated in the best-case scenario, and the reference to their corresponding MSFE,

plots are given in Table 7.1.

We must clarify one issue with this procedure. By the construction of the series

X1, X2, Y1, and Y2, the structural break seems to occur in the middle of the series at

t = [L/2]. This would seem to make nb = [L/2]. This is not what we want and is not

what is done in the first set of experiments. The series were taken long in each direction

from the break to obtain good approximations of the population moments. We do not

mean to fix nb = [L/2] but rather, the way to think of this artificial procedure is as

follows: person A observed a large amount of data of size L with a structural break

in the middle; person A computes sample moments as described above; person B has

observed only a fraction of the data available to person A with the latest observation at

time t and with the break occurring at time t− nb; person A gives her sample moment

calculations to person B; person B uses those sample moments together with (7.2.4) and

(7.2.6) to calculate the Taylor algorithm of the MSFE. Although artificial, this procedure

serves to explore the robustness of the Taylor algorithm for the MSFE in the best-case

scenario when the best possible sample moments are available.

The second set of experiments also has as the main goal evaluation of the robustness

of the Taylor algorithm, but under more practical considerations than the first set of

tests. For these tests, we take the role of person B in the above description, without

any input from person A. That is, person B must estimate sample moments with the

available data as one would do in any real empirical application. The procedure is the

same as previously described except for the definitions of the series. In the second set

of tests, we let X1 = {xτ}
tnb
τ=1, X2 = {xτ}L

τ=tnb
+1, U1 = {u1,τ}

tnb
τ=1, U2 = {u2,τ}L

τ=tnb
+1,

Y1 = {y1,τ}
tnb
τ=1, and Y2 = {y2,τ}L

τ=tnb
+1, so that nb = L − tnb

. With these definitions,

the accuracy of the sample moments will depend on the size of nb and L. This suggests

that the accuracy of the Taylor algorithm will depend on the amount of post-break data

available.



212

7.3.2 Discussion

Most of the issues we discuss regarding the Monte Carlo simulations carried out are sum-

marized in Tables 7.1 and 7.2. As mentioned, two sets of experiments were performed.

The first set of tests involved large data series to obtain accurate sample moments nec-

essary for the calculation of the MSFE with the Taylor algorithm given by (7.2.4) and

(7.2.6). For the case with µx = 10, θ1 = 2, θ2 = 2.5, 23 experiments are performed

with varying values of σx, σ1, and σ2. For all 23 experiments, the MSFE obtained with

the Taylor algorithm and the benchmark MSFE seem in close agreement. Out of these

23 experiments, the benchmark MSFE has an optimal observation window in 18 of the

cases. Out of these 18 cases, the optimal observation window of the Taylor algorithm

MSFE agrees with the benchmark in 15 cases. In two cases, the optimal observation

windows differ by one observation, and in one case by seven observations. The worst per-

formance of the Taylor algorithm occurs for the case with the highest process variances,

σx = 10, σ1 = 40, σ2 = 40.

For the case with µx = 0, θ1 = 2, θ2 = 2.5, 23 experiments are also performed with

varying values of σx, σ1, and σ2. Out of these 23 experiments, the benchmark MSFE has

an optimal observation window in 14 of the cases. Out of these 14 cases, the optimal

observation window of the Taylor algorithm MSFE agrees with the benchmark in 7 cases.

The results seem to indicate performance worsens as σ1 and σ2 increase, not necessarily as

σx increases. This can be observed by comparing the experiments with σx = 1 with those

experiments with σx = 10 for the different values of σ1 and σ2. One can get intuition for

this by examining the dependence of the MSFE for a correctly specified model on the

variance of the innovation

MSFE = σU

(

1 +E

[

1
∑t−1

t−nX
2
s

])

→ σU , as n→ ∞.

Based on this, one can understand how the Taylor algorithm MSFE can be sensitive to a

volatile innovation. The worst performance occurred for the higher values of σ1 and σ2.

Although, for the case with µx = 10, θ1 = 2, θ2 = 2.05, the patter of performance was

similar across different values of σx, σ1, and σ2 to the other cases, the overall performance

is worse than the previous two cases. Out of 17 experiments, there is agreement among
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the observation windows only in three tests. One explanation for this eventuality is

that, when the parameter shift is small, from θ1 = 2 to θ2 = 2.05, the OLS estimator has

difficulty detecting the change over the volatility of the processes. This is turn, translates

to a less accurate estimate of the optimal observation window by the Taylor algorithm.

The second set of experiments makes use of smaller data samples in order to replicate

an empirical setting. The performance of the Taylor algorithm is expected to worsen from

that in the previous set of experiments with large data samples. Two cases are examined,

the first with sample size L = 2000 and nb = 20 and the second with sample size L = 5000

and nb = 100. For the first case with L = 2000 and nb = 20, the Taylor algorithm fails

to identify the benchmark optimal window 15 times out of 18. In the other three tests,

the Taylor algorithm misses the benchmark optimal window by 1, 2, and 5 observations.

For the case with L = 5000 and nb = 100, the results are more promising. In this

case, the Taylor algorithm fails to identify the benchmark optimal window 4 times out of

18. The Taylor algorithm provides the correct optimal window in three experiments. In

the other 11 experiments, the difference between the Taylor algorithm optimal window

and the benchmark optimal window ranges from 1 observation to 78 observations. The

performance across different values of σx, σ1, and σ2 follows the same pattern as in the

first set of experiments with performance decaying with increasing values of σ1 and σ2.

We do not present results for Monte Carlo experiments with parameter shift in the

standard deviations σ1 and σ2 because we do not find significant difference in the accuracy

and the patterns of performance of the Taylor algorithm as presented for parameter shift

in the linear parameters θ1 and θ2.
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µx = 10 µx = 0 µx = 10
θ1 = 2, θ2 = 2.5 θ1 = 2, θ2 = 2.5 θ1 = 2, θ2 = 2.05

σx σ1 σ2 figure figure figure

0.1 0 0 7.1 NA 7.24 NA 7.47 NA
0.1 0.1 7.2 cw 7.25 cw 7.48 cw

1 1 7.3 cw 7.26 n > 500 7.49 cw

1 0 0 7.4 NA 7.27 NA 7.50 NA
0.5 0.5 7.5 cw 7.28 cw 7.51 ∆ = 1

1 1 7.6 cw 7.29 cw 7.52 cw
3 3 7.7 cw 7.30 ∆ = 125 7.53 ∆ = 11
5 5 7.8 ∆ = 1 7.31 n > 500 7.54 n > 500

3 0 0 7.9 NA 7.32 NA 7.55 NA
1 1 7.10 cw 7.33 7.56 ∆ = 1
3 3 7.11 cw 7.34 cw 7.57 ∆ = 7
5 5 7.12 cw 7.35 ∆ = 1 7.58 n > 500

10 10 7.13 cw 7.36 n > 500 —

5 0 0 7.14 NA 7.37 NA 7.59 NA
1 1 7.15 cw 7.38 7.60 ∆ = 1
5 5 7.16 cw 7.39 cw 7.61 n > 500

10 10 7.17 cw 7.40 ∆ = 1 —
15 15 7.18 cw 7.41 ∆ = 125 —

10 0 0 7.19 NA 7.42 NA 7.62 NA
5 5 7.20 cw 7.43 cw 7.63 n > 500

10 10 7.21 ∆ = 1 7.44 cw —
20 20 7.22 cw 7.45 ∆ = 1 —
40 40 7.23 ∆ = 7 7.46 n > 500 —

Table 7.1: Sets of parameter values for the best-case scenario experiments, L = 1 × 106.
cw indicates the optimal observation window given by the Taylor algorithm and the
benchmark MSFE coincide. ∆ = a indicates that the absolute difference between the
optimal observation window given by the Taylor algorithm and the optimal observation
window given by the benchmark MSFE is equal to the integer a. n > 500 indicates
the optimal observation window does not occur within the observed sample of 500. NA
indicates no optimal observation window exists in the benchmark MSFE.
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L = 2000,nb = 20 L = 5000,nb = 100
µx = 10 µx = 10

θ1 = 2, θ2 = 2.5 θ1 = 2, θ2 = 2.5

σx σ1 σ2 figure figure

0.1 0 0 7.64 NA 7.87 NA
0.1 0.1 7.65 F 7.88 F

1 1 7.66 F 7.89 cw

1 0 0 7.67 NA 7.90 NA
0.5 0.5 7.68 F 7.91 F

1 1 7.69 F 7.92 F
3 3 7.70 F 7.93 cw
5 5 7.71 ∆ = 1 7.94 cw

3 0 0 7.72 NA 7.95 NA
1 1 7.73 F 7.96 ∆ = 1
3 3 7.74 F 7.97 ∆ = 1
5 5 7.75 F 7.98 ∆ = 2

10 10 7.76 ∆ = 2 7.99 ∆ = 3

5 0 0 7.77 NA 7.100 NA
1 1 7.78 F 7.101 ∆ = 3
5 5 7.79 F 7.102 ∆ = 5

10 10 7.80 F 7.103 ∆ = 8
15 15 7.81 ∆ = 5 7.104 ∆ = 17

10 0 0 7.82 NA 7.105 NA
5 5 7.83 F 7.106 ∆ = 19

10 10 7.84 F 7.107 ∆ = 19
20 20 7.85 F 7.108 ∆ = 78
40 40 7.86 F 7.109 F

Table 7.2: Sets of parameter values for the experiments with limited samples and nb = 20,
nb = 100. cw indicates the optimal observation window given by the Taylor algorithm and
the benchmark MSFE coincide. ∆ = a indicates that the absolute difference between the
optimal observation window given by the Taylor algorithm and the optimal observation
window given by the benchmark MSFE is equal to the integer a. NA indicates no optimal
observation window exists in the benchmark MSFE. F indicates the Taylor algorithm has
failed to identify an optimal observation window.
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Figure 7.1: MSFE for E[X] = 10, σx = 0.1, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5, nb = 20
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Figure 7.2: MSFE for E[X] = 10, σx = 0.1, σ1 = 0.1, σ2 = 0.1, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.3: MSFE for E[X] = 10, σx = 0.1, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.4: MSFE for E[X] = 10, σx = 1, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5, nb = 20
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Figure 7.5: MSFE for E[X] = 10, σx = 1, σ1 = 0.5, σ2 = 0.5, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.6: MSFE for E[X] = 10, σx = 1, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.7: MSFE for E[X] = 10, σx = 1, σ1 = 3, σ2 = 3, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.8: MSFE for E[X] = 10, σx = 1, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE =21, Taylor algorithm minimum MSFE = 20
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Figure 7.9: MSFE for E[X] = 10, σx = 3, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5, nb = 20
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Figure 7.10: MSFE for E[X] = 10, σx = 3, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.11: MSFE for E[X] = 10, σx = 3, σ1 = 3, σ2 = 3, θ1 = 2, θ2 = 2.5, nb = 20,
nb = 20, Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.12: MSFE for E[X] = 10, σx = 3, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.13: MSFE for E[X] = 10, σx = 3, σ1 = 10, σ2 = 10, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE =22, Taylor algorithm minimum MSFE =22
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Figure 7.14: MSFE for E[X] = 10, σx = 5, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5, nb = 20



223

0 10 20 30 40 50 60 70

0

2

4

6

8

10

12

14

16

18

20

n

M
S

F
E

MSFE for E[X]=10,σ
x
=5,σ

1
=1,σ

2
=1

 

 

Monte Carlo

Monte Carlo minimum MSFE

Taylor Algorithm n ≤ n
b

Taylor Algorithm n > n
b

Figure 7.15: MSFE for E[X] = 10, σx = 5, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5, nb = 20.
Monte Carlo minimum MSFE = 20, Taylor algorithm local minimum MSFE = 20
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Figure 7.16: MSFE for E[X] = 10, σx = 5, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.17: MSFE for E[X] = 10, σx = 5, σ1 = 10, σ2 = 10, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE =22, Taylor algorithm minimum MSFE =22
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Figure 7.18: MSFE for E[X] = 10, σx = 5, σ1 = 15, σ2 = 15, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE =25, Taylor algorithm minimum MSFE =25
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Figure 7.19: MSFE for E[X] = 10, σx = 10, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5, nb = 20
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Figure 7.20: MSFE for E[X] = 10, σx = 10, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm minimum MSFE = 20
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Figure 7.21: MSFE for E[X] = 10, σx = 10, σ1 = 10, σ2 = 10, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 21, Taylor algorithm minimum MSFE = 20
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Figure 7.22: MSFE for E[X] = 10, σx = 10, σ1 = 20, σ2 = 20, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 26, Taylor algorithm minimum MSFE = 26
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Figure 7.23: MSFE for E[X] = 10, σx = 10, σ1 = 40, σ2 = 40, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 119, Taylor algorithm minimum MSFE = 126
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Figure 7.24: MSFE for E[X] = 0, σx = 0.1, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5, nb = 20
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Figure 7.25: MSFE for E[X] = 0, σx = 0.1, σ1 = 0.1, σ2 = 0.1, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 22, Taylor algorithm minimum MSFE = 22
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Figure 7.26: MSFE for E[X] = 0, σx = 0.1, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE > 500, Taylor algorithm minimum MSFE > 500
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Figure 7.27: MSFE for E[X] = 0, σx = 1, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5, nb = 20
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Figure 7.28: MSFE for E[X] = 0, σx = 1, σ1 = 0.5, σ2 = 0.5, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm local minimum MSFE = 20
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Figure 7.29: MSFE for E[X] = 0, σx = 1, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 22, Taylor algorithm minimum MSFE = 22
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Figure 7.30: MSFE for E[X] = 0, σx = 1, σ1 = 3, σ2 = 3, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 253, Taylor algorithm minimum MSFE = 378
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Figure 7.31: MSFE for E[X] = 0, σx = 1, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE > 500, Taylor algorithm minimum MSFE > 500
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Figure 7.32: MSFE for E[X] = 0, σx = 3, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5, nb = 20
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Figure 7.33: MSFE for E[X] = 0, σx = 3, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5, nb = 20
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Figure 7.34: MSFE for E[X] = 0, σx = 3, σ1 = 3, σ2 = 3, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 22, Taylor algorithm minimum MSFE = 22
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Figure 7.35: MSFE for E[X] = 0, σx = 3, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 29, Taylor algorithm minimum MSFE = 30
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Figure 7.36: MSFE for E[X] = 0, σx = 3, σ1 = 10, σ2 = 10, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE > 500, Taylor algorithm minimum MSFE > 500



234

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

n

M
S

F
E

MSFE for E[X]=0,σ
x
=5,σ

1
=0,σ

2
=0

 

 

Monte Carlo

Taylor Algorithm n ≤ n
b

Taylor Algorithm n > n
b

Figure 7.37: MSFE for E[X] = 0, σx = 5, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5, nb = 20
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Figure 7.38: MSFE for E[X] = 0, σx = 5, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5, nb = 20
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Figure 7.39: MSFE for E[X] = 0, σx = 5, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 22, Taylor algorithm minimum MSFE = 22
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Figure 7.40: MSFE for E[X] = 0, σx = 5, σ1 = 10, σ2 = 10, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 37, Taylor algorithm minimum MSFE = 38
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Figure 7.41: MSFE for E[X] = 0, σx = 5, σ1 = 15, σ2 = 15, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 253, Taylor algorithm minimum MSFE = 378
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Figure 7.42: MSFE for E[X] = 0, σx = 10, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5, nb = 20
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Figure 7.43: MSFE for E[X] = 0, σx = 10, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 20, Taylor algorithm local minimum MSFE = 20
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Figure 7.44: MSFE for E[X] = 0, σx = 10, σ1 = 10, σ2 = 10, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 22, Taylor algorithm minimum MSFE = 22
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Figure 7.45: MSFE for E[X] = 0, σx = 10, σ1 = 20, σ2 = 20, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE = 37, Taylor algorithm minimum MSFE = 38
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Figure 7.46: MSFE for E[X] = 0, σx = 10, σ1 = 40, σ2 = 40, θ1 = 2, θ2 = 2.5, nb = 20,
Monte Carlo minimum MSFE > 500, Taylor algorithm minimum MSFE > 500
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Figure 7.47: MSFE for E[X] = 10, σx = 0.1, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.05
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Figure 7.48: MSFE for E[X] = 10, σx = 0.1, σ1 = 0.1, σ2 = 0.1, θ1 = 2, θ2 = 2.05,
nb = 20, Monte Carlo minimum MSFE = 20,Taylor algorithm minimum MSFE = 20
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Figure 7.49: MSFE for E[X] = 10, σx = 0.1, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.05, nb = 20,
Monte Carlo minimum MSFE = 22,Taylor algorithm minimum MSFE = 22
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Figure 7.50: MSFE for E[X] = 10, σx = 1, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.05
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Figure 7.51: MSFE for E[X] = 10, σx = 1, σ1 = 0.5, σ2 = 0.5, θ1 = 2, θ2 = 2.05, nb = 20,
Monte Carlo minimum MSFE = 21,Taylor algorithm minimum MSFE = 20
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Figure 7.52: MSFE for E[X] = 10, σx = 1, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.05, nb = 20,
Monte Carlo minimum MSFE = 22,Taylor algorithm minimum MSFE = 22
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Figure 7.53: MSFE for E[X] = 10, σx = 1, σ1 = 3, σ2 = 3, θ1 = 2, θ2 = 2.05, nb = 20,
Monte Carlo minimum MSFE = 186,Taylor algorithm minimum MSFE = 175
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Figure 7.54: MSFE for E[X] = 10, σx = 1, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.05, nb = 20,
Monte Carlo minimum MSFE > 500,Taylor algorithm minimum MSFE > 500
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Figure 7.55: MSFE for E[X] = 10, σx = 3, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.05
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Figure 7.56: MSFE for E[X] = 10, σx = 3, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.05, nb = 20,
Monte Carlo minimum MSFE = 22,Taylor algorithm minimum MSFE = 21
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Figure 7.57: MSFE for E[X] = 10, σx = 3, σ1 = 3, σ2 = 3, θ1 = 2, θ2 = 2.05, nb = 20,
Monte Carlo minimum MSFE = 121,Taylor algorithm minimum MSFE = 114

0 20 40 60 80 100 120 140 160 180 200
25.2

25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

n

M
S

F
E

MSFE for E[X]=10,σ
x
=3,σ

1
=5,σ

2
=5

 

 
Monte Carlo
Taylor Algorithm n ≤ n

b

Taylor Algorithm n > n
b

Figure 7.58: MSFE for E[X] = 10, σx = 3, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.05, nb = 20,
Monte Carlo minimum MSFE > 500,Taylor algorithm minimum MSFE > 500
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Figure 7.59: MSFE for E[X] = 10, σx = 5, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.05

0 20 40 60 80 100 120 140 160 180 200
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

n

M
S

F
E

MSFE for E[X]=10,σ
x
=5,σ

1
=1,σ

2
=1

 

 

Monte Carlo

Monte Carlo minimum MSFE
Taylor Algorithm n ≤ n

b

Taylor Algorithm n > n
b

Taylor minimum MSFE

Figure 7.60: MSFE for E[X] = 10, σx = 5, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.05, nb = 20,
Monte Carlo minimum MSFE = 22,Taylor algorithm minimum MSFE = 21
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Figure 7.61: MSFE for E[X] = 10, σx = 5, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.05, nb = 20,
Monte Carlo minimum MSFE > 500,Taylor algorithm minimum MSFE > 500
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Figure 7.62: MSFE for E[X] = 10, σx = 10, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.05
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Figure 7.63: MSFE for E[X] = 10, σx = 10, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.05, nb = 20,
Monte Carlo minimum MSFE > 500,Taylor algorithm minimum MSFE > 500
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Figure 7.64: MSFE for E[X] = 10, σx = 0.1, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5
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Figure 7.65: MSFE for E[X] = 10, σx = 0.1, σ1 = 0.1, σ2 = 0.1, θ1 = 2, θ2 = 2.5
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Figure 7.66: MSFE for E[X] = 10, σx = 0.1, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5
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Figure 7.67: MSFE for E[X] = 10, σx = 1, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5
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Figure 7.68: MSFE for E[X] = 10, σx = 1, σ1 = 0.5, σ2 = 0.5, θ1 = 2, θ2 = 2.5
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Figure 7.69: MSFE for E[X] = 10, σx = 1, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5
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Figure 7.70: MSFE for E[X] = 10, σx = 1, σ1 = 3, σ2 = 3, θ1 = 2, θ2 = 2.5
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Figure 7.71: MSFE for E[X] = 10, σx = 1, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 21,Taylor algorithm minimum MSFE = 20

0 50 100 150 200 250 300
−80

−60

−40

−20

0

20

n

M
S

F
E

MSFE for E[X]=10,σ
x
=3,σ

1
=0,σ

2
=0,L=2000,n

b
=20

 

 

Monte Carlo

Taylor Algorithm n ≤ n
b

Taylor Algorithm n > n
b

Figure 7.72: MSFE for E[X] = 10, σx = 3, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5
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Figure 7.73: MSFE for E[X] = 10, σx = 3, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5
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Figure 7.74: MSFE for E[X] = 10, σx = 3, σ1 = 3, σ2 = 3, θ1 = 2, θ2 = 2.5
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Figure 7.75: MSFE for E[X] = 10, σx = 3, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5
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Figure 7.76: MSFE for E[X] = 10, σx = 3, σ1 = 10, σ2 = 10, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 22,Taylor algorithm minimum MSFE = 20
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Figure 7.77: MSFE for E[X] = 10, σx = 5, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5
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Figure 7.78: MSFE for E[X] = 10, σx = 5, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5
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Figure 7.79: MSFE for E[X] = 10, σx = 5, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5
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Figure 7.80: MSFE for E[X] = 10, σx = 5, σ1 = 10, σ2 = 10, θ1 = 2, θ2 = 2.5
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Figure 7.81: MSFE for E[X] = 10, σx = 5, σ1 = 15, σ2 = 15, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 25,Taylor algorithm minimum MSFE = 20
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Figure 7.82: MSFE for E[X] = 10, σx = 10, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5
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Figure 7.83: MSFE for E[X] = 10, σx = 10, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5
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Figure 7.84: MSFE for E[X] = 10, σx = 10, σ1 = 10, σ2 = 10, θ1 = 2, θ2 = 2.5
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Figure 7.85: MSFE for E[X] = 10, σx = 10, σ1 = 20, σ2 = 20, θ1 = 2, θ2 = 2.5
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Figure 7.86: MSFE for E[X] = 10, σx = 10, σ1 = 40, σ2 = 40, θ1 = 2, θ2 = 2.5
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Figure 7.87: MSFE for E[X] = 10, σx = 0.1, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5
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Figure 7.88: MSFE for E[X] = 10, σx = 0.1, σ1 = 0.1, σ2 = 0.1, θ1 = 2, θ2 = 2.5
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Figure 7.89: MSFE for E[X] = 10, σx = 0.1, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 100,Taylor algorithm minimum MSFE = 100
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Figure 7.90: MSFE for E[X] = 10, σx = 1, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5
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Figure 7.91: MSFE for E[X] = 10, σx = 1, σ1 = 0.5, σ2 = 0.5, θ1 = 2, θ2 = 2.5
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Figure 7.92: MSFE for E[X] = 10, σx = 1, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5
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Figure 7.93: MSFE for E[X] = 10, σx = 1, σ1 = 3, σ2 = 3, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 100,Taylor algorithm minimum MSFE = 100
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Figure 7.94: MSFE for E[X] = 10, σx = 1, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 100,Taylor algorithm minimum MSFE = 100
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Figure 7.95: MSFE for E[X] = 10, σx = 3, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5
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Figure 7.96: MSFE for E[X] = 10, σx = 3, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 100,Taylor algorithm minimum MSFE = 101
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Figure 7.97: MSFE for E[X] = 10, σx = 3, σ1 = 3, σ2 = 3, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 100,Taylor algorithm minimum MSFE = 101
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Figure 7.98: MSFE for E[X] = 10, σx = 3, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 100,Taylor algorithm minimum MSFE = 102
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Figure 7.99: MSFE for E[X] = 10, σx = 3, σ1 = 10, σ2 = 10, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 102,Taylor algorithm minimum MSFE = 105
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Figure 7.100: MSFE for E[X] = 10, σx = 5, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5
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Figure 7.101: MSFE for E[X] = 10, σx = 5, σ1 = 1, σ2 = 1, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 100,Taylor algorithm minimum MSFE = 103
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Figure 7.102: MSFE for E[X] = 10, σx = 5, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 100,Taylor algorithm minimum MSFE = 105
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Figure 7.103: MSFE for E[X] = 10, σx = 5, σ1 = 10, σ2 = 10, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 101,Taylor algorithm minimum MSFE = 109
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Figure 7.104: MSFE for E[X] = 10, σx = 5, σ1 = 15, σ2 = 15, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 103,Taylor algorithm minimum MSFE = 120
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Figure 7.105: MSFE for E[X] = 10, σx = 10, σ1 = 0, σ2 = 0, θ1 = 2, θ2 = 2.5.Taylor
algorithm minimum MSFE = 116
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Figure 7.106: MSFE for E[X] = 10, σx = 10, σ1 = 5, σ2 = 5, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 100,Taylor algorithm minimum MSFE = 119
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Figure 7.107: MSFE for E[X] = 10, σx = 10, σ1 = 10, σ2 = 10, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 100,Taylor algorithm minimum MSFE = 119
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Figure 7.108: MSFE for E[X] = 10, σx = 10, σ1 = 20, σ2 = 20, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 104,Taylor algorithm minimum MSFE = 182
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Figure 7.109: MSFE for E[X] = 10, σx = 10, σ1 = 40, σ2 = 40, θ1 = 2, θ2 = 2.5. Monte
Carlo minimum MSFE = 104,Taylor algorithm minimum MSFE = 182
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Chapter 8

The Delta Method

8.1 Introduction

When studying random processes, whether continuous or discrete, scalar or multivariate,

all information concerning the process is contained in the distribution or joint distribution

functions. Distribution functions can be functionally quite complicated. The expectation

is the main tool which provides quantitative measures of different characteristics of the

distribution and density functions. For example, in the case of a normally distributed

random variable the expectation provides the center value around which observations

occur. Similarly, the variance provides a measure of the dispersion of the events around

the mean. In general, moments and central moments of random processes provide criteria

by which one can understand the occurrences of random events.

Functions of random variables are ubiquitous in economics, econometrics, and finance,

and therefore it becomes critical to understand the distribution of functions of random

variables. The Delta method is a tool used in statistics to approximate the moments of

a function of random variables. In this chapter, we begin by exploring the underlying

tool used by the Delta method, the Taylor approximation. We follow with a literature

overview of the different results that fall under the title of the Delta Method, including

the conditions for their application.

The Delta method provides an approximation to the expectation of a function ϕ

of random variables by taking expectation of a polynomial approximation to ϕ. This

polynomial approximation is usually a truncated Taylor series centered at the population

mean E[X], and the convergence depends on the smoothness and boundedness of ϕ as
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well as the moments of X.

8.2 Delta Method for bounded functions

The first version of the Delta method was presented by Cramér [36, p.353]. Cramér

uses the Delta method to approximate the mean and variance of some function of sample

moments. We present the theorem and its proof to illustrate the methods and assump-

tions. We begin with a random variable X with distribution F and X1, . . . , Xn an i.i.d.

random sample from F . x1, · · · , xn is a realization of the random sample. µj is the jth

population moment of X, µj = E[Xj ], and µ̄j is the jth population central moment,

µ̄j = E[(X − µ)j ]. Denote the jth sample moment by mj,n =
∑n

i=1 x
j
i/n and the jth

sample central moment by m̄j,n =
∑n

i=1(xi − x̄)j/n. Both mj,n and m̄j,n are functions

from R
n into R and therefore a function depending on these moments is a function on

R
n. Given a function ϕ of two sample central moments m̄i,n, m̄j,n, the mean and variance

of ϕ can be estimated as follows:

Theorem 8.1 (Cramér) Suppose:

1. In some neighborhood of the point m̄i,n = µ̄i, m̄j,n = µ̄j the function ϕ is continuous

and has continuous derivatives of the first and second order with respect to the arguments

mv and mρ.

2. For all possible values of xi, it follows |ϕ| < Cnp, where C and p are non-negative

constants.

Denoting ϕ0 = ϕ(µ̄i, µ̄j), ϕ1 = ∂ϕ/∂m̄i (µ̄i, µ̄j) and ϕ2 = ∂ϕ/∂m̄j (µ̄i, µ̄j), the mean and

variance of the random variable ϕ(m̄i, m̄j) are :

E[ϕ(m̄i, m̄j)] = ϕ0 +O(n−1),

V ar(ϕ) = µ2(m̄i)ϕ
2
1 + 2µ11(m̄i, m̄j)ϕ1ϕ2 + µ2(m̄2)ϕ

2
2 +O(n−3/2).

Proof. Let P (S) be the probability function of the joint distribution of X1, · · · , Xn. P (S)

is a set function in R
n. Since X1, · · · , Xn is a random sample of X, we know from the
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characteristics of sampling distributions

E[(m̄i,n − µ̄i)
2k] = O(n−k). (8.2.1)

Using this, and by Tchebycheff’s theorem, it follows that

P [(m̄i,n − µ̄i)
2k ≥ ε2k] <

E[(m̄i,n − µ̄i)
2k]

ε2k
=

A

ε2knk
,

or

P [|m̄i,n − µ̄i| ≥ ε] <
A

ε2knk
, (8.2.2)

for some constant A independent of ε and n. The corresponding inequalities hold for

m̄j,n. Define the set Z = {(x1, · · · , xn) : |m̄i,n − µ̄i| < ε, |m̄j,n − µ̄j| < ε} and denote by

Zc the complement of Z. It follows from (8.2.2) that

P (Zc) <
2A

ε2knk
, P (Z) > 1 − 2A

ε2knk
. (8.2.3)

It follows that E[ϕ] =
∫

Z ϕdP +
∫

Zc ϕdP . By condition 2), (8.2.3) and choosing k > p+1
∣
∣
∫

Zc ϕdP
∣
∣ < 2ACnp/ε2knk = O(n−1). For ε small enough, it follows from condition 1)

that for any point in Z

ϕ(m̄i, m̄j) = ϕ0 + (m̄i − µ̄i)ϕ1 + (m̄j − µ̄j)ϕ2 +R,

R =
1

2

[
(m̄i − µ̄i)

2ϕ′
11 + 2(m̄i − µ̄i)(m̄j − µ̄j)ϕ

′
12 + (m̄j − µ̄j)

2ϕ′
22

]
,

where ϕ′
ij denotes second order derivatives evaluated at a point between (m̄i, m̄j) and

(µ̄i, µ̄j). It follows

∫

Z
ϕdP = ϕ0P (Z) + ϕ1

∫

Z
(m̄i − µ̄i)dP + ϕ2

∫

Z
(m̄j − µ̄j)dP +

∫

Z
RdP. (8.2.4)

By (8.2.3), the first term on the right of the equality differs from ϕ0 by a quantity of

order n−k which is smaller than n−1 by our choice of k. For the other two terms we first
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note ϕ1 and ϕ2 are independent of n. Furthermore, given that for sample distributions

E[m̄i,n] = µ̄i +O(n−1) and E[(m̄i,n − µ̄i)
2k] = O(n−k) (8.2.5)

and applying Schwarz inequality it follows

∫

Z
(m̄i,n − µ̄i)dP = E[m̄i,n − µ̄i] −

∫

Zc

(m̄i,n − µ̄i)dP

= O(n−1) −
∫

Zc

(m̄i,n − µ̄i)dP,

∣
∣
∣
∣

∫

Zc

(m̄i,n − µ̄i)dP

∣
∣
∣
∣
≤
[∫

Zc

(m̄i,n − µ̄i)
2dP

∫

Zc

dP

]1/2

≤
[
E[(m̄i,n − µ̄i)

2]P (Zc)
]1/2

= O(n−(k+1)/2),

and similarly for m̄j,n. The derivatives ϕ′
ij are bounded for sufficiently small ε by con-

dition 1), and it follows that the last term in (8.2.4) is of order n−1. Hence the right

hand side of (8.2.4) differs from ϕ0 by a quantity of order n−1, and this proves the first

relation of the theorem. We omit the proof of the variance term and direct the reader to

the original text.

In summary, Cramér proves a Delta method for a function of two central moments which

depends on the sample size n only through the sample moments. The same proof can

be extended for functions of any number of central moments. The main assumptions

on the function ϕ are first that ϕ is bounded by Cnp for positive constants C, p and

second that ϕ is twice continuously differentiable in a neighborhood of the population

moments µ̄i and µ̄j. The process X is assumed to have sufficient finite moments. The

fact that the function ϕ has as its arguments sample moments, makes Cramér’s result

rather restrictive. This can be seen from the required bounds (8.2.1) and (8.2.5), which

are derived for characteristics of sampling distributions.

Hurt, in [76], expands the application of the Delta method by allowing more general

random variables as arguments of the function ϕ, by allowing the function ϕ to depend

explicitly on the sample size n, and by taking more terms of the Taylor series expansion

in the approximation. Specifically, he derives asymptotic formulas for E[ϕ(Tn, n)] and

V ar(ϕ(Tn, n)) where Tn is a possibly multi-dimensional statistic. The order of the re-
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mainder depends on the smoothness of the function ϕ and on the size of the moments of

Tn. The main theorem when Tn is a one dimensional statistic is as follows:

Theorem 8.2 (Theorem 1 in [76], Hurt) Let ϕ = ϕ(t, n) be a function defined on

R
1 ×N . Assume, for all n and some q ≥ 1, ϕ admits the continuous (q+ 1)st derivative

for t ∈ [θ−δ, θ+δ] where δ > 0 is independent of n. Suppose ϕ is bounded on R
1×N and

all derivatives ϕ′, · · · , ϕ(q+1) are bounded on [θ− δ, θ+ δ]×N . Let {Tn} be a sequence of

statistics with finite moments up to order 2(q+1) such that E|Tn−θ|2(q+1 = O(n−(q+1)).

Then

E[ϕ(Tn, n) − ϕ(θ, n)] =

q
∑

j=1

1

j!

(
∂jϕ

∂tj

)

t=θ

E[(Tn − θ)j] +O(n−(q+1)/2),

V ar[ϕ(Tn, n) − ϕ(θ, n)] =

q
∑

j=1

q
∑

k=1

1

j!

1

k!

(
∂jϕ

∂tj

)

t=θ

(
∂kϕ

∂tk

)

t=θ

· cov[(Tn − θ)j, (Tn − θ)k] +O(n−(q+2)/2).

The theorem for the multi-dimensional case follows:

Theorem 8.3 (Theorem 2 in [76],Hurt) Let ϕ(t1, . . . , tr, n) be a function defined

on R
r ×N . Assume:

1) for all n, ϕ is (q + 1) times totally differentiable with respect to ti’s in the interval

K = Xr
i=1[θi − δi, θi + δi], δ1 > 0, δi independent of n,

2) ϕ is bounded on R
r ×N ,

3) all the derivatives up to the order q + 1 are bounded on K ×N ,

4) {(T1n, · · · , Trn)}∞n=1 is a sequence of multidimensional statistics such that

5) there exists absolute moments of Tin up to order 2(q + 1)

6) for i = 1, · · · , r E|Tin − θi|2(q+1) = O(n−(q+1))

Then with i1 + · · · + ir = j:

E[ϕ(T1n, · · · , Trn, n) − ϕ(θ1, · · · , θr, n)] =

q
∑

j=1

1

j!

∑

i1

· · ·
∑

ir

[

∂jϕ

∂ti11 . . . ∂t
ir
r

]

t=θ

E[(T1n − θ1)
i1 . . . (Trn − θr)

ir] +O(n−(q+1)/2),
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and with i1 + · · · + ir = j, m1 + · · · +mr = k

V ar[ϕ(T1n, · · · , Trn, n) − ϕ(θ1, · · · , θr, n)] =

q
∑

j=1

q
∑

k=1

1

j!

1

k!

∑

i1

· · ·
∑

ir

∑

m1

· · ·
∑

mr

[

∂jϕ

∂ti11 . . . ∂t
ir
r

]

t=θ

[
∂kϕ

∂tm1
1 . . . ∂tmr

r

]

t=θ

· Cov [(T1n − θ1)
i1 . . . (Trn − θr)

ir, (T1n − θ1)
m1 . . . (Trn − θr)

mr] +O(n−(q+2)/2),

where t = (t1, · · · , tr), θ = (θ1, · · · , θr).

The proof for theorems 8.2 and 8.3 follow similarly as the proof by Cramér in that

the expected value is split into an integral on a neighborhood around the corresponding

population statistic θ, Z = {t : |t− θ| < ε} for the one dimensional case, and an integral

on the complement of said neighborhood, Z c. The dependence of the size of the remainder

on the sample size n follows from the assumption that the sequence {Tn} of statistics has

finite moments up to order 2(q + 1) such that E|Tn − θ|2(q+1).

The Delta method theorems up to this point assume boundedness of the function

ϕ. There are many unbounded functions that are of interest, such as the squared error

function. In the next section, we examine Delta method results for some classes of

unbounded functions.

8.3 Delta Method for polynomial bounded functions

Lehmann [92] presents a Delta method for the special case where ϕ does not need to be

bounded as long as the derivatives of ϕ up to some order exist and are bounded.

Theorem 8.4 (Theorem 5.1 in [92], Lehmann) Let X1, · · · , Xn be i.i.d. with E[X1] =

ξ, V ar(X1) = σ2 and finite fourth moment. Suppose ϕ is a function of a real variable

whose first four derivatives ϕ′(x), ϕ
′′

(x), ϕ
′′′

(x), ϕ(iv)(x) exist for all x ∈ I where I is

an interval with P (X1 ∈ I) = 1, and such that |ϕ(iv)(x)| ≤ M for all x ∈ I, for some

M <∞. Then

E[ϕ(X̄)] = ϕ(ξ) +
σ2

2n
ϕ

′′

(ξ) +Rn,
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and if, in addition, the fourth derivative of ϕ2 is also bounded,

V ar(ϕ(X̄)) =
σ2

n
(ϕ′(ξ))2 +Rn,

where the remainder Rn in both cases is O(n−2).

Proof. The result follows from the strong assumptions on the function ϕ and the fact

that E[(X̄ − ξ)2k−1] and E[(X̄ − ξ)2k], if they exist, are of order 1/nk for k ≥ 1. First,

we make note of the following relations:

E[X̄ − ξ] = 0, E[(X̄ − ξ)2] =
σ2

n
, E[(X̄ − ξ)3] = O(n−2), E[(X̄ − ξ)4] = O(n−2).

If for all x, the fourth derivative ϕ(iv) exists and satisfies |ϕ(iv)(x)| ≤M for some M <∞,

then

ϕ(x̄) = ϕ(ξ) + ϕ′(ξ)(x̄− ξ) +
1

2
ϕ

′′

(ξ)(x̄ − ξ)2 +
1

6
ϕ

′′′

(ξ)(x̄− ξ)3 +R(x̄, ξ), (8.3.1)

where |R(x̄, ξ)| ≤M(x̄− ξ)4/24. Taking expectations of (8.3.1) the result follows.

Theorem 8.5 (Theorem 5.1a in [92], Lehmann) The results in theorem 8.4 remain

valid if for some k ≥ 3 the function ϕ has k derivatives, the kth derivative is bounded,

and the first k moments of the X’s exists.

The assumptions of bounded derivatives of the function ϕ up to some order k are equiv-

alent to polynomial boundedness of ϕ by a polynomial of order of at least k.

In [107], Oehlert attempts extend previous Delta method theorems in that the ap-

proximating polynomial does not need to be a truncated Taylor series and that the

function in question needs to be only polynomially bounded in its arguments. We

give some notation and state the theorem. The theorem is proven for functions of

the normalized sample moments uj,n =
∑n

i=1(x
j
i − µj)/

√
n. For polynomials in the

first J normalized sample moments, let p = (p1, p2, . . . , pJ)T be a vector of powers and

up = up
n = up1

1,nu
p2
2,n · · · , upJ

J,n. The sets PA and PB are finite sets of powers that define

the approximating and bounding polynomials.
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Theorem 8.6 (Oehlert) Let the random variables ui,n be the normalized sample mo-

ments of an i.i.d. sample of size n from a distribution with finite tth moment. Suppose

that there are approximating and bounding polynomials

An(un) =
∑

p∈PA

an,pu
p, Bn(un) =

∑

p∈PB

bn,pu
p,

such that

nβ|ϕ(n, un) −An(un)| P→ 0, (8.3.2)

nβ|ϕ(n, un) −An(un)| ≤ B(un), (8.3.3)

for all n sufficiently large. If t > 2J and t > maxp∈PB∪PA

∑J
j=1 jpj, then nβE|ϕ(n, un)−

An(un)|→0, and consequently, E[ϕ(n, un)] = E[An(un)] + o(n−β).

Assumption (8.3.2) of this theorem is quite strong and limits its applicability in very

important situations.

8.4 Delta Method for exponentially bounded

functions

In this section, we present Delta method results for a class of functions which might grow

faster than a polynomial function but can be bounded by an exponential function.

In [84], Khan applies stronger conditions on the random variables than those in [36]

and [92] in order to obtain a Delta method theorem that applies to a larger family of

functions. Consider the i.i.d. random variables X1, X2, · · · , Xn with mean µ, variance

σ2 and X̄n =
∑n

i=1Xi/n. Let A ⊂ R be an interval such that P (X1 ∈ A) = 1. Define F
as the class of functions, continuous on A, such that ϕ ∈ F implies

|ϕ(x)| = O(eα|x|) as |x| → ∞, for some α > 0. (8.4.1)

It follows that bounded functions and polynomially bounded functions belong to F .
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Theorem 8.7 (Theorem 1 in [84], Khan) Let X1, X2, · · · , Xn be i.i.d. random vari-

ables with mean µ and variance σ2, and assume that X1 has a finite moment generating

function (m.g.f.). Let ϕ be a continuous function on A with ϕ ∈ F where A is an interval

such that P (X1 ∈ A) = 1. Suppose that the first four derivatives of f are continuous in

(µ− δ, µ+ δ) for some δ > 0. Then

E[ϕ(X̄n)] = ϕ(µ) +
σ2

2n
ϕ′′(µ) +O(n−2),

var(ϕ(X̄n)) =
σ2

n
(ϕ′(µ))2 +O(n−2).

The following two Lemmas are required for the proof of the theorem.

Lemma 8.8 (Chernoff) Let X1, X2, · · · , Xn be i.i.d. random variables with mean µ,

and assume X1 has a finite m.g.f. φ(θ) for θ ∈ J containing zero. Then, for any δ > 0,

there exist numbers ρ and ρ1 (0 < ρ, ρ1 < 1) such that

P (X̄n − µ ≥ δ) ≤ ρn
1 , P (|X̄n − µ| ≥ δ) ≤ 2ρn.

Lemma 8.9 (Khan) Let ϕ ∈ F ,and let E|ϕ(X̄n)| < ∞. Then under the conditions of

Lemma 8.8

E[ϕ(X̄n)]I{|X̄n − µ| ≥ δ} = O(1)(ρn + ρn
1 ) = O(n−2).

We now present the proof of the theorem.

Proof. (Theorem 8.7) Let Q(x) =
∑4

k=0((x−µ)k/k!)ϕ(k)(µ) be the Taylor polynomial,

and consider the Taylor expansion of ϕ in (µ− δ, µ+ δ) as

ϕ(x) = Q(x) +
(x− µ)4

4!
(ϕ(4)(µ+ η(x− µ)) − ϕ(4)(µ))

= Q(x) +R(x), 0 ≤ η ≤ 1.

It is well known that E[(X̄n − µ)3] = O(n−2), E[(X̄n − µ)4] = O(n−2), and there-

fore it follows E[Q(X̄n)] = ϕ(µ) + σ2

2nϕ
′′(µ) + O(n−2). Let 0 < δ1 < δ and set Tn =

E[ϕ(X̄n)]I{|X̄n−µ| < δ1} By lemma 8.9 we have E[ϕ(X̄n)] = Tn +E[ϕ(X̄n)I{|X̄n−θ| ≥
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δ1}] = Tn +O(n−2). Clearly

Tn = E[Q(X̄n)I{|X̄n − θ| < δ1}] +E[R(X̄n)I{|X̄n − θ| < δ1}]

= E[Q(X̄n)] −E[Q(X̄n)I{|X̄n − θ| ≥ δ1}] +E[R(X̄n)I{|X̄n − θ| < δ1}]

Since Q(x) ∈ F , by lemma 8.9 we have

Tn = E[Q(X̄n)] +O(n−2) +E[R(X̄n)I{|X̄n − θ| < δ1}].

Now consider the remainder term. Let Zn = µ+η(X̄n−µ), 0 ≤ η = ηn ≤ 1. |X̄n−µ| < δ1

implies |Zn − µ| < δ1, and Zn is in the closed interval [µ − δ1, µ + δ1]. Since ϕ(4)(x) is

continuous in [µ− δ1, µ+ δ1], hence (1/4!)|ϕ(4)(Zn)− ϕ(4)(µ)| remains bounded by some

constant K. Thus we have

E[R(X̄n)I{|X̄n − θ| < δ1}] ≤ KE[(X̄n − µ)4] = O(n−2).

Khan’s theorem has many weaknesses. To begin with, the theorem only applies to

functions with one argument consisting of a sample mean of a random sample. The proof

is not general enough to be extended to functions of other sample statistics or functions

with more general dependence on several random variables. This weakness can be traced

to lemma 8.9 which is an application of the Law of Large Numbers.

The following theorem extends the work of Khan [84] and Hurt [76]. The theorem

replaces the need for finite m.g.f.’s with a more general condition. The statistic Sn

is allowed to be arbitrary as opposed to being the sample mean of r.v.’s X1, . . . , Xn.

The condition in [76] that ϕ must be bounded is relaxed to the condition given in

[84] for bounding ϕ with an exponential function. We consider a continuous function

ϕ(Sn) : A ⊂ R → R. Sn is a one dimensional statistic with P (Sn ∈ A) = 1 and which

itself can be a function of n random variables X1, . . . , Xn, i.e., Sn(X1, . . . , Xn). ϕ ∈ Fα

implies condition (8.4.1) holds. First, given some assumptions, we prove a lemma.

Assumption 8.1 1/p1 + 1/p2 = 1 with p1 > 1 p2 > 1.
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Assumption 8.2 {Sn} is a sequence of one dimensional statistics with finite moments

up to order p2(q + 1).

Assumption 8.3 Sn
P→ θ.

Assumption 8.4 E|Sn − θ|p2(q+1) = O(n−(q+1)).

Assumption 8.5 E exp(p1α|Sn|) <∞.

Assumption 8.6 ϕ ∈ Fα and E|ϕ(Sn)| <∞.

Assumption 8.1 is the condition required by Hölder’s inequality, which is used in the

lemma to follow. Parameters p1, p2 make the result of the lemma and the theorem more

general than the results in [84]. In fact, there is no reason to use Schwarz inequality

instead of the more general Hölder’s inequality in lemma 2 of [84]. Assumption 8.3

has implications regarding the dynamic nature of the process {Xτ}. For example, if the

statistic Sn is the sample mean of X1, . . . , Xn, assumption 8.3 implies the r.v.’s of the

process {Xτ} must be identically distributed, (see Chapter 3 in [153]). Assumption 8.5 is

weaker than the assumption of finite m.g.f’s used in [84]. Assumption 8.6 characterizes

the growth nature of the function ϕ(x) as |x| → ∞ and establishes the existence of the

expected value we attempt to approximate.

Lemma 8.10 (Martinez) Under assumptions 8.1 through 8.6

E[ϕ(Sn)I{|Sn − θ| ≥ δ}] = O(n−(q+1)/p2).

Proof. ϕ ∈ Fα implies there exists a finite N and a constant C, both independent of

x, such that |ϕ(x)| ≤ C exp(α|x|) ∀ x with |x−θ| ≥ N . Let B(x) = {x : δ ≤ |x−θ| ≤ N}
and B̄(x) = {x : |x− θ| > N} where I{·} is the indicator function. It follows

E[ϕ(Sn)I{|Sn − θ| ≥ δ}] = E[ϕ(Sn)I{B(Sn)}] +E[ϕ(Sn)I{B̄(Sn)}]. (8.4.2)

By continuity of ϕ, |ϕ(Sn)| ≤ M in B(Sn) for some constant M independent of n. By
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Markov’s inequality and the assumption on the moments of Sn

E[|ϕ(Sn)|I{B(Sn)}] ≤MP (Sn ∈ B(Sn)) ≤MP (|Sn − θ| ≥ δ)

≤ M

δp2(q+1)
E[ |Sn − θ|p2(q+1)] = O(n−(q+1)). (8.4.3)

Let us comment on (8.4.3). The exponent involved in Markov’s inequality can be set to

any finite number. In the above, we set this exponent equal to p2(q+ 1). The reason for

this lies in the use of this lemma in theorem 8.11. The present lemma is used in the said

theorem to bound a Taylor expansion in a neighborhood of θ. In theory, the exponent

in Markov’s inequality can be set equal to any number greater or equal to p2(q+ 1). On

B̄(Sn), |ϕ(Sn)| ≤ C exp(α|Sn|), and it follows that

E[|ϕ(Sn)|I{B̄(Sn)}] ≤ CE[exp(α|Sn|)I{B̄(Sn)}].

By Hölder’s inequality,

E[exp(α|Sn|)I{B̄(Sn)}] ≤ E1/p1 [exp(p1α|Sn|)](P (|Sn − θ| ≥ N))1/p2 .

Since Sn
P→ θ and exp(x) is continuous on A, it follows that exp(p1α|Sn|) P→ exp(p1α|θ|)

(see proposition A.18 in AppendixB). Furthermore, assumption 8.5 implies, by the domi-

nated convergence theorem (see Appendix F ), E[exp(p1α|Sn|)] converges to E[exp(p1α|θ|)]
as n→ ∞ and therefore E[exp(p1α|Sn|)] = O(1). It follows that

E[|ϕ(Sn)|I{B̄(Sn)}] ≤ CE1/p1 [exp(p1α|Sn|)](P (|Sn − θ| ≥ N))1/p2

= O(1)O(n−(q+1)/p2). (8.4.4)

(8.4.2), (8.4.3), and (8.4.4) give the result.

We give one assumption and state the theorem.

Assumption 8.7 : For some q > 1, ϕ(x) has finite and continuous derivatives up to

order q + 1 in (θ − δ, θ + δ) for some δ > 0.

Assumption 8.7 is needed to write the Taylor expansion of ϕ in the interval (θ−δ, θ+δ)
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in the following theorem.

Theorem 8.11 (Martinez) Under assumptions 8.1 through 8.7

E[ϕ(Sn)] = ϕ(θ) +

q
∑

j=1

1

j!

(
∂jϕ

∂sj

)

s=θ

E[(Sn − θ)j] +O(n−(q+1)/p2).

Proof. Let ϕ(k)(x) denote the kth derivative of ϕ with respect to x. Let Qq(x) =
∑q

k=0 ϕ
(k)(θ)(x− θ)k/k!. The Taylor expansion of ϕ in (θ − δ, θ + δ) is

ϕ(x) = Qq(x) +
1

(q + 1)!
ϕ(q+1)(θ + η(x− θ))(x− θ)q+1

= Qq(x) +Rq(x), 0 ≤ η ≤ 1. (8.4.5)

It follows

E[Qq(Sn)] = ϕ(θ) +

q
∑

k=1

1

k!
ϕ(k)(θ)E[(Sn − θ)k]. (8.4.6)

Let 0 < δ1 < δ and set Tn = E[ϕ(Sn)I{|Sn − θ| < δ1}]. By lemma 8.10 it follows

E[ϕ(Sn)] = Tn +E[ϕ(Sn)I{|Sn − θ| ≥ δ1}] = Tn +O(n−(q+1)/p2). (8.4.7)

One can write Tn as follows:

Tn = E[Qq(Sn)I{|Sn − θ| < δ1}] +E[Rq(Sn)I{|Sn − θ| < δ1}]

= E[Qq(Sn)] −E[Qq(Sn)I{|Sn − θ| ≥ δ1}] +E[Rq(Sn)I{|Sn − θ| < δ1}].

Since Qq(x) ∈ Fα, by lemma 8.10 it follows

Tn = E[Qq(Sn)] +O(n−(q+1)/p2) +E[Rq(Sn)I{|Sn − θ| < δ1}]. (8.4.8)

To understand the order of the remainder term we first note

E[Rq(Sn)I{|Sn − θ| < δ1}] = E[Rq(Sn)I{|Sn − θ| ≤ δ1}],
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and Zn = θ + η(Sn − θ) ∈ [θ − δ1, θ + δ1] for 0 ≤ η ≤ 1. It follows, since ϕ(q+1) is

continuous in [θ − δ1, θ + δ1], ϕ
(q+1)(Zn) is bounded and we have

E[ |Rq(Sn)|I{|Sn − θ| < δ1}] ≤ KE[ |Sn − θ|(q+1)] = O(n−(q+1)/p2). (8.4.9)

The result follows from (8.4.6), (8.4.7), (8.4.8) and (8.4.9).

The previous theorems apply to functions, ϕ(x), which become unbounded as |x| → ∞
but do not apply to functions which become unbounded at a finite point in A. Next, we

consider the case of a function ϕ(x) : A ⊂ R → R with an essential discontinuity at a point

x0. Define subintervals A1(x) = {x ∈ R : |x−θ| ≤ δ}, A2(x) = {x ∈ R : |x−x0| ≤ δ1} and

A3(x) = (A1(x)∪A2(x))
c for δ > 0, δ1 > 0 such that x0+δ1 = θ−δ and A = A1∪A2∪A3.

Let G(α,β) denote the class of functions on A such that

|ϕ(x)| = O(eα|x|), as |x| → ∞ and

|ϕ(x)| = O(eβ/|x−x0|), as x→ x0, for some α, β > 0.

As before, Sn is a one dimensional statistic with P (Sn ∈ A) = 1. We give some assump-

tions and prove two lemmas.

Assumption 8.8 θ 6= x0 and E[exp(p1β/|Sn − x0|)] <∞.

Assumption 8.9 ϕ ∈ G(α,β) and E|ϕ(Sn)| <∞.

The following lemma is similar to lemma 8.10 except that assumption 8.6 is replaced by

assumption 8.9.

Lemma 8.12 (Martinez) Under assumptions 8.1, 8.2, 8.3, 8.4, 8.5, and 8.9

E[ϕ(Sn)I{Sn ∈ A3}] = O(n−(q+1)/p2)

Proof. The proof of this lemma follows similarly as the proof of lemma 8.10. Without

loss of generality we take x0 = 0, θ > 0. ϕ ∈ Gα,β implies there exists a finite C and a

constant N , both independent of x, such that |ϕ(x)| ≤ C exp(α|x|) ∀x with |x− θ| ≥ N .

Let B1(x) = {x ∈ R : δ < x − θ ≤ N}, B2(x) = {x ∈ R : θ − N ≤ x ≤ −δ1} and
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B̄(x) = {x : |x− θ| > N}. It follows

E[ϕ(Sn)I{Sn ∈ A3}] =E[ϕ(Sn)I{Sn ∈ B1(Sn)}] +E[ϕ(Sn)I{Sn ∈ B2(Sn)}]

+E[ϕ(Sn)I{Sn ∈ B̄(Sn)}].

Following the same arguments of lemma 8.10, E[ϕ(Sn)I{Sn ∈ B̄(Sn)}] = O(n−(q+1)/p2).

By continuity of ϕ in A1 ∪A3, |ϕ(Sn)| ≤M on B1(Sn) and B2(Sn) for some constant M

independent of n and

E[ϕ(Sn)I{Sn ∈ B1(Sn)}] ≤MP (Sn ∈ B1(Sn)) ≤MP (|Sn − θ| ≥ δ)

≤ M

δp2(q+1)
E[|Sn − θ|p2(q+1)] = O(n−(q+1)).

Similarly, E[ϕ(Sn)I{Sn ∈ B2(Sn)}] = O(n−(q+1)) and the result follows.

Lemma 8.13 (Martinez) Under assumptions 8.1, 8.2, 8.3, 8.4, 8.8 and 8.9

E[ϕ(Sn)I{|Sn ∈ A2}] = O(n−(q+1)/p2)

Proof. Without loss of generality we take x0 = 0, θ > 0. Since ϕ ∈ Gα,β, ∃ a finite C

and a β > 0 such that |ϕ(Sn)| ≤ C exp(β/|Sn|) on A2 and we have

E[|ϕ(Sn)|I{Sn ∈ A2}] ≤ CE[exp(β/|Sn|)I{Sn ∈ A2}]

≤ CE1/p1 [exp(p1β/|Sn|)](P (I{Sn ∈ A2}))1/p2

≤ CE1/p1 [exp(p1β/|Sn|)](P (I{|Sn − θ| > δ}))1/p2 ,

where the second inequality follows from Hölder’s inequality. Since Sn
P→ θ and the ex-

pression exp(p1β/|x|) is continuous at θ, it follows by proposition A.18, exp(p1β/|Sn|) P→
exp(p1β/|θ|). Furthermore, assumption 8.8 implies, by the dominated convergence theo-

rem, that E[exp(p1β/|Sn|)]→E[exp(p1β/|θ|)] as n→ ∞ and therefore E[exp(p1β/|Sn|)] =

O(1). It follows that

E[|ϕ(Sn)|I{Sn ∈ A2}] ≤ O(1)

(

E[|Sn − θ|p2(q+1)

δp2(q+1)

)1/p2

= O(n−(q+1)/p2), (8.4.10)
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and (8.4.10) gives the result.

Theorem 8.14 (Martinez) Under assumptions 8.1, 8.2, 8.3, 8.4, 8.5, 8.7, 8.8, 8.9

E[ϕ(Sn)] = ϕ(θ) +

q
∑

j=1

1

j!

(
∂jϕ

∂sj

)

s=θ

E[(Sn − θ)j] +O(n−(q+1)/p2).

Proof. As before, let Qq(x) =
∑q

k=0 ϕ
(k)(θ)(x − θ)k/k!. The Taylor expansion of ϕ in

(θ− δ, θ+ δ) is given by (8.4.5) and the expected value of Qq(Sn) is given by (8.4.6). The

expected value of ϕ(Sn) can be written as follows

E[ϕ(Sn)] = E[ϕ(Sn)I{Sn ∈ A1}] +E[ϕ(Sn)I{Sn ∈ A2}]

+E[ϕ(Sn)I{Sn ∈ A3}]. (8.4.11)

From lemma 8.12, it follows E[ϕ(Sn)I{Sn ∈ A3}] = O(n−(q+1)/p2). Denote Tn =

E[ϕ(Sn)I{Sn ∈ A1}] and

Tn = E[Qq(Sn)I{Sn ∈ A1}] +E[Rq(Sn)I{Sn ∈ A1}]

= E[Qq(Sn)] −E[Qq(Sn)I{Sn ∈ A2}]

−E[Qq(Sn)I{Sn ∈ A3}] +E[Rq(Sn)I{Sn ∈ A1}].

Since Qq(Sn) ∈ G(α,β), by lemma 8.12, lemma 8.13 and (8.4.9) Tn = E[Qq(Sn)] +

O(n−(q+1)/p2). (8.4.11) becomes E[ϕ(Sn)] = E[Qq(Sn)]+E[ϕ(Sn)I{Sn ∈ A2}]+O(n−(q+1)/p2)

and the result follows by applying lemma 8.13 again .

The multivariate version of the previous theorem can be formulated by considering a

function ϕ(x) : A ⊂ R
r → R with an essential discontinuity at a point x0 ≡ (x10, · · · , xr0).

Using the Euclidean norm || · ||2, we define subsets A1(x) = {x ∈ R
r : ||x − θ||2 ≤ δ},

A2(x) = {x ∈ R
r : ||x − x0||2 < δ1} and A3(x) = (A1(x) ∪ A2(x))

c with δ > 0, δ1 > 0,

||θ − x0||2 = δ1 + δ such that A = A1 ∪ A2 ∪ A3. Hα,β denotes the class of functions on

A such that |ϕ(x)| = O(eα||x||) as ||x|| → ∞ and |ϕ(x)| = O(eβ/||x−x0||) as ||x− x0|| → 0

for some α, β > 0, where || · || is the one norm ||x|| =
∑n

i=1 |xi|. Sin is a one dimensional

statistic for i = 1, . . . , r with P ((S1n, · · · , Srn) ∈ A) = 1.
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Assumption 8.10 {Sn ≡ (S1n, · · · , Srn)} is a sequence of multidimensional statistics

with finite absolute moments of Sin up to order p2(q + 1).

Assumption 8.11 Sin
P→ θi for i = 1, . . . , r.

Assumption 8.12 E|Sin − θi|p2(q+1) = O(n−(q+1)) for i = 1, . . . , r.

Assumption 8.13 E[exp(p1α||Sn||)] <∞.

Assumption 8.14 θ 6= x0 and E[exp(p1β/||Sn − x0||)] <∞.

Assumption 8.15 ϕ ∈ Gα,β and E|ϕ(Sn)| <∞.

Assumption 8.16 ϕ has finite and continuous partial derivatives up to order q + 1 in

A1.

We note, for the case of a multivariate function ϕ(x) : A ⊂ R
r → R

s, it is sufficient

to check the assumptions above for each ϕi(x) : A ⊂ R
r → R, i = 1, . . . , s where

ϕ(x) ≡ (ϕ1(x), . . . , ϕs(x))
>.

Lemma 8.15 (Martinez) Under assumptions 8.1, 8.10,8.11,8.12,8.13 and 8.15

E[ϕ(Sn)I{Sn ∈ A3(Sn)}] = O(n−(q+1)/p2)

Proof. ϕ ∈ Hα,β implies ∃ a finiteN , N > δ+2δ1, and a constant C, both independent

of x, such that |ϕ(x)| ≤ C exp(α||x||) ∀x with ||x−θ||2 > N . Let B̄(x) = {x : ||x−θ||2 >
N} and B(x) = {x : B̄c −A1 −A2}. It follows

E[ϕ(Sn)I{Sn ∈ A3(Sn)}] = E[ϕ(Sn)I{Sn ∈ B(Sn)}] +E[ϕ(Sn)I{Sn ∈ B̄(Sn)}].

By continuity of ϕ on A3(x), |ϕ(Sn)| ≤ M on B(Sn) for some constant M independent

of n. It follows by Markov’s inequality

E[ϕ(Sn)I{Sn ∈ B(Sn)}] ≤MP (Sn ∈ B(Sn)) ≤MP (||Sn − θ||2 ≥ δ)

≤ M

δp2(q+1)
E[ ||Sn − θ||p2(q+1)

2 ].
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Furthermore,

E[||Sn − θ||p2(q+1)
2 ] = E

[( r∑

i=1

(Sin − θi)
2
)p2(q+1)/2]

≤ E
[( r∑

i=1

|Sin − θi|
)p2(q+1)]

≤
{ r∑

i=1

(

E1/p2(q+1)[ |Sin − θi|p2(q+1)]
)}p2(q+1)

=
{ r∑

i=1

(

O(n−(q+1))
)1/p2(q+1)}p2(q+1)

= O(n−(q+1)), (8.4.12)

where the second inequality is due to Minkowski’s inequality and the second equality

follows from the assumption on the moments of Sn. On B̄(Sn), |ϕ(Sn)| ≤ C exp(α||Sn||)
and it follows

E[ϕ(Sn)I{Sn ∈ B̄(Sn)}] ≤ CE[exp(α||Sn||)I{Sn ∈ B̄(Sn)}]

≤ CE1/p1 [exp(p1α||Sn||)]P (||Sn − θ||2 > N))1/p2 ,

where the second inequality follows by Hölder’s inequality. Since Sin
P→ θi and exp(x) is

continuous on A, it follows exp(p1α|Sin|) P→ exp(p1α|θi|) and exp(p1α||Sn||) P→ exp(p1α||θ||).
Furthermore, the assumption E| exp(p1α||Sn||)| < ∞ implies, by the dominated con-

vergence theorem, that E[exp(p1α||Sn||)]→E[exp(p1α||θ||)] as n → ∞ and therefore

E[exp(p1α||Sn||)] = O(1). It follows

E[|ϕ(Sn)|I{B̄(Sn)}] ≤ CE1/p1 [exp(p1α||Sn||)](P (|Sn − θ| > N))1/p2

= O(1)O(n−(q+1)/p2). (8.4.13)

The result follows from 8.4.12 and 8.4.13.

Lemma 8.16 (Martinez) Under assumptions 8.1,8.10,8.11,8.12, 8.14 and 8.15

E[ϕ(Sn)I{Sn ∈ A2(Sn)}] = O(n−(q+1)/p2)

Proof. Since ϕ ∈ Hα,β, ∃ a finite C such that |ϕ(Sn)| ≤ C exp(β/||Sn||) on A2 and we
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have

E[|ϕ(Sn)|I{Sn ∈ A2}] ≤ CE[exp(β/||Sn||)I{Sn ∈ A2}]

≤ CE1/p1 [exp(p1β/||Sn||)](P (I{Sn ∈ A2}))1/p2

≤ CE1/p1 [exp(p1β/||Sn||)](P (I{||Sn − θ||2 ≥ δ}))1/p2 ,

where the second inequality follows from Hölder’s inequality. Since Sin
P→ θi, ||Sn|| P→

||θ||. By continuity of the expression exp(p1β/||x||) at θ, it follows by proposition A.18,

exp(p1β/||Sn||) P→ exp(p1β/||θ||). Furthermore, assumption 8.14 implies, by the domi-

nated convergence theorem, E[exp(p1β/||Sn||)]→E[exp(p1β/||θ||)] as n → ∞ and there-

fore E[exp(p1β/||Sn||)] = O(1). It follows

E[|ϕ(Sn)|I{Sn ∈ A2}] ≤ CE1/p1 [exp(p1β/||Sn||)]
(

E[ ||Sn − θ||p2(q+1)
2 ]

δp2(q+1)

)1/p2

= O(1)O(n−(q+1)/p2). (8.4.14)

and (8.4.14) gives the result.

Theorem 8.17 (Martinez) Given ϕ(S1n, · · · , Srn) : A ⊂ R
r → R, under assumptions

8.1 and 8.10 through 8.16, it follows

E[ϕ(S1n, · · · , Srn)] = ϕ(θ1, · · · , θr)+

q
∑

j=1

1

j!

∑

i1

· · ·
∑

ir

[

∂jϕ

∂si1
1 . . . ∂s

ir
r

]

s=θ

E[(S1n − θ1)
i1 . . . (Srn − θr)

ir] +O(n−(q+1)/p2),

with i1 + · · · + ir = j, s = (s1, · · · , sr) and θ = (θ1, · · · , θr).

Proof. The proof is a generalization of the one dimensional theorem. The multivariate

Taylor expansion of ϕ(Sn) in A1 is given by ϕ(Sn) = Qq(Sn) +Rq(Sn), where

Qq(Sn) = ϕ(θ1, · · · , θr)+

q
∑

j=1

1

j!

∑

i1

· · ·
∑

ir

[

∂jϕ

∂si1
1 . . . ∂s

ir
r

]

s=θ

(S1n − θ1)
i1 . . . (Srn − θr)

ir,
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for i1 + · · · + ir = j and

Rq(Sn) =
1

(q + 1)!

∑

i1

· · ·
∑

ir

[

∂jϕ

∂si1
1 . . . ∂s

ir
r

]

s=θ+η(Sn−θ)

(S1n − θ1)
i1 . . . (Srn − θr)

ir,

for i1 + · · ·+ ir = q+1, 0 ≤ η ≤ 1. The expected value of ϕ(Sn) can be written as follows

E[ϕ(Sn)] = E[ϕ(Sn)I{Sn ∈ A1}] +E[ϕ(Sn)I{Sn ∈ A2}]

+E[ϕ(Sn)I{Sn ∈ A3}]. (8.4.15)

From lemmas 8.15 and 8.16, E[ϕ(Sn)I{Sn ∈ A2}] = O(n−(q+1)/p2) and E[ϕ(Sn)I{Sn ∈
A3}] = O(n−(q+1)/p2), respectively. Denote Tn = E[ϕ(Sn)I{Sn ∈ A1}] and

Tn =E[Qq(Sn)I{Sn ∈ A1}] +E[Rq(Sn)I{Sn ∈ A1}]

=E[Qq(Sn)] −E[Qq(Sn)I{Sn ∈ A2}]

−E[Qq(Sn)I{Sn ∈ A3}] +E[Rq(Sn)I{Sn ∈ A1}].

Given Zn = θ+ η(Sn − θ) ∈ A1, and since all partial and total derivatives of order q + 1

are continuous and bounded,

E[|Rq(Sn)|I{Sn ∈ A1}] ≤ KE[|(S1n−θ)i1 · · · (Srn−θ)ir |] ≤ KE[|S1n−θ|i1 · · · |Srn−θ|ir ]

≤ K
{

[E|S1n − θ|q+1]i1 · · · [E|Srn − θ|q+1]ir
}1/(q+1)

= O(n−(q+1)/p2), (8.4.16)

where the third inequality follows from lemma F.2. By lemma 8.15, lemma 8.16 and

(8.4.16), Tn = E[Qq(Sn)]+O(n−(q+1)/p2), and (8.4.15) becomes E[ϕ(Sn)] = E[Qq(Sn)]+

O(n−(q+1)/p2).

We next consider a rational function ϕ(x) : A ⊂ R
r → R of the form ϕ(x) =

Q1(x)/Q2(x) where Q1 and Q2 are polynomials. Using the Euclidean norm || · ||2, we

define subsets A1(x) = {x ∈ R
r : ||x− θ||2 ≤ δ}, A2(x) = {x ∈ R

r : ||Q2(x)||2 < δ1} and

A3(x) = (A1(x) ∪A2(x))
c with δ > 0, δ1 > 0 such that A1 ∩A2 = ∅, A = A1 ∪A2 ∪A3.
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Jα,β denotes the class of rational functions on A such that

|ϕ(x)| = O(eα||x||) as ||x|| → ∞.

|ϕ(x)| = O(eβ/||Q2(x)||) as ||Q2(x)|| → 0.

Sin is a one dimensional statistic for i = 1, . . . , r and P (Sn ≡ (S1n, · · · , Srn) ∈ A) = 1.

Assumption 8.17 E[exp(p1α||Sn||)] <∞ and E[exp(p1β/||Q2(Sn)||)] <∞.

Assumption 8.18 ϕ ∈ Jα,β and E|ϕ(Sn)| <∞.

Lemma 8.18 (Martinez) Under assumptions 8.1, 8.10,8.11,8.12,8.17 and 8.18

E[ϕ(Sn)I{Sn ∈ A3(Sn)}] = O(n−(q+1)/p2).

Proof. ϕ ∈ Jα,β implies there exists a constant C, independent of x, such that |ϕ(x)| ≤
C exp(α||x|| + β/||Q2(x)||) ∀x ∈ A3. Let N > δ and define sets B(x) = {x : ||x− θ||2 <
N} − (A1 ∪A2) and B̄(x) = {x : ||x− θ||2 ≥ N} −A2. It follows

E[ϕ(Sn)I{Sn ∈ A3(Sn)}] = E[ϕ(Sn)I{Sn ∈ B(Sn)}] +E[ϕ(Sn)I{Sn ∈ B̄(Sn)}].

By continuity of ϕ on A3(x), |ϕ(Sn)| ≤ M on B(Sn) for some constant M independent

of n. It follows by Markov’s inequality

E[ϕ(Sn)I{Sn ∈ B(Sn)}] ≤MP (Sn ∈ B(Sn)) ≤MP (||Sn − θ||2 ≥ δ)

≤ M

δp2(q+1)
E[ ||Sn − θ||p2(q+1)

2 ] = O(n−(q+1)), (8.4.17)

where (8.4.12) is used in the last equality. On B̄(Sn), |ϕ(Sn)| ≤ C exp(α||Sn||+β/||Q2(x)||)
and it follows

E[ϕ(Sn)I{Sn ∈ B̄(Sn)}] ≤ CE[exp(α||Sn|| + β/||Q2(Sn)||)I{Sn ∈ B̄(Sn)}]

≤ CE1/p1 [exp(p1α||Sn|| + p1β/||Q2(Sn)||)]P (||Sn − θ||2 > N))1/p2 ,

where the second inequality is by Hölder’s inequality. Since Sin
P→ θi, ||Sn|| P→ ||θ|| and
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||Q2(Sn)|| P→ ||Q2(θ)||. By continuity of exp(p1β/||Q2(x)||) and exp(p1α||x||) at θ, it fol-

lows by proposition A.18, exp(p1α||Sn||+p1β/||Q2(Sn)||) P→ exp(p1α||θ||+p1β/||Q2(θ)||).
Furthermore, assumption 8.17 implies, by the dominated convergence theorem,

E[exp(p1α||Sn|| + p1β/||Q2(Sn)||)]→E[exp(p1α||θ|| + p1β/||Q2(θ)||)] as n→ ∞,

and E[exp(p1α||Sn|| + p1β/||Q2(Sn)||)] = O(1). It follows

E[|ϕ(Sn)|I{B̄(Sn)}] ≤ O(1)(P (|Sn − θ| > N))1/p2 = O(n−(q+1)/p2). (8.4.18)

The result follows from 8.4.17 and 8.4.18.

Lemma 8.19 (Martinez) Under assumptions 8.1,8.10,8.11,8.12, 8.17 and 8.18

E[ϕ(Sn)I{Sn ∈ A2(Sn)}] = O(n−(q+1)/p2).

Proof. Since ϕ ∈ Jα,β, ∃ a finite C such that |ϕ(Sn)| ≤ C exp(α||Sn|| + β/||Q2(Sn)||) on

A2 and we have

E[|ϕ(Sn)|I{Sn ∈ A2}] ≤ CE[exp(α||Sn|| + β/||Q2(Sn)||)I{Sn ∈ A2}]

≤ CE1/p1 [exp(p1α||Sn|| + p1β/||Q2(Sn)||)](P (I{Sn ∈ A2}))1/p2

≤ CE1/p1 [exp(p1α||Sn|| + p1β/||Q2(Sn)||)](P (I{||Sn − θ||2 ≥ δ}))1/p2 ,

where the second inequality follows from Hölder’s inequality. By the same arguments

given in lemma 8.18, E[exp(p1α||Sn|| + p1β/||Q2(Sn)||)] = O(1) and it follows

E[|ϕ(Sn)|I{Sn ∈ A2}] ≤ O(1)

(

E[ ||Sn − θ||p2(q+1)
2 ]

δp2(q+1)

)1/p2

= O(n−(q+1)/p2). (8.4.19)

Theorem 8.20 (Martinez) Given

ϕ(S1n, · · · , Srn) = Q1(S1n, · · · , Srn)/Q2(S1n, · · · , Srn) : A ⊂ R
r → R,
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where Q1 and Q2 are polynomials, under assumptions 8.1, 8.10,8.11,8.12,8.16, 8.17 and

8.18, it follows

E[ϕ(S1n, · · · , Srn)] = ϕ(θ1, · · · , θr)

+

q
∑

j=1

1

j!

∑

i1

· · ·
∑

ir

[

∂jϕ

∂si1
1 . . . ∂s

ir
r

]

s=θ

E[(S1n − θ1)
i1 . . . (Srn − θr)

ir]

+O(n−(q+1)/p2),

with i1 + · · · + ir = j, s = (s1, · · · , sr) and θ = (θ1, · · · , θr).

Proof. The proof follows identical to that of theorem 8.17 with lemmas 8.15 and 8.16

replaced by lemmas 8.18 and 8.19, respectively.

The moment conditions given by assumptions 8.4 and 8.12 can be quite restrictive

and might not be satisfied, for example, in situations where strong dependencies between

the variables exist. The following theorems are versions of theorems 8.17 and 8.20 with

the moment conditions removed.

Theorem 8.21 (Martinez) Given ϕ(S1n, · · · , Srn) : A ⊂ R
r → R, under assumptions

8.1, 8.10, 8.11,and 8.13 through 8.16, it follows

E[ϕ(S1n, · · · , Srn)] = ϕ(θ1, · · · , θr)

+

q
∑

j=1

1

j!

∑

i1

· · ·
∑

ir

[

∂jϕ

∂si1
1 . . . ∂s

ir
r

]

s=θ

E[(S1n − θ1)
i1 . . . (Srn − θr)

ir]

+O
(

E1/p2

[

||Sn − θ||p2(q+1)
2

])

,

with i1 + · · · + ir = j, s = (s1, · · · , sr) and θ = (θ1, · · · , θr).

As can be seen from the statement of the theorem, the price paid for removing the

moment conditions from the assumptions is an order condition in the approximation of

the expected value which depends non-trivially on central moments of the statistics. In

the next chapter, we will take a closer look at these order expressions to understand their

dependence on the data size n and the correlation of the statistics.
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Chapter 9

Satisfying the conditions of the

Delta Method

In Chapter 8, we discussed algorithms for obtaining approximations of the expected value

of a function ϕ of r statistics S1n, · · · , Srn. Under certain conditions, we showed such

an approximation consists of the Taylor polynomial of degree q, plus terms of order

O(n−(q+1)).

Now, consider the scalar case, k = 1, of the forecasting problem described in Chapter

6 with processes {Xτ} and {Yτ}. Π1,n and Π2,n are given by

Π1,n = Yt+1Xt

( t−1∑

τ=t−n

X2
τ

)−1
t−1∑

τ=t−n

Yτ+1Xτ ,

Π2,n =
[( t−1∑

τ=t−n

X2
τ

)−1
Xt

t−1∑

τ=t−n

Yτ+1Xτ

]2
.

Define the statistics

S1,n =
1

n

t−1∑

τ=t−n

Yt+1XtYτ+1Xτ , S2,n =
1

n

t−1∑

τ=t−n

X2
τ , S3,n =

1

n

t−1∑

τ=t−n

XtYτ+1Xτ .

(9.0.1)

It follows Π1,n = S1,n/S2,n and Π2,n = (S3,n/S2,n)2. The objective is to apply theorem

8.20 to find approximations to E[S1,n/S2,n] and E[(S3,n/S2,n)2]. In the sections to follow,

we examine conditions necessary for the Delta method theorems of Chapter 8 to hold.
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9.1 Laws of large numbers

In this section we examine conditions on the processes {Xi} and {Yi} necessary for

assumptions 8.3 and 8.11 of Chapter 8 to hold.

Assumptions 8.3 and 8.11 can be satisfied with appropriate consistency results. For

this, we consider the most general framework consisting of dependent heterogeneously

distributed observations. To obtain the adequate laws of large numbers, we require

conditions on the dependence of a sequence known as mixing conditions. We begin with

some definitions.

Definition 9.1 The Borel σ-field generated by {Zt, t = n, . . . , n+m}, denoted Bn+m
n =

σ(Zn, . . . , Zn+m) is the smallest σ-algebra of Ω that includes

• all sets of the form ×n−1
i=1 R

q ×n+m
i=n Bi ×∞

i=n+m+1 R
q, where each Bi ∈ Bq;

• the complement Ac of any set A in Bn+m
n ;

• the union ∪∞
i=1Ai of any sequence {Ai} in Bn+m

n .

Definition 9.2 Let Bn
−∞ ≡ σ(. . . , Zn) be the smallest collection of subsets of Ω that

contains the union of the σ-fields Bn
a as a → −∞; let B∞

n+m = σ(Zn+m, . . . ) be the

smallest collection of subsets of Ω that contains the union of the σ-fields Ba
n+m as a→ ∞.

Intuitively, Bn
−∞ can be viewed as representing all the information contained in the past

of the sequence {Zs} up to time n and B∞
n+m represent all the information contained in

the future of the sequence {Zs} beginning from time n+m.

The following definition from [162] presents measures which describe weak depen-

dence or asymptotic independence of a sequence {Xτ}.

Definition 9.3 Let G and H be σ-fields and define

α(G,H) ≡ sup
{G∈G,H∈H}

|P (GH) − P (G)P (H)|,

ρ(G,H) ≡ sup
X∈L2(G),Y ∈L2(H)

|EXY −EXEY |√
VarXV arY

,



296

ϕ(G,H) ≡ sup
{G∈G,H∈H:P (G)>0}

|P (H|G) − P (H)|,

ψ(G,H) ≡ sup
{G∈G,H∈H:P (G)P (H)>0}

|P (GH) − P (G)P (H)|
P (G)P (H)

,

β(G,H) ≡ E(tvarG∈G |P (G|H) − P (G)|),

λ(G,H) ≡ sup
X∈L1/α(G),Y ∈L1/β(H)

|EXY −EXEY |
||X||1/α||Y ||1/β

,

where tvar is total variation and ||X||p = (E|X|p)1/p.

The following definition provides two quantities which measure the dependence existing

between two events separated by at least m time periods.

Definition 9.4 A sequence of random vectors {Zs}, with Bn
−∞ and B∞

n+m as above, is

1. α-mixing or strong mixing if α(m) ≡ supn α(Bn
−∞,B∞

n+m) → 0 as m→ ∞,

2. ρ-mixing if ρ(m) ≡ supn ρ(Bn
−∞,B∞

n+m) → 0 as m→ ∞,

3. ϕ-mixing or uniformly strong mixing if ϕ(m) ≡ supn ϕ(Bn
−∞,B∞

n+m) → 0 as m →
∞,

4. ψ-mixing if ψ(m) ≡ supn ψ(Bn
−∞,B∞

n+m) → 0 as m→ ∞,

5. absolutely regular if β(m) ≡ supn β(Bn
−∞,B∞

n+m) → 0 as m→ ∞,

6. (α, β)-mixing if λ(m) ≡ supn λ(Bn
−∞,B∞

n+m) → 0 as m→ ∞.

The following definition is required to state the law of large numbers for mixing sequences.

Definition 9.5 Let a ∈ R. (i) If ϕ(m) = O(m−a−ε) for some ε > 0, then ϕ is of size

−a. (ii) If α(m) = O(m−a−ε) for some ε > 0, then α is of size −a.

The following law of large numbers, based on the concept of mixing, applies to heteroge-

neously dependent sequences.
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Theorem 9.6 (McLeish) Let {Zt} be a sequence of scalars with finite means µt ≡
E[Zt] and suppose that

∑∞
t=1(E|Zt − µt|1+δ)/t1+δ <∞ for some 0 < δ ≤ r where r ≥ 1.

If ϕ is of size −r/(2r − 1) or α is of size −r/(r − 1), r > 1, then Z̄n − µ̄n
a.s.→ 0.

Proof. See [100] (Theorem 2.10).

Corollary 9.7 (White) Let {Zτ} be a sequence with ϕ of size −r/(2r− 1), r ≥ 1, or α

of size −r/(r − 1), r > 1, such that E|Zτ |r+δ < ∆ <∞ for some δ > 0 and all s. Then

Z̄n − µ̄n
a.s.→ 0.

Proof. See [153] (Corollary 3.48).

We next apply corollary 9.7 to the sequences of statistics S1n, S2n, and S3n of the

forecasting problem to obtain the consistency required by the Delta method theorems.

Proposition 9.8 (Martinez) Let {Xτ} be a sequence of scalars with ϕ being of size

−r/(2r − 1), r ≥ 1, or α of size −r/(r − 1), r > 1, such that µτ ≡ E[X2
τ ] < ∞ and

E|X2
τ |r+δ < ∆ <∞ for some δ > 0 and all s. Then S2n − µ̄n

a.s.→ 0.

Proof. Given the sequence {Xτ} is ϕ-mixing of size −r/(2r − 1), r ≥ 1, or α-mixing of

size −r/(r − 1), r > 1, by theorem A.40 {X2
s } is a sequence with ϕ of size −r/(2r − 1),

r ≥ 1, or α of size −r/(r − 1), r > 1. The result follows applying corollary 9.7 with

Zτ = X2
s .

Proposition 9.9 (Martinez) Let {Xτ} and {Yτ} be sequences of scalars with ϕ of size

−r/(2r−1), r ≥ 1, or α of size −r/(r−1), r > 1, such that µτ ≡ E[Yt+1XtYτXs−1] <∞
and E|Yt+1XtYτXs−1|r+δ < ∆ <∞ for some δ > 0 and all s. Then S1n − µ̄n

a.s.→ 0.

Proof. Applying theorem A.40, {Yt+1XtYτXs−1} is a sequence with ϕ of size −r/(2r−1),

r ≥ 1, or α of size −r/(r − 1), r > 1. The result follows applying corollary 9.7 with

Zτ = Yt+1XtYτXs−1.

Proposition 9.10 (Martinez) Let {Xτ} and {Yτ} be sequences of scalars with ϕ of size

−r/(2r − 1), r ≥ 1, or α of size −r/(r − 1), r > 1, such that µτ ≡ E[XtYτXs−1] < ∞
and E|XtYτXs−1|r+δ < ∆ <∞ for some δ > 0 and all s. Then S3n − µ̄n

a.s.→ 0.

Proof. The proof follows as that of proposition 9.9.
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9.2 Moment inequalities for sums of random variables

For the application of the Delta method theorems of Chapter 8, certain moment con-

ditions must be satisfied. In the previous section, we examined laws of large numbers

for the statistics involved in the forecasting problem of Chapter 2. These laws of large

numbers essentially warranty some level of stochastic convergence of a sample mean of

statistics of the sequences {Xτ} and {Yτ} to population means. In this section, we ex-

amine further conditions to determine rates at which the sample means converges to the

respective population means. These rates of convergence are expressed by assumptions

8.4 and 8.12 of Chapter 8.

Consider a sequence of statistics {aτ} and write Sn = n−1
∑
aτ for the sample mean.

For identically distributed sequences, we want to understand the n dependence of the

central moments E(Sn −θ)k where θ = E[aτ ]. For heterogeneously distributed sequences

we study the central moments E(Sn − θn)k where θτ = E[aτ ].

We now present the most significant moment inequality, results in the literature

beginning with some covariance inequalities.

Theorem 9.11 (Theorem 17.2.3 in [77]) Suppose the strictly stationary process {Xτ}
satisfies the ϕ-mixing condition, and let the random variables ξ and η, respectively,

be measurable with respect to Bn
−∞ and B∞

n+m. If E|ξ|p < ∞ and E|η|q < ∞ with

p > 1, q > 1, 1/p + 1/q = 1, then

|Eξη −EξEη| ≤ 2ϕ(m)1/pE1/p|ξ|pE1/q|η|q.

Theorem 9.12 (Lemma 2.1 in [38]) Let the strictly stationary process {Xτ} satisfy

the strong mixing condition, and let the random variables ξ and η, respectively, be mea-

surable with respect to Bn
−∞ and B∞

n+m; moreover, assume E|ξ|p < ∞ for p > 1 and

|η| < C a.s. Then

|Eξη −EξEη| ≤ 6CE1/p|ξ|pα(m)1/q,

where q is such that 1/q + 1/p = 1.
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Corollary 9.13 (Corollary in [38]) Under the assumptions of theorem 9.12, let the

moments E|ξ|p and E|η|q exist with 1/q + 1/p < 1. Then

|Eξη −EξEη| ≤ 12E1/p|ξ|pE1/q|η|qα(m)1−1/q−1/p.

Other covariance inequalities for (α, β)-mixing sequences, ρ-mixing sequences and

ψ-mixing sequences can be found in [162]. We are mainly interested in results concern-

ing moment inequalities of partial sums. The next section presents results for sums of

independent random variables.

9.2.1 Inequalities for moments of sums of independent random vari-

ables

Given an arbitrary sequence of random variables {Xτ}, the following inequalities hold

E|Sn|p ≤
n∑

τ=1

E|Xτ |p, 0 < p ≤ 1, (9.2.1)

E|Sn|p ≤
n∑

τ=1

np−1E|Xτ |p, p > 1, (9.2.2)

where Sn =
∑n

τ=1Xτ . Inequalities (9.2.1) and (9.2.2) follow from the elementary in-

equalities

∣
∣
∣

n∑

τ=1

aτ

∣
∣
∣

p
≤

n∑

τ=1

|aτ |p, 0 < p ≤ 1

∣
∣
∣

n∑

τ=1

aτ

∣
∣
∣

p
≤ np−1

n∑

τ=1

|aτ |p, p > 1,

for every positive integer n and real numbers a1, · · · , an. Inequalities (9.2.1) and (9.2.2)

can be strengthened with additional assumptions, as the following theorems demonstrate.

Theorem 9.14 (theorem 2.9 in [115]) Let the sequence X1, · · · , Xn be independent

random variables with E[Xτ ] = 0, τ = 1, · · · , n, Sn =
∑n

τ=1Xτ and let p ≥ 2. Define

Mp,n =

n∑

τ=1

E|Xτ |p, Bn =

n∑

τ=1

E[X2
τ ].
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Then

E|Sn|p ≤ c(p)(Mp,n +Bp/2
n ). (9.2.3)

Inequality (9.2.3) is called the Rosenthal inequality.

Theorem 9.15 (theorem 2.10 in [115]) Let X1, · · · , Xn be a sequence of indepen-

dent random variables with E[Xτ ] = 0, τ = 1, · · · , n, and let p ≥ 2.Then

E|Sn|p ≤ C(p)np/2−1Mp,n, (9.2.4)

where C(p) is a positive constant depending only on p.

Theorem 9.16 (theorem 2.11 in [115]) Let X1, · · · , Xn be a sequence of indepen-

dent random variables with E[Xτ ] = 0, τ = 1, · · · , n, Sn =
∑n

τ=1Xτ and let p ≥ 2.

Then

E|Sn|p ≤ c(p)



1 +

(
n∑

τ=1

P (Xτ 6= 0)

)p/2−1


Mp,n. (9.2.5)

If the sum
∑n

τ=1 P (Xτ 6= 0) grows slower than n, then (9.2.5) is a better estimate than

(9.2.4). The following theorems generalize the previous theorems by assuming p > 1

instead of p ≥ 2.

Theorem 9.17 (theorem 2.12 in [115]) Let X1, · · · , Xn be a sequence of indepen-

dent random variables and let p > 1. Define

Mp,n =
n∑

τ=1

E|Xτ |p, Dn =
n∑

τ=1

E|Xτ |.

Then

E|Sn|p ≤ c(p)(Mp,n +Dp
n), (9.2.6)

where Sn =
∑n

τ=1Xτ and c(p) is a positive constant depending only on p.
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Theorem 9.18 (theorem 2.13 in [115]) Let X1, · · · , Xn be a sequence of indepen-

dent random variables, Sn =
∑n

τ=1Xτ and let p > 1. Then

E|Sn|p ≤ c(p)



1 +

(
n∑

τ=1

P (Xτ 6= 0)

)p−1


Mp,n. (9.2.7)

Another type of inequality called the Marcinkiewics-Zygmund inequality is of impor-

tance. Brillinger in [26] gives a Marcinkiewics-Zygmund inequality for a sequence of

i.i.d. random variables.

Theorem 9.19 ( [26]) Let X1, . . . , Xn be a sample from a distribution with cdf F (x)

having mean zero. If there exists m, m ≥ 2, such that E|X|m <∞, then there exists n0

such that E|X1 + · · · +Xn|m < Knm/2 for all n > n0 and some positive K.

9.2.2 Inequalities for moments of sums of dependent random variables

Doob in [44] presents a moment inequality for a stationary Markov sequence satisfying

Doeblin’s condition.

Theorem 9.20 (Lemma 7.4 in [44]) Let {Xτ} be a stationary aperiodic Markov se-

quence which is Markov ergodic and satisfies Doeblin’s condition and E|Xτ |v ≤ C for all

s ≥ 1, some v > 2, and some C < ∞. Then E|∑a+n
i=a+1Xi|v ≤ Knv/2 for all a ≥ 0, all

n ≥ 1 and some K <∞.

Stout in [136] obtains the same moment inequality as Doob for a martingale difference

sequence. Yoshihara in [160] provides even order moment inequalities for weighted partial

sums of ϕ-mixing processes.

Theorem 9.21 (Theorem 1 in [160]) Let {ξτ} be ϕ-mixing. We assume that for an

even integer m ≥ 2, E[ξτ ] = 0 and E|ξτ |m ≤M τ = 1, 2, · · · , and

∞∑

i=1

(i+ 1)m/2−1ϕ(i)1/m <∞.
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Then, for every sequence {as} and for every integer n

E
[( b+n∑

i=b+1

aiξi

)m]

≤ cmA
m
b,n,

for all b ≥ 0, n ≥ 1 where cm is an absolute constant depending only on m and A2
b,n =

∑b+n
i=b+1 a

2
i .

Theorem 9.22 (theorem 3 in [46]) Let {Xτ} be a sequence of centered ϕ-mixing

random variables with |Xτ | ≤ 1 a.s., E[X2
τ ] ≤M ∀n, ∃q ∈ N, q ≥ 2 then

|E[Sq
n]| ≤ K(ϕ, q)

[q/2]
∑

i=1

niM i,

where Sn =
∑n

τ=1Xτ and K(ϕ, q) is a constant polynomial of (Φ0(1/2), · · · ,Φq−1(1/2))

and

Φa(b) =

∞∑

i=0

(i+ 1)aϕb
i .

The first results for strong mixing processes were given by Yoshihara in [160]. The

following result is for strong mixing processes which need not be strictly stationary.

Theorem 9.23 (Theorem 3 in [160]) Let {ξτ} be a strong mixing sequence with co-

efficient α(n). We assume that for some δ > 0 and for an even integer m ≥ 2, E[ξτ ] = 0,

E|ξτ |m+δ ≤ M < ∞ and
∑∞

i=1(i + 1)m/2−1α(i)δ/(m+δ) < ∞. Then, for every sequence

{aτ} and for every integer n

E
[( b+n∑

i=b+1

aiξi

)m]

≤ c′mA
m
b,n,

with Am
b,n =

∑b+n
i=b+1 a

m
i for all b ≥ 0, n ≥ 1 where c′m is n absolute constant depending

only on m.

Yokoyama in [159] presents moment bounds for a stationary strong mixing sequence.

Theorem 9.24 (Theorem 1 in [159]) Let {Xτ} be a strictly stationary strong mixing

sequence with E[Xτ ] = 0 and E|X1|r+δ < ∞ for some r > 2 and δ > 0. If
∑∞

i=0(i +
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1)r/2−1α(i)δ/(r+δ) <∞, then there exists a constant K such that

E|Sn|r ≤ Knr/2, (9.2.8)

with n ≥ 1 and Sn =
∑n

i=1Xi.

Theorem 9.25 (Theorem 2 in [159]) Let {Xτ} be a strictly stationary strong mixing

sequence with E[Xτ ] = 0 and |X1| ≤ C < ∞ a.s.. If
∑∞

i=1(i + 1)r/2−1α(i) < ∞, then

(9.2.8) holds.

Theorem 9.26 (theorem 10 in [46]) Let {Xτ} be a strong mixing sequence with |Xτ | ≤
1 a.s., E[X2

τ ] ≤ M ∀n, ∃δ > 0, q ∈ N, q ≥ 2, Sn =
∑n

τ=1Xτ , Aq−2(1/2) < ∞ with

Aa(b) =
∑∞

i=0(i+ 1)aαb, then

|E[Sq
n]| ≤ k(q, α)

[q/2]
∑

i=1

niM i.

Theorem 9.27 (theorem 11 in [46]) Let {Xτ} be a centered strong mixing sequence

of random variables and Sn =
∑n

τ=1Xτ such that

Mh = sup{||Xτ ||h+δ, n ≥ 0} <∞ and Ah−2(δ/(h + δ)) <∞,

with Aa(b) =
∑∞

i=0(i+ 1)aαb. Then

|E[Sq
n]| ≤ k′(q, α)

[q/2]
∑

i=1

niM q
q−2i+2.

For moment inequalities of ρ-mixing sequences, early work is due to Peligrad [109,

110] which was later improved and generalized by Shao in [128, 129]. Some of the proofs

to the following theorems can be found in [162].

Theorem 9.28 Let {Xτ} be a ρ-mixing sequence with E[Xτ ] = 0, E[X2
τ ] < ∞ for each

τ ≥ 1. Then for any ε > 0, there exists a C = C(ε) > 0 such that

E[S2
k(n)] ≤ Cn exp






(1 + ε)

[log n]
∑

i=0

ρ(2i)






max

k<i≤k+n
E[X2

i ],
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for each k ≥ 1 and n ≥ 1, where Sk(n) =
∑k+n

i=k+1Xi.

Theorem 9.29 Let {Xτ} be a ρ-mixing sequence with E[Xτ ] = 0,
∑

τ E|Xτ |2+δ < ∞
for some δ ≥ 0 and Sk(n) =

∑k+n
i=k+1Xi. Then, for any ε > 0, there exists a C =

C(δ, ρ(. . . ), ε) > 0, such that for each n ≥ 2

E|Sk(n)|2+δ ≤ C
{(

n exp
{

(1 + ε)

[log n]
∑

i=0

ρ(2i)
}

max
k<i≤k+n

EX2
i

)1+δ/2

+ n exp
{

C

[log n]
∑

i=0

ρ2/(2+δ)(2i)
}

max
k<i≤k+n

E|Xi|2+δ
}

.

Theorem 9.30 Let {Xτ} be a ρ-mixing sequence with E[Xτ ] = 0, E|Xτ |q < ∞, q ≥
2, Sk(n) =

∑k+n
i=k+1Xi and E[S2

k(n)] ≤ nh(n)maxk<i≤k+nE
2
i . Suppose there exists a

function h(n) and there exists a positive integer n0 and a constant 0 < θ < 21−2/(q∧3)

such that

max(h([n/2]), h(n − [n/2])) ≤ θh(n),

for n ≥ n0. Furthermore, when q > 3 assume that there exists a C > 0 such that

h(n) ≥ 1

C
exp

{

− C

[log n]
∑

i=0

ρ2/q(2i)
}

.

Then there exists a constant K = K(q, n0, θ, C, ρ(·)), such that for every k ≥ 0, n ≥ 1

E|Sk(n)|q ≤ K
{

(nh(n) max
k<i≤k+n

EX2
i )q/2 + n exp

{

K

[log n]
∑

i=0

ρ2/q(2i) max
k<i≤k+n

E|Xi|q
}

.

A finite family {X1, · · · , Xm} of r.v.’s is associated if for any two coordinate-wise

none-decreasing functions f, g on R
m, Cov(f(X1, · · · , Xm), g(X1, · · · , Xm)) > 0 holds

whenever the covariance is defined. An infinite family is associated if every finite sub-

family is associated.

Theorem 9.31 (theorem 1 in [21]) Let {Xτ} be a sequence of associated random

variables with E[Xτ ] = 0 and supj∈NE|Xj |r+δ < ∞ for some r > 2 and δ > 0 and



305

Sn =
∑n

τ=1Xτ . Assume u(n) = O(n−(r−2)(r+δ)/2δ). Then there is a constant B not

depending on n such that for all n ∈ N

sup
m∈N∪{0}

E|Sn+m − Sm| ≤ Bnr/2.

For the following theorem, we define, for q > 1 and any A > q, the class Φ2,A of

Orlicz functions as follows:

Φ2,A = {φ : R
+ → R

+;φ convex, φ(x)/xq increasing, φ(x)/xA decreasing}.

Theorem 9.32 (theorem 1 in [122]) Assume M2,α < ∞ and let φ be some element

of Φ2,A such that E[φ(|X0|)] <∞. Let S∗
n = supj≤n |Sj| with Sn =

∑n
τ=1Xτ . Then there

exists some positive constant CA depending only on A such that

E[φ(S∗
n)] ≤ CA(φ(

√

nM2,α) + nMφ,α,n).

Theorem 9.33 (theorem 1 in [45]) Let {Xτ} be a sequence of centered random vari-

ables fulfilling for some fixed q ∈ N, q ≥ 2 Cr,q = O(r−q/2) as r → ∞ with Cr,q ≡
sup |Cov(Xt1 · · ·Xtm , Xtm+1 · · ·Xtq )| where the sumpremum is taken over all {t1, . . . , tq}
such that 1 ≤ t1 ≤ · · · ≤ tq and m, r satisfy tm+1 − tm = r. Then there exists a positive

constant B not depending on n for which |E[Sq
n]| ≤ Bnq/2 where Sn =

∑n
τ=1Xτ .

For the theorem that follows, we define an AG sequence {Xτ} as a sequence fulfilling the

following inequality:

|Cov(H(Xi, i ∈ A),K(Xj , j ∈ B))| ≤
∑

i∈A

∑

j∈B

∥
∥
∥
∥

∂H

∂xi

∥
∥
∥
∥
∞

∥
∥
∥
∥

∂K

∂xi

∥
∥
∥
∥
∞

|Cov(Xi, Xj)|,

where A and B are arbitrary finite disjoint subsets of N, and H and K are real valued

functions having uniformly bounded first derivatives.

Theorem 9.34 (theorem 1 in [96]) Let r be a fixed real number, r > 2. Let {Xτ} be

a strictly stationary sequence of centered and AG random variables. Suppose, moreover,

this sequence is bounded by M . Then there exists a positive constant Cr depending only



306

on r, such that

E|Sn|r ≤ Cr

[

sr
n +

n∑

k=1

k−1∑

i=0

M r−2(i+ 1)r−2|Cov(X1, X1+i)|
]

,

where s2n := n
∑n

i=0 |Cov(X1, X1+i)|.

9.3 Finite moment generating functions

In Chapter 8, we encounter moment generating functions which are required to be fi-

nite for the Delta method theorems to hold. These assumptions, which include 8.5, 8.8,

8.13, 8.14, 8.17, depend only on the nature of the processes involved. In this section, we

present theorems providing conditions under which different moment generating functions

are finite.

Proposition 9.35 (Martinez) Consider a sequence {Xτ} of r.v’s with E[Xτ ] = θτ ,

X̄n = 1/n
∑n

τ=1Xτ , and E(Xτ − θτ )
k < ∞ for τ = 1, . . . , n and all k. If, for c > 0 a

finite constant, either of the two following conditions hold

1.
∑∞

k=0 c
k/k!E(Xτ − θτ )

k < ∞ and
∑∞

k=0(−1)kck/k!E(Xτ − θτ )
k < ∞ for τ =

1, . . . , n,

2.
∑∞

k=0 c
k/k!E|Xτ − θτ |k <∞,

then E[exp(c|X̄n|)] <∞.

Proof. First, we use the fact exp(c|X̄n|) ≤ exp(cX̄n) + exp(−cX̄n). We show under

condition 1, E[exp(cX̄n)] <∞. By Hölder’s inequality

E[exp(cX̄n)] ≤ E1/n[exp(cX1)] · · ·E1/n[exp(cXn)].

We can now prove E[exp(cXτ )] < ∞ for τ = 1, . . . , n. Condition 1,
∑∞

k=0 c
k/k!E(Xτ −

θτ )
k < ∞, implies

∑∞
k=1 c

k/k!(Xτ − θτ )
k converges absolutely a.e. and exp(cXτ ) =

∑∞
k=1 c

k/k!(Xτ − θτ )
k a.e. and E[exp(cXτ )] =

∑∞
k=0 c

k/k!E(Xτ − θτ )
k. Therefore,

we obtain the bound E[exp(cXτ )] < ∞ for τ = 1, . . . , n. Similarly, condition 1 implies
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E[exp(−cXτ )] <∞ for τ = 1, . . . , n and result is obtained. Condition 2 implies condition

1 so no proof is required.

Note, even though c > 0, E[exp(c|X̄n|)] < ∞ implies E[exp(−c|X̄n|)] < ∞. Also,

condition 2 is included in the proposition only for completeness since condition 2 im-

plies condition 1. Condition 2 is weaker but more difficult to verify than condition

1. The condition of the proposition states that if the central moments of the r.v’s

X1, . . . , Xn decay with k or grow at a rate which makes the appropriate series converge,

then E[exp(c|X̄n|)] <∞.

Example 9.36 Let {Xτ} be a sequence of i.i.d. r.v’s with {Xτ} ∼ N(θ, σ). We know

the central moments are

E(X − θ)k =
k!σk

2k/2(k/2)!
for k even,

E(X − θ)k = 0 for k odd.

It follows

∞∑

k=0

ck

k!
E(X − θ)k =

∞∑

k=0

(cσ)2k

2kk!
,

converges by the ratio test for any c and σ. Similarly, the second series of condition 1 of

proposition 9.35 converges and E[exp(c|X̄n|)] <∞ for any c, θ, σ. ut

The result of proposition 9.35 can be extended to the multivariate case.

Proposition 9.37 (Martinez) Let each of {Z1τ}, . . . , {Zmτ} be a strictly stationary

strong mixing sequence with E[Zjτ ] = θjτ , E|Zjτ − θjτ |r+δ <∞ for r > 2 and δ > 0 and

satisfying
∑∞

i=0(i+ 1)r/2−1αj(i)
δ/(r+δ) <∞ for j = 1, . . . ,m. Then E[exp(c||Z̄τ ||)] <∞

for some finite constant c > 0 with ||Z̄τ || = Z̄1τ + · · · + Z̄mτ for any τ > 0.

Proof. By proposition 9.35, E[exp(cj |Z̄jτ |)] < ∞, j = 1, . . . ,m for finite constants

c1, . . . cm. The result follows from an application of Hölder’s inequality.
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Chapter 10

Concluding remarks

10.1 Summary

In this thesis, we address the combined effects of misspecification and stochastic dynam-

ics on the forecasts of time series. The problem consists of using a linear regression

model in conjunction with the OLS estimator to form a forecast of a dependent vari-

able whose data generating process is unknown to the practitioner. The MSFE is the

forecast evaluation criterion of choice. The main consequence of interest is the existence

of optimal observation windows as a result of model misspecification. To determine the

existence of optimal observation windows, we need to understand the behavior of the

MSFE for finite values of the sample size variable n. The sample size dependence of

the square forecast error is implicit through the OLS and understanding the sample size

dependence of the MSFE has to be done through an approximation. To obtain an ap-

proximation of the MSFE, we construct an algorithm based on Taylor expansions of the

MSFE which do not require knowledge of the functional form of the DGP of the depen-

dent process. Three type of stochastic dynamics are studied: independent and identically

distributed processes, covariance stationary processes, and independent and identically

distributed processes which undergo a structural break at point in time t − nb. An ap-

proximation for each of the three stochastic dynamics is constructed which exploits their

particular characteristics. For the independent and identically distributed processes, the

MSFE approximation depends explicitly on the sample size variable n and on popula-

tion moments of the explanatory and dependent processes. For practical applications,

the population moments can be replaced by sample moments. Numerical experiments
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are carried out under the assumption that the range of the random variables be mostly

contained inside the region of convergence of the Taylor expansions. The approximation

performs well in replicating the benchmark MSFE, even when the condition that the

range of the random variables be mostly contained inside the region of convergence is

violated. Several examples of functional misspecification are explored with all resulting

in no optimal observation windows. For the covariance stationary processes, the MSFE

approximation depends implicitly on the sample size variable n through summations of

population moments of the explanatory and dependent processes. The implicit depen-

dence on the sample size variable n complicates the analysis of the SSD, but practical

applications are still feasible with sample moments. Finally, for the independent and

identically distributed processes which undergo a temporal structural break, the MSFE

approximation depends explicitly on the sample size variable n, the known variable nb,

and on population moments of the explanatory and dependent processes. In numerical

experiments, the approximation performs well in replicating the benchmark MSFE even

when the condition that the range of the random variables be mostly contained inside

the region of convergence is violated.

10.2 Some remarks

10.2.1 Monte Carlo simulations for the MSFE and OLS process

10.2.1.1 General Principles

Monte Carlo simulation are methods to estimate the expected value of a process based

on observations of the process or to estimate the expected value of functions of processes

based on observations of the processes or on observations of the functions of the processes.

At the core of Monte Carlo simulations is the idea that as the number of observations

increases we can expect stochastic convergence. In this sense, Monte Carlo simulations

rely on the concept known as a law of large numbers. Laws of large numbers have the

general form given by the following proposition.

Proposition 10.1 Given restrictions on the dependence, heterogeneity, and moments of

a sequence of random variables {Zτ}, Z̄m − µ̄m
a.s.→ 0, where Z̄m ≡ m−1

∑m
τ=1 Zτ and
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µ̄m ≡ E[Z̄m].

Four different cases can be outlined based on dependence, heterogeneity, and moments

of the processes. The four cases are: independent identically distributed observations;

independent heterogeneously distributed observations; dependent identically distributed

observations; and dependent heterogeneously distributed observations. The following

four theorems state the conditions necessary for stochastic convergence for the four cases

outlined above.

(1) Independent identically distributed observations:

Theorem 10.2 (Kolmogorov) Let {Zτ} be a sequence of i.i.d. random variables.

Then Z̄n
a.s.→ µ if and only if E|Zτ | <∞ and E[Zτ ] = µ where Z̄m ≡ m−1

∑m
τ=1 Zτ .

Proof. [119], p. 115. (2) Independent heterogeneously distributed observations:

Theorem 10.3 (Markov) Let {Zτ} be a sequence of independent random variables,

with finite means µτ ≡ E[Zτ ]. If for some δ > 0,
∑∞

τ=1(E|Zτ − µτ |1+δ)/τ1+δ <∞, then

Z̄m − µ̄m
a.s.→ 0.

Proof. [31], pp. 125-126. (3) Dependent identically distributed observations:

Theorem 10.4 (Ergodic theorem) Let {Zτ} be a stationary ergodic scalar sequence

with E|Zτ | <∞. Then Z̄n
a.s.→ µ ≡ E[Zt]

Proof. [136], p. 181. (4) Dependent heterogeneously distributed observations:

Theorem 10.5 (McLeish) Let {Zτ} be a sequence of scalars with finite means µτ ≡
E[Zτ ] and suppose that

∑∞
τ=1(E|Zτ − µτ |1+δ)/τ1+δ < ∞ for some δ, 0 < δ ≤ r where

r ≥ 1. If φ is of size −r/(2r − 1) or α is of size −r/(r − 1), r > 1, then Z̄m − µ̄m
a.s.→ 0.

φ and α are the uniform mixing and strong mixing parameters respectively.

Proof. [100], Theorem 2.10. The second and fourth cases concern covariance stationary

processes as well as non-stationary (evolutionary) processes. The laws of large numbers

for these cases establish the convergence of the average of the process realizations to the

average of the population means. If the means µτ are a constant µ, the average of process

realizations converge simply to µ. The first and third cases concern a particular subset of
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Figure 10.2: Covariance Stationary

covariance stationary processes as well as strictly stationary processes. Depending on the

nature of the process at hand, one must chose a Monte Carlo method which appropriately

applies one of the laws of large numbers described above. In what follows, we describe two

commonly used methods to build Monte Carlo simulations. The following propositions

will be useful.

Proposition 10.6 (White) Let g : R
k → R

l be a measurable function. (i) Let Zτ and

Zt be identically distributed. Then g(Zτ ) and g(Zt) are identically distributed. (ii) Let

Zτ and Zt be independent. Then g(Zτ ) and g(Zt) are independent.

Proof. [153], p.32
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Figure 10.3: Strictly Stationary

Proposition 10.7 (White) Let g be an F measurable function into R
k and define Yt ≡

g(. . . , Zt−1, Zt, Zt+1, . . . ), where Zt is q × 1. (i) If {Zτ}τ is stationary, then {Yτ}τ is

stationary. (ii) If {Zτ}τ is stationary and ergodic, then {Yτ}τ is stationary and ergodic.

Proof. [153], p. 44.

10.2.1.2 Method 1

To describe the first method, we consider the two cases of independent and identically

distributed processes and heterogeneously distributed processes. Furthermore, we will

illustrate the method for the sum statistic of the process and for measurable functions of

the sum statistic of the process.

Identically distributed processes

We construct a Monte Carlo method to estimate E[Sn] and E[g(Sn)] where Sn =
∑n

i=1Xi

and g is a measurable function. The method is constructed by generating a single i.i.d.

series {X1, X2, . . . , Xn+m−1}. From this series, we construct the following vectors:

Z1 = (X1, X2, . . . , Xn),

Z2 = (X2, X3, . . . , Xn+1),
...

Zm = (Xm, Xm+1, . . . , Xn+m−1).
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The sequence {Zτ}τ is i.i.d. m sum statistics can be constructed from these vectors as

follows:

Sn,1 =

n∑

i=1

Xi, Sn,2 =

n+1∑

i=2

Xi, . . . , Sn,m =

n+m−1∑

i=m

Xi. (10.2.1)

It follows by proposition 10.6, the process {Sn,τ}τ is i.d.d. Defining S̄n,m = 1/m
∑m

i=1 Sn,i,

from the law of large numbers, theorem 10.2, it follows:

S̄n,m
a.s.−→ E[Sn,τ ] ≡ µ.

Next, setting Yn,τ = g(Sn,τ ) with g a measurable function, it follows {Yn,τ}τ is an i.i.d.

process. With Ȳn,m = 1/m
∑m

i=1 Yn,i, it follows Ȳn,m
a.s.−→ E[Yn,τ ] = E[g(Sn,τ )] ≡ ν by

the law of large numbers, theorem 10.2.

Heterogeneously distributed processes

The method is constructed by generating a single heterogeneously distributed series

{X1, X2, . . . , Xn+m−1}. m sum statistics can be constructed from this series as follows:

Sn,1 =
n∑

i=1

Xi, Sn,2 =
n+1∑

i=2

Xi, . . . , Sn,m =
n+m−1∑

i=m

Xi. (10.2.2)

It follows that the process {Sn,τ}τ is heterogeneously distributed with E[Sn,τ ] ≡ µτ .

Defining S̄n,m = 1/m
∑m

i=1 Sn,i and µ̄m = 1/m
∑m

i=1 µi, from the law of large numbers,

theorem 10.3 and theorem 10.5, it follows:

S̄n,m − µ̄m
a.s.−→ 0.

Next, setting Yn,τ = g(Sn,τ ) with g a measurable function, it follows {Yn,τ}τ is het-

erogeneously distributed with ντ ≡ E[Yn,τ ]. With Ȳn,m = 1/m
∑m

i=1 Yn,i and ν̄m =

1/m
∑m

i=1 νi, it follows Ȳn,m − ν̄m
a.s.−→ 0 by the law of large numbers, theorem 10.3 and

theorem 10.5. Now suppose {Xτ}τ is heterogeneously distributed and in addition

E[Xτ ] = E[Xt] ≡ α, for any τ and t, (10.2.3)
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all variances are constant and finite and covariances depend only on the time lag between

Xτ and Xt. This includes a large set of weakly stationary processes. As before, the

process {Sn,τ}τ is heterogeneously distributed but (10.2.3) implies

µτ ≡ E[Sn,τ ] = E[Sn,t] ≡ µt for any t, τ, µτ ≡ µ = nα and µ̄m = µ. (10.2.4)

It follows S̄n,m
a.s.−→ µ by the LLN. As before, setting Yn,τ = g(Sn,τ ) with g a measurable

function, it follows {Yn,τ}τ is heterogeneously distributed with ντ ≡ E[Yn,τ ] = E[g(Sn,τ )].

It is important to note (10.2.4) does not imply E[g(Sn,τ )] = E[g(Sn,t)] for t 6= τ . In fact,

the equality E[g(Sn,τ )] = E[g(Sn,t)] is unlikely to hold since the expectations depend on

the distributions of Sn,τ and Sn,t which are heterogeneous. This construction makes the

use of method 2 and brute force methods inappropriate to estimate the expected value

of functions of weakly stationary processes.

10.2.1.3 Method 2

To describe the second method, we again consider the two cases of identically distributed

processes and heterogeneously distributed processes. We will illustrate the method for

the sum statistic of the process and for measurable functions of the sum statistic of the

process.

Identically distributed processes

We construct a Monte Carlo method to estimate E[Sn] and E[g(Sn)] where Sn =
∑n

i=1Xi

and g is a measurable function. The method is constructed by generating in an identical

manner m independent series of length n

{X1,1, X1,2, . . . , X1,n},
...

{Xm,1, Xm,2, . . . , Xm,n},
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where {Xi,j}j is identically distributed for each fixed i. From these series, we construct

the following vectors:

Z1 = (X1,1, X1,2, . . . , X1,n),
...

Zm = (Xm,1, Xm,2, . . . , Xm,n).

By construction, the sequence {Zτ}τ is i.i.d. m sum statistics can be constructed from

these vectors as follows:

Sn,1 =

n∑

i=1

X1,i, Sn,2 =

n∑

i=1

X2,i, . . . , Sn,m =

n∑

i=1

Xm,i. (10.2.5)

It follows from proposition 10.6, {Sn,τ}τ is an i.i.d. process. Setting S̄n,m = 1/m
∑m

i=1 Sn,i,

it follows by the law of large numbers, theorem 10.2, S̄n,m
a.s.−→ E[Sn,τ ] ≡ µ. Next, setting

Yn,τ = g(Sn,τ ) with g a measurable function, from proposition 10.6, it follows {Yn,τ}τ is an

i.i.d process. With Ȳn,m = 1/m
∑m

i=1 Yn,i, it follows Ȳn,m
a.s.−→ E[Yn,τ ] = E[g(Sn,τ )] ≡ ν

by the law of large numbers, theorem 10.2.

Heterogeneously distributed processes

We construct a Monte Carlo method to estimate E[Sn] and E[g(Sn)] where Sn =
∑n

i=1Xi

and g is a measurable function. As before, the method is constructed by generating in

the same manner, m independent series of length n

{X1,1, X1,2, . . . , X1,n},
...

{Xm,1, Xm,2, . . . , Xm,n}.

The following properties hold:

• For a fixed i, {Xi,j}j is heterogeneously distributed.

• For a fixed j, {Xi,j}i is identically distributed.

• For any j and k, {Xi,j}j and {Xl,k}k are independent for i 6= l.
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From these series, we construct the following vectors:

Z1 = (X1,1, X1,2, . . . , X1,n),
...

Zm = (Xm,1, Xm,2, . . . , Xm,n).

The sequence {Zτ}τ is i.i.d. m sum statistics can be constructed from these vectors as

follows:

Sn,1 =
n∑

i=1

X1,i, Sn,2 =
n∑

i=1

X2,i, . . . , Sn,m =
n∑

i=1

Xm,i. (10.2.6)

By proposition 10.6, {Sn,τ}τ is i.i.d. and for τ 6= t, E[Sn,τ ] = E[Sn,t] ≡ µ. Setting

S̄n,m = 1/m
∑m

i=1 Sn,i, it follows by the law of large numbers, theorem 10.2, S̄n,m
a.s.−→

E[Sn,τ ] ≡ µ. Next, setting Yn,τ = g(Sn,τ ) with g a measurable function, from proposition

10.6, it follows {Yn,τ}τ is an i.i.d process. With Ȳn,m = 1/m
∑m

i=1 Yn,i, it follows Ȳn,m
a.s.−→

E[Yn,τ ] = E[g(Sn,τ )] ≡ ν by the law of large numbers, theorem 10.2.

10.2.1.4 Heterogeneity of the OLS and MSFE processes

In this section, we first describe the heterogeneity (i.e. the extend to which the distri-

butions of a process Xτ may differ across τ) of the OLS and MSFE as processes with

respect to the forecast origin. Second, we describe the construction of Monte Carlo

simulations according to the second method described in the previous section to es-

timate the expected value of the OLS estimator and the MSFE. The OLS is given

by β̂t,n = (
∑t−1

s=t−nX
2
s )−1

∑t−1
s=t−n Ys+1Xs and the squared forecast error is given by

SFEt,n = (Yt+1 − β̂t,nXt)
2.

Let Zt = (Xt−n, . . . , Xt, Yt−n+1, . . . , Yt+1) and consider the sequence {Zτ}τ . If {Zτ}τ

is i.i.d., by proposition 10.6, {β̂τ,n}τ is i.i.d. and {SFEτ,n}τ is i.i.d. By the LLN,

theorem 10.2, 1/m
∑m

τ=t β̂τ,n
a.s.−→ E[β̂n] and 1/m

∑m
τ=t SFEτ,n

a.s.−→ MSFEn. If {Zτ}τ

is stationary and ergodic, by proposition 10.7, {β̂τ,n}τ is stationary and ergodic and

{SFEτ,n}τ is stationary and ergodic. By the LLN theorem, 10.4, 1/m
∑m

τ=t β̂τ,n
a.s.−→

E[β̂n] and 1/m
∑m

τ=t SFEτ,n
a.s.−→MSFEn.
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10.2.1.5 Monte Carlo simulations for the OLS and MSFE processes

Identically distributed observations

We construct Monte Carlo simulations to estimate the expected value of the OLS es-

timator β̂t,n and the expected value of the squared forecast error; i.e. the MSFE. We

employ the second method described in the previous section. The method is constructed

by generating, in an identical manner, m independent series of length n+1 with forecast

origin t for the X process and the Y process:

{X1,t−n, X1,t−n+1, . . . , X1,t−1, X1,t}
...

{Xm,t−n, Xm,t−n+1, . . . , Xm,t−1, Xm,t}

,

{Y1,t−n+1, Y1,t−n+2, . . . , Y1,t, Y1,t+1}
...

{Ym,t−n+1, Ym,t−n+2, . . . , Ym,t, Ym,t+1}

{Xi,j}j is identically distributed for i = 1, . . . ,m and {Yi,j}j is identically distributed for

i = 1, . . . ,m. From these series, we construct the following vectors:

Zt,n,1 = (X1,t−n, X1,t−n+1, . . . , X1,t−1, X1,t, Y1,t−n+1, Y1,t−n+2, . . . , Y1,t, Y1,t+1),

Zt,n,2 = (X2,t−n, X2,t−n+1, . . . , X2,t−1, X2,t, Y2,t−n+1, Y2,t−n+2, . . . , Y2,t, Y2,t+1),
...

Zt,n,m = (Xm,t−n, Xm,t−n+1, . . . , Xm,t−1, Xm,t, Ym,t−n+1, Ym,t−n+2, . . . , Ym,t, Ym,t+1).

The sequence of vectors {Zt,n,τ}τ is i.i.d. The OLS estimator β̂t,n,τ is constructed as a

measurable function from the elements of the vector Zt,n,τ . It follows from proposition

10.6 the sequence {β̂t,n,τ}τ is i.i.d. and by the law of large numbers 1/m
∑m

τ=1 β̂t,n,τ
a.s.−→

E[β̂t,n]. As shown in section 10.2.1.4, the expected value of the OLS is independent of the

forecast origin E[β̂t,n] = µn. In a similar manner as done for the OLS process, we con-

struct the i.i.d. process {Yτ,t+1Xτ,tβ̂t,n,τ}τ , the i.i.d. process {X2
τ,tβ̂

2
t,n,τ}τ , and the i.i.d.

process {Y 2
τ,t+1}τ . From these processes, we form the i.i.d. SFE process {SFEt,n,τ}τ and

from the law of large numbers 1/m
∑m

τ=1 SFEt,n,τ
a.s.−→ E[SFEt,n] ≡ MSFEn which, as

shown in section 10.2.1.4, is independent of the forecast origin.

Heterogeneously distributed observations

We construct Monte Carlo simulations to estimate the expected value of the OLS es-

timator β̂t,n and the expected value of the squared forecast error; i.e. the MSFE. We
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employ the second method described in section 10.2.1.3. The method is constructed by

generating, in an identical manner, m independent series of length n + 1 with forecast

origin t for the X process and the Y process:

{X1,t−n, X1,t−n+1, . . . , X1,t−1, X1,t}
...

{Xm,t−n, Xm,t−n+1, . . . , Xm,t−1, Xm,t}

,

{Y1,t−n+1, Y1,t−n+2, . . . , Y1,t, Y1,t+1}
...

{Ym,t−n+1, Ym,t−n+2, . . . , Ym,t, Ym,t+1}

The following properties hold:

• For a fixed i, {Xi,j}j is heterogeneously distributed and {Yi,j}j is heterogeneously

distributed.

• For a fixed j, {Xi,j}i is identically distributed and {Yi,j}i is identically distributed.

• For any j and k, {Xi,j}j and {Xl,k}k are independent for i 6= l and {Yi,j}j and

{Yl,k}k are independent for i 6= l.

From these series, we construct the following vectors:

Zt,n,1 = (X1,t−n, X1,t−n+1, . . . , X1,t−1, X1,t, Y1,t−n+1, Y1,t−n+2, . . . , Y1,t, Y1,t+1),

Zt,n,2 = (X2,t−n, X2,t−n+1, . . . , X2,t−1, X2,t, Y2,t−n+1, Y2,t−n+2, . . . , Y2,t, Y2,t+1),
...

Zt,n,m = (Xm,t−n, Xm,t−n+1, . . . , Xm,t−1, Xm,t, Ym,t−n+1, Ym,t−n+2, . . . , Ym,t, Ym,t+1).

The sequence of vectors {Zt,n,τ}τ is i.i.d. The OLS estimator β̂t,n,τ is constructed as a

measurable function from the elements of the vector Zt,n,τ . The process {β̂t,n,τ}τ is i.i.d.

and by the law of large numbers 1/m
∑m

τ=1 β̂t,n,τ
a.s.−→ E[β̂t,n]. The expected value of the

OLS depends on the forecast origin and the sample size E[β̂t,n] = µt,n. In a similar man-

ner as done for the OLS process, we construct the i.i.d. process {Yτ,t+1Xτ,tβ̂t,n,τ}τ ,

the i.i.d. process {X2
τ,tβ̂

2
t,n,τ}τ , and the i.i.d. process {Y 2

τ,t+1}τ . From these pro-

cesses, we form the i.i.d. SFE process {SFEt,n,τ}τ and from the law of large numbers

1/m
∑m

τ=1 SFEt,n,τ
a.s.−→ E[SFEt,n] ≡MSFEt,n which depends on the forecast origin.

Example 10.1 We consider two processes {Xτ}τ and {Yτ}τ and construct the OLS
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estimators β̂t,20 and β̂t,60 at the forecast origin t as follows:

β̂t,20 =
( t−1∑

τ=t−20

X2
τ

)−1
t−1∑

τ=t−20

Yτ+1Xτ , β̂t,60 =
( t−1∑

τ=t−60

X2
τ

)−1
t−1∑

τ=t−60

Yτ+1Xτ .

For a fixed t, β̂t,20 and β̂t,60 are two random variables. Set Zt,20 = (Xt−20, . . . , Xt, Yt−19, . . . , Yt+1)

and Zt,60 = (Xt−60, . . . , Xt, Yt−59, . . . , Yt+1). If {Zτ,20}τ is i.i.d, identically distributed or

stationary, {β̂τ,20}τ is i.i.d, identically distributed or stationary respectively. Similarly,

if {Zτ,60}τ is i.i.d, identically distributed or stationary, {β̂τ,60}τ is i.i.d, identically dis-

tributed or stationary respectively. It follows that either of the two Monte Carlo methods

described in section 10.2.1.1 can be used to estimate E[β̂t,20] ≡ µ20 or E[β̂t,60] ≡ µ60.

Method 1, β̂t,20, β̂t,60 :

We begin by generating a series of the X process of length 20m for m an integer and a

series of the Y process of length 20m and constructing m OLS estimators as follows:

{X1, . . . , X20}, {Y2, . . . , Y21}, β̂21,20 =
( 20∑

τ=1

X2
τ

)−1
20∑

τ=1

Yτ+1Xτ ,

{X21, . . . , X40}, {Y22, . . . , Y41}, β̂41,20 =
( 40∑

τ=21

X2
τ

)−1
40∑

τ=21

Yτ+1Xτ ,

...

{X20(m−1)+1 , . . . , X20m}, {Y20(m−1)+2, . . . , Y20m+1},

β̂20m+1,20 =
( 20m∑

τ=20(m−1)+1

X2
τ

)−1
20m∑

τ=20(m−1)+1

Yτ+1Xτ .

By the law of large numbers 1/m
∑m

τ=1 β̂20τ+1,20
a.s.−→ µ20.

For β̂t,60, we begin by generating a series of the X process of length 60m for m an integer
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and a series of the Y process of length 60m and constructing m OLS estimators as follows:

{X1, . . . , X60}, {Y2, . . . , Y61}, β̂61,60 =
( 60∑

τ=1

X2
τ

)−1
60∑

τ=1

Yτ+1Xτ ,

{X61, . . . , X120}, {Y62, . . . , Y121}, β̂121,60 =
( 120∑

τ=61

X2
τ

)−1
120∑

τ=61

Yτ+1Xτ ,

...

{X60(m−1)+1, . . . , X60m}, {Y60(m−1)+2, . . . , Y60m+1},

β̂60m+1,60 =
( 60m∑

τ=60(m−1)+1

X2
τ

)−1
60m∑

τ=60(m−1)+1

Yτ+1Xτ .

By the law of large numbers 1/m
∑m

τ=1 β̂60τ+1,60
a.s.−→ µ60. It is important to note β̂21,20 +

β̂41,20 + β̂61,20 6= β̂61,60 or more generally β̂21+60(m−1),20 + β̂41+60(m−1),20 + β̂60m+1,20 6=
β̂60m+1,60. By the law of large numbers

1/m
m∑

τ=1

β̂21+60(τ−1),20 + 1/m
m∑

τ=1

β̂41+60(τ−1),20 + 1/m
m∑

τ=1

β̂60τ+1,20
a.s.−→ 3µ20,

1/m

m∑

τ=1

β̂60τ+1,60
a.s.−→ µ60.

ut

Example 10.2 Let the forecaster observe a process {Yτ}τ such that the DGP, model and

forecast are as follow:

DGP : Yt = φ1Yt−1 + φ2Yt−2 + φ3Yt−3 + Ut, {Uτ} ∼ IIN(0, 1),

Model : Yt = βYt−1 + Vt,

F orecast : Ŷt+1,n = β̂t,nYt, β̂t,n =
( t−1∑

τ=t−n

Y 2
τ

)−1
t−1∑

τ=t−n

Yτ+1Yτ .

The SFE is given by SFEt,n = (Yt+1 − β̂t,nYt)
2. The goal is to estimate the MSFE,

MSFEt,n = E[SFEt,n], by the second Monte Carlo method described in section 10.2.1.1

and extensively described in section 10.2.1.5 for the OLS and the MSFE processes. Since

the DGP is a strong autoregressive process, we only need to generate the following set m
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of independent series:

{Y1,t−n, Y1,t−n+1, . . . , Y1,t, Y1,t+1},
...

{Ym,t−n, Ym,t−n+1, . . . , Ym,t, Ym,t+1}.

We form the i.i.d. sequence {Zτ}τ by defining the vectors:

Z1 = (Y1,t−n, Y1,t−n+1, . . . , Y1,t, Y1,t+1),
...

Zm = (Ym,t−n, Ym,t−n+1, . . . , Ym,t, Ym,t+1).

From this sequence of vectors, we construct the i.i.d. sequence {SFEt,n,τ}τ with SFEt,n,τ =

(Yτ,t+1 − β̂t,n,τYτ,t)
2. It follows 1/m

∑m
τ=1 SFEt,n,τ

a.s.−→ MSFEt,n. Since a strong au-

toregressive process is strictly stationary, the MSFEt,n is independent of the forecast

origin t. Figure 10.4 shows the MSFEt,n as a function of the sample size n for different

forecast origins t and with AR(3) parameters φ1 = 0.1, φ2 = 0.3, φ3 = 0.5. ut

10.2.2 Taylor algorithm v.s. brute force methods

In this section, we compare the performance of the Taylor algorithm to the performance

of brute force methods for estimating the MSFE. As with Monte Carlo simulations, the

law of large numbers is the property upon which brute force methods are constructed and

can be use to approximate population quantities from sample data. Brute force methods

are constructed from a single times series of data which represents one realization of

the process under consideration. The brute force method is constructed from a single

observed series of the explanatory variable {Xt−n−m+1, . . . , Xt}, and a single observed

series of the dependent variable {Yt−n−m+2, . . . , Yt+1}. From these series, we construct
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the following m vectors:

Z1 = (Xt−n, . . . , Xt, Yt−n+1, . . . , Yt+1),

Z2 = (Xt−n−1, . . . , Xt−1, Yt−n, . . . , Yt),
...

Zm = (Xt−n−m+1, . . . , Xt−m+1, Yt−n−m+2, . . . , Yt−m+2).

From these vectors, we can construct m realizations of the SFE as follows:

SFEn,i = Y 2
t−i+2 − 2Yt−i+2Xt−i+1β̂n,i +X2

t−i+1β̂
2
n,i, i = 1, . . . ,m,

β̂n,i =

(
t−i∑

τ=t−n−i+1

X2
τ

)−1 t−i∑

τ=t−n−i+1

Yτ+1Xτ i = 1, . . . ,m.

n is the sample size of data used in the estimation of the OLS estimator β̂n,i. n+1 is the

sample size of data used to form each of the m realizations of the SFE, SFEn,i. If the

total length of each of the series of the explanatory variables and dependent variables is

N , it follows N = n+m and for a given n, m = N −m realizations of the SFE can be

constructed. From this construction, we want to form estimates of the expected value

E[SFEn], for a given n, based on the single series of data. From the law of large numbers

it follows:

1/m

m∑

i=1

SFEn,i
a.s.−→ E[SFEn] ≡MSFEn.

This law of large numbers holds only if the sequence {Zτ}τ is i.i.d or strictly stationary.

For this reason, brute force methods cannot be applied to covariance stationary processes

or to non-stationary processes such as structural break processes. The Taylor algorithm

has been developed for structural break processes with a known break time. The MSFE

approximation from the brute force method is given by

MSFEn ≈ 1/m

m∑

i=1

SFEn,i.

For each n, the accuracy of the approximation depends crucially on the amount of data

available. For a fixed data series length N , where N = m+ n, m is the number of SFE
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realizations available for averaging, m = N − n. Therefore, fixing N fixes and limits the

largest value of n for which an estimate of the MSFE can be obtained. This value of n

is N − 1 and m = 1 and the approximation consists of only one realization of the SFE.

In general, as n increases, m decreases and the accuracy of the MSFE approximation

worsens. In what follows, we compare the Taylor algorithm to brute force methods for

forecasting problems involving i.i.d process and for forecasting problems involving strictly

stationary process.

Independent identically distributed processes

We compare the Taylor algorithm and the brute force method by qualitatively analyzing

the sources of error in both estimation procedures. For the case of i.i.d. process, the first

source of error for the Taylor algorithm comes from the fact that the Taylor expansion

is valid only inside a convergence region A but the MSFE is as follows:

MSFEn = Ē[(Yt+1 − Ŷt+1)
2|A] + Ē[(Yt+1 − Ŷt+1)

2|Ac].

The first approximation and source of error comes from assuming the term Ē[(Yt+1 −
Ŷt+1)

2|Ac] is negligible and that the truncated expectation Ē[(Yt+1 − Ŷt+1)
2|A] can be

replaced by the expectation E[(Yt+1 − Ŷt+1)
2]. The second source of error in the Taylor

approximation comes from the remainder of the Taylor series. From numerical examples,

the fourth order Taylor polynomial appears to be a very good approximation, i.e., the dif-

ference between the third order MSFE Taylor approximation and the fourth order MSFE

Taylor approximation is practically zero. Therefore, the source of error from the Taylor

remainder, given that the first approximation dealing with the region of convergence is

acceptable, will be negligible. In numerical and empirical applications, the third source

of error comes from estimating population moments with sample moments. The MSFE

Taylor approximation up to fourth order was found to be as follows:

MSFEn ≈ 1

ω5
2

[

C +
A

n
− ∆

n2
+

Ω

n3

]

, (10.2.7)
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with ∆ = A+ 2B −D, Ω = 6A− 6B −D +E, ω1 = E[Yt+1Xt], ω2 = E[X2
t ],

A = ω2
1ω

2
2E[X4

t−1] − 2ω1ω
3
2E[YtX

3
t−1] + ω4

2E[Y 2
t X

2
t−1],

B = ω2
1ω2E[X6

t−1] − 2ω1ω
2
2E[YtX

5
t−1] + ω3

2E[Y 2
t X

4
t−1],

C = E[Y 2
t+1]ω

5
2 − ω2

1ω
4
2,

D = 9ω2
1E

2[X4
t−1] − 18ω1ω2E[YtX

3
t−1]E[X4

t−1] + 3ω2
2E[Y 2

t X
2
t−1]E[X4

t−1]

+ 6ω2
2E

2[YtX
3
t−1],

E = 3ω2
1E[X8

t−1] − 6ω1ω2E[YtX
7
t−1] + 3ω2

2E[Y 2
t X

6
t−1].

Approximating the MSFE by a fourth order Taylor expansion requires approximating

twelve population moments, E[Y 2
t+1], E[X2

t ], E[X4
t−1], E[X6

t−1], E[X8
t−1], E[YtXt−1],

E[YtX
3
t−1], E[Y 2

t X
2
t−1], E[YtX

5
t−1], E[Y 2

t X
4
t−1], E[YtX

7
t−1], E[Y 2

t X
6
t−1], with their sample

counterparts. Once the twelve approximations of the population moments have been

obtained, the MSFE approximation can be given for any values of the sample size n.

The brute force method, on the other hand, requires one approximation of the MSFE

for every value n of the sample size. For example, if one requires approximations of

the MSFE for n = 1, 2, . . . , 500, the Taylor algorithm requires twelve approximations of

sample moments necessary in the expression 10.2.7. The brute force method requires 500

individual approximations of the MSFE. Furthermore, approximations for the brute force

method can have great deviations for different values of n as consequence of realizations

resulting in small denominators of the OLS. This type of errors are not encountered in

the Taylor algorithm. In the example that follows, we illustrate the trade-offs between

the sources of error for the Taylor algorithm and the brute force method.

Example 10.3 Let the forecaster observe a dependent process {Yτ}τ and an explanatory

process {Xτ}τ such that the DGP, model and forecast are as follow:

DGP : Yt+1 = φ1Xt + φ2X
2
t + Ut+1, {Xτ} ∼ IIN(10, 1), {Uτ} ∼ IIN(0, 1),

Model : Yt = βXt−1 + Vt,

F orecast : Ŷt+1,n = β̂t,nXt, β̂t,n =
( t−1∑

τ=t−n

X2
τ

)−1
t−1∑

τ=t−n

Yτ+1Xτ .
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The SFE is given by SFEt,n = (Yt+1 − β̂t,nYt)
2. We generate a series of explanatory

data and a series of dependent data, each of length N = 500. Figure 10.5 presents the

benchmark MSFE generated with Monte Carlo simulations, the Taylor algorithm approx-

imation, and the brute force method approximation. This example illustrates that the

brute force method lacks robustness to the data as can be seen from the jaggedness of the

MSFE and the fact that the approximation worsens as n increases as m decreases. The

error of the Taylor algorithm is manifested in a shift from the Monte Carlo MSFE. ut
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Figure 10.5: MSFE with DGP Yt+1 = Xt +X2
t + Ut+1

Stationary processes

As before, we compare the Taylor algorithm and the brute force method by qualitatively

analyzing the sources of error in both estimation procedures. For the case of stationary

process, the first source of error for the Taylor algorithm comes from the fact that the

Taylor expansion is valid only inside a convergence region A but the MSFE is as follows:

MSFEn = Ē[(Yt+1 − Ŷt+1)
2|A] + Ē[(Yt+1 − Ŷt+1)

2|Ac].
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The first approximation and source of error for the Taylor algorithm comes from assuming

the term Ē[(Yt+1 − Ŷt+1)
2|Ac] is negligible and that the truncated expectation Ē[(Yt+1 −

Ŷt+1)
2|A] can be replaced by the expectation E[(Yt+1 − Ŷt+1)

2]. As for the i.i.d. case,

the second source of error in the Taylor approximation comes from the remainder of the

Taylor series. In numerical examples, we investigate a second order Taylor polynomial

approximation. As for the i.i.d. case, in numerical and empirical applications, the third

source of error in the Taylor algorithm comes from estimating population moments with

sample moments. This source of error can be more severe for the general stationary case

than in the i.i.d. case due to the fact that a larger number of covariances need to be

estimated. For a given n, 4n2 + 2n + 2 moments must be estimated. This makes the

Taylor approximation computationally expensive compared to the brute force method.

The brute force method requires one approximation of the MSFE for every value n of

the sample size. The only advantage of the Taylor algorithm over the brute force method

is that, the brute force method lacks robustness to realizations of the denominator of

the OLS being close to zero. The following example illustrates the performance of both

methods.

Example 10.4 We consider the forecast problem where the DGP is generated by an

AR(1) process of the form:

Yt = µ+ φYt−1 + Ut.

The forecaster applies a white noise model of the form Yt = β + Vt, resulting in the

forecast Ŷt+1 = β̂t,n. This problem has been shown to have the following analytic solution

for the MSFE:

MSFE = V ar(Yt)

[

1 +

(

1 +
2φn+1

1 − φ

)
1

n
− 2φ

(
1 − φn

(1 − φ)2

)
1

n2

]

.

Figures 10.6, 10.7, and 10.8 present results for values of the autoregressive parameter

of 0.1, 0.49, and 0.95, respectively. The figures show both the approximation from the

Taylor algorithm and the approximation from the brute force method. The approximation

from the brute force method, as in the i.i.d. case, worsens as n increases because m, the
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number of SFE realizations available for averaging, decreases. ut
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10.2.3 Further topics on forecasting structural break processes

The Taylor algorithm to estimate the MSFE of a structural break process was developed

under the assumption that the time of the break is known to the forecaster. In this section,

we try to relax this assumption by investigating the situation in which the forecaster

believes a break has occurred at a time t−nb but in reality no break has occurred. To do

this, we compare, in the following example, the change of the the MSFE approximation

as the size of the break decreases to zero.

Example 10.5 We consider a DGP consisting of a structural break process as follows:

Yτ+1 =







β1Xτ + U1,τ+1, τ ≤ t− nb

β2Xτ + U2,τ+1, τ > t− nb

, (10.2.8)

with β1, β2 ∈ R, V ar(U1,τ ) = 1, V ar(U2,τ ) = 1, {Xτ}τ = IIN(10, 1). The forecast

model is given by Yt+1 = βXt + Vt+1, the forecast is given by Ŷt+1,n = β̂t,nXt, where β̂t,n

is the OLS estimator of β2. In this example, we examine the Taylor approximation of

the MSFE for varying size of the break . The break occurs 500 time units in the past

from the forecast origin. The moments in the Taylor approximation after the break are

estimated with 500 data points and the moments in the Taylor approximation previous to

the break are estimated with 2500 data points. The small amount of data used to estimate

moments contributes to the error in the approximation. Figure 10.9 presents the results

for four cases: (1) β1 = 2.5 changes to β2 = 2, (2) β1 = 2.5 changes to β2 = 2.3,

(3) β1 = 2.5 changes to β2 = 2.5, (4) β1 = 2.5 changes to β2 = 2.8. The important

case is (3). It represents what happens when the forecaster believes a break occurred at

t−500 but in reality no break occurred. The resulting Taylor approximation of the MSFE

decreases monotonically. Figure 10.9 also shows the benchmark MSFE if no break occurs.

The difference between the benchmark MSFE and the Taylor approximation of the MSFE

in case (3) is in the level of the MSFE but the shape of the MSFEs, which decrease

monotonically, are similar. From this example we can conclude that, when the forecaster

believes a break occurred but in reality no break occurred, the resulting MSFE Taylor

approximation would decrease monotonically, i.e., the bias of the forecast error will not

increase and the variance of the forecast error will decrease. Given this information, the
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forecaster can then re-evaluate her prediction of the occurrence of a structural break. ut

The Taylor algorithm does not work well in the situation where the forecaster thinks no

break has occurred but in reality a break has occurred. This is illustrated in Figure 10.10.

The figure shows the MSFE which should result from correct prediction of the break time

as well as the MSFE Taylor approximation resulting from the erroneous prediction of the

break time.

10.3 Future directions

Many questions and problems are left open. For the forecasting problem with inde-

pendent identically distributed processes, we described the multivariate algorithm and

numerical experiments can be constructed as done for the univariate case. Furthermore,

it would be important to conduct empirical studies to verify the MSFE approximation.

For the forecasting problem with covariance stationary processes and with structural

break processes, one would require a multivariate algorithm with corresponding numeri-
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cal experiments and empirical studies. Another interesting problem would be to develop

a similar Taylor algorithm for a forecasting problem involving covariance stationary pro-

cesses that undergo a structural break. Finally, for empirical studies, the problem of

forecasting volatility under misspecification can be of great interest for the finance com-

munity.
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Appendix A

A.1 Identities

Many of these identities were obtained from [19].

Identity A.1 For a nonnegative random variable X and a positive number α

P (X ≥ α) ≤ E[X]

α
.

Identity A.2 (Markov’s Inequality) For a random variable X and a positive number

α

P (|X| ≥ α) ≤ E[|X|k]

αk
.

Identity A.3 (Chebyshev-Bienaymé Inequality) For a random variable X with m =

E[X] and a positive number α

P (|X −m| ≥ α) ≤ V ar[X]

α2
.

Identity A.4 (Jensen’s Inequality) For a random variable X with m = E[X] and a

convex function φ

φ(E[X]) ≤ E[φ(X)].

Identity A.5 (Hölder’s Inequality) Given

1

p
+

1

q
= 1, p > 1, q > 1,
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it follows E[|XY |] ≤ E1/p[ |X|p]E1/q [ |Y |q].

Identity A.6 (Schwarz’s Inequality)

E[|XY |] ≤ E1/2[X2]E1/2[Y 2].

Identity A.7 (Lyapounov’s Inequality)

E1/α[ |X|α] ≤ E1/β [ |X|β ], 0 < α ≤ β.

Identity A.8 (Minkowski’s Inequality) For p ≥ 1,

E1/p[ |X + Y |p] ≤ E1/p[ |X|p] +E1/p[ |Y |p].

A.2 Asymptotic theory

The most fundamental concept for the study of non-random sequences and series is the

limit.

Definition A.9 Let {an} be a sequence of real numbers. The number a is called the

limit of the sequence {an} if for every δ > 0 there exists an integer N(δ) such that for

all n ≥ N(δ), |an − a| < δ.

When the limit exists, we say the sequence {an} converges to a as n tends to ∞,

a = limn→∞ an. We refer the reader to [86, 87] for a comprehensive look at deterministic

sequences and series.

When considering sequences and series of random variables, there are several concepts

of stochastic convergence. The setting for defining any stochastic convergence consists

of a probability space (Ω,F , P ) and a sequence of random variables {Xi, i ≥ 1} defined

on (Ω,F , P ). The modes of stochastic convergence which we will discuss include almost

sure convergence, convergence in probability, convergence in rth mean, and convergence

in distribution. We first present definitions.

Definition A.10 Let the sequence {Xn} and X be real valued random variables on the
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probability space (Ω,F , P ). Xn converges almost surely to X, Xn
a.s.→ X, if P{ω :

Xn(ω) → X(ω)} = 1.

Other terminology used for almost sure convergence includes convergence with probability

1, convergence almost everywhere, and strong consistency.

Definition A.11 Let the sequence {Xn} and X be real valued random variables on the

probability space (Ω,F , P ). Xn converges in probability to X, Xn
P→ X, if P{ω :

|Xn(ω) −X(ω)| < ε} → 1 as n→ ∞.

Convergence in probability is also referred to as weak consistency or convergence in

measure.

Definition A.12 An estimator θ̂n of a parameter θ is a consistent estimator if and only

if θ̂n
P→ θ.

Theorem A.13 The mean of a random sample from any population with finite popula-

tion mean µ and finite population variance is a consistent estimator of µ.

Proof. See [61] p.112.

We denote by Lp(Ω) the class of all measurable functions f(ω) such that
∫

Ω |f(ω)|pdP <

∞, p > 0.

Definition A.14 Given Xn ∈ Lp(Ω), n = 1, 2, . . . , p > 0 and X ∈ Lp(Ω), Xn converges

in Lp to X, Xn
p.m.→ X, if E|Xn −X|p → 0 as n→ ∞.

Lp convergence is also known as convergence in Lp-norm or convergence in pth mean.

When p = 2 this is known as convergence in mean square and is denoted by Xn
m.s.→ X.

Definition A.15 Let {Xn} be a sequence of random finite-dimensional vectors with joint

distribution functions {Fn}. If Fn(z) → F (z) as n → ∞ for every continuity point

z, where F is the distribution function of a random variable Z, then Xn converges in

distribution to the random variable Z, Xn
d→ Z.

Convergence in distribution is also known as convergence in law, Xn
L→ Z, or that Xn is

asymptotically distributed as F , Xn
A∼ F .

We now present some important theorems.
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Theorem A.16 Let Xn, X and Yn be random vectors. Then

1. If Xn
a.s.→ X then Xn

P→ X.

2. If Xn
Lp→ X then Xn

P→ X.

3. If Xn
P→ X, and {|Xn|p}∞1 is uniformly integrable, then Xn

Lp→ X.

4. If Xn
P→ X then Xn

d→ X.

5. Xn
P→ c for a constant c if and only if Xn

d→ X.

6. if Xn
d→ X and d(Xn, Yn)

P→ 0, then Yn
d→ X.

7. if Xn
d→ X and Yn

P→ c for a constant c, then (Xn, Yn)
d→ (X, c).

8. if Xn
P→ X and Yn

P→ Y , then (Xn, Yn)
P→ (X,Y ).

Proof. See [37], p.284, 287 and [39], p. 10.

Theorem A.17 (Cramér’s Theorem) If Xn
d→ X and Yn

P→ a for a a constant, then

1. Xn + Yn
d→ X + a.

2. XnYn
d→ aX.

3. Xn/Yn
d→ X/a, for a 6= 0.

Proof. See [37], p. 355.

Theorem A.18 Let g : R
k → R be a Borel function, let Cg ⊆ R

k be the set of continuity

points of g, and assume P (X ∈ Cg) = 1.

1. If Xn
a.s.→ X then g(Xn)

a.s.→ g(X).

2. If Xn
P→ X then g(Xn)

P→ g(X).

3. If Xn
d→ X then g(Xn)

d→ g(X).

Proof. See [37], p.286, 355.
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Theorem A.19 Let {Xτ} denote a sequence of (n× 1) random vectors with plim c, and

let g(c) be a vector-valued function, g : R
n → R

m, where g(·) is continuous at c and does

not depend on τ . Then g(Xτ )
P→ g(c).

Proposition A.20 Let {X1τ} be a sequence of (n×n) random matrices with X1τ
P→ C1,

a nonsingular matrix. Let X2τ denote a sequence of (n×1) random vectors with X2τ
P→ c2.

Then [X1τ ]−1X2τ
P→ [C1]

−1c2.

Proof. See [64], p. 182.

Theorem A.21 Let {Xn} and {Zn} be sequences of k-vectors (not necessarily converg-

ing) and g the function defined in theorem A.18, and let P (Xn ∈ Cg) = P (Zn ∈ Cg) = 1

for every n.

1. If ||Xn − Zn|| a.s.→ 0 then ||g(Xn) − g(Zn)|| a.s.→ 0.

2. If ||Xn − Zn|| P→ 0 then ||g(Xn) − g(Zn)|| P→ 0.

Proof. See [37], p. 286.

Theorem A.22 Let g : R
k → R be a Borel function, continuous at a.

1. If Xn
a.s.→ a then g(X)n

a.s.→ g(a).

2. If Xn
P→ a then g(X)n

P→ g(a).

Proof. See [37], p. 286.

Theorem A.23 Let a sequence {Yn}∞1 be bounded in probability (i.e., Op(1) as n→ ∞
); if Xn

P→ 0, then XnYn
P→ 0.

Proof. See [37], p. 287.

Theorem A.24 Let {Xn}∞1 be a uniformly integrable sequence. If Xn
a.s.→ X, then

EXn → EX.

Proof. See [37], p. 188.
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Theorem A.25 If Xn
d→ X and {Xn} is uniformly integrable, then E|X| < ∞ and

EXn → EX.

Proof. See [37], p. 357.

Given a sequence of random variables {Xi, i ≥ 1} defined on the probability space

(Ω,F , P ) and setting Sn =
∑n

i=1Xi for i ≥ 1, the sequence {Sn, n ≥ 1} is referred

to as the sequence of partial sums. Convergence almost surely of the series
∑∞

i=1Xi is

equivalent to the convergence almost surely of the sequence of partial sums

∞∑

i=1

Xi = S <∞ a.s. ⇐⇒ Sn
a.s.→ S.

[136], presents results for almost sure convergence of the basic sequence {Xi} for a

variety of dependence structures.

Definition A.26 (martigale difference sequence) A sequence of scalars {Yτ}∞τ=1 sat-

isfying E[Yτ ] = 0 for all τ and E[Yτ |Yτ−1, Yτ−2, . . . , Y1] = 0, for τ = 2, 3, . . . is said to

be a martigale difference sequence.

Definition A.27 (L1-Mixingale) Consider a sequence of random variables {Yτ}∞τ=1

with E[Yτ ] = 0 for t = 1, 2, · · · Let Ωτ denote information available at time τ . Let {cτ}∞τ=1

and {ξτ}∞τ=1 be sequences of nonegative deterministic constants such that limm→∞ ξm = 0

and E|E[Yτ |Ωτ−m]| ≤ cτ ξm for all t ≥ 1 and all m ≥ 0. {Yτ} is said to follow an

L1-mixingale with respect to {Ωτ}. A zero-mean process for which the m-period ahead

forecast E[Yτ |Ωτ−m] converges to the unconditional mean of zero is an L1-mixingale.

Proposition A.28 Let {Yτ} be a martigale difference sequence. Let cτ = E|Yτ |, and

choose ξ0 = 1 and ξm = 0 for m = 1, 2, . . . . Then {Yτ} is an L1-mixingale sequence.

Proof. See [64], p. 190.

Definition A.29 (uniformly integrale) A sequence {Yτ} is said to be uniformly in-

tegrale if for every ε > 0 there exists a number c > 0 such that E
[
|Yτ |δ[|Yτ |≥c]

]
< ε for all

t, where δ[|Yτ |≥c] = 1 if |Yτ | ≥ c and 0 otherwise.
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Proposition A.30 Let {Yτ} be an L1-mixingale. If {Yτ} is uniformly integrale and there

exists a choice for {cτ} such that limT→∞(1/T )
∑T

τ=1 cτ <∞ then (1/T )
∑T

τ=1 Yτ
P→ 0.

Proof. See [4].

Proposition A.31 Let Y T be the sample mean from a martigale difference sequence,

Y T = (1/T )
∑T

τ=1 Yτ with E|Yτ |r < M ′ for some r > 1 and M ′ <∞. Then Y T
P→ 0.

Proof. See [64], p.191.

A.3 Laws of large numbers

Theorem A.32 (Kolmogorov) Let {Zs} be a sequence of independent identically dis-

tributed random variables. Then Z̄n
a.s.→ µ if and only if E|Zs| <∞ and E[Zs] = µ.

Proof. See [119], p. 115.

Proposition A.33 Let g : R
k → R

l be a continuous function. (i) Let Zt and Zτ be

identically distributed. Then g(Zt) and g(Zτ ) are identically distributed. (ii) Let Zt and

Zτ be independent. Then g(Zt) and g(Zτ ) are independent.

Proposition A.34 If {(Z>
t ,X

>
t , εt)} is an independent identically distributed random

sequence, then {XtX
>
t }, {Xtεt}, {ZtX

>
t }, {Ztεt}, and {ZtZ

>
t } are also independent

identically distributed sequences.

Theorem A.35 (Markov) Let {Zt} be a sequence of independent random variables,

with finite means µt ≡ E[Zt]. If for some σ > 0,
∑∞

t=1(E|Zt − µt|1+δ)/t1+δ < ∞, then

Z̄n − µ̄n
a.s.→ 0.

Proof. See [31], pp. 125-126.

Corollary A.36 Let {Zt} be a sequence of independent random variables such that

E|Zt|1+δ < ∆ <∞ for some δ > 0 and all t. Then Z̄n − µ̄n
a.s.→ 0.

Theorem A.37 (Ergodic theorem) Let {Zt} be a stationary ergodic scalar sequence

with E|Zt| <∞. Then Z̄n
a.s.→ µ ≡ E[Zt].
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Proof. See [136], p. 181.

Theorem A.38 Let g be a F-measurable function into R
k and define Yt ≡ g(. . . ,Zt−1,

Zt,Zt+1, . . . ), where Zt is q × 1. (i) If {Zt} is stationary, then {Yt} is stationary. (ii)If

{Zt} is stationary and ergodic, then {Yt} is stationary and ergodic.

Proof. See [136], p. 170, p. 182.

Proposition A.39 If {(Z>
t ,X

>
t , εt)} is a stationary ergodic sequence, then {XtX

>
t },

{Xtεt}, {ZtX
>
t }, {Ztεt}, and {ZtZ

>
t } are stationary ergodic sequences.

Theorem A.40 Let g be a measurable function into R
k and define

Yt ≡ g(Zt,Zt+1, . . . ,Zt+τ ),

where τ is finite. If the sequence of q×1 vectors {Zt} is φ-mixing (α-mixing) of size −a,
a > 0, then {Yt} φ-mixing (α-mixing) of size −a, a > 0.

Proof. See [151] (Lemma 2.1).
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Appendix B

Appendix for Chapter 4

The following theorems, corollaries, propositions, and their proofs can be found in [31,

119, 153].

B.1 Random power series

A random power series is a power series with some of its components represented by

random variables. In the literature, much attention has been given to the scenario with

a probability space (Ω,F , P ) and an arbitrary sequence {an(ω)}∞n=0 of complex-valued

random variables defined on it such that the series

∞∑

n=0

an(ω)zn, (B.1.1)

with z an element of the complex plane C, is called a random power series. These are not

the series of interest to us but for the interested reader we refer to the many expositions

on the subject, [12, 81, 105].

We are interested in the setting consisting of a probability space (Ω,F , P ) and an

arbitrary sequence {Xn(ω)}∞n=0 of random variables defined on it. We look at the power

series given by

∞∑

n=0

cnXn(ω)n, (B.1.2)

with {cn} a sequence of real constants.

The methods needed to study the convergence properties of (B.1.1) and (B.1.2) are
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quite different. This difference originates from the well known fact that the convergence of

a power series depends on the limit of the coefficient series {an(ω)} in the case of (B.1.1),

and {cn} in the case of (B.1.2). Since {cn} is a sequence of deterministic constants, the

convergence of (B.1.2) can be studied as its deterministic counterpart. We present the

most important theorems for power series.

Theorem B.1 Let
∑
ckX

k be an arbitrary power series, and set lim sup k
√
ck = α. Then

1. for α = 0, the series converges for all X.

2. for α = +∞, the series is divergent for every z 6= 0.

3. for 0 < α < +∞ the series is absolutely convergent for every X with |X| < r = 1/α,

divergent for every X with |X| > r.

Proof. See [86], p. 99.

When considering a power series
∑
ck(X−X0)

k with radius of convergence not equal

to 0, the series is absolutely convergent for every X with |X − X0| < r. Its value is a

function of X and denoted φ(X), and we say the power series represents the function

φ(X), or conversely, that the function φ(X) is expanded in a power series. We now

present some theorems regarding such functions.

Theorem B.2 The function represented by a power series is continuous at the center

X0 of its circle of convergence.

Proof. See [86], p. 102.

Theorem B.3 Let
∑
ckX

k be a power series with positive radius r. If X1 is an interior

point of its circle of convergence, then the function φ(X) represented by this series can

also be expanded in a power series

φ(X) =
∞∑

k=0

bk(X −X1)
k, (B.1.3)

in a neighborhood of X1. Every coefficient bk is represented by the absolutely convergent
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series

bk =
∞∑

v=0




k + v

v



 ck+vX
v
1 , k = 0, 1, . . . ,

which, regarded as a power series, again has the exact radius r. Furthermore, the radius

r1 of (B.1.3) is at least equal to r − |X1|.

Proof. See [86], p. 105.

Theorem B.4 A function represented by a power series
∑
ckX

k is continuous at every

interior point of its circle of convergence.

Proof. See [86], p. 107.

Theorem B.5 A function represented by a power series is differentiable arbitrarily often

at every interior point of its circle of convergence, and its derivatives may be obtained by

term-by-term differentiation.

Proof. See [86], p. 107.

Corollary B.6 Given a function represented by a power series with a radius of conver-

gence r, φ(X) =
∑∞

k=0 ck(X −X0)
k, then ck = 1

k!φ
(k)(X0).

Proof. See [86], p. 108.

B.2 Theorems

Theorem B.7 (Ratio Test) Given a series
∑
an of nonzero complex terms, let

r = lim
n→∞

inf

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
, R = lim

n→∞
sup

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
.

1. The series
∑
an converges absolutely if R < 1.

2. The series
∑
an diverges if r > 1.

3. The test is inconclusive if r ≤ 1 ≤ R.
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Proof. See [7], p. 193.

Theorem B.8 (Comparison Test) If an > 0 and bn > 0 for n = 1, 2, . . . , and if there

exists positive constants c and N such that an < cbn, for n ≥ N, then convergence of
∑
bn implies convergence of

∑
an.

Proof. See [7], p. 190.

Theorem B.9 If
∑

n fn converges almost everywhere and |∑n
k=1 fk| ≤ g almost every-

where, where g is integrable, then
∑

n fn and the fn are integrable and
∫ ∑

n fndµ =
∑

n

∫
fndµ.

Theorem B.10 If
∑

n

∫
|fn|dµ < ∞, then

∑

n fn converges absolutely almost every-

where and is integrable, and
∫ ∑

n fndµ =
∑

n

∫
fndµ.

Proof. See [19], corollary to theorem 16.7, p. 211.

Theorem B.11 Let {Xn}∞1 be a uniformly integrable sequence. If Xn
a.s.→ X, then

EXn → EX.

Proof. See [37], theorem 12.8, p. 188.
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Appendix C

Appendix for Chapter 5

C.1 Convergence and probability sets

When applying the Taylor series approximation method developed in Chapters 5, 6, and

7, two sets are of importance; a convergence set and a probability set. For the ap-

proximation of the expectation of a function of random variables or statistic by means

of a Taylor series, the convergence set describes the region where the Taylor series

converges. If B is such a convergence set, the expectation of a function f of n ran-

dom variables X1, . . . , Xn, with domain R
n, can be written with truncated expectations

E[f(X1, . . . , Xn)] = Ē[f(X1, . . . , Xn), B] + Ē[f(X1, . . . , Xn), Bc], where B ∪ Bc = R
n.

The approximation of interest isE[f(X1, . . . , Xn)] ≈ Ē[f(X1, . . . , Xn), B] ≈ Ē[Q(f,m), B]

where Q(f,m) is the mth order Taylor polynomial of f . There might be situations in

which the convergence set B is such that the truncated expectations are difficult to cal-

culate. In such cases, we are interested in defining a probability set A. The probability

set A is a region of the domain of the random variables R
n chosen to ease the calculation

of truncated expectations. For the Taylor series approximation method to work, the

probability set must be a subset of the convergence set A ⊆ B.

C.1.1 Convergence set for the approximation of the OLS

We begin by assuming |E[β̂t,n]| <∞ and consider the scalar case k = 1. Recall the OLS

for the forecasting problem described in Chapter 5 as given by (5.4.2) and (5.4.6) is as
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follows:

β̂t,n =

(
t−1∑

τ=t−n

XτX
′
τ

)−1( t−1∑

τ=t−n

XτYτ+1

)

= S−1
2,nS1,n.

In Chapter 5 we described the approximation of the expectation of β̂t,n by means of a

Taylor series with respect to the variables S1,n and S2,n about the points ω1 and ω2. The

approximation given is E[β̂t,n] ≈ Ē[Q(β̂t,n,M), A], where Q(β̂t,n,M) is the Mth order

Taylor polynomial of β̂t,n. Presently, we are interested in determining the set A of the

truncated expectation involved in the approximation. To do so, we assume the random

variable Yt depends on the mutually independent processes {Xτ} and {Uτ} for τ < t. It

follows β̂t,n is a function of the random variables Xt−n, . . . , Xt−1, Ut−n, . . . , Ut−1. Next,

we write the decomposition (5.4.8) as follows:

E[β̂t,n] =

∫

R

· · ·
∫

R

β̂t,n(Xt−n, . . . , Xt−1, Ut−n, . . . , Ut−1)

· f(Xt−n, . . . , Xt−1, Ut−n, . . . , Ut−1)dXt−n . . . dXt−1dUt−n . . . dUt−1

=

∫

R

· · ·
∫

R

[ ∫

I1

· · ·
∫

In

β̂t,n(Xt−n, . . . , Xt−1, Ut−n, . . . , Ut−1)f1(Xt−n, . . . , Xt−1)

· dXt−n . . . dXt−1 +

∫

Ic
1

· · ·
∫

Ic
n

β̂t,n(Xt−n, . . . , Xt−1, Ut−n, . . . , Ut−1)

· f1(Xt−n, . . . , Xt−1)dXt−n . . . dXt−1

]

f2(Ut−n, . . . , Ut−1)dUt−n . . . dUt−1

=

∫

R

· · ·
∫

R

∫

I1

· · ·
∫

In

β̂t,n(Xt−n, . . . , Xt−1, Ut−n, . . . , Ut−1)f1(Xt−n, . . . , Xt−1)

· f2(Ut−n, . . . , Ut−1)dXt−n . . . dXt−1dUt−n . . . dUt−1

+

∫

R

· · ·
∫

R

∫

Ic
1

· · ·
∫

Ic
n

β̂t,n(Xt−n, . . . , Xt−1, Ut−n, . . . , Ut−1)f1(Xt−n, . . . , Xt−1)

· f2(Ut−n, . . . , Ut−1)dXt−n . . . dXt−1dUt−n . . . dUt−1

=Ē[β̂t,n, A] + Ē[β̂t,n, A
c],

where f is the joint distribution of the random variables Xt−n, . . . , Xt−1, Ut−n, . . . , Ut−1,

f1 is the joint distribution of the random variables Xt−n, . . . , Xt−1, f2 is the joint distribu-

tion of the random variables Ut−n, . . . , Ut−1, Ii is an interval in R for i = 1, . . . , n, and I c
i is

the respective complement. From the above development, it follows A = R
n×I1×· · ·×In
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and Ac = R
n × Ic

1 × · · · × Ic
n. The objective is to specify the intervals Ii for i = 1, . . . , n

in a manner such that the Taylor series of β̂t,n converges in the region I1 × · · · × In. The

Taylor series of β̂t,n will converge in the set

B = {(S1,n, S2,n) : 0 < S2 < 2ω2}.

Since S1,n is a function of the random variables Xt−n, . . . , Xt−1, Ut−n, . . . , Ut−1, and S2,n

is a function of the random variables Xt−n, . . . , Xt−1, it follows the set B can be rewritten

as follows:

B = {(Xt−n, . . . , Xt−1, Ut−n, . . . , Ut−1) ∈ R
2n : 0 <

t−1∑

τ=t−n

X2
τ < 2nω2}. (C.1.1)

The integrals involving the intervals Ii for i = 1, . . . , n are parametrized such that the

volume enclosed coincides with the hyper-sphere
∑t−1

τ=t−nX
2
τ = 2nω2 less the origin. For

this, we make use of the following hyper-spherical coordinates:





















Xt−1

Xt−2

...

Xt−k

...

Xt−n−1

Xt−n





















=





















r cosφ1

r sinφ1 cosφ2

...

r
(
∏k−1

i=1 sinφi

)

cosφk

...

r sinφ1 sinφ2 · · · sinφn−2 cos θ

r sinφ1 sinφ2 · · · sinφn−2 sin θ





















,

where φi ∈ [0, π] for i = 1, . . . , n − 2 are polar angles and θ ∈ [0, 2π) is the azimuthal

angle. The transformation can be carried out with the following differential relations:

dXt−1 = cosφ1dr − r sinφ1dφ1,

dXt−2 = sinφ1 cosφ2dr + r cosφ1 cosφ2dφ1 − r sinφ1 sinφ2dφ2,

dXt−k =

(
k−1∏

i=1

sinφi

)

cosφkdr + r

k−1∑

i=1

cosφi




∏

j 6=i

sinφj



 cosφkdφi
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− r

(
k−1∏

i=1

sinφi

)

sinφkdφk,

dXt−n−1 =

(
n−2∏

i=1

sinφi

)

cos θdr + r
n−2∑

i=1

cosφi




∏

j 6=i

sinφj



 cos θdφi

− r

(
n−2∏

i=1

sinφi

)

sin θdθ,

dXt−n =

(
n−2∏

i=1

sinφi

)

sin θdr + r

n−2∑

i=1

cosφi




∏

j 6=i

sinφj



 sin θdφi

+ r

(
n−2∏

i=1

sinφi

)

cos θdθ.

The integrals involving the intervals Ii for i = 1, . . . , n are replaced by integrals involving

the variables φ1, . . . , φn−2, θ, r with respective intervals φi ∈ [0, π] for i = 1, . . . , n − 2,

θ ∈ [0, 2π) and r ∈ [δ,
√

2nω2 ]. The above analysis follows exactly for the approximation

of E[β̂2
t,n] by Ē[β̂2

t,n, A] where A is the same set.

C.1.2 Probability sets for the approximation of the OLS

Of particular interest is the probability set A, defined as follows:

A ≡ {(Xt−n, . . . , Xt−1, Ut−n, . . . , Ut−1) ∈ R
2n : Xt−n ∈ It−n, . . . , Xt−1 ∈ It−1},

Ii = [E[Xi] − δi, E[Xi] + δi] ∈ R for i = t− n, . . . , t− 1,

such that A ⊂ B where B is as defined in (C.1.1). To determine if A ⊂ B, it suffices to

show Ā ⊂ B̄ where

Ā = {(Xt−n, . . . , Xt−1) ∈ R
n : Xt−n ∈ It−n, . . . , Xt−1 ∈ It−1},

B̄ = {(Xt−n, . . . , Xt−1) ∈ R
n :

t−1∑

τ=t−n

X2
τ ≤ 2nω2}.

The center of the polytope Ā is the point µ = (µt−n, . . . , µt−1) with µi = E[Xi] for

i = t − n, . . . , t − 1. The distance between the origin and µ is r =
√

µ2
t−n + · · · + µ2

t−1.

The radius of the hypersphere B̄ is R =
√

2nω2. Clearly µ ∈ B̄, since r =
√
ω2 < R.
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Without loss of generality, we assume µ > 0. We are interested in giving conditions on δi

to ensure the polytope Ā is the largest polytope completely contained in the hyper-sphere

B̄. The square distance from µ to the closest point on the hyper-sphere is given by the

following optimization problem:

s = min
X∈B̄

t−1∑

i=t−n

(Xi − µi)
2,

and the point on B̄ nearest to µ is as follows:

v =

(
µt−nR

r
, . . . ,

µt−1R

r

)

.

The largest polytope centered at µ completely contained in the hyper-sphere B̄ is the

polytope with
√
s as the largest distance from its center. For the case n = 2, the

largest polytopes are rectangles, as shown in Figure C.1. For a general n and the case

µt−n = · · · = µt−1, the polytope is a hyper-cube and the nearest point to µ on B̄ is

v = (x̄t−n, . . . , x̄t−1), x̄i =
√

2(µ2
t−1 + σ2

t−1), for i = t− n, . . . , t− 1,

and δi = x̄i − µi for i = t− n, . . . , t− 1. The interval Ii is centered at the mean µi and

has width 2δi. We are interested in understanding the probability P (Xi ∈ Ii). To do

this, we examine the following ratio:

δi
σi

=

√

2

(
µ2

i

σ2
i

+ 1

)

− µi

σi
.

The limit of δi/σi as σi → ∞ is
√

2, and the minimum is δi/σi = 1, which occurs at

σi = µi. Figure C.2 shows δi/σi as a function of σi for three different values of µi. Figure

C.2 also shows the probability P (Xi ∈ Ii) as a function of σi for three different values of

µi.
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Figure C.1: Probability sets for n = 2
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C.2 Expansion of truncate central moments for the scalar

problem

We begin by expanding powers and products of the statistics S1,n and S2,n and the

corresponding truncated expectations.

• Ē[S1,n, A] =
1

n
Ē
[ t−1∑

τ=t−n

Yτ+1Xτ , A
]

= Ē [YtXt−1, A]

• Ē[S2,n, A] =
1

n
Ē
[ t−1∑

τ=t−n

X2
τ , A

]

= Ē
[
X2

t−1, A
]
.

Next we expand Ē[S2
1,n, A]:

S2
1,n =

1

n2

(
t−1∑

τ=t−n

Yτ+1Xτ

)2

=
1

n2





t−1∑

τ=t−n

Y 2
τ+1X

2
τ +

∑

i6=j

Yi+1XiYj+1Xj



 .

The truncated expectation of the two terms are as follows:

Ē
[ t−1∑

τ=t−n

Y 2
τ+1X

2
τ , A

]

= nĒ
[
Y 2

t X
2
t−1, A

]
,

Ē
[∑

i6=j

Yi+1XiYj+1Xj , A
]

= (n2 − n)Ē [YtXt−1Yt−1Xt−2, A] .

The truncated expectation of S2
1,n is as follows:

• Ē[S2
1,n, A] =

1

n
Ē
[
Y 2

t X
2
t−1, A

]
+

(

1 − 1

n

)

Ē [YtXt−1Yt−1Xt−2, A] .

Next we expand Ē[S2
2,n, A]:

S2
2,n =

1

n2

(
t−1∑

τ=t−n

X2
τ

)2

=
1

n2





t−1∑

τ=t−n

X4
τ +

∑

i6=j

X2
i X

2
j



 .
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The truncated expectation of the two terms are as follows:

Ē
[ t−1∑

τ=t−n

X4
τ , A

]

= nĒ
[
X4

t−1, A
]
,

Ē
[∑

i6=j

X2
i Yj+1X

2
j , A

]

= (n2 − n)Ē
[
X2

t−1X
2
t−2, A

]
.

The truncated expectation of S2
2,n is as follows:

• Ē[S2
2,n, A] =

1

n
Ē
[
X4

t−1, A
]
+

(

1 − 1

n

)

Ē
[
X2

t−1X
2
t−2, A

]
.

Next we expand Ē[S1,nS2,n, A]:

S1,nS2,n =
1

n2

(
t−1∑

τ=t−n

Yτ+1Xτ

)(
t−1∑

τ=t−n

X2
τ

)

=
1

n2





t−1∑

τ=t−n

Yτ+1X
3
τ +

∑

i6=j

Yi+1XiX
2
j



 .

The truncated expectation of the two terms are as follows:

Ē
[ t−1∑

τ=t−n

Yτ+1X
3
τ , A

]

= nĒ
[
YtX

3
t−1, A

]
,

Ē
[∑

i6=j

Yi+1XiX
2
j , A

]

= (n2 − n)Ē
[
YtXt−1X

2
t−2, A

]
.

The truncated expectation of S1,nS2,n is as follows:

• Ē[S1,nS2,n, A] =
1

n
Ē
[
YtX

3
t−1, A

]
+

(

1 − 1

n

)

Ē
[
YtXt−1X

2
t−2, A

]
.

Next we expand Ē[S3
2,n, A]:

S3
2,n =

1

n3

(
t−1∑

τ=t−n

X2
τ

)3

=
1

n3





t−1∑

τ=t−n

X6
τ +

∑

i6=j

X4
i X

2
j +

∑

i6=j 6=k

X2
i X

2
jX

2
k



 .
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The truncated expectation of the three terms are as follows:

Ē
[ t−1∑

τ=t−n

X6
τ , A

]

= nĒ
[
X6

t−1, A
]
,

Ē
[∑

i6=j

X4
i X

2
j , A

]

= 3(n2 − n)Ē
[
X4

t−1X
2
t−2, A

]
,

Ē
[ ∑

i6=j 6=k

X2
i X

2
jX

2
k , A

]

= (n3 − 3n2 + 2n)Ē
[
X2

t−1X
2
t−2X

2
t−3, A

]
.

The truncated expectation of S3
2,n is as follows:

• Ē[S3
2,n, A] =

1

n2
Ē
[
X6

t−1, A
]
+ 3

(
1

n
− 1

n2

)

Ē
[
X4

t−1X
2
t−2, A

]

+

(

1 − 3
1

n
+ 2

1

n2

)

Ē
[
X2

t−1X
2
t−2X

2
t−3, A

]
.

Next we expand Ē[S1,nS
2
2,n, A]:

S1,nS
2
2,n =

1

n3

(
t−1∑

τ=t−n

Yτ+1Xτ

)(
t−1∑

τ=t−n

X2
τ

)2

=
1

n3





t−1∑

τ=t−n

Yτ+1X
5
τ +

∑

i6=j

Yi+1XiX
4
j +

∑

i6=j

Yi+1X
3
i X

2
j +

∑

i6=j 6=k

Yi+1XiX
2
jX

2
k



 .

The truncated expectation of the four terms are as follows:

Ē
[ t−1∑

τ=t−n

Yτ+1X
5
τ , A

]

= nĒ
[
YtX

5
t−1, A

]
,

Ē
[∑

i6=j

Yi+1XiX
4
j , A

]

= (n2 − n)Ē
[
YtXt−1X

4
t−2, A

]
,

Ē
[∑

i6=j

Yi+1X
3
i X

2
j , A

]

= 2(n2 − n)Ē
[
YtX

3
t−1X

2
t−2, A

]
,

Ē
[ ∑

i6=j 6=k

Yi+1XiX
2
jX

2
k , A

]

= (n3 − 3n2 + 2n)Ē
[
YtXt−1X

2
t−2X

2
t−3, A

]
.

The truncated expectation of S1,nS
2
2,n is as follows:

• Ē[S1,nS
2
2,n, A] =

1

n2
Ē
[
YtX

5
t−1, A

]
+

(
1

n
− 1

n2

)

Ē
[
YtXt−1X

4
t−2, A

]
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+ 2

(
1

n
− 1

n2

)

Ē
[
YtX

3
t−1X

2
t−2, A

]

+

(

1 − 3
1

n
+ 2

1

n2

)

Ē
[
YtXt−1X

2
t−2X

2
t−3, A

]
.

Next we expand Ē[S2
1,nS2,n, A]:

S2
1,nS2,n =

1

n3

(
t−1∑

τ=t−n

Yτ+1Xτ

)2( t−1∑

τ=t−n

X2
τ

)

=
1

n3





t−1∑

τ=t−n

Y 2
τ+1X

4
τ +

∑

i6=j

Y 2
i+1X

2
i X

2
j +

∑

i6=j

Yi+1XiYj+1X
3
j

+
∑

i6=j 6=k

Yi+1XiYj+1XjX
2
k



 .

The truncated expectation of the four terms are as follows:

Ē
[ t−1∑

τ=t−n

Y 2
τ+1X

4
τ , A

]

= nĒ
[
Y 2

t X
4
t−1, A

]
,

Ē
[∑

i6=j

Y 2
i+1X

2
i X

2
j , A

]

= (n2 − n)Ē
[
Y 2

t X
2
t−1X

2
t−2, A

]
,

Ē
[∑

i6=j

Yi+1XiYj+1X
3
j , A

]

= 2(n2 − n)Ē
[
YtXt−1Yt−1X

3
t−2, A

]
,

Ē
[ ∑

i6=j 6=k

Yi+1XiYj+1XjX
2
k , A

]

= (n3 − 3n2 + 2n)Ē
[

YtXt−1Yt−1Xt−2X
2
t−3, A

]

.

The truncated expectation of S2
1,nS2,n is as follows:

• Ē[S2
1,nS2,n, A] =

1

n2
Ē
[
Y 2

t X
4
t−1, A

]
+

(
1

n
− 1

n2

)

Ē
[
Y 2

t X
2
t−1X

2
t−2, A

]

+ 2

(
1

n
− 1

n2

)

Ē
[
YtXt−1Yt−1X

3
t−2, A

]

+

(

1 − 3
1

n
+ 2

1

n2

)

Ē
[
YtXt−1Yt−1Xt−2X

2
t−3, A

]
.

Next we expand Ē[S4
2,n, A]:

S4
2,n =

1

n4

(
t−1∑

τ=t−n

X2
τ

)4
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=
1

n4





t−1∑

τ=t−n

X8
τ +

∑

i6=j

X6
i X

2
j +

∑

i6=j

X4
i X

4
j +

∑

i6=j 6=k

X4
i X

2
jX

2
k

+
∑

i6=j 6=k 6=l

X2
i X

2
jX

2
kX

2
l



 .

The truncated expectation of the five terms are as follows:

Ē
[ t−1∑

τ=t−n

X8
τ , A

]

= nĒ[X8
t−1, A],

Ē
[∑

i6=j

X6
i X

2
j , A

]

= 4n(n− 1)Ē[X6
t−1X

2
t−2, A],

Ē
[∑

i6=j

X4
i X

4
j , A

]

= 3n(n− 1)Ē[X4
t−1X

4
t−2, A],

Ē
[ ∑

i6=j 6=k

X4
i X

2
jX

2
k , A

]

= 6(n3 − 3n2 + 2n))Ē[X4
t−1X

2
t−2X

2
t−3, A],

Ē
[ ∑

i6=j 6=k 6=l

X2
i X

2
jX

2
kX

2
l , A

]

= (n4 − 6n3 + 11n2 − 6n)Ē[X2
t−1X

2
t−2X

2
t−3X

2
t−4, A].

The truncated expectation of S4
2,n is as follows:

• Ē[S4
2,n, A] =

1

n3
Ē[X8

t−1, A] + 4

(
1

n2
− 1

n3

)

Ē[X6
t−1X

2
t−2, A]

+ 3

(
1

n2
− 1

n3

)

Ē[X4
t−1X

4
t−2, A]

+ 6

(
1

n
− 3

n2
+

2

n3

)

Ē[X4
t−1X

2
t−2X

2
t−3, A]

+

(

1 − 6

n
+

11

n2
− 6

n3

)

Ē[X2
t−1X

2
t−2X

2
t−3X

2
t−4, A].

Next we expand Ē[S1,nS
3
2,n, A]:

S1,nS
3
2,n =

1

n4

(
t−1∑

τ=t−n

Yτ+1Xτ

)(
t−1∑

τ=t−n

X2
τ

)3

=
1

n4





t−1∑

τ=t−n

Yτ+1X
7
τ +

∑

i6=j

Yi+1XiX
6
j +

∑

i6=j

Yi+1X
5
i X

2
j +

∑

i6=j

Yi+1X
3
i X

4
j
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+
∑

i6=j 6=k

Yi+1XiX
4
jX

2
k +

∑

i6=j 6=k

Yi+1X
3
i X

2
jX

2
k +

∑

i6=j 6=k 6=l

Yi+1XiX
2
jX

2
kX

2
l



 .

The truncated expectation of the seven terms are as follows:

Ē
[ t−1∑

τ=t−n

Yτ+1X
7
τ , A

]

= nĒ[YtX
7
t−1, A],

Ē
[∑

i6=j

Yi+1XiX
6
j , A

]

= n(n− 1)Ē[YtXt−1X
6
t−2, A],

Ē
[∑

i6=j

Yi+1X
5
i X

2
j , A

]

= 3(n2 − n)Ē[YtX
5
t−1X

2
t−2, A],

Ē
[∑

i6=j

Yi+1X
3
i X

4
j , A

]

= 3(n2 − n)Ē[YtX
3
t−1X

4
t−2, A],

Ē
[ ∑

i6=j 6=k

Yi+1XiX
4
jX

2
k , A

]

= 3(n3 − 3n2 + 2n)Ē[YtXt−1X
4
t−2X

2
t−3, A],

Ē
[ ∑

i6=j 6=k

Yi+1X
3
i X

2
jX

2
k , A

]

= 3(n3 − 3n2 + 2n)Ē[YtX
3
t−1X

2
t−2X

2
t−3, A],

Ē
[ ∑

i6=j 6=k 6=l

Yi+1XiX
2
jX

2
kX

2
l , A] = (n4 − 6n3 + 11n2 − 6n)Ē[YtXt−1X

2
t−2X

2
t−3X

2
t−4, A].

The truncated expectation of S1,nS
3
2,n is as follows:

• Ē[S1,nS
3
2,n, A] =

1

n3
Ē[YtX

7
t−1, A] +

(
1

n2
− 1

n3

)

Ē[YtXt−1X
6
t−2, A]

+ 3

(
1

n2
− 1

n3

)

Ē[YtX
5
t−1X

2
t−2, A]

+ 3

(
1

n2
− 1

n3

)

Ē[YtX
3
t−1X

4
t−2, A]

+ 3

(
1

n
− 3

n2
+

2

n3

)

Ē[YtXt−1X
4
t−2X

2
t−3, A]

+ 3

(
1

n
− 3

n2
+

2

n3

)

Ē[YtX
3
t−1X

2
t−2X

2
t−3, A]

+

(

1 − 6

n
+

11

n2
− 6

n3

)

Ē[YtXt−1X
2
t−2X

2
t−3X

2
t−4, A].
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Next we expand Ē[S2
1,nS

2
2,n, A]:

S2
1,nS

2
2,n =

1

n4

(
t−1∑

τ=t−n

Yτ+1Xτ

)2( t−1∑

τ=t−n

X2
τ

)2

=
1

n4





t−1∑

τ=t−n

Y 2
τ+1X

6
τ +

∑

i6=j

Y 2
i+1X

2
i X

4
j +

∑

i6=j

Y 2
i+1X

4
i X

2
j +

∑

i6=j 6=k

Y 2
i+1X

2
i X

2
jX

2
k

+
∑

i6=j

Yi+1X
5
i Yj+1Xj +

∑

i6=j 6=k

Yi+1XiYj+1XjX
4
k +

∑

i6=j 6=k

Yi+1X
3
i Yj+1XjX

2
k

+
∑

i6=j

Yi+1X
3
i Yj+1X

3
j +

∑

i6=j 6=k 6=l

Yi+1XiYj+1XjX
2
kX

2
l



 .

The truncated expectation of the nine terms are as follows:

Ē
[ t−1∑

τ=t−n

Y 2
τ+1X

6
τ , A

]

= nĒ[Y 2
t X

6
t−1, A],

Ē
[∑

i6=j

Y 2
i+1X

2
i X

4
j , A

]

= (n2 − n)Ē[Y 2
t X

2
t−1X

4
t−2, A],

Ē
[∑

i6=j

Y 2
i+1X

4
i X

2
j , A

]

= 2(n2 − n)Ē[Y 2
t X

4
t−1X

2
t−2, A],

Ē
[ ∑

i6=j 6=k

Y 2
i+1X

2
i X

2
jX

2
k , A

]

= (n3 − 3n2 + 2n)Ē[Y 2
t X

2
t−1X

2
t−2X

2
t−3, A],

Ē
[∑

i6=j

Yi+1X
5
i YjXj , A

]

= 2n(n− 1)Ē[YtX
5
t−1Yt−1Xt−2, A],

Ē
[ ∑

i6=j 6=k

Yi+1XiYj+1XjX
4
k , A

]

= (n3 − 3n2 + 2n)Ē[YtXt−1Yt−1Xt−2X
4
t−3, A],

Ē
[ ∑

i6=j 6=k

Yi+1X
3
i Yj+1XjX

2
k , A

]

= 4(n3 − 3n2 + 2n)Ē[YtX
3
t−1Yt−1Xt−2X

2
t−3, A],

Ē
[∑

i6=j

Yi+1X
3
i Yj+1X

3
j , A

]

= 2n(n− 1)Ē[YtX
3
t−1Yt−1X

3
t−2, A],

Ē
[ ∑

i6=j 6=k 6=l

Yi+1XiYj+1XjX
2
kX

2
l , A

]

= (n4 − 6n3 + 11n2 − 6n)Ē[YtXt−1Yt−1Xt−2X
2
t−3X

2
t−4, A].
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The truncated expectation of S2
1,nS

2
2,n is as follows:

• Ē[S2
1,nS

2
2,n, A] =

1

n3
Ē[Y 2

t X
6
t−1, A] +

(
1

n2
− 1

n3

)

Ē[Y 2
t X

2
t−1X

4
t−2, A]

+ 2

(
1

n2
− 1

n3

)

Ē[Y 2
t X

4
t−1X

2
t−2, A]

+

(
1

n
− 3

n2
+

2

n2

)

Ē[Y 2
t X

2
t−1X

2
t−2X

2
t−3, A]

+ 2

(
1

n2
− 1

n3

)

Ē[YtX
5
t−1Yt−1Xt−2, A]

+

(
1

n
− 3

n2
+

2

n2

)

Ē[YtXt−1Yt−1Xt−2X
4
t−3, A]

+ 4

(
1

n
− 3

n2
+

2

n2

)

Ē[YtX
3
t−1Yt−1Xt−2X

2
t−3, A]

+ 2

(
1

n2
− 1

n3

)

Ē[YtX
3
t−1Yt−1X

3
t−2, A]

+

(

1 − 6

n
+

11

n2
− 6

n3

)

Ē[YtXt−1Yt−1Xt−2X
2
t−3X

2
t−4, A].

The expressions for powers and products of the statistics S1,n and S2,n given above are

used to expand truncated central moments of first, second, and third order. We expand

Ē[(S1,n − ω1), A]:

• Ē[(S1,n − ω1), A] = Ē [YtXt−1, A] − ω1P (X ∈ A).

The truncated expectation of (S2,n − ω2) is as follows:

• Ē[(S2,n − ω2), A] = Ē
[
X2

t−1, A
]
− ω2P (X ∈ A).

We expand Ē[(S1,n − ω1)
2, A]:

Ē[(S1,n − ω1)
2, A] =Ē[S2

1,n, A] − 2ω1Ē[S1,n, A] + ω2
1P (X ∈ A)

=
1

n
Ē
[
Y 2

t X
2
t−1, A

]
+

(

1 − 1

n

)

Ē [YtXt−1Yt−1Xt−2, A]

− 2ω1Ē [YtXt−1, A] + ω2
1P (X ∈ A).
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The truncated expectation of (S1,n − ω1)
2 is as follows:

• Ē[(S1,n − ω1)
2, A] =

[

Ē[YtXt−1Yt−1Xt−2, A] − 2ω1Ē [YtXt−1, A] + ω2
1P (X ∈ A)

]

+
1

n

[

Ē
[
Y 2

t X
2
t−1, A

]
− Ē[YtXt−1Yt−1Xt−2, A]

]

We expand Ē[(S2,n − ω2)
2, A]:

Ē[(S2,n − ω2)
2, A] =Ē[S2

2,n, A] − 2ω2Ē[S2,n, A] + ω2
2P (X ∈ A)

=
1

n
Ē
[
X4

t−1, A
]
+

(

1 − 1

n

)

Ē
[
X2

t−1X
2
t−2, A

]
− 2ω2Ē

[
X2

t−1, A
]

+ ω2
2P (X ∈ A).

The truncated expectation of (S2,n − ω2)
2 is as follows:

• Ē[(S2,n − ω2)
2, A] =

[

Ē
[
X2

t−1X
2
t−2, A

]
− 2ω2Ē

[
X2

t−1, A
]
+ ω2

2P (X ∈ A)
]

+
1

n

[

Ē
[
X4

t−1, A
]
− Ē

[
X2

t−1X
2
t−2, A

] ]

.

We expand Ē[(S1,n − ω1)(S2,n − ω2), A]:

Ē[(S1,n − ω1)(S2,n − ω2), A] =Ē[S1,nS2,n, A] − ω1Ē[S2,n, A] − ω2Ē[S1,n, A]

+ ω1ω2P (X ∈ A)

=
1

n
Ē
[
YtX

3
t−1, A

]
+

(

1 − 1

n

)

Ē
[
YtXt−1X

2
t−2, A

]

− ω1Ē
[
X2

t−1, A
]
− ω2Ē [YtXt−1, A] + ω1ω2P (X ∈ A).

The truncated expectation of (S1,n − ω1)(S2,n − ω2) is as follows:

• Ē[(S1,n − ω1)(S2,n − ω2), A] =
[

Ē
[
YtXt−1X

2
t−2, A

]
− ω1Ē

[
X2

t−1, A
]

− ω2Ē [YtXt−1, A] + ω1ω2P (X ∈ A)
]

+
1

n

[

Ē
[
YtX

3
t−1, A

]
− Ē

[
YtXt−1X

2
t−2, A

] ]

.
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We expand Ē[(S1,n − ω1)(S2,n − ω2)
2, A]:

Ē[(S1,n−ω1)(S2,n − ω2)
2, A] = Ē[S1,nS

2
2,n, A] − 2ω2Ē[S1,nS2,n, A] − ω1Ē[S2

2,n, A]

+ ω2
2Ē[S1,n, A] + 2ω1ω2Ē[S2,n, A] − ω1ω

2
2P (X ∈ A)

=
1

n2
Ē
[
YtX

5
t−1, A

]
+

(
1

n
− 1

n2

)

Ē
[
YtXt−1X

4
t−2, A

]

+ 2

(
1

n
− 1

n2

)

Ē
[
YtX

3
t−1X

2
t−2, A

]

+

(

1 − 3
1

n
+ 2

1

n2

)

Ē
[
YtXt−1X

2
t−2X

2
t−3, A

]

− 2ω2

(
1

n
Ē
[
YtX

3
t−1, A

]
+

(

1 − 1

n

)

Ē
[
YtXt−1X

2
t−2, A

]
)

− ω1

(
1

n
Ē
[
X4

t−1, A
]
+

(

1 − 1

n

)

Ē
[
X2

t−1X
2
t−2, A

]
)

+ ω2
2Ē [YtXt−1, A] + 2ω1ω2Ē

[
X2

t−1, A
]
− ω1ω

2
2P (X ∈ A).

The truncated expectation of (S1,n − ω1)(S2,n − ω2)
2 is as follows:

• Ē[(S1,n−ω1)(S2,n − ω2)
2, A] =

[

Ē[YtXt−1X
2
t−2X

2
t−3, A] − 2ω2Ē[YtXt−1X

2
t−2, A]

− ω1Ē[X2
t−1X

2
t−2, A] + ω2

2Ē[YtXt−1, A] + 2ω1ω2Ē[X2
t−1, A]

− ω1ω
2
2P (X ∈ A)

]

+
1

n

[

Ē[YtXt−1X
4
t−2, A] + 2Ē[YtX

3
t−1X

2
t−2, A]

− 3Ē[YtXt−1X
2
t−2X

2
t−3, A] − 2ω2Ē[YtX

3
t−1, A]

+ 2ω2Ē[YtXt−1X
2
t−2, A] − ω1Ē[X4

t−1, A] + ω1Ē[X2
t−1X

2
t−2, A]

]

+
1

n2

[

Ē[YtX
5
t−1, A] − Ē[YtXt−1X

4
t−2, A]

− 2Ē[YtX
3
t−1X

2
t−2, A] + 2Ē[YtXt−1X

2
t−2X

2
t−3, A]

]

.

We expand Ē[(S1,n − ω1)
2(S2,n − ω2), A]:

Ē[(S1,n−ω1)
2(S2,n − ω2), A] = Ē[S2

1,nS2,n, A] − 2ω1Ē[S1,nS2,n, A] − ω2Ē[S2
1,n, A]

+ ω2
1Ē[S2,n, A] + 2ω1ω2Ē[S1,n, A] − ω2

1ω2P (X ∈ A)

=
1

n2
Ē
[
Y 2

t X
4
t−1, A

]
+

(
1

n
− 1

n2

)

Ē
[
Y 2

t X
2
t−1X

2
t−2, A

]
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+ 2

(
1

n
− 1

n2

)

Ē
[
YtXt−1Yt−1X

3
t−2, A

]

+

(

1 − 3
1

n
+ 2

1

n2

)

Ē
[
YtXt−1Yt−1Xt−2X

2
t−3, A

]

− 2ω1

( 1

n
Ē
[
YtX

3
t−1, A

]
+

(

1 − 1

n

)

Ē
[
YtXt−1X

2
t−2, A

] )

− ω2

( 1

n
Ē
[
Y 2

t X
2
t−1, A

]
+

(

1 − 1

n

)

Ē [YtXt−1Yt−1Xt−2, A]
)

+ ω2
1Ē
[
X2

t−1, A
]
+ 2ω1ω2Ē [YtXt−1, A] − ω2

1ω2P (X ∈ A).

The truncated expectation of (S1,n − ω1)
2(S2,n − ω2) is as follows:

• Ē[(S1,n − ω1)
2(S2,n − ω2), A]

=
[

Ē
[
YtXt−1Yt−1Xt−2X

2
t−3, A

]
− 2ω1Ē

[
YtXt−1X

2
t−2, A

]

− ω2Ē [YtXt−1Yt−1Xt−2, A] + ω2
1Ē
[
X2

t−1, A
]
+ 2ω1ω2Ē [YtXt−1, A]

− ω2
1ω2P (X ∈ A)

]

+
1

n

[

Ē
[
Y 2

t X
2
t−1X

2
t−2, A

]
+ 2Ē

[
YtXt−1Yt−1X

3
t−2, A

]

− 3Ē
[
YtXt−1Yt−1Xt−2X

2
t−3, A

]
− 2ω1Ē

[
YtX

3
t−1, A

]

+ 2ω1Ē
[
YtXt−1X

2
t−2, A

]
− ω2Ē

[
Y 2

t X
2
t−1, A

]

+ ω2Ē [YtXt−1Yt−1Xt−2, A])
]

+
1

n2

[

Ē
[
Y 2

t X
4
t−1, A

]
− Ē

[
Y 2

t X
2
t−1X

2
t−2, A

]
− 2Ē

[
YtXt−1Yt−1X

3
t−2, A

]

+ 2Ē
[
YtXt−1Yt−1Xt−2X

2
t−3, A

] ]

.

We expand Ē[(S2,n − ω2)
3, A]:

Ē[(S2,n − ω2)
3, A] =Ē[S3

2,n, A] − 3ω2Ē[S2
2,n, A] + 3ω2

2Ē[S2,n, A] − ω3
2P (X ∈ A)

=
1

n2
Ē
[
X6

t−1, A
]
+ 3

(
1

n
− 1

n2

)

Ē
[
X4

t−1X
2
t−2, A

]

+

(

1 − 3
1

n
+ 2

1

n2

)

Ē
[
X2

t−1X
2
t−2X

2
t−3, A

]

− 3ω2

( 1

n
Ē
[
X4

t−1, A
]
+

(

1 − 1

n

)

Ē
[
X2

t−1X
2
t−2, A

] )

+ 3ω2
2Ē
[
X2

t−1, A
]
− ω3

2P (X ∈ A).



363

The truncated expectation of (S2,n − ω2)
3 is as follows:

• Ē[(S2,n − ω2)
3, A] =

[

Ē
[
X2

t−1X
2
t−2X

2
t−3, A

]
− 3ω2Ē

[
X2

t−1X
2
t−2, A

]

+ 3ω2
2Ē
[
X2

t−1, A
]
− ω3

2P (X ∈ A)
]

+
1

n

[

3Ē
[
X4

t−1X
2
t−2, A

]
− 3Ē

[
X2

t−1X
2
t−2X

2
t−3, A

]

− 3ω2Ē
[
X4

t−1, A
]
+ 3ω2Ē

[
X2

t−1X
2
t−2, A

] ]

+
1

n2

[

Ē
[
X6

t−1, A
]
− 3Ē

[
X4

t−1X
2
t−2, A

]
+ 2Ē

[
X2

t−1X
2
t−2X

2
t−3, A

] ]

.

We expand Ē[(S2,n − ω2)
4, A]:

Ē[(S2,n − ω2)
4, A] =Ē[S4

2,n, A] − 4ω2Ē[S3
2,n, A] + 6ω2

2Ē[S2
2,n, A] − 4ω3

2Ē[S2,n, A]

+ ω4
2P (X ∈ A)

=
1

n3
Ē[X8

t−1, A] + 4

(
1

n2
− 1

n3

)

Ē[X6
t−1X

2
t−2, A]

+ 3

(
1

n2
− 1

n3

)

Ē[X4
t−1X

4
t−2, A]

+ 6

(
1

n
− 3

n2
+

2

n3

)

Ē[X4
t−1X

2
t−2X

2
t−3, A]

+

(

1 − 6

n
+

11

n2
− 6

n3

)

Ē[X2
t−1X

2
t−2X

2
t−3X

2
t−4, A]

− 4

n2
ω2Ē[X6

t−1, A] − 12

(
1

n
− 1

n2

)

ω2Ē[X4
t−1X

2
t−2, A]

− 4

(

1 − 3

n
+

2

n2

)

ω2Ē[X2
t−1X

2
t−2X

2
t−3, A] +

6

n
ω2

2Ē[X4
t−1, A]

+ 6

(

1 − 1

n

)

ω2
2Ē[X2

t−1X
2
t−2, A] − 4ω3

2Ē[X2
t−1, A] + ω4

2P (X ∈ A).

The truncated expectation of (S2,n − ω2)
4 is as follows:

• Ē[(S2,n − ω2)
4, A] =

[

Ē[X2
t−1X

2
t−2X

2
t−3X

2
t−4, A] − 4ω2Ē[X2

t−1X
2
t−2X

2
t−3, A]

+ 6ω2
2Ē[X2

t−1X
2
t−2, A] − 4ω3

2Ē[X2
t−1, A] + ω4

2P (X ∈ A)
]

+
1

n

[

6Ē[X4
t−1X

2
t−2X

2
t−3, A] − 6Ē[X2

t−1X
2
t−2X

2
t−3X

2
t−4, A]

− 12ω2Ē[X4
t−1X

2
t−2, A] + 12ω2Ē[X2

t−1X
2
t−2X

2
t−3, A] + 6ω2

2Ē[X4
t−1, A]
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− 6ω2
2Ē[X2

t−1X
2
t−2, A]

]

+
1

n2

[

4Ē[X6
t−1X

2
t−2, A] + 3Ē[X4

t−1X
4
t−2, A] − 18Ē[X4

t−1X
2
t−2X

2
t−3, A]

+ 11Ē[X2
t−1X

2
t−2X

2
t−3X

2
t−4, A] − 4ω2Ē[X6

t−1, A]

+ 12ω2Ē[X4
t−1X

2
t−2, A] − 8ω2Ē[X2

t−1X
2
t−2X

2
t−3, A]

]

+
1

n3

[

Ē[X8
t−1, A] − 4Ē[X6

t−1X
2
t−2, A] − 3Ē[X4

t−1X
4
t−2, A]

+ 12Ē[X4
t−1X

2
t−2X

2
t−3, A] − 6Ē[X2

t−1X
2
t−2X

2
t−3X

2
t−4, A]

]

.

We expand Ē[(S1,n − ω1)(S2,n − ω2)
3, A]:

Ē[(S1,n − ω1)(S2,n − ω2)
3, A] = Ē[S1,nS

3
2,n, A] − ω1Ē[S3

2,n, A] − 3ω2Ē[S1,nS
2
2,n, A]

+ 3ω1ω2Ē[S2
2,n, A] + 3ω2

2Ē[S1,nS2,n, A] − 3ω1ω
2
2Ē[S2,n, A] − ω3

2Ē[S1,n, A]

+ ω1ω
3
2P (X ∈ A)

=
1

n3
Ē[YtX

7
t−1, A] +

(
1

n2
− 1

n3

)

Ē[YtXt−1X
6
t−2, A]

+ 3

(
1

n2
− 1

n3

)

Ē[YtX
5
t−1X

2
t−2, A] + 3

(
1

n2
− 1

n3

)

Ē[YtX
3
t−1X

4
t−2, A]

+ 3

(
1

n
− 3

n2
+

2

n3

)

Ē[YtXt−1X
4
t−2X

2
t−3, A]

+ 3

(
1

n
− 3

n2
+

2

n3

)

Ē[YtX
3
t−1X

2
t−2X

2
t−3, A]

+

(

1 − 6

n
+

11

n2
− 6

n3

)

Ē[YtXt−1X
2
t−2X

2
t−3X

2
t−4, A]

− ω1

n2
Ē
[
X6

t−1, A
]
− 3

(
1

n
− 1

n2

)

ω1Ē[X4
t−1X

2
t−2, A]

−
(

1 − 3
1

n
+ 2

1

n2

)

ω1Ē[X2
t−1X

2
t−2X

2
t−3, A] − 3ω2

1

n2
Ē
[
YtX

5
t−1, A

]

− 3

(
1

n
− 1

n2

)

ω2Ē[YtXt−1X
4
t−2, A]

− 6

(
1

n
− 1

n2

)

ω2Ē[YtX
3
t−1X

2
t−2, A]

− 3

(

1 − 3
1

n
+ 2

1

n2

)

ω2Ē[YtXt−1X
2
t−1X

2
t−2, A]

+
3

n
ω1ω2Ē

[
X4

t−1, A
]
+ 3

(

1 − 1

n

)

ω1ω2Ē
[
X2

t−1X
2
t−2, A

]

+
3

n
ω2

2Ē
[
YtX

3
t−1, A

]
+ 3

(

1 − 1

n

)

ω2
2Ē
[
YtXt−1X

2
t−2, A

]
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− 3ω1ω
2
2Ē[S2,n, A] − ω3

2Ē[S1,n, A] + ω1ω
3
2P (X ∈ A).

The truncated expectation of (S1,n − ω1)(S2,n − ω2)
3 is as follows:

• Ē[(S1,n − ω1)(S2,n − ω2)
3, A] =

[

Ē[YtXt−1X
2
t−2X

2
t−3X

2
t−4, A]

− ω1Ē[X2
t−1X

2
t−2X

2
t−3, A] − 3ω2Ē[YtXt−1X

2
t−1X

2
t−2, A]

+ 3ω1ω2Ē[X2
t−1X

2
t−2, A] + 3ω2

2Ē[YtXt−1X
2
t−2, A]

− 3ω1ω
2
2Ē[X2

t−1, A] − ω2
3Ē[YtXt−1, A] + ω1ω

2
3P (X ∈ A)

]

+
1

n

[

3Ē[YtXt−1X
4
t−2X

2
t−3, A] + 3Ē[YtX

3
t−1X

2
t−2X

2
t−3, A]

− 6Ē[YtXt−1X
2
t−2X

2
t−3X

2
t−4, A] − 3ω1Ē[X4

t−1X
2
t−2, A]

+ 3ω1Ē[X2
t−1X

2
t−2X

2
t−3, A] − 3ω2Ē[YtXt−1X

4
t−2, A]

− 6ω2Ē[YtX
3
t−1X

2
t−2, A] + 9ω2Ē[YtXt−1X

2
t−2X

2
t−3, A]

+ 3ω1ω2Ē[X4
t−1, A] − 3ω1ω2Ē[X2

t−1X
2
t−2, A]

+ 3ω2
2Ē[YtX

3
t−1, A] − 3ω2

2Ē[YtXt−1X
2
t−2, A]

]

+
1

n2

[

Ē[YtXt−1X
6
t−2, A] + 3Ē[YtX

5
t−1X

2
t−2, A]

+ 3Ē[YtX
3
t−1X

4
t−2, A] − 9Ē[YtXt−1X

4
t−2X

2
t−3, A]

− 9Ē[YtX
3
t−1X

2
t−2X

2
t−3, A] + 11Ē[YtXt−1X

2
t−2X

2
t−3X

2
t−4, A]

− ω1Ē[X6
t−1, A] + 3ω1Ē[X4

t−1X
2
t−2, A] − 2ω1Ē[X2

t−1X
2
t−2X

2
t−3, A]

− 3ω2Ē[YtX
5
t−1, A] + 3ω2Ē[YtXt−1X

4
t−2, A]

+ 6ω2Ē[YtX
3
t−1X

2
t−2, A] − 6ω2Ē[YtXt−1X

2
t−2X

2
t−3, A]

]

+
1

n3

[

Ē[YtX
7
t−1, A] − Ē[YtXt−1X

6
t−2, A]

− 3Ē[YtX
5
t−1X

2
t−2, A] − 3Ē[YtX

3
t−1X

4
t−2, A]

+ 6Ē[YtXt−1X
4
t−2X

2
t−3, A] + 6Ē[YtX

3
t−1X

2
t−2X

2
t−3, A]

− 6Ē[YtXt−1X
2
t−2X

2
t−3X

2
t−4, A]

]

.

We expand Ē[(S1,n − ω1)
2(S2,n − ω2)

2, A]:

Ē[(S1,n − ω1)
2(S2,n − ω2)

2, A] = Ē[S2
1,nS

2
2,n, A] − 2ω1Ē[S1,nS

2
2,n, A] + ω2

1Ē[S2
2,n, A]
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− 2ω2Ē[S2
1,nS2,n, A] + 4ω1ω2Ē[S1,nS2,n, A] − 2ω2

1ω2Ē[S2,n, A]

+ ω2
2Ē[S2

1,n, A] − 2ω1ω
2
2Ē[S1,n, A] + ω2

1ω
2
2P (X ∈ A)

=
1

n3
Ē[Y 2

t X
6
t−1, A] +

(
1

n2
− 1

n3

)

Ē[Y 2
t X

2
t−1X

4
t−2, A]

+ 2

(
1

n2
− 1

n3

)

Ē[Y 2
t X

4
t−1X

2
t−2, A] +

(
1

n
− 3

n2
+

2

n2

)

Ē[Y 2
t X

2
t−1X

2
t−2X

2
t−3, A]

+ 2

(
1

n2
− 1

n3

)

Ē[YtX
5
t−1Yt−1Xt−2, A]

+

(
1

n
− 3

n2
+

2

n2

)

Ē[YtXt−1Yt−1Xt−2X
4
t−3, A]

+ 4

(
1

n
− 3

n2
+

2

n2

)

Ē[YtX
3
t−1Yt−1Xt−2X

2
t−3, A]

+ 2

(
1

n2
− 1

n3

)

Ē[YtX
3
t−1Yt−1X

3
t−2, A]

+

(

1 − 6

n
+

11

n2
− 6

n3

)

Ē[YtXt−1Yt−1Xt−2X
2
t−3X

2
t−4, A]

− 2

n2
ω1Ē

[
YtX

5
t−1, A

]
− 2

(
1

n
− 1

n2

)

ω1Ē
[
YtXt−1X

4
t−2, A

]

− 4

(
1

n
− 1

n2

)

ω1Ē
[
YtX

3
t−1X

2
t−2, A

]

− 2

(

1 − 3
1

n
+ 2

1

n2

)

ω1Ē
[
YtXt−1X

2
t−2X

2
t−3, A

]

+
1

n
ω2

1Ē
[
X4

t−1, A
]
+

(

1 − 1

n

)

ω2
1Ē
[
X2

t−1X
2
t−2, A

]

− 2

n2
ω2Ē

[
Y 2

t X
4
t−1, A

]
− 2

(
1

n
− 1

n2

)

ω2Ē
[
Y 2

t X
2
t−1X

2
t−2, A

]

− 4

(
1

n
− 1

n2

)

ω2Ē
[
YtXt−1Yt−1X

3
t−2, A

]

− 2

(

1 − 3
1

n
+ 2

1

n2

)

ω2Ē
[
YtXt−1Yt−1Xt−2X

2
t−3, A

]

+ 4ω1ω2
1

n
Ē[YtX

3
t−1, A] + 4

(

1 − 1

n

)

ω1ω2Ē[YtXt−1X
2
t−2, A]

− 2ω2
1ω2Ē[X2

t−2, A] +
1

n
ω2

2Ē[Y 2
t X

2
t−1, A]

+

(

1 − 1

n

)

ω2
2Ē [YtXt−1Yt−1Xt−2, A] − 2ω1ω

2
2Ē[YtXt−1, A] + ω2

1ω
2
2P (X ∈ A).

The truncated expectation of (S1,n − ω1)
2(S2,n − ω2)

2 is as follows:

• Ē[(S1,n − ω1)
2(S2,n − ω2)

2, A] =
[

Ē[YtXt−1Yt−1Xt−2X
2
t−2X

2
t−3, A]
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− 2ω1Ē[YtXt−1X
2
t−2X

2
t−3, A] + ω2

1Ē[X2
t−2X

2
t−3, A]

− 2ω2Ē[YtXt−1Yt−1Xt−2X
2
t−3, A] + 4ω1ω2Ē[YtXt−1X

2
t−2, A]

− 2ω2
1ω2Ē[X2

t−2, A] + ω2
2Ē[YtXt−1Yt−1Xt−2, A] − 2ω1ω

2
2Ē[YtXt−1, A]

+ ω2
1ω

2
2P (X ∈ A)

]

+
1

n

[

Ē[Y 2
t X

2
t−1X

2
t−2X

2
t−3, A] + Ē[YtXt−1Yt−1Xt−2X

4
t−3, A]

+ 4Ē[YtX
3
t−1Yt−1Xt−2X

2
t−3, A] − 6Ē[YtXt−1Yt−1Xt−2X

2
t−2X

2
t−3, A]

− 2ω1Ē[YtXt−1X
4
t−2, A] − 4ω1Ē[YtX

3
t−1X

2
t−2, A]

+ 6ω1Ē[YtXt−1X
2
t−2X

2
t−3, A] + ω2

1Ē[X4
t−2, A] − ω2

1Ē[X2
t−2X

2
t−3, A]

− 2ω2Ē[Y 2
t X

2
t−1X

2
t−2, A] − 4ω2Ē[YtXt−1Yt−1X

3
t−2, A]

+ 6ω2Ē[YtXt−1Yt−1Xt−2X
2
t−2, A] + 4ω1ω2Ē[YtX

3
t−1, A]

− 4ω1ω2Ē[YtXt−1X
2
t−2, A] + ω2

2Ē[Y 2
t X

2
t−1, A]

− ω2
2Ē

2[YtXt−1Yt−1Xt−2, A]
]

+
1

n2

[

Ē[Y 2
t X

2
t−1X

4
t−2, A] + 2Ē[Y 2

t X
4
t−1X

2
t−2, A]

− 3Ē[Y 2
t X

2
t−1X

2
t−2X

2
t−3, A] + 2Ē[YtX

5
t−1Yt−1Xt−2, A]

− 3Ē[YtXt−1Yt−1Xt−2X
4
t−2, A] − 12Ē[YtX

3
t−1Yt−1Xt−2X

2
t−3, A]

+ 2Ē[YtX
3
t−1Yt−1X

3
t−2, A] + 11Ē[YtXt−1Yt−1Xt−2X

2
t−3X

2
t−4, A]

− 2ω1Ē[YtX
5
t−1, A] + 2ω1Ē[YtXt−1X

4
t−2, A] + 4ω1Ē[YtX

3
t−1X

2
t−2, A]

− 4ω1Ē[YtXt−1X
2
t−2X

2
t−3, A] − 2ω2Ē[Y 2

t X
4
t−1, A]

+ 2ω2Ē[Y 2
t X

2
t−1X

2
t−2, A] + 4ω2Ē[YtXt−1Yt−1X

3
t−2, A]

− 4ω2Ē[YtXt−1Yt−1Xt−2X
2
t−3, A]

]

+
1

n3

[

Ē[Y 2
t X

6
t−1, A] − Ē[Y 2

t X
2
t−1X

4
t−2, A]

− 2Ē[Y 2
t X

4
t−1X

2
t−2, A] + 2Ē[Y 2

t X
2
t−1X

2
t−2X

2
t−3, A]

− 2Ē[YtX
5
t−1Yt−1Xt−2, A] + 2Ē[YtXt−1Yt−1Xt−2X

4
t−3, A]

+ 8Ē[YtX
3
t−1Yt−1Xt−2X

2
t−3, A] − 2Ē[YtX

3
t−1Yt−1X

3
t−2, A]

− 6Ē[YtXt−1Yt−1Xt−2X
2
t−3X

2
t−4, A]

]

.
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C.3 Proof of proposition 5.3

We begin with some lemmas.

Lemma C.1 Given x, y real and x ≥ 0, x ≥ |y| implies x2 ≥ y2 or x2 ≥ |y|2.

Proof. Draw a picture of x2.

Lemma C.2 E2[|Yt+1Xt|] ≥ E2[Yt+1Xt].

Proof. Follows by the lemma above setting x = E[|Yt+1Xt|] and y = E[Yt+1Xt].

Lemma C.3 (E1/2[Y 2
t+1]E

1/2[X2
t ])2 ≥ E2[|Yt+1Xt|].

Proof. Schwarz’s inequality is E1/2[Y 2
t+1]E

1/2[X2
t ] ≥ E[|Yt+1Xt|] = |E[|Yt+1Xt|]|. Now

apply the first lemma.

Proof of Proposition 5.3

Proof. We write

C = E[Y 2
t+1]ω

4
2 − ω2

1ω
3
2 = ω3

2(E[Y 2
t+1]ω2 − ω2

1),

and since ω2 > 0 it is enough to prove E[Y 2
t+1]ω2 − ω2

1 ≥ 0. It follows

E[Y 2
t+1]ω2 − ω2

1 = E[Y 2
t+1]E[X2

t ] −E2[Yt+1Xt]

≥ E[Y 2
t+1]E[X2

t ] −E2[|Yt+1Xt|]

≥ E[Y 2
t+1]E[X2

t ] − (E1/2[Y 2
t+1]E

1/2[X2
t ])2 = 0,

where the inequalities follow from the lemmas above and Schwarz’s inequality.

C.4 Matrix calculus

Most of the definitions that follow can be found in [148]. We begin with some general

notation.

1. A - a general matrix A
p×q

≡ [aij ]

2. I
p

- identity matrix, p-dimensioned
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3. e
p

k - the kth elementary vector, p-dimensioned, all zeros except for a 1 in the kth

position

4. E
p×q

kl - the klth elementary matrix, p× q-dimensioned, all zeros except 1 in the klth

position

5. Ep×q
q×p - a permutation matrix, pq × pq-dimensioned, consisting of a q × p array of

q × p-dimensioned elementary submatrices

Ep×q
q×p ≡













E11

p×q

E21

p×q

· · · Ep1

p×q

E21

p×q

E22

p×q

· · ·
...

...
. . .

Eq1

p×q

Eq2

p×q

· · · Eqp

p×q













6. A ⊗ B - Kronecker, direct, or tensor product of two matrices A
p×q

and B
s×t

, ps× qt-

dimensioned

A⊗B ≡











a11B a12B · · · a1qB

a21B a22B · · ·
...

...
. . .

ap1B ap2B apqB











7. A⊗ k - the kth Kronecker power of A

A⊗ k ≡ A⊗A⊗ · · · ⊗A
︸ ︷︷ ︸

k factors

A⊗ 0 ≡ 1, A⊗1 ≡ A

8. csA - the column string of A, the column sequenced vector structure of the elements

of A
p×q

csA
pq×1

≡
q
∑

j=1

(e
q

j ⊗ I
p
) A

p×q

e
q

j
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9. rsA - the row string of A, the row sequenced vector structure of the elements of A
p×q

rsA
1×pq

≡
p
∑

j=1

e
p

j> A
p×q

(e
p

j> ⊗ I
q
)

10. The derivative of a matrix-valued function A
p×q

(B) with respect to a scalar bkl:

Dbkl
A(B) ≡











∂a11
∂bkl

∂a12
∂bkl

· · · ∂a1q

∂bkl

∂a21
∂bkl

∂a22
∂bkl

· · ·
...

...
. . .

∂ap1

∂bkl

∂aq2

∂bkl
· · · ∂apq

∂bkl











,

11. The derivative of a matrix-valued function A
p×q

(B) with respect to a matrix B
s×t

:

DBA(B) ≡
∑

ij

E
s×t

ij ⊗Dbij
A =











Db11A Db12A · · · Db1tA

Db21A Db22A · · ·
...

...
. . .

Dbs1A Dbp2A · · · DbstA











,

12. Matrix derivative composition:

Dn
BnA(B) ≡ DB(DB(· · · (DB

︸ ︷︷ ︸

n derivatives

A(B)) · · · )),

D3
CBB>A(B,C) ≡ DC(DB(DB>A)),

D5
B(B>B)2A(B) ≡ DB(DB>(DB(DB>(DBA)))),

13. Matrix Taylor expansion: The Taylor expansion for a matrix-valued function A(b)

of a vector b, where b may be the row string or column string of a matrix B:

A
p×q

(b
s
) = A(b) +

M∑

m=1

1

m!

(

Dm
b>m A(b)

)

b=b̄
((b− b̄)⊗ m ⊗ I

q
) +RM+1(b̄, b),

Rm+1(b̄, b) =
1

m!

∫ b

ξ=b̄

(

Dm+1
ξ>m+1A(ξ)

)

(I
s
⊗ (b− ξ)⊗ m ⊗ I

q
)(dξ ⊗ I

q
).
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C.5 The multi-variate problem

In this section we present the calculations needed to re-express the term (b − b̄)⊗ i for

i = 2, 3, 4. We begin by writing the terms needed for the second order expansion.

C.5.1 Expansion of the central moments for the multi-variate problem

• E[S1i,n] =
1

n
E

[
t−1∑

τ=t−n

Xi
τYτ+1

]

= E
[
Xi

t−1Yt

]
= ω1i,

• E[S2ij,n] =
1

n
E

[
t−1∑

τ=t−n

Xi
τXτ

]

= E
[
Xi

t−1Xt−1

]
= ω2ij,

• E[S1i,nS1j,n] =
1

n2
E

[
t−1∑

τ=t−n

Xi
τYτ+1

t−1∑

τ=t−n

Xj
τYτ+1

]

=
1

n2
E





t−1∑

τ=t−n

Xi
τYτ+1X

j
τYτ+1 +

∑

τ1 6=τ2

Xi
τ1Yτ1+1X

j
τ2Yτ2+1





=
1

n
E
[

Y 2
t X

i
t−1X

j
t−1

]

+

(

1 − 1

n

)

ω1iω1j

• E[S1i,nS2jk,n] =
1

n2
E

[
t−1∑

τ=t−n

Xi
τYτ+1

t−1∑

τ=t−n

Xj
τX

k
τ

]

=
1

n2
E





t−1∑

τ=t−n

Yτ+1X
i
τX

j
τX

k
τ +

∑

τ1 6=τ2

Yτ1+1X
i
τ1X

j
τ2X

k
τ2





=
1

n
E
[

YtX
i
t−1X

j
t−1X

k
t−1

]

+

(

1 − 1

n

)

ω1iω2jk

• E[S2ij,nS2kl,n] =
1

n2
E

[
t−1∑

τ=t−n

Xi
τX

j
τ

t−1∑

τ=t−n

Xk
τX

l
τ

]
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=
1

n2
E





t−1∑

τ=t−n

Xi
τX

j
τX

k
τX

l
τ +

∑

τ1 6=τ2

Xi
τ1X

j
τ1X

k
τ2X

l
τ2





=
1

n
E
[

Xi
t−1X

j
t−1X

k
t−1X

k
t−1

]

+

(

1 − 1

n

)

ω2ijω2kl

We can now expand the second order central moments and with a superscript 2 to

indicate these second order terms, we define the quantities V 2
1,ij, V

2
2,ijk, and V 2

3,ijkl:

• E [(S1i,n − ω1i)(S1j,n − ω1j)] =E [S1i,nS1j,n − ω1iS1j,n − ω1jS1i,n + ω1iω1j ]

=
1

n

(

E[Y 2
t X

i
t−1X

j
t−1] − ω1iω1j

)

≡ 1

n
V 2

1,ij

• E [(S1i,n − ω1i)(S2jk,n − ω2jk)] =E [S1i,nS2jk,n − ω1iS2jk,n − ω2jkS1i,n + ω1iω2jk]

=
1

n

(

E[YtX
i
t−1X

j
t−1X

k
t−1] − ω1iω2jk

)

≡ 1

n
V 2

2,ijk

• E [(S2ij,n − ω2ij)(S2kl,n − ω2kl)] =E [S2ij,nS2kl,n − ω2ijS2kl,n − ω2klS2ij,n + ω2ijω2kl]

=
1

n

(

E[X i
t−1X

j
t−1X

k
t−1X

l
t−1] − ω2ijω2kl

)

≡ 1

n
V 2

3,ijkl

We proceed with the terms needed for the third order term:

• E[S1i,nS1j,nS1k,n] =
1

n3
E

[
t−1∑

τ=t−n

Xi
τYτ+1

t−1∑

τ=t−n

Xj
τYτ+1

t−1∑

τ=t−n

Xk
τ Yτ+1

]

=
1

n3
E





t−1∑

τ=t−n

Y 3
τ+1X

i
τX

j
τX

k
τ +

∑

τ1 6=τ2

Yτ1+1X
i
τ1Y

2
τ2+1X

j
τ2X

k
τ2

+
∑

τ1 6=τ2

Y 2
τ1+1X

i
τ1X

k
τ1Yτ2+1X

j
τ2 +

∑

τ1 6=τ2

Y 2
τ1+1X

i
τ1X

j
τ1Yτ2+1X

k
τ2
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+
∑

τ1 6=τ2 6=τ3

Yτ1+1X
i
τ1Yτ2+1X

j
τ2Yτ3+1X

k
τ3





=
1

n2
E
[

Y 3
t X

i
t−1X

j
t−1X

k
t−1

]

+

(

1 − 1

n2

)

E[Y 2
t X

j
t−1X

k
t−1]ω1i

+

(

1 − 1

n2

)

E[Y 2
t X

i
t−1X

k
t−1]ω1j +

(

1 − 1

n2

)

E[Y 2
t X

i
t−1X

j
t−1]ω1k

+

(

1 − 3

n
+

2

n2

)

ω1iω1jω1k

• E[S1i,nS1j,nS2kl,n] =
1

n3
E

[
t−1∑

τ=t−n

Xi
τYτ+1

t−1∑

τ=t−n

Xj
τYτ+1

t−1∑

τ=t−n

Xk
τX

l
τ

]

=
1

n3
E





t−1∑

τ=t−n

Y 2
τ+1X

i
τX

j
τX

k
τX

l
τ +

∑

τ1 6=τ2

Yτ1+1X
i
τ1Yτ2+1X

j
τ2X

k
τ2X

l
τ2

+
∑

τ1 6=τ2

Yτ1+1X
i
τ1X

k
τ1X

l
τ1Yτ2+1X

j
τ2 +

∑

τ1 6=τ2

Y 2
τ1+1X

i
τ1X

j
τ1X

k
τ2X

l
τ2

+
∑

τ1 6=τ2 6=τ3

Yτ1+1X
i
τ1Yτ2+1X

j
τ2X

k
τ3X

l
τ3





=
1

n2
E
[

Y 2
t X

i
t−1X

j
t−1X

k
t−1X

l
t−1

]

+

(

1 − 1

n2

)

E[YtX
j
t−1X

k
t−1X

l
t−1]ω1i

+

(

1 − 1

n2

)

E[YtX
i
t−1X

k
t−1X

l
t−1]ω1j +

(

1 − 1

n2

)

E[Y 2
t X

i
t−1X

j
t−1]ω2kl

+

(

1 − 3

n
+

2

n2

)

ω1iω1jω2kl

• E[S1i,nS2jk,nS2lo,n] =
1

n3
E

[
t−1∑

τ=t−n

Xi
τYτ+1

t−1∑

τ=t−n

Xj
τX

k
τ

t−1∑

τ=t−n

X l
τX

o
τ

]

=
1

n3
E





t−1∑

τ=t−n

Yτ+1X
i
τX

j
τX

k
τX

l
τX

o
τ +

∑

τ1 6=τ2

Yτ1+1X
i
τ1X

j
τ2X

k
τ2X

l
τ2X

o
τ2

+
∑

τ1 6=τ2

Yτ1+1X
i
τ1X

l
τ1X

o
τ1X

j
τ2X

k
τ2 +

∑

τ1 6=τ2

Yτ1+1X
i
τ1X

j
τ1X

k
τ1X

l
τ2X

o
τ2

+
∑

τ1 6=τ2 6=τ3

Yτ1+1X
i
τ1X

j
τ2X

k
τ2X

l
τ3X

o
τ3




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=
1

n2
E
[

YtX
i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1

]

+

(
1

n
− 1

n2

)

E[Xj
t−1X

k
t−1X

l
t−1X

o
t−1]ω1i

+

(
1

n
− 1

n2

)

E[YtX
i
t−1X

l
t−1X

o
t−1]ω2jk +

(
1

n
− 1

n2

)

E[YtX
i
t−1X

j
t−1X

k
t−1]ω2lo

+

(

1 − 3

n
+

2

n2

)

ω1iω2jkω2lo

• E[S2ij,nS2kl,nS2op,n] =
1

n3
E

[
t−1∑

τ=t−n

Xi
τX

j
τ

t−1∑

τ=t−n

Xk
τX

l
τ

t−1∑

τ=t−n

Xo
τX

p
τ

]

=
1

n3
E





t−1∑

τ=t−n

Xi
τX

j
τX

k
τX

l
τX

o
τX

p
τ +

∑

τ1 6=τ2

Xi
τ1X

j
τ1X

k
τ2X

l
τ2X

o
τ2X

p
τ2

+
∑

τ1 6=τ2

Xi
τ1X

j
τ1X

o
τ1X

p
τ1X

k
τ2X

l
τ2 +

∑

τ1 6=τ2

Xi
τ1X

j
τ1X

k
τ1X

l
τ1X

o
τ2X

p
τ2

+
∑

τ1 6=τ2 6=τ3

Xi
τ1X

j
τ1X

k
τ2X

l
τ2X

o
τ3X

p
τ3





=
1

n2
E
[

Xi
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1

]

+

(
1

n
− 1

n2

)

E[Xk
t−1X

l
t−1X

o
t−1X

p
t−1]ω2ij

+

(
1

n
− 1

n2

)

E[X i
t−1X

j
t−1X

o
t−1X

p
t−1]ω2kl +

(
1

n
− 1

n2

)

E[X i
t−1X

j
t−1X

k
t−1X

l
t−1]ω2op

+

(

1 − 3

n
+

2

n2

)

ω2ijω2klω2op

We can now expand the third order central moments and with a superscript 3 to indicate

these third order terms, we define the quantities V 3
1,ijk, V

3
2,ijkl, V

3
3,ijklo, and V 3

3,ijklop:

• E [(S1i,n − ω1i)(S1j,n − ω1j)(S1k,n − ω1k)]

=E[S1i,nS1j,nS1k,n] − ω1iE[S1j,nS1k,n] − ω1jE[S1i,nS1k,n] − ω1kE[S1i,nS1j,n]

+ ω1iω1jE[S1k,n] + ω1iω1kE[S1j,n] + ω1jω1kE[S1i,n] + ω1iω1jω1k

=
1

n2

[

E[Y 3
t X

i
t−1X

j
t−1X

k
t−1] −E[Y 2

t X
j
t−1X

k
t−1]ω1i −E[Y 2

t X
i
t−1X

k
t−1]ω1j

−E[Y 2
t X

i
t−1X

j
t−1]ω1k + 2ω1iω1jω1k

]

≡ 1

n2
V 3

1,ijk
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• E [(S1i,n − ω1i)(S1j,n − ω1j)(S2kl,n − ω2kl)]

=E[S1i,nS1j,nS2kl,n] − ω1iE[S1j,nS2kl,n] − ω1jE[S1i,nS2kl,n] − ω2klE[S1i,nS1j,n]

+ ω1iω1jE[S2kl,n] + ω1iω2klE[S1j,n] + ω1jω2klE[S1i,n] + ω1iω1jω2kl

=
1

n2

[

E[Y 2
t X

i
t−1X

j
t−1X

k
t−1X

l
t−1] −E[YtX

j
t−1X

k
t−1X

l
t−1]ω1i

−E[YtX
i
t−1X

k
t−1X

l
t−1]ω1j −E[Y 2

t X
i
t−1X

j
t−1]ω2kl + 2ω1iω1jω2kl

]

≡ 1

n2
V 3

2,ijkl

• E [(S1i,n − ω1i)(S2jk,n − ω2jk)(S2lo,n − ω2lo)]

=E[S1i,nS2jk,nS2lo,n] − ω1iE[S2jk,nS2lo,n] − ω2jkE[S1i,nS2lo,n] − ω2loE[S1i,nS2jk,n]

+ ω1iω2jkE[S2lo,n] + ω1iω2loE[S2jk,n] + ω2jkω2loE[S1i,n] + ω1iω2jkω2lo

=
1

n2

[

E[YtX
i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1] −E[Xj

t−1X
k
t−1X

l
t−1X

o
t−1]ω1i

−E[YtX
i
t−1X

l
t−1X

o
t−1]ω2jk −E[YtX

i
t−1X

j
t−1X

k
t−1]ω2lo + 2ω1iω2jkω2lo

]

≡ 1

n2
V 3

3,ijklo

• E [(S2ij,n − ω2ij)(S2kl,n − ω2kl)(S2op,n − ω2op)]

=E[S2ij,nS2kl,nS2op,n] − ω2ijE[S2kl,nS2op,n] − ω2klE[S2ij,nS2op,n] − ω2opE[S2ij,nS2kl,n]

+ ω2ijω2klE[S2op,n] + ω2ijω2opE[S2kl,n] + ω2klω2opE[S2ij,n] + ω2ijω2klω2op

=
1

n2

[

E[X i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1] −E[Xk

t−1X
l
t−1X

o
t−1X

p
t−1]ω2ij

−E[X i
t−1X

j
t−1X

o
t−1X

p
t−1]ω2kl −E[X i

t−1X
j
t−1X

k
t−1X

l
t−1]ω2op + 2ω2ijω2klω2op

]

≡ 1

n2
V 3

4,ijklop
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We proceed with the terms needed for the fourth order term:

• E[S1i,nS1j,nS1k,nS1l,n]

=
1

n4
E

[
t−1∑

τ=t−n

Xi
τYτ+1

t−1∑

τ=t−n

Xj
τYτ+1

t−1∑

τ=t−n

Xk
τ Yτ+1

t−1∑

τ=t−n

X l
τYτ+1

]

=
1

n4
E





t−1∑

τ=t−n

Y 4
τ+1X

i
τX

j
τX

k
τX

l
τ +

∑

τ1 6=τ2

Y 2
τ1+1X

i
τ1X

j
τ1Y

2
τ2+1X

k
τ2X

l
τ2

+
∑

τ1 6=τ2

Y 2
τ1+1X

i
τ1X

k
τ1Y

2
τ2+1X

j
τ2X

l
τ2 +

∑

τ1 6=τ2

Y 2
τ1+1X

i
τ1X

l
τ1Y

2
τ2+1X

j
τ2X

k
τ2

+
∑

τ1 6=τ2

Yτ1+1X
i
τ1Y

3
τ2+1X

j
τ2X

k
τ2X

l
τ2 +

∑

τ1 6=τ2

Yτ1+1X
j
τ1Y

3
τ2+1X

i
τ2X

k
τ2X

l
τ2

+
∑

τ1 6=τ2

Yτ1+1X
k
τ1Y

3
τ2+1X

i
τ2X

j
τ2X

l
τ2 +

∑

τ1 6=τ2

Yτ1+1X
l
τ1Y

3
τ2+1X

i
τ2X

j
τ2X

k
τ2

+
∑

τ1 6=τ2 6=τ3

Y 2
τ1+1X

i
τ1X

j
τ1Yτ2+1X

k
τ2Yτ3+1X

l
τ3 +

∑

τ1 6=τ2 6=τ3

Y 2
τ1+1X

i
τ1X

k
τ1Yτ2+1X

j
τ2Yτ3+1X

l
τ3

+
∑

τ1 6=τ2 6=τ3

Y 2
τ1+1X

j
τ1X

k
τ1Yτ2+1X

i
τ2Yτ3+1X

l
τ3 +

∑

τ1 6=τ2 6=τ3

Y 2
τ1+1X

i
τ1X

l
τ1Yτ2+1X

j
τ2Yτ3+1X

k
τ3

+
∑

τ1 6=τ2 6=τ3

Y 2
τ1+1X

j
τ1X

l
τ1Yτ2+1X

i
τ2Yτ3+1X

k
τ3 +

∑

τ1 6=τ2 6=τ3

Y 2
τ1+1X

k
τ1X

l
τ1Yτ2+1X

i
τ2Yτ3+1X

j
τ3

+
∑

τ1 6=τ2 6=τ3 6=τ4

Yτ1+1X
i
τ1Yτ2+1X

j
τ2Yτ3+1X

k
τ3Yτ4+1X

l
τ4





=
1

n3
E[Y 4

t X
i
t−1X

j
t−1X

k
t−1X

l
t−1] +

(
1

n2
− 1

n3

)

E[Y 2
t X

i
t−1X

j
t−1]E[Y 2

t X
k
t−1X

l
t−1]

+

(
1

n2
− 1

n3

)

E[Y 2
t X

i
t−1X

k
t−1]E[Y 2

t X
j
t−1X

l
t−1]

+

(
1

n2
− 1

n3

)

E[Y 2
t X

i
t−1X

l
t−1]E[Y 2

t X
j
t−1X

k
t−1]

+

(
1

n2
− 1

n3

)

E[Y 3
t X

j
t−1X

k
t−1X

l
t−1]ω1i +

(
1

n2
− 1

n3

)

E[Y 3
t X

i
t−1X

k
t−1X

l
t−1]ω1j

+

(
1

n2
− 1

n3

)

E[Y 3
t X

i
t−1X

j
t−1X

l
t−1]ω1k +

(
1

n2
− 1

n3

)

E[Y 3
t X

i
t−1X

j
t−1X

k
t−1]ω1l

+

(
1

n
− 3

n2
+

2

n3

)

E[Y 2
t X

i
t−1X

j
t−1]ω1kω1l +

(
1

n
− 3

n2
+

2

n3

)

E[Y 2
t X

i
t−1X

k
t−1]ω1jω1l

+

(
1

n
− 3

n2
+

2

n3

)

E[Y 2
t X

j
t−1X

k
t−1]ω1iω1l +

(
1

n
− 3

n2
+

2

n3

)

E[Y 2
t X

i
t−1X

l
t−1]ω1jω1k

+

(
1

n
− 3

n2
+

2

n3

)

E[Y 2
t X

j
t−1X

l
t−1]ω1iω1k +

(
1

n
− 3

n2
+

2

n3

)

E[Y 2
t X

k
t−1X

l
t−1]ω1iω1j
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+

(

1 − 6

n
+

11

n2
− 6

n3

)

ω1iω1jω1kω1l

• E[S1i,nS1j,nS1k,nS2lo,n]

=
1

n4
E

[
t−1∑

τ=t−n

Xi
τYτ+1

t−1∑

τ=t−n

Xj
τYτ+1

t−1∑

τ=t−n

Xk
τ Yτ+1

t−1∑

τ=t−n

X l
τX

o
τ

]

=
1

n4
E





t−1∑

τ=t−n

Y 3
τ+1X

i
τX

j
τX

k
τX

l
τX

o
τ +

∑

τ1 6=τ2

Y 2
τ1+1X

i
τ1X

j
τ1Yτ2+1X

k
τ2X

l
τ2X

o
τ2

+
∑

τ1 6=τ2

Y 2
τ1+1X

i
τ1X

k
τ1Yτ2+1X

j
τ2X

l
τ2X

o
τ2 +

∑

τ1 6=τ2

Y 2
τ1+1X

j
τ1X

k
τ1Yτ2+1X

i
τ2X

l
τ2X

o
τ2

+
∑

τ1 6=τ2

Yτ1+1X
i
τ1Y

2
τ2+1X

j
τ2X

k
τ2X

l
τ2X

o
τ2 +

∑

τ1 6=τ2

Yτ1+1X
j
τ1Y

2
τ2+1X

i
τ2X

k
τ2X

l
τ2X

o
τ2

+
∑

τ1 6=τ2

Yτ1+1X
k
τ1Y

2
τ2+1X

i
τ2X

j
τ2X

l
τ2X

o
τ2 +

∑

τ1 6=τ2

X l
τ1X

o
τ1Y

3
τ2+1X

i
τ2X

j
τ2X

k
τ2

+
∑

τ1 6=τ2 6=τ3

Y 2
τ1+1X

i
τ1X

j
τ1Yτ2+1X

k
τ2X

l
τ3X

o
τ3 +

∑

τ1 6=τ2 6=τ3

Y 2
τ1+1X

i
τ1X

k
τ1Yτ2+1X

j
τ2X

l
τ3X

o
τ3

+
∑

τ1 6=τ2 6=τ3

Y 2
τ1+1X

j
τ1X

k
τ1Yτ2+1X

i
τ2X

l
τ3X

o
τ3

+
∑

τ1 6=τ2 6=τ3

Yτ1+1X
i
τ1X

l
τ1X

o
τ1Yτ2+1X

j
τ2Yτ3+1X

k
τ3

+
∑

τ1 6=τ2 6=τ3

Yτ1+1X
j
τ1X

l
τ1X

o
τ1Yτ2+1X

i
τ2Yτ3+1X

k
τ3

+
∑

τ1 6=τ2 6=τ3

Yτ1+1X
k
τ1X

l
τ1X

o
τ1Yτ2+1X

i
τ2Yτ3+1X

j
τ3

+
∑

τ1 6=τ2 6=τ3 6=τ4

Yτ1+1X
i
τ1Yτ2+1X

j
τ2Yτ3+1X

k
τ3X

l
τ4X

o
τ4





=
1

n3
E[Y 3

t X
i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1]

+

(
1

n2
− 1

n3

)

E[Y 2
t X

i
t−1X

j
t−1]E[YtX

k
t−1X

l
t−1X

o
t−1]

+

(
1

n2
− 1

n3

)

E[Y 2
t X

i
t−1X

k
t−1]E[YtX

j
t−1X

l
t−1X

o
t−1]

+

(
1

n2
− 1

n3

)

E[Y 2
t X

j
t−1X

k
t−1]E[YtX

i
t−1X

l
t−1X

o
t−1]
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+

(
1

n2
− 1

n3

)

E[Y 2
t X

j
t−1X

k
t−1X

l
t−1X

o
t−1]ω1i

+

(
1

n2
− 1

n3

)

E[Y 2
t X

i
t−1X

k
t−1X

l
t−1X

o
t−1]ω1j

+

(
1

n2
− 1

n3

)

E[Y 2
t X

i
t−1X

j
t−1X

l
t−1X

o
t−1]ω1k

+

(
1

n2
− 1

n3

)

E[Y 3
t X

i
t−1X

j
t−1X

k
t−1]ω2lo +

(
1

n
− 3

n2
+

2

n3

)

E[Y 2
t X

i
t−1X

j
t−1]ω1kω2lo

+

(
1

n
− 3

n2
+

2

n3

)

E[Y 2
t X

i
t−1X

k
t−1]ω1jω2lo

+

(
1

n
− 3

n2
+

2

n3

)

E[Y 2
t X

j
t−1X

k
t−1]ω1iω2lo

+

(
1

n
− 3

n2
+

2

n3

)

E[Y 2
t X

i
t−1X

l
t−1X

o
t−1]ω1jω1k

+

(
1

n
− 3

n2
+

2

n3

)

E[Y 2
t X

j
t−1X

l
t−1X

o
t−1]ω1iω1k

+

(
1

n
− 3

n2
+

2

n3

)

E[Y 2
t X

k
t−1X

l
t−1X

o
t−1]ω1iω1j

+

(

1 − 6

n
+

11

n2
− 6

n3

)

ω1iω1jω1kω2lo

• E[S1i,nS1j,nS2kl,nS2op,n]

=
1

n4
E

[
t−1∑

τ=t−n

Xi
τYτ+1

t−1∑

τ=t−n

Xj
τYτ+1

t−1∑

τ=t−n

Xk
τX

l
τ

t−1∑

τ=t−n

Xo
τX

p
τ

]

=
1

n4
E





t−1∑

τ=t−n

Y 2
τ+1X

i
τX

j
τX

k
τX

l
τX

o
τX

p
τ +

∑

τ1 6=τ2

Y 2
τ1+1X

i
τ1X

j
τ1X

k
τ2X

l
τ2X

o
τ2X

p
τ2

+
∑

τ1 6=τ2

Yτ1+1X
i
τ1X

k
τ1X

l
τ1Yτ2+1X

j
τ2X

o
τ2X

p
τ2 +

∑

τ1 6=τ2

Yτ1+1X
j
τ1X

k
τ1X

l
τ1Yτ2+1X

i
τ2X

o
τ2X

p
τ2

+
∑

τ1 6=τ2

Yτ1+1X
i
τ1Yτ2+1X

j
τ2X

k
τ2X

l
τ2X

o
τ2X

p
τ2 +

∑

τ1 6=τ2

Yτ1+1X
j
τ1Yτ2+1X

i
τ2X

k
τ2X

l
τ2X

o
τ2X

p
τ2

+
∑

τ1 6=τ2

Xk
τ1X

l
τ1Y

2
τ2+1X

i
τ2X

j
τ2X

o
τ2X

p
τ2 +

∑

τ1 6=τ2

Xo
τ1X

p
τ1Y

2
τ2+1X

i
τ2X

j
τ2X

k
τ2X

l
τ2

+
∑

τ1 6=τ2 6=τ3

Y 2
τ1+1X

i
τ1X

j
τ1X

k
τ2X

l
τ2X

o
τ3X

p
τ3 +

∑

τ1 6=τ2 6=τ3

Yτ1+1X
i
τ1X

k
τ1X

l
τ1Yτ2+1X

j
τ2X

o
τ3X

p
τ3

+
∑

τ1 6=τ2 6=τ3

Yτ1+1X
j
τ1X

k
τ1X

l
τ1Yτ2+1X

i
τ2X

o
τ3X

p
τ3
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+
∑

τ1 6=τ2 6=τ3

Yτ1+1X
i
τ1X

o
τ1X

p
τ1Yτ2+1X

j
τ2X

k
τ3X

l
τ3

+
∑

τ1 6=τ2 6=τ3

Yτ1+1X
j
τ1X

o
τ1X

p
τ1Yτ2+1X

i
τ2X

k
τ3X

l
τ3

+
∑

τ1 6=τ2 6=τ3

Xk
τ1X

l
τ1X

o
τ1X

p
τ1Yτ2+1X

i
τ2Yτ3+1X

j
τ3

+
∑

τ1 6=τ2 6=τ3 6=τ4

Yτ1+1X
i
τ1Yτ2+1X

j
τ2X

k
τ3X

l
τ3X

o
τ4X

p
τ4





=
1

n3
E[Y 2

t X
i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1]

+

(
1

n2
− 1

n3

)

E[Y 2
t X

i
t−1X

j
t−1]E[Xk

t−1X
l
t−1X

o
t−1X

p
t−1]

+

(
1

n2
− 1

n3

)

E[YtX
i
t−1X

k
t−1X

l
t−1]E[YtX

j
t−1X

o
t−1X

p
t−1]

+

(
1

n2
− 1

n3

)

E[YtX
i
t−1X

o
t−1X

p
t−1]E[YtX

j
t−1X

k
t−1X

l
t−1]

+

(
1

n2
− 1

n3

)

E[YtX
j
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1]ω1i

+

(
1

n2
− 1

n3

)

E[YtX
i
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1]ω1j

+

(
1

n2
− 1

n3

)

E[Y 2
t X

i
t−1X

j
t−1X

o
t−1X

p
t−1]ω2kl

+

(
1

n2
− 1

n3

)

E[Y 2
t X

i
t−1X

j
t−1X

k
t−1X

l
t−1]ω2op

+

(
1

n
− 3

n2
+

2

n3

)

E[Y 2
t X

i
t−1X

j
t−1]ω2klω2op

+

(
1

n
− 3

n2
+

2

n3

)

E[YtX
i
t−1X

k
t−1X

l
t−1]ω1jω2op

+

(
1

n
− 3

n2
+

2

n3

)

E[YtX
j
t−1X

k
t−1X

l
t−1]ω1iω2op

+

(
1

n
− 3

n2
+

2

n3

)

E[YtX
i
t−1X

o
t−1X

p
t−1]ω1jω2kl

+

(
1

n
− 3

n2
+

2

n3

)

E[YtX
j
t−1X

o
t−1X

p
t−1]ω1iω2kl

+

(
1

n
− 3

n2
+

2

n3

)

E[Xk
t−1X

l
t−1X

o
t−1X

p
t−1]ω1iω1j

+

(

1 − 6

n
+

11

n2
− 6

n3

)

ω1iω1jω2klω2op
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• E[S1i,nS2jk,nS2lo,nS2pq,n]

=
1

n4
E

[
t−1∑

τ=t−n

Xi
τYτ+1

t−1∑

τ=t−n

Xj
τX

k
τ

t−1∑

τ=t−n

X l
τX

o
τ

t−1∑

τ=t−n

Xp
τX

q
τ

]

=
1

n4
E





t−1∑

τ=t−n

Yτ+1X
i
τX

j
τX

k
τX

l
τX

o
τX

p
τX

q
τ +

∑

τ1 6=τ2

Yτ1+1X
i
τ1X

j
τ1X

k
τ1X

l
τ2X

o
τ2X

p
τ2X

q
τ2

+
∑

τ1 6=τ2

Yτ1+1X
i
τ1X

l
τ1X

o
τ1X

j
τ2X

k
τ2X

p
τ2X

q
τ2 +

∑

τ1 6=τ2

Xj
τ1X

k
τ1X

l
τ1X

o
τ1Yτ2+1X

i
τ2X

p
τ2X

q
τ2

+
∑

τ1 6=τ2

Yτ1+1X
i
τ1X

j
τ2X

k
τ2X

l
τ2X

o
τ2X

p
τ2X

q
τ2 +

∑

τ1 6=τ2

Xj
τ1X

k
τ1Yτ2+1X

i
τ2X

l
τ2X

o
τ2X

p
τ2X

q
τ2

+
∑

τ1 6=τ2

X l
τ1X

o
τ1Yτ2+1X

i
τ2X

j
τ2X

k
τ2X

p
τ2X

q
τ2 +

∑

τ1 6=τ2

Xp
τ1X

q
τ1Yτ2+1X

i
τ2X

j
τ2X

k
τ2X

l
τ2X

o
τ2

+
∑

τ1 6=τ2 6=τ3

Yτ1+1X
i
τ1X

j
τ1X

k
τ1X

l
τ2X

o
τ2X

p
τ3X

q
τ3 +

∑

τ1 6=τ2 6=τ3

Yτ1+1X
i
τ1X

l
τ1X

o
τ1X

j
τ2X

k
τ2X

p
τ3X

q
τ3

+
∑

τ1 6=τ2 6=τ3

Xj
τ1X

k
τ1X

l
τ1X

o
τ1Yτ2+1X

i
τ2X

p
τ3X

q
τ3

+
∑

τ1 6=τ2 6=τ3

Yτ1+1X
i
τ1X

p
τ1X

q
τ1X

j
τ2X

k
τ2X

l
τ3X

o
τ3

+
∑

τ1 6=τ2 6=τ3

Xj
τ1X

k
τ1X

p
τ1X

q
τ1Yτ2+1X

i
τ2X

l
τ3X

o
τ3

+
∑

τ1 6=τ2 6=τ3

X l
τ1X

o
τ1X

p
τ1X

q
τ1Yτ2+1X

i
τ2X

j
τ3X

k
τ3

+
∑

τ1 6=τ2 6=τ3 6=τ4

Yτ1+1X
i
τ1X

j
τ2X

k
τ2X

l
τ3X

o
τ3X

p
τ4X

q
τ4





=
1

n3
E[YtX

i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1X

q
t−1]

+

(
1

n2
− 1

n3

)

E[YtX
i
t−1X

j
t−1X

k
t−1]E[X l

t−1X
o
t−1X

p
t−1X

q
t−1]

+

(
1

n2
− 1

n3

)

E[YtX
i
t−1X

l
t−1X

o
t−1]E[Xj

t−1X
k
t−1X

p
t−1X

q
t−1]

+

(
1

n2
− 1

n3

)

E[YtX
i
t−1X

p
t−1X

q
t−1]E[Xj

t−1X
k
t−1X

l
t−1X

o
t−1]

+

(
1

n2
− 1

n3

)

E[Xj
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1X

q
t−1]ω1i

+

(
1

n2
− 1

n3

)

E[YtX
i
t−1X

l
t−1X

o
t−1X

p
t−1X

q
t−1]ω2jk
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+

(
1

n2
− 1

n3

)

E[YtX
i
t−1X

j
t−1X

k
t−1X

p
t−1X

q
t−1]ω2lo

+

(
1

n2
− 1

n3

)

E[YtX
i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1]ω2pq

+

(
1

n
− 3

n2
+

2

n3

)

E[YtX
i
t−1X

j
t−1X

k
t−1]ω2loω2pq

+

(
1

n
− 3

n2
+

2

n3

)

E[YtX
i
t−1X

l
t−1X

o
t−1]ω2jkω2pq

+

(
1

n
− 3

n2
+

2

n3

)

E[Xj
t−1X

k
t−1X

l
t−1X

o
t−1]ω1iω2pq

+

(
1

n
− 3

n2
+

2

n3

)

E[YtX
i
t−1X

p
t−1X

q
t−1]ω2jkω2lo

+

(
1

n
− 3

n2
+

2

n3

)

E[Xj
t−1X

k
t−1X

p
t−1X

q
t−1]ω1iω2lo

+

(
1

n
− 3

n2
+

2

n3

)

E[X l
t−1X

o
t−1X

p
t−1X

q
t−1]ω1iω2jk

+

(

1 − 6

n
+

11

n2
− 6

n3

)

ω1iω2jkω2loω2pq

• E[S2ij,nS2kl,nS2op,nS2qr,n]

=
1

n4
E

[
t−1∑

τ=t−n

Xi
τX

j
τ

t−1∑

τ=t−n

Xk
τX

l
τ

t−1∑

τ=t−n

Xo
τX

p
τ

t−1∑

τ=t−n

Xq
τX

r
τ

]

=
1

n4
E





t−1∑

τ=t−n

Xi
τX

j
τX

k
τX

l
τX

o
τX

p
τX

q
τX

r
τ +

∑

τ1 6=τ2

Xi
τ1X

j
τ1X

k
τ1X

l
τ1X

o
τ2X

p
τ2X

q
τ2X

r
τ2

+
∑

τ1 6=τ2

Xi
τ1X

j
τ1X

q
τ1X

r
τ1X

k
τ2X

l
τ2X

o
τ2X

p
τ2 +

∑

τ1 6=τ2

Xi
τ1X

j
τ1X

o
τ1X

p
τ1X

k
τ2X

l
τ2X

q
τ2X

r
τ2

+
∑

τ1 6=τ2

Xi
τ1X

j
τ1X

k
τ2X

l
τ2X

o
τ2X

p
τ2X

q
τ2X

r
τ2 +

∑

τ1 6=τ2

Xk
τ1X

l
τ1X

i
τ2X

j
τ2X

o
τ2X

p
τ2X

q
τ2X

r
τ2

+
∑

τ1 6=τ2

Xq
τ1X

r
τ1X

i
τ2X

j
τ2X

k
τ2X

l
τ2X

o
τ2X

p
τ2 +

∑

τ1 6=τ2

Xo
τ1X

p
τ1X

i
τ2X

j
τ2X

k
τ2X

l
τ2X

q
τ2X

r
τ2

+
∑

τ1 6=τ2 6=τ3

Xi
τ1X

j
τ1X

k
τ1X

l
τ1X

o
τ2X

p
τ2X

q
τ3X

r
τ3 +

∑

τ1 6=τ2 6=τ3

Xi
τ1X

j
τ1X

q
τ1X

r
τ1X

k
τ2X

l
τ2X

o
τ3X

p
τ3

+
∑

τ1 6=τ2 6=τ3

Xi
τ1X

j
τ1X

k
τ2X

l
τ2X

q
τ2X

r
τ2X

o
τ3X

p
τ3

+
∑

τ1 6=τ2 6=τ3

Xi
τ1X

j
τ1X

o
τ1X

p
τ1X

k
τ2X

l
τ2X

q
τ3X

r
τ3
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+
∑

τ1 6=τ2 6=τ3

Xi
τ1X

j
τ1X

k
τ2X

l
τ2X

o
τ2X

p
τ2X

q
τ3X

r
τ3

+
∑

τ1 6=τ2 6=τ3

Xi
τ1X

j
τ1X

k
τ2X

l
τ2X

o
τ3X

p
τ3X

q
τ3X

r
τ3

+
∑

τ1 6=τ2 6=τ3 6=τ4

Xi
τ1X

j
τ1X

k
τ2X

l
τ2X

o
τ3X

p
τ3X

q
τ4X

r
τ4





=
1

n3
E[X i

t−1X
j
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1X

q
t−1X

r
t−1]

+

(
1

n2
− 1

n3

)

E[X i
t−1X

j
t−1X

k
t−1X

l
t−1]E[Xo

t−1X
p
t−1X

q
t−1X

r
t−1]

+

(
1

n2
− 1

n3

)

E[X i
t−1X

j
t−1X

q
t−1X

r
t−1]E[Xk

t−1X
l
t−1X

o
t−1X

p
t−1]

+

(
1

n2
− 1

n3

)

E[X i
t−1X

j
t−1X

o
t−1X

p
t−1]E[Xk

t−1X
l
t−1X

q
t−1X

r
t−1]

+

(
1

n2
− 1

n3

)

E[Xk
t−1X

l
t−1X

o
t−1X

p
t−1X

q
t−1X

r
t−1]ω2ij

+

(
1

n2
− 1

n3

)

E[X i
t−1X

j
t−1X

o
t−1X

p
t−1X

q
t−1X

r
t−1]ω2kl

+

(
1

n2
− 1

n3

)

E[X i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1]ω2rs

+

(
1

n2
− 1

n3

)

E[X i
t−1X

j
t−1X

k
t−1X

l
t−1X

q
t−1X

r
t−1]ω2op

+

(
1

n
− 3

n2
+

2

n3

)

E[X i
t−1X

j
t−1X

k
t−1X

l
t−1]ω2opω2qr

+

(
1

n
− 3

n2
+

2

n3

)

E[X i
t−1X

j
t−1X

q
t−1X

r
t−1]ω2klω2op

+

(
1

n
− 3

n2
+

2

n3

)

E[Xk
t−1X

l
t−1X

q
t−1X

r
t−1]ω2ijω2op

+

(
1

n
− 3

n2
+

2

n3

)

E[X i
t−1X

j
t−1X

o
t−1X

p
t−1]ω2jkω2qr

+

(
1

n
− 3

n2
+

2

n3

)

E[Xk
t−1X

l
t−1X

o
t−1X

p
t−1]ω2ijω2qr

+

(
1

n
− 3

n2
+

2

n3

)

E[Xq
t−1X

r
t−1X

o
t−1X

p
t−1]ω2ijω2kl

+

(

1 − 6

n
+

11

n2
− 6

n3

)

ω2ijω2klω2opω2qr

We can now expand the fourth order central moments:

• E[(S1i,n − ω1i)(S1j,n − ω1j)(S1k,n − ω1k)(S1l,n − ω1l)]
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=E[S1i,nS1j,nS1k,nS1l,n] − ω1iE[S1j,nS1k,nS1l,n] − ω1jE[S1i,nS1k,nS1l,n]

− ω1kE[S1i,nS1j,nS1l,n] − ω1lE[S1i,nS1j,nS1k,n] + ω1iω1jE[S1k,nS1l,n]

+ ω1iω1kE[S1j,nS1l,n] + ω1jω1kE[S1i,nS1l,n] + ω1iω1lE[S1j,nS1k,n]

+ ω1jω1lE[S1i,nS1k,n] + ω1kω1lE[S1i,nS1j,n] − ω1iω1jω1kE[S1l,n]

− ω1iω1jω1lE[S1k,n] − ω1iω1kω1lE[S1j,n] − ω1jω1kω1lE[S1i,n] + ω1iω1jω1kω1l

=
1

n3

[

E[Y 4
t X

i
t−1X

j
t−1X

k
t−1X

l
t−1] −E[Y 2

t X
i
t−1X

j
t−1]E[Y 2

t X
k
t−1X

l
t−1]

−E[Y 2
t X

i
t−1X

k
t−1]E[Y 2

t X
j
t−1X

l
t−1] −E[Y 2

t X
i
t−1X

l
t−1]E[Y 2

t X
j
t−1X

k
t−1]

−E[Y 3
t X

j
t−1X

k
t−1X

l
t−1]ω1i −E[Y 3

t X
i
t−1X

k
t−1X

l
t−1]ω1j

−E[Y 3
t X

i
t−1X

j
t−1X

l
t−1]ω1k −E[Y 3

t X
i
t−1X

j
t−1X

k
t−1]ω1l

+ 2E[Y 2
t X

i
t−1X

j
t−1]ω1kω1l + 2E[Y 2

t X
i
t−1X

k
t−1]ω1jω1l + 2E[Y 2

t X
j
t−1X

k
t−1]ω1iω1l

+ 2E[Y 2
t X

i
t−1X

l
t−1]ω1jω1k + 2E[Y 2

t X
j
t−1X

l
t−1]ω1iω1k + 2E[Y 2

t X
k
t−1X

l
t−1]ω1iω1j

− 6ω1iω1jω1kω1l

]

+
1

n2

[

E[Y 2
t X

i
t−1X

j
t−1]E[Y 2

t X
k
t−1X

l
t−1] +E[Y 2

t X
i
t−1X

k
t−1]E[Y 2

t X
j
t−1X

l
t−1]

+E[Y 2
t X

i
t−1X

l
t−1]E[Y 2

t X
j
t−1X

k
t−1] −E[Y 2

t X
i
t−1X

j
t−1]ω1kω1l

−E[Y 2
t X

i
t−1X

k
t−1]ω1jω1l −E[Y 2

t X
j
t−1X

k
t−1]ω1iω1l −E[Y 2

t X
i
t−1X

l
t−1]ω1jω1k

−E[Y 2
t X

j
t−1X

l
t−1]ω1iω1k −E[Y 2

t X
k
t−1X

l
t−1]ω1iω1j + 3ω1iω1jω1kω1l

]

≡ 1

n3
U4

1,ijkl +
1

n2
V 4

1,ijkl

• E[(S1i,n − ω1i)(S1j,n − ω1j)(S1k,n − ω1k)(S2lo,n − ω2lo)]

=E[S1i,nS1j,nS1k,nS2lo,n] − ω1iE[S1j,nS1k,nS2lo,n] − ω1jE[S1i,nS1k,nS2lo,n]

− ω1kE[S1i,nS1j,nS2lo,n] − ω2loE[S1i,nS1j,nS1k,n] + ω1iω1jE[S1k,nS2lo,n]

+ ω1iω1kE[S1j,nS2lo,n] + ω1jω1kE[S1i,nS2lo,n] + ω1iω2loE[S1j,nS1k,n]

+ ω1jω2loE[S1i,nS1k,n] + ω1kω2loE[S1i,nS1j,n] − ω1iω1jω1kE[S2lo,n]

− ω1iω1jω2loE[S1k,n] − ω1iω1kω2loE[S1j,n] − ω1jω1kω2loE[S1i,n] + ω1iω1jω1kω2lo

=
1

n3

[

E[Y 3
t X

i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1] −E[Y 2

t X
i
t−1X

j
t−1]E[YtX

k
t−1X

l
t−1X

o
t−1]



384

−E[Y 2
t X

i
t−1X

k
t−1]E[YtX

j
t−1X

l
t−1X

o
t−1] −E[YtX

i
t−1X

l
t−1X

o
t−1]E[Y 2

t X
j
t−1X

k
t−1]

−E[Y 2
t X

j
t−1X

k
t−1X

l
t−1X

o
t−1]ω1i −E[Y 2

t X
i
t−1X

k
t−1X

l
t−1X

o
t−1]ω1j

−E[Y 2
t X

i
t−1X

j
t−1X

l
t−1X

o
t−1]ω1k −E[Y 3

t X
i
t−1X

j
t−1X

k
t−1]ω2lo

+ 2E[Y 2
t X

i
t−1X

j
t−1]ω1kω2lo + 2E[Y 2

t X
i
t−1X

k
t−1]ω1jω2lo + 2E[Y 2

t X
j
t−1X

k
t−1]ω1iω2lo

+ 2E[YtX
i
t−1X

l
t−1X

o
t−1]ω1jω1k + 2E[YtX

j
t−1X

l
t−1X

o
t−1]ω1iω1k

+ 2E[YtX
k
t−1X

l
t−1X

o
t−1]ω1iω1j − 6ω1iω1jω1kω2lo

]

+
1

n2

[

E[Y 2
t X

i
t−1X

j
t−1]E[YtX

k
t−1X

l
t−1X

o
t−1] +E[Y 2

t X
i
t−1X

k
t−1]E[YtX

j
t−1X

l
t−1X

o
t−1]

+E[YtX
i
t−1X

l
t−1X

o
t−1]E[Y 2

t X
j
t−1X

k
t−1] −E[Y 2

t X
i
t−1X

j
t−1]ω1kω2lo

−E[Y 2
t X

i
t−1X

k
t−1]ω1jω2lo −E[Y 2

t X
j
t−1X

k
t−1]ω1iω2lo −E[YtX

i
t−1X

l
t−1X

o
t−1]ω1jω1k

−E[YtX
j
t−1X

l
t−1X

o
t−1]ω1iω1k −E[YtX

k
t−1X

l
t−1X

o
t−1]ω1iω1j + 3ω1iω1jω1kω2lo

]

≡ 1

n3
U4

2,ijklo +
1

n2
V 4

2,ijklo

• E[(S1i,n − ω1i)(S1j,n − ω1j)(S2kl,n − ω2kl)(S2op,n − ωop)]

=E[S1i,nS1j,nS2kl,nS2op,n] − ω1iE[S1j,nS2kl,nS2op,n] − ω1jE[S1i,nS2kl,nS2op,n]

− ω2klE[S1i,nS1j,nS2op,n] − ωopE[S1i,nS1j,nS2kl,n] + ω1iω1jE[S2kl,nS2op,n]

+ ω1iω2klE[S1j,nS2op,n] + ω1jω2klE[S1i,nS2op,n] + ω1iωopE[S1j,nS2kl,n]

+ ω1jωopE[S1i,nS2kl,n] + ω2klωopE[S1i,nS1j,n] − ω1iω1jω2klE[S2op,n]

− ω1iω1jωopE[S2kl,n] − ω1iω2klωopE[S1j,n] − ω1jω2klωopE[S1i,n] + ω1iω1jω2klωop

=
1

n3

[

E[Y 2
t X

i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1] −E[Y 2

t X
i
t−1X

j
t−1]E[Xk

t−1X
l
t−1X

o
t−1X

p
t−1]

−E[YtX
i
t−1X

k
t−1X

l
t−1]E[YtX

j
t−1X

o
t−1X

p
t−1]

−E[YtX
i
t−1X

o
t−1X

p
t−1]E[YtX

j
t−1X

k
t−1X

l
t−1]

−E[YtX
j
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1]ω1i −E[YtX

i
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1]ω1j

−E[Y 2
t X

i
t−1X

j
t−1X

o
t−1X

p
t−1]ω2kl −E[Y 2

t X
i
t−1X

j
t−1X

k
t−1X

l
t−1]ω2op

+ 2E[Y 2
t X

i
t−1X

j
t−1]ω2klω2op + 2E[YtX

i
t−1X

k
t−1X

l
t−1]ω1jω2op

+ 2E[YtX
j
t−1X

k
t−1X

l
t−1]ω1iω2op + 2E[YtX

i
t−1X

o
t−1X

p
t−1]ω1jω2kl
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+ 2E[YtX
j
t−1X

o
t−1X

p
t−1]ω1iω2kl + 2E[Xk

t−1X
l
t−1X

o
t−1X

p
t−1]ω1iω1j

− 6ω1iω1jω2klω2op

]

+
1

n2

[

E[Y 2
t X

i
t−1X

j
t−1]E[Xk

t−1X
l
t−1X

o
t−1X

p
t−1]

+E[YtX
i
t−1X

k
t−1X

l
t−1]E[YtX

j
t−1X

o
t−1X

p
t−1]

+E[YtX
i
t−1X

o
t−1X

p
t−1]E[YtX

j
t−1X

k
t−1X

l
t−1] −E[Y 2

t X
i
t−1X

j
t−1]ω2klω2op

−E[YtX
i
t−1X

k
t−1X

l
t−1]ω1jω2op −E[YtX

j
t−1X

k
t−1X

l
t−1]ω1iω2op

−E[YtX
i
t−1X

o
t−1X

p
t−1]ω1jω2kl −E[YtX

j
t−1X

o
t−1X

p
t−1]ω1iω2kl

−E[Xk
t−1X

l
t−1X

o
t−1X

p
t−1]ω1iω1j + 3ω1iω1jω2klω2op

]

≡ 1

n3
U4

3,ijklop +
1

n2
V 4

3,ijklop

• E[(S1i,n − ω1i)(S2jk,n − ω2jk)(S2lo,n − ω2lo)(S2pq,n − ω2pq)]

=E[S1i,nS2jk,nS2lo,nS2pq,n] − ω1iE[S2jk,nS2lo,nS2pq,n] − ω2jkE[S1i,nS2lo,nS2pq,n]

− ω2loE[S1i,nS2jk,nS2pq,n] − ω2pqE[S1i,nS2jk,nS2lo,n] + ω1iω2jkE[S2lo,nS2pq,n]

+ ω1iω2loE[S2jk,nS2pq,n] + ω2jkω2loE[S1i,nS2pq,n] + ω1iω2pqE[S2jk,nS2lo,n]

+ ω2jkω2pqE[S1i,nS2lo,n] + ω2loω2pqE[S1i,nS2jk,n] − ω1iω2jkω2loE[S2pq,n]

− ω1iω2jkω2pqE[S2lo,n] − ω1iω2loω2pqE[S2jk,n] − ω2jkω2loω2pqE[S1i,n]

+ ω1iω2jkω2loω2pq

=
1

n3

[

E[YtX
i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1X

q
t−1]

−E[YtX
i
t−1X

j
t−1X

k
t−1]E[X l

t−1X
o
t−1X

p
t−1X

q
t−1]

−E[YtX
i
t−1X

l
t−1X

o
t−1]E[Xj

t−1X
k
t−1X

p
t−1X

q
t−1]

−E[YtX
i
t−1X

p
t−1X

q
t−1]E[Xj

t−1X
k
t−1X

l
t−1X

o
t−1]

−E[Xj
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1X

q
t−1]ω1i −E[YtX

i
t−1X

l
t−1X

o
t−1X

p
t−1X

q
t−1]ω2jk

−E[YtX
i
t−1X

j
t−1X

k
t−1X

p
t−1X

q
t−1]ω2lo −E[YtX

i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1]ω2pq

+ 2E[YtX
i
t−1X

j
t−1X

k
t−1]ω2loω2pq + 2E[YtX

i
t−1X

l
t−1X

o
t−1]ω2jkω2pq

+ 2E[Xj
t−1X

k
t−1X

l
t−1X

o
t−1]ω1iω2pq + 2E[YtX

i
t−1X

p
t−1X

q
t−1]ω2jkω2lo
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+ 2E[Xj
t−1X

k
t−1X

p
t−1X

q
t−1]ω1iω2lo + 2E[X l

t−1X
o
t−1X

p
t−1X

q
t−1]ω1iω2jk

− 6ω1iω2jkω2loω2pq

]

+
1

n2

[

E[YtX
i
t−1X

j
t−1X

k
t−1]E[X l

t−1X
o
t−1X

p
t−1X

q
t−1]

+E[YtX
i
t−1X

l
t−1X

o
t−1]E[Xj

t−1X
k
t−1X

p
t−1X

q
t−1]

+E[YtX
i
t−1X

p
t−1X

q
t−1]E[Xj

t−1X
k
t−1X

l
t−1X

o
t−1] −E[YtX

i
t−1X

j
t−1X

k
t−1]ω2loω2pq

−E[YtX
i
t−1X

l
t−1X

o
t−1]ω2jkω2pq −E[Xj

t−1X
k
t−1X

l
t−1X

o
t−1]ω1iω2pq

−E[YtX
i
t−1X

p
t−1X

q
t−1]ω2jkω2lo −E[Xj

t−1X
k
t−1X

p
t−1X

q
t−1]ω1iω2lo

−E[X l
t−1X

o
t−1X

p
t−1X

q
t−1]ω1iω2jk + 3ω1iω2jkω2loω2pq

]

≡ 1

n3
U4

4,ijklopq +
1

n2
V 4

4,ijklopq

• E[(S2ij,n − ω2ij)(S2kl,n − ω2kl)(S2op,n − ω2op)(S2qr,n − ω2qr)]

=E[S2ij,nS2kl,nS2op,nS2qr,n] − ω2ijE[S2kl,nS2op,nS2qr,n] − ω2klE[S2ij,nS2op,nS2qr,n]

− ω2opE[S2ij,nS2kl,nS2qr,n] − ω2qrE[S2ij,nS2kl,nS2op,n] + ω2ijω2klE[S2op,nS2qr,n]

+ ω2ijω2opE[S2kl,nS2qr,n] + ω2klω2opE[S2ij,nS2qr,n] + ω2ijω2qrE[S2kl,nS2op,n]

+ ω2klω2qrE[S2ij,nS2op,n] + ω2opω2qrE[S2ij,nS2kl,n] − ω2ijω2klω2opE[S2qr,n]

− ω2ijω2klω2qrE[S2op,n] − ω2ijω2opω2qrE[S2kl,n] − ω2klω2opω2qrE[S2ij,n]

+ ω2ijω2klω2opω2qr

=
1

n3

[

E[YtX
i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1X

q
t−1X

r
t−1]

−E[YtX
i
t−1X

j
t−1X

k
t−1X

l
t−1]E[Xo

t−1X
p
t−1X

q
t−1X

r
t−1]

−E[YtX
i
t−1X

j
t−1X

o
t−1X

p
t−1]E[Xk

t−1X
l
t−1X

q
t−1X

r
t−1]

−E[YtX
i
t−1X

j
t−1X

q
t−1X

r
t−1]E[Xk

t−1X
l
t−1X

o
t−1X

p
t−1]

−E[Xk
t−1X

l
t−1X

o
t−1X

p
t−1X

q
t−1X

r
t−1]ω2ij −E[YtX

i
t−1X

j
t−1X

o
t−1X

p
t−1X

q
t−1X

r
t−1]ω2kl

−E[YtX
i
t−1X

j
t−1X

k
t−1X

l
t−1X

q
t−1X

r
t−1]ω2op −E[YtX

i
t−1X

j
t−1X

k
t−1X

l
t−1X

o
t−1X

p
t−1]ω2qr

+ 2E[YtX
i
t−1X

j
t−1X

k
t−1X

l
t−1]ω2opω2qr + 2E[YtX

i
t−1X

j
t−1X

o
t−1X

p
t−1]ω2klω2qr

+ 2E[Xk
t−1X

l
t−1X

o
t−1X

p
t−1]ω2ijω2qr + 2E[YtX

i
t−1X

j
t−1X

q
t−1X

r
t−1]ω2klω2op
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+ 2E[Xk
t−1X

l
t−1X

q
t−1X

r
t−1]ω2ijω2op + 2E[Xo

t−1X
p
t−1X

q
t−1X

r
t−1]ω2ijω2kl

− 6ω2ijω2klω2opω2qr

]

+
1

n2

[

E[YtX
i
t−1X

j
t−1X

k
t−1X

l
t−1]E[Xo

t−1X
p
t−1X

q
t−1X

r
t−1]

+E[YtX
i
t−1X

j
t−1X

o
t−1X

p
t−1]E[Xk

t−1X
l
t−1X

q
t−1X

r
t−1]

+E[YtX
i
t−1X

j
t−1X

q
t−1X

r
t−1]E[Xk

t−1X
l
t−1X

o
t−1X

p
t−1]

−E[YtX
i
t−1X

j
t−1X

k
t−1X

l
t−1]ω2opω2qr

−E[YtX
i
t−1X

j
t−1X

o
t−1X

p
t−1]ω2klω2qr −E[Xk

t−1X
l
t−1X

o
t−1X

p
t−1]ω2ijω2qr

−E[YtX
i
t−1X

j
t−1X

q
t−1X

r
t−1]ω2klω2op −E[Xk

t−1X
l
t−1X

q
t−1X

r
t−1]ω2ijω2op

−E[Xo
t−1X

p
t−1X

q
t−1X

r
t−1]ω2ijω2kl + 3ω2ijω2klω2opω2qr

]

≡ 1

n3
U4

5,ijklopqr +
1

n2
V 4

5,ijklopqr.

C.5.2 Re-expressing E[(bn − b̄)⊗i]

In this section, we derive an expression for the term E[(bn − b̄)⊗i] for i = 2, 3, 4 with an

explicit dependence on the sample size n. To obtain this expression, we make use of the

central moments derived in Section C.5.1. We assume k = m, the number of independent

variables, X1
t , . . . , X

m
t . Recall the statistics S1,n and S2,n defined as follows:

S1,n ≡ 1

n
X>

t,nYt,n ∈ R
m×1, S2,n ≡ 1

n
X>

t,nXt,n ∈ R
m×m. (C.5.1)

These can be expressed as follows:

S1,n =








1
n

∑t−1
τ=t−nX

1
τ Yτ+1

...

1
n

∑t−1
τ=t−nX

m
τ Yτ+1







≡








S11,n

· · ·
S1m,n







,
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S2,n =











1
n

∑t−1
τ=t−nX

1
τX

1
τ

1
n

∑t−1
τ=t−nX

1
τX

2
τ · · · 1

n

∑t−1
τ=t−nX

1
τX

m
τ

1
n

∑t−1
τ=t−nX

2
τX

1
τ

1
n

∑t−1
τ=t−nX

2
τX

2
τ · · · 1

n

∑t−1
τ=t−nX

2
τX

m
τ

...
...

. . .
...

1
n

∑t−1
τ=t−nX

m
τ X

1
τ

1
n

∑t−1
τ=t−nX

m
τ X

2
τ · · · 1

n

∑t−1
τ=t−nX

m
τ X

m
τ











≡











S211,n S212,n · · · S21m,n

S221,n S222,n · · · S22m,n

...
...

. . .
...

S2m1,n S2m2,n · · · S2mm,n











.

One can now express the vectors bn and b̄ as follows:

bn =




S1,n

cs S2,n



 =


















S11,n

...

S1m,n

S211,n

...

S2mm,n


















, b̄ =




ω1

cs ω2



 =


















ω11

...

ω1m

ω211

...

ω2mm


















.

To find an expression for (bn − b̄)⊗ 2, we define δ1 = bn − b̄ and it follows:

(bn − b̄)⊗ 2 =


















(S11,n − ω11)δ1
...

(S1m,n − ω1m)δ1

(S211,n − ω211)δ1
...

(S2mm,n − ω2mm)δ1


















≡ δ2 ∈ R
m2(m+1)2×1.

In Section C.5.1, we defined the terms V 2
1,ij, V

2
2,ijk, and V 2

3,ijkl. In what follows, we present

notation to express E[(bn − b̄)⊗ 2] in terms of V 2
1,ij, V

2
2,ijk, and V 2

3,ijkl. To begin, we note,

given i, j, k, l = 1, . . . ,m, that V 2
1,ij represents m2 elements, V 2

2,ijk represents m3 elements

and V 2
3,ijkl represents m4 elements. Our notation is meant to manipulate the the different

elements of V 2
1,ij, V

2
2,ijk, and V 2

3,ijkl into matrices and vectors of different shapes and sizes.
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To illustrate the notation, we define the following m m×1 vectors and one m×m matrix

as follows:

V 2
1,i[j] ≡








V 2
1,i1

...

V 2
1,im








∈ R
m×1, i = 1, . . . ,m,

V 2
1,[ij] ≡








V 2
1,11 · · · V 2

1,1m

· · · . . . · · ·
V 2

1,m1 · · · V 2
1,mm








∈ R
m×m.

In this notation, the index within the bracket runs from 1 to m. Nested brackets are

evaluated from the outside in as in the following case:

V 2
1,[i[j]] ≡











V 2
1,1[i]

V 2
1,2[i]
...

V 2
1,m[i]











∈ R
m2×1.

cs [ij] indicates the column string of the matrix indexed by ij, as follows:

V 2
1,cs [ij] ≡











V 2
1,11

V 2
1,21

...

V 2
1,mm











∈ R
m2×1.



390

Given the symmetry V 2
1,ij = V 2

1,ji, it follows V 2
1,[i[j]] = V 2

1,cs [ij]. We define a set of

matrices:

E1,1 ≡

























I
m×m

0 · · · 0

0
m2×m

0 · · · 0

0
m×m

I
m×m

· · · 0

0
m2×m

0 · · · 0

...
...

. . .
...

0
m×m

0 · · · I
m×m

0
m2×m

0 · · · 0
m2×m

























∈ R
m2(m+1)×m2

,

Z11 ≡ 0
m3(m+1)×m2

, E2,1 ≡




E1,1

Z11



 ∈ R
m2(m+1)2×m2

,

E1,2 ≡

























0
m×m2

0 · · · 0

I
m2×m2

0 · · · 0

0
m×m2

0
m×m2

· · · 0

0
m2×m2

I
m2×m2

· · · 0

...
...

. . .
...

0
m×m2

0 · · · 0
m×m2

0
m2×m2

0 · · · I
m2×m2

























∈ R
m2(m+1)×m3

,

Z12 ≡ 0
m3(m+1)×m3

, E2,2 ≡




E1,2

Z12



 ∈ R
m2(m+1)2×m3

,
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E1,3 ≡

























I
m×m

0 · · · 0

0
m2×m

0 · · · 0

0
m×m

I
m×m

· · · 0

0
m2×m

0 · · · 0

...
...

. . .
...

0
m×m

0 · · · I
m×m

0
m2×m

0 · · · 0
m2×m

























∈ R
m3(m+1)×m3

,

Z13 ≡ 0
m2(m+1)×m3

, E2,3 ≡




Z13

E1,3



 ∈ R
m2(m+1)2×m3

,

E1,4 ≡

























0
m×m2

0 · · · 0

I
m2×m2

0 · · · 0

0
m×m2

0
m×m2

· · · 0

0
m2×m2

I
m2×m2

· · · 0

...
...

. . .
...

0
m×m2

0 · · · 0
m×m2

0
m2×m2

0 · · · I
m2×m2

























∈ R
m3(m+1)×m4

,

Z14 ≡ 0
m2(m+1)×m4

, E2,4 ≡




Z14

E1,4



 ∈ R
m2(m+1)2×m4

.

With these matrices we rewrite the term E[(bn − b̄)⊗ 2] as follows:

E[(bn − b̄)⊗ 2] =
1

n

[

E2,1 V
2
1,[i[j]] +E2,2 V

2
2,[i cs [jk]] +E2,3 V

2
2, cs [[i]jk]

+E2,4 V
2
3, cs [ij cs [kl]]

]

.
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Next, to find an expression for (bn − b̄)⊗ 3 we have

(bn − b̄)⊗ 3 =


















(S11,n − ω11)δ2
...

(S1m,n − ω1m)δ2

(S211,n − ω211)δ2
...

(S2mm,n − ω2mm)δ2


















≡ δ3 ∈ R
m3(m+1)3×1.

In Section C.5.1, we defined the terms V 3
1,ijk, V

3
2,ijkl, V

3
3,ijklo, and V 3

4,ijklop. Given each of

the index i, j, k, l, o, p run from 1 to m, it follows V 3
1,ijk represents m3 elements, V 3

2,ijkl

represents m4 elements, V 3
3,ijklo represents m5 elements, and V 3

4,ijklop represents m6 ele-

ments. We use the previous subscript notation on the index elements to form matrices

and vectors of different sizes. We define another set of matrices:

E3,1 ≡ Diag[E2,1 · · ·E2,1] ∈ R
m3(m+1)2×m3

, Z21 ≡ 0
m4(m+1)2×m3

,

E4,1 ≡




E3,1

Z21



 ∈ R
m3(m+1)3×m3

,

E3,2 ≡ Diag[E2,2 · · ·E2,2] ∈ R
m3(m+1)2×m4

, Z22 ≡ 0
m4(m+1)2×m4

,

E4,2 ≡




E3,2

Z22



 ∈ R
m4(m+1)2×m4

,

E3,3 ≡ Diag[E2,3 · · ·E2,3] ∈ R
m3(m+1)2×m4

,

E4,3 ≡




E3,3

Z22



 ∈ R
m3(m+1)3×m4

,

E3,4 ≡ Diag[E2,4 · · ·E2,4] ∈ R
m3(m+1)2×m5

, Z23 ≡ 0
m4(m+1)2×m5

,

E4,4 ≡




E3,4

Z23



 ∈ R
m3(m+1)3×m5

,

E3,5 ≡ Diag[E2,1 · · ·E2,1] ∈ R
m4(m+1)2×m4

, Z24 ≡ 0
m3(m+1)2×m4

,
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E4,5 ≡




Z24

E3,5



 ∈ R
m3(m+1)3×m4

,

E3,6 ≡ Diag[E2,2 · · ·E2,2] ∈ R
m4(m+1)2×m5

, Z25 ≡ 0
m3(m+1)2×m5

,

E4,6 ≡




Z25

E3,6



 ∈ R
m3(m+1)3×m5

,

E3,7 ≡ Diag[E2,3 · · ·E2,3] ∈ R
m4(m+1)2×m5

,

E4,7 ≡




Z25

E3,7



 ∈ R
m3(m+1)3×m5

,

E3,8 ≡ Diag[E2,4 · · ·E2,4] ∈ R
m4(m+1)2×m6

, Z26 ≡ 0
m3(m+1)2×m6

,

E4,8 ≡




Z26

E3,8



 ∈ R
m3(m+1)3×m6

.

With all the previously defined matrices, we rewrite the term E[(bn − b̄)⊗ 3] as follows:

E[(bn − b̄)⊗ 3] =
1

n2

[

E4,1 V
3
1,[i[j[k]]] +E4,2 V

3
2,[i[j cs[kl]]] +E4,3 V

3
2,[i cs[[j]kl]]

+E4,4 V
3
3,[i cs[jk cs[lo]]] +E4,5 V

3
2,[[i[j]]kl] +E4,6 V

3
3, cs[[i cs[jk]]lo]

+E4,7 V
3
3, cs[ cs[[i]jk]lo] +E4,8 V

3
4, cs[ij cs[kl cs[op]]]

]

.

Next, to find an expression for (bn − b̄)⊗ 4, we have

(bn − b̄)⊗ 4 =


















(S11,n − ω11)δ3
...

(S1m,n − ω1m)δ3

(S211,n − ω211)δ3
...

(S2mm,n − ω2mm)δ3


















≡ δ4 ∈ R
m4(m+1)4×1.

In section C.5.1, we defined the terms V 4
1,ijkl, V

4
2,ijklo, V

4
3,ijklop, V

4
4,ijklopq, and V 4

5,ijklopqr.

Given each of the index i, j, k, l, o, p, q, r run from 1 to m, it follows V 4
1,ijkl represents

m4 elements, V 4
2,ijklo represents m5 elements, V 4

3,ijklop represents m6 elements, V 4
4,ijklopq



394

represents m7 elements, and V 4
5,ijklopqr represents m8 elements. We use the previous

subscript notation on the index elements to form matrices and vectors of different sizes.

We define another set of matrices:

E5,1 ≡ Diag[E4,1 · · ·E4,1] ∈ R
m4(m+1)3×m4

, Z31 ≡ 0
m5(m+1)3×m4

,

E6,1 ≡




E5,1

Z31



 ∈ R
m4(m+1)4×m4

,

E5,2 ≡ Diag[E4,2 · · ·E4,2] ∈ R
m4(m+1)3×m5

, Z32 ≡ 0
m5(m+1)3×m5

,

E6,2 ≡




E5,2

Z32



 ∈ R
m4(m+1)4×m5

,

E5,3 ≡ Diag[E4,3 · · ·E4,3] ∈ R
m4(m+1)3×m5

,

E6,3 ≡




E5,3

Z32



 ∈ R
m4(m+1)4×m5

,

E5,4 ≡ Diag[E4,4 · · ·E4,4] ∈ R
m4(m+1)3×m6

, Z33 ≡ 0
m5(m+1)3×m6

,

E6,4 ≡




E5,4

Z33



 ∈ R
m4(m+1)4×m6

,

E5,5 ≡ Diag[E4,5 · · ·E4,5] ∈ R
m4(m+1)3×m5

,

E6,5 ≡




E5,5

Z32



 ∈ R
m4(m+1)4×m5

,

E5,6 ≡ Diag[E4,6 · · ·E4,6] ∈ R
m4(m+1)3×m6

,

E6,6 ≡




E5,6

Z33



 ∈ R
m4(m+1)4×m6

,

E5,7 ≡ Diag[E4,7 · · ·E4,7] ∈ R
m4(m+1)3×m6

,

E6,7 ≡




E5,7

Z33



 ∈ R
m4(m+1)4×m6

,

E5,8 ≡ Diag[E4,8 · · ·E4,8] ∈ R
m4(m+1)3×m7

, Z34 ≡ 0
m5(m+1)3×m7

,
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E6,8 ≡




E5,8

Z34



 ∈ R
m4(m+1)4×m7

,

E5,9 ≡ Diag[E4,1 · · ·E4,1] ∈ R
m5(m+1)3×m5

, Z35 ≡ 0
m4(m+1)3×m5

,

E6,9 ≡




Z35

E5,9



 ∈ R
m4(m+1)4×m5

,

E5,10 ≡ Diag[E4,2 · · ·E4,2] ∈ R
m5(m+1)3×m6

, Z36 ≡ 0
m4(m+1)3×m6

,

E6,10 ≡




Z36

E5,10



 ∈ R
m4(m+1)4×m6

,

E5,11 ≡ Diag[E4,3 · · ·E4,3] ∈ R
m5(m+1)3×m6

,

E6,11 ≡




Z36

E5,11



 ∈ R
m4(m+1)4×m6

,

E5,12 ≡ Diag[E4,4 · · ·E4,4] ∈ R
m5(m+1)3×m7

, Z37 ≡ 0
m4(m+1)3×m7

,

E6,12 ≡




Z37

E5,12



 ∈ R
m4(m+1)4×m7

,

E5,13 ≡ Diag[E4,5 · · ·E4,5] ∈ R
m5(m+1)3×m6

,

E6,13 ≡




Z36

E5,13



 ∈ R
m4(m+1)4×m6

,

E5,14 ≡ Diag[E4,6 · · ·E4,6] ∈ R
m5(m+1)3×m7

,

E6,14 ≡




Z37

E5,14



 ∈ R
m4(m+1)4×m7

,

E5,15 ≡ Diag[E4,7 · · ·E4,7] ∈ R
m5(m+1)3×m7

,

E6,15 ≡




Z37

E5,15



 ∈ R
m4(m+1)4×m7

,

E5,16 ≡ Diag[E4,8 · · ·E4,8] ∈ R
m5(m+1)3×m8

, Z38 ≡ 0
m4(m+1)3×m8

,

E6,16 ≡




Z38

E5,16



 ∈ R
m4(m+1)4×m8

.
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With all the previously defined matrices, we rewrite the second order term of E[(bn −
b̄)⊗ 4] as follows:

E[(bn − b̄)⊗ 4|2] =
1

n2

[

E6,1 V
4
1,[i[j[k[l]]]] +E6,2 V

4
2,[i[j[k cs[lo]]]] +E6,3 V

4
2,[i[j cs[[k]lo]]]

+E6,4 V
4
3,[i[j cs[kl cs[op]]]] +E6,5 V

4
2,[i cs[[j[k]]lo]] +E6,6 V

4
3,[i cs[[j cs[kl]]lo]]

+E6,7 V
4
3,[i cs[ cs[[j]kl]op]] +E6,8 V

4
4,[i cs[jk cs[lo cs[pq]]]]

+E6,9 V
4
2, cs[[i[j[k]]]lo] +E6,10 V

4
3, cs[[i[j cs[kl]]]op]

+E6,11 V
4
3, cs[[i cs[[j]kl]]op] +E6,12 V

4
4, cs[[i cs[jk cs[lo]]]pq]

+E6,13 V
4
3, cs[ cs[[i[j]]kl]op] +E6,14 V

4
4, cs[ cs[[i cs[jk]]lo]pq]

+E6,15 V
4
4, cs[ cs[ cs[[i]jk]lo]pq] +E6,16 V

4
5, cs[ij cs[kl cs[op cs[pq]]]]

]

+O

(
1

n3

)

.
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Appendix D

Appendix for Chapter 6

D.1 Expansion of central moments for the scalar problem

We present expressions for powers and products of the statistics S1,n, S2,n, and S3,n, and

the corresponding expectations. The expectation of S1,n, S2,n, and S3,n are as follows:

• Ē[S1,n, A] =
1

n

t−1∑

τ=t−n

Ē[Yt+1XtYτ+1Xτ , A]

• Ē[S2,n, A] =
1

n
Ē
[ t−1∑

s=t−n

X2
s , A

]

= Ē[X2
t−1, A]

• Ē[S3,n, A] =
1

n

t−1∑

τ=t−n

Ē[XtYτ+1Xτ , A].

The expectation of S2
1,n is as follows:

• Ē[S2
1,n, A] =

1

n2
Ē
[( t−1∑

τ=t−n

Yt+1XtYτ+1Xτ

)2
, A
]

=
1

n2

[ t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

2
τ , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1Xj , A]

]

.
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The expectation of S2
2,n is as follows:

• Ē[S2
2,n, A] =

1

n2
Ē
[( t−1∑

τ=t−n

X2
τ

)2
, A
]

=
1

n2

[ t−1∑

τ=t−n

Ē[X4
τ , A] +

t−1∑

i6=j,t−n

Ē
[
X2

i X
2
j , A

] ]

.

The truncated expectation of S2
3,n is as follows:

• Ē[S2
3,n, A] =

1

n2
Ē
[( t−1∑

τ=t−n

XtYτ+1Xτ

)2
, A
]

=
1

n2

[ t−1∑

τ=t−n

Ē
[
X2

t Y
2
t X

2
t−1, A

]
+

t−1∑

i6=j,t−n

Ē
[
X2

t Yi+1XiYj+1Xj, A
] ]

.

The truncated expectation of S1,nS2,n is as follows:

• Ē[S1,nS2,n, A] =
1

n2
Ē

[
( t−1∑

τ=t−n

Yt+1XtYτ+1Xτ

)( t−1∑

τ=t−n

X2
τ

)

, A

]

=
1

n2

[ t−1∑

τ=t−n

Ē
[
Yt+1XtYτ+1X

3
τ , A

]
+

t−1∑

i6=j,t−n

Ē
[
Yt+1XtYi+1XiX

2
j , A

] ]

.

The truncated expectation of S2,nS3,n is as follows:

• Ē[S2,nS3,n, A] =
1

n2
Ē

[
( t−1∑

τ=t−n

X2
τ

)( t−1∑

τ=t−n

XtYτ+1Xτ

)

, A

]

=
1

n2

[ t−1∑

τ=t−n

Ē
[
XtYτ+1X

3
τ , A

]
+

t−1∑

i6=j,t−n

Ē
[
XtYi+1XiX

2
j , A

] ]

.

The truncated expectation of S3
2,n is as follows:

• Ē[S3
2,n, A] =

1

n3
Ē
[( t−1∑

τ=t−n

X2
τ

)3
, A
]

=
1

n3

[ t−1∑

τ=t−n

Ē[X6
τ , A] +

t−1∑

i6=j,t−n

Ē[X4
i X

2
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[X2
i X

2
jX

2
k , A]

]

.
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The truncated expectation of S1,nS
2
2,n is as follows:

• Ē[S1,nS
2
2,n, A] =

1

n3
Ē
[( t−1∑

τ=t−n

Yt+1XtYτ+1Xτ

)( t−1∑

τ=t−n

X2
τ

)2
, A
]

=
1

n3
Ē
[( t−1∑

τ=t−n

Yt+1XtYτ+1Xτ

)( t−1∑

τ=t−n

X4
τ +

t−1∑

i6=j,t−n

X2
i X

2
j

)

, A
]

=
1

n3

[ t−1∑

τ=t−n

Ē[Yt+1XtYτ+1X
5
τ , A] +

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1XiX
4
j , A]

+

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1X
3
i X

2
j , A]

+

t−1∑

i6=j 6=k,t−n

Ē[Yt+1XtYi+1XiX
2
jX

2
k , A]

]

.

The truncated expectation of S2
2,nS3,n is as follows:

• Ē[S2
2,nS3,n, A] =

1

n3
Ē
[( t−1∑

τ=t−n

X2
τ

)2(
t−1∑

τ=t−n

XtYτ+1Xτ

)

, A
]

=
1

n3
Ē
[( t−1∑

τ=t−n

X4
τ +

t−1∑

i6=j,t−n

X2
i X

2
j

)( t−1∑

τ=t−n

XtYτ+1Xτ

)

, A
]

=
1

n3

[ t−1∑

τ=t−n

Ē[XtYτ+1X
5
τ , A] +

t−1∑

i6=j,t−n

Ē[XtYi+1XiX
4
j , A]

+

t−1∑

i6=j,t−n

Ē[XtYi+1X
3
i X

2
j , A]

+

t−1∑

i6=j 6=k,t−n

Ē[XtYi+1XiX
2
jX

2
k , A]

]

.

The truncated expectation of S2
1,nS2,n is as follows:

• Ē[S2
1,nS2,n, A] =

1

n3
Ē
[( t−1∑

τ=t−n

Yt+1XtYτ+1Xτ

)2(
t−1∑

τ=t−n

X2
τ

)

, A
]

=
1

n3
Ē
[( t−1∑

τ=t−n

Y 2
t+1X

2
t Y

2
τ+1X

2
τ +

t−1∑

i6=j,t−n

Y 2
t+1X

2
t Yi+1XiYj+1Xj

)( t−1∑

τ=t−n

X2
τ

)

, A
]

=
1

n3

[ t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

4
τ , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

2
i X

2
j , A]
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+
t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1X

3
j , A]

+
t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1XjX

2
k , A]

]

.

The truncated expectation of S2
3,nS2,n is as follows:

• Ē[S2
3,nS2,n, A] =

1

n3
Ē
[( t−1∑

τ=t−n

XtYτ+1Xτ

)2(
t−1∑

τ=t−n

X2
τ

)

, A
]

=
1

n3
Ē
[( t−1∑

τ=t−n

X2
t Y

2
τ+1X

2
τ +

t−1∑

i6=j,t−n

X2
t Yi+1XiYj+1Xj

)( t−1∑

τ=t−n

X2
τ

)

, A
]

=
1

n3

[ t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

4
τ , A] +

t−1∑

i6=j,t−n

Ē[X2
t Y

2
i+1X

2
i X

2
j , A]

+
t−1∑

i6=j,t−n

Ē[X2
t Yi+1XiYj+1X

3
j , A]

+
t−1∑

i6=j 6=k,t−n

Ē[X2
t Yi+1XiYj+1XjX

2
k , A]

]

.

The truncated expectation of S4
2,n is as follows:

• Ē[S4
2,n, A] =

1

n4
Ē
[( t−1∑

τ=t−n

X2
τ

)4
, A
]

=
1

n4

[ t−1∑

τ=t−n

Ē[X8
τ , A] +

t−1∑

i6=j,t−n

Ē[X6
i X

2
j , A] +

t−1∑

i6=j,t−n

Ē[X4
i X

4
j , A]

+

t−1∑

i6=j 6=k,t−n

Ē[X4
i X

2
jX

2
k , A] +

t−1∑

i6=j 6=k 6=l,t−n

Ē[X2
i X

2
jX

2
kX

2
l , A]

]

.

The truncated expectation of S1,nS
3
2,n is as follows:

• Ē[S1,nS
3
2,n, A] =

1

n4
Ē
[( t−1∑

τ=t−n

Yt+1XtYτ+1Xτ

)( t−1∑

τ=t−n

X2
τ

)3
, A
]

=
1

n4
Ē
[( t−1∑

τ=t−n

Yt+1XtYτ+1Xτ

)( t−1∑

τ=t−n

X6
τ +

t−1∑

i6=j,t−n

X4
i X

2
j
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+
t−1∑

i6=j 6=k,t−n

X2
i X

2
jX

2
k

)

, A
]

=
1

n4

[ t−1∑

τ=t−n

Ē[Yt+1XtYτ+1X
7
τ , A] +

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1XiX
6
j , A]

+
t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1X
5
i X

2
j , A] +

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1X
3
i X

4
j , A]

+
t−1∑

i6=j 6=k,t−n

Ē[Yt+1XtYi+1XiX
4
jX

2
k , A] +

t−1∑

i6=j 6=k,t−n

Ē[Yt+1XtYi+1X
3
i X

2
jX

2
k , A]

+
t−1∑

i6=j 6=k 6=l,t−n

Ē[Yt+1XtYi+1XiX
2
jX

2
kX

2
l , A]

]

.

The truncated expectation of S3,nS
3
2,n is as follows:

• Ē[S3,nS
3
2,n, A] =

1

n4
Ē
[( t−1∑

τ=t−n

XtYτ+1Xτ

)( t−1∑

τ=t−n

X2
τ

)3
, A
]

=
1

n4
Ē
[( t−1∑

τ=t−n

XtYτ+1Xτ

)( t−1∑

τ=t−n

X6
τ +

t−1∑

i6=j,t−n

X4
i X

2
j +

t−1∑

i6=j 6=k,t−n

X2
i X

2
jX

2
k

)

, A
]

=
1

n4

[ t−1∑

τ=t−n

Ē[XtYτ+1X
7
τ , A] +

t−1∑

i6=j,t−n

Ē[XtYi+1XiX
6
j , A]

+
t−1∑

i6=j,t−n

Ē[XtYi+1X
5
i X

2
j , A] +

t−1∑

i6=j,t−n

Ē[XtYi+1X
3
i X

4
j , A]

+

t−1∑

i6=j 6=k,t−n

Ē[XtYi+1XiX
4
jX

2
k , A] +

t−1∑

i6=j 6=k,t−n

Ē[XtYi+1X
3
i X

2
jX

2
k , A]

+

t−1∑

i6=j 6=k 6=l,t−n

Ē[XtYi+1XiX
2
jX

2
kX

2
l , A]

]

.

The truncated expectation of S2
1,nS

2
2,n is as follows:

• Ē[S2
1,nS

2
2,n, A] =

1

n4
Ē
[( t−1∑

τ=t−n

Yt+1XtYτ+1Xτ

)2(
t−1∑

τ=t−n

X2
τ

)2
, A
]

=
1

n4

[ t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

6
τ , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

2
i X

4
j , A]
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+
t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

4
i X

2
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

2
i X

2
jX

2
k , A]

+
t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1X

5
i Yj+1Xj , A] +

t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1XjX

4
k , A]

+
t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1X

3
i Yj+1X

3
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Yi+1X

3
i Yj+1XjX

2
k , A]

+
t−1∑

i6=j 6=k 6=l,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1XjX

2
kX

2
l , A]

]

.

The truncated expectation of S2
3,nS

2
2,n is as follows:

• Ē[S2
3,nS

2
2,n, A] =

1

n4
Ē
[( t−1∑

τ=t−n

XtYτ+1Xτ

)2(
t−1∑

τ=t−n

X2
τ

)2
, A
]

=
1

n4

[ t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

6
τ , A] +

t−1∑

i6=j,t−n

Ē[X2
t Y

2
i+1X

2
i X

4
j , A]

+
t−1∑

i6=j,t−n

Ē[X2
t Y

2
i+1X

4
i X

2
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[X2
t Y

2
i+1X

2
i X

2
jX

2
k , A]

+
t−1∑

i6=j,t−n

Ē[X2
t Yi+1X

5
i Yj+1Xj, A] +

t−1∑

i6=j 6=k,t−n

Ē[X2
t Yi+1XiYj+1XjX

4
k , A]

+
t−1∑

i6=j,t−n

Ē[X2
t Yi+1X

3
i Yj+1X

3
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[X2
t Yi+1X

3
i Yj+1XjX

2
k , A]

+

t−1∑

i6=j 6=k 6=l,t−n

Ē[X2
t Yi+1XiYj+1XjX

2
kX

2
l , A]

]

.

The expressions for powers and products of the statistics S1,n, S2,n, and S3,n given

above are used to expand truncated central moments of first, second, and third order.

The truncated expectation of (S1,n − ω1,n) is as follows:

• Ē[(S1,n − ω1,n), A] =
1

n

t−1∑

τ=t−n

Ē[Yt+1XtYτ+1Xτ , A] − ω1,nP (X ∈ A).

The truncated expectation of (S2,n − ω2) is as follows:

• Ē[(S2,n − ω2), A] = Ē
[
X2

t−1, A
]
− ω2P (X ∈ A).
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The truncated expectation of (S3,n − ω3,n) is as follows:

• Ē[(S3,n − ω3,n), A] =
1

n

t−1∑

τ=t−n

Ē[XtYτ+1Xτ , A] − ω3,nP (X ∈ A).

The truncated expectation of (S1,n − ω1,n)2 is as follows:

• Ē[(S1,n − ω1,n)2, A] =
1

n2

[ t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

2
τ , A]

+

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1Xj , A]

− 2

t−1∑

τ=t−n

Ē[Yt+1XtYτ+1Xτ , A]

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]

+
( t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]
)2
P (X ∈ A)

]

=
1

n2

[ t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

2
τ , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1Xj , A]

− 2

t−1∑

τ=t−n

Ē[Yt+1XtYτ+1Xτ , A]E[Yt+1XtYτ+1Xτ ]

− 2

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1Xi, A]E[Yt+1XtYj+1Xj]

+

t−1∑

τ=t−n

E2[Yt+1XtYτ+1Xτ ]P (X ∈ A)

+

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E[Yt+1XtYj+1Xj ]P (X ∈ A)
]

.

The truncated expectation of (S2,n − ω2)
2 is as follows:

• Ē[(S2,n−ω2)
2, A] =

1

n2

[ t−1∑

τ=t−n

Ē[X4
τ , A] +

t−1∑

i6=j,t−n

Ē[X2
i X

2
j , A]

]

− 2E[X2
t−1]Ē[X2

t−1, A] +E2[X2
t−1]P (X ∈ A).



404

The truncated expectation of (S3,n − ω3,n)2 is as follows:

• Ē[(S3,n−ω3,n)2, A] =
1

n2

[ t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

2
τ , A]

+

t−1∑

i6=j,t−n

Ē[X2
t Yi+1XiYj+1Xj , A]

− 2

t−1∑

τ=t−n

Ē[XtYτ+1Xτ , A]

t−1∑

τ=t−n

E[XtYτ+1Xτ ]

+
( t−1∑

τ=t−n

E[XtYτ+1Xτ ]
)2
P (X ∈ A)

]

=
1

n2

[ t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

2
τ , A] +

t−1∑

i6=j,t−n

Ē[X2
t Yi+1XiYj+1Xj , A]

− 2

t−1∑

τ=t−n

Ē[XtYτ+1Xτ , A]E[XtYτ+1Xτ ]

− 2
t−1∑

i6=j,t−n

Ē[XtYi+1Xi, A]E[XtYj+1Xj ]

+
t−1∑

τ=t−n

E2[XtYτ+1Xτ ]P (X ∈ A)

+
t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1Xj ]P (X ∈ A)
]

.

The truncated expectation of (S1,n − ω1,n)(S2,n − ω2) is as follows:

• Ē[(S1,n−ω1,n)(S2,n − ω2), A] =
1

n2

[ t−1∑

τ=t−n

Ē
[
Yt+1XtYτ+1X

3
τ , A

]

+

t−1∑

i6=j,t−n

Ē
[
Yt+1XtYi+1XiX

2
j , A

] ]

+
1

n

[

−
t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]Ē[X2
t−1, A]

−E[X2
t−1]

t−1∑

τ=t−n

Ē[Yt+1XtYτ+1Xτ , A]

+

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]E[X2
t−1]P (X ∈ A)

]

.
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The truncated expectation of (S3,n − ω3,n)(S2,n − ω2) is as follows:

• Ē[(S3,n−ω3,n)(S2,n − ω2), A] =
1

n2

[ t−1∑

τ=t−n

Ē
[
XtYτ+1X

3
τ , A

]

+

t−1∑

i6=j,t−n

Ē
[
XtYi+1XiX

2
j , A

] ]

+
1

n

[

−
t−1∑

τ=t−n

E[XtYτ+1Xτ ]Ē[X2
t−1, A] −E[X2

t−1]

t−1∑

τ=t−n

Ē[XtYτ+1Xτ , A]

+

t−1∑

τ=t−n

E[XtYτ+1Xτ ]E[X2
t−1]P (X ∈ A)

]

.

The truncated expectation of (S1,n − ω1,n)(S2,n − ω2)
2 is as follows:

• Ē[(S1,n − ω1,n)(S2,n − ω2)
2, A] =

1

n3

[ t−1∑

τ=t−n

Ē[Yt+1XtYτ+1X
5
τ , A]

+

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1XiX
4
j , A] +

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1X
3
i X

2
j , A]

+

t−1∑

i6=j 6=k,t−n

Ē[Yt+1XtYi+1XiX
2
jX

2
k , A]

]

− 2

n2
E[X2

t−1]
[ t−1∑

τ=t−n

Ē
[
Yt+1XtYτ+1X

3
τ , A

]
+

t−1∑

i6=j,t−n

Ē
[
Yt+1XtYi+1XiX

2
j , A

] ]

− 1

n

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]
1

n2

[ t−1∑

τ=t−n

Ē[X4
τ , A] +

t−1∑

i6=j,t−n

Ē
[
X2

i X
2
j , A

] ]

+E2[X2
t−1]

1

n

t−1∑

τ=t−n

Ē[Yt+1XtYτ+1Xτ , A]

+ 2
1

n

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]E[X2
t−1]Ē[X2

t−1, A]

− 1

n

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]E2[X2
t−1]P (X ∈ A)

=
1

n3

[ t−1∑

τ=t−n

Ē[Yt+1XtYτ+1X
5
τ , A] +

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1XiX
4
j , A]

+
t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1X
3
i X

2
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[Yt+1XtYi+1XiX
2
jX

2
k , A]
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−
t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]Ē[X4
τ , A]

−
t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[X4
j , A]

−
t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē
[
X2

i X
2
j , A

]

−
t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]Ē
[
X2

jX
2
k , A

] ]

− 1

n2

[

2E[X2
t−1]

t−1∑

τ=t−n

Ē
[
Yt+1XtYτ+1X

3
τ , A

]

+ 2E[X2
t−1]

t−1∑

i6=j,t−n

Ē
[
Yt+1XtYi+1XiX

2
j , A

] ]

+
1

n

[

E2[X2
t−1]

t−1∑

τ=t−n

Ē[Yt+1XtYτ+1Xτ , A]

+ 2E[X2
t−1]Ē[X2

t−1, A]
t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]

−E2[X2
t−1]

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]P (X ∈ A)
]

.

The truncated expectation of (S3,n − ω3,n)(S2,n − ω2)
2 is as follows:

• Ē[(S3,n − ω3,n)(S2,n − ω2)
2, A] =

1

n3

[ t−1∑

τ=t−n

Ē[XtYτ+1X
5
τ , A]

+
t−1∑

i6=j,t−n

Ē[XtYi+1XiX
4
j , A] +

t−1∑

i6=j,t−n

Ē[XtYi+1X
3
i X

2
j , A]

+
t−1∑

i6=j 6=k,t−n

Ē[XtYi+1XiX
2
jX

2
k , A]

]

− 2

n2
E[X2

t−1]
[ t−1∑

τ=t−n

Ē
[
XtYτ+1X

3
τ , A

]
+

t−1∑

i6=j,t−n

Ē
[
XtYi+1XiX

2
j , A

] ]

− 1

n

t−1∑

τ=t−n

E[XtYτ+1Xτ ]
1

n2

[ t−1∑

τ=t−n

Ē[X4
τ , A] +

t−1∑

i6=j,t−n

Ē
[
X2

i X
2
j , A

] ]

+E2[X2
t−1]

1

n

t−1∑

τ=t−n

Ē[XtYτ+1Xτ , A]
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+ 2
1

n

t−1∑

τ=t−n

E[XtYτ+1Xτ ]E[X2
t−1]Ē[X2

t−1, A]

− 1

n

t−1∑

τ=t−n

E[XtYτ+1Xτ ]E2[X2
t−1]P (X ∈ A)

=
1

n3

[ t−1∑

τ=t−n

Ē[XtYτ+1X
5
τ , A] +

t−1∑

i6=j,t−n

Ē[XtYi+1XiX
4
j , A]

+

t−1∑

i6=j,t−n

Ē[XtYi+1X
3
i X

2
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[XtYi+1XiX
2
jX

2
k , A]

−
t−1∑

τ=t−n

E[XtYτ+1Xτ ]Ē[X4
τ , A] −

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[X4
j , A]

−
t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē
[
X2

i X
2
j , A

]
−

t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]Ē
[
X2

jX
2
k , A

] ]

− 1

n2

[

2E[X2
t−1]

t−1∑

τ=t−n

Ē
[
XtYτ+1X

3
τ , A

]
+ 2E[X2

t−1]

t−1∑

i6=j,t−n

Ē
[
XtYi+1XiX

2
j , A

] ]

+
1

n

[

E2[X2
t−1]

t−1∑

τ=t−n

Ē[XtYτ+1Xτ , A] + 2E[X2
t−1]Ē[X2

t−1, A]

t−1∑

τ=t−n

E[XtYτ+1Xτ ]

−E2[X2
t−1]

t−1∑

τ=t−n

E[XtYτ+1Xτ ]P (X ∈ A)
]

.

The truncated expectation of (S1,n − ω1,n)2(S2,n − ω2) is as follows:

• Ē[(S1,n − ω1,n)2(S2,n − ω2), A]

=
1

n3

[ t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

4
τ , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

2
i X

2
j , A]

+

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1X

3
j , A]

+

t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1XjX

2
k , A]

]

− 2

n3

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]
[ t−1∑

τ=t−n

Ē
[
Yt+1XtYτ+1X

3
τ , A

]

+
t−1∑

i6=j,t−n

Ē
[
Yt+1XtYi+1XiX

2
j , A

] ]
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− 1

n2
E[X2

t−1]
[ t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

2
τ , A]

+

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1Xj , A]

]

+
1

n2

[ t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]
]2
Ē[X2

t−1, A]

+
2

n2

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]E[X2
t−1]

t−1∑

τ=t−n

Ē[Yt+1XtYτ+1Xτ , A]

− 1

n2

[ t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]
]2
E[X2

t−1]P (X ∈ A)

=
1

n3

[ t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

4
τ , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

2
i X

2
j , A]

+
t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1X

3
j , A]

+
t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1XjX

2
k , A]

− 2
t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]Ē
[
Yt+1XtYτ+1X

3
τ , A

]

− 2

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē
[
Yt+1XtYj+1X

3
j , A

]

− 2

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYi+1XiX
2
j , A]

− 2

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1XjX
2
i , A]

− 2

t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1XjX
2
k , A]

]

+
1

n2

[

−E[X2
t−1]

t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

2
τ , A]

−E[X2
t−1]

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1Xj , A]

+ Ē[X2
t−1, A]

t−1∑

τ=t−n

E2[Yt+1XtYτ+1Xτ ]
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+ Ē[X2
t−1, A]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E[Yt+1XtYj+1Xj ]

+ 2E[X2
t−1]

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]Ē[Yt+1XtYτ+1Xτ , A]

+ 2E[X2
t−1]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1Xj , A]

−E[X2
t−1]

t−1∑

τ=t−n

E2[Yt+1XtYτ+1Xτ ]P (X ∈ A)

−E[X2
t−1]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E[Yt+1XtYj+1Xj ]P (X ∈ A)
]

.

The truncated expectation of (S3,n − ω3,n)2(S2,n − ω2) is as follows:

• Ē[(S3,n − ω3,n)2(S2,n − ω2), A]

=
1

n3

[ t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

4
τ , A] +

t−1∑

i6=j,t−n

Ē[X2
t Y

2
i+1X

2
i X

2
j , A]

+

t−1∑

i6=j,t−n

Ē[X2
t Yi+1XiYj+1X

3
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[X2
t Yi+1XiYj+1XjX

2
k , A]

]

− 2

n3

t−1∑

τ=t−n

E[XtYτ+1Xτ ]
[ t−1∑

τ=t−n

Ē
[
XtYτ+1X

3
τ , A

]

+

t−1∑

i6=j,t−n

Ē
[
XtYi+1XiX

2
j , A

] ]

− 1

n2
E[X2

t−1]
[ t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

2
τ , A] +

t−1∑

i6=j,t−n

Ē[X2
t Yi+1XiYj+1Xj , A]

]

+
1

n2

[ t−1∑

τ=t−n

E[XtYτ+1Xτ ]
]2
Ē[X2

t−1, A]

+
2

n2

t−1∑

τ=t−n

E[XtYτ+1Xτ ]E[X2
t−1]

t−1∑

τ=t−n

Ē[XtYτ+1Xτ , A]

− 1

n2

[ t−1∑

τ=t−n

E[XtYτ+1Xτ ]
]2
E[X2

t−1]P (X ∈ A)

=
1

n3

[ t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

4
τ , A] +

t−1∑

i6=j,t−n

Ē[X2
t Y

2
i+1X

2
i X

2
j , A]
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+
t−1∑

i6=j,t−n

Ē[X2
t Yi+1XiYj+1X

3
j , A]

+
t−1∑

i6=j 6=k,t−n

Ē[X2
t Yi+1XiYj+1XjX

2
k , A] − 2

t−1∑

τ=t−n

E[XtYτ+1Xτ ]Ē
[
XtYτ+1X

3
τ , A

]

− 2
t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē
[
XtYj+1X

3
j , A

]

− 2
t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[XtYi+1XiX
2
j , A]

− 2
t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[XtYj+1XjX
2
i , A]

− 2
t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]Ē[XtYj+1XjX
2
k , A]

]

+
1

n2

[

−E[X2
t−1]

t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

2
τ , A]

−E[X2
t−1]

t−1∑

i6=j,t−n

Ē[X2
t Yi+1XiYj+1Xj , A] + Ē[X2

t−1, A]

t−1∑

τ=t−n

E2[XtYτ+1Xτ ]

+ Ē[X2
t−1, A]

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1Xj ]

+ 2E[X2
t−1]

t−1∑

τ=t−n

E[XtYτ+1Xτ ]Ē[XtYτ+1Xτ , A]

+ 2E[X2
t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[XtYj+1Xj , A]

−E[X2
t−1]

t−1∑

τ=t−n

E2[XtYτ+1Xτ ]P (X ∈ A)

−E[X2
t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1Xj ]P (X ∈ A)
]

.

The truncated expectation of (S2,n − ω2)
3 is as follows:

• Ē[(S2,n − ω2)
3, A] =

1

n3

[ t−1∑

τ=t−n

Ē[X6
τ , A] +

t−1∑

i6=j,t−n

Ē[X4
i X

2
j , A]
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+
t−1∑

i6=j 6=k,t−n

Ē[X2
i X

2
jX

2
k , A]

]

− 3E[X2
t−1]

1

n2

[ t−1∑

τ=t−n

Ē[X4
τ , A] +

t−1∑

i6=j,t−n

Ē
[
X2

i X
2
j , A

] ]

+ 3E2[X2
t−1]Ē[X2

t−1, A] −E3[X2
t−1]P (X ∈ A).

The truncated expectation of (S2,n − ω2)
4 is as follows:

• Ē[(S2,n − ω2)
4, A] =

1

n4

[ t−1∑

τ=t−n

Ē[X8
τ , A] +

t−1∑

i6=j,t−n

Ē[X6
i X

2
j , A] +

t−1∑

i6=j,t−n

Ē[X4
i X

4
j , A]

+

t−1∑

i6=j 6=k,t−n

Ē[X4
i X

2
jX

2
k , A] +

t−1∑

i6=j 6=k 6=l,t−n

Ē[X2
i X

2
jX

2
kX

2
l , A]

]

− 4

n3
E[X2

t−1]
[ t−1∑

τ=t−n

Ē[X6
τ , A] +

t−1∑

i6=j,t−n

Ē[X4
i X

2
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[X2
i X

2
jX

2
k , A]

]]

+
6

n2
E2[X2

t−1]
[ t−1∑

τ=t−n

Ē[X4
τ , A] +

t−1∑

i6=j,t−n

Ē
[
X2

i X
2
j , A

] ]

− 4E3[X2
t−1]Ē[X2

t−1, A] −E4[X2
t−1]P (X ∈ A).

The truncated expectation of (S1,n − ω1,n)(S2,n − ω2)
3 is as follows:

• Ē[(S1,n − ω1,n)(S2,n − ω2)
3, A] =

1

n4

[ t−1∑

τ=t−n

Ē[Yt+1XtYτ+1X
7
τ , A]

+

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1XiX
6
j , A] +

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1X
5
i X

2
j , A]

+

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1X
3
i X

4
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[Yt+1XtYi+1XiX
4
jX

2
k , A]

+

t−1∑

i6=j 6=k,t−n

Ē[Yt+1XtYi+1X
3
i X

2
jX

2
k , A]

+

t−1∑

i6=j 6=k 6=l,t−n

Ē[Yt+1XtYi+1XiX
2
jX

2
kX

2
l , A]

]

− 1

n

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]
1

n3

[ t−1∑

τ=t−n

Ē[X6
τ , A]
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+
t−1∑

i6=j,t−n

Ē[X4
i X

2
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[X2
i X

2
jX

2
k , A]

]]

− 3E[X2
t−1]

1

n3

[ t−1∑

τ=t−n

Ē[Yt+1XtYτ+1X
5
τ , A] +

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1XiX
4
j , A]

+
t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1X
3
i X

2
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[Yt+1XtYi+1XiX
2
jX

2
k , A]

]

+
3

n

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]E[X2
t−1]

1

n2

[ t−1∑

τ=t−n

Ē[X4
τ , A] +

t−1∑

i6=j,t−n

Ē[X2
i X

2
j , A]

]

+ 3E2[X2
t−1]

1

n2

[ t−1∑

τ=t−n

Ē[Yt+1XtYτ+1X
3
τ , A] +

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1XiX
2
j , A]

]

− 3
1

n

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]E
2[X2

t−1]Ē[X2
t−1, A]

−E3[X2
t−1]

1

n

t−1∑

τ=t−n

Ē[Yt+1XtYτ+1Xτ , A]

+
1

n

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]E3[X2
t−1]P (X ∈ A)

=
1

n4

[ t−1∑

τ=t−n

Ē[Yt+1XtYτ+1X
7
τ , A] +

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1XiX
6
j , A]

+

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1X
5
i X

2
j , A] +

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1X
3
i X

4
j , A]

+

t−1∑

i6=j 6=k,t−n

Ē[Yt+1XtYi+1XiX
4
jX

2
k , A] +

t−1∑

i6=j 6=k,t−n

Ē[Yt+1XtYi+1X
3
i X

2
jX

2
k , A]

+

t−1∑

i6=j 6=k 6=l,t−n

Ē[Yt+1XtYi+1XiX
2
jX

2
kX

2
l , A]

−
t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]Ē[X6
τ , A] −

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[X6
j , A]

−
t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[X4
i X

2
j , A] −

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[X4
jX

2
i , A]

−
t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]Ē[X4
jX

2
k , A]

−
t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]Ē[X2
i X

2
jX

2
k , A]
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−
t−1∑

i6=j 6=k 6=l,t−n

E[Yt+1XtYi+1Xi]Ē[X2
jX

2
kX

2
l , A]

]

+
1

n3

[

− 3E[X2
t−1]

t−1∑

τ=t−n

Ē[Yt+1XtYτ+1X
5
τ , A]

− 3E[X2
t−1]

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1XiX
4
j , A]

− 3E[X2
t−1]

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1X
3
i X

2
j , A]

− 3E[X2
t−1]

t−1∑

i6=j 6=k,t−n

Ē[Yt+1XtYi+1XiX
2
jX

2
k , A]

+ 3E[X2
t−1]

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]Ē[X4
τ , A]

+ 3E[X2
t−1]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[X4
j , A]

+ 3E[X2
t−1]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[X2
i X

2
j , A]

+ 3E[X2
t−1]

t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]Ē[X2
jX

2
k , A]

]

+
1

n2

[

3E2[X2
t−1]

t−1∑

τ=t−n

Ē[Yt+1XtYτ+1X
3
τ , A]

+ 3E2[X2
t−1]

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1XiX
2
j , A]

]

+
1

n

[

− 3E2[X2
t−1]Ē[X2

t−1, A]

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]

−E3[X2
t−1]

t−1∑

τ=t−n

Ē[Yt+1XtYτ+1Xτ , A]

+E3[X2
t−1]

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]P (X ∈ A)
]

.

The truncated expectation of (S3,n − ω3,n)(S2,n − ω2)
3 is as follows:

• Ē[(S3,n − ω3,n)(S2,n − ω2)
3, A] =

1

n4

[ t−1∑

τ=t−n

Ē[XtYτ+1X
7
τ , A]
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+
t−1∑

i6=j,t−n

Ē[XtYi+1XiX
6
j , A] +

t−1∑

i6=j,t−n

Ē[XtYi+1X
5
i X

2
j , A]

+
t−1∑

i6=j,t−n

Ē[XtYi+1X
3
i X

4
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[XtYi+1XiX
4
jX

2
k , A]

+
t−1∑

i6=j 6=k,t−n

Ē[XtYi+1X
3
i X

2
jX

2
k , A] +

t−1∑

i6=j 6=k 6=l,t−n

Ē[XtYi+1XiX
2
jX

2
kX

2
l , A]

]

− 1

n

t−1∑

τ=t−n

E[XtYτ+1Xτ ]
1

n3

[ t−1∑

τ=t−n

Ē[X6
τ , A] +

t−1∑

i6=j,t−n

Ē[X4
i X

2
j , A]

+
t−1∑

i6=j 6=k,t−n

Ē[X2
i X

2
jX

2
k , A]

]]

− 3E[X2
t−1]

1

n3

[ t−1∑

τ=t−n

Ē[XtYτ+1X
5
τ , A] +

t−1∑

i6=j,t−n

Ē[XtYi+1XiX
4
j , A]

+
t−1∑

i6=j,t−n

Ē[XtYi+1X
3
i X

2
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[XtYi+1XiX
2
jX

2
k , A]

]

+
3

n

t−1∑

τ=t−n

E[XtYτ+1Xτ ]E[X2
t−1]

1

n2

[ t−1∑

τ=t−n

Ē[X4
τ , A] +

t−1∑

i6=j,t−n

Ē[X2
i X

2
j , A]

]

+ 3E2[X2
t−1]

1

n2

[ t−1∑

τ=t−n

Ē[XtYτ+1X
3
τ , A] +

t−1∑

i6=j,t−n

Ē[XtYi+1XiX
2
j , A]

]

− 3
1

n

t−1∑

τ=t−n

E[XtYτ+1Xτ ]E2[X2
t−1]Ē[X2

t−1, A]

−E3[X2
t−1]

1

n

t−1∑

τ=t−n

Ē[XtYτ+1Xτ , A] +
1

n

t−1∑

τ=t−n

E[XtYτ+1Xτ ]E3[X2
t−1]P (X ∈ A)

=
1

n4

[ t−1∑

τ=t−n

Ē[XtYτ+1X
7
τ , A] +

t−1∑

i6=j,t−n

Ē[XtYi+1XiX
6
j , A]

+

t−1∑

i6=j,t−n

Ē[XtYi+1X
5
i X

2
j , A] +

t−1∑

i6=j,t−n

Ē[XtYi+1X
3
i X

4
j , A]

+

t−1∑

i6=j 6=k,t−n

Ē[XtYi+1XiX
4
jX

2
k , A] +

t−1∑

i6=j 6=k,t−n

Ē[XtYi+1X
3
i X

2
jX

2
k , A]

+

t−1∑

i6=j 6=k 6=l,t−n

Ē[XtYi+1XiX
2
jX

2
kX

2
l , A] −

t−1∑

τ=t−n

E[XtYτ+1Xτ ]Ē[X6
τ , A]

−
t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[X6
j , A] −

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[X4
i X

2
j , A]
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−
t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[X4
jX

2
i , A] −

t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]Ē[X4
jX

2
k , A]

−
t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]Ē[X2
i X

2
jX

2
k , A]

−
t−1∑

i6=j 6=k 6=l,t−n

E[XtYi+1Xi]Ē[X2
jX

2
kX

2
l , A]

]

+
1

n3

[

− 3E[X2
t−1]

t−1∑

τ=t−n

Ē[XtYτ+1X
5
τ , A] − 3E[X2

t−1]
t−1∑

i6=j,t−n

Ē[XtYi+1XiX
4
j , A]

− 3E[X2
t−1]

t−1∑

i6=j,t−n

Ē[XtYi+1X
3
i X

2
j , A]

− 3E[X2
t−1]

t−1∑

i6=j 6=k,t−n

Ē[XtYi+1XiX
2
jX

2
k , A]

+ 3E[X2
t−1]

t−1∑

τ=t−n

E[XtYτ+1Xτ ]Ē[X4
τ , A]

+ 3E[X2
t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[X4
j , A]

+ 3E[X2
t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[X2
i X

2
j , A]

+ 3E[X2
t−1]

t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]Ē[X2
jX

2
k , A]

]

+
1

n2

[

3E2[X2
t−1]

t−1∑

τ=t−n

Ē[XtYτ+1X
3
τ , A] + 3E2[X2

t−1]

t−1∑

i6=j,t−n

Ē[XtYi+1XiX
2
j , A]

]

+
1

n

[

− 3E2[X2
t−1]Ē[X2

t−1, A]

t−1∑

τ=t−n

E[XtYτ+1Xτ ]

−E3[X2
t−1]

t−1∑

τ=t−n

Ē[XtYτ+1Xτ , A]

+E3[X2
t−1]

t−1∑

τ=t−n

E[XtYτ+1Xτ ]P (X ∈ A)
]

.

The truncated expectation of (S1,n − ω1,n)2(S2,n − ω2)
2 is as follows:

• Ē[(S1,n − ω1,n)2(S2,n − ω2)
2, A] =

1

n4

[ t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

6
τ , A]
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+
t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

2
i X

4
j , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

4
i X

2
j , A]

+
t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

2
i X

2
jX

2
k , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1X

5
i Yj+1Xj, A]

+
t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1XjX

4
k , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1X

3
i Yj+1X

3
j , A]

+
t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Yi+1X

3
i Yj+1XjX

2
k , A]

+
t−1∑

i6=j 6=k 6=l,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1XjX

2
kX

2
l , A]

]

− 2
1

n

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]
1

n3

[ t−1∑

τ=t−n

Ē[Yt+1XtYτ+1X
5
τ , A]

+

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1XiX
4
j , A] +

t−1∑

i6=j,t−n

Ē[Yt+1XtYi+1X
3
i X

2
j , A]

+

t−1∑

i6=j 6=k,t−n

Ē[Yt+1XtYi+1XiX
2
jX

2
k , A]

]

+
1

n2

[ t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]
]2 1

n2

[ t−1∑

τ=t−n

Ē[X4
τ , A] +

t−1∑

i6=j,t−n

Ē
[
X2

i X
2
j , A

] ]

− 2E[X2
t−1]

1

n3

[ t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

4
τ , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

2
i X

2
j , A]

+

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1X

3
j , A]

+

t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1XjX

2
k , A]

]

+ 4
1

n

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]E[X2
t−1]

1

n2

[ t−1∑

τ=t−n

Ē
[
Yt+1XtYτ+1X

3
τ , A

]

+

t−1∑

i6=j,t−n

Ē
[
Yt+1XtYi+1XiX

2
j , A

] ]

− 2
1

n2

[ t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]
]2
E[X2

t−1]Ē[X2
t−1, A]

+E2[X2
t−1]

1

n2

[ t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

2
τ , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1Xj , A]

]
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− 2
1

n

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]E
2[X2

t−1]
1

n

t−1∑

τ=t−n

Ē[Yt+1XtYτ+1Xτ , A]

+
1

n2

[ t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]
]2
E2[X2

t−1]P (X ∈ A)

=
1

n4

[ t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

6
τ , A]

+
t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

2
i X

4
j , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

4
i X

2
j , A]

+
t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

2
i X

2
jX

2
k , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1X

5
i Yj+1Xj, A]

+
t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1XjX

4
k , A] +

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1X

3
i Yj+1X

3
j , A]

+
t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Yi+1X

3
i Yj+1XjX

2
k , A]

+
t−1∑

i6=j 6=k 6=l,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1XjX

2
kX

2
l , A]

− 2

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]Ē[Yt+1XtYτ+1X
5
τ , A]

− 2
t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1X
5
j , A]

− 2
t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYi+1XiX
4
j , A]

− 2
t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1XjX
4
i , A]

− 2
t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1XjX
4
k , A]

− 2
t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYi+1X
3
i X

2
j , A]

− 2
t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1X
3
jX

2
i , A]

− 2
t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1X
3
jX

2
k , A]
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− 2
t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYi+1XiX
2
jX

2
k , A]

− 2
t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1XjX
2
i X

2
k , A]

− 2
t−1∑

i6=j 6=k 6=l,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1XjX
2
kX

2
l , A]

+
t−1∑

τ=t−n

E2[Yt+1XtYτ+1Xτ ]Ē[X4
τ , A] +

t−1∑

i6=j,t−n

E2[Yt+1XtYi+1Xi]Ē[X4
j , A]

+
t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E[Yt+1XtYj+1Xj ]Ē[X4
j , A]

+
t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]E[Yt+1XtYj+1Xj ]Ē[X4
k , A]

+
t−1∑

i6=j,t−n

E2[Yt+1XtYi+1Xi]Ē[X2
i X

2
j , A]

+
t−1∑

i6=j 6=k,t−n

E2[Yt+1XtYi+1Xi]Ē[X2
jX

2
k , A]

+
t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E[Yt+1XtYj+1Xj ]Ē[X2
i X

2
j , A]

+
t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]E[Yt+1XtYj+1Xj ]Ē[X2
jX

2
k , A]

+
t−1∑

i6=j 6=k 6=l,t−n

E[Yt+1XtYi+1Xi]E[Yt+1XtYj+1Xj ]Ē[X2
kX

2
l , A]

]

+
1

n3

[

− 2E[X2
t−1]

t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

4
τ , A]

− 2E[X2
t−1]

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Y

2
i+1X

2
i X

2
j , A]

− 2E[X2
t−1]

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1X

3
j , A]

− 2E[X2
t−1]

t−1∑

i6=j 6=k,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1XjX

2
k , A]

+ 4E[X2
t−1]

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]Ē[Yt+1XtYτ+1X
3
τ , A]
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+ 4E[X2
t−1]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1X
3
j , A]

+ 4E[X2
t−1]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYi+1XiX
2
j , A]

+ 4E[X2
t−1]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1XjX
2
i , A]

+ 4E[X2
t−1]

t−1∑

i6=j 6=k,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1XjX
2
k , A]

]

+
1

n2

[

− 2E[X2
t−1]Ē[X2

t−1, A]
t−1∑

τ=t−n

E2[Yt+1XtYτ+1Xτ ]

− 2E[X2
t−1]Ē[X2

t−1, A]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E[Yt+1XtYj+1Xj ]

+E2[X2
t−1]

t−1∑

τ=t−n

Ē[Y 2
t+1X

2
t Y

2
τ+1X

2
τ , A]

+E2[X2
t−1]

t−1∑

i6=j,t−n

Ē[Y 2
t+1X

2
t Yi+1XiYj+1Xj , A]

− 2E2[X2
t−1]

t−1∑

τ=t−n

E[Yt+1XtYτ+1Xτ ]Ē[Yt+1XtYτ+1Xτ , A]

− 2E2[X2
t−1]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]Ē[Yt+1XtYj+1Xj , A]

+E2[X2
t−1]

t−1∑

τ=t−n

E2[Yt+1XtYτ+1Xτ ]P (X ∈ A)

+E2[X2
t−1]

t−1∑

i6=j,t−n

E[Yt+1XtYi+1Xi]E[Yt+1XtYj+1Xj ]P (X ∈ A)
]

.

The truncated expectation of (S3,n − ω3,n)2(S2,n − ω2)
2 is as follows:

• Ē[(S3,n − ω3,n)2(S2,n − ω2)
2, A] =

1

n4

[ t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

6
τ , A]

+

t−1∑

i6=j,t−n

Ē[X2
t Y

2
i+1X

2
i X

4
j , A] +

t−1∑

i6=j,t−n

Ē[X2
t Y

2
i+1X

4
i X

2
j , A]

+

t−1∑

i6=j 6=k,t−n

Ē[X2
t Y

2
i+1X

2
i X

2
jX

2
k , A] +

t−1∑

i6=j,t−n

Ē[X2
t Yi+1X

5
i Yj+1Xj, A]



420

+
t−1∑

i6=j 6=k,t−n

Ē[X2
t Yi+1XiYj+1XjX

4
k , A] +

t−1∑

i6=j,t−n

Ē[X2
t Yi+1X

3
i Yj+1X

3
j , A]

+
t−1∑

i6=j 6=k,t−n

Ē[X2
t Yi+1X

3
i Yj+1XjX

2
k , A]

+
t−1∑

i6=j 6=k 6=l,t−n

Ē[X2
t Yi+1XiYj+1XjX

2
kX

2
l , A]

]

− 2
1

n

t−1∑

τ=t−n

E[XtYτ+1Xτ ]
1

n3

[ t−1∑

τ=t−n

Ē[XtYτ+1X
5
τ , A]

+

t−1∑

i6=j,t−n

Ē[XtYi+1XiX
4
j , A] +

t−1∑

i6=j,t−n

Ē[XtYi+1X
3
i X

2
j , A]

+

t−1∑

i6=j 6=k,t−n

Ē[XtYi+1XiX
2
jX

2
k , A]

]

+
1

n2

[ t−1∑

τ=t−n

E[XtYτ+1Xτ ]
]2 1

n2

[ t−1∑

τ=t−n

Ē[X4
τ , A] +

t−1∑

i6=j,t−n

Ē
[
X2

i X
2
j , A

] ]

− 2E[X2
t−1]

1

n3

[ t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

4
τ , A] +

t−1∑

i6=j,t−n

Ē[X2
t Y

2
i+1X

2
i X

2
j , A]

+

t−1∑

i6=j,t−n

Ē[X2
t Yi+1XiYj+1X

3
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[X2
t Yi+1XiYj+1XjX

2
k , A]

]

+ 4
1

n

t−1∑

τ=t−n

E[XtYτ+1Xτ ]E[X2
t−1]

1

n2

[ t−1∑

τ=t−n

Ē
[
XtYτ+1X

3
τ , A

]

+

t−1∑

i6=j,t−n

Ē
[
XtYi+1XiX

2
j , A

] ]

− 2
1

n2

[ t−1∑

τ=t−n

E[XtYτ+1Xτ ]
]2
E[X2

t−1]Ē[X2
t−1, A]

+E2[X2
t−1]

1

n2

[ t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

2
τ , A] +

t−1∑

i6=j,t−n

Ē[X2
t Yi+1XiYj+1Xj , A]

]

− 2
1

n

t−1∑

τ=t−n

E[XtYτ+1Xτ ]E2[X2
t−1]

1

n

t−1∑

τ=t−n

Ē[XtYτ+1Xτ , A]

+
1

n2

[ t−1∑

τ=t−n

E[XtYτ+1Xτ ]
]2
E2[X2

t−1]P (X ∈ A)

=
1

n4

[ t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

6
τ , A] +

t−1∑

i6=j,t−n

Ē[X2
t Y

2
i+1X

2
i X

4
j , A]
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+
t−1∑

i6=j,t−n

Ē[X2
t Y

2
i+1X

4
i X

2
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[X2
t Y

2
i+1X

2
i X

2
jX

2
k , A]

+
t−1∑

i6=j,t−n

Ē[X2
t Yi+1X

5
i Yj+1Xj , A] +

t−1∑

i6=j 6=k,t−n

Ē[X2
t Yi+1XiYj+1XjX

4
k , A]

+
t−1∑

i6=j,t−n

Ē[X2
t Yi+1X

3
i Yj+1X

3
j , A] +

t−1∑

i6=j 6=k,t−n

Ē[X2
t Yi+1X

3
i Yj+1XjX

2
k , A]

+
t−1∑

i6=j 6=k 6=l,t−n

Ē[X2
t Yi+1XiYj+1XjX

2
kX

2
l , A]

− 2
t−1∑

τ=t−n

E[XtYτ+1Xτ ]Ē[XtYτ+1X
5
τ , A]

− 2

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[XtYj+1X
5
j , A]

− 2

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[XtYi+1XiX
4
j , A]

− 2

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[XtYj+1XjX
4
i , A]

− 2

t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]Ē[XtYj+1XjX
4
k , A]

− 2

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[XtYi+1X
3
i X

2
j , A]

− 2

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[XtYj+1X
3
jX

2
i , A]

− 2

t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]Ē[XtYj+1X
3
jX

2
k , A]

− 2

t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]Ē[XtYi+1XiX
2
jX

2
k , A]

− 2
t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]Ē[XtYj+1XjX
2
i X

2
k , A]

− 2
t−1∑

i6=j 6=k 6=l,t−n

E[XtYi+1Xi]Ē[XtYj+1XjX
2
kX

2
l , A]
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+
t−1∑

τ=t−n

E2[XtYτ+1Xτ ]Ē[X4
τ , A] +

t−1∑

i6=j,t−n

E2[XtYi+1Xi]Ē[X4
j , A]

+
t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1Xj ]Ē[X4
j , A]

+
t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]E[XtYj+1Xj]Ē[X4
k , A]

+
t−1∑

i6=j,t−n

E2[XtYi+1Xi]Ē[X2
i X

2
j , A] +

t−1∑

i6=j 6=k,t−n

E2[XtYi+1Xi]Ē[X2
jX

2
k , A]

+
t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1Xj ]Ē[X2
i X

2
j , A]

+
t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]E[XtYj+1Xj]Ē[X2
jX

2
k , A]

+
t−1∑

i6=j 6=k 6=l,t−n

E[XtYi+1Xi]E[XtYj+1Xj ]Ē[X2
kX

2
l , A]

]

+
1

n3

[

− 2E[X2
t−1]

t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

4
τ , A] − 2E[X2

t−1]
t−1∑

i6=j,t−n

Ē[X2
t Y

2
i+1X

2
i X

2
j , A]

− 2E[X2
t−1]

t−1∑

i6=j,t−n

Ē[X2
t Yi+1XiYj+1X

3
j , A]

− 2E[X2
t−1]

t−1∑

i6=j 6=k,t−n

Ē[X2
t Yi+1XiYj+1XjX

2
k , A]

+ 4E[X2
t−1]

t−1∑

τ=t−n

E[XtYτ+1Xτ ]Ē[XtYτ+1X
3
τ , A]

+ 4E[X2
t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[XtYj+1X
3
j , A]

+ 4E[X2
t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[XtYi+1XiX
2
j , A]

+ 4E[X2
t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[XtYj+1XjX
2
i , A]

+ 4E[X2
t−1]

t−1∑

i6=j 6=k,t−n

E[XtYi+1Xi]Ē[XtYj+1XjX
2
k , A]

]

+
1

n2

[

− 2E[X2
t−1]Ē[X2

t−1, A]
t−1∑

τ=t−n

E2[XtYτ+1Xτ ]
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− 2E[X2
t−1]Ē[X2

t−1, A]
t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1Xj ]

+E2[X2
t−1]

t−1∑

τ=t−n

Ē[X2
t Y

2
τ+1X

2
τ , A] +E2[X2

t−1]
t−1∑

i6=j,t−n

Ē[X2
t Yi+1XiYj+1Xj , A]

− 2E2[X2
t−1]

t−1∑

τ=t−n

E[XtYτ+1Xτ ]Ē[XtYτ+1Xτ , A]

− 2E2[X2
t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]Ē[XtYj+1Xj , A]

+E2[X2
t−1]

t−1∑

τ=t−n

E2[XtYτ+1Xτ ]P (X ∈ A)

+E2[X2
t−1]

t−1∑

i6=j,t−n

E[XtYi+1Xi]E[XtYj+1Xj ]P (X ∈ A)
]

.
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Appendix E

Appendix for Chapter 7

E.1 Expansion of truncated central moments

We begin by expanding powers and products of the statistics S1,n, S2,n, and S3,n, and

the corresponding truncated expectations:

• Ē[S1,n, A] =
1

n
Ē

[
t−nb−1∑

τ=t−n

Y1,τ+1Xτ , A

]

=
(

1 − nb

n

)

Ē[Y1,t−nb
Xt−nb−1, A]

• Ē[S2,n, A] =
1

n
Ē

[
t−1∑

τ=t−n

X2
τ , A

]

= Ē[X2
t−1, A]

• Ē[S3,n, A] =
1

n
Ē

[
t−1∑

τ=t−nb

Y2,τ+1Xτ , A

]

=
nb

n
Ē[Y2,tXt−1, A]

• Ē[S4,n, A] =
1

n
Ē

[
t−1∑

τ=t−n

Y2,τ+1Xτ , A

]

= Ē[Y2,tXt−1, A].

Next, we expand Ē[S1,nS2,n, A]:

S1,nS2,n =
1

n2

t−nb−1∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−n

X2
τ

=
1

n2

[
t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−nb−1
∑

τ=t−n

X2
τ +

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

X2
τ

]

=
1

n2





t−nb−1
∑

τ=t−n

Y1,τ+1X
3
τ +

∑

i6=j

Y1,i+1XiX
2
j +

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

X2
τ



 .



425

The truncated expecation of the three terms are as follows:

Ē
[ t−nb−1
∑

τ=t−n

Y1,τ+1X
3
τ , A

]

= (n− nb)Ē[Y1,t−nb
X3

t−nb−1, A],

Ē
[∑

i6=j

Y1,i+1XiX
2
j , A

]

= ((n− nb)
2 − (n− nb))Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2, A],

Ē
[ t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

X2
τ , A

]

= nb(n− nb)Ē[Y1,t−nb
Xt−nb−1X

2
t−1, A].

The truncated expectation of S1,nS2,n is as follows:

• Ē [S1,nS2,n, A] =

(
1

n
− nb

n2

)

Ē[Y1,t−nb
X3

t−nb−1, A]

+

(

1 − 1

n
(2nb + 1) +

nb

n2
(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

+ nb

(
1

n
− nb

n2

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−1, A].

Next we expand Ē[S2,nS3,n, A]:

S2,nS3,n =
1

n2

t−1∑

τ=t−n

X2
τ

t−1∑

τ=t−nb

Y2,τ+1Xτ

=
1

n2

[
t−1∑

τ=t−nb

Y2,τ+1Xτ

t−1∑

τ=t−nb

X2
τ +

t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1∑

τ=t−n

X2
τ

]

=
1

n2





t−1∑

τ=t−nb

Y2,τ+1X
3
τ +

∑

i6=j

Y2,i+1XiX
2
j +

t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

τ=t−n

X2
τ



 .

The truncated expecation of the three terms are as follows:

Ē
[ t−1∑

τ=t−nb

Y2,τ+1X
3
τ , A

]

= nbĒ[Y2,tX
3
t−1, A],

Ē
[∑

i6=j

Y2,i+1XiX
2
j , A

]

= (n2
b − nb)Ē[Y2,tXt−1X

2
t−2, A],

Ē
[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

τ=t−n

X2
τ , A

]

= nb(n− nb)Ē[Y2,tXt−1X
2
t−nb−1, A].



426

The truncated expectation of S2,nS3,n is as follows:

• Ē [S2,nS3,n, A] =
nb

n2
Ē[Y2,tX

3
t−1, A] +

nb

n2
(nb − 1)Ē[Y2,tXt−1X

2
t−2, A]

+
nb

n2
(n− nb)Ē[Y2,tXt−1X

2
t−nb−1, A].

The truncated expectation of S2,nS4,n is as follows:

• Ē [S2,nS4,n, A] =
1

n
Ē[Y2,tX

3
t−1, A] +

(

1 − 1

n

)

Ē[Y2,tXt−1X
2
t−2, A].

Next we expand Ē[S1,nS3,n, A]:

S1,nS3,n =
1

n2

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

Y2,τ+1Xτ .

The truncated expectation of S1,nS3,n is as follows:

• Ē [S1,nS3,n, A] =nb

(
1

n
− nb

n2

)

Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1, A]

Next we expand Ē[S2
1,n, A]:

S2
1,n =

1

n2

[
t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

]2

=
1

n2





t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

2
τ +

∑

i6=j

Y1,i+1XiY1,j+1Xj



 .

The truncated expectation of the two terms are as follows:

Ē
[ t−nb−1∑

τ=t−n

Y 2
1,τ+1X

2
τ , A

]

= (n− nb)Ē[Y 2
1,t−nb

X2
t−nb−1, A],

Ē
[∑

i6=j

Y1,i+1XiY1,j+1Xj , A
]

= ((n− nb)
2 − (n− nb))Ē [Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2, A] .

The truncated expectation of S2
1,n is as follows:

• Ē[S2
1,n, A] =

(
1

n
− nb

n2

)

Ē[Y 2
1,t−nb

X2
t−nb−1, A]
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+

(

1 − 1

n
(2nb + 1) +

nb

n2
(nb + 1)

)

Ē [Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2, A] .

Next we expand Ē[S2
2,n, A]:

S2
2,n =

1

n2

[
t−1∑

τ=t−n

X2
τ

]2

=
1

n2





t−1∑

τ=t−n

X4
τ +

∑

i6=j

X2
i X

2
j



 .

The truncated expectation of S2
2,n is as follows:

• Ē[S2
2,n, A] =

1

n
Ē[X4

t−1, A] +

(

1 − 1

n

)

Ē[X2
t−1X

2
t−2, A].

Next we expand Ē[S2
3,n, A]:

S2
3,n =

1

n2

[
t−1∑

τ=t−nb

Y2,τ+1Xτ

]2

=
1

n2





t−1∑

τ=t−nb

Y 2
2,τ+1X

2
τ +

∑

i6=j

Y2,i+1XiY2,j+1Xj



 .

The truncated expectation of the two terms are as follows:

Ē
[ t−1∑

τ=t−nb

Y 2
2,τ+1X

2
τ , A

]

= nbĒ
[
Y 2

2,tX
2
t−1, A

]
,

Ē
[∑

i6=j

Y2,i+1XiY2,j+1Xj , A
]

=
(

n2
b − nb

)

Ē [Y2,tXt−1Y2,t−1Xt−2, A] .

The truncated expectation of S2
3,n is as follows:

• Ē[S2
3,n, A] =

nb

n2
Ē
[
Y 2

2,tX
2
t−1, A

]
+
nb

n2
(nb − 1)Ē [Y2,tXt−1Y2,t−1Xt−2, A] .

The truncated expectation of S2
4,n is as follows:

• Ē[S2
4,n, A] =

1

n
Ē
[
Y 2

2,tX
2
t−1, A

]
+

(

1 − 1

n

)

Ē [Y2,tXt−1Y2,t−1Xt−2, A] .

Next we expand Ē[S1,nS
2
2,n, A]:

S1,nS
2
2,n =

1

n3

[
t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

][
t−1∑

τ=t−n

X2
τ

]2
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=
1

n3

[
t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

] [
t−nb−1
∑

τ=t−n

X2
τ +

t−1∑

τ=t−nb

X2
τ

]2

=
1

n3

[
t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

] [
( t−nb−1
∑

τ=t−n

X2
τ

)2
+
( t−1∑

τ=t−nb

X2
τ

)2
+ 2

t−nb−1
∑

τ=t−n

X2
τ

t−1∑

τ=t−nb

X2
τ

]

=
1

n3

[
t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

]



t−nb−1
∑

τ=t−n

X4
τ +

t−nb−1
∑

i6=j, t−n

X2
i X

2
j +

t−1∑

τ=t−nb

X4
τ +

t−1∑

i 6=j, t−nb

X2
i X

2
j

+ 2

t−nb−1
∑

τ=t−n

X2
τ

t−1∑

τ=t−nb

X2
τ

]

=
1

n3





t−nb−1
∑

τ=t−n

Y1,τ+1X
5
τ +

t−nb−1
∑

i6=j, t−n

Y1,i+1XiX
4
j +

t−nb−1
∑

i6=j, t−n

Y1,i+1X
3
i X

2
j

+

t−nb−1∑

i6=j 6=k, t−n

Y1,i+1XiX
2
jX

2
k +

t−nb−1∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

X4
τ

+

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j, t−nb

X2
i X

2
j + 2

t−nb−1
∑

τ=t−n

Y1,τ+1X
3
τ

t−1∑

τ=t−nb

X2
τ

+2

t−nb−1
∑

i6=j ,t−n

Y1,i+1XiX
2
j

t−1∑

τ=t−nb

X2
τ



 .

The truncated expectation of the eight terms are as follows:

Ē
[ t−nb−1∑

τ=t−n

Y1,τ+1X
5
τ , A

]

= (n− nb)Ē[Y1,t−nb
X5

t−nb−1, A],

Ē
[ t−nb−1
∑

i6=j, t−n

Y1,i+1XiX
4
j , A

]

= ((n− nb)
2 − (n− nb))Ē[Y1,t−nb

Xt−nb−1X
4
t−nb−2, A],

Ē
[ t−nb−1∑

i6=j, t−n

Y1,i+1X
3
i X

2
j , A

]

= 2((n− nb)
2 − (n− nb))Ē[Y1,t−nb

X3
t−nb−1X

2
t−nb−2, A],

Ē
[ t−nb−1

∑

i6=j 6=k, t−n

Y1,i+1XiX
2
jX

2
k , A

]

= ((n− nb)
3 − 3(n− nb)

2 + 2(n− nb))

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A],

Ē
[ t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

X4
τ , A

]

= nb(n− nb)Ē[Y1,t−nb
Xt−nb−1X

4
t−1, A],
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Ē
[ t−nb−1∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j, t−nb

X2
i X

2
j , A

]

= (n− nb)(n
2
b − nb)Ē[Y1,t−nb

Xt−nb−1X
2
t−1X

2
t−2, A],

Ē
[

2

t−nb−1
∑

τ=t−n

Y1,τ+1X
3
τ

t−1∑

τ=t−nb

X2
τ , A

]

= 2nb(n− nb)Ē[Y1,t−nb
X3

t−nb−1X
2
t−1, A],

Ē
[

2

t−nb−1
∑

i6=j ,t−n

Y1,i+1XiX
2
j

t−1∑

τ=t−nb

X2
τ , A

]

= 2nb((n− nb)
2 − (n− nb))Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−1, A].

The truncated expectation of S1,nS
2
2,n is as follows:

• Ē[S1,nS
2
2,n, A] =

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
X5

t−nb−1, A]

+

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

+ 2

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

+

(

1 − 3

n
(nb + 1) +

1

n2
(2 + 6nb + 3n2

b) −
nb

n3
(2 + 3nb + n2

b)

)

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ nb

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
Xt−nb−1X

4
t−1, A]

+ nb(nb − 1)

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−1X

2
t−2, A]

+ 2nb

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
X3

t−nb−1X
2
t−1, A]

+ 2nb

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A].

Next we expand Ē[S2
1,nS2,n, A]:

S2
1,nS2,n =

1

n3

[
t−nb−1∑

τ=t−n

Y1,τ+1Xτ

]2 [ t−1∑

τ=t−n

X2
τ

]

=
1

n3





t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

2
τ +

t−nb−1
∑

i6=j, t−n

Y1,i+1XiY1,j+1Xj





[
t−nb−1
∑

τ=t−n

X2
τ +

t−1∑

τ=t−nb

X2
τ

]
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=
1

n3





t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

4
τ +

t−nb−1
∑

i6=j ,t−n

Y 2
1,i+1X

2
i X

2
j +

t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

2
τ

t−1∑

τ=t−nb

X2
τ

+

t−nb−1
∑

i6=j ,t−n

Y1,i+1X
3
i Y1,j+1Xj +

t−nb−1
∑

i6=j 6=k ,t−n

Y1,i+1XiY1,j+1XjX
2
k

+

t−nb−1
∑

i6=j ,t−n

Y1,i+1XiY1,j+1Xj

t−1∑

τ=t−nb

X2
τ



 .

The truncated expectation of the six terms are as follows:

Ē
[ t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

4
τ , A

]

= (n− nb)Ē[Y 2
1,t−nb

X4
t−n+b−1, A],

Ē
[ t−nb−1
∑

i6=j ,t−n

Y 2
1,i+1X

2
i X

2
j , A

]

= ((n− nb)
2 − (n− nb))Ē[Y 2

1,t−nb
X2

t−nb−1X
2
t−nb−2, A],

Ē
[ t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

2
τ

t−1∑

τ=t−nb

X2
τ , A

]

= nb(n− nb)Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−1, A],

Ē
[ t−nb−1∑

i6=j ,t−n

Y1,i+1X
3
i Y1,j+1Xj, A

]

= 2((n− nb)
2 − (n− nb))Ē[Y1,t−nb

X3
t−nb−1Y1,t−nb−1Xt−nb−2, A],

Ē
[ t−nb−1

∑

i6=j 6=k ,t−n

Y1,i+1XiY1,j+1XjX
2
k , A

]

= ((n− nb)
3 − 3(n− nb)

2 + 2(n− nb))

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3, A],

Ē
[ t−nb−1
∑

i6=j ,t−n

Y1,i+1XiY1,j+1Xj

t−1∑

τ=t−nb

X2
τ , A

]

=

nb((n− nb)
2 − (n− nb))Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
2
t−1, A].

The truncated expectation of S2
1,nS2,n is as follows:

• Ē[S2
1,nS2,n, A] =

(
1

n2
− nb

n3

)

Ē[Y 2
1,t−nb

X4
t−n+b−1, A]

+

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2, A]
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+ nb

(
1

n2
− nb

n3

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−1, A]

+ 2

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1Xt−nb−2, A]

+

(

1 − 3

n
(nb + 1) +

1

n2
(2 + 6nb + 3n2

b) −
nb

n3
(2 + 3nb + n2

b)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3, A]

+ nb

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−1, A].

Next we expand Ē[S3,nS
2
2,n, A]:

S3,nS
2
2,n =

1

n3

[
t−1∑

τ=t−nb

Y2,τ+1Xτ

][
t−1∑

τ=t−n

X2
τ

]2

=
1

n3

[
t−1∑

τ=t−nb

Y2,τ+1Xτ

][
t−1∑

τ=t−nb

X2
τ +

t−nb−1
∑

τ=t−n

X2
τ

]2

=
1

n3

[
t−1∑

τ=t−nb

Y2,τ+1Xτ

][
( t−1∑

τ=t−nb

X2
τ

)2
+
( t−nb−1
∑

τ=t−n

X2
τ

)2
+ 2

t−1∑

τ=t−nb

X2
τ

t−nb−1
∑

τ=t−n

X2
τ

]

=
1

n3





t−1∑

τ=t−nb

Y2,τ+1X
5
τ +

t−1∑

i6=j, t−nb

Y2,i+1XiX
4
j +

t−1∑

i6=j, t−nb

Y2,i+1X
3
i X

2
j

+

t−1∑

i6=j 6=k, t−nb

Y2,i+1XiX
2
jX

2
k +

t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1∑

τ=t−n

X4
τ

+
t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j, t−n

X2
i X

2
j + 2

t−1∑

τ=t−nb

Y2,τ+1X
3
τ

t−nb−1
∑

τ=t−n

X2
τ

+2
t−1∑

i6=j, t−nb

Y2,i+1XiX
2
j

t−nb−1
∑

τ=t−n

X2
τ



 .

The truncated expectation of the eight terms are as follows:

Ē
[ t−1∑

τ=t−nb

Y2,τ+1X
5
τ , A

]

= nbĒ[Y2,tX
5
t−1, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1XiX
4
j , A

]

= nb(nb − 1)Ē[Y2,tXt−1X
4
t−2, A],



432

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1X
3
i X

2
j , A

]

= 2nb(nb − 1)Ē[Y2,tX
3
t−1X

2
t−2, A],

Ē
[ t−1∑

i6=j 6=k, t−nb

Y2,i+1XiX
2
jX

2
k , A

]

= (n3
b − 3n2

b + 2nb)Ē[Y2,tXt−1X
2
t−2X

2
t−3, A],

Ē
[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1∑

τ=t−n

X4
τ , A

]

= nb(n− nb)Ē[Y2,tXt−1X
4
t−nb−1, A],

Ē
[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j, t−n

X2
i X

2
j , A

]

= nb((n− nb)
2 − (n− nb))Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2, A],

Ē
[

2
t−1∑

τ=t−nb

Y2,τ+1X
3
τ

t−nb−1
∑

τ=t−n

X2
τ , A

]

= 2nb(n− nb)Ē[Y2,tX
3
t−1X

2
t−nb−1, A],

Ē
[

2
t−1∑

i6=j, t−nb

Y2,i+1XiX
2
j

t−nb−1
∑

τ=t−n

X2
τ , A

]

= 2nb(nb − 1)(n− nb)Ē[Y2,tXt−1X
2
t−2X

2
t−nb−1, A].

The truncated expectation of S3,nS
2
2,n is as follows:

• Ē[S3,nS
2
2,n, A] =

nb

n3
Ē[Y2,tX

5
t−1, A] +

nb

n3
(nb − 1)Ē[Y2,tXt−1X

4
t−2, A]

+ 2
nb

n3
(nb − 1)Ē[Y2,tX

3
t−1X

2
t−2, A] +

nb

n3
(n2

b − 3nb + 2)Ē[Y2,tXt−1X
2
t−2X

2
t−3, A]

+ nb

(
1

n2
− nb

n3

)

Ē[Y2,tXt−1X
4
t−nb−1, A]

+ nb

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2, A]

+ 2nb

(
1

n2
− nb

n3

)

Ē[Y2,tX
3
t−1X

2
t−nb−1, A]

+ 2nb(nb − 1)

(
1

n2
− nb

n3

)

Ē[Y2,tXt−1X
2
t−2X

2
t−nb−1, A].

The truncated expectation of S4,nS
2
2,n is as follows:

• Ē[S4,nS
2
2,n, A] =

1

n2
Ē[Y2,tX

5
t−1, A] +

(
1

n
− 1

n2

)

Ē[Y2,tXt−1X
4
t−2, A]

+ 2

(
1

n
− 1

n2

)

Ē[Y2,tX
3
t−1X

2
t−2, A] +

(

1 − 3

n
+

2

n2

)

Ē[Y2,tXt−1X
2
t−2X

2
t−3, A].
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Next we expand Ē[S2
3,nS2,n, A]:

S2
3,nS2,n =

1

n3

[
t−1∑

τ=t−nb

Y2,τ+1Xτ

]2 [ t−1∑

τ=t−n

X2
τ

]

=
1

n3





t−1∑

τ=t−nb

Y 2
2,τ+1X

2
τ +

t−1∑

i6=j, t−nb

Y2,i+1XiY2,j+1Xj





[
t−1∑

τ=t−nb

X2
τ +

t−nb−1
∑

τ=t−n

X2
τ

]

=
1

n3





t−1∑

τ=t−nb

Y 2
2,τ+1X

4
τ +

t−1∑

i6=j, t−nb

Y 2
2,i+1X

2
i X

2
j +

t−1∑

τ=t−nb

Y 2
2,τ+1X

2
τ

t−nb−1
∑

τ=t−n

X2
τ

+

t−1∑

i6=j, t−nb

Y2,i+1X
3
i Y2,j+1Xj +

t−1∑

i6=j 6=k, t−nb

Y2,i+1XiY2,j+1XjX
2
k

+

t−1∑

i6=j, t−nb

Y2,i+1XiY2,j+1Xj

t−nb−1
∑

τ=t−n

X2
τ



 .

The truncated expectation of the six terms are as follows:

Ē
[ t−1∑

τ=t−nb

Y 2
2,τ+1X

4
τ , A

]

= nbĒ[Y 2
2,tX

4
t−1, A],

Ē
[ t−1∑

i6=j, t−nb

Y 2
2,i+1X

2
i X

2
j , A

]

= nb(nb − 1)Ē[Y 2
2,tX

2
t−1X

2
t−2, A],

Ē
[ t−1∑

τ=t−nb

Y 2
2,τ+1X

2
τ

t−nb−1
∑

τ=t−n

X2
τ , A

]

= nb(n− nb)Ē[Y 2
2,tX

2
t−1X

2
t−nb−1, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1X
3
i Y2,j+1Xj , A

]

= 2nb(nb − 1)Ē[Y2,tX
3
t−1Y2,t−1Xt−2, A],

Ē
[ t−1∑

i6=j 6=k, t−nb

Y2,i+1XiY2,j+1XjX
2
k , A

]

= nb(n
2
b − 3nb + 2)Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−3, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1XiY2,j+1Xj

t−nb−1
∑

τ=t−n

X2
τ , A

]

= nb(nb − 1)(n− nb)Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1, A].



434

The truncated expectation of S2
3,nS2,n is as follows:

• Ē[S2
3,nS2,n, A] =

nb

n3
Ē[Y 2

2,tX
4
t−1, A] +

nb

n3
(nb − 1)Ē[Y 2

2,tX
2
t−1X

2
t−2, A]

+ nb

(
1

n2
− nb

n3

)

Ē[Y 2
2,tX

2
t−1X

2
t−nb−1, A] + 2

nb

n3
(nb − 1)Ē[Y2,tX

3
t−1Y2,t−1Xt−2, A]

+
nb

n3
(n2

b − 3nb + 2)Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3, A]

+ nb(nb − 1)

(
1

n2
− nb

n3

)

Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1, A].

The truncated expectation of S2
4,nS2,n is as follows:

• Ē[S2
4,nS2,n, A] =

1

n2
Ē[Y 2

2,tX
4
t−1, A] +

(
1

n
− 1

n2

)

Ē[Y 2
2,tX

2
t−1X

2
t−2, A]

+ 2

(
1

n
− 1

n2

)

Ē[Y2,tX
3
t−1Y2,t−1Xt−2, A]

+

(

1 − 3

n
+

2

n2

)

Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3, A].

Next we expand Ē[S1,nS2,nS3,n, A]:

S1,nS2,nS3,n =
1

n3

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−n

X2
τ

t−1∑

τ=t−nb

Y2,τ+1Xτ

=
1

n3

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

Y2,τ+1Xτ

[
t−nb−1
∑

τ=t−n

X2
τ +

t−1∑

τ=t−nb

X2
τ

]

=
1

n3

[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

τ=t−n

Y1,τ+1X
3
τ +

t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i 6=j,t−n

Y1,i+1XiX
2
j

+

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

Y2,τ+1X
3
τ +

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j,t−nb

Y2,i+1XiX
2
j

]

.

The truncated expectation of the four terms are as follows:

E
[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

τ=t−n

Y1,τ+1X
3
τ

]

= nb(n− nb)Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1, A],

E
[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j,t−n

Y1,i+1XiX
2
j

]

= nb((n− nb)
2 − (n− nb))

· Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2, A],
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E
[ t−nb−1∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

Y2,τ+1X
3
τ

]

= nb(n− nb)Ē[Y1,t−nb
Xt−nb−1Y2,tX

3
t−1, A],

E
[ t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j,t−nb

Y2,i+1XiX
2
j

]

= (n− nb)(n
2
b − nb)

· Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1X

2
t−2, A].

The truncated expectation of S1,nS2,nS3,n is as follows:

• Ē[S1,nS2,nS3,n, A] = nb

(
1

n2
− nb

n3

)

Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1, A]

+ nb

(
1

n
− (2nb + 1)

1

n2
+ nb(nb + 1)

1

n3

)

Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

+ nb

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
Xt−nb−1Y2,tX

3
t−1, A]

+ nb(nb − 1)

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1X

2
t−2, A].

Next we expand Ē[S1, nS3
2,n, A]:

S1,nS
3
2,n =

1

n4

[
t−nb−1∑

τ=t−n

Y1,τ+1Xτ

][
t−1∑

τ=t−n

X2
τ

]3

=
1

n4

[
t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

] [
t−nb−1
∑

τ=t−n

X2
τ +

t−1∑

τ=t−nb

X2
τ

]3

=
1

n4

[
t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

] [
( t−nb−1
∑

τ=t−n

X2
τ

)3
+
( t−1∑

τ=t−nb

X2
τ

)3
+ 3
( t−nb−1
∑

τ=t−n

X2
τ

)2
t−1∑

τ=t−nb

X2
τ

+3

t−nb−1
∑

τ=t−n

X2
τ

( t−1∑

τ=t−nb

X2
τ

)2
]

=
1

n4

[
t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

]



t−nb−1
∑

τ=t−n

X6
τ +

t−nb−1
∑

i6=j, t−n

X4
i X

2
j +

t−nb−1
∑

i6=j 6=k, t−n

X2
i X

2
jX

2
k +

t−1∑

τ=t−nb

X6
τ

+

t−1∑

i6=j, t−nb

X4
i X

2
j +

t−1∑

i6=j 6=k, t−nb

X2
i X

2
jX

2
k + 3

( t−nb−1∑

τ=t−n

X4
τ +

t−nb−1∑

i6=j, t−n

X2
i X

2
j

) t−1∑

τ=t−nb

X2
τ

+3
( t−1∑

τ=t−nb

X4
τ +

t−1∑

i6=j, t−nb

X2
i X

2
j

) t−nb−1
∑

τ=t−n

X2
τ




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=
1

n4





t−nb−1
∑

τ=t−n

Y1,τ+1X
7
τ +

t−nb−1
∑

i6=j, t−n

Y1,i+1XiX
6
j +

t−nb−1
∑

i6=j, t−n

Y1,i+1X
5
i X

2
j

+

t−nb−1
∑

i6=j, t−n

Y1,i+1X
3
i X

4
j +

t−nb−1
∑

i6=j 6=k, t−n

Y1,i+1XiX
4
jX

2
k +

t−nb−1
∑

i6=j 6=k, t−n

Y1,i+1X
3
i X

2
jX

2
k

+

t−nb−1
∑

i6=j 6=k 6=l, t−n

Y1,i+1XiX
2
jX

2
kX

2
l +

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

X6
τ

+

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j, t−nb

X4
i X

2
j +

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j 6=k, t−nb

X2
i X

2
jX

2
k

+ 3
( t−nb−1
∑

τ=t−n

Y1,τ+1X
5
τ +

t−nb−1
∑

i6=j, t−n

Y1,i+1XiX
4
j +

t−nb−1
∑

i6=j, t−n

Y1,i+1X
3
i X

2
j

+

t−nb−1
∑

i6=j 6=k, t−n

Y1,i+1XiX
2
jX

2
k

) t−1∑

τ=t−nb

X2
τ + 3

( t−nb−1
∑

τ=t−n

Y1,τ+1X
3
τ +

t−nb−1
∑

i6=j, t−n

Y1,i+1XiX
2
j

)

·
( t−1∑

τ=t−nb

X4
τ +

t−1∑

i6=j, t−nb

X2
i X

2
j

)





=
1

n4





t−nb−1
∑

τ=t−n

Y1,τ+1X
7
τ +

t−nb−1
∑

i6=j, t−n

Y1,i+1XiX
6
j +

t−nb−1
∑

i6=j, t−n

Y1,i+1X
5
i X

2
j

+

t−nb−1
∑

i6=j, t−n

Y1,i+1X
3
i X

4
j +

t−nb−1
∑

i6=j 6=k, t−n

Y1,i+1XiX
4
jX

2
k +

t−nb−1
∑

i6=j 6=k, t−n

Y1,i+1X
3
i X

2
jX

2
k

+

t−nb−1
∑

i6=j 6=k 6=l, t−n

Y1,i+1XiX
2
jX

2
kX

2
l +

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

X6
τ

+

t−nb−1∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j, t−nb

X4
i X

2
j +

t−nb−1∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j 6=k, t−nb

X2
i X

2
jX

2
k

+ 3

t−nb−1
∑

τ=t−n

Y1,τ+1X
5
τ

t−1∑

τ=t−nb

X2
τ + 3

t−nb−1
∑

i6=j, t−n

Y1,i+1XiX
4
j

t−1∑

τ=t−nb

X2
τ

+ 3

t−nb−1
∑

i6=j, t−n

Y1,i+1X
3
i X

2
j

t−1∑

τ=t−nb

X2
τ + 3

t−nb−1
∑

i6=j 6=k, t−n

Y1,i+1XiX
2
jX

2
k

t−1∑

τ=t−nb

X2
τ

+ 3

t−nb−1∑

τ=t−n

Y1,τ+1X
3
τ

t−1∑

τ=t−nb

X4
τ + 3

t−nb−1∑

τ=t−n

Y1,τ+1X
3
τ

t−1∑

i6=j, t−nb

X2
i X

2
j

+3

t−nb−1
∑

i6=j, t−n

Y1,i+1XiX
2
j

t−1∑

τ=t−nb

X4
τ + 3

t−nb−1
∑

i6=j, t−n

Y1,i+1XiX
2
j

t−1∑

i6=j, t−nb

X2
i X

2
j



 .
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The truncated expectation of the eighteen terms are as follows:

Ē
[ t−nb−1
∑

τ=t−n

Y1,τ+1X
7
τ , A

]

= (n− nb)Ē[Y1,t−nb
X7

t−nb−1, A],

Ē
[ t−nb−1
∑

i6=j, t−n

Y1,i+1XiX
6
j , A

]

= ((n− nb)
2 − (n− nb))Ē[Y1,t−nb

Xt−nb−1X
6
t−nb−2, A],

Ē
[ t−nb−1
∑

i6=j, t−n

Y1,i+1X
5
i X

2
j , A

]

= 3((n− nb)
2 − (n− nb))Ē[Y1,t−nb

X5
t−nb−1X

2
t−nb−2, A],

Ē
[ t−nb−1∑

i6=j, t−n

Y1,i+1X
3
i X

4
j , A

]

= 3((n− nb)
2 − (n− nb))Ē[Y1,t−nb

X3
t−nb−1X

4
t−nb−2, A],

Ē
[ t−nb−1

∑

i6=j 6=k, t−n

Y1,i+1XiX
4
jX

2
k , A

]

= 3((n− nb)
3 − 3(n− nb)

2 + 2(n− nb))Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2X

2
t−nb−3, A],

Ē
[ t−nb−1

∑

i6=j 6=k, t−n

Y1,i+1X
3
i X

2
jX

2
k , A

]

= 3((n− nb)
3 − 3(n− nb)

2 + 2(n− nb))Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2X

2
t−nb−3, A],

Ē
[ t−nb−1

∑

i6=j 6=k 6=l, t−n

Y1,i+1XiX
2
jX

2
kX

2
l , A

]

= ((n− nb)
4 − 6(n− nb)

3 + 11(n− nb)
2 − 6(n− nb))

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3X

2
t−nb−4, A],

Ē
[ t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

X6
τ , A

]

= nb(n− nb)Ē[Y1,t−nb
Xt−nb−1X

6
t−1, A],

Ē
[ t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j, t−nb

X4
i X

2
j , A

]

= 3nb(n− nb)(nb − 1)Ē[Y1,t−nb
Xt−nb−1X

4
t−1X

2
t−2, A],

Ē
[ t−nb−1∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j 6=k, t−nb

X2
i X

2
jX

2
k , A

]

= nb(n− nb)(n
2
b − 3nb + 2)Ē[Y1,t−nb

Xt−nb−1X
2
t−1X

2
t−2X

2
t−3, A],

Ē
[ t−nb−1
∑

τ=t−n

Y1,τ+1X
5
τ

t−1∑

τ=t−nb

X2
τ , A

]

= nb(n− nb)Ē[Y1,t−nb
X5

t−nb−1X
2
t−1, A],
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Ē
[ t−nb−1∑

i6=j, t−n

Y1,i+1XiX
4
j

t−1∑

τ=t−nb

X2
τ , A

]

= nb((n− nb)
2 − (n− nb))Ē[Y1,t−nb

Xt−nb−1X
4
t−nb−2X

2
t−1, A],

Ē
[ t−nb−1
∑

i6=j, t−n

Y1,i+1X
3
i X

2
j

t−1∑

τ=t−nb

X2
τ , A

]

= 2nb((n− nb)
2 − (n− nb))Ē[Y1,t−nb

X3
t−nb−1X

2
t−nb−2X

2
t−1, A],

Ē
[ t−nb−1

∑

i6=j 6=k, t−n

Y1,i+1XiX
2
jX

2
k

t−1∑

τ=t−nb

X2
τ , A

]

= nb((n− nb)
3 − 3(n− nb)

2 + 2(n− nb))

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3X

2
t−1, A],

Ē
[ t−nb−1
∑

τ=t−n

Y1,τ+1X
3
τ

t−1∑

τ=t−nb

X4
τ , A

]

= nb(n− nb)Ē[Y1,t−nb
X3

t−nb−1X
4
t−1, A],

Ē
[ t−nb−1
∑

τ=t−n

Y1,τ+1X
3
τ

t−1∑

i6=j, t−nb

X2
i X

2
j , A

]

= nb(n− nb)(nb − 1)Ē[Y1,t−nb
X3

t−nb−1X
2
t−1X

2
t−2, A],

Ē
[ t−nb−1
∑

i6=j, t−n

Y1,i+1XiX
2
j

t−1∑

τ=t−nb

X4
τ , A

]

= nb((n− nb)
2 − (n− nb))Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

4
t−1, A],

Ē
[ t−nb−1
∑

i6=j, t−n

Y1,i+1XiX
2
j

t−1∑

i6=j, t−nb

X2
i X

2
j , A

]

= nb(nb − 1)((n− nb)
2 − (n− nb))Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−1X

2
t−2, A].

The truncated expectation of S1,nS
3
2,n is as follows:

• Ē[S1,nS
3
2,n, A] =

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
X7

t−nb−1, A]

+

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

6
t−nb−2, A]

+ 3

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
X5

t−nb−1X
2
t−nb−2, A]

+ 3

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
X3

t−nb−1X
4
t−nb−2, A]
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+ 3

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2X

2
t−nb−3, A]

+ 3

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2X

2
t−nb−3, A]

+

(

1 − 1

n
(4nb + 6) +

1

n2
(6n2

b + 18nb + 11) − 1

n3
(4n3

b + 18n2
b + 22nb + 6)

+
nb

n4
(n3

b + 6n2
b + 11nb + 6)

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3X

2
t−nb−4, A]

+ nb

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1X

6
t−1, A]

+ 3nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1X

4
t−1X

2
t−2, A]

+ nb(n
2
b − 3nb + 2)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−1X

2
t−2X

2
t−3, A]

+ 3nb

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
X5

t−nb−1X
2
t−1, A]

+ 3nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2X

2
t−1, A]

+ 6nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2X

2
t−1, A]

+ 3nb

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3X

2
t−1, A]

+ 3nb

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
X3

t−nb−1X
4
t−1, A]

+ 3nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
X3

t−nb−1X
2
t−1X

2
t−2, A]

+ 3nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

4
t−1, A]

+ 3nb(nb − 1)

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1X

2
t−2, A].

Next we expand Ē[S3,nS
3
2,n, A]:

S3,nS
3
2,n =

1

n4

[
t−1∑

τ=t−nb

Y2,τ+1Xτ

][
t−1∑

τ=t−n

X2
τ

]3
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=
1

n4

[
t−1∑

τ=t−nb

Y2,τ+1Xτ

] [
t−nb−1
∑

τ=t−n

X2
τ +

t−1∑

τ=t−nb

X2
τ

]3

=
1

n4

[
t−1∑

τ=t−nb

Y2,τ+1Xτ

] [
( t−nb−1
∑

τ=t−n

X2
τ

)3
+
( t−1∑

τ=t−nb

X2
τ

)3
+ 3
( t−nb−1
∑

τ=t−n

X2
τ

)2
t−1∑

τ=t−nb

X2
τ

+3

t−nb−1
∑

τ=t−n

X2
τ

( t−1∑

τ=t−nb

X2
τ

)2
]

=
1

n4

[
t−1∑

τ=t−nb

Y2,τ+1Xτ

]



t−nb−1
∑

τ=t−n

X6
τ +

t−nb−1
∑

i6=j, t−n

X4
i X

2
j +

t−nb−1
∑

i6=j 6=k, t−n

X2
i X

2
jX

2
k +

t−1∑

τ=t−nb

X6
τ

+
t−1∑

i6=j, t−nb

X4
i X

2
j +

t−1∑

i6=j 6=k, t−nb

X2
i X

2
jX

2
k + 3

( t−nb−1
∑

τ=t−n

X4
τ +

t−nb−1
∑

i6=j, t−n

X2
i X

2
j

) t−1∑

τ=t−nb

X2
τ

+3
( t−1∑

τ=t−nb

X4
τ +

t−1∑

i6=j, t−nb

X2
i X

2
j

) t−nb−1
∑

τ=t−n

X2
τ





=
1

n4





t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

τ=t−n

X6
τ +

t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j, t−n

X4
i X

2
j

+

t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j 6=k, t−n

X2
i X

2
jX

2
k +

t−1∑

τ=t−nb

Y2,τ+1X
7
τ +

t−1∑

i 6=j, t−nb

Y2,i+1XiX
6
j

+

t−1∑

i6=j, t−nb

Y2,i+1X
5
i X

2
j +

t−1∑

i6=j, t−nb

Y2,i+1X
3
i X

4
j +

t−1∑

i6=j 6=k, t−nb

Y2,i+1XiX
4
jX

2
k

+

t−1∑

i6=j 6=k, t−nb

Y2,i+1X
3
i X

2
jX

2
k +

t−1∑

i6=j 6=k 6=l, t−nb

Y2,i+1XiX
2
jX

2
kX

2
l

+ 3
( t−1∑

τ=t−nb

Y2,τ+1X
3
τ +

t−1∑

i6=j, t−nb

Y2,i+1XiX
2
j

)( t−nb−1
∑

τ=t−n

X4
τ +

t−nb−1
∑

i6=j, t−n

X2
i X

2
j

)

+ 3
( t−1∑

τ=t−nb

Y2,τ+1X
5
τ +

t−1∑

i6=j, t−nb

Y2,i+1XiX
4
j +

t−1∑

i6=j, t−nb

Y2,i+1X
3
i X

2
j

+

t−1∑

i6=j 6=k, t−nb

Y2,i+1XiX
2
jX

2
k

) t−nb−1
∑

τ=t−n

X2
τ





=
1

n4





t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

τ=t−n

X6
τ +

t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j, t−n

X4
i X

2
j

+
t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j 6=k, t−n

X2
i X

2
jX

2
k +

t−1∑

τ=t−nb

Y2,τ+1X
7
τ +

t−1∑

i 6=j, t−nb

Y2,i+1XiX
6
j
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+
t−1∑

i6=j, t−nb

Y2,i+1X
5
i X

2
j +

t−1∑

i6=j, t−nb

Y2,i+1X
3
i X

4
j +

t−1∑

i6=j 6=k, t−nb

Y2,i+1XiX
4
jX

2
k

+
t−1∑

i6=j 6=k, t−nb

Y2,i+1X
3
i X

2
jX

2
k +

t−1∑

i6=j 6=k 6=l, t−nb

Y2,i+1XiX
2
jX

2
kX

2
l

+ 3

t−nb−1∑

τ=t−n

X4
τ

t−1∑

τ=t−nb

Y2,τ+1X
3
τ + 3

t−nb−1∑

τ=t−n

X4
τ

t−1∑

i6=j, t−nb

Y2,i+1XiX
2
j

+ 3

t−nb−1
∑

i6=j, t−n

X2
i X

2
j

t−1∑

τ=t−nb

Y2,τ+1X
3
τ + 3

t−nb−1
∑

i6=j, t−n

X2
i X

2
j

t−1∑

i6=j, t−nb

Y2,i+1XiX
2
j

+ 3

t−nb−1
∑

τ=t−n

X2
τ

t−1∑

τ=t−nb

Y2,τ+1X
5
τ + 3

t−nb−1
∑

τ=t−n

X2
τ

t−1∑

i6=j, t−nb

Y2,i+1XiX
4
j

+3

t−nb−1
∑

τ=t−n

X2
τ

t−1∑

i6=j, t−nb

Y2,i+1X
3
i X

2
j + 3

t−nb−1
∑

τ=t−n

X2
τ

t−1∑

i6=j 6=k, t−nb

Y2,i+1XiX
2
jX

2
k



 .

The truncated expectation of the eighteen terms are as follows:

Ē
[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

τ=t−n

X6
τ , A

]

= nb(n− nb)Ē[Y2,tXt−1X
6
t−nb−1, A],

Ē
[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j, t−n

X4
i X

2
j , A

]

= 3nb((n− nb)
2 − (n− nb))

· Ē[Y2,tXt−1X
4
t−nb−1X

2
t−nb−2, A],

Ē
[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j 6=k, t−n

X2
i X

2
jX

2
k , A

]

= nb((n− nb)
3 − 3(n− nb)

2 + 2(n− nb))

· Ē[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2X

2
t−nb−3, A],

Ē
[ t−1∑

τ=t−nb

Y2,τ+1X
7
τ , A

]

= nbĒ[Y2,tX
7
t−1, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1XiX
6
j , A

]

= nb(nb − 1)Ē[Y2,tXt−1X
6
t−2, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1X
5
i X

2
j , A

]

= 3nb(nb − 1)Ē[Y2,tX
5
t−1X

2
t−2, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1X
3
i X

4
j , A

]

= 3nb(nb − 1)Ē[Y2,tX
3
t−1X

4
t−2, A],



442

Ē
[ t−1∑

i6=j 6=k, t−nb

Y2,i+1XiX
4
jX

2
k , A

]

= 3nb(n
2
b − 3nb + 2)Ē[Y2,tXt−1X

4
t−2X

2
t−3, A],

Ē
[ t−1∑

i6=j 6=k, t−nb

Y2,i+1X
3
i X

2
jX

2
k , A

]

= 3nb(n
2
b − 3nb + 2)Ē[Y2,tX

3
t−1X

2
t−2X

2
t−3, A],

Ē
[ t−1∑

i6=j 6=k 6=l, t−nb

Y2,i+1XiX
2
jX

2
kX

2
l , A

]

= (n4
b − 6n3

b + 11n2
b − 6nb)

· Ē[Y2,tXt−1X
2
t−2X

2
t−3X

2
t−4, A],

Ē
[ t−1∑

τ=t−nb

Y2,τ+1X
3
τ

t−nb−1
∑

τ=t−n

X4
τ , A

]

= nb(n− nb)Ē[Y2,tX
3
t−1X

4
t−nb−1, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1XiX
2
j

t−nb−1
∑

τ=t−n

X4
τ , A

]

= nb(n− nb)(nb − 1)Ē[Y2,tXt−1X
2
t−2X

4
t−nb−1, A],

Ē
[ t−nb−1
∑

τ=t−nb

Y2,τ+1X
3
τ

t−nb−1
∑

i6=j, t−n

X2
i X

2
j , A

]

= nb((n− nb)
2 − (n− nb))

· Ē[Y2,tX
3
t−1X

2
t−nb−1X

2
t−nb−2, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1XiX
2
j

t−nb−1
∑

i6=j, t−n

X2
i X

2
j , A

]

= nb(nb − 1)((n− nb)
2 − (n− nb))

· Ē[Y2,tXt−1X
2
t−2X

2
t−nb−1X

2
t−nb−2, A],

Ē
[ t−1∑

τ=t−nb

Y2,τ+1X
5
τ

t−nb−1
∑

τ=t−n

X2
τ , A

]

= nb(n− nb)Ē[Y2,tX
5
t−1X

2
t−nb−1, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1XiX
4
j

t−nb−1
∑

τ=t−n

X2
τ , A

]

= nb(n− nb)(nb − 1)Ē[Y2,tXt−1X
4
t−2X

2
t−nb−1, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1X
3
i X

2
j

t−nb−1
∑

τ=t−n

X2
τ , A

]

= 2nb(n− nb)(nb − 1)Ē[Y2,tX
3
t−1X

2
t−2X

2
t−nb−1, A],

Ē
[ t−1∑

i6=j 6=k, t−nb

Y2,i+1XiX
2
jX

2
k

t−nb−1
∑

τ=t−n

X2
τ , A

]

= nb(n
2
b − 3nb + 2)(n− nb)

· Ē[Y2,tXt−1X
2
t−2X

2
t−3X

2
t−nb−1, A].

The truncated expectation of S3,nS
3
2,n is as follows:

• Ē[S3,nS
3
2,n, A] = nb

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1X
6
t−nb−1, A]
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+ 3nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y2,tXt−1X
4
t−nb−1X

2
t−nb−2, A]

+ nb

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+
nb

n4
Ē[Y2,tX

7
t−1, A] +

nb

n4
(nb − 1)Ē[Y2,tXt−1X

6
t−2, A]

+ 3
nb

n4
(nb − 1)Ē[Y2,tX

5
t−1X

2
t−2, A] + 3

nb

n4
(nb − 1)Ē[Y2,tX

3
t−1X

4
t−2, A]

+ 3
nb

n4
(n2

b − 3nb + 2)Ē[Y2,tXt−1X
4
t−2X

2
t−3, A]

+ 3
nb

n4
(n2

b − 3nb + 2)Ē[Y2,tX
3
t−1X

2
t−2X

2
t−3, A]

+
nb

n4
(n3

b − 6n2
b + 11nb − 6)Ē[Y2,tXt−1X

2
t−2X

2
t−3X

2
t−4, A]

+ 3nb

(
1

n3
− nb

n4

)

Ē[Y2,tX
3
t−1X

4
t−nb−1, A]

+ 3nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1X
2
t−2X

4
t−nb−1, A]

+ 3nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y2,tX
3
t−1X

2
t−nb−1X

2
t−nb−2, A]

+ 3nb(nb − 1)

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y2,tXt−1X
2
t−2X

2
t−nb−1X

2
t−nb−2, A]

+ 3nb

(
1

n3
− nb

n4

)

Ē[Y2,tX
5
t−1X

2
t−nb−1, A]

+ 3nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1X
4
t−2X

2
t−nb−1, A]

+ 6nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y2,tX
3
t−1X

2
t−2X

2
t−nb−1, A]

+ 3nb(n
2
b − 3nb + 2)

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1X
2
t−2X

2
t−3X

2
t−nb−1, A].

The truncated expectation of S4,nS
3
2,n is as follows:

• Ē[S4,nS
3
2,n, A] =

1

n3
Ē[Y2,tX

7
t−1, A] +

(
1

n2
− 1

n3

)

Ē[Y2,tXt−1X
6
t−2, A]

+ 3

(
1

n2
− 1

n3

)

Ē[Y2,tX
5
t−1X

2
t−2, A] + 3

(
1

n2
− 1

n3

)

Ē[Y2,tX
3
t−1X

4
t−2, A]

+ 3

(
1

n
− 3

n2
+

2

n3

)

Ē[Y2,tXt−1X
4
t−2X

2
t−3, A]
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+ 3

(
1

n
− 3

n2
+

2

n3

)

Ē[Y2,tX
3
t−1X

2
t−2X

2
t−3, A]

+

(

1 − 6

n
+

11

n2
− 6

n3

)

Ē[Y2,tXt−1X
2
t−2X

2
t−3X

2
t−4, A].

Next we expand Ē[S2
1,nS

2
2,n, A]:

S2
1,nS

2
2,n =

1

n4

[
t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

]2 [ t−1∑

τ=t−n

X2
τ

]2

=
1

n4





t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

2
τ +

t−nb−1
∑

i6=j, t−n

Y1,i+1XiY1,j+1Xj





[
t−nb−1
∑

τ=t−n

X2
τ +

t−1∑

τ=t−nb

X2
τ

]2

=
1

n4





t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

2
τ +

t−nb−1
∑

i6=j, t−n

Y1,i+1XiY1,j+1Xj





[
( t−nb−1
∑

τ=t−n

X2
τ

)2
+
( t−1∑

τ=t−nb

X2
τ

)2

+2

t−nb−1∑

τ=t−n

X2
τ

t−1∑

τ=t−nb

X2
τ

]

=
1

n4





t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

2
τ +

t−nb−1
∑

i6=j, t−n

Y1,i+1XiY1,j+1Xj









t−nb−1
∑

τ=t−n

X4
τ +

t−nb−1
∑

i6=j, t−n

X2
i X

2
j

+

t−1∑

τ=t−nb

X4
τ +

t−1∑

i6=j, t−nb

X2
i X

2
j + 2

t−nb−1
∑

τ=t−n

X2
τ

t−1∑

τ=t−nb

X2
τ





=
1

n4





t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

6
τ +

t−nb−1
∑

i6=j, t−n

Y 2
1,i+1X

2
i X

4
j +

t−nb−1
∑

i6=j, t−n

Y 2
1,i+1X

4
i X

2
j

+

t−nb−1
∑

i6=j 6=k, t−n

Y 2
1,i+1X

2
i X

2
jX

2
k +

t−nb−1
∑

i6=j, t−n

Y1,i+1X
5
i Y1,j+1Xj

+

t−nb−1
∑

i6=j 6=k, t−n

Y1,i+1XiY1,j+1XjX
4
k +

t−nb−1
∑

i6=j, t−n

Y1,i+1X
3
i Y1,j+1X

3
j

+

t−nb−1
∑

i6=j 6=k, t−n

Y1,i+1XiY1,j+1X
3
jX

2
k +

t−nb−1
∑

i6=j 6=k 6=l, t−n

Y1,i+1XiY1,j+1XjX
2
kX

2
l

+

t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

2
τ

t−1∑

τ=t−nb

X4
τ +

t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

2
τ

t−1∑

i6=j, t−nb

X2
i X

2
j

+

t−nb−1
∑

i6=j, t−n

Y1,i+1XiY1,j+1Xj

t−1∑

τ=t−nb

X4
τ +

t−nb−1
∑

i6=j, t−n

Y1,i+1XiY1,j+1Xj

t−1∑

i6=j, t−nb

X2
i X

2
j
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+ 2

t−nb−1∑

τ=t−n

Y 2
1,τ+1X

4
τ

t−1∑

τ=t−nb

X2
τ + 2

t−nb−1∑

i6=j, t−n

Y 2
1,i+1X

2
i X

2
j

t−1∑

τ=t−nb

X2
τ

+ 2

t−nb−1
∑

i6=j, t−n

Y1,i+1X
3
i Y1,j+1Xj

t−1∑

τ=t−nb

X2
τ

+2

t−nb−1
∑

i6=j 6=k, t−n

Y1,i+1XiY1,j+1XjX
2
k

t−1∑

τ=t−nb

X2
τ



 .

The truncated expectation of the seventeen terms are as follows:

Ē
[ t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

6
τ , A

]

= (n− nb)Ē[Y 2
1,t−nb

X6
t−nb−1, A],

Ē
[ t−nb−1
∑

i6=j, t−n

Y 2
1,i+1X

2
i X

2
j , A

]

= ((n− nb)
2 − (n− nb))Ē[Y 2

1,t−nb
X2

t−nb−1X
4
t−nb−2, A],

Ē
[ t−nb−1∑

i6=j, t−n

Y 2
1,i+1X

4
i X

2
j , A

]

= 2((n− nb)
2 − (n− nb))Ē[Y 2

1,t−nb
X4

t−nb−1X
2
t−nb−2, A],

Ē
[ t−nb−1

∑

i6=j 6=k, t−n

Y 2
1,i+1X

2
i X

2
jX

2
k , A

]

= ((n− nb)
3 − 3(n− nb)

2 + 2(n− nb))

· Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2X

2
t−nb−3, A],

Ē
[ t−nb−1
∑

i6=j, t−n

Y1,i+1X
5
i Y1,j+1Xj , A

]

= 2((n− nb)
2 − (n− nb))

· Ē[Y1,t−nb
X5

t−nb−1Y1,t−nb−1Xt−nb−2, A],

Ē
[ t−nb−1

∑

i6=j 6=k, t−n

Y1,i+1XiY1,j+1XjX
4
k , A

]

= ((n− nb)
3 − 3(n− nb)

2 + 2(n− nb))

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

4
t−nb−3, A],

Ē
[ t−nb−1
∑

i6=j, t−n

Y1,i+1X
3
i Y1,j+1X

3
j , A

]

= 2((n− nb)
2 − (n− nb))

· Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1X
3
t−nb−2, A],

Ē
[ t−nb−1

∑

i6=j 6=k, t−n

Y1,i+1XiY1,j+1X
3
jX

2
k , A

]

= 4((n− nb)
3 − 3(n− nb)

2 + 2(n− nb))

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1X

3
t−nb−2X

2
t−nb−3, A],
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Ē
[ t−nb−1∑

i6=j 6=k 6=l, t−n

Y1,i+1XiY1,j+1XjX
2
kX

2
l , A

]

= ((n− nb)
4 − 6(n− nb)

3 + 11(n− nb)
2 − 6(n− nb))

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−nb−4, A],

Ē
[ t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

2
τ

t−1∑

τ=t−nb

X4
τ , A

]

= nb(n− nb)Ē[Y 2
1,t−nb

X2
t−nb−1X

4
t−1, A],

Ē
[ t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

2
τ

t−1∑

i6=j, t−nb

X2
i X

2
j , A

]

= nb(nb − 1)(n− nb)

· Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−1X

2
t−2, A],

Ē
[ t−nb−1
∑

i6=j, t−n

Y1,i+1XiY1,j+1Xj

t−1∑

τ=t−nb

X4
τ , A

]

= nb((n− nb)
2 − (n− nb))

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

4
t−1, A],

Ē
[ t−nb−1
∑

i6=j, t−n

Y1,i+1XiY1,j+1Xj

t−1∑

i6=j, t−nb

X2
i X

2
j , A

]

= nb(nb − 1)((n− nb)
2 − (n− nb))

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−1X

2
t−2, A],

Ē
[ t−nb−1
∑

τ=t−n

Y 2
1,τ+1X

4
τ

t−1∑

τ=t−nb

X2
τ , A

]

= nb(n− nb)Ē[Y 2
1,t−nb

X4
t−nb−1X

2
t−1, A],

Ē
[ t−nb−1
∑

i6=j, t−n

Y 2
1,i+1X

2
i X

2
j

t−1∑

τ=t−nb

X2
τ , A

]

= nb((n− nb)
2 − (n− nb))

· Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2X

2
t−1, A],

Ē
[ t−nb−1
∑

i6=j, t−n

Y1,i+1X
3
i Y1,j+1Xj

t−1∑

τ=t−nb

X2
τ , A

]

= 2nb((n− nb)
2 − (n− nb))

· Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1Xt−nb−2X
2
t−1, A],

Ē
[ t−nb−1∑

i6=j 6=k, t−n

Y1,i+1XiY1,j+1XjX
2
k

t−1∑

τ=t−nb

X2
τ , A

]

= nb((n− nb)
3 − 3(n− nb)

2 + 2(n− nb))

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−1, A].
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The truncated expectation of S2
1,nS

2
2,n is as follows:

• Ē[S2
1,nS

2
2,n, A] =

(
1

n3
− nb

n4

)

Ē[Y 2
1,t−nb

X6
t−nb−1, A]

+

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

4
t−nb−2, A]

+ 2

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y 2
1,t−nb

X4
t−nb−1X

2
t−nb−2, A]

+

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ 2

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
X5

t−nb−1Y1,t−nb−1Xt−nb−2, A]

+

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

4
t−nb−3, A]

+ 2

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1X
3
t−nb−2, A]

+ 4

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1X

3
t−nb−2X

2
t−nb−3, A]

+

(

1 − 1

n
(4nb + 6) +

1

n2
(6n2

b + 18nb + 11) − 1

n3
(4n3

b + 18n2
b + 22nb + 6)

+
nb

n4
(n3

b + 6n2
b + 11nb + 6)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−nb−4, A]

+ nb

(
1

n3
− nb

n4

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

4
t−1, A]

+ nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−1X

2
t−2, A]

+ nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

4
t−1, A]

+ nb(nb − 1)

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−1X

2
t−2, A]

+ 2nb

(
1

n3
− nb

n4

)

Ē[Y 2
1,t−nb

X4
t−nb−1X

2
t−1, A]
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+ 2nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2X

2
t−1, A]

+ 4nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1Xt−nb−2X
2
t−1, A]

+ 2nb

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−1, A].

Next we expand Ē[S2
3,nS

2
2,n, A]:

S2
3,nS

2
2,n =

1

n4

[
t−1∑

τ=t−nb

Y2,τ+1Xτ

]2 [ t−1∑

τ=t−n

X2
τ

]2

=
1

n4





t−1∑

τ=t−nb

Y 2
2,τ+1X

2
τ +

t−1∑

i6=j, t−nb

Y2,i+1XiY2,j+1Xj





[
t−nb−1
∑

τ=t−n

X2
τ +

t−1∑

τ=t−nb

X2
τ

]2

=
1

n4





t−1∑

τ=t−nb

Y 2
2,τ+1X

2
τ +

t−1∑

i6=j, t−nb

Y2,i+1XiY2,j+1Xj





[
( t−nb−1
∑

τ=t−n

X2
τ

)2
+
( t−1∑

τ=t−nb

X2
τ

)2

+2

t−nb−1
∑

τ=t−n

X2
τ

t−1∑

τ=t−nb

X2
τ

]

=
1

n4





t−1∑

τ=t−nb

Y 2
2,τ+1X

2
τ +

t−1∑

i6=j, t−nb

Y2,i+1XiY2,j+1Xj









t−nb−1
∑

τ=t−n

X4
τ +

t−nb−1
∑

i 6=j, t−n

X2
i X

2
j

+

t−1∑

τ=t−nb

X4
τ +

t−1∑

i6=j, t−nb

X2
i X

2
j + 2

t−nb−1
∑

τ=t−n

X2
τ

t−1∑

τ=t−nb

X2
τ





=
1

n4





t−1∑

τ=t−nb

Y 2
2,τ+1X

2
τ

t−nb−1
∑

τ=t−n

X4
τ +

t−1∑

τ=t−nb

Y 2
2,τ+1X

2
τ

t−nb−1
∑

i6=j, t−n

X2
i X

2
j

+

t−1∑

i6=j, t−nb

Y2,i+1XiY2,j+1Xj

t−nb−1
∑

τ=t−n

X4
τ +

t−1∑

i6=j, t−nb

Y2,i+1XiY2,j+1Xj

t−nb−1
∑

i6=j, t−n

X2
i X

2
j

+

t−1∑

τ=t−nb

Y 2
2,τ+1X

6
τ +

t−1∑

i6=j, t−nb

Y 2
2,i+1X

2
i X

4
j +

t−1∑

i6=j, t−nb

Y 2
2,i+1X

4
i X

2
j

+

t−1∑

i6=j 6=k, t−nb

Y 2
2,i+1X

2
i X

2
jX

2
k +

t−1∑

i6=j, t−nb

Y2,i+1X
5
i Y2,j+1Xj
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+
t−1∑

i6=j 6=k, t−nb

Y2,i+1XiY2,j+1XjX
4
k +

t−1∑

i6=j, t−nb

Y2,i+1X
3
i Y2,j+1X

3
j

+
t−1∑

i6=j 6=k, t−nb

Y2,i+1XiY2,j+1X
3
jX

2
k +

t−1∑

i6=j 6=k 6=l, t−nb

Y2,i+1XiY2,j+1XjX
2
kX

2
l

+ 2

t−1∑

τ=t−nb

Y 2
2,τ+1X

4
τ

t−nb−1∑

τ=t−n

X2
τ + 2

t−1∑

i6=j, t−nb

Y 2
2,i+1X

2
i X

2
j

t−nb−1∑

τ=t−n

X2
τ

+ 2
t−1∑

i6=j, t−nb

Y2,i+1X
3
i Y2,j+1Xj

t−nb−1
∑

τ=t−n

X2
τ

+2
t−1∑

i6=j 6=k, t−nb

Y2,i+1XiY2,j+1XjX
2
k

t−nb−1
∑

τ=t−n

X2
τ



 .

The truncated expectation of the seventeen terms are as follows:

Ē
[ t−1∑

τ=t−nb

Y 2
2,τ+1X

2
τ

t−nb−1∑

τ=t−n

X4
τ , A

]

= nb(n− nb)Ē[Y 2
2,t−nb

X2
t−nb−1X

4
t−1, A],

Ē
[ t−1∑

τ=t−nb

Y 2
2,τ+1X

2
τ

t−nb−1
∑

i6=j, t−n

X2
i X

2
j , A

]

= nb((n− nb)
2 − (n− nb))

· Ē[Y 2
2,tX

2
t−1X

2
t−nb−1X

2
t−nb−2, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1XiY2,j+1Xj

t−nb−1
∑

τ=t−n

X4
τ , A

]

= nb(nb − 1)(n− nb)

· Ē[Y2,tXt−1Y2,t−1Xt−2X
4
t−nb−1, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1XiY2,j+1Xj

t−nb−1
∑

i6=j, t−n

X2
i X

2
j , A

]

= nb(nb − 1)((n − nb)
2 − (n− nb))

· Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1X

2
t−nb−2, A],

Ē
[ t−1∑

τ=t−nb

Y 2
2,τ+1X

6
τ , A

]

= nbĒ[Y 2
2,tX

6
t−1, A],

Ē
[ t−1∑

i6=j, t−nb

Y 2
2,i+1X

2
i X

2
j , A

]

= nb(nb − 1)Ē[Y 2
2,tX

2
t−1X

4
t−2, A],

Ē
[ t−1∑

i6=j, t−nb

Y 2
2,i+1X

4
i X

2
j , A

]

= 2nb(nb − 1)Ē[Y 2
2,tX

4
t−1X

2
t−2, A],
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Ē
[ t−1∑

i6=j 6=k, t−nb

Y 2
2,i+1X

2
i X

2
jX

2
k , A

]

= (n3
b − 3n2

b + 2nb)Ē[Y 2
2,tX

2
t−1X

2
t−2X

2
t−3, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1X
5
i Y2,j+1Xj , A

]

= 2nb(nb − 1)Ē[Y2,tX
5
t−1Y2,t−1Xt−2, A],

Ē
[ t−1∑

i6=j 6=k, t−nb

Y2,i+1XiY2,j+1XjX
4
k , A

]

= (n3
b − 3n2

b + 2nb)

· Ē[Y2,tXt−1Y2,t−1Xt−2X
4
t−3, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1X
3
i Y2,j+1X

3
j , A

]

= 2nb(nb − 1)Ē[Y2,tX
3
t−1Y2,t−1X

3
t−2, A],

Ē
[ t−1∑

i6=j 6=k, t−nb

Y2,i+1XiY2,j+1X
3
jX

2
k , A

]

= 4(n3
b − 3n2

b + 2nb)

· Ē[Y2,tXt−1Y2,t−1X
3
t−2X

2
t−3, A],

Ē
[ t−1∑

i6=j 6=k 6=l, t−nb

Y2,i+1XiY2,j+1XjX
2
kX

2
l , A

]

= (n4
b − 6 − n3

b + 11n2
b − 6nb)

· Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3X

2
t−4, A],

Ē
[ t−1∑

τ=t−nb

Y 2
2,τ+1X

4
τ

t−nb−1
∑

τ=t−n

X2
τ , A

]

= nb(n− nb)Ē[Y 2
2,tX

4
t−1X

2
t−nb−1, A],

Ē
[ t−1∑

i6=j, t−nb

Y 2
2,i+1X

2
i X

2
j

t−nb−1∑

τ=t−n

X2
τ , A

]

= nb(nb − 1)(n− nb)

· Ē[Y 2
2,tX

2
t−1X

2
t−2X

2
t−nb−1, A],

Ē
[ t−1∑

i6=j, t−nb

Y2,i+1X
3
i Y2,j+1Xj

t−nb−1
∑

τ=t−n

X2
τ , A

]

= 2nb(nb − 1)(n− nb)

· Ē[Y2,tX
3
t−1Y2,t−1Xt−2X

2
t−nb−1, A],

Ē
[ t−1∑

i6=j 6=k, t−nb

Y2,i+1XiY2,j+1XjX
2
k

t−nb−1
∑

τ=t−n

X2
τ , A

]

= (n− nb)(n
3
b − 3n2

b + 2nb)

· Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3X

2
t−nb−1, A].

The truncated expectation of S2
3,nS

2
2,n is as follows:

• Ē[S2
3,nS

2
2,n, A] = nb

(
1

n3
− nb

n4

)

Ē[Y 2
2,t−nb

X2
t−nb−1X

4
t−1, A]
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+ nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y 2
2,tX

2
t−1X

2
t−nb−1X

2
t−nb−2, A]

+ nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1Y2,t−1Xt−2X
4
t−nb−1, A]

+ nb(nb − 1)

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1X

2
t−nb−2, A]

+
nb

n4
Ē[Y 2

2,tX
6
t−1, A] +

nb

n4
(nb − 1)Ē[Y 2

2,tX
2
t−1X

4
t−2, A]

+ 2
nb

n4
(nb − 1)Ē[Y 2

2,tX
4
t−1X

2
t−2, A] +

nb

n4
(n2

b − 3nb + 2)Ē[Y 2
2,tX

2
t−1X

2
t−2X

2
t−3, A]

+ 2
nb

n4
(nb − 1)Ē[Y2,tX

5
t−1Y2,t−1Xt−2, A]

+
nb

n4
(n2

b − 3nb + 2)Ē[Y2,tXt−1Y2,t−1Xt−2X
4
t−3, A]

+ 2
nb

n4
(nb − 1)Ē[Y2,tX

3
t−1Y2,t−1X

3
t−2, A]

+ 4
nb

n4
(n2

b − 3nb + 2)Ē[Y2,tXt−1Y2,t−1X
3
t−2X

2
t−3, A]

+
nb

n4
(n3

b − 6n2
b + 11nb − 6)Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−3X

2
t−4, A]

+ 2nb

(
1

n3
− nb

n4

)

Ē[Y 2
2,tX

4
t−1X

2
t−nb−1, A]

+ 2nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y 2
2,tX

2
t−1X

2
t−2X

2
t−nb−1, A]

+ 4nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y2,tX
3
t−1Y2,t−1Xt−2X

2
t−nb−1, A]

+ 2nb(n
2
b − 3nb + 2)

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3X

2
t−nb−1, A].

The truncated expectation of S2
4,nS

2
2,n is as follows:

• Ē[S2
4,nS

2
2,n, A] =

1

n3
Ē[Y 2

2,tX
6
t−1, A] +

(
1

n2
− 1

n3

)

Ē[Y 2
2,tX

2
t−1X

4
t−2, A]

+ 2

(
1

n2
− 1

n3

)

Ē[Y 2
2,tX

4
t−1X

2
t−2, A] +

(
1

n
− 3

n2
+

2

n3

)

Ē[Y 2
2,tX

2
t−1X

2
t−2X

2
t−3, A]

+ 2

(
1

n2
− 1

n3

)

Ē[Y2,tX
5
t−1Y2,t−1Xt−2, A]

+

(
1

n
− 3

n2
+

2

n3

)

Ē[Y2,tXt−1Y2,t−1Xt−2X
4
t−3, A]

+ 2

(
1

n2
− 1

n3

)

Ē[Y2,tX
3
t−1Y2,t−1X

3
t−2, A]
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+ 4

(
1

n
− 3

n2
+

2

n3

)

Ē[Y2,tXt−1Y2,t−1X
3
t−2X

2
t−3, A]

+

(

1 − 6

n
+

11

n2
− 6

n3

)

Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3X

2
t−4, A].

Next we expand Ē[S1,nS
2
2,nS3,n, A]:

S1,nS
2
2,nS3,n =

1

n4

t−nb−1∑

τ=t−n

Y1,τ+1Xτ

[
t−1∑

τ=t−n

X2
τ

]2 t−1∑

τ=t−nb

Y2,τ+1Xτ

=
1

n4

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

Y2,τ+1Xτ

[
t−nb−1
∑

τ=t−n

X2
τ +

t−1∑

τ=t−nb

X2
τ

]2

=
1

n4

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

Y2,τ+1Xτ

[
( t−nb−1
∑

τ=t−n

X2
τ

)2
+
( t−1∑

τ=t−nb

X2
τ

)2

+2

t−nb−1∑

τ=t−n

X2
τ

t−1∑

τ=t−nb

X2
τ

]

=
1

n4

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

Y2,τ+1Xτ

[ t−nb−1
∑

τ=t−n

X4
τ +

t−nb−1
∑

i6=j,t−n

X2
i X

2
j +

t−1∑

τ=t−nb

X4
τ

+

t−1∑

i6=j,t−nb

X2
i X

2
j + 2

t−nb−1
∑

τ=t−n

X2
τ

t−1∑

τ=t−nb

X2
τ

]

=
1

n4

[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

τ=t−n

Y1,τ+1X
5
τ +

t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j,t−n

Y1,i+1XiX
4
j

+

t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j,t−n

Y1,i+1X
3
i X

2
j +

t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j,t−n

Y1,i+1XiX
2
jX

2
k

+

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

Y2,τ+1X
5
τ +

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j,t−nb

Y2,i+1XiX
4
j

+

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j,t−nb

Y2,i+1X
3
i X

2
j +

t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i 6=j 6=k,t−nb

Y2,i+1XiX
2
jX

2
k

+ 2

t−nb−1
∑

τ=t−n

Y1,τ+1X
3
τ

t−1∑

τ=t−nb

Y2,τ+1X
3
τ + 2

t−nb−1
∑

τ=t−n

Y1,τ+1X
3
τ

t−1∑

i6=j,t−nb

Y2,i+1XiX
2
j

+ 2

t−nb−1
∑

i6=j,t−n

Y1,i+1XiX
2
j

t−1∑

τ=t−nb

Y2,τ+1X
3
τ + 2

t−nb−1
∑

i6=j,t−n

Y1,i+1XiX
2
j

t−1∑

i6=j,t−nb

Y2,i+1XiX
2
j

]



453

The truncated expectation of the twelve terms are as follows:

E
[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

τ=t−n

Y1,τ+1X
5
τ

]

= nb(n− nb)Ē[Y2,tXt−1Y1,t−nb
X5

t−nb−1, A],

E
[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j,t−n

Y1,i+1XiX
4
j

]

= nb((n− nb)
2 − (n− nb))

· Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

4
t−nb−2, A],

E
[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j,t−n

Y1,i+1X
3
i X

2
j

]

= 2nb((n− nb)
2 − (n− nb))

· Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A],

E
[ t−1∑

τ=t−nb

Y2,τ+1Xτ

t−nb−1
∑

i6=j,t−n

Y1,i+1XiX
2
jX

2
k

]

= nb((n− nb)
3 − 3(n− nb)

2 + 2(n− nb))

· Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A],

E
[ t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

τ=t−nb

Y2,τ+1X
5
τ

]

= nb(n− nb)Ē[Y1,t−nb
Xt−nb−1Y2,tX

5
t−1, A],

E
[ t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j,t−nb

Y2,i+1XiX
4
j

]

= nb(nb − 1)(n− nb)

· Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1X

4
t−2, A],

E
[ t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j,t−nb

Y2,i+1X
3
i X

2
j

]

= 2nb(nb − 1)(n− nb)

· Ē[Y1,t−nb
Xt−nb−1Y2,tX

3
t−1X

2
t−2, A],

E
[ t−nb−1
∑

τ=t−n

Y1,τ+1Xτ

t−1∑

i6=j 6=k,t−nb

Y2,i+1XiX
2
jX

2
k

]

= nb(n
2
b − 3nb + 2)(n− nb)

· Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1X

2
t−2X

2
t−3, A],

E
[ t−nb−1∑

τ=t−n

Y1,τ+1X
3
τ

t−1∑

τ=t−nb

Y2,τ+1X
3
τ

]

= nb(n− nb)Ē[Y1,t−nb
X3

t−nb−1Y2,tX
3
t−1, A],

E
[ t−nb−1
∑

τ=t−n

Y1,τ+1X
3
τ

t−1∑

i6=j,t−nb

Y2,i+1XiX
2
j

]

= nb(nb − 1)(n− nb)

· Ē[Y1,t−nb
X3

t−nb−1Y2,tXt−1X
2
t−2, A],
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E
[ t−nb−1∑

i6=j,t−n

Y1,i+1XiX
2
j

t−1∑

τ=t−nb

Y2,τ+1X
3
τ

]

= nb((n− nb)
2 − (n− nb))

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2Y2,tX

3
t−1, A],

E
[ t−nb−1
∑

i6=j,t−n

Y1,i+1XiX
2
j

t−1∑

i6=j,t−nb

Y2,i+1XiX
2
j

]

= nb(nb − 1)((n− nb)
2 − (n− nb))

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2Y2,tXt−1X

2
t−2, A].

The truncated expectation of S1,nS
2
2,nS3,n is as follows:

• Ē[S1,nS
2
2,nS3,n, A] = nb

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1Y1,t−nb
X5

t−nb−1, A]

+ nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

+ 2nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

+ nb

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ nb

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1Y2,tX

5
t−1, A]

+ nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1X

4
t−2, A]

+ 2nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1Y2,tX

3
t−1X

2
t−2, A]

+ nb(n
2
b − 3nb + 2)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1X

2
t−2X

2
t−3, A]

+ 2nb

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
X3

t−nb−1Y2,tX
3
t−1, A]

+ 2nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
X3

t−nb−1Y2,tXt−1X
2
t−2, A]

+ 2nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2Y2,tX

3
t−1, A]

+ 2nb(nb − 1)

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2Y2,tXt−1X

2
t−2, A].
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The expanded expressions for powers and products of the statistics S1,n, S2,n, and S3,n

given above are used to expand truncated central moments of first and second order. We

expand Ē[(S1,n − ω1,n), A]:

Ē[(S1,n−ω1,n), A] = Ē[S1,n, A] − Ē[ω1,n, A]

=
(

1 − nb

n

)

Ē[Y1,t−nb
Xt−nb−1, A] − ω1,nP (X ∈ A).

The truncated expectation of (S1,n − ω1,n) is as follows:

• Ē[(S1,n − ω1,n), A] =
[

Ē[Y1,t−nb
Xt−nb−1, A] −E[Y1,t−nb

Xt−nb−1]P (X1 ∈ A)
]

+
nb

n

[

E[Y1,t−nb
Xt−nb−1]P (X1 ∈ A) − Ē[Y1,t−nb

Xt−nb−1, A]
]

.

Next, we expand Ē[(S2,n − ω2), A]:

• Ē[(S2,n − ω2), A] = Ē[X2
t−1, A] − ω2P (X1 ∈ A).

Next, we expand Ē[(S3,n − ω3,n), A]:

Ē[(S3,n − ω3,n), A] =Ē [S3,n, A] − Ē[ω3,n, A] =
nb

n
Ē[Y2,tXt−1, A] − ω3,nP (X1 ∈ A).

The truncated expectation of (S3,n − ω3,n) is as follows:

• Ē[(S3,n − ω3,n), A] =
nb

n

[

Ē[Y2,tXt−1, A] −E[Y2,tXt−1]P (X1 ∈ A)
]

.

The truncated expectation of (S4,n − ω4) is as follows:

• Ē[(S4,n − ω4), A] = Ē[Y2,tXt−1, A] −E[Y2,tXt−1]P (X1 ∈ A).

Next, we expand Ē[(S1,n − ω1,n)(S2,n − ω2), A]:

Ē[(S1,n−ω1,n)(S2,n − ω2), A] = Ē[S1,nS2,n, A] − ω1,nĒ[S2,n, A] − ω2Ē[S1,n, A]

+ ω1,nω2P (X1 ∈ A)
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=

(
1

n
− nb

n2

)

Ē[Y1,t−nb
X3

t−nb−1, A]

+

(

1 − 1

n
(2nb + 1) +

nb

n2
(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

+ nb

(
1

n
− nb

n2

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−1, A] − ω1,nĒ[X2

t−1, A]

− ω2

(

1 − nb

n

)

Ē[Y1,t−nb
Xt−nb−1, A] + ω1,nω2P (X ∈ A).

The truncated expectation of (S1,n − ω1,n)(S2,n − ω2) is as follows:

• Ē[(S1,n−ω1,n)(S2,n − ω2), A] =
[

Ē[Y1,t−nb
Xt−nb

X2
t−nb−2, A]

−E[Y1,t−nb
Xt−nb−1]Ē[X2

t−1, A] − ω2Ē[Y1,t−nb
Xt−nb−1, A]

+ ω2E[Y1,t−nb
Xt−nb−1]P (X ∈ A)

]

+
1

n

[

Ē[Y1,t−nb
X3

t−nb−1, A] − (2nb + 1)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

+ nbĒ[Y1,t−nb
Xt−nb−1X

2
t−1, A]

+ nbE[Y1,t−nb
Xt−nb−1]Ē[X2

t−1, A] + ω2nbĒ[Y1,t−nb
Xt−nb−1, A]

− nbω2E[Y1,t−nb
Xt−nb−1]P (X ∈ A)

]

+
nb

n2

[

(nb + 1)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A] − nbĒ[Y1,t−nb

Xt−nb−1X
2
t−1, A]

− Ē[Y1,t−nb
X3

t−nb−1, A]
]

.

Next, we expand Ē[(S2,n − ω2)(S3,n − ω3,n), A]:

Ē[(S2,n−ω2)(S3,n − ω3,n), A] = Ē[S2,nS3,n, A] − ω2Ē[S3,n, A] − ω3,nĒ[S2,n, A]

+ ω2ω3,nP (X ∈ A)

=
nb

n2
Ē[Y2,tX

3
t−1, A] +

nb

n2
(nb − 1)Ē[Y2,tXt−1X

2
t−2, A]

+
nb

n2
(n− nb)Ē[Y2,tXt−1X

2
t−nb−1, A] − ω2

nb

n
Ē[Y2,tXt−1, A]

− ω3,nĒ[X2
t−1, A] + ω2ω3,nP (X ∈ A).

The truncated expectation of (S2,n − ω2)(S3,n − ω3,n) is as follows:

• Ē[(S2,n − ω2)(S3,n − ω3,n), A] =
nb

n

[

Ē[Y2,tXt−1X
2
t−2, A] − ω2Ē[Y2,tXt−1, A]
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−E[Y2,tXt−1]Ē[X2
t−1, A] + ω2E[Y2,tXt−1]P (X ∈ A)

]

+
nb

n2

[

Ē[Y2,tX
3
t−1, A] + (nb − 1)Ē[Y2,tXt−1X

2
t−2, A] − nbĒ[Y2,tXt−1X

2
t−nb−1, A]

]

.

The truncated expectation of (S2,n − ω2)(S4,n − ω4) is as follows:

• Ē[(S2,n − ω2)(S4,n − ω4), A] =
[

Ē[Y2,tXt−1X
2
t−2, A] − ω2Ē[Y2,tXt−1, A]

−E[Y2,tXt−1]Ē[X2
t−1, A] + ω2E[Y2,tXt−1]P (X ∈ A)

− Ē[Y2,tXt−1X
2
t−nb−1, A] + Ē[Y2,tXt−1X

2
t−2, A]

]

+
1

n

[

Ē[Y2,tX
3
t−1, A] − Ē[Y2,tXt−1X

2
t−2, A]

]

.

Next, we expand Ē[(S1,n − ω1,n)(S3,n − ω3,n), A]:

Ē[(S1,n−ω1,n)(S3,n − ω3,n), A] = Ē[S1,nS3,n, A] − ω1,nĒ[S3,n, A] − ω3,nĒ[S1,n, A]

+ ω1,nω3,nP (X ∈ A)

=nb

(
1

n
− nb

n2

)

Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1, A] − nb

n
ω1,nĒ[Y2,tXt−1, A]

−
(

1 − nb

n

)

ω3,nĒ[Y1,t−nb
Xt−nb−1, A] + ω1,nω3,nP (X ∈ A).

The truncated expectation of (S1,n − ω1,n)(S3,n − ω3,n) is as follows:

• Ē[(S1,n−ω1,n)(S3,n − ω3,n), A] =
nb

n

[

Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1, A]

−E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1, A] −E[Y2,tXt−1]Ē[Y1,t−nb

Xt−nb−1, A]

+E[Y1,t−nb
Xt−nb−1]E[Y2,tXt−1]P (X ∈ A)

]

+
n2

b

n2

[

− Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1, A] +E[Y1,t−nb

Xt−nb−1]Ē[Y2,tXt−1, A]

+E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1, A]

−E[Y1,t−nb
Xt−nb−1]E[Y2,tXt−1]P (X ∈ A)

]

.

Next, we expand Ē[(S1,n − ω1,n)2, A]:

Ē[(S1,n−ω1,n)2, A] = Ē[S2
1,n, A] − 2ω1,nĒ[S1,n, A] + ω2

1,nP (X ∈ A)
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=

(
1

n
− nb

n2

)

Ē[Y 2
1,t−nb

X2
t−nb−1, A]

+

(

1 − 1

n
(2nb + 1) +

nb

n2
(nb + 1)

)

Ē [Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2, A]

− 2ω1,n

(

1 − nb

n

)

Ē[Y1,t−nb
Xt−nb−1, A] + ω2

1,nP (X ∈ A).

The truncated expectation of (S1,n − ω1,n)2 is as follows:

• Ē[(S1,n − ω1,n)2, A] =
[

Ē [Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2, A]

− 2E[Y1,t−nb
Xt−nb

]Ē[Y1,t−nb
Xt−nb−1, A] +E2[Y1,t−nb

Xt−nb
]P (X ∈ A)

]

+
1

n

[

Ē[Y 2
1,t−nb

X2
t−nb−1, A] − (2nb + 1)Ē [Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2, A]

+ 4nbE[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1, A]

− 2nbE
2[Y1,t−nb

Xt−nb−1]P (X ∈ A)
]

+
nb

n2

[

(nb + 1)Ē [Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2, A] − Ē[Y 2

1,t−nb
X2

t−nb−1, A]

− 2nbE[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1, A]

+ nbE
2[Y1,t−nb

Xt−nb−1]P (X ∈ A)
]

.

Next, we expand Ē[(S2,n − ω2)
2, A]:

Ē[(S2,n−ω2)
2, A] = Ē[S2

2,n, A] − 2ω2Ē[S2,n, A] + ω2
2P (X ∈ A)

=
1

n
Ē[X4

t−1, A] +

(

1 − 1

n

)

Ē[X2
t−1X

2
t−2, A] − 2ω2Ē[X2

t−1, A] + ω2
2P (X ∈ A).

The truncated expectation of (S2,n − ω2)
2 is as follows:

• Ē[(S2,n − ω2)
2, A] =

[

Ē[X2
t−1X

2
t−2, A] − 2ω2Ē[X2

t−1, A] + ω2
2P (X ∈ A)

]

+
1

n

[

Ē[X4
t−1, A] − Ē[X2

t−1X
2
t−2, A]

]

.

Next, we expand Ē[(S3,n − ω3,n)2, A]:

Ē[(S3,n − ω3,n)2, A] =Ē[S2
3,n, A] − 2ω3,nĒ[S3,n, A] + ω2

3,nP (X ∈ A)

=
nb

n2
Ē
[
Y 2

2,tX
2
t−1, A

]
+

(
n2

b

n2
− nb

n2

)

Ē [Y2,tXt−1Y2,t−1Xt−2, A]
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− 2ω3,n
nb

n
Ē[Y2,tXt−1, A] + ω2

3,nP (X ∈ A).

The truncated expectation of (S3,n − ω3,n)2 is as follows:

• Ē[(S3,n − ω3,n)2, A] =

nb

n2

[

Ē
[
Y 2

2,tX
2
t−1, A

]
+ (nb − 1)Ē [Y2,tXt−1Y2,t−1Xt−2, A]

− 2nbE[Y2,tXt−1]Ē[Y2,tXt−1, A] + nbE
2[Y2,tXt−1]P (X ∈ A)

]

.

The truncated expectation of (S4,n − ω4)
2 is as follows:

• Ē[(S4,n − ω4)
2, A] =

[

Ē [Y2,tXt−1Y2,t−1Xt−2, A] − 2E[Y2,tXt−1]Ē[Y2,tXt−1, A]

+E2[Y2,tXt−1]P (X ∈ A)
]

+
1

n

[

Ē[Y 2
2,tX

2
t−1, A] − Ē[Y2,tXt−1Y2,t−1Xt−2, A]

]

.

Next, we expand Ē[(S1,n − ω1,n)(S2,n − ω2)
2, A]:

Ē[(S1,n−ω1,n)(S2,n − ω2)
2, A] = Ē[S1,nS

2
2,n, A] − ω1,nĒ[S2

2,n, A] − 2ω2Ē[S1,nS2,n, A]

+ 2ω1,nω2Ē[S2,n, A] + ω2
2Ē[S1,n, A] − ω1,nω

2
2P (X ∈ A)

=

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
X5

t−nb−1, A]

+

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

+ 2

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

+

(

1 − 3

n
(nb + 1) +

1

n2
(2 + 6nb + 3n2

b) −
nb

n3
(2 + 3nb + n2

b)

)

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ nb

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
Xt−nb−1X

4
t−1, A]

+ nb(nb − 1)

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−1X

2
t−2, A]

+ 2nb

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
X3

t−nb−1X
2
t−1, A]
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+ 2nb

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A]

− ω1,n

n
Ē[X4

t−1, A] − ω1,n

(

1 − 1

n

)

Ē[X2
t−1X

2
t−2, A]

− 2ω2

(
1

n
− nb

n2

)

Ē[Y1,t−nb
X3

t−nb−1, A]

− 2ω2

(

1 − 1

n
(2nb + 1) +

nb

n2
(nb + 1)

)

Ē[Yt−nb
Xt−nb−1X

2
t−nb−2, A]

− 2ω2nb

(
1

n
− nb

n2

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−1, A] + 2ω1,nω2Ē[X2

t−1, A]

+ ω2
2

(

1 − nb

n

)

Ē[Y1,t−nb
Xt−nb−1, A] − ω1,nω

2
2P (X ∈ A).

The truncated expectation of (S1,n − ω1,n)(S2,n − ω2)
2 is as follows:

• Ē[(S1,n−ω1,n)(S2,n − ω2)
2, A] =

[

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

−E[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2, A] − 2ω2Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2, A]

+ 2ω2E[Y1,t−nb
Xt−nb−1]Ē[X2

t−1, A] + ω2
2Ē[Y1,t−nb

Xt−nb−1, A]

− ω2
2E[Y1,t−nb

Xt−nb−1]P (X ∈ A)
]

+
1

n

[

Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A] + 2Ē[Y1,t−nb

X3
t−nb−1X

2
t−nb−2, A]

− 3(nb + 1)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ 2nbĒ[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A] −E[Y1,t−nb

Xt−nb−1]Ē[X4
t−1, A]

+ (nb + 1)E[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2, A] − 2ω2Ē[Y1,t−nb

X3
t−nb−1, A]

+ 2(2nb + 1)ω2Ē[Yt−nb
Xt−nb−1X

2
t−nb−2, A]

− 2ω2nbĒ[Y1,t−nb
Xt−nb−1X

2
t−1, A] − 2nbω2E[Y1,t−nb

Xt−nb−1]Ē[X2
t−1, A]

− nbω
2
2Ē[Y1,t−nb

Xt−nb−1, A] + nbω
2
2E[Y1,t−nb

Xt−nb−1]P (X ∈ A)
]

+
1

n2

[

Ē[Y1,t−nb
X5

t−nb−1, A] − (2nb + 1)Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

− 2(2nb + 1)Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

+ (2 + 6nb + 3n2
b)Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−nb−3, A]

+ nbĒ[Y1,t−nb
Xt−nb−1X

4
t−1, A] + nb(nb − 1)Ē[Yt−nb

Xt−nb−1X
2
t−1X

2
t−2, A]

+ 2nbĒ[Y1,t−nb
X3

t−nb−1X
2
t−1, A]

− 2nb(2nb + 1)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A]
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+ nbE[Y1,t−nb
Xt−nb−1]Ē[X4

t−1, A] − nbE[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2, A]

+ 2nbω2Ē[Y1,t−nb
X3

t−nb−1, A] − 2nb(nb + 1)ω2Ē[Yt−nb
Xt−nb−1X

2
t−nb−2, A]

+ 2n2
bω2Ē[Y1,t−nb

Xt−nb−1X
2
t−1, A]

]

+
1

n3

[

− nbĒ[Y1,t−nb
X5

t−nb−1, A] + nb(nb + 1)Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

+ 2nb(nb + 1)Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

− nb(n
2
b + 3nb + 2)Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−nb−3, A]

− n2
bĒ[Y1,t−nb

Xt−nb−1X
4
t−1, A] + n2

b(nb − 1)Ē[Yt−nb
Xt−nb−1X

2
t−1X

2
t−2, A]

− 2n2
bĒ[Y1,t−nb

X3
t−nb−1X

2
t−1, A]

+ 2n2
b(nb + 1)Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−1, A]

]

.

Next, we expand Ē[(S3,n − ω3,n)(S2,n − ω2)
2, A]:

Ē[(S3,n − ω3,n)(S2,n − ω2)
2, A] = Ē[S3,nS

2
2,n, A] − ω3,nĒ[S2

2,n, A] − 2ω2Ē[S2,nS3,n, A]

+ 2ω2ω3,nĒ[S2,n, A] + ω2
2Ē[S3,n, A] − ω2

2ω3,nP (X ∈ A)

=
nb

n3
Ē[Y2,tX

5
t−1, A] +

nb

n3
(nb − 1)Ē[Y2,tXt−1X

4
t−2, A]

+ 2
nb

n3
(nb − 1)Ē[Y2,tX

3
t−1X

2
t−2, A] +

nb

n3
(n2

b − 3nb + 2)Ē[Y2,tXt−1X
2
t−2X

2
t−3, A]

+ nb

(
1

n2
− nb

n3

)

Ē[Y2,tXt−1X
4
t−nb−1, A]

+ nb

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2, A]

+ 2nb

(
1

n2
− nb

n3

)

Ē[Y2,tX
3
t−1X

2
t−nb−1, A]

+ 2nb(nb − 1)

(
1

n2
− nb

n3

)

Ē[Y2,tXt−1X
2
t−2X

2
t−nb−1, A]

− ω3,n
1

n
Ē[X4

t−1, A] −
(

1 − 1

n

)

ω3,nĒ[X2
t−1X

2
t−2, A]

− 2ω2
nb

n2
Ē[Y2,tX

3
t−1, A] − 2

nb

n2
(nb − 1)ω2Ē[Y2,tXt−1X

2
t−2, A]

− 2
nb

n2
(n− nb)ω2Ē[Y2,tXt−1X

2
t−nb−1, A] + 2ω2ω3,nĒ[X2

t−1, A]

+
nb

n
ω2

2Ē[Y2,tXt−1, A] − ω2
2ω3,nP (X ∈ A).
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The truncated expectation of (S3,n − ω3,n)(S2,n − ω2)
2 is as follows:

• Ē[(S3,n − ω3,n)(S2,n − ω2)
2, A] =

nb

n

[

Ē[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2, A]

−E[Y2,tXt−1]Ē[X2
t−1X

2
t−2, A] − 2ω2Ē[Y2,tXt−1X

2
t−nb−1, A]

+ 2ω2E[Y2,tXt−1]Ē[X2
t−1, A] + ω2

2Ē[Y2,tXt−1, A] − ω2
2E[Y2,tXt−1]P (X ∈ A)

]

+
1

n2

[

nbĒ[Y2,tXt−1X
4
t−nb−1, A] − nb(2nb + 1)Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2, A]

+ 2nbĒ[Y2,tX
3
t−1X

2
t−nb−1, A] + 2nb(nb − 1)Ē[Y2,tXt−1X

2
t−2X

2
t−nb−1, A]

− nbE[Y2,tXt−1]Ē[X4
t−1, A] + nbE[Y2,tXt−1]Ē[X2

t−1X
2
t−2, A]

− 2nbω2Ē[Y2,tX
3
t−1, A] − 2nb(nb − 1)ω2Ē[Y2,tXt−1X

2
t−2, A]

+ 2n2
bω2Ē[Y2,tXt−1X

2
t−nb−1, A]

]

+
1

n3

[

nbĒ[Y2,tX
5
t−1, A] + nb(nb − 1)Ē[Y2,tXt−1X

4
t−2, A]

+ 2nb(nb − 1)Ē[Y2,tX
3
t−1X

2
t−2, A] + nb(n

2
b − 3nb + 2)Ē[Y2,tXt−1X

2
t−2X

2
t−3, A]

− n2
bĒ[Y2,tXt−1X

4
t−nb−1, A] + n2

b(nb + 1)Ē[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2, A]

− 2n2
b Ē[Y2,tX

3
t−1X

2
t−nb−1, A] − 2n2

b(nb − 1)Ē[Y2,tXt−1X
2
t−2X

2
t−nb−1, A]

]

.

The truncated expectation of (S4,n − ω4)(S2,n − ω2)
2 is as follows:

• Ē[(S4,n − ω4)(S2,n − ω2)
2, A] =

[

−E[Y2,tXt−1]Ē[X2
t−1X

2
t−2, A]

+ 2ω2E[Y2,tXt−1]Ē[X2
t−1, A] + ω2

2Ē[Y2,tXt−1, A] − ω2
2E[Y2,tXt−1]P (X ∈ A)

− 2ω2Ē[Y2,tXt−1X
2
t−2, A] + Ē[Y2,tXt−1X

2
t−2X

2
t−3, A]

]

+
1

n

[

Ē[Y2,tXt−1X
4
t−nb−1, A] −E[Y2,tXt−1]Ē[X4

t−1, A]

+E[Y2,tXt−1]Ē[X2
t−1X

2
t−2, A] − 2ω2Ē[Y2,tX

3
t−1, A]

+ 2ω2Ē[Y2,tXt−1X
2
t−2, A] + Ē[Y2,tXt−1X

4
t−2, A] + 2Ē[Y2,tX

3
t−1X

2
t−2, A]

− 3Ē[Y2,tXt−1X
2
t−2X

2
t−3, A]

]

+
1

n2

[

Ē[Y2,tX
5
t−1, A] − Ē[Y2,tXt−1X

4
t−2, A] − 2Ē[Y2,tX

3
t−1X

2
t−2, A]

+ 2Ē[Y2,tXt−1X
2
t−2X

2
t−3, A]

]

.
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Next, we expand Ē[(S1,n − ω1,n)2(S2,n − ω2), A]:

Ē[(S1,n − ω1,n)2(S2,n − ω2), A] = Ē[S2
1,nS2,n, A] − 2ω1,nĒ[S1,nS2,n, A] − ω2Ē[S2

1,n, A]

+ ω2
1,nĒ[S2,n, A] + 2ω1,nω2Ē[S1,n, A] − ω2

1,nω2P (X ∈ A)

=

(
1

n2
− nb

n3

)

Ē[Y 2
1,t−nb

X4
t−n+b−1, A]

+

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2, A]

+ nb

(
1

n2
− nb

n3

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−1, A]

+ 2

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1Xt−nb−2, A]

+

(

1 − 3

n
(nb + 1) +

1

n2
(2 + 6nb + 3n2

b) −
nb

n3
(2 + 3nb + n2

b)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3, A]

+ nb

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−1, A]

− 2

(
1

n
− nb

n2

)

ω1,nĒ[Y1,t−nb
X3

t−nb−1, A]

− 2

(

1 − 1

n
(2nb + 1) +

nb

n2
(nb + 1)

)

ω1,nĒ[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

− 2nb

(
1

n
− nb

n2

)

ω1,nĒ[Y1,t−nb
Xt−nb−1X

2
t−1, A]

− ω2

(
1

n
− nb

n2

)

Ē[Y 2
1,t−nb

X2
t−nb−1, A]

−
(

1 − 1

n
(2nb + 1) +

nb

n2
(nb + 1)

)

ω2Ē [Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2, A]

+ ω2
1,nĒ[X2

t−1, A] + 2ω1,nω2

(

1 − nb

n

)

Ē[Y1,t−nb
Xt−nb−1, A] − ω2

1,nω2P (X ∈ A).

The truncated expectation of (S1,n − ω1,n)2(S2,n − ω2) is as follows:

• Ē[(S1,n − ω1,n)2(S2,n − ω2), A] =
[

Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3, A]

− 2E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2, A]

− ω2Ē [Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2, A] +E2[Y1,t−nb

Xt−nb−1]Ē[X2
t−1, A]

+ 2ω2E[Y1,t−nb
Xt−nb−1]Ē [Y1,t−nb

Xt−nb−1, A] − ω2E
2[Y1,t−nb

Xt−nb−1]P (X ∈ A)
]
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+
1

n

[

Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2, A] + 2Ē[Y1,t−nb

X3
t−nb−1Y1,t−nb−1Xt−nb−2, A]

− 3(nb + 1)Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3, A]

+ nbĒ[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−1, A]

− 2E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

X3
t−nb−1, A]

+ 2(3nb + 1)E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2, A]

− 2nbE[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−1, A] − ω2Ē[Y 2

1,t−nb
X2

t−nb−1, A]

+ (2nb + 1)ω2Ē [Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2, A]

− 2nbE
2[Y1,t−nb

Xt−nb−1]Ē[X2
t−1, A]

− 4nbω2E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1, A]

+ 2nbω2E
2[Y1,t−nb

Xt−nb−1]P (X ∈ A)
]

+
1

n2

[

Ē[Y 2
1,t−nb

X4
t−n+b−1, A] − (2nb + 1)Ē[Y 2

1,t−nb
X2

t−nb−1X
2
t−nb−2, A]

+ nbĒ[Y 2
1,t−nb

X2
t−nb−1X

2
t−1, A] − 2(2nb + 1)Ē[Y1,t−nb

X3
t−nb−1Y1,t−nb−1Xt−nb−2, A]

+ (2 + 6nb + 3n2
b)Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
2
t−nb−3, A]

− nb(2nb + 1)Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−1, A]

+ 4nbE[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

X3
t−nb−1, A]

− 2nb(3nb + 2)E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2, A]

+ 4n2
bE[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−1, A] + nbω2Ē[Y 2

1,t−nb
X2

t−nb−1, A]

− nb(nb + 1)ω2Ē [Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2, A]

+ n2
bE

2[Y1,t−nb
Xt−nb−1]Ē[X2

t−1, A]

+ 2n2
bω2E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1, A]

− n2
bω2E

2[Y1,t−nb
Xt−nb−1]P (X ∈ A)

]

+
1

n3

[

− nbĒ[Y 2
1,t−nb

X4
t−n+b−1, A] + nb(nb + 1)Ē[Y 2

1,t−nb
X2

t−nb−1X
2
t−nb−2, A]

− n2
bĒ[Y 2

1,t−nb
X2

t−nb−1X
2
t−1, A]

+ 2nb(nb + 1)Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1Xt−nb−2, A]

− nb(2 + 3nb + n2
b)Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
2
t−nb−3, A]

+ n2
b(nb + 1)Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
2
t−1, A]
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− 2n2
bE[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
X3

t−nb−1, A]

+ 2n2
b(nb + 1)E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

− 2n3
bE[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−1, A]

]

.

Next, we expand Ē[(S3,n − ω3,n)2(S2,n − ω2), A]:

Ē[(S3,n − ω3,n)2(S2,n − ω2), A] = Ē[S2
3,nS2,n, A] − 2ω3,nĒ[S3,nS2,n, A] − ω2Ē[S2

3,n, A]

+ ω2
3,nĒ[S2,n, A] + 2ω3,nω2Ē[S3,n, A] − ω2

3,nω2P (X ∈ A)

=
nb

n3
Ē[Y 2

2,tX
4
t−1, A] +

nb

n3
(nb − 1)Ē[Y 2

2,tX
2
t−1X

2
t−2, A]

+ nb

(
1

n2
− nb

n3

)

Ē[Y 2
2,tX

2
t−1X

2
t−nb−1, A] + 2

nb

n3
(nb − 1)Ē[Y2,tX

3
t−1Y2,t−1Xt−2, A]

+
nb

n3
(n2

b − 3nb + 2)Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3, A]

+ nb(nb − 1)

(
1

n2
− nb

n3

)

Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1, A]

− 2ω3,n
nb

n2
Ē[Y2,tX

3
t−1, A] − 2

nb

n2
(nb − 1)ω3,nĒ[Y2,tXt−1X

2
t−2, A]

− 2
nb

n2
(n− nb)ω3,nĒ[Y2,tXt−1X

2
t−nb−1, A]

− ω2
nb

n2
Ē
[
Y 2

2,tX
2
t−1, A

]
− ω2

nb

n2
(nb − 1)Ē [Y2,tXt−1Y2,t−1Xt−2, A]

+ ω2
3,nĒ[X2

t−1, A] + 2ω2ω3,n
nb

n
Ē[Y2,tXt−1, A] − ω2

3,nω2P (X ∈ A).

The truncated expectation of (S3,n − ω3,n)2(S2,n − ω2) is as follows:

• Ē[(S3,n − ω3,n)2(S2,n − ω2), A] =
1

n2

[

nbĒ[Y 2
2,tX

2
t−1X

2
t−nb−1, A]

+ nb(nb − 1)Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1, A]

− 2n2
bE[Y2,tXt−1]Ē[Y2,tXt−1X

2
t−nb−1, A]

− nbω2Ē
[
Y 2

2,tX
2
t−1, A

]
− ω2nb(nb − 1)Ē [Y2,tXt−1Y2,t−1Xt−2, A]

+ n2
bE

2[Y2,tXt−1]Ē[X2
t−1, A] + 2n2

bω2E[Y2,tXt−1]Ē[Y2,tXt−1, A]

− n2
bω2E

2[Y2,tXt−1]P (X ∈ A)
]

+
1

n3

[

nbĒ[Y 2
2,tX

4
t−1, A] + nb(nb − 1)Ē[Y 2

2,tX
2
t−1X

2
t−2, A]

− n2
bĒ[Y 2

2,tX
2
t−1X

2
t−nb−1, A] + 2nb(nb − 1)Ē[Y2,tX

3
t−1Y2,t−1Xt−2, A]
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+ nb(n
2
b − 3nb + 2)Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−3, A]

− n2
b(nb − 1)Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−nb−1, A]

− 2n2
bE[Y2,tXt−1]Ē[Y2,tX

3
t−1, A] − 2n2

b(nb − 1)E[Y2,tXt−1]Ē[Y2,tXt−1X
2
t−2, A]

+ 2n3
bE[Y2,tXt−1]Ē[Y2,tXt−1X

2
t−nb−1, A]

]

.

The truncated expectation of (S4,n − ω4)
2(S2,n − ω2) is as follows:

• Ē[(S4,n − ω4)
2(S2,n − ω2), A] =

[

− ω2Ē [Y2,tXt−1Y2,t−1Xt−2, A]

+E2[Y2,tXt−1]Ē[X2
t−1, A] + 2ω2E[Y2,tXt−1]Ē[Y2,tXt−1, A]

− ω2E
2[Y2,tXt−1]P (X ∈ A) + Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−3, A]

− 2E[Y2,tXt−1]Ē[Y2,tXt−1X
2
t−2, A]

]

+
1

n

[

− ω2Ē[Y 2
2,tX

2
t−1, A] + ω2Ē[Y2,tXt−1Y2,t−1Xt−2, A]

+ Ē[Y 2
2,tX

2
t−1X

2
t−2, A] + 2Ē[Y2,tX

3
t−1Y2,t−1Xt−2, A]

− 3Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3, A] − 2E[Y2,tXt−1]Ē[Y2,tX

3
t−1, A]

+ 2E[Y2,tXt−1]Ē[Y2,tXt−1X
2
t−2, A] + 2E[Y2,tXt−1]Ē[Y2,tXt−1X

2
t−2, A]

]

+
1

n2

[

Ē[Y 2
2,tX

4
t−1, A] − Ē[Y 2

2,tX
2
t−1X

2
t−2, A]

− 2Ē[Y2,tX
3
t−1Y2,t−1Xt−2, A] + 2Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−3, A]

]

.

Next, we expand Ē[(S1,n − ω1,n)(S2,n − ω2)(S3,n − ω3,n), A]:

Ē[(S1,n − ω1,n)(S2,n − ω2)(S3,n − ω3,n), A] = Ē[S1,nS2,nS3,n, A] − ω1,nĒ[S2,nS3,n, A]

− ω2Ē[S1,nS3,n, A] − ω3,nĒ[S1,nS2,n, A] + ω1,nω2Ē[S3,n, A] + ω1,nω3,nĒ[S2,n, A]

+ ω2ω3,nĒ[S1,n, A] − ω1,nω2ω3,nP (X ∈ A)

=nb

(
1

n2
− nb

n3

)

Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1, A]

+ nb

(
1

n
− (2nb + 1)

1

n2
+ nb(nb + 1)

1

n3

)

Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

+ nb

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
Xt−nb−1Y2,tX

3
t−1, A]

+ nb(nb − 1)

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1X

2
t−2, A]
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− nb

n2
ω1,nĒ[Y2,tX

3
t−1, A] − nb

n2
(nb − 1)ω1,nĒ[Y2,tXt−1X

2
t−2, A]

− nb

n2
(n− nb)ω1,nĒ[Y2,tXt−1X

2
t−nb−1, A]

− nb

(
1

n
− nb

n2

)

ω2Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1, A]

−
(

1

n
− nb

n2

)

ω3,nĒ[Y1,t−nb
X3

t−nb−1, A]

−
(

1 − 1

n
(2nb + 1) +

nb

n2
(nb + 1)

)

ω3,nĒ[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

− nb

(
1

n
− nb

n2

)

ω3,nĒ[Y1,t−nb
Xt−nb−1X

2
t−1, A]

+ ω1,nω2
nb

n
Ē[Y2,tXt−1, A] + ω1,nω3,nĒ[X2

t−1, A]

+ ω2ω3,n

(

1 − nb

n

)

Ē[Y1,t−nb
Xt−nb−1, A] − ω1,nω2ω3,nP (X ∈ A).

The truncated expectation of (S1,n − ω1,n)(S2,n − ω2)(S3,n − ω3,n) is as follows:

• Ē[(S1,n − ω1,n)(S2,n − ω2)(S3,n − ω3,n), A]

=
nb

n

[

Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

−E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−nb−1, A] − ω2Ē[Y1,t−nb

Xt−nb−1Y2,tXt−1, A]

−E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

+ ω2E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1, A] +E[Y1,t−nb

Xt−nb−1]E[Y2,tXt−1]Ē[X2
t−1, A]

+ ω2E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1, A]

− ω2E[Y1,t−nb
Xt−nb−1]E[Y2,tXt−1]P (X ∈ A)

]

+
nb

n2

[

Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1, A]

− (2nb + 1)Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

+ Ē[Y1,t−nb
Xt−nb−1Y2,tX

3
t−1, A] + (nb − 1)Ē[Y1,t−nb

Xt−nb−1Y2,tXt−1X
2
t−2, A]

−E[Y1,t−nb
Xt−nb−1]Ē[Y2,tX

3
t−1, A]

− (nb − 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−2, A]

+ 2nbE[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−nb−1, A]

+ nbω2Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1, A] −E[Y2,tXt−1]Ē[Y1,t−nb

X3
t−nb−1, A]

+ (2nb + 1)E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]
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− nbE[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−1, A]

− nbω2E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1, A]

− nbE[Y1,t−nb
Xt−nb−1]E[Y2,tXt−1]Ē[X2

t−1, A]

− nbω2E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1, A]

+ nbω2E[Y1,t−nb
Xt−nb−1]E[Y2,tXt−1]P (X ∈ A)

]

+
n2

b

n3

[

− Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1, A]

+ (nb + 1)Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2, A] − Ē[Y1,t−nb

Xt−nb−1Y2,tX
3
t−1, A]

− (nb − 1)Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1X

2
t−2, A] +E[Y1,t−nb

Xt−nb−1]Ē[Y2,tX
3
t−1, A]

+ (nb − 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−2, A]

− nbE[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−nb−1, A] +E[Y2,tXt−1]Ē[Y1,t−nb

X3
t−nb−1, A]

− (nb + 1)E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

+ nbE[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−1, A]

]

.

Next, we expand Ē[(S1,n − ω1,n)(S2,n − ω2)
3, A]:

Ē[(S1,n − ω1,n)(S2,n − ω2)
3, A] = Ē[S1,nS

3
2,n, A] − ω1,nĒ[S3

2,n, A] − 3ω2Ē[S1,nS
2
2,n, A]

+ 3ω1,nω2Ē[S2
2,n, A] + 3ω2

2Ē[S1,nS2,n, A] − 3ω1,nω
2
2Ē[S2,n, A]

− ω3
2Ē[S1,n, A] + ω1,nω

3
2P (X ∈ A)

=

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
X7

t−nb−1, A]

+

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

6
t−nb−2, A]

+ 3

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
X5

t−nb−1X
2
t−nb−2, A]

+ 3

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
X3

t−nb−1X
4
t−nb−2, A]

+ 3

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2X

2
t−nb−3, A]

+ 3

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)
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· Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2X

2
t−nb−3, A]

+

(

1 − 1

n
(4nb + 6) +

1

n2
(6n2

b + 18nb + 11) − 1

n3
(4n3

b + 18n2
b + 22nb + 6)

+
nb

n4
(n3

b + 6n2
b + 11nb + 6)

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3X

2
t−nb−4, A]

+ nb

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1X

6
t−1, A]

+ 3nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1X

4
t−1X

2
t−2, A]

+ nb(n
2
b − 3nb + 2)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−1X

2
t−2X

2
t−3, A]

+ 3nb

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
X5

t−nb−1X
2
t−1, A]

+ 3nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2X

2
t−1, A]

+ 6nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2X

2
t−1, A]

+ 3nb

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3X

2
t−1, A]

+ 3nb

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
X3

t−nb−1X
4
t−1, A]

+ 3nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
X3

t−nb−1X
2
t−1X

2
t−2, A]

+ 3nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

4
t−1, A]

+ 3nb(nb − 1)

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1X

2
t−2, A]

− ω1,n

n2
Ē
[
X6

t−1, A
]
− 3

(
1

n
− 1

n2

)

ω1,nĒ
[
X4

t−1X
2
t−2, A

]

−
(

1 − 3
1

n
+ 2

1

n2

)

ω1,nĒ
[
X2

t−1X
2
t−2X

2
t−3, A

]

− 3

(
1

n2
− nb

n3

)

ω2Ē[Y1,t−nb
X5

t−nb−1, A]

− 3

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

ω2Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

− 6

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

ω2Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]
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− 3

(

1 − 3

n
(nb + 1) +

1

n2
(2 + 6nb + 3n2

b) −
nb

n3
(2 + 3nb + n2

b)

)

ω2

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

− 3nb

(
1

n2
− nb

n3

)

ω2Ē[Y1,t−nb
Xt−nb−1X

4
t−1, A]

− 3nb(nb − 1)

(
1

n2
− nb

n3

)

ω2Ē[Y1,t−nb
Xt−nb−1X

2
t−1X

2
t−2, A]

− 6nb

(
1

n2
− nb

n3

)

ω2Ē[Y1,t−nb
X3

t−nb−1X
2
t−1, A]

− 6nb

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

ω2Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A]

+ 3ω1,nω2
1

n
Ē[X4

t−1, A] + 3ω1,nω2

(

1 − 1

n

)

Ē[X2
t−1X

2
t−2, A]

+ 3ω2
2

(
1

n
− nb

n2

)

Ē[Y1,t−nb
X3

t−nb−1, A]

+ 3ω2
2

(

1 − 1

n
(2nb + 1) +

nb

n2
(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

+ 3ω2
2nb

(
1

n
− nb

n2

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−1, A] − 3ω1,nω

2
2Ē[X2

t−1, A]

− ω3
2

(
1

n
− nb

n2

)

Ē[Y1,t−nb
Xt−nb−1, A] + ω1,nω

3
2P (X ∈ A).

The truncated expectation of (S1,n − ω1,n)(S2,n − ω2)
3 is as follows:

• Ē[(S1,n − ω1,n)(S2,n − ω2)
3, A] =

[

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3X

2
t−nb−4, A]

−E[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2X

2
t−3, A]

− 3ω2Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ 3ω2E[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2, A] + 3ω2

2Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

− 3ω2
2E[Y1,t−nb

Xt−nb−1]Ē[X2
t−1, A] − ω3

2Ē[Y1,t−nb
Xt−nb−1, A]

+ ω3
2E[Y1,t−nb

Xt−nb−1]P (X ∈ A)
]

+
1

n

[

3Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2X

2
t−nb−3, A]

+ 3Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2X

2
t−nb−3, A]

− (4nb + 6)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3X

2
t−nb−4, A]

+ 3nbĒ[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3X

2
t−1, A]

− 3E[Y1,t−nb
Xt−nb−1]Ē[X4

t−1X
2
t−2, A]
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+ (nb + 3)E[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2X

2
t−3, A]

− 3ω2Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A] − 6ω2Ē[Y1,t−nb

X3
t−nb−1X

2
t−nb−2, A]

+ 9(nb + 1)ω2Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

− 6nbω2Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A] + 3ω2E[Y1,t−nb

Xt−nb−1]Ē[X4
t−1, A]

− 3(nb + 1)ω2E[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2, A] + 3ω2

2Ē[Y1,t−nb
X3

t−nb−1, A]

− 3ω2
2(2nb + 1)Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2, A] + 3ω2

2nbĒ[Y1,t−nb
Xt−nb−1X

2
t−1, A]

+ 3ω2
2nbE[Y1,t−nb

Xt−nb−1]Ē[X2
t−1, A] + ω3

2nbĒ[Y1,t−nb
Xt−nb−1, A]

− ω3
2nbE[Y1,t−nb

Xt−nb−1]P (X ∈ A)
]

+
1

n2

[

Ē[Y1,t−nb
Xt−nb−1X

6
t−nb−2, A] + 3Ē[Y1,t−nb

X5
t−nb−1X

2
t−nb−2, A]

+ 3Ē[Y1,t−nb
X3

t−nb−1X
4
t−nb−2, A]

− 9(nb + 1)Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2X

2
t−nb−3, A]

− 9(nb + 1)Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2X

2
t−nb−3, A]

+ (6n2
b + 18nb + 11)Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−nb−3X

2
t−nb−4, A]

+ 3nbĒ[Y1,t−nb
Xt−nb−1X

4
t−nb−2X

2
t−1, A] + 6nbĒ[Y1,t−nb

X3
t−nb−1X

2
t−nb−2X

2
t−1, A]

− 9nb(nb + 1)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3X

2
t−1, A]

+ 3nbĒ[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

4
t−1, A]

+ 3nb(nb − 1)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1X

2
t−2, A]

−E[Y1,t−nb
Xt−nb−1]Ē[X6

t−1, A]

+ 3(nb + 1)E[Y1,t−nb
Xt−nb−1]Ē[X4

t−1X
2
t−2, A]

− (3nb + 2)E[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2X

2
t−3, A]

− 3ω2Ē[Y1,t−nb
X5

t−nb−1, A] + 3(2nb + 1)ω2Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

+ 6(2nb + 1)ω2Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

− 3(3n2
b + 6nb + 2)ω2Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−nb−3, A]

− 3nbω2Ē[Y1,t−nb
Xt−nb−1X

4
t−1, A]

− 3nb(nb − 1)ω2Ē[Y1,t−nb
Xt−nb−1X

2
t−1X

2
t−2, A]

− 6nbω2Ē[Y1,t−nb
X3

t−nb−1X
2
t−1, A]

+ 6nb(2nb + 1)ω2Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A]
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− 3nbω2E[Y1,t−nb
Xt−nb−1]Ē[X4

t−1, A]

+ 3nbω2E[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2, A] − 3nbω

2
2Ē[Y1,t−nb

X3
t−nb−1, A]

+ 3nb(nb + 1)ω2
2Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2, A]

− 3n2
bω

2
2Ē[Y1,t−nb

Xt−nb−1X
2
t−1, A]

]

+
1

n3

[

Ē[Y1,t−nb
X7

t−nb−1, A] − (2nb + 1)Ē[Y1,t−nb
Xt−nb−1X

6
t−nb−2, A]

− 3(2nb + 1)Ē[Y1,t−nb
X5

t−nb−1X
2
t−nb−2, A]

− 3(2nb + 1)Ē[Y1,t−nb
X3

t−nb−1X
4
t−nb−2, A]

+ 3(3n2
b + 6nb + 2)Ē[Y1,t−nb

Xt−nb−1X
4
t−nb−2X

2
t−nb−3, A]

+ 3(3n2
b + 6nb + 2)Ē[Y1,t−nb

X3
t−nb−1X

2
t−nb−2X

2
t−nb−3, A]

− (4n3
b + 18n2

b + 22nb + 6)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3X

2
t−nb−4, A]

+ nbĒ[Y1,t−nb
Xt−nb−1X

6
t−1, A] + 3nb(nb − 1)Ē[Y1,t−nb

Xt−nb−1X
4
t−1X

2
t−2, A]

+ nb(n
2
b − 3nb + 2)Ē[Y1,t−nb

Xt−nb−1X
2
t−1X

2
t−2X

2
t−3, A]

+ 3nbĒ[Y1,t−nb
X5

t−nb−1X
2
t−1, A] − 3nb(2nb + 1)Ē[Y1,t−nb

Xt−nb−1X
4
t−nb−2X

2
t−1, A]

− 6nb(2nb + 1)Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2X

2
t−1, A]

+ 3nb(3n
2
b + 6nb + 2)Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−nb−3X

2
t−1, A]

+ 3nbĒ[Y1,t−nb
X3

t−nb−1X
4
t−1, A] + 3nb(nb − 1)Ē[Y1,t−nb

X3
t−nb−1X

2
t−1X

2
t−2, A]

− 3nb(2nb + 1)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

4
t−1, A]

− 3nb(nb − 1)(2nb + 1)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1X

2
t−2, A]

+ nbE[Y1,t−nb
Xt−nb−1]Ē[X6

t−1, A] − 3nbE[Y1,t−nb
Xt−nb−1]Ē[X4

t−1X
2
t−2, A]

+ 2nbE[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2X

2
t−3, A] + 3nbω2Ē[Y1,t−nb

X5
t−nb−1, A]

− 3nb(nb + 1)ω2Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

− 6nb(nb + 1)ω2Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

+ 3nb(n
2
b + 3nb + 2)ω2Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−nb−3, A]

+ 3n2
bω2Ē[Y1,t−nb

Xt−nb−1X
4
t−1, A]

+ 3n2
b(nb − 1)ω2Ē[Y1,t−nb

Xt−nb−1X
2
t−1X

2
t−2, A] + 6n2

bω2Ē[Y1,t−nb
X3

t−nb−1X
2
t−1, A]

− 6n2
b(nb + 1)ω2Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−1, A]

]



473

+
1

n4

[

− nbĒ[Y1,t−nb
X7

t−nb−1, A] + nb(nb + 1)Ē[Y1,t−nb
Xt−nb−1X

6
t−nb−2, A]

+ 3nb(nb + 1)Ē[Y1,t−nb
X5

t−nb−1X
2
t−nb−2, A]

+ 3nb(nb + 1)Ē[Y1,t−nb
X3

t−nb−1X
4
t−nb−2, A]

− 3nb(n
2
b + 3nb + 2)Ē[Y1,t−nb

Xt−nb−1X
4
t−nb−2X

2
t−nb−3, A]

− 3nb(n
2
b + 3nb + 2)Ē[Y1,t−nb

X3
t−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ nb(n
3
b + 6n2

b + 11nb + 6)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3X

2
t−nb−4, A]

− n2
bĒ[Y1,t−nb

Xt−nb−1X
6
t−1, A] − 3n2

b(nb − 1)Ē[Y1,t−nb
Xt−nb−1X

4
t−1X

2
t−2, A]

− n2
b(n

2
b − 3nb + 2)Ē[Y1,t−nb

Xt−nb−1X
2
t−1X

2
t−2X

2
t−3, A]

− 3n2
bĒ[Y1,t−nb

X5
t−nb−1X

2
t−1, A] + 3n2

b(nb + 1)Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2X

2
t−1, A]

+ 6n2
b(nb + 1)Ē[Y1,t−nb

X3
t−nb−1X

2
t−nb−2X

2
t−1, A]

− 3n2
b(n

2
b + 3nb + 2)Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−nb−3X

2
t−1, A]

− 3n2
bĒ[Y1,t−nb

X3
t−nb−1X

4
t−1, A] − 3n2

b(nb − 1)Ē[Y1,t−nb
X3

t−nb−1X
2
t−1X

2
t−2, A]

+ 3n2
b(nb + 1)Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

4
t−1, A]

+ 3n2
b(nb − 1)(nb + 1)Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−1X

2
t−2, A]

]

.

Next, we expand Ē[(S3,n − ω3,n)(S2,n − ω2)
3, A]:

Ē[(S3,n − ω3,n)(S2,n − ω2)
3, A] = Ē[S3,nS

3
2,n, A] − ω3,nĒ[S3

2,n, A] − 3ω2Ē[S3,nS
2
2,n, A]

+ 3ω3,nω2Ē[S2
2,n, A] + 3ω2

2Ē[S3,nS2,n, A] − 3ω3,nω
2
2Ē[S2,n, A]

− ω3
2Ē[S3,n, A] + ω3,nω

3
2P (X ∈ A)

=nb

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1X
6
t−nb−1, A]

+ 3nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y2,tXt−1X
4
t−nb−1X

2
t−nb−2, A]

+ nb

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+
nb

n4
Ē[Y2,tX

7
t−1, A] +

nb

n4
(nb − 1)Ē[Y2,tXt−1X

6
t−2, A]

+ 3
nb

n4
(nb − 1)Ē[Y2,tX

5
t−1X

2
t−2, A] + 3

nb

n4
(nb − 1)Ē[Y2,tX

3
t−1X

4
t−2, A]
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+ 3
nb

n4
(n2

b − 3nb + 2)Ē[Y2,tXt−1X
4
t−2X

2
t−3, A]

+ 3
nb

n4
(n2

b − 3nb + 2)Ē[Y2,tX
3
t−1X

2
t−2X

2
t−3, A]

+
nb

n4
(n3

b − 6n2
b + 11nb − 6)Ē[Y2,tXt−1X

2
t−2X

2
t−3X

2
t−4, A]

+ 3nb

(
1

n3
− nb

n4

)

Ē[Y2,tX
3
t−1X

4
t−nb−1, A]

+ 3nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1X
2
t−2X

4
t−nb−1, A]

+ 3nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y2,tX
3
t−1X

2
t−nb−1X

2
t−nb−2, A]

+ 3nb(nb − 1)

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y2,tXt−1X
2
t−2X

2
t−nb−1X

2
t−nb−2, A]

+ 3nb

(
1

n3
− nb

n4

)

Ē[Y2,tX
5
t−1X

2
t−nb−1, A]

+ 3nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1X
4
t−2X

2
t−nb−1, A]

+ 6nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y2,tX
3
t−1X

2
t−2X

2
t−nb−1, A]

+ 3nb(n
2
b − 3nb + 2)

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1X
2
t−2X

2
t−3X

2
t−nb−1, A]

− ω3,n

n2
Ē
[
X6

t−1, A
]
− 3

(
1

n
− 1

n2

)

ω3,nĒ
[
X4

t−1X
2
t−2, A

]

−
(

1 − 3
1

n
+ 2

1

n2

)

ω3,nĒ
[
X2

t−1X
2
t−2X

2
t−3, A

]

− 3
nb

n3
ω2Ē[Y2,tX

5
t−1, A] − 3

nb

n3
(nb − 1)ω2Ē[Y2,tXt−1X

4
t−2, A]

− 6
nb

n3
(nb − 1)ω2Ē[Y2,tX

3
t−1X

2
t−2, A]

− 3
nb

n3
(n2

b − 3nb + 2)ω2Ē[Y2,tXt−1X
2
t−2X

2
t−3, A]

− 3nb

(
1

n2
− nb

n3

)

ω2Ē[Y2,tXt−1X
4
t−nb−1, A]

− 3nb

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

ω2Ē[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2, A]

− 6nb

(
1

n2
− nb

n3

)

ω2Ē[Y2,tX
3
t−1X

2
t−nb−1, A]

− 6nb(nb − 1)

(
1

n2
− nb

n3

)

ω2Ē[Y2,tXt−1X
2
t−2X

2
t−nb−1, A]

+ 3ω2ω3,n
1

n
Ē[X4

t−1, A] + 3ω2ω3,n

(

1 − 1

n

)

Ē[X2
t−1X

2
t−2, A]
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+ 3ω2
2

nb

n2
Ē[Y2,tX

3
t−1, A] + 3ω2

2

nb

n2
(nb − 1)Ē[Y2,tXt−1X

2
t−2, A]

+ 3ω2
2nb

(
1

n
− nb

n2

)

Ē[Y2,tXt−1X
2
t−nb−1, A] − 3ω2

2ω3,nĒ[X2
t−1, A]

− ω3
2

nb

n
Ē[Y2,tXt−1, A] + ω3

2ω3,nP (X ∈ A).

The truncated expectation of (S3,n − ω3,n)(S2,n − ω2)
3 is as follows:

• Ē[(S3,n − ω3,n)(S2,n − ω2)
3, A] =

1

n

[

nbĒ[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2X

2
t−nb−3, A]

− 3nbω2Ē[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2, A] − nbE[Y2,tXt−1]Ē[X2

t−1X
2
t−2X

2
t−3, A]

+ 3nbω
2
2Ē[Y2,tXt−1X

2
t−nb−1, A] + 3nbω2E[Y2,tXt−1]Ē[X2

t−1X
2
t−2, A]

− nbω
3
2Ē[Y2,tXt−1, A] − 3nbω

2
2E[Y2,tXt−1]Ē[X2

t−1, A]

+ nbω
3
2E[Y2,tXt−1]P (X ∈ A)

]

+
1

n2

[

3nbĒ[Y2,tXt−1X
4
t−nb−1X

2
t−nb−2, A]

− 3nb(nb + 1)Ē[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ 3nbĒ[Y2,tX
3
t−1X

2
t−nb−1X

2
t−nb−2, A]

+ 3nb(nb − 1)Ē[Y2,tXt−1X
2
t−2X

2
t−nb−1X

2
t−nb−2, A] − 3nbω2Ē[Y2,tXt−1X

4
t−nb−1, A]

+ 3nb(2nb + 1)ω2Ē[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2, A] − 6nbω2Ē[Y2,tX

3
t−1X

2
t−nb−1, A]

− 6nb(nb − 1)ω2Ē[Y2,tXt−1X
2
t−2X

2
t−nb−1, A] − 3nbE[Y2,tXt−1]Ē[X4

t−1X
2
t−2, A]

+ 3nbE[Y2,tXt−1]Ē[X2
t−1X

2
t−2X

2
t−3, A] + 3nbω

2
2Ē[Y2,tX

3
t−1, A]

+ 3nb(nb − 1)ω2
2Ē[Y2,tXt−1X

2
t−2, A] − 3n2

bω
2
2Ē[Y2,tXt−1X

2
t−nb−1, A]

+ 3nbω2E[Y2,tXt−1]Ē[X4
t−1, A] − 3nbω2E[Y2,tXt−1]Ē[X2

t−1X
2
t−2, A]

]

+
1

n3

[

nbĒ[Y2,tXt−1X
6
t−nb−1, A] − 3nb(2nb + 1)Ē[Y2,tXt−1X

4
t−nb−1X

2
t−nb−2, A]

+ nb(3n
2
b + 6nb + 2)Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ 3nbĒ[Y2,tX
3
t−1X

4
t−nb−1, A] + 3nb(nb − 1)Ē[Y2,tXt−1X

2
t−2X

4
t−nb−1, A]

− 3nb(2nb + 1)Ē[Y2,tX
3
t−1X

2
t−nb−1X

2
t−nb−2, A]

− 3nb(nb − 1)(2nb + 1)Ē[Y2,tXt−1X
2
t−2X

2
t−nb−1X

2
t−nb−2, A]

+ 3nbĒ[Y2,tX
5
t−1X

2
t−nb−1, A]

+ 3nb(nb − 1)Ē[Y2,tXt−1X
4
t−2X

2
t−nb−1, A]
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+ 6nb(nb − 1)Ē[Y2,tX
3
t−1X

2
t−2X

2
t−nb−1, A]

+ 3nb(n
2
b − 3nb + 2)Ē[Y2,tXt−1X

2
t−2X

2
t−3X

2
t−nb−1, A] − 3nbω2Ē[Y2,tX

5
t−1, A]

− 3nb(nb − 1)ω2Ē[Y2,tXt−1X
4
t−2, A] − 6nb(nb − 1)ω2Ē[Y2,tX

3
t−1X

2
t−2, A]

− 3nb(n
2
b − 3nb + 2)ω2Ē[Y2,tXt−1X

2
t−2X

2
t−3, A] + 3n2

bω2Ē[Y2,tXt−1X
4
t−nb−1, A]

− 3n2
b(nb + 1)ω2Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2, A] + 6n2

bω2Ē[Y2,tX
3
t−1X

2
t−nb−1, A]

+ 6n2
b(nb − 1)ω2Ē[Y2,tXt−1X

2
t−2X

2
t−nb−1, A] − nbE[Y2,tXt−1]Ē[X6

t−1, A]

+ 3nbE[Y2,tXt−1]Ē[X4
t−1X

2
t−2, A] − 2nbE[Y2,tXt−1]Ē[X2

t−1X
2
t−2X

2
t−3, A]

]

+
1

n4

[

− n2
bĒ[Y2,tXt−1X

6
t−nb−1, A] + 3n2

b(nb + 1)Ē[Y2,tXt−1X
4
t−nb−1X

2
t−nb−2, A]

− n2
b(n

2
b + 3nb + 2)Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ nbĒ[Y2,tX
7
t−1, A] + nb(nb − 1)Ē[Y2,tXt−1X

6
t−2, A]

+ 3nb(nb − 1)Ē[Y2,tX
5
t−1X

2
t−2, A] + 3nb(nb − 1)Ē[Y2,tX

3
t−1X

4
t−2, A]

+ 3nb(n
2
b − 3nb + 2)Ē[Y2,tXt−1X

4
t−2X

2
t−3, A]

+ 3nb(n
2
b − 3nb + 2)Ē[Y2,tX

3
t−1X

2
t−2X

2
t−3, A]

+ nb(n
3
b − 6n2

b + 11nb − 6)Ē[Y2,tXt−1X
2
t−2X

2
t−3X

2
t−4, A]

− 3n2
bĒ[Y2,tX

3
t−1X

4
t−nb−1, A] − 3n2

b(nb − 1)Ē[Y2,tXt−1X
2
t−2X

4
t−nb−1, A]

+ 3n2
b(nb + 1)Ē[Y2,tX

3
t−1X

2
t−nb−1X

2
t−nb−2, A]

+ 3n2
b(nb − 1)(nb + 1)Ē[Y2,tXt−1X

2
t−2X

2
t−nb−1X

2
t−nb−2, A]

− 3n2
bĒ[Y2,tX

5
t−1X

2
t−nb−1, A] − 3n2

b(nb − 1)Ē[Y2,tXt−1X
4
t−2X

2
t−nb−1, A]

− 6n2
b(nb − 1)Ē[Y2,tX

3
t−1X

2
t−2X

2
t−nb−1, A]

− 3n2
b(n

2
b − 3nb + 2)Ē[Y2,tXt−1X

2
t−2X

2
t−3X

2
t−nb−1, A]

]

.

The truncated expectation of (S4,n − ω4)(S2,n − ω2)
3 is as follows:

• Ē[(S4,n − ω4)(S2,n − ω2)
3, A] =

[

−E[Y2,tXt−1]Ē[X2
t−1X

2
t−2X

2
t−3, A]

+ 3ω2E[Y2,tXt−1]Ē[X2
t−1X

2
t−2, A] − ω3

2Ē[Y2,tXt−1, A]

− 3ω2
2E[Y2,tXt−1]Ē[X2

t−1, A] + ω3
2E[Y2,tXt−1]P (X ∈ A)

+ 3ω2
2Ē[Y2,tXt−1X

2
t−2, A] − 3ω2Ē[Y2,tXt−1X

2
t−2X

2
t−3, A]
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+ Ē[Y2,tXt−1X
2
t−2X

2
t−3X

2
t−4, A]

]

+
1

n

[

− 3E[Y2,tXt−1]Ē[X4
t−1X

2
t−2, A] + 3E[Y2,tXt−1]Ē[X2

t−1X
2
t−2X

2
t−3, A]

+ 3ω2
2Ē[Y2,tX

3
t−1, A] − 3ω2

2Ē[Y2,tXt−1X
2
t−2, A]

+ 3ω2E[Y2,tXt−1]Ē[X4
t−1, A] − 3ω2E[Y2,tXt−1]Ē[X2

t−1X
2
t−2, A]

− 3ω2Ē[Y2,tXt−1X
4
t−2, A] − 6ω2Ē[Y2,tX

3
t−1X

2
t−2, A]

+ 9ω2Ē[Y2,tXt−1X
2
t−2X

2
t−3, A] + 3Ē[Y2,tXt−1X

4
t−2X

2
t−3, A]

+ 3Ē[Y2,tX
3
t−1X

2
t−2X

2
t−3, A] − 6Ē[Y2,tXt−1X

2
t−2X

2
t−3X

2
t−4, A]

]

+
1

n2

[

− 3ω2Ē[Y2,tX
5
t−1, A] + 3ω2Ē[Y2,tXt−1X

4
t−2, A]

+ 6ω2Ē[Y2,tX
3
t−1X

2
t−2, A] − 6ω2Ē[Y2,tXt−1X

2
t−2X

2
t−3, A]

−E[Y2,tXt−1]Ē[X6
t−1, A] + 3E[Y2,tXt−1]Ē[X4

t−1X
2
t−2, A]

− 2E[Y2,tXt−1]Ē[X2
t−1X

2
t−2X

2
t−3, A] + Ē[Y2,tXt−1X

6
t−2, A]

+ 3Ē[Y2,tX
5
t−1X

2
t−2, A] + 3Ē[Y2,tX

3
t−1X

4
t−2, A]

− 9Ē[Y2,tXt−1X
4
t−2X

2
t−3, A] − 9Ē[Y2,tX

3
t−1X

2
t−2X

2
t−3, A]

+ 11Ē[Y2,tXt−1X
2
t−2X

2
t−3X

2
t−4, A]

]

+
1

n3

[

Ē[Y2,tX
7
t−1, A] − Ē[Y2,tXt−1X

6
t−2, A] − 3Ē[Y2,tX

5
t−1X

2
t−2, A]

− 3Ē[Y2,tX
3
t−1X

4
t−2, A] + 6Ē[Y2,tXt−1X

4
t−2X

2
t−3, A]

+ 6Ē[Y2,tX
3
t−1X

2
t−2X

2
t−3, A] − 6Ē[Y2,tXt−1X

2
t−2X

2
t−3X

2
t−4, A]

]

.

Next, we expand Ē[(S1,n − ω1,n)2(S2,n − ω2)
2, A]:

Ē[(S1,n − ω1,n)2(S2,n − ω2)
2, A] = Ē[S2

1,nS
2
2,n, A] − 2ω2Ē[S2

1,nS2,n, A]

− 2ω1,nĒ[S1,nS
2
2,n, A] + ω2

1,nĒ[S2
2,n, A] + 4ω1,nω2Ē[S1,nS2,n, A]

+ ω2
2Ē[S2

1,n, A] − 2ω2
1,nω2Ē[S2,n, A] − 2ω1,nω

2
2Ē[S1,n, A] + ω2

1,nω
2
2P (X ∈ A)

=

(
1

n3
− nb

n4

)

Ē[Y 2
1,t−nb

X6
t−nb−1, A]

+

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

4
t−nb−2, A]

+ 2

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y 2
1,t−nb

X4
t−nb−1X

2
t−nb−2, A]
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+

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ 2

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
X5

t−nb−1Y1,t−nb−1Xt−nb−2, A]

+

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

4
t−nb−3, A]

+ 2

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1X
3
t−nb−2, A]

+ 4

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1X

3
t−nb−2X

2
t−nb−3, A]

+

(

1 − 1

n
(4nb + 6) +

1

n2
(6n2

b + 18nb + 11) − 1

n3
(4n3

b + 18n2
b + 22nb + 6)

+
nb

n4
(n3

b + 6n2
b + 11nb + 6)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−nb−4, A]

+ nb

(
1

n3
− nb

n4

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

4
t−1, A]

+ nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−1X

2
t−2, A]

+ nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

4
t−1, A]

+ nb(nb − 1)

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−1X

2
t−2, A]

+ 2nb

(
1

n3
− nb

n4

)

Ē[Y 2
1,t−nb

X4
t−nb−1X

2
t−1, A]

+ 2nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2X

2
t−1, A]

+ 4nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1Xt−nb−2X
2
t−1, A]

+ 2nb

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)
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· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−1, A]

− 2ω2

(
1

n2
− nb

n3

)

Ē[Y 2
1,t−nb

X4
t−n+b−1, A]

− 2ω2

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2, A]

− 2ω2nb

(
1

n2
− nb

n3

)

Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−1, A]

− 4ω2

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1Xt−nb−2, A]

− 2ω2

(

1 − 3

n
(nb + 1) +

1

n2
(2 + 6nb + 3n2

b) −
nb

n3
(2 + 3nb + n2

b)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3, A]

− 2ω2nb

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

· Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−1, A]

− 2ω1,n

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
X5

t−nb−1, A]

− 2ω1,n

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

− 4ω1,n

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

− 2ω1,n

(

1 − 3

n
(nb + 1) +

1

n2
(2 + 6nb + 3n2

b) −
nb

n3
(2 + 3nb + n2

b)

)

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

− 2ω1,nnb

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
Xt−nb−1X

4
t−1, A]

− 2ω1,nnb(nb − 1)

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−1X

2
t−2, A]

− 4ω1,nnb

(
1

n2
− nb

n3

)

Ē[Y1,t−nb
X3

t−nb−1X
2
t−1, A]

− 4ω1,nnb

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A]

+ ω2
1,n

1

n
Ē[X4

t−1, A] + ω2
1,n

(

1 − 1

n

)

Ē[X2
t−1X

2
t−2, A]

+ 4ω1,nω2

(
1

n
− nb

n2

)

Ē[Y1,t−nb
X3

t−nb−1, A]

+ 4ω1,nω2

(

1 − 1

n
(2nb + 1) +

nb

n2
(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]
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+ 4ω1,nω2nb

(
1

n
− nb

n2

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−1, A]

+ ω2
2

(
1

n
− nb

n2

)

Ē[Y 2
1,t−nb

X2
t−nb−1, A]

+ ω2
2

(

1 − 1

n
(2nb + 1) +

nb

n2
(nb + 1)

)

Ē [Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2, A]

− 2ω2
1,nω2Ē[X2

t−1, A] − 2ω1,nω
2
2

(

1 − nb

n

)

Ē[Y1,t−nb
Xt−nb−1, A] + ω2

1,nω
2
2P (X ∈ A).

The truncated expectation of (S1,n − ω1,n)2(S2,n − ω2)
2 is as follows:

• Ē[(S1,n − ω1,n)2(S2,n − ω2)
2, A]

=
[

Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−nb−4, A]

− 2ω2Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3, A]

− 2E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−nb−3, A]

+E2[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2, A]

+ 4ω2E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2, A]

+ ω2
2Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2, A] − 2ω2E
2[Y1,t−nb

Xt−nb−1]Ē[X2
t−1, A]

− 2ω2
2E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1, A] + ω2

2E
2[Y1,t−nb

Xt−nb−1]P (X ∈ A)
]

+
1

n

[

Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

4
t−nb−3, A]

+ 4Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1X

3
t−nb−2X

2
t−nb−3, A]

− (4nb + 6)Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−nb−4, A]

+ 2nbĒ[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−1, A]

− 2ω2Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2, A]

− 4ω2Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1Xt−nb−2, A]

+ 6(nb + 1)ω2Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3, A]

− 2nbω2Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−1, A]

− 2E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
4
t−nb−2, A]

− 4E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

X3
t−nb−1X

2
t−nb−2, A]



481

+ (8nb + 6)E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−nb−3, A]

− 4nbE[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−1, A]

+E2[Y1,t−nb
Xt−nb−1]Ē[X4

t−1, A]

− (2nb + 1)E2[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2, A]

+ 4ω2E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

X3
t−nb−1, A]

− 4(3nb + 1)ω2E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2, A]

+ 4nbω2E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−1, A]

+ ω2
2Ē[Y 2

1,t−nb
X2

t−nb−1, A]

− (2nb + 1)ω2
2Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2, A]

+ 4nbω2E
2[Y1,t−nb

Xt−nb−1]Ē[X2
t−1, A]

+ 4nbω
2
2E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1, A]

− 2nbω
2
2E

2[Y1,t−nb
Xt−nb−1]P (X ∈ A)

]

+
1

n2

[

Ē[Y 2
1,t−nb

X2
t−nb−1X

4
t−nb−2, A] + 2Ē[Y 2

1,t−nb
X4

t−nb−1X
2
t−nb−2, A]

− 3(nb + 1)Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ 2Ē[Y1,t−nb
X5

t−nb−1Y1,t−nb−1Xt−nb−2, A]

− 3(nb + 1)Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

4
t−nb−3, A]

+ 2Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1X
3
t−nb−2, A]

− 12(nb + 1)Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1X

3
t−nb−2X

2
t−nb−3, A]

+ (6n2
b + 18nb + 11)Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
2
t−nb−3X

2
t−nb−4, A]

+ nbĒ[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

4
t−1, A]

+ nb(nb − 1)Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−1X

2
t−2, A]

+ 2nbĒ[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2X

2
t−1, A]

+ 4nbĒ[Y1,t−nb
X3

t−nb−1Y1,t−nb−1Xt−nb−2X
2
t−1, A]

− 6nb(nb + 1)Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−1, A]

− 2ω2Ē[Y 2
1,t−nb

X4
t−nb−1, A] + 2(2nb + 1)ω2Ē[Y 2

1,t−nb
X2

t−nb−1X
2
t−nb−2, A]

− 2nbω2Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−1, A]

+ 4(2nb + 1)ω2Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1Xt−nb−2, A]
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− 2(3n2
b + 6nb + 2)ω2Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
2
t−nb−3, A]

+ 2nb(2nb + 1)ω2Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−1, A]

− 2E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

X5
t−nb−1, A]

+ 2(3nb + 1)E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
4
t−nb−2, A]

+ 4(3nb + 1)E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

X3
t−nb−1X

2
t−nb−2, A]

− 2(6n2
b + 9nb + 2)E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

− 2nbE[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
4
t−1, A]

− 2nb(nb − 1)E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−1X

2
t−2, A]

− 4nbE[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

X3
t−nb−1X

2
t−1, A]

+ 4nb(3nb + 1)E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−1, A]

− 2nbE
2[Y1,t−nb

Xt−nb−1]Ē[X4
t−1, A]

+ nb(nb + 2)E2[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2, A]

− 8nbω2E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

X3
t−nb−1, A]

+ 4(3nb + 2)ω2E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2, A]

− 8n2
bω2E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−1, A]

− nbω
2
2Ē[Y 2

1,t−nb
X2

t−nb−1, A]

+ nb(nb + 1)ω2
2Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2, A]

− 2n2
bω2E

2[Y1,t−nb
Xt−nb−1]Ē[X2

t−1, A]

− 2n2
bω

2
2E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1, A]

+ n2
bω

2
2E

2[Y1,t−nb
Xt−nb−1]P (X ∈ A)

]

+
1

n3

[

Ē[Y 2
1,t−nb

X6
t−nb−1, A] − (2nb + 1)Ē[Y 2

1,t−nb
X2

t−nb−1X
4
t−nb−2, A]

− 2(2nb + 1)Ē[Y 2
1,t−nb

X4
t−nb−1X

2
t−nb−2, A]

+ (3n2
b + 6nb + 2)Ē[Y 2

1,t−nb
X2

t−nb−1X
2
t−nb−2X

2
t−nb−3, A]

− 2(2nb + 1)Ē[Y1,t−nb
X5

t−nb−1Y1,t−nb−1Xt−nb−2, A]

+ (3n2
b + 6nb + 2)Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
4
t−nb−3, A]

− 2(2nb + 1)Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1X
3
t−nb−2, A]

+ 4(3n2
b + 6nb + 2)Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1X
3
t−nb−2X

2
t−nb−3, A]
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− (4n3
b + 18n2

b + 22nb + 6)Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−nb−4, A]

+ nbĒ[Y 2
1,t−nb

X2
t−nb−1X

4
t−1, A] + nb(nb + 1)Ē[Y 2

1,t−nb
X2

t−nb−1X
2
t−1X

2
t−2, A]

− nb(2nb + 1)Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

4
t−1, A]

− nb(nb − 1)(2nb + 1)Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−1X

2
t−2, A]

+ 2nbĒ[Y 2
1,t−nb

X4
t−nb−1X

2
t−1, A]

− 2nb(2nb + 1)Ē[Y 2
1,t−nb

X2
t−nb−1X

2
t−nb−2X

2
t−1, A]

− 4nb(2nb + 1)Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1Xt−nb−2X
2
t−1, A]

+ 2nb(3n
2
b + 6nb + 2)Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
2
t−nb−3X

2
t−1, A]

+ 2nbω2Ē[Y 2
1,t−nb

X4
t−nb−1, A] − 2nb(2nb + 1)ω2Ē[Y 2

1,t−nb
X2

t−nb−1X
2
t−nb−2, A]

+ 2n2
bω2Ē[Y 2

1,t−nb
X2

t−nb−1X
2
t−1, A]

− 4nb(nb + 1)ω2Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1Xt−nb−2, A]

+ 2nb(n
2
b + 3nb + 2)Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
2
t−nb−3, A]

− 2n2
b(nb + 1)ω2Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
2
t−1, A]

+ 4nbE[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

X5
t−nb−1, A]

− nb(6nb + 4)E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

Xt−nb−1X
4
t−nb−2, A]

− 2nb(6nb + 4)E[Y1,t−nb
Xt−nb−1]Ē[Y1,t−nb

X3
t−nb−1X

2
t−nb−2, A]

+ 2nb(4n
2
b + 9nb + 4)E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ 4n2
bE[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

4
t−1, A]

+ 4n2
b(nb − 1)E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−1X

2
t−2, A]

+ 8n2
bE[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
X3

t−nb−1X
2
t−1, A]

− 4n2
b(3nb + 2)E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A]

+ n2
bE

2[Y1,t−nb
Xt−nb−1]Ē[X4

t−1, A] − n2
bE

2[Y1,t−nb
Xt−nb−1]Ē[X2

t−1X
2
t−2, A]

+ 4n2
bω2E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
X3

t−nb−1, A]

− 4n2
b(nb + 1)ω2E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

+ 4n3
bω2E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−1, A]

]

+
1

n4

[

− nbĒ[Y 2
1,t−nb

X6
t−nb−1, A] + nb(nb + 1)Ē[Y 2

1,t−nb
X2

t−nb−1X
4
t−nb−2, A]

+ 2nb(nb + 1)Ē[Y 2
1,t−nb

X4
t−nb−1X

2
t−nb−2, A]
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− nb(n
2
b + 3nb + 2)Ē[Y 2

1,t−nb
X2

t−nb−1X
2
t−nb−2X

2
t−nb−3, A]

+ 2nb(nb + 1)Ē[Y1,t−nb
X5

t−nb−1Y1,t−nb−1Xt−nb−2, A]

− nb(n
2
b + 3nb + 2)Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
4
t−nb−3, A]

+ 2nb(nb + 1)Ē[Y1,t−nb
X3

t−nb−1Y1,t−nb−1X
3
t−nb−2, A]

− 4nb(n
2
b + 3nb + 2)Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1X
3
t−nb−2X

2
t−nb−3, A]

+ nb(n
3
b + 6n2

b + 11nb + 6)Ē[Y1,t−nb
Xt−nb−1Y1,t−nb−1Xt−nb−2X

2
t−nb−3X

2
t−nb−4, A]

− n2
bĒ[Y 2

1,t−nb
X2

t−nb−1X
4
t−nb−2, A]

− n2
b(nb − 1)Ē[Y 2

1,t−nb
X2

t−nb−1X
2
t−1X

2
t−2, A]

+ n2
b(nb + 1)Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
4
t−1, A]

+ n2
b(nb + 1)(nb − 1)Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
2
t−1X

2
t−2, A]

− 2n2
bĒ[Y 2

1,t−nb
X4

t−nb−1X
2
t−1, A]

+ 2n2
b(nb + 1)Ē[Y 2

1,t−nb
X2

t−nb−1X
2
t−nb−2X

2
t−1, A]

+ 4n2
b(nb + 1)Ē[Y1,t−nb

X3
t−nb−1Y1,t−nb−1Xt−nb−2X

2
t−1, A]

− 2n2
b(n

2
b + 3nb + 2)Ē[Y1,t−nb

Xt−nb−1Y1,t−nb−1Xt−nb−2X
2
t−nb−3X

2
t−1, A]

− 2n2
bE[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
X5

t−nb−1, A]

+ 2n2
b(nb + 1)E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

+ 4n2
b(nb + 1)E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

− 2n2
b(n

2
b + 3nb + 2)E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

− 2n3
bE[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

4
t−1, A]

− 2n3
b(nb − 1)E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−1X

2
t−2, A]

− 4n3
bE[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
X3

t−nb−1X
2
t−1, A]

+ 4n3
b(nb + 1)E[Y1,t−nb

Xt−nb−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A]

]

.

Next, we expand Ē[(S3,n − ω3,n)2(S2,n − ω2)
2, A]:

Ē[(S3,n − ω3,n)2(S2,n − ω2)
2, A] = Ē[S2

3,nS
2
2,n, A] − 2ω2Ē[S2

3,nS2,n, A]

− 2ω3,nĒ[S3,nS
2
2,n, A] + ω2

3,nĒ[S2
2,n, A] + 4ω3,nω2Ē[S3,nS2,n, A]

+ ω2
2Ē[S2

3,n, A] − 2ω2
3,nω2Ē[S2,n, A] − 2ω3,nω

2
2Ē[S3,n, A] + ω2

3,nω
2
2P (X ∈ A)



485

=nb

(
1

n3
− nb

n4

)

Ē[Y 2
2,t−nb

X2
t−nb−1X

4
t−1, A]

+ nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y 2
2,tX

2
t−1X

2
t−nb−1X

2
t−nb−2, A]

+ nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1Y2,t−1Xt−2X
4
t−nb−1, A]

+ nb(nb − 1)

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1X

2
t−nb−2, A]

+
nb

n4
Ē[Y 2

2,tX
6
t−1, A] +

nb

n4
(nb − 1)Ē[Y 2

2,tX
2
t−1X

4
t−2, A]

+ 2
nb

n4
(nb − 1)Ē[Y 2

2,tX
4
t−1X

2
t−2, A] +

nb

n4
(n2

b − 3nb + 2)Ē[Y 2
2,tX

2
t−1X

2
t−2X

2
t−3, A]

+ 2
nb

n4
(nb − 1)Ē[Y2,tX

5
t−1Y2,t−1Xt−2, A]

+
nb

n4
(n2

b − 3nb + 2)Ē[Y2,tXt−1Y2,t−1Xt−2X
4
t−3, A]

+ 2
nb

n4
(nb − 1)Ē[Y2,tX

3
t−1Y2,t−1X

3
t−2, A]

+ 4
nb

n4
(n2

b − 3nb + 2)Ē[Y2,tXt−1Y2,t−1X
3
t−2X

2
t−3, A]

+
nb

n4
(n3

b − 6n2
b + 11nb − 6)Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−3X

2
t−4, A]

+ 2nb

(
1

n3
− nb

n4

)

Ē[Y 2
2,tX

4
t−1X

2
t−nb−1, A]

+ 2nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y 2
2,tX

2
t−1X

2
t−2X

2
t−nb−1, A]

+ 4nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y2,tX
3
t−1Y2,t−1Xt−2X

2
t−nb−1, A]

+ 2nb(n
2
b − 3nb + 2)

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3X

2
t−nb−1, A]

− 2ω2
nb

n3
Ē[Y 2

2,tX
4
t−1, A] − 2ω2

nb

n3
(nb − 1)Ē[Y 2

2,tX
2
t−1X

2
t−2, A]

− 2ω2nb

(
1

n2
− nb

n3

)

Ē[Y 2
2,tX

2
t−1X

2
t−nb−1, A]

− 4ω2
nb

n3
(nb − 1)Ē[Y2,tX

3
t−1Y2,t−1Xt−2, A]

− 2ω2
nb

n3
(n2

b − 3nb + 2)Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3, A]

− 2ω2nb(nb − 1)

(
1

n2
− nb

n3

)

Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1, A]

− 2ω3,n
nb

n3
Ē[Y2,tX

5
t−1, A] − 2ω3,n

nb

n3
(nb − 1)Ē[Y2,tXt−1X

4
t−2, A]

− 4ω3,n
nb

n3
(nb − 1)Ē[Y2,tX

3
t−1X

2
t−2, A]
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− 2ω3,n
nb

n3
(n2

b − 3nb + 2)Ē[Y2,tXt−1X
2
t−2X

2
t−3, A]

− 2ω3,nnb

(
1

n2
− nb

n3

)

Ē[Y2,tXt−1X
4
t−nb−1, A]

− 2ω3,nnb

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

Ē[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2, A]

− 4ω3,nnb

(
1

n2
− nb

n3

)

Ē[Y2,tX
3
t−1X

2
t−nb−1, A]

− 4ω3,nnb(nb − 1)

(
1

n2
− nb

n3

)

Ē[Y2,tXt−1X
2
t−2X

2
t−nb−1, A]

+ ω2
3,n

1

n
Ē[X4

t−1, A] + ω2
3,n

(

1 − 1

n

)

Ē[X2
t−1X

2
t−2, A]

+ 4ω2ω3,n
nb

n2
Ē[Y2,tX

3
t−1, A] + 4ω2ω3,n

nb

n2
(nb − 1)Ē[Y2,tXt−1X

2
t−2, A]

+ 4ω2ω3,n
nb

n2
(n− nb)Ē[Y2,tXt−1X

2
t−nb−1, A]

+ ω2
2

nb

n2
Ē
[
Y 2

2,tX
2
t−1, A

]
+ ω2

2

nb

n2
(nb − 1)Ē [Y2,tXt−1Y2,t−1Xt−2, A]

− 2ω2ω
2
3,nĒ[X2

t−1, A] − 2ω2
2ω3,n

nb

n
Ē[Y2,tXt−1, A] + ω2

2ω
2
3,nP (X ∈ A).

The truncated expectation of (S3,n − ω3,n)2(S2,n − ω2)
2 is as follows:

• Ē[(S3,n − ω3,n)2(S2,n − ω2)
2, A] =

1

n2

[

nbĒ[Y 2
2,tX

2
t−1X

2
t−nb−1X

2
t−nb−2, A]

+ nb(nb − 1)Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1X

2
t−nb−2, A]

− 2nbω2Ē[Y 2
2,tX

2
t−1X

2
t−nb−1, A]

− 2nb(nb − 1)ω2Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1, A]

− 2n2
bE[Y2,tXt−1]Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2, A]

+ n2
bE

2[Y2,tXt−1]Ē[X2
t−1X

2
t−2, A] + 4n2

bω2E[Y2,tXt−1]Ē[Y2,tXt−1X
2
t−nb−1, A]

+ nbω
2
2Ē[Y 2

2,tX
2
t−1, A] + nb(nb − 1)ω2

2Ē[Y2,tXt−1Y2,t−1Xt−2, A]

− 2n2
bω2E

2[Y2,tXt−1]Ē[X2
t−1, A] − 2n2

bω
2
2E[Y2,tXt−1]Ē[Y2,tXt−1, A]

+ n2
bω

2
2E

2[Y2,tXt−1]P (X ∈ A)
]

+
1

n3

[

nbĒ[Y 2
2,tX

2
t−1X

4
t−nb−1, A] − nb(2nb + 1)Ē[Y 2

2,tX
2
t−1X

2
t−nb−1X

2
t−nb−2, A]

+ nb(nb − 1)Ē[Y2,tXt−1Y2,t−1Xt−2X
4
t−nb−1, A]

− nb(nb − 1)(2nb + 1)Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−nb−1X

2
t−nb−2, A]
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+ 2nbĒ[Y 2
2,tX

4
t−1X

2
t−nb−1, A] + 2nb(nb − 1)Ē[Y 2

2,tX
2
t−1X

2
t−2X

2
t−nb−1, A]

+ 4nb(nb − 1)Ē[Y2,tXt−1Y2,t−1X
3
t−2X

2
t−nb−1, A]

+ 2nb(n
2
b − 3nb + 2)Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−3X

2
t−nb−1, A]

− 2nbω2Ē[Y 2
2,tX

4
t−1, A] − 2nb(nb − 1)ω2Ē[Y 2

2,tX
2
t−1X

2
t−2, A]

+ 2n2
bω2Ē[Y 2

2,tX
2
t−1X

2
t−nb−1, A] − 4nb(nb − 1)ω2Ē[Y2,tX

3
t−1Y2,t−1Xt−2, A]

− 2nb(n
2
b − 3nb + 2)ω2Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−3, A]

+ 2n2
b(nb − 1)ω2Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−nb−1, A]

− 2n2
bE[Y2,tXt−1]Ē[Y2,tXt−1X

4
t−nb−1, A]

+ 2n2
b(2nb + 1)E[Y2,tXt−1]Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2, A]

− 4n2
bE[Y2,tXt−1]Ē[Y2,tX

3
t−1X

2
t−nb−1, A]

− 4n2
b(nb − 1)E[Y2,tXt−1]Ē[Y2,tXt−1X

2
t−2X

2
t−nb−1, A]

+ n2
bE

2[Y2,tXt−1]Ē[X4
t−1, A] − n2

bE
2[Y2,tXt−1]Ē[X2

t−1X
2
t−2, A]

+ 4n2
bω2E[Y2,tXt−1]Ē[Y2,tX

3
t−1, A]

+ 4n2
b(nb − 1)ω2E[Y2,tXt−1]Ē[Y2,tXt−1X

2
t−2, A]

− 4n3
bω2E[Y2,tXt−1]Ē[Y2,tXt−1X

2
t−nb−1, A]

]

+
1

n4

[

− n2
bĒ[Y 2

2,tX
2
t−1X

4
t−nb−1, A] + n2

b(nb + 1)Ē[Y 2
2,tX

2
t−1X

2
t−nb−1X

2
t−nb−2, A]

− n2
b(nb − 1)Ē[Y2,tXt−1Y2,t−1Xt−2X

4
t−nb−1, A]

+ n2
b(nb − 1)(nb + 1)Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−nb−1X

2
t−nb−2, A]

+ nbĒ[Y 2
2,tX

6
t−1, A] + nb(nb − 1)Ē[Y 2

2,tX
2
t−1X

4
t−2, A]

+ 2nb(nb − 1)Ē[Y 2
2,tX

4
t−1X

2
t−2, A]

+ nb(n
2
b − 3nb + 2)Ē[Y 2

2,tX
2
t−1X

2
t−2X

2
t−3, A]

+ 2nb(nb − 1)Ē[Y2,tXt−1Y2,t−1X
5
t−2, A]

+ nb(n
2
b − 3nb + 2)Ē[Y2,tXt−1Y2,t−1Xt−2X

4
t−3, A]

+ 2nb(nb − 1)Ē[Y2,tX
3
t−1Y2,t−1X

3
t−2, A]

+ 4nb(n
2
b − 3nb + 2)Ē[Y2,tXt−1Y2,t−1X

3
t−2X

2
t−3, A]

+ nb(n
3
b − 6n2

b + 11nb − 6)Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3X

2
t−4, A]

− 2n2
bĒ[Y 2

2,tX
4
t−1X

2
t−nb−1, A] − 2n2

b(nb − 1)Ē[Y 2
2,tX

2
t−1X

2
t−2X

2
t−nb−1, A]
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− 4n2
b(nb − 1)Ē[Y2,tXt−1Y2,t−1X

3
t−2X

2
t−nb−1, A]

− 2n2
b(n

2
b − 3nb + 2)Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−3X

2
t−nb−1, A]

− 2n2
bE[Y2,tXt−1]Ē[Y2,tX

5
t−1, A] − 2n2

b(nb − 1)E[Y2,tXt−1]Ē[Y2,tXt−1X
4
t−2, A]

− 4n2
b(nb − 1)E[Y2,tXt−1]Ē[Y2,tX

3
t−1X

2
t−2, A]

− 2n2
b(n

2
b − 3nb + 2)E[Y2,tXt−1]Ē[Y2,tXt−1X

2
t−2X

2
t−3, A]

+ 2n3
bE[Y2,tXt−1]Ē[Y2,tXt−1X

4
t−nb−1, A]

− 2n3
b(nb + 1)E[Y2,tXt−1]Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2, A]

+ 4n3
bE[Y2,tXt−1]Ē[Y2,tX

3
t−1X

2
t−nb−1, A]

+ 4n3
b(nb − 1)E[Y2,tXt−1]Ē[Y2,tXt−1X

2
t−2X

2
t−nb−1, A]

]

.

The truncated expectation of (S4,n − ω4)
2(S2,n − ω2)

2 is as follows:

• Ē[(S4,n − ω4)
2(S2,n − ω2)

2, A] =
[

ω2
2Ē[Y2,tXt−1Y2,t−1Xt−2, A]

− 2ω2E
2[Y2,tXt−1]Ē[X2

t−1, A] − 2ω2
2E[Y2,tXt−1]Ē[Y2,tXt−1, A]

+ ω2
2E

2[Y2,tXt−1]P (X ∈ A) − 2ω2Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3, A]

+ 4ω2E[Y2,tXt−1]Ē[Y2,tXt−1X
2
t−2, A] + Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−3X

2
t−4, A]

− 2E[Y2,tXt−1]Ē[Y2,tXt−1X
2
t−2X

2
t−3, A]

]

+
1

n

[

ω2
2Ē[Y 2

2,tX
2
t−1, A] − ω2

2Ē[Y2,tXt−1Y2,t−1Xt−2, A]

− 2ω2Ē[Y 2
2,tX

2
t−1X

2
t−2, A] − 4ω2Ē[Y2,tX

3
t−1Y2,t−1Xt−2, A]

+ 6ω2Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3, A] − 2E[Y2,tXt−1]Ē[Y2,tXt−1X

4
t−nb−1, A]

+E2[Y2,tXt−1]Ē[X4
t−1, A] + 4ω2E[Y2,tXt−1]Ē[Y2,tX

3
t−1, A]

− 4ω2E[Y2,tXt−1]Ē[Y2,tXt−1X
2
t−2, A] + Ē[Y 2

2,tX
2
t−1X

2
t−2X

2
t−3, A]

+ Ē[Y2,tXt−1Y2,t−1Xt−2X
4
t−3, A] + 4Ē[Y2,tXt−1Y2,t−1X

3
t−2X

2
t−3, A]

− 6Ē[Y2,tXt−1Y2,t−1Xt−2X
2
t−3X

2
t−4, A] − 2E[Y2,tXt−1]Ē[Y2,tXt−1X

4
t−2, A]

− 4E[Y2,tXt−1]Ē[Y2,tX
3
t−1X

2
t−2, A] + 6E[Y2,tXt−1]Ē[Y2,tXt−1X

2
t−2X

2
t−3, A]

]

+
1

n2

[

− 2ω2Ē[Y 2
2,tX

4
t−1, A] + 2ω2Ē[Y 2

2,tX
2
t−1X

2
t−2, A]

+ 4ω2Ē[Y2,tX
3
t−1Y2,t−1Xt−2, A] − 4ω2Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−3, A]
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+ Ē[Y 2
2,tX

2
t−1X

4
t−2, A] + 2Ē[Y 2

2,tX
4
t−1X

2
t−2, A]

− 3Ē[Y 2
2,tX

2
t−1X

2
t−2X

2
t−3, A] + 2Ē[Y2,tXt−1Y2,t−1X

5
t−2, A]

− 3Ē[Y2,tXt−1Y2,t−1Xt−2X
4
t−3, A] + 2Ē[Y2,tX

3
t−1Y2,t−1X

3
t−2, A]

− 12Ē[Y2,tXt−1Y2,t−1X
3
t−2X

2
t−3, A] + 11Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−3X

2
t−4, A]

− 2E[Y2,tXt−1]Ē[Y2,tX
5
t−1, A] + 2E[Y2,tXt−1]Ē[Y2,tXt−1X

4
t−2, A]

+ 4E[Y2,tXt−1]Ē[Y2,tX
3
t−1X

2
t−2, A] − 4E[Y2,tXt−1]Ē[Y2,tXt−1X

2
t−2X

2
t−3, A]

]

+
1

n3

[

Ē[Y 2
2,tX

6
t−1, A] − Ē[Y 2

2,tX
2
t−1X

4
t−2, A] − 2Ē[Y 2

2,tX
4
t−1X

2
t−2, A]

+ 2Ē[Y 2
2,tX

2
t−1X

2
t−2X

2
t−3, A] − 2Ē[Y2,tXt−1Y2,t−1X

5
t−2, A]

+ 2Ē[Y2,tXt−1Y2,t−1Xt−2X
4
t−3, A] − 2Ē[Y2,tX

3
t−1Y2,t−1X

3
t−2, A]

+ 8Ē[Y2,tXt−1Y2,t−1X
3
t−2X

2
t−3, A] − 6Ē[Y2,tXt−1Y2,t−1Xt−2X

2
t−3X

2
t−4, A]

]

.

Next, we expand Ē[(S1,n − ω1,n)(S2,n − ω2)
2(S3,n − ω3,n), A]:

Ē[(S1,n − ω1,n)(S2,n − ω2)
2(S3,n − ω3,n), A] = Ē[S1,nS

2
2,nS3,n, A] − ω1,nĒ[S2

2,nS3,n, A]

− 2ω2Ē[S1,nS2,nS3,n, A] − ω3,nĒ[S1,nS
2
2,n, A] + 2ω1,nω2Ē[S2,nS3,n, A]

+ ω2
2Ē[S1,nS3,n, A] + ω1,nω3,nĒ[S2

2,n, A] + 2ω2ω3,nĒ[S1,nS2,n, A] − ω1,nω
2
2Ē[S3,n, A]

− 2ω1,nω2ω3,nĒ[S2,n, A] − ω2
2ω3,nĒ[S1,n, A] + ω1,nω

2
2ω3,nP (X ∈ A)

=nb

(
1

n3
− nb

n4

)

Ē[Y2,tXt−1Y1,t−nb
X5

t−nb−1, A]

+ nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

+ 2nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

+ nb

(
1

n
− 3

n2
(nb + 1) +

1

n3
(3n2

b + 6nb + 2) − nb

n4
(n2

b + 3nb + 2)

)

· Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ nb

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1Y2,tX

5
t−1, A]

+ nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1X

4
t−2, A]

+ 2nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1Y2,tX

3
t−1X

2
t−2, A]
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+ nb(n
2
b − 3nb + 2)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1X

2
t−2X

2
t−3, A]

+ 2nb

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
X3

t−nb−1Y2,tX
3
t−1, A]

+ 2nb(nb − 1)

(
1

n3
− nb

n4

)

Ē[Y1,t−nb
X3

t−nb−1Y2,tXt−1X
2
t−2, A]

+ 2nb

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2Y2,tX

3
t−1, A]

+ 2nb(nb − 1)

(
1

n2
− 1

n3
(2nb + 1) +

nb

n4
(nb + 1)

)

· Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2Y2,tXt−1X

2
t−2, A]

− nb

n3
ω1,nĒ[Y2,tX

5
t−1, A] − nb

n3
(nb − 1)ω1,nĒ[Y2,tXt−1X

4
t−2, A]

− 2
nb

n3
(nb − 1)ω1,nĒ[Y2,tX

3
t−1X

2
t−2, A]

− nb

n3
(n2

b − 3nb + 2)ω1,nĒ[Y2,tXt−1X
2
t−2X

2
t−3, A]

− nb

(
1

n2
− nb

n3

)

ω1,nĒ[Y2,tXt−1X
4
t−nb−1, A]

− nb

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

ω1,nĒ[Y2,tXt−1X
2
t−nb−1X

2
t−nb−2, A]

− 2nb

(
1

n2
− nb

n3

)

ω1,nĒ[Y2,tX
3
t−1X

2
t−nb−1, A]

− 2nb(nb − 1)

(
1

n2
− nb

n3

)

ω1,nĒ[Y2,tXt−1X
2
t−2X

2
t−nb−1, A]

− 2nb

(
1

n2
− nb

n3

)

ω2Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1, A]

− 2nb

(
1

n
− (2nb + 1)

1

n2
+ nb(nb + 1)

1

n3

)

ω2Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

− 2nb

(
1

n2
− nb

n3

)

ω2Ē[Y1,t−nb
Xt−nb−1Y2,tX

3
t−1, A]

− 2nb(nb − 1)

(
1

n2
− nb

n3

)

ω2Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1X

2
t−2, A]

−
(

1

n2
− nb

n3

)

ω3,nĒ[Y1,t−nb
X5

t−nb−1, A]

−
(

1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

ω3,nĒ[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

− 2

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

ω3,nĒ[Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

−
(

1 − 3

n
(nb + 1) +

1

n2
(2 + 6nb + 3n2

b) −
nb

n3
(2 + 3nb + n2

b)

)
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· ω3,nĒ[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

− nb

(
1

n2
− nb

n3

)

ω3,nĒ[Y1,t−nb
Xt−nb−1X

4
t−1, A]

− nb(nb − 1)

(
1

n2
− nb

n3

)

ω3,nĒ[Y1,t−nb
Xt−nb−1X

2
t−1X

2
t−2, A]

− 2nb

(
1

n2
− nb

n3

)

ω3,nĒ[Y1,t−nb
X3

t−nb−1X
2
t−1, A]

− 2nb

(
1

n
− 1

n2
(2nb + 1) +

1

n3
nb(nb + 1)

)

ω3,nĒ[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A]

+ 2
nb

n2
ω1,nω2Ē[Y2,tX

3
t−1, A] + 2

nb

n2
(nb − 1)ω1,nω2Ē[Y2,tXt−1X

2
t−2, A]

+ 2
nb

n2
(n− nb)ω1,nω2Ē[Y2,tXt−1X

2
t−nb−1, A]

+ nb

(
1

n
− nb

n2

)

ω2
2Ē[Y1,t−nb

Xt−nb−1Y2,tXt−1, A]

+
1

n
ω1,nω3,nĒ[X4

t−1, A] +

(

1 − 1

n

)

ω1,nω3,nĒ[X2
t−1X

2
t−2, A]

+ 2

(
1

n
− nb

n2

)

ω2ω3,nĒ[Y1,t−nb
X3

t−nb−1, A]

+ 2

(

1 − 1

n
(2nb + 1) +

nb

n2
(nb + 1)

)

ω2ω3,nĒ[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

+ 2nb

(
1

n
− nb

n2

)

ω2ω3,nĒ[Y1,t−nb
Xt−nb−1X

2
t−1, A] − ω1,nω

2
2

nb

n
Ē[Y2,tXt−1, A]

− 2ω1,nω2ω3,nĒ[X2
t−1, A] −

(

1 − nb

n

)

ω2
2ω3,nĒ[Y1,t−nb

Xt−nb−1, A]

+ ω1,nω
2
2ω3,nP (X ∈ A).

The truncated expectation of (S1,n − ω1,n)(S2,n − ω2)
2(S3,n − ω3,n) is as follows:

• Ē[(S1,n − ω1,n)(S2,n − ω2)
2(S3,n − ω3,n), A]

=
nb

n

[

Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

−E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2, A]

− 2ω2Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

−E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ 2ω2E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−nb−1, A] + ω2

2Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1, A]

+E[Y1,t−nb
Xt−nb−1]E[Y2,tXt−1]Ē[X2

t−1X
2
t−2, A]
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+ 2ω2E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

− ω2
2E[Y1,t−nb

Xt−nb−1]Ē[Y2,tXt−1, A]

− 2ω2E[Y1,t−nb
Xt−nb−1]E[Y2,tXt−1]Ē[X2

t−1, A]

− ω2
2E[Y2,tXt−1]Ē[Y1,t−nb

Xt−nb−1, A]

+ ω2
2E[Y1,t−nb

Xt−nb−1]E[Y2,tXt−1]P (X ∈ A)
]

+
nb

n2

[

Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

+ 2Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

− 3(nb + 1)Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

+ 2Ē[Y2,tX
3
t−1Y1,t−nb

Xt−nb−1X
2
t−nb−2, A]

+ 2(nb − 1)Ē[Y2,tXt−1X
2
t−2Y1,t−nb

Xt−nb−1X
2
t−nb−2, A]

−E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

4
t−nb−1, A]

+ nbE[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2, A]

+ (2nb + 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2, A]

− 2E[Y1,t−nb
Xt−nb−1]Ē[Y2,tX

3
t−1X

2
t−nb−1, A]

− 2(nb − 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−2X

2
t−nb−1, A]

− 2ω2Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1, A]

+ 2(2nb + 1)ω2Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

− 2ω2Ē[Y2,tX
3
t−1Y1,t−nb

Xt−nb−1, A]

− 2(nb − 1)ω2Ē[Y2,tXt−1X
2
t−2Y1,t−nb

Xt−nb−1, A]

−E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

− 2E[Y2,tXt−1]Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

+ 3(nb + 1)E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−nb−3, A]

− 2nbE[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A]

+ 2ω2E[Y1,t−nb
Xt−nb−1]Ē[Y2,tX

3
t−1, A]

+ 2(nb − 1)ω2E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−2, A]

− 2nbω2E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−nb−1, A]

− 2nbω2E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−nb−1, A]
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− nbω
2
2Ē[Y2,tXt−1Y1,t−nb

Xt−nb−1, A] +E[Y1,t−nb
Xt−nb−1]E[Y2,tXt−1]Ē[X4

t−1, A]

− nbE[Y1,t−nb
Xt−nb−1]E[Y2,tXt−1]Ē[X2

t−1X
2
t−2, A]

−E[Y1,t−nb
Xt−nb−1]E[Y2,tXt−1]Ē[X2

t−1X
2
t−2, A]

+ 2ω2E[Y2,tXt−1]Ē[Y1,t−nb
X3

t−nb−1, A]

− 2(2nb + 1)ω2E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

+ 2nbω2E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−1, A]

+ nbω
2
2E[Y1,t−nb

Xt−nb−1]Ē[Y2,tXt−1, A]

+ 2nbω2E[Y1,t−nb
Xt−nb−1]E[Y2,tXt−1]Ē[X2

t−1, A]

+ nbω
2
2E[Y2,tXt−1]Ē[Y1,t−nb

Xt−nb−1, A]

− nbω
2
2E[Y1,t−nb

Xt−nb−1]E[Y2,tXt−1]P (X ∈ A)
]

+
nb

n3

[

Ē[Y2,tXt−1Y1,t−nb
X5

t−nb−1, A]

− (2nb + 1)Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

− 2(2nb + 1)Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

+ (3n2
b + 6nb + 2)Ē[Y2,tXt−1Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−nb−3, A]

+ Ē[Y1,t−nb
Xt−nb−1Y2,tX

5
t−1, A] + (nb − 1)Ē[Y1,t−nb

Xt−nb−1Y2,tXt−1X
4
t−2, A]

+ 2(nb − 1)Ē[Y1,t−nb
Xt−nb−1Y2,tX

3
t−1X

2
t−2, A]

+ (n2
b − 3nb + 2)Ē[Y1,t−nb

Xt−nb−1Y2,tXt−1X
2
t−2X

2
t−3, A]

+ 2Ē[Y1,t−nb
X3

t−nb−1Y2,tX
3
t−1, A]

+ 2(nb − 1)Ē[Y1,t−nb
X3

t−nb−1Y2,tXt−1X
2
t−2, A]

− 2(2nb + 1)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2Y2,tX

3
t−1, A]

− 2(nb − 1)(2nb + 1)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2Y2,tXt−1X

2
t−2, A]

−E[Y1,t−nb
Xt−nb−1]Ē[Y2,tX

5
t−1, A]

− (nb − 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

4
t−2, A]

− 2(nb − 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tX

3
t−1X

2
t−2, A]

− (n2
b − 3nb + 2)E[Y1,t−nb

Xt−nb−1]Ē[Y2,tXt−1X
2
t−2X

2
t−3, A]

+ nbE[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

4
t−nb−1, A]

+ nbE[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

4
t−nb−1, A]
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− nb(2nb + 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2, A]

− nb(nb + 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2, A]

+ 2nbE[Y1,t−nb
Xt−nb−1]Ē[Y2,tX

3
t−1X

2
t−nb−1, A]

+ 2nbE[Y1,t−nb
Xt−nb−1]Ē[Y2,tX

3
t−1X

2
t−nb−1, A]

+ 2nb(nb − 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−2X

2
t−nb−1, A]

+ 2nb(nb − 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−2X

2
t−nb−1, A]

+ 2nbω2Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1, A]

− 2nb(nb + 1)ω2Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

+ 2nbω2Ē[Y1,t−nb
Xt−nb−1Y2,tX

3
t−1, A]

+ 2nb(nb − 1)ω2Ē[Y1,t−nb
Xt−nb−1Y2,tXt−1X

2
t−2, A]

−E[Y2,tXt−1]Ē[Y1,t−nb
X5

t−nb−1, A]

+ (2nb + 1)E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

+ 2(2nb + 1)E[Y2,tXt−1]Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

− (3n2
b + 6nb + 2)E[Y2,tXt−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−nb−3, A]

− nbE[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

4
t−1, A]

− nb(nb − 1)E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−1X

2
t−2, A]

− 2nbE[Y2,tXt−1]Ē[Y1,t−nb
X3

t−nb−1X
2
t−1, A]

+ 2nb(2nb + 1)E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A]

− 2nbω2E[Y1,t−nb
Xt−nb−1]Ē[Y2,tX

3
t−1, A]

− 2nb(nb − 1)ω2E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−2, A]

+ 2n2
bω2E[Y1,t−nb

Xt−nb−1]Ē[Y2,tXt−1X
2
t−nb−1, A]

− nbE[Y1,t−nb
Xt−nb−1]E[Y2,tXt−1]Ē[X4

t−1, A]

+ nbE[Y1,t−nb
Xt−nb−1]E[Y2,tXt−1]Ē[X2

t−1X
2
t−2, A]

− 2nbω2E[Y2,tXt−1]Ē[Y1,t−nb
X3

t−nb−1, A]

+ 2nb(nb + 1)ω2E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2, A]

− 2n2
bω2E[Y2,tXt−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−1, A]

]
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+
n2

b

n4

[

− Ē[Y2,tXt−1Y1,t−nb
X5

t−nb−1, A]

+ (nb + 1)Ē[Y2,tXt−1Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

+ 2(nb + 1)Ē[Y2,tXt−1Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

− (3n2
b + 6nb + 2)Ē[Y2,tXt−1Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−nb−3, A]

− Ē[Y1,t−nb
Xt−nb−1Y2,tX

5
t−1, A] − (nb − 1)Ē[Y1,t−nb

Xt−nb−1Y2,tXt−1X
4
t−2, A]

− 2(nb − 1)Ē[Y1,t−nb
Xt−nb−1Y2,tX

3
t−1X

2
t−2, A]

− (n2
b − 3nb + 2)Ē[Y1,t−nb

Xt−nb−1Y2,tXt−1X
2
t−2X

2
t−3, A]

− 2Ē[Y1,t−nb
X3

t−nb−1Y2,tX
3
t−1, A]

− 2(nb − 1)Ē[Y1,t−nb
X3

t−nb−1Y2,tXt−1X
2
t−2, A]

+ 2(nb + 1)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2Y2,tX

3
t−1, A]

+ 2(nb − 1)(nb + 1)Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2Y2,tXt−1X

2
t−2, A]

+E[Y1,t−nb
Xt−nb−1]Ē[Y2,tX

5
t−1, A]

+ (nb − 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

4
t−2, A]

+ 2(nb − 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tX

3
t−1X

2
t−2, A]

+ (n2
b − 3nb + 2)E[Y1,t−nb

Xt−nb−1]Ē[Y2,tXt−1X
2
t−2X

2
t−3, A]

− nbE[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

4
t−nb−1, A]

+ nb(nb + 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−nb−1X

2
t−nb−2, A]

− 2nbE[Y1,t−nb
Xt−nb−1]Ē[Y2,tX

3
t−1X

2
t−nb−1, A]

− 2nb(nb − 1)E[Y1,t−nb
Xt−nb−1]Ē[Y2,tXt−1X

2
t−2X

2
t−nb−1, A]

+E[Y2,tXt−1]Ē[Y1,t−nb
X5

t−nb−1, A]

− (nb + 1)E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

4
t−nb−2, A]

− 2(nb + 1)E[Y2,tXt−1]Ē[Y1,t−nb
X3

t−nb−1X
2
t−nb−2, A]

+ (n2
b + 3nb + 2)E[Y2,tXt−1]Ē[Y1,t−nb

Xt−nb−1X
2
t−nb−2X

2
t−nb−3, A]

+ nbE[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

4
t−1, A]

+ nb(nb − 1)E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−1X

2
t−2, A]

+ 2nbE[Y2,tXt−1]Ē[Y1,t−nb
X3

t−nb−1X
2
t−1, A]

− 2nb(nb + 1)E[Y2,tXt−1]Ē[Y1,t−nb
Xt−nb−1X

2
t−nb−2X

2
t−1, A].
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Appendix F

Appendix for Chapter 8

The following proposition was obtained from [18].

Proposition F.1 Let X1, · · · , Xn be i.i.d. real valued random variables. If E|X1|j <∞,

j ≥ 2, then there are constants Cj > 0 and Dj > 0 such that

E|X̄ − µ|j ≤ CjE|X1|jn−j/2,

|E(X̄ − µ)j | ≤ DjE|X1|jn−(j+1)/2, j odd.

The following lemma is from [76].

Lemma F.2 (Hurt) Let i1, · · · , ir be nonnegative real numbers,
∑r

k=1 ik = j, j > 0,

and X1, · · · , Xr be random variables. Then

E[ |X1|i1 . . . |Xr|ir ] ≤
{

[E|X1|j ]i1 . . . [E|Xr|j ]ir
}1/j

,

assuming only that the moments exist.

The following theorem was obtained from [94], p.154.

Theorem F.3 If Xn
P→ X and |Xn| ≤ Y with Y integrable, then X is integrable, and

E[Xn] → E[X].
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Bull. Acad. Sci. (Nauk) U.R.S.S., Ser. Math., 5:3–14, 1941.

[90] L. Kullback and R.A. Leibler. On information and sufficiency. Annals of Mathe-

matical Statistics, 22:79–86, 1951.

[91] Naoto Kunitomo and Taku Yamamoto. Properties of predictors in misspecified

autoregressive time series models. Journal of the American Statistical Association,

80(392):941–950, 1985.

[92] E.L. Lehmann. Theory of Point Estimation. John Wiley and Sons, New York,

1983.

[93] H. Levy and H. M. Markowitz. Approximating expected utility by a function of

mean and variance. The American Economic Review, 69(3):308–317, 1979.
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