

A STUDY OF THE ORIGIN OF ATMOSPHERIC ORGANIC AEROSOLS

Thesis by
Lynn Mary Hildemann

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1990
(Submitted September 29, 1989)

© 1990

Lynn Mary Hildemann

All rights reserved

ACKNOWLEDGEMENTS

Many important people in my life have influenced my career path. My late father instilled me early on with a love for math and science, and a desire to use my intelligence to its full potential. Both he and Ray Owen receive credit for convincing me to attend Caltech as an undergraduate back in that intimidating era when less than 10% of the undergraduates were female. A fascinating introductory class in Environmental Engineering taught by Jim Morgan whetted my enthusiasm for environmental studies as a freshman, and motivated me to add Engineering as a second major. As a senior, thanks to a great sequence of classes taught by Rick Flagan, John Seinfeld, and Glen Cass, I became fascinated with air pollution. Throughout my many years as a graduate student, I have been fortunate to receive unflagging support and love from my mom and sister. The ability of Jim to put up with "almost anything" for many years also has been a great help.

This thesis would not have been possible without the generous contributions of many people and organizations.

First off, I would like to thank my advisor, Glen Cass, for his encouragement and guidance during the long undertaking of this "ambitious" research project.

Many of the parts used in this project were constructed by machinist Joseph Fontana and carpenter Rich Eastvedt. Thanks go to both of them for their patience and persistence in striving to teach me the rudiments of sound design strategies and basic shop skills.

The fieldwork performed for this project was facilitated by many groups and individuals. Greg Markowski provided assistance and advice in the field during most of the sampling experiments. The crew at Caltech's Central Steam Plant cooperated during sampling of the industrial boiler. Sampling of vehicular emissions using dynamometer facilities at the Haagen-Smit Laboratory in El Monte was made possible by the California Air Resources Board. Caltech's Housing Office allowed a single-family home to be used for the fireplace and natural gas home appliance experiments. Continental Food Service of Pasadena provided facilities and culinary expertise for the meat cooking experiments. Christos Christoforou and Joseph Fontana assisted during the cigarette sampling experiments. Various employees of Caltech's Physical Plant helped obtain grab samples of brake dust and paved road dust, and cooperated during sampling of the tar pot. The Los Angeles County

Arboretum, Rancho Santa Ana Park, and Eaton Canyon Nature Center allowed their facilities to be used for collection of the vegetation samples, and provided assistance in the location and identification of various plant species. Lynn Salmon and Monica Mazurek assisted in the planning and actual collection of the vegetation samples.

Thanks are due to NEA, Inc., for trace elemental analysis by x-ray fluorescence, and to Sunset Laboratory for measurement of elemental and organic carbon by combustion techniques. Analyses for ionic species were performed at Caltech by Lynn Salmon, Theresa Fall, and Michael Jones. Detailed analysis of the organic samples via high-resolution gas chromatography would not have been possible without the expertise and hard labor of Monica Mazurek. The time she has taken to teach me about organic analytical procedures is greatly appreciated.

Many individuals have helped to manipulate the vast amount of data generated by this project. I would like to thank Michael Jones, Heather Mason, and Chen Yuan for their careful, conscientious work on often tedious tasks. Ken McCue provided able assistance on matters ranging from computer programming to error analysis.

Various other people also have helped me during my stay at Caltech. Librarian Rayma Harrison has repeatedly provided assistance above and beyond the call of duty. Nancy Tomer has drafted and redrafted many figures on my behalf. Dixie Fiedler, Christina Conti and Pat Rankin have helped me numerous times with purchase orders and other administrative matters.

Finally, I would like to gratefully acknowledge the funding sources that supported this research project. The principal support for this research has been provided by the basic research grants program of the U.S. Environmental Protection Agency (EPA) (grant no. R-813277-01-0). It should be mentioned that this thesis has not been subject to the EPA's peer and policy review, and hence does not necessarily reflect the views of the EPA. In addition, mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use. Additional support was provided by the Tyler—Haagen-Smit Fellowship fund, and by allocations from general discretionary gifts to the Environmental Quality Laboratory received from the Hewlett Foundation (grant no. 83-1208), General Motors, Unocal, and Arco.

ABSTRACT

The sources of ambient organic particulate matter in urban areas are investigated through a program of emission source measurements, atmospheric measurements, and mathematical modeling of source/receptor relationships. A dilution sampler intended to collect fine organic aerosol from combustion sources is designed to simulate atmospheric cooling and dilution processes, so that organic vapors which condense under ambient conditions will be collected as particulate matter. This system is used to measure the emissions from a boiler burning distillate oil, a home fireplace, catalyst and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat cooking operations. Alternate techniques are used to sample the particulate matter emitted from cigarette smoking, a roofing tar pot, paved road dust, brake lining wear, tire wear, and vegetative detritus. The bulk chemical characteristics of the fine aerosol fraction are presented for each source. Over half of the fine aerosol mass emitted from automobiles, wood burning, meat cooking, home appliances, cigarettes, and tar pots is shown to consist of organic compounds.

The organic material collected from these sources is analyzed using high-resolution gas chromatography. Using a simple analytical protocol, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type is obtained, which proves to be a unique fingerprint that can be used to distinguish most sources from each other.

A mathematical model is used to predict the characteristics of fine ambient organic aerosol in the Los Angeles area that would prevail if the primary organic emissions are transported without chemical reaction. The model is found to track the seasonal variations observed in the ambient aerosol at the three sites

studied. Emissions from vehicles and fireplaces are identified as significant sources of solvent-extractable organic aerosol.

Differences between the model predictions and ambient concentrations that could be due to atmospheric chemical reaction are discussed. An upper limit on the amount of secondary organic aerosol present is estimated based on the difference between the acidic organic aerosol present in ambient samples versus that due to primary emissions as computed by the model. Finally, several hypotheses concerning the origin of the acidic organic aerosol are proposed.

TABLE OF CONTENTS

Acknowledgements	iii
Abstract	v
List of Figures	xii
List of Tables	xvii
Chapter 1. Introduction	1
1.1 MOTIVATION	1
1.2 APPROACH OF STUDY	2
1.3 REFERENCES	7
Chapter 2. A Dilution Stack Sampler for	
Collection of Organic Aerosol Emissions:	
Design, Characterization and Field Tests	10
2.1 INTRODUCTION	10
2.2 LITERATURE REVIEW	11
2.2.1 Collection of Source Samples	11
2.2.2 Analytical Techniques	14
2.3 DESIGN CONSIDERATIONS	14
2.4 DESCRIPTION OF DEVICE	15
2.5 LABORATORY TESTING	18
2.5.1 Mixing Within the Sampler	18
2.5.2 Particles Losses	19
2.5.3 10 μ m Cyclone Calibration	23
2.6 FIELD TESTS	25
2.7 COMPARISON WITH EPA METHOD 5	26
2.8 CONCLUSIONS	28
2.9 REFERENCES	29
2.10 APPENDIX: NOZZLE DESIGN	32

TABLE OF CONTENTS (continued)

Chapter 3. Emissions from Important Sources of Fine Organic Aerosol	33
3.1 INTRODUCTION	33
3.2 EXPERIMENTAL SECTION	36
3.2.1 Source Sampler Design	36
3.2.2 Source Sampler Preparation	36
3.2.3 Source Sampling Procedures	40
3.2.4 Sources Tested by Dilution Sampling	42
3.2.4.1 Stationary Industrial Sources	42
3.2.4.2 Mobile Sources	43
3.2.4.3 Dispersed Area Sources	43
3.2.5 Sources Tested by Resuspension	47
3.3 RESULTS AND DISCUSSION	52
3.3.1 Oil-Fired Boiler Emissions	52
3.3.2 Automobiles	61
3.3.3 Heavy-Duty Diesel Trucks	66
3.3.4 Fireplace	68
3.3.5 Meat-Cooking Operations	71
3.3.6 Natural Gas Home Appliances	72
3.3.7 Cigarettes	73
3.3.8 Tar Pots	75
3.3.9 Road Dust	75
3.3.10 Brake Dust	75
3.3.11 Tire Dust	76
3.3.12 Vegetative Detritus	76
3.4 CONCLUSIONS	77
3.5 REFERENCES	82

TABLE OF CONTENTS (continued)

Chapter 4. Quantitative Characterization of Organic Aerosol Sources by High-Resolution Gas Chromatography	89
4.1 INTRODUCTION	89
4.2 EXPERIMENTAL SECTION	90
4.2.1 Sample Collection	90
4.2.2 Extraction	92
4.2.3 Gas Chromatographic Analysis	93
4.2.4 Mass Quantification	94
4.2.5 Analytical Blanks	95
4.3 RESULTS	95
4.3.1 Total vs. Elutable Organics	95
4.3.2 Unresolved:Resolved Ratios	97
4.3.3 Organic Mass Distributions	101
4.3.3.1 Replicate Analyses	101
4.3.3.2 Oil-Fired Boiler Emissions	103
4.3.3.3 Motor Vehicle Emissions	105
4.3.3.4 Roofing Tar Pot	105
4.3.3.5 Tire Dust	108
4.3.3.6 Fireplace Combustion of Wood	108
4.3.3.7 Cigarette Smoke	114
4.3.3.8 Meat-Cooking Operations	114
4.3.3.9 Brake Dust	119
4.3.3.10 Natural Gas Home Appliance Emissions	119
4.3.3.11 Detritus from Urban Leaf Surfaces	122
4.3.3.12 Paved Road Dust	125
4.4 DISCUSSION	125
4.5 REFERENCES	132

TABLE OF CONTENTS (continued)

Chapter 5. Mathematical Modeling of Organic Aerosol	
Characteristics: Features Observable by	
High-Resolution Gas Chromatography	136
5.1 INTRODUCTION	136
5.2 MODELING APPROACH	138
5.3 RESULTS	143
5.3.1 Organic Carbon	143
5.3.2 Elutable Organics	145
5.3.3 Mass Distribution of Elutable Organics	150
5.3.4 Source Contributions to Model Predictions	156
5.4 CONCLUSIONS	158
5.5 REFERENCES	161
Chapter 6. Conclusions	164
6.1 SUMMARY OF RESULTS	164
6.2 FUTURE RESEARCH	165
6.2.1 Dilution Sampling Equipment for Organic Aerosols	165
6.2.2 Source Sampling Program	166
6.2.3 Identification of Unique Characteristics	167
6.2.4 Investigation of Secondary Organic Aerosols	168
6.2.5 Identification of Control Strategies	169
Appendix A. Meat-Cooking Operations: A Significant Source	
of Fine Particulate Potassium Emissions	
to the Urban Atmosphere	170
A.1 INTRODUCTION	170
A.2 EXPERIMENTAL SECTION	173
A.2.1 Meat Cooking	173
A.2.2 Home Fireplace Emissions	173

TABLE OF CONTENTS (continued)

A.3 RESULTS AND DISCUSSION	174
A.4 REFERENCES	179
Appendix B. Submicron Aerosol Mass Distributions of	
Emissions from Boilers, Fireplaces, Automobiles	
Diesel Trucks, and Meat-Cooking Operations	
B.1 INTRODUCTION	181
B.2 EXPERIMENTAL SECTION	182
B.3 RESULTS AND DISCUSSION	184
B.3.1 Industrial-Scale Boiler	184
B.3.2 Residential Fireplace	188
B.3.3 Automobiles	192
B.3.4 Diesel Trucks	199
B.3.5 Meat Cooking	199
B.3.6 Mass Emission Rates	202
B.4 CONCLUSIONS	202
B.5 REFERENCES	206
Appendix C. Bulk Chemical Analysis Results for	
Individual Source Tests	
	209
Appendix D. Organic Mass Distribution Characteristics	
for Ambient Samples	
	221
Appendix E. Organic Mass Distribution Characteristics	
for Source Samples	
	260

LIST OF FIGURES

Figure

1.1	Flowchart of research plan.	3
2.1	Dilution stack sampler schematic.	16
2.2	Mixing in dilution stack sampler tunnel. (a) Sampling traverses for mixing tests. The ports immediately before and after the 180 degree bend (labelled A, B, C, and D) were used for traverses; and (b) Results of traverses performed with probe in port A. These results are typical of those obtained in all four ports.	20
2.3	Particle losses in stack sampler.	21
2.4	Particle losses in inlet line (137 cm long). The experimentally measured losses shown for transition-regime flow represent worst-case conditions. Under normal operating conditions, flow will be laminar and losses should more closely approximate the theoretical curve shown.	24
2.5	Organic carbon collected by filtration vs. dilution sampling procedure for distillate oil-fired industrial boiler.	27
3.1	Source sampler design. (a) Dilution stack sampler; (b) Vehicle test configuration; (c) Cigarette sampling; and (d) Tar pot sampling.	37
3.2	Driving cycles. (a) Federal Test Procedure urban driving cycle; and (b) Driving cycle for heavy-duty diesel trucks.	45
3.3	Fine aerosol emissions from a midsize industrial boiler burning No. 2 fuel oil.	54
3.4	Fine aerosol emissions vs. excess oxygen measured during distillate oil combustion in an industrial-scale boiler.	55
3.5	Average chemical composition of fine particulate emissions from various source types.	57
4.1	Extract of blank filter composite containing sixteen 47-mm filters. "X" denotes a known solvent artifact; "S _C " is the coinjection standard, 1-phenyl dodecane; and "S _R " denotes the recovery standards (S _R ¹ = isoquinoline, S _R ² = <u>n</u> -dodecanol, S _R ³ = anthracene-d ₁₀ , S _R ⁴ = <u>n</u> -C ₂₄ D ₅₀ , S _R ⁵ = <u>n</u> -C ₃₂ D ₆₆ , and S _R ⁶ = perylene-d ₁₂).	96
4.2	Resolved vs. Unresolved Organic Mass Distributions. Peaks marked with "X" and "S" are (respectively) contaminants and standards that are not included in area count summations. (a) Catalyst automobiles; (b) Fireplace burning pine wood; (c) Vegetative detritus, green leaves; and (d) Natural gas home appliances.	99
		100

LIST OF FIGURES (continued)

Figure

4.3	Organic mass distributions obtained from replicate sample analyses. (a) Cigarette smoke; (b) Tire dust; (c) Paved road dust; (d) Green vegetative detritus; (e) Dead vegetative detritus; and (f) Roofing tar pot.	102
4.4	GC results for industrial boiler burning No. 2 fuel oil. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace from experiment No. 5; (b) Neutral GC trace from experiment No. 2; (c) Neutral GC trace from experiment using EPA Method 5; and (d) Neutral fraction mass distributions obtained for 3 boiler experiments.	104
4.5	GC results for vehicle emissions. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace from composite of 7 noncatalyst automobiles; (b) Neutral GC trace from composite of 6 catalyst-equipped automobiles; (c) Neutral GC trace from composite of 2 heavy-duty diesel trucks; and (d) Neutral fraction mass distributions obtained for 3 types of vehicles.	106
4.6	GC results for roofing tar pot emissions. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace; (b) Acid+neutral GC trace; and (c) Organic mass distributions.	107
4.7	GC results for tire dust. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace; (b) Acid+neutral GC trace; and (c) Organic mass distributions.	109
4.8	GC results for fireplace combustion of wood. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace for oak wood; (b) Acid+neutral GC trace for oak wood; (c) Organic mass distributions for oak wood; (d) Neutral GC trace for pine wood; (e) Acid+neutral GC trace for pine wood; (f) Organic mass distributions for pine wood; (g) Neutral GC trace for synthetic log; (h) Acid+neutral GC trace for synthetic log; and (i) Organic mass distributions for synthetic log.	110 111 112
4.9	GC results for cigarette smoke. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace; (b) Acid+neutral GC trace; and (c) Organic mass distributions.	115

LIST OF FIGURES (continued)

Figure

4.10 GC results for meat-cooking operations. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations.	
(a) Neutral GC trace for regular, charbroiled hamburger meat;	
(b) Acid+neutral GC trace for regular, charbroiled hamburger meat; (c) Organic mass distributions for regular, charbroiled hamburger meat;	116
(d) Neutral GC trace for extra-lean, charbroiled hamburger meat;	
(e) Acid+neutral GC trace for extra-lean, charbroiled hamburger meat; (f) Organic mass distributions for extra-lean, charbroiled hamburger meat;	117
(g) Neutral GC trace for fried hamburger meat; (h) Acid+neutral GC trace for fried hamburger meat; and (i) Organic mass distributions for fried hamburger meat.	118
4.11 GC results for organometallic brake dust. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace;	
(b) Acid+neutral GC trace; and (c) Organic mass distributions.	120
4.12 GC results for natural gas home appliance emissions. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace for fine particulate emissions; (b) Neutral GC trace for material collected on backup filter; (c) Neutral GC trace for material collected from dilution air; and (d) Neutral fraction mass distributions for natural gas home appliance samples.	121
4.13 GC results for vegetative detritus. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations.	
(a) Neutral GC trace for green leaf vegetative detritus;	
(b) Acid+neutral GC trace for green leaf vegetative detritus;	
(c) Organic mass distributions for green leaf vegetative detritus;	123
(d) Neutral GC trace for dead leaf vegetative detritus;	
(e) Acid+neutral GC trace for dead leaf vegetative detritus; and (f) Organic mass distributions for dead leaf vegetative detritus.	124
4.14 GC results for Pasadena-area paved road dust (a) Neutral GC trace;	
(b) Acid+neutral GC trace; and (c) Organic mass distributions.	126
4.15 Summary of organic mass distribution profiles.	128

LIST OF FIGURES (continued)

Figure

4.16 Cluster analysis hierarchy for source samples.	130
5.1 Los Angeles Basin modeling area (80 x 80 km).	141
5.2 Modeled vs. measured monthly concentrations of total fine organic carbon at Los Angeles Basin ambient sites. (a) Pasadena; (b) Downtown Los Angeles; and (c) West Los Angeles.	144
5.3 Modeled vs. measured monthly concentrations of elutable fine organics between the C12 and C36 <i>n</i> -alkanes at Los Angeles Basin Ambient sites. (a) Pasadena, neutral fraction; (b) West Los Angeles, neutral fraction; (c) Downtown Los Angeles, neutral fraction; (d) Pasadena, acid+neutral fraction; (e) West Los Angeles, acid+neutral fraction; (f) Downtown Los Angeles, acid+neutral fraction; (g) Pasadena, acidic fraction; (h) West Los Angeles, acidic fraction; and (i) Downtown Los Angeles, acidic fraction	147
5.4 Measured monthly elutable fine organic mass distributions for Pasadena in 1982.	151
5.5 Comparison between modeled and measured organic mass distributions for Pasadena in 1982: neutral and acid+neutral fractions.	152
5.6 Comparison between modeled and measured organic mass distributions for Pasadena in 1982: acidic fraction. (a) March; (b) June; (c) September; and (d) December.	155
5.7 Contributions of sources to modeled concentrations of elutable acid+neutral organics at Los Angeles Basin ambient sites in 1982. (a) Pasadena; (b) Downtown Los Angeles; and (c) West Los Angeles.	157
5.8 Contributions of elutable acid+neutral organics from sources to modeled organic mass distributions for Pasadena in 1982. (a) March; (b) June; (c) September; and (d) December.	159
A.1 Geographical outline of the South Coast Air Basin showing an 80 x 80 km square area that contains 83% of the air basin's population.	171
B.1 Mass distribution of aerosol emissions from midsize industrial boiler burning No. 2 fuel oil.	186
B.2 Mass emissions from fireplace combustion of seasoned pine.	189
B.3 Mass distribution of aerosol emissions from fireplace combustion of seasoned pine.	190

LIST OF FIGURES (continued)

Figure

B.4	Mass distribution of aerosol emissions from fireplace combustion of seasoned oak.	191
B.5	Federal Test Procedure urban driving cycle.	193
B.6	Submicron aerosol emissions from catalyst and noncatalyst autos during Federal Test Procedure urban driving cycle.	195
B.7	Mass distribution of aerosol emissions from automobiles. (a) 1983 catalyst-equipped Chevrolet Malibu; (b) 1980 catalyst-equipped Honda Civic; (c) 1970 noncatalyst Buick Skylark; and (d) 1976 noncatalyst Volkswagen Beetle.	196
B.8	Average mass distribution of aerosol emissions from catalyst and noncatalyst automobiles.	198
B.9	Driving cycle for heavy-duty diesel trucks.	200
B.10	Mass distribution of aerosol emissions from a 1987 heavy-duty Ford diesel dump truck.	201
B.11	Mass distribution of aerosol emissions from cooking hamburger meat.	203

LIST OF TABLES

Table

2.1	Features of Published Dilution Sampler Designs	13
2.2	Particle Loss Characteristics in Dilution Stack Sampler	22
3.1	Preliminary Estimate of the Major Sources of Fine Aerosol Organic Carbon Emissions within an 80 x 80 km Heavily Urbanized Area Surrounding Los Angeles for 1982	35
3.2	Characteristics of Vehicles Tested	44
3.3	Market Share Data for Cigarettes	48
3.4	Vegetation Sample Composite	50
3.5	Industrial Boiler Experiments Burning No. 2 Fuel Oil	53
3.6	Chemical Characteristics Measured in Source Tests	58
3.7	Summary of Published Mass Emission Rates from Industrial-Scale Boilers	62
3.8	Measured Mass Emission Rates for Catalyst and Noncatalyst Vehicles	64
3.9	Measured Mass Emission Rates for Heavy-Duty Diesel Trucks	67
3.10	Experimental Conditions for Fireplace Tests	69
3.11	Summary of Published Mass Emission Rates from Residential Fireplaces	70
3.12	Mass Emission Rates from Cigarette Smoking	74
3.13	Summary of Organic Fraction Contained in the Fine Aerosol Mass Emitted from Each Source Sampled	78
3.14	Revised Estimate of the Major Sources of Fine Aerosol Organic Carbon Emissions within an 80 x 80 km Heavily Urbanized Area Surrounding Los Angeles (for 1982)	79
4.1	Characteristics of Elutable Organics from the Various Sources	91
5.1	Sources Used in the Modeling Calculations	146
5.2	Extent of Excess Ambient Elutable Acidic Organic Aerosol	149
A.1	Comparison of the Potassium Content of Meat Before and After Cooking with Measured Potassium Aerosol Emissions	175
A.2	Fine Aerosol Potassium Emissions and Signatures from Meat-Cooking Operations and from Fireplaces	176

LIST OF TABLES (continued)

Table

A.3 Emissions of Potassium into the Los Angeles Area Atmosphere in 1982 from Meat Cooking and Fireplaces	178
B.1 Time and Dilution History of Emissions	187
B.2 Characteristics of Vehicles Tested	194
B.3 Comparison of Submicron Mass Emission Rates Measured by an Electrical Aerosol Analyzer to Fine Mass Measurements Made by Filtration	204
C.1 Bulk Chemical Analysis Results for Tests on Boiler Burning No. 2 Fuel Oil	210
C.2 Bulk Chemical Analysis Results for Automobile Tests	211
C.3 Bulk Chemical Analysis Results for Heavy-Duty Diesel Truck Tests	213
C.4 Bulk Chemical Analysis Results for Fireplace Tests	214
C.5 Bulk Chemical Analysis Results for Natural Gas Home Appliance Tests	216
C.6 Bulk Chemical Analysis Results for Meat Cooking Tests	217
C.7 Bulk Chemical Analysis Results for Cigarette Tests	219
C.8 Bulk Chemical Analysis Results for Vegetative Detritus Tests	220

Chapter 1

Introduction

1.1 MOTIVATION

Fine particulate matter is easily respirable (Task Group, 1966) and has therefore long been suspected to be responsible for many of the adverse health effects attributed to air pollutants (U.S. Dept. Health, Education and Welfare, 1969). Elevated levels of organic aerosols measured in Los Angeles (Gordon and Bryan, 1973; Gordon, 1976; Grosjean, 1983) and in other areas (Singh *et al.*, 1981; Moller *et al.*, 1982) are of considerable concern because many of the organic compounds present are known carcinogens (IARC, 1980) and mutagens (Pitts, 1983; Schuetzle, 1983). Fine particles also are largely responsible for the severe visibility deterioration observed in urban areas like Los Angeles (Hidy *et al.*, 1974; White and Roberts, 1977; Larson *et al.*, 1988; Larson and Cass, 1989; Larson, Cass and Gray, 1989), and organic aerosol constitutes 25–30% of the total fine aerosol mass in the Los Angeles area (Gray *et al.*, 1984).

Regional differences in ambient organic characteristics have been observed (Grimmer, Naujack and Schneider, 1980; Ellis and Novakov, 1982), indicating a potential for distinguishing between source contributions on the basis of organic chemical attributes. However, the few experimental programs which have investigated organic emissions from sources typically have identified only a few specific compounds like the polynuclear aromatic hydrocarbons (PAHs). The use of PAHs as tracer compounds for modeling source contributions is problematic due to their uncertain chemical reactivity (Korfmacher *et al.*, 1979, 1980; Natusch and Taylor, 1980; Van Vaeck and Van Cauwenberghe, 1984; Albrechcinski, Michalovic

and Gibson, 1985; Kamens *et al.*, 1985). Additionally, there are enormous differences in the way that various researchers have collected and analyzed their samples, making comparisons between emissions from different sources difficult (Daisey, Cheney and Lioy, 1986). These problems, along with the complete lack of information on organic aerosol emissions from certain types of sources, have frustrated most attempts at modeling the relationship between source emissions and the chemical composition of the ambient organic aerosol. Hence, at the outset of this study, little was known about primary source contributions to the organic compounds present in atmospheric aerosols.

1.2 APPROACH OF STUDY

To determine the origin of atmospheric organic aerosols, detailed information on the chemical characteristics of organic aerosol emissions was needed for the major sources of organic aerosol. However, no such comprehensive data base existed at the start of this research effort. Information that was available on organic aerosol emissions from sources varied greatly in terms of the methodology used to collect, store, extract and analyze the samples (Daisey, Cheney and Lioy, 1986), ruling out the possibility of compiling already-published information to determine the characteristics of organic aerosol source emissions from different source types. Thus, to fulfill the goal of this research effort, it was necessary to first establish a consistent source sampling methodology and subsequently to conduct a major source sampling program. Only then could an effort be made to characterize the major types of organic aerosol source emissions in an urban area and to determine their relative contributions to the ambient aerosol. Figure 1.1 shows a flow diagram of the steps taken to address the objectives of this research project.

The collection of organic aerosol from sources poses special challenges. Traditional aerosol source sampling methods have used equipment that contains plastics, rubber, and/or greases. While the organic contamination resulting from

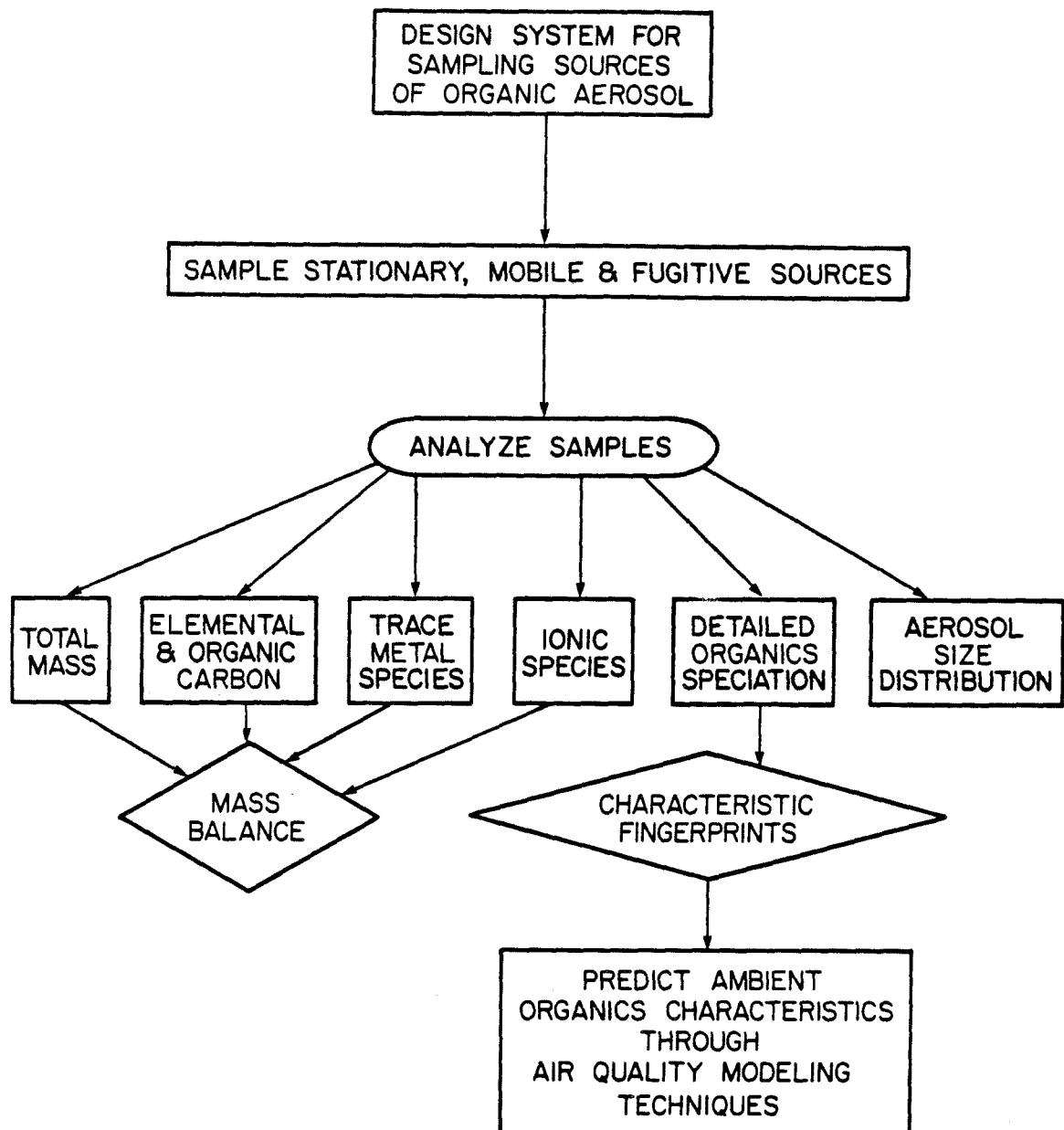


Figure 1.1. Flowchart of research plan.

some types of equipment may be acceptably low if a measurement of total organic aerosol is all that is desired, even small quantities of contaminants can pose overwhelming problems when a more detailed characterization of the organic aerosol is sought via high resolution gas chromatography and gas chromatography/mass spectroscopy analyses. In addition, in order to accurately sample stack emissions of organic aerosol, it is necessary to capture as primary aerosol those gaseous organic compounds that would normally condense into the aerosol phase as they are cooled and diluted in a plume downwind of a source. This requires the use of a dilution sampling system that can simulate the cooling and dilution processes normally undergone by a stack plume.

Hence, the first step undertaken in order to study the sources of organic aerosol was to design, construct and test a dilution sampling system especially intended to sample organics from hot stack exhaust (Chapter 2). This sampling system, constructed of stainless steel and Teflon, allowed the concentrated source emissions to be diluted by a factor of 20- to 100-fold, and provided residence times on the order of a minute to permit supersaturated vapors to diffuse to and condense onto existing aerosol.

A sampling program then was undertaken to collect samples from the major sources of fine organic aerosol. An organic carbon aerosol emissions inventory previously conducted for the Los Angeles Basin (Cass, Boone and Macias, 1982; Gray, 1986) was used to identify the most important sources of fine organic aerosol in that particular urban area. Twelve of those source types, representing nearly 80% of the total inventoried fine organic aerosol emissions into the Basin, were sampled, along with a sample of Los Angeles area urban vegetative detritus (Chapter 3). Besides obtaining samples of organic aerosol from each source type, this field testing program also determined total fine aerosol mass emission rates for most of the sources. Analysis of the mass of fine aerosol, trace metal species, ionic species, and elemental and organic carbon collected from each source type provided

information on the bulk chemical characteristics of the fine aerosol emissions. In particular, emissions from meat-cooking operations were found to contain significant amounts of potassium, which has traditionally been used as a nearly-unique tracer for woodsmoke (Appendix A).

During the sampling program, the specially-designed dilution sampling system also was used to measure submicron aerosol size distributions of the emissions from many of the sources using an electrical aerosol analyzer (EAA) (Appendix B). The mass emission rates estimated using these size distributions showed substantial agreement with the fine (aerodynamic particle diameter $< 2\mu\text{m}$) aerosol mass emission rates determined gravimetrically.

To obtain a detailed characterization of the organic fraction of the fine aerosol collected from each source, source samples were extracted and analyzed via high-resolution gas chromatography, using procedures developed by Mazurek and coworkers (1987) specifically for small samples of environmental organic aerosol. Both the neutral and acidic fractions of the organic extract were analyzed to provide a more comprehensive picture of the nature of the organic material.

The data obtained via gas chromatography typically consist of hundreds of peaks. The traditional approach has been to identify some of these individual peaks using gas chromatography/mass spectroscopy (GC/MS) techniques, which typically involves months of work for each sample. In a quest for a less time-consuming method for uniquely characterizing each sample, a new approach was undertaken (Chapter 4). Each chromatographic data set was subdivided into 25 groups of peaks based on their elution time relative to the C_{10} to C_{36} n-alkane series. The total area counts of the peaks that elute between each pair of adjacent n-alkanes was summed, and converted to units of organics mass concentration. Examination of the mass distribution obtained for each source using this approach revealed unique characteristics for most of the sources tested. Monthly composites of ambient

samples of fine organic aerosol were also analyzed in the same manner for three different sites in the Los Angeles Basin.

The mass distribution data obtained for each source were combined with an existing atmospheric transport model that treats the primary aerosol emissions as if they were nonreactive (Cass, Boone and Macias, 1982; Gray, 1986). Model predictions of the organic characteristics that would be present at each month at each of these ambient sites if the organic source emissions were transported without further atmospheric chemical reaction were compared with analytical results from the ambient samples (Chapter 5). Differences observed between the model predictions and the ambient measurements allowed an examination of the nature, extent, and possible origins of secondary organic aerosol in the Los Angeles Basin.

Finally, the findings of this research project were summarized, and promising avenues for further research were identified (Chapter 6). Many of these avenues involve the use of GC/MS techniques. Identification of unusual chemical compounds in the source samples may reveal promising unique tracers for certain source types. In addition, comparison of the organic compounds present in the ambient samples with those found in the source emissions may shed further light on the nature, extent and origins of secondary organic aerosols.

1.3 REFERENCES

Albrechcinski, T.M., Michalovic, J.G., and Gibson, T.L. (1985). A Smog Chamber Study of Polycyclic Aromatic Hydrocarbons in Diesel Particulates. In *Polynuclear Aromatic Hydrocarbons: Mechanisms, Methods and Metabolism* (M. Cooke and A.J. Dennis, eds.). Batelle Press, Columbus, OH, pp. 69-86.

Cass, G.R., Boone, P.M., and Macias E.S. (1982). Emissions and Air Quality Relationships for Atmospheric Carbon Particles in Los Angeles. In *Particulate Carbon: Atmospheric Life Cycle* (G.T. Wolff and R.L. Klimisch, eds.). Plenum Press, New York, pp. 207-240.

Daisey, J.M., Cheney, J.L., and Lioy, P.J. (1986). Particulate Emissions from Air Pollution Sources: Status and Needs for Receptor Source Apportionment Modeling. *J. Air Pollut. Control Assoc.* 36:17-33.

Ellis, E.C., and Novakov, T. (1982). Application of Thermal Analysis to the Characterization of Organic Aerosol Particles. *Sci. Total Environ.* 23:227-238.

Gordon, R.J. (1976). Distribution of Airborne Polycyclic Aromatic Hydrocarbons Throughout Los Angeles. *Environ. Sci Technol.* 10:370-373.

Gordon, R.J., and Bryan, R.J. (1973). Patterns in Airborne Polynuclear Aromatic Hydrocarbon Concentrations at Four Los Angeles Sites. *Environ. Sci Technol.* 7:1050-1053.

Gray, H.A. (1986). Control of Atmospheric Fine Primary Carbon Particle Concentrations. EQL Report 23, Environmental Quality Laboratory, California Institute of Technology, Pasadena, CA.

Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., and Rau, J.A. (1984). Elemental and Organic Carbon Particle Concentrations: A Long-Term Perspective. *Sci. Total Env.* 36:17-25.

Grimmer, G., Naujack, K.-W., and Schneider, D. (1980). Changes in PAH Profiles in Different Areas of a City During the Year. In *Polynuclear Aromatic Hydrocarbons: Chemistry and Biological Effects* (A. Bjorseth and A.J. Dennis, eds.). Batelle Press, Columbus, Ohio, pp. 107-125.

Grosjean, D. (1983). Polycyclic Aromatic Hydrocarbons in Los Angeles Air from Samples Collected on Teflon, Glass and Quartz Filters. *Atmos. Environ.* 17:2565-2573.

Hidy, G.M., Appel, B., Charlson, R.J., Clark, W.E., Friedlander, S.K., Giauque, R., Heisler, S., Mueller, P.K., Ragaini, R., Richards, L.W., Smith, T.B., Waggoner, A., Wesolowski, J.J., Whitby, K.T., and White, W. (1974). *Characterization of Aerosols in California (ACHEX)*. Science Center, Rockwell International, prepared under California Air Resources Board Contract No. 358.

IARC Working Group (1980). An Evaluation of Chemicals and Industrial Processes Associated with Cancer in Humans Based on Human and Animal Data. *Cancer Research* 40:1-12.

Kamens, R., Bell, D., Dietrich, A., Perry, J., Goodman, R., Claxton, L., and Tejada, S. (1985). Mutagenic transformations of dilute wood smoke systems in the presence of ozone and nitrogen dioxide. Analysis of selected high pressure liquid chromatography fractions from wood smoke particle extracts. *Environ. Sci. Technol.* 19:63-69.

Korfmacher, W.A., Natusch, D.F.S., Taylor, D.R., Wehry, E.L., and Mamantov, G. (1979). Thermal and Photochemical Decomposition of Particulate PAH. In *Polynuclear Aromatic Hydrocarbons: Carcinogenesis and Mutagenesis* (P.W. Jones and P. Leber, eds.). Batelle Press, Columbus, Ohio, pp. 165-170.

Korfmacher, W.A., Wehry, E.D., Mamantov, G., and Natusch, D.F.S. (1980). Resistance to Photochemical Decomposition of Polycyclic Aromatic Hydrocarbons Vapor-Adsorbed on Coal Fly Ash. *Environ. Sci. Technol.* 14:1094-1099.

Larson, S.M., Cass, G.R., Hussey, K.J., and Luce, F. (1988). Verification of Image Processing Based Visibility Models. *Environ. Sci. Technol.* 22:629-637.

Larson, S.M., and Cass, G.R. (1989). Characteristics of Summer Midday Low-Visibility Events in the Los Angeles Area. *Environ. Sci. Technol.* 23:281-289.

Larson, S.M., Cass, G.R., and Gray, H.A. (1989). Atmospheric Carbon Particles and the Los Angeles Visibility Problem. *Aerosol Sci. Technol.* 10:118-130.

Mazurek, M.A., Simoneit, B.R.T., Cass, G.R., and Gray, H.A. (1987). Quantitative High-Resolution Gas Chromatography and High-Resolution Gas Chromatography/Mass Spectrometry Analyses of Carbonaceous Fine Aerosol Particles. *Intern. J. Anal. Chem.* 29:119-139.

Moller, M., Alfheim, I., Larssen, S., and Mikalsen, A. (1982). Mutagenicity of Airborne Particles in Relation to Traffic and Air Pollution Parameters. *Environ. Sci. Technol.* 16:221-225.

Natusch, D.F.S., and Taylor, D.R. (1980). Environmental Effects of Western Coal Combustion: Part IV — Chemical and Physical Characteristics of Coal Fly Ash. EPA-600/3-80-094, U.S. Environmental Protection Agency, Duluth, Minnesota.

Pitts, J.N., Jr. (1983). Formation and Fate of Gaseous and Particulate Mutagens and Carcinogens in Real and Simulated Atmospheres. *Environ. Health Perspec.* 47:115-140.

Schuetzle, D. (1983). Sampling of Vehicle Emissions for Chemical Analysis and Biological Testing. *Environ. Health Perspec.* 47:65-80.

Singh, H.B., Salas, L.J., Smith, A.J., and Shigeishi, H. (1981). Measurements of Some Potentially Hazardous Organic Chemicals in Urban Environments. *Atmos. Environ.* 15:601-612.

Task Group on Lung Dynamics (1966). Deposition and Retention Models for Internal Dosimetry of the Human Respiratory Tract. *Health Physics* 12:173-207.

U.S. Department of Health, Education, and Welfare (1969). *Air Quality Criteria for Particulate Matter*. National Air Pollution Control Administration Publication No. AP-49.

Van Vaeck, L., and Van Cauwenberghe, K. (1984). Conversion of Polycyclic Aromatic Hydrocarbons on Diesel Particulate Matter upon Exposure to PPM Levels of Ozone. *Atmos. Environ.* 18:323-328.

White, W.H., and Roberts, P.T. (1977). On the Nature and Origins of Visibility-Reducing Aerosols in the Los Angeles Air Basin. *Atmos. Environ.* 11:803-812.

**A Dilution Stack Sampler for
Collection of Organic Aerosol Emissions:
Design, Characterization and Field Tests ***

2.1 INTRODUCTION

Organic aerosols account for approximately 30% of the fine particulate matter in the atmosphere of urban areas (Gray *et al.*, 1986). Some of these organic compounds are known to be carcinogenic (IARC, 1980; Natusch, 1978) or mutagenic (Pitts, 1983; Schuetzle, 1983), but little is known about the contribution of specific emission sources to the ambient organic aerosol concentrations (Daisey, Cheney and Lioy, 1986).

Source emissions of aromatic compounds are difficult to measure accurately because these compounds are present in both the gas and aerosol phases. The partition of an aromatic compound between the two phases is dependent on the temperature of the system and the partial pressure of the compound in the gas phase; thus, the partition ratio changes as the source emissions are cooled and diluted in the atmosphere. Attempts to evaluate the degree of gas phase/aerosol phase partitioning of various polynuclear aromatic hydrocarbons have produced widely varying results (Cautreels and Van Cauwenberghe, 1978; Thrane and Mikalsen, 1981; Dash and Guldberg, 1983; Schuetzle, 1983), due at least partly to substantial differences in the temperature and vapor pressure history of the source samples taken during different studies. The temperature dependence of the ratio between vapor phase and particulate organics is pronounced even for moderate changes in temperature (Yamasaki, Kuwata and Miyamoto, 1982).

* L.M. Hildemann, G.R. Cass and G.R. Markowski (1989). *Aerosol Science and Technology* 10:193-204

At the temperatures found in the stacks of most combustion sources, many organics that would be present in the aerosol phase under ambient conditions are still in the gas phase, and hence are not captured by methods that directly filter particles from the hot exhaust gases. Conversely, use of cold liquid impingers or cryogenic traps results in the collection of many organics that would not normally condense under ambient conditions. Hence, filtering of undiluted, hot exhaust may greatly underestimate the amount of organic particulate matter present, while filtering plus cold-trapping may overestimate the organic mass that would be present in the aerosol phase in the ambient atmosphere. Johnson and Merrill (1983) have found that collection of organics is 2 to 23 times as high in the filter plus condensate catch of a SASS train as in the filter catch from a dilution tunnel.

During source sampling, the time and temperature history of the organics collected can be an important factor. Following a change in temperature and/or partial pressure, supersaturated organic gases will either undergo homogeneous nucleation, or diffuse to the surfaces of existing particles and condense heterogeneously. The time required for heterogeneous condensation depends on the number of particles present and their surface area, among other factors (Kittelson and Barris, 1984). For emissions from relatively clean sources, theoretical calculations indicate that the time needed for condensation may exceed the two- to three-second residence times typical (Shure and Natusch, 1982) of many dilution tunnels. Phase-segregated organic samples collected prematurely may show an erroneous overabundance of gas phase compounds, and may indicate incorrect ratios between various particulate phase components due to differences in the diffusivities of the various gaseous species.

2.2 LITERATURE REVIEW

2.2.1 Collection of Source Samples

Present methods of collecting organic particulate matter samples from stationary sources vary greatly. Approaches that have been employed in field studies include collection of particles downwind of the source stack (Natusch, 1978; Broddin, Van Vaeck and Van Cauwenberghe, 1977), hot filtration of stack gases (Ramdahl, 1983), cold-trapping of condensate from the gas phase (Nichols, Gangwal

and Sparacino, 1981), simultaneous capture of particulate matter by hot filtration and gases by cold-trapping using either a modified SASS train (Bergstrom, Eklund and Trzciniski, 1982) or variations of EPA Method 5 (Jones *et al.*, 1976; Laube and Drummond, 1979; Knight, Graham and Neal, 1983), and dilution sampling trains (Houck, Cooper and Larson, 1982; Smith *et al.*, 1982). Differences in the time history, dilution, and temperature of samples taken using these various methods contribute to large differences in the results obtained.

Dilution samplers have been used in the past by a number of research groups to collect particulate matter from combustion sources. The main features of the designs that have been documented to date in publicly-available form are listed in Table 2.1. Dilution samplers were first used to sample vehicle exhaust, but these early automotive dilution tunnels could not be used in the field to test stationary sources because they were not portable. More recently, portable sampling devices have been developed. However, the systems available at the outset of the present research project were not suitable for collecting organic aerosol samples for detailed organics analysis by high-resolution gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) techniques.

The original dilution stack sampler design reported by Houck, Cooper and Larson (1982) is made of plastic materials that may leach organics into the system, and that would prevent thorough cleaning and heat treatment of the system between tests to lower the organics blank of the system. While this design is useful for collecting samples for inorganic analyses and bulk organics mass concentration determination, the chance of cross-contamination of individual organic compounds from one test to the next could be considerable. In addition, while this sampler has size-fractionation capabilities (through the use of a dichotomous sampler), its low sample flowrate of 17 lpm severely limits the quantity of organic material that can be collected. This restricts detailed work on organics speciation, because accurate GC and GC/MS work requires relatively large amounts (approx. 1 mg or more) of extractable organic material. A newer, but as-yet unpublished sampler designed by this group is constructed of stainless steel and Teflon, but still has a limited sample flowrate (Cooper, 1987).

TABLE 2.1
FEATURES OF PUBLISHED DILUTION SAMPLER DESIGNS

	TYPICAL AUTO EXHAUST SAMPLER	CARPENTER DESIGN	NEA DESIGN	SOUTHERN DESIGN	CALTECH DESIGN
TUNNEL DIAMETER (cm.)	21 - 58	30	10	21	15
DIAMETERS OF EFFECTIVE MIXING LENGTH	7 - 28D	12 - 15D	29D	6D	10D
RESIDENCE TIME (sec.)	0.8 - 6.7	1.3	1 - 3	6.2	2 - 180
DILUTION RATIO	6 - 25X	8 - 25X (UP TO 100X)	$\geq 20X$	25X	40X (25X TO 100X)
REYNOLDS NUMBER	29,000 TO 130,000	47,000	11,000 TO 23,000	2,800	10,000
TUNNEL MATERIAL	STAINLESS STEEL, PVC, POLYACRYLATE	STAINLESS STEEL	PVC	PLEXIGLASS AND TEFILON	STAINLESS STEEL AND TEFILON
PORTABLE SYSTEM ?	NO	NO	YES	YES	YES
REFERENCES	CARPENTER (1978), FOSTER ET AL. (1972)	CARPENTER (1978)	HOUCK, COOPER & LARSON (1982)	SMITH ET AL. (1982)	PRESENT PAPER

The dilution stack sampling system designed by Southern Research Institute (Smith *et al.*, 1982) has a low tunnel Reynolds number and a short mixing length, which causes the degree of mixing between the stack gases and dilution air to depend strongly on the temperature of the stack gases. Even at stack gas temperatures of 120 degrees C, almost a two-fold difference in concentration was measured at different points across the tunnel diameter (Smith *et al.*, 1982). This sampler can collect large amounts (up to 440 lpm) of aerosol, but it is only capable of sampling in a single size range determined by an in-stack cyclone.

2.2.2 Analytical Techniques

Approaches to analyzing the organic aerosols collected in source samples also vary widely. Samples have been analyzed by GC, GC/MS, high performance liquid chromatography (HPLC), or ultraviolet (UV) spectroscopy, usually for a handful of specific polynuclear aromatic hydrocarbons and little else. The sensitivity of these analytical methods for various compounds varies considerably; in fact, it has been shown that running identical aliquots through GC/MS and HPLC can give markedly different results (Zelenski, Hunt and Pangaro, 1980).

2.3 DESIGN CONSIDERATIONS

The aforementioned differences in collection and analysis of organic samples preclude using data already in the literature to identify the major sources of the organic aerosol observed in ambient aerosol samples (Daisey, Cheney and Lioy, 1986). To overcome the source sampling problems, the following goals were established for the development of a new source sampling device:

1) *The sampler should simulate atmospheric dilution as closely as practicable.* The source sample collected on the filter should include the organics that would have condensed into the aerosol phase under ambient conditions. To achieve this, the emissions should be highly diluted and cooled to ambient temperatures. The tunnel must be long enough to allow adequate mixing to occur between the source emissions and the dilution air.

2) *The sampler should be designed to minimize contamination of the sample.* No rubber, plastics, greases or oils should be used, because these materials outgas

organics into the airstream within the sampler. The sampler materials must also withstand thorough cleaning and heat treatment between uses, so that exhaust material deposited in the system from one source will not contaminate the next set of samples taken.

3) The sampler should provide enough residence time to allow condensation processes to occur. An important factor in designing a dilution stack sampler is determining how much time is needed for the cooled (supersaturated) organic vapors to form new particles or to condense onto particulate matter. Both homogeneous nucleation to form new particles and heterogeneous condensation onto existing particles are possible. If a vapor-phase compound reaches a high enough degree of supersaturation, homogeneous nucleation will occur rapidly. The large surface area provided by the condensation nuclei will allow other, less supersaturated vapors to quickly condense. If dilution and cooling of stack gases do not form a significant nucleation mode aerosol, all supersaturated vapors must condense onto the particles emitted by the source. In this case, the time needed to allow for diffusion-limited transport of the supersaturated vapors onto existing particulate matter will range from several seconds to several minutes, depending on the concentration and size distribution of the particulate matter emitted.

4) The sampler should be configured and operated to minimize particle and vapor losses in the system. The diameter of the tunnel should be as large as possible, in order to minimize the loss of particles and the condensation of supersaturated vapor onto the walls. However, pragmatically, the system must stay small enough to remain portable by two persons, so that it can be transported to and assembled on the cramped platforms found atop some industrial stacks. Flowrates in the system also should be chosen to minimize particle and vapor losses in the system.

2.4 DESCRIPTION OF DEVICE

The dilution stack sampler designed in response to the considerations listed above is shown in Figure 2.1. The system is as large as practicable while remaining portable. The tunnel can be disassembled at the flanges shown, and the heaviest single piece of the sampler weighs about 17 kg. The sampler is constructed

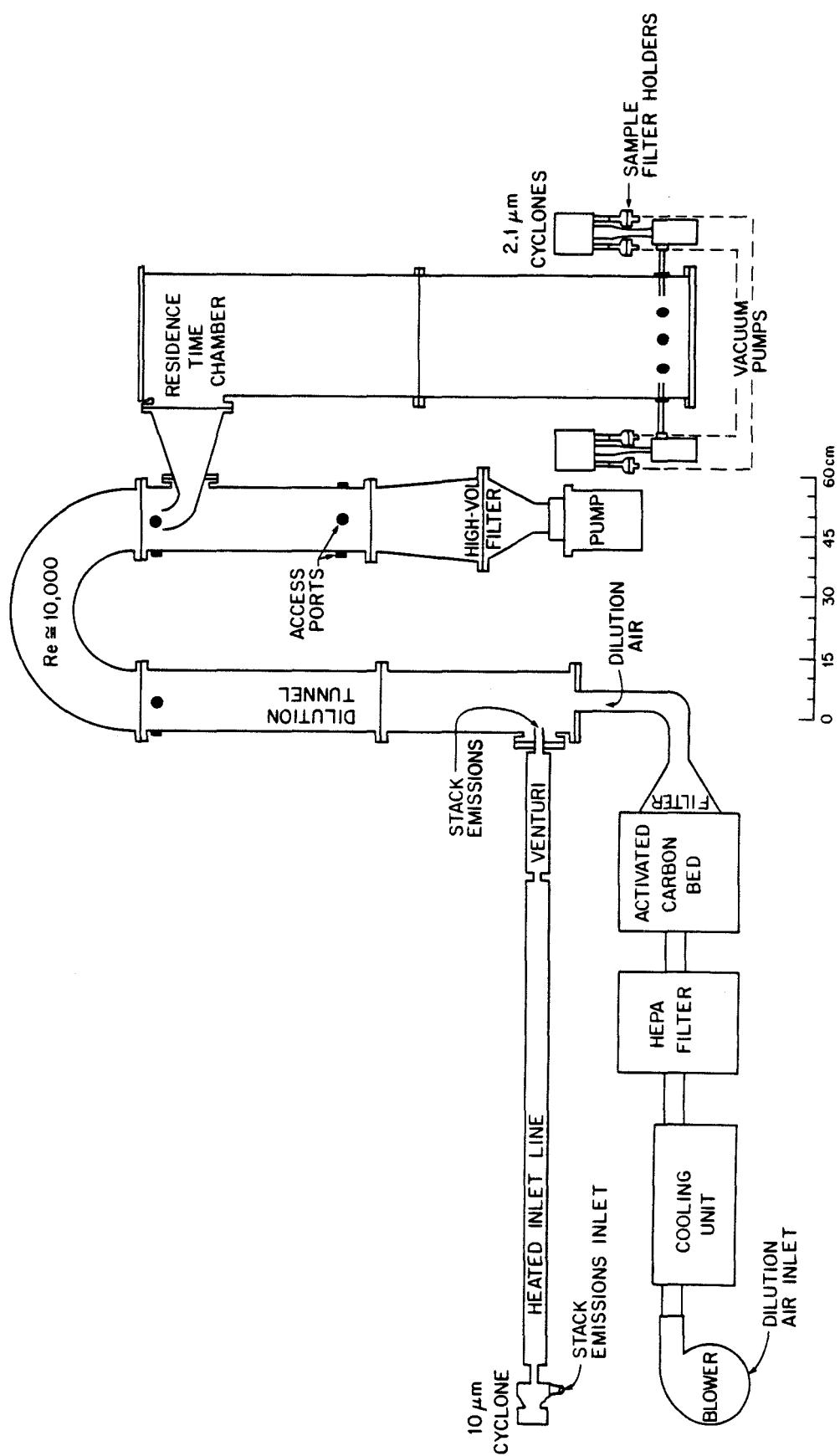


Figure 2.1. Dilution stack sampler schematic.

completely from stainless steel; virgin Teflon is used for all o-rings and gaskets to avoid organic contamination. Multiple sampling ports throughout the sampler enable collection of a large number of samples simultaneously, and allow the use of additional measurement accessories to monitor parameters like temperature, relative humidity, and particle size distribution.

Emissions are typically withdrawn from the stack at a flowrate of 30 lpm through a cyclone separator with a nominal d_{p50} of $10 \mu m$ (at 150 degrees C) inserted into the exhaust stream (see Figure 2.1). A nozzle is attached to the cyclone inlet to achieve isokinetic sampling of the exhaust. The cyclone exit is attached to a heated Teflon inlet line, which transports the stack gases to the dilution zone of the sampler. The stack gases must remain hot until diluted, so that the vapors do not condense onto the walls of the inlet line. Removal of large particulate matter by the in-stack cyclone prevents deposition of the large particles in the system, and allows sampling of a PM10-type aerosol fraction. The removal of large particles by the cyclone has a negligible effect on the subsequent condensation processes, because supersaturated vapors preferentially condense on very fine particles which dominate the particulate surface area distribution.

In the dilution tunnel, the exhaust is mixed with dilution air under turbulent flow ($Re = 10,000$) conditions to cool and dilute the exhaust to near-ambient conditions. The dilution air is ambient air that is completely free of particulate matter and has greatly reduced levels of organic material. A heat exchanger immersed in an ice water bath first is used to lower the ambient dilution air temperature by enough to compensate for the heat added by the dilution air blower and by the source sample. The objective is for the sample plus dilution air mix to be at ambient temperature at the point where filter samples are collected. Next a high efficiency particulate air (HEPA) filter is used to remove particulate matter from the ambient dilution air. An activated carbon bed is used to remove organics, and a quartz fiber filter follows to prevent entrainment of activated carbon particles into the system. It is important that no organic contaminants from the ambient dilution air enter the system, because at a high dilution ratio, small concentrations

of ambient organics could interfere with the analysis of organics present due to the stack gases.

After passing through a tunnel length equal to 10 tunnel diameters, a fraction of the total flow is withdrawn from the tunnel into a large chamber, where additional residence time is provided before collecting the aerosol on filters. Twelve sampling ports at the bottom of the residence chamber can be used to capture different size fractions of the source aerosol emissions simultaneously: PM10-type samples can be captured by sampling the diluted exhaust directly, and fine aerosol can be sampled by attaching appropriate cyclone separators to the ports and then sampling downstream of the cyclones. Up to twelve cyclone separators, each operated at 28 lpm, can be used to process fine aerosol samples, enabling large amounts of organic aerosol to be collected for detailed chemical analysis. The use of multiple filters also enables collection of samples for various inorganic analyses, allowing a mass balance to be achieved on the chemical composition of both the fine and PM10 aerosol fractions.

The rest of the tunnel flow passes through a high volume sampler filter before being exhausted. This filter collects a large mass of PM10-type sample, which also can be analyzed in the cases where its short sample residence time (2 seconds) is not considered a problem.

Calibrated orifice plates are used to measure the flow rates at the entrance and exit of the tunnel. The flow rate of the stack gas is measured using a venturi that has been calibrated over a range of temperatures. The dilution ratio can be set anywhere from 25-fold to 100-fold dilution (calculated at standard temperature and pressure), and is kept constant during a sampling event by adjusting the dilution air and stack gas flow rates.

2.5 LABORATORY TESTING

2.5.1 Mixing Within the Sampler

A fraction of the total flow through the tunnel (typically 20%) is withdrawn into the residence chamber before aerosol collection occurs, so mixing must be thorough enough to ensure that the dilution ratio for the fraction being withdrawn is the same as for the system as a whole. To evaluate the degree of mixing

in the system, NO gas was injected through the sample inlet line. Air samples were continuously withdrawn at six different points across the crosssection of the tunnel at each of four sampling ports located immediately before and immediately after the 180 degree bend in the top of the dilution tunnel (see Figure 2.2a). A TECO model 12A chemiluminescent NO-NO_x analyzer was used to measure the NO concentration as a function of position in the tunnel. Results show thorough mixing at all four sampling ports for dilutions of 28-fold and 55-fold; Figure 2.2b presents results typical of those obtained for all four ports. NO concentrations were also constant with respect to time (to within the response time of the NO_x monitor) at each sampling point.

Originally, the system was designed with a 90 degree bend at the tail end of the heated inlet line, to achieve co-current injection of the exhaust gases into the dilution air. The possibility of high particle losses in this bend led to its elimination. Mixing tests also were performed at lower dilution ratios to determine at what point inhomogeneous mixing would become a problem in the modified system. At 21-fold dilution, transient variations of over two-fold in NO concentrations between sampling points in the tunnel were measured, indicating that thorough mixing was no longer being achieved consistantly.

2.5.2 Particle Losses

Particle losses in the dilution stack sampler were evaluated using ammonium fluorescein particles generated by a TSI Model 3050 Berglund-Liu monodisperse aerosol generator. Samples of the fluorescein aerosol were examined under a scanning electron microscope to determine that the aerosol particles were of the expected size, and, more importantly, that the particles were dry before they entered the sampler. After passage of the monodisperse aerosol through the sampler, the system was disassembled, and each section was washed or wiped out with dilute ammonium hydroxide to redissolve the particles. Samples were analyzed using absorption spectrometry. Figure 2.3 and Table 2.2 show the particle loss characteristics of the system as a function of aerodynamic particle diameter. Results indicate that sampler losses are minimal for the fine particulate matter for which this sampling system was specifically designed. Measurements show that 93% of the

Figure 2.2. Mixing in dilution stack sampler tunnel. (a) Sampling traverses for mixing tests. The ports immediately before and after the 180 degree bend (labelled A, B, C, and D) were used for traverses. (b) Results of traverses performed with probe in port A. These results are typical of those obtained in all four ports.

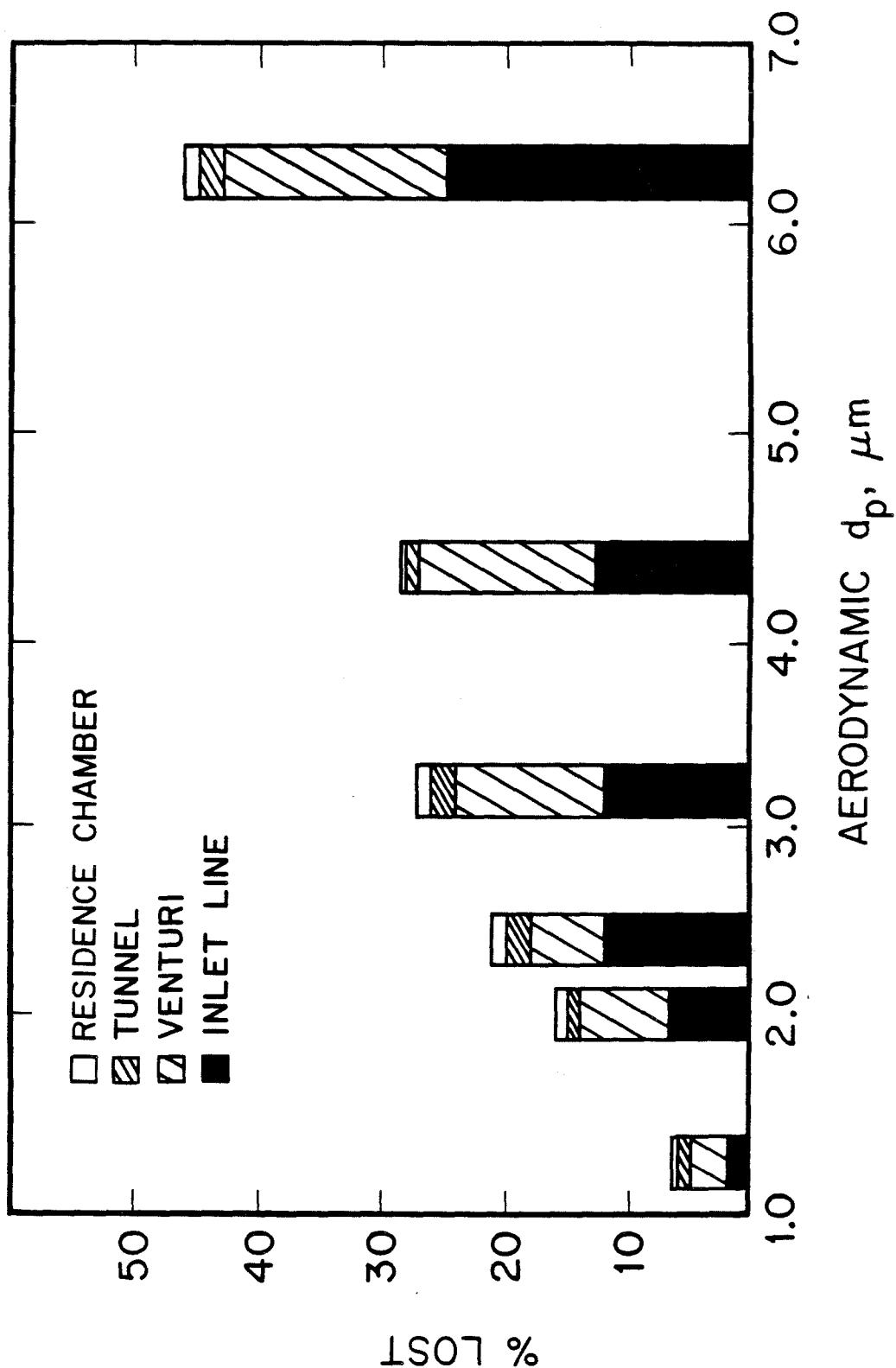


Figure 2.3. Particle losses in stack sampler.

TABLE 2.2
PARTICLE LOSS CHARACTERISTICS IN DILUTION STACK SAMPLER

AREA OF STACK SAMPLER	AERODYNAMIC PARTICLE DIAMETER (μm)					
	1.3	2.0	2.4	3.1	4.3	6.2
INLET LINE	2%	7%	12%	12%	13%	25%
VENTURI	3	7	6	12	14	18
TUNNEL	1	1	2	2	1	2
RESIDENCE CHAMBER	—*	1	1	1	—*	1
FILTERS	93	85	79	73	71	55

* = LESS THAN 0.5%

particles 1 μm in diameter, and 85% of the 2 μm diameter particles were captured on filters at the sampling points in the device, as intended. To use this sampler for PM10 analysis, the inlet line should be shortened and the venturi meter replaced by another type of flow sensor to reduce particle losses in those sections.

Particle losses are heaviest in the inlet line and venturi. In Figure 2.4, the experimental losses measured for the inlet line are shown along with theoretical predictions for gravitational losses in the horizontally-oriented circular tube under more typical laminar flow conditions. The experimental losses measured in the inlet portion of the system represent worst case conditions. This is because the inlet line was not heated during the particle loss experiments, which resulted in a flow with a Reynolds number in the transition regime. Under normal operating conditions, the inlet line will be heated, causing the flow to become laminar due to changes in the viscosity of the air, and actual losses should more closely resemble the theoretical curve.

The temperature of the inlet line will normally be maintained at a value slightly higher than the source exhaust temperature. This will produce temperature gradients that will induce particle motion away from the wall of the inlet line due to thermophoresis, which will further reduce losses. However, because ammonium fluorescein particles are not sticky, reentrainment of deposited particles during these particle loss experiments may be higher than the reentrainment encountered with typical source particles, causing the experimentally measured losses to be lower than the losses occurring under some source sampling conditions.

2.5.3 10 μm Cyclone Calibration

The cyclones used in this system for collection of fine aerosol from the residence time chamber are identical to those commonly used for collection of ambient air samples (Gray, *et al.*, 1986), and have been thoroughly characterized by John and Reischl (1980). In contrast, the 10 μm in-stack cyclone was built specially for this system. Its design, from Smith *et al.* (1982), should achieve about a 10 μm size cut at a 14 lpm flowrate at 25 degrees C, and about a 11 μm size cut at a 28 lpm flowrate at 150 degrees C. However, a somewhat different nozzle

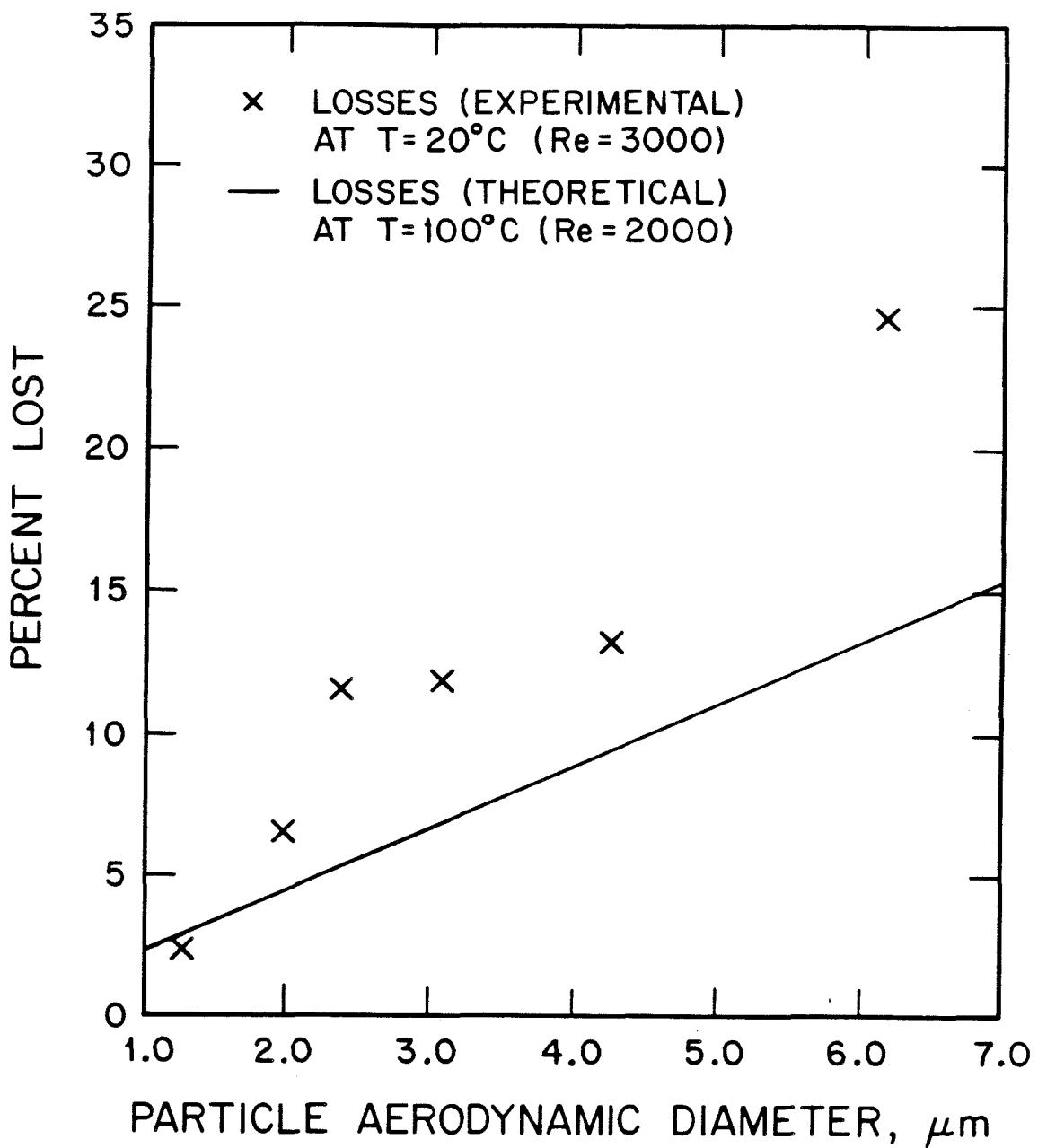


Figure 2.4. Particle losses in inlet line (137 cm long). The experimentally measured losses shown for transition-regime flow represent worst-case conditions. Under normal operating conditions, flow will be laminar and losses should more closely approximate the theoretical curve shown.

design was used with this cyclone.* Experiments were conducted to determine the cyclone's collection efficiency as a function of particle size and flowrate using the newly-designed nozzles under isokinetic conditions. Experiments at 14 lpm using the new nozzles gave the expected sizecut at ambient temperatures; however, tests at 28 lpm showed a sizecut substantially lower than expected for that flowrate, indicating that flow separation was occurring. For the 28 lpm tests, the sizecut showed a dependence on the size of the nozzle, with the lowest sizecuts measured for the smallest sized nozzles.

Lengthening the nozzles to ameliorate the flow separation problem was not feasible, because the cyclone assembly must fit through the limited-size opening found at a standard stack sampling port. Since the fine particulate fraction is the main fraction of interest for our future research on organic aerosols, no further work was done to resolve the PM10 in-stack size cut issue. Hence, PM10-type samples taken with this present sampler may have a sizecut somewhat smaller than $10 \mu\text{m}$, depending on the nozzle used and the temperature of the stack. Limited laboratory tests indicate that this sizecut (d_{p50}) can be expected to range from $6 \mu\text{m}$ to $10 \mu\text{m}$.

2.6 FIELD TESTS

Initial tests were conducted to measure the aerosol emissions from an industrial-scale boiler (Babcock & Wilcox Dual Fuel FM-type, with a 22,700 kg/hr steam capacity and an operating pressure of 21 kg/sq cm) at the California Institute of Technology steam plant. The complete details of the results of this test series are presented elsewhere (Hildemann, Markowski and Cass, 1988), but a few of the organic aerosol measurements will be presented here to demonstrate the performance of the sampler design. The boiler was sampled in steady-state mode at about 60% of its rated steam capacity. To measure the emissions typically produced, the operator was given complete freedom to fine tune the boiler operation as he would normally.

* See Chapter 2 Appendix (Section 2.10) for description of the nozzle design.

Emissions from the combustion of No. 2 fuel oil were sampled. Samples were taken using different dilution ratios, and duplicate samples were taken on different days to evaluate the effects of variability in the weather, the batch of fuel, and the boiler operator on emissions. Measurements of the boiler combustion parameters (e.g., temperature, excess oxygen, concentrations of CO and CO₂) also were taken.

Results indicate that boiler operating parameters had a substantial effect on the measured emission rates from the boiler. On two different days, samples taken at comparable dilutions (46x and 49x at STP) showed large changes in the amounts of elemental carbon, organic carbon, sulfates, aluminum, silicon and phosphorus emitted. The changes in the amounts of the inorganic species are most likely due to changes in the batches of fuel, and day-to-day variations in the concentrations of inorganic substances present in the combustion air. Changes in the masses of organic and elemental carbon emissions are at least partly attributable to changes in boiler operation parameters (e.g., elemental carbon emissions were observed to be higher when excess air to the boiler was lower).

For all experiments, regardless of dilution ratio, the final temperature reached in the sampler was about the same, the volumetric flowrate through the tunnel was the same, and the residence time before sampling was the same. It was expected that when lower dilution ratios were used, the sampler might collect more organic aerosol, because less dilution would cause a higher degree of supersaturation to occur, and there would be a higher concentration of particles on which the vapors could condense. However, this trend was not observed; in fact, the trend shown in Figure 2.5 gives a preliminary indication that more organic carbon may be collected under higher dilution ratios.

2.7 COMPARISON WITH EPA METHOD 5

This same boiler was sampled using standard EPA Method 5 procedures (Environmental Protection Agency, 1971) to collect particulate organic emissions. Two modifications were made for practical purposes:

- 1) The 10 μm cyclone was used at the probe inlet. As a result, the inlet line sequence located upstream of the sample collection point in the Method 5 test was the same as in the dilution sampler, so that the mass of organic aerosol

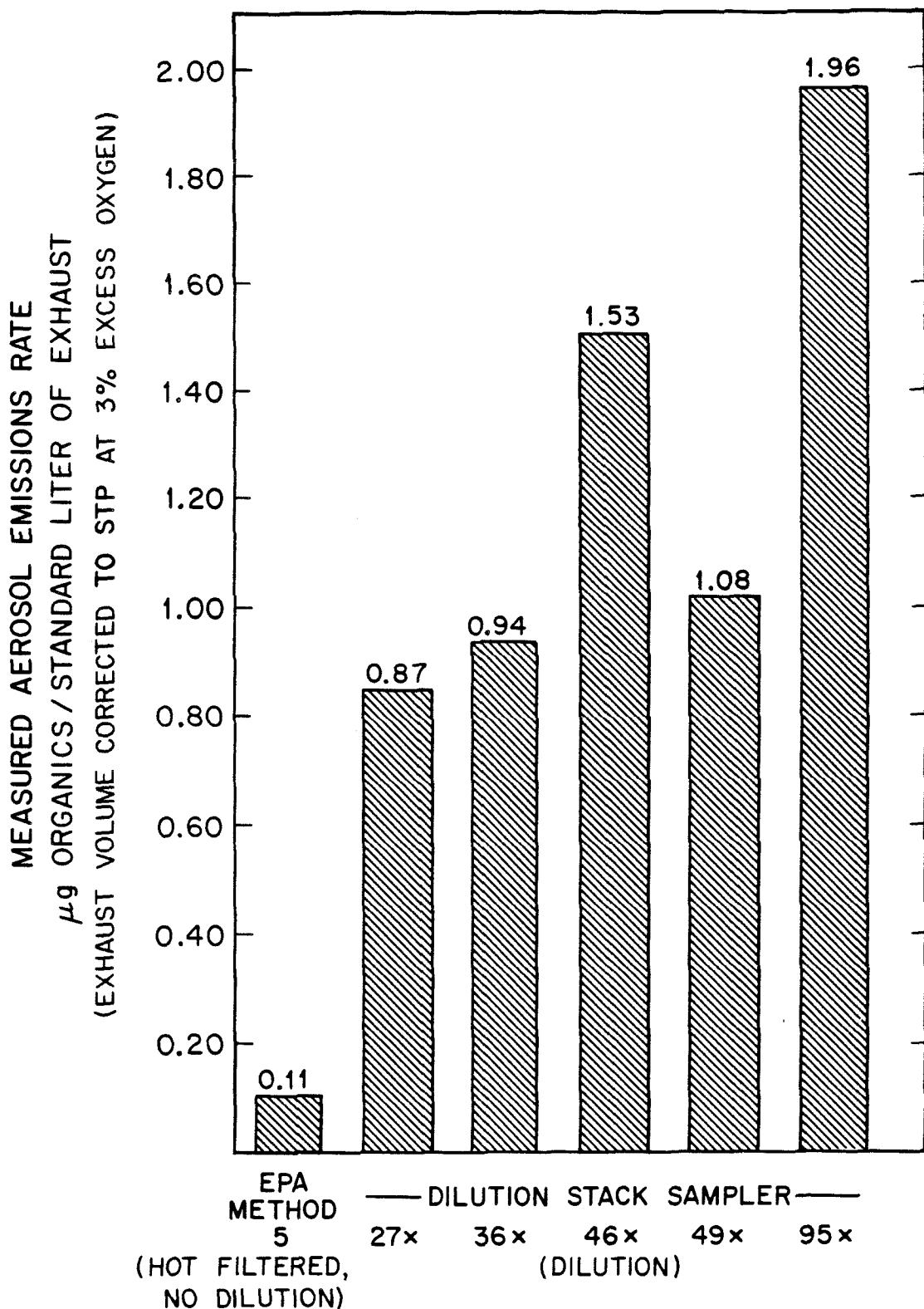


Figure 2.5. Organic carbon collected by filtration vs. dilution sampling procedure for distillate oil-fired industrial boiler.

collected using each type of train could be easily compared with differences due to the dilution system, not the inlet line.

- 2) The filter holder required for the Method 5 test was heated using heating tape and insulation instead of an oven. The filter holder inlet, outlet, and body temperatures were carefully monitored with thermocouples to conform with Method 5 specifications of 120 (± 14) degrees C.

Analysis for organic carbon mass showed that the dilution stack sampler collected from 7 to 16 times as much organic aerosol as the heated filter portion of the Method 5 procedure (see Figure 2.5). Hence, as expected, organic aerosol emissions measurements made using hot filtration alone produce results in this case that are about an order of magnitude lower than the organic aerosol levels that are seen when the source emissions are cooled and diluted before filtration.

2.8 CONCLUSIONS

A dilution stack sampler designed to simulate the cooling and dilution processes that occur in the plume downwind of a combustion source has been specially constructed for collection of fine organic aerosols. The materials used in the sampler minimize organic contamination of the source samples, and allow the system to be thoroughly cleaned between tests. Laboratory tests have verified that minimal losses of fine aerosol material ($d_p \leq 2 \mu\text{m}$) occur in the sampler, and that thorough mixing of the stack gases and dilution air is achieved. A field comparison of this stack sampler with EPA Method 5 has shown that this sampler collects about ten times as much organic material as the hot filter portion of the Method 5 train.

2.9 REFERENCES

Bergstrom, J.G.T., Eklund, G., and Trzciniski, K. (1982). Characterization and Comparison of Organic Emissions from Coal, Oil and Wood Fired Boilers. In *Polynuclear Aromatic Hydrocarbons: Physical and Biological Chemistry* (M. Cooke, A.J. Dennis, and G.L. Fisher, eds.). Battelle Press, Columbus, Ohio, pp. 109-120.

Broddin, G., Van Vaeck, L., and Van Cauwenberghe, D., (1977). On the Size Distribution of Polycyclic Aromatic Hydrocarbon Containing Particles from a Coke Oven Emission Source. *Atmos. Environ.* 11:1061-1064.

Carpenter, K.A. (1978). The Design and Development of a Dilution Tunnel for the Physical and Chemical Characterization of Diesel Particulate Matter. Master's thesis, Michigan Technological University, Houghton, Michigan.

Cautreels, W., and Van Cauwenberghe, K. (1978). Experiments on the Distribution of Organic Pollutants Between Airborne Particulate Matter and the Corresponding Gas Phase. *Atmos. Environ.* 12:1133-1141.

Cooper, J.A. (1987). Personal communication, NEA Incorporated, Beaverton, Oregon.

Dash, A.B., and Guldberg, P.H. (1983). A Generalized Model for Estimating the Concentrations of PAH in Urban Air. In *Polynuclear Aromatic Hydrocarbons: Formation, Metabolism, and Measurement* (M. Cooke and A.J. Dennis, eds.). Battelle Press, Columbus, Ohio, pp. 379-392.

Daisey, J.M., Cheney, J.L., and Lioy, P.J. (1986). Particulate Emissions from Air Pollution Sources: Status and Needs for Receptor Source Apportionment Modeling. *J. Air Pollut. Control Assoc.* 36:17-33.

Environmental Protection Agency (1971). Method 5—Determination of Particulate Emissions from Stationary Sources. *Federal Register* 36(247):24888-24890.

Foster, J.F., Melton, C.W., Mitchell, R.I., and Trayser, D.A. (1972). Chemical and Physical Characterization of Automotive Exhaust Particulate Matter in the Atmosphere. PB-213 593, NTIS, Springfield, Virginia.

Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., and Rau, J.A. (1986). Characteristics of Atmospheric Organic and Elemental Carbon Particle Concentrations in Los Angeles. *Environ. Sci. Technol.* 20:580-589.

Hildemann, L.M., Markowski, G.R., and Cass, G.R. (1989). Emissions from Important Sources of Fine Organic Aerosol. *To be submitted.* [See Chapter 3.]

Houck, J.E., Cooper, J.A., and Larson, E.R. (1982). Dilution Sampling for Chemical Receptor Source Fingerprinting. Paper no. 82-61M.2 presented at 75th Annual Meeting of the Air Pollution Control Association, June 20-25, New Orleans, Louisiana.

IARC Working Group (1980). An Evaluation of Chemicals and Industrial Processes Associated with Cancer in Humans Based on Human and Animal Data. *Cancer Research* 40:1-12.

John, W., and Reischl, G. (1980). A Cyclone for Size-Selective Sampling of Air. *J. Air Pollut. Control Assoc.* 30:872-876.

Johnson, L.D., and Merrill, R.G. (1983). Stack Sampling for Organic Emissions. *Tox. and Env. Chem.* 6:109-126.

Jones, P.W., Glammar, R.D., Strup, P.E., and Stanford, T.B. (1976). Efficient Collection of Polycyclic Organic Compounds from Combustion Effluents. *Environ. Sci. Tech.* 10:806-810.

Kittelson, D.B., and Barris, M.A. (1984). The Influence of Adsorption/Desorption Processes on the Nature of Diesel Particles in the Atmosphere. In *Aerosols: Science, Technology, and Industrial Applications of Airborne Particles* (B.Y.J. Liu, D.Y.H. Pui, and H.J. Fissan, eds.). Elsevier Science Publishing Co., Inc., New York, pp. 770-774.

Knight, C.V., Graham, M.S., and Neal, B.S. (1983). Polynuclear Aromatic Hydrocarbons and Associated Organic Emissions for Catalytic and Noncatalytic Wood Heaters. In *Polynuclear Aromatic Hydrocarbons: Formation, Metabolism, and Measurement* (M. Cooke and A.J. Dennis, eds.). Battelle Press, Columbus, Ohio, pp. 689-710.

Laube, A.H., and Drummond, B.A. (1979). Coke Quench Tower Emission Testing Program. EPA-600/2-79-082 (PB80-108400), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Natusch, D.F.S. (1978). Potentially Carcinogenic Species Emitted to the Atmosphere by Fossil-Fueled Power Plants. *Env. Health Perspectives* 22:79-90.

Nichols, D.G., Gangwal, S.K., and Sparacino, C.M. (1981). Analysis and Assessment of PAH from Coal Combustion and Gasification. In *Chemical Analysis and Biological Fate: Polynuclear Aromatic Hydrocarbons* (M. Cooke and A.J. Dennis, eds.). Battelle Press, Columbus, Ohio, pp. 397-406.

Pitts, J.N. (1983). Formation and Fate of Gaseous and Particulate Mutagens and Carcinogens in Real and Simulated Atmospheres. *Env. Health Perspectives* 47:115-140.

Ramdahl, T. (1983). Retene — a Molecular Marker of Wood Combustion in Ambient Air. *Nature* 306:580–582.

Schuettzle, D. (1983). Sampling of Vehicle Emissions for Chemical Analysis and Biological Testing. *Env. Health Perspectives* 47:65–80.

Schure, M.R., and Natusch, D.F.S. (1982). The Effect of Temperature on the Association of POM with Airborne Particles. In *Polynuclear Aromatic Hydrocarbons: Physical and Biological Chemistry* (M. Cooke, A.J. Dennis, and G.L. Fisher, eds.). Battelle Press, Columbus, Ohio, pp. 713–724.

Smith, W.B., Cushing, K.M., Johnson, J.W., Parsons, C.T., Williamson, A.D., and Wilson, Jr., R.R. (1982). Sampling and Data Handling Methods for Inhalable Particulate Sampling. EPA-600/7-80-036 (PB82-249897), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Thrane, K.E., and Mikalsen, A. (1981). High-Volume Sampling of Airborne Polycyclic Aromatic Hydrocarbons Using Glass Fibre Filters and Polyurethane Foam. *Atmos. Environ.* 15:909–918.

Yamasaki, H., Kuwata, K., and Miyamoto, H. (1982). Effects of Ambient Temperature on Aspects of Airborne Polycyclic Aromatic Hydrocarbons. *Environ. Sci. Tech.* 16:189–194.

Zelenski, S.G., Hunt, G.T., and Pangaro, N. (1980). Comparison of SIM GC/MS and HPLC for the Detection of Polynuclear Aromatic Hydrocarbons in Fly Ash Collected from Stationary Combustion Sources. In *Polynuclear Aromatic Hydrocarbons: Chemistry and Biological Effects* (A. Bjorseth and A.J. Dennis, eds.). Battelle Press, Columbus, Ohio, pp. 589–597.

2.10 APPENDIX: NOZZLE DESIGN

A diverging nozzle was used at the inlet of the in-stack 10 μm cyclone in order to achieve isokinetic sampling. The design of the set of nozzles intended to be used with this cyclone (Smith *et al.* 1982) contained an expansion angle of 30 degrees in the direction of flow. This nozzle design was considered likely to cause flow separation problems at higher volume flowrates, which would cause particles much smaller than the nominal size cut of 10 μm to be removed. (It was suspected that the experimentally-determined calibration curve presented by Smith *et al.* (1982), which also appears in the Sierra Instruments literature for this cyclone, was obtained without using a diverging nozzle on the inlet.)

Due to this concern, a different design was used in constructing the nozzles, so that each nozzle had an expansion angle of 7-3/4 degrees. The six nozzles had inlet diameters ranging from 0.45 to 0.90 cm, allowing near-isokinetic flow to be achieved with stack velocities ranging up to 3000 cm/sec. With these nozzles, the cyclone-and-nozzle assembly could be inserted through an access port of greater than or equal to 13 cm in diameter.

Emissions from Important Sources of Fine Organic Aerosol

3.1 INTRODUCTION

Chemical compounds that will exist as organic aerosols in the atmosphere are found as a mixture of aerosol phase plus vapor phase organics when sampled directly from the hot stack exhaust. Present methods of measuring particulate matter emissions from sources vary greatly, with large differences in the way that condensable organic vapors are collected. Motor vehicle aerosol source tests typically are conducted by dilution sampling (Carpenter, 1978; Duleep and Dulla, 1980), in which condensable organic vapors are scavenged by condensation onto preexisting aerosol as the exhaust is cooled and diluted with filtered air in a large laboratory facility. In contrast, in the most commonly-used stationary source sampling methods (*e.g.*, EPA Method 5 (USEPA, 1971, 1984) and the Source Assessment Sampling System (SASS) (Blake, 1978)), organic vapors that will form aerosol upon cooling and dilution of the stack exhaust in the atmosphere pass through hot particulate filters without being collected, and then in some systems the condensable vapors are captured in impinger baths or cold traps. However, these vapor traps may also collect other gas-phase organic material that would not form aerosol under ambient conditions. In addition, most of the equipment commonly used at present for collecting aerosol source samples is constructed from components that contain plastics, rubber compounds, and/or greases that can release organics into the system, contaminating the aerosol sample. While slight contamination of the sample with stray organics may not pose a major problem if total carbon data are all that is sought, even slight contamination introduced during sampling can pose overwhelming problems if the ultimate goal is identification and quantification

of single organic species in the aerosol by gas chromatography/mass spectrometry (GC/MS). These problems of variations in test methods, variation in contamination control procedures, added to variations in laboratory chemical analysis procedures will frustrate many attempts to synthesize a comparison of the relative character and importance of the different organic aerosol sources based on the present technical literature.

Recently, a new source sampling system has been designed specifically to collect organic particulate matter including the vapor-phase material that would have condensed into the aerosol phase under ambient conditions, while minimizing contamination and particle loss problems (Hildemann, Cass and Markowski, 1989). Briefly, the sampler operates as a portable dilution tunnel, and can be used to test both mobile and stationary sources. The organic vapors present in hot exhaust gases are cooled to ambient temperature and pressure by dilution with cool, filtered air, causing vapor phase organics to condense onto preexisting aerosol in much the same manner as will occur in the plume downwind of the source. Aerosol samples are collected at ambient temperature and pressure on filter substrates identical to those used for the sampling of ambient aerosol, which facilitates later detailed chemical analysis and comparison of source and ambient aerosol samples.

In the present study, that dilution source sampling system is used to explore the relative importance of the various sources of fine ($d_p < 2\mu\text{m}$) primary organic aerosol emissions to an urban atmosphere. Emission source tests are conducted for both mobile and stationary sources by a single method so that comparisons between sources reflect differences between the sources rather than differences in sampling and analysis methods. Methods developed are illustrated for the case of organic aerosol emissions in the Los Angeles area. Based on our existing engineering estimates of local organic aerosol emission rates (estimated by literature review; Cass, Boone and Macias, 1982; Gray, 1986), source types are selected for testing that are estimated at the outset of the study to contribute close to 80% of the fine organic aerosol emitted to the Los Angeles area atmosphere (see Table 3.1).

Table 3.1. Preliminary Estimate of the Major Sources of Fine Aerosol Organic Carbon Emissions within an 80 x 80 km Heavily Urbanized Area Surrounding Los Angeles for 1982 (Gray, 1986)

Source Type	Organic Carbon Emitted (kg/day)	% of Organic Carbon Emissions	Source to Be Tested	Notes
1) Paved road dust	5114	18.6	X	(a)
2) Charcoal broilers	4389	15.9	X	(b)
3) Noncatalyst gasoline vehicles	3710	13.5	X	(b)
4) Diesel vehicles	2100	7.6	X	(b)
5) Brake lining	1480	5.4	X	(a)
6) Surface coating	1433	5.2		(c)
7) Cigarettes	1336	4.9	X	(b)
8) Fireplaces	1270	4.6	X	(b)
9) Forest fires	877	3.2		(d)
10) Roofing tar pots	752	2.7	X	(b)
11) Natural gas combustion	692	2.5	X	(b)
12) Organic chemical processes	692	2.5		(c)
13) Tire wear	671	2.4	X	(a)
14) Misc. industrial point sources	393	1.4		(c)
15) Catalyst-equipped gasoline vehicles	335	1.2	X	(b)
16) Nonrefinery petroleum industries	278	1.0		
17) Primary metallurgical processes	228	0.8		
18) Railroad (diesel oil)	211	0.8		
19) Residual oil stationary sources	206	0.7		
20) Refinery gas combustion	195	0.7		
21) Secondary metallurgical processes	167	0.6		
22) Mineral industrial processes	158	0.6		
23) Other organic solvent use	106	0.4		
24) Jet aircraft	92	0.3		
25) Asphalt roofing	81	0.3		
26) Coal burning	76	0.3		
27) Wood processing	74	0.3		
28) Residual oil-fired ships	66	0.2		
29) Structural fires	63	0.2		
30) Distillate oil stationary sources	61	0.2	X	(b)
Other sources	226	0.8		
TOTAL	27532			

(a) Tested by grab sampling and then resuspension of the collected dust.

(b) Tested via dilution sampling.

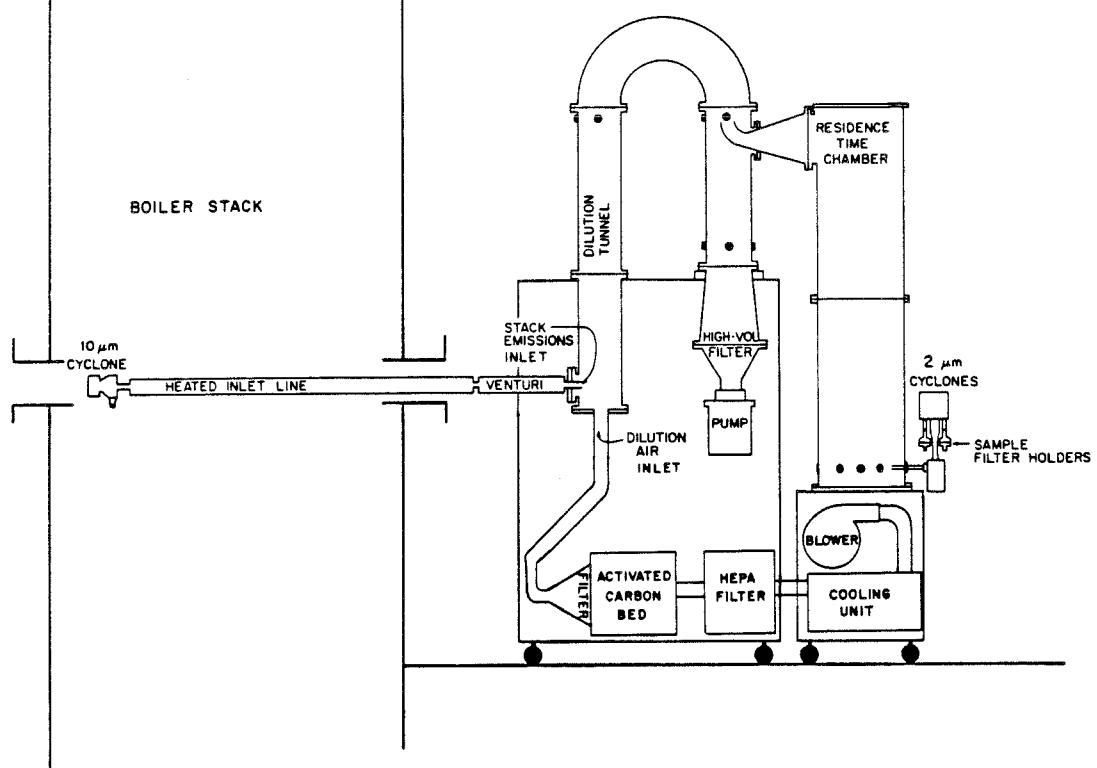
(c) This category represents a collection of many small dissimilar sources for which a small number of tests cannot be used to represent the emissions from the group as a whole.

(d) Forest fires are an occasional emission source that does not affect ambient samples on a routine basis.

The present paper documents the source tests and presents the bulk chemical characteristics of the sources sampled. In most cases, both the mass emission rate and chemical composition are determined, which is particularly useful in support of quantitative organic aerosol emission inventory studies since many studies of aerosol source chemical composition have focused either on mass emission rate determination or on *relative* chemical abundances (Watson, 1979; Cooper *et al.*, 1988; Friedlander, 1973), but not both.

3.2 EXPERIMENTAL SECTION

3.2.1 Source Sampler Design.


The source sampler used in this work is shown in Figure 3.1a. In its stationary source test configuration, it employs an in-stack stainless steel cyclone separator to collect particles with aerodynamic diameter greater than about $10 \mu\text{m}$. Exhaust gases and particles smaller than $10 \mu\text{m}$ in diameter are drawn through a heated Teflon sampling line into a stainless steel dilution tunnel. Following rapid and thorough mixing with cooled purified air, approximately 10% of the source sample is drawn into a stainless steel chamber where 40 to 60 seconds of residence time is provided to allow condensation processes to go to completion. The sample next flows from the residence time chamber through several parallel cyclone separators in which particles larger than $2 \mu\text{m}$ aerodynamic diameter are collected. The fine organic aerosol that remains in the sample stream then is collected by filtration at ambient temperature and pressure using equipment identical to that commonly used for low-volume ambient aerosol sampling. All flows are metered and controlled so that data on quantitative emission rate per unit of source activity are obtained. Details of the sampler's design and performance have been published previously (Hildemann, Cass and Markowski, 1989).

3.2.2 Source Sampler Preparation.

The sampler was cleaned before use at each combustion source sampled. Large parts first were vapor-degreased using tetrachloroethylene, with all open ends wrapped with clean aluminum foil immediately after cleaning to prevent

(a)

Sampler Configuration for Boiler Experiments

(b)

**Sampler Configuration for Vehicle Experiments
(Top View)**

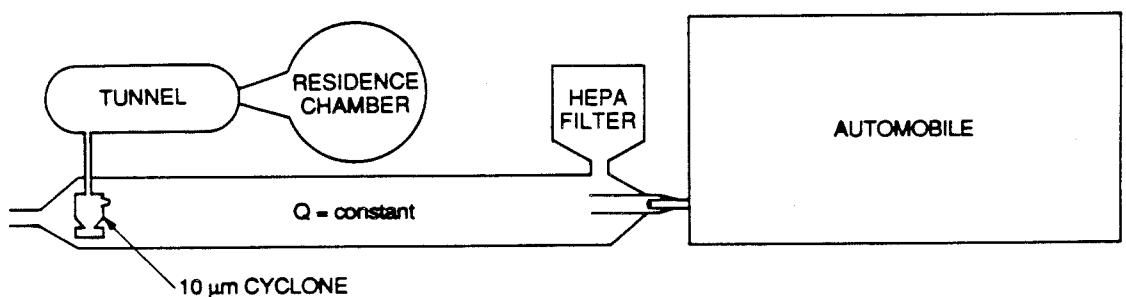
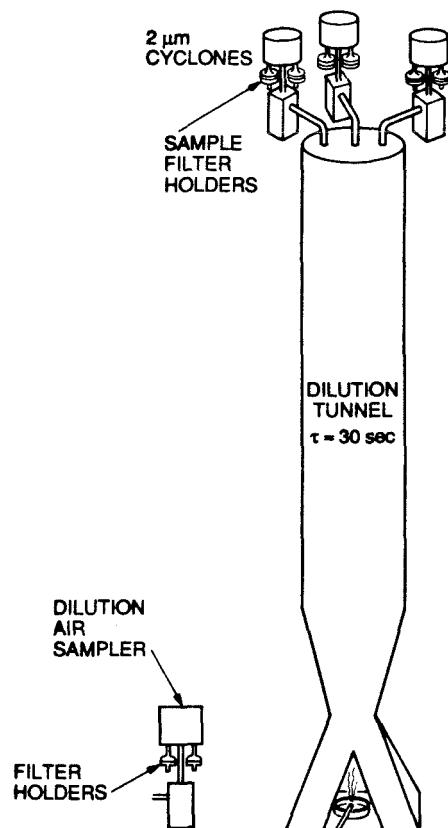



Figure 3.1. Source sampler design. (a) Dilution stack sampler; (b) Vehicle test configuration.

(c)

Dilution Sampler for Cigarette Experiments

(d)

Dilution Sampler for Tar Pot Experiments

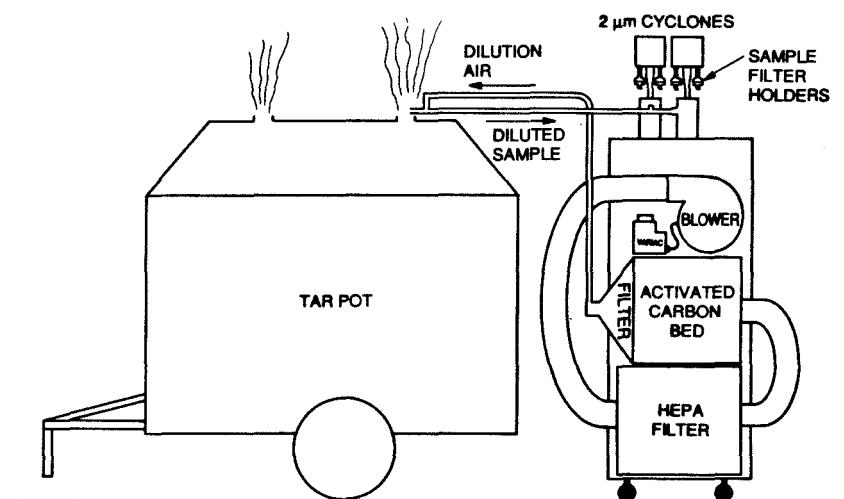


Figure 3.1. Source sampler design (cont.). (c) Cigarette sampling; (d) Tar pot sampling.

recontamination of the interior surfaces. These sampler parts were then assembled in the laboratory, and baked for at least 4 hours at temperatures of greater than 70 C by wrapping electrical heating tape around the stainless steel shell of the dilution sampler while circulating purified air through the system. The smaller sampler parts were washed with detergent, rinsed with deionized water, and then were sonicated first for 5 minutes in glass-distilled methanol, and then for another 5 minutes in glass-distilled hexane. Again, all open ends were wrapped with clean aluminum foil after the cleaning process to prevent contamination during storage and transit.

After assembling the sampler at the site of the combustion source, the system was checked for leaks of unfiltered ambient air into the system. Under a typical operating vacuum of 2500 Pa, this leakage rate was required to be less than 0.1% of the total flow rate through the system. System blank samples then were taken at the site prior to sampling the source in order to detect any potential contaminants, such as ambient organics passing through the dilution air purification system, other artifacts resulting from the handling and storage of the filters, or residues remaining after cleaning the sampler. Collection of the system blank samples was achieved by taking filter samples of the dilution air immediately after passage through the HEPA filter and activated carbon bed, and also at the normal stack aerosol sample extraction points at the downstream end of the entire sampling system attached to the residence time chamber (see Figure 3.1a).

Immediately before each experiment, the stack gas flowrate and temperature were measured at various points, using a pitot probe and a Type J thermocouple. The flowrate measurements were used to select an appropriate nozzle size for the in-stack cyclone in order to achieve isokinetic sampling. The temperature measurements were used to determine the temperature setting for the heated sample inlet line in order to avoid premature condensation of aerosol in the inlet line upstream of the dilution tunnel.

Before and after each sampling experiment, the flowrate through each of the filters was measured using a rotameter calibrated to an accuracy of $\pm 1\%$. During

each experiment, the flowrates of the incoming dilution air, and of the mixture exiting the tunnel, were measured at regular intervals using magnehelic gauges that determined the pressure both upstream and across calibrated orifice plates. The exhaust gas flow through the stack sampler inlet line was measured in the same manner using a venturi meter. All flowrates were corrected to standard temperature and pressure (STP). System temperature and relative humidity also were recorded frequently, and parameters such as excess oxygen, temperature, and concentrations of both CO and CO₂ were measured with a Kane-May Model 9103 Combustion Analyzer using a probe inserted into a sampling port in the stack.

3.2.3 Source Sampling Procedures.

For tests conducted on ducted stationary sources, the dilution stack sampler was erected on a wheeled platform adjacent to the stack, and the entire sampler was moved during sampling to traverse the stack. The hot exhaust gases were withdrawn from the stack through a cyclone separator that removed aerosol with particle diameters greater than 10 μ m. The source effluent then passed through a straight, 1.2-m long heated Teflon tube at a typical rate of 22–32 lpm (at STP) before being mixed with dilution air in the main part of the dilution sampling system. The dilution air was cooled slightly to achieve an ambient temperature of 25 to 35 degrees C upon mixing with the hot source effluent, and the dilution air was purified before use by passing it through an activated carbon bed and a HEPA filter. The source effluent was typically diluted by a factor of between 35:1 and 50:1. Fine aerosol samples were collected by sampling from the residence time chamber at the downstream end of the sampling system. Aerosol samples were withdrawn through six parallel AIHL cyclone separators (John and Reischel, 1980), each operated at 27.9 ± 0.3 lpm, which removed particles with sizes greater than or equal to 2.0 μ m. Downstream of each of these cyclone separators, three 47mm diameter filter holders were used to collect the aerosol at a sample flowrate of 9.0 to 9.6 lpm through each filter holder, yielding 18 separate fine particle samples.

Three of the 18 filter holders contained filter substrates for determination of bulk fine aerosol chemical properties. Two of these three filter holders contained

Teflon filters (Gelman Teflo, 2.0um pore size) for determination of (1) aerosol mass by gravimetric analysis of both filters; (2) trace metals content by x-ray fluorescence; and (3) ionic species by ion chromatography and atomic absorption spectrophotometry. The third filter holder contained a quartz fiber fiber filter (Pallflex 2500 QAO) of the type customarily used for collection of ambient organic aerosol samples. All quartz fiber filters were baked at 750 C for 2 to 4 hours before use to lower their carbon blank. These filter types were chosen in order to match as closely as possible the sampling characteristics of an existing set of Los Angeles ambient aerosol samples (Gray *et al.*, 1986; Mazurek *et al.*, 1987, 1989). From chemical analysis of the two Teflon and one quartz fiber filters, a nearly complete material balance on the bulk chemical content of the source aerosol can be obtained (Gray *et al.*, 1986; Solomon *et al.*, 1989). The remaining 15 filter holders contained prebaked quartz fiber filters destined for later detailed examination of the organic species present. All filter handling was performed with clean, Teflon-coated tweezers. The glass jars used for storing organic aerosol source samples were annealed overnight at 500 degrees C, and had solvent-washed Teflon liners in the lids. Samples for trace elements, ionic species and gravimetric analysis (collected on Teflon filters) were stored in petri dishes sealed with Teflon tape. All samples were stored at minus 25 degrees C within 2 hours of the end of an experiment.

The aerosol mass emission rate from the combustion source was determined gravimetrically by weighing the Teflon filters before and after sampling using a Mettler balance (Model M-55-A) in a temperature- and humidity-controlled room (20-24 C, 50-55% r.h.). Thirty-four trace elements were determined by x-ray fluorescence. Sulfate, nitrate and chloride emission rates were measured by ion chromatography (Model 2020i, Dionex Corp.), and sodium and magnesium were analyzed by flame atomic absorption (Model AA-6, Varian Techtron). The emission rate of aerosol ammonium ion was measured using a modified indophenol colorimetric method (Bolleter, Bushman and Tidell, 1961) with a rapid-flow analyzer (Model RFA-300, Alpkem Corp.). Organic and elemental carbon mass

emissions rates were determined from a quartz fiber filter using a thermal evolution and combustion technique (Huntzicker *et al.*, 1982; Johnson *et al.*, 1981). The mass emission rate of organic compounds was estimated as 1.2 times the organic carbon measured (Gray *et al.*, 1984). The mass emission rate of each chemical species found in the exhaust aerosol was determined after subtraction of any trace pollutant concentrations measured in the dilution air supply.

3.2.4 Sources Tested by Dilution Sampling.

The sources selected for sampling are identified in Table 3.1, and were chosen to represent source types responsible for close to 80% of the fine primary organic aerosol emissions to the Los Angeles atmosphere based on existing engineering estimates drawn from a literature review (Cass, Boone and Macias, 1982; Gray, 1986). Those sources where dilution sampling is necessary are indicated by note (a) in Table 3.1.

3.2.4.1 Stationary Industrial Sources. A Babcock & Wilcox Dual Fuel FM-type industrial-scale watertube boiler (steam production capacity of 53×10^6 kJ/hr) was tested equipped with a steam atomizer burner for No. 2 fuel oil combustion. For each test, the boiler being sampled was operated in steady state mode at about 60% of capacity, with a second boiler used to absorb the demand fluctuations. Sampling was conducted on the roof of the steam plant facility, using access ports built into the exhaust stacks. These access ports allowed samples to be taken by traversing only along one axis, and prevented samples from being taken closer than 8-cm to the wall. The 1.1-m diameter stack was traversed twice during each experiment, and samples were taken from five equidistant points within the stack. The cross-sectional area of the stack was divided into 5 zones surrounding each sampling point, and the duration of sample extraction at each point was directly proportional to the volumetric flux of exhaust gas through the area of the stack assigned to that point. Hence, samples were taken for long periods near the stack wall, while the center of the stack was sampled for a shorter time. The volumetric flow rate of the stack exhaust gases was adjusted to 3% oxygen, dry, based on fuel consumption and excess oxygen measurements.

3.2.4.2 Mobile Sources. A fleet of automobiles and heavy-duty diesel trucks was tested at the California Air Resources Board's Haagen-Smit Laboratory dynamometer facilities. Vehicles tested are described in Table 3.2. For the automobiles, the cold-start Federal Test Procedure Urban Driving Cycle (see Figure 3.2a) was used to simulate city driving conditions. The heavy-duty dynamometer used for the trucks could not simulate a complicated driving cycle. Instead, the cycle illustrated in Figure 3.2b was used. Cars were tested in as-received condition, and an effort was made to include both domestic and foreign model vehicles. Each catalyst-equipped automobile was tested while burning the brand of unleaded gasoline normally purchased by its owner. For the noncatalyst Mercury and Buick, leaded premium with a lead content of 0.22 gm/gal was used. For the other four noncatalyst cars, leaded regular gasoline with a lead content of 0.34 gm/gal was used. The trucks, which were provided by the City of Pasadena, were both late-model, low-mileage vehicles, and were tested while burning the diesel fuel normally purchased by that city. To sample an amount of vehicle exhaust proportional to the total amount being emitted at any time, an additional dilution tunnel segment was added upstream of the normal intake to the dilution sampler (see Figure 3.1b). A combination of vehicle exhaust plus filtered dilution air was drawn through this tunnel segment at a constant flowrate, using variation of the dilution air flowrate to maintain a constant flow rate in the face of changing engine speed. Using this approach, the concentration of the diluted emissions in this tunnel was proportional to the flux of exhaust from the tailpipe at any time. A fraction of this prediluted exhaust was withdrawn into the stack sampler at a constant flowrate and then was diluted a second time by the standard dilution air supply to the sampler, effectively sampling an exhaust aerosol concentration proportional to the total emission rate at any time.

3.2.4.3 Dispersed Area Sources. An undampered, traditional brick fireplace in an older single-family home was utilized for the sequence of wood combustion experiments, each involving a different type of wood: seasoned pine, oak, almond, and a synthetic log (Pine Mountain brand, 5 lbs). For the wood, pieces ranging from 1000 to 6000 g were preweighed to the nearest 5 g and labeled, as was the

Table 3.2. Characteristics of Vehicles Tested

	Number of Cylinders	Engine Displacement (cu in)	Odometer Reading (miles)	FTP Fuel Economy (mi/gal)
NONCATALYST AUTOMOBILES				
1965 Mercury Monterey	8	390	139192	10.7
1969 Ford Mustang	8	302	141843	14.7
1970 Buick Skylark	8	350	88726	13.0
1972 Chevrolet Caprice	8	400	147249	12.3
1974 Ford Pinto	4	140	107138	16.7
1976 Volkswagen Beetle	4	97	80876	26.6
CATALYST AUTOMOBILES				
1977 Chevrolet Vega	4	140	88598	22.0
1980 Honda Civic 150	4	91	83862	27.5
1980 Honda 1500	4	91	149424	28.0
1980 Toyota Corolla	4	108	66832	20.6
1981 Datsun 200SX	4	119	81541	24.6
1983 Chevrolet Malibu CL	6	231	38826	17.7
1983 Dodge Omni	4	135	27280	22.7
HEAVY-DUTY DIESEL TRUCKS				
1987 GMC Truck (2-axle)	8	636	2920	7.9 ^(a)
1987 Ford Dump Truck (3-axle)	8	636	5581	7.2 ^(a)

(a) Fuel economy is for the truck driving cycle shown in figure 2b.

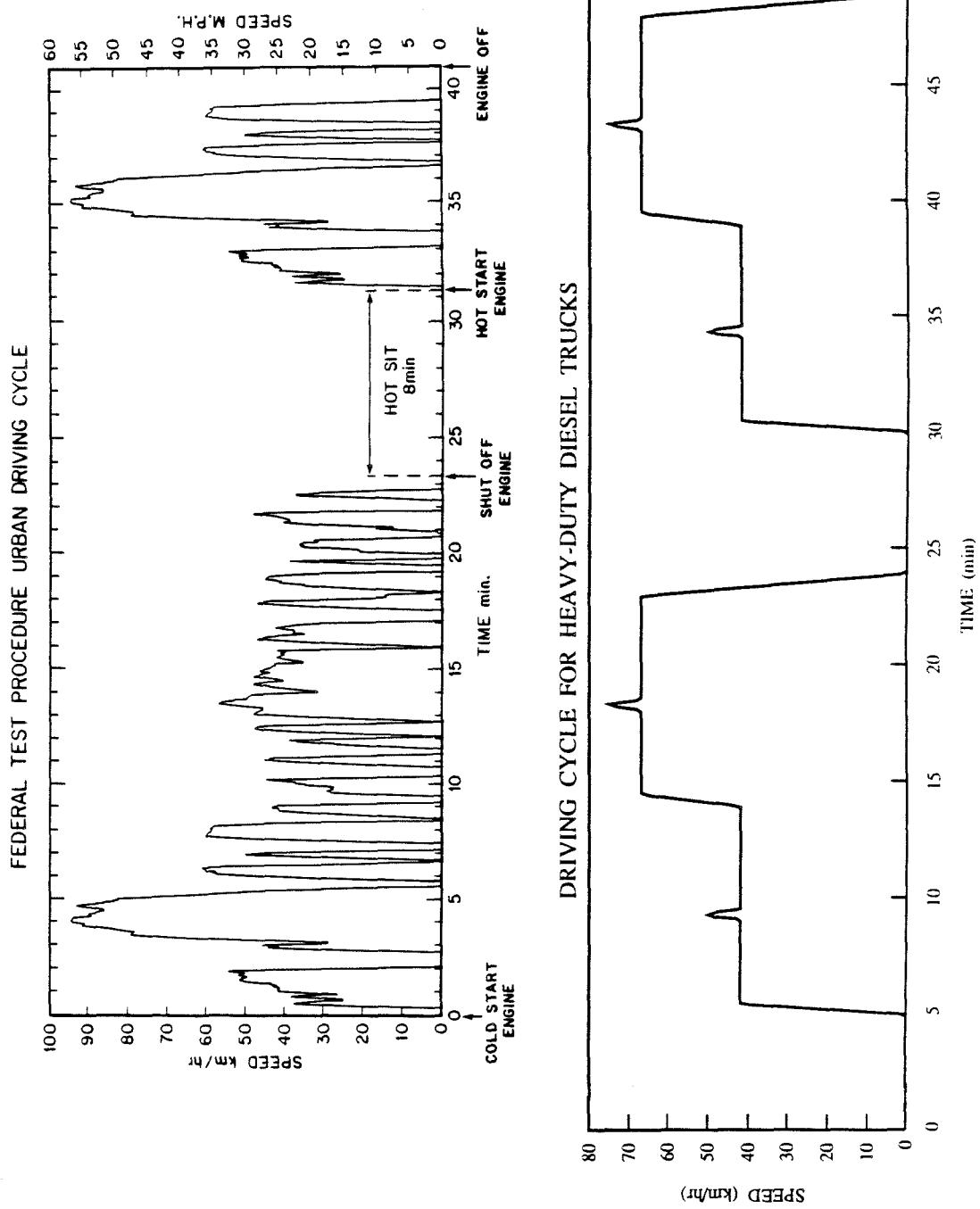


Figure 3.2. Driving cycles. (a) Federal Test Procedure urban driving cycle; (b) Driving cycle for heavy-duty diesel trucks.

kindling. In an effort to mimic the course of a traditional home fire, wood was added at intervals through the course of the fire, and the fire was periodically stirred. A record was kept of the time when various logs were added and when the fire was stirred. For the synthetic log, the fire was left undisturbed, in accordance with the manufacturer's directions. Emissions were withdrawn from the flue through a hole bored into the side of the chimney. Four different sampling points along the long axis of the chimney were used, obtaining effluent samples both near the wall and near the center of the flue. For each test, emissions were sampled from the time that the fire was lit to the late ember stage, a 3-4 hr period. Pieces of newspaper were used to ignite the fire, but otherwise the material being combusted (including the kindling) was strictly limited to the type of wood being used for the particular experiment.

For the meat-cooking experiments, a local commercial-scale kitchen was utilized. Two types of hamburger meat, regular (approx. 21% fat) and extra-lean (approx. 10% fat), were cooked by two methods: by charbroiling over a natural gas flame, and by frying. In each of four experiments, 80 quarter-pound (113 g) hamburger patties were cooked until they were medium to well-done, eight at a time, over a period of 70 to 80 minutes. The aerosol generated during the cooking was withdrawn through a 14,000 cfm ($6.6 \text{ m}^3 \text{ sec}^{-1}$) overhead exhaust hood equipped with a baffle-type grease extractor. The source sampler was located on the roof of the kitchen, and samples were withdrawn at the exit to the exhaust duct. The air flow rate through the exhaust vent was verified through pitot probe measurements.

A natural gas-fired space heater (Western Gravity Heat, Model 8G100) and water heater (American Standard, Model G-531-H) were used to generate emissions from natural gas combustion at a single family home. The two devices were connected to a common exhaust duct, and this duct was traversed using the stack sampler to withdraw emissions from 5 points in the 23 x 23 cm exhaust duct. For each experiment, the heaters were turned off for 1 to 3 minutes approximately twice per hour in an attempt to mimic the cyclic nature of their operation; otherwise, both heaters were left on continuously for the 8 to 12 hour duration of each experiment.

For collection of cigarette smoke, the dilution stack sampler was not used. Instead, a vertically oriented dilution tunnel made of stainless steel, aluminum, and Teflon was erected in the laboratory as shown in Figure 3.1c. This tunnel, which was solvent cleaned prior to use, was constructed to collect *all* the aerosol released to the atmosphere while smoking a cigarette. As the cigarette was smoked, the smoker would exhale into the triangular opening at the bottom of the tunnel. During the periods between puffs, the cigarette was placed in an ash tray at the bottom of the tunnel, and the sidestream smoke from the smoldering cigarette was drawn into the tunnel. As the smoke was drawn up into the tunnel, it underwent dilution, passed through $2\mu\text{m}$ size cut cyclone separators, and the fine aerosol finally was captured on a set of filters identical to those used with the dilution sampling systems employed for the earlier work in this series of experiments. Consumption of regular, filtertip, light, and menthol cigarettes was estimated based on market-share data from 1981 (House of Reps., 1982) (see Table 3.3). One of the five most popular brands of each type of cigarette was used for testing, as shown in Table 3.3.

The roofing tar pot tested contained petroleum-based built-up roofing asphalt (GAF brand) maintained at 250–300 C. The full dilution stack sampler was not used to collect roofing tar pot emissions. Instead, a smaller-scale dilution sampler was constructed of stainless steel, aluminum and Teflon (see Figure 3.1d), and solvent-cleaned prior to use. A Variac was used to regulate the speed of the blower that determines the dilution air flowrate such that a sample intake rate of 2 lpm was subsequently diluted by 18-fold before collection of fine aerosol on filter sets downstream of two $2\mu\text{m}$ size cut cyclones. Samples were taken from a vent opening at the top of the tar pot for 10 to 15 minutes.

3.2.5 Sources Tested by Resuspension.

For collection of paved road dust, a grab sampling technique was used. A small vacuum sweeper truck (Tennant 255, 36HP) was driven up and down several blocks of Pasadena-area streets that had accumulated road dust during a 2-week dry period in May 1988. The material collected was resuspended in a clean Teflon bag, using air passing through a HEPA filter and an activated carbon bed to maintain a

Table 3.3. Market Share Data for Cigarettes ^(a)

Cigarette Type	1981 Market Share (%)	Most Popular Brands	1981 Market Share (%)	Brand Sampled
Regular	41.6	Marlboro 85s	11.2	
		Winston 85s	7.1	
		Pall Mall 100s	3.6	
		Salem 85s	2.7	
		Camel 85s	2.3	X
Filtertips (NonMenthol)	28.5	Kool 85s	4.8	
		Marlboro 100s	2.5	
		Merit 85s	2.0	X
		Vantage 85s	1.8	
		Kool 100s	1.5	
Lights/ Ultralights (NonMenthols)	22.1	Marlboro 85s	3.1	
		Winston 85s	2.3	X
		Salem 85s	2.2	
		Salem 100s	1.6	
		Marlboro 100s	1.3	
Menthols	7.8	Virginia Slims 100s	1.3	
		Benson & Hedges 100s	1.2	X
		Benson & Hedges Lts.	0.9	
		More 100s	0.5	
		Carlton 100s	0.4	

(a) Calculated from data in House of Representatives (1982).

slightly positive pressure in the bag. The contents of the Teflon bag were agitated and samples were withdrawn through $2\mu\text{m}$ size cut cyclone separators for subsequent collection on filter substrates.

A bulk sample of organo-metallic brake dust from the rear drum brakes of a late model light-duty truck was obtained by brushing the dust from the inside of the drum after removing the wheel. The sample was resuspended in a clean Teflon bag and aerosol in the sub- $2\mu\text{m}$ size range was collected in the same manner as for the road dust.

A radial tire (195/60R15 Toyo) that had already been driven for 7200 miles was run on a rolling resistance test at a tire testing laboratory over a period of several days. Wear particles that accumulated on the horizontal surfaces of the machine were collected as a grab sample. The tire particles were resuspended to form an aerosol from which a sample of fine particles less than $2\mu\text{m}$ in diameter could be obtained via cyclone separation. However, when resuspension was attempted, the tire particles became electrically charged and adhered to the walls of the sampling equipment. The attempt to obtain a fine aerosol sample was abandoned. Instead, a total particle sample was collected directly onto filters, giving a sample that was mainly composed of coarse particles.

Organic aerosol produced by the abrasion of surface waxes from the leaves of plants are readily identifiable as a component of ambient particulate matter samples (Simoneit and Mazurek, 1982; Mazurek and Simoneit, 1984; Mazurek, Cass and Simoneit, 1989). To collect a representative sample of vegetative abrasion products, the predominant plant species in the Los Angeles area, both cultivated and natural, were identified based on studies by Winer, Fitz and Miller (1983) and Miller and Winer (1984). Based on their data, 51 cultivated species representing six types of urban vegetation (broad leaf trees, conifers, palms, shrubs, grasses, and groundcover), 10 species of natural vegetation, and 1 species of agricultural vegetation were selected for study, as shown in Table 3.4. Separate samples of green and dead leaves were acquired for each of these 62 species over a 3-day period from botanical collections at the Los Angeles County Arboretum in Arcadia,

Table 3.4. Vegetation Sample Composite

		Leaf Mass per Area Covered	Area Covered by Vegetation in Los Angeles	Scale Factor ^(a)	Fraction of Mass in Composite Los Angeles Leaf Sample ^(b) (%)
URBAN VEGETATION					
BROAD-LEAF TREES					
Ribbon Gum	<i>Eucalyptus viminalis</i>	490	7300	1.20	2.10
Ash	<i>Fraxinus sp.</i>	756	3100	1.20	1.36
Calif Live Oak	<i>Quercus agrifolia</i>	1230	1600	1.20	1.20
Elm	<i>Ulmus sp.</i>	140 ^(c)	3000	1.20	0.25
Maple	<i>Acer sp.</i>	300	1200	1.20	0.20
Calif Sycamore	<i>Platanus racemosa</i>	342	1000	1.20	0.22
Peruvian Pepper	<i>Schinus molle</i>	362	970	1.20	0.21
Jacaranda	<i>Jacaranda mimosafolia</i>	283	900	1.20	0.15
Victorian Box	<i>Pittosporum undulatum</i>	2500	630	1.20	0.91
Black Locust	<i>Robinia pseudoacacia</i>	50	570	1.20	0.017
Crape Myrtle	<i>Lagerstroemia indica</i>	2140	520	1.20	0.66
Avocado	<i>Persea americana</i>	215	490	1.20	0.061
Camphor	<i>Cinnamomum camphora</i>	153	440	1.20	0.039
Magnolia	<i>Magnolia grandiflora</i>	1110	400	1.20	0.26
Brazilian pepper	<i>Schinus terebinthifolius</i>	109	280	1.20	0.018
Olive	<i>Olea europaea</i>	1190	230	1.20	0.16
Willow	<i>Salix sp.</i>	176	500	1.20	0.051
Silver dollar gum	<i>Eucalyptus polyanthemos</i>	503	340	1.20	0.10
Citrus (orange)	<i>Citrus sp.</i>	490	380	1.20	0.11
Others		—	4900	—	—
SHRUBS					
Calif. Sage Brush	<i>Artemesia californica</i>	70	1500	1.28	0.065
Golden Wattle	<i>Acacia longifolia</i>	647	1300	1.28	0.51
Juniper	<i>Juniperus sp.</i>	3430	1000	1.28	2.17
Glossy Privet	<i>Ligustrum lucidum</i>	482	820	1.28	0.26
Bottlebrush	<i>Callistemon sp.</i>	773	820	1.28	0.41
Chinese Juniper	<i>Juniperus chinensis</i>	2360	660	1.28	0.98
Camellia	<i>Camellia sp.</i>	2080	580	1.28	0.75
Oleander	<i>Nerium oleander</i>	417	540	1.28	0.14
Hibiscus	<i>Hibiscus sp.</i>	789	530	1.28	0.26
Rose	<i>Rosa sp.</i>	329	520	1.28	0.11
Shiny Xylosma	<i>Xylosma congestum</i>	589	420	1.28	0.16
Coyote Bush	<i>Baccharis pilularis</i>	1000 ^(d)	400	1.28	0.25
Japanese Pittosp.	<i>Pittosporum tobira</i>	2160	380	1.28	0.52
Toyon	<i>Heteromeles arbutifolia</i>	1500 ^(d)	340	1.28	0.32
Cape honeysuckle	<i>Tecoma capensis</i>	478	97	1.28	0.028
Cotoneaster	<i>Cotoneaster sp.</i>	717	250	1.28	0.11
Heavenly bamboo	<i>Nandina domestica</i>	547	160	1.28	0.053
India hawthorn	<i>Raphiolepis indica</i>	496	240	1.28	0.075
Holly	<i>Ilex sp.</i>	600 ^(d)	150	1.28	0.056
Podocarpus	<i>Podocarpus sp.</i>	255	300	1.28	0.047
Yucca	<i>Yucca sp.</i>	1700 ^(d)	290	1.28	0.31
Others		—	3200	—	—

(cont.)

Table 3.4. Vegetation Sample Composite (cont.)

		Leaf Mass per Area of Land Covered	Area Covered by Vegetation in Los Angeles	Scale Factor ^(a)	Fraction of Mass in Composite Los Angeles Leaf Sample ^(b) (%)
URBAN VEGETATION (cont.)					
CONIFERS					
Monterey Pine	<i>Pinus radiata</i>	941	2500	1.12	1.29
Other Pine	<i>Pinus sp.</i>	1000	820	1.12	0.45
Italian Cypress	<i>Cupressus sempervirens</i>	8500	450	1.12	2.07
Others		—	450	—	—
PALMS					
Cocos Palm	<i>Arecastrum romanoffianum</i>	722	720	1.02	0.26
Fan Palm	<i>Washingtonia sp.</i>	1570	620	1.02	0.48
Canary Is. Palm	<i>Phoenix canariensis</i>	2050	320	1.02	0.33
Other		—	38	—	—
GRASS					
mixed grasses	(various unidentified)	380 ^(d)	92000	1.02	17.42
dichondra	<i>Dichondra repens</i>	—	2200	—	—
GROUND COVER					
Ivy	<i>Hedera sp.</i>	580 ^(d)	8200	1.10	2.55
African Daisy	<i>Osteospermum fruticosum</i>	800 ^(d)	2500	1.10	1.05
Ice Plant	<i>Lampranthus spectabilis</i>	1400 ^(d)	1300	1.10	1.02
Others		—	1900	—	—
NATURAL VEGETATION					
Black sage	<i>Salvia sp.</i>	305	34000	1.23	6.25
Buckthorn	<i>Rhamnus sp.</i>	225	3200	1.23	0.44
Buckwheat	<i>Eriogonum sp.</i>	205	11000	1.23	1.40
Calif. sage brush	<i>Artemesia californica</i>	18	33000	1.23	0.36
Ceanothus	<i>Ceanothus sp.</i>	770	31000	1.23	14.27
Chamise	<i>Adenostoma sp.</i>	92	52000	1.23	2.86
Manzanita	<i>Arctostaphylos sp.</i>	5050	3600	1.23	10.84
Scrub oak	<i>Quercus sp.</i>	64	13000	1.23	0.53
Sugar bush	<i>Rhus sp.</i>	305	11000	1.23	2.08
Grass	<i>Gramineae</i>	400 ^(d)	58000	1.23	13.85
Others		—	41000	—	—
AGRICULTURAL VEGETATION					
Citrus lemon	<i>Citrus limon burm</i>	429	23000	23000	4.81
OTHER LAND					
Nonvegetated			66000	—	—
Urban barren			430000	—	—
Natural barren			18000	—	—

(a) Scale factor to account for species not sampled, which appear as the last item in each vegetation category. Amounts of the species actually sampled were scaled up by this factor within each category.

(b) Calculated as: $\frac{100 \times \text{Column 1} \times \text{Column 2} \times \text{Column 3}}{\sum (\text{Column 1} \times \text{Column 2} \times \text{Column 3})}$

(c) Average of values for Chinese and American Elm.

(d) Leaf mass per area estimated for this study. Other values calculated from data in Winer, Fitz and Miller (1983) and Miller and Winer (1984).

California, Rancho Santa Ana in Claremont, California, and Eaton Canyon Park in Pasadena, California. Leaves from the species collected were composited to form a mixed sample in which the mass of leaves from each species was proportional to the fraction of the estimated total leaf area in the Los Angeles region represented by that species (see Table 3.4). Two composite samples were formed — one with dead leaf material, and one with green leaf material. Each composite sample was then agitated in a clean Teflon bag for about 2 hours to release and collect the plant waxes and other vegetative detritus that results when the leaves are rubbed together by the wind. Sample collection was by the same approach as for the road dust.

3.3 RESULTS AND DISCUSSION

3.3.1 Oil-fired Boiler Emissions.

Five tests were conducted on a boiler burning No. 2 fuel oil. For each test, the boiler was restricted to steady-state operation at about 60% of capacity, and the operator was allowed to adjust the fuel/air ratio as he would do in normal practice. Table 3.5 lists the boiler operating parameters measured during each experiment.

The magnitude and chemical composition of the fine aerosol emissions ($< 2.0 \mu m$) observed during these boiler tests are shown in Figure 3.3. These tests, conducted on different days using different dilution ratios and different batches of No. 2 fuel oil, show fine aerosol mass emission rates of 5 to 13 $\mu g/kJ$ of fuel burned. Between 58 and 90% of the fine particulate emissions are accounted for by the chemical species measured.

In Figure 3.4, the mass emission rate of various chemical species is shown as a function of the percent excess oxygen in the flue gas. The concentrations of organic compounds and ammonium ion in the exhaust aerosol do not show large systematic variations with the amount of excess oxygen present. In contrast, although other factors cannot be conclusively ruled out, elemental carbon concentrations appear to vary strongly with excess oxygen: below 7% excess oxygen, the leaner the combustion conditions, the higher the elemental carbon emission rate. These

Table 3.5. Industrial boiler experiments burning No. 2 Fuel Oil

Date:	3/31/86	4/3/86	4/4/86	4/9/86	4/21/86
Test Duration (min)	185	375	190	360	360
Dilution Ratio ^(a)	46x	49x	27x	94x	35x
Boiler Operation Level					
—GJ per hour	30.6	30.6	32.2	32.7	28.5
—% of capacity	58%	58%	61%	62%	54%
Avg. Excess Oxygen	6.9%	6.5%	5.6%	6.3%	7.1%
Avg. CO ₂ Conc.	—	10.8%	11.7%	10.9%	10.3%
Avg. Boiler Temp. (C)	—	213	219	228	213
Avg. CO Conc. (ppm)	—	—	—	105	109
Operator	Carter	Kane	Kane	Wiig	Kane

(a) Dilution Ratio =
$$\frac{\text{Volume of dilution air at STP} + \text{Volume of stack gas at STP}}{\text{Volume of stack gas at STP}}$$

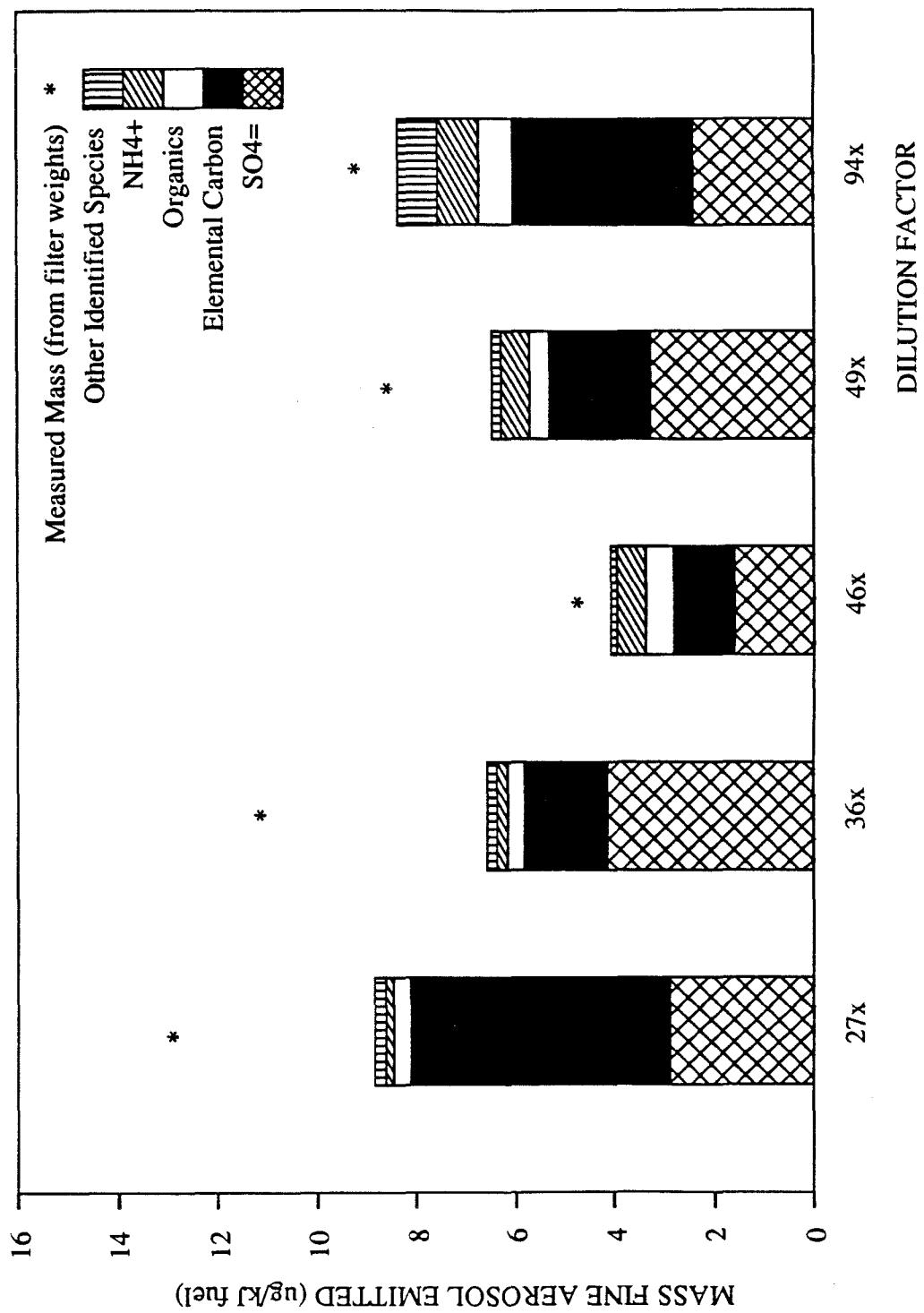


Figure 3.3 Fine aerosol emissions from a midsize industrial boiler burning No. 2 fuel oil.

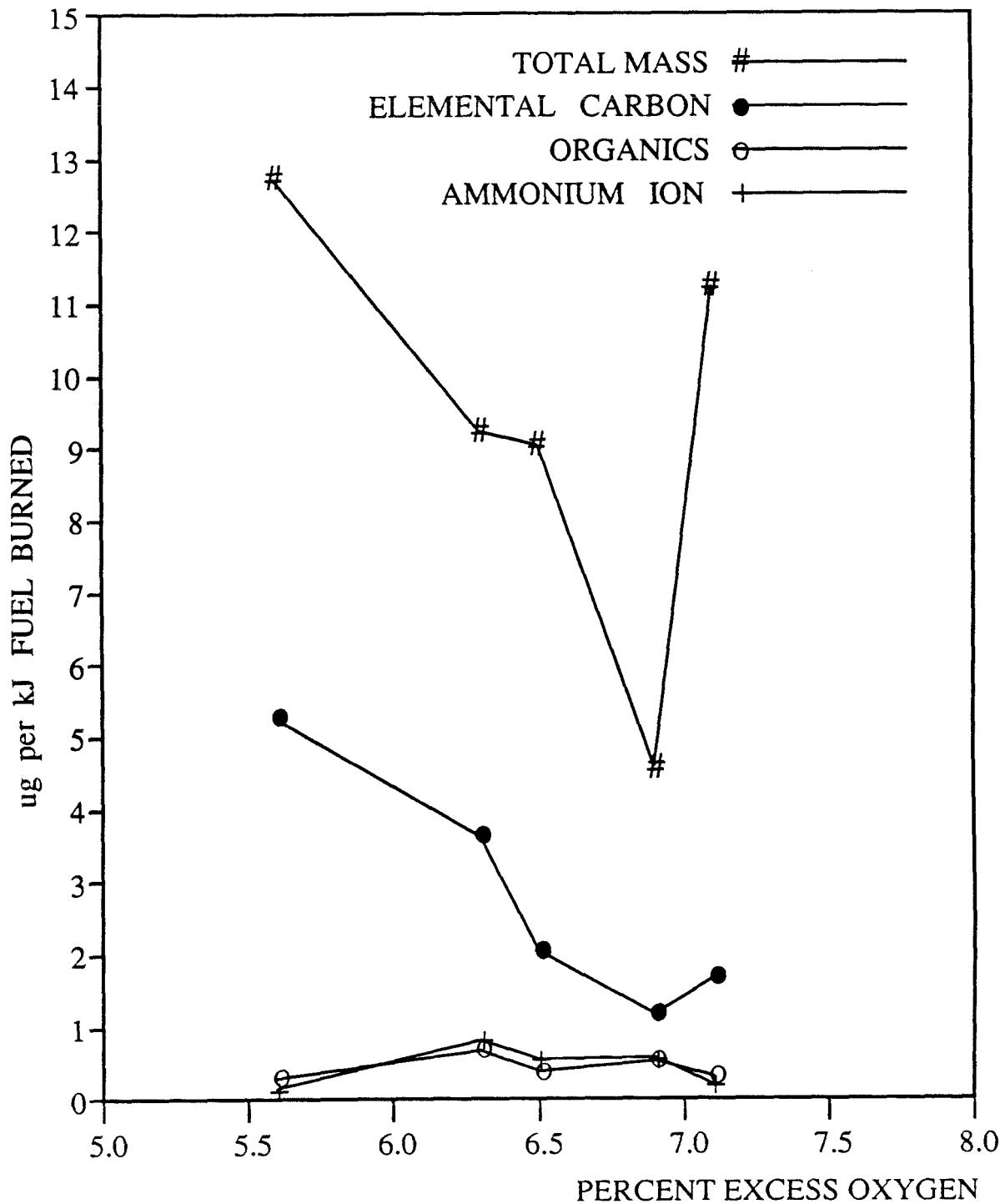


Figure 3.4. Fine aerosol emissions vs. excess oxygen measured during distillate oil combustion in an industrial-scale boiler.

variations in the elemental carbon emissions rate contribute greatly to the variation in total fine particulate emissions with excess oxygen that is seen in Figure 3.4. In a previous study, Goldstein and Siegmund (1976) observed a distinct minimum in total particulate emissions from combustion of residual fuel oil when a 1.8 GJ/hr boiler was operated at around 8% excess oxygen. In the present test program, a minimum in the aerosol mass emission rate is seen at about 7% excess oxygen.

The major chemical species found in the fine particulate emissions from the distillate oil-fired boiler were sulfates, elemental carbon, ammonium ion, and organics. The fine particle emission rate averaged over the five tests was 9 (± 3) $\mu\text{g}/\text{kJ}$ of fuel burned. In Figure 3.5a, it is seen that the fine particulate emissions averaged over all 5 tests consisted of about 32% sulfates, 29% elemental carbon, 6% organics, 6% NH_4^+ , and 3% other ionic species and oxidized trace elements (consisting mainly of SiO_2 , Al_2O_3 , Fe_2O_3 , and Na^+). The average chemical composition of the aerosol emissions measured for the five tests, contained in Table 3.6, will be of use to those interested in receptor modeling based on trace metals concentrations. (Results for each individual test are contained in Appendix C.) The other 24% of the emitted mass was not identified chemically, but is believed to include some water in the form of hydrolyzed compounds. For comparison, a previously published material balance on the chemical composition of the aerosol emissions from an industrial-scale boiler burning distillate fuel oil (Taback *et al.*, 1979) was based on the $<1\mu\text{m}$ filter catch plus analysis of the residue remaining after evaporation of the impinger catch from a SASS train. In those tests, the aerosol composition was reported to consist of 25% sulfates, 15% total carbon, 4% nitrates, and 56% "other" material denoted as including O_2 , Si, Mg and Al. In another study collecting fine particulate matter from a distillate oil-fired furnace using a hot filter maintained at 60–65 C, the $\leq 2.5\ \mu\text{m}$ size fraction showed an average composition (sampling three furnaces for a total of six measurements) of $18 \pm 23\%$ elemental carbon, $18 \pm 6\%$ organic carbon, $13 \pm 9\%$ SO_4^{2-} , 4% other species, and $46 \pm 26\%$ unidentified material (Watson, 1979).

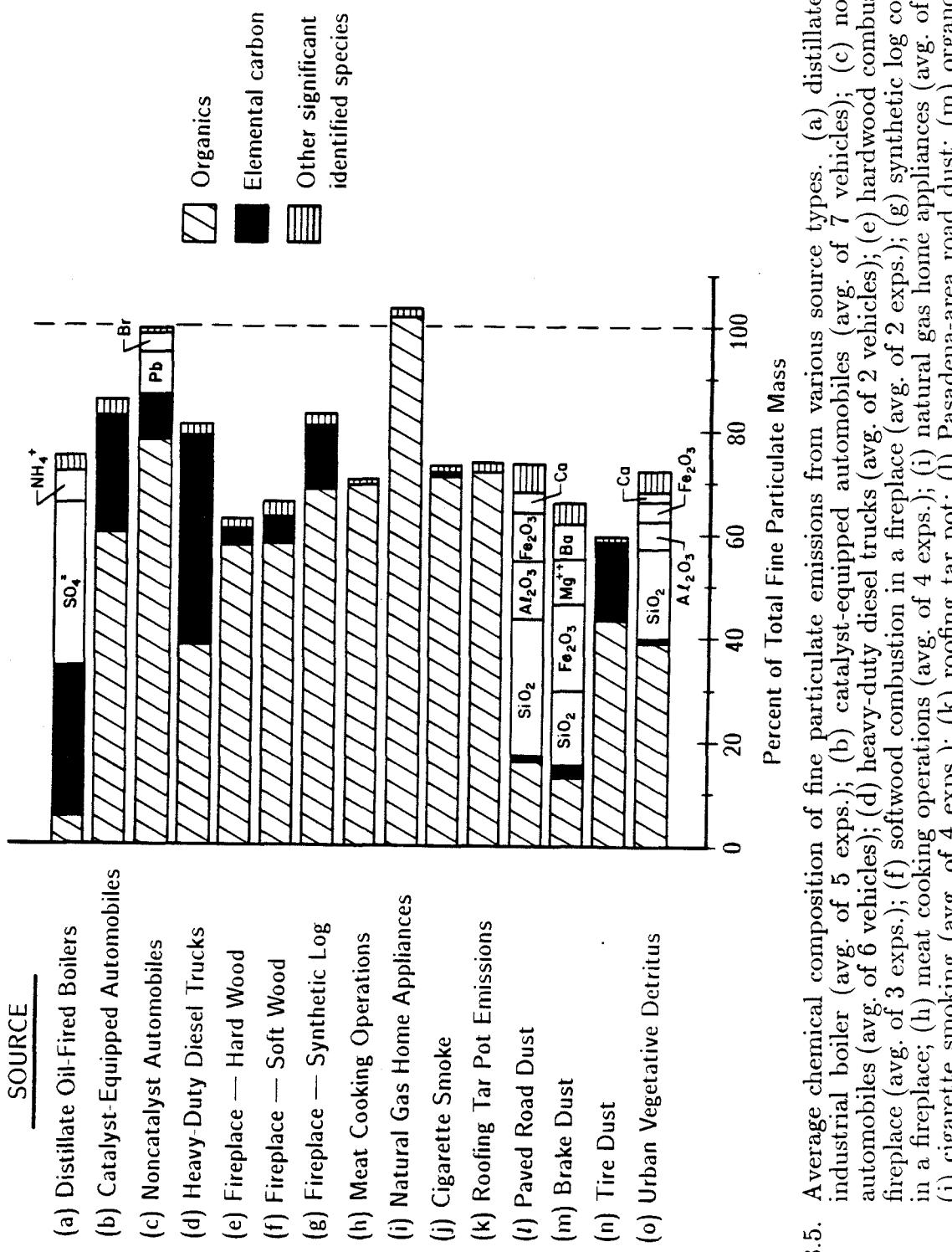


Figure 3.5. Average chemical composition of fine particulate emissions from various source types. (a) distillate oil-fired industrial boiler (avg. of 5 exps.); (b) catalyst-equipped automobiles (avg. of 7 vehicles); (c) noncatalyst automobiles (avg. of 6 vehicles); (d) heavy-duty diesel trucks (avg. of 2 vehicles); (e) hardwood combustion in a fireplace (avg. of 3 exps.); (f) softwood combustion in a fireplace (avg. of 2 exps.); (g) synthetic log combustion in a fireplace; (h) meat cooking operations (avg. of 4 exps.); (i) natural gas home appliances (avg. of 3 exps.); (j) cigarette smoking (avg. of 4 exps.); (k) roofing tar pot; (l) Pasadena-area road dust; (m) organo-metallic brake dust; (n) radial tire dust; and (o) vegetative detritus (avg. of 2 exps.).

Table 3.6. Chemical Characteristics Measured in Source Tests†

No.2 Fuel		Catalyst		NonCatalyst		Heavy-Duty		Synthetic		
Oil Boiler	(5 exps.)	Automobiles	(7 vehicles)	Automobiles	(6 vehicles)	Diesel	Hard Wood	Log Fire	Gas Home	
(% ± S.D.)	(% ± S.D.)	(% ± S.D.)	(% ± S.D.)	(% ± S.D.)	(% ± S.D.)	Trucks	Wood	(1 exp.)	Appliances	
Al	0.42 ± 0.13 *	0.07 ± 0.44	0.73 ± 0.41 *	0.052 ± 0.062	0.015 ± 0.005 *	0.011 ± 0.006 *	0.26 ± 0.02 *	0.23 ± 0.58		
Si	0.89 ± 1.08	0.29 ± 0.40	0.39 ± 0.25 *	0.59 ± 0.14 *	0.034 ± 0.009 *	0.13 ± 0.10 *	0.058 ± 0.008 *	0.28 ± 0.77		
P	0.17 ± 0.06 *	0.17 ± 0.28	0.48 ± 0.37 *	0.028 ± 0.040	0.021 ± 0.013 *	0.025 ± 0.017 *	0.034 ± 0.021	0.03 ± 0.27		
S	9.10 ± 3.01 *	0.00 ± 1.56	0.00 ± 0.87	0.00 ± 0.22	-0.005 ± 0.090	0.54 ± 0.07 *	0.52 ± 0.22 *	0.11 ± 0.03 *	0.73 ± 2.15	
Cl	-0.002 ± 0.022	0.04 ± 0.65	0.01 ± 0.22	-0.005 ± 0.090	0.54 ± 0.07 *	0.52 ± 0.22 *	0.12 ± 0.03 *	-0.09 ± 0.74		
K	0.002 ± 0.008	0.42 ± 0.77	0.09 ± 0.14	0.056 ± 0.045 *	0.47 ± 0.11 *	0.88 ± 0.36 *	0.19 ± 0.01 *	0.17 ± 0.36		
Ca	0.006 ± 0.008	0.63 ± 0.44 *	0.45 ± 0.20 *	0.16 ± 0.11 *	0.017 ± 0.003 *	0.010 ± 0.009 *	0.005 ± 0.003	1.04 ± 0.78 *		
Ti	0.001 ± 0.003	0.01 ± 0.11	0.044 ± 0.051	0.030 ± 0.018 *	0.001 ± 0.001	0.000 ± 0.001	0.002 ± 0.002	0.10 ± 0.14		
V	0.001 ± 0.003	-0.022 ± 0.085	-0.005 ± 0.016	0.007 ± 0.017	0.000 ± 0.001	0.000 ± 0.001	0.001 ± 0.001	0.02 ± 0.10		
Cr	0.002 ± 0.004	-0.030 ± 0.095	0.011 ± 0.019	0.018 ± 0.018 *	0.001 ± 0.001 *	0.002 ± 0.003	0.002 ± 0.001	0.05 ± 0.11		
Mn	0.000 ± 0.003	-0.04 ± 0.11	0.90 ± 0.51 *	0.009 ± 0.017	0.000 ± 0.001	0.000 ± 0.001	0.010 ± 0.002 *	0.02 ± 0.13		
Fe	0.13 ± 0.05 *	0.15 ± 0.40	0.75 ± 0.59 *	0.13 ± 0.12 *	0.009 ± 0.003 *	0.009 ± 0.011	0.022 ± 0.004 *	0.09 ± 0.66		
Ni	0.000 ± 0.002	0.04 ± 0.21	-0.03 ± 0.12	-0.027 ± 0.036	0.003 ± 0.002 *	0.002 ± 0.002	0.002 ± 0.001	0.09 ± 0.14		
Cu	0.001 ± 0.007	1.12 ± 1.33	0.61 ± 0.39	-0.24 ± 0.38	0.013 ± 0.017	0.000 ± 0.001	0.44 ± 0.02 *	-0.21 ± 2.13		
Zn	0.001 ± 0.003	1.06 ± 0.88 *	0.60 ± 1.0 *	-0.07 ± 0.26	0.017 ± 0.009 *	0.022 ± 0.010	0.000 ± 0.003	-0.16 ± 1.43		
Se	0.002 ± 0.003	-0.021 ± 0.078	0.002 ± 0.017	-0.004 ± 0.013	0.000 ± 0.001	0.000 ± 0.001	0.000 ± 0.001	0.06 ± 0.15		
Br	0.005 ± 0.007	0.04 ± 0.12	3.38 ± 1.33 *	0.011 ± 0.019	0.002 ± 0.001 *	0.007 ± 0.007 *	0.002 ± 0.002	0.04 ± 0.19		
Rb	0.001 ± 0.004	-0.12 ± 0.19	0.008 ± 0.054	-0.01 ± 0.19	0.000 ± 0.001	0.001 ± 0.001	-0.001 ± 0.002	0.02 ± 0.19		
Sr	0.000 ± 0.006	-0.08 ± 0.23	0.014 ± 0.044	-0.008 ± 0.023	0.000 ± 0.001	0.000 ± 0.001	0.000 ± 0.002	-0.15 ± 0.46		
Ba	-0.06 ± 0.19	0.12 ± 6.03	-0.48 ± 1.43	0.00 ± 0.83	-0.005 ± 0.027	-0.006 ± 0.049	-0.012 ± 0.087	-0.23 ± 6.94		
Pb	0.032 ± 0.031 *	0.19 ± 0.50	8.66 ± 2.17 *	0.000 ± 0.051	0.19 ± 0.014 *	0.011 ± 0.011	0.000 ± 0.005	0.00 ± 0.46		
EC	28.9 ± 11.4 *	6.26 ± 18.7 *	0.01 ± 5.57 *	40.5 ± 5.6 *	5.23 ± 2.96 *	2.86 ± 6.6 *	12.5 ± 0.8 *	6.7 ± 20.9		
OC	4.80 ± 3.34 *	50.1 ± 25.7 *	65.5 ± 12.9 *	32.3 ± 4.7 *	48.4 ± 4.7 *	48.4 ± 3.1 *	57.0 ± 3.1 *	84.9 ± 39.3 *		
Backup	OC	0.89 ± 0.80 *	10.4 ± 22.0	22.5 ± 17.1 *	12.1 ± 3.7 *	0.96 ± 0.26 *	2.71 ± 0.29 *	3.53 ± 0.44 *	61.7 ± 37.1 *	
Mg ⁺⁺	0.013 ± 0.022	-2.73 ± 5.50	-4.4 ± 1.31	-777 ± 1.07	0.025 ± 0.046	-0.015 ± 0.041	-0.013 ± 0.007	-1.51 ± 7.96		
Na ⁺	0.25 ± 0.26	1.50 ± 2.27	0.52 ± 0.79	0.17 ± 0.26	0.095 ± 0.090 *	0.020 ± 0.032	0.032 ± 0.045	2.13 ± 3.91		
Cl ⁻	0.056 ± 0.089	2.45 ± 3.01	0.85 ± 1.05	0.28 ± 0.34	0.90 ± 0.20 *	0.64 ± 0.23 *	0.29 ± 0.06 *	3.88 ± 5.16		
NO ₃ ⁻	0.24 ± 0.35	1.81 ± 2.78	0.63 ± 0.97	0.33 ± 0.29 *	0.13 ± 0.03 *	0.25 ± 0.07 *	0.004 ± 0.055	3.41 ± 4.57		
SO ₄ ²⁻	31.5 ± 6.6 *	3.59 ± 5.11	0.45 ± 0.87	0.22 ± 0.53	0.15 ± 0.07 *	0.25 ± 0.07 *	-0.071 ± 0.056	12.6 ± 15.8		
NH ₄ ⁺	6.20 ± 4.83 *	0.00 ± 1.55	0.00 ± 0.54	0.08 ± 0.22	0.19 ± 0.04 *	0.15 ± 0.02 *	0.039 ± 0.035	0.44 ± 2.64		
Fine Mass		9.4 ± 3.1	11.1 ± 4.5	59.4 ± 35.9	408 ± 74	13.0 ± 4.1	5.3 ± 0.8	12.0 ± 4.0	45.8 ± 28.5	
$\mu\text{g}/\text{kg}$ burned		$\mu\text{g}/\text{kg}$ driven		mg/km driven		g/kg wood		g/kg wood		
(w/o Vega)										

(cont.)

Table 3.6. Chemical Characteristics Measured in Source Tests[†] (cont.)

	Charbroiled Meat (2 exps.) (% \pm S.D.)	Fried Meat (2 exps.) (% \pm S.D.)	Cigarette Smoke (4 exps.) (% \pm S.D.)	Paved Road Dust (1 exp.) (% \pm S.D.)	Brake Dust (1 exp.) (% \pm S.D.)	Brake Dust (4 exps.) (% \pm S.D.)	Vegetative Dust (4 exps.) (% \pm S.D.)	Tire Dust (1 exp.) (% \pm S.D.)	Tar Pot Emissions (1 exp.) (% \pm S.D.)
Al	0.080 \pm 0.043*	-0.06 \pm 0.43	0.007 \pm 0.005*	5.89 \pm 0.91*	0.033 \pm 0.021	2.57 \pm 0.46*	0.047 \pm 0.011	0.018 \pm 0.002*	
Si	0.11 \pm 0.07*	-2.5 \pm 0.25	0.000 \pm 0.004	12.4 \pm 1.9*	6.79 \pm 0.73*	8.35 \pm 1.95*	0.18 \pm 0.02	0.017 \pm 0.002*	
P	0.10 \pm 0.04*	-0.05 \pm 0.21	0.006 \pm 0.004*	0.072 \pm 0.018*	0.000 \pm 0.006	0.30 \pm 0.07*	0.000 \pm 0.004	0.000 \pm 0.001	
S	0.06 \pm 0.11	1.54 \pm 2.46	0.14 \pm 0.02*	0.56 \pm 0.02*	1.28 \pm 0.09*	0.62 \pm 0.10*	0.11 \pm 0.2	0.36 \pm 0.02*	
Cl	0.088 \pm 0.048*	0.35 \pm 1.30	0.23 \pm 0.04*	0.17 \pm 0.02*	0.15 \pm 0.02*	0.33 \pm 0.07*	0.052 \pm 0.012	0.73 \pm 0.04*	
K	0.16 \pm 0.15*	0.36 \pm 0.26*	0.41 \pm 0.04*	1.87 \pm 0.24*	0.019 \pm 0.007*	1.67 \pm 0.42*	0.038 \pm 0.006	0.001 \pm 0.001	
Ca	0.057 \pm 0.056*	0.15 \pm 0.26	0.000 \pm 0.003	4.44 \pm 0.24*	0.11 \pm 0.01*	2.29 \pm 0.26*	0.20 \pm 0.01	0.000 \pm 0.001	
Ti	0.010 \pm 0.015	-0.01 \pm 0.17	0.000 \pm 0.001	0.56 \pm 0.07*	0.36 \pm 0.19	0.27 \pm 0.03*	0.056 \pm 0.005	0.000 \pm 0.001	
V	0.003 \pm 0.005	-0.011 \pm 0.073	0.000 \pm 0.001	0.027 \pm 0.008*	0.066 \pm 0.066	0.018 \pm 0.009*	0.000 \pm 0.002	0.000 \pm 0.001	
Cr	-0.001 \pm 0.006	0.15 \pm 0.16	0.000 \pm 0.001	0.017 \pm 0.003*	0.12 \pm 0.06	0.054 \pm 0.042*	0.003 \pm 0.001	0.000 \pm 0.001	
Mn	-0.001 \pm 0.006	0.04 \pm 0.10	0.000 \pm 0.001	0.12 \pm 0.01*	0.17 \pm 0.01*	0.061 \pm 0.011*	0.010 \pm 0.002	0.000 \pm 0.001	
Fe	0.071 \pm 0.061*	0.24 \pm 0.44	0.000 \pm 0.001	6.23 \pm 0.66*	11.5 \pm 0.6*	2.77 \pm 0.64*	0.46 \pm 0.03	0.001 \pm 0.001	
Ni	0.007 \pm 0.007*	0.049 \pm 0.086	0.000 \pm 0.001	0.012 \pm 0.001*	0.066 \pm 0.004*	0.073 \pm 0.090	0.005 \pm 0.002	0.000 \pm 0.001	
Cu	0.34 \pm 0.36	-0.09 \pm 1.08	0.008 \pm 0.009	0.056 \pm 0.042	0.037 \pm 0.002*	2.25 \pm 4.15	0.049 \pm 0.004	0.007 \pm 0.001*	
Zn	0.22 \pm 0.24	-0.07 \pm 0.58	0.006 \pm 0.007	0.15 \pm 0.03*	0.027 \pm 0.002*	1.34 \pm 2.37	0.043 \pm 0.004	0.005 \pm 0.001*	
Se	0.001 \pm 0.007	0.006 \pm 0.083	0.000 \pm 0.001	0.001 \pm 0.001	0.002 \pm 0.001	0.003 \pm 0.002*	0.002 \pm 0.001	0.000 \pm 0.001	
Br	0.009 \pm 0.010	0.084 \pm 0.098	0.003 \pm 0.001*	0.005 \pm 0.001*	0.004 \pm 0.001*	0.007 \pm 0.003*	0.002 \pm 0.001	0.000 \pm 0.001	
Rb	-0.011 \pm 0.012	0.09 \pm 0.15	0.000 \pm 0.001	0.013 \pm 0.002*	0.005 \pm 0.002	0.008 \pm 0.003*	0.000 \pm 0.002	0.000 \pm 0.001	
Sr	0.004 \pm 0.013	0.01 \pm 0.28	0.000 \pm 0.001	0.13 \pm 0.01*	0.074 \pm 0.004*	0.026 \pm 0.005*	0.004 \pm 0.002	0.000 \pm 0.001	
Ba	0.20 \pm 0.42	0.46 \pm 4.74	-0.009 \pm 0.033	0.076 \pm 0.064	7.44 \pm 0.67*	0.31 \pm 0.24*	0.037 \pm 0.092	0.004 \pm 0.012	
Pb	0.027 \pm 0.048	0.20 \pm 0.44	0.000 \pm 0.002	0.11 \pm 0.01*	0.005 \pm 0.002*	0.18 \pm 0.25*	0.016 \pm 0.005	0.001 \pm 0.001	
EC	-40 \pm 1.87	-6.1 \pm 19.6	0.49 \pm 0.23*	1.06 \pm 0.23*	2.61 \pm 0.25*	0.94 \pm 0.55*	15.3 \pm 2.9*	0.013 \pm 0.025	
OC	58.8 \pm 7.4*	57.4 \pm 25.3*	59.5 \pm 4.5*	13.5 \pm 1.0*	10.7 \pm 0.7*	32.4 \pm 3.9*	36.0 \pm 7.4*	60.3 \pm 5.4*	
Backup OC	5.40 \pm 4.63*	22.6 \pm 21.6*	2.96 \pm 0.90*	0.65 \pm 0.12*	0.51 \pm 0.13*	2.97 \pm 0.72*	—	0.80 \pm 0.36*	
Mg ⁺	0.91 \pm 1.63	-3.82 \pm 5.71	0.006 \pm 0.036	0.17 \pm 0.01*	8.30 \pm 0.62*	0.50 \pm 0.33*	0.036 \pm 0.013*	0.000 \pm 0.001	
Na ⁺	0.23 \pm 0.38	0.45 \pm 3.76	0.009 \pm 0.026	0.15 \pm 0.02*	-0.008 \pm 0.039	0.05 \pm 0.13	0.068 \pm 0.033*	0.011 \pm 0.006	
Cl ⁻	0.37 \pm 0.52	3.52 \pm 3.61	0.28 \pm 0.03*	0.15 \pm 0.02*	0.15 \pm 0.03*	0.09 \pm 0.14	0.060 \pm 0.017*	0.70 \pm 0.01*	
NO ₃ ⁻	0.02 \pm 0.41	2.08 \pm 4.10	0.071 \pm 0.028*	0.25 \pm 0.02*	0.16 \pm 0.04*	0.38 \pm 0.19*	0.15 \pm 0.02*	0.012 \pm 0.007	
SO ₄ ²⁻	0.21 \pm 0.40	0.91 \pm 3.67	0.059 \pm 0.047*	1.20 \pm 0.11*	3.34 \pm 0.28*	0.39 \pm 0.21*	0.25 \pm 0.05*	0.091 \pm 0.008*	
NH ₄ ⁺	0.00 \pm 0.23	0.00 \pm 2.21	0.040 \pm 0.010*	0.053 \pm 0.019*	0.003 \pm 0.007	0.019 \pm 0.058	0.019 \pm 0.005*	0.34 \pm 0.01*	
Fine Mass Emission Rate	39.8 \pm 1.3	1.3 \pm 0.3	20.4 \pm 4.2	—	—	—	—	—	
	g/kg neat (for reg. beef)	g/kg meat	mg/cigarette						

† Ga, As, Y, Zr, Mo, Pd, Ag, Cd, In, Sn, Sb, La, and I_g also measured, but not found to be significant for any of the source types tested.

* Measurement is considered to be significant. For sources represented by a single experiment, the S.D. represents the uncertainty in the analytical method, and the value is considered significant if it is greater than twice the S.D. For sources represented by more than one experiment, the S.D. value is calculated as the square root of the sum of the S.D. of the values from the different experiments plus the square of the average S.D. resulting from uncertainties in the analytical result. The result is considered significant if it is greater than the S.D.

† For brake dust, division of carbon between EC and OC is uncertain due to interference of metals with laser transmittance.

Aerosol carbon collection on quartz fiber filters is known to be affected by artifacts resulting from filter adsorption of gas-phase organics and/or volatilization of a portion of the collected organic aerosol. Research is still underway to develop accurate methods of evaluating the magnitude of these artifacts (Appel, Cheng and Salamayeh, 1987; Fitz, 1987). In the boiler experiment, a second quartz fiber filter was located downstream of a quartz fiber filter used for aerosol collection in order to obtain a rough estimate of the magnitude of the potential organic aerosol sampling artifacts. For No. 2 fuel oil combustion, the mass of organics collected on the downstream filter (listed in Table 3.6 as "Backup" OC) averaged 22% of the fine organic aerosol mass collected upstream. For purposes of comparison, the organic material collected on such a backup filter when sampling fine organic aerosol from ambient Los Angeles air averages about $17 \pm 11\%$ of the organic aerosol collected on the upstream particle filter (Gray, *et al.*, 1986).

A review of the published literature was undertaken to identify previous measurements of particulate emissions from industrial-scale boilers (those with capacities roughly between 10 and 100 GJ/hr) burning No. 2 fuel oil. Two types of measurements were found in the literature. "Solid" particulate matter is measured by combining the solid material collected by high temperature filtration with the catch from any cyclones in the system, plus extracts from rinses of the probe, filter, and cyclones. This procedure is in accordance with U.S. Environmental Protection Agency recommendations (USEPA, 1984). In other references, measurements are reported that we will call "total" particulate matter, in which the extract from the impinger condensate is added to the "solid" particulate catch. Whether or not the impinger extract represents true particulate matter or consists mostly of artifact material formed due to chemical reactions and condensation of gas-phase species in the impinger is still a matter of considerable debate. The measurement of "solid" particulate matter may underrepresent the real aerosol mass emitted, because a significant fraction of the organic material that will condense into the aerosol phase at ambient temperature is in the gas phase at elevated temperatures and will not be collected. The "total" particulate matter measurement may overestimate aerosol

mass emissions by capturing organic material that would exist in the gas phase under ambient conditions. Organic material may also be lost during the standard extraction procedure used to obtain the "total" particulate matter emissions value, since that procedure involves a solvent evaporation step.

Aerosol mass emission rates reported in previously published studies of boilers with capacities between 8 and 140 GJ/hr are summarized in Table 3.7, where they are compared with the results of the present set of dilution sampler experiments. The previous studies (Barrett *et al.*, 1973; Carter *et al.*, 1978; Cato *et al.*, 1974, 1976; Surprenant *et al.*, 1980, 1981; Taback *et al.*, 1979; USEPA, 1982) all used variations of either an EPA Method 5 sampling system or the SASS train to collect particulate matter. It should be noted that these two methodologies collect all particulate matter regardless of size. However, 96% by mass of particulate emissions from distillate fuel-burning industrial-scale boilers has been found to be $< 1\mu\text{m}$ in diameter (Taback *et al.*, 1979), so it is reasonable to compare these total particulate measurements with the fine aerosol emissions measured in the present study.

For No. 2 fuel oil combustion, the mean particulate emission rate obtained in the present study by dilution sampling falls between the lower values previously obtained for "solid" particulate matter and the higher values reported for "total" particulate matter. This is exactly the result that one would expect, since hot filtration of the stack exhaust to obtain only solid aerosol understates the aerosol formation potential of condensable organics, while impinger trains can be expected to collect condensable materials that would not ordinarily form aerosol under normal conditions in a plume downwind of a combustion source.

3.3.2 Automobiles.

Seven catalyst-equipped and six noncatalyst automobiles were tested in as-received condition (see Table 3.2 for description of vehicles). Substantial variations in emissions were seen in the different automobile experiments. (See Appendix C for individual test results.) The organic carbon emitted ranged from 38 to 75% of the total measured fine mass, while elemental carbon emissions contributed from 4 to 37% of the total. The trace elements and ionic species

Table 3.7. Summary of published mass emission rates from industrial-scale boilers

Fuel	Particulate Emissions ($\mu\text{g}/\text{kJ}$)	
	Range	Mean \pm S.D.
No. 2 Fuel Oil		
Previous Studies ^(a)		
—Solid Particles ^(b)	1—19	6 \pm 4
—Total Particles ^(c)	4—24	11 \pm 6
This Study	5—13	9 \pm 3

(a) Summarized from references Barrett *et al.*, 1973; Carter *et al.*, 1978; Cato *et al.*, 1974, 1976; Surprenant *et al.*, 1980, 1981; Taback *et al.*, 1979; and USEPA, 1982.

(b) Solid = filter and cyclone catches, plus extracts of filter holder, cyclones and probe rinses.

(c) Total = "Solid" sample plus residue from impinger catch.

emitted also varied substantially from vehicle to vehicle, indicating the necessity of averaging results over as many different vehicle tests as possible in order to obtain results representative of the vehicle fleet on the road.

The average emission rates for the catalyst-equipped and noncatalyst fleets are shown in Table 3.6. A few systematic differences between the catalyst-equipped and noncatalyst vehicles can be observed. The noncatalyst automobiles tend to emit more particulate matter per distance driven than the catalyst-equipped cars. The high emissions of Pb and Br observed for the noncatalyst vehicles result from using leaded fuel. Premium gasoline with a lower lead content than the regular leaded gasoline was used in the last pair of noncatalyst vehicles tested, and correspondingly lower emissions of lead were measured. The fine particulate emissions from catalyst-equipped vehicles contain a larger relative proportion of elemental carbon than the emissions from noncatalyst cars.

The six noncatalyst vehicles tested showed average fine aerosol emission rates of 59 ± 35 mg/km driven, while the seven catalyst-equipped vehicles averaged 18 ± 12 mg/km. However, one of the catalyst-equipped vehicles tested (the Vega) had an exceptionally high particulate matter emission rate that was not considered representative of the catalyst-equipped vehicle fleet. If the experiment that included the Vega is excluded from computation of the fleet average, the other catalyst-equipped vehicles showed an average fine particulate emissions rate of 11 ± 2 mg/km driven.

A comparison of these emission rates with some previously measured values (Schuetzle, 1983; Muhlbaier and Williams, 1982; Braddock, 1977; Miller *et al.*, 1976; Laresgoiti and Springer, 1977; Ter Haar *et al.*, 1972) is presented in Table 3.8.

Measurements from the present experiments are for fine aerosols only ($d_p < 2\mu\text{m}$) while the earlier tests reported are for total suspended particulate matter including coarse particle deposits reentrained from the inside of the vehicle tailpipe. Remarkable agreement is seen between the various emission rate measurements for the catalyst vehicles, which can be attributed in part to the fact that dilution tunnels have been used traditionally for motor vehicle source tests, and that most

Table 3.8. Measured Mass Emission Rates for Catalyst and Noncatalyst Vehicles

	Catalyst (mg/km)	Noncatalyst (mg/km)	Comments
Present Study	11±4	59±36	Fine emissions only Four catalyst cars, 1977-83 Five noncat. cars, 1965-76
Schuetzle (1983)	11±2	62±19	Average of data contained in eight 1980-81 references
Muhlbaier and Williams (1982)			
—Low Altitude	9	74	Five catalyst cars, 1978-79 Four noncat. cars, 1970-78
—High Altitude	12±4	94±49	Five catalyst cars, 1975-78 Five noncat. cars, 1972-74
Braddock (1977)	13±11		Six 1975 catalyst cars 0.036% S in fuel
Miller <i>et al.</i> (1976)	15	104	One 1970 car with catalyst One 1970 noncatalyst car
Laresgoiti & Springer (1977)	8		One 1970 car with catalyst 0.1% S in fuel
Ter Haar <i>et al.</i> (1972)			All 1966-70 cars
—Less than 1000 miles		94	Six low mileage cars
—More than 30000 miles		211	16 high mileage cars

aerosols emitted from catalyst-equipped cars are in the fine particle size range. The lower values for the noncatalyst vehicles tested in the present study (relative to earlier measurements) is at least partly due to the fact that only fine aerosol was measured.

To gauge the magnitude of the organic gas phase adsorption artifact onto the quartz filters in this (and subsequent) series of tests, a quartz filter downstream of a Teflon filter was also analyzed for organic carbon. The results of these measurements are again presented as "Backup OC" in Table 3.6. As seen in Table 3.6, the upper-bound estimate for the amount of organic gases adsorbed onto the quartz filters in these automobile tests averaged between 20 and 33% of the fine organic material collected.

The average chemical composition of the aerosol collected from the catalyst-equipped and noncatalyst automobiles tested is presented in Figure 3.5bc. Due to the small number of vehicles tested and the large test-to-test variations seen, it cannot be assumed immediately that these results are an accurate representation of the entire automobile fleet. However, a comparison of these results with a concurrent measurement program conducted by Cooper *et al.* (1988) that used comparable collection and measurement techniques shows similar results. Cooper's study measuring fine particulate emissions during an FTP cycle averaged $59.0 \pm 11.9\%$ organics and $38.6 \pm 8.1\%$ elemental carbon for six catalyst-equipped vehicles burning unleaded gasoline, and $37.6 \pm 23.8\%$ organics and $15.1 \pm 2.4\%$ elemental carbon for four noncatalyst vehicles burning leaded gasoline. Other previous measurements of the elemental and organic carbon content of automobile aerosol emissions have been reported. Muhlbauer and Williams (1982), measuring total particulate emissions, found 8.4% OC and 3.0% EC in the aerosol emissions from 5 noncatalyst cars, and 21.4% OC and 17.9% EC from 4 catalyst-equipped vehicles. For the fine particulate fraction, Watson (1979) measured 50% OC and 2% EC emitted during a single test of a catalyst-equipped vehicle burning unleaded fuel, and $28 \pm 24\%$ OC and $4 \pm 2\%$ EC for two tests of a noncatalyst automobile burning leaded fuel. Both Watson (1979) and Cooper *et al.* (1988) also report

the trace elemental composition of emissions for automobiles, as did Pierson and Brachaczek (1983), Ondov *et al.* (1982), and Braddock (1977).

3.3.3 Heavy-Duty Trucks.

Two late-model, low-mileage heavy-duty diesel trucks (see Table 3.2) were tested while running under load on a truck dynamometer. The average fine particulate emission rate for the two tests was 0.41 g/km, or 1.32 g/l of fuel. In Table 3.9, these results are compared with emission rates measured in some previous studies (Baines, Somers and Harvey, 1979; Dietzmann, Parness and Bradow, 1981; Shuetzle, 1983; Szkarlat and Japar, 1983; Pierson and Brachaczek, 1983). The lower emission rates measured in the present study most likely result from two factors: (1) the trucks available here are newer and in better condition than the average heavy-duty diesel truck found on the highway, and (2) the dynamometer available cannot induce a large number of engine transients that may lead to higher soot production rates.

Table 3.6 contains the average chemical characteristics of the fine aerosol emissions measured for the two trucks. (See Appendix C for individual test results.) As seen in Figure 3.5d, 41% of the fine aerosol emitted was elemental carbon, and another 39% was organic material. These results should be considered "best case" in terms of the elemental carbon emissions, due to the factors mentioned previously. A recent study by Cooper *et al.* (1988) using two 1982 heavy-duty diesel vehicles measured fine aerosol emissions containing 52.1% elemental carbon, and an earlier study by Watson (1979) found that 68% of the fine aerosol emissions were evolved as elemental carbon. Both studies found that about one-third of the fine mass collected consisted of organic carbon, quite similar to the present study. Two other studies using solvent-extraction procedures found that 35-45% of the total particulate matter consisted of extractable organics (Williams and Chock, 1980; Rodriguez, Fischer and Johnson, 1980).

Previous analyses for trace elements in diesel exhaust have been performed by several groups (Dietzmann, Parness and Bradow, 1981; Pierson and Brachaczek, 1983; Watson, 1979; Cooper *et al.*, 1988). The present experiments found levels of

Table 3.9. Measured Mass Emission Rates for Heavy-Duty Diesel Trucks

	No. of Tests	Particulate Emissions (g/km)	Particulate Emissions (g/l fuel)	Comments
Present Study	2	0.41	1.32	Fine emissions
Baines <i>et al.</i> (1979)		0.6	1.72	4-stroke engines
				13-mode SS FTP
Dietzmann <i>et al.</i> (1981)				
—1979 Caterpillar	8	0.57	2.01	Chassis
—1979 Mack	9	1.21	2.55	1983
—1979 Cummins	10	1.02	2.00	Transient
—1979 DD	8	1.99	3.12	Procedure
Schuetzle (1983)				
—Highway Composite		0.81		Average of results
—Dilution tube		1.04		from 8 papers
Szkarlat and Japar (1983)	20	0.89		Allegheny Tunnel
Pierson & Brachaczek (1983)		0.87±0.16		Tuscarora Mtn.
				Tunnel

Si, Ca, Fe, K, Ti, Cr and NO_3^- that were above detection limits in the diesel truck emissions (see Table 3.6).

3.3.4 Fireplace.

Six experiments involving the fireplace combustion of wood were conducted under the conditions presented in Table 3.10. Average fine particulate emission rates measured for the 3 hardwood, 2 softwood and 1 synthetic log combustion experiments are listed in Table 3.11, and are compared to the range of emission rates found in the publicly-available literature on fireplace combustion of wood (Muhlbauer, 1981ab; Kosel, 1980; DeAngelis *et al.*, 1980; Snowden, *et al.*, 1975; PEDCo, Inc., 1977) using EPA Method 5 (USEPA, 1971, 1984) or the Source Assessment Sampling System (Blake, 1978). The wide range of results shown for the previous studies is due to many differences in the various experimental protocols used. Differences between studies include the size of the wood pieces burned, the stage of the fire sampled, the mass of wood burned per unit time, and the presence or absence of damping mechanisms such as fireplace doors. Keeping these differences in mind, it can at least be said that the present tests lie in the middle of the range established by previous experiments.

The average chemical composition of the fine aerosol emissions from each of the three types of wood burned are presented in Table 3.6. (Results for individual tests are contained in Appendix C.) When the standard deviations are considered, the bulk chemical characteristics of soft and hard wood combustion are quite similar. However, synthetic log emissions are substantially higher in elemental carbon content than the natural wood fires. In addition, emissions of aluminum and copper from combustion of the synthetic log are over an order of magnitude higher than those from natural wood; most likely, this is the result of chemicals added to the synthetic log to produce colored flames in the fire.

Figure 3.5ef shows that fine particle emissions from fireplace combustion of natural wood contain about 58% organics and 3 to 5% elemental carbon. Several previous studies have also examined the bulk chemical characteristics of fine aerosol emissions from wood combustion. Collecting fine emissions from fireplaces burning

Table 3.10. Experimental Conditions for Fireplace Tests

Wood Type	Wood Burned (kg)	Sampling Time (min)	Burning Rate (g/min)	Stack Temp. (C)	Oxygen in Stack (%)	CO in Stack (ppm)	CO ₂ in Stack (%)
Pine	12.53	220	57	—	—	—	—
Pine	15.18	162	94	75-110	19.8-20.2	410-580	0.6-1.0
Oak	16.23	175	93	75-140	18.8-19.8	560-1190	0.8-1.7
Almond	20.25	170	119	95-195	18.6-20.0	520-1300	0.3-2.0
Almond	19.29	159	121	80-130	19.5-20.4	330-950	0.5-1.3
Synthetic Log	2.27	200	11	30- 90	20.0-20.7	74-480	0.2-0.8

Table 3.11. Summary of Published Mass Emission Rates from Residential Fireplaces

Wood	Particulate Emissions	
	Range	Mean \pm S.D.
	g/kg wood	g/kg wood
Hard Wood		
This Study	4.7—6.2	5.3 \pm 0.9
Previous Studies ^(a)		
—Solid Particles ^(b)	0.8—13.0	4.3 \pm 2.6
—Total Particles ^(c)	2.0—63.5	14.1 \pm 10.7
Soft Wood		
This Study	10.1—15.8	13.0 \pm 4.1
Previous Studies ^(a)		
—Solid Particles ^(b)	1.8—11.6	4.2 \pm 2.5
—Total Particles ^(c)	3.7—23.1	11.2 \pm 5.2
Synthetic Logs		
This Study	12.0	
Previous Studies ^(a)		
—Solid Particles ^(b)	3.2—16.3	8.5 \pm 5.9
—Total Particles ^(c)	4.4—19.9	12.2 \pm 8.2

(a) Summarized from references Muhlbauer, 1981ab; Kosel, 1980; DeAngelis, 1980; Snowden *et al.*, 1975; PEDCo, Inc., 1977.

(b) Solid = filter and cyclone catches, plus extracts of filter holder, cyclones and probe rinses.

(c) Total = "Solid" sample plus residue from impinger catch.

a mixture of softwood and hardwood, Watson (1979) measured 46% organic carbon and 13% elemental carbon, while Rau (1989) found 54% organic carbon and 7% elemental carbon. For a woodstove/fireplace composite, the measurements of DeCesar and Cooper (1981) averaged 48% organic carbon and 13% elemental carbon, while Edgerton and coworkers (1986) found 50% organic carbon and 9% elemental carbon. The fraction of organic carbon measured in all studies is remarkably similar, despite differences in sampling methodology.

The fine potassium emissions in woodsmoke measured in this study also compare well to previously reported values. Muhlbaier (1981b) reported that potassium constituted 0.4–0.9% of the aerosol emissions from soft wood combustion and 0.8–1.3% from hard wood combustion, quite similar to the differences between hardwood and softwood potassium emissions seen in the present study. Other investigators (DeCesar and Cooper, 1981; Watson, 1979; Edgerton *et al.*, 1986; Rau, 1989) have reported values of 0.5 to 0.9% potassium in fine emissions from wood combustion, along with measurements of other trace elements.

3.3.5 Meat-Cooking Operations.

Charbroiling regular hamburger meat produced fine aerosol emissions totalling 40 g/kg of meat cooked, while charbroiling extra-lean meat generated 7 g/kg. In contrast, frying the same two types of meat generated fine aerosol emissions of only 1 g/kg meat. The chemical composition of the fine aerosol emissions measured for each of the four meat-cooking experiments is shown in Figure 3.5h. Between 68 and 73% of the fine mass emitted consisted of organics, with little or no elemental carbon present. Emissions of most of the trace chemical species varied substantially between experiments. As shown in Table 3.6, potassium was the only metal emitted in above-detection limit amounts during both frying and charbroiling. (Individual test results are presented in Appendix C.) The significance of potassium being emitted during meat-cooking operations has been discussed elsewhere (Hildemann and Cass, 1989; see Appendix A). Other source tests directly comparable to those conducted here for meat cooking operations are simply not available in the literature. One previous study in which aerosol emissions were measured while frying hamburger

meat in oil found that detectable amounts of S and Cl were emitted (Sexton *et al.*, 1986). Another study, which collected emissions while cooking a single beefsteak in a broiling pan over charcoal (by drawing smoke and air through an inverted funnel onto a filter held 30cm away from the meat) collected 0.3 g of smoke condensate per kg of meat (Nagao *et al.*, 1977).

3.3.6 Natural Gas Home Appliances.

Particulate emissions from residential natural gas combustion when tested by dilution sampling were found to be *extremely* low, ranging from 23 to 72 ng/kJ of fuel burned. By comparison, an earlier study (Muhlbauer and Williams, 1982) measured a total particulate emission rate (using filters sampling emissions at 90 C) of 90 ng/kJ from combustion of 93% methane in a residential-sized furnace. Other studies measured fine particulate emission rates of 410 ± 190 ng/kJ from a stovetop burner (Traynor, Anthon and Hollowell, 1982), and 6 to 300 ng/kJ (submicron) from several gas-fired space heaters (Girman *et al.*, 1982).

Organic carbon accounted for between 83 and 91% of the measured fine aerosol mass emitted during these home appliance tests. (See Appendix C for individual test results.) When the organic carbon emissions are converted to an estimate of the total organic compounds emitted, $\geq 99\%$ of the total fine particulate mass can be attributed to organic material. However, analysis of organics collected on a quartz filter downstream of a Teflon filter attached to the dilution sampling system indicated that over half of this organic mass could be due to adsorption of gas phase organics onto the quartz fiber rather than capture of fine particulate material. (For further discussion of artifact organic aerosol collection, see Gray *et al.*, 1986). The relatively high percentage of the emissions attributed to the adsorption artifact is due to the extremely low emission of actual aerosol from these gas-fired appliances. A previous study (Muhlbauer and Williams, 1982) measuring total carbonaceous aerosol emissions from residential furnaces under a variety of operating conditions measured 40% organic carbon and 8% elemental carbon when cycling the furnace in a residential setting. A study of fine aerosol emissions from a gas stovetop burner (Traynor, Anthon and Hollowell, 1982) reported 54% total carbon.

Due to the low mass emission rates, the error bounds on the chemical composition of these emissions were higher than usual. Table 3.6 presents the average chemical composition measured for the three natural gas appliance experiments (see also Figure 3.5i). Two previous studies have also measured detectable amounts of aerosol sulfur compounds from natural gas home appliances (Traynor, Anthon and Hollowell, 1982, Sexton *et al.*, 1986), which can be expected to vary depending on the sulfur content of the natural gas burned.

3.3.7 Cigarettes.

The fine mass emission rate measured for each of the four types of cigarettes smoked for this study, presented in Table 3.12, ranged from 17 to 23 mg per cigarette smoked. Surprisingly, the measured mass emission rate per cigarette is almost the same for all types of cigarettes smoked except the "light" cigarettes. However, when the length of cigarette actually smoked is considered in each case, the mass emission rate per length of cigarette is substantially higher for the regular cigarettes than for the filter-tipped cigarettes, as expected. The length of the cigarette, the presence or absence of a filtertip, and individual tastes determine how much of the total length of a cigarette is actually smoked, but more of the tobacco in a non-filtertip cigarette is traditionally left unsmoked. As shown in Table 3.12, the fine mass emission rates measured in the present study are lower than previous measurements where undiluted total particulate matter was collected (*e.g.*, Keith and Tesh, 1965; Schmeltz and Hoffmann, 1976), but somewhat higher than another study that sampled total diluted emissions from a cigarette (Girman *et al.*, 1982).

The bulk chemical composition of the fine emissions from cigarette smoking was quite similar for the four types of cigarettes. Figure 3.5j shows that the average chemical composition observed consisted mainly of organics. The organic compound content estimate of 71% represents a lower-bound; using a factor of 1.4 to convert from organic carbon to organic compounds would yield a sample containing 83% organics. As seen in Table 3.6, significant trace amounts of elemental carbon, potassium, sulfate and chloride were also measured. (See Appendix C for results of individual experiments.) A previous study (Norman, 1977) that examined the trace

Table 3.12. Mass Emission Rates from Cigarette Smoking

	Aerosol Mass Aerosol Mass	Emitted per Emitted per Cigarette	Average Length Length	Length of Cigarette	Aerosol Mass ($\mu\text{g}/\text{mm}$)
	(mg/cigarette)	Smoked	Smoked	Smoked	
<hr/>					
Present Study (fine aerosol mass)					
—Regulars, 85 mm	22	66	66	330	
—Filtertips, 85 mm	22	81	81	270	
—Menthols, 100 mm	23	96	96	240	
—Lights, 85 mm	14	81	81	170	
<hr/>					
Previous Studies (total aerosol mass)					
—Keith and Tesh (1965) ^(a)	40.6	55	55	741	
—Schmeltz and Hoffman (1975) ^(a)	31.5				
—Girman <i>et al.</i> (1982)	10.8				

(a) Sampled without dilution; includes condensed water.

metal constituents in cigarette smoke measured significant quantities of K, Na, Zn, Pb, Al, Cu and Cd.

3.3.8 Tar Pots.

The fine aerosol emissions measured from an in-use roofing tar pot also were predominantly organic in nature, with trace amounts of sulfate, ammonium and chlorine (see Table 3.6). As shown in Figure 3.5k, identified species account for approximately three-quarters of the measured fine aerosol mass. The filter samples taken from this source were completely colorless, in contrast to the blackness of the tar itself, suggesting that tar pot emissions represent the distillation of lower boiling point organics from the roofing tar material rather than aerosolization of the bulk roofing tar. While many previous studies have examined the exposure of roofing workers to specific organic compounds emitted from tar pots, no previous work was found that examined the bulk chemical composition of tar pot emissions.

3.3.9 Road Dust.

The springtime grab sample of Pasadena-area fine road dust was composed of a large group of chemical species. As shown in Figure 3.5l, the sample was found to consist of 27% SiO_2 , 17% organics, 11% Al_2O_3 , 9% Fe_2O_3 , and 4% Ca. The total chemical composition measured in this study (see Table 3.6) agrees well with concurrent measurements of various Los Angeles-area paved road dusts completed by Cooper and coworkers (1988) in terms of the relative amounts of the different trace metals. The data of Cooper *et al.* (1988) show substantial variations in the amount of organic material measured at different sites, with organic carbon fractions ranging from 7 to 20%.

3.3.10 Brake Dust.

The fine fraction of the organo-metallic brake dust grab sample consisted mainly of Fe_2O_3 , SiO_2 , organics, magnesium, and barium (see Figure 3.5m). The chemical characteristics measured are listed in Table 3.6. About 13% of the fine particle mass of the brake dust sample consisted of organic compounds, and identified species accounted for 68% of the measured mass.

Only limited previous studies of the chemical composition of brake dust have been performed. Average chemical composition data for asbestos brake linings (Lynch, 1968; Bush, Rowson and Warren, 1972; Ondov, 1974; Taback *et al.*, 1979) have been published, and Bush and coworkers (1972) have chemically analyzed the particulate matter generated from the attrition of asbestos brake linings. For the parent organo-metallic brake lining material, Lohrer and Berlin (1983) list a typical composition of 60–70% metals, 15–25% graphite, 7–10% binders, and 0–5% Al_2O_3 and SiO_2 . Analysis of a sample of semi-metal brake pad dust (Cooper *et al.*, 1988) gave a composition of 46% Fe, 3.5% Ba, 2.1% Cu, 0.7% Sn, and 0.4% Mo.

3.3.11 Tire Dust.

About half of the total particulate mass in the tire wear dust grab sample was composed of organic compounds (see Figure 3.5n), with another one-sixth being elemental carbon. An early estimate by Friedlander (1973) based on the composition of tire rubber suggested that tire wear particles should contain about 29% EC, 58% OC, and 1.5% zinc. Gray (1986) estimated a carbonaceous content of 67% organic carbon and 33% elemental carbon. A complete list of the chemical species measured in the tire dust sampled is included in Table 3.6; however, the trace metals content of the dust from the tires is not considered to be representative of the typical vehicle tire. In particular, zinc, which often constitutes about 1% of the tire rubber, is much lower in this sample. Neutron activation analysis of various brands of tires by Pierson and Brachaczek (1974) yielded an average value of 1% zinc. Other measurements of various trace elements in tire tread (Ondov, 1974; Fukuzaki, Yanaka and Urushiyama, 1986; Cooper *et al.*, 1988) have all measured zinc at 0.8 to 1.0% of the total sample.

3.3.12 Vegetative Detritus.

The chemical compositions of the vegetative detritus released from the composite leaf samples is shown in Figure 3.5o. In many respects, the green and dead leaf samples were found to be very similar. As seen from the average chemical characteristics shown in Table 3.6, *urban* vegetative detritus is represented,

with an urban dry deposition component similar in its characteristics to paved road dust superimposed on a background of organics and phosphorus contributed from the leaf material. (Individual results for the two types of vegetation are contained in Appendix C.) The mechanical processes that release plant waxes into the atmosphere will also resuspend the urban particulate matter deposited on the leaf surfaces.

Past studies of vegetative detritus have collected organic material by dipping plant leaves in solvent, and have focused on organic chemical characteristics like the alkanes and fatty acids content of the extracts (*e.g.*, Eglington and Hamilton, 1963; Simoneit and Mazurek, 1982). The present study is the first known experiment in which the fine particulate matter collected was released from leaves through a mechanical agitation process intended to simulate the movement of leaves in a wind. The absolute mass emission rates applicable to an urban landscape cannot be deduced from the procedure used; however, it was observed experimentally that the release of detritus from dead leaves was substantially higher than the release of green leaf detritus when agitating comparable quantities of leaf material.

3.4 CONCLUSIONS

A program of organic aerosol source sampling has been undertaken that will lead to characterization of many of the major organic aerosol emission sources in urban areas. In the present paper, both the absolute emission rates (mass per unit of activity) and bulk chemical characteristics of a variety of urban sources were examined. The uniform approach used for sampling and analysis of the fine aerosol from these sources enables accurate comparisons to be made between sources.

This study shows that for many of the sources, a majority of the fine mass emitted consists of organic material. Table 3.13 summarizes the fraction of the fine mass emitted from each source sampled that was emitted as organic compounds.

The fine organic aerosol source inventory for Los Angeles used as the basis for source selection in this project (Cass, Boone and Macias, 1982; Gray, 1986) also can be revised based on these results. Table 3.14 presents a revised inventory.

Table 3.13. Summary of Organic Fraction Contained in the Fine Aerosol Mass Emitted from Each Source Sampled

Source	Organic Fraction of Fine Aerosol Mass (%)
STATIONARY INDUSTRIAL SOURCES	
Distillate Oil Industrial Boiler	6
MOBILE SOURCES	
Catalyst Automobiles	63
Non-Catalyst Automobiles	79
Heavy-Duty Diesel Trucks	32
DISTRIBUTED AREA SOURCES	
Fireplace (natural wood)	58
Meat Cooking	70
Natural Gas Home Appliance	99
Cigarettes	71
Road Dust	17
Tire Dust	49
Brake Dust	13
Tar Pot	72
Urban Vegetative Detritus	37

Table 3.14. Revised Estimate of the Major Sources of Fine Aerosol Organic Carbon Emissions within an 80 x 80 km Heavily Urbanized Area Surrounding Los Angeles (for 1982)

Source Type	Organic Carbon Emitted (kg/day)	% of Organic Carbon Emissions	Notes ^(a)
1) Paved road dust	4798	15.1	(b)
2) Meat Cooking Operations			(c)
— Charcoal broiling	5937	18.7	(b),(d)
— Frying	1716	5.4	(b),(d),(e)
3) Noncatalyst gasoline vehicles			
— Automobiles	2098	6.6	(b),(d)
— Other vehicles	1372	4.3	
4) Diesel vehicles			
— Heavy-duty trucks	1229	3.9	(b),(d)
— Other vehicles	617	1.9	
5) Brake lining	696	2.2	(b)
6) Surface coating	1433	4.5	
7) Cigarettes	1347	4.3	(b),(d)
8) Fireplaces	4174	13.2	(b),(d)
9) Forest fires	877	2.8	
10) Roofing tar pots	556	1.8	(b)
11) Natural gas combustion			
— Residential sources	31	0.1	(b),(d)
— Other sources	262	0.8	
12) Organic chemical processes	692	2.2	
13) Tire wear	472	1.5	(b)
14) Misc. industrial point sources	393	1.2	
15) Catalyst-equipped gasoline vehicles			
— Automobiles	637	2.0	(b),(d)
— Other vehicles	79	0.2	
16) Nonrefinery petroleum industries	278	0.9	
17) Primary metallurgical processes	228	0.7	
18) Railroad (diesel oil)	211	0.7	
19) Residual oil stationary sources	206	0.7	
20) Refinery gas combustion	195	0.6	
21) Secondary metallurgical processes	167	0.5	
22) Mineral industrial processes	158	0.5	
23) Other organic solvent use	106	0.3	
24) Jet aircraft	92	0.3	
25) Asphalt roofing	81	0.3	
26) Coal burning	76	0.2	
27) Wood processing	74	0.2	
28) Residual oil-fired ships	66	0.2	
29) Structural fires	63	0.2	
30) Distillate oil stationary sources			
— Industrial	13	0.04	(b),(d)
— Other	23	0.07	
Other sources	226	0.7	
TOTAL	31679		

(a) Except where otherwise noted, values are drawn from Gray (1986).

(b) Fraction of organic carbon in fine emissions estimated from present study.

(c) Revised mass emission rates include both commercial and domestic cooking.

(d) Fine mass emission rate estimated from present study.

(e) New emission source not included in original inventory.

The results of the present study show that primary organic aerosol emissions are probably about 15% greater than originally estimated. Meat-cooking operations are an even more important source of fine organic aerosol than originally thought, accounting for almost one-quarter of the organic aerosol emissions inventoried in the Los Angeles Basin. Fireplace emissions of fine organic aerosol are also higher than previously projected, due to the higher fine mass emission rates measured, especially for softwood combustion. Additionally, the organic carbon emissions from catalyst-equipped automobiles were higher than expected (even though the Vega was excluded), due both to higher measured mass emission rates and a larger measured fraction of organic carbon in the fine aerosol. Finally, in contrast, natural gas home appliances were found to burn much more cleanly than originally estimated.

From ^{14}C dating of ambient aerosol samples (Currie, 1980), it has been noted that a significant fraction of the Los Angeles area organic aerosol is composed of contemporary carbon that is not derived from fossil fuel components. Currie (1980) reports that approximately 54% of the carbonaceous aerosol in Los Angeles is contemporary.

At first glance, these high percentages are surprising because Los Angeles usually is viewed as having a vehicle-dominated pollution problem and is not the site of large amounts of wood burning for home heating purposes. One might speculate then that this high fraction of contemporary carbon in the aerosol indicates that a large fraction of the organic aerosol is due to natural sources. Close examination of Table 3.14, however, shows that one need not invoke a high natural organic aerosol background level in order to explain the high fraction of contemporary carbon in the Los Angeles aerosol. Nearly 45% of the direct primary emissions of organic aerosols to the Los Angeles atmosphere are contributed by man-caused air pollution sources that are known to consist of contemporary carbon (*i.e.*, cooking operations, cigarettes, fireplace combustion of wood, etc.). To this is added that fraction of the tire dust derived from natural rubber, that fraction of surface coating emissions that are natural components, and a portion of the vehicle-reentrained road dust.

The total aerosol carbon burden in Los Angeles area fine particles consists of about two-thirds organic carbon and one-third elemental carbon (Gray *et al.*, 1986). On that basis, at least 30% of the total fine aerosol carbon could be contributed by man-caused emissions of contemporary organic carbon aerosol.

3.5 REFERENCES

Appel, B.R., Cheng, W., and Salamayah, F. (1987). Sampling Errors in Filter Collection of Atmospheric Particulate Carbon. Presented at the Third International Conference on Carbonaceous Particles in the Atmosphere, Berkeley, California, October 5-8, 1987.

Baines, T.M., Somers, J.H., and Harvey, C.A. (1979). Heavy Duty Diesel Particulate Emissions Factors. *J. Air Pollut. Control Assoc.* 29:616-621.

Barrett, R.E., Miller, S.E., and Locklin, D.W. (1973). Field Investigation of Emissions from Combustion Equipment for Space Heating. EPA-R2-73-084a (PB-223 148), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Blake, D.E. (1978). Source Assessment Sampling System: Design and Development. EPA-600/7-78-018, U.S. Environmental Protection Agency, Washington, D.C.

Bolleter, W.T., Bushman, C.T., and Tidell, P.W. (1961). Spectrophotometric Determination of Ammonium as Indophenol. *Anal. Chem.* 33:592-594.

Braddock, J.N. (1977). Gaseous, Particulate, and Sulfur-Related Emissions from Non-Catalyst and Catalyst Equipped Vehicles. EPA600/2-77-237 (PB 276 601), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Bush, H.D., Rowson, D.M., and Warren, S.E. (1972). The Application of Neutron Activation Analysis to the Measurement of the Wear of a Friction Material. *Wear* 20:211-225.

Carpenter, K.A. (1978). The Design and Development of a Dilution Tunnel for the Physical and Chemical Characterization of Diesel Particulate Matter. M.S. Thesis, Michigan Technological University, Houghton, Michigan.

Carter, W.A., Buening, H.J., and Hunter, S.C. (1978). Emission Reduction on Two Industrial Boilers with Major Combustion Modifications. EPA-600/7-78-099a (PB-283 109), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Cass, G.R., Boone, P.M., and Macias E.S. (1982). Emissions and Air Quality Relationships for Atmospheric Carbon Particles in Los Angeles. In *Particulate Carbon: Atmospheric Life Cycle* (G.T. Wolff and R.L. Klimisch, eds.). Plenum Press, New York, pp. 207-240.

Cato, G.A., Buening, H.J., DeVito, C.C., Morton, B.G., and Robinson, J.M. (1974). Field Testing: Application of Combustion Modifications to Control Pollutant

Emissions from Industrial Boilers — Phase I. EPA-650/2-74-078a (PB 238 920), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Cato, G.A., Muzio, L.J., and Shore, D.E. (1976). Field Testing: Application of Combustion Modifications to Control Pollutant Emissions from Industrial Boilers — Phase II. EPA-600/2-76-086a, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Cooper, J.A., Redlone, D.C., Sherman, J.R., Valdovinos, L.M., Pollard, W.L., Scavone, L.C., and Badgett-West, C. (1988). Appendix V – G. PM10 Source Profile Library for the South Coast Air Basin. Draft. South Coast Air Quality Management District, El Monte, California.

Currie, L.A. (1980). Contemporary Particulate Carbon. In *Particulate Carbon: Atmospheric Life Cycle* (G.T. Wolff and R.L. Klimisch, eds.). Plenum Press, New York, pp. 245–260.

DeAngelis, D.G., Ruffin, D.S., and Reznik, R.B. (1980). Preliminary Characterization of Emissions from Wood-Fired Residential Combustion Equipment, EPA-600/7-80-040, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

DeCesar, R.T., and Cooper, J.A. (1981). Medford Aerosol Characterization Study (MACS). Final Report to Oregon Department of Environmental Quality from Oregon Graduate Center, Beaverton, Oregon (as cited in Cooper *et al.*, 1988).

Dietzmann, H.E., Parness, M.A., and Bradow, R.L. (1981). Emissions from Trucks by Chassis Version of 1983 Transient Procedure. Paper No. 801371, *SAE Trans.* 89:4313–4328.

Duleep, K.G., and Dulla, R.G. (1980). Survey and Analysis of Automotive Particulate Sampling. In *Health Effects of Diesel Engine Emissions: Proceedings of an International Symposium* (W.E. Pepelko, R.M. Danner and N.A. Clarke, eds.). EPA-600/9-80-057a, U.S. Environmental Protection Agency, Cincinnati, Ohio, pp. 93–111.

Edgerton, S.A., Khalil, M.A.K., and Rasmussen, R.A. (1986). Source Emission Characterization of Residential Wood-Burning Stoves and Fireplaces: Fine Particle/Methyl Chloride Ratios for Use in Chemical Mass Balance Modeling. *Environ. Sci. Technol.* 20:803–807.

Eglinton, G., and Hamilton, R.J. (1963). The Distribution of Alkanes. In *Chemical Plant Taxonomy* (T. Swain, ed.). Academic Press, New York, pp. 187–217.

Fitz, D. (1987). Reduction of the Positive Organic Artifact on Quartz Filters. Presented at the Third International Conference on Carbonaceous Particles in the Atmosphere, Berkeley, California, October 5-8, 1987.

Friedlander, S.K. (1973). Chemical Element Balance and Identification of Air Pollution Sources. *Environ. Sci. Technol.* 7:235-240.

Fukuzaki, N.; Yanaka, T., and Urushiyama, Y. (1986). Effects of Studded Tires on Roadside Airborne Dust Pollution in Niigata, Japan. *Atmos. Environ.* 20:377-386.

Girman, J.R., Apte, M.G., Traynor, G.W., Allen, J.R., and Hollowell, C.D. (1982). Pollutant Emission Rates from Indoor Combustion Appliances and Sidestream Cigarette Smoke. *Environ. Inter.* 8:213-221.

Goldstein, H.L. and Siegmund, C.W. (1976). Influence of Heavy Fuel Oil Composition and Boiler Combustion Conditions on Particulate Emissions. *Environ. Sci. Technol.* 10:1109-1114.

Gray, H.A. (1986). Control of Atmospheric Fine Primary Carbon Particle Concentrations. EQL Report 23, Environmental Quality Laboratory, California Institute of Technology, Pasadena, California.

Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., and Rau, J.A. (1984). Elemental and Organic Particle Concentrations: A Long-Term Perspective. *Sci. Total Env.* 36:17-25.

Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., and Rau, J.A. (1986). Characteristics of Atmospheric Organic and Elemental Carbon Particle Concentrations in Los Angeles. *Environ. Sci. Technol.* 20:580-89.

Hildemann, L.M., and Cass, G.R. (1989). Meat Cooking Operations: A Significant Source of Fine Potassium Emissions to the Urban Atmosphere. *submitted for publication.* [See Appendix A.]

Hildemann, L.M., Cass, G.R., and Markowski, G.R. (1989). A Dilution Stack Sampler for Collection of Organic Aerosol Emissions: Design, Characterization and Field Tests. *Aerosol Sci. Technol.* 10:193-204. [See Chapter 2.]

House of Representatives, Committee on Energy and Commerce, Subcommittee on Health and the Environment (1982). Comprehensive Smoking Prevention Education Act. Hearings, March 5, 11 and 12, 1982. Serial No. 97-106 (Depository No. Y4.EN2/3:97-106), pp. 421-438.

Huntzicker, J.J., Johnson, R.L., Shah, J.J., and Cary, R.A. (1982). Analysis of Organic and Elemental Carbon in Ambient Samples by a Thermal Optical

Method. In *Particulate Carbon: Atmospheric Life Cycle* (G.T. Wolff and R.L. Klimisch, eds.). Plenum Press, New York, pp. 79-85.

John, W., and Reischl, G. (1980). A Cyclone for Size-Selective Sampling of Ambient Air. *J. Air Pollut. Control Assoc.* 30:872-876.

Johnson, R.L., Shah, J.J., Cary, R.A., and Huntzicker, J.J. (1981). An Automated Thermal-Optical Method for the Analysis of Carbonaceous Aerosols. In *Atmospheric Aerosols: Source/Air Quality Relationships* (E.S. Macias and P.K. Hopke, eds.). American Chemical Society, Washington D.C.

Keith, C.H., and Tesh, P.G. (1965). Measurement of the Total Smoke Issuing from a Burning Cigarette. *Tobacco Science* 9:61-64.

Kosel, P.H. (1980). Emissions from Residential Fireplaces. Report No. C-80-027, California Air Resources Board, Sacramento, California.

Laresgoiti, A., and Springer, G.S. (1977). Sulfate and Particulate Emissions from an Oxidation Catalyst Equipped Vehicle. *Environ. Sci. Technol.* 11:285-292.

Lohrer, W., and Berlin, M. (1983). Substitution of Asbestos in Friction Linings - Problems and Trends. (In German.) *Staub Reinhalt. Luft* 43:78-83.

Lynch, J.R. (1968). Brake Lining Decomposition Products. *J. Air Pollut. Control Assoc.* 18:824-826.

Mazurek, M.A., and Simoneit, B.R.T. (1984). Characterization of Biogenic and Petroleum-Derived Organic Matter in Aerosols over Remote, Rural and Urban Areas. In *Identification and Analysis of Organic Pollutants in Air* (L.H. Keith, ed.). Ann Arbor Science/Butterworth Publishers, Boston, Massachusetts, pp. 353-370.

Mazurek, M.A., Simoneit, B.R.T., Cass, G.R., and Gray, H.A. (1987). Quantitative High-Resolution Gas Chromatography and High-Resolution Gas Chromatography/Mass Spectrometry Analyses of Carbonaceous Fine Aerosol Particles. *Intern. J. Environ. Anal. Chem.* 29:119-139.

Mazurek, M.A., Cass, R.G., and Simoneit, B.R.T. (1989). Interpretation of High-Resolution Gas Chromatography and High-Resolution Gas Chromatography/Mass Spectrometry Data Acquired from Atmospheric Organic Aerosol Samples. *Aerosol Sci. Technol.* 10:408-420.

Miller, D.F., Levy, A., Pui, D.Y.H., Whitby, K.T., and Wilson, W.E., Jr. (1976). Combustion and Photochemical Aerosols Attributable to Automobiles. *J. Air Pollut. Control Assoc.* 26:576-581.

Miller, P.R., and Winer, A.M. (1984). Composition and Dominance in Los Angeles Basin Urban Vegetation. *Urban Ecology* 8:29-54.

Muhlbaier, J.L. (1981a). Particulate and Gaseous Emissions from Residential Fireplaces. GMR-3588, General Motors Research Laboratories, Warren, Michigan.

Muhlbaier, J.L. (1981b). A Characterization of Emissions from Wood-Burning Fireplaces. GMR-3730, General Motors Research Laboratories, Warren, Michigan.

Muhlbaier, J.L., and Williams, R.L. (1982). Fireplaces, Furnaces and Vehicles as Emission Sources of Particulate Carbon. In *Particulate Carbon: Atmospheric Lifecycles* (G.T. Wolff and R.L. Klimisch, eds.). Plenum Press, New York, pp. 185-198.

Nagao, M., Honda, M., Seino, Y., Yahagi, T., and Sugimura, T. (1977). Mutagenicities of Smoke Condensates and the Charred Surface of Fish and Meat. *Cancer Letters* 2:221-226.

Norman, V. (1977). An Overview of the Vapor Phase, Semivolatile and Nonvolatile Components of Cigarette Smoke. *Recent Advances in Tobacco Science* 3:28-51.

Ondov, J.M. (1974). A Study of Trace Elements on Particulates from Motor Vehicles. Ph.D. Thesis, University of Maryland (as cited in Cooper *et al.*, 1988).

Ondov, J.M., Zoller, W.H., and Gordon, G.E. (1982). Trace Element Emissions on Aerosols from Motor Vehicles. *Environ. Sci. Technol.* 16:318-328.

PEDCo-Environmental, Inc. (1977). Source Testing for Fireplaces, Stoves, and Restaurant Grills in Vail, Colorado. EPA Contract No. 68-01-1999, U.S. Environmental Protection Agency, Denver, Colorado. (Results drawn from DeAngelis, Ruffin, Peters and Reznik (1980). Source Assessment: Residential Combustion of Wood. EPA600/2-80-042b, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.)

Pierson, W.R., and Brachaczek, W.W. (1974). Airborne Particulate Debris from Rubber Tires. *Rubber Chemistry & Technol.* 47:1275-1299.

Pierson, W.R., and Brachaczek, W.W. (1983). Particulate Matter Associated with Vehicles on the Road. II. *Aerosol Science Technol.* 2:1-40.

Rau, J.A. (1989). Composition and Size Distribution of Residential Wood Smoke Particles. *Aerosol Sci. Technol.* 10:181-192.

Rodriguez, C.F., Fischer, J.B., and Johnson, D.E. (1980). Characterization of Organic Constituents in Diesel Exhaust Particulates. In *Particulate Carbon:*

Atmospheric Life Cycle (G.T. Wolff and R.L. Klimisch, eds.). Plenum Press, New York, pp. 34-48.

Schmeltz, I., and Hoffman, D. (1976). Chemical Studies on Tobacco Smoke. XXXVIII. The Physicochemical Nature of Cigarette Smoke. In *Proceedings of the 3rd World Conference on Smoking and Health, New York City, June 2-5, 1975. Smoking and Health. I. Modifying the Risk for the Smoker* (E.L. Wynder, D. Hoffmann, and G.B. Gori, eds.). U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, National Cancer Institute, DHEW Publication No. (NIH) 76-1221, pp. 13-34.

Schuetzle, D. (1983). Sampling of Vehicle Emissions for Chemical Analysis and Biological Testing. *Environ. Health Perspec.* 47:65-80.

Sexton, K., Webber, L.M., Hayward, S.B., and Sextro, R.G. (1986). Characterization of Particle Composition, Organic Vapor Constituents, and Mutagenicity of Indoor Air Pollutant Emissions. *Environ. Inter.* 12:351-362.

Simoneit, B.R.T., and Mazurek, M.A. (1982). Organic Matter of the Troposphere — II. Natural Background of Biogenic Lipid Matter in Aerosols over the Rural Western United States. *Atmos. Environ.* 16:2139-2159.

Snowden, W.D., Alguard, D.A., Swanson, G.A., and Stolberg, W.E. (1975). Source Sampling Residential Fireplaces for Emission Factor Development. EPA-450/3-76-010, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Solomon, P.A., Fall, T., Salmon, L., Cass, G.R., Gray, H.A., and Davidson, A. (1989). Chemical Characteristics of PM₁₀ Aerosols Collected in the Los Angeles Area. *J. Air Pollut. Control Assoc.* 39:154-163.

Surprenant, N.F., Battye, W., Roeck, D., and Sandberg, S.M. (1981). Emissions Assessment of Conventional Stationary Combustion Systems: Volume V. Industrial Combustion Sources. EPA-600/7-81-003c (PB81-225559), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Surprenant, N.F., Hung, P., Li, R., McGregor, K.T., Piispanen, W., and Sandberg, S.M. (1980). Emissions Assessment of Conventional Stationary Combustion Systems: Volume IV. Commercial/Institutional Combustion Sources. EPA-600/7-81-003b (PB81-145187), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Szkarlat, A.C. and Japar, S.M. (1983). Optical and Chemical Properties of Particle Emissions from On-Road Vehicles. *J. Air Pollut. Control Assoc.* 33:592-597.

Taback, H.J., Brienza, A.R., Macko, J., and Brunetz, N. (1979). Fine Particle Emissions from Stationary and Miscellaneous Sources in the South Coast Air Basin. Final Report and Appendices. NTIS Nos. PB 293 922 and PB 293 923.

Ter Haar, G.L., Lenane, D.L., Hu, J.M., and Brandt, M. (1972). Composition, Size and Control of Automotive Exhaust Particulates. *J. Air Pollut. Control Assoc.* 22:39-46.

Traynor, G.W., Anthon, D.W., and Hollowell, C.D. (1982). Technique for Determining Pollutant Emissions from a Gas-Fired Range. *Atmos. Environ.* 16:2979-2987.

U.S. Environmental Protection Agency (1982). Fossil Fuel-Fired Industrial Boilers — Background Information. EPA-450/3-82-006b, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

U.S. Environmental Protection Agency (1971). Method 5—Determination of Particulate Emissions from Stationary Sources. *Federal Register* 36(247):24888-24890.

U.S. Environmental Protection Agency (1984). Method 5—Determination of Particulate Emissions from Stationary Sources. CFR, Title 40, Part 60, pp. 436-455. Superintendent of Documents, Washington, D.C.

Watson, J.G., Jr. (1979). Chemical Element Balance Receptor Model Methodology for Assessing the Sources of Fine and Total Suspended Particulate Matter in Portland, Oregon. Ph.D. Thesis, Oregon Graduate Center, Beaverton, Oregon.

Williams, R.L., and Chock, D.P. (1980). Characterization of Diesel Particulate Exposure. In *Particulate Carbon: Atmospheric Life Cycle* (G.T. Wolff and R.L. Klimisch, eds.). Plenum Press, New York, pp. 3-32.

Winer, A.M., Fitz, D.R., and Miller, P.R. (1983). Investigation of the Role of Natural Hydrocarbons in Photochemical Smog Formation in California. Statewide Air Pollution Research Center, University of California, Riverside, California. Final Report to the California Air Resources Board, Sacramento, California, under agreement no. A0-056-032.

Quantitative Characterization of Organic Aerosol Sources by High-Resolution Gas Chromatography

4.1 INTRODUCTION

Most of the existing data on the organic aerosol emissions from sources are derived from bulk chemical analyses that quantify the total amount of organic carbon present. Total aerosol carbon emissions have been measured by combustion techniques for a large variety of sources (*e.g.*, Cooper *et al.*, 1988; Watson, 1979). Gravimetric procedures have been used to quantify the amount of extractable organic material in sources such as boilers (*e.g.*, Surprenant *et al.*, 1979, 1980, 1981), motor vehicles (*e.g.*, Laresgoiti, Loos and Springer, 1977; Pierson *et al.*, 1983; Szkarlat and Japar, 1983; Japar *et al.*, 1984), and fireplaces (*e.g.*, DeAngelis, Ruffin and Reznik, 1980; Dasch, 1982). Some separation of the organic species present on the basis of their vaporization temperature has also been achieved by using thermal evolution analysis to produce “thermograms” (Muhlbaier, 1981; Muhlbaier and Williams, 1982; Kowalczyk and Greene, 1982; Hering, Miguel and Dod, 1984; Daisey and Gundel, 1988). These approaches provide little or no information about the underlying molecular structure of the organic aerosol compounds emitted.

Other researchers have used costly, time-consuming procedures to identify specific organic compounds (like the polycyclic aromatic hydrocarbons) through such approaches as gas chromatography coupled with mass spectrometry (GC/MS) and high-pressure liquid chromatography with fluorescence detection. Daisey and coworkers (1986) have published a thorough review of the literature between 1972 and 1986 that identifies specific organic compounds in source emissions. The individual compounds identified typically account for only a few percent of the total organic mass emitted, and hence these data are of limited use in designing

pollution abatement programs that must account for changes in the total amount of aerosol present.

Aerosol carbon emissions arise from a large number of different source types. Recent studies in Los Angeles (Hildemann, Markowski and Cass, 1989; Gray, 1986) have shown that about 14 different source types must be considered in order to account for close to 80% of the primary organic aerosol emissions in that airshed. Identification of the effect of these emission sources on ambient air quality via receptor modeling techniques requires at the very least that there be more distinctive attributes of the organic aerosol than there are different source types. Verification of the predictions of transport-oriented models for source contributions to the ambient organic aerosol likewise requires that the emission sources be characterized in sufficient detail that the model predictions can be tested. In both air quality modeling applications, a procedure is needed for characterizing the organic aerosol emissions sources that is more economical than gas chromatography/mass spectrometry analysis yet that can provide a fuller description of the differences between the source types than is possible from bulk carbon analysis. In the present study, gas chromatography (GC) analyses alone will be used to characterize the organic aerosol emissions from sources in a way that reveals the distinctive features of the different source types using a quantitative, multi-parameter description. This approach holds promise as an effective tool for uniquely characterizing organic emissions in a way that can be used to better support air quality modeling studies.

4.2 EXPERIMENTAL SECTION

4.2.1 Sample Collection

Fine organic aerosol (particle diameter $d_p < 2\mu\text{m}$) was collected from combustion sources using a dilution stack sampling system, and other sources were sampled using grab sampling techniques. The source types tested and the number of tests conducted are itemized in Table 4.1. Details of the sampling procedures used for each of the sources have been described elsewhere (Hildemann, Markowski and

**TABLE 4.1. Characteristics of Elutable Organics
from the Various Sources**

Source (no. of samples analyzed)	Organics Eluted on GC (%)	Unresolved:Resolved Ratio Acid+Neutral	Neutral
Boiler, No.2 Fuel Oil (3)	57-67	3.8-4.2	3.1-3.8
Fireplace			
—natural wood (2)	45-51	3.0-3.4	3.2-3.9
—synthetic log (1)	77 ⁽¹⁾	3.7	3.4
Vehicles			
—catalyst cars (1)	133	16.5	14.5
—noncatalyst cars (1)	142	9.0	7.9
—diesel trucks (1)	93	8.3	8.2
Home appliance, natural gas (1)	185	1.3	1.0
Hamburger cooking			
—Charbroiling (extra-lean) (1)	43	4.1	5.2
—Charbroiling (regular) (1)	27	3.9	7.4
—Frying (1)	60	5.5	4.7
Road dust (1)	30	5.3	12.7
Brake dust (1)	3 ⁽²⁾	4.6	7.0
Vegetative detritus			
—Dead leaves (1)	18	0.8	0.9
—Green leaves (1)	27	1.1	1.5
Cigarettes (1)	87	2.3	2.9
Tire dust (1)	49 ⁽¹⁾	6.8	10.1
Tar pot (1)	171	7.7	7.6

(1) GC programming extended to a run time of 120 minutes for this sample.

(2) Delineation between EC and OC uncertain due to interference with laser.

Cass, 1989), and the design of the stack sampler has been documented previously (Hildemann, Cass and Markowski, 1989). Briefly, hot stack gases were diluted many-fold with dilution air that had passed through an activated carbon bed and an absolute filter. During the dilution process, the source effluent was cooled to ambient temperature, causing the aerosol-forming organic vapors present to condense onto preexisting aerosol as would normally occur in the plume downwind of the stack. The diluted emissions passed through a 2 μ m size-cut cyclone, and the fine particulate matter then was collected on prebaked quartz fiber filters (Pallflex 2500 QAO). The filters were stored in annealed glass jars with Teflon-lined lids at -25 C until extraction.

4.2.2 Extraction

The isolation and quantification procedures used in the extraction of the organic source samples have been described elsewhere in detail (Mazurek *et al.*, 1987). Each set of filters was spiked with a known aliquot of a perdeuterated standard (n-C₂₄D₅₀ for source samples, a suite of standards for the blanks) in order to quantify the extraction efficiency and recovery of organic compounds from the filters. The source samples varied greatly in composition, consisting of from 1 to 45 filters, and containing anywhere from 300 μ g to 20 mg of organic carbon. To ensure that an appropriate amount of standard(s) was added to each sample, a trial organic filter sample that was collected concurrently with the actual sample to be analyzed was spiked, extracted and analyzed before beginning extraction of the main source sample. In this manner it was determined what the appropriate volume of standard to be added was in proper proportion to the amount of organic material in each source sample. The typical sample, which consisted of 15 filters and contained about 1 mg of organic carbon, was spiked with 50 μ l of n-C₂₄D₅₀ at a concentration of 154 ng/ μ l.

Sequential additions of hexane (2 x 60 ml additions) and benzene/isopropanol (2:1) (3 x 60 ml additions) were used to extract the organics from the filters under ultrasonic agitation. Following filtration and combination of the extracts, each sample was reduced to a volume of 200—500 μ l for gas chromatographic analysis.

4.2.3 Gas Chromatographic Analysis

The concentrated organic extracts were analyzed using a Varian 4600 high resolution gas chromatograph (GC) equipped with a Grob splitless injector, a 30-meter fused silica OV-1701 column (bonded 86% dimethyl-[14%]-cyanopropyl phenyl polysiloxane, 25 μ m film thickness, 0.32 mm i.d., J & W Scientific, Rancho Cordova, California), and a flame ionization detector (FID). Peak integration was performed electronically using a Varian Vista 402 computerized data system. The extracts were introduced onto the capillary column by a flash vaporization technique and with an injection temperature of 300 C (Mazurek *et al.*, 1987). Temperature programming consisted of the following steps: (1) isothermal hold at 65 C for 10 minutes; (2) temperature ramp of 10 C/minute to 275 C; and (3) isothermal hold at 275 C for 49 minutes.

The GC trace obtained when the organic extract was injected without derivatization was considered to represent the non-polar or neutral fraction of the organic compounds present in the extract. An aliquot of the extract was derivatized through the addition of diazomethane to convert labile organic acids to their methyl ester analogs and acidic hydroxy compounds to their methyl ether analogs. This derivatized aliquot also was injected, giving a GC trace representing the acid plus neutral ("acid+neutral") fraction of the organic extract. The acidic fraction, which was determined as the mass difference between the results of the neutral and the acid+neutral fractions, contained oxidized polar compounds which were soluble in benzene.

Resolved component mass contributions were determined by recalculation of the raw data at elevated signal-to-noise (SN) ratios to exclude the portion of the GC trace that contained no resolved peaks. The unresolved mass component was calculated by the difference in area counts between the results at SN=1 and at the elevated SN ratio.

Regular injections of a 17-component n-alkane standard suite (n-C₁₀ to n-C₃₆ homologues) throughout the course of the source analysis program were used to subdivide the GC traces into elution zones that corresponded to the retention times

occurring between the standard n-alkane homologues. Area counts for compounds eluting between each pair of adjacent n-alkanes were summed in order to define the relative mass distribution of compounds in each sample. For some source extracts, homologous series with retention times corresponding to the n-alkanes were clearly visible in the GC trace of the source sample and could be used directly. For other source extracts, the retention times obtained from an n-alkane standard injection were used to locate the peaks corresponding to the n-alkanes within a particular sample. A similar approach has been used previously (Black and High, 1979; Pierson *et al.*, 1983) to analyze the relative mass distribution of organics in diesel exhaust.

4.2.4 Mass Quantification

Conversion of area counts to organic mass must account for the FID response to the particular injection, as well as any losses that occurred during sample extraction and concentration. It has been observed from standard injections of homologous series in both the present and previous studies (*e.g.*, Hauser and Pattison, 1972) that instrument response for a given mass of a component in a series varies with retention time, becoming less sensitive for the higher molecular weight components in the series. Hence, it was also desired to account for this variable sensitivity.

Two standard suites of homologous series, the n-alkanes and the n-fatty acid methyl esters, were injected regularly during the source analysis program. As will be shown in the results section of this study, for most of the source extracts, the majority of area counts were contributed by neutral compounds, so it was decided that the instrument response to the n-alkane series would be used to quantify the aerosol organic carbon mass concentration in the subregions. The mass of organics eluting between adjacent alkanes was calculated as follows:

$$\text{Mass between } C_n \text{ and } C_{n+1} = \frac{\text{Mass } \underline{n}\text{-C}_{24}\text{D}_{50} \text{ spiked onto sample}}{\text{Counts } \underline{n}\text{-C}_{24}\text{D}_{50}} \times \frac{\text{Counts between } C_n \text{ and } C_{n+1}}{\text{RRF}_{\underline{n}\text{-C}_{24}\text{D}_{50}}} \times \text{RRF}_{C_n} \quad (1)$$

where RRF_A = Relative Response Factor for compound A

Multi-level calibration procedures were used to determine the RRF values. The RRF for n-C₂₄D₅₀ was calculated from regular injections of the n-C₂₄D₅₀ standard with 1-phenyldodecane at two standard concentrations, while the RRFs for the n-alkanes were calculated from repeated injections of the standard n-alkane suite with 1-phenyldodecane, also at two standard concentrations. The RRF values were calculated as:

$$\text{RRF}_A = \frac{\text{Counts 1-phenyldodecane}}{\text{Mass 1-phenyldodecane}} \times \frac{\text{Mass A}}{\text{Counts A}} \quad (2)$$

4.2.5 Analytical Blanks

Rigorous quality control is a vital part of trace organic analytical procedures. Two types of blanks were analyzed in conjunction with this project.

With each group of 10 to 12 source samples, a sample containing blank, baked quartz fiber filters was also spiked, extracted and analyzed to monitor the extraction procedures and identify any contaminants present. As shown in Figure 4.1, the few significant contaminants seen were identified via GC/MS as low molecular-weight solvent impurities and degradation products. These solvent by-products also appeared in the source sample GC traces, and their resolved area counts were subtracted from the data set, along with the resolved area counts of the perdeuterated standards.

Samples obtained by filtration of the precleaned dilution air were collected before each source type was sampled with the dilution stack sampler. These system blanks, which were intended to identify any contaminants in the dilution air and any residual contamination remaining after cleaning the sampler's components, were extracted and analyzed in the same way as the source samples.

4.3 RESULTS

4.3.1 Total vs. Elutable Organics

Not all of the particulate organic material collected is extractable, and not all of the extracted organics will elute on a GC column. For air quality modeling and emission control purposes, it is of interest to determine the fraction of the total organics in each source sample that is represented by the GC trace.

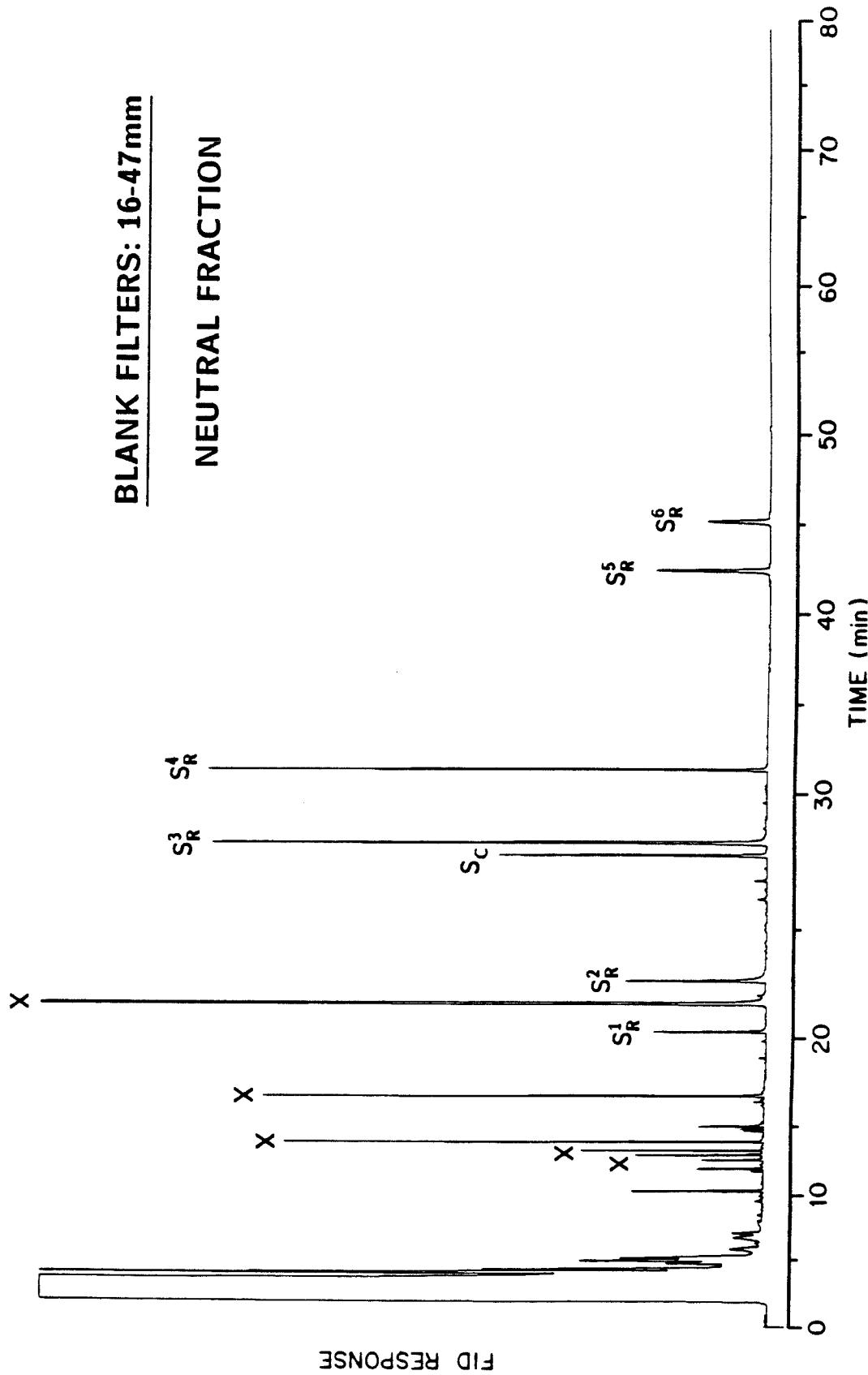


Figure 4.1 GC trace of solvent-extractable compounds from a spiked blank filter composite containing sixteen 47-mm filters. “X” denotes a known solvent artifact; “ S_C^1 ” is the co-injection standard, 1-phenyl dodecane; and “ S_R^1 ” denotes the recovery standards (S_R^1 = isoquinoline, S_R^2 = n -dodecanol, S_R^3 = anthracene-d₁₀, S_R^4 = n -C₂₄D₅₀, S_R^5 = n -C₃₂D₆₆, and S_R^6 = perylene-d₁₂).

The total amount of fine organic carbon collected from each source type was analyzed separately via a thermal evolution and combustion technique (Huntzicker *et al.*, 1982; Johnson *et al.*, 1981). The emission rate of fine organic compounds measured from each source type is reported in Hildemann, Markowski and Cass (1989). To determine the fraction of the total organic carbon present that is observed during GC analysis, the total concentration of organics obtained by integration under each GC trace was divided by the total concentration of organics as measured by the thermal evolution and combustion technique, using a factor of 1.2 to estimate total organics from total organic carbon (Gray *et al.*, 1984).

As seen in Table 4.1, the fraction of the total organics emitted from each source (as measured by combustion analysis) that eluted on the GC during the 80-min elution cycle varied substantially between sources. For the tar pot, natural gas home appliances and automobiles, a high fraction of the total fine organics collected were elutable. (Recoveries of greater than 100% most likely are due to an underestimate of the total organics based on the organic carbon measurement; a factor of 1.4 has also been used to convert from organic carbon to organics.) In contrast, a very small fraction of the brake dust organics eluted on the GC. Organics that did not elute may have been insoluble in the solvents used, too acidic or basic in composition to migrate through the capillary column, thermally unstable, or of too high a molecular weight to elute during the 80-min cycle.

4.3.2 Unresolved:Resolved Ratios

The ratio of unresolved components to resolved components (U:R) observed during GC analysis of atmospheric organic aerosol samples has been utilized in past studies as a qualitative indicator of the degree of anthropogenic contribution to the organic portion of airborne particulate matter (Simoneit and Mazurek, 1982; Mazurek and Simoneit, 1984; Mazurek, 1985; Cox, Mazurek and Simoneit, 1982). Petroleum and combustion products exhibit a large hump of unresolved compounds, and hence have high U:R ratios. Urban atmospheres have exhibited neutral fraction U:R ratios of 2.6 to 25, while rural atmospheres dominated by vegetation-derived organic aerosols characteristically have had ratios of less than 2.0 (Mazurek, Cass and Simoneit, 1989). From the results of the present study, the

U:R ratio characteristic of each major source type can be determined. These data then can be used in later studies that seek to explain the differences in U:R ratio between air basins on a cause and effect basis.

GC trace characteristics of the emissions from source types with high U:R ratios and with low U:R ratios are shown in Figure 4.2. Results for the catalyst-equipped cars (Figure 4.2a) show a large hump of unresolved compounds and a complete lack of any predominant single peaks, yielding a high U:R ratio of 14.5. Fireplace combustion of pine wood provides a less extreme case (Figure 4.2b), with a few important resolved peaks between C19 and C21 and between C25 and C26, but still exhibiting an intermediate U:R of 3.9. In contrast, both vegetative detritus (U:R = 1.4) and natural gas combustion emissions from home appliances (U:R = 1.0) (Figure 4.2cd) contain most of their organic mass in a few predominant peaks, giving both sources a low U:R ratio.

Table 4.1 also lists the range of U:R ratios observed for each of the sources measured in this study. Petroleum products (tar pot, tire dust) had ratios of 7-10, while vehicular emissions showed ratios of 8-17. Somewhat lower values were observed for other types of petroleum combustion, with distillate oil-fired boiler emissions having ratios from 3.1 to 4.2, and synthetic log combustion (containing petroleum waxes) ranging from 3.4 to 3.7. Combustion of plant material (fireplace combustion of natural wood, cigarettes) also gave elevated U:R ratios, between 2.3 and 3.9. The other anthropogenic sources tested likewise showed elevated U:R ratios, with the exception of natural gas combustion, which produced U:R ratios in the range 1.0-1.3. The natural source tested, vegetative detritus, showed low U:R ratios as expected, ranging between 0.8 and 1.5.

These measurements of the U:R ratio confirm that emissions from petroleum products and their combustion, as well as combustion of *some* other types of carbonaceous materials, give U:R ratios greater than 2.0, while vegetative detritus has a lower U:R ratio. However, the low ratio obtained for natural gas combustion emphasizes that the U:R ratio should only be used as a qualitative indicator of the anthropogenic content of an organic aerosol sample unless the airmass has been studied to account for the presence of anthropogenic sources with a low U:R ratio.

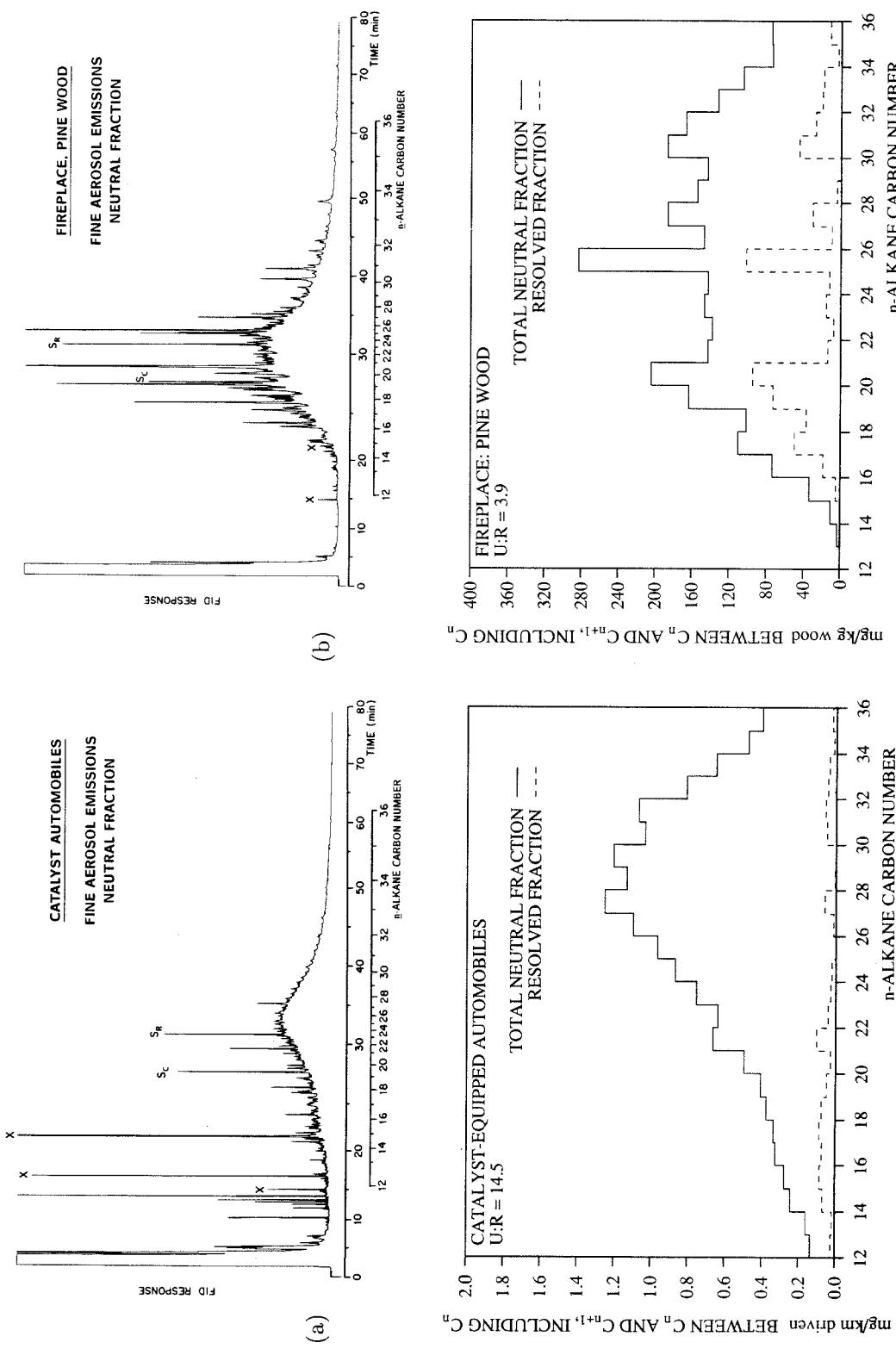


Figure 4.2. Unresolved vs. resolved organic mass distributions. Peaks marked with "X" and "S" are (respectively) contaminants and standards that are not included in area count summations. (a) Catalyst automobiles; (b) fireplace burning pine wood. (cont.)

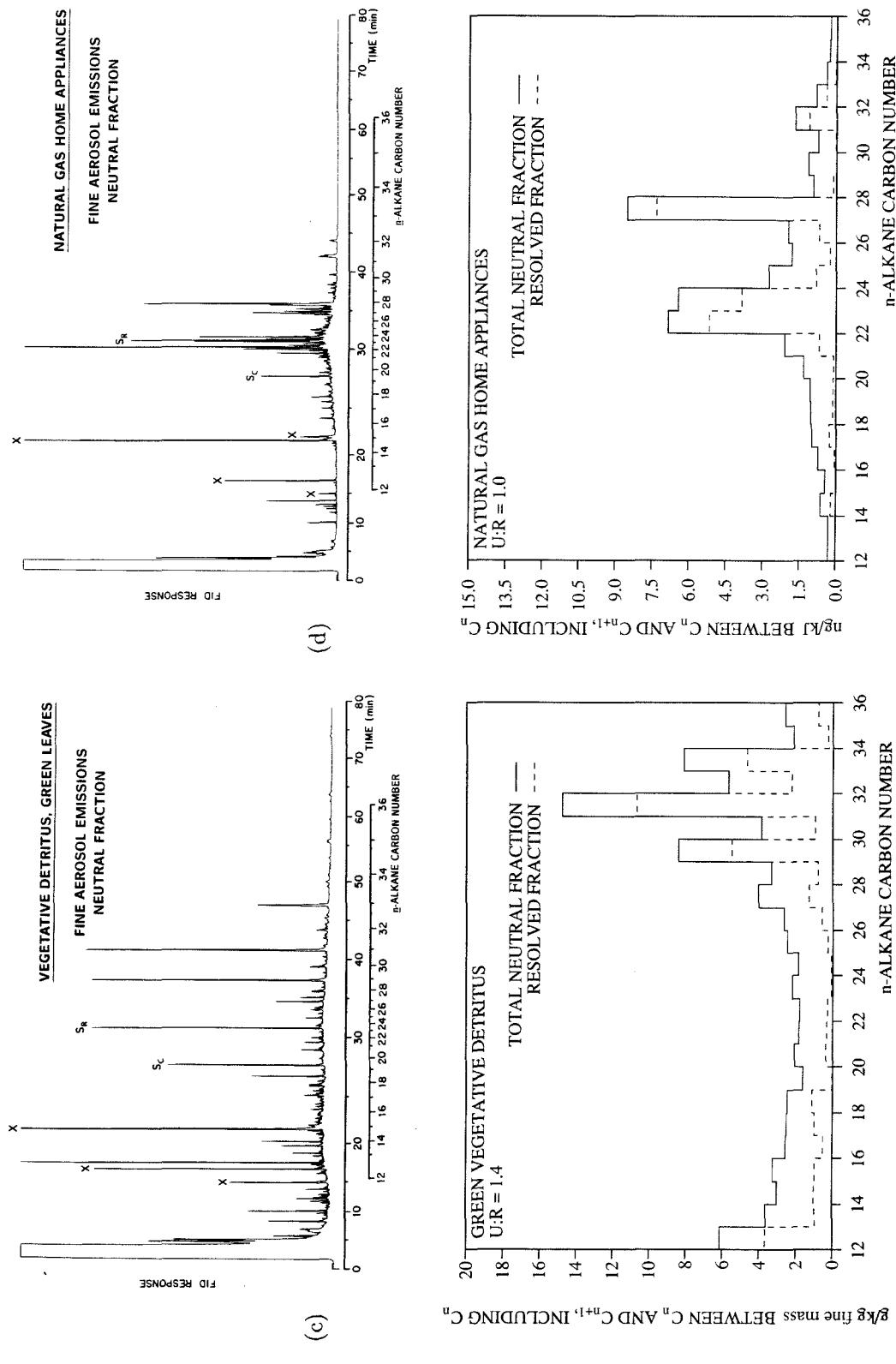


Figure 4.2 Unresolved vs. resolved organic mass distributions (cont.). Peaks marked with "X" and "S" are (respectively) contaminants and standards that are not included in area count summations. (c) Vegetative detritus, green leaves; (d) natural gas home appliances.

Figure 4.2

4.3.3 Organic Mass Distributions

Gas chromatographic analysis of source samples often yields GC traces that possess hundreds of peaks corresponding to the different compounds that are present. While the identity of many of these compounds cannot be determined by gas chromatography alone, it is still possible to characterize each source by summing the total mass of organic compounds that elute between well-defined points in each gas chromatogram. In the present work, source fingerprints characteristic of the organic compound distribution emitted by each source will be assembled by summing the quantity of organic material that elutes between each of the normal alkanes in the range C₁₂ – C₃₆ under the experimental conditions cited previously.

4.3.3.1 Replicate Analyses. Before drawing comparisons between dissimilar sources, it is useful to determine the reproducibility with which the organic compound distribution from a single source can be characterized by the methods used here. In Figure 4.3, the derivatized mass distributions obtained from pairs of separately-extracted and analyzed samples for six different source types are presented, using the percent of the total elutable organic mass that elutes between adjacent *n*-alkanes as the unit of measurement. The cigarette smoke data (Figure 4.3a) represent an exact analytical replicate, with each of the two samples containing the same number of simultaneously-collected filters. The tire dust and paved road dust sample pairs (Figure 4.3bc) represent separate resuspensions of the same grab sample, giving somewhat different mass loadings between the two samples. The pairs of green and dead vegetative detritus samples (Figure 4.3de) were also resuspended in separate experiments, using the same vegetation. Finally, the tar pot emissions (Figure 4.3f) were collected in consecutive experiments performed on the same day sampling the same tar pot.

Each step in the mass distributions of Figure 4.3 was treated as a single observation. It was assumed that the value of an observation was generated by the actual value plus an independent Gaussian error term, the variance of the error term being the same for all observations. For replicate values, then, the difference between them would be Gaussian with a variance twice the variance of the error associated with a single observation. Thus the variance of the error term for a

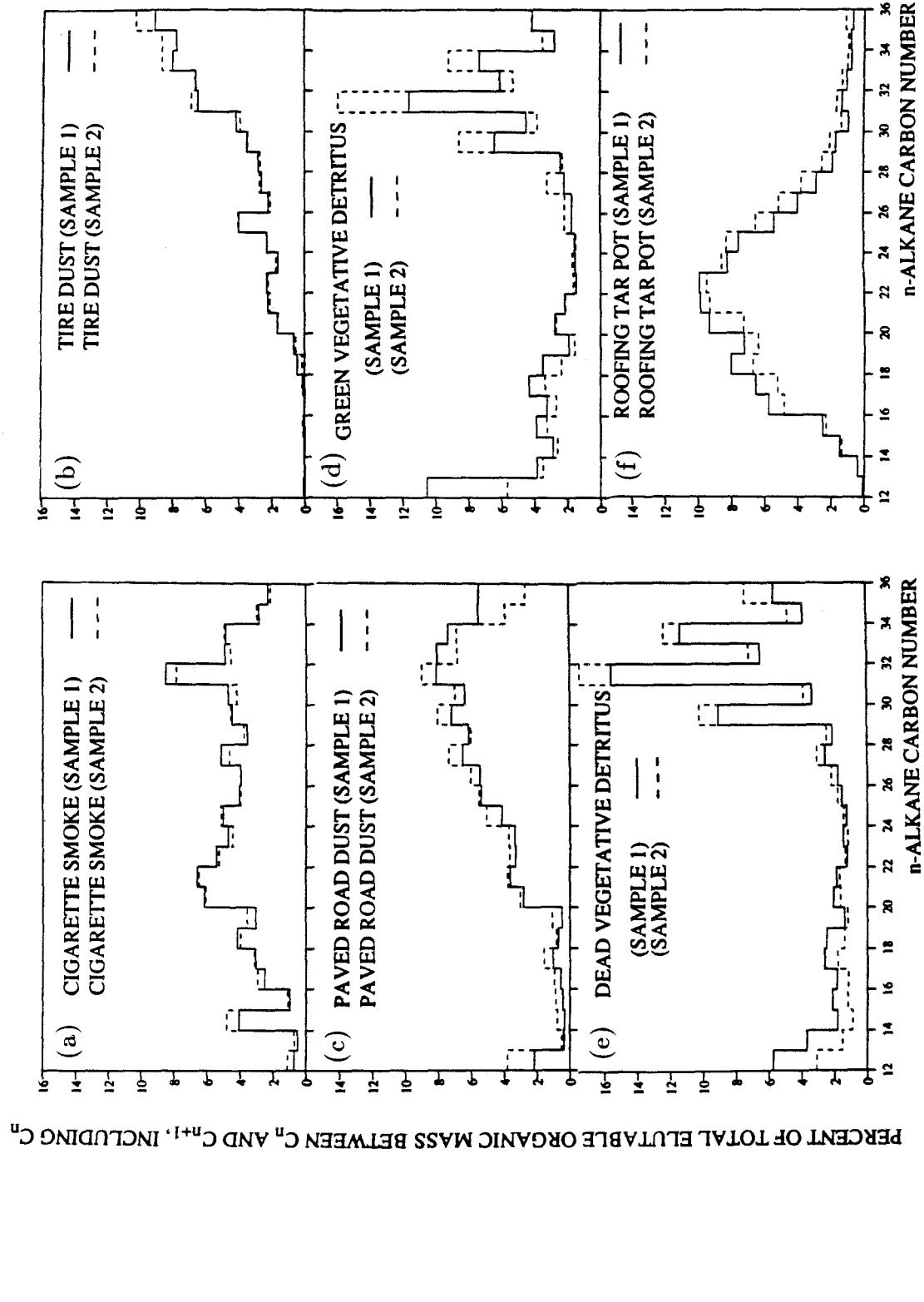


Figure 4.3 Organic mass distributions obtained from replicate sample analyses. (a) Cigarette smoke; (b) tire dust; (c) paved road dust; (d) green vegetative detritus; (e) dead vegetative detritus; and (f) roofing tar pot.

single observation could be estimated. (The hypothesis of the difference of zero means also was tested and could not be rejected.) By pooling all 144 replicate observations and using the percent of total eluted mass falling between adjacent alkanes as the common unit of measurement, it was estimated that the standard deviation associated with a single such measurement was equal to 0.66% of the total eluted organic mass in the entire source sample.

4.3.3.2 Oil-Fired Boiler Emissions. Emissions from an industrial-scale boiler (Babcock & Wilcox, with steam production capacity of 53×10^6 kJ/hr) burning No. 2 fuel oil were measured under several different experimental conditions (Hildemann, Markowski and Cass, 1989), and samples from three of the experiments were analyzed by gas chromatography. Results indicated that essentially all of the organics eluted were in the neutral fraction of the source extracts. In Figure 4.4, the GC traces for the neutral extract fraction obtained from the three experiments are presented, along with the mass distributions calculated for each GC data set.

The GC trace in Figure 4.4a (experiment 5) represents the effluent from the oil-fired boiler when tested by the full dilution sampling system described earlier (Hildemann, Cass and Markowski, 1989). In this case, the fine aerosol sample was withdrawn from the residence time chamber at the far downstream end of the sampling system. A simultaneously collected sample withdrawn from the main dilution tunnel in the sampler gave results that were not significantly different. Figure 4.4b shows the results of a second residence time chamber sample collected on a different day, using a different batch of fuel oil and containing a different percentage of excess oxygen in the emissions. In Figure 4.4d, the mass distributions of the organics collected are compared. Both samples have a primary mass peak between C20 and C22, with a secondary peak between C17 and C18. They also both exhibit a slight "sawtooth" pattern between C23 and C30, with alternating high and low values between adjacent segments.

The dilution sampler-based tests of Figure 4.4ab can be compared to results obtained if one uses the hot filter portion of EPA Method 5 (USEPA, 1971, 1984) as the means for collecting an organic aerosol sample from this boiler. In figure 4.4cd, it is seen that the EPA Method 5 hot filter collects much less organic aerosol

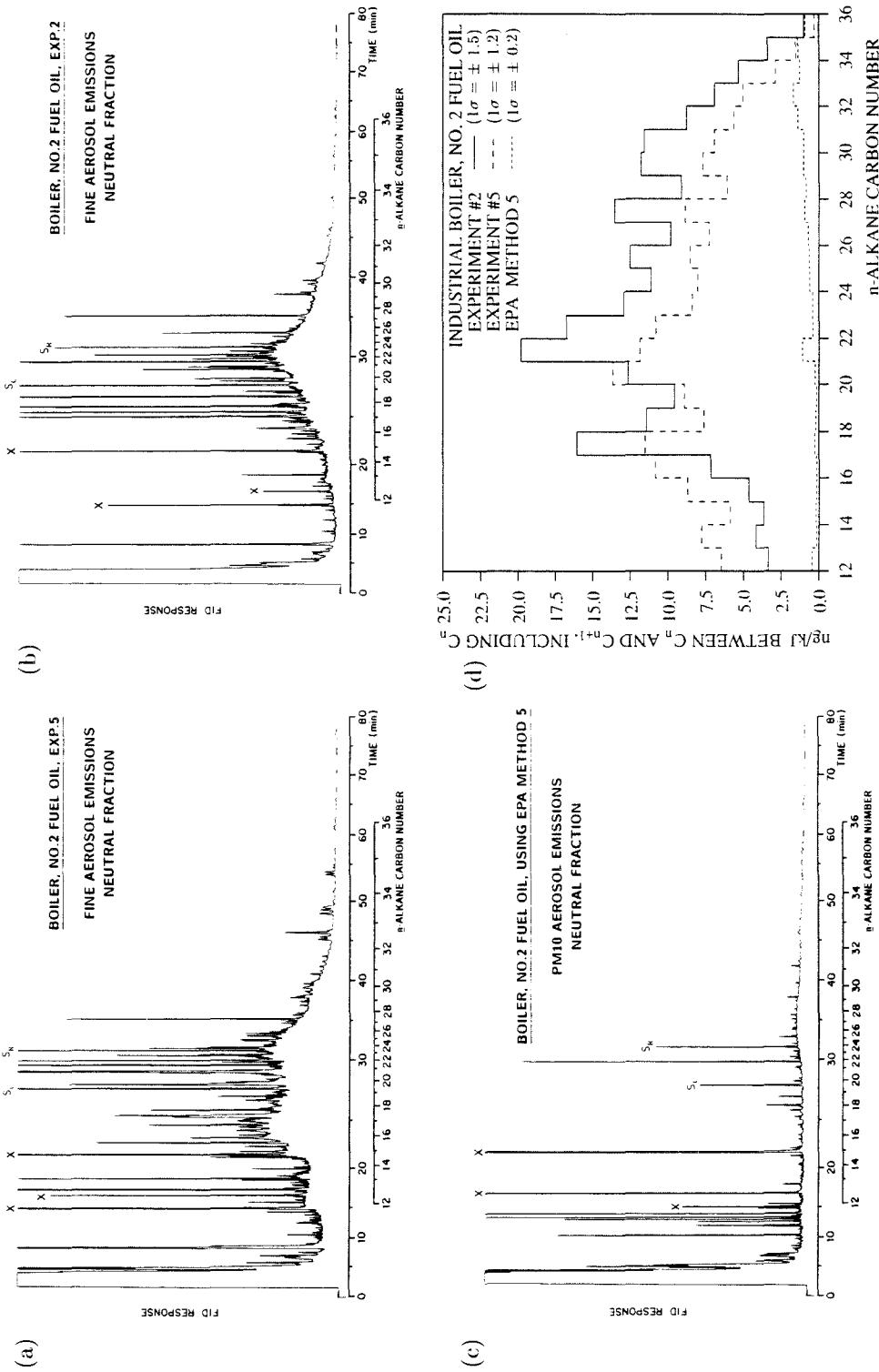


Figure 4.4 GC results for industrial boiler burning No. 2 fuel oil. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace from experiment No. 5; (b) Neutral GC trace from experiment No. 3; (c) Neutral GC trace from experiment using EPA Method 5; (d) Neutral fraction mass distributions obtained for 3 boiler experiments.

than does the dilution sampler, particularly at the lighter molecular weight end of the mass distribution. This is consistent with the expectation that filtration of undiluted exhaust at higher temperature (120 C) will fail to collect the lower molecular weight condensable organic compounds that are still in the vapor phase under stack conditions.

4.3.3.3 Motor Vehicle Emissions. Aerosol samples from each of three types of motor vehicles were analyzed by gas chromatography. The three samples were composites representing seven catalyst-equipped cars, six noncatalyst cars, and two heavy-duty diesel trucks. The automobile emissions were sampled during a Federal Test Procedure urban driving cycle, while a simpler cycle involving transitions between three speeds was used for the diesel trucks. The general characteristics seen in the GC traces for each of the vehicular sources were similar, with a smoothly varying, substantial-sized hump of unresolved organics and relatively little resolved mass (see Figure 4.5abc), which is consistent with the character of the petroleum used in fuels and lubricants. Essentially all of the elutable organics from these samples were found in the neutral organics fraction.

For the catalyst-equipped cars, the peak in the mass distribution fell between C27 and C30, while for the noncatalyst cars, the peak occurred earlier in the elution schedule, between C23 and C27 (see Figure 4.5d). The diesel truck exhaust exhibited a more complex mass distribution, with two peaks, one between C20 and C23, and the other between C27 and C31. The later peak, which is not obvious in the unresolved hump of the GC trace (Figure 4.5c), occurs because there are several significant resolved peaks with elution times later than the peak of the unresolved hump, which become emphasized when the larger relative response factors (RRFs) for the higher alkanes are applied to convert the area counts to organic mass concentrations.

4.3.3.4 Roofing Tar Pot. Fine organic particulate emissions from an in-use tar pot containing petroleum-based roofing asphalt was collected using a small dilution sampling system. The GC trace (Figure 4.6a) shows a large hump of unresolved organic material that elutes quite early, and a homologous series of peaks with retention times corresponding to the n-alkanes. It is clear that this

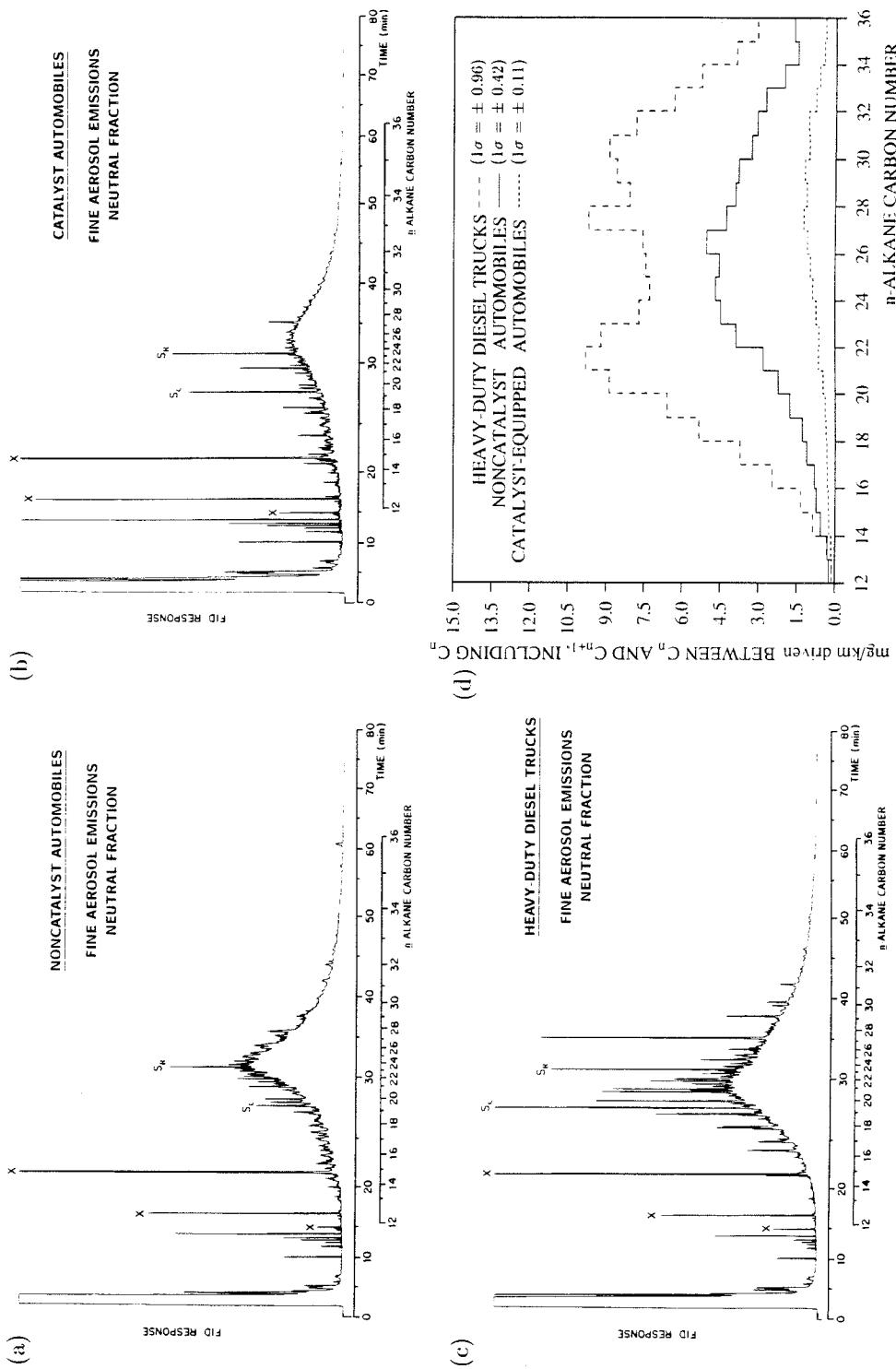


Figure 4.5 GC results for vehicle emissions. Contaminant peaks (marked with “X”) and standard peaks (marked with “S”) are not included in area count summations. (a) Neutral GC trace from composite of 7 noncatalyst automobiles; (b) Neutral GC trace from composite of 6 catalyst-equipped automobiles; (c) Neutral GC trace from composite of 2 heavy-duty diesel trucks; (d) Neutral fraction mass distributions obtained for 3 types of vehicles.

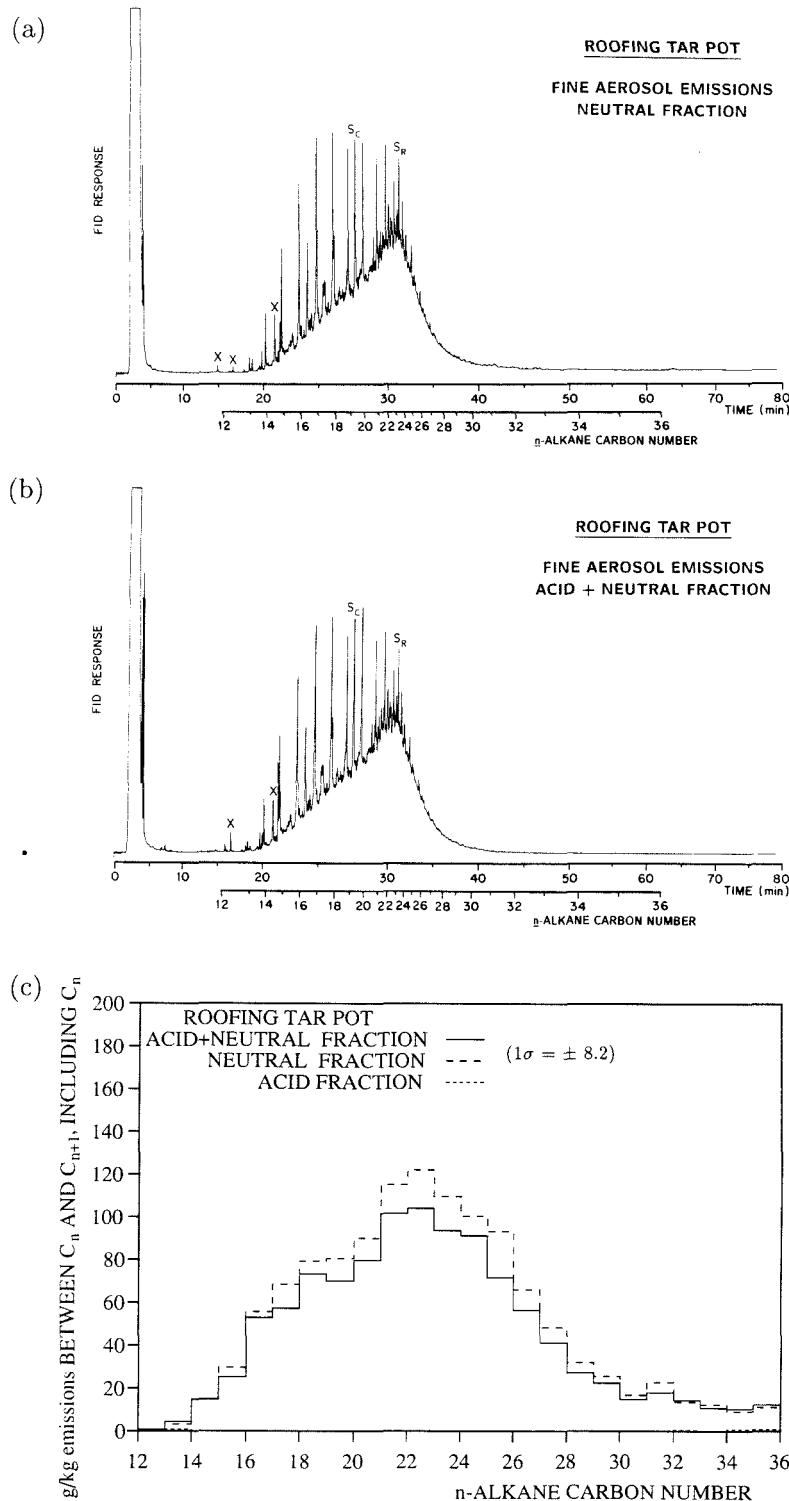


Figure 4.6 GC results for roofing tar pot emissions. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace; (b) Acid+neutral GC trace; (c) Organic mass distributions.

sample represents the distillation of low molecular weight hydrocarbons found in the roofing tar itself. The appearance of peaks in this series with retention times that are as early as C14 indicates that substantial gas-phase emissions of organics also occurred, because emissions of alkanes under C18 have been observed mainly in the vapor phase (Black and High, 1979).

The mass distribution computed for the tar pot emissions (Figure 4.6b) shows that essentially none of the elutable organics were acidic. The peak in the mass distribution occurs early on, between C21 and C23, and the distribution varies smoothly with no other distinctive features.

4.3.3.5 Tire Dust. For the tire dust sample, difficulties were encountered in obtaining a sample of the fine ($d_p < 2\mu\text{m}$) fraction of the dust, and a total aerosol sample was extracted instead for GC analysis. In Figure 4.7a and b, the GC traces obtained for the neutral and acid+neutral fractions are presented. A few additional peaks appear in the derivatized sample, indicating the presence of some acidic compounds. Again for this petroleum product, a homologous series of peaks is evident, and the retention times again correspond to the n-alkane series. The hump of unresolved material extended past 80 minutes, so the programming of the GC was extended to 120 minutes to allow more of the slow-eluting material to make it through the column. It was estimated (based on the RRF for C36) that 27–29% of the total elutable mass eluted after C36.

The mass distribution for the tire dust is presented in Figure 4.7c, and it is seen that the mass distribution for this source is quite different from the other petroleum derived sources studied. The peak in the mass distribution occurred at or beyond C36, emphasizing that most of the elutable tire dust organics were (not surprisingly) high molecular weight compounds. Approximately 6% of the sample was acidic, and most of the acidic fraction eluted between C20 and C26. The peak seen in the mass distribution between C25 and C26 was due to the appearance of two strong peaks in the derivatized fraction.

4.3.3.6 Fireplace Combustion of Wood. Emissions from combustion of three types of wood in a brick fireplace (located in an older single family home) were analyzed by gas chromatography. Results of these analyses (see Figure 4.8)

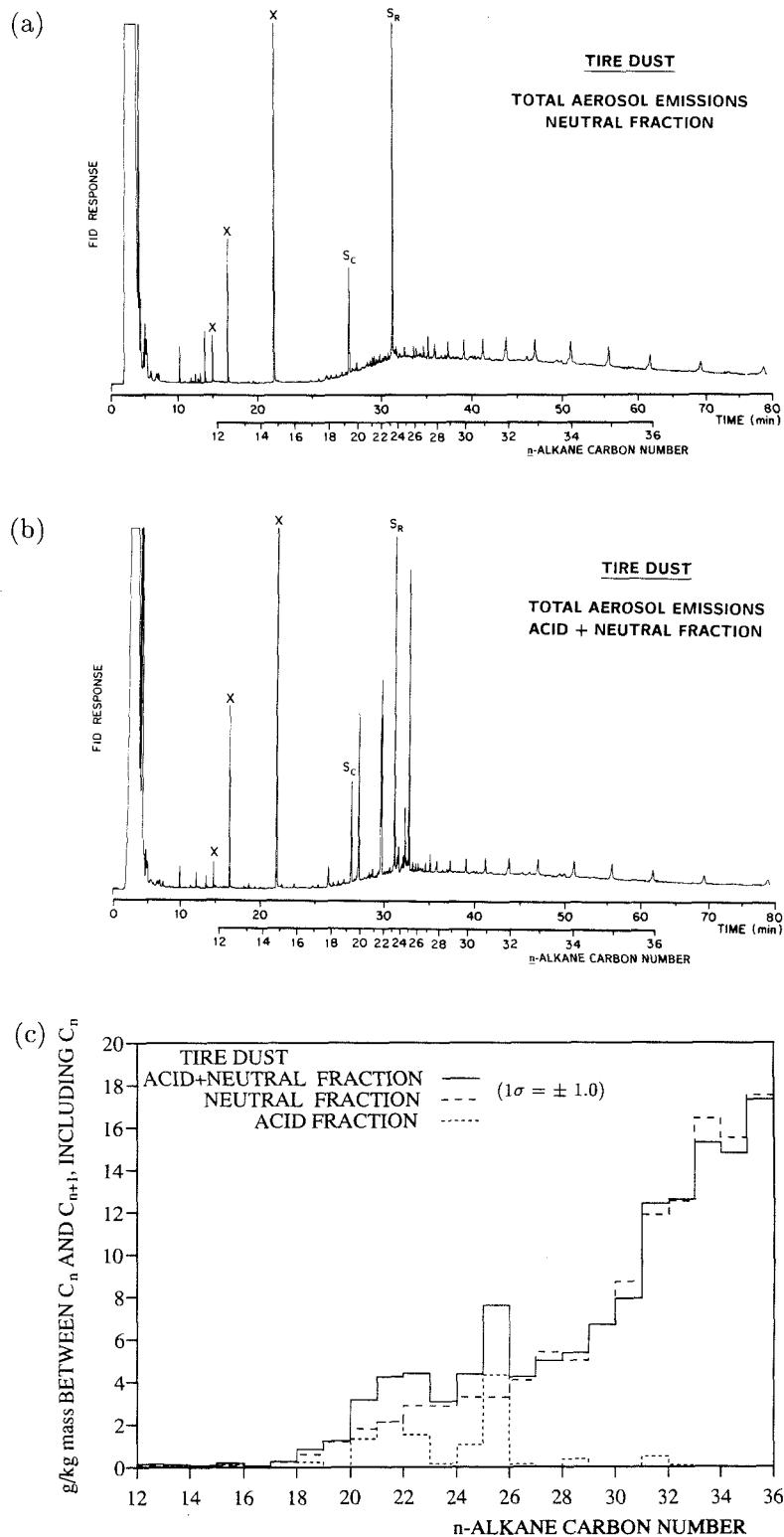


Figure 4.7 GC results for tire dust. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace; (b) Acid+neutral GC trace; (c) Organic mass distributions.

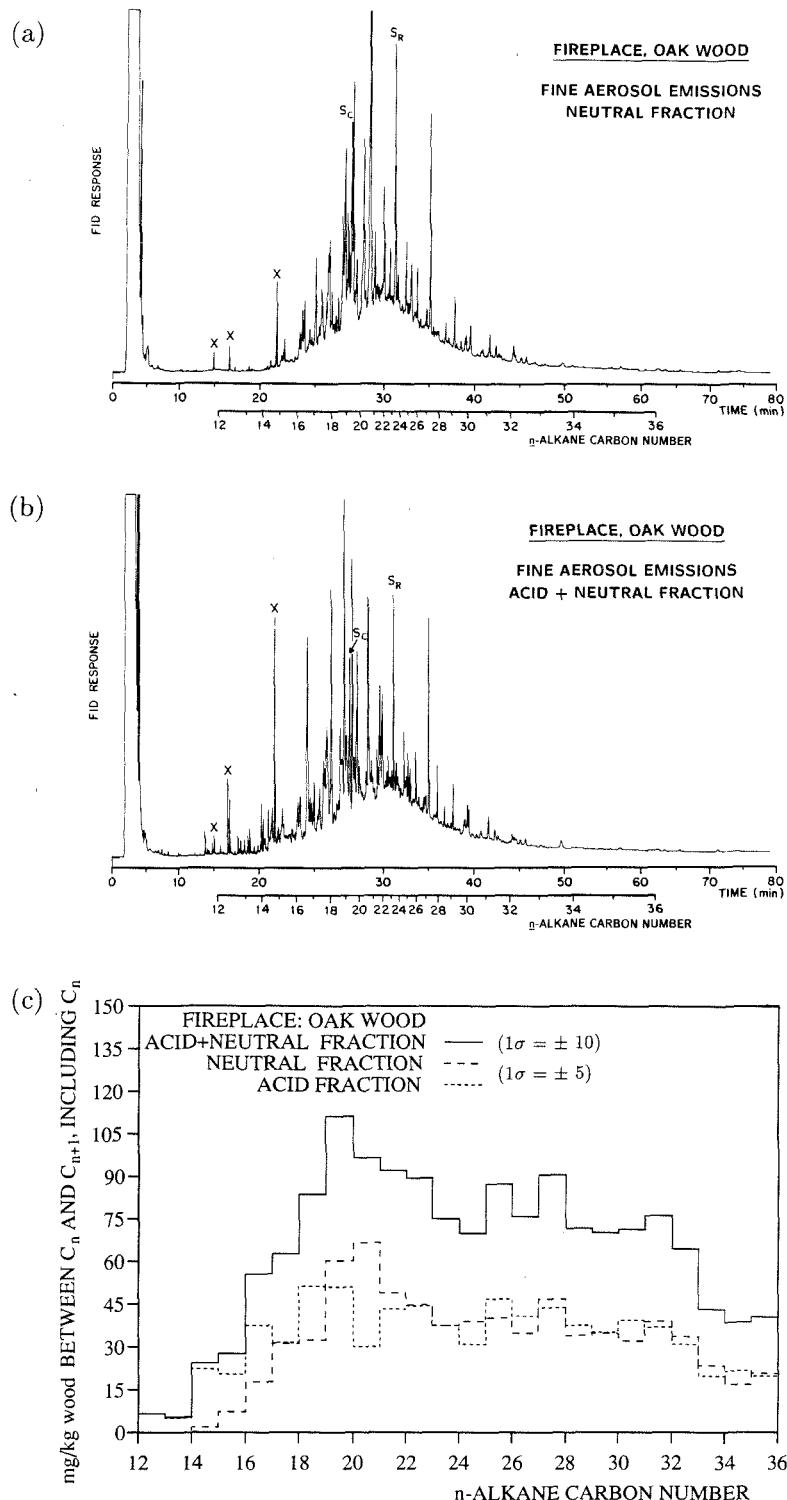
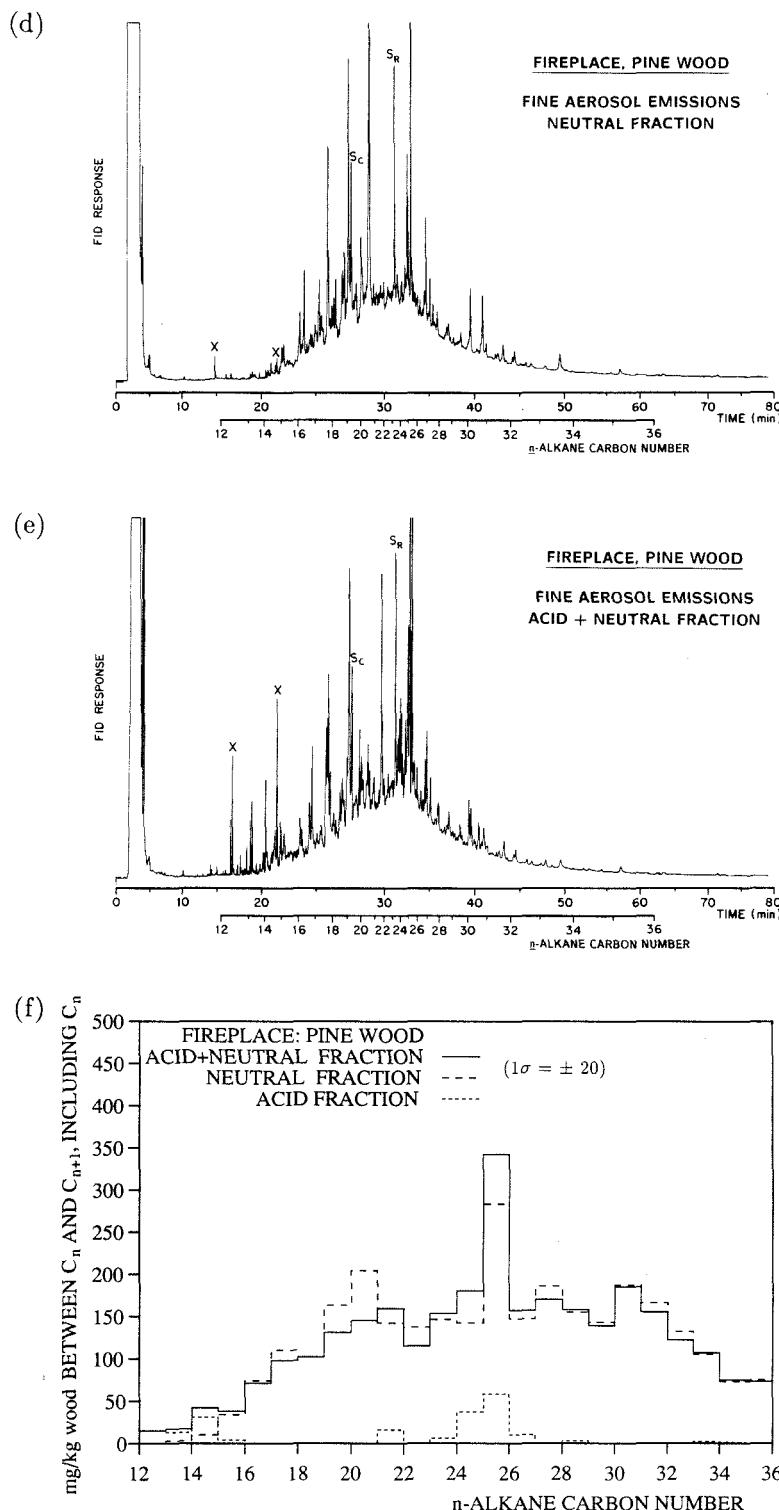



Figure 4.8 GC results for fireplace combustion of wood. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace for oak wood; (b) Acid+neutral GC trace for oak wood; (c) Organic mass distributions for oak wood; (cont.)

Figure 4.8 GC results for fireplace combustion of wood (cont.). Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (d) Neutral GC trace for pine wood; (e) Acid+neutral GC trace for pine wood; (f) Organic mass distributions for pine wood; (cont.)

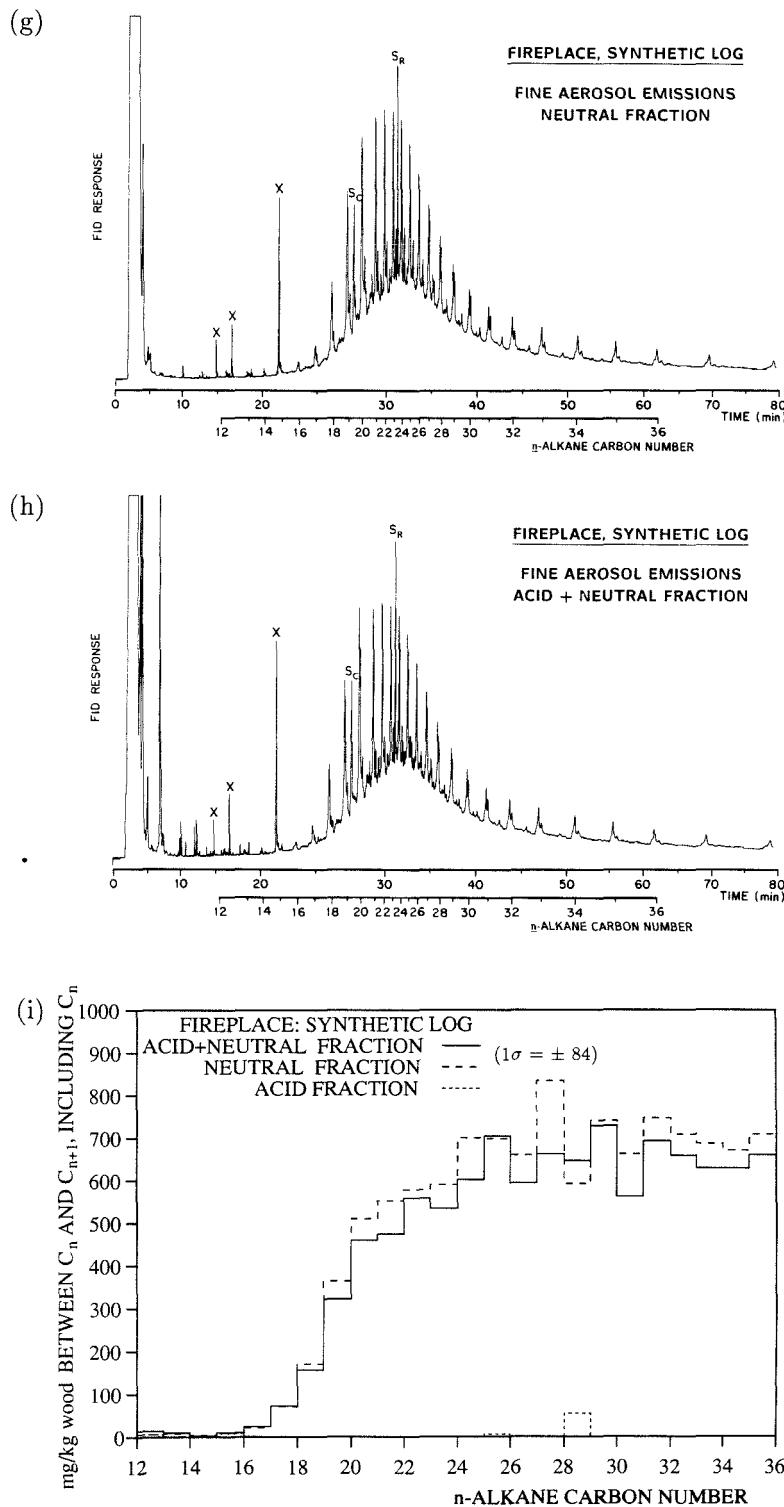


Figure 4.8 GC results for fireplace combustion of wood (cont.) Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (g) Neutral GC trace for synthetic log; (h) Acid+neutral GC trace for synthetic log; (i) Organic mass distributions for synthetic log.

exhibit marked differences in the organic characteristics of emissions from oak wood, pine wood, and a synthetic log. As shown in Figure 4.8ab, approximately half of the eluted organics emitted during combustion of oak were contained in the benzene-soluble acidic fraction. In contrast, benzene-soluble acidic organics from the combustion of pine only accounted for a few percent of the total (Figure 4.8cd). However, unlike most of the other samples analyzed in this study, substantial additional polar organic material present in the pine and oak emissions was not benzene-soluble. This additional material was found to be extremely polar, and is suspected to consist of higher-molecular weight complex organic acids. Finally, essentially all of the emissions from combustion of the synthetic log were found in the neutral fraction of the sample extract (Figure 4.8ef).

The organic mass distribution for oak combustion emissions exhibits a peak between C20 and C21, with a secondary peak between C27 and C28. Substantial similarities are seen in Figure 4.8b between the mass distributions for the neutral and acidic fractions. For combustion of pine, a single, very strong peak in the mass distribution occurs between C25 and C26 (Figure 4.8d) due to the appearance of three strong resolved peaks between these two alkanes. The majority of the acidic organic mass from pine combustion also occurs in this area, between C24 and C26.

The characteristics of the aerosol organics emitted from the combustion of the synthetic log show few similarities to the emissions from natural wood combustion. As seen in Figure 4.8f, the mass distribution rises steadily from C16 to C26, reaching a plateau from about C26 onward. In addition, unlike the natural woods, the GC trace of the synthetic log (Figure 4.8e) is dominated by a homologous series that has retention times corresponding to the n-alkane standard series. It is likely that this results from the use of paraffin waxes (a petroleum product) to mold together sawdust to form synthetic logs. Finally, significant peaks were seen to elute near the 80-min end of the normal GC analysis cycle, so the GC elution time was extended to 120 minutes in order to observe these later peaks. It was found that approximately 12% of the total elutable organics mass from the synthetic log combustion experiment (based on the C36 RRF) eluted after C36 (and hence is not shown in Figure 4.8f), while for both the natural wood samples only 2% of the organics mass eluted after C36.

4.3.3.7 Cigarette Smoke. Samples containing both sidestream and mainstream smoke from four different types of cigarettes were composited for GC analysis, forming a sample representing smoke from regular cigarettes (43%), filtertip cigarettes (29%), "light" cigarettes (21%), and menthol cigarettes (7%). This composited sample is a close representation of the market share for each of these types of cigarettes in 1981 (House of Representatives, 1982). Almost all of the elutable organic material was found in the neutral fraction of the extract. However, as was the case for wood combustion, substantial polar organic material insoluble in benzene was present in the cigarette smoke extract. Again, this extremely polar fraction is suspected to consist of complex, high-molecular weight organic acids.

As seen in Figure 4.9a and b, the largest additional peaks eluting after derivatization appear near the top of the unresolved hump and fall between the retention times for n-alkanes C20 and C23 (see Figure 4.9c). The mass distribution for this sample, shown in Figure 4.9c, is very complex. A strong peak appears between C31 and C32, a second peak occurs between C20 and C23, and a notable isolated peak occurs between C14 and C15.

4.3.3.8 Meat-Cooking Operations. Two types of hamburger meat, regular and extra-lean, each were cooked by both frying and charbroiling in separate experiments using a commercial-scale cooking facility. The emissions from each of the charbroiling tests were analyzed separately on the GC, while the samples from the two frying experiments were combined prior to extraction (due to the smaller amount of material collected in the latter cases).

The results of the GC analyses, presented in Figure 4.10, show that the three organic extracts had quite similar characteristics, despite large differences in the mass emission rates of organic aerosol between these tests. The meat-cooking samples contained an acidic component that represented 13 to 24% of the total acid+neutral fraction, and most of the acidic fraction (55 to 68%) eluted between C20 and C25. When comparing the neutral vs. acid+neutral GC traces, this acidic mass can be seen in the form of additional resolved peaks that appear near the top of the unresolved hump (see Figure 4.10). Both samples of the effluent from charbroiling meat show a strong narrow peak in the mass distribution between C21

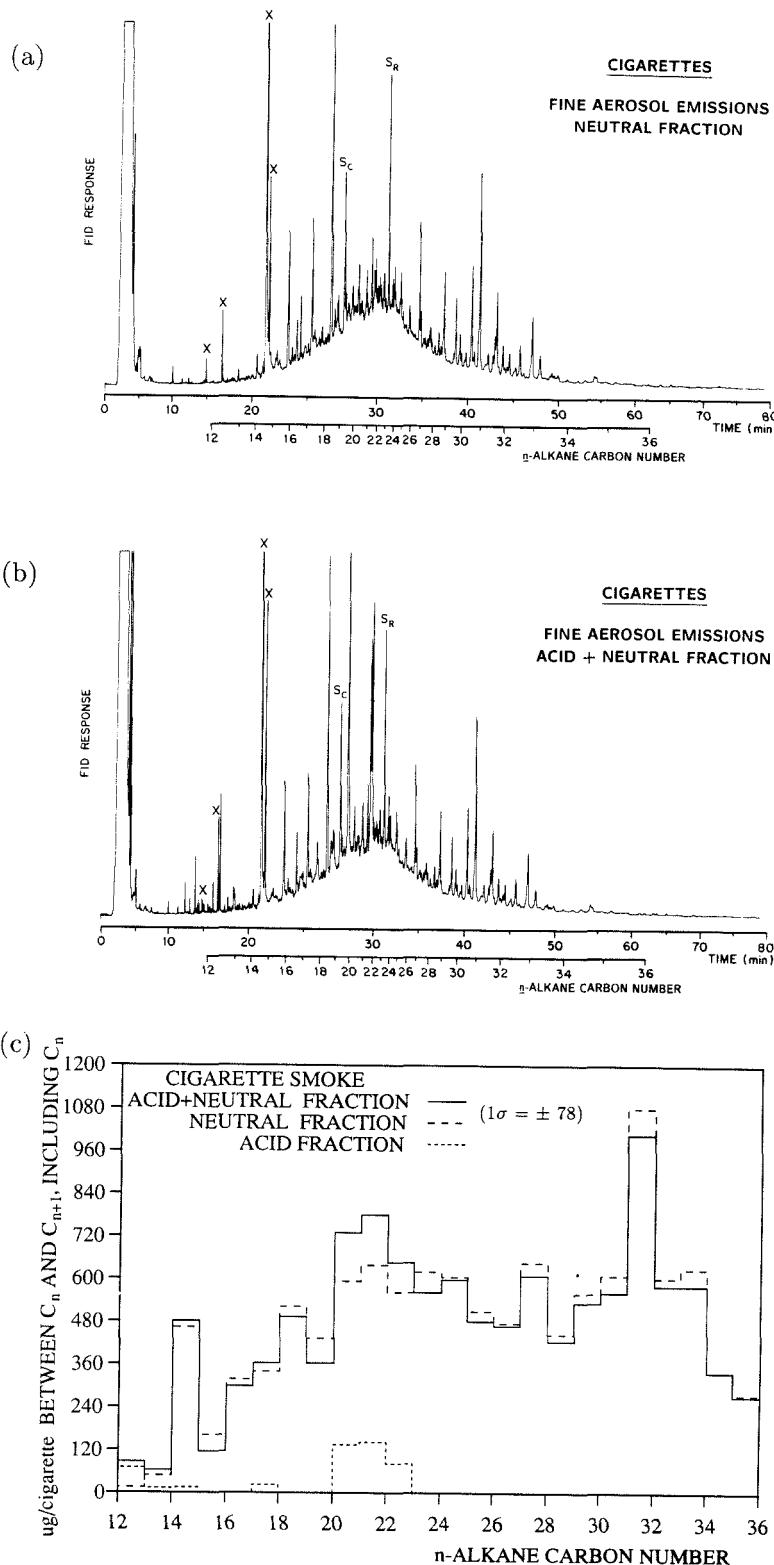


Figure 4.9 GC results for cigarette smoke. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace; (b) Acid+neutral GC trace; (c) Organic mass distributions.

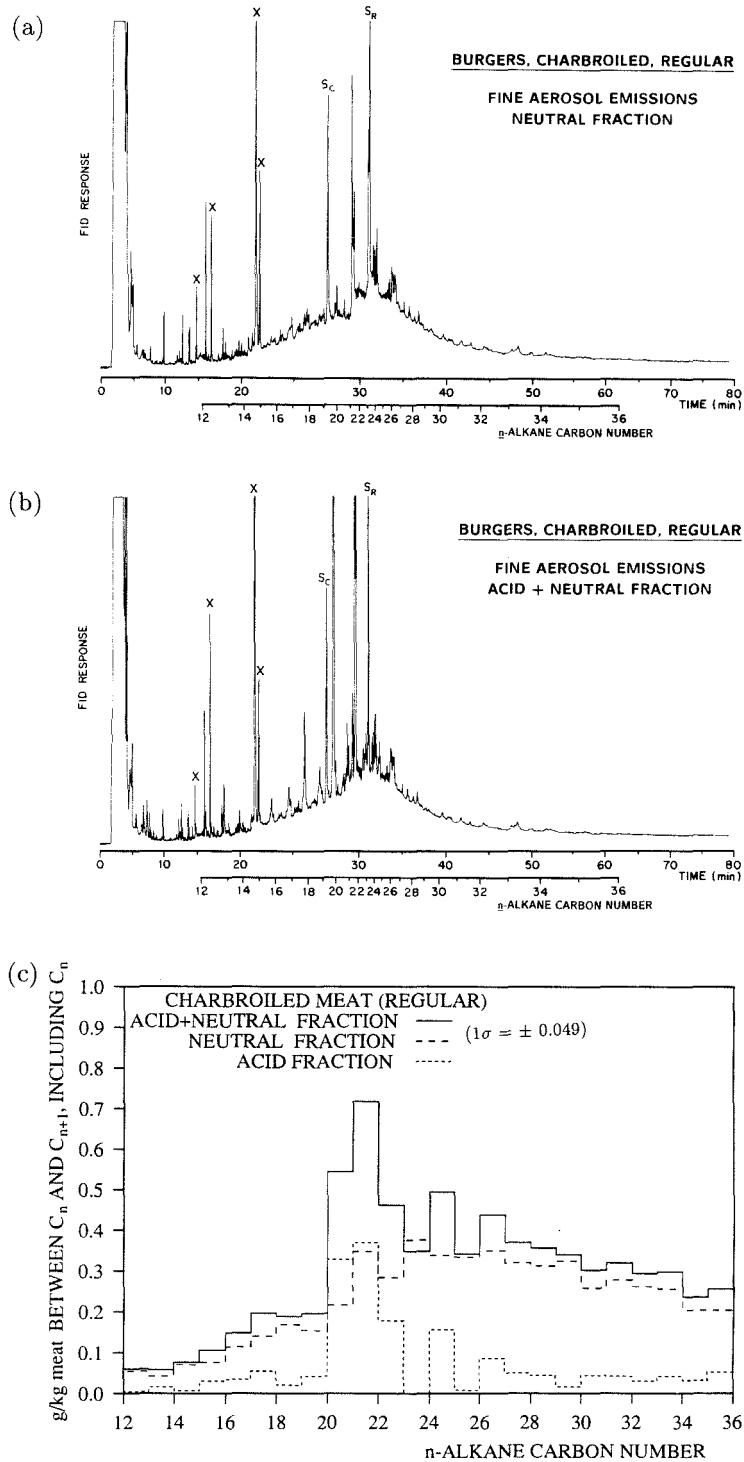


Figure 4.10 GC results for meat-cooking operations. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace for regular, charbroiled hamburger meat; (b) Acid+neutral GC trace for regular, charbroiled hamburger meat; (c) Organic mass distributions for regular, charbroiled hamburger meat; (cont.)

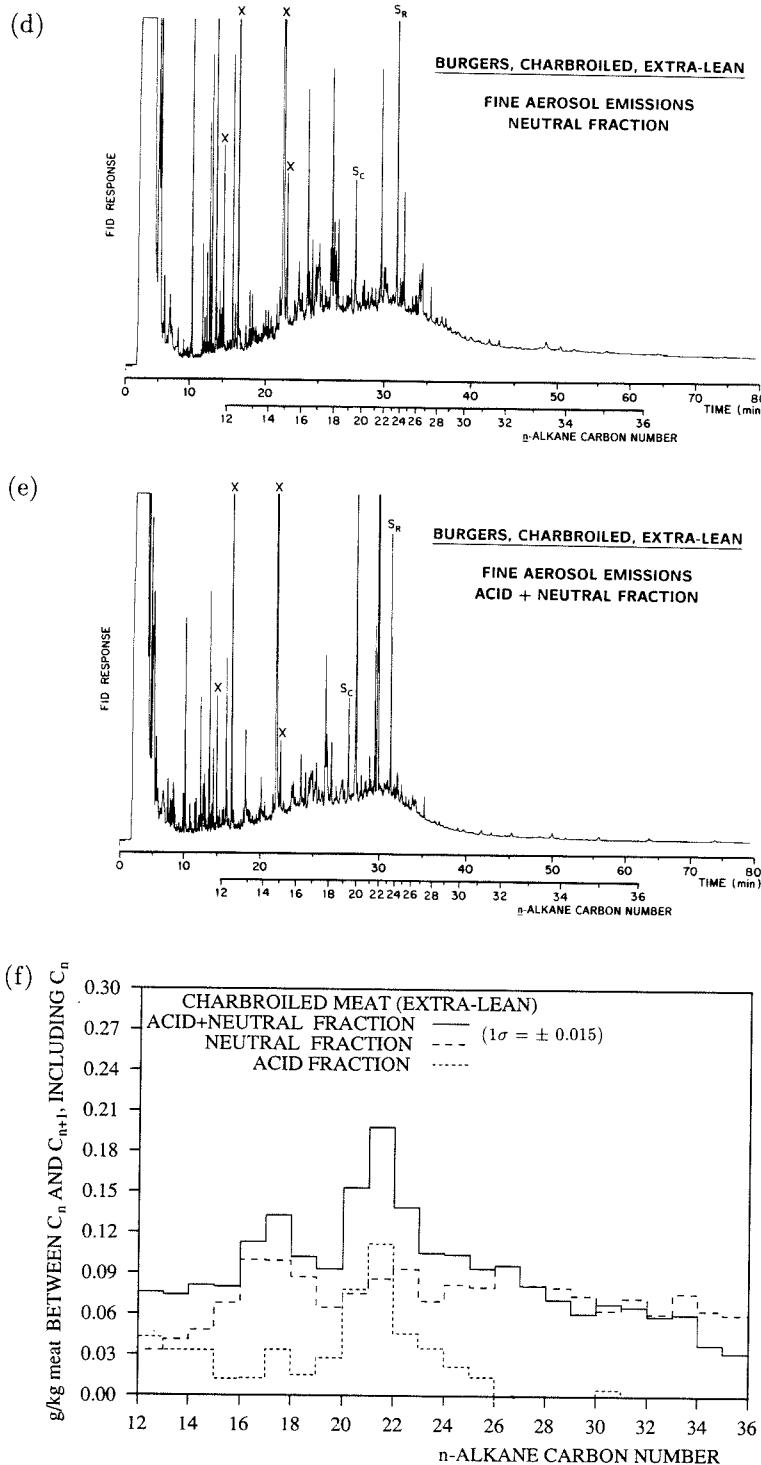


Figure 4.10 GC results for meat-cooking operations (cont.). Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (d) Neutral GC trace for extra-lean, charbroiled hamburger meat; (e) Acid+neutral GC trace for extra-lean, charbroiled hamburger meat; (f) Organic mass distributions for extra-lean, charbroiled hamburger meat; (cont.)

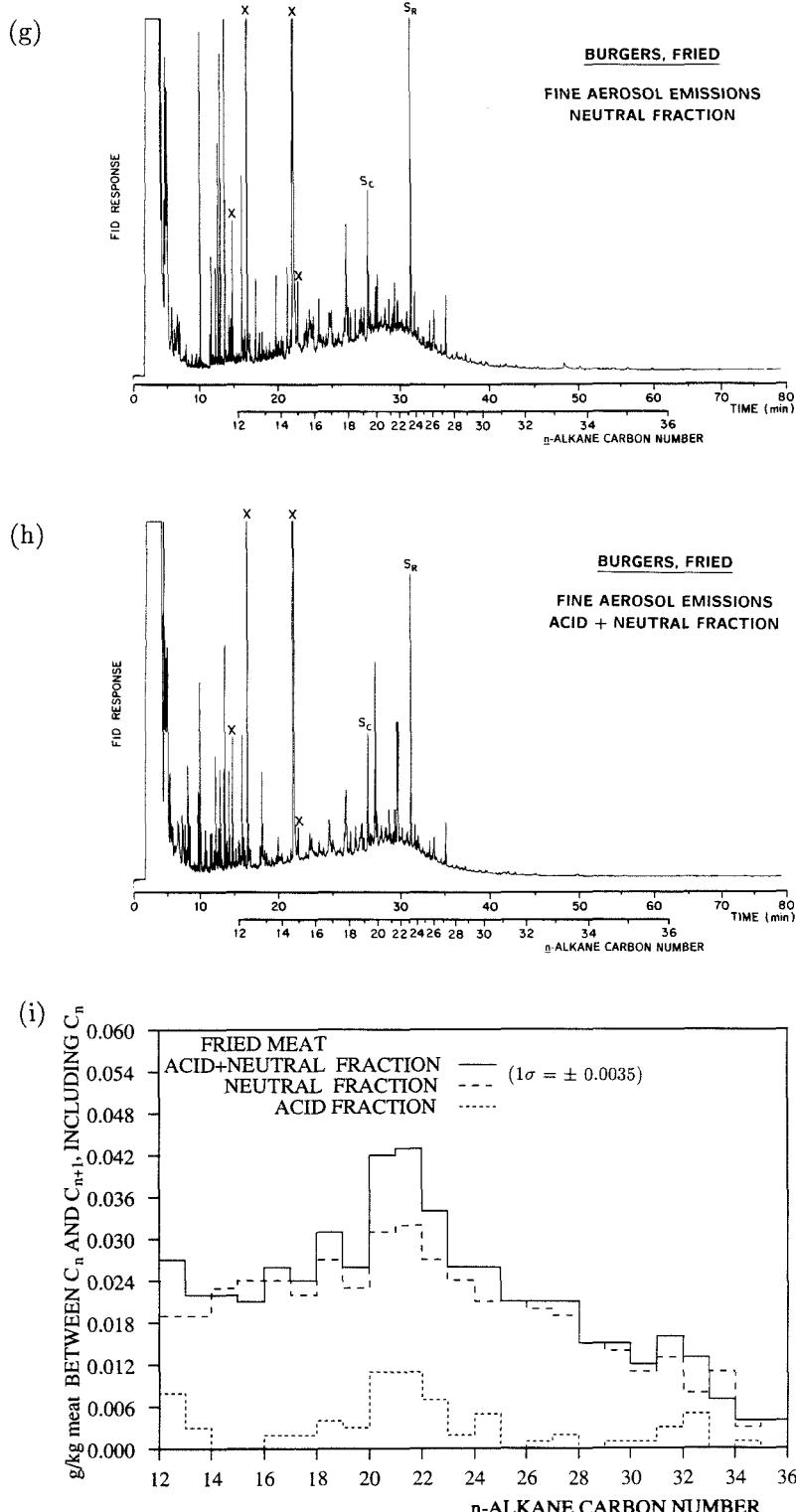


Figure 4.10 GC results for meat-cooking operations (cont.) Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (g) Neutral GC trace for fried hamburger meat; (h) Acid+neutral GC trace for fried hamburger meat; (i) Organic mass distributions for fried hamburger meat.

and C22, while the peak for the fried meat is a little wider, falling between C20 and C22.

4.3.3.9 Brake Dust. A grab sample of organometallic brake dust was resuspended and drawn through a cyclone separator prior to analysis in order to capture just the fine aerosol fraction. The GC analyses showed that acidic organics constituted about 13% of the elutable acid+neutral fraction. As seen in Figure 4.11a and b, these acidic compounds appear both as resolved peaks, and as additional unresolved species that elute near the end of the unresolved hump. The mass distribution for this source (Figure 4.11c) shows a broad distribution of organics mass over most of the subareas defined between the elution times for the n-alkanes, with the peak of the distribution spread between C21 and C28. Most of the acidic fraction falls between C20 and C34.

4.3.3.10 Natural Gas Home Appliance Emissions. Fine particulate emissions measured from combustion of natural gas by a space heater and water heater in a single family home were extremely low, requiring sampling periods of up to 12 hours to collect quantities of organic material that were adequate for GC analysis. Because of the small quantities of actual aerosol and the long sampling times, adsorption of gas phase organics by the quartz fiber filter or vaporization of collected aerosol from the quartz fiber filter were considered to be potential interferences, and a second set of quartz fiber filters was placed downstream of the set destined for GC analysis in order to evaluate these possible sampling artifacts. In addition, the low emissions rates encountered in these experiments made it more likely that organic contaminants in the dilution air might constitute a significant part of the total sample. Therefore, results of the GC analysis of the dilution air blank collected prior to sampling the home appliances were also compared with the results from the fine particulate sample.

The GC results for the particulate sample indicated that the elutable organics collected were essentially all found in the neutral fraction of the extract. The GC trace obtained for the neutral particulate organic fraction is presented in Figure 4.12a, while those obtained for the adsorbed gas-phase organics and the dilution air blank are shown in Figure 4.12b and c, respectively. The mass distributions

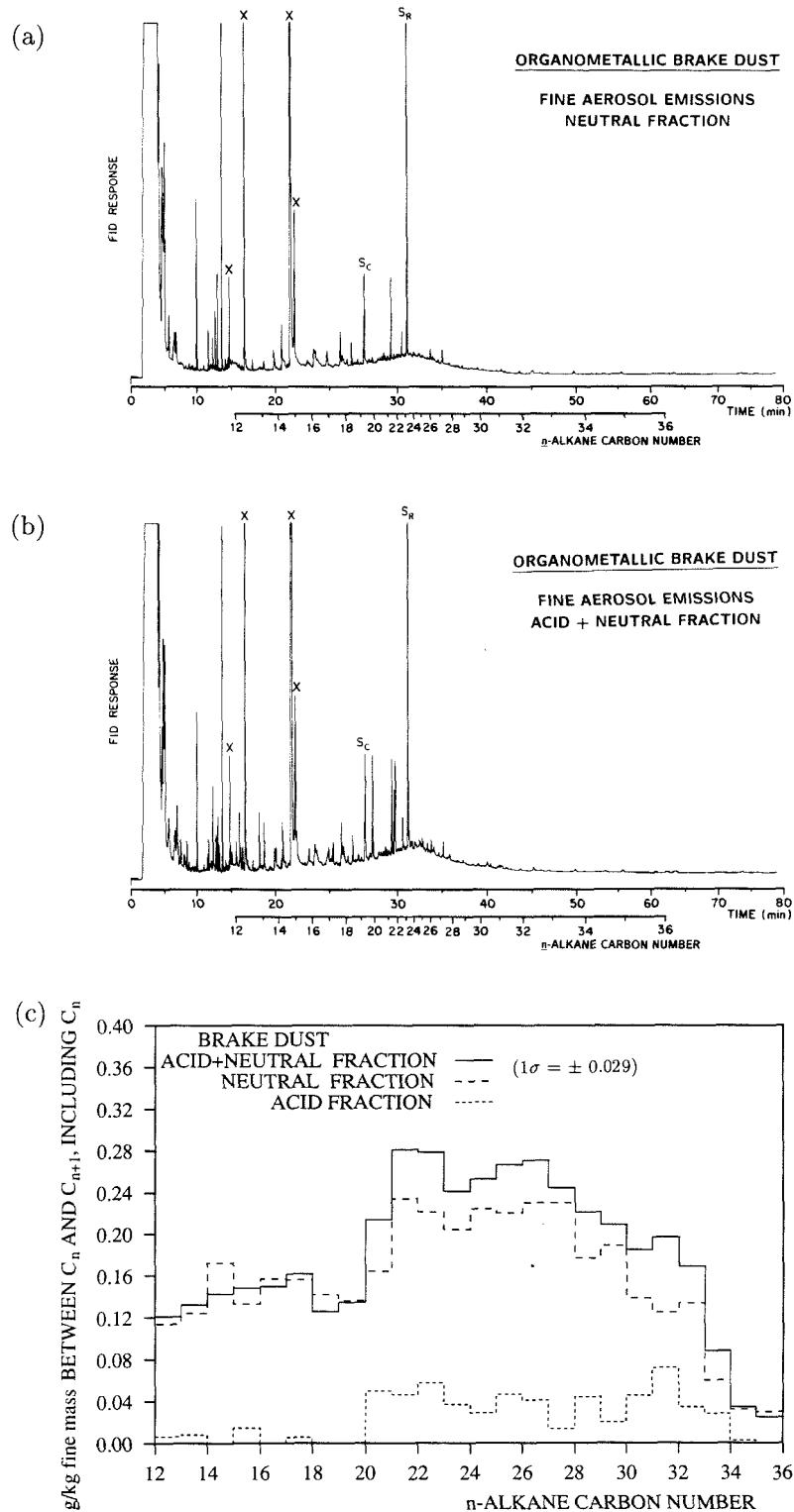


Figure 4.11 GC results for organometallic brake dust. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace; (b) Acid+neutral GC trace; (c) Organic mass distributions.

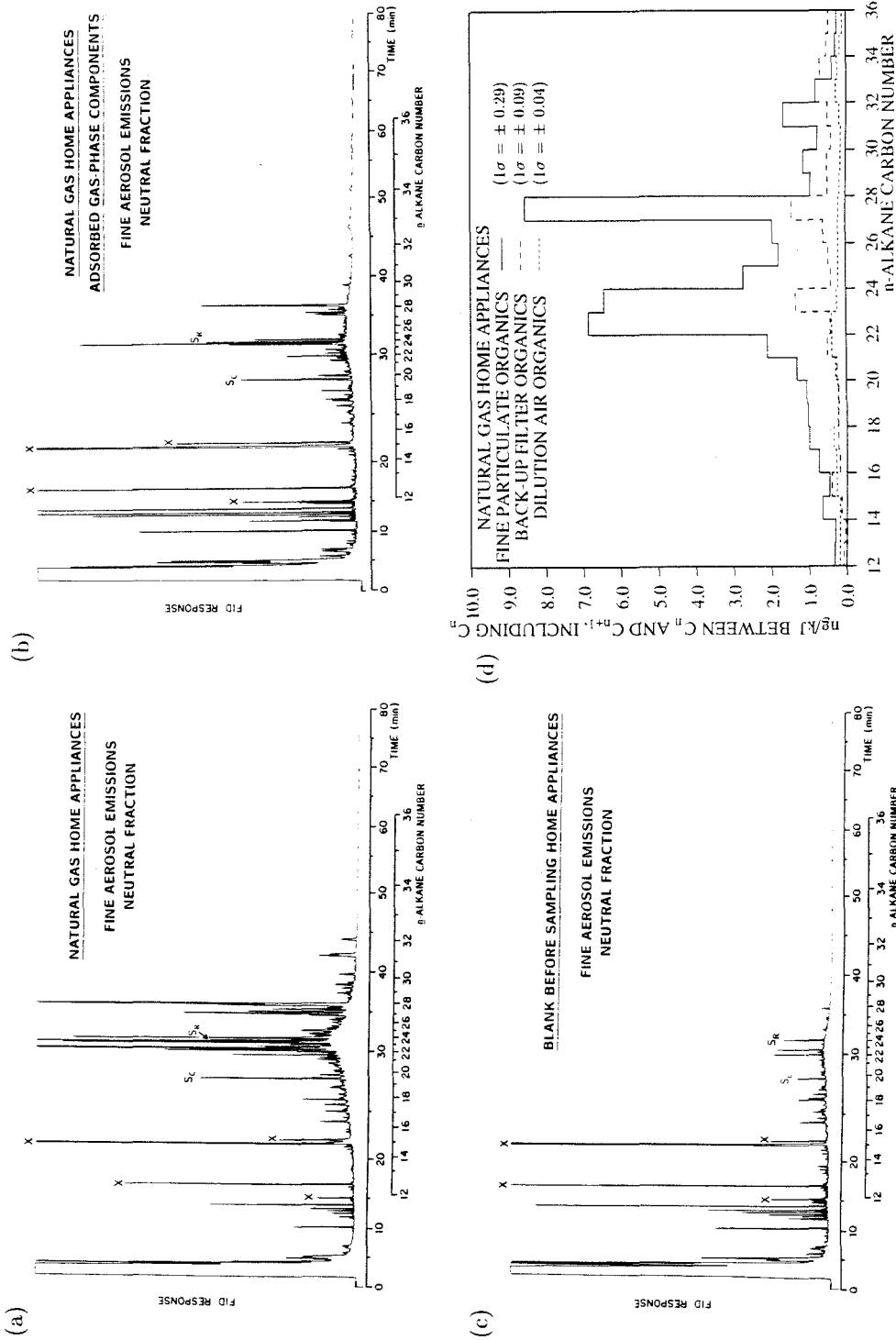


Figure 4.12 GC results for natural gas home appliance emissions. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace for fine particulate emissions; (b) Neutral GC trace for material collected on backup filters; (c) Neutral GC trace for material collected from dilution air; (d) Neutral fraction mass distributions for natural gas home appliance samples.

for each of these three GC traces are shown in Figure 4.12d. The distribution of organic emissions from the home appliances shows two strong peaks, one between C22 and C24, the other between C27 and C28. The contribution of the dilution air to the total elutable organics in the sample is quite small, even for under this "worst case" sampling condition. However, the collection of organics on the second quartz filter located downstream of the aerosol sample accounts for about one-fourth of the total mass of particulate organics collected. Separate organic carbon measurement by combustion of a quartz fiber filter located downstream of a Teflon filter from this experiment indicates that approximately half of the total organic carbon material collected may be attributable to adsorption of gas-phase organics, or to vaporization of particulate matter from the Teflon filter. Nonetheless, it appears that the two distinctive peaks that appear in the mass distribution of the particulate organic emissions collected are mostly attributable to particulate matter, and can still be used to characterize the emissions.

4.3.3.11 Detritus from Urban Leaf Surfaces. Both green and dead leaf samples were agitated in a Teflon bag to dislodge plant waxes and other material present on the leaf surfaces as would naturally occur due to sloughing and mechanical abrasion processes. The vegetation sample was especially prepared to represent a composite of Los Angeles area vegetation, as is described elsewhere (Hildemann, Markowski and Cass, 1989). The GC traces for each of these two samples, shown in Figure 4.13, show very similar characteristics, with little unresolved mass and a very distinctive pattern of the resolved peaks. In particular, the last 3 large peaks in each sample have retention times corresponding to odd-numbered n-alkanes C29, C31 and C33. While absolute confirmation of these identifications must await GC/MS analysis, this odd-numbered alkane predominance for vegetation has been observed in other studies (Simoneit, Chester and Eglinton, 1977; Simoneit and Mazurek, 1981, 1982; Mazurek and Simoneit, 1984), along with a predominance of even-numbered normal fatty acids. The prevalence of these compounds in plant wax emissions results from the compound-selective biosynthetic pathways found in plants.

Since most of the elutable organics mass from the vegetation samples consisted of a few resolved peaks, the mass distribution pattern for these samples closely

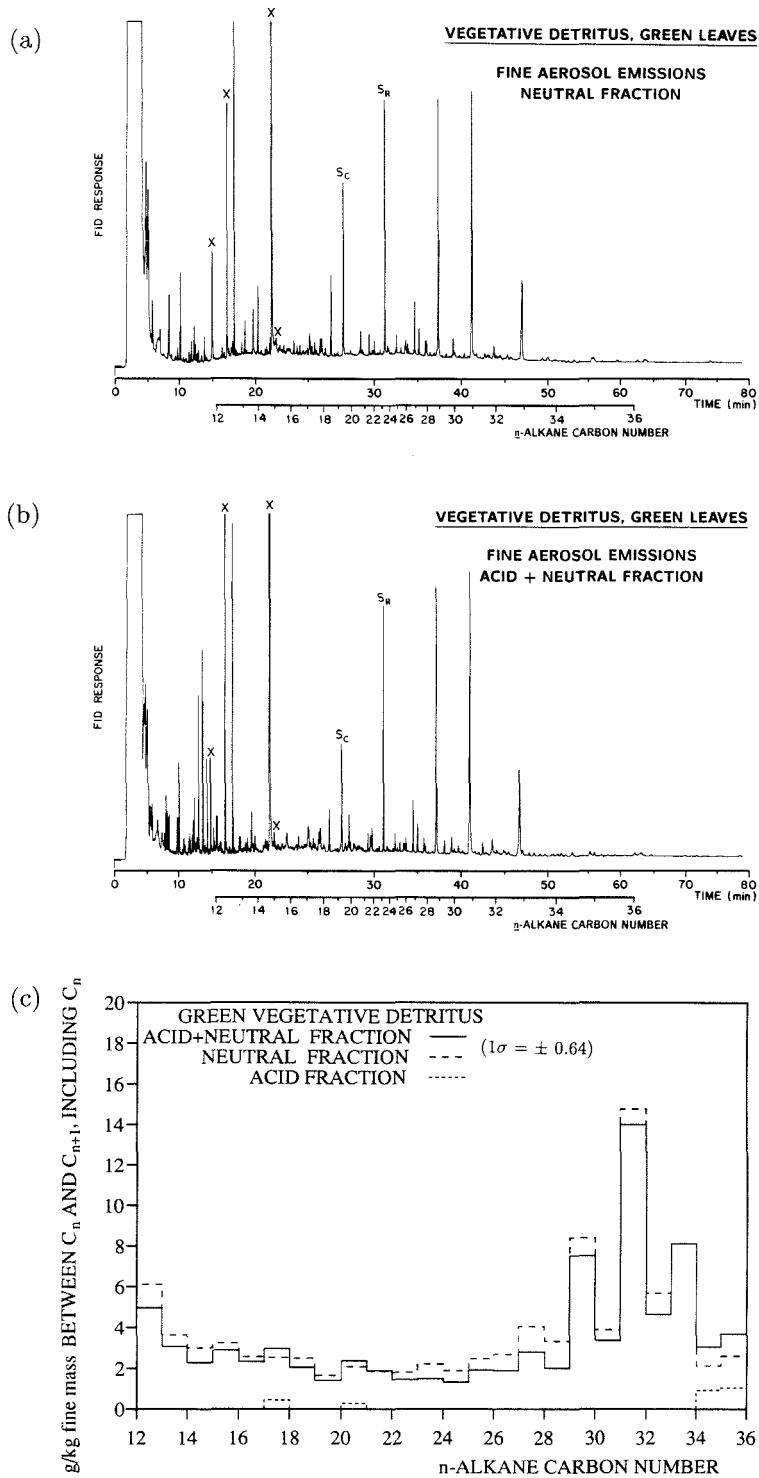


Figure 4.13 GC results for vegetative detritus. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace for green leaf vegetative detritus; (b) Acid+neutral GC trace for green leaf vegetative detritus; (c) Organic mass distributions for green leaf vegetative detritus; (cont.)

Figure 4.13 GC results for vegetative detritus (cont.). Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (d) Neutral GC trace for dead leaf vegetative detritus; (e) Acid+neutral GC trace for dead leaf vegetative detritus; (f) Organic mass distributions for dead leaf vegetative detritus.

follows the pattern of the GC trace. In both Figure 4.13c and d, a sawtooth pattern is evident between C27 and C36. The peak in the mass distribution between C31 and C32 is contributed mainly by the mass contained in the single compound peak that has the retention time corresponding to C31. Only a small amount of acidic organics were present. Peaks with retention times corresponding to the C28 and C30 fatty acids appeared in the derivatized fractions of both samples, but were more prevalent in the dead leaf sample than in the green leaf sample. These fatty acid peaks were not sufficiently intense for the difference to be apparent in Figure 4.13cd.

4.3.3.12 Paved Road Dust. Fine Pasadena-area paved road dust, collected with a small vacuum sweeper truck, also was isolated for GC analysis by resuspending a grab sample followed by sample collection downstream of a cyclone separator. Organic analysis on the GC (Figure 4.14) showed that almost all of the sample was found in the neutral fraction of the extract, with a few acidic compounds that had retention times corresponding to the C16 and C18 fatty acids appearing between the elution times for C20 and C23 n-alkanes (Figure 4.14c). The peak in the neutral mass distribution occurred late in the elution schedule, between C31 and C32, and about 8% of the mass eluted after C36 (and hence is not shown in Figure 4.14c). A sawtooth pattern between C27 and C32 supports the contention that this sample contained some plant-derived organic matter, while the hump of unresolved material seen in the GC traces of Figure 4.14ac is characteristic of petroleum or combustion derived (anthropogenic) organic material.

4.4 DISCUSSION

Gas chromatographic analysis of aerosol source samples can be employed in order to define features of the organic aerosol that distinguish one source type from another. A 52-parameter description of each source is obtained, based on the fraction of the emitted organics that will elute on the GC column, the ratio of the unresolved to resolved organics present, and the distribution of the acid and neutral organic compounds that have elution times falling between the elution times of specific n-alkanes in the range C12 to C36 and after C36.

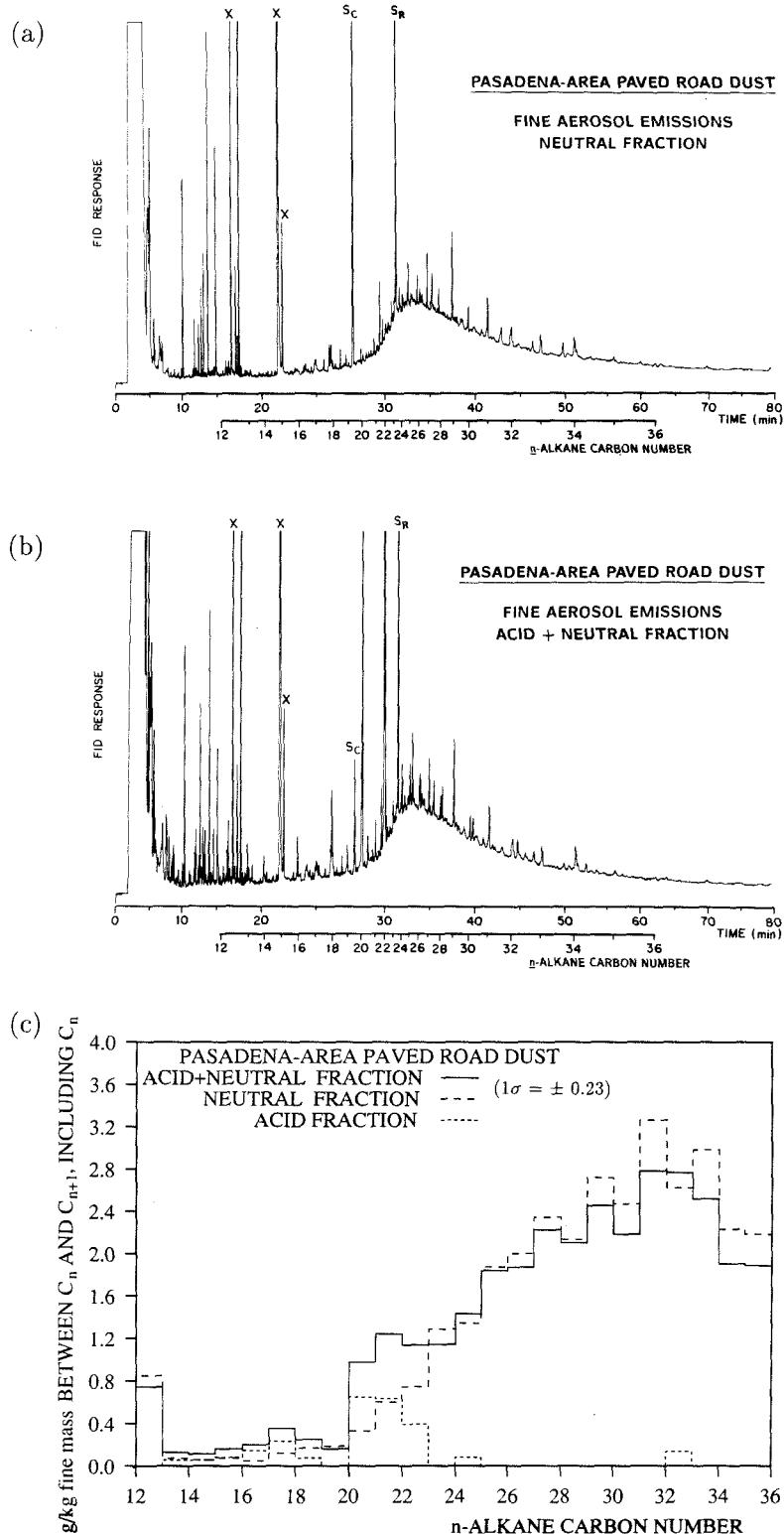


Figure 4.14 GC results for Pasadena-area paved road dust. Contaminant peaks (marked with "X") and standard peaks (marked with "S") are not included in area count summations. (a) Neutral GC trace; (b) Acid+neutral GC trace; (c) Organic mass distributions.

Nineteen source types that contribute close to 80% of the primary organic carbon aerosol to the Los Angeles area atmosphere have been characterized by these methods in order to obtain a nearly comprehensive picture of the difference between the organic aerosol sources present in a complex urban area. It is confirmed that man-caused aerosol sources usually emit a mixture of organics with a ratio of unresolved to resolved compounds (U:R) greater than 2.0, while the natural organic aerosol contributed by vegetative detritus (*e.g.*, plant waxes) show U:R values in the range 0.8–1.5. One notable exception to this rule was found: the natural gas-fired home appliances tested emit mostly resolved organics with a low U:R value of 0.6–1.3.

Further distinctions between the anthropogenic sources can be drawn based on the quantitative distribution of organic materials that elute between the elution times for known standard compounds, in this case the homologous series of the *n*-alkanes. In Figure 4.15, the data for all sources tests have been displayed on a common basis, showing the neutral and acidic organic compound mass concentrations that elute in each subrange of the GC trace, each expressed as a percentage of the total quantity of elutable acid+neutral organics observed. From the data on the neutral organic fraction, certain sources are readily distinguished from each other. Combustion of the synthetic log tested produces high molecular weight materials eluting at long retention times; these are not seen in natural wood combustion. Tire dust shows a progressive trend toward increasing quantities of material at the longer elution times, in contrast to vehicle tailpipe emissions that show a progressive decline in emissions with long elution times. Diesel exhaust is distinctly different from catalyst-equipped automobile exhaust. Sources such as combustion of pine wood, cigarettes and natural gas show prominent single peaks in their mass distribution that may be diagnostic markers for those sources. Vegetative detritus shows neutral organics with a predominance of material in the elution zone between C27 and C33.

From Figure 4.15, it is seen that organic acids are emitted in significant quantities from a minority of the sources tested: combustion of hard wood, meat-cooking operations and brake dust. This helps to distinguish those sources from sources that emit largely neutral organics. Since it is seen that organic acids

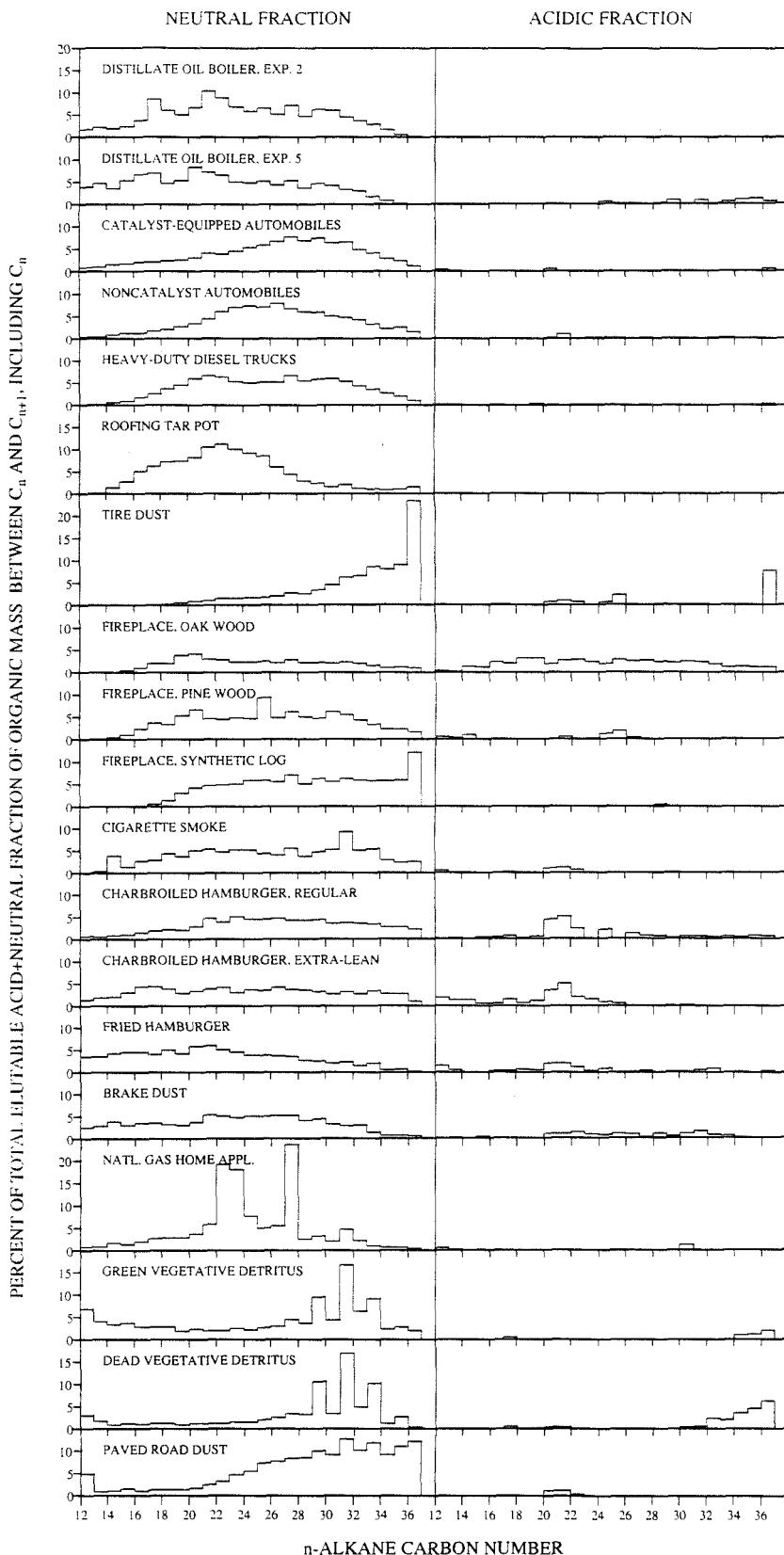


Figure 4.15 Summary of mass distribution profiles.

are emitted directly from some primary organic aerosol sources, careful analysis will be needed to determine the fraction of the organic acids in the atmosphere that arise from primary emission sources vs. atmospheric chemical reaction processes.

To qualitatively evaluate the degree of similarity or difference between the organic mass distributions obtained for each of the individual source types, a hierarchical cluster analysis was performed on the nineteen source signatures obtained. Separate organic mass distributions obtained for the neutral and acidic fractions of each source sample were appended together to form a sequence of 50 groups of organic compounds. These mass emissions rates for each compound group were normalized by the total elutable acid+neutral organic aerosol emission rate from the relevant source in order to compute the percentage of the total elutable organics emissions from that source falling into each of the 50 compound groups. Using this relative compound distribution, each of the source signatures was assigned to a location in a 50-dimensional space, and the source samples were clustered together according to their proximity to each other in a step-by-step approach, using the squared Euclidean distance between adjacent samples in this 50-dimensional space as a measure of proximity.

The computer program used to perform this analysis was the CLUSTER package within the SPSS-X software package. At the first step in the cluster analysis, the two source samples closest to each other in this space were grouped, creating eighteen clusters containing the nineteen source types. The distance between these eighteen clusters next was evaluated, and the consolidation process continued step by step until the two surviving clusters were combined into a single final cluster. At each step, the distance between the centroids of the clusters being combined was recorded. The hierarchy formed by this analysis is shown in Figure 4.16, including the distance between the clusters combined at each step.

The hierarchical cluster analysis (shown in Figure 4.16) reveals that the organic aerosol compound distributions obtained for vegetative detritus (green and dead leaves combined), tire dust, paved road dust and natural gas home appliances were among the most distinct, with relative distance measures of over 500 between those sources and the closest source cluster. (The *maximum* possible proximity value, assuming that no more than 20% of the total mass occurs in a single subregion

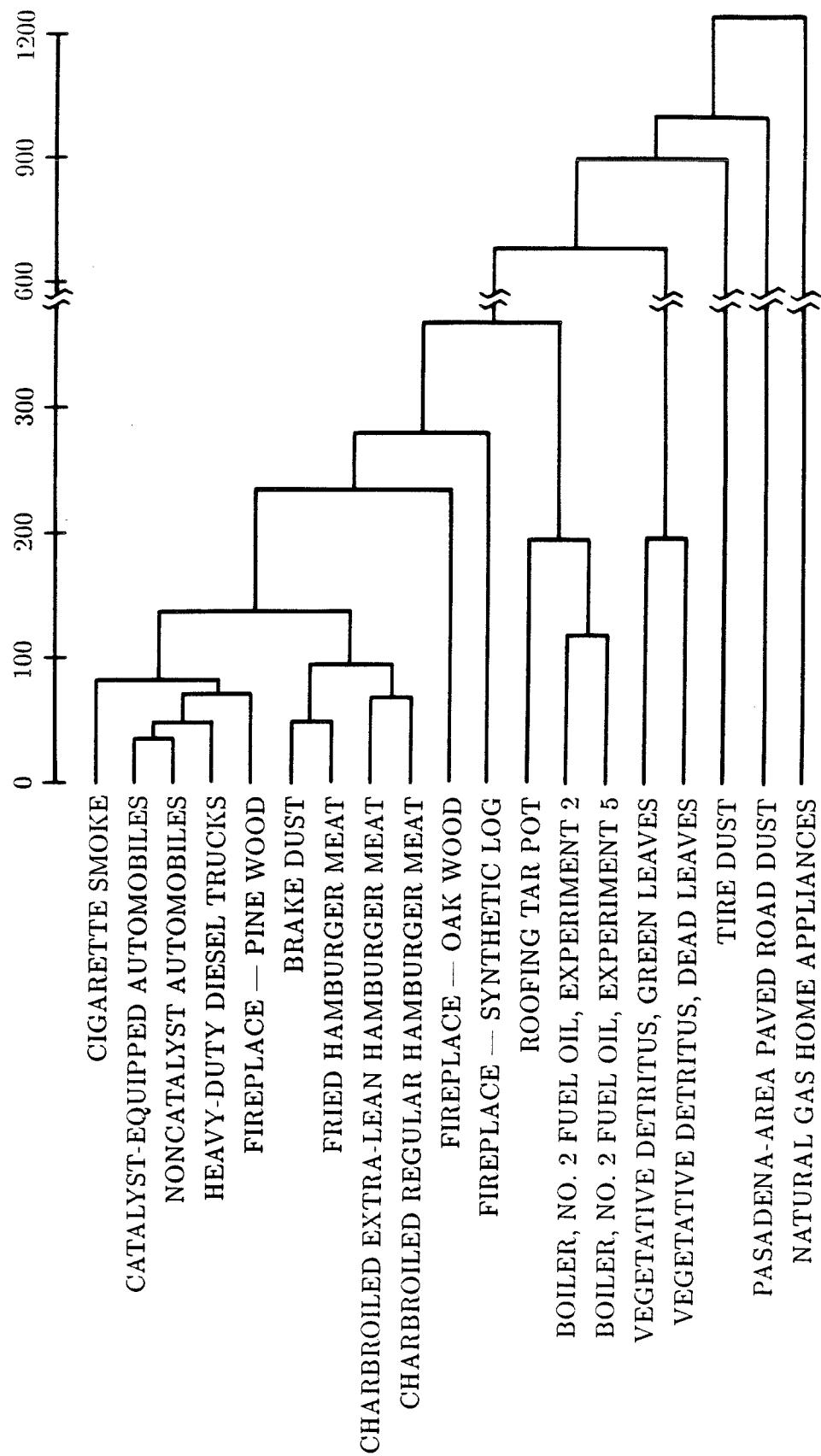


Figure 4.16 Cluster analysis hierarchy for source samples.

of the 50-parameter source signature, would be 4000.) In addition, some of the source signatures that were expected to be similar were indeed found to be in close Euclidean proximity to one another: the motor vehicles had proximities of less than 50, and the two types of charbroiled hamburger meat had a separation distance of 65. Two other sources, brake dust and fried hamburger meat, also were found to be closely spaced, with a proximity of 46.

To estimate the magnitude of the proximity values that might be indicative of clusters that are indistinguishable, the distance measures for several replicate samples from the same source type also were evaluated. The proximity of the two cigarette samples had a value of 13 in the unit system chosen, the distance between the two tire dust samples had a value of 26, and the two tar pot samples had a proximity value of 33. On the basis of these replicate samples, a proximity value of 100 was chosen as a *tentative* dividing line between source that are much more different from each other than is the case for replicate samples from the same source type. At this relative distance, the source signatures are grouped into 12 clusters. The 3 meat-cooking experiments form one cluster along with the brake dust sample, and the 3 vehicle experiments form a second cluster along with cigarette smoke and fireplace combustion of pine wood. The other 10 source types are still in separate clusters at this level, indicating that their organic mass distributions contain characteristics that clearly distinguish them from the other sources based solely on the distribution of compounds between the 50 compound groups defined earlier.

4.5 REFERENCES

Black, F., and High, L. (1979). Methodology for Determining Particulate and Gaseous Diesel Hydrocarbon Emissions. SAE paper no. 790422, Society of Automotive Engineers, Warrendale, Pennsylvania.

Cooper, J.A., Redlone, D.C., Sherman, J.R., Valdovinos, L.M., Pollard, W.L., Scavone, L.C., and Badgett-West, C. (1988). Appendix V - G. PM10 Source Profile Library for the South Coast Air Basin. Draft. South Coast Air Quality Management District, El Monte, California.

Cox, R.E., Mazurek, M.A., and Simoneit, B.R.T. (1982). Lipids in Harmattan Aerosols of Nigeria. *Nature* 296:848-849.

Daisey, J.M., and Gundel, L.A. (1988). A Simple and Inexpensive Tracer Method for Receptor Source Apportionment of Indoor Aerosols. Paper no. 8C.3 presented at the 1988 AAAR Conference, Chapel Hill, North Carolina.

Daisey, J.M., Cheney, J.L., and Lioy, P.J. (1986). Particulate Emissions from Air Pollution Sources: Status and Needs for Receptor Source Apportionment Modeling. *J. Air Pollut. Control Assoc.* 36:17-33.

Dasch, J.M. (1982). Particulate and Gaseous Emissions from Wood-Burning Fireplaces. *Environ. Sci. Technol.* 16:639-645.

DeAngelis, D.G., Ruffin, D.S., and Reznik, R.B. (1980). Preliminary Characterization of Emissions from Wood-Fired Residential Combustion Equipment. EPA-600/7-80-040, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., and Rau, J.A. (1984). Elemental and Organic Carbon Particle Concentrations: A Long-Term Perspective. *Sci. Total Env.* 36:17-25.

Gray, H.A. (1986). Control of Atmospheric Fine Primary Carbon Particle Concentrations. EQL Report 23, Environmental Quality Laboratory, California Institute of Technology, Pasadena, California.

Hauser, T.R., and Pattison, J.N. (1972). Analysis of Aliphatic Fraction of Air Particulate Matter. *Environ. Sci. Technol.* 6:549-555.

Hering, S.V., Miguel, A.H., and Dod, R.L. (1984). Tunnel Measurements of the PAH, Carbon Thermogram and Elemental Source Signature for Vehicular Exhaust. *Sci. Total Environ.* 36:39-45.

Hildemann, L.M., Cass, G.R., and Markowski, G.R. (1989). A Dilution Stack Sampler for Collection of Organic Aerosol Emissions: Design, Characterization and Field Tests. *Aerosol Sci. Technol.* 10:193-204. [See Chapter 2.]

Hildemann, L.M., Markowski, G.R., and Cass, G.R. (1989). Chemical Characterization of Fine Aerosol Emissions from Important Sources of Organic Aerosol. *in preparation.* [See Chapter 3.]

House of Representatives, Committee on Energy and Commerce, Subcommittee on Health and the Environment (1982). Comprehensive Smoking Prevention Education Act. Hearings, March 5, 11 and 12, 1982. Serial No. 97-106, pp. 421-438.

Huntzicker, J.J., Johnson, R.L., Shah, J.J., and Cary, R.A. (1982). Analysis of Organic and Elemental Carbon in Ambient Samples by a Thermal Optical Method. In *Particulate Carbon: Atmospheric Life Cycle* (G.T. Wolff and R.L. Klimisch, eds.). Plenum Press, New York, pp. 79-85.

Japar, S.M., Szkarlat, A.C., Gorse, R.A., Jr., Heyerdahl, E.K., Johnson, R.L., Rau, J.A., and Huntzicker, J.J. (1984). Comparison of Solvent Extraction and Thermal-Optical Carbon Analysis Methods: Application to Diesel Vehicle Exhaust Aerosol. *Environ. Sci. Technol.* 18:231-234.

Johnson, R.L., Shah, J.J., Cary, R.A., and Huntzicker, J.J. (1981). An Automated Thermal-Optical Method for the Analysis of Carbonaceous Aerosols. In *Atmospheric Aerosols: Source/Air Quality Relationships* (E.S. Macias and P.K. Hopke, eds.). American Chemical Society, Washington D.C., pp. 223-233.

Kowalczyk, J.F., and Greene, W.T. (1982). New Techniques for Identifying Ambient Air Impacts from Residential Wood Heating. In *Residential Solid Fuels. Environmental Impacts and Solutions* (J.A. Cooper and D. Malek, eds.). Proceedings of 1981 International Conference, June 1-4, 1981, Portland, Oregon. Oregon Graduate Center, Beaverton, Oregon.

Laresgoiti, A., Loos, A.C., and Springer, G.S. (1977). Particulate and Smoke Emission from a Light Duty Diesel Engine. *Environ. Sci. Technol.* 11:973-978.

Mazurek, M.A. (1985). Geochemical Investigations of Organic Matter Contained in Ambient Aerosols and Rainwater Particulates. Ph.D. Thesis, University of California (Los Angeles), 372 pp.

Mazurek, M.A., Cass, G.R., and Simoneit, B.R.T. (1989). Interpretation of High-Resolution Gas Chromatography and High-Resolution Gas Chromatography/Mass Spectrometry Data Acquired from Atmospheric Organic Aerosol Samples. *Aerosol Sci. Technol.* 10:408-420.

Mazurek, M.A., and Simoneit, B.R.T. (1984). Characterization of Biogenic and Petroleum-Derived Organic Matter in Aerosols over Remote, Rural and Urban Areas. In *Identification and Analysis of Organic Pollutants in Air* (L.H. Keith, ed.), Ann Arbor Science/Butterworth Publishers, Woburn, Massachusetts, pp. 353-370.

Mazurek, M.A., Simoneit, B.R.T., Cass, G.R., and Gray, H.A. (1987). Quantitative High-Resolution Gas Chromatography and High-Resolution Gas Chromatography/Mass Spectrometry Analyses of Carbonaceous Fine Aerosol Particles. *Intern. J. Anal. Chem.* 29:119-139.

Muhlbaier, J.L. (1981). A Characterization of Emissions from Wood-Burning Fireplaces. Report No. GMR-3730, General Motors Research Laboratories, Warren, Michigan.

Muhlbaier, J.L., and Williams, R.L. (1982). Fireplaces, Furnaces and Vehicles as Emission Sources of Particulate Carbon. In *Particulate Carbon: Atmospheric Life Cycles* (G.T. Wolff and R.L. Klimisch, eds.). Plenum Press, New York, pp. 185-198.

Pierson, W.R., Gore, R.A., Jr., Szkarlat, A.C., Brachaczek, W.W., Japar, S.M., Lee, F.S.C., Zweidinger, R.B., and Claxton, L.D. (1983). Mutagenicity and Chemical Characteristics of Carbonaceous Particulate Matter from Vehicles on the Road. *Environ. Sci. Technol.* 17:31-44.

Simoneit, B.R.T., Chester, R., and Eglinton, G. (1977). Biogenic Lipids in Particulates from the Lower Atmosphere over the Eastern Atlantic. *Nature* 267:682-685.

Simoneit, B.R.T., and Mazurek, M.A. (1981). Air Pollution: The Organic Components. *CRC Critical Reviews in Environmental Control* (May 1981), pp. 219-276.

Simoneit, B.R.T., and Mazurek, M.A. (1982). Organic Matter of the Troposphere-II. Natural Background of Biogenic Lipid Matter in Aerosols over the Rural Western United States. *Atmos. Environ.* 16:2139-2159.

Surprenant, N.F., Battye, W., Roeck, D., and Sandberg, S.M. (1981). Emissions Assessment of Conventional Stationary Combustion Systems: Volume V. Industrial Combustion Sources. EPA-600/7-81-003c (PB81-225559), U.S. Environmental Protection Agency, Washington D.C.

Surprenant, N.F., Hall, R.R., McGregor, K.T., and Werner, A.S. (1979). Emissions Assessment of Conventional Stationary Combustion Systems: Volume I. Gas- and Oil-Fired Residential Heating Sources. EPA-600/7-79-029b, U.S. Environmental Protection Agency, Washington D.C.

Surprenant, N.F., Hung, P., Li, R., McGregor, K.T., Piispanen, W., and Sandberg, S.M. (1980). Emissions Assessment of Conventional Stationary Combustion Systems: Volume IV. Commercial/Institutional Combustion Sources. EPA-600/7-81-003b (PB81-145187), U.S. Environmental Protection Agency, Washington D.C.

Szkarlat, A.C., and Japar, S.M. (1983). Optical and Chemical Properties of Particle Emissions from On-Road Vehicles. *J. Air Pollut. Control Assoc.* 33:592-597.

U.S. Environmental Protection Agency (1971). Method 5—Determination of Particulate Emissions from Stationary Sources. *Federal Register* 36(247):24888-24890. December 23, 1971.

U.S. Environmental Protection Agency (1984). Method 5—Determination of Particulate Emissions from Stationary Sources. Code of Federal Regulations, Title 40—Protection of Environment, Part 60, pp. 436-455. Revised July 1, 1984. Superintendent of Documents, Washington, D.C.

Watson, J.G., Jr. (1979). Chemical Element Balance Receptor Model Methodology for Assessing the Sources of Fine and Total Suspended Particulate Matter in Portland, Oregon. Ph.D. Thesis, Oregon Graduate Center, Beaverton, Oregon.

Mathematical Modeling of Organic Aerosol Characteristics: Features Observable by High-Resolution Gas Chromatography

5.1 INTRODUCTION

Determination of the source origin of the atmospheric organic aerosol poses serious challenges for both chemical analysis in the laboratory and for atmospheric modeling. Many of the problems encountered arise because the sources to be considered are so diverse. Carbon-containing particles are emitted directly from more than seventy different types of air pollution sources (Cass, Boone and Macias, 1982). Production of secondary organic aerosols resulting from atmospheric chemical reactions (Grosjean and Friedlander, 1975; Schuetzle *et al.*, 1975; Cronn *et al.*, 1977) further complicates source reconciliation studies.

Source-receptor relationships could be sought by receptor-oriented modeling approaches, in which stable organic compounds characteristic of particular source types are used as tracers to quantify the presence of a particular source's effluent in an ambient aerosol sample. Alternatively, source-oriented mathematical models for atmospheric transport and dilution could be used to calculate the combination of primary aerosol emissions that should be present at a particular air monitoring site. Even more advanced models could be envisioned that would account for gas-to-particle conversion processes that form secondary organics.

Progress towards development of each of these modeling approaches has been severely hampered by the lack of adequate data for testing model performance. Large differences exist in the methodologies that have been used by different research groups to collect, store and analyze both ambient aerosol samples and organic source emission samples (Daisey, Cheney and Lioy, 1986). Use of receptor models in which the easily measured polycyclic aromatic hydrocarbons (PAH) are employed to

identify source contributions to ambient samples have been proposed (Friedlander, 1981). However, investigations into the chemical stability of commonly-measured organic species like the PAHs have given conflicting results, making the usefulness of these compounds for modeling work uncertain. Some investigators have found that flyash-adsorbed PAHs are relatively stable (Korfmacher *et al.*, 1979, 1980; Natusch and Taylor, 1980), while others have found substantial reactivity using diesel particulate PAHs (Van Vaeck and Van Cauwenberghe, 1984; Albrechcinski, Michalovic and Gibson, 1985) and wood smoke PAHs (Kamens *et al.*, 1985). Half lives on the order of days have been measured for ambient PAHs under exposure to ambient air (Miguel, 1983), NO_x (Butler and Crossley, 1981), and NO_2 (Brorstrom, Grennfelt and Lindskog, 1983), but another study showed no evidence of transformations of PAHs under exposure to NO_2 , SO_2 or ozone (Grosjean, Fung and Harrison, 1983).

In the present study, the transport model developed by Cass (1977, 1981) and modified by Gray (1986) will be used to compute the mixture of organic aerosol contributed at Pasadena, downtown Los Angeles, and West Los Angeles by primary aerosol sources. The modeling study by Gray (1986) provides information on source-to-receptor transport relationships for each major organic aerosol source type in Los Angeles. Since these calculations are linear in emissions source strengths, the results may be rescaled on a source-by-source basis to reflect revised emission rate data for each source type, in order to compute source-to-receptor relationships for other scalar quantities that describe characteristics of the primary organic aerosol.

The model will be used to transport those characteristics of the primary organics sources that can be discerned from high resolution gas chromatography (HRGC) analysis of source emissions samples. Instead of relying on individual organic species that may be severely depleted by atmospheric chemical reactions, the approach taken here is to subdivide the entire extractable organic aerosol in both source emissions and in ambient samples into 48 independent groups of organic compounds (see Hildemann, Mazurek and Cass, 1989, for details), each of which will be tracked by the air quality model. Calculations are conducted as if the emissions are nonreactive, and discrepancies that could be due to atmospheric transformation are sought. Predictions based on source measurements of the amount of primary organic aerosol that is extractable and elutable under the HRGC conditions studied

will be compared to HRGC analysis of the ambient fine organic aerosol samples. Model results will be presented separately for primary non-polar (neutral) and primary acidic organics. An upper limit on the amount of secondary organic aerosol present will be quantified, based on the difference between the fine aerosol organic acids fraction present in ambient samples versus the fine acidic fraction concentration due to direct primary organic aerosol emissions from sources. Then model predictions of the distribution of organic compounds due to primary source emissions will be compared to the distribution of compounds seen by HRGC analysis of ambient organic aerosol samples.

5.2 MODELING APPROACH

To predict the effect of primary organic aerosol emissions sources on ambient organics characteristics at sites in Los Angeles, the air quality model developed by Cass (1977, 1981) and modified by Gray (1986) will be used. In this model, ambient aerosol concentrations due to primary emissions sources are computed by a Lagrangian particle-in-cell technique.

Single mass points marked with the mass emission rate of organic carbon aerosol and elemental carbon aerosol are released to the atmosphere at measured time intervals from each source in the air basin. Depending on the plume rise characteristics of each source, the particles may be inserted either above or below the base of an elevated temperature inversion. Exchange of air parcels between the stable layer above the inversion base and the zone below the inversion base occurs as inversion base height changes on an hourly basis. For air parcels inserted below the inversion base, three different regimes are used to define the vertical distribution of pollutant particles: (1) sufficiently near a point source, the inversion base has no influence on the concentration distribution of emissions from that source, and pollutant concentrations assume a Gaussian distribution in the vertical domain; (2) far from the source, the emitted particles become fully mixed in the vertical dimension beneath the inversion base; and (3) between these two extremes, the inversion base influences the concentration profile of the emitted airborne particles. In the horizontal domain, trajectories of successive particles released from a source form streaklines downwind of that source, computed from the time sequence of the hourly ground level wind speed and direction observations plus a simulation

of the effect of horizontal diffusion. Particle losses due to dry deposition also are computed.

The horizontal displacement of each particle at each hour then is paired with its probable location in the vertical dimension, and organic aerosol mass concentrations are computed by summing the contributions of all particles residing within the ground-level layer above a matrix of receptor cells that forms a grid over the air basin. Monthly average pollutant concentration increments, $\langle c \rangle$, are computed for each source type at each receptor site, as follows:

$$\overline{\langle c(\mathbf{x}; T, t_s) \rangle} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left[\frac{1}{T} \int_{t_s}^{t_s+T} \int_0^{\infty} Q(\mathbf{x}, t | \mathbf{x}', t - \tau) \omega(t - \tau) d\tau dt \right] \bar{S}(\mathbf{x}') d\mathbf{x}' \quad (5.1)$$

where

$Q(\mathbf{x}, t | \mathbf{x}', t - \tau)$ is the transition probability density function that describes the probability that a pollutant particle will be found in the small air volume ($\Delta x_1, \Delta x_2, \Delta x_3$) surrounding location \mathbf{x} at present time t given that it was released from location \mathbf{x}' at time $t - \tau$;

$\omega(t - \tau)$ is the normalized diurnal variation in the emission rate for the source type of interest;

$\bar{S}(\mathbf{x}')$ is the spatial distribution of the monthly average pollutant emissions from the source class of interest;

t_s is the starting time for the long time period over which concentrations will be averaged; and

T is the length of that averaging time; in this case T equals one month.

By repeating this calculation for each source class in the air basin and then superimposing the results onto an estimate of aerosol carbon background air quality, a multiple source urban air quality model for long-term average primary aerosol carbon concentrations is obtained. Superposition is permitted because the primary aerosol carbon particle concentrations are modeled in a form that is linear in emissions.

In the study by Gray (1986), the mathematical model just described was applied to compute monthly average elemental carbon and total carbon

concentrations over the western coastal plain of the Los Angeles Basin. Primary aerosol carbon emissions from 70 classes of mobile and stationary sources were estimated for each of 625 grid cells located within the 80 x 80 km study area shown in Figure 5.1.

The primary aerosol carbon increment due to each source type was computed based on hourly wind speed and direction data observed over central Los Angeles plus hourly mixing depths estimated from the morning and afternoon mixing depths reported by the South Coast Air Quality Management District. Concentration increments from all source types were summed, then added to the background aerosol carbon content of marine air measured upwind of the city at San Nicholas Island. Model predictions for elemental carbon concentrations were compared to ambient observations at seven monitoring sites in the study area, and good agreement between model predictions of primary aerosol concentrations and ambient observations was found. The emissions data, modeling procedures used, and comparison of model predictions to observations are thoroughly documented in the study by Gray (1986). Model results at Pasadena, CA have been published previously by Larson and co-workers (1989).

In the present study, characteristics of the ambient primary organic aerosol that are observable by high-resolution gas chromatography (HRGC) analysis were predicted by substituting the HRGC properties of the emissions source effluent into the source term $\bar{S}(\mathbf{x}')$ of the air quality model just described. Source tests conducted by dilution sampling and grab sampling for fourteen classes of primary organic aerosol sources provided samples that represent close to 80% of the primary emissions of fine organic aerosol to the Los Angeles atmosphere (see Hildemann, Markowski and Cass, 1989, for the source test program and mass emissions rate data). The fine organic particulate emissions from various sources were characterized by solvent extraction of the organic material, followed by high resolution gas chromatography. (See Hildemann, Mazurek and Cass, 1989, for details.) Two fractions of the organic extract were analyzed: one fraction analyzed by HRGC without derivatization was considered to represent the neutral (nonpolar) fraction; a second fraction, derivatized to convert acidic components to their methyl ester equivalents, also was injected to characterize the acid+neutral fraction. The difference between the results obtained from these two injections was considered

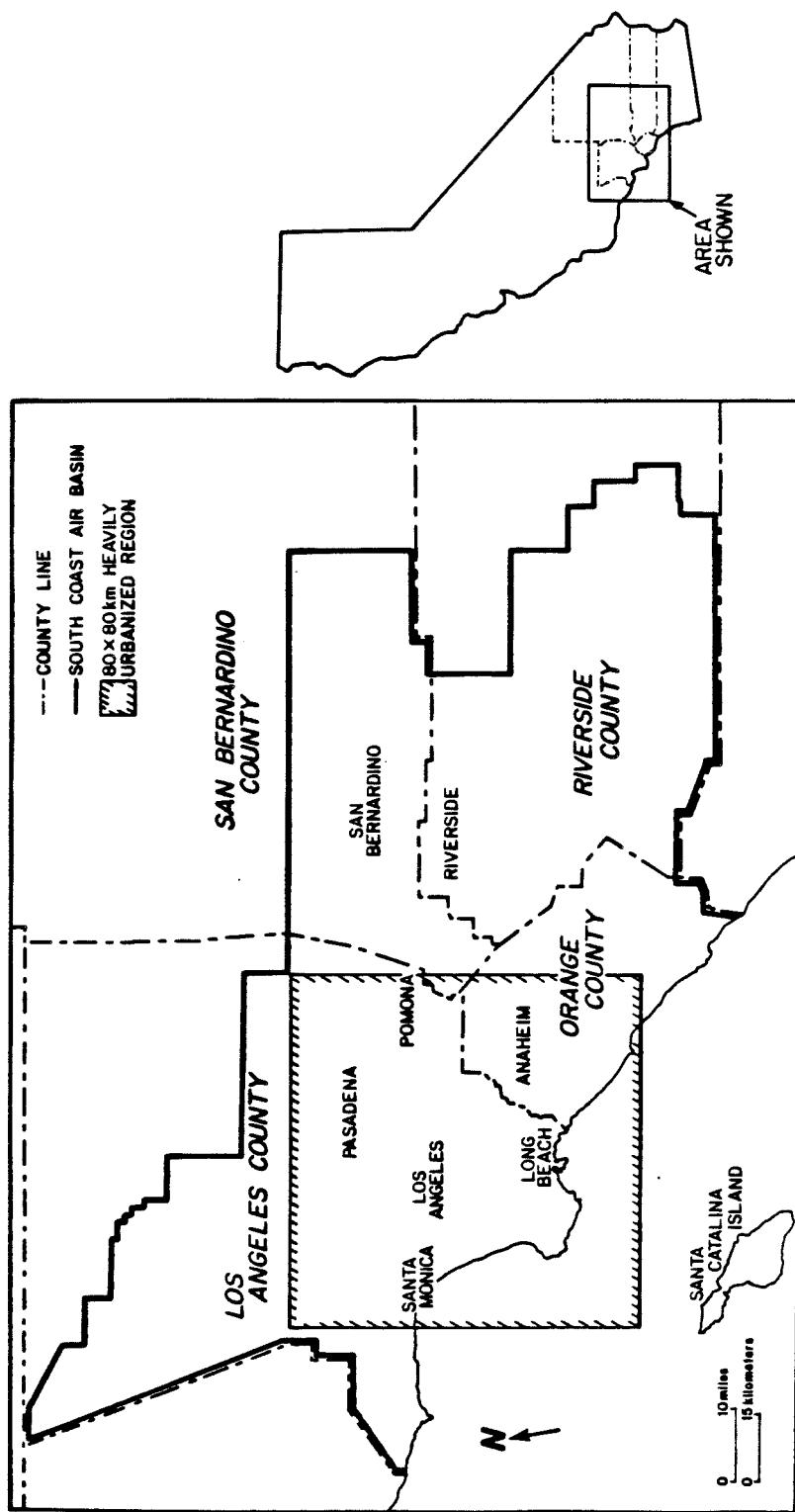


Figure 5.1 Los Angeles Basin modeling area (80 x 80 km).

to represent the acidic organic aerosol alone. The complex pattern of peaks representing hundreds of separate compounds emitted from each source was broken into subareas using the elution points of the C₁₂ to C₃₆ n-alkane series as dividing lines, and the organic mass contained in each subarea was calculated by summing the masses between each of the adjacent alkanes (see Hildemann, Mazurek and Cass, 1989). In this manner, the extractable organics mass emission rate from each source was broken down into 48 independent groups of neutral and acidic compounds.

Emission rate data then were supplied to the air quality model for each major source type, using emission source activity data from Gray's inventory (1986) (e.g., the spatial distribution of km driven per day by catalyst-equipped automobiles) together with extractable organic mass emission rates from the present study (e.g., μg fine neutral elutable organic aerosol between C12 and C13 emitted per km driven by catalyst-equipped automobiles). The model was used to compute the ambient fine particle concentrations at Pasadena, downtown Los Angeles and West Los Angeles for each month of the year 1982 that would be expected if primary emissions in each of the 48 categories of organic compounds were transported without chemical reaction. An estimate of background fine organic aerosol concentrations in 1982 for each group of organic compounds then was added to the source increments, based on characterization of the organic aerosol measured upwind of Los Angeles during 1982 at San Nicholas Island. Filter samples of the San Nicholas Island fine aerosol collected by Gray and co-workers (1986) were employed for this purpose. Due to the low levels of organic aerosol found there, filters collected over a period of several months were composited to give adequate organic concentrations for HRGC analysis. The San Nicholas Island (SNI) composite containing filters collected during the months of July, August and September, 1982, was used in the model to characterize April through September, while the composite consisting of filters collected during October, November and December was used to characterize the colder months of the year 1982.

Ambient fine aerosol samples for comparison to the air quality model predictions were prepared, using 24-hr average filter samples collected at 6-day intervals during 1982 by Gray *et al.* (1986). Monthly composites of ambient samples taken at Pasadena, downtown Los Angeles, and West Los Angeles were extracted, derivatized and quantified by HRGC, as described previously (Mazurek

et al., 1987, 1989). Organic compound concentrations falling into the 48 groups of nonpolar and acidic compounds defined between the elution points of the C₁₂ to C₃₆ n-alkane series were computed for comparison to the source-oriented air quality model results.

5.3 RESULTS

Source contributions to a large number of attributes of the primary organic aerosol can be evaluated by comparison of air quality model results to ambient data on the same aerosol attributes. First, the extent to which primary emissions of aerosol organic carbon can account for ambient organic aerosol carbon levels as measured by combustion techniques will be examined. Next, source-receptor relationships will be developed for that fraction of the primary organic aerosol that is solvent-soluble and that will elute from a HRGC column under the conditions of our experiments. Finally, the ability of the model to account for the distributions of organic compounds found in the ambient aerosol will be tested.

5.3.1 Organic Carbon.

In the study by Gray (1986), air quality model predictions for ambient elemental carbon and total carbon concentrations were compared to ambient observations at seven sites in the Los Angeles area for each month of the year 1982. Elemental carbon concentrations were closely reproduced by the model, as would be expected since fine particle elemental carbon concentrations are due entirely to direct primary emissions of carbon particles to the atmosphere. Surprisingly, air quality model predictions for total aerosol carbon also were in fairly close agreement with observed ambient concentrations.

If elemental carbon concentrations are subtracted from total aerosol carbon concentrations, the results of Gray (1986) also can be presented as modeled and measured ambient values of primary *organic* aerosol. Using the fine organic aerosol carbon inventory of Gray (1986), Figure 5.2 shows the results of the model on a month-by-month basis for the three ambient sites of interest here. (The vertical bars shown in Figure 5.2 represent the standard deviation of the 5 to 6 ambient samples collected during each month.) The seasonal variations measured, with peak levels in winter months, are reproduced fairly well by the model. The modeled concentrations

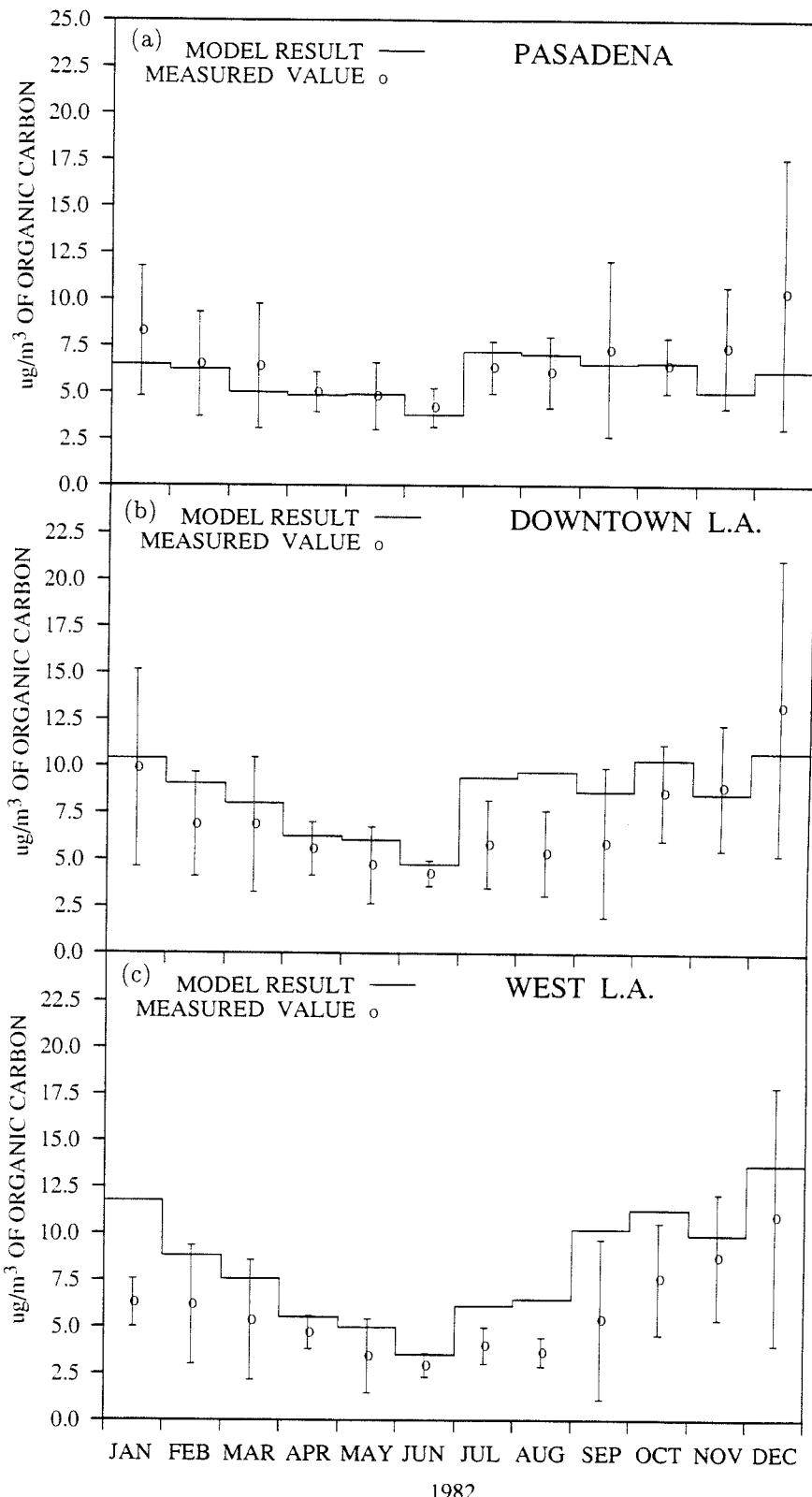


Figure 5.2 Modeled vs. measured monthly concentrations of total fine organic carbon at Los Angeles Basin ambient sites. (a) Pasadena; (b) Downtown Los Angeles; and (c) West Los Angeles.

agree well with measurements made at Pasadena, but tend to be higher than observations made at downtown Los Angeles and West Los Angeles. The absence of any obvious deficit in primary organic aerosol carbon concentrations computed by the transport model when compared to ambient organics concentrations suggests that most of the total aerosol organic carbon concentrations observed over long averaging times during 1982 were due to primary emissions of organic carbon particles rather than to secondary organic aerosol formation.

5.3.2 Elutable Organics.

A similar comparison can be presented for the fine organic particulate matter emissions that will elute through a GC column under the conditions of our experiments. This provides a separate test of model performance because for some sources, like the cigarettes and tar pot emissions, essentially all of the organic carbon is elutable, while for other sources, only a small fraction of the total fine organic carbon elutes through the column. In this case, however, only those sources contained in the model that were actually tested can be included in the modeled results; Table 5.1 lists the sources used in the model. The organic carbon emission inventory of Chapter 3 can be used along with the air quality model to calculate the fraction of the *organic carbon* that is represented by these measured sources. According to the inventory and the model, the combination of the background levels measured at San Nicholas Island plus the organic sources actually tested should account on an annual basis for 76% of the primary organic carbon at downtown Los Angeles, 79% at West Los Angeles, and 83% at Pasadena. If the source tests were applied to wider categories (for example, by using the compound distribution in natural gas home appliance emissions to represent all types of natural gas combustion, or the emissions from heavy-duty diesel trucks to represent all diesel engines), the fraction of the primary organic carbon represented by GC traces within the model would total 88% at downtown Los Angeles, 89% at West Los Angeles, and 91% at Pasadena.

Using the more conservative approach in which only those sources actually tested are represented within the model, model predictions for elutable organic aerosol are compared with ambient observations in Figure 5.3. In Figure 5.3abc, the neutral elutable organic material is plotted, while in Figure 5.3def, the acid+neutral

Table 5.1. Sources Used in the Modeling Calculations

Source Type	Used in Model	Notes
Distillate oil stationary sources		
— Industrial	X	
— Other		
Catalyst-equipped gasoline vehicles		
— Automobiles	X	
— Other vehicles		
Noncatalyst gasoline vehicles		
— Automobiles	X	
— Other vehicles		
Diesel vehicles		
— Heavy-duty trucks	X	
— Other vehicles		
Fireplaces		
— Soft wood	X	
— Hard wood	X	
— Synthetic log		(b)
Natural gas combustion		
— Residential sources	X	
— Other sources		
Meat Cooking Operations		
— Charcoal broiling	X	(a)
— Frying		(b)
Paved road dust	X	
Brake lining	X	
Cigarettes	X	
Roofing tar pot	X	
Tire wear	X	(c)
Vegetative detritus		(b)

(a) Only commercial cooking emissions were used by the model.

(b) This source was not used by the model.

(c) A total particulate matter sample was used for this source.

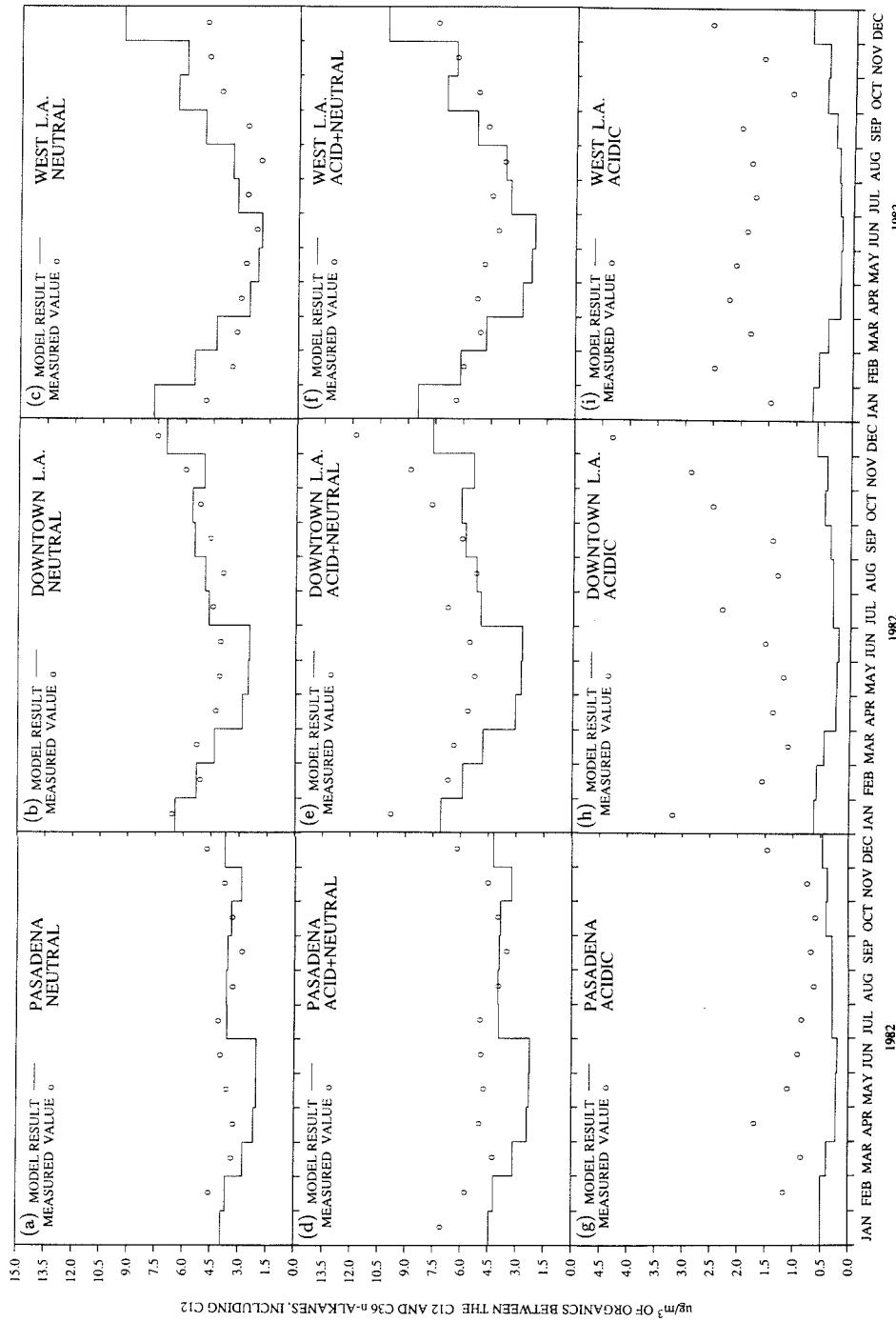


Figure 5.3 Modeled vs. measured monthly concentrations of elutable fine organics between the C12 and C36 n-alkanes at Los Angeles Basin ambient sites. (a) Pasadena, neutral fraction; (b) Downtown Los Angeles, neutral fraction; (c) West Los Angeles, neutral fraction; (d) Pasadena, acid+neutral fraction; (e) Downtown Los Angeles, acid+neutral fraction; (f) West Los Angeles, acid+neutral fraction; (g) Pasadena, acidic fraction; (h) Downtown Los Angeles, acidic fraction; and (i) West Los Angeles, acidic fraction.

fraction of the organic aerosol is shown. The results for both of these fractions show reasonable agreement between the modeled and the measured values, with a seasonal peak in the concentrations seen in the winter months for both the measurements and the model predictions. In Figure 5.3ghi, the results for the acidic fraction alone (computed as the difference between the neutral and acid+neutral fractions) are shown. For this fraction, the agreement between the modeled and measured values is poor. The model, based solely on primary emissions, consistently and substantially underpredicts the concentrations of aerosol organic acids. This indicates that, for the sources measured, the acidic organics emitted as primary material are not sufficient to account for the concentrations of acidic aerosol organics measured at these ambient sites. Even if *all* the organic material emitted by the unmeasured sources were in the form of elutable acidic organics, there would not be sufficient primary emissions to account for the large differences between modeled primary and ambient aerosol organic acids seen at downtown Los Angeles and West Los Angeles. Hence, it appears that secondary processes in the atmosphere plus the organic acids present in airborne vegetative detritus (for which emission rates are not known) are contributing substantially to the acidic fraction of the organic aerosol seen at the ambient sites.

Primary organic acids concentrations computed from the air quality model can be subtracted from the measured ambient fine organic acids aerosol concentrations, as shown in Table 5.2. From the data obtained, it is possible to place an upper limit on the long-term average organic acids concentration that could be due to formation of fine secondary organic aerosol.

On an annual basis, the difference between modeled primary and total measured acids in the fine aerosol averages 0.6, 1.6, and $1.5 \mu\text{g m}^{-3}$ at Pasadena, downtown Los Angeles and West Los Angeles, respectively. This can be compared to an average concentration of *total* fine organics ($1.2 \times \text{OC}$ measured by combustion) of 8.0, 8.6, and $6.9 \mu\text{g m}^{-3}$, respectively, showing that secondary organic acids constitute no more than 9%, 19% and 26% of the total fine organic aerosol present on an annual basis at these three sites. This finding is consistent with the inference of Gray and co-workers (1986), based on total carbon to elemental carbon ratios, that secondary organic aerosol constituted on average no more than 27 to 38% of the total fine organics present at Los Angeles area monitoring sites during 1982.

Table 5.2. Extent of Excess Ambient Elutable Acidic Organic Aerosol

SITE Month	Excess of Elutable Organic Acids ^(a) ($\mu\text{g}/\text{m}^3$)	Total Fine Ambient Organic Aerosol ^(b) ($\mu\text{g}/\text{m}^3$)	Fine Elutable (Acid+Neutral) Ambient Organic Aerosol ($\mu\text{g}/\text{m}^3$)	Excess / Total Fine Ambient Organic Aerosol (%)	Excess / Fine Elutable Ambient Organic Aerosol (%)
PASADENA					
Jan	—	9.94	7.07	—	—
Feb	0.67	7.85	5.76	8.5	11.6
Mar	0.46	7.73	4.24	6.0	10.8
Apr	1.46	6.07	4.98	24.0	29.3
May	0.88	5.78	4.74	15.2	18.6
Jun	0.71	5.06	4.88	14.0	14.5
Jul	0.55	7.66	4.95	7.2	11.1
Aug	0.34	7.37	3.97	4.6	8.6
Sep	0.39	8.82	3.51	4.4	11.1
Oct	0.20	7.78	3.97	2.6	5.0
Nov	0.37	8.93	4.53	4.1	8.2
Dec	0.99	12.42	6.21	8.0	15.9
Average	0.64	7.95	4.90	9.0	13.2
DOWNTOWN L.A.					
Jan	2.37	11.88	9.81	19.9	24.2
Feb	0.96	8.28	6.70	11.6	14.3
Mar	0.66	8.26	6.41	8.0	10.3
Apr	1.16	6.72	5.67	17.3	20.5
May	0.97	5.69	5.32	17.1	18.2
Jun	1.32	5.16	5.57	25.6	23.7
Jul	2.06	7.03	6.78	29.3	30.4
Aug	1.05	6.46	5.25	16.3	20.0
Sep	1.07	7.15	6.02	15.0	17.8
Oct	1.98	10.39	7.68	19.1	25.8
Nov	2.42	10.70	8.86	22.6	27.3
Dec	3.53	15.86	11.83	22.3	29.8
Average	1.63	8.63	7.16	18.7	21.9
WEST L.A.					
Jan	0.83	7.56	6.40	11.0	13.0
Feb	1.88	7.44	6.02	25.3	31.2
Mar	1.38	6.43	5.13	21.5	26.9
Apr	1.98	5.64	5.30	30.8	37.4
May	1.87	4.15	4.93	45.0	37.9
Jun	1.70	3.53	4.15	48.2	41.0
Jul	1.46	4.80	4.53	30.4	32.2
Aug	1.52	4.39	3.86	34.6	39.4
Sep	1.66	6.48	4.77	25.6	34.8
Oct	0.66	9.10	5.30	7.3	12.5
Nov	1.22	10.51	6.48	11.6	18.8
Dec	1.95	13.14	7.52	14.8	25.9
Average	1.51	6.94	5.37	25.5	29.3

(a) Calculated as the difference between the measured ambient concentration and the model prediction.

(b) Calculated as 1.2 x the organic carbon concentration as measured by combustion analysis.

Alternatively, this deficit in acidic organics can be compared to *elutable* fine organics measured at these three sites, which averaged 4.9, 7.2, and 5.4 $\mu\text{g m}^{-3}$. On this basis, secondary organic acids constitute no more than 13%, 22%, and 29% of the elutable fine organic aerosol present on a yearly average at the three sites. Both of these approaches demonstrate that the bulk of the fine organic aerosol in the Los Angeles Basin over long averaging times during 1982 was primary in origin, explaining why the monthly model predictions using primary organic aerosol emissions are in good agreement with ambient aerosol measurements, both using total fine organic carbon (Figure 5.2) and fine elutable organics (Figure 5.3).

5.3.3 Mass Distribution of Elutable Organics.

Monthly composites of ambient organic aerosol samples from each of the three monitoring sites studied were analyzed by HRGC. The mass concentration of organic species that elute between each of the normal alkanes in the range C₁₂ to C₃₆ was determined for both the neutral and the acid+neutral fractions previously described for the source samples. Since most of the source samples were taken in or near Pasadena, the Pasadena air monitoring site was selected to be examined in detail. Figure 5.4 presents the mass distribution results for the Pasadena site for each month of the year 1982. It is observed that both the neutral and the acid+neutral fractions display a bimodal distribution, with the peak of the first mode occurring between C₁₆ and C₂₃, and the second mode peaking between C₂₅ and C₃₂. The previously-observed wintertime peak in elutable organics concentrations is due mainly to the substantial fluctuations seen in the intensity of the second mode. A substantial quantity of acidic organics is also observed, with most of the acidic organics mass concentration occurring in the C₁₆ to C₂₃ range.

The mass distribution of elutable organics due to primary aerosol sources was computed from the air quality model at the Pasadena site for each month of the year 1982. Results for the neutral and acid+neutral fractions for each month are presented in Figure 5.5. The degree of agreement between model results and ambient measurements of the neutral fraction mass distributions is encouraging, especially if one adjusts the modeled distributions vertically by the amount necessary to adjust for the differences between measured and modeled *total* elutable organics that are shown in Figure 5.3. (Recall that the modeled concentrations are based on transport

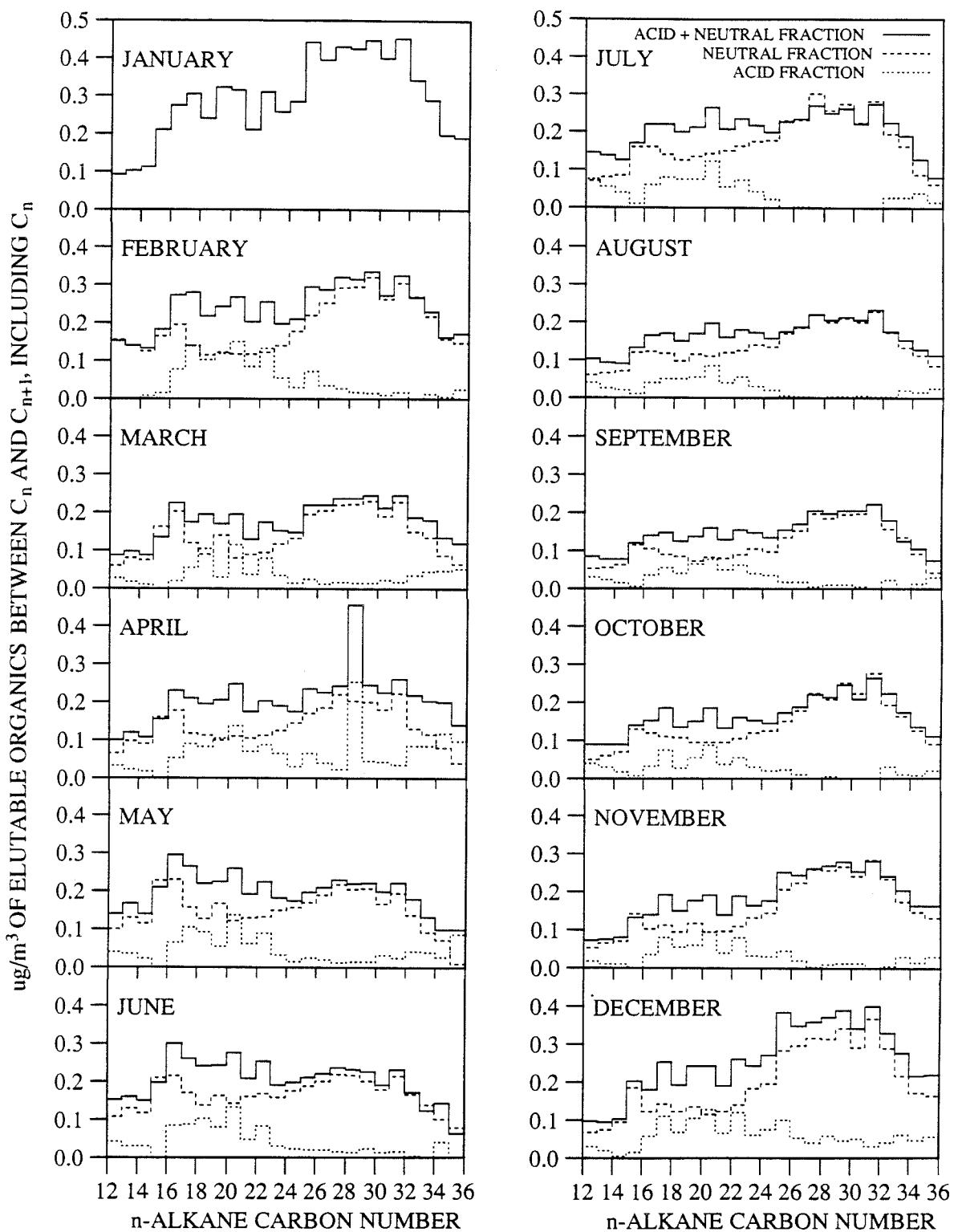


Figure 5.4 Measured monthly elutable fine organic mass distributions for Pasadena in 1982.

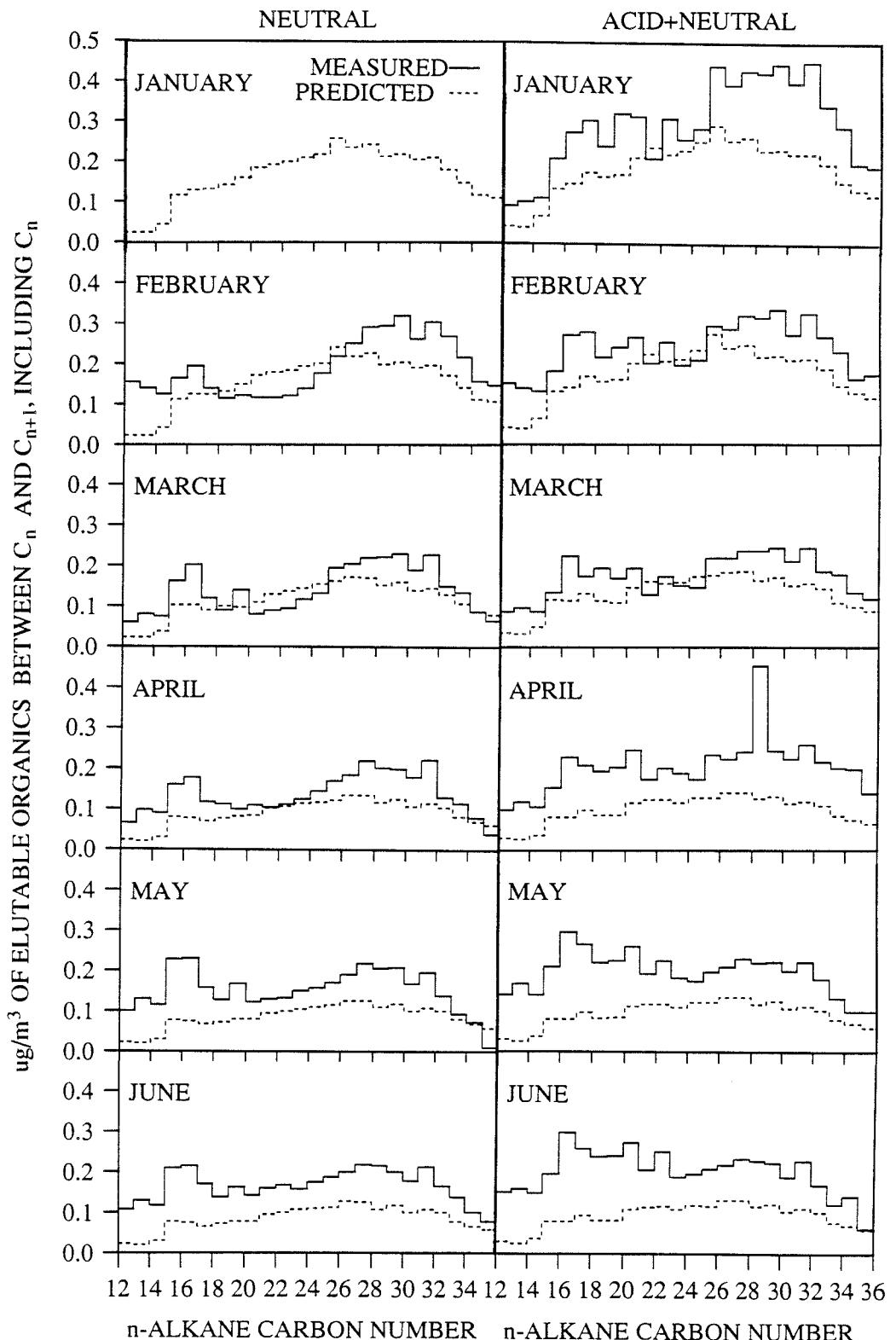


Figure 5.5 Comparison between modeled and measured organic mass distributions for Pasadena in 1982: neutral and acid+neutral fractions.

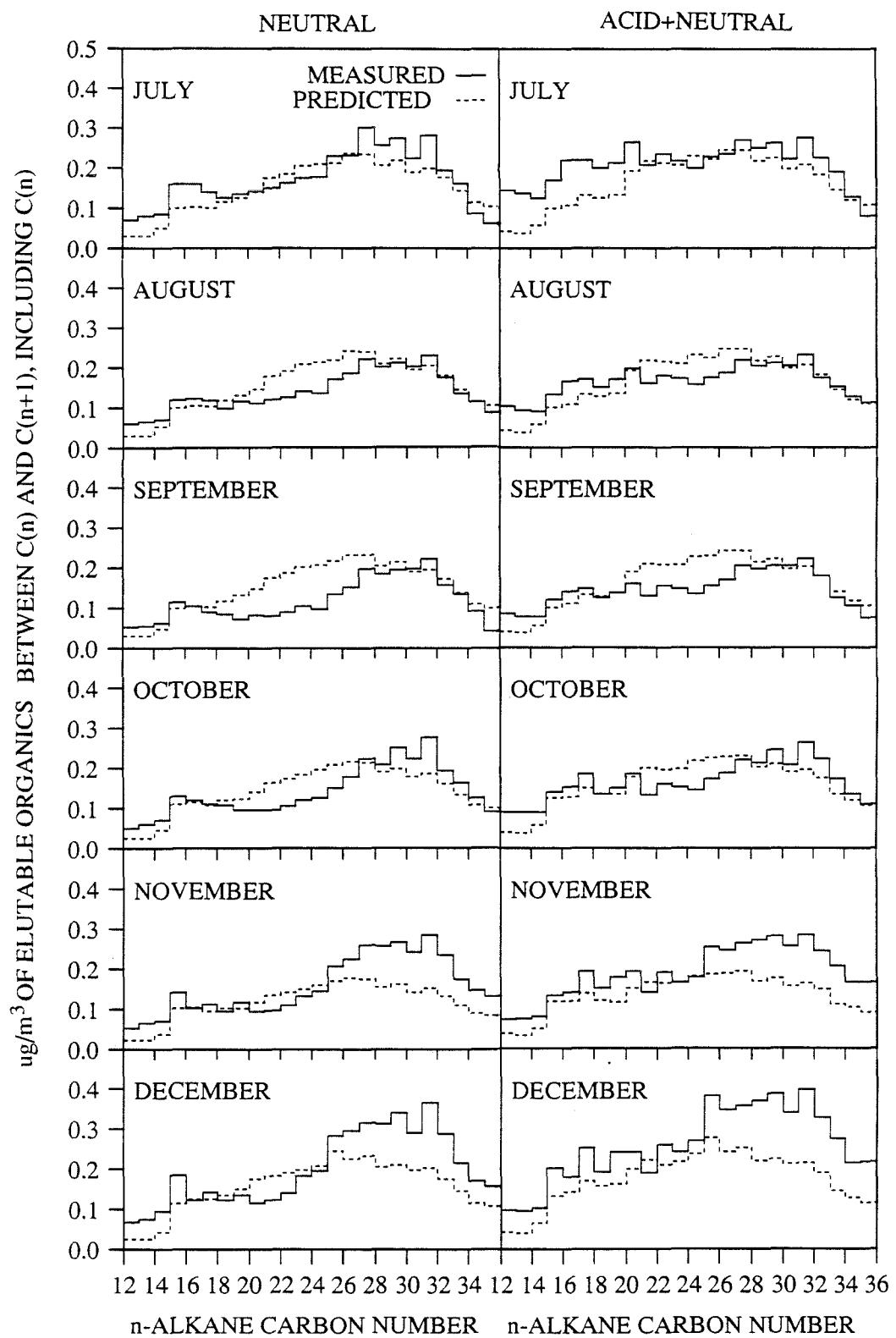


Figure 5.5 Comparison between modeled and measured organic mass distributions for Pasadena in 1982: neutral and acid+neutral fractions (cont.).

calculations for each hour of the month while measured concentratison represent a composite of only six days of the month; hence perfect agreement on total mass concentration is not expected.) Thus, the model predictions for September are higher than observed, while the May, June and December model results may be expected to be somewhat lower than the observations. The general shape of the modeled neutral fraction mass distributions is quite close to observations during March, July, August and October when both the measured and modeled total elutable organics concentrations are in close agreement.

Some characteristic differences between the model predictions and the ambient measurements for the Pasadena site can be discerned. The neutral modeled mass distributions tend to be lower than observations in the C12 to C18 range. As a result, the model does not show the bimodal distribution apparent in the ambient samples. Also for the neutral fraction, the model tends to overpredict the amount of organics mass between C20 and C25. (While agreement between the two results for the acid+neutral fraction plots appears to be better between C20 and C25, the model predicts that most of the organics in that region are neutral, while the measured values indicate that a significant portion of the organics mass in that region consists of acidic organics.)

The model results for the acidic fraction, shown in Figure 5.6, significantly underestimate the amount of acidic organics present in the Pasadena atmosphere. In particular, the high concentration of acidic organics that elute between the C16 and C23 n-alkanes in the ambient samples are not represented by primary emission sources that are included in the model. Primary emissions from most of the sources tested contained little or no acidic organics; hence, most of the acidic organic material appearing in the modeled result is attributable to background aerosol as measured at San Nicholas Island (see Figure 5.6).

Three hypotheses can be offered to account for the difference between measured acidic organics vs. the modeled contribution due to anthropogenic primary emissions plus background. First, the organics acids needed to complete a material balance on the acidic aerosol could result from reactions of gas-phase molecules to form aerosol phase products that elute in the acidic fractions. This is the traditional view that secondary aerosol from gas-phase precursors is responsible for most of the organic acids (Grosjean and Friedlander, 1975; Schuetzle *et al.*,

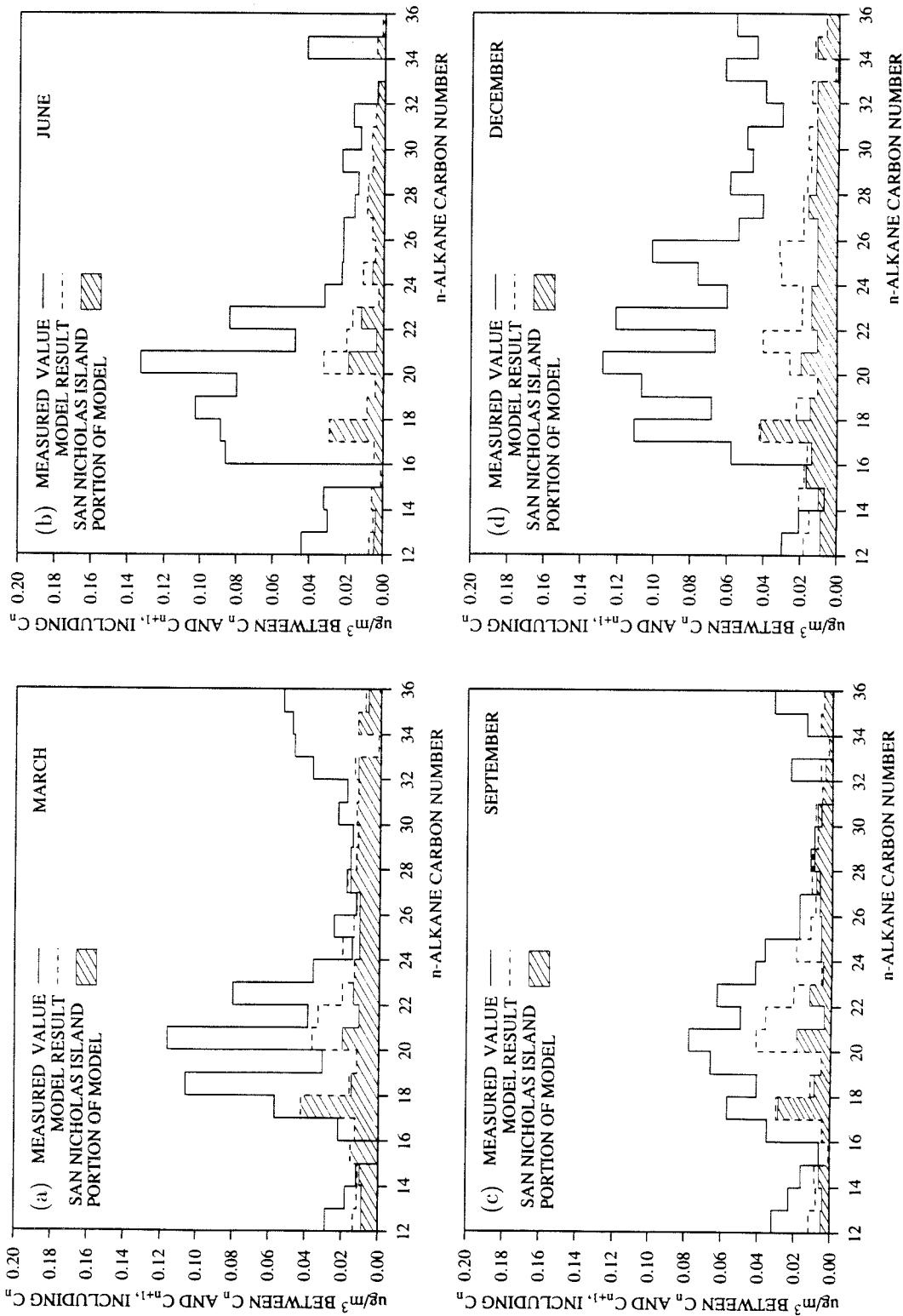


Figure 5.6 Comparison between modeled and measured organic mass distributions for Pasadena in 1982: acidic fraction.

(a) March; (b) June; (c) September; and (d) December.

1975; Cronn *et al.*, 1977). However, two other possibilities also exist. Since the tendency of the model is to overpredict the neutral mass between C20 and C25, it is possible that the primary particulate emissions of neutral organics in this region are especially reactive, and react in the atmosphere to form acidic aerosol products. Finally, acids contributed by the primary emission of organic vegetative detritus due to leaf abrasion have been noted as a further important contributor to the primary aerosol (Mazurek, Cass and Simoneit, 1989; Hildemann, Mazurek and Cass, 1989), but those emission are not included in the transport model because their emission rate is not known.

5.3.4 Source Contributions to Model Predictions.

The contributions of elutable fine organic particulate matter from the different sources to the model predictions can also be examined. In Figure 5.7, the sources contributing to the elutable organics mass predicted for each month are shown for each of the three sites.

One important factor influencing the predicted organics mass concentration at an ambient site on a given month is the meteorological conditions. The model reflects the fact that some sources, like motor vehicles, emit at a nearly constant rate throughout the year, yet the contributions of motor vehicle emissions to the predicted ambient concentrations of elutable organics can be seen to vary by a factor of two to four over the year. In the Los Angeles Basin, two meteorological phenomena influence the seasonal concentrations of primary carbonaceous aerosol at ambient monitoring sites. First, the early morning inversion base height tends to be substantially lower in the winter months than during the summer. As a result, the emissions that occur during morning rush hour traffic remain more highly concentrated during the winter. Secondly, air mass motion in the Basin is from the ocean to the land during the hot summer months, but reverses its direction in the wintertime. In Pasadena, these factors work in opposing directions: while the lower winter morning inversion base tends to concentrate ground-level source emissions, the reversal of the net wind direction tends to transport fewer emissions from upwind areas into Pasadena in the winter than in the summer. In contrast, for the West Los Angeles site, these factors work together to make pollutant concentrations much higher in the wintertime than during the summer: West Los Angeles is downwind

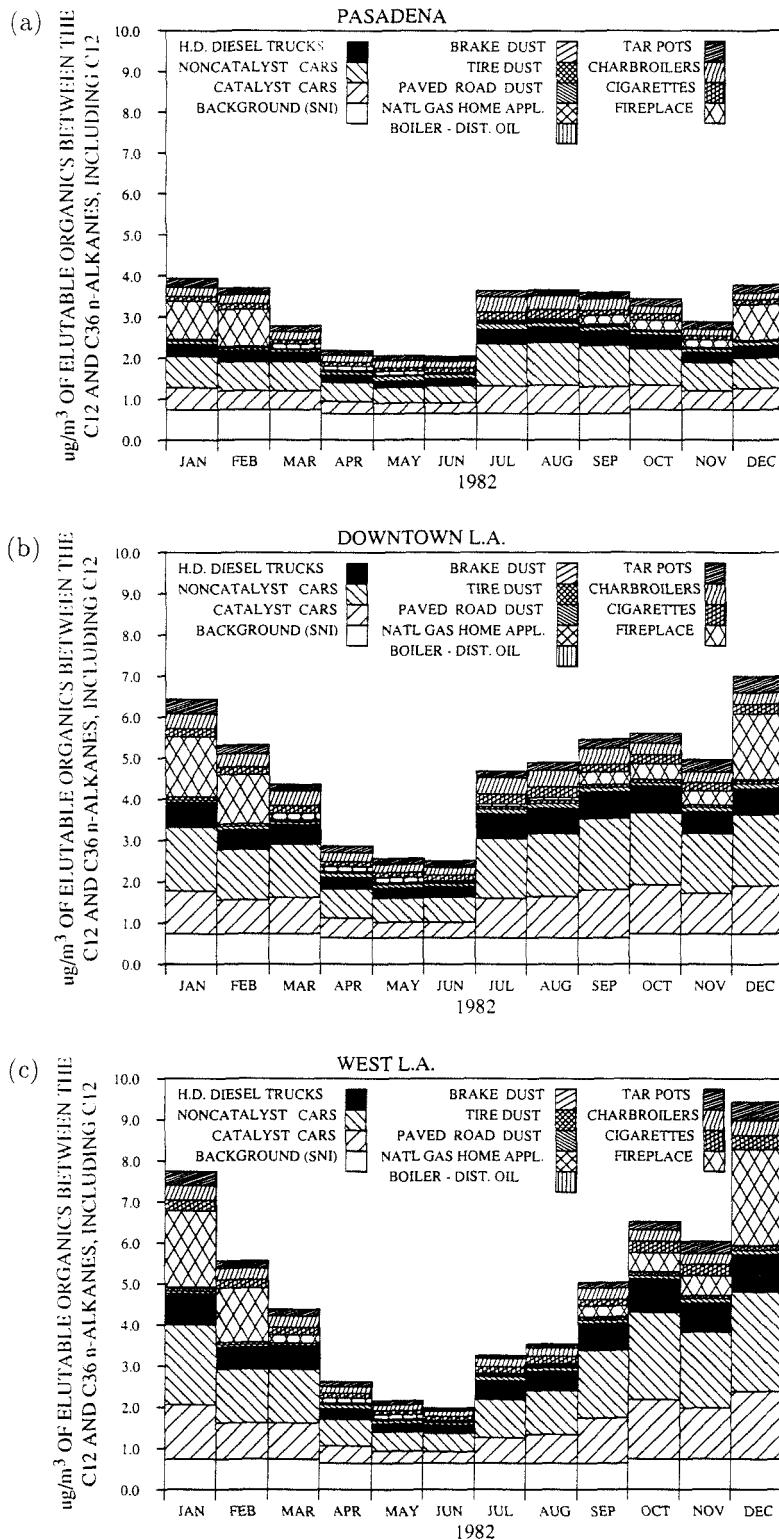


Figure 5.7 Contributions of sources to modeled concentrations of elutable acid+neutral organics at Los Angeles Basin ambient sites in 1982. (a) Pasadena; (b) Downtown Los Angeles; and (c) West Los Angeles.

of the City of Los Angeles during the winter. As can be seen in Figures 5.2 and 5.7, the seasonal variations in the model predictions and in measured air quality are extreme at the West Los Angeles site, while there is little seasonal variation at the Pasadena site.

A second factor influencing the predicted seasonality of the elutable organics mass concentrations in ambient air is the variation of some source emissions with season. As seen in Figure 5.7, emissions from fireplaces contribute a substantial fraction of the total modeled elutable organics in the winter months, but are almost nonexistent contributors to the aerosol during the summer months. Due to the net offshore flow of the Basin airmass in the wintertime, the impact of fireplace emissions on ambient air quality is most apparent at the West Los Angeles site.

The influence of the different emission sources on the actual distribution of the extractable organics mass between C12 and C36 also can be determined. In Figure 5.8, the sources contributing to the organics mass distribution predicted for Pasadena are shown for 4 different months of the year. Surprisingly, the organics found between C15 and C17 are mainly the result of background organics already present in the air mass as it passes over San Nicholas Island. As the model underpredicts aerosol concentrations in the elution range of the C15 to C17 n-alkanes, it may be that additional organics like those found in San Nicholas Island background air (*e.g.*, from grasses, which cover the island) may be added to air parcels as they move inland over the Los Angeles area. The appearance of a hump in the modeled mass distribution with a peak around C27 is seen to result mainly from automotive emissions. This hump becomes even more pronounced in the December plot as the fireplace emissions become a significant part of the total elutable organics mass concentration.

5.4 CONCLUSIONS

An atmospheric transport model was used to predict the organic characteristics of fine primary particulate matter at ambient monitoring sites in the Los Angeles area, as they would appear if the primary organic aerosol emissions are transported without further chemical reaction. The source samples and ambient aerosol samples

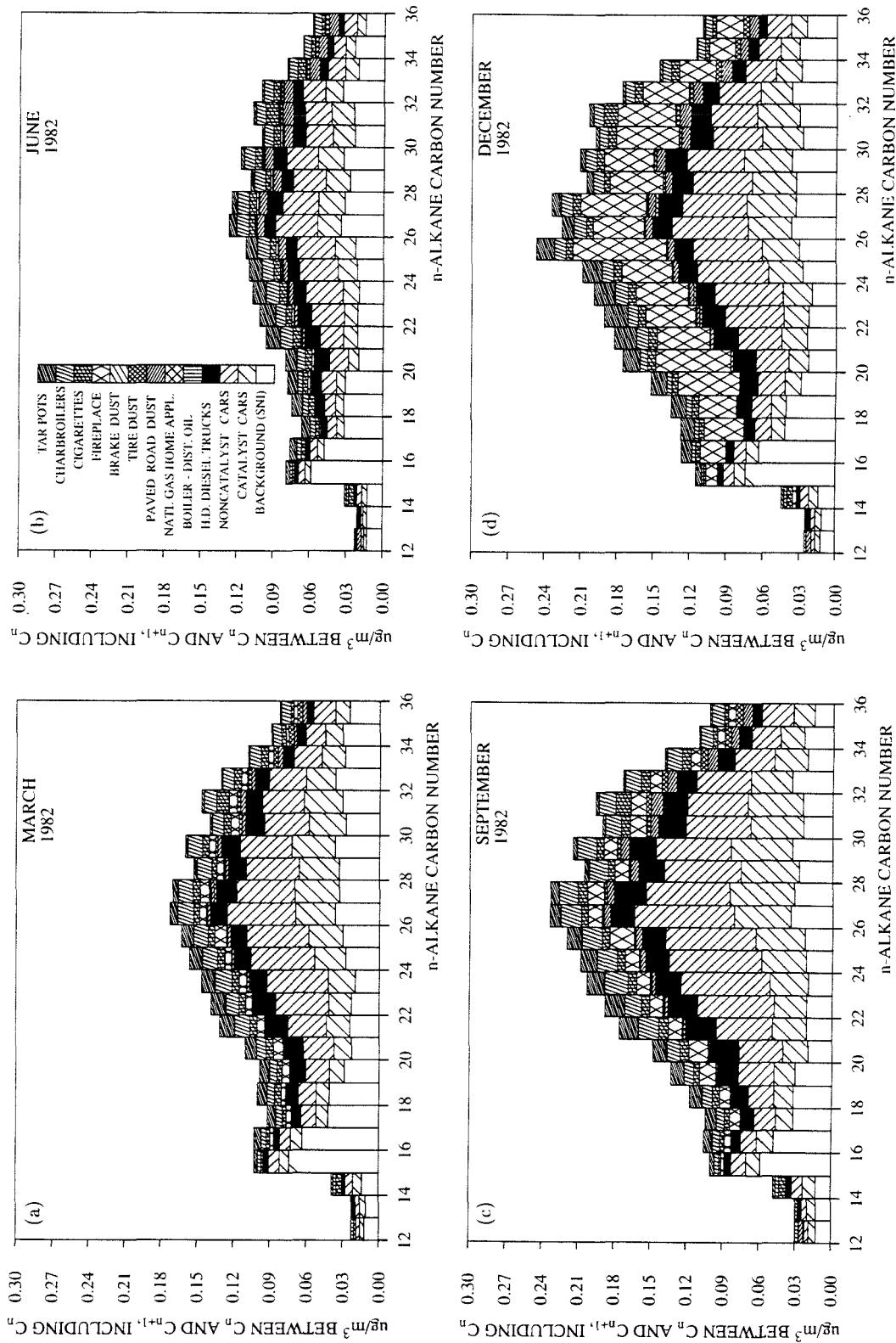


Figure 5.8 Contributions of elutable acid+neutral organics from sources to modeled organic mass distributions for Pasadena in 1982. (a) March; (b) June; (c) September; and (d) December.

were collected and analyzed by compatible methods so that accurate comparisons can be drawn between predicted and observed organic aerosol properties.

The neutral fraction of the organic aerosol can be attributed with reasonable accuracy to known primary emissions sources plus background air quality. Results show that the model tracks the seasonal variations observed in the neutral fraction of the ambient organics measurements. The predicted concentrations obtained are close to observed values. However, model calculations do overpredict the amount of neutral organics that elute in the range between the elution points of the C20 and C25 n-alkanes. Finally, the model results show a hump of elutable organics that peak in the elution range of the C27 n-alkane, which is shown to result mainly from inputs from motor vehicles. This hump becomes more pronounced in the winter months, when emissions from fireplaces become significant.

Although some organic acids are emitted from primary aerosol sources (see Hildemann, Mazurek and Cass, 1989), these primary emissions are insufficient to account for the ambient organic acids concentrations measured during this study. The anthropogenic primary source contributions to the Los Angeles ambient acidic organic aerosol has been quantified in the course of this work. Primary organic aerosol from the anthropogenic aerosol sources studied here is estimated to contribute only 0.35, 0.42, and 0.41 $\mu\text{g}/\text{m}^3$ to the 0.97, 2.06, and 1.92 $\mu\text{g}/\text{m}^3$ of acidic organics measured at Pasadena, downtown Los Angeles and West Los Angeles, respectively, during the year 1982. Organic acids present in background air as measured at San Nicholas Island contributed 0.19 $\mu\text{g}/\text{m}^3$ to the annual average elutable fine organic acids in the aerosol phase. Some of the apparent excess of ambient organic acid aerosols will be explained once the contribution of plant fragments to the aerosol has been determined based on matching the biomarkers present in vegetative source samples to their abundance in the ambient aerosol (see Mazurek, Cass and Simoneit, 1988, 1989; Hildemann, Mazurek and Cass, 1989). The remaining acidic organics needed to explain the ambient organic acids concentrations result from reactions in the atmosphere, involving either gas-phase reactants or perhaps apparent excess neutral aerosol organics that elute in the range between the C20 and C25 normal alkanes.

5.6 REFERENCES

Albrechcinski, T.M., Michalovic, J.G., and Gibson, T.L. (1985). A Smog Chamber Study of Polycyclic Aromatic Hydrocarbons in Diesel Particulates. In *Polycyclic Aromatic Hydrocarbons: Mechanisms, Methods and Metabolism* (M. Cooke and A.J. Dennis, eds.). Batelle Press, Columbus, Ohio, pp. 69-86.

Brorstrom, E., Grennfelt, P., and Lindskog, A. (1983). The Effect of Nitrogen Dioxide and Ozone on the Decomposition of Particle-Associated Polycyclic Aromatic Hydrocarbons During Sampling From the Atmosphere. *Atmos. Environ.* 17:601-605.

Butler, J.D., and Crossley, P. (1981). Reactivity of Polycyclic Aromatic Hydrocarbons Adsorbed on Soot Particles. *Atmos. Environ.* 15:91-94.

Cass, G.R. (1977). Methods for Sulfate Air Quality Management with Applications to Los Angeles. Ph.D. thesis, California Institute of Technology, Pasadena, California.

Cass, G.R. (1981). Sulfate Air Quality Control Strategy Design. *Atmos. Environ.* 15:1227-1249.

Cass, G.R., Boone, P.M., and Macias E.S. (1982). Emissions and Air Quality Relationships for Atmospheric Carbon Particles in Los Angeles. In *Particulate Carbon: Atmospheric Life Cycle* (G.T. Wolff and R.L. Klimisch, eds.). Plenum Press, New York, pp. 207-240.

Cronn, D.R., Charlson, R.J., Knights, R.L., Crittenden, A.L., and Appel, B.R. (1977). A Survey of the Molecular Nature of Primary and Secondary Components of Particles in Urban Air by High-Resolution Mass Spectrometry. *Atmos. Environ.* 11:929-937.

Daisey, J.M., Cheney, J.L., and Lioy, P.J. (1986). Particulate Emissions from Air Pollution Sources: Status and Needs for Receptor Source Apportionment Modeling. *J. Air Pollut. Control Assoc.* 36:17-33.

Friedlander, S.K. (1981). New Developments in Receptor Modeling Theory. In *Atmospheric Aerosol: Source/Air Quality Relationships* (E.S. Macias and P.K. Hopke, eds.). American Chemical Society, Washington, D.C., pp. 1-19.

Gray, H.A. (1986). Control of Atmospheric Fine Primary Carbon Particle Concentrations. EQL Report 23, Environmental Quality Laboratory, California Institute of Technology, Pasadena, California.

Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., and Rau, J.A. (1986). Characteristics of Atmospheric Organic and Elemental Carbon Particle Concentrations in Los Angeles. *Environ. Sci. Technol.* 20:580-589.

Grosjean, D., and Friedlander, S.K. (1975). Gas-Particle Distribution Factors for Organic and Other Pollutants in the Los Angeles Atmosphere. *J. Air Pollut. Control Assoc.* 25:1038-1044.

Grosjean, D., Fung, K., and Harrison, J. (1983). Interactions of Polycyclic Aromatic Hydrocarbons with Atmospheric Pollutants. *Environ. Sci. Technol.* 17:673-679.

Hildemann, L.M., Markowski, G.R., and Cass, G.R. (1989). Emissions from Important Sources of Organic Aerosol. *To be published.* [See Chapter 3.]

Hildemann, L.M., Mazurek, M.A., and Cass, G.R. (1989). Quantitative Characterization of Organic Aerosol Source by High-Resolution Gas Chromatography. *To be published.* [See Chapter 4.]

Korfmacher, W.A., Natusch, D.F.S., Taylor, D.R., Wehry, E.L., and Mamantov, G. (1979). Thermal and Photochemical Decomposition of Particulate PAH. In *Polynuclear Aromatic Hydrocarbons: Carcinogenesis and Mutagenesis* (P.W. Jones and P. Leber, eds.). Batelle Press, Columbus, Ohio, pp. 165-170.

Korfmacher, W.A., Wehry, E.D., Mamantov, G., and Natusch, D.F.S. (1980). Resistance to Photochemical Decomposition of Polycyclic Aromatic Hydrocarbons Vapor-Adsorbed on Coal Fly Ash. *Environ. Sci. Technol.* 14:1094-1099.

Kamens, R., Bell, D., Dietrich, A., Perry, J., Goodman, R., Claxton, L., and Tejada, S. (1985). Mutagenic Transformations of Dilute Wood Smoke Systems in the Presence of Ozone and Nitrogen Dioxide. Analysis of Selected High Pressure Liquid Chromatography Fractions from Wood Smoke Particle Extracts. *Environ. Sci. Technol.* 19:63-69.

Larson, S.M., Cass, G.R., and Gray, H.A. (1989). Atmospheric Carbon Particles and the Los Angeles Visibility Problem. *Aerosol Sci. Technol.* 10:118-130.

Mazurek, M.A., Cass, G.R., and Simoneit, B.R.T. (1988). Quantification of the Source Contributions to Organic Aerosols in the Remote Desert Atmosphere. Final Report to the Electric Power Research Institute, Palo Alto, California.

Mazurek, M.A., Cass, G.R., and Simoneit, B.R.T. (1989). Interpretation of High-Resolution Gas Chromatography and High-Resolution Gas Chromatography/Mass Spectrometry Data Acquired from Atmospheric Organic Aerosol Samples. *Aerosol Sci. Technol.* 10:408-420.

Mazurek, M.A., Simoneit, B.R.T., Cass, G.R., and Gray, H.A. (1987). Quantitative High-Resolution Gas Chromatography and High-Resolution Gas Chromatography/Mass Spectrometry Analyses of Carbonaceous Fine Aerosol Particles. *Intern. J. Anal. Chem.* 29:119-139.

Miguel, A.H. (1983). Atmospheric Reactivity of Polycyclic Aromatic Hydrocarbons Associated with Aged Urban Aerosols. In *Polycyclic Aromatic Hydrocarbons: Formation, Metabolism and Measurement* (M. Cooke and A.J. Dennis, eds.). Batelle Press, Columbus, Ohio, pp. 897-904.

Natusch, D.F.S., and Taylor, D.R. (1980). Environmental Effects of Western Coal Combustion: Part IV — Chemical and Physical Characteristics of Coal Fly Ash. EPA-600/3-80-094, U.S. Environmental Protection Agency, Duluth, Minnesota.

Schuetzle, D., Cronn, D., Crittenden, A.L., and Charlson, R.J. (1975). Molecular Composition of Secondary Aerosol and its Possible Origin. *Environ. Sci. Technol.* 9:838-845.

Van Vaeck, L., and Van Cauwenberghe, K. (1984). Conversion of Polycyclic Aromatic Hydrocarbons on Diesel Particulate Matter upon Exposure to PPM Levels of Ozone. *Atmos. Environ.* 18:323-328.

Conclusions

6.1 SUMMARY OF RESULTS

A dilution stack sampler specifically intended to collect fine organic aerosol emissions from combustion sources was designed to simulate atmospheric cooling and dilution processes, so that organic vapors which condense under ambient conditions would be collected as particulate matter. Comparison of this sampler with EPA Method 5, a traditionally-used method of stack sampling, showed that the dilution stack sampler collected approximately 10 times as much organic aerosol as the hot filter portion of EPA Method 5. Tests were conducted using the new sampling system to measure organic aerosol emissions from eighteen major source types that constitute approximately 80% of the fine organic aerosol emitted to the Los Angeles atmosphere. The fine organic aerosol emission inventory for the Los Angeles area was revised based on these measurements. It was found that paved road dust, meat-cooking operations, and fireplace emissions are among the most important sources of fine organic aerosol, and that over 45% of the organic aerosol emitted consists of contemporary (non-fossil) carbonaceous material. To define quantitative characteristics of the organic aerosol samples that can be used to distinguish the effluent from different sources, a new approach utilizing high-resolution gas chromatography alone was developed. With this protocol, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each of 18 source types was obtained. Comparison of these organic source signatures using hierarchical cluster analysis showed that organic aerosol emissions from many of the sources are sufficiently different that they can be distinguished from one another on the basis of the characteristics identified here.

Using a transport model, the distribution of organic compounds that would exist at ambient sites in the Los Angeles area *if* the primary emissions were

transported without chemical reaction were predicted. Differences found between ambient measurements and model predictions were used to assess the degree of secondary organic aerosol formation. For the neutral organic fraction, reasonable agreement between ambient measurements and model predictions was found, suggesting that most of the neutral ambient organic aerosol is emitted directly as aerosol from the sources tested during this research effort. For the acidic fraction of the atmospheric organic aerosol, the model significantly underpredicted the ambient concentrations, indicating that much of the acidic ambient organic aerosol fraction may be formed by chemical reactions in the atmosphere. Based on the difference between predicted and measured concentrations of acidic organics, it was estimated that 15 to 25% of the total elutable organic aerosol present in the Los Angeles area may consist of atmospheric transformation products.

6.2 FUTURE RESEARCH

While this research project has revealed many interesting findings, it has also raised new questions, and identified other areas where further work is needed. In this chapter, some of the more promising areas identified for future research will be discussed. These areas include both experimental and theoretical work, and have both fundamental and practical implications.

6.2.1 Dilution Sampling Equipment for Organic Aerosols

A dilution stack sampler specifically designed for the sampling of organic aerosol was constructed and tested, as discussed in Chapter 2. Use of this sampler in the field has verified that it collects organic aerosol without contributing artifact organic compounds either from the dilution air or from the sampler itself. However, the fieldwork also has identified some attributes of this prototype design that could be improved.

The large size of the sampler itself has led to difficulties. In some cramped locations, substantial time was spent planning an appropriate arrangement of the equipment within a confined space. In addition, the time needed to clean the sampler between uses was longer than desirable, due to the many pieces involved and the large size of some of the sampler parts. Finally, the electrical power consumption

requirements of the sampler have sometimes been difficult to meet in the field, necessitating long extension cords and special arrangements. Construction of a smaller sampling device would alleviate these problems. While additional sampling time might sometimes be necessary to collect a sample of adequate size at a site, the time needed for cleaning the sampler between consecutive tests would be reduced, and the time required for planning and setup at a given site would also be shorter. Hence, more source types could be sampled in a given amount of time. In addition, while the present sampling system requires two "sturdy" people to assemble and operate it, a smaller sampler could be designed to be manageable by a single person, reducing the manpower needed to use the sampler in the field. However, a smaller sampler would also have its drawbacks. In particular, the problem of particle losses within the sampler might worsen considerably due to the increased surface-to-volume ratio of the sampler interior.

A few improvements to the present sampler's design would also be beneficial. The venturi that monitors the flowrate of the source emissions into the sampler is also the source of the largest particle losses in the system, due to its narrow throat. If a reliable alternate method for measuring the flowrate in this part of the system could be found, particle losses in the sampler would be significantly reduced. The present cooling system for the dilution air, which consists of copper tubing in a large icebath, requires a substantial supply of ice. Development of a more sophisticated heat exchange system could eliminate the logistical problems involved in hauling ice to the field site on a daily basis. Finally, regulation of the flowrates in the sampler is accomplished at present through frequent adjustments by the sampler operator based on pressure drop readings. It should be possible to automate this procedure, allowing the flowrates to be fine-tuned more frequently and accurately.

6.2.2 Source Sampling Program

In Chapters 3 and 4, the results of the source sampling program undertaken as part of this research project were presented. This project tested one or a few examples of each of fourteen important types of organic aerosol emission sources, and treated the particulate emissions obtained as representative of that source type.

It is already known from the results of this project that there are substantial variations in the emissions characteristics of different examples of a single source type. Fine particulate emissions from a single industrial-scale boiler were observed to vary from day to day, influenced by factors including the batch of fuel oil being burned, the excess oxygen level in the boiler, and perhaps even the operator in charge. Emissions from motor vehicles also showed tremendous variation, due to factors like the age, type and maintenance condition of the vehicle, and the fuel being burned. It is likely that some of the other source types that were tested also exhibit substantial variations in their particulate emissions.

As a next step, additional examples of each source type should be sampled to more accurately determine the *average* emissions characteristics of each source type, as well as to quantify the variability from one source to the next. This work (which would be a less daunting prospect if a smaller sampling device were used) would provide an accurate measure of the uncertainty in the fine particulate emissions characteristics from each source type. With this information, further refinement of the organic aerosol emissions inventory (as well as perhaps other emissions inventories) could be achieved, with accompanying improvement in the air quality modeling results.

6.2.3 Identification of Organic Characteristics

In Chapter 4, the fine organic aerosol emissions from the various source types sampled were characterized using high-resolution gas chromatography (GC). The objective of this work was to uniquely characterize each of the types of organic emission sources. The results obtained show marked differences between many of the sources, but in a few cases two sources would appear to be similar if only GC analysis was available to distinguish between them. Several strategies appear promising for further characterizing the sources in order to achieve a unique chemical fingerprint for each source type.

First, using data already collected during this research project, inorganic chemical characteristics (*e.g.*, trace elemental concentrations) could be added to the organic characterizations already obtained for each source. With this approach, dissimilar sources like brake dust and fried hamburger meat, which have similar organic mass distributions, could be readily distinguished from each other on the

basis of trace elemental compositions. It is possible that with the addition of just a few of the trace elemental species, a unique chemical characterization could be achieved for each of the organic aerosol sources tested.

However, some caution must be exercised: the source types tested during this research project were selected because they were thought to be major sources of *organic* aerosol. It is quite likely that there are other untested urban sources which are major contributors of some of the trace elemental species found in the atmosphere. Thus, the data set generated for this project should **not** be considered to be comprehensive for the trace elemental species. The addition of trace species concentrations to the modeling approach utilized will not accurately predict ambient trace elemental concentrations until the other important sources of the trace species being used are tested and included in the model.

Additional distinguishing features of the emission sources tested could be determined if these samples were analyzed further using high-resolution gas chromatography/mass spectrometry (GC/MS). While this approach is time-consuming, it allows identification of individual organic chemical species, making it possible to search for unique chemical tracers in the source emissions.

6.2.4 Investigation of Secondary Organic Aerosols

In Chapter 5, an investigation was conducted of the nature and extent of secondary organic aerosols by comparing the characteristics of primary organic particulate matter source emissions with the organic characteristics of the ambient aerosol in the Los Angeles area. This analysis can be extended if GC/MS techniques are used to compare the chemical compounds found in ambient aerosol samples with those present in the primary organic aerosol source emissions. Comparison of the emission rates of specific compounds to their prevalence in the ambient air, during both winter and summer months, would enable identification of compounds that are depleted in the atmosphere relative to their source emissions (due to photochemistry and to other mechanisms), as well as compounds that are enriched in the ambient air and hence may be the reaction products of directly emitted compounds. With this information, a more accurate evaluation of the extent and nature of secondary organic aerosol could be obtained. In addition, new reaction pathways could be proposed for reactive organic compounds, providing insight into their origin.

6.2.5 Identification of Control Strategies

The practical motivation for accurately measuring and modeling pollutant emissions from sources is to provide a basis for testing the effectiveness of control strategies for reducing pollutant concentrations in the urban environment in advance of the adoption of an expensive control program. This may be of particular importance for the fine organic aerosols: besides the detrimental effect that they have on visibility, certain organic compounds known to be present in ambient aerosol also have been found to be carcinogenic or mutagenic.

At present, no goals have been established for reducing the concentrations of organic aerosols in urban areas. Potential control strategy goals for an organic aerosol control program could include reduction in the total concentrations of fine organic material in the air (for visibility improvement), decrease in the amounts of certain types of organics that are suspected to be especially harmful (like the chlorinated organics), or reduction of the emissions of specific organic compounds that are already known to be carcinogenic.

In the event that a program of organic aerosol mass concentration reduction is considered, the results obtained in this research will be directly applicable to testing the likely effects of the proposed controls. If certain organic compounds are specifically identified as the subject of an abatement program, then the methods developed here can be coupled with more extensive chemical analysis in order to provide predictions of the effect of proposed emission controls strategies.

To understand is to complicate.

Lucien Lefebvre
Combats pour l'histoire

*Strange how much you've got to know
Before you know how little you know.*

Author unknown

Appendix A

Meat-Cooking Operations: A Significant Source of Fine Particulate Potassium Emissions to the Urban Atmosphere

A.1 INTRODUCTION

In an effort to simplify the identification of source contributions to airborne particulate matter using receptor modeling calculations, many attempts have been made to identify easily detectable chemical characteristics that are unique to one or a few emission sources. Some investigators have focused on fine particulate potassium as a potential tracer for the presence of woodsmoke in ambient aerosol samples. Chemical signatures used to quantify the contributions of woodsmoke to ambient samples have included: the ratios of potassium to iron (Mukai and Ambe, 1986; Wolff *et al.*, 1981), potassium to soot (elemental carbon) (Raemdonck, Maenhaut and Andreae, 1986; Andreae, 1983) and potassium to total mass Sexton *et al.*, 1985; Dasch, 1982); potassium concentrations with soil-derived potassium subtracted through the use of calcium (Andreae, 1983), silicon (Lewis, Baumgardner and Stevens, 1986), or iron (Dasch, 1982; Lewis and Einfeld, 1985; Lewis *et al.*, 1988ab); and nighttime potassium concentrations (Stevens, 1985).

However, insufficient data exist to conclude that any of these tracer techniques can be used to accurately quantify the amount of woodsmoke aerosol in an urban atmosphere. In fact, limited data indicate that there may be many sources of airborne potassium that are as significant as woodsmoke. A trace metals emissions inventory conducted for the 4-county South Coast Air Basin (SoCAB) that surrounds Los Angeles (see figure A.1) considered source emissions of particulate matter less than 10 μm in diameter (Cass and McRae, 1981). Despite many

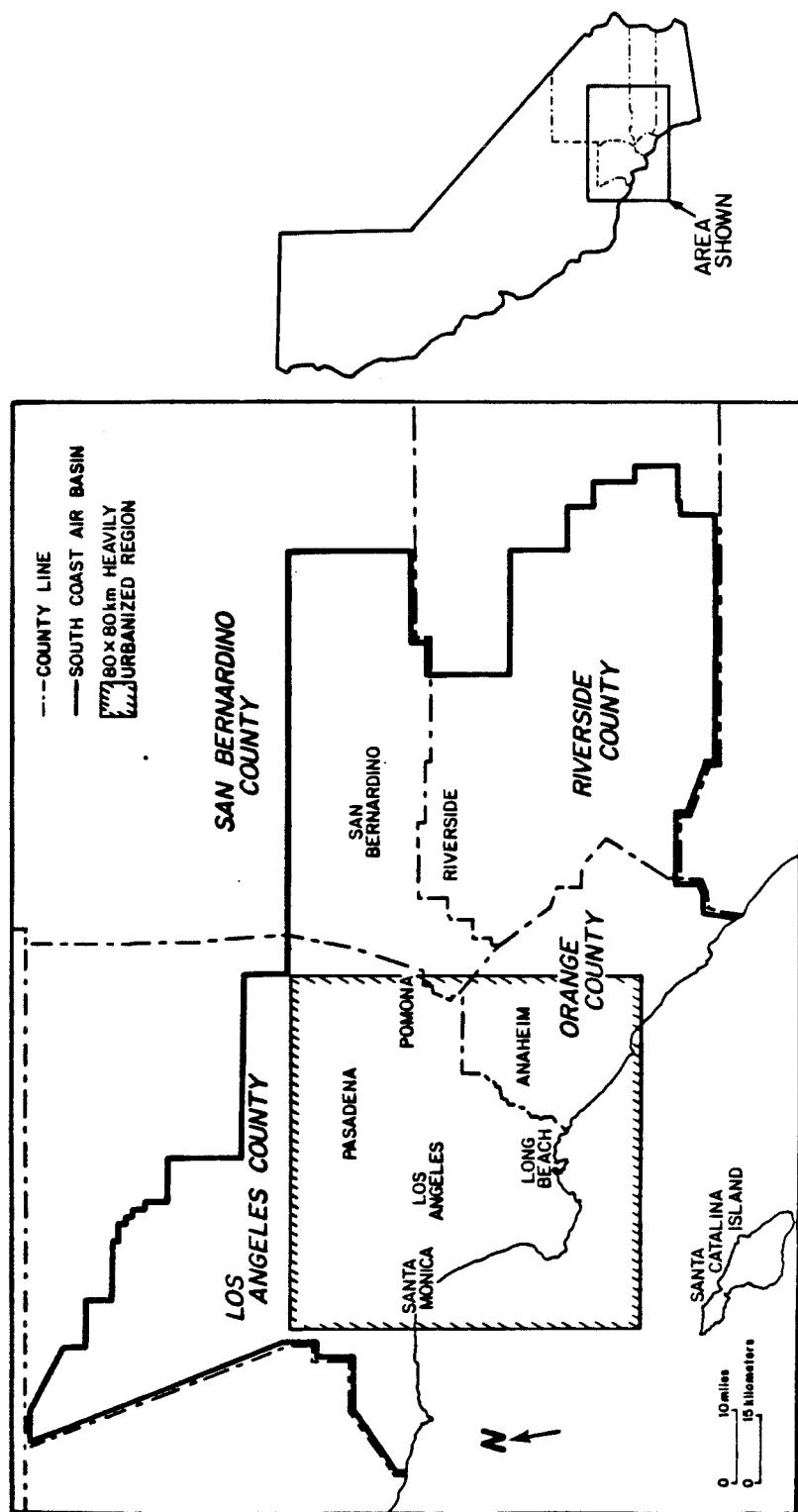


Figure A.1. Geographical outline of the South Coast Air Basin Showing an 80x80 km square area that contains 83% of the air basin's population.

data gaps in the inventory for potassium (and the absence of charbroiling in the list of source types), 14.5% of the potassium emissions were due to sources besides soil dust (83.3%) and wood combustion (2.2%). Other significant sources of potassium identified included sea salt (8.1%), metallurgical industries (4.9%), combustion of residual fuel oil (0.5%), and glass furnaces (0.3%). In addition to these sources of particulate potassium, the present note shows that one must include the contributions from meat-cooking operations.

Meat-cooking operations have received some attention as a potentially significant source of particulate matter in urban areas (Bornstein, 1978; Francis and Lipinski, 1977). Commercial charbroiling of meats in the restaurant industry has been estimated to account for 3% of the fine ($d_p < 2.1\mu\text{m}$) mass emissions and 12% of the fine organic carbon emissions to the atmosphere of the SoCAB (Gray, 1986).

In the present study, a dilution stack sampling system was used to measure the quantity and composition of the fine particulate emissions from meat cooking operations and from the fireplace combustion of wood. This dilution stack sampling system has been designed specifically to collect those source emissions that would condense into the fine particulate phase under normal ambient conditions, while minimizing particle loss and contamination problems (Hildemann, Cass and Markowski, 1989).

Substantial amounts of potassium were found to be emitted during meat-cooking operations, especially during charbroiling of regular hamburger meat. These potassium emissions are comparable in magnitude to the potassium emitted from the fireplace combustion of wood in the Los Angeles area. This suggests that it is inappropriate to use fine potassium as if it were a nearly unique tracer for presence of woodsmoke in the ambient aerosol samples. The use of fine potassium data along with ^{14}C -based contemporary carbon aerosol data likewise may fail to identify woodsmoke uniquely, as meat-cooking operations also emit contemporary (non-fossil) aerosol carbon.

A.2 EXPERIMENTAL SECTION

General source sampling and quality assurance procedures used with this sampling system have been described elsewhere (Hildemann, Markowski and Cass, 1989). Total fine aerosol mass was determined gravimetrically by weighing the filters before and after sampling, while potassium was analyzed by x-ray fluorescence. A complete description of the chemical composition of these source samples will be given elsewhere (Hildemann, Markowski and Cass, 1989); this brief note focuses on the potassium data.

A.2.1 Meat Cooking.

Source tests were conducted at the commercial-scale kitchen attached to the California Institute of Technology's Chandler Cafeteria complex. The aerosol emissions released from cooking two different kinds of hamburger meat were studied: (1) regular grade beef (about 21% fat); and (2) extra-lean beef (about 10% fat). Each type of meat was cooked by two methods: by charbroiling over a natural gas flame, and by frying.

In each of the four experiments, 80 quarter-pound (113 g) hamburger patties were cooked until they were medium to well-done, eight at a time, over a time period of 70–80 min. The aerosol generated during cooking was withdrawn through a 14,000 cfm ($6.6 \text{ m}^3 \text{ sec}^{-1}$) overhead exhaust hood. The commonly-used baffle-type grease extractor, which has been estimated to be approximately 60 percent efficient at removing airborne cooking grease on a mass basis (Bornstein, 1978), was present at the entrance to the exhaust duct. Source sampling was conducted on the roof of the kitchen, with samples withdrawn at the exit to the exhaust duct. The air flow rate through the exhaust vent was verified through pitot probe measurements.

A.2.2 Home Fireplace Emissions.

Woodsmoke emissions were sampled from the brick fireplace chimney in an older single family home. An access hole was bored into the side of the chimney about halfway up the flue, and samples were taken by traversing across the long axis of the flue through this hole. Both hard (oak) and soft (pine) wood fires were examined separately, and each fire was sampled from ignition to ember stage over a

3-4 hr sampling period. The fire was periodically stirred and wood was occasionally added in an attempt to mimic the course of a typical home fireplace fire.

A.3 RESULTS AND DISCUSSION

Table A.1 shows the measured mass emission rate of fine particulate potassium for each of the four hamburger cooking experiments. The values shown have been corrected for minor contributions of potassium from the dilution air. The largest emission rate by far for fine aerosol potassium was measured for charbroiling of regular hamburger meat.

These emission rates are also compared (Table A.1) with the potassium content estimated for raw and cooked hamburger meat (Anderson, Lauderdale and Hoke, 1986). It appears that up to 33% of the potassium "lost" during cooking may be emitted as airborne particulate matter.

To provide a common basis for comparison, woodsmoke emissions of fine potassium, based on measurements of fireplace emissions taken with the same dilution sampling system, are shown in Table A.2 along with the meat-cooking measurements. For the SoCAB, home fireplaces account for an estimated 96% of the woodsmoke emissions that occur on a daily basis, while structural fires account for the remainder (Gray, 1986). Woodsmoke emissions from seasonal forest fires are excluded from these calculations, as these fires are unusual events that occur on an occasional basis.

As mentioned in the introduction to this note, some previous source attribution studies have used the ratio between potassium and other elements in the aerosol to trace woodsmoke. Several of these diagnostic ratios between potassium and other elements are presented in Table A.2, both for hamburger cooking and for wood combustion. The ratio of potassium to mass is very similar for the two source types, indicating that this ratio is not a unique indicator of the presence of woodsmoke. Due to the low amount of elemental carbon emitted during meat cooking, the potassium to elemental carbon ratio is much higher for meat cooking than for wood combustion. Woodsmoke, however, is only one of several important sources of atmospheric elemental carbon; diesel engine emissions are the largest

**Table A.1. Comparison of the Potassium Content
of Meat Before and After Cooking with
Measured Potassium Aerosol Emissions**

	Fine Aerosol Potassium Emitted ^(a)	Potassium Content of Raw Meat ^(b)	Potassium Content of Cooked Meat ^(b)	Potassium "Lost" During Cooking
	(mg/kg raw meat)			
REGULAR MEAT				
Charbroiled	106.7	2280	1960	320
Fried	4.4	2280	2030	250
EXTRA-LEAN MEAT				
Charbroiled	4.4	2840	2290	550
Fried	5.1	2840	2340	500

(a) This study, particle diameter < 2.1 μm .

(b) Values obtained from Anderson, Lauderdale and Hoke (1986).

Table A.2. Fine Aerosol Potassium Emissions and Signatures
from Meat-Cooking Operations and from Fireplaces

Fine Aerosol Potassium Emitted ^(a) (mg/kg raw mat'l)	Fine Aerosol Ratios ^(a)			
	K/Mass	K/Elemental C	K/Fe	
REGULAR MEAT				
Charbroiled	106.7	0.0027	2.28	8.67
Fried	4.4	0.0038	— ^(b)	0.73
EXTRA-LEAN MEAT				
Charbroiled	4.4	0.0006	— ^(b)	0.55
Fried	5.1	0.0036	— ^(b)	— ^(b)
FIREWOOD				
Pine (soft)	55.6	0.0055	0.17	79.2
Oak (hard)	49.0	0.0079	0.27	164.

(a) This study, particle diameter < 2.1 μm .

(b) Denominator was below the detection limit.

contributor of elemental carbon to the Los Angeles atmosphere (Gray, 1986). Therefore the potassium to elemental carbon ratio found in atmospheric aerosol samples may be difficult to connect to differences in the woodsmoke vs. charbroiler content of an ambient aerosol. The ratio of potassium to iron varies greatly over the various meat cooking tests, making it difficult to compare with firewood emissions.

It is of interest to compare the particulate potassium emissions to the Los Angeles area atmosphere from woodsmoke with those from meat-cooking operations. Based on an emissions inventory developed for the SoCAB in 1982 (Gray, 1986), regional fine particulate potassium emissions can be estimated both for meat-cooking operations and for fireplace combustion of wood.

Bornstein (1978) estimates that 40% of all meat is cooked in restaurants, and that 9% of all commercially-cooked meat is charbroiled. It is assumed that the rest of the commercially-cooked meat is fried. In addition, it is assumed that the ratio of charbroiled to fried meat applies to meat cooked in the home as well as in restaurants. (Backyard charcoal grilling of meat is a common practice in Southern California.) Ground meat is estimated to represent over 50% of the meat served (Bornstein, 1978), so for simplicity, regular hamburger meat is assumed to be representative of all meat cooked in terms of emissions.

Table A.3 presents the results of these calculations. Even though only about one-tenth of all meat is charbroiled, the fine particulate emissions from charbroiling of meat are much higher than those resulting from meat frying. It appears that fine potassium emissions into the entire SoCAB atmosphere in 1982 from meat-cooking operations are of the same order of magnitude as those from fireplace combustion of wood. Within the 80 x 80 km square area shown in figure 1 that contains 83% of the SoCAB's population, Table A.3 shows that potassium emissions from the two sources are comparable for this heavily urbanized area. These results indicate that in similar urban areas, fine particulate potassium cannot be used as if it were a unique tracer for the presence of woodsmoke due to the possibility of substantial potassium emissions from other sources, including meat-cooking operations.

Table A.3. Emissions of Potassium into the Los Angeles Area Atmosphere in 1982 from Meat Cooking and Fireplaces

HEAVILY URBANIZED REGION OF METROPOLITAN LOS ANGELES AREA
(80 x 80 km area shown in Figure A.1)

Raw Material	Estimated Amount of Raw Material Consumed ^(a) (kg/day)	Fine Particulate Emissions ^(b) (mg/kg raw mat'l)	Potassium in Fine Emissions ^(b) (%)	Fine Particulate Potassium Emissions (kg/day)
MEAT COOKING				
Charbroiling	211,000	39,800	0.27	22.7
Frying	2,129,000	1,140	0.38	9.2
				TOTAL 31.9
FIREPLACES				
Softwood	529,000	10,100	0.55	29.4
Hardwood	327,000	6,160	0.79	15.9
				TOTAL 45.3

ENTIRE SOUTH COAST AIR BASIN

Raw Material	Estimated Amount of Raw Material Consumed ^(a) (kg/day)	Fine Particulate Emissions ^(b) (mg/kg raw mat'l)	Potassium in Fine Emissions ^(b) (%)	Fine Particulate Potassium Emissions (kg/day)
MEAT COOKING				
Charbroiling	253,000	39,800	0.27	27.2
Frying	2,561,000	1,140	0.38	11.1
				TOTAL 38.3
FIREPLACES				
Softwood	973,000	10,100	0.55	54.1
Hardwood	1,213,000	6,160	0.79	59.0
				TOTAL 113.1

(a) Meat consumption calculated using per capita meat consumption figures (retail weight, excluding meat byproducts) for the U.S. in 1982 (Rogers, 1983), and 1980 population figures for the area of interest (Gray, 1986). Firewood consumption taken from Gray (1986).

(b) This study; total aerosol mass emitted with particle diameter < 2.1 μm .

A.4 REFERENCES

Anderson, B.A., Lauderdale, J.L., and Hoke, I.M. (1986). *Composition of Foods: Beef Products, Raw, Processed, Prepared*. Agriculture Handbook No. 8-13, U.S. Department of Agriculture, Human Nutrition Information Service, Washington, D.C.

Andreae, M.O. (1983). Soot Carbon and Excess Fine Potassium: Long-Range Transport of Combustion-Derived Aerosols. *Science* 220:1148-1151.

Bornstein, M.I. (1978). Study to Develop Background Information for the Direct Meat-Firing Industry. EPA-450/3-78-027 (PB282-486), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Cass, G.R., and McRae, G.J. (1981). Source-Receptor Reconciliation of South Coast Air Basin Particulate Air Quality Data. NTIS PB82-250093, California Air Resources Board, Sacramento, California.

Dasch, J.M. (1982). Particulate and Gaseous Emissions from Wood-Burning Fireplaces. *Environ. Sci. Technol.* 16:639-645.

Francis, G.Z., and Lipinski, R.E. (1977). Control of Air Pollution from Restaurant Charbroilers. *J. Air Poll. Control Assn.* 27:643-647.

Gray, H.A. (1986). Control of Atmospheric Fine Primary Carbon Particle Concentrations. PhD Thesis, California Institute of Technology, Pasadena, California. Also available as Report No. 23, Environmental Quality Laboratory, California Institute of Technology, Pasadena, California.

Hildemann, L.M., Cass, G.R., and Markowski, G.R. (1989). A Dilution Stack Sampler for Collection of Organic Aerosol Emissions: Design, Characterization and Field Tests. *Aerosol Sci. Technol.* 10:193-204. [See Chapter 2.]

Hildemann, L.M., Markowski, G.R., and Cass, G.R. (1989). Emissions from Important Sources of Fine Organic Aerosol. *To be submitted*. [See Chapter 3.]

Lewis, C.W., Baumgardner, R.E., and Stevens, R.K. (1986). Receptor Modeling Study of Denver Winter Haze. *Environ. Sci. Technol.* 20:1126-1136.

Lewis, C.W., Baumgardner, R.E., Stevens, R.K., Claxton, L.D., and Lewtas, J. (1988a). Contribution of Woodsmoke and Motor Vehicle Emissions to Ambient Aerosol Mutagenicity. *Environ. Sci. Technol.* 22:968-971.

Lewis, C.W., and Einfeld, W. (1985). Origins of Carbonaceous Aerosol in Denver and Albuquerque During Winter. *Environ. Int.* 11:243-247.

Lewis, C.W., Stevens, R.K., Baumgardner, R.E., Zweidinger, R.B., Cuppitt, L.T., Highsmith, V.R., Claxton, L.D., and Lewtas, J. (1988b). Receptor Modeling Results from the Integrated Air Cancer Project. EPA/600/D-38/127 (PB88-218433), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Mukai, H., and Ambe, Y. (1986). Characterization of a Humic Acid-Like Brown Substance in Airborne Particulate Matter and Tentative Identification of Its Origin. *Atmos. Environ.* 20:813-819.

Raemdonck, H., Maenhaut, W., and Andreae, M.O. (1986). Chemistry of Marine Aerosol Over the Tropical and Equatorial Pacific. *J. Geophys. Res.* 91:8623-8636.

Rogers, A. (1983). *Food Consumption, Prices, and Expenditures*. Bulletin No. A 1.34:702, U.S. Department of Agriculture, Economic Research Service, Washington D.C.

Sexton, K., Liu, K.S., Hayward, S.B., and Spengler, J.D. (1985). Characterization and Source Apportionment of Wintertime Aerosol in a Wood-Burning Community. *Atmos. Environ.* 19:1225-1236.

Stevens, R.K. (1985). Sampling and Analysis Methods for Use in Source Apportionment Studies to Determine Impact of Wood Burning on Fine Particle Mass. *Environ. Int.* 11:271-283.

Wolff, G.T., Countess, R.J., Groblicki, P.J., Ferman, M.A., Cadle, S.H., and Muhlbauer, J.L. (1981). Visibility-Reducing Species in the Denver "Brown Cloud" — II. Sources and Temporal Patterns. *Atmos. Environ.* 15:2485-2502.

Appendix B

Submicron Aerosol Mass Distributions of Emissions from Boilers, Fireplaces, Automobiles, Diesel Trucks, and Meat-Cooking Operations

B.1 INTRODUCTION

Mathematical modeling of atmospheric aerosol processes is currently limited by a lack of detailed information on the size distribution of the many primary aerosol emissions sources. Without such information, the rate of change of the atmospheric aerosol size distribution due to condensation of secondary aerosol material onto the primary particles emitted directly from sources cannot be computed. Likewise, ambient aerosol coagulation and deposition calculations cannot be supported without an accurate assessment of the size distribution of the initial aerosol emitted to the atmosphere.

For most source types, little information is presently available on the size distribution of the submicron fraction of the primary aerosol emissions. Some measurements using an electrical aerosol analyzer (EAA) have been made for diesel vehicles, either by sampling immediately behind a travelling diesel vehicle (Kittelson *et al.*, 1988), using a dilution tunnel in the laboratory (Khatri and Johnson, 1979; Verrant and Kittelson, 1978; Groblicki and Begeman, 1980; Kittelson *et al.*, 1979; Raunemaa *et al.*, 1984), or sampling downwind of a truckstop (Kittelson *et al.*, 1988). EAA measurements of the size distribution of the aerosol emitted from gasoline-powered automobiles on a dynamometer also have been made (Miller *et al.*, 1976). Several investigators have attempted to measure the size distribution of fresh traffic aerosol by sampling in the vicinity of heavily-trafficked areas using cascade impactors (Berner *et al.*, 1984, Berner and Reischl, 1983, Berner and Lurzer, 1980, Berner *et al.*, 1979) or EAAs and optical particle counters (Wilson *et al.*, 1977,

Whitby *et al.*, 1975, Hidy *et al.*, 1975). The size distributions of aerosol emissions from industrial-scale boilers burning No. 2 fuel oil have been measured using cascade impactors (Cato, Muzio and Shore, 1976; Carter, Buening and Hunter, 1978), sequential cyclone catches (Taback *et al.*, 1979), and electron microscope examination of filter catches (Cato *et al.*, 1974). A few measurements also have been made for fireplace emissions, using parallel impactors (Rau, Huntzicker and Edgerton, 1987; Rau, 1989) and EAA instrumentation (Dasch, 1982). Finally, Sexton and co-workers (1986) have measured an aerosol size distribution produced while frying hamburger meat in cooking oil. However, substantial differences in sampling methodology between the various studies frustrate comparison between sources.

The objective of the research reported here was to determine the size distribution of the submicron fraction of the direct aerosol emissions from a variety of the major combustion sources found in urban areas. A portable dilution source sampling system was used (Hildemann, Cass and Markowski, 1989). In this system, condensable vapors present at high temperature in the combustion source exhaust are cooled and diluted to ambient conditions, causing condensation onto the solid particles in the exhaust, thus approximating the effective primary aerosol size distribution found in the plume in the atmosphere immediately downwind of the source. The uniform method of sampling provided by this system allows size distributions from disparate sources to be quantitatively compared. Size distribution measurements of the cooled, diluted exhaust aerosol were taken using an EAA, and in addition, fine particulate matter was collected by filtration, providing a separate measure of the amount of fine aerosol mass. This allowed comparison of aerosol mass emission rates calculated using two different measurement methods.

B.2 EXPERIMENTAL SECTION

The design of the dilution stack sampling system has been described in detail previously (Hildemann, Cass and Markowski, 1989). Briefly, a heated inlet line was used to withdraw the hot exhaust from the sources tested, traversing the stack where appropriate to obtain a representative sample. The exhaust was then diluted

and cooled to near-ambient temperature by mixing with cooled dilution air that had passed through an activated carbon bed and a HEPA filter to remove pollutants from the dilution air. A small portion of the diluted sample was withdrawn for aerosol size distribution measurement by a TSI Model 3030 Electrical Aerosol Analyzer (EAA). For the motor vehicle tests reported, an additional stage of exhaust dilution preceded the use of the dilution stack sampler. Without this pre-dilution step, abrupt changes in vehicle operation cause large changes in the volumetric flow rate of the exhaust that cannot be tracked by the dilution stack sampler. With the pre-dilution step, a constant volumetric flowrate was achieved, enabling the dilution sampler to withdraw an exhaust sample that was representative of the emission rate of the vehicle at any time, regardless of engine speed.

Because gaseous components in the diluted emissions sample (such as SO₂) might have an effect on the EAA charger operation (and perhaps greatly reduce charger life), the EAA was modified so that filtered ambient air was used for charger sheath air while sample gas was used in the mobility analyzer. Ambient air could not be used for the mobility analyzer since the different composition, especially the organic content and relative humidity, could easily cause significant changes in aerosol size. (The ratio of mobility analyzer air to aerosol sample volume was about 12.5 to 1.) The use of ambient air for the sheath air supply was not expected to cause a problem, since it represented only 2% of the total flow.

Rapid fluctuations were apparent in the aerosol size distribution emitted at all sources tested. To reduce the effect of these short-term fluctuations in source characteristics, an averaging bottle was placed in-line just upstream of the EAA. For most of the sources, a 4-liter averaging bottle was used; in a few cases (such as the automobiles undergoing a variable driving cycle), an 8-liter bottle was used. Results were scaled upward by 10% to adjust for wall losses in the averaging bottle.

For sources that produced high concentrations of submicron aerosol even after dilution in the stack sampler, an additional dilution step was introduced upstream of the EAA to bring the measurements into the range of the EAA. This dilution step was achieved by plumbing an absolute filter and a small orifice in parallel

and inserting the unit either immediately before or immediately after the averaging bottle.

Groups of sequential EAA measurements were averaged over the duration of the various combustion conditions studied. STWOM, Markowski's combination of Twomey's inversion routine with a smoothing algorithm (Markowski, 1987), was used to invert the EAA size distribution measurements. Some distributions, when inverted, had spurious tails at one or both ends of the EAA's particle size range. These tails were due to limitations in the accuracy of the EAA at the extremes of its nominal range (due both to measurement noise and to difficulties in defining the true instrument response matrix needed by the inversion algorithm), and were deleted from the data base. Estimates of submicron mass emission rates were made by integration of the EAA data assuming a particle density of 1 g/cm³ for all sources. Adjustments to the mass emission rates reported here can be made easily if the reader wishes to assume an alternate density value for the particles emitted from a particular source.

The fine fraction of the aerosol mass was collected on Teflon filters downstream of AIHL cyclones, which were operated at a flowrate designed to remove particles with an aerodynamic diameter of greater than 2 μm (John and Reischl, 1980). The filters were weighed before and after collection on a Mettler balance (Model M-55-A) in a constant temperature and relative humidity environment.

B.3 RESULTS AND DISCUSSION

B.3.1 Industrial-Scale Boiler.

The size distribution of aerosol emissions from an industrial-scale boiler (Babcock & Wilcox dual fuel FM-type watertube, with a steam production capacity of 53×10^6 kJ/hr) burning No. 2 fuel oil was measured. Diluted flue gas from combustion of No. 2 fuel oil under steady-state conditions showed a strong bimodal mass distribution with a nucleation mode peak near 0.05 μm particle diameter and a larger mode peak near 0.5 μm . Size distributions measured at different positions in the stack were similar. The submicron ($d_p < 0.7 \mu\text{m}$) mass emission rate of

8 $\mu\text{g}/\text{kJ}$ of fuel burned estimated using the EAA measurements agrees well with the 11 $\mu\text{g}/\text{kJ}$ fine ($d_p < 2 \mu\text{m}$) aerosol emission rate measured gravimetrically for this particular experiment.

Figure B.1 shows the aerosol mass distribution after two different residence times in the dilution sampler. These distributions, while not measured simultaneously, were from the same sampling experiment with the probe at comparable locations in the stack. The order-of-magnitude reduction seen in the particle number density and the shift in the size distribution toward larger sizes with longer residence time within the dilution sampler both suggest that coagulation plays an important role in the observed shift in the size distribution. The increase in apparent aerosol mass emission rate with increased residence time suggests that more condensation may be occurring, but the change is not pronounced enough to be conclusive. These results indicate that the aerosol size distribution continues to evolve within the dilution stack sampler. When matching the results of these measurements to an environmental model, care should be taken to insert the measured aerosol size distribution at that portion of the hypothetical plume downwind of the source that best matches the retention time and degree of dilution achieved during these experiments. The time and dilution history of the size distributions for all tests presented in this paper are listed in Table B.1.

Artifact aerosol formation has been observed in the EAA when high ppm quantities of SO_2 are present (Stelson, 1989a). Since fuel oil contains sulfur, the magnitude of this potential artifact was evaluated for the test of the industrial-scale boiler burning 0.4% S distillate fuel oil. The diluted sample entering the EAA could have contained up to 9 ppm SO_2 (if all sulfur was emitted in the form of SO_2), and the relative humidity of the emissions after dilution with dry air was measured at less than 5%. Using these values as a worst-case condition, it was found that the only part of the EAA signal potentially affected was the output of channel 3 during the long residence time sample shown in Figure B.1. In the inversion algorithm, channel 3 of the EAA distribution is represented by the lowest three steps in the distribution curve (solid line), which in this case may have included up to 17% artifact aerosol generated from SO_2 . None of the other EAA channel readings were

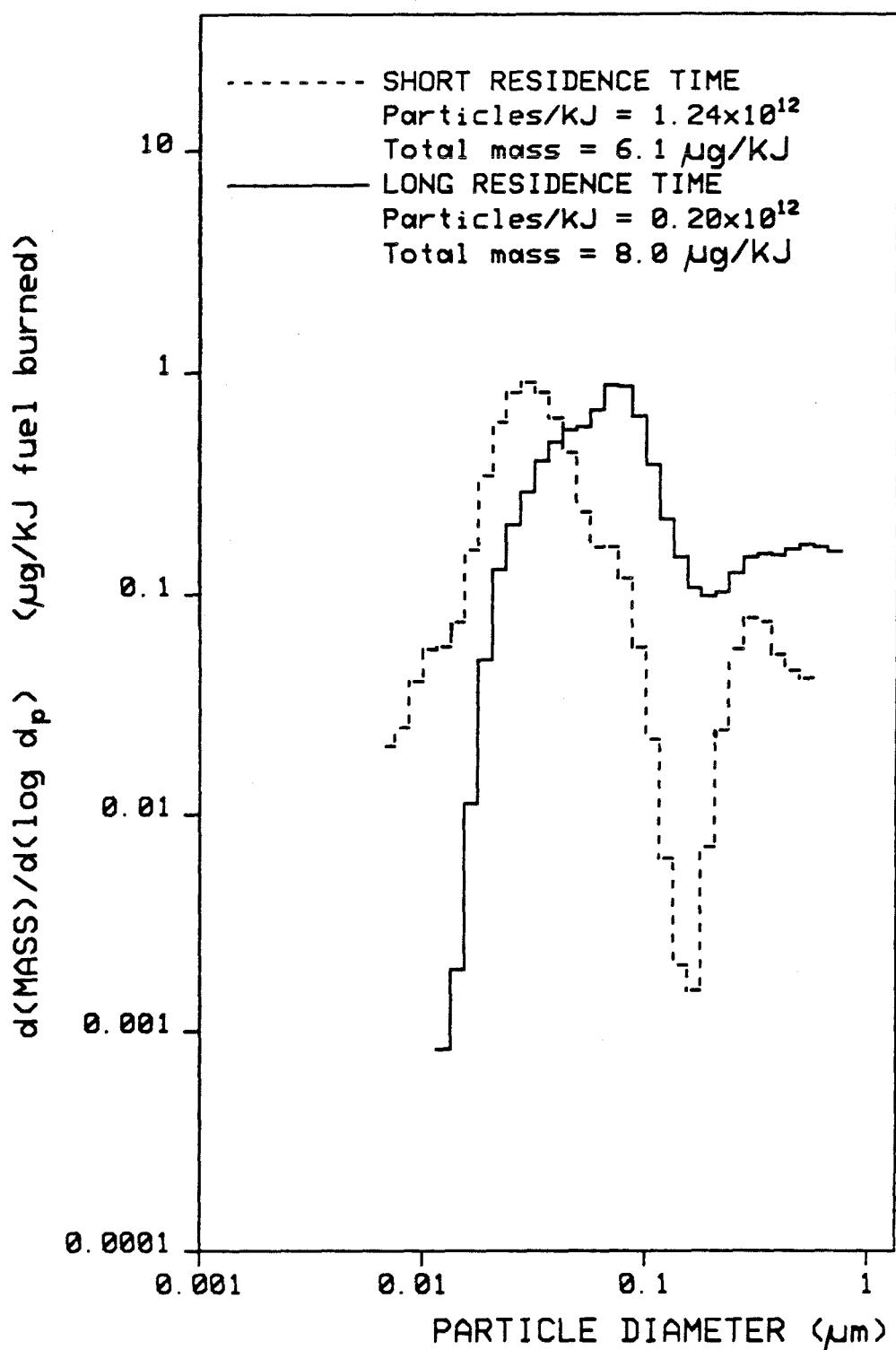


Figure B.1. Mass distribution of aerosol emissions from midsize industrial boiler burning No. 2 fuel oil.

Table B.1. Time and Dilution History of Emissions^(a)

Source	t_1 (sec)	D_1 ^(b)	t_2 (sec)	D_2 ^(b)	t_s (sec)
Industrial Boiler					
—No. 2 Fuel Oil, Tunnel	0.5	35.3x	2.3	9.44x	59.3
—No. 2 Fuel Oil, Res.Ch.	0.5	35.3x	42.1	21.9x	99.1
Fireplace					
—Seasoned Pine (exp. 1)	0.3	31.1x	58.9	22.4x	59.1
—Seasoned Pine (exp. 2)	0.3	44.4x	58.9	23.0x	59.1
—Seasoned Oak	0.3	47.0x	58.9	28.0x	59.1
Catalyst Automobiles					
—Toyota	0.1	21.7x	0.7	26.0x	116.3
—Omni	0.1	20.7x	0.7	26.0x	116.3
—Honda 1500	0.1	22.3x	0.7	26.2x	116.3
—Vega	0.1	20.5x	0.7	26.2x	116.3
—Malibu	0.1	17.1x	0.7	26.2x	116.3
—Honda 150	0.1	23.2x	0.7	26.4x	116.3
—Datsun	0.1	20.2x	0.7	26.4x	116.3
Noncatalyst Automobiles					
—Mustang	0.1	13.7x	0.7	26.5x	116.3
—Pinto	0.1	20.5x	0.7	26.5x	116.3
—Caprice	0.1	11.4x	0.7	27.1x	116.3
—VW	0.1	22.1x	0.7	27.1x	116.3
—Mercury	0.1	12.4x	0.7	27.5x	116.3
—Buick	0.1	13.4x	0.7	27.5x	116.3
Heavy-Duty Diesel Trucks					
—GMC (Cycle 1, Idle)	11.5	2.99x	12.0	27.9x	127.6
—GMC (Cycle 1, NonIdle)	3.5	2.99x	4.0	27.9x	119.6
—GMC (Cycle 2, Idle)	11.5	2.99x	12.0	27.9x	70.8
—GMC (Cycle 2, NonIdle)	3.5	2.99x	4.0	27.9x	62.8
—Ford (Idle)	11.5	2.92x	12.0	29.8x	70.8
—Ford (NonIdle)	3.5	2.92x	4.0	29.8x	62.8
Hamburger Cooking					
—Regular Meat, Charbr.	0.1	22.9x	115.5	5.8x	115.7
—Extra-Lean Meat, Charbr.	0.1	23.0x	—	—	58.9
—Regular Meat, Fried	0.1	22.4x	—	—	58.9
—Extra-Lean Meat, Fried	0.1	22.6x	—	—	58.9

(a) At time $t=0$, emissions exit the stack or tailpipe. At time t_1 , emissions are diluted by a factor of D_1 . At time t_2 , emissions are diluted a second time by a factor of D_2 , yielding a total cumulative dilution of $D_1 \times D_2$. At time t_s , emissions are analyzed by the EAA.

(b) $D = (\text{Concentration before dilution}) / (\text{Concentration after dilution})$

potentially affected by more than 1-2%, so the presence of SO_2 did not significantly influence the size distribution results obtained for No. 2 fuel oil combustion.

These calculations were performed under the worst-case assumption that only SO_2 was available to react with the hydroxyl radicals generated within the EAA. In reality, other gas-phase species (e.g., NO_x) are present that would scavenge some of the radical species, reducing aerosol formation from SO_2 (Stelson, 1989b).

B.3.2 Residential Fireplace.

Emissions from seasoned pine burning in a traditional residential brick fireplace were measured throughout the course of a 3-hr fire. Figure B.2 shows the variations in the submicron mass emission rate with changes in the fire. Over a 10-fold difference in mass emissions was seen between a period in the middle of the fire when more wood was added and a later time when the fire was in the ember stage.

Size distribution measurements for four different stages during this pine fire are shown in Figure B.3. For all stages of the fire, a very broad aerosol mass distribution was obtained with a peak around 0.1 to 0.2 μm particle diameter. Only the intensity of the peak changed with the stage of the fire. Between 1.3 and 14 g of submicron mass were emitted per kg of wood burned at various stages of the fire (based on the average rate of wood combustion in the fire), with an overall average emission rate of 6.9 g/kg wood ($d_p < 0.7 \mu\text{m}$). By comparison, filter masses indicated an average fine aerosol emission rate (over all conditions) of 10 g/kg wood ($d_p < 2 \mu\text{m}$). A second experiment burning pine gave similar results, with an estimated submicron mass emission rate from the EAA data of 10 g/kg ($d_p < 0.7 \mu\text{m}$) vs. fine filter mass results of 16 g/kg ($d_p < 2 \mu\text{m}$).

Size distribution measurements were also taken during combustion of seasoned oak in the same fireplace. Mass distributions for four different stages of the fire are shown in Figure B.4. Again, over a 10-fold difference is seen between an active stage of the fire and the ember stage. For oak, at some times a bimodal-type mass distribution was seen, with peaks near 0.05 and 0.2 μm particle diameter. At other times, a single, much broader distribution was observed, with a peak near 0.1 μm .

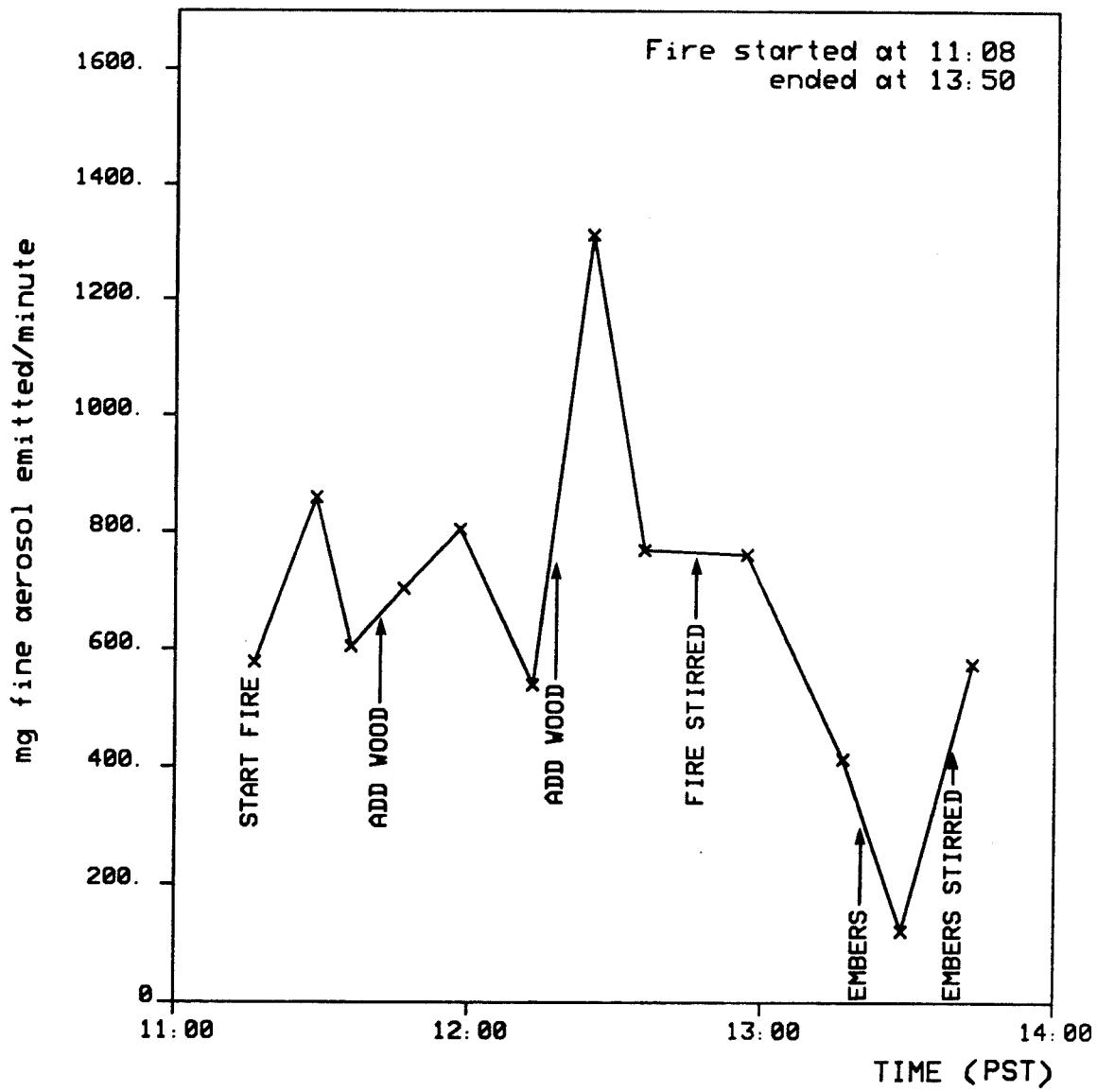


Figure B.2. Mass emissions from fireplace combustion of seasoned pine.

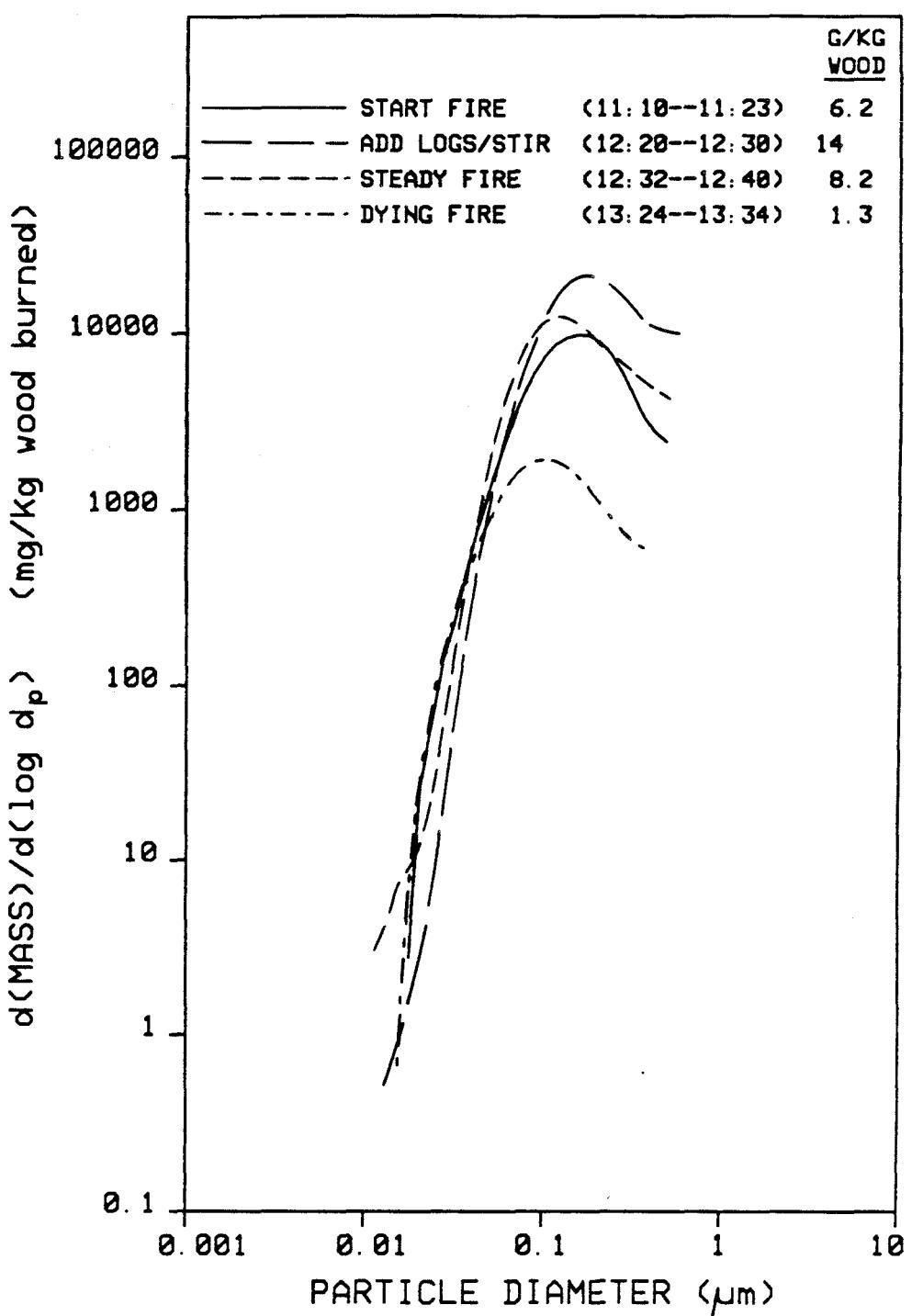


Figure B.3. Mass distribution of aerosol emissions from fireplace combustion of seasoned pine.

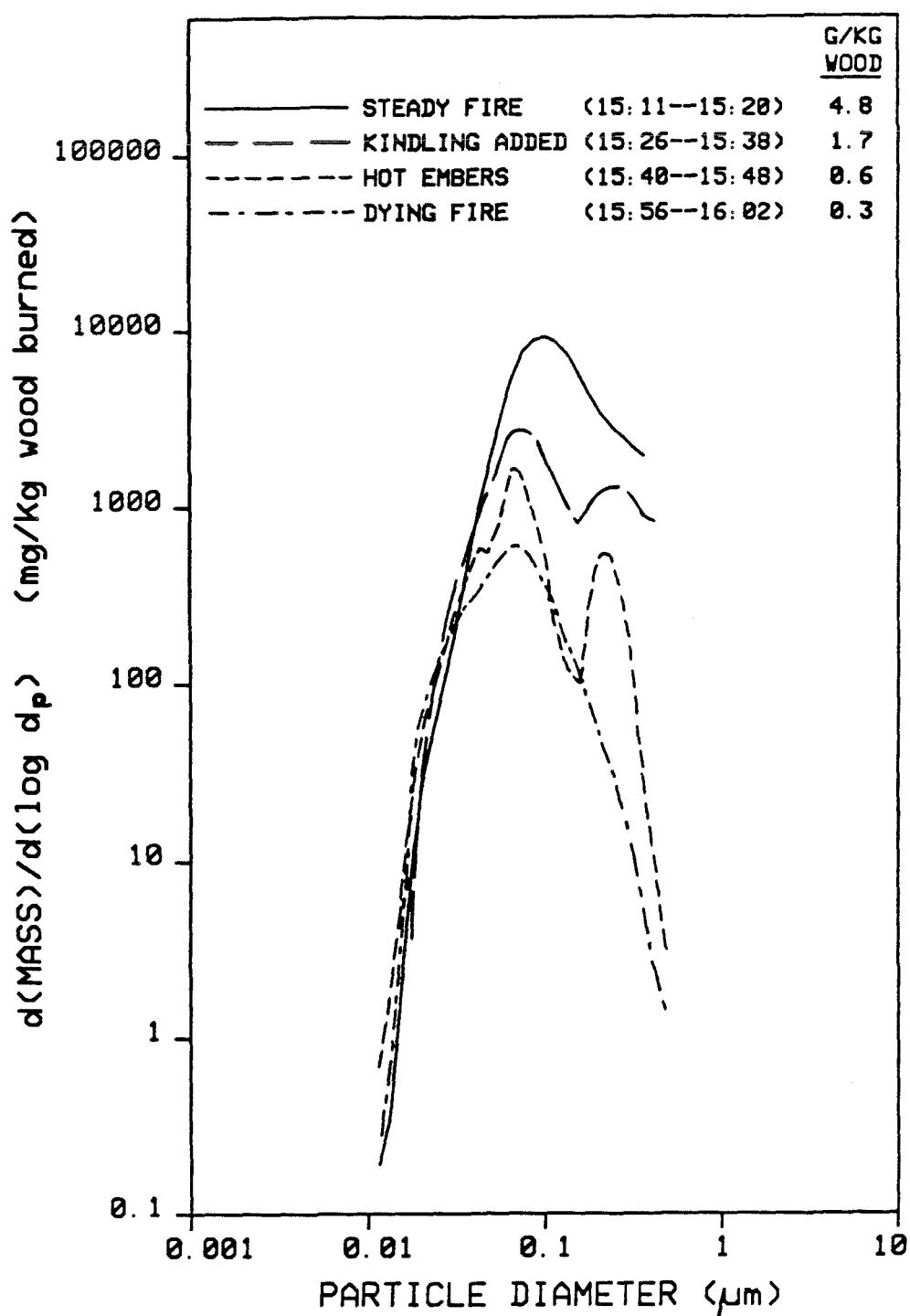


Figure B.4. Mass distribution of aerosol emissions from fireplace combustion of seasoned oak.

particle diameter. The submicron mass emission rates of 0.3 to 4.8 g/kg wood were measured using the EAA only during the last hour of a 3-hr fire, so the average value of 1.6 g/kg wood may be somewhat low. The gravimetrically-measured fine mass emission rate over the entire 3-hr fire was 6 g/kg wood.

B.3.3 Automobiles.

Emissions from thirteen automobiles were sampled during both a Federal Test Procedure (FTP) city driving cycle, and under steady state conditions at idle, 40 km/hr, and 90 km/hr. The FTP cycle is shown in Figure B.5. Both catalyst and noncatalyst vehicles were tested, using both domestic and foreign models. The cars were tested in as-received condition. The noncatalyst autos were fueled with leaded gasoline containing 58 or 90 mg of lead per liter of fuel, while the catalyst-equipped cars burned unleaded gasoline. A list of the vehicles appears in Table B.2.

Figure B.6 shows the average submicron mass emission rates for each of these cars, as measured by the EAA over the course of the 32 min FTP cycle. In customary units of mass emitted per distance driven, automobiles with large engines and/or poor fuel economy tended to register the highest emission rates. A dramatic difference is seen between the catalyst and noncatalyst vehicles: the noncatalyst cars have emission rates 10 to 30 times higher than most catalyst cars. The only catalyst automobile with a high mass emission rate was manufactured near the beginning of the introduction of catalytic converters into the vehicle fleet. Marked improvements are seen in the performance of the newer catalyst-equipped automobiles.

The mass distribution of submicron emissions under steady-state conditions was compared with the average distribution measured over the course of the FTP cycle. Figure B.7a-d shows mass distributions measured for four vehicles (2 catalyst, 2 noncatalyst) under different driving conditions, all plotted on the same scale.

Results typical of those obtained for many catalytic vehicles are shown in Figure B.7a. A single-modal, broad mass distribution is seen, with a peak between 0.1 and 0.3 μm particle diameter. The submicron emissions during the test cycle were about 10-fold higher than those measured under steady-state conditions.

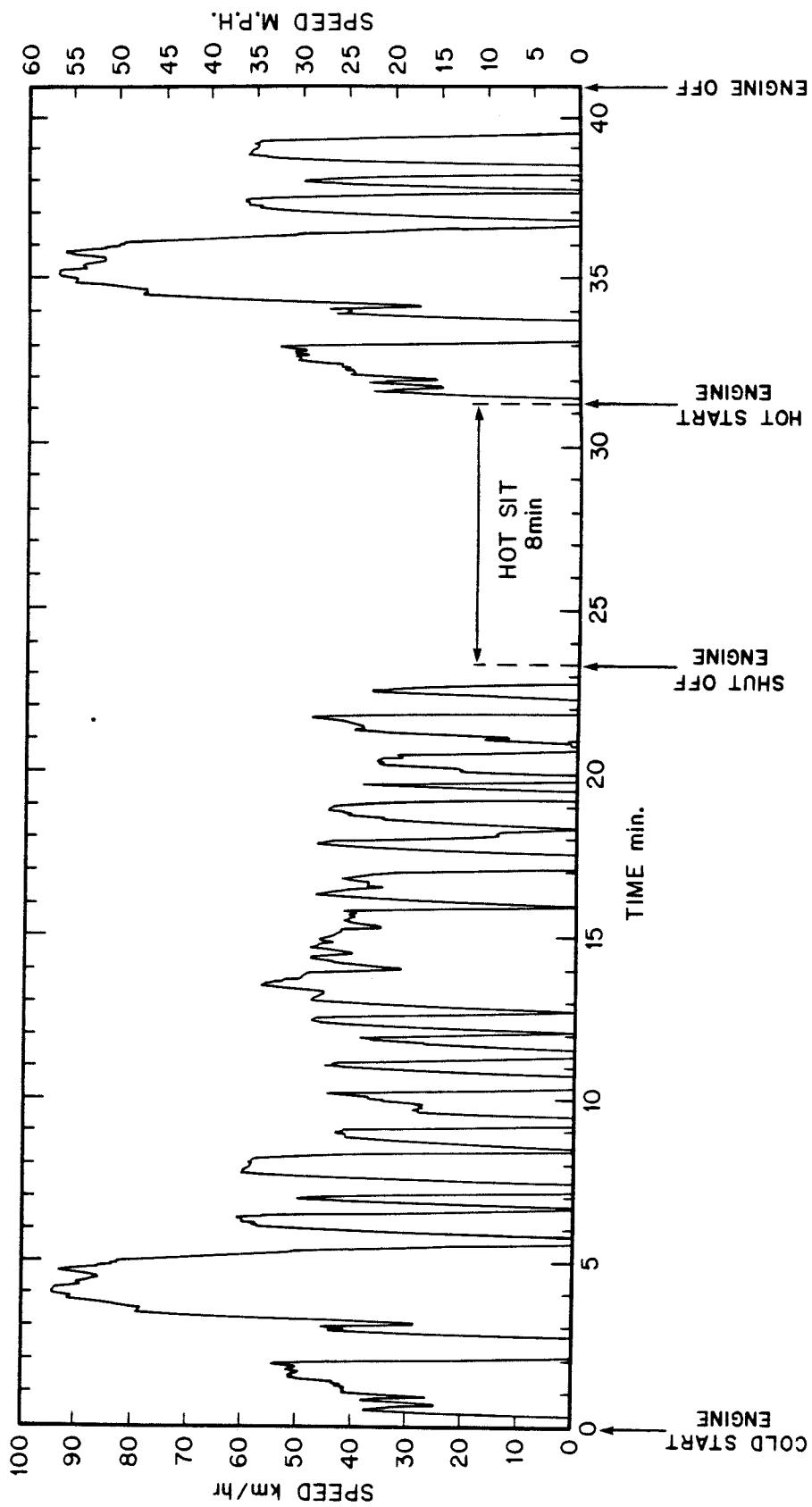


Figure B.5. Federal Test Procedure urban driving cycle.

Table B.2. Characteristics of Vehicles Tested

	Number of Cylinders	Engine Displacement (cu in)	Odometer Reading (miles)	FTP Fuel Economy (mi/gal)
NONCATALYST AUTOMOBILES				
1965 Mercury Monterey	8	390	139192	10.7
1969 Ford Mustang	8	302	141843	14.7
1970 Buick Skylark	8	350	88726	13.0
1972 Chevrolet Caprice	8	400	147249	12.3
1974 Ford Pinto	4	140	107138	16.7
1976 Volkswagen Beetle	4	97	80876	26.6
CATALYST AUTOMOBILES				
1977 Chevrolet Vega	4	140	88598	22.0
1980 Honda Civic 150	4	91	83862	27.5
1980 Honda 1500	4	91	149424	28.0
1980 Toyota Corolla	4	108	66832	20.6
1981 Datsun 200SX	4	119	81541	24.6
1983 Chevrolet Malibu CL	6	231	38826	17.7
1983 Dodge Omni	4	135	27280	22.7
HEAVY-DUTY DIESEL TRUCKS				
1987 GMC Truck (2-axle)	8	636	2920	7.9 ^(a)
1987 Ford Dump Truck (3-axle)	8	636	5581	7.2 ^(a)

(a) Mileage is for the truck cycle shown in figure B.10.

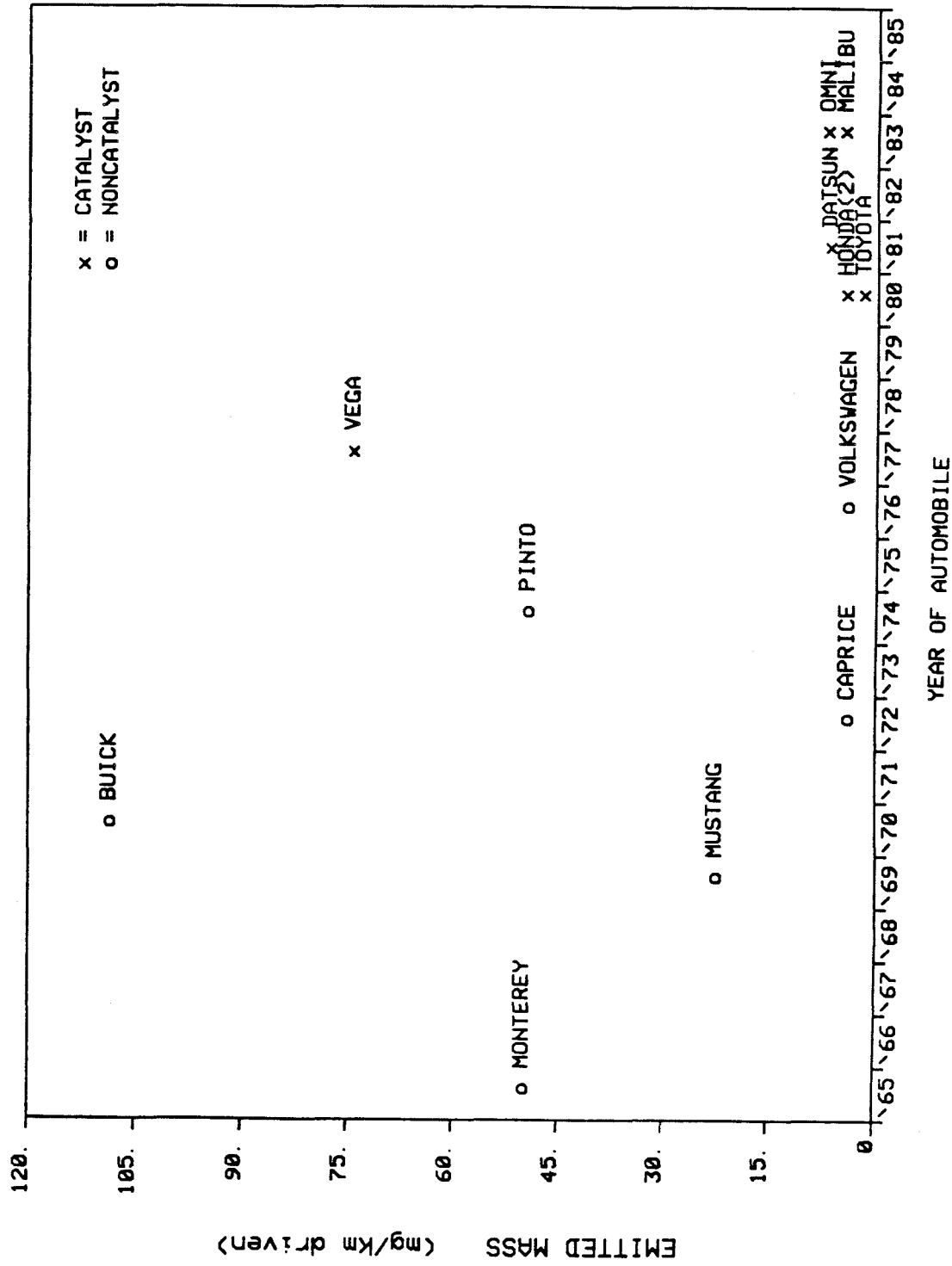


Figure B.6. Submicron aerosol emissions from catalyst and noncatalyst autos during Federal Test Procedure driving cycle.

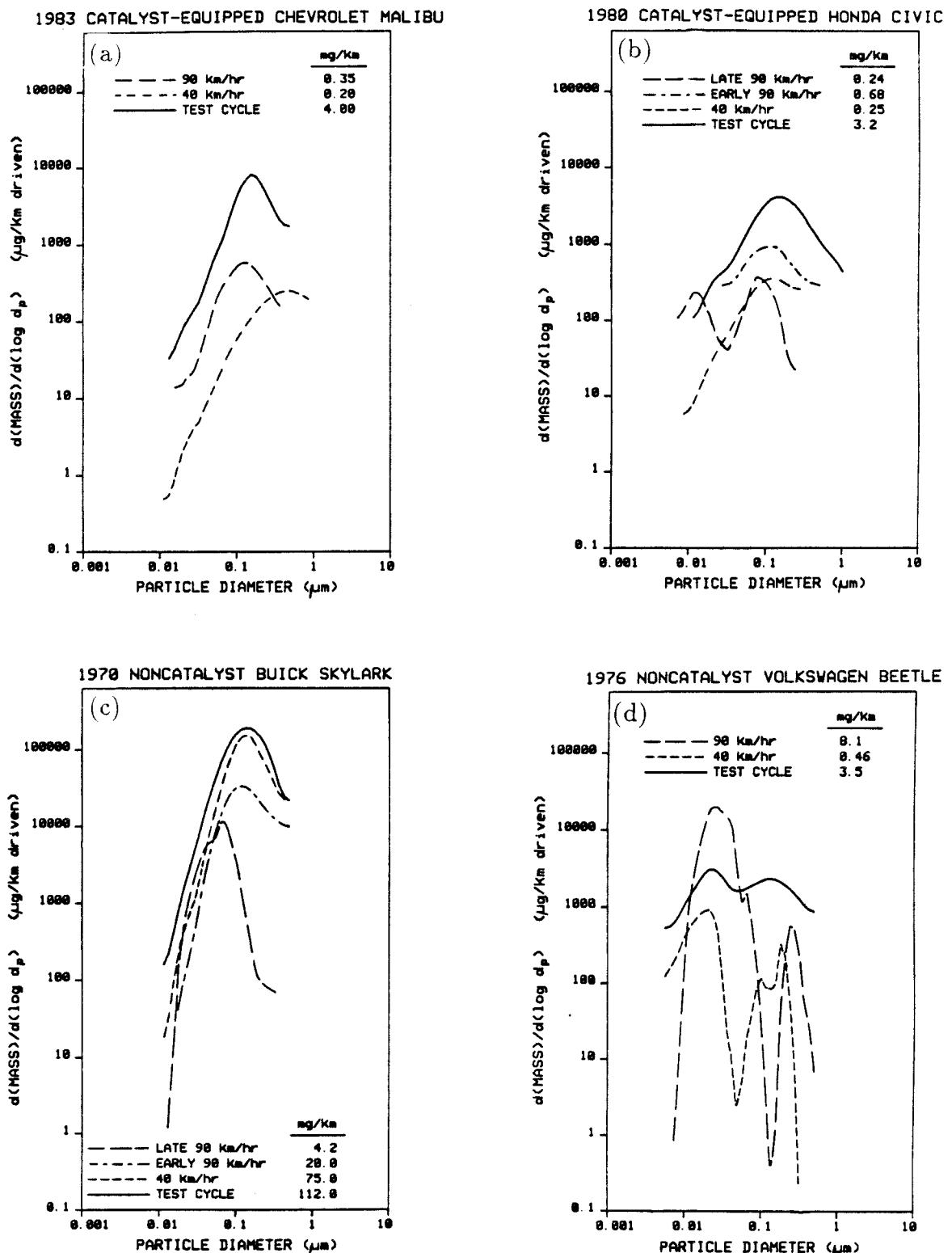


Figure B.7. Mass distribution of aerosol emissions from (a) 1983 catalyst-equipped Chevrolet Malibu; (b) 1980 catalyst-equipped Honda Civic; (c) 1970 noncatalyst Buick Skylark; and (d) 1976 noncatalyst Volkswagen Beetle.

For several of the catalyst-equipped autos, bimodal size distributions were obtained under certain conditions. For the vehicle plotted in Figure B.7b, substantial differences were seen between emissions at the beginning of the 90 km/hr steady state experiment vs. the later portion of the same experiment. Besides a significant drop in the mass emission rate, a second peak in the size distribution developed late in the 90 km/hr steady state test, with a peak value around $0.01 \mu\text{m}$ particle diameter.

Emissions were much higher from noncatalyst vehicles. Figure B.7c shows results typical of many of the noncatalyst vehicles tested, with the FTP test cycle producing the highest submicron aerosol emission rate. For the vehicle shown, substantial changes again are seen between the early and late stages of the steady state experiment at 90 km/hr. The lower emission rate seen in the later portion of the experiment could be due to greater engine efficiency once it has warmed up, or to less oil use once the piston rings have expanded.

Finally, Figure B.7d is shown to emphasize the complexity of the aerosol formation processes occurring in automobile emissions. This was one of several vehicles tested that produced atypical size distribution curves. In this case, the 90 km/hr steady state experiment led to the highest submicron aerosol emission rates. In addition, a definite bimodal distribution is seen under all conditions, with inconclusive indications of an occasional third peak in the distribution.

It is interesting to examine the average distributions gotten for the 7 catalyst and 6 noncatalyst vehicles tested. The small sample size poses a significant problem for averaging the catalyst-equipped automobiles. As was shown in Figure B.6, the 1977 Vega tested had an emission rate 10 to 20 times higher than the other 6 catalyst-equipped automobiles. In order to determine an aerosol mass distribution typical of the catalyst-equipped fleet of vehicles, the Vega was excluded in calculating the average results for the catalyst-equipped cars.

Figure B.8 shows the average results obtained for the noncatalyst and for the "typical" catalyst-equipped vehicles for the FTP driving cycle. Both mass distributions show evidence of a shoulder between 0.03 and $0.05 \mu\text{m}$ particle diameter, reflecting the nucleation mode observed for some, but not all, of the

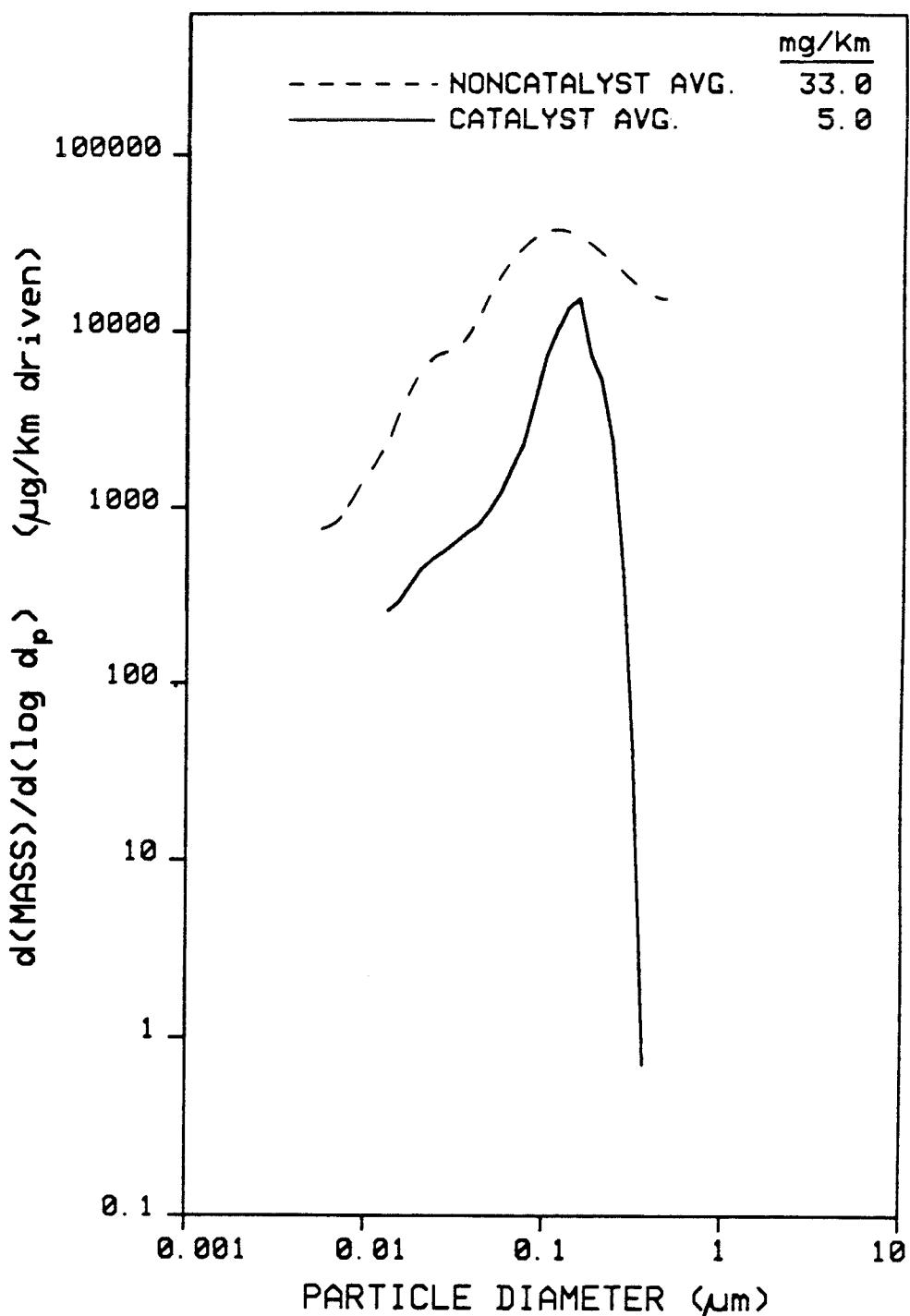


Figure B.8. Average mass distribution of aerosol emissions from catalyst and noncatalyst automobiles.

vehicles tested. A pronounced peak is seen in each mass distribution, at between 0.1 and 0.2 μm particle diameter.

B.3.4 Diesel Trucks.

Two heavy-duty diesel dump trucks also were tested while operating under load on a truck dynamometer. Due to limitations inherent in the truck dynamometer available, it was not possible to run the truck through a complicated driving cycle. Instead, the cycle shown in Figure B.9 was used. The transient acceleration/decelerations shown were included because of field observations that diesel truck emissions are most apparent when the truck is changing its operating mode.

The two trucks tested were both late model vehicles with low mileage (see Table B.2). Hence, the results should be considered to represent a best-case situation, both due to the excellent condition of the trucks and to the use of a driving cycle with a modest number of transient conditions.

The submicron aerosol mass distributions illustrated in Figure B.10 show a single mode with a peak around 0.2 μm particle diameter. The mass emission rate per distance driven is 10–100 times larger than that measured for the automobiles discussed earlier. Little difference is seen between the two pseudo-steady state vehicle speeds. The 460–470 mg/km submicron aerosol emission rate estimate obtained for the two trucks from integration of the EAA data is comparable to the 360–450 mg/km of fine mass measured gravimetrically.

B.3.5 Meat Cooking.

The size distribution of aerosol emissions from meat-cooking operations was measured during both frying and charbroiling of extra-lean and regular hamburger meat. For each of the four experiments, eighty 1/4-lb (113 g) patties were cooked, eight at a time, while sampling emissions from the exit to the kitchen vent above the cooking operations. A typical baffle-type grease extractor was in place in the hood above the meat cooking area (upstream of the sampling point), with an estimated removal efficiency of about 60% by mass (Bornstein, 1978).

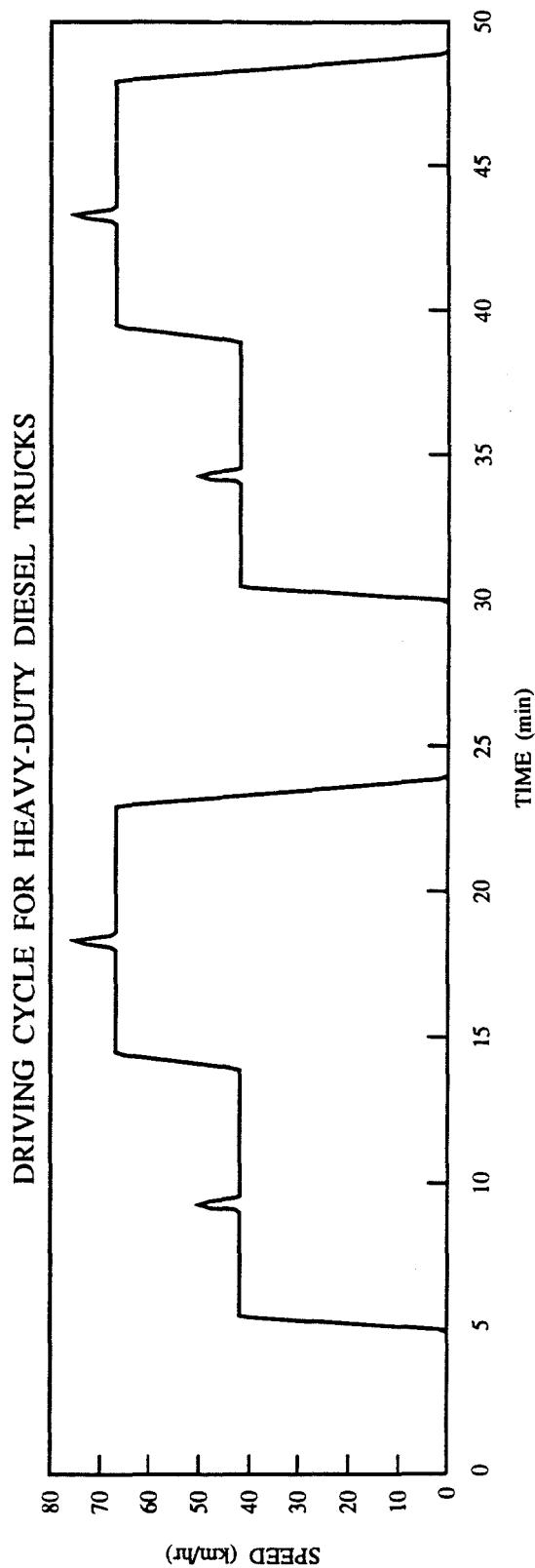


Figure B.9. Driving cycle for heavy-duty diesel trucks.

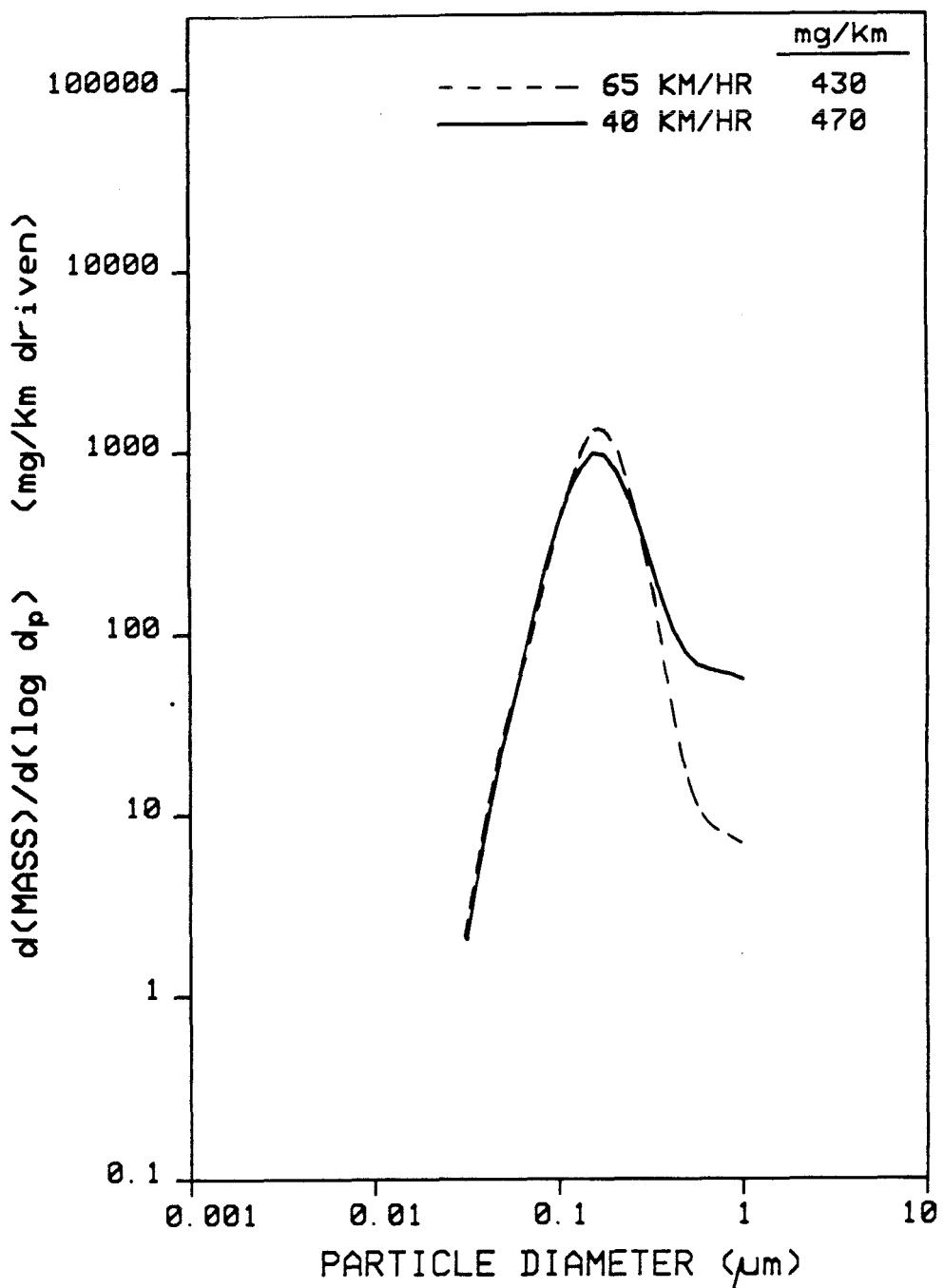


Figure B.10. Mass distribution of aerosol emissions from a 1987 heavy-duty Ford diesel dump truck.

Figure B.11 shows the size distributions measured during these experiments. A drastic difference was seen between charbroiling (with natural gas) and frying, with charbroiling producing 20 to 80 times as much submicron aerosol mass as frying. Charbroiling regular hamburger meat produced about 4 times as much submicron aerosol mass as charbroiling extra-lean meat. For frying, emissions from the two different types of meat were about the same. All measurements showed a broad, single-modal mass distribution with a peak around $0.2 \mu\text{m}$ particle diameter.

B.3.6 Mass Emission Rates.

A comparison between the mass emission rates calculated using the submicron aerosol size distributions and those measured gravimetrically using the fine ($< 2 \mu\text{m}$) aerosol collected on a Teflon filter is shown in Table B.3. Several of the automotive emissions tests are grouped because the filter samples were accumulated over the course of two or three consecutive tests.

For most of the sources, remarkably good agreement is obtained between the two methods. In all but a few cases, the differences in mass emission rate that do exist between the two measurement methods show lower estimates from the EAA data base than from the fine filter samples. This observation is consistent with the knowledge that the upper limit of the EAA size distributions reported is about $0.7 \mu\text{m}$ while the fine filter samples contain any additional aerosol that resides between 0.7 and $2 \mu\text{m}$ particle diameter. The assumption of unit particle density when reducing the EAA size distribution data may also lead to an underestimate of the submicron aerosol mass in some cases.

B.4 CONCLUSIONS

Measurement of the submicron aerosol size distributions of cooled, diluted emissions from some of the common combustion sources found in urban areas shows that the most prominent peaks in their primary submicron mass distributions occur at $\leq 0.2 \mu\text{m}$ particle diameter. By comparison, the submicron aerosol size distribution observed for Los Angeles area ambient aerosols (see for example Larson *et al.*, 1988) usually peaks at a larger particle size closer to $0.4 \mu\text{m}$ particle

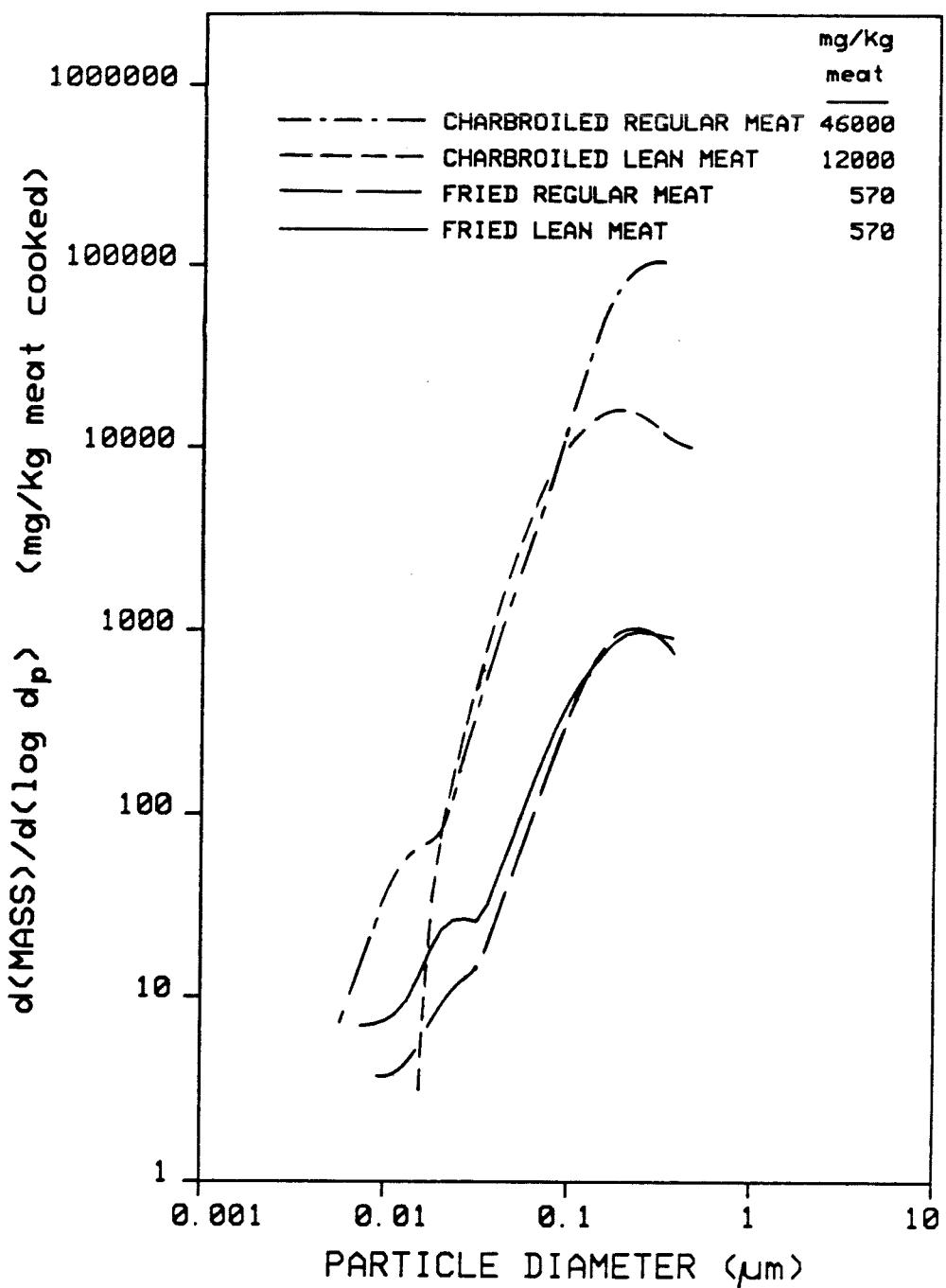


Figure B.11. Mass distribution of aerosol emissions from cooking hamburger meat.

**Table B.3. Comparison of Submicron Mass Emission Rates
Measured by an Electrical Aerosol Analyzer
to Fine Mass Measurements Made by Filtration**

Source	(units)	Submicron Mass Emission Rate from EAA	Fine Mass Emission Rate by Filtration
Industrial Boiler ($\mu\text{g}/\text{kJ}$ fuel burned)			
—No. 2 Fuel Oil		8	11
Fireplace (g/kg wood burned)			
—Seasoned Pine (exp. 1)		10	16
—Seasoned Pine (exp. 2)		6.9	10
—Seasoned Oak		1.6 ^(a)	6.2
Catalyst Automobiles (mg/km driven)			
—Toyota, Omni		4.5	10
—Honda 1500, Vega, Malibu		27	31
—Honda 150, Datsun		4.0	12
Fleet Average (excl. Vega)		5.0	11 ^(b)
Noncatalyst Automobiles (mg/km driven)			
—Mustang, Pinto		37	61
—Caprice, VW		3.5	17
—Mercury, Buick		81	94
Fleet Average		33	57
Heavy-Duty Diesel Trucks (mg/km driven)			
—GMC		470	360
—Ford		460	450
Hamburger Cooking (g/kg meat cooked)			
—Regular Meat, Charbroiled		46	40
—Extra-Lean Meat, Charbroiled		12	7.1
—Regular Meat, Fried		0.6	1.1
—Extra-Lean Meat, Fried		0.6	1.4

(a) Based on last hour of fire only.

(b) Approximate value based on first and third samples only.

diameter, demonstrating that considerable modification of the primary aerosol mass distribution occurs due to subsequent atmospheric processes. In the present experiments, the same method of sampling was used for all source types, creating a data set that can be used with mathematical models to study the evolution of the atmospheric aerosol size distribution from the primary emissions.

1) For boiler emissions, combustion of No. 2 fuel oil produced a bimodal mass distribution with a nucleation mode peak between 0.02 and 0.06 μm and a larger mode peak near 0.3 μm .

2) For fireplace emissions, the size distribution varied greatly in intensity throughout the course of the fire, with mass emissions about 10 times higher when new wood was added than when the ember stage was reached. Typically, the emissions showed a single, broad mode in the mass distribution with a peak at 0.1 to 0.2 μm particle diameter.

3) For automobiles, considerable differences were seen in the aerosol size distributions of emissions from the different vehicles tested. Mass emission rates from noncatalyst cars were much higher than from catalyst cars. Emissions over a variable driving cycle were higher than under steady state conditions. Typically, a broad mass distribution having a single mode with a peak around 0.1 μm particle diameter was observed, but bimodal distributions also were seen for some cars.

4) Diesel trucks showed a submicron aerosol mass distribution with a single mode that peaked at about 0.2 μm particle diameter. The mass emission rates from these diesel trucks were 10 to 100 times higher than those of the automobiles tested.

5) Meat-cooking operations produced a broad mass distribution with a peak around 0.2 μm particle diameter. Charbroiling of hamburger meat produced emissions that were 20 to 80 times higher than from frying the same meat. Charbroiling extra-lean meat instead of regular meat reduced emissions by about 4-fold.

6) For most sources, the fine aerosol mass emission rates calculated by integration of the submicron aerosol size distributions assuming unit particle density agreed rather well with the fine mass emission rates measured gravimetrically by filtration of the diluted source effluent.

B.5 REFERENCES

Berner, A., Lurzer, C., Pohl, F., Preining, O., and Wagner, P. (1979). The Size Distribution of the Urban Aerosol in Vienna, *Sci. Total Environ.* 13:245-261.

Berner, A., and Lurzer, C. (1980). Mass Size Distributions of Traffic Aerosols at Vienna, *J. Phys. Chem.* 84:2079-2083.

Berner, A., and Reischl, G. (1983). Mass Size Distributions of Traffic Aerosols of Vienna, *J. Aerosol Sci.* 14:324-325.

Berner, A., Reischl, G., and Puxbaum, H. (1984). Size Distribution of Traffic Derived Aerosols, *Sci. Total Environ.* 36:299-303.

Bornstein, M.I. (1978). Study to Develop Background Information for the Direct Meat-Firing Industry, EPA-450/3-78-027 (PB282-486), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Carter, W.A., Buening, H.J., and Hunter, S.C. (1978). Emission Reduction on Two Industrial Boilers with Major Combustion Modifications, EPA-600/7-78-099a, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Cato, G.A., Buening, H.J., DeVivo, C.C., Morion, B.G., and Robinson, J.M. (1974). Field Testing: Application of Combustion Modifications to Control Pollutant Emissions from Industrial Boilers - Phase I, EPA650/2-74-078a (PB238-920), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Cato, G.A., Muzio, L.J., and Shore, D.E. (1976). Field Testing: Application of Combustion Modifications to Control Pollutant Emissions from Industrial Boilers - Phase II, EPA600/2-76-086a, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

Dasch, J.M. (1982). Particulate and Gaseous Emissions from Wood-Burning Fireplaces, *Environ. Sci. Technol.* 16:639-645.

Groblicki, P.J., and Begeman, C.R. (1980). Particle Size Variation in Diesel Car Exhaust, Paper No. 790421, Society of Automotive Engineers, Warrendale, Pennsylvania.

Hidy, G.M., Appel, B.R., Charlson, R.J., Clark, W.E., Friedlander, S.K., Hutchison, D.H., Smith, T.B., Suder, J., Wesolowski, J.J., and Whitby, K.T. (1975). Summary of the California Aerosol Characterization Experiment, *J. Air Pollut. Control Assoc.* 25:1106-1114.

Hildemann, L.M., Cass, G.R., and Markowski, G.R. (1989). A Dilution Stack Sampler for Collection of Organic Aerosol Emissions: Design, Characterization and Field Tests, *Aerosol Sci. Technol.* 10:193-204. [See Chapter 2.]

John, W., and Reischl, G. (1980). A Cyclone for Size-Selective Sampling of Air, *J. Air Pollut. Control Assoc.* 30:872-876.

Khatri, N.J., and Johnson, J.H. (1979). Physical Size Distribution Characterization of Diesel Particulate Matter and the Study of the Coagulation Process, paper no. 780788, *SAE Transactions* 87:3023-3047.

Kittelson, D.B., Dolan, D.F., Diver, R.B., and Aufderheide, E. (1979). Diesel Exhaust Particle Size Distributions — Fuel and Additive Effects, paper no. 780787, *SAE Transactions* 87:3011-3022.

Kittelson, D.B., Kadue, P.A., Scherrer, H.C., and Lovrien, R.E. (1988). Characterization of Diesel Particles in the Atmosphere, Final Report to the Coordinating Research Council, AP-2 Project Group, Atlanta, Georgia.

Larson, S.M., Cass, G.R., Hussey, K.J., and Luce, F. (1988). Verification of Image Processing Based Visibility Models, *Environ. Sci. Technol.* 22:629-637.

Markowski, G.R. (1987). Improving Twomey's Algorithm for Inversion of Aerosol Measurement Data, *Aerosol Sci. Technol.* 7:127-141.

Miller, D.F., Levy, A., Pui, D.Y.H., Whitby, K.T., and Wilson, W.E., Jr. (1976). Combustion and Photochemical Aerosols Attributable to Automobiles, *J. Air Pollut. Control Assoc.* 26:576-581.

Rau, J.A. (1989). Composition and Size Distribution of Residential Wood Smoke Particles, *Aerosol Sci. Technol.* 10:181-192.

Rau, J.A., Huntzicker, J.J., and Edgerton, S.A. (1987). Size Distributed Receptor Modeling of Atmospheric Aerosol, Paper No. 87-14.4 presented at the 80th Annual Meeting of Air Pollution Control Association, June 21-26, 1987.

Raunemaa, T., Hyvonen, V., and Kauppinen, E. (1984). Submicron Size Particle Growth and Chemical Transformation in Gasoline Exhaust—I. Size Distribution and Transformation, *J. Aerosol Sci.* 15:335-341.

Sexton, K., Webber, L.M., Hayward, S.B., and Sextro, R.G. (1986). Characterization of Particle Composition, Organic Vapor Constituents, and Mutagenicity of Indoor Air Pollutant Emissions, *Environ. Int.* 12:351-362.

Stelson, A.W. (1989a). Theoretical and Experimental Evidence for Artifact Particulate Matter Formation in Electrical Aerosol Analyzers, *Environ. Sci. Technol.* 23:125-128.

Stelson, A.W. (1989b). Personal communication, Atlanta University Center, Inc., Atlanta, Georgia.

Taback, H.J., Brienza, A.R., Macko, J., and Brunetz, N. (1979). Fine Particulate Emissions from Stationary and Miscellaneous Sources in the South Coast Air Basin. Final Report and Appendices. NTIS Nos. PB 293 922 and PB 293 923.

Verrant, J.A., and Kittelson, D.A. (1978). Sampling and Physical Characterization of Diesel Exhaust Aerosols, paper no. 770720, *SAE Transactions* 86:2623-2636.

Whitby, K.T., Clark, W.E., Marple, V.A., Sverdrup, G.M., Sem, G.J., Willeke, K., Liu, B.Y.H., and Pui, D.Y.H. (1975). Characterization of California Aerosols—I. Size Distributions of Freeway Aerosol, *Atmos. Environ.* 9:463-482.

Wilson, W.E., Spiller, L.L., Ellestad, T.G., Lamothe, P.J., Dzubay, T.G., Stevens, R.K., Macias, E.S., Fletcher, R.A., Husar, J.D., Husar, R.B., Whitby, K.T., Kittelson, D.B., and Cantrell, B.K. (1977). General Motors Sulfate Dispersion Experiment: Summary of EPA Measurements, *J. Air Pollut. Control Assoc.* 27:46-51.

Appendix C

Bulk Chemical Analysis Results for Individual Source Tests

The following tables contain the results of the bulk chemical analyses for those sources where more than one experiment was performed. The values (except for the fine mass emission rates) are expressed as percent of the total fine particulate mass collected. The measurements have been corrected for the contribution of any trace species present in the dilution air, and as a result, negative values which are not statistically significant occasionally occur.

The standard deviation values listed with the individual measurements reflect the accuracy of the measurement methods. On the right side of each table, the mean of the multiple experimental values is calculated, along with the standard deviation of the mean. The value under the "Average of the S.D.s" column is the average standard deviation resulting from the measurement method used for that species. The "Overall S.D." value, which is calculated as the square root of the sum of the square of the measurement method standard deviation plus the square of the standard deviation of the mean, is considered to represent the total standard deviation of the mean measurement. An asterisk is used to mark those species with mean values that are greater than the overall standard deviation.

TABLE C. 1. BOILER BURNING NO. 2 FUEL OIL

46x Dilution		49x Dilution		27x Dilution		94x Dilution		36x Dilution		TEST 6 (% + SD)		S.D. of MEAN		Avg. of S.D.s	
TEST 1 (% + SD)		TEST 2 (% + SD)		TEST 3 (% + SD)		TEST 4 (% + SD)		TEST 5 (% + SD)		TEST 6 (% + SD)		MEAN		S.D.	
AL	0.5698	0.0589	0.4990	0.0344	0.2495	0.0166	0.4211	0.0364	0.3644	0.0230	0.4206	0.1236	0.0336	0.1281	*
SI	0.4861	0.0443	0.4624	0.0304	0.2983	0.0176	2.8166	0.1481	0.3759	0.0224	0.8876	1.0808	0.0626	1.0821	*
P	0.2192	0.0474	0.2126	0.0441	0.1146	0.0231	0.1686	0.0344	0.1627	0.0309	0.1736	0.0434	0.0360	0.0684	*
S	12.0832	0.6444	11.6913	0.7124	4.8370	0.2480	8.8902	0.4734	7.9201	0.4296	9.1024	2.9862	0.5016	3.0083	*
CL-	-0.0050	0.0083	0.0000	0.0224	-0.0020	0.0106	-0.0041	0.0246	0.0000	0.0151	-0.0023	0.0222	0.0222	0.0223	
K	0.0000	0.0143	0.0000	0.0039	0.0000	0.0028	0.0097	0.0080	0.0021	0.0026	0.0024	0.0042	0.0063	0.0076	
CA	0.0160	0.0093	-0.0034	0.0026	0.0052	0.0019	0.0086	0.0056	0.0021	0.0015	0.0057	0.0069	0.0041	0.0081	
TI	0.0000	0.0060	0.0001	0.0017	0.0010	0.0012	0.0030	0.0033	0.0019	0.0009	0.0012	0.0013	0.0026	0.0029	
V	0.0011	0.0051	0.0006	0.0013	-0.0008	0.0010	0.0024	0.0028	0.0000	0.0008	0.0006	0.0012	0.0022	0.0026	
CR	0.0073	0.0054	0.0013	0.0014	0.0007	0.0010	0.0002	0.0031	0.0003	0.0008	0.0020	0.0033	0.0038	0.0038	
MN	0.0000	0.0070	0.0000	0.0019	0.0000	0.0013	0.0000	0.0041	0.0000	0.0013	0.0000	0.0031	0.0031	0.0031	
FE	0.2131	0.0186	0.1166	0.0084	0.0836	0.0054	0.1210	0.1100	0.0938	0.0059	0.1266	0.0613	0.0097	0.0522	*
MI	-0.0008	0.0047	0.0006	0.0012	-0.0006	0.0008	0.0023	0.0027	0.0006	0.0008	0.0004	0.0012	0.0020	0.0024	
CU	-0.0111	0.0058	0.0036	0.0022	0.0032	0.0011	0.0066	0.0029	0.0048	0.0008	0.0012	0.0069	0.0026	0.0074	
ZN	-0.0038	0.0046	0.0027	0.0017	0.0007	0.0008	0.0016	0.0021	0.0015	0.0007	0.0006	0.0025	0.0020	0.0032	
GA	0.0008	0.0036	-0.0007	0.0010	0.0003	0.0007	-0.0005	0.0021	0.0002	0.0007	0.0000	0.0006	0.0016	0.0017	
AS	0.0000	0.0167	0.0043	0.0043	0.0000	0.0032	0.0048	0.0084	0.0006	0.0028	0.0019	0.0024	0.0069	0.0073	
SE	0.0046	0.0053	0.0009	0.0014	0.0018	0.0010	-0.0004	0.0032	0.0018	0.0009	0.0017	0.0018	0.0024	0.0030	
BR	0.0160	0.0072	-0.0001	0.0019	0.0010	0.0013	0.0078	0.0042	0.0008	0.0013	0.0049	0.0065	0.0032	0.0072	
RB	0.0006	0.0090	0.0027	0.0024	0.0000	0.0017	0.0023	0.0053	0.0001	0.0016	0.0011	0.0013	0.0040	0.0042	
SH	0.0062	0.0110	-0.0026	0.0030	-0.0021	0.0021	0.0000	0.0064	0.0000	0.0020	0.0003	0.0035	0.0049	0.0060	
Y	0.0226	0.0134	0.0009	0.0036	-0.0014	0.0026	-0.0048	0.0077	0.0017	0.0026	0.0038	0.0108	0.0059	0.0073	
ZR	0.0034	0.0558	-0.0077	0.0160	-0.0086	0.0106	-0.0093	0.0322	-0.0037	0.0103	-0.0052	0.0062	0.0248	0.0253	
HO	0.0000	0.0381	-0.0028	0.0102	-0.0028	0.0072	0.0200	0.0222	-0.0068	0.0089	0.0017	0.0104	0.0169	0.0199	
PD	0.0068	0.0338	-0.0080	0.0093	0.0022	0.0064	0.0000	0.0198	0.0000	0.0063	0.0000	0.0161	0.0161	0.0160	
AG	0.0193	0.0474	-0.0074	0.0127	0.0000	0.0088	-0.0015	0.0274	-0.0046	0.0089	0.0014	0.0103	0.0234	0.0234	
CD	0.0117	0.0616	-0.0036	0.0166	0.0000	0.0114	-0.0116	0.0346	-0.0087	0.0112	-0.0044	0.0121	0.0271	0.0297	
1H	-0.0017	0.0771	-0.0080	0.0209	-0.0061	0.0146	-0.0172	0.0443	-0.0063	0.0142	-0.0061	0.0086	0.0342	0.0353	
SM	-0.0163	0.0903	-0.0053	0.0243	0.0116	0.0172	0.0139	0.0539	-0.0019	0.0172	0.0006	0.0121	0.0406	0.0424	
SB	0.0000	0.2037	0.0136	0.0539	0.0211	0.0376	0.0004	0.1203	0.0000	0.0380	0.0170	0.0207	0.0907	0.0930	
BA	-0.2069	0.3776	-0.0764	0.1017	0.0000	0.0706	0.0000	0.2211	0.0000	0.0710	-0.0563	0.0899	0.1684	0.1808	
LA	0.0000	0.6918	0.0000	0.1868	0.0000	0.1292	0.0000	0.4001	-0.0921	0.1283	0.0292	0.1234	0.3072	0.3311	
HG	0.0019	0.0663	-0.0020	0.0017	-0.0012	0.0012	0.0007	0.0037	0.0003	0.0012	-0.0001	0.0016	0.0028	0.0032	
PB	0.0826	0.0252	0.0217	0.0068	0.0247	0.0049	0.0146	0.0143	0.0168	0.0046	0.0319	0.0287	0.0112	0.0308	*
EC	26.9068	1.8270	22.6834	1.6198	41.3663	2.2830	39.6006	2.6779	15.1008	0.9820	28.9114	11.2448	1.8679	11.3972	*
DC	9.9046	3.6424	6.6186	2.0361	3.302	6.1411	9.9666	2.3908	0.3446	4.8028	3.2744	0.6671	3.3116	3.0795	
Backup filter DC	0.8426	0.7791	0.3742	0.9787	0.3002	1.7882	0.7692	0.0361	0.2297	0.8871	0.6280	0.4886	0.7856	0.7856	*
HG+ HG+	0.0471	0.0193	0.0711	0.0050	0.0307	0.0016	0.0008	0.0034	0.0032	0.0132	0.0203	0.0082	0.0210	0.0211	
MA+ MA+	0.1716	0.1330	0.0736	0.0344	0.2881	0.0264	0.6717	0.0676	0.0418	0.0218	0.2494	0.2549	0.0664	0.2611	
CL- CL-	0.1565	0.1633	0.0401	0.0422	0.0303	0.0312	0.0261	0.0822	0.0266	0.0269	0.0559	0.0565	0.0692	0.0893	
MO3- MO3-	0.1169	0.1628	0.0287	0.0420	0.2189	0.0326	0.8333	0.0880	0.0196	0.0228	0.2436	0.3193	0.0704	0.3466	
MO4- MO4+	35.4378	0.6152	36.2729	1.3171	22.6486	0.3426	26.2196	0.6146	36.9234	0.8678	31.6004	6.6941	0.7494	6.6366	*
12.6708	0.3633	6.2779	0.3260	1.1671	0.0463	9.0837	0.4469	1.8776	0.0636	6.1954	4.8188	0.2490	4.8262		
Fine Mass Emission Rate (ng/kJ burned)	4.6916	0.0492	0.3033	12.7434	0.0258	9.2586	0.0926	9.2586	0.0926	11.2451	0.2107	9.3690	3.0765	3.0765	

TABLE C.2. AUTOMOBILE TESTS

	CATALYST CARS		CATALYST CARS		CATALYST CARS		S.D. of MEAN	Avg. of S.D.s	Overall S.D.
	TEST 1 (% + SD)	TEST 2 (% + SD)	TEST 3 (% + SD)	TEST 1 (% + SD)	TEST 2 (% + SD)	TEST 3 (% + SD)			
AL	0.0000 0.7709	0.0000 0.1651	0.2090 0.3504	0.0697 0.1207	0.4256 0.4422	0.0697 0.4256	0.1207	0.4256	0.4422
SI	-0.3748 0.6143	0.0000 0.0961	0.49861 0.3163	0.0404 0.4369	0.3089 0.5360	0.0404 0.4369	0.3163	0.3089	0.5360
P	0.0000 0.3040	0.2708 0.2256	0.2420 0.1779	0.1709 0.1987	0.2359 0.2789	0.1709 0.1987	0.2256	0.2359	0.2789
S	0.0000 2.8623	0.0000 0.5683	0.0000 1.2460	0.0000 0.0000	1.6659 1.5659	0.0000 0.0000	1.2460	1.6659	1.5659
CL	0.1228 1.1947	0.0000 0.2389	-0.0092 0.6063	0.0379 0.0377	0.6470 0.6612	0.0379 0.0377	0.6063	0.6470	0.6612
K	1.2149 0.6901	-0.0173 0.0958	0.0655 0.2191	0.4180 0.6811	0.3360 0.7680	0.0655 0.3360	0.2191	0.4180	0.7680
CA	0.4768 0.4091	0.4107 0.0876	0.9906 0.4319	0.6267 0.3177	0.3096 0.4436 *	0.9906 0.3096	0.4319	0.6267	0.4436 *
TI	-0.0161 0.1802	0.0044 0.0407	0.0564 0.0846	0.0149 0.0364	0.1085 0.1144	0.0149 0.0364	0.0846	0.1085	0.1144
V	-0.0550 0.1462	0.0086 0.0289	-0.0185 0.0616	-0.0216 0.0319	0.0792 0.0854	-0.0185 0.0792	0.0616	0.0216	0.0854
CR	0.0136 0.1640	-0.0382 0.0326	-0.0647 0.0724	-0.0298 0.0398	0.0883 0.0861	-0.0647 0.0883	0.0326	0.0298	0.0861
MN	-0.0664 0.1916	-0.0148 0.0389	-0.0441 0.0869	-0.0414 0.0264	0.1058 0.1088	-0.0441 0.1058	0.0389	0.0869	0.1088
FE	0.4504 0.4623	-0.1690 0.0879	0.1602 0.2136	0.1609 0.2613	0.3890 0.3990	0.1602 0.3890	0.0879	0.2136	0.3990
MI	-0.1190 0.1635	0.0051 0.0335	0.2381 0.1220	0.0414 0.1813	0.1063 0.2102	0.0051 0.1063	0.1220	0.0414	0.2102
CU	0.0000 0.1992	0.8704 0.0786	2.4817 0.9866	1.1174 1.2877	0.4211 0.4211	0.8704 1.2877	0.0786	1.1174	0.4211
ZN	0.3481 0.1944	0.8968 0.0734	1.9322 0.7662	1.0590 0.8044	0.8761 * 0.8761 *	1.9322 0.8761 *	0.7662	1.0590	0.8761 *
GA	0.0000 0.1268	0.0000 0.0256	0.0000 0.0643	0.0000 0.0000	0.0689 0.0689	0.0000 0.0689	0.0256	0.0643	0.0689
AS	0.0817 0.3997	-0.0456 0.0797	-0.1710 0.1866	-0.0416 0.1314	0.2220 0.2679	-0.1710 0.2220	0.0797	0.1866	0.2679
SE	-0.0424 0.1366	-0.0061 0.0281	-0.0153 0.0614	-0.0213 0.0189	0.0764 0.0777	-0.0061 0.0764	0.0281	0.0614	0.0777
BR	0.0819 0.1923	-0.0271 0.0389	0.0665 0.0860	0.0404 0.0900	0.1220 0.1220	-0.0271 0.1220	0.0389	0.0860	0.1220
RB	-0.2634 0.2670	-0.0046 0.0480	-0.1083 0.1099	-0.1247 0.1304	0.1304 0.1383	-0.0046 0.1304	0.0480	0.1099	0.1383
SR	-0.2677 0.3136	0.0099 0.0598	0.0227 0.1263	-0.0784 0.1641	0.2338 0.2338	0.0099 0.1641	0.0598	0.1263	0.2338
Y	0.0000 0.3622	0.0000 0.0724	0.0746 0.1695	-0.0416 0.1314	0.2220 0.2679	0.0000 0.1314	0.0724	0.1695	0.2679
ZR	0.0000 1.5443	0.0000 0.3096	0.0000 0.6698	0.0000 0.0000	0.1980 0.2027	0.0000 0.1980	0.3096	0.6698	0.2027
HO	1.0169 1.0764	-0.1677 0.2040	0.0847 0.4298	0.3046 0.6277	0.8412 0.8412	-0.1677 0.8412	0.2040	0.4298	0.8412
PD	-0.0238 0.9848	-0.0247 0.2009	0.2339 0.4460	0.0618 0.1490	0.6672 0.6672	-0.0247 0.6672	0.2009	0.4460	0.6672
AG	0.0000 1.4137	0.0000 0.2815	0.0000 0.6026	0.0000 0.0000	0.1666 0.1666	0.0000 0.1666	0.2815	0.6026	0.1666
CD	0.0000 1.7602	0.0000 0.3503	0.4329 0.7881	0.0249 0.0431	0.9829 0.9948	0.0000 0.9829	0.3503	0.7881	0.9948
IM	0.0000 2.1367	0.0000 0.4266	0.3782 0.9347	0.1443 0.2499	1.1866 1.1866	0.0000 1.1866	0.4266	0.9347	1.1866
SM	0.0000 2.6868	-0.1860 0.6722	0.0000 1.1094	-0.9617 0.1068	1.4102 1.4102	0.0000 1.4102	0.6722	1.1094	1.4102
SB	0.0000 6.7802	-0.0000 1.1670	2.6102 2.7266	0.8367 1.4493	3.6322 3.6322	0.0000 3.6322	1.1670	2.7266	3.6322
BA	0.0000 11.0648	0.0000 2.2210	0.3483 4.8006	0.1161 0.2011	6.0288 6.0288	0.0000 6.0288	2.2210	4.8006	6.0288
LA	0.0000 19.2639	0.0000 3.8660	-0.6324 8.4870	-0.1775 0.3074	10.5336 10.5336	0.0000 10.5336	3.8660	8.4870	10.5336
HG	0.0068 0.1670	-0.0101 0.0525	0.0402 0.0733	0.0123 0.0266	0.0945 0.0945	-0.0101 0.0945	0.0525	0.0733	0.0945
PB	0.0000 0.6781	0.0225 0.1368	0.5374 0.3633	0.1866 0.3040	0.4966 0.4966	0.0225 0.4966	0.1368	0.3633	0.4966
EC	36.6434 22.6840	13.7613 4.0216	17.4136 16.6411	22.6061 12.2931	14.0822 18.6930 *	13.7613 14.0822	4.0216	16.6411	18.6930 *
DC	37.5698 26.5490	68.6267 7.7449	44.0639 25.2486	60.0868 16.3810	19.8476 26.7344 *	68.6267 19.8476	7.7449	25.2486	26.7344 *
Backup filter OC	-6.6662 21.2399	13.7930 4.8374	24.1186 20.2143	10.4488 16.6129	16.4305 21.9614	13.7930 16.4305	4.8374	20.2143	21.9614
HC++	0.8674 0.6365	-0.2060 0.0929	-8.8511 3.4684	-2.7299 6.3282	5.4996 5.4996	-0.2060 5.4996	0.6365	3.4684	5.4996
MA+	2.2012 3.1107	0.4780 0.6364	1.8110 2.5144	1.4967 2.0872	2.2734 2.2734	0.4780 2.2734	0.6364	2.5144	2.2734
CL-	3.6017 3.9138	0.7821 0.7821	2.9831 3.1812	2.4490 1.4784	3.0133 3.0133	0.7821 3.0133	0.7821	3.1812	3.0133
NO3-	2.6680 3.8069	0.5784 0.7791	2.1960 3.0768	1.8141 1.0862	2.6836 2.7786	0.5784 2.6836	0.7791	3.0768	2.7786
SO4=	8.4046 4.7741	0.4924 0.7778	1.8666 3.0386	3.5876 4.2278	2.8636 5.1661	0.4924 2.8636	0.7778	3.0386	5.1661
NO4+	0.0000 2.3195	0.0000 0.4924	0.0000 1.8486	0.0000 0.0000	1.5601 1.5601	0.0000 1.5601	0.4924	1.8486	1.5601
Fine Mass Emission Rate (mg/km driven)	9.939 3.630	31.063 1.396	12.363 4.802	17.786 11.662	3.226 12.004	31.063 12.004	1.396	4.802	11.662

TABLE C.2. AUTOMOBILE TESTS (CONT.)

	MONOCATALYST CARS			MONOCATALYST CARS			MONOCATALYST CARS			S.D. of			Avg. of		Overall S.D.
	TEST 1 (X ± SD)	TEST 2 (X ± SD)	TEST 3 (X ± SD)	MEAN	MEAN	MEAN	MEAN	MEAN	MEAN	S.D. of					
AL	0.6441	0.2277	1.1050	0.3198	0.4496	0.1300	0.7332	0.3372	0.2258	0.4068	0.2216	0.3660	0.2216	0.4068	*
SI	0.3993	0.0776	0.6890	0.1887	0.1983	0.0606	0.3925	0.1999	0.0956	0.3227	0.3660	0.3660	0.3227	0.3660	*
P	0.6764	0.4213	0.3688	0.2820	0.4077	0.2648	0.4813	0.1707	0.2220	0.4813	0.1707	0.2220	0.4813	0.1707	*
S	0.0000	0.9482	0.0000	1.0846	0.0000	0.8862	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	*
CL	-0.0626	0.2118	0.0686	-0.3047	0.0000	0.1240	0.0063	0.0608	0.2136	0.0063	0.0608	0.0608	0.0063	0.0608	*
K	-0.0032	0.0590	0.2326	0.1004	0.0606	0.0276	0.0933	0.1236	0.0693	0.1371	0.0693	0.1371	0.0693	0.1371	*
CA	0.5960	0.0805	0.4938	0.1228	0.2479	0.0421	0.4469	0.1789	0.0918	0.1968	0.0918	0.1968	0.0918	0.1968	*
TI	0.0220	0.0206	0.0967	0.0379	0.0141	0.0100	0.0443	0.0465	0.0228	0.0610	0.0228	0.0610	0.0228	0.0610	*
V	-0.0084	0.0148	-0.0024	0.0248	-0.0050	0.0071	-0.0053	0.0030	0.0156	0.0156	0.0030	0.0156	0.0030	0.0156	*
CR	0.0000	0.0148	0.0167	0.0287	0.0182	0.0083	0.0113	0.0099	0.0166	0.0166	0.0099	0.0166	0.0099	0.0166	*
MN	0.9437	0.1023	1.3881	0.0932	0.3787	0.0479	0.9036	0.5069	0.0811	0.5124	0.5124	0.5124	0.5124	0.5124	*
FE	0.4740	0.0711	0.3617	0.1026	1.4086	0.1762	0.7484	0.5763	0.1166	0.5870	0.5870	0.5870	0.5870	0.5870	*
MI	0.0093	0.0165	-0.1666	0.0407	0.0601	0.0126	-0.0290	0.1133	0.0228	0.1166	0.0228	0.1166	0.0228	0.1166	*
CU	0.1895	0.0318	0.9480	0.0764	0.6788	0.0863	0.6064	0.3845	0.0845	0.3889	0.0845	0.3889	0.0845	0.3889	*
ZN	0.6607	0.0736	0.6328	0.0570	0.6162	0.0643	0.6032	0.0767	0.0650	0.1005	0.0650	0.1005	0.0650	0.1005	*
GA	0.0083	0.0363	-0.0881	0.0488	0.0082	0.0236	0.0349	0.0461	0.0362	0.0362	0.0362	0.0362	0.0362	0.0362	*
AS	0.1985	0.6241	-0.0531	0.6586	-0.0239	0.3446	0.0405	0.1376	0.4757	0.4952	0.4952	0.4952	0.4952	0.4952	*
SE	-0.0010	0.0149	0.0057	0.0287	0.0000	0.0076	0.0016	0.0036	0.0164	0.0164	0.0036	0.0164	0.0036	0.0164	*
BR	3.6693	0.3798	4.5140	0.2394	1.9614	0.2368	3.3816	1.3004	0.2850	1.3313	0.2850	1.3313	0.2850	1.3313	*
RB	0.0271	0.0633	0.0000	0.0724	-0.0019	0.0278	0.0084	0.0162	0.0637	0.0637	0.0162	0.0637	0.0162	0.0637	*
SR	-0.0076	0.0296	0.0492	0.0516	0.0000	0.0136	0.0139	0.0308	0.0316	0.0441	0.0316	0.0441	0.0316	0.0441	*
Y	0.0000	0.0492	0.0026	0.0723	0.0294	0.0274	0.0107	0.0163	0.0496	0.0496	0.0163	0.0496	0.0163	0.0496	*
ZR	0.0000	0.1622	-0.1098	0.2697	-0.0317	0.0710	-0.0472	0.0666	0.1737	0.1737	0.0666	0.1737	0.0666	0.1737	*
HO	0.0048	0.0986	0.0480	0.1722	-0.0116	0.0461	0.0138	0.0307	0.1053	0.1053	0.0307	0.1053	0.0307	0.1053	*
PD	-0.0172	0.0970	0.0746	0.1777	-0.0251	0.0471	0.0108	0.0654	0.1073	0.1207	0.0654	0.1207	0.0654	0.1207	*
AG	0.0000	0.1367	0.0000	0.2398	0.1041	0.0690	0.0347	0.0604	0.1486	0.1602	0.0604	0.1602	0.0604	0.1602	*
CD	0.0165	0.1712	0.0000	0.2894	0.0000	0.0790	0.0062	0.0089	0.1829	0.1831	0.0089	0.1831	0.0089	0.1831	*
IN	0.0083	0.2084	0.2813	0.3637	0.1184	0.0996	0.1360	0.1373	0.2306	0.2684	0.1373	0.2684	0.1373	0.2684	*
SM	0.0000	0.2621	-0.3380	0.4619	-0.0686	0.1177	-0.1365	0.1787	0.2739	0.3210	0.1787	0.3210	0.1787	0.3210	*
SB	-0.3083	0.6776	-0.4322	0.9865	0.0076	0.2604	-0.2443	0.2268	0.6112	0.6619	0.2268	0.6619	0.2268	0.6619	*
BA	0.0000	1.0788	-1.4296	1.9333	0.0000	0.6001	-0.4765	0.8263	1.1707	1.4324	0.8263	1.4324	0.8263	1.4324	*
LA	0.7086	1.9185	-3.9106	3.4312	-0.5563	0.5860	-0.8819	0.6240	0.1829	3.3496	0.1829	3.3496	0.1829	3.3496	*
HG	-0.0029	0.0171	-0.0032	0.0323	-0.0065	0.0095	-0.0052	0.0020	0.0196	0.0196	0.0020	0.0196	0.0020	0.0196	*
PB	9.6996	0.9949	10.0484	0.6493	6.3320	0.7603	8.6600	2.0286	0.7682	2.1691	0.7682	2.1691	0.7682	2.1691	*
EC	9.3717	3.3498	4.0626	7.1697	10.6070	2.5382	8.0137	3.4772	4.3522	6.1670	4.3522	6.1670	4.3522	6.1670	*
DC	67.6146	7.9671	76.2600	11.3137	63.4949	8.5423	66.4565	8.9848	9.2744	12.9128	9.2744	12.9128	9.2744	12.9128	*
Backup filter DC	16.3936	4.3398	40.9468	9.8162	11.2201	2.9876	22.5197	16.0931	6.7046	17.0743	6.7046	17.0743	6.7046	17.0743	*
MG+*	-1.9287	0.1876	0.5056	0.1846	0.1084	0.0496	-0.4382	1.3060	0.1406	1.3136	0.1406	1.3136	0.1406	1.3136	*
MA+	0.3771	0.6024	0.9428	1.2684	0.2461	0.3319	0.6220	0.3703	0.7009	0.7927	0.3703	0.7927	0.3703	0.7927	*
CL-	0.6170	0.6192	1.5427	1.6582	0.4026	0.4088	0.8641	0.6059	0.8917	1.0634	0.6059	1.0634	0.6059	1.0634	*
MO3-	0.4671	0.6180	1.1428	1.6528	0.2982	0.4063	0.6327	0.4486	0.8680	0.9863	0.4486	0.9863	0.4486	0.9863	*
SO4=	0.6714	0.6140	0.6142	1.6471	0.2636	0.4064	0.4464	0.1696	0.8656	0.8721	0.1696	0.8721	0.1696	0.8721	*
Fine Mass Emission Rate (mg/km driven)	60.644	6.436	23.530	4.436	94.008	10.183	68.394	36.266	6.688	36.884	6.688	36.884	6.688	36.884	*

TABLE C.3. HEAVY-DUTY TRUCK TESTS

H-D DIESEL TRUCK		H-D DIESEL TRUCK		S.D. of		Avg. of	
TEST 1 (X +/− SD)	TEST 2 (X +/− SD)	MEAN	MEAN	S.D.	S.D.	Overall	S.D.
AL	0.0654 0.0839	0.0381 0.0363	0.0622 0.0186	0.0696 0.0624			
SI	0.6839 0.0934	0.6163 0.0846	0.5896 0.1061	0.6890 0.1377 *			
P	0.0116 0.0327	0.0450 0.0304	0.0283 0.0237	0.0316 0.0396			
S	0.0000 0.3026	0.0000 0.1273	0.0000 0.0000	0.2149 0.2149			
CL	0.0000 0.1271	-0.0098 0.0524	-0.0049 0.0070	0.0898 0.0890			
K	0.0714 0.0549	0.0387 0.0228	0.0656 0.0224	0.0389 0.0449 *			
CA	0.2272 0.0446	0.0831 0.0209	0.1661 0.1019	0.1070 0.1070 *			
TI	0.0244 0.0217	0.0362 0.0101	0.0298 0.0076	0.0169 0.0176 *			
V	0.0162 0.0162	-0.0017 0.0062	0.0073 0.0127	0.0107 0.0166			
CR	0.0272 0.0171	0.0059 0.0072	0.0181 0.0129	0.0122 0.0178 *			
MN	0.0161 0.0207	0.0038 0.0086	0.0080 0.0087	0.0147 0.0170			
FE	0.2080 0.0480	0.0499 0.0200	0.1295 0.1126	0.0340 0.1176 *			
MI	0.0601 0.0213	0.0031 0.0071	0.0332 0.0142	0.0381 0.0381			
CU	-0.6017 0.0586	0.0271 0.0104	-0.2373 0.3739	0.0360 0.3766			
ZM	-0.2622 0.0382	0.1130 0.0166	-0.0696 0.2682	0.0269 0.2696			
GA	0.0000 0.0138	0.0000 0.0056	0.0000 0.0000	0.0097 0.0097			
AS	0.0405 0.0428	-0.0102 0.0176	0.0162 0.0369	0.0302 0.0469			
SE	-0.1010 0.0147	0.0016 0.0062	-0.0042 0.0083	0.0104 0.0133			
BR	0.0204 0.0207	0.0022 0.0084	0.0113 0.0139	0.0146 0.0194			
RB	0.0018 0.0268	-0.0046 0.0107	-0.0013 0.0046	0.0183 0.0188			
SR	-0.0110 0.0318	-0.0052 0.0131	-0.0081 0.0041	0.0226 0.0228			
Y	0.0094 0.0382	0.0000 0.0161	0.0047 0.0066	0.0277 0.0284			
ZR	0.0000 0.1653	0.0000 0.0686	0.0000 0.0000	0.1169 0.1169			
HD	0.0223 0.1082	-0.0182 0.0444	0.0220 0.0286	0.0763 0.0816			
PD	0.0000 0.1056	0.0000 0.0442	0.0000 0.0000	0.0749 0.0749			
AG	0.0000 0.1616	0.0000 0.0629	0.0000 0.0000	0.1072 0.1072			
CD	0.0000 0.1875	0.0000 0.0770	0.0000 0.0000	0.1322 0.1322			
IM	0.0000 0.2280	0.0000 0.0943	0.0000 0.0000	0.1612 0.1612			
SM	-0.1407 0.2187	0.0289 0.1166	-0.0564 0.0220	0.0763 0.0816			
SB	0.0081 0.6181	0.0581 0.2677	0.0331 0.0364	0.4379 0.4393			
BA	0.0000 1.1781	0.0000 0.4873	0.0000 0.0000	0.8332 0.8332			
LA	0.0000 2.0686	0.0000 0.8598	0.0000 0.0000	1.4642 1.4642			
HG	-0.0032 0.0180	0.0022 0.0073	-0.0006 0.0038	0.0126 0.0132			
PB	0.0000 0.0723	0.0000 0.0301	0.0000 0.0000	0.0612 0.0612			
EC	43.1302 3.8482	37.9459 4.6783	40.5381 3.6658	4.2632 5.6226 *			
DC	34.6162 3.8658	30.6139 3.9241	32.5646 2.9000	3.8900 4.8520 *			
Backup filter DC	14.1768 2.8664	9.9788 1.7024	12.0778 2.9684	2.2804 3.7432 *			
MG	-1.6264 0.0631	-0.0160 0.0203	-0.7707 1.0687	0.0417 1.0696			
MA	0.2464 0.3334	0.0986 0.1393	0.1730 0.1038	0.2364 0.2681			
CL	0.4031 0.4096	0.1639 0.1716	0.2830 0.1698	0.2906 0.3366			
M03	0.2986 0.4081	0.3661 0.1767	0.3273 0.0407	0.2919 0.2947 *			
S04	-0.0962 0.4110	0.6311 0.1816	0.2174 0.4436	0.2863 0.5334			
NH4	0.0000 0.2669	0.1680 0.1106	0.0796 0.1124	0.1837 0.2164			
Fine Mass Emission Rate (mg/km driven)	360.14	9.652	456.17 47.66	408.16 67.90	28.69	73.67	

TABLE C.4. FIREPLACE TESTS

TABLE C.4. FIREPLACE TESTS (CONT.)

TEST 3 (%, SD)	OAK WOOD		ALMOND WOOD		TEST 4 (%, SD)		TEST 5 (% + SD)		ALMOND WOOD		TEST 6 (% + SD)	
	MEAN	S.D.	MEAN	S.D.	MEAN	S.D.	MEAN	S.D.	MEAN	S.D.	MEAN	S.D.
AL	0.0137	0.0048	0.0109	0.0068	0.0096	0.0046	0.0114	0.0021	0.0060	0.0056	0.0060	0.0056
SI	0.2383	0.0297	0.0891	0.0117	0.0402	0.0064	0.1262	0.1023	0.0159	0.1036	0.0159	0.1036
P	0.0231	0.0165	0.0312	0.0193	0.0213	0.0138	0.0252	0.0063	0.0162	0.0170	0.0162	0.0170
S	0.1284	0.0180	0.1242	0.0166	0.0521	0.0146	0.1019	0.0432	0.0164	0.0462	0.0164	0.0462
CL	0.4869	0.0378	0.7477	0.0413	0.3201	0.0200	0.6162	0.2160	0.0330	0.2186	0.0330	0.2186
K	0.7830	0.0698	1.2669	0.0665	0.6780	0.0310	0.8793	0.3526	0.0520	0.3653	0.0520	0.3653
CA	0.0036	0.0045	0.0092	0.0068	0.0186	0.0040	0.0104	0.0076	0.0060	0.0091	0.0060	0.0091
TI	0.0004	0.0008	0.0000	0.0008	0.0006	0.0009	0.0003	0.0003	0.0008	0.0008	0.0008	0.0008
V	-0.0003	0.0008	-0.0002	0.0006	0.0002	0.0007	-0.0001	0.0003	0.0006	0.0006	0.0006	0.0006
CR	0.0000	0.0007	-0.0004	0.0004	0.0063	0.0009	0.0016	0.0032	0.0008	0.0033	0.0008	0.0033
MN	0.0003	0.0008	0.0006	0.0008	0.0000	0.0009	0.0003	0.0003	0.0008	0.0008	0.0008	0.0008
FE	0.0048	0.0019	-0.0001	0.0018	0.0212	0.0027	0.0086	0.0112	0.0022	0.0114	0.0022	0.0114
MI	0.0021	0.0007	0.0000	0.0007	0.0033	0.0008	0.0018	0.0017	0.0008	0.0018	0.0008	0.0018
CU	0.0003	0.0009	0.0001	0.0010	-0.0007	0.0010	-0.0001	0.0006	0.0010	0.0011	0.0010	0.0011
ZN	0.0141	0.0014	0.0332	0.0021	0.0194	0.0015	0.0222	0.0099	0.0017	0.0100	0.0017	0.0100
GA	0.0000	0.0006	0.0000	0.0006	0.0000	0.0006	0.0000	0.0000	0.0006	0.0006	0.0006	0.0006
AS	0.0016	0.0022	0.0013	0.0018	-0.0006	0.0019	0.0008	0.0011	0.0020	0.0023	0.0020	0.0023
SE	0.0001	0.0005	-0.0003	0.0006	-0.0002	0.0006	-0.0001	0.0002	0.0006	0.0006	0.0006	0.0006
BR	0.0142	0.0014	0.0443	0.0009	0.0018	0.0009	0.0068	0.0066	0.0011	0.0066	0.0011	0.0066
RB	0.0005	0.0010	0.0013	0.0011	0.0007	0.0011	0.0008	0.0004	0.0011	0.0011	0.0011	0.0011
SR	0.0001	0.0012	0.0004	0.0013	0.0000	0.0013	0.0002	0.0002	0.0006	0.0006	0.0006	0.0006
Y	0.0007	0.0016	0.0000	0.0016	0.0000	0.0016	0.0002	0.0004	0.0016	0.0016	0.0016	0.0016
ZR	0.0000	0.0063	-0.0011	0.0068	-0.0037	0.0070	-0.0016	0.0019	0.0067	0.0070	0.0067	0.0070
MO	0.0000	0.0039	-0.0026	0.0044	-0.0046	0.0046	-0.0024	0.0023	0.0043	0.0048	0.0043	0.0048
PD	-0.0043	0.0042	-0.0011	0.0046	-0.0009	0.0044	-0.0021	0.0019	0.0044	0.0044	0.0044	0.0044
AG	0.0000	0.0057	0.0000	0.0057	0.0000	0.0057	0.0002	0.0002	0.0013	0.0013	0.0013	0.0013
CD	0.0000	0.0070	0.0001	0.0077	0.0000	0.0078	0.0002	0.0004	0.0016	0.0016	0.0016	0.0016
IN	0.0055	0.0087	0.0000	0.0083	0.0021	0.0098	0.0026	0.0028	0.0082	0.0086	0.0082	0.0086
SM	-0.0036	0.0106	-0.0097	0.0116	-0.0123	0.0118	-0.0086	0.0045	0.0113	0.0121	0.0113	0.0121
SB	0.0076	0.0231	-0.0066	0.0266	0.0000	0.0263	0.0047	0.0041	0.0247	0.0260	0.0247	0.0260
BA	0.0000	0.0444	-0.0171	0.0497	0.0000	0.0064	-0.0006	0.0014	0.0060	0.0062	0.0060	0.0062
LA	-0.0288	0.0784	-0.0119	0.0875	-0.0766	0.0883	-0.0394	0.0334	0.0847	0.0911	0.0847	0.0911
HG	-0.0006	0.0007	0.0004	0.0008	0.0003	0.0008	0.0000	0.0006	0.0008	0.0008	0.0008	0.0008
PB	0.0231	0.0034	0.0046	0.0031	0.0067	0.0031	0.0111	0.0104	0.0032	0.0109	0.0109	0.0109
EC	2.9314	0.3070	3.4087	0.2971	2.2466	0.2277	2.8619	0.5847	0.2773	0.6471	0.2773	0.6471
DC	47.2881	3.5763	48.7638	2.5717	49.1487	2.6760	48.3668	0.9804	2.9080	3.0688	0.9804	3.0688
Backup filter DC	2.6866	0.3096	2.6836	0.2916	2.7667	0.2678	2.7123	0.0472	0.2896	0.2934	0.0472	0.2934
MG+	-0.0547	0.0047	-0.0173	0.0037	0.0273	0.0036	-0.0149	0.0411	0.0040	0.0412	0.0040	0.0412
MA+	0.0416	0.0252	0.0189	0.0263	0.0006	0.0243	0.0204	0.0205	0.0249	0.0323	0.0249	0.0323
CL-	0.6667	0.0606	0.8639	0.0374	0.4116	0.0327	0.6437	0.2220	0.0402	0.2256	0.0402	0.2256
HC3-	0.2300	0.0346	0.3206	0.0332	0.2099	0.0311	0.2533	0.0589	0.0330	0.0676	0.0330	0.0676
SD4+	0.3063	0.0367	0.2678	0.0327	0.1861	0.0309	0.2531	0.0619	0.0334	0.0704	0.0334	0.0704
MH4+	0.1636	0.0228	0.1371	0.0211	0.1460	0.0204	0.1462	0.0083	0.0214	0.0230	0.0214	0.0230
Fine Mass Emission Rate (g/kg Wood)	6.157	0.330	4.664	0.009	6.018	0.021	6.276	0.784	0.120	0.783	0.120	0.783

TABLE C.6. NATURAL GAS HOME APPLIANCE TESTS

NATURAL GAS		NATURAL GAS		NATURAL GAS		NATURAL GAS		NATURAL GAS		NATURAL GAS	
TEST 1 (% + SD)		TEST 2 (% + SD)		TEST 3 (% + SD)		TEST 4 (% + SD)		TEST 5 (% + SD)		TEST 6 (% + SD)	
		MEAN	S.D.	MEAN	S.D.	MEAN	S.D.	MEAN	S.D.	MEAN	S.D.
AL	-0.1362	0.2917	0.4368	0.9209	0.3730	0.2468	0.2242	0.3137	0.4861	0.6786	0.7746
SI	-0.4732	0.2880	0.8183	0.6947	0.4979	0.1961	0.2800	0.6713	0.3863	0.4243	0.2700
P	-0.0789	0.1531	0.0422	0.4747	0.1272	0.1201	0.0340	0.1036	0.2493	0.2163	0.7386
S	-0.0889	1.0187	0.0930	3.1294	2.2988	0.8689	1.3660	1.6736	0.0981	0.1138	0.3630
CL	-0.1685	0.4388	-0.0594	1.4024	-0.0592	0.3466	-0.0924	0.0661	0.7336	0.4562	0.2847
K	0.0661	0.2026	0.3196	0.6380	0.1347	0.1760	0.1734	0.1311	0.3396	0.3630	0.1276
CA	1.7426	0.7129	0.7117	0.6026	0.6713	0.1676	1.0418	0.6071	0.4943	0.7829	0.7746
TI	0.0581	0.0768	0.1772	0.2444	0.0569	0.0566	0.0971	0.0694	0.1226	0.1436	0.0981
V	0.0402	0.0682	-0.1770	0.0339	0.0409	0.0176	0.0338	0.0209	0.1138	0.0986	0.1347
CR	-0.0216	0.0581	0.1001	0.1817	0.0667	0.0471	0.0451	0.0616	0.1347	0.4268	0.2847
HW	0.0171	0.0138	0.0703	0.2248	-0.0316	0.0624	0.0186	0.0509	0.1170	0.1276	0.0981
FE	-0.4302	0.2326	-0.0162	0.5118	0.7107	0.1842	0.0874	0.6777	0.3096	0.6554	0.2406
MI	-0.0216	0.0581	0.1874	0.2050	0.1418	0.0586	0.0892	0.0659	0.1072	0.1439	0.0981
CU	-0.1263	0.1127	-2.3321	1.0684	1.8233	0.2821	-0.2117	0.2790	0.4844	0.1347	0.1276
ZM	0.0081	0.0684	-1.6249	0.7356	1.1349	0.1804	-0.1603	1.3677	0.3281	1.4268	0.2847
GA	-0.0216	0.0409	0.0000	0.1208	0.0000	0.0319	-0.0072	0.0124	0.0657	0.1276	0.0981
AS	0.0000	0.1471	0.0000	0.4646	0.0000	0.1103	0.0000	0.0000	0.2406	0.2406	0.1276
SE	0.0741	0.0630	0.1687	0.1904	-0.0696	0.0416	0.0611	0.1147	0.0983	0.1611	0.0981
BR	-0.0634	0.0764	0.1986	0.2472	-0.0398	0.0526	0.0364	0.1414	0.1254	0.1880	0.1276
RB	0.1061	0.1112	-0.0582	0.3368	0.0030	0.0784	0.0166	0.0826	0.1761	0.1936	0.1276
SR	0.1868	0.1378	-0.6863	0.4387	-0.0376	0.0843	-0.1487	0.4027	0.2206	0.4592	0.2847
Y	0.0119	0.1921	0.2056	0.4641	-0.0468	0.1047	-0.0672	0.1326	0.2336	0.2687	0.1276
ZR	0.0000	0.5688	-0.6062	1.8871	0.0000	0.4436	-0.2017	0.3494	0.9732	1.0340	0.1276
MO	0.7612	0.6031	-0.2486	1.2779	0.0297	0.2932	0.1776	0.6160	0.6914	0.8627	0.1276
PO	-0.1470	0.4306	1.1949	1.4602	0.0906	0.3133	0.3762	0.7181	0.7300	0.1297	0.1276
AG	-0.2474	0.5379	0.9189	1.8189	-0.1080	0.3051	0.1866	0.6362	0.9173	1.1147	0.1276
CD	0.0000	0.6164	-0.3728	1.9868	0.6347	0.4747	0.0906	0.6148	1.0253	1.1473	0.1276
IN	-0.4563	0.8986	-1.3656	2.6808	-0.8188	0.6618	-0.8776	0.4846	1.3897	1.4669	0.1276
SM	-0.6700	1.0344	0.0000	3.1337	-0.0316	0.7576	-0.2006	0.3204	1.6419	1.6728	0.1276
SB	-0.6668	2.1392	2.1698	6.7398	0.2298	1.6641	0.6760	1.4472	3.6110	3.7976	0.1276
EC	-2.3338	4.1636	0.7870	12.8140	0.8699	3.0437	-0.2256	1.8263	6.6948	6.9404	0.1276
BA	-2.9685	7.4880	0.0000	23.2967	0.1603	5.6304	-0.9394	1.7689	12.1314	12.2582	0.1276
HG	0.0000	0.1528	0.2671	0.4266	0.0000	0.0967	0.0890	0.1842	0.2161	0.2665	0.1276
PB	0.1872	0.2657	-0.1807	0.8029	-0.0011	0.1914	0.0018	0.1840	0.4200	0.4686	0.1276
EC	-0.6611	10.2302	13.4194	36.5968	7.3890	12.2098	6.7191	7.0591	19.6789	20.9067	0.1276
DC	72.3370	32.2228	89.6263	60.4966	92.8696	20.0726	84.9193	11.0266	37.7460	39.3223	0.1276
Backup filter	62.2765	26.5560	74.1429	67.7532	68.4667	22.8616	61.6060	11.2479	36.3903	37.1347	0.1276
MG	0.0465	0.2886	-0.9327	4.2487	5.3669	0.7674	-1.6068	7.7671	1.7882	7.9636	0.1276
MA	0.8242	1.8014	4.4239	6.3680	1.1822	1.9331	2.1334	1.8804	3.3662	3.9089	0.1276
CL	2.0986	2.3553	7.2383	8.0628	2.2873	2.3869	3.8761	2.9142	4.2663	5.1600	0.1276
NO3	6.1326	2.9889	1.8763	7.4361	3.2193	2.4049	3.4094	1.6366	4.2663	4.6694	0.1276
SO4	2.9661	2.4624	28.2228	14.4046	6.7609	2.6047	12.6463	14.4241	6.4672	16.8036	0.1276
NH4	1.3288	1.4602	0.0000	4.6136	0.0000	1.4842	0.4430	0.7672	2.6260	2.6389	0.1276
Fine Mass Emission Rate (ng/kJ burned)											
71.61	27.76	22.46	9.40	43.50	6.79	46.82	24.61	14.32	39.3223	37.1347	0.1276

TABLE C.6. MEAT COOKING TESTS

	MEAN, CHARBR. TEST 1 (% + - SD)	REGULAR, CHARBR. TEST 2 (% + - SD)	MEAN	S.D. of MEAN	Avg. of S.D. *	Overall S.D. *
AL	0.1000	0.0504	0.0632	0.0138	0.0798	0.0321
SI	0.1636	0.0422	0.0591	0.0127	0.1078	0.0432 *
P	0.0858	0.0371	0.1180	0.0276	0.1019	0.0274 *
S	0.0980	0.1604	0.0179	0.0392	0.0679	0.0323
CL	0.0937	0.0741	0.0816	0.0194	0.0877	0.0566
K	0.0620	0.0338	0.2876	0.0226	0.1648	0.0466
CA	0.0839	0.0307	0.0191	0.0087	0.0666	0.0281
TL	0.0197	0.0122	0.0011	0.0029	0.0104	0.0197
V	0.0042	0.0078	0.0014	0.0020	0.0028	0.0075
CR	-0.0014	0.0090	-0.0006	0.0021	-0.0010	0.0020
MM	-0.0009	0.0104	-0.0004	0.0023	-0.0007	0.0006
FE	0.1118	0.0347	0.0309	0.0082	0.0714	0.0214
NI	0.0070	0.0112	0.0076	0.0033	0.0073	0.0073 *
CU	0.6925	0.0872	0.0847	0.0161	0.3436	0.3620
ZM	0.3818	0.0563	0.0506	0.0100	0.2162	0.2342
GA	-0.0054	0.0070	-0.0008	0.0015	-0.0031	0.0033
AS	0.0000	0.0216	0.0040	0.0049	0.0020	0.0133
SE	-0.0012	0.0084	-0.0026	0.0018	0.0007	0.0072
BR	0.0145	0.0113	0.0033	0.0023	0.0004	0.0071
RB	0.0038	0.0162	-0.0080	0.0033	-0.0011	0.0017
SR	0.0100	0.0167	-0.0016	0.0038	0.0042	0.0068
Y	0.0046	0.0208	0.0014	0.0046	0.0030	0.0127
ZR	0.0000	0.0002	0.0000	0.0200	0.0290	0.0661
MD	0.0647	0.0686	0.0000	0.0126	0.0273	0.0387
PD	-0.0184	0.0691	0.0000	0.0131	-0.0092	0.0130
AG	0.0481	0.0794	0.0066	0.0178	0.0269	0.0301
CD	-0.0046	0.0936	0.0143	0.0199	0.0048	0.0334
IM	0.0699	0.1204	-0.0020	0.0284	0.0000	0.0661
SN	0.0662	0.1516	0.0098	0.0329	0.0380	0.0366
SB	0.0094	0.3112	-0.0296	0.0687	-0.0106	0.0265
EC	-0.8988	2.8686	0.1053	0.6868	-0.3968	0.1900
BA	0.3367	0.6091	0.0610	0.1366	0.1988	0.1918
DC	60.6118	9.6166	56.9780	4.3568	58.7948	0.3724
LA	-0.6961	1.1367	0.1955	0.2469	-0.2603	0.6913
HG	-0.0009	0.0180	0.0001	0.0044	-0.0004	0.0744
PS	0.0665	0.0382	-0.0034	0.0082	0.0266	0.0022
EC	-0.8988	2.8686	0.1053	0.6868	-0.3968	0.1900
DC	60.6118	9.6166	56.9780	4.3568	58.7948	0.3724
Backup filter DC	8.1833	3.9121	2.6121	0.9488	5.3977	3.9394
MG	2.0574	0.2655	-0.2364	0.0161	0.9105	2.4304
MA	0.3847	0.5196	0.0732	0.0974	0.2290	1.6281
CL	0.6294	0.6104	0.1198	0.1196	0.3746	0.3023
MD3	0.1398	0.6306	-0.1016	0.1200	0.1091	1.7327
SD4	0.3031	0.6330	0.1081	0.1203	0.2056	0.4123
WH4	0.0000	0.3926	0.0000	0.0747	0.0000	0.3767
Fine Mass Emission Rate (g/kg meat)	7.143	0.884	38.807	1.293	23.476	23.097
						1.089
						23.123

TABLE C.6. MEAT COOKING TESTS (CONT.)

XLEAN, FRIED TEST 3 (% + SD)	REGULAR, FRIED TEST 4 (% + SD)	MEAN	S.D. of MEAN	Avg. of S.D.s	Overall S.D.
AL	0.3200	0.1080	-0.0642	0.2436	0.3601
SI	0.2603	0.2494	-0.2366	0.2482	0.2488
P	0.0026	0.1908	-0.1030	0.2014	0.1961
S	2.9884	1.4276	0.0879	1.2984	1.3630
CL	1.1681	0.6058	-0.4606	0.6842	0.4626
K	0.3601	0.2688	0.3650	0.2630	0.5950
CA	0.2692	0.1977	0.0281	0.2009	0.2609
TI	0.0784	0.0843	-0.1088	0.1009	0.1993
V	-0.0363	0.0602	0.0135	0.0687	0.1660
CR	0.0509	0.0663	0.2464	0.0946	0.0734
HN	-0.0061	0.0684	0.0879	0.0929	0.1699
FE	-0.0283	0.2000	0.5029	0.2478	0.1046
MI	0.0566	0.0763	0.0432	0.0661	0.4379
CU	0.6488	0.2621	-0.8310	0.2652	0.0861
ZM	0.3226	0.1598	-0.4693	0.1698	0.1382
GA	-0.0363	0.0463	-0.0040	0.0646	0.0666
AS	0.0000	0.1565	0.0000	0.1828	0.2239
SE	0.0116	0.0604	-0.0289	0.0727	0.1697
BR	0.1140	0.0801	0.0529	0.0962	0.0832
RB	0.0264	0.1009	0.1655	0.1354	0.1497
SR	-0.1634	0.1269	0.1768	0.1483	0.0920
Y	-0.0464	0.1427	0.1888	0.1846	0.1182
ZR	0.0000	0.6168	0.0000	0.7621	0.5694
HO	0.0000	0.3968	0.4820	0.5212	0.0920
PD	-0.2802	0.4379	0.0000	0.5689	0.1376
AG	0.4661	0.6573	0.0416	0.7039	0.2766
CD	-0.0016	0.6513	0.0000	0.7831	0.1636
LM	-0.4299	0.8623	1.1658	1.1200	0.2343
SM	0.3286	1.0593	-0.3933	1.3038	0.6896
SB	-1.3677	2.2085	0.2673	2.8624	1.4966
BA	0.4884	4.2187	0.4259	5.2693	0.5313
LA	6.7882	7.9918	-1.1764	9.4901	0.6954
WG	-0.1987	0.0000	0.0000	0.1608	0.7887
PB	0.4296	0.2877	-0.0263	0.3202	0.4420
EC	-12.2821	17.9653	0.1460	16.9964	19.6666
OC	56.8546	26.9909	57.8640	23.5139	26.2625
SO4	0.1302	3.4988	1.6944	3.6048	0.1061
WH4	0.0000	2.2434	0.0000	2.1726	0.6723
Backup filter DC					
HG	0.1766	0.5210	-7.8176	1.1164	21.3312
WA	2.1413	2.9345	-1.2441	2.8692	2.7061
CL	3.6134	3.6608	3.6186	3.5497	3.7645
MD3	3.6134	3.6408	0.6520	3.4932	3.6053
SO4	0.1302	3.4988	1.6944	3.6048	4.1009
Fine Mass Emission Rate (g/kg meat)					
	1.406	0.386	1.176	0.166	0.316
				1.291	0.271
				0.163	

TABLE C.7. CIGARETTES

	"LIGHT"	REGULAR	MENTHOL	FILBERTIP	S.D. of	Avg. of	Overall
	TEST 1 (% + SD)	TEST 2 (% + SD)	TEST 3 (% + SD)	TEST 4 (% + SD)	MEAN	S.D. of	S.D.
AL	0.0044 0.0026	0.0118 0.0030	0.0095 0.0036	0.0029 0.0026	0.0072	0.0042	0.0029
SI	0.0009 0.0015	0.0030 0.0018	-0.0044 0.0022	0.0009 0.0016	0.0001	0.0032	0.0018
P	0.0066 0.0018	0.0033 0.0018	0.0110 0.0027	0.0068 0.0019	0.0084	0.0033	0.0021
S	0.1343 0.0108	0.1501 0.0126	0.1387 0.0166	0.1282 0.0114	0.1318	0.0092	0.0126
CL	0.2760 0.0168	0.1984 0.0126	0.2510 0.0167	0.1905 0.0119	0.2280	0.0407	0.0142
K	0.4269 0.0223	0.4411 0.0233	0.3719 0.0207	0.4066 0.0214	0.4116	0.0300	0.0219
CA	0.0026 0.0024	-0.0013 0.0026	-0.0012 0.0027	-0.0002 0.0023	-0.0001	0.0018	0.0026
TI	-0.0003 0.0004	0.0002 0.0005	-0.0007 0.0006	0.0014 0.0005	0.0001	0.0009	0.0006
V	-0.0002 0.0003	0.0000 0.0003	0.0000 0.0006	-0.0001 0.0003	-0.0001	0.0001	0.0004
CR	-0.0002 0.0004	0.0001 0.0004	-0.0001 0.0006	0.0004 0.0004	0.0000	0.0003	0.0006
MN	-0.0004 0.0004	-0.0003 0.0006	-0.0003 0.0006	0.0003 0.0004	-0.0002	0.0003	0.0006
FE	0.0003 0.0009	-0.0004 0.0011	-0.0006 0.0016	0.0006 0.0010	0.0000	0.0005	0.0011
MI	0.0000 0.0004	0.0000 0.0004	-0.0002 0.0006	0.0000 0.0004	0.0000	0.0001	0.0012
CU	0.0193 0.0018	0.0118 0.0012	-0.0026 0.0009	0.0060 0.0007	0.0084	0.0094	0.0012
ZN	0.0134 0.0012	0.0076 0.0008	-0.0018 0.0005	0.0037 0.0005	0.0057	0.0084	0.0008
GA	-0.0001 0.0002	0.0002 0.0003	0.0006 0.0004	0.0000 0.0002	0.0001	0.0003	0.0004
AS	0.0000 0.0008	0.0000 0.0009	0.0000 0.0012	0.0002 0.0009	0.0000	0.0005	0.0010
SE	0.0001 0.0003	0.0002 0.0004	0.0000 0.0006	0.0000 0.0003	0.0001	0.0001	0.0004
BR	0.0028 0.0006	0.0017 0.0005	0.0030 0.0007	0.0026 0.0006	0.0026	0.0006	0.0008
RB	-0.0002 0.0006	0.0007 0.0007	0.0007 0.0010	0.0001 0.0006	0.0003	0.0005	0.0006
SR	-0.0006 0.0006	0.0006 0.0008	0.0002 0.0011	0.0011 0.0007	0.0001	0.0003	0.0003
Y	-0.0007 0.0008	0.0002 0.0009	0.0016 0.0013	0.0006 0.0008	0.0004	0.0009	0.0013
ZR	0.0010 0.0035	0.0050 0.0039	0.0000 0.0068	0.0010 0.0038	0.0020	0.0027	0.0043
HO	0.0004 0.0026	0.0000 0.0017	-0.0019 0.0039	0.0004 0.0027	-0.0003	0.0011	0.0030
PD	0.0000 0.0023	-0.0007 0.0028	-0.0036 0.0041	0.0001 0.0010	0.0003	0.0005	0.0009
AG	-0.0029 0.0029	-0.0001 0.0034	-0.0016 0.0048	0.0007 0.0033	0.0001	0.0004	0.0008
CD	-0.0004 0.0036	0.0036 0.0041	0.0068 0.0059	0.0006 0.0038	0.0022	0.0030	0.0043
IM	-0.0032 0.0046	-0.0037 0.0052	0.0049 0.0076	-0.0002 0.0056	-0.0006	0.0039	0.0060
SM	-0.0043 0.0068	0.0022 0.0066	0.0090 0.0092	-0.0041 0.0052	0.0007	0.0063	0.0069
SB	-0.0027 0.0112	0.0000 0.0124	-0.0030 0.0180	-0.0034 0.0123	-0.0023	0.0023	0.0038
BA	0.0000 0.0270	-0.0114 0.0304	-0.0097 0.0429	-0.0146 0.0283	-0.0010	0.0016	0.0036
LA	0.0000 0.0384	-0.0077 0.0446	0.0413 0.0642	0.0000 0.0432	0.0022	0.0030	0.0043
HG	0.0000 0.0007	0.0007 0.0062	0.0009 0.0000	0.0011 0.0008	0.0002	0.0003	0.0009
PB	0.0020 0.0014	-0.0006 0.0017	-0.0018 0.0022	0.0002 0.0016	0.0000	0.0016	0.0023
EC	0.6913 0.1349	0.3986 0.0862	0.6048 0.1907	0.3411 0.0888	0.4864	0.1904	0.1261
OC	63.1748 3.2618	61.0223 3.1212	67.7938 3.2196	66.0128 2.8972	59.5609	3.2080	3.1260
Backup filter OC	3.6247 0.2824	2.1663 0.1783	3.86838 0.2772	2.2589 0.1632	2.9882	0.8747	4.4792
MG++	-0.0447 0.0031	0.0320 0.0014	0.0064 0.0024	0.0308 0.0013	0.0061	0.0369	0.0026
MA+	-0.193 0.0214	0.0068 0.0094	0.0302 0.0166	0.0200 0.0080	0.0094	0.0214	0.0266
CL-	0.2869 0.0263	0.2693 0.0136	0.3126 0.0347	0.2687 0.0130	0.2944	0.0206	0.0219
MO3-	0.0403 0.0263	0.0813 0.0121	0.0867 0.0236	0.0768 0.0116	0.0713	0.0210	0.0184
SO4=	-0.0666 0.0264	0.0669 0.0120	0.0921 0.0226	0.0778 0.0116	0.0886	0.0437	0.0181
MH4+	0.0338 0.0062	0.0458 0.0084	0.0383 0.0146	0.0434 0.0029	0.0403	0.0054	0.0080
Fine Mass Emission Rate (mg/cigarette)	14.10	0.20	21.84	0.20	23.11	0.20	22.37
					20.36	4.20	4.20

TABLE C.8. VEGETATIVE DETRITUS

	GREEN VEGETATION TEST 1 (% + SD)	GREEN VEGETATION TEST 2 (% + SD)	DEAD VEGETATION TEST 3 (% + SD)	DEAD VEGETATION TEST 4 (% + SD)	MEAN	S.D. of MEAN	Avg. of S.D.s	Overall S.D.
AL	3.1366 0.2724	2.2211 0.2672	2.4920 0.2283	2.4247 0.2242	2.6691 0.3955	0.2330 0.4580	*	*
SI	8.7768 0.9493	6.8321 0.6321	9.7068 1.0498	9.0923 0.9844	8.3620 1.7237	0.9039 1.9463	*	*
P	0.3179 0.0342	0.3849 0.0374	0.2666 0.0292	0.2491 0.0294	0.3046 0.0610	0.0326 0.0591	*	*
S	0.6694 0.0603	0.6148 0.0803	0.6948 0.0446	0.6117 0.0807	0.6181 0.0417	0.0617 0.1016	*	*
CL	0.3621 0.0263	0.3934 0.0396	0.2789 0.0193	0.2773 0.0288	0.3279 0.0589	0.0587 0.0656	*	*
K	2.2806 0.1179	1.6814 0.0884	1.4781 0.0766	1.3666 0.0770	1.6739 0.4149	0.0900 0.4346	*	*
CA	2.1681 0.1137	2.0292 0.1091	2.5222 0.1302	2.3946 0.1273	2.2886 0.2268	0.1201 0.2667	*	*
TI	0.2889 0.0319	0.2475 0.0160	0.2984 0.0166	0.2426 0.0166	0.2868 0.0263	0.0198 0.0321	*	*
V	0.0084 0.0107	0.0226 0.0047	0.0237 0.0037	0.0163 0.0046	0.0176 0.0069	0.0093 0.0093	*	*
CR	0.0448 0.0036	0.1138 0.0082	0.0217 0.0019	0.0340 0.0040	0.0636 0.0412	0.0446 0.0416	*	*
MN	0.0761 0.0047	0.0607 0.0067	0.0526 0.0033	0.0546 0.0046	0.0608 0.0102	0.0046 0.0111	*	*
FE	3.6660 0.1891	2.3733 0.1239	2.7106 0.1374	2.3129 0.1206	2.7867 0.6262	0.1420 0.6411	*	*
MI	0.0375 0.0032	0.2063 0.0136	0.0194 0.0013	0.0371 0.0043	0.0728 0.0899	0.0056 0.0056	*	*
CU	0.2839 0.0154	8.4682 0.4302	0.0786 0.0047	0.1813 0.0117	2.6330 4.1443	0.1166 4.1659	*	*
ZM	0.1987 0.0111	4.8962 0.2619	0.1674 0.0064	0.1636 0.0104	1.3414 0.6346	0.0636 0.3712	*	*
GA	0.0001 0.0011	0.0000 0.0000	0.0000 0.0007	0.0046 0.0046	0.0000 0.0030	0.0000 0.0030	*	*
AS	0.0033 0.0083	0.0016 0.0302	0.0021 0.0034	0.0012 0.0056	0.0021 0.0009	0.0114 0.0114	*	*
SE	0.0022 0.0011	0.0038 0.0022	0.0014 0.0007	0.0046 0.0018	0.0030 0.0016	0.0015 0.0021	*	*
BR	0.0046 0.0013	0.0101 0.0028	0.0066 0.0010	0.0074 0.0026	0.0072 0.0023	0.0019 0.0030	*	*
R8	0.0100 0.0020	0.0082 0.0038	0.0068 0.0013	0.0071 0.0034	0.0077 0.0019	0.0026 0.0032	*	*
SR	0.0284 0.0028	0.0286 0.0047	0.0219 0.0019	0.0224 0.0040	0.0266 0.0040	0.0034 0.0034	*	*
Y	0.0000 0.0026	0.0000 0.0067	0.0000 0.0018	0.0089 0.0046	0.0022 0.0044	0.0037 0.0056	*	*
ZR	0.0000 0.0111	0.0000 0.0239	0.0000 0.0076	0.0000 0.0212	0.0000 0.0000	0.0169 0.0169	*	*
MD	0.0142 0.0076	0.0000 0.0161	0.0000 0.0061	0.0239 0.0132	0.0086 0.0117	0.0102 0.0156	*	*
PD	0.0124 0.0080	0.0000 0.0148	0.0086 0.0054	0.0291 0.0147	0.0126 0.0122	0.0107 0.0162	*	*
AG	0.0070 0.0081	0.8371 0.0588	0.0071 0.0064	0.1206 0.0224	0.2430 0.3997	0.0242 0.4004	*	*
CD	0.0086 0.0109	0.0195 0.0220	0.0126 0.0076	0.0377 0.0199	0.0196 0.0129	0.0161 0.0198	*	*
IM	0.0248 0.0145	0.0321 0.0286	0.0070 0.0097	0.0184 0.0248	0.0206 0.0106	0.0194 0.0221	*	*
SM	0.0033 0.0172	0.0447 0.0396	0.0183 0.0117	0.0206 0.0304	0.0217 0.0171	0.0247 0.0301	*	*
SB	0.0561 0.0380	0.0340 0.0596	0.0087 0.0231	0.0286 0.0613	0.0318 0.0196	0.0476 0.0513	*	*
BA	0.6204 0.1052	0.2119 0.1742	0.1469 0.0582	0.2716 0.1506	0.3127 0.2114	0.1226 0.2443	*	*
LA	0.1196 0.1218	0.2670 0.2431	0.0000 0.0786	0.1804 0.2136	0.1417 0.1122	0.1643 0.1889	*	*
HG	0.0022 0.0026	0.0060 0.0063	0.0024 0.0018	0.0000 0.0037	0.0027 0.0025	0.0033 0.0042	*	*
PB	0.0867 0.0078	0.5685 0.0327	0.0406 0.0046	0.0531 0.0089	0.1847 0.2600	0.0136 0.2603	*	*
EC	---	0.6777 0.3766	1.1820 0.3834	0.9743 0.7216	0.9447 0.2536	0.4836 0.5848	*	*
DC	---	29.5666 1.8266	31.4764 1.9010	36.0197 2.4736	32.3639 0.3160	2.0067 3.0067	*	*
Backup filter DC	---	2.9844 0.5388	2.6191 0.6076	3.2989 0.8474	2.9675 0.3402	0.6313 0.7171	*	*
HO++	---	0.4693 0.0106	0.1884 0.0164	0.8466 0.0211	0.4981 0.3308	0.0167 0.3311	*	*
NA+	---	0.0000 0.0726	0.1433 0.0683	0.0000 0.1447	0.0476 0.0652	0.0652 0.1261	*	*
CL-	---	0.1319 0.0892	0.1242 0.0841	0.0000 0.1776	0.0864 0.0740	0.1170 0.1386	*	*
NO3-	---	0.4198 0.1833	0.4679 0.0876	0.2466 0.1779	0.3778 0.2114	0.1496 0.1899	*	*
SO4=	---	0.4198 0.1603	0.5342 0.0882	0.2105 0.1775	0.3882 0.1642	0.1387 0.2149	*	*
NH4+	---	0.0671 0.0237	0.0000 0.0829	0.0000 0.0380	0.0190 0.0330	0.0982 0.0984	*	*

Appendix D

Organic Mass Distribution Characteristics for Ambient Samples

These tables contain the quantitative data obtained from high-resolution gas chromatographic analyses of the ambient samples. The total and resolved area counts obtained in each of the elution zones defined by adjacent n-alkanes are presented for both the neutral and acid+neutral fractions of the extract. In addition, the mass of organic material that eluted in each zone also is given, in units of $\mu\text{g}/\text{m}^3$.

The results for each monthly composite are given for Pasadena, downtown Los Angeles and West Los Angeles. The two composite samples extracted for San Nicholas Island are also included.

Pasadena - January

(filename = PAS01A
 (Size of sample = 72.910 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	-Acid+Neutral-	Resolved	Total	-Neutral-	-Acid+Neutral-
					Total	Neutral
16 min to C12	34381.	18932.	28160.	0.019	0.011	0.003
C12 to C13	155287.	44106.	284111.	0.093	0.026	0.054
C13 to C14	170176.	32548.	201824.	0.103	0.020	0.018
C14 to C15	183133.	32015.	218574.	0.114	0.020	0.014
C15 to C16	340226.	153265.	365401.	0.212	0.095	0.091
C16 to C17	416615.	216924.	363591.	0.275	0.143	0.102
C17 to C18	478269.	231841.	302440.	0.305	0.148	0.043
C18 to C19	373403.	136993.	257682.	0.241	0.088	0.028
C19 to C20	486569.	226259.	390429.	0.324	0.151	0.085
C20 to C21	472152.	199173.	236818.	0.315	0.133	0.012
C21 to C22	291875.	42232.	235481.	0.211	0.031	0.015
C22 to C23	430453.	162265.	246515.	0.311	0.117	0.012
C23 to C24	345629.	52671.	298765.	0.259	0.040	0.022
C24 to C25	381424.	69523.	391131.	0.286	0.052	0.029
C25 to C26	525201.	132887.	437167.	0.444	0.112	0.034
C26 to C27	469017.	45996.	508872.	0.397	0.039	0.045
C27 to C28	482382.	23584.	583102.	0.430	0.021	0.016
C28 to C29	478199.	53765.	599137.	0.426	0.048	0.027
C29 to C30	459814.	26417.	687027.	0.448	0.026	0.036
C30 to C31	409974.	29733.	693031.	0.400	0.029	0.020
C31 to C32	382150.	31413.	869430.	0.454	0.037	0.069
C32 to C33	289972.	32053.	837227.	0.344	0.038	0.049
C33 to C34	235220.	25726.	926699.	0.292	0.032	0.036
C34 to C35	158972.	17684.	739277.	0.198	0.022	0.022
C35 to C36	124896.	7202.	829510.	0.192	0.011	0.031
C36 to 78 min	85165.	46311.	655371.	0.131	0.071	0.044
TOTAL	8660554.	2091518.	12186772.	1539889.	7.225	1.561
						9.718
						0.983

Pasadena - February

(filename = PAS02A)
(Size of sample = 74.130 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	-Acid+Neutral-	Neutral	Total	-Acid+Neutral-	Neutral
Resolved	Resolved	Resolved	Resolved	Resolved	Resolved	Resolved
16 min to C12	60261.	30882.	35025.	11941.	0.022	0.011
C12 to C13	391591.	171272.	299494.	86207.	0.154	0.068
C13 to C14	354611.	82673.	264818.	79688.	0.141	0.033
C14 to C15	326743.	56293.	228499.	37758.	0.134	0.023
C15 to C16	447944.	155600.	306164.	126794.	0.183	0.064
C16 to C17	628840.	332299.	336488.	172434.	0.273	0.144
C17 to C18	669468.	287545.	249998.	62204.	0.281	0.121
C18 to C19	515468.	157578.	203993.	45418.	0.218	0.067
C19 to C20	556447.	167913.	211443.	20103.	0.244	0.074
C20 to C21	613221.	212097.	201420.	8006.	0.269	0.093
C21 to C22	429642.	54123.	187099.	15140.	0.204	0.026
C22 to C23	539782.	137357.	195854.	20820.	0.257	0.065
C23 to C24	403929.	17094.	215635.	16545.	0.199	0.008
C24 to C25	428341.	37544.	271849.	20052.	0.211	0.019
C25 to C26	530879.	48389.	299699.	35400.	0.295	0.027
C26 to C27	519409.	34308.	342455.	60540.	0.289	0.019
C27 to C28	550310.	37382.	376137.	54703.	0.322	0.022
C28 to C29	539749.	60182.	380151.	50383.	0.316	0.035
C29 to C30	522626.	21804.	374975.	19661.	0.335	0.014
C30 to C31	426986.	17101.	307560.	22174.	0.274	0.011
C31 to C32	416352.	35726.	293952.	27113.	0.325	0.028
C32 to C33	342710.	32593.	259185.	28976.	0.268	0.025
C33 to C34	283437.	22914.	200435.	20383.	0.232	0.019
C34 to C35	200068.	16881.	144762.	10185.	0.164	0.014
C35 to C36	170718.	9516.	109638.	8260.	0.173	0.010
C36 to 78 min	74596.	21102.	43204.	15046.	0.076	0.021
TOTAL	10944128.	2258168.	6339932.	1075934.	5.861	1.060
					4.670	0.719

Pasadena - March

(filename = PAS03A)
 (Size of sample = 76.990 cu meters }

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	-Acid+Neutral-		Neutral	-Acid+Neutral-	Total	Resolved
16 min to C12	37313.	22107.	9325.	4466.	0.013	0.008
C12 to C13	244691.	115773.	139615.	67766.	0.089	0.042
C13 to C14	265483.	70896.	184563.	67957.	0.098	0.026
C14 to C15	232994.	58848.	171653.	45983.	0.088	0.022
C15 to C16	362484.	164042.	370379.	227361.	0.137	0.062
C16 to C17	562227.	357778.	432855.	300511.	0.226	0.144
C17 to C18	455388.	260377.	262521.	111570.	0.177	0.101
C18 to C19	500944.	207944.	194947.	56680.	0.196	0.081
C19 to C20	423768.	169792.	296597.	109995.	0.172	0.069
C20 to C21	485622.	207584.	169483.	16440.	0.197	0.084
C21 to C22	294980.	40460.	176790.	18044.	0.130	0.018
C22 to C23	397642.	134455.	183849.	22693.	0.175	0.059
C23 to C24	338316.	33388.	219492.	31535.	0.154	0.015
C24 to C25	324073.	33729.	249048.	42789.	0.148	0.015
C25 to C26	427619.	54331.	323035.	56052.	0.220	0.028
C26 to C27	427532.	48402.	343492.	39965.	0.220	0.025
C27 to C28	440797.	47882.	346695.	35883.	0.239	0.026
C28 to C29	441205.	56029.	350867.	48512.	0.239	0.030
C29 to C30	414147.	27325.	330288.	25293.	0.245	0.016
C30 to C31	360613.	9851.	274265.	17176.	0.214	0.006
C31 to C32	342808.	33293.	270474.	32562.	0.247	0.024
C32 to C33	261803.	32994.	178760.	20116.	0.189	0.024
C33 to C34	241112.	21006.	151998.	19806.	0.182	0.016
C34 to C35	179507.	11659.	99151.	12424.	0.136	0.009
C35 to C36	128000.	3716.	60861.	6786.	0.120	0.003
C36 to 78 min	41932.	12482.	13304.	20626.	0.039	0.012
TOTAL	8633000.	2236143.	5804307.	1458991.	4.288	0.965
						3.409
						0.766

Pasadena - April

(filename = PAS04A)
 (Size of sample = 76.960 cu meters }

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	-Acid+Neutral-	Resolved	Total	-Acid+Neutral-	Resolved
16 min to C12	38125.	18528.	18675.	4470.	0.018	0.009
C12 to C13	196204.	67450.	127639.	7168.	0.101	0.035
C13 to C14	235706.	59886.	187282.	46714.	0.122	0.031
C14 to C15	201697.	18612.	165862.	11449.	0.108	0.010
C15 to C16	291895.	65271.	292837.	105124.	0.156	0.035
C16 to C17	408647.	197888.	306647.	156905.	0.232	0.112
C17 to C18	382680.	104108.	212987.	38563.	0.210	0.057
C18 to C19	356516.	145134.	200675.	26915.	0.197	0.080
C19 to C20	358649.	108979.	170659.	33019.	0.205	0.062
C20 to C21	435512.	183758.	189173.	9484.	0.249	0.105
C21 to C22	285461.	40155.	167409.	9295.	0.177	0.025
C22 to C23	327129.	73159.	179369.	7944.	0.203	0.045
C23 to C24	298920.	12307.	192673.	14362.	0.192	0.008
C24 to C25	271359.	13325.	219769.	15066.	0.175	0.009
C25 to C26	325461.	32261.	230332.	10166.	0.236	0.023
C26 to C27	311390.	25003.	250525.	18386.	0.226	0.018
C27 to C28	318329.	19666.	281490.	25719.	0.243	0.015
C28 to C29	597491.	322690.	260240.	39485.	0.456	0.246
C29 to C30	292576.	8733.	234374.	10888.	0.245	0.007
C30 to C31	269199.	20969.	212311.	7278.	0.225	0.018
C31 to C32	255680.	31591.	215415.	26457.	0.260	0.032
C32 to C33	213805.	51939.	126377.	24989.	0.218	0.053
C33 to C34	191105.	53296.	107415.	10638.	0.204	0.057
C34 to C35	187209.	68420.	74016.	12585.	0.200	0.073
C35 to C36	106198.	25401.	31252.	6042.	0.140	0.034
C36 to 78 min	95010.	48059.	7946.	6151.	0.126	0.063
TOTAL	7251953.	1816588.	4663349.	685262.	5.122	1.263
					3.304	0.460

Pasadena - May

(filename = PAS05A)
(Size of sample = 76.440 cu meters }

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters				
	Total	-Acid+Neutral-	Neutral	-Acid+Neutral-	Neutral	Total		
	Total	Resolved	Total	Resolved	Total	Resolved		
16 min to C12	57940.	22453.	30509.	5395.	0.027	0.010	0.013	0.002
C12 to C13	283216.	67710.	211684.	19889.	0.140	0.034	0.100	0.009
C13 to C14	338147.	91719.	277401.	75635.	0.169	0.046	0.132	0.036
C14 to C15	272925.	4926.	237961.	18325.	0.140	0.003	0.116	0.009
C15 to C16	409331.	110804.	469431.	218625.	0.211	0.057	0.229	0.107
C16 to C17	538603.	269856.	442375.	224244.	0.295	0.148	0.230	0.116
C17 to C18	502376.	183018.	315870.	72394.	0.265	0.097	0.158	0.036
C18 to C19	416686.	116216.	255828.	52343.	0.222	0.062	0.129	0.026
C19 to C20	408528.	83717.	321604.	68103.	0.225	0.046	0.168	0.036
C20 to C21	475467.	156609.	234155.	18942.	0.262	0.086	0.123	0.010
C21 to C22	323832.	332338.	229032.	14257.	0.194	0.020	0.130	0.008
C22 to C23	375836.	77335.	236513.	23752.	0.225	0.046	0.134	0.013
C23 to C24	296524.	6569.	255513.	20442.	0.184	0.004	0.151	0.012
C24 to C25	282268.	5879.	268809.	11624.	0.175	0.004	0.158	0.007
C25 to C26	284966.	11836.	258742.	9077.	0.199	0.008	0.172	0.006
C26 to C27	303581.	4694.	287948.	19021.	0.212	0.003	0.191	0.013
C27 to C28	315172.	15376.	312392.	34965.	0.232	0.011	0.219	0.024
C28 to C29	300259.	27003.	295076.	50196.	0.221	0.020	0.206	0.035
C29 to C30	278253.	0.	273441.	14895.	0.224	0.000	0.209	0.011
C30 to C31	250082.	7076.	220281.	18345.	0.202	0.006	0.169	0.014
C31 to C32	227640.	14436.	211611.	29254.	0.224	0.014	0.197	0.027
C32 to C33	184023.	18092.	148219.	26954.	0.181	0.018	0.138	0.025
C33 to C34	130717.	8273.	95739.	13075.	0.134	0.009	0.094	0.013
C34 to C35	99019.	4517.	75948.	6796.	0.102	0.005	0.074	0.007
C35 to C36	78496.	9845.	9143.	4129.	0.100	0.013	0.011	0.005
C36 to 78 min	20532.	5474.	1405.	20455.	0.026	0.007	0.002	0.025
TOTAL	7454419.	1356671.	5976630.	1091132.	4.793	0.775	3.654	0.634

Pasadena - June

(filename = PAS06A)
(Size of sample = 76.350 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	- Acid+Neutral -	Total Resolved	- Acid+Neutral -	Total Resolved	- Acid+Neutral -
16 min to C12	53675.	19198.	40815.	8341.	0.030	0.011
C12 to C13	259547.	63302.	254267.	51888.	0.153	0.037
C13 to C14	269470.	70625.	300992.	82983.	0.161	0.042
C14 to C15	245885.	27176.	265853.	39912.	0.151	0.017
C15 to C16	325272.	86521.	472845.	194093.	0.199	0.053
C16 to C17	463139.	223406.	456208.	204900.	0.302	0.146
C17 to C18	412631.	128352.	372670.	73913.	0.260	0.081
C18 to C19	379208.	107007.	298552.	43229.	0.241	0.068
C19 to C20	370064.	66133.	339709.	58019.	0.243	0.043
C20 to C21	419884.	124228.	299214.	13570.	0.276	0.082
C21 to C22	291428.	28778.	307596.	23125.	0.208	0.021
C22 to C23	355022.	80835.	325511.	14299.	0.253	0.058
C23 to C24	257346.	7496.	295204.	15933.	0.191	0.006
C24 to C25	267152.	4298.	324669.	8104.	0.198	0.003
C25 to C26	252795.	4386.	312067.	6797.	0.211	0.004
C26 to C27	266514.	12950.	329056.	21640.	0.222	0.011
C27 to C28	267511.	14481.	343302.	35018.	0.235	0.013
C28 to C29	263304.	28220.	338960.	56088.	0.231	0.025
C29 to C30	233579.	2916.	288414.	15062.	0.225	0.003
C30 to C31	199348.	2295.	256114.	17590.	0.192	0.002
C31 to C32	197065.	17154.	251229.	26098.	0.231	0.020
C32 to C33	145098.	14343.	194610.	33494.	0.170	0.017
C33 to C34	100632.	6021.	154529.	17588.	0.123	0.007
C34 to C35	117777.	7229.	114147.	16870.	0.144	0.009
C35 to C36	42435.	1753.	71025.	12893.	0.064	0.003
C36 to 78 min	8791.	4394.	33979.	18014.	0.013	0.007
TOTAL	6464572.	1153497.	7041537.	1109461.	4.927	0.786
					4.021	0.598

Pasadena - July

(filename = PAS07A)
(Size of sample = 75.850 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	-Acid+Neutral-	Resolved	Total	-Acid+Neutral-	Resolved
16 min to C12	32344.	5241.	19014.	2703.	0.029	0.005
C12 to C13	150423.	11273.	76554.	2483.	0.145	0.011
C13 to C14	141033.	8324.	89055.	10094.	0.138	0.008
C14 to C15	125441.	7369.	90822.	3073.	0.126	0.007
C15 to C16	171597.	23205.	167793.	52562.	0.172	0.023
C16 to C17	207096.	76483.	157892.	52999.	0.221	0.082
C17 to C18	215369.	57618.	145406.	16417.	0.222	0.059
C18 to C19	194070.	47566.	126255.	13042.	0.202	0.049
C19 to C20	199214.	36643.	134660.	13680.	0.214	0.039
C20 to C21	247407.	70924.	140209.	1111.	0.266	0.076
C21 to C22	178113.	14153.	137422.	3132.	0.208	0.016
C22 to C23	203575.	40773.	147075.	8608.	0.237	0.048
C23 to C24	181053.	9678.	153081.	5456.	0.219	0.012
C24 to C25	167275.	7870.	156134.	6856.	0.202	0.010
C25 to C26	167714.	2760.	179295.	4072.	0.229	0.004
C26 to C27	172961.	7758.	180045.	9904.	0.236	0.011
C27 to C28	188220.	14433.	222471.	20258.	0.270	0.021
C28 to C29	174492.	18347.	188891.	19131.	0.251	0.026
C29 to C30	167714.	5907.	185386.	11902.	0.264	0.009
C30 to C31	141952.	5134.	151477.	12948.	0.223	0.008
C31 to C32	143651.	11859.	155976.	21469.	0.275	0.023
C32 to C33	117464.	13040.	107622.	16081.	0.225	0.025
C33 to C34	95542.	6899.	85827.	9008.	0.192	0.014
C34 to C35	63768.	5702.	46301.	6121.	0.128	0.011
C35 to C36	32315.	5197.	26691.	5919.	0.080	0.013
C36 to 78 min	11430.	4224.	9024.	4063.	0.028	0.010
TOTAL	3891233.	518380.	3280378.	333092.	5.001	0.621
					4.136	0.421

Pasadena - August

(filename = PAS08A)
(Size of sample = 76.120 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS		ug/cu meters		
	Total	-Acid+Neutral- Resolved	Total	-Neutral- Resolved	-Acid+Neutral- Resolved
16 min to C12	40511.	6097.	30038.	8135.	0.021
C12 to C13	184458.	14062.	123698.	10558.	0.003
C13 to C14	166198.	11004.	131533.	18585.	0.014
C14 to C15	159971.	11080.	139122.	17399.	0.008
C15 to C16	230938.	30979.	239059.	88036.	0.005
C16 to C17	268126.	96709.	226098.	87462.	0.006
C17 to C18	288483.	95070.	225731.	38851.	0.009
C18 to C19	250473.	47501.	185360.	32699.	0.009
C19 to C20	276189.	58037.	209171.	30083.	0.017
C20 to C21	321599.	90396.	204160.	7950.	0.011
C21 to C22	237832.	20940.	202006.	12581.	0.012
C22 to C23	270441.	58515.	213560.	25184.	0.017
C23 to C24	249908.	20403.	229619.	24562.	0.011
C24 to C25	227419.	12491.	221615.	19723.	0.004
C25 to C26	224040.	3020.	243817.	20047.	0.007
C26 to C27	238682.	8390.	265343.	26201.	0.015
C27 to C28	267311.	31178.	300875.	66066.	0.012
C28 to C29	247663.	20277.	274120.	34062.	0.016
C29 to C30	235750.	7168.	261344.	19911.	0.011
C30 to C31	226283.	10821.	249254.	32481.	0.017
C31 to C32	211465.	18538.	234024.	31917.	0.011
C32 to C33	160380.	20275.	177769.	24310.	0.011
C33 to C34	133379.	9682.	130971.	13652.	0.011
C34 to C35	111992.	5143.	110570.	8035.	0.011
C35 to C36	79094.	5409.	68671.	10422.	0.013
C36 to 78 min	20807.	7572.	22455.	14212.	0.018
TOTAL	5329392.	720757.	4919983.	723124.	0.485

Pasadena - September

(filename = PAS09A)
(Size of sample = 61.000 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	-Acid+Neutral-	Resolved	Total	-Neutral-	-Acid+Neutral- Total Resolved
16 min to C12	37718.	6655.	23479.	4401.	0.018	0.003
C12 to C13	170140.	11622.	103508.	4301.	0.085	0.006
C13 to C14	156847.	10439.	108595.	11618.	0.079	0.005
C14 to C15	153791.	9399.	118445.	10382.	0.079	0.005
C15 to C16	236312.	39783.	217948.	67638.	0.122	0.021
C16 to C17	254680.	84914.	186824.	68456.	0.140	0.047
C17 to C18	278360.	94598.	167338.	28711.	0.148	0.050
C18 to C19	236554.	50190.	155740.	23976.	0.127	0.027
C19 to C20	250070.	48082.	128165.	20453.	0.139	0.027
C20 to C21	289773.	67583.	145175.	5043.	0.161	0.037
C21 to C22	219925.	17488.	132285.	6280.	0.132	0.011
C22 to C23	258378.	54556.	149452.	22073.	0.155	0.033
C23 to C24	238665.	18022.	167632.	18424.	0.149	0.011
C24 to C25	218690.	11166.	154296.	14942.	0.136	0.007
C25 to C26	221159.	7622.	190320.	14454.	0.155	0.005
C26 to C27	242647.	13306.	211836.	13713.	0.171	0.009
C27 to C28	278548.	36891.	261046.	52531.	0.206	0.027
C28 to C29	267653.	21796.	243932.	25747.	0.198	0.016
C29 to C30	252940.	8449.	234581.	28143.	0.205	0.007
C30 to C31	252845.	12341.	239527.	21254.	0.205	0.010
C31 to C32	225939.	18542.	219610.	27026.	0.223	0.018
C32 to C33	183303.	21128.	155739.	23887.	0.181	0.021
C33 to C34	123100.	9236.	126753.	16857.	0.127	0.010
C34 to C35	103466.	8249.	87644.	14253.	0.107	0.009
C35 to C36	59444.	5323.	33547.	8912.	0.076	0.007
C36 to 78 min	22618.	5392.	19991.	17547.	0.029	0.007
TOTAL	5233565.	692772.	3983408.	571022.	3.552	0.435
					2.865	0.413

Pasadena - October

(filename = PAS10A
 (Size of sample = 76.380 cu meters}

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	Acid+Neutral	Neutral	Total	Resolved	Neutral
16 min to C12	34153.	4696.	22016.	4426.	0.019	0.003
C12 to C13	154279.	7161.	101181.	4514.	0.092	0.004
C13 to C14	150036.	10849.	117230.	19935.	0.090	0.007
C14 to C15	148043.	12885.	135587.	16153.	0.091	0.008
C15 to C16	229106.	43474.	248516.	92016.	0.141	0.027
C16 to C17	234938.	79880.	214228.	81928.	0.154	0.052
C17 to C18	291344.	99097.	202767.	43526.	0.185	0.063
C18 to C19	213530.	53190.	196385.	45091.	0.137	0.034
C19 to C20	228467.	41647.	169144.	23464.	0.151	0.028
C20 to C21	279368.	80199.	169772.	5949.	0.185	0.053
C21 to C22	185592.	11021.	153745.	8858.	0.133	0.008
C22 to C23	224614.	50636.	170491.	19330.	0.161	0.036
C23 to C24	204709.	19414.	190132.	21713.	0.153	0.014
C24 to C25	195827.	14543.	196804.	16240.	0.146	0.011
C25 to C26	205645.	24517.	208569.	14818.	0.173	0.021
C26 to C27	224647.	13919.	248440.	25571.	0.189	0.012
C27 to C28	249083.	23050.	295584.	37372.	0.220	0.020
C28 to C29	241973.	16085.	274874.	25731.	0.214	0.014
C29 to C30	253147.	8925.	301785.	23550.	0.245	0.009
C30 to C31	214663.	5950.	268486.	16828.	0.208	0.006
C31 to C32	222872.	21690.	272319.	26667.	0.263	0.026
C32 to C33	190288.	28132.	190637.	19402.	0.224	0.033
C33 to C34	141248.	13989.	155389.	16308.	0.174	0.017
C34 to C35	109382.	11855.	119515.	9471.	0.135	0.015
C35 to C36	71965.	7980.	68430.	8817.	0.110	0.012
C36 to 78 min	18629.	13110.	13290.	14398.	0.028	0.020
TOTAL	4917548.	717894.	4705316.	642076.	4.020	0.552
						3.403
						0.439

Pasadena - November

(filename = PAS11A
 (Size of sample = 78.460 cu meters }

Elution Zone (incl. lower bound)	Total	AREA COUNTS		ug/cu meters		
		-Acid	-Neutral	-Acid+Neutral	Total	Resolved
16 min to C12	49183.	15767.	30827.	8192.	0.017	0.012
C12 to C13	203280.	17062.	126778.	8571.	0.006	0.054
C13 to C14	207016.	14902.	154548.	26529.	0.005	0.066
C14 to C15	217640.	19158.	161449.	12138.	0.007	0.071
C15 to C16	357459.	97861.	328847.	143240.	0.037	0.144
C16 to C17	351132.	97839.	223213.	72528.	0.039	0.104
C17 to C18	501643.	204109.	251095.	71933.	0.079	0.113
C18 to C19	386420.	113721.	208460.	51787.	0.150	0.044
C19 to C20	443439.	140756.	250045.	66777.	0.178	0.057
C20 to C21	480046.	155513.	205639.	13139.	0.193	0.063
C21 to C22	322168.	28756.	192771.	12688.	0.140	0.013
C22 to C23	437461.	130637.	215907.	19489.	0.191	0.057
C23 to C24	369350.	34265.	251750.	27617.	0.167	0.016
C24 to C25	392742.	29738.	276526.	33209.	0.178	0.013
C25 to C26	497960.	98172.	348003.	34582.	0.254	0.050
C26 to C27	481625.	59871.	377684.	32713.	0.246	0.031
C27 to C28	490955.	25650.	414525.	43491.	0.264	0.014
C28 to C29	504834.	65551.	411420.	50831.	0.271	0.035
C29 to C30	477927.	24700.	390050.	26907.	0.281	0.015
C30 to C31	436208.	35684.	353258.	19402.	0.256	0.021
C31 to C32	396334.	38188.	340393.	33988.	0.284	0.027
C32 to C33	339501.	37822.	282462.	39293.	0.243	0.027
C33 to C34	276484.	22267.	199106.	20768.	0.207	0.017
C34 to C35	221380.	12835.	169211.	11062.	0.166	0.010
C35 to C36	178423.	3440.	123678.	7605.	0.166	0.003
C36 to 78 min	95595.	13903.	46789.	30917.	0.089	0.013
TOTAL	9116205.	1539167.	6334434.	919396.	4.639	0.703

Pasadena - December

(filename = PAS12A)
 (Size of sample = 77.100 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Acid	Neutral	Total	Acid+Neutral	Neutral	Total
	Total	Resolved		Total	Resolved	
16 min to C12	51162.	16701.	31726.	6823.	0.021	0.014
C12 to C13	224266.	23334.	143128.	5158.	0.099	0.069
C13 to C14	215000.	13997.	154452.	15746.	0.096	0.075
C14 to C15	226918.	11727.	195239.	5751.	0.104	0.097
C15 to C16	440640.	161008.	372814.	181730.	0.203	0.074
C16 to C17	372103.	109523.	234760.	63441.	0.182	0.054
C17 to C18	537450.	214220.	279796.	78365.	0.254	0.101
C18 to C19	404978.	115290.	239730.	52155.	0.193	0.055
C19 to C20	495625.	176038.	256591.	81179.	0.244	0.087
C20 to C21	493120.	139291.	215711.	10898.	0.243	0.069
C21 to C22	356270.	28928.	213010.	15439.	0.190	0.015
C22 to C23	488271.	131156.	242092.	22622.	0.261	0.070
C23 to C24	438372.	38822.	303375.	26268.	0.243	0.022
C24 to C25	488400.	36519.	323011.	31682.	0.271	0.020
C25 to C26	613442.	122999.	416352.	36451.	0.384	0.077
C26 to C27	557412.	41851.	434992.	26631.	0.349	0.026
C27 to C28	544248.	45044.	443585.	40180.	0.358	0.030
C28 to C29	565110.	62743.	438725.	26787.	0.372	0.041
C29 to C30	538020.	26275.	435735.	11565.	0.388	0.019
C30 to C31	472336.	24462.	371226.	14108.	0.340	0.018
C31 to C32	453829.	41280.	385522.	36149.	0.398	0.036
C32 to C33	373713.	46150.	302141.	35698.	0.328	0.041
C33 to C34	300969.	25932.	215383.	23088.	0.277	0.024
C34 to C35	233474.	17598.	169997.	7179.	0.215	0.016
C35 to C36	192406.	10858.	132247.	3584.	0.219	0.012
C36 to 78 min	106966.	18928.	63596.	7879.	0.122	0.022
TOTAL	10184500.	1700674.	7014936.	866556.	6.353	0.956
					4.847	0.537

Downtown Los Angeles - January

(filename = DLA01A)
(Size of sample = 75.250 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Acid+Neutral		Neutral	Acid+Neutral		Neutral
	Total	Resolved	Total	Resolved	Total	Resolved
16 min to C12	41104.	14360.	28048.	2984.	0.033	0.012
C12 to C13	257420.	37625.	278600.	16309.	0.224	0.033
C13 to C14	245920.	21687.	344732.	42349.	0.216	0.019
C14 to C15	225755.	16007.	276164.	15673.	0.203	0.014
C15 to C16	362987.	104947.	370501.	127963.	0.327	0.095
C16 to C17	433465.	184456.	392693.	174677.	0.415	0.177
C17 to C18	342096.	131759.	316270.	71118.	0.317	0.122
C18 to C19	310304.	87221.	242292.	42381.	0.290	0.081
C19 to C20	316386.	81608.	285305.	72688.	0.306	0.079
C20 to C21	392525.	149249.	279900.	60831.	0.379	0.144
C21 to C22	248435.	30527.	225367.	18360.	0.260	0.032
C22 to C23	335751.	98392.	264471.	26910.	0.352	0.103
C23 to C24	309987.	35733.	333714.	43039.	0.337	0.039
C24 to C25	357597.	48701.	436069.	63265.	0.389	0.053
C25 to C26	423859.	69942.	551813.	67321.	0.519	0.086
C26 to C27	431112.	38420.	620784.	59375.	0.528	0.047
C27 to C28	442401.	21017.	636449.	52896.	0.571	0.027
C28 to C29	461480.	24742.	653133.	34138.	0.596	0.032
C29 to C30	482027.	26240.	693024.	34391.	0.681	0.037
C30 to C31	408472.	20066.	591542.	40615.	0.577	0.028
C31 to C32	390780.	41052.	588825.	61797.	0.672	0.071
C32 to C33	338530.	38601.	496852.	54940.	0.582	0.066
C33 to C34	246938.	21631.	404827.	45404.	0.445	0.039
C34 to C35	185960.	10788.	269392.	37781.	0.335	0.019
C35 to C36	129031.	3531.	218051.	24456.	0.288	0.008
C36 to 78 min	61816.	2265.	178151.	34944.	0.138	0.005
TOTAL	8182138.	1360567.	9976969.	1326605.	9.979	1.468
						6.847
						0.857

Downtown Los Angeles - February

(filename = DLA02A)
(Size of sample = 76.800 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	-Acid+Neutral-	Neutral	Total	-Acid+Neutral-	Neutral
	Resolved	Resolved	Resolved	Resolved	Resolved	Resolved
16 min to C12	60721.	25802.	26698.	0.024	0.010	0.001
C12 to C13	466943.	158009.	338675.	0.195	0.066	0.149
C13 to C14	445870.	91402.	376425.	0.188	0.038	0.167
C14 to C15	361063.	50672.	287722.	0.156	0.022	0.131
C15 to C16	480750.	122277.	327684.	0.208	0.053	0.149
C16 to C17	667934.	334545.	392754.	0.307	0.154	0.190
C17 to C18	627254.	247008.	279694.	0.279	0.110	0.131
C18 to C19	535090.	177253.	261024.	0.240	0.079	0.123
C19 to C20	493032.	119924.	242265.	0.229	0.056	0.118
C20 to C21	617499.	237489.	266694.	0.286	0.110	0.130
C21 to C22	401567.	46531.	205574.	0.202	0.023	0.109
C22 to C23	522331.	129774.	230548.	0.263	0.065	0.122
C23 to C24	392891.	47013.	259567.	0.205	0.025	0.143
C24 to C25	496073.	53733.	321194.	0.259	0.028	0.177
C25 to C26	526187.	79550.	424324.	0.310	0.047	0.263
C26 to C27	569584.	50821.	454667.	0.335	0.030	0.282
C27 to C28	590247.	49485.	489431.	0.366	0.031	0.320
C28 to C29	622580.	42701.	516870.	0.386	0.026	0.337
C29 to C30	610273.	35800.	517554.	0.414	0.024	0.370
C30 to C31	536688.	32692.	447255.	0.364	0.022	0.320
C31 to C32	526461.	54254.	454934.	0.435	0.045	0.396
C32 to C33	419085.	42976.	362506.	0.346	0.036	0.316
C33 to C34	359242.	44285.	321723.	0.3785.	0.311	0.293
C34 to C35	244503.	10609.	218531.	0.212	0.009	0.199
C35 to C36	189660.	5952.	173442.	0.203	0.006	0.196
C36 to 78 min	120557.	13982.	94032.	0.129	0.015	0.106
TOTAL	11884085.	2304539.	8291787.	1145628.	6.850	1.169
					5.248	0.658

Downtown Los Angeles - March

(filename = DLA03A
 (Size of sample = 77.460 cu meters)}

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	Acid+Neutral	Neutral	Total	Acid+Neutral	Neutral
Resolved	Resolved	Resolved	Resolved	Resolved	Resolved	Resolved
16 min to C12	37595.	11756.	21560.	3029.	0.018	0.006
C12 to C13	276609.	59188.	219058.	28201.	0.139	0.030
C13 to C14	275129.	31321.	248536.	41375.	0.139	0.016
C14 to C15	258755.	22754.	217086.	13772.	0.135	0.012
C15 to C16	337981.	70661.	356037.	125427.	0.176	0.037
C16 to C17	494944.	249172.	445423.	236333.	0.274	0.138
C17 to C18	423347.	183794.	289116.	56945.	0.226	0.098
C18 to C19	358964.	118650.	239815.	55248.	0.193	0.064
C19 to C20	331017.	66546.	251588.	56523.	0.184	0.037
C20 to C21	422550.	159554.	255987.	64245.	0.235	0.089
C21 to C22	274869.	34799.	203119.	160662.	0.166	0.021
C22 to C23	352317.	97174.	233413.	20791.	0.213	0.059
C23 to C24	315958.	31141.	270091.	29366.	0.198	0.020
C24 to C25	352837.	44840.	365810.	54365.	0.221	0.028
C25 to C26	456102.	66391.	414941.	77294.	0.323	0.047
C26 to C27	459804.	26873.	498424.	47235.	0.325	0.019
C27 to C28	484811.	44873.	529290.	47488.	0.361	0.033
C28 to C29	533060.	46295.	569590.	44317.	0.397	0.034
C29 to C30	542283.	29406.	582788.	24738.	0.442	0.024
C30 to C31	470922.	20702.	515899.	25806.	0.384	0.017
C31 to C32	462910.	45383.	478364.	46498.	0.460	0.045
C32 to C33	389954.	40900.	404955.	59082.	0.387	0.041
C33 to C34	339345.	25729.	371876.	53142.	0.353	0.027
C34 to C35	239023.	4728.	220916.	19939.	0.248	0.005
C35 to C36	179657.	7859.	183623.	8871.	0.231	0.010
C36 to 78 min	117021.	13640.	88035.	7610.	0.151	0.018
TOTAL	9187764.	1554129.	8475340.	1263702.	6.578	0.972
					5.413	0.683

Downtown Los Angeles - April

(filename = DLA04A)
 (Size of sample = 77,220 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Acid+Neutral		Neutral	-Acid+Neutral-		Neutral
	Total	Resolved	Total	Resolved	Total	Resolved
16 min to C12	41908.	13878.	19952.	4525.	0.022	0.010
C12 to C13	257453.	50555.	148001.	9297.	0.028	0.081
C13 to C14	276768.	52521.	185432.	33950.	0.029	0.102
C14 to C15	236479.	23444.	170659.	5936.	0.013	0.096
C15 to C16	313136.	59526.	248707.	77610.	0.180	0.034
C16 to C17	444626.	216190.	336781.	183559.	0.272	0.132
C17 to C18	393942.	133874.	208231.	37336.	0.233	0.079
C18 to C19	338461.	96737.	174250.	31657.	0.202	0.058
C19 to C20	317599.	61950.	185984.	33266.	0.196	0.038
C20 to C21	404562.	148622.	193550.	38150.	0.250	0.092
C21 to C22	272287.	25318.	170505.	10709.	0.182	0.017
C22 to C23	342295.	74901.	178082.	10289.	0.229	0.050
C23 to C24	273554.	23394.	181664.	17486.	0.190	0.016
C24 to C25	280625.	15695.	246389.	28196.	0.195	0.011
C25 to C26	350206.	38067.	276471.	25734.	0.274	0.030
C26 to C27	352831.	42937.	322637.	34258.	0.276	0.034
C27 to C28	360145.	34306.	333082.	31714.	0.297	0.028
C28 to C29	388875.	36537.	356468.	35028.	0.321	0.030
C29 to C30	384365.	15515.	351984.	22580.	0.347	0.014
C30 to C31	341395.	8268.	304451.	12843.	0.308	0.007
C31 to C32	326661.	32774.	282840.	34177.	0.359	0.036
C32 to C33	269590.	26339.	233065.	27085.	0.296	0.029
C33 to C34	236046.	20590.	206516.	26920.	0.272	0.024
C34 to C35	162810.	7403.	142995.	7520.	0.187	0.009
C35 to C36	118289.	2912.	93385.	5246.	0.169	0.004
C36 to 78 min	55020.	8962.	31402.	13273.	0.078	0.013
TOTAL	7539928.	1271215.	5583483.	798344.	5.771	0.863
						4.333
						0.575

Downtown Los Angeles - May

(filename = DLA05A)
(Size of sample = 76.810 cu meters }

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Acid+Neutral		Neutral	Total	Resolved	Total
16 min to C12	52428.	15951.	24059.	3489.	0.021	0.010
C12 to C13	347383.	56192.	208960.	24884.	0.152	0.094
C13 to C14	397237.	77983.	270803.	68163.	0.176	0.122
C14 to C15	323752.	18424.	209060.	12683.	0.147	0.097
C15 to C16	425853.	70115.	367224.	134759.	0.194	0.032
C16 to C17	696991.	323825.	479386.	277040.	0.337	0.157
C17 to C18	509935.	169874.	302035.	71456.	0.238	0.079
C18 to C19	450820.	97110.	282207.	50154.	0.213	0.046
C19 to C20	421119.	71026.	239534.	38047.	0.205	0.035
C20 to C21	509082.	177113.	268316.	49629.	0.248	0.086
C21 to C22	369379.	45903.	238669.	16789.	0.195	0.024
C22 to C23	397568.	67808.	222801.	11151.	0.210	0.036
C23 to C24	376000.	17127.	256533.	21126.	0.207	0.009
C24 to C25	334162.	29433.	275417.	17212.	0.184	0.016
C25 to C26	401144.	29029.	329045.	25126.	0.248	0.018
C26 to C27	390239.	21286.	329333.	22352.	0.242	0.013
C27 to C28	418199.	27097.	378521.	23680.	0.273	0.018
C28 to C29	412716.	38114.	371470.	41368.	0.269	0.025
C29 to C30	393783.	4655.	360520.	24073.	0.281	0.003
C30 to C31	366043.	9030.	313770.	9334.	0.261	0.006
C31 to C32	330686.	16678.	297545.	29731.	0.287	0.014
C32 to C33	284765.	27337.	243655.	19721.	0.248	0.024
C33 to C34	234845.	21049.	197074.	18672.	0.214	0.019
C34 to C35	168911.	5078.	138066.	3237.	0.154	0.005
C35 to C36	117321.	2629.	98190.	5602.	0.132	0.003
C36 to 78 min	43121.	2152.	27511.	4118.	0.049	0.002
TOTAL	9173482.	1442018.	6729704.	1023596.	5.387	0.746
					4.155	0.560

Downtown Los Angeles - June

(filename = DLA06A)
 (Size of sample = 76.410 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters			
	Total	-Acid+Neutral-	Resolved	Total	-Neutral-	-Acid+Neutral-	
				Total	Resolved	Total	Resolved
16 min to C12	44064.	5743.	23290.	3348.	0.027	0.004	0.010
C12 to C13	295212.	39121.	203738.	16853.	0.195	0.026	0.097
C13 to C14	320211.	45023.	268173.	58941.	0.214	0.030	0.128
C14 to C15	263062.	6327.	207824.	8053.	0.181	0.004	0.102
C15 to C16	324278.	34304.	320895.	93707.	0.223	0.024	0.158
C16 to C17	474806.	211448.	438486.	233020.	0.347	0.154	0.229
C17 to C18	395677.	106529.	278946.	41864.	0.279	0.075	0.141
C18 to C19	348261.	80394.	272981.	41483.	0.248	0.057	0.139
C19 to C20	320683.	46201.	231915.	33995.	0.236	0.034	0.122
C20 to C21	373986.	107296.	255727.	41809.	0.275	0.079	0.135
C21 to C22	256448.	22576.	231260.	11408.	0.205	0.018	0.132
C22 to C23	278586.	43128.	215116.	7891.	0.222	0.034	0.123
C23 to C24	242099.	7815.	235669.	15986.	0.201	0.006	0.140
C24 to C25	240341.	5155.	269906.	10530.	0.199	0.004	0.160
C25 to C26	250469.	13075.	274546.	15974.	0.234	0.012	0.184
C26 to C27	261019.	14845.	314427.	24353.	0.244	0.014	0.210
C27 to C28	265135.	22026.	323144.	30692.	0.261	0.022	0.228
C28 to C29	277233.	26245.	345578.	37627.	0.273	0.026	0.243
C29 to C30	275262.	6311.	330400.	13407.	0.296	0.007	0.255
C30 to C31	226744.	2193.	279547.	10881.	0.244	0.002	0.216
C31 to C32	216745.	23546.	269259.	29553.	0.284	0.031	0.253
C32 to C33	182979.	17089.	221836.	28482.	0.240	0.022	0.208
C33 to C34	161228.	18972.	199218.	21663.	0.221	0.026	0.196
C34 to C35	102497.	8672.	127079.	10452.	0.141	0.012	0.125
C35 to C36	62133.	3218.	97345.	3795.	0.106	0.005	0.119
C36 to 78 min	17264.	6545.	34309.	13732.	0.029	0.011	0.042
TOTAL	6476422.	923797.	6270614.	859499.	5.623	0.741	4.095
							0.520

Downtown Los Angeles - July

(filename = DLA07A
 (Size of sample = 76.350 cu meters)}

Elution Zone (incl. lower bound)	AREA COUNTS			-ug/cu meters		
	Total	-Acid+Neutral-	Resolved	Total	-Acid+Neutral-	Resolved
16 min to C12	32025.	3346.	17024.	1665.	0.034	0.004
C12 to C13	211421.	10537.	116796.	3437.	0.242	0.012
C13 to C14	181503.	5212.	101704.	6596.	0.210	0.006
C14 to C15	151898.	0.	105915.	4039.	0.181	0.000
C15 to C16	204519.	15783.	127784.	28336.	0.243	0.019
C16 to C17	232778.	69738.	142402.	57857.	0.294	0.088
C17 to C18	245103.	57195.	118882.	13824.	0.299	0.070
C18 to C19	199946.	40231.	98871.	15032.	0.246	0.050
C19 to C20	202871.	25080.	102476.	13112.	0.259	0.032
C20 to C21	248062.	62985.	113336.	18782.	0.316	0.080
C21 to C22	176179.	11695.	98674.	4351.	0.244	0.016
C22 to C23	205625.	38602.	104647.	9560.	0.284	0.053
C23 to C24	191971.	3876.	99447.	7691.	0.276	0.006
C24 to C25	172204.	8013.	122012.	9803.	0.247	0.012
C25 to C26	174210.	7373.	120466.	8139.	0.282	0.012
C26 to C27	188939.	12669.	140903.	19213.	0.306	0.021
C27 to C28	199895.	16495.	148040.	24688.	0.341	0.028
C28 to C29	219588.	18105.	171121.	23660.	0.374	0.031
C29 to C30	205909.	6044.	167399.	14291.	0.384	0.011
C30 to C31	187192.	6800.	152813.	10780.	0.349	0.013
C31 to C32	184449.	14222.	150775.	21324.	0.419	0.032
C32 to C33	156193.	11982.	127699.	14468.	0.355	0.027
C33 to C34	131092.	8401.	97375.	7582.	0.312	0.020
C34 to C35	77468.	0.	62170.	3422.	0.184	0.000
C35 to C36	45395.	3949.	32610.	3449.	0.134	0.012
C36 to 78 min	7042.	4449.	11786.	8187.	0.021	0.013
TOTAL	4433477.	462782.	2853127.	353288.	6.837	0.667
					4.526	0.555

Downtown Los Angeles - August

(filename = DLA08A
 (Size of sample = 76.460 cu meters)}

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	Acid	Neutral	Total	Resolved	Total
16 min to C12	34760.	4357.	28730.	4221.	0.020	0.013
C12 to C13	230203.	9529.	163124.	5031.	0.143	0.006
C13 to C14	202681.	14848.	155209.	17672.	0.127	0.074
C14 to C15	188530.	6961.	167345.	3290.	0.122	0.004
C15 to C16	247701.	30871.	246548.	66244.	0.160	0.020
C16 to C17	296465.	99314.	248125.	94493.	0.204	0.068
C17 to C18	319574.	83897.	227875.	26504.	0.212	0.056
C18 to C19	263992.	55494.	216263.	27844.	0.177	0.037
C19 to C20	289176.	55040.	191170.	24237.	0.200	0.038
C20 to C21	331053.	85378.	217185.	26229.	0.229	0.059
C21 to C22	246562.	23963.	206392.	15872.	0.185	0.018
C22 to C23	282379.	54928.	196070.	15912.	0.212	0.041
C23 to C24	267526.	21026.	234502.	23325.	0.209	0.016
C24 to C25	259292.	14007.	252728.	18271.	0.202	0.011
C25 to C26	254722.	11067.	247876.	8511.	0.224	0.010
C26 to C27	278197.	15961.	299609.	17409.	0.245	0.014
C27 to C28	308838.	43608.	333547.	48135.	0.286	0.040
C28 to C29	325804.	10001.	366919.	29624.	0.302	0.009
C29 to C30	310669.	8363.	351970.	18028.	0.315	0.008
C30 to C31	306999.	16694.	343706.	23757.	0.311	0.017
C31 to C32	273791.	20963.	322819.	33377.	0.338	0.026
C32 to C33	243334.	22456.	287391.	30544.	0.300	0.028
C33 to C34	187453.	12592.	228847.	17909.	0.242	0.016
C34 to C35	133970.	7116.	154631.	6611.	0.173	0.009
C35 to C36	81436.	0.	126421.	2781.	0.130	0.000
C36 to 78 min	30440.	1143.	60486.	14587.	0.049	0.002
TOTAL	6195547.	729577.	5876088.	620418.	5.318	0.567
						4.021
						0.402

Downtown Los Angeles - September

(filename = DLA09A)
(Size of sample = 91.190 cu meters)

-242-

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	-Acid+Neutral-	Total Resolved	Total	-Acid+Neutral-	Total Resolved
16 min to C12	37132.	9260.	28947.	6666.	0.017	0.004
C12 to C13	227251.	10790.	162063.	3614.	0.109	0.005
C13 to C14	203396.	12707.	166447.	21942.	0.098	0.006
C14 to C15	204470.	15624.	158246.	3141.	0.101	0.008
C15 to C16	271323.	40907.	288475.	96769.	0.135	0.020
C16 to C17	368015.	131851.	283934.	101349.	0.194	0.070
C17 to C18	352010.	124912.	240885.	35157.	0.179	0.064
C18 to C19	309868.	70371.	223514.	24642.	0.159	0.036
C19 to C20	323381.	35623.	234745.	18723.	0.172	0.019
C20 to C21	375248.	87543.	245160.	27745.	0.200	0.047
C21 to C22	288283.	23441.	229505.	11918.	0.166	0.014
C22 to C23	365639.	79230.	233655.	1109.	0.211	0.046
C23 to C24	334159.	27753.	277072.	24345.	0.200	0.017
C24 to C25	321826.	29967.	339076.	20978.	0.193	0.018
C25 to C26	399793.	37581.	360146.	16094.	0.270	0.025
C26 to C27	432479.	35481.	453816.	46973.	0.292	0.024
C27 to C28	493458.	58454.	549163.	102770.	0.351	0.042
C28 to C29	533084.	46828.	592211.	52208.	0.379	0.033
C29 to C30	539901.	33870.	619062.	20592.	0.420	0.026
C30 to C31	528758.	24059.	600561.	64849.	0.411	0.019
C31 to C32	501466.	42535.	597992.	60092.	0.475	0.040
C32 to C33	455230.	39155.	486141.	33088.	0.432	0.037
C33 to C34	354809.	50822.	436285.	42576.	0.352	0.050
C34 to C35	254434.	10349.	291537.	14953.	0.253	0.010
C35 to C36	215243.	3864.	240837.	8873.	0.265	0.005
C36 to 78 min	116571.	2969.	148048.	19602.	0.143	0.004
TOTAL	8807227.	1085946.	8487523.	880768.	6.178	0.688
					4.762	0.466

Downtown Los Angeles - October

(filename = DLA10A
 (Size of sample = 76.230 cu meters }

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	-Acid+Neutral-	Resolved	Total	-Acid+Neutral-	Resolved
16 min to C12	32512.	5648.	24126.	4502.	0.017	0.003
C12 to C13	205372.	4831.	143858.	0.	0.116	0.003
C13 to C14	191949.	11051.	135206.	11561.	0.110	0.006
C14 to C15	200676.	16626.	164806.	11148.	0.118	0.010
C15 to C16	277175.	38613.	267865.	89545.	0.163	0.023
C16 to C17	366669.	123666.	258710.	93300.	0.229	0.077
C17 to C18	374424.	149584.	219128.	29193.	0.226	0.090
C18 to C19	310137.	66602.	202676.	28007.	0.188	0.040
C19 to C20	320176.	33886.	207026.	24132.	0.201	0.021
C20 to C21	385128.	106138.	219402.	32073.	0.242	0.067
C21 to C22	271335.	16927.	190182.	12578.	0.185	0.012
C22 to C23	369245.	73046.	187502.	13311.	0.252	0.050
C23 to C24	312114.	28897.	229548.	16435.	0.221	0.020
C24 to C25	367828.	21123.	285659.	20787.	0.260	0.015
C25 to C26	404013.	44265.	325144.	21317.	0.322	0.035
C26 to C27	499578.	46465.	421001.	49346.	0.399	0.037
C27 to C28	570330.	62320.	489083.	70978.	0.479	0.052
C28 to C29	600405.	31044.	550179.	47703.	0.504	0.026
C29 to C30	628105.	38908.	549578.	23698.	0.577	0.036
C30 to C31	594971.	40328.	513010.	36733.	0.547	0.037
C31 to C32	590409.	34988.	514842.	47096.	0.661	0.039
C32 to C33	427975.	48934.	396429.	58873.	0.479	0.055
C33 to C34	451621.	56144.	385904.	54559.	0.530	0.066
C34 to C35	283284.	9569.	226480.	13671.	0.332	0.011
C35 to C36	230911.	8257.	181608.	11325.	0.335	0.012
C36 to 78 min	125770.	1637.	96153.	19914.	0.183	0.002
TOTAL	9392112.	1119517.	7385105.	841785.	7.877	0.846
						5.315
						0.585

Downtown Los Angeles - November

(filename = DLA11A
 (Size of sample = 75.570 cu meters)

-244-

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	-Acid+Neutral-	Neutral	Total	-Acid+Neutral-	Neutral
	Total	Resolved	Resolved	Total	Resolved	Total
16 min to C12	40520.	9195.	29205.	5531.	0.028	0.012
C12 to C13	235075.	10218.	181286.	0.	0.172	0.082
C13 to C14	208535.	9964.	183871.	13098.	0.154	0.084
C14 to C15	202765.	7361.	183190.	3246.	0.154	0.086
C15 to C16	285345.	37100.	306033.	98262.	0.217	0.144
C16 to C17	301218.	91327.	270009.	84536.	0.244	0.135
C17 to C18	396971.	154604.	229420.	33313.	0.310	0.121
C18 to C19	299336.	76642.	235067.	27842.	0.236	0.060
C19 to C20	297390.	56914.	219706.	21929.	0.243	0.046
C20 to C21	355252.	100125.	247445.	36847.	0.290	0.082
C21 to C22	251489.	25848.	229030.	16096.	0.222	0.023
C22 to C23	344742.	89787.	230892.	6528.	0.305	0.079
C23 to C24	322699.	26522.	318612.	30412.	0.296	0.024
C24 to C25	347942.	19879.	401725.	34202.	0.320	0.018
C25 to C26	464980.	68189.	473878.	20389.	0.481	0.071
C26 to C27	468000.	41778.	565287.	57179.	0.484	0.043
C27 to C28	498347.	22402.	615339.	39168.	0.543	0.024
C28 to C29	533338.	52014.	650910.	39166.	0.581	0.057
C29 to C30	541644.	38949.	694244.	26306.	0.646	0.046
C30 to C31	478687.	27745.	576050.	32638.	0.571	0.033
C31 to C32	469303.	38076.	594297.	54250.	0.682	0.055
C32 to C33	357430.	29636.	453860.	46667.	0.519	0.043
C33 to C34	350374.	28229.	429258.	63094.	0.533	0.043
C34 to C35	212232.	19690.	281376.	24188.	0.323	0.030
C35 to C36	175035.	5640.	209768.	13300.	0.330	0.011
C36 to 78 min	104916.	9438.	139901.	21238.	0.198	0.018
TOTAL	8543565.	1097272.	8949659.	849425.	0.083	1.057
						6.144
						0.566

Downtown Los Angeles - December

(filename = DLA12A)
(Size of sample = 90.940 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			-ug/cu meters		
	-Acid+Neutral-		Total	-Neutral-		Total
	Total	Resolved		Resolved	Resolved	
16 min to C12	44562.	5453.	24524.	4898.	0.026	0.003
C12 to C13	240714.	11583.	165381.	0.	0.148	0.007
C13 to C14	229293.	0.	185592.	19413.	0.142	0.000
C14 to C15	230470.	0.	174982.	0.	0.147	0.000
C15 to C16	354545.	53330.	323721.	101582.	0.226	0.034
C16 to C17	375389.	109767.	270697.	87922.	0.254	0.074
C17 to C18	459138.	129510.	258439.	50488.	0.300	0.085
C18 to C19	363723.	47367.	232932.	25931.	0.240	0.031
C19 to C20	467626.	69566.	298429.	42498.	0.319	0.048
C20 to C21	490232.	136681.	271814.	33395.	0.335	0.093
C21 to C22	365316.	32858.	253744.	9722.	0.271	0.024
C22 to C23	557627.	133227.	352207.	23039.	0.413	0.099
C23 to C24	561211.	33626.	426169.	58770.	0.432	0.026
C24 to C25	619804.	37971.	626229.	86331.	0.477	0.029
C25 to C26	849689.	104167.	698140.	82178.	0.737	0.090
C26 to C27	851463.	74591.	819080.	62766.	0.738	0.065
C27 to C28	856118.	18167.	831315.	51897.	0.781	0.017
C28 to C29	892335.	44344.	884547.	53055.	0.814	0.041
C29 to C30	905562.	23672.	886756.	20170.	0.904	0.024
C30 to C31	817874.	35330.	830733.	29530.	0.817	0.035
C31 to C32	782308.	51418.	783126.	74623.	0.952	0.063
C32 to C33	601338.	62998.	614979.	75136.	0.732	0.077
C33 to C34	575305.	54443.	577320.	79012.	0.733	0.069
C34 to C35	352545.	18205.	360764.	34132.	0.449	0.023
C35 to C36	294820.	17307.	294829.	14649.	0.465	0.027
C36 to 78 min	201843.	18070.	245572.	45534.	0.319	0.029
TOTAL	13340850.	1323741.	11692021.	1166671.	12.171	1.112
						7.790
						0.754

West Los Angeles - January

(filename = WLA01A)
(Size of sample = 30.420 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Acid+Neutral	Total	Resolved	Total	Resolved	Total
16 min to C12	8609.	0.	853.	0.	0.004	0.000
C12 to C13	279426.	54349.	10180.	3655.	0.136	0.026
C13 to C14	233282.	64025.	20448.	12913.	0.115	0.031
C14 to C15	191965.	8472.	8905.	6841.	0.097	0.004
C15 to C16	314326.	64384.	110983.	67150.	0.159	0.033
C16 to C17	560651.	229147.	194681.	29879.	0.301	0.123
C17 to C18	589153.	271312.	226141.	53459.	0.306	0.141
C18 to C19	337812.	54116.	118288.	21934.	0.177	0.028
C19 to C20	241240.	10025.	113387.	9888.	0.131	0.005
C20 to C21	426737.	197525.	89551.	15408.	0.231	0.107
C21 to C22	334511.	90655.	104764.	15918.	0.196	0.053
C22 to C23	372253.	110747.	116537.	18558.	0.218	0.065
C23 to C24	341365.	39802.	145146.	20445.	0.208	0.024
C24 to C25	450824.	59486.	206063.	36316.	0.275	0.036
C25 to C26	524567.	99578.	275361.	43752.	0.360	0.068
C26 to C27	524433.	80135.	318998.	48880.	0.360	0.055
C27 to C28	494101.	37194.	313785.	22309.	0.357	0.027
C28 to C29	529296.	36816.	352497.	25674.	0.383	0.027
C29 to C30	560102.	52598.	375147.	41140.	0.443	0.042
C30 to C31	442331.	10764.	324064.	8473.	0.350	0.009
C31 to C32	441387.	4842.	322040.	30047.	0.426	0.047
C32 to C33	355766.	46452.	284671.	31192.	0.343	0.045
C33 to C34	3117375.	40705.	306077.	16271.	0.321	0.041
C34 to C35	259423.	38985.	271593.	22538.	0.262	0.039
C35 to C36	198031.	25775.	22615.	13398.	0.248	0.032
C36 to 78 min	145123.	32443.	148322.	18585.	0.182	0.041
TOTAL	9474089.	1803732.	4981097.	634623.	6.588	1.150
						5.189
						0.594

West Los Angeles - February

(filename = WLA02A)
(Size of sample = 76.410 cu meters }

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	-Acid+	Neutral	-Neutral	-Acid+Neutral	Total	Resolved
16 min to C12	0.	0.	903.	0.000	0.000	0.000
C12 to C13	234825.	63275.	57839.	0.031	0.040	0.000
C13 to C14	209258.	34112.	42189.	0.116	0.017	0.009
C14 to C15	208916.	10922.	45191.	0.104	0.006	0.000
C15 to C16	329813.	97852.	158587.	0.107	0.050	0.045
C16 to C17	585621.	272415.	201669.	0.169	0.050	0.045
C17 to C18	582319.	255346.	165761.	0.318	0.148	0.029
C18 to C19	373801.	76866.	174484.	0.306	0.134	0.017
C19 to C20	383577.	67399.	129654.	0.198	0.041	0.026
C20 to C21	488968.	170180.	75747.	0.210	0.037	0.013
C21 to C22	406830.	62117.	138430.	0.268	0.093	0.011
C22 to C23	418534.	105927.	112425.	0.242	0.037	0.000
C23 to C24	305581.	9513.	118151.	0.249	0.063	0.012
C24 to C25	390426.	23866.	147554.	0.189	0.066	0.006
C25 to C26	405257.	64802.	177700.	0.225	0.045	0.027
C26 to C27	451153.	32911.	215537.	0.314	0.023	0.022
C27 to C28	484949.	50107.	229293.	0.355	0.037	0.020
C28 to C29	434210.	34112.	240837.	0.318	0.025	0.032
C29 to C30	442927.	11242.	230393.	0.355	0.009	0.012
C30 to C31	407306.	9919.	210420.	0.698.	0.326	0.238
C31 to C32	385019.	48978.	212484.	0.376	0.048	0.039
C32 to C33	300299.	35053.	175548.	0.293	0.034	0.041
C33 to C34	260724.	28662.	124260.	0.267	0.029	0.010
C34 to C35	209534.	25108.	93939.	0.214	0.026	0.005
C35 to C36	158360.	7578.	52932.	0.201	0.010	0.002
C36 to 78 min	104813.	10793.	11628.	0.133	0.014	0.018
TOTAL	8963020.	1609055.	436655.	6.149	0.984	3.556
						0.418

West Los Angeles - April

(filename = WLA04A)
(Size of sample = 76,980 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	Acid+Neutral	Resolved	Total	Acid+Neutral	Resolved
16 min to C12	2135.	0.	0.	0.001	0.000	0.000
C12 to C13	274934.	53510.	132726.	0.137	0.027	0.056
C13 to C14	284295.	51518.	126815.	0.143	0.026	0.054
C14 to C15	258267.	10084.	87592.	0.133	0.005	0.038
C15 to C16	431633.	145409.	251048.	0.222	0.075	0.110
C16 to C17	670546.	316397.	439512.	0.367	0.173	0.205
C17 to C18	537254.	221451.	235071.	0.4065.	0.284	0.117
C18 to C19	363335.	71595.	274386.	0.6068.	0.194	0.038
C19 to C20	371820.	66981.	189559.	0.2863.	0.205	0.077
C20 to C21	460390.	161966.	158149.	0.254	0.089	0.074
C21 to C22	362148.	58184.	159924.	0.1452.	0.217	0.035
C22 to C23	367548.	85288.	168957.	0.9884.	0.220	0.051
C23 to C24	299410.	8822.	171930.	0.1560.	0.186	0.005
C24 to C25	321308.	28443.	184281.	0.1950.	0.200	0.018
C25 to C26	341177.	45602.	258661.	0.27376.	0.239	0.032
C26 to C27	351964.	27543.	271188.	0.31090.	0.247	0.019
C27 to C28	387056.	43553.	277144.	0.28039.	0.286	0.032
C28 to C29	343469.	34245.	312456.	0.48610.	0.253	0.025
C29 to C30	345629.	22456.	279523.	0.12772.	0.279	0.018
C30 to C31	305724.	10996.	262374.	0.6101.	0.247	0.009
C31 to C32	29452.	37357.	240551.	0.22478.	0.295	0.037
C32 to C33	200367.	30205.	210823.	0.23187.	0.197	0.030
C33 to C34	192239.	10401.	175709.	0.10971.	0.198	0.011
C34 to C35	153490.	11868.	157343.	0.5812.	0.158	0.012
C35 to C36	107630.	0.	119095.	0.	0.137	0.000
C36 to 78 min	50918.	2709.	69791.	0.2272.	0.065	0.003
TOTAL	8084138.	1556583.	5214608.	5.365	0.925	3.145

West Los Angeles - May

(filename = WLA05A)
(Size of sample = 76,340 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Acid	Neutral	Total	Resolved	Acid+Neutral	Total
16 min to C12	7626.	0.	2682.	0.	0.003	0.000
C12 to C13	410748.	68978.	91527.	7387.	0.177	0.030
C13 to C14	445213.	73516.	78242.	13561.	0.193	0.032
C14 to C15	350141.	21891.	58128.	701.	0.156	0.010
C15 to C16	686173.	219921.	131777.	38640.	0.306	0.098
C16 to C17	928048.	473019.	206305.	97868.	0.441	0.225
C17 to C18	681580.	247865.	132892.	28933.	0.313	0.114
C18 to C19	543411.	142052.	144577.	43966.	0.251	0.066
C19 to C20	386709.	46054.	84743.	6914.	0.185	0.022
C20 to C21	548881.	144744.	65673.	4057.	0.263	0.069
C21 to C22	370158.	51624.	63244.	4635.	0.192	0.027
C22 to C23	433115.	85953.	59127.	35559.	0.225	0.045
C23 to C24	324930.	0.	60200.	0.	0.175	0.000
C24 to C25	323378.	13102.	66261.	0.	0.174	0.007
C25 to C26	326176.	5363.	71222.	3041.	0.198	0.003
C26 to C27	321634.	16534.	80234.	4449.	0.195	0.010
C27 to C28	311322.	24140.	73685.	8789.	0.199	0.015
C28 to C29	336481.	28033.	75990.	8099.	0.215	0.018
C29 to C30	292043.	3915.	72899.	0.	0.204	0.003
C30 to C31	253390.	1858.	52098.	958.	0.177	0.001
C31 to C32	238706.	8793.	55814.	9546.	0.204	0.007
C32 to C33	188780.	9241.	33007.	6963.	0.161	0.008
C33 to C34	144007.	4586.	14124.	0.	0.129	0.004
C34 to C35	124387.	6181.	15422.	4429.	0.111	0.006
C35 to C36	73301.	1371.	1017.	0.	0.081	0.002
C36 to 78 min	19388.	0.	0.	1283.	0.021	0.000
TOTAL	9069726.	1698734.	1790890.	297778.	4.951	0.821
						2.824
						0.443

West Los Angeles - June

(filename = WLA06A)
 (Size of sample = 76.470 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Acid+Neutral	Total	Resolved	Neutral	Total	Neutral
	Total	Resolved		Total	Resolved	
16 min to C12	7324.	0.	6424.	0.	0.002	0.000
C12 to C13	521139.	118763.	178810.	22163.	0.157	0.036
C13 to C14	562762.	106774.	162434.	40864.	0.172	0.033
C14 to C15	434375.	9206.	174317.	1918.	0.136	0.003
C15 to C16	765890.	185475.	293853.	93750.	0.240	0.058
C16 to C17	1055195.	536460.	469747.	242217.	0.352	0.179
C17 to C18	841932.	302927.	253664.	60090.	0.271	0.097
C18 to C19	622476.	138785.	311300.	106847.	0.202	0.045
C19 to C20	516207.	60832.	181702.	5757.	0.173	0.020
C20 to C21	643689.	187121.	143727.	5645.	0.216	0.063
C21 to C22	489528.	78679.	152551.	12010.	0.178	0.029
C22 to C23	489892.	94877.	149272.	13594.	0.178	0.035
C23 to C24	380667.	2077.	154495.	6213.	0.144	0.001
C24 to C25	403128.	19296.	157799.	14645.	0.153	0.007
C25 to C26	388682.	0.	162470.	4406.	0.166	0.000
C26 to C27	371589.	17511.	170557.	11626.	0.158	0.007
C27 to C28	368579.	24701.	181045.	19465.	0.165	0.011
C28 to C29	384481.	21792.	190628.	30441.	0.173	0.010
C29 to C30	343223.	0.	164718.	5459.	0.169	0.000
C30 to C31	299234.	1420.	135452.	1026.	0.147	0.001
C31 to C32	285668.	28705.	126908.	14168.	0.171	0.017
C32 to C33	223952.	17583.	93595.	12086.	0.134	0.011
C33 to C34	182298.	9076.	72253.	2345.	0.114	0.006
C34 to C35	156821.	6067.	51221.	12354.	0.098	0.004
C35 to C36	106611.	0.	28577.	0.	0.083	0.000
C36 to 78 min	53860.	0.	13580.	6045.	0.042	0.000
TOTAL	10899202.	1968127.	4181099.	745134.	4.195	0.672
					2.256	0.370

West Los Angeles - July

(filename = WLA07A)
 (Size of sample = 75.750 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters			
	- Acid+Neutral -		Neutral	- Acid+Neutral -	Total	Resolved	
Total	Resolved	Total	Resolved	Total	Resolved		
16 min to C12	0.	0.	3558.	0.	0.000	0.001	0.000
C12 to C13	540271.	62750.	300164.	985.	0.185	0.021	0.116
C13 to C14	453282.	34679.	319069.	10761.	0.156	0.012	0.125
C14 to C15	392492.	6780.	248957.	0.	0.139	0.002	0.100
C15 to C16	635602.	98442.	413179.	68564.	0.225	0.035	0.166
C16 to C17	868861.	332529.	518760.	185306.	0.327	0.125	0.222
C17 to C18	719051.	250190.	366493.	45943.	0.262	0.091	0.152
C18 to C19	535851.	72109.	271813.	23896.	0.197	0.026	0.113
C19 to C20	677233.	215917.	271757.	14235.	0.257	0.082	0.117
C20 to C21	421412.	15265.	208805.	6507.	0.160	0.006	0.090
C21 to C22	475645.	35316.	225378.	10216.	0.196	0.015	0.105
C22 to C23	491479.	115851.	204035.	13782.	0.202	0.048	0.095
C23 to C24	392782.	19072.	198023.	17783.	0.168	0.008	0.096
C24 to C25	381732.	16437.	195203.	9141.	0.163	0.007	0.095
C25 to C26	355517.	6484.	194835.	6326.	0.171	0.003	0.107
C26 to C27	424996.	24225.	226264.	13810.	0.205	0.012	0.124
C27 to C28	406245.	39465.	211188.	31806.	0.206	0.020	0.122
C28 to C29	419172.	17705.	246401.	19124.	0.213	0.009	0.142
C29 to C30	362218.	3733.	220028.	9760.	0.201	0.002	0.139
C30 to C31	356804.	973.	195374.	6167.	0.198	0.001	0.123
C31 to C32	296960.	12718.	174769.	9409.	0.201	0.009	0.134
C32 to C33	230181.	12837.	132720.	3328.	0.156	0.009	0.102
C33 to C34	196138.	12027.	110481.	4839.	0.139	0.009	0.089
C34 to C35	158719.	3186.	81256.	0.	0.113	0.002	0.065
C35 to C36	105749.	0.	21897.	0.	0.093	0.000	0.022
C36 to 78 min	47666.	0.	6775.	0.	0.042	0.000	0.007
TOTAL	10346058.	1408690.	5567182.	511688.	4.577	0.553	2.772
							0.238

West Los Angeles - August

(filename = WLA08A
 (Size of sample = 76,720 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	Acid+Neutral	Neutral	Total	Acid+Neutral	Neutral
Resolved	Resolved	Resolved	Resolved	Resolved	Resolved	Resolved
16 min to C12	5422.	0.	0.	0.002	0.000	0.000
C12 to C13	427908.	10949.	189510.	0.164	0.004	0.077
C13 to C14	334347.	21561.	175021.	0.129	0.008	0.072
C14 to C15	299404.	4726.	173397.	0.119	0.002	0.073
C15 to C16	456285.	63317.	257379.	0.181	0.025	0.109
C16 to C17	630521.	212809.	312895.	0.266	0.090	0.141
C17 to C18	522122.	145052.	213869.	0.213	0.059	0.093
C18 to C19	388415.	29995.	230769.	0.160	0.012	0.101
C19 to C20	523020.	169623.	161625.	0.222	0.072	0.073
C20 to C21	296056.	16046.	151875.	0.126	0.007	0.069
C21 to C22	360952.	41005.	146785.	0.166	0.019	0.072
C22 to C23	370887.	78953.	132716.	0.171	0.036	0.065
C23 to C24	288431.	13896.	130222.	0.138	0.007	0.066
C24 to C25	281855.	15502.	132365.	0.135	0.007	0.068
C25 to C26	266453.	4194.	131386.	0.144	0.002	0.076
C26 to C27	306290.	20703.	156276.	0.165	0.011	0.090
C27 to C28	309719.	38647.	194759.	0.176	0.022	0.118
C28 to C29	338661.	27203.	166303.	0.192	0.015	0.101
C29 to C30	279733.	4633.	167877.	0.174	0.003	0.111
C30 to C31	297913.	42474.	147566.	0.185	0.026	0.098
C31 to C32	239011.	17131.	127169.	0.181	0.013	0.103
C32 to C33	197622.	16824.	97739.	0.150	0.013	0.079
C33 to C34	152044.	3671.	88619.	0.121	0.003	0.075
C34 to C35	125825.	1367.	72384.	0.100	0.001	0.061
C35 to C36	78103.	0.	27948.	0.	0.077	0.000
C36 to 78 min	38018.	0.	17904.	0.037	0.000	0.019
TOTAL	7815017.	1000281.	3804358.	414588.	3.891	0.459
						2.038
						0.219

West Los Angeles - September

{filename = WLA09A
(Size of sample = 76.590 cu meters}

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	-Acid	Neutral	Total	-Acid	Neutral
Resolved	Resolved	Resolved	Resolved	Resolved	Resolved	Resolved
16 min to C12	0.	0.	2524.	0.	0.000	0.002
C12 to C13	324894.	11227.	123133.	0.	0.134	0.091
C13 to C14	269638.	14863.	86766.	5796.	0.112	0.065
C14 to C15	261833.	7811.	75117.	4023.	0.112	0.003
C15 to C16	368183.	53982.	126133.	19370.	0.158	0.058
C16 to C17	508030.	160759.	174425.	56370.	0.231	0.023
C17 to C18	483277.	165169.	138394.	17275.	0.212	0.097
C18 to C19	365376.	49836.	135137.	23407.	0.162	0.015
C19 to C20	280899.	29681.	95065.	7511.	0.129	0.046
C20 to C21	431328.	118750.	84164.	918.	0.198	0.014
C21 to C22	332141.	23463.	87130.	5933.	0.165	0.019
C22 to C23	365902.	74904.	84935.	2891.	0.182	0.019
C23 to C24	303898.	11336.	89078.	5781.	0.157	0.006
C24 to C25	311390.	12463.	97254.	6948.	0.161	0.006
C25 to C26	327833.	16287.	103317.	3311.	0.191	0.003
C26 to C27	383988.	29999.	129448.	12598.	0.224	0.013
C27 to C28	448079.	56395.	158268.	22110.	0.275	0.013
C28 to C29	418837.	37806.	145391.	5462.	0.257	0.006
C29 to C30	431136.	23868.	167332.	4594.	0.289	0.006
C30 to C31	426311.	26650.	140905.	5384.	0.286	0.006
C31 to C32	377737.	30866.	142164.	15709.	0.309	0.023
C32 to C33	3255293.	21950.	108684.	7266.	0.266	0.011
C33 to C34	266788.	16192.	85461.	5601.	0.228	0.009
C34 to C35	205968.	7565.	64185.	4437.	0.176	0.045
C35 to C36	145055.	3620.	23495.	0.	0.154	0.000
C36 to 78 min	94025.	0.	5659.	3129.	0.100	0.006
TOTAL	8457839.	1005442.	2673564.	2455824.	4.866	0.520
					2.754	0.242

West Los Angeles - October

(filename = WLA10A)
(Size of sample = 76.530 cu meters }

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	-Acid+Neutral-	Neutral	Total	-Acid+Neutral-	Neutral
	Total	Resolved	Resolved	Total	Resolved	Total
16 min to C12	1517.	0.	2330.	0.	0.000	0.002
C12 to C13	283712.	13503.	109945.	0.	0.098	0.100
C13 to C14	232626.	17035.	76834.	0.	0.081	0.070
C14 to C15	265027.	29455.	68294.	0.095	0.011	0.064
C15 to C16	442354.	75790.	142203.	0.158	0.027	0.134
C16 to C17	557039.	178971.	162675.	0.212	0.068	0.163
C17 to C18	595125.	230415.	138598.	0.219	0.085	0.134
C18 to C19	431178.	78189.	144153.	0.160	0.029	0.141
C19 to C20	543659.	203443.	101937.	0.209	0.078	0.103
C20 to C21	351143.	355555.	97074.	0.135	0.014	0.098
C21 to C22	419244.	66951.	93682.	0.174	0.028	0.103
C22 to C23	451656.	123370.	94923.	0.188	0.051	0.104
C23 to C24	363844.	28786.	97637.	0.157	0.012	0.111
C24 to C25	369542.	33710.	112652.	0.160	0.015	0.128
C25 to C26	462850.	53040.	134790.	0.225	0.026	0.173
C26 to C27	565687.	65239.	176795.	0.275	0.032	0.227
C27 to C28	605542.	82300.	201959.	0.310	0.042	0.273
C28 to C29	627284.	68730.	203710.	0.322	0.035	0.275
C29 to C30	638450.	60090.	218388.	0.351	0.034	0.323
C30 to C31	600286.	32016.	192842.	0.4077.	0.337	0.018
C31 to C32	565231.	46081.	197186.	0.386	0.031	0.355
C32 to C33	477070.	50916.	153546.	16197.	0.326	0.035
C33 to C34	395290.	36095.	123633.	14834.	0.283	0.026
C34 to C35	322532.	28553.	96559.	4743.	0.231	0.020
C35 to C36	221118.	2593.	48474.	0.	0.196	0.002
C36 to 78 min	189811.	14585.	26316.	4383.	0.168	0.013
TOTAL	10978817.	1655411.	3217135.	251934.	5.463	0.742
					4.234	0.328

West Los Angeles - November

(filename = WLA11A)
 (Size of sample = 75.840 cu meters }

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	-Acid+Neutral-		Neutral	-Acid+Neutral-		Neutral
	Total	Resolved	Total	Resolved	Total	Resolved
16 min to C12	5451.	0.	5421.	0.	0.002	0.000
C12 to C13	296507.	0.	222842.	0.	0.110	0.110
C13 to C14	267173.	4290.	192612.	6473.	0.100	0.002
C14 to C15	274678.	12031.	144448.	0.	0.106	0.005
C15 to C16	403890.	37462.	275172.	63121.	0.155	0.005
C16 to C17	536299.	150655.	311637.	19871.	0.219	0.014
C17 to C18	616295.	244948.	248562.	20184.	0.243	0.097
C18 to C19	438087.	44686.	266496.	29530.	0.175	0.018
C19 to C20	387377.	20811.	195875.	0.	0.160	0.009
C20 to C21	528189.	162793.	188691.	10740.	0.218	0.067
C21 to C22	471557.	94093.	189250.	13514.	0.211	0.042
C22 to C23	506280.	139532.	192451.	6953.	0.226	0.062
C23 to C24	446852.	48395.	214139.	19852.	0.208	0.022
C24 to C25	572774.	105958.	269883.	41958.	0.266	0.049
C25 to C26	674858.	157312.	378152.	46016.	0.353	0.082
C26 to C27	731188.	82741.	434668.	42789.	0.383	0.043
C27 to C28	747589.	48618.	472776.	34206.	0.412	0.027
C28 to C29	749781.	54557.	449429.	14937.	0.413	0.030
C29 to C30	770275.	54768.	466982.	26689.	0.464	0.033
C30 to C31	679956.	30821.	412242.	14445.	0.410	0.019
C31 to C32	632319.	68558.	390206.	42431.	0.465	0.050
C32 to C33	524618.	52413.	311968.	33616.	0.385	0.039
C33 to C34	419080.	36894.	250026.	29486.	0.322	0.028
C34 to C35	270039.	19008.	189030.	26351.	0.208	0.015
C35 to C36	276762.	5273.	121850.	2131.	0.264	0.005
C36 to 78 min	177153.	10159.	47863.	22031.	0.169	0.010
TOTAL	12405027.	1686806.	6842671.	567324.	6.647	0.829
						0.421
						4.890

West Los Angeles - December

(filename = WLA12A)
(Size of sample = 91,240 cu meters }

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Acid	Neutral	Total	Resolved	Acid+Neutral	Total
16 min to C12	0.	0.	0.	0.	0.000	0.000
C12 to C13	219887.	0.	182303.	0.	0.084	0.092
C13 to C14	130159.	0.	106853.	0.	0.050	0.054
C14 to C15	242268.	0.	97391.	0.	0.096	0.051
C15 to C16	521510.	32559.	268937.	42276.	0.206	0.013
C16 to C17	635362.	170976.	335502.	21900.	0.266	0.072
C17 to C18	651299.	182899.	276693.	40703.	0.264	0.074
C18 to C19	539070.	40689.	264039.	42244.	0.220	0.017
C19 to C20	638471.	203137.	207524.	3926.	0.270	0.086
C20 to C21	378751.	21392.	172652.	6014.	0.160	0.009
C21 to C22	514144.	81605.	179768.	8880.	0.236	0.037
C22 to C23	543352.	116567.	197026.	5660.	0.249	0.053
C23 to C24	552332.	65199.	240830.	31056.	0.263	0.031
C24 to C25	722752.	103879.	310340.	55167.	0.344	0.049
C25 to C26	846225.	221081.	435823.	51803.	0.454	0.119
C26 to C27	858497.	74747.	463033.	46289.	0.461	0.040
C27 to C28	846810.	62462.	394065.	26628.	0.479	0.035
C28 to C29	878508.	75908.	552948.	12241.	0.496	0.043
C29 to C30	858696.	52921.	466104.	13553.	0.531	0.033
C30 to C31	787883.	33072.	429932.	0.	0.487	0.020
C31 to C32	693230.	55369.	387138.	45366.	0.522	0.042
C32 to C33	605559.	47369.	307755.	21465.	0.456	0.036
C33 to C34	477060.	40108.	241015.	25308.	0.376	0.032
C34 to C35	381731.	30555.	179090.	5738.	0.301	0.024
C35 to C36	259339.	16523.	107568.	11450.	0.253	0.016
C36 to 78 min	221149.	24142.	20092.	7326.	0.216	0.024
TOTAL	14004044.	1753159.	6824421.	524993.	7.742	0.905
					4.968	0.380

San Nicholas Island - July, August, September

{
 filename = SNISUMA }
 (Size of sample = 199.390 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	-Acid+Neutral-	Neutral	-Acid+Neutral-	Total	Resolved
16 min to C12	31951.	14042.	23432.	9042.	0.004	0.002
C12 to C13	126938.	35364.	140557.	42109.	0.018	0.005
C13 to C14	118262.	36497.	130620.	37582.	0.017	0.005
C14 to C15	124091.	16685.	130738.	23360.	0.019	0.003
C15 to C16	415188.	309075.	589768.	488705.	0.062	0.047
C16 to C17	336831.	204104.	456486.	309214.	0.054	0.033
C17 to C18	397692.	273460.	309659.	178044.	0.061	0.042
C18 to C19	265996.	95608.	307053.	162972.	0.041	0.015
C19 to C20	222142.	97007.	289632.	165679.	0.036	0.016
C20 to C21	240359.	83611.	190846.	33123.	0.039	0.013
C21 to C22	143034.	15084.	177729.	32790.	0.025	0.003
C22 to C23	188080.	51542.	179374.	22551.	0.033	0.009
C23 to C24	135175.	5594.	162895.	5922.	0.025	0.001
C24 to C25	155009.	5363.	186639.	8762.	0.028	0.001
C25 to C26	139369.	0.	166887.	7139.	0.029	0.000
C26 to C27	206997.	26227.	261490.	36390.	0.042	0.005
C27 to C28	191444.	26247.	223274.	30457.	0.041	0.006
C28 to C29	175077.	10979.	197927.	17477.	0.038	0.002
C29 to C30	175747.	7242.	209983.	19802.	0.041	0.002
C30 to C31	137071.	14322.	152050.	19098.	0.032	0.003
C31 to C32	114143.	5401.	130630.	3596.	0.033	0.002
C32 to C33	132330.	3912.	178602.	17936.	0.038	0.001
C33 to C34	80292.	0.	107562.	0.	0.024	0.000
C34 to C35	101680.	4050.	119647.	2366.	0.031	0.001
C35 to C36	56585.	4493.	66246.	0.	0.021	0.002
C36 to 78 min	23849.	1687.	25938.	0.	0.009	0.001
TOTAL	4435532.	1347596.	5115864.	1674116.	0.843	0.219
						0.646
						0.179

San Nicholas Island - October, November, December

(filename = SNIFALLA)
 (Size of sample = 247.990 cu meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cu meters		
	Total	Acid+Neutral	Neutral	Total	Acid+Neutral	Neutral
				Total	Resolved	Resolved
16 min to C12	21876.	3273.	24974.	9621.	0.003	0.000
C12 to C13	137149.	26844.	133524.	32767.	0.021	0.004
C13 to C14	126761.	31135.	124347.	27482.	0.020	0.005
C14 to C15	149327.	16680.	146762.	33846.	0.024	0.003
C15 to C16	565977.	443453.	789968.	674656.	0.091	0.071
C16 to C17	451719.	279310.	631100.	455905.	0.077	0.048
C17 to C18	509390.	280861.	435567.	241110.	0.084	0.046
C18 to C19	334288.	138277.	418712.	218875.	0.056	0.023
C19 to C20	240436.	44998.	289348.	131575.	0.041	0.008
C20 to C21	251449.	59844.	224258.	39625.	0.043	0.010
C21 to C22	187472.	27645.	220334.	52658.	0.035	0.005
C22 to C23	199917.	38566.	213745.	27318.	0.037	0.007
C23 to C24	173053.	14482.	180231.	21619.	0.034	0.003
C24 to C25	200158.	33442.	248084.	53109.	0.039	0.006
C25 to C26	186821.	18518.	238242.	28733.	0.041	0.004
C26 to C27	217979.	22401.	286450.	40462.	0.048	0.005
C27 to C28	211237.	12049.	245368.	25630.	0.049	0.003
C28 to C29	196228.	0.	243154.	18312.	0.045	0.000
C29 to C30	195111.	7195.	248401.	20183.	0.049	0.002
C30 to C31	160282.	11915.	190975.	22450.	0.040	0.003
C31 to C32	143177.	4514.	171684.	8042.	0.044	0.001
C32 to C33	161390.	6413.	207573.	16288.	0.049	0.002
C33 to C34	92140.	0.	154234.	1511.	0.030	0.000
C34 to C35	135104.	4463.	162479.	5601.	0.043	0.001
C35 to C36	81248.	4194.	106607.	5000.	0.032	0.002
C36 to 78 min	48945.	1395.	54971.	1816.	0.019	0.001
TOTAL	5378634.	1531867.	6391092.	2214194.	1.094	0.263
						0.771
						0.226

Appendix E

Organic Mass Distribution Characteristics for Source Samples

These tables contain the quantitative data obtained from high-resolution gas chromatographic analyses of the source samples. The total and resolved area counts obtained in each of the elution zones defined by adjacent *n*-alkanes are presented for both the neutral and acid+neutral fractions of the extract. In addition, the mass of organic material that eluted in each zone is also given, using units appropriate to the source sampled.

The order of the tables, which corresponds to the discussion of the results contained in Chapter 4, is as follows:

Blank Filters: 16 47-mm	261
Oil-Fired Boiler Emissions	262
Motor Vehicle Emissions	265
Roofing Tar Pot	268
Radial Tire Wear	270
Fireplace Combustion of Wood	272
Cigarette Smoke	278
Meat Cooking Operations	280
Brake Lining Wear	283
Natural Gas Home Appliance Emissions	284
Urban Vegetative Detritus	287
Paved Road Dust	291

Blank Filters: 16 47-mm

(filename = BLANK16150A)
(Size of sample = 278.000 sq cm)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/sq cm		
	Total	-Acid+Neutral-	Resolved	Total	Neutral	-Acid+Neutral- Total
16 min to C12	15889.	7462.	16620.	4078.	0.006	0.004
C12 to C13	59298.	1346.	42616.	2331.	0.023	0.011
C13 to C14	50434.	5082.	30631.	8143.	0.020	0.002
C14 to C15	43320.	5690.	19392.	2435.	0.018	0.005
C15 to C16	55477.	2567.	39314.	4619.	0.023	0.011
C16 to C17	35593.	1467.	18196.	1652.	0.015	0.005
C17 to C18	39133.	5989.	21535.	3745.	0.016	0.003
C18 to C19	26048.	1228.	19053.	2947.	0.011	0.005
C19 to C20	37998.	3941.	9002.	2216.	0.017	0.002
C20 to C21	31199.	8935.	17061.	4518.	0.014	0.004
C21 to C22	27781.	6037.	16320.	4929.	0.013	0.003
C22 to C23	25395.	4003.	16270.	5371.	0.012	0.002
C23 to C24	16724.	0.	11413.	0.	0.008	0.000
C24 to C25	16728.	0.	10804.	0.	0.008	0.000
C25 to C26	20742.	1032.	7381.	1274.	0.012	0.003
C26 to C27	18461.	1787.	8846.	0.	0.010	0.003
C27 to C28	10027.	0.	11291.	937.	0.006	0.000
C28 to C29	10770.	0.	5447.	0.	0.006	0.000
C29 to C30	12681.	0.	3837.	0.	0.008	0.000
C30 to C31	11820.	0.	5899.	1134.	0.008	0.000
C31 to C32	23269.	1314.	13676.	3216.	0.018	0.001
C32 to C33	26341.	6927.	2325.	2213.	0.022	0.005
C33 to C34	15393.	2464.	3538.	2092.	0.013	0.002
C34 to C35	3324.	0.	1149.	0.	0.003	0.000
C35 to C36	5096.	1667.	3509.	0.	0.005	0.002
C36 to 80 min	9957.	0.	1646.	0.	0.010	0.001
TOTAL	650698.	68938.	356771.	57850.	0.326	0.111
						0.018

Industrial Boiler, No. 2 Fuel Oil, Experiment 2

(filename = BOILERFO2A)
(Size of sample = 2.453 kkJoules)

-262-

Elution Zone (incl. lower bound)	AREA COUNTS			ug/kkJoules		
	Total	-Acid+Neutral-	Resolved	Total	-Neutral-	Total Resolved
16 min to C12	76609.	57759.	12671.	1554.	2.012	1.517
C12 to C13	104746.	12149.	116263.	7317.	2.943	0.341
C13 to C14	131764.	54110.	142236.	23252.	3.737	1.535
C14 to C15	103700.	9339.	121930.	6176.	3.023	0.272
C15 to C16	137951.	37942.	155837.	24504.	4.021	1.106
C16 to C17	182952.	52563.	224535.	62442.	5.669	1.629
C17 to C18	395909.	227643.	520200.	316073.	11.852	6.814
C18 to C19	222171.	38075.	365934.	165009.	6.709	1.150
C19 to C20	266870.	63898.	296157.	56814.	8.339	1.997
C20 to C21	380435.	122294.	393081.	118018.	11.888	3.821
C21 to C22	511066.	224679.	566344.	235997.	17.312	7.611
C22 to C23	397633.	80090.	479188.	139044.	13.469	2.713
C23 to C24	293475.	22320.	356032.	22008.	10.326	0.785
C24 to C25	288019.	17413.	305646.	14183.	10.134	0.613
C25 to C26	271403.	56333.	305926.	45704.	10.761	2.234
C26 to C27	202582.	2855.	239652.	3160.	8.033	0.113
C27 to C28	273034.	91522.	314657.	92220.	11.400	3.821
C28 to C29	172838.	0.	211465.	0.	7.216	0.000
C29 to C30	224866.	10976.	249261.	20011.	10.275	0.501
C30 to C31	193269.	3627.	245608.	14195.	8.831	0.166
C31 to C32	127863.	6274.	152597.	12698.	7.118	0.349
C32 to C33	98858.	3630.	120724.	9354.	5.503	0.202
C33 to C34	82330.	1595.	89161.	3060.	4.799	0.093
C34 to C35	29031.	0.	56980.	0.	1.692	0.000
C35 to C36	16027.	0.	13755.	2331.	1.157	0.000
C36 to 80 min	12906.	0.	8171.	0.	0.932	0.000
TOTAL	5198327.	1197086.	6064011.	1395124.	189.151	39.383
						228.328
						48.073

Industrial Boiler, No. 2 Fuel Oil, Exp. 5, Res.Ch.

(filename = BOILERFO5RESA)
(Size of sample = 1.864 kkJoules)

Elution Zone (incl. lower bound)	AREA COUNTS		-ug/ kkJoules	
	Acid+Neutral	Total	Neutral	Neutral
	Total	Resolved	Total	Resolved
16 min to C12	66138.	48488.	85578.	1451.
C12 to C13	190739.	63098.	388172.	29041.
C13 to C14	139053.	22229.	462483.	133772.
C14 to C15	152707.	23427.	339723.	48721.
C15 to C16	185300.	56724.	504618.	81475.
C16 to C17	250510.	110950.	592583.	118259.
C17 to C18	285294.	103260.	650624.	237096.
C18 to C19	242456.	64403.	425828.	54120.
C19 to C20	219770.	27168.	480731.	135309.
C20 to C21	341638.	117202.	738561.	402200.
C21 to C22	392984.	190285.	591638.	268320.
C22 to C23	327250.	105918.	539056.	222539.
C23 to C24	258191.	33763.	400902.	51692.
C24 to C25	288862.	15416.	384921.	34609.
C25 to C26	257301.	25094.	363720.	42063.
C26 to C27	222514.	4260.	310607.	4668.
C27 to C28	247174.	54413.	359305.	84233.
C28 to C29	177800.	0.	244718.	0.
C29 to C30	229201.	7516.	282967.	7509.
C30 to C31	166128.	1939.	256687.	22090.
C31 to C32	145132.	8488.	170743.	22187.
C32 to C33	103221.	3812.	153750.	76369.
C33 to C34	78820.	3907.	84693.	46116.
C34 to C35	65831.	0.	44916.	29894.
C35 to C36	39568.	3468.	7754.	9275.
C36 to 80 min	17123.	0.	0.	0.
TOTAL	5090705.	1095228.	8865278.	2163008.
			162.590	31.139
				182.741
				44.206

Industrial Boiler, No. 2 Fuel Oil, Exp. 5, Tunnel

filename = BOILERFO5TUNA
 (Size of sample = 1.852 kkJoules)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/ kkJoules		
	—Acid+Neutral—		Neutral	—Acid+Neutral—		Neutral
	Total	Resolved	Total	Resolved	Total	Resolved
16 min to C12	61198.	38492.	22999.	1898.	1.741	1.050
C12 to C13	165901.	32902.	141762.	15263.	5.051	6.924
C13 to C14	158031.	28469.	168283.	53449.	4.857	8.296
C14 to C15	151695.	27659.	98587.	16527.	4.791	4.995
C15 to C16	187350.	42096.	125448.	31652.	5.918	1.330
C16 to C17	294851.	122777.	175821.	57989.	9.901	4.123
C17 to C18	288677.	97037.	254952.	102726.	9.365	3.148
C18 to C19	236638.	69915.	253888.	130089.	7.744	2.288
C19 to C20	211999.	50662.	197509.	61153.	7.179	1.716
C20 to C21	323201.	126234.	304875.	161441.	10.944	4.275
C21 to C22	324493.	150713.	239414.	94822.	11.912	5.532
C22 to C23	262502.	80518.	213682.	74047.	9.636	2.956
C23 to C24	206310.	21763.	167201.	16967.	7.867	0.830
C24 to C25	217091.	9253.	152420.	10370.	8.278	0.353
C25 to C26	192420.	21564.	143800.	13124.	8.268	0.927
C26 to C27	160414.	2438.	131296.	921.	6.893	0.105
C27 to C28	180053.	46459.	146980.	25668.	8.147	2.102
C28 to C29	119836.	0.	110440.	0.	5.422	0.000
C29 to C30	132729.	5913.	127556.	10578.	6.572	0.293
C30 to C31	113380.	1695.	133374.	12194.	5.614	0.084
C31 to C32	59079.	6431.	89413.	6598.	3.564	0.388
C32 to C33	20741.	5368.	84580.	30225.	1.251	0.324
C33 to C34	6965.	2597.	45841.	12454.	0.440	0.164
C34 to C35	1066.	0.	52318.	5668.	0.067	0.000
C35 to C36	2071.	0.	24337.	0.	0.162	0.000
C36 to 80 min	1437.	0.	14756.	0.	0.112	0.000
TOTAL	4080128.	990955.	3621532.	945823.	151.695	34.781
					227.257	54.950

Automobiles, Catalyst-Equipped

(filename = CARCATA)
(Size of sample = 75.922 meters)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/meters		
	Total	-Acid+Neutral-	Total Resolved	Total	-Neutral-	Total Resolved
16 min to C12	100208.	48454.	34588.	2351.	0.052	0.019
C12 to C13	391169.	110316.	230237.	43394.	0.217	0.138
C13 to C14	348923.	59798.	268552.	30069.	0.195	0.033
C14 to C15	439609.	68084.	398978.	115183.	0.252	0.039
C15 to C16	442132.	70840.	445425.	136344.	0.254	0.041
C16 to C17	450585.	29042.	495088.	113739.	0.275	0.018
C17 to C18	590148.	79332.	528481.	141685.	0.348	0.047
C18 to C19	672280.	130644.	589282.	123774.	0.400	0.078
C19 to C20	688389.	47425.	613736.	73422.	0.424	0.029
C20 to C21	961651.	132401.	750331.	44696.	0.592	0.082
C21 to C22	1013213.	175893.	926229.	147932.	0.676	0.117
C22 to C23	979648.	64702.	884973.	58076.	0.654	0.043
C23 to C24	1098385.	45680.	1006749.	41221.	0.762	0.032
C24 to C25	1278534.	40740.	1163784.	28441.	0.886	0.028
C25 to C26	1241449.	15540.	1143087.	3544.	0.970	0.012
C26 to C27	1345583.	8771.	1302931.	14101.	1.051	0.007
C27 to C28	1498668.	60635.	1411693.	68070.	1.233	0.050
C28 to C29	1341850.	0.	1274907.	7907.	1.104	0.000
C29 to C30	1311636.	0.	1241347.	0.	1.181	0.000
C30 to C31	1116620.	45604.	1062078.	49543.	1.005	0.041
C31 to C32	946587.	47761.	904627.	48152.	1.038	0.052
C32 to C33	745331.	40320.	683049.	38219.	0.818	0.044
C33 to C34	550857.	17273.	524951.	28844.	0.633	0.020
C34 to C35	414225.	5143.	385089.	12140.	0.476	0.006
C35 to C36	283848.	13545.	261231.	14956.	0.404	0.019
C36 to 80 min	207160.	0.	135175.	3093.	0.295	0.000
TOTAL	20458892.	1357943.	18666602.	1388896.	16.194	0.924
					16.017	1.036

Automobiles, NonCatalyst

(filename = CARNONCATA)
 (Size of sample = 62.986 meters)}

Elution Zone (incl. lower bound)	AREA COUNTS			-ug/meters-		
	Total	-Acid+Neutral-	Total Resolved	Total	Neutral	-Acid+Neutral- Total Resolved
16 min to C12	32560.	11530.	30571.	4398.	0.038	0.013
C12 to C13	229777.	19346.	277348.	24286.	0.287	0.024
C13 to C14	244629.	20213.	356520.	43556.	0.309	0.026
C14 to C15	387483.	28036.	646340.	105274.	0.503	0.036
C15 to C16	489531.	75961.	856122.	248429.	0.635	0.099
C16 to C17	549294.	94432.	870581.	163399.	0.758	0.130
C17 to C18	788607.	146684.	1219086.	307591.	1.051	0.195
C18 to C19	965889.	166629.	1389798.	311677.	1.298	0.224
C19 to C20	1232499.	208685.	1863650.	409784.	1.715	0.290
C20 to C21	1686468.	210429.	2307750.	329224.	2.346	0.293
C21 to C22	2309425.	402472.	2717754.	449092.	3.483	0.607
C22 to C23	2530004.	407213.	3726517.	542730.	3.815	0.614
C23 to C24	2980591.	269079.	4144146.	372267.	4.669	0.422
C24 to C25	3071998.	373284.	4329174.	386950.	4.812	0.585
C25 to C26	2643227.	290397.	3721425.	386518.	4.666	0.513
C26 to C27	2894788.	274402.	4136582.	509485.	5.110	0.484
C27 to C28	2355134.	208117.	3316413.	477195.	4.378	0.387
C28 to C29	2136503.	16750.	3035197.	85700.	3.971	0.031
C29 to C30	1919061.	74755.	2689974.	138691.	3.903	0.152
C30 to C31	1665957.	54986.	2335899.	83843.	3.389	0.112
C31 to C32	1266004.	92333.	1788292.	140192.	3.138	0.229
C32 to C33	1172336.	114334.	1603137.	170622.	2.905	0.283
C33 to C34	832984.	54295.	1135476.	76073.	2.162	0.141
C34 to C35	598674.	14474.	823131.	23222.	1.554	0.038
C35 to C36	537636.	123917.	728218.	177210.	1.728	0.398
C36 to 80 min	324973.	20220.	437001.	27678.	1.045	0.065
TOTAL	3584640.	3772973.	50486108.	5995086.	63.667	6.391
						61.861
						6.977

Trucks, Heavy-Duty Diesel

(filename = DIESELA
 (Size of sample = 10.110 meters)

Elution Zone (incl. lower bound)	AREA COUNTS			-Acid+Neutral- Total Resolved			-Acid+Neutral- Total Resolved			-Acid+Neutral- Total Resolved		
	Total	Acid+Neutral	Resolved	Total	Neutral	Resolved	Total	Neutral	Resolved	Total	Neutral	Resolved
16 min to C12	241117.	5549.	5050.	0.	0.	0.024	0.017	0.000	0.000	0.000	0.000	0.000
C12 to C13	122794.	0.	37522.	0.	0.	0.560	0.000	0.135	0.000	0.349	0.028	0.000
C13 to C14	129693.	0.	96100.	7739.	0.597	0.000	0.000	0.893	0.215	0.893	0.215	0.000
C14 to C15	233017.	32530.	239378.	57557.	1.102	0.154	0.154	1.367	0.000	1.367	0.000	0.000
C15 to C16	294514.	0.	366589.	0.	1.393	0.000	0.000	2.470	0.341	2.470	0.341	0.309
C16 to C17	460852.	67840.	623112.	77966.	2.317	0.574	0.574	3.748	0.394	3.748	0.394	0.554
C17 to C18	739777.	118158.	978444.	144554.	3.594	0.059	0.059	5.359	0.208	5.359	0.208	0.977
C18 to C19	1075249.	216128.	1387052.	252967.	5.269	1.215	1.215	6.600	0.701	6.600	0.701	0.902
C19 to C20	1398370.	239574.	1650802.	225507.	7.091	1.215	1.215	8.899	0.914	8.899	0.914	2.340
C20 to C21	1833665.	471234.	2225688.	585144.	9.298	2.390	2.390	9.812	0.923	9.812	0.923	1.435
C21 to C22	1675142.	210771.	2263964.	331133.	9.208	1.159	1.159	9.232	0.932	9.232	0.932	1.113
C22 to C23	1766478.	284027.	2129988.	256693.	9.710	1.561	1.561	9.232	0.941	9.232	0.941	0.902
C23 to C24	1395687.	95881.	1712582.	174513.	7.969	0.547	0.547	7.710	0.557	7.710	0.557	0.786
C24 to C25	1337539.	152191.	1620038.	132685.	7.637	0.869	0.869	7.294	0.666	7.294	0.666	0.597
C25 to C26	1217031.	108102.	1471157.	120695.	7.831	0.696	0.696	7.464	0.675	7.464	0.675	0.612
C26 to C27	1140345.	77137.	1490816.	78446.	7.337	0.496	0.496	7.563	0.496	7.563	0.496	0.398
C27 to C28	1472530.	273536.	1815989.	361885.	9.977	1.853	1.853	9.701	1.933	9.701	1.933	0.727
C28 to C29	1164241.	15722.	1511968.	13618.	7.888	0.107	0.107	8.077	0.073	8.077	0.073	0.073
C29 to C30	1141333.	65184.	1469969.	93863.	8.462	0.483	0.483	8.594	0.549	8.594	0.549	0.549
C30 to C31	1173432.	88780.	1522248.	124285.	8.700	0.658	0.658	8.899	0.727	8.899	0.727	0.727
C31 to C32	838701.	58439.	1102283.	118896.	7.577	0.528	0.528	7.851	0.847	7.851	0.847	0.847
C32 to C33	694154.	48614.	890125.	73703.	6.271	0.439	0.439	6.340	0.525	6.340	0.525	0.525
C33 to C34	547152.	30220.	704268.	47338.	5.176	0.286	0.286	5.253	0.353	5.253	0.353	0.353
C34 to C35	405095.	11059.	520786.	21247.	3.832	0.105	0.105	3.884	0.158	3.884	0.158	0.158
C35 to C36	289566.	3291.	333448.	5869.	3.393	0.039	0.039	3.081	0.054	3.081	0.054	0.054
C36 to 80 min	178962.	0.	162357.	1208.	2.097	0.000	0.000	1.500	0.011	1.500	0.011	0.011
TOTAL	22749440.	2673967.	28331728.	3307511.	144.392	15.582	15.582	142.092	15.495	142.092	15.495	15.495

Roofing Tar Pot

(filename = TARPOTA
 (Size of sample = 39.370 mg emissio }

Elution Zone (incl. lower bound)	AREA COUNTS			-ug/mg emissio		
	-Acid+Neutral-		Neutral	-Acid+Neutral-		Neutral
	Total	Resolved	Total	Resolved	Total	Resolved
16 min to C12	11825.	0.	0.	0.	0.413	0.000
C12 to C13	24424.	0.	14723.	0.	0.913	0.000
C13 to C14	121305.	0.	95266.	51379.	4.579	0.000
C14 to C15	386122.	116650.	395214.	144134.	14.979	4.525
C15 to C16	658701.	117493.	779902.	163122.	25.553	4.558
C16 to C17	1286977.	266599.	1366814.	390585.	53.073	10.994
C17 to C18	1439879.	284304.	1741292.	452555.	57.366	11.327
C18 to C19	1827776.	315780.	1991916.	377637.	73.459	12.691
C19 to C20	1685003.	222550.	1959646.	244896.	70.077	9.255
C20 to C21	1916908.	303779.	2195174.	279252.	79.721	12.634
C21 to C22	2260731.	386321.	2583686.	371602.	101.921	17.417
C22 to C23	2311900.	344231.	2735482.	349513.	104.228	15.519
C23 to C24	2004581.	165678.	2368302.	184790.	93.876	7.759
C24 to C25	1949987.	146363.	2171737.	147000.	91.319	6.854
C25 to C26	1359705.	51288.	1788712.	65937.	71.754	2.707
C26 to C27	1070772.	13340.	1266292.	20470.	56.507	0.704
C27 to C28	743424.	0.	885470.	0.	41.310	0.000
C28 to C29	496565.	0.	583222.	0.	27.593	0.000
C29 to C30	370599.	0.	430703.	0.	22.536	0.000
C30 to C31	249409.	11973.	279788.	5984.	15.167	0.728
C31 to C32	243716.	32743.	311182.	51030.	18.057	2.426
C32 to C33	195341.	21048.	186810.	21662.	14.473	1.559
C33 to C34	143473.	20306.	165504.	11420.	11.131	1.575
C34 to C35	137018.	1313.	124611.	0.	10.631	0.102
C35 to C36	129020.	4681.	121056.	2304.	12.400	0.450
C36 to 80 min	188871.	12591.	186518.	18106.	18.152	1.210
TOTAL	23214040.	2839031.	26729026.	3353378.	1091.186	124.995

Roofing Tar Pot - Replicate Sample

(filename = PTARPOTA)
 (Size of sample = 21.091 mg emisio }

Elution Zone (incl. lower bound)	AREA COUNTS			-ug/mg emissio		
	Total	-Acid+Neutral-	Resolved	Total	Neutral	-Acid+Neutral-
					Total	Resolved
16 min to C12	23641.	12343.	2544.	0.	0.667	0.348
C12 to C13	29252.	0.	12058.	0.	0.884	0.000
C13 to C14	128057.	51234.	81860.	36159.	3.904	1.562
C14 to C15	461592.	151470.	398746.	140945.	14.463	4.746
C15 to C16	794309.	200068.	824955.	192208.	24.888	6.269
C16 to C17	1691428.	514905.	1496030.	501921.	56.339	17.154
C17 to C18	1996713.	573077.	1996715.	574664.	64.253	18.441
C18 to C19	2422828.	466295.	2230727.	429734.	78.649	15.137
C19 to C20	2099659.	279954.	2022257.	279249.	70.529	9.404
C20 to C21	2722545.	343965.	2572987.	326026.	91.452	11.554
C21 to C22	2647771.	332491.	2490218.	399338.	96.414	12.107
C22 to C23	2665566.	298350.	2623688.	308304.	97.062	10.864
C23 to C24	2137720.	180908.	2099343.	160030.	80.859	6.843
C24 to C25	1961671.	87414.	1901588.	107125.	74.200	3.306
C25 to C26	1246368.	21063.	1238479.	21500.	53.125	0.898
C26 to C27	922608.	0.	887029.	10848.	39.325	0.000
C27 to C28	624384.	0.	596812.	0.	28.023	0.000
C28 to C29	410685.	0.	387032.	0.	18.432	0.000
C29 to C30	334602.	0.	312840.	0.	16.434	0.000
C30 to C31	186936.	5373.	181377.	8713.	9.182	0.264
C31 to C32	220676.	33261.	148244.	2329.	13.206	1.990
C32 to C33	170444.	8466.	126957.	4158.	10.200	0.507
C33 to C34	118425.	0.	88502.	5134.	7.421	0.000
C34 to C35	124574.	0.	78809.	0.	7.806	0.000
C35 to C36	90259.	0.	37439.	4833.	7.006	0.000
C36 to 80 min	119384.	0.	31106.	2219.	9.267	0.000
TOTAL	26352102.	3560727.	24868348.	3515437.	973.990	121.393
						1118.196
						147.259

Radial Tire Wear

(filename = PTIREDUSTA
 (Size of sample = 9.164 mg tire du)

-270-

Elution Zone (incl. lower bound)	AREA COUNTS			-ug/mg tire du		
	Total	-Acid+Neutral-	Resolved	Total	Resolved	-Acid+Neutral- Total Resolved
16 min to C12	7937.	4192.	2878.	0.053	0.028	0.038
C12 to C13	23554.	2204.	18731.	0.167	0.016	0.096
C13 to C14	18410.	5226.	13075.	0.132	0.037	0.067
C14 to C15	10944.	0.	10572.	0.080	0.000	0.056
C15 to C16	30829.	9146.	18014.	0.227	0.067	0.095
C16 to C17	14556.	0.	14272.	0.	0.114	0.000
C17 to C18	37203.	7422.	45548.	0.281	0.056	0.248
C18 to C19	112584.	37461.	10904.	0.858	0.285	0.603
C19 to C20	160552.	11987.	216073.	1.266	0.095	1.227
C20 to C21	402956.	213848.	321066.	4.3895.	3.177	1.686
C21 to C22	499180.	239999.	345485.	4.3280.	4.266	4.374
C22 to C23	517614.	230529.	468154.	4.7202.	4.424	4.970
C23 to C24	348620.	58587.	456198.	6.7069.	3.095	0.520
C24 to C25	492738.	187392.	515752.	4.3520.	4.374	1.664
C25 to C26	763068.	418962.	457441.	11131.	7.634	4.191
C26 to C27	426333.	36062.	570171.	4.0456.	4.265	0.361
C27 to C28	477112.	44353.	712031.	6.6426.	5.026	0.467
C28 to C29	512511.	25862.	663503.	3.1813.	5.399	0.272
C29 to C30	579431.	18042.	806237.	3.2984.	6.680	0.208
C30 to C31	688154.	69272.	1050711.	9.7855.	7.933	0.799
C31 to C32	883082.	102635.	1176281.	14.1952.	12.403	1.442
C32 to C33	898787.	106103.	1238066.	132428.	12.624	1.490
C33 to C34	1041002.	120802.	1553369.	175627.	15.311	1.777
C34 to C35	1008726.	108330.	1466031.	121741.	14.836	1.593
C35 to C36	952488.	97627.	1336939.	115530.	17.354	1.779
C36 to 120 min	1083603.	287638.	1513996.	224103.	60.000	5.241
TOTAL	11991974.	2443681.	15105566.	1494279.	191.722	28.095
						167.667
						14.418

Radial Tire Wear - Replicate Sample

(filename = TIREDUSTA
 (Size of sample = 9.631 mg tire du)

Elution Zone (incl. lower bound)	AREA COUNTS			-ug/mg tire du		
	Total	-Acid+Neutral-	Resolved	Total	Neutral	-Acid+Neutral-
	Total	Resolved	Total	Resolved	Total	Resolved
16 min to C12	8309.	1077.	8762.	4129.	0.049	0.006
C12 to C13	26895.	2510.	34915.	4485.	0.170	0.016
C13 to C14	18773.	6684.	23117.	7990.	0.120	0.019
C14 to C15	16988.	0.	11791.	0.	0.112	0.034
C15 to C16	50946.	4210.	29108.	1341.	0.334	0.000
C16 to C17	6216.	0.	15963.	0.	0.028	0.006
C17 to C18	43385.	31797.	14090.	9780.	0.292	0.075
C18 to C19	51105.	11940.	89413.	21604.	0.348	0.000
C19 to C20	164148.	16796.	208032.	34848.	1.155	0.047
C20 to C21	491130.	221737.	387859.	49730.	3.456	0.098
C21 to C22	585991.	270949.	610070.	203748.	4.470	0.164
C22 to C23	618554.	261979.	570056.	61571.	4.719	0.044
C23 to C24	462504.	102642.	729179.	202354.	3.665	0.040
C24 to C25	619399.	242532.	657359.	64078.	4.908	0.116
C25 to C26	958082.	539324.	552781.	24838.	8.555	0.314
C26 to C27	501095.	30556.	659817.	51079.	4.474	0.081
C27 to C28	617565.	53369.	813043.	68909.	5.807	0.234
C28 to C29	611274.	21068.	749809.	28664.	5.747	0.075
C29 to C30	713594.	19046.	909350.	32594.	7.342	0.047
C30 to C31	809410.	70895.	1036676.	113948.	8.328	0.147
C31 to C32	1162564.	104884.	1476220.	138589.	14.575	0.052
C32 to C33	1125899.	92653.	1409599.	128713.	14.115	0.052
C33 to C34	1400963.	130316.	1639099.	175702.	18.392	0.052
C34 to C35	1396318.	104501.	1753934.	147847.	18.331	0.060
C35 to C36	1336319.	102044.	1790875.	155172.	21.731	0.162
C36 to 120 min	3798455.	288605.	4197185.	255786.	61.771	0.456
TOTAL	17595882.	2732114.	20378102.	1987499.	213.010	27.493
						166.936
						15.025

Dilution Air for Fireplace - Oak Wood

(filename = 03BLANK3A)
 (Size of sample = 23.515 g wood)

Elution Zone (incl. lower bound)	AREA COUNTS		ug/g wood	
	- Acid+Neutral -	Total Resolved	- Acid+Neutral -	Total Resolved
16 min to C12	26401.	11751.	7847.	0.032
C12 to C13	113932.	46808.	38280.	0.014
C13 to C14	105315.	55272.	132603.	0.015
C14 to C15	69528.	16196.	76463.	0.062
C15 to C16	80200.	17110.	96300.	0.099
C16 to C17	116411.	45142.	142668.	0.023
C17 to C18	132934.	55843.	162319.	0.024
C18 to C19	105808.	36024.	133151.	0.053
C19 to C20	104830.	22773.	129974.	0.065
C20 to C21	108537.	22601.	146323.	0.053
C21 to C22	196648.	70814.	233617.	0.078
C22 to C23	142325.	13834.	180324.	0.070
C23 to C24	197038.	7832.	236466.	0.070
C24 to C25	165295.	920.	201313.	0.070
C25 to C26	152398.	7293.	176488.	0.070
C26 to C27	118611.	2964.	136028.	0.070
C27 to C28	127004.	19024.	137354.	0.070
C28 to C29	84251.	0.	92493.	0.070
C29 to C30	73702.	0.	71999.	0.070
C30 to C31	56705.	0.	58758.	0.070
C31 to C32	57905.	3513.	56503.	0.070
C32 to C33	86133.	5667.	83467.	0.070
C33 to C34	69556.	2968.	67741.	0.070
C34 to C35	40348.	0.	38122.	0.070
C35 to C36	19555.	2890.	17702.	0.070
C36 to 80 min	15897.	1122.	11447.	0.070
TOTAL	2567357.	468361.	2949243.	4.465
				0.706
				3.402
				0.563

Fireplace - Oak Wood

(filename = FIREOAKA)
 (Size of sample = 4.249 g wood)

Elution Zone (incl. lower bound)	AREA COUNTS			- Acid+Neutral - ug/ g wood			- Acid+Neutral - ug/ g wood		
	Total	- Acid+Neutral -	Resolved	Total	Resolved	Total	Resolved	Total	Resolved
16 min to C12	458.8.	0.	0.	0.199	0.000	0.000	0.000	0.000	0.000
C12 to C13	144766.	105141.	650.	6.732	4.889	0.015	0.000	0.000	0.000
C13 to C14	115584.	43702.	11663.	0.	5.425	2.051	0.268	0.000	0.000
C14 to C15	507954.	132689.	87724.	0.	24.505	6.401	2.072	0.000	0.000
C15 to C16	577483.	146565.	305194.	33889.	27.859	0.707	7.210	0.801	
C16 to C17	1085716.	578986.	713226.	192607.	55.680	29.693	17.912	4.837	
C17 to C18	1271446.	545342.	1296923.	486227.	62.995	27.019	31.467	11.797	
C18 to C19	1679461.	900186.	1331176.	438096.	83.940	44.992	32.581	10.723	
C19 to C20	2156902.	1255611.	2387725.	1311148.	111.552	64.939	60.473	33.207	
C20 to C21	1870813.	694372.	2632857.	1497093.	96.756	35.912	66.682	37.917	
C21 to C22	1647164.	414529.	1782464.	414259.	92.348	23.241	48.938	11.374	
C22 to C23	1594658.	387477.	1631551.	356427.	89.404	21.724	44.794	9.786	
C23 to C24	1288422.	127642.	1315322.	107156.	75.035	7.434	37.512	3.056	
C24 to C25	1201792.	123930.	1367494.	142944.	69.990	7.217	39.000	4.077	
C25 to C26	1331814.	139996.	1259734.	208308.	87.402	9.187	40.485	6.694	
C26 to C27	1159730.	149112.	1091549.	77834.	76.109	9.786	35.080	2.501	
C27 to C28	1312259.	342697.	1383673.	341045.	90.681	23.681	46.824	11.541	
C28 to C29	1041098.	116843.	1009873.	28288.	71.943	8.074	34.174	0.957	
C29 to C30	929916.	77573.	945963.	99068.	70.322	5.866	35.031	3.669	
C30 to C31	946069.	156363.	869828.	125341.	71.544	11.825	32.212	4.642	
C31 to C32	828032.	159318.	868159.	174918.	76.293	14.679	39.171	7.892	
C32 to C33	703011.	139056.	746657.	148883.	64.774	12.812	33.689	6.718	
C33 to C34	450488.	60663.	499724.	57726.	43.465	5.853	23.611	2.727	
C34 to C35	401149.	25818.	356144.	22254.	38.704	2.491	16.827	1.051	
C35 to C36	341155.	36217.	357294.	52488.	40.774	4.329	20.912	3.072	
C36 to 80 min	319512.	44836.	295005.	70900.	38.187	5.359	17.266	4.150	
TOTAL	2491098.	6772755.	24547578.	6386899.	1572.620	390.161	764.207	183.188	

Dilution Air for Fireplace - Pine Wood

(filename = 03BLANK2A)
(Size of sample = 25.140 g wood }

-274-

Elution Zone (incl. lower bound)	AREA COUNTS			ug/g wood		
	Total	-Acid+Neutral-	Total Resolved	-Neutral-	-Acid+Neutral-	Total Resolved
16 min to C12	26401.	11751.	7847.	0.030	0.014	0.006
C12 to C13	113932.	46808.	38280.	0.140	0.058	0.032
C13 to C14	105315.	55272.	132603.	0.131	0.069	0.111
C14 to C15	69528.	16196.	76463.	0.089	0.021	0.066
C15 to C16	80200.	17110.	96300.	0.102	0.022	0.083
C16 to C17	116411.	45142.	142668.	0.158	0.061	0.130
C17 to C18	132934.	55843.	162319.	0.174	0.073	0.143
C18 to C19	105808.	36024.	133151.	0.140	0.048	0.119
C19 to C20	104830.	22773.	129974.	0.143	0.031	0.120
C20 to C21	108537.	22601.	146323.	0.148	0.031	0.135
C21 to C22	196648.	70814.	233617.	0.292	0.105	0.234
C22 to C23	142325.	13834.	180324.	0.211	0.021	0.180
C23 to C24	197038.	7832.	230466.	0.303	0.012	0.246
C24 to C25	165295.	920.	201313.	0.	0.255	0.001
C25 to C26	152398.	7293.	176488.	0.264	0.013	0.207
C26 to C27	118611.	2964.	136028.	0.206	0.005	0.159
C27 to C28	127004.	19024.	137354.	0.232	0.035	0.169
C28 to C29	84251.	0.	92493.	0.	0.154	0.000
C29 to C30	73702.	0.	71999.	0.	0.147	0.000
C30 to C31	56705.	0.	58758.	1105.	0.113	0.000
C31 to C32	57995.	3513.	56503.	36555.	0.141	0.009
C32 to C33	86133.	5667.	83467.	5566.	0.210	0.014
C33 to C34	69556.	2968.	67741.	5015.	0.177	0.008
C34 to C35	40348.	0.	38122.	0.	0.103	0.000
C35 to C36	19555.	2890.	17702.	4878.	0.062	0.009
C36 to 80 min	15897.	1122.	11447.	1904.	0.050	0.004
TOTAL	2567357.	468361.	2949243.	547880.	4.177	0.660
						3.182
						0.527

Fireplace - Pine Wood

(filename = FIREPINEA)
(Size of sample = 4.212 g wood }

Elution Zone (incl. lower bound)	AREA COUNTS			-Acid+Neutral- Total Resolved			-Acid+Neutral- Total Resolved			-ug/ g wood - Total Resolved		
	-Acid+	Neutral	Total	-Neutral	Total	Resolved	-Neutral	Total	Resolved	-Neutral	Total	Resolved
16 min to C12	5657.	0.	3004.	0.	0.	0.	0.357	0.000	0.204	0.000	0.000	0.000
C12 to C13	235259.	186332.	4621.	0.	15.864	12.565	0.336	0.000	0.336	0.000	0.000	0.000
C13 to C14	254037.	158442.	48362.	0.	17.291	10.784	3.554	0.000	3.554	0.000	0.000	0.000
C14 to C15	603244.	317741.	142573.	9563.	42.200	22.227	10.769	0.722	10.769	0.722	0.722	0.722
C15 to C16	551872.	31513.	453194.	72851.	38.606	2.204	34.232	5.503	34.232	5.503	5.503	5.503
C16 to C17	967828.	359709.	924935.	235611.	71.974	26.750	74.270	18.919	74.270	18.919	18.919	18.919
C17 to C18	1366167.	538295.	1427353.	645637.	98.153	38.674	110.728	50.086	110.728	50.086	50.086	50.086
C18 to C19	1407620.	376183.	1307688.	477741.	102.018	27.264	102.335	37.386	102.335	37.386	37.386	37.386
C19 to C20	1756061.	615777.	2020196.	906755.	131.698	46.181	163.592	73.428	163.592	73.428	73.428	73.428
C20 to C21	1935612.	440341.	2521852.	1173532.	145.164	33.024	204.215	95.031	204.215	95.031	95.031	95.031
C21 to C22	1961460.	525557.	1627018.	160620.	159.464	42.727	142.825	14.100	142.825	14.100	14.100	14.100
C22 to C23	1425582.	152145.	1567787.	86761.	115.898	12.369	137.625	7.616	137.625	7.616	7.616	7.616
C23 to C24	1817369.	173638.	1612066.	169291.	153.476	14.664	146.997	15.437	146.997	15.437	15.437	15.437
C24 to C25	2132778.	641990.	1563741.	1305339.	180.113	54.216	142.591	12.724	142.591	12.724	12.724	12.724
C25 to C26	3596441.	1847089.	2760897.	992089.	342.250	175.776	283.693	101.941	283.693	101.941	101.941	101.941
C26 to C27	1658054.	151697.	1436292.	94002.	157.786	14.436	147.585	9.659	147.585	9.659	9.659	9.659
C27 to C28	1705498.	251706.	1727451.	283028.	170.900	25.222	186.907	30.623	186.907	30.623	30.623	30.623
C28 to C29	1584523.	19921.	1434178.	40404.	158.778	1.996	155.175	4.372	155.175	4.372	4.372	4.372
C29 to C30	1271139.	0.	1210709.	0.	139.391	0.000	143.354	0.000	143.354	0.000	0.000	0.000
C30 to C31	1696042.	429670.	1579851.	383968.	185.986	47.117	187.063	45.464	187.063	45.464	45.464	45.464
C31 to C32	1162950.	186728.	1154071.	188687.	155.378	24.948	166.491	27.221	166.491	27.221	27.221	27.221
C32 to C33	914475.	125856.	917537.	142350.	122.180	16.815	132.368	20.536	132.368	20.536	20.536	20.536
C33 to C34	771641.	120527.	697421.	124556.	107.960	16.863	105.359	18.817	105.359	18.817	18.817	18.817
C34 to C35	537799.	45873.	488492.	22794.	75.243	6.418	73.796	3.443	73.796	3.443	3.443	3.443
C35 to C36	424743.	60432.	401169.	62001.	73.613	10.474	75.073	11.603	75.073	11.603	11.603	11.603
C36 to 80 min	293827.	27114.	274152.	30721.	50.923	4.699	51.303	5.749	51.303	5.749	5.749	5.749
TOTAL	32037686.	7784276.	29306618.	6442501.	3012.665	688.415	2982.442	610.378	2982.442	610.378	610.378	610.378

Dilution Air for Fireplace - Synthetic Log

(filename = 03BLANK6A
 (Size of sample = 2.839 g wood)}

Elution Zone (incl. lower bound)	AREA COUNTS			-Acid+Neutral- Total Resolved			-Acid+Neutral- Total Resolved			-ug/g wood		
	Total	-Acid+Neutral-	Neutral	Total	Resolved	Total	Resolved	Total	Resolved	Total	Resolved	
16 min to C12	26401.	11751.	17836.	7847.	0.269	0.120	0.122	0.054				
C12 to C13	113932.	46808.	111784.	38280.	1.240	0.510	0.821	0.281				
C13 to C14	105315.	55272.	132603.	69080.	1.157	0.607	0.983	0.512				
C14 to C15	69528.	16196.	76463.	16925.	0.785	0.183	0.583	0.129				
C15 to C16	80200.	17110.	96300.	26328.	0.906	0.193	0.734	0.201				
C16 to C17	116411.	45142.	142668.	53785.	1.398	0.542	1.156	0.436				
C17 to C18	132934.	55843.	162319.	68022.	1.542	0.648	1.270	0.532				
C18 to C19	105808.	36024.	133151.	40525.	1.238	0.422	1.051	0.320				
C19 to C20	104830.	22773.	129974.	20812.	1.269	0.276	1.062	0.170				
C20 to C21	108537.	22601.	146323.	32679.	1.314	0.274	1.195	0.267				
C21 to C22	196648.	70814.	233617.	86560.	2.581	0.930	2.069	0.766				
C22 to C23	142325.	13834.	180324.	18780.	1.868	0.182	1.597	0.166				
C23 to C24	197038.	7832.	236466.	11168.	2.687	0.107	2.175	0.103				
C24 to C25	165295.	920.	201313.	0.	2.254	0.013	1.852	0.000				
C25 to C26	152398.	7293.	176488.	7558.	2.342	0.112	1.829	0.078				
C26 to C27	118611.	2964.	136028.	3513.	1.822	0.046	1.410	0.036				
C27 to C28	127004.	19024.	137354.	23895.	2.055	0.308	1.499	0.261				
C28 to C29	84251.	0.	92493.	0.	1.363	0.000	1.009	0.000				
C29 to C30	73702.	0.	71999.	0.	1.305	0.000	0.860	0.000				
C30 to C31	56705.	0.	58758.	1105.	1.004	0.000	0.702	0.013				
C31 to C32	57995.	3513.	56503.	3655.	1.251	0.076	0.822	0.053				
C32 to C33	86133.	5667.	83467.	5566.	1.858	0.122	1.215	0.081				
C33 to C34	69556.	2968.	67741.	5015.	1.571	0.067	1.032	0.076				
C34 to C35	40348.	0.	38122.	0.	0.911	0.000	0.581	0.000				
C35 to C36	19555.	2890.	17702.	4878.	0.547	0.081	0.334	0.092				
C36 to 80 min	15897.	1122.	11447.	1904.	0.445	0.031	0.216	0.036				
TOTAL	2567357.	468361.	2949243.	547880.	36.984	5.847	28.177	4.664				

Fireplace - Synthetic Log

(filename = FIRESYNTHA)
 (Size of sample = 0.592 g wood)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/g wood		
	-Acid+Neutral-		Total	-Neutral-		Total
	Total	Resolved		Total	Resolved	
16 min to C12	25145.	16360.	18129.	5470.	5.173	3.366
C12 to C13	64275.	13176.	34256.	0.	14.150	2.901
C13 to C14	45870.	23565.	36969.	7681.	10.193	5.236
C14 to C15	9259.	0.	24957.	0.	2.115	0.000
C15 to C16	44835.	0.	2047.	0.	10.239	0.000
C16 to C17	104918.	0.	94094.	0.	25.472	0.000
C17 to C18	313142.	53649.	291418.	49833.	73.448	12.583
C18 to C19	664152.	204173.	689764.	176771.	157.144	48.309
C19 to C20	1316092.	384613.	1424062.	467270.	322.229	94.168
C20 to C21	1883730.	635589.	1995975.	684156.	461.209	155.616
C21 to C22	1791606.	515642.	1988706.	638283.	475.515	136.858
C22 to C23	2104456.	551680.	2087056.	554062.	558.549	146.423
C23 to C24	1938680.	418302.	2049404.	463528.	534.494	115.326
C24 to C25	2184267.	529219.	2429241.	559344.	602.202	145.906
C25 to C26	2271597.	531037.	2148022.	530613.	705.733	164.981
C26 to C27	1917728.	314196.	2031867.	373122.	595.794	97.613
C27 to C28	2028185.	403513.	2437207.	327353.	663.493	132.004
C28 to C29	1977206.	240230.	1730874.	252643.	646.816	78.588
C29 to C30	2037049.	144127.	1978518.	162029.	729.260	51.597
C30 to C31	1574917.	153097.	1767765.	172687.	563.818	54.808
C31 to C32	1587543.	229979.	1637427.	298851.	692.458	100.313
C32 to C33	1510387.	248995.	1551191.	257430.	658.804	108.607
C33 to C34	1377214.	254830.	1436006.	257180.	629.052	116.395
C34 to C35	1377554.	212952.	1401758.	313468.	629.207	97.267
C35 to C36	1168711.	256369.	1196832.	293550.	661.259	145.054
C36 to 120 min	2474556.	871262.	2409815.	978184.	1400.109	492.962
TOTAL	33793080.	7206555.	34893364.	7824408.	11827.938	2506.883
					12734.332	2878.969

Cigarette Smoke

(filename = PCIGARETTESA)
 (Size of sample = 0.460 cigarettes)

Elution Zone (incl. lower bound)	AREA COUNTS			- Acid+Neutral -			- Acid+Neutral -		
	Total	Resolved	Neutral	Total	Resolved	Neutral	Total	Resolved	Neutral
16 min to C12	46449.	25835.	6889.	0.	13.627	7.579	1.942	0.000	
C12 to C13	279081.	132166.	53446.	0.	87.608	41.489	16.120	0.000	
C13 to C14	198806.	0.	165149.	25551.	62.991	0.000	50.278	7.779	
C14 to C15	1477507.	1101119.	1487862.	1302043.	481.150	358.579	465.544	407.403	
C15 to C16	360500.	0.	519680.	40531.	117.397	0.000	162.605	12.682	
C16 to C17	860365.	195784.	956341.	326242.	297.846	67.778	318.105	108.517	
C17 to C18	1084481.	176751.	1055921.	276666.	362.706	59.115	339.322	88.907	
C18 to C19	1461950.	547372.	1610808.	565642.	493.240	184.675	522.176	183.364	
C19 to C20	1038481.	115564.	1293589.	233694.	362.554	40.346	433.929	78.392	
C20 to C21	2089991.	906700.	1767771.	371845.	729.658	316.547	592.992	124.734	
C21 to C22	2066243.	704005.	1758688.	313187.	781.986	266.436	639.520	113.886	
C22 to C23	1707652.	684868.	1546426.	331150.	646.274	259.194	562.334	120.418	
C23 to C24	1428783.	154450.	1642845.	142878.	561.693	60.718	620.550	53.969	
C24 to C25	1525472.	142258.	1606044.	169881.	599.704	55.925	606.649	64.169	
C25 to C26	1085662.	66604.	1198590.	80343.	480.949	29.506	510.180	34.198	
C26 to C27	1060426.	78532.	1119561.	50530.	469.770	34.790	476.541	21.508	
C27 to C28	1311380.	295964.	1440971.	346584.	611.721	138.059	645.844	155.339	
C28 to C29	914692.	56437.	993290.	46114.	426.677	26.326	445.193	20.668	
C29 to C30	1047537.	286630.	1143022.	310140.	534.745	146.318	560.634	152.119	
C30 to C31	1101414.	327814.	1245264.	417588.	562.247	167.342	610.782	204.820	
C31 to C32	1618221.	958259.	1808693.	1088235.	1006.471	596.000	1080.877	650.330	
C32 to C33	936670.	357917.	1009906.	399487.	582.573	222.611	603.521	238.734	
C33 to C34	893411.	361175.	1005510.	467023.	581.878	235.233	629.238	292.258	
C34 to C35	521806.	136328.	543603.	147727.	339.852	88.790	340.181	92.446	
C35 to C36	338381.	51180.	356098.	56345.	273.002	41.292	276.044	43.678	
C36 to 120 min	328852.	53465.	396636.	52096.	265.314	43.135	307.468	40.384	
TOTAL	26784218.	7917177.	27732606.	7561522.	11733.633	3487.782	11818.572	3310.702	

Cigarette Smoke - Replicate Sample

(filename = CIGARETTESA)
(Size of sample = 0.456 cigarettes

-279-

Elution Zone (incl. lower bound)	AREA COUNTS			ug/cigarettes		
	Total	-Acid+Neutral-	Resolved	Total	-Neutral-	-Acid+Neutral-
					Total	Resolved
16 min to C12	59767.	37318.	13577.	15.211	9.498	3.114
C12 to C13	526303.	327604.	371148.	143.327	89.216	91.085
C13 to C14	347176.	44865.	383431.	95.429	12.332	94.979
C14 to C15	2185838.	1739922.	2155962.	617.518	491.543	548.886
C15 to C16	515895.	52710.	726785.	145.745	14.891	185.032
C16 to C17	1251979.	448239.	1540686.	376.000	134.617	416.979
C17 to C18	1388105.	355237.	1347774.	402.750	103.070	352.403
C18 to C19	1734279.	592207.	1894034.	637017.	507.604	173.332
C19 to C20	1515194.	161773.	1800563.	302386.	458.906	48.996
C20 to C21	2568248.	963468.	2185801.	386999.	777.844	291.805
C21 to C22	2520887.	887635.	2191302.	393801.	827.659	291.429
C22 to C23	2055698.	784447.	1846774.	347141.	674.928	257.550
C23 to C24	1674309.	166527.	1986328.	140946.	571.017	56.793
C24 to C25	1945394.	186836.	1932905.	200308.	663.469	63.720
C25 to C26	1322816.	84551.	1420857.	78180.	508.376	32.494
C26 to C27	1323188.	93627.	1329954.	71220.	508.519	35.982
C27 to C28	1470403.	281461.	1536189.	275999.	595.034	113.900
C28 to C29	1195131.	142581.	1258699.	132604.	483.639	57.699
C29 to C30	1320377.	363140.	1315887.	312238.	584.730	160.817
C30 to C31	1219772.	402378.	1374543.	397509.	540.177	178.194
C31 to C32	1860900.	1052343.	1984201.	1145214.	1004.078	567.808
C32 to C33	1083321.	388957.	1138477.	415388.	584.523	209.868
C33 to C34	1123290.	469071.	1212283.	473642.	634.678	265.033
C34 to C35	680516.	212573.	667259.	168291.	384.503	120.107
C35 to C36	392788.	78043.	399145.	70552.	274.916	54.623
C36 to 120 min	408975.	63965.	430637.	56084.	286.245	44.770
TOTAL	33690552.	10381478.	34445208.	8564256.	12666.825	3880.086
						11723.851
						2991.609

Hamburger Meat, Extra-Lean, Charbroiled

(filename = BURGCHXLEAN)
 (Size of sample = 142.200 mg meat)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/mg meat		
	Total	-Acid+Neutral-	Neutral	Total	-Acid+Neutral-	Neutral
	Total	Resolved	Resolved	Total	Resolved	Total
16 min to C12	80643.	62992.	84720.	66973.	0.026	0.020
C12 to C13	217879.	70980.	149749.	85201.	0.076	0.025
C13 to C14	211822.	58647.	186743.	37515.	0.074	0.021
C14 to C15	225920.	26174.	212442.	40865.	0.081	0.009
C15 to C16	222494.	26913.	296274.	56512.	0.080	0.010
C16 to C17	296030.	70515.	414372.	176522.	0.113	0.027
C17 to C18	360199.	162888.	421885.	177191.	0.133	0.060
C18 to C19	272628.	41309.	368031.	94278.	0.102	0.015
C19 to C20	240011.	26912.	266483.	26619.	0.093	0.010
C20 to C21	396113.	169920.	306854.	37195.	0.153	0.066
C21 to C22	474364.	207481.	325080.	79016.	0.198	0.087
C22 to C23	332319.	87353.	349161.	27374.	0.139	0.037
C23 to C24	242217.	15286.	254597.	6124.	0.105	0.007
C24 to C25	239780.	34043.	297338.	61045.	0.104	0.015
C25 to C26	191189.	5535.	258305.	18435.	0.094	0.003
C26 to C27	195674.	5230.	310834.	83936.	0.096	0.003
C27 to C28	157418.	7422.	251399.	10359.	0.081	0.004
C28 to C29	136789.	0.	244405.	0.	0.071	0.000
C29 to C30	108357.	0.	207015.	0.	0.061	0.000
C30 to C31	121367.	1048.	175077.	10463.	0.068	0.001
C31 to C32	95685.	7101.	164835.	9517.	0.066	0.005
C32 to C33	86411.	4135.	140555.	3949.	0.059	0.003
C33 to C34	83566.	4714.	165852.	25153.	0.060	0.003
C34 to C35	52544.	0.	137435.	1680.	0.038	0.000
C35 to C36	35953.	4665.	106824.	1028.	0.032	0.004
C36 to 80 min	24662.	1815.	43262.	0.	0.022	0.002
TOTAL	5102034.	1103078.	6139527.	1136950.	2.226	0.435
					1.796	0.290

Hamburger Meat, Regular, Charbroiled

(filename = BURGCHREGA)
(Size of sample = 143.800 mg meat) }

Elution Zone (incl. lower bound)	AREA COUNTS		ug/mg meat		
	Acid	Neutral	Total	Resolved	Neutral
16 min to C12	83832.	78835.	3518.	0.	0.033
C12 to C13	143204.	80148.	171374.	137572.	0.060
C13 to C14	137899.	35801.	127979.	33188.	0.058
C14 to C15	176929.	37762.	208249.	40233.	0.077
C15 to C16	246109.	23491.	228334.	4200.	0.107
C16 to C17	321647.	28852.	318182.	16311.	0.148
C17 to C18	439389.	114100.	409600.	35792.	0.196
C18 to C19	419592.	27361.	482930.	53236.	0.189
C19 to C20	424003.	89195.	429619.	36251.	0.197
C20 to C21	1171237.	641852.	601940.	40103.	0.545
C21 to C22	1425797.	861946.	890277.	405425.	0.719
C22 to C23	917778.	353184.	729471.	111112.	0.463
C23 to C24	666799.	70659.	930055.	219676.	0.349
C24 to C25	943634.	196788.	832516.	97079.	0.494
C25 to C26	578691.	29938.	730000.	38728.	0.342
C26 to C27	742444.	151251.	767103.	128739.	0.438
C27 to C28	594370.	13702.	665116.	15801.	0.370
C28 to C29	574172.	10432.	647803.	12968.	0.357
C29 to C30	501374.	0.	615285.	0.	0.341
C30 to C31	444994.	24717.	491997.	8806.	0.303
C31 to C32	386781.	29921.	435116.	49162.	0.321
C32 to C33	354859.	27783.	409260.	29066.	0.294
C33 to C34	343724.	51123.	380441.	66727.	0.298
C34 to C35	273110.	12709.	305741.	21313.	0.237
C35 to C36	237738.	6478.	245082.	9357.	0.256
C36 to 80 min	187616.	0.	195189.	0.	0.202
TOTAL	12737722.	2998028.	12252177.	1610845.	7.395
					1.525
					5.654
					0.677

Hamburger Meat, Fried

(filename = BURGFR)
 (Size of sample = 293.200 mg meat }

Elution Zone (incl. lower bound)	AREA COUNTS			ug/mg meat		
	Total	-Acid+Neutral-	Resolved	Total	-Neutral-	Total
16 min to C12	63936.	40521.	72388.	48742.	0.008	0.005
C12 to C13	202901.	67843.	195414.	64247.	0.027	0.009
C13 to C14	169165.	32774.	191802.	41678.	0.022	0.004
C14 to C15	157949.	6350.	228895.	97179.	0.022	0.001
C15 to C16	155533.	16279.	235707.	53798.	0.021	0.024
C16 to C17	179965.	13911.	216629.	62379.	0.026	0.024
C17 to C18	172877.	23641.	213450.	37008.	0.024	0.003
C18 to C19	222167.	63378.	256780.	80013.	0.031	0.009
C19 to C20	174523.	31775.	212804.	41865.	0.026	0.023
C20 to C21	284702.	79248.	285837.	47534.	0.042	0.012
C21 to C22	270884.	73201.	270162.	42763.	0.043	0.012
C22 to C23	215621.	35456.	222402.	3337.	0.034	0.006
C23 to C24	160579.	8703.	192012.	13683.	0.026	0.001
C24 to C25	157218.	17100.	171132.	18645.	0.026	0.003
C25 to C26	113459.	5653.	148891.	10039.	0.021	0.001
C26 to C27	114166.	12687.	142798.	20306.	0.021	0.002
C27 to C28	106703.	13674.	127242.	19287.	0.021	0.003
C28 to C29	75029.	0.	101254.	0.	0.015	0.000
C29 to C30	70791.	0.	89992.	0.	0.015	0.000
C30 to C31	57899.	977.	67360.	4662.	0.012	0.000
C31 to C32	60442.	5137.	65892.	5517.	0.016	0.001
C32 to C33	48716.	1470.	41999.	3692.	0.013	0.008
C33 to C34	25768.	1849.	54269.	11418.	0.007	0.001
C34 to C35	14287.	0.	13517.	0.	0.004	0.003
C35 to C36	11821.	1382.	14666.	0.	0.004	0.000
C36 to 80 min	8821.	0.	2924.	0.	0.003	0.001
TOTAL	3295922.	553009.	3836218.	727792.	0.531	0.082
						0.464
						0.081

Brake Lining Wear

(filename = BRAKEDUSTA)
(Size of sample = 32.298 mg brake d)

Elution Zone (incl. lower bound)	AREA COUNTS			-ug/mg brake d		
	Total	-Acid+Neutral-	Neutral	Total	-Acid+Neutral-	Neutral
Resolved	Resolved	Resolved	Resolved	Resolved	Resolved	Resolved
16 min to C12	29158.	20445.	11921.	1947.	0.041	0.029
C12 to C13	80526.	39263.	64080.	8453.	0.121	0.059
C13 to C14	87350.	38730.	69409.	18049.	0.132	0.059
C14 to C15	92174.	31755.	93254.	28909.	0.143	0.049
C15 to C16	95278.	19267.	72345.	4128.	0.148	0.030
C16 to C17	91089.	19919.	80200.	26798.	0.150	0.033
C17 to C18	101466.	44736.	82317.	20666.	0.162	0.071
C18 to C19	78555.	20552.	74622.	19063.	0.126	0.033
C19 to C20	80799.	9922.	68705.	4730.	0.135	0.017
C20 to C21	128567.	40815.	83300.	11035.	0.214	0.068
C21 to C22	155653.	53918.	109346.	29584.	0.281	0.097
C22 to C23	154416.	36145.	103309.	11116.	0.279	0.065
C23 to C24	128399.	12335.	91687.	2590.	0.241	0.023
C24 to C25	135008.	11854.	100921.	3782.	0.253	0.022
C25 to C26	126223.	8787.	88000.	4582.	0.267	0.019
C26 to C27	128340.	5315.	91907.	8552.	0.271	0.011
C27 to C28	109457.	5715.	87205.	6503.	0.244	0.013
C28 to C29	99202.	1894.	67131.	1701.	0.221	0.004
C29 to C30	85813.	1086.	65563.	2767.	0.209	0.003
C30 to C31	75890.	7332.	48291.	0.	0.185	0.018
C31 to C32	66438.	7831.	35576.	2465.	0.197	0.023
C32 to C33	56920.	3667.	37981.	3609.	0.169	0.011
C33 to C34	28287.	2592.	16414.	2525.	0.088	0.008
C34 to C35	11231.	0.	8801.	0.	0.035	0.000
C35 to C36	6490.	2998.	6502.	2233.	0.025	0.012
C36 to 80 min	2535.	0.	5819.	0.	0.010	0.000
TOTAL	2235264.	446873.	1664606.	225787.	4.347	0.776
					3.796	0.475

Dilution Air for Natural Gas Home Appliances

(filename = 06BLANK123A)
 (Size of sample = 15.344 kkJoules)

-284-

Elution Zone (incl. lower bound)	AREA COUNTS			ug/kkJoules		
	Total	-Acid+Neutral-	Total Resolved	-Acid+Neutral-	Total Resolved	Total Resolved
16 min to C12	48378.	19420.	25806.	12197.	0.073	0.029
C12 to C13	176883.	44176.	116112.	32488.	0.284	0.071
C13 to C14	149395.	45119.	123072.	46829.	0.242	0.073
C14 to C15	158644.	28503.	117984.	28440.	0.264	0.047
C15 to C16	185122.	71338.	160818.	74941.	0.308	0.119
C16 to C17	214051.	65533.	168868.	78309.	0.379	0.116
C17 to C18	270040.	127890.	214649.	106972.	0.462	0.219
C18 to C19	173103.	59713.	151190.	54216.	0.298	0.103
C19 to C20	183961.	25618.	137407.	33280.	0.328	0.046
C20 to C21	176390.	31137.	169380.	31800.	0.315	0.056
C21 to C22	286326.	82839.	211130.	77309.	0.554	0.160
C22 to C23	196813.	47681.	203073.	52316.	0.381	0.092
C23 to C24	201545.	6974.	128126.	6284.	0.405	0.014
C24 to C25	129749.	5005.	108723.	4565.	0.261	0.010
C25 to C26	113294.	4974.	99494.	6009.	0.257	0.011
C26 to C27	118754.	8561.	92366.	8680.	0.269	0.019
C27 to C28	96816.	11339.	78667.	9878.	0.231	0.027
C28 to C29	80150.	0.	71954.	0.	0.191	0.000
C29 to C30	59405.	0.	61181.	0.	0.155	0.000
C30 to C31	61692.	0.	56161.	0.	0.161	0.000
C31 to C32	69012.	2777.	58943.	4887.	0.219	0.009
C32 to C33	102257.	4233.	93148.	15056.	0.325	0.013
C33 to C34	61961.	3798.	77720.	7484.	0.206	0.013
C34 to C35	25428.	0.	49450.	0.	0.085	0.000
C35 to C36	13094.	2446.	27018.	8118.	0.054	0.010
C36 to 80 min	18665.	0.	34027.	18775.	0.077	0.000
TOTAL	3370928.	699074.	2836467.	718833.	6.782	1.257
						5.740
						1.341

Natural Gas Home Appliances, Backup Filters

(filename = HOMEAPPPLGASPPHA
 (Size of sample = 4.618 kk Joules)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/kk Joules		
	Total	-Acid+Neutral-	Resolved	Total	-Neutral-	Total Resolved
16 min to C12	26810.	16369.	3844.	35551.	0.142	0.018
C12 to C13	103339.	40861.	18708.	10920.	0.588	0.093
C13 to C14	66112.	18715.	11298.	5405.	0.379	0.057
C14 to C15	73078.	17953.	28571.	15167.	0.431	0.106
C15 to C16	124899.	64684.	80913.	52950.	0.737	0.382
C16 to C17	81426.	32828.	34728.	17297.	0.511	0.206
C17 to C18	66498.	18791.	43537.	20326.	0.403	0.114
C18 to C19	74179.	28452.	44673.	19868.	0.453	0.174
C19 to C20	54341.	16584.	37924.	15977.	0.344	0.105
C20 to C21	67252.	13546.	45703.	9673.	0.425	0.086
C21 to C22	95522.	38738.	84256.	42054.	0.655	0.266
C22 to C23	80873.	24555.	70494.	21771.	0.554	0.168
C23 to C24	188354.	121262.	218077.	161595.	1.341	0.863
C24 to C25	69154.	15603.	67084.	13189.	0.492	0.111
C25 to C26	62084.	7408.	66844.	5564.	0.498	0.059
C26 to C27	73746.	28983.	86701.	24244.	0.592	0.233
C27 to C28	196974.	151068.	197051.	133053.	1.664	1.276
C28 to C29	47848.	0.	65144.	0.	0.404	0.000
C29 to C30	48142.	3292.	62537.	4534.	0.445	0.030
C30 to C31	32155.	0.	50660.	709.	0.297	0.000
C31 to C32	35405.	5648.	52024.	5248.	0.399	0.064
C32 to C33	49967.	4866.	84496.	4456.	0.563	0.055
C33 to C34	37949.	4400.	68323.	2627.	0.448	0.052
C34 to C35	21614.	0.	50845.	0.	0.255	0.000
C35 to C36	17853.	4779.	37234.	2716.	0.261	0.070
C36 to 80 min	14980.	4292.	14070.	1044.	0.219	0.063
TOTAL	1810554.	683677.	1625739.	593938.	13.501	4.908
						11.685
						3.766

Natural Gas Home Appliances

(filename = HOMEAPPPLA
 }
 (Size of sample = 14.352 kk Joules

Elution Zone (incl. lower bound)	AREA COUNTS			ug/kk Joules		
	Total	-Acid+Neutral-	Neutral	Total	-Acid+Neutral-	Neutral
16 min to C12	47343.	18571.	29158.	0.	0.119	0.047
C12 to C13	188496.	22692.	129200.	7492.	0.509	0.061
C13 to C14	154092.	0.	123336.	0.	0.420	0.000
C14 to C15	194576.	0.	249437.	81661.	0.545	0.000
C15 to C16	201557.	20925.	183477.	0.	0.564	0.059
C16 to C17	260411.	29882.	272866.	27922.	0.775	0.089
C17 to C18	304273.	52568.	375994.	111320.	0.875	0.151
C18 to C19	316562.	53259.	387649.	52253.	0.918	0.154
C19 to C20	276220.	0.	380986.	45249.	0.829	0.000
C20 to C21	415265.	75607.	477402.	38562.	1.246	0.227
C21 to C22	489329.	127381.	696576.	237189.	1.592	0.414
C22 to C23	1158546.	800251.	2273646.	1711987.	3.769	2.603
C23 to C24	1145380.	704968.	2055231.	1229327.	3.871	2.382
C24 to C25	625630.	122597.	877614.	266566.	2.114	0.414
C25 to C26	437510.	23432.	514066.	70668.	1.666	0.089
C26 to C27	485854.	163220.	555362.	200838.	1.850	0.622
C27 to C28	1920120.	1600971.	2297890.	1968859.	7.699	6.420
C28 to C29	223153.	0.	254360.	36300.	0.895	0.000
C29 to C30	238301.	0.	283703.	0.	1.046	0.000
C30 to C31	277674.	96596.	187057.	13278.	1.218	0.424
C31 to C32	236513.	157657.	338935.	226712.	1.265	0.843
C32 to C33	146218.	58356.	166784.	80446.	0.782	0.312
C33 to C34	67064.	3964.	75994.	7260.	0.375	0.022
C34 to C35	47180.	0.	55943.	0.	0.264	0.000
C35 to C36	30924.	2332.	38590.	3713.	0.214	0.016
C36 to 80 min	22776.	0.	18597.	0.	0.158	0.000
TOTAL	9910967.	4135229.	13299853.	6417602.	35.578	15.350

Vegetative Detritus, Green Leaves

(filename = VEGGREENA
 (Size of sample = 2.379 mg veg.det)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/mg veg.det				
	Total	-Acid+Neutral-	Resolved	Total	Resolved	-Acid+Neutral- Total	Neutral Total	Resolved
16 min to C12	21614.	9711.	17222.	4293.	0.608	0.273	0.497	0.124
C12 to C13	165404.	106399.	199240.	119576.	4.980	3.203	6.150	3.691
C13 to C14	101574.	44961.	117465.	31933.	3.087	1.366	3.660	0.995
C14 to C15	73661.	14168.	93862.	32308.	2.301	0.443	3.006	1.035
C15 to C16	92244.	21145.	101666.	30019.	2.881	0.660	3.255	0.961
C16 to C17	71001.	11878.	75560.	15957.	2.357	0.394	2.572	0.543
C17 to C18	92482.	42529.	76663.	30957.	2.967	1.364	2.521	1.018
C18 to C19	64171.	19572.	75434.	33873.	2.076	0.633	2.503	1.124
C19 to C20	41915.	10684.	48416.	1528.	1.403	0.358	1.662	0.052
C20 to C21	70818.	29436.	60783.	10569.	2.371	0.986	2.087	0.363
C21 to C22	52313.	14100.	50295.	9175.	1.899	0.512	1.872	0.341
C22 to C23	40011.	11149.	48448.	7786.	1.452	0.405	1.803	0.290
C23 to C24	39544.	1818.	57771.	2949.	1.491	0.069	2.233	0.114
C24 to C25	35030.	3361.	49508.	2524.	1.321	0.127	1.914	0.098
C25 to C26	45484.	10202.	56968.	6765.	1.933	0.433	2.482	0.295
C26 to C27	44853.	10913.	62178.	13964.	1.906	0.464	2.708	0.608
C27 to C28	63400.	29024.	88115.	28191.	2.836	1.298	4.042	1.293
C28 to C29	45231.	12069.	72788.	17617.	2.024	0.540	3.339	0.808
C29 to C30	154286.	119258.	167363.	109943.	7.554	5.839	8.401	5.519
C30 to C31	68730.	17195.	77920.	19283.	3.365	0.842	3.911	0.968
C31 to C32	235231.	193348.	241818.	174639.	14.032	11.533	14.789	10.680
C32 to C33	77944.	36181.	93317.	36779.	4.649	2.158	5.707	2.249
C33 to C34	130010.	87075.	127267.	73233.	8.121	5.439	8.150	4.690
C34 to C35	49161.	10915.	33151.	3758.	3.071	0.682	2.123	0.241
C35 to C36	47584.	14019.	33015.	10575.	3.682	1.085	2.619	0.839
C36 to 80 min	46353.	3099.	22268.	2084.	3.587	0.240	1.767	0.165
TOTAL	1970049.	884209.	2148501.	830278.	87.953	41.346	95.771	39.104

Vegetative Det., Green Leaves - Replicate Sample

(filename = PVEGGREENA
 (Size of sample = 1.438 mg veg.det)}

Elution Zone (incl. lower bound)	AREA COUNTS			-ug/mg veg.det-		
	-Acid+Neutral-		Neutral	-Acid+Neutral-		Neutral
	Total	Resolved	Total	Resolved	Total	Resolved
16 min to C12	25223.	1962.	24865.	10429.	0.814	0.063
C12 to C13	327377.	262426.	376659.	282131.	11.307	9.064
C13 to C14	118863.	59143.	135822.	62896.	4.144	2.062
C14 to C15	86977.	24399.	106863.	38079.	3.116	0.874
C15 to C16	116927.	42554.	109083.	37247.	4.189	1.525
C16 to C17	91945.	33431.	95857.	28855.	3.502	1.273
C17 to C18	126166.	73757.	135301.	76540.	4.643	2.714
C18 to C19	100686.	46479.	97542.	39010.	3.738	1.725
C19 to C20	53783.	9289.	61859.	6581.	2.066	0.357
C20 to C21	77795.	32060.	54108.	3218.	2.988	1.231
C21 to C22	55880.	13049.	46911.	6347.	2.327	0.543
C22 to C23	38424.	6592.	36066.	776.	1.600	0.274
C23 to C24	38684.	2637.	35567.	1310.	1.673	0.114
C24 to C25	39473.	2230.	34034.	2352.	1.707	0.096
C25 to C26	37921.	5934.	33673.	5534.	1.848	0.289
C26 to C27	38645.	8655.	37417.	9547.	1.884	0.422
C27 to C28	45800.	16729.	49928.	23918.	2.251	0.859
C28 to C29	50836.	13102.	39738.	7970.	2.609	0.672
C29 to C30	122699.	84202.	150703.	122254.	6.891	4.729
C30 to C31	86065.	37962.	64661.	23142.	4.834	2.132
C31 to C32	182326.	148107.	225626.	191980.	12.477	10.135
C32 to C33	95457.	51535.	81077.	35438.	6.532	3.527
C33 to C34	110026.	73881.	114867.	83367.	7.884	5.294
C34 to C35	41594.	13835.	23457.	3669.	2.981	0.991
C35 to C36	49836.	18587.	52696.	20035.	4.424	1.650
C36 to 80 min	53758.	13109.	24646.	3887.	4.772	1.164
TOTAL	2213166.	1095646.	2249026.	1126782.	107.300	53.781
						115.168
						59.682

Vegetative Detritus, Dead Leaves

(filename = VEGDEADA
 (Size of sample = 4.152 mg veg.det)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/mg veg.det		
	Total	Acid+Neutral	Neutral	Total	Acid+Neutral	Neutral
	Resolved	Resolved	Resolved	Resolved	Resolved	Resolved
16 min to C12	12444.	8165.	3250.	1686.	0.321	0.211
C12 to C13	80552.	55531.	72898.	43803.	2.226	1.535
C13 to C14	39598.	15217.	41113.	14898.	1.105	0.424
C14 to C15	22103.	0.	20766.	2339.	0.634	0.000
C15 to C16	30240.	1699.	30090.	1671.	0.867	0.049
C16 to C17	27606.	0.	21752.	1775.	0.841	0.000
C17 to C18	44433.	20221.	27745.	10243.	1.308	0.595
C18 to C19	33768.	9329.	28994.	14660.	1.003	0.277
C19 to C20	28161.	5425.	19088.	747.	0.866	0.167
C20 to C21	38290.	12044.	25805.	3488.	1.177	0.370
C21 to C22	36284.	10476.	24239.	4006.	1.209	0.349
C22 to C23	29889.	5008.	24733.	1515.	0.996	0.167
C23 to C24	25230.	1290.	29534.	2298.	0.873	0.045
C24 to C25	30743.	6141.	30106.	2412.	1.064	0.213
C25 to C26	33371.	6908.	35774.	4341.	1.301	0.269
C26 to C27	40508.	10641.	42893.	8719.	1.580	0.415
C27 to C28	54020.	21975.	53876.	20412.	2.218	0.902
C28 to C29	43293.	15501.	51902.	14183.	1.778	0.637
C29 to C30	162059.	134286.	153375.	118507.	7.283	6.035
C30 to C31	62014.	27274.	49638.	15053.	2.787	1.226
C31 to C32	227839.	191495.	199642.	162648.	12.475	10.485
C32 to C33	94231.	54876.	57647.	25444.	5.159	3.005
C33 to C34	154002.	116756.	116999.	87690.	8.830	6.694
C34 to C35	60698.	27380.	14559.	1067.	3.480	1.570
C35 to C36	75024.	36491.	25784.	21822.	5.329	2.592
C36 to 80 min	65860.	29369.	3321.	0.	4.678	2.086
TOTAL	1552260.	823498.	1205523.	585427.	71.387	40.316
					57.553	30.696

Vegetative Det., Dead Leaves - Replicate Sample

(filename = PVEGDEADA
 (Size of sample = 1.505 mg veg.det)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/mg veg.det		
	Total	-Acid+Neutral-	Neutral	Total	-Acid+Neutral-	Neutral
	Total	Resolved	Resolved	Total	Resolved	Total
16 min to C12	17544.	7860.	15845.	8599.	0.578	0.259
C12 to C13	144256.	95921.	181116.	140063.	5.085	3.381
C13 to C14	92553.	48578.	107966.	80640.	3.293	1.728
C14 to C15	44526.	3307.	44618.	6417.	1.628	0.121
C15 to C16	52149.	3745.	53672.	21841.	1.907	0.137
C16 to C17	42753.	2528.	55561.	22289.	1.662	0.098
C17 to C18	61922.	23081.	85252.	53534.	2.326	0.867
C18 to C19	58156.	25480.	72990.	39592.	2.203	0.965
C19 to C20	31901.	4562.	41590.	5819.	1.251	0.179
C20 to C21	47726.	21439.	44037.	9626.	1.871	0.840
C21 to C22	39981.	14092.	40691.	10310.	1.699	0.599
C22 to C23	26516.	3242.	33648.	3276.	1.127	0.138
C23 to C24	30372.	1622.	43069.	8421.	1.341	0.072
C24 to C25	25932.	2451.	31764.	2156.	1.145	0.108
C25 to C26	28390.	5048.	40560.	7154.	1.412	0.251
C26 to C27	32633.	9043.	53706.	16923.	1.623	0.450
C27 to C28	43268.	17767.	78891.	34060.	2.272	0.931
C28 to C29	36396.	7512.	67423.	13866.	1.906	0.393
C29 to C30	140029.	108199.	258535.	205012.	8.027	6.202
C30 to C31	52447.	17939.	94968.	25307.	3.006	1.028
C31 to C32	196998.	169963.	373364.	315556.	13.758	11.870
C32 to C33	82827.	40420.	134792.	69919.	5.785	2.823
C33 to C34	138054.	96446.	279066.	196984.	10.097	7.054
C34 to C35	47562.	16124.	76109.	8937.	3.478	1.179
C35 to C36	55582.	19060.	144072.	68132.	5.035	1.727
C36 to 80 min	55890.	7857.	62774.	23225.	5.063	0.712
TOTAL	1626463.	773286.	2516079.	1397658.	88.578	44.113
						109.072
						61.875

Pasadena-Area Paved Road Dust

(filename = ROADDUSTA)
 (Size of sample = 13.402 mg road du)

Elution Zone (incl. lower bound)	Total	AREA COUNTS		ug/mg road du		Total Resolved
		-Acid	+Neutral	-Neutral	-Acid+Neutral	
16 min to C12	11735.	9433.	9512.	3613.	0.047	0.057
C12 to C13	231208.	205904.	251668.	201687.	1.240	1.105
C13 to C14	32005.	7354.	48237.	6164.	0.173	0.040
C14 to C15	46028.	5126.	53590.	7556.	0.256	0.029
C15 to C16	53172.	5524.	79086.	0.	0.296	0.031
C16 to C17	54393.	2156.	52414.	4387.	0.322	0.013
C17 to C18	93344.	32410.	67951.	11109.	0.533	0.185
C18 to C19	48256.	5886.	64518.	11075.	0.278	0.034
C19 to C20	60729.	11179.	62438.	1758.	0.362	0.067
C20 to C21	167313.	94602.	80850.	4404.	0.998	0.564
C21 to C22	192092.	87207.	112136.	6574.	1.242	0.564
C22 to C23	187382.	50287.	138644.	8003.	1.212	0.325
C23 to C24	180726.	14226.	197220.	6802.	1.214	0.096
C24 to C25	248184.	17507.	227030.	9613.	1.667	0.118
C25 to C26	238181.	23753.	266845.	8609.	1.803	0.180
C26 to C27	260579.	14177.	281476.	7228.	1.973	0.107
C27 to C28	301265.	19006.	292712.	17877.	2.401	0.152
C28 to C29	247679.	10375.	294792.	3880.	1.974	0.083
C29 to C30	301085.	17092.	318474.	17561.	2.626	0.149
C30 to C31	262762.	15236.	291789.	14342.	2.292	0.133
C31 to C32	277363.	34080.	330230.	25852.	2.948	0.362
C32 to C33	210723.	27477.	264771.	20868.	2.240	0.292
C33 to C34	201872.	33769.	293374.	27315.	2.247	0.376
C34 to C35	115281.	3416.	228500.	1895.	1.283	0.038
C35 to C36	63936.	9777.	220621.	4911.	0.881	0.135
C36 to 80 min	7342.	0.	244032.	0.	0.101	0.000
TOTAL	4094635.	756959.	4772910.	433083.	32.624	5.223
						49.267
						3.599

Pasadena-Area Paved Road Dust - Replicate Sample

(filename = PROADDUSTA)
(Size of sample = 15.457 mg road du)

Elution Zone (incl. lower bound)	AREA COUNTS			ug/mg road du		
	Total	-Acid+Neutral-	Neutral	Total	-Acid+Neutral-	Neutral
	Total	Resolved		Total	Resolved	
16 min to C12	30793.	28992.	13437.	6530.	0.085	0.043
C12 to C13	255036.	239416.	247461.	209104.	0.749	0.704
C13 to C14	45376.	13542.	22759.	0.	0.135	0.040
C14 to C15	37925.	9654.	16650.	0.	0.116	0.029
C15 to C16	53055.	12289.	21986.	0.	0.162	0.037
C16 to C17	61721.	26237.	13852.	7242.	0.200	0.085
C17 to C18	114279.	58062.	33862.	18185.	0.358	0.182
C18 to C19	79792.	21202.	46814.	17414.	0.252	0.067
C19 to C20	50404.	2435.	49626.	2237.	0.165	0.008
C20 to C21	298698.	174833.	85755.	9869.	0.976	0.571
C21 to C22	351782.	194003.	146159.	24670.	1.246	0.687
C22 to C23	322565.	111652.	180363.	13587.	1.143	0.396
C23 to C24	312632.	23716.	299635.	20008.	1.150	0.087
C24 to C25	389273.	42681.	312612.	19850.	1.432	0.157
C25 to C26	444359.	38492.	385975.	13179.	1.843	0.160
C26 to C27	452435.	44000.	411847.	22491.	1.876	0.182
C27 to C28	509965.	37733.	458648.	31896.	2.227	0.165
C28 to C29	481988.	29371.	418859.	7416.	2.105	0.098
C29 to C30	514142.	49078.	486539.	33646.	2.457	0.235
C30 to C31	458449.	35051.	442449.	29546.	2.191	0.167
C31 to C32	478144.	49032.	478597.	61837.	2.784	0.285
C32 to C33	475562.	64530.	384895.	38659.	2.769	0.376
C33 to C34	414206.	58378.	418000.	70515.	2.525	0.356
C34 to C35	313231.	21956.	312762.	14135.	1.910	0.134
C35 to C36	250617.	8909.	246862.	14993.	1.893	0.067
C36 to 80 min	182220.	10077.	148771.	7840.	1.376	0.076
TOTAL	7378649.	1398321.	6085175.	694849.	34.122	5.431
					34.161	3.498