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Abstract

Multiphase flows are fairly complex and they are usually studied as a bulk. In this the-

sis, these flows are approached by looking at single particle interactions (particle-particle

and particle-wall). This work presents experimental measurements of the approach and

rebound of a particle colliding with a “deformable” surface in a viscous liquid. The com-

plex interaction between the fluid and the solid phases is coupled through the dynamics of

the flow as well as the deformation process. A simple pendulum experiment was used to

produced single controlled collisions; steel particles were used to impact different aluminum

alloy samples (Al − 6061, Al − 2024, and Al − 7075) using different aqueous mixtures of

glycerol and water as a viscous fluid. The velocity of the particle before and after the

collision was estimated by post-processing the particle position recorded with a high speed

camera. For the combination of materials proposed, the elastic limit is reached at relatively

low velocities. The deformations produced by the collision were analyzed using an optical

profilometer. The measurements showed that the size of the indentations is independent of

the fluid media. It was found that the size of the indentations was the same for collisions in

air than for the rest of the collisions using various viscous fluids. The results show that the

plastic deformation is only a function of the impact velocity and the material properties.

The normal coefficient of restitution and deformation parameters account for losses due to

lubrication effect and inelasticity, identifying then, the dominant energy loss mechanism

during the collision process.

According to the strain imposed in the samples due to the collision, the deformations

were either elastic or elastic-plastic. The equivalent load due to the impact velocities used

in this work did not reach the fully-plastic regime. For the collisions in air, different models

were used to compare the experimental results showing that the elastic-plastic regime is

not well characterized by only the material properties and the impact velocity. The time-

resolved contact force was measured during the process of the indentation for the dry
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collision experiments using a quartz load transducer.

The experiments clearly show four different regimes depending on the impact Stokes

number: lubrication effect and elastic deformation, lubrication effect and elastic-plastic

deformation, elastic deformation with no hydrodynamic effects, and elastic-plastic defor-

mation with negligible lubrication effect. An analysis of the erosion of ductile materials

during immersed collisions is presented. The size of the crater formed by the impact of a

single particle against a ductile target can be estimated from theory, and these estimates

agree well with experimental measurements.
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Chapter 1

Introduction

1.1 Motivation

Multiphase flow is defined as any fluid flow consisting of more than one phase. For this

thesis, the varied spectrum composed of many possible applications has been limited to

liquid-solid systems. Moreover, only systems where the solid phase is suspended in the

liquid will be considered.

The interest in fluid-particle flows, a subset of multi-phase flow, arises from many in-

dustrial applications and natural processes, such as: coal slurry pipelines, fluidized beds,

mining, fossil-oil extraction, pneumatic transportation, filtering (Crowe et al. (1998), Eames

and Dalziel (2000), Ruff and Bayer (1993)), abrasive jet machining, polishing, and surface

abrasions. In many cases, the dynamics of these processes is affected by the collisions be-

tween particles and the particle-wall interactions. Those interactions, specifically particle-

wall interactions, may carry enough energy to cause deformation or erosion of the solid

surfaces. Erosion processes are not just limited to industrial applications; in nature, debris

flows, landslides, and sediment transportation are common examples of flows carrying a

substantial amount of solids (Iverson (1997)).

In past years, many efforts have been made to study erosion by researchers such as

Finnie (1960), Goldsmith (1960) and Bitter (1963). They developed analytical models to

predict the rate of wear as a function of the material properties and the velocity of the

idealized particles. However, those studies neglected the fluid phase.

The transport of solid-liquid slurries via pipelines can cause considerable damage to

the pipe-walls and pump components (Zhong and Minemura (1996), Edwards et al. (2001),

Kadambi et al. (2004)). Wear and corrosion in the pumps make them the most vulnerable
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component of the slurry pipeline system, reducing the reliability and operation life of the

equipment.

Laboratory investigation of slurry erosion, where the surrounding fluid is considerable,

has been completed by Clark (1991). Typically, slurry erosion experiments concentrate only

on the bulk wear rates for different flow conditions and particle sizes. The erosion rate is

then estimated based on the kinetic energy of the particles. However, despite extensive

studies, the conditions and mechanisms of material loss in slurry erosion remain undefined

(Ruff and Bayer (1993)). Modeling slurry erosion requires a better understanding of this

complex problem, which couples the mechanics of the flow with the deformation process.

1.2 Particle-wall interaction

Particle-wall interactions can be divided into two categories depending on whether the

surrounding fluid affects the particle motion or not. When the particle inertia is large

enough, such that the hydrodynamic relaxation time is small compared to the collision

duration, the surrounding fluid may be neglected. Otherwise, those forces will affect the

particle motion and, in an extreme case, might prevent the particle from real contact with

the wall. Particle-wall collisions can be characterized by the Stokes number, which is the

ratio of the particle inertia to particle viscous drag, given by

St =
2mU

3µπd2
p

=
ρpUdp

9µ
, (1.1)

where m is the mass of the particle, dp is the particle diameter, µ is the dynamic fluid

viscosity, U is the particle velocity, and ρp is the density of the particle.

The elastic bouncing of a solid particle with a thick wall can be characterized by the

coefficient of restitution e, which is defined as the ratio of the rebound velocity, Ur, to the

impact velocity, Ui, just after and before the collision. The expression for e is given by

e = −Ur

Ui
. (1.2)

During the collision, the initial kinetic energy is transformed into elastic strain energy stored

in the bodies and then restored back into kinetic energy. Under conditions of negligible fluid
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resistance, e ≈ 1, only a small amount of energy is being absorbed as elastic waves (see

Section 1.4). The coefficient of restitution characterizes the energy losses during collision in

the most general point of view. Several experiments exploring the parameters affecting the

coefficient of restitution have been done. Raman (1920), Zener (1941), Hutchings (1979),

and Reed (1985) studied the intrinsic inelasticity of particles colliding with plates of different

thickness. They found that the energy lost by the sphere during the impact was equal to the

energy absorbed by the plate, resulting on a decrease on the coefficient of restitution. Later

studies, Sondergaard et al. (1990), showed that not only the energy absorbed as elastic

waves result on energy losses. During the collision, the reflections of those waves from the

end of the plate produce surface vibrations, which might contribute significantly to the

reduction on the coefficient of restitution.

If the impact velocity exceeds the elastic limits, plastic deformation occurs, consuming

some energy and causing permanent indentation, Johnson (1985). Hutchings (1981), Kharaz

and Gorham (2000), and Yang and Komvopoulos (2005), carried out experiments of normal

collisions involving plastic deformation. The coefficient of restitution decreased due to the

energy dissipated in plastic deformation. However, the coefficient of restitution may also

decrease if the energy is dissipated by other means. All of the above studies assume that the

interstitial fluid was negligible. When the dynamics of the fluid has significant effect, before,

during, and after the collision, the coefficient of restitution is affected. For a perfectly rigid

sphere moving into a viscous fluid, the kinetic energy prior to impact is dissipated by viscous

forces as it approaches the wall. Those collisions in a stationary liquid were first studied

by McLaughlin (1968), finding that the recovery of momentum or effective coefficient of

restitution, is a function of the particle impact Reynolds number. Later studies, Zenit

and Hunt (1999), Joseph et al. (2001), and Gondret et al. (2002) confirmed the previous

results obtained by McLaughlin (1968), showing the dependence of the effective coefficient

of restitution on the particle Stokes number. Expanding the horizons of liquid-solid impacts

resulted in “elastohydrodynamics” theory, Davis et al. (1986), Barnocky and Davis (1988),

Lian et al. (1995). In those studies the deformations are assumed to be elastic, the particles

deform elastically due to the increase in the hydrodynamic pressure in the lubricating fluid

between the particles. The results show that the particle deformation and particle rebound

depend on the Stokes number and the elasticity parameter (See Section 1.5.2). In the

literature there are no references of immersed single particle collisions beyond the elastic
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limit. Most analyses of slurry or suspension flows involve the extension of the deformation

equations from dry collisions to a liquid environment (Shook and Rocco (1991), Clark (1991,

1995) and, Zhong and Minemura (1996)). The results from those studies are often used to

determine the overall correlation between wear rates and flow conditions.

1.3 Dry collisions

When the surronding fluid is neglected, the collisions can be sorted, according to the severity

of the impact, in three main groups: elastic, elastic-plastic, and plastic collisions. The

following section provides a detailed analysis on the elastic and elastic-plastic regime.

1.3.1 Elastic collisions

Elastic collisions have been extensively studied. Hertz developed the widely accepted theory

of elastic collisions, which assumes quasi-static behavior. The deformation is fully deter-

mined by the instantaneous stress distribution. The elastic oscillations (elastic wave motion

in the bodies) are neglected (see Section 1.4).

Figure 1.1 shows two smooth, frictionless, non-conforming elastic spheres brought into

contact. As the compressed force in the normal direction P increases, the region of contact

spreads to radius re. The expressions for the elastic contact of a sphere with a half-space

are found by taking the limit as one of the radii becomes very large. Therefore, the contact

radius for the elastic contact for a sphere with a half-space is:

re =
(

3RP

4E∗

)1/3

, (1.3)

where P is the total load compressing the solids, R is the particle radius, and E∗ is the

reduced elastic modulus given by

E∗ =
[
1− ν2

1

E1
+

1− ν2
2

E2

]−1

, (1.4)

where E1, E2 are the elastic Young’s moduli of the two solids in contact and ν1, ν2 are the

corresponding Poisson’s ratios. Similarly, the displacement on the normal direction, δe, due
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2 re
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1

P

P

2

Figure 1.1: Schematic representation of the Hertzian contact
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to the compressing load is given by

δe =
(

9P 2

16RE∗2

)1/3

. (1.5)

The contact pressure, resulting from the compressing load, P , acting over the contact

area, generates local elastic deformations and surface displacements that cause the initially

nonconforming surfaces to conform within the contact area (see Figure 3.9). Within the

contact area, the pressure distribution proposed by Hertz is:

p(r) = p0

(
1− r2

r2
e

)1/2

, r ≤ re (1.6)

where r is the radial coordinate at the contact point and p0 = p(r = 0) denotes the pressure

at the center of the contact area. Integrating the pressure distribution over the contact area

yields the compression load

P =
∫ re

0
p(r)2πrdr =

2π

3
p0 r2

e . (1.7)

During the impact, the elastic deformation produces a displacement normal to the contact

surfaces denoted as δz. In order to include the dynamics required for real collisions, let

the total mass of the particle move with the velocity of its center of mass, U . The particle

impact velocity is given as dδz/dt ≈ Ui. Hence, the instantaneous force between the bodies

is P (t) = m dUi/dt = m d2δz/dt2, where m is the mass of the impacting particle. Combining

this expression with Equation 1.5 results in

P = m
d2δz

dt2
=
(

16RE∗δ3
z

9

)1/2

. (1.8)

The equivalent load resulting from an elastic particle-wall collision with impact velocity

Ui and final elastic displacement δe, can be estimated by integrating Equation 1.8 with

respect to δz. Using U(t = 0) = Ui as the initial condition of the impact, and at the

maximum compression, when the particle finally comes to rest, dδz/dt = 0. Finally,

rewriting the equation in terms of the particle density, ρp, and combining with Equation 1.5
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results in the elastic compressive force acting between the bodies during impact:

P =
4
3

(
5π

4

)3/5

R2E∗
(

ρpU
2
i

E∗

)3/5

. (1.9)

The period of a elastic collision under these conditions is given by (Johnson (1985)):

τe = 2.87

(
16π2

9
ρ2

pR
5

E∗2Ui

)1/5

. (1.10)

With the aid of Equation 1.9, Equations 1.3 and 1.5 can be now expressed in terms of

the impact velocity. This convenient substitution is used in the following sections.

1.3.2 Elastic-plastic collisions

The previous section (section 1.3.1) discussed the elastic theory proposed by Hertz. This

section provides the combination of elastic Hertzian theory with small plastic deformations.

This combination of effects is known as elastic-plastic contact. Consider a rigid particle

that only deforms plastically impinging on a flat softer body that can undergo plastic

deformation. Yield begins directly below the contact surface, and the material with the

lowest yield strength, Y (in this case the wall) deforms first. The yield point of most ductile

materials is described by two different criteria: the von Mises shear-strain energy criterion

and Tresca’s maximum shear stress criterion. In both cases, the maximum shear stress

occurs beneath the surface on the axis of symmetry. Along this axis σz, σr, and σθ are

principal stresses, and due to axi-symmetry σr = σθ. For the materials presented in this

thesis (see Table 2.1), the maximum value of |σz − σr|, for ν = 0.33, is 0.61p0 at z/R = 0.49,

where z is the coordinate normal to the contact surfaces. The value of p0 is given by the

von Mises criterion as

p0 = 2.86k = 1.65Y, where k =
Y√
3
.

Correspondingly, by Tresca’s criterion, p0 becomes

p0 = 3.30k = 1.65Y, where k =
Y

2
.
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The load required to initiate yield, P ∗
el, can be related to the maximum contact pressure

through a combination of Equations 1.3 and 1.7 with the previous value of p0 for yield

P ∗
el =

π3R2

6E∗2
(1.65Y )3. (1.11)

Substituting the critical of P ∗
el in Equation 1.9 gives an expression for the elastic velocity,

Uel, the velocity necessary for yield to commence. The elastic velocity is

Uel =
π2

2E∗2
√

10 ρp
σ

5/2
el , (1.12)

where σel = 1.65Y is the stress at the limit of elasticity.

The elastic velocities for the materials used in this thesis are tabulated in Table 5.1. The

velocity at which the particle (stainless steel) reaches the maximum limit of elasticity is much

larger than the maximum particle impact velocity used during the experiments. Therefore,

the assumption of a rigid particle impacting on a elastic-plastic half-space remains valid

throughout the rest of the calculations. Following the analysis carried out by Bitter (1963),

where a spherical particle impacts a half-space, the colliding sphere deforms only elastically

and the flat body deforms both elastically and plastically. For any given normal collision,

elastic deformation continues until δe reaches its maximum (when Ui = Uel), during which

the Hertzian equations can be used. Combining Equations 1.5 and 1.9, the maximum elastic

penetration, δ∗e , becomes
δ∗e
R

=
(

5π

4
ρpU

2
el

E∗

)2/5

. (1.13)

Similarly, combining Equations 1.3 and 1.9 the maximum elastic radius, r∗e , is given by

r∗e
R

=
(

5π

4
ρpU

2
el

E∗

)1/5

. (1.14)

After Uel is reached, plastic deformation begins and increases as a function of the impact

velocity. Bitter (1963) assumed that the total contact area is given by the superposition

of the maximum elastic contact area and the area of plastic deformation. Additionally,

both areas have the same radius of curvature, R, given by the radius of the sphere. The

remaining indentation in the flat body after collision has the same radius of curvature as

well. Moreover, by assuming that δtotal < R, the total contact radius can be simplified to



9

r2
total ≈ 2R δtotal. Hence, the total contact area normal to the surface becomes

Atotal = πr2
total = 2πR δtotal = 2πR (δ∗e + δp) . (1.15)

The area loaded only elastically is:

Ae = πr2
total − πr2

p = 2πR (δ∗e + δp)− 2πR δp = 2πRδ∗e = πr∗e
2. (1.16)

For the elastic-plastic impact, the size of the contact area deformed elastically is independent

of the size of the indentation formed. The energy absorbed during the elastic deformation,

Qe, is given by

Qe =
1
2
mU2

el =
2π

3
R3ρpU

2
el. (1.17)

The potential energy of the elastic deformation1 in the area subjected to a elastic-plastic

load, Qpe is given by

Qpe =
1
2
δ∗eσelπr2

p. (1.18)

The total elastic energy stored in the particle and the deformed wall is

Qe + Qpe =
2π

3
R3ρpU

2
el +

1
2
δ∗eσelπr2

p. (1.19)

The formation of the permanent indentation requires an amount of energy equal to:

Qp =
∫ H

0
πr2

pσeldH ′ ≈ πRH2σel, (1.20)

where H is the depth of the indentation after collision.

The energy balance for an elastic particle approaching an elastic-plastic wall with a

velocity Ui can be obtained by balancing the initial kinetic energy of the particle with

Equations 1.17, 1.18, and 1.20

1
2
mU2

i =
2π

3
R3ρpU

2
i = Qe + Qpe + Qp = Q. (1.21)

1By definition, the potential energy of deformation of a body, which is in equilibrium under a given load,
is equal to half of the work done by the external forces acting through the displacements from the unstressed
state to the state of equilibrium.
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Since the radius of curvature of the deformation is conformal with the particle radius and

H << R, rpmax = 2R H, therefore

Qpe =
1
2
δ∗eσelπr2

p ≈ δ∗eσelπRH =
√

πσelR δ2
e

√
πσel RH2 =

√
15
4

Qe Qpe. (1.22)

Combining Equations 1.22 and 1.21 results in

Q = Qe +

√
15
4

Qe Qpe + Qp =
(√

Qe +
√

Qp

)2
+ A

√
Qe Qp, (1.23)

where the constant A = (
√

15 − 4)/2. The exact solution for the final indentation depth,

H, as a function of the impact velocity, Ui, is given by

H =
1
2

√δ∗e
2 +

8R2

3
ρp(U2

i − U2
el)

σel
− δ∗e

 . (1.24)

In general, Qe is smaller than Qp; therefore, the term A
√

Qe Qp in Equation 1.23 can be

neglected:

Qp =
(√

Q−
√

Qe

)2
=

2π

3
R3ρp (Ui − Uel)

2 = πRH2σel. (1.25)

Solving for the indentation depth, H, results in

H =

√
2ρpR2

3σel︸ ︷︷ ︸
τB

(Ui − Uel), Ui > Uel. (1.26)

Equation 1.26 suggests that the permanent indentation depth is proportional to the to-

tal characteristic time for an elastic-plastic collision, τB, and the particle impact velocity

relative to the elastic velocity. Note that for Ui < Uel, H = 0. The analysis carried out

by Bitter can be compared with the one proposed by Johnson, where the total time of an

elastic-plastic collision consists of: the time of elastic contact, τe, given by Equation 1.10,

and the plastic deformation period, τp. The plastic deformation time is estimated by as-

suming that the plastic deformation occurs under constant dynamic pressure, pd, which is

in fact, proportional to the yield strength. The expression obtained is independent of the
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particle impact velocity and it is given by

τp =
(

π2R2ρp

6pd

)1/2

. (1.27)

1.4 Wave Propagation

As a result of a sudden load, such as an impact, a material is stressed. The deformations

and stresses are transmitted to the remote portions of the body via wave propagation. The

impact response can be roughly divided into three regimes, depending on the severity of the

load and the dynamic response of the materials. The three wave regimes are: elastic (E),

elastic-plastic (EP), and fully plastic or shock (S). This section covers a brief review on the

impact response of homogeneous materials only in the elastic regime, and the validation of

using a Hopkinson-Kolsky-type bar.

1.4.1 Elastic wave propagation

The compression load resulting from the impact of a spherical particle on a long rod produces

a pressure pulse that propagates along the rod. This pressure pulse can be described by

the 1D stress wave propagation theory in a thin, long rod. The fundamental assumptions

of this theory are that the bar is homogeneous and isotropic, uniform in cross section over

the entire length of the bar, and for elastic waves to propagate, the stress in the pulse must

be below the elastic limit of the bar material (linear-elastic state of stress). Thus, the one

dimensional wave equation is described by

∂2u(x, t)
∂t2

= c2
0

∂2u(x, t)
∂x2

, (1.28)

where u is the longitudinal displacement and c0 represents the wave speed through the

material. Since the material remains in a linear-elastic state of stress, the elastic wave

speed is given by

c0 =

√
E

ρ
. (1.29)
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The stress in the bar, σB, produced by the impact of a striker, according to the 1D wave

propagation theory, is given by (Gama et al. (2004))

σB = ρB c0 (Ui/2), (1.30)

where ρB is the density of the bar and Ui is the impact velocity.

1.4.2 Split-Hopkinson-Kolsky-type bar

The experimental work in this thesis uses a Split-Hopkinson-Kolsky type of bar. The

following section shows the validation of the bar and the comparison of rigid and deformable

materials. As described in the review done by Gama et al., pressure bars are commonly used

for measuring the pressure produced by an explosive, following the wave propagating in the

bar, and determining the dynamic compression stress-strain behavior of different materials.

Typically, a Split-Hopkinson-Kolsky-type bar consists of three elements: the striker bar,

the incident bar, and the transmission bar. Figure 1.2 shows a simple representation of

the typical experimental setup. The striker bar, often propelled by a gas gun, strikes the

incident bar sending a compressive wave into the incident bar. The specimens are placed

between the incident and transmission bar. Strain gages are mounted on the incident bar,

specimen and transmission bar. Assuming that wave propagation is nondispersive, the force

and contact between the bars and specimen can be estimated.

a! the specimen is acoustically soft, ie, low acoustic im-

pedance (Z!"c0)
b! the specimen diameter is equal to that of the bar #or a
little less than the bar as mentioned by Kolsky $6%!

c! a very hard disc is used in the bar-specimen interfaces.

3! The specimen is in stress equilibrium after an initial

‘‘ringing-up’’ period. The strain range where this condi-

tion is satisfied is usually checked by comparing 1-wave

and 2-wave analyses, given by Eqs. #9!–#11!. In general
this assumption is questionable. However, depending on

the sound speed of the specimen, a minimum possible

thickness may minimize the ‘‘ringing-up’’ time, but can

not eliminate it.

4! The specimen is not compressible. This condition is easily
satisfied; however, for soft or nonlinear materials, special

analysis techniques should be used. This is discussed in

detail in the section, Special Considerations for Soft and

Hard Materials

5! Friction and inertia effects in the specimen are minimum.
This condition can be satisfied by using lubricants in the

bar-specimen interfaces, and specially designing the

specimen. However, the use of lubricant may also change

the acoustic behavior of the interface.

A CRITICAL ANALYSIS OF TRADITIONAL 1D

STRESS-WAVE THEORY OF SHPB

In general, the Traditional 1D Stress-Wave Analysis of SHPB

defines the strain rate of the specimen from the particle ve-

locity of the bar-specimen interfaces, which implies that the

bar-specimen interface remains plane under all loading con-

ditions at all times. This condition is true in the case when

the specimen diameter is equal to that of the bars, and in the

case of acoustically soft specimens, as compared to the bar

material #Fig. 19!. However, this condition is not true in the
case of acoustically hard specimens of smaller diameter than

the bar, where the specimen-bar interfaces are nonplanar

#Fig. 20!. The reflected pulse will thus represent a higher
particle velocity of the IB-S interface than the particle veloc-

ity of the interface, where the specimen is in contact with the

bar, and thus the calculated specimen strain will be higher.

The same is true for the S-TB interface.

Figure 20 shows a simple bar-specimen interface model

for small diameter hard specimens. However, in reality, de-

formation behavior of the interface is a superposition of mul-

tiple deformation modes. Under the condition of stress equi-

librium, it is assumed that the force at the incident bar end

and the force at the transmitter bar end near the specimen are

equal. And this force equilibrium is achieved after an initial

‘‘ringing-up’’ period. This implies that after a couple of stress

wave reverberations #3–4, exactly &! $27% in the specimen,
the stress equilibrium is achieved.

Comparison between 1-wave and 2-wave analyses of a

304 stainless steel specimen shows that the equilibrium is

approximately achieved after 2% true strain, and for a high

purity lead specimen, equilibrium is never achieved #Fig.
21!. These figures also show that the strain rate during the

test is not constant, but oscillates over an average value,

except in the initial and final stages of loading. This example

of stress equilibrium shows that the stress equilibrium in the

specimen is dependent on the material behavior #sound ve-
locity and viscosity! and the length of the specimen. Thus, a
general statement that the specimen will be in stress equilib-

rium after 3–4 reverberations is questionable.

From the fact that stress equilibrium is not achieved in the

Fig. 19 Conditions for planar bar-specimen interfaces. Numbers 1

and 2 represent IB-S and S-TB interfaces respectively. Symbol *

denotes the location of interfaces when the specimen is deformed.

Fig. 20 Deformation of bar-specimen interfaces for small diam-

eter acoustically hard specimens

236 Gama, Lopatnikov, Gillespie Jr: Hopkinson bar experimental technique Appl Mech Rev vol 57, no 4, July 2004

Figure 1.2: Representation of a typical Split-Hopkinson-Kolsky pressure bar; the specimen
diameter is equal to that of the incident and transmission bars. The figure was obtained
from Gama et al. (2004)

.
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The conditions of displacements and stress continuity at these interfaces are assumed to

be under perfect contact. The wave reflection at the interface is neglected, and compressive

wave propagates through the specimen into the transmission bar as if the system was a

single solid bar. Most of those bars have been used for ballistic applications or high-speed

impacts (Gama et al. (2004)).

1.5 Fluid pressure and minimum distance of approach

For particle-wall collisions where the viscous effects cannot be neglected, the fluid enclosed

between the particle and the wall increases in pressure, p, as the distance between them,

δ, decreases. As the pressure in the thin layer increases, not only do the kinematics of

the interacting bodies change, the shapes of the bodies may show elastic deformations;

the pressure could reach the yield limit, Y , resulting in plastic deformation. This section

describes the different regimes that fully immersed particle-wall collisions undergo. The

kinematics of the collision are described, followed by the elastohydrodynamic approach,

and finally the process including plastic deformation.

1.5.1 Undeformed surfaces, only kinematics

Single collision experiments (Zenit et al. (1997), Zenit and Hunt (1999), Joseph et al. (2001))

have previously reported a variation on the coefficient of restitution due to fluid effects

decreasing considerably for Stokes numbers less than 100. A critical Stokes number where

no rebound occurs, St ∼ 10, was found. For Stokes numbers above St ∼ 2000, the effect of

the lubricant layer appeared to be negligible. The experiments were carried out with a brittle

wall which did not show any plastic deformation. As shown in Figure 1.3, a fully immersed

collision described by a smooth spherical particle with diameter dp and mass mp approaches

a wall with a velocity U(t), immersed in a Newtonian, viscous, and incompressible fluid with

density ρf and viscosity µ. Using Newton’s second law and assuming that the hydrodynamic

forces are dominated by the lubrication forces results in: F = −3πµUd2
p / 2δ = mpdU / dt.

The trajectory of the undeformed particle approaching the wall could be written as: U(t) =

−dδ / dt. The combination of the previous equations could be expressed as follows:

d

dδ
U =

9ρpµ

dp

1
δ
. (1.31)
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The initial distance at which the particle deceleration begins is defined as δi0, with a corre-

sponding velocity Ui0. Therefore, the solution to Eq. 1.31 becomes:

U

Ui0
= 1−

ln

(
δi0

δ

)
Sti0

(1.32)

where Sti0 is the Stokes number based on Ui0.

di0

Ui Ur

Figure 1.3: Schematic representation of a particle-wall collision, where only deceleration is
experienced on the particle, at δi0, as it approaches the wall. The sequence is followed from
left to right.

The critical distance, δi0, at which the particle decelerates has been topic of discussion

by different authors and typically is assumed to be in the order of the surface roughness.

1.5.2 Elastohydrodynamic collisions

The previous section introduced the minimum distance of approach, δi0, at which the par-

ticle decelerates due to the presence of another particle or a plane surface. If the solids are

very rigid, only the viscous forces are responsible for the deceleration of the particle as it

approaches another object. However, if the solids are less rigid, the hydrodynamic forces

upon the nearly touching surfaces can cause the bodies to deform elastically. Davis et al.

studied the coupling between the equations of solid mechanics and fluid dynamics. They
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introduced a dimensionless elastohydrodynamic parameter, ε

ε =
4πµUi0R

3/2

E∗δ
5/2
i0

; (1.33)

this parameter provides a measure of the tendency of the solids to deform elastically. In ad-

dition to the elastohydrodynamic parameter, the minimum approach distance for a collision

involving significant surface deformation was also derived:

δm ≈ 1
3
δi0ε

2/5. (1.34)

Ui

di0 dm

Ur

Figure 1.4: Schematic representation for a particle-wall collision with elastohydrodynamic
effects. The sequence is followed from left to right.

Davis et al. proposed an asymptotical solution for the critical distance of approach

involving significant surface deformation (δm). The results of these simulation for various

values of ε are represented in Figure 1.5, showing the asymptotic value of 1/3 for St > 10.

The solution given above is limited in applicability since the minimum approach distance

is constant, which is valid for a small range of Stokes numbers.

1.5.3 Elastic-plastic hydrodynamic collisions

As mentioned in the previous section, the hydrodynamic effects can be coupled with the

elastic deformation of the interacting bodies. However, if the elastic limit of one of them is

exceeded, plastic deformation might occur. Previous work done by Zenit et al. regarding the

particle phase pressure resulting from particle-wall collisions, concluded that the pressure



16

! "#

$%%&'$()!*+,-$.(/
m
! 0'&! $! ('11+,+'.! +.2'12+.3! ,+3.+0+($.-! ,4&0$(/!*/0'&5$-+'.!6$,! $1,'!

'7-$+./*8!

!

#
9

:

;

<
m i
! ! "# =! ! ! ! ! ! ! !!!! !!!!!!! !!!!!!!!!!!!>?="@!

!

A)/! 0$(-'& ; < +.! /B4$-+'.! >?="@! 6$,! /C-&$%'1$-/*! 0&'5! -)/+&! ,+541$-+'.! &/,41-D! $,!

&/%&'*4(/*!+.!0+34&/!?=9=!E.(/!-)/!+5%$(-!F-'G/,!.457/&!/C(//*,!$!(/&-$+.!-)&/,)'1*D!-)/!

5+.+545!$%%&'$()!*+,-$.(/,!$,H5%-'-/!-'!$!('.,-$.-!2$14/!'2/&!$!6+*/!&$.3/!'0 " =!A)/!

$,H5%-'-+(! 2$14/! */(&/$,/,! ,1+3)-1H! 6+-)! +.(&/$,+.3! F-'G/,! .457/&,! 74-! $! .'.IJ/&'!

('.,-$.-! +,! /C%/(-/*! 0'&! F-'G/,! .457/&,! 3&/$-/&! -)$.! #:=! A)&'43)'4-! -)+,! ()$%-/&D!

/B4$-+'.!>?="@!6+11!7/!$%%1+/*!-'!/,-+5$-/!-)/!5+.+545!$%%&'$()+.3!*+,-$.(/=!

!

!

"#$%&'! ()*)!K+.+545!*+,-$.(/!'0! $%%&'$()! 0'&! $!*/0'&5/*! ,%)/&/! $,! $! 04.(-+'.!'0! -)/!

/1$,-+(+-H!%$&$5/-/&!$.*!-)/!%$&-+(1/!F-'G/,!.457/&=!>L+34&/!;<!'0!M$2+,!/-!$1=!;NOP@!

!

!

#
9

:

m

i

!

! "
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17

of the fluid between the particle and the wall has a significant influence on the coefficient

of restitution. Similar studies looking for the particle trajectories before collision were

conducted by Clark (1992), who also reported the ”squeeze films” influence on erosion.

This phenomenon is known as the cushioning effect, where a thin layer of liquid resists the

close approach of solid surfaces.

di0 dm

Ur

Ui

a)

d)c)

b)

H

dc

Figure 1.6: Schematic representation of the elastic-plastic hydrodynamic collision. The
incoming particle may slow down at a distance δi0 (a). Soon after that, the soft surface
experiences significant elastic deformation (b) at δm. Finally, contact occurs and the soft
material undergoes plastic deformation (c). If the elastic stored energy in the bodies is large
enough, the particle bounces off the wall (d) with a velocity Ur.

Significant erosion can be produced by repeated collisions of particles with an eroding

body. Hutchings concluded that more than 90% of the initial kinetic energy of a sphere

impacting on a soft copper target is consumed in plastic deformation, forming a crater

on the surface. Experiments using a slurry pot tester (Figure 1.7) were carried out by

Clark (1991, 1995) using suspensions of glass particles with diameters 75 − 90, 212 − 250,

500− 600 and 750 µm. Several mixtures of water-glycerol were used as test liquids, varying

the viscosities from (0.6 − 60) × 10−3 Pa · s. The nominal rotation speeds of the erosion

specimens were 9.35 and 18.7 m/s. The particle impact velocities were calculated based on

the nominal rotation speeds.
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Figure .: Schematic diagram of the slurry pot used by Clark ().

drical container of 165 mm in diameter and 254 mm in height, like the one shown in Figure

.. Two oxygen-free high-conductivity copper rods were used as targets. The test speci-

mens were placed on an anchor impeller as shown in the figure. The vessel was equipped

with four baffles extending into the pot to disrupt the liquid rotation during testing. The

test temperature was controlled to within 1°C in order to ensure repeatable experimental

conditions. Based on the hardness of the test specimens reported by Clark, measured after

annealing for one hour at 300°C, an elastic load limit of 132–148 MPa can be estimated

(Tabor, ).

The measured crater diameters reported by Clark (), nondimensionalized by the

diameters of the impacting particles, are shown in Figure . as a function of StN , the Stokes

number based on the nominal test speed VN . The dimensionless crater size, dc/dp, is a

measure of the fraction of kinetic energy devoted to plastic deformation. The choice of

reporting Clark’s data as a function of Stokes number was made because this representation

allows for a direct comparison with the results presented in Chapter . Furthermore, since

the effective immersed coefficient of restitution was shown in Chapters  and  to be a

function of Stokes number, presenting the collisional data obtained by Clark () as a

function of Stokes number is a natural choice. In all cases, the crater size goes to zero for

Figure 1.7: Schematic diagram of the slurry pot tester used by Clark (1991)

Previously, Bowden and Tabor (1986) explored the influence of thin layers of viscous

liquids (oils) on the formation of permanent indentations resulting from striking particles

onto flat surfaces. Bowden and Tabor reported a reduction of the crater size for the impact

of a steel sphere on copper when the sphere penetrated a layer of liquid previously placed

on the flat surface.The impact velocities used were fairly large (∼ 9 m/s), far from the

lubrication regime St > 2000. The crater size relative to the particle diameter suggests

that the resulting deformations were in the fully plastic regime.

1.6 Thesis outline

This thesis expands on the studies previously completed by Zenit (1997), Joseph (2003) and

Yang (2006) on particle-wall interactions. This current work examines the fundamental be-

havior of collisions of solid particles immersed in various fluids impinging onto surfaces with

different elastic properties. In particular, this work focuses on the effects of the surrounding

liquid coupled with the plastic deformations of the surfaces due to the impact of the rigid

particles. This present chapter presents a literature review and an overview of the possi-

ble mechanisms of energy dissipation that could be presented during a single particle-wall
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collision.

The work presented in this thesis is mainly experimental; Chapter 2 presents the detailed

information of the experimental setup used. The experimental techniques required to obtain

and process the experimental data are described in Chapter 3.

Chapter 4 analyzes the coefficient of restitution in the elastic-plastic regime, compares

the experimental results with three different models, and finally discusses the influence of

the surrounding fluids on the coefficient of restitution over the elastic and elastic-plastic

regime. The deformation parameters are analyzed in Chapter 5, including a discussion

on the influence of the surrounding fluid on the measured parameters. The results are

compared with one of the models discussed in Chapter 1.

Chapter 6 discusses the energy of deformation, suggesting that the elastic energy can

be decoupled from the plastic energy of deformation. The measurements of the force sensor

are reported in Chapter 7.

Lastly, the summary of the experimental results, together with some future directions,

are presented in Chapter 8.



20

Chapter 2

Experimental setup

This section gives a detailed description of the experiment and the data measurement tech-

niques. To measure the consequences of particle-wall collisions under liquid environments,

ductile surfaces were struck by rigid particles suspended from a pendulum-like configuration.

Different velocities were achieved by varying the release angle of the particles. The experi-

ments were performed in various viscous fluids. The collision process was recorded with a

high-speed camera so that, by post-processing the images, the impact and rebound veloci-

ties could be estimated. After the collision, the resulting deformed surfaces were measured

using an optical profilometer. A new impact surface was used for each experiment.

2.1 Description of the apparatus

As shown in Figure 2.1, the experiment was placed in a clear tank where a rigid structure

supported the different components. On the upper part of the frame a fixed bar supports the

pendulum-like system. Starting from rest, a single particle was released from the holding

mechanism by removing the voltage induced in the electromagnet (discussed in Section

2.1.1). The particle followed a pendular trajectory without rotation. Depending on the

releasing angle, φi, the particle accelerated towards the target reaching different impact

velocities. The trajectory of the particles during the complete impact cycle was recorded

on a S-VHS tape with a high speed camera 1.

Polished samples of different alloys (Table 2.2 ) were coupled to long rods and placed on

a “V”-shape block, as shown in Figure 2.2. The block was fixed to the frame and the rod

was finely adjusted for each experiment since small variations on the sample size caused φ

1Redlake MotionScope 8000S
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tank 

pendulum 

camera 

pressure bar 

digital 

thermometer 

power supply 

Figure 2.1: Picture of the experimental setup

to deviate from zero. The experiments required normal collisions; therefore, the collision

itself corresponds to φ = 0, where φ is the angle between the vertical and the string holding

the particle.
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Figure 2.2: Detailed representation of the pressure bar components
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2.1.1 Pendulum

A detailed representation of the pendulum release mechanism is shown in Figure 2.3. A fine

string was attached to the particle and held by two extremes, forming a “V” configuration,

to minimize the rotation of the particle. As mentioned before, the initial release angle

φi changed to achieve different impact velocities. A DC power supply fed the insulated

electromagnet that held the particle from a single point. Small magnetic hysteresis on the

electromagnet seemed to affect the collision dynamics for small releasing angles, φi ≈ 0.

For releasing angles φi > 3o no magnetic contributions were noticed.

!

pressure bar

sample

realease

mechanism

electromagnet

power supply/switch

Figure 2.3: Schematic representation of the release mechanism

2.1.2 Particles and impacting surfaces

The physical and mechanical properties of the particles, such as diameter, dp, sphericity, ε,

density, ρp, Young’s modulus, E, and Poisson’s ratio, ν, are listed in Table 2.1. Statistical

quantities associated with surface roughness, such as root-mean-square surface height 2, σs,

and the correlation distance, λp, are also found in the table.

The impacting bar used was a Split-Hopkinson-Kolsky-type bar, a more detailed expla-

nation can be found in Section 1.4. The dimensions of the bar are 25.4 mm in diameter

and 254.0 mm long. The length of the rod, L, was chosen so that the ratio L/dp was >> 1

2Usually referred to as roughness
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Table 2.1: Properties of the particles used in the experiments

Material dp ε ρp E ν Y σs

(mm) (kg m−3) (GPa) (Mpa) (µm)

Stainless steel 12.7 0.0024 7780 190 0.27 1896 0.0236

(Sondergaard et al. (1990), Hu and Eberhard (2004), Reed (1985)), therefore, the energy

losses due to elastic wave reflections were neglected. The samples were 25.4 mm in diameter

and 12.7± 1 mm thick. For each experiment, the sample and the impacting bar were of the

same material to preserve the impedance of the propagating wave constant. The samples

were attached to the bar using a plastic holding device (See Figure 2.4). A plastic belt was

fixed to the impacting bar. The holding cap housing the “samples” was pulled against the

impacting bar by stretching three rubber rings axially distributed connected to the belt.

The existing discontinuity between the bar and the sample was neglected and the elastic

wave generated from the impact was assumed to travel continuously through the two bod-

ies. As described by Kolsky (Gama et al. (2004)), using a lubricant between the interfaces

reduces the friction. For the experiments carried out in this thesis, glycerol-based lubricants

were used between the specimen and the transmission bar.

Table 2.2: Properties of the impacting surfaces

Material Alloy Temper ρs E ν Y

(kg m−3) (GPa) (MPa)

Aluminum 6061 T5 2700 68.95 0.33 275.00
Aluminum 2024 T5 2768 73.08 0.33 324.05
Aluminum 7075 T5 2796 71.70 0.33 503.31

The samples were polished close to mirror finish. The polishing process was performed

by using ECOMET 3, BUEHLER grinding and polishing table for metallographic sample

preparation.
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Figure 2.4: Sample holding device

2.1.3 Pressure bar

A variation of the typical Split-Hopkinson-Kosky pressure bar setup is proposed for this

thesis. Instead of the incident bar, a spherical particle strikes the specimen, firmly attached

to the transmission bar. The length of the transmission bar is long enough so that the

contact time of the particle with the end of the bar, including the plastic deformation time

if it exists, is less than the time required for an elastic wave to travel the total length,

L, and its reflection to return to the point of impact. It is also assumed that the plane

compression pulse propagates without distortion through the sample and the bar, and both

of them have the same acoustic impedance, Z0, so that the phase and the bar velocity are

equal (see Table 2.3). Additionally, if the striker, in this case the particle, mass is small

compared to mass of the transmission bar, the rod behaves like a half-space.

Figure 2.5 shows the variations on coefficient of restitution, e, with the impact velocity,

Ui. Three different sets of “dry” experiments were performed using a steel particle of 12.7

mm in diameter as a striker. The first set corresponds to a rigid surface, the Zerodur3

block. The other two sets of experiments were done using a “softer” material (Al 6061), a

25.4 mm diameter by 254.0 mm long solid bar, and the same bar with a specimen attached
3Glass-ceramic composite often used to build optical components for telescopes
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to the end of it (Figure 2.1). The decreasing tendency on the coefficient of restitution of

the bars is attributed to the plastic deformation of the impacts; however, the experiments

for the plain solid bar and the bar with the specimen seemed to be be self-consistent with

each other.
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Figure 2.5: Steel particle impinging on three different surfaces: Zerodur block (rigid), Al
6061 25.4 mm diameter with a length of 254.0 mm, and the same bar with a sample attached
to one of the ends

The stress pulse produced by the collision generated waves that remained in the elastic

regime. As shown in Table 2.3, for the three different alloys, the stress in the pulse produced

by the maximum impact speed (∼ 0.5 m/s) is smaller than the yield strength. Therefore,

no elastic-plastic waves were produced for any of the experiments. The tabulated values

were estimated using Equation 1.30.
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Table 2.3: Acoustic properties

Material Alloy Acoustic speed, c0 Impedance, Z0 Wave stress, σB/Y

( m s−1) (MPa s m−1)

Aluminum 6061 5053 13.64 0.012
Aluminum 2024 5138 14.23 0.011
Aluminum 7075 5064 14.16 0.007
Ultra-Hard

Wear-Resistant
Stainless Steel 440C 5107 39.83 - -

2.1.4 Force sensor

The impact force due to the collisions was measured with a quartz crystal used as a force

sensor. The proposed Split-Hopkinson-Kosky Pressure Bar (SHPB) was modified by adding

a piezoelectric transducer crystal. A single crystal was embedded between the pressure bar

and an extra piece of rod as shown in Figure 2.6. In order to hold the crystal between the

rods, a commercial conductive epoxy was used to glue the pieces together.

Quartz transducers are excellent choice for dynamic load measurements due to the high

natural frequency, on the order of ∼ 10 MHz (Lu et al. (2003)), which fulfills the sampling

requirements for this experiment. The crystals used for the experiments were obtained from

Boston Piezo-Optics Inc. The detailed characteristic of the crystals are shown in Table 2.4.

Table 2.4: Piezoelectric quartz crystal description

Surface: fine lapped finish

Diameter: 25.4± 0.025 mm

Thickness: 0.254± 0.025 mm

Piezoelectric constant,
normal direction d11 = −2.3 pC/N
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quartz crystal

sample

oscilloscope

pressure bar

high speed
camera

Ui

Figure 2.6: Schematic representation of the force sensor setup
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2.1.4.1 Calibration

The quartz crystal transducers have an excellent linearity throughout their operational

range. Hence, F (t) = αV (t), where F is the force due to the impact, α is the calibration

constant and V is output voltage, obtained from the digital oscilloscope. A typical crystal

response to a given impact is shown in Figure 2.7. The total contact period is separated

into a period of compression, tc, and a restitution period, tr. The compression period ends

at the maximum value of the impulse. The calibration of the sensor was done only during

the compression period, by simply using the equation of motion F = mδ̈, where δ is the

total relative displacement between the two bodies due to compression. At the beginning of

the contact δ̇(t = 0) = Ui, and that the particle comes to rest at the end of the compression

period, δ̇(t = tc) = 0. Combining those initial conditions with the linear relation between

the force and the output voltage, the calibration constant is given by

α =
4
3
πR3ρpUi

1∫ tc

0
V (t)dt

(2.1)

In Figure 2.7,the first pulse is attributed to the collision; the second set of pulses are

the reflections of the first impulse transmitted throughout the bar. Note that, the collision

time is less than arrival time of the the first reflection, which is consistent with the assump-

tions made when choosing this experimental setup, neglecting the effects of the number of

reflections on the coefficient of restitution (Sondergaard et al. (1990)).

The bar was calibrated for collisions spanning the impact velocities used during the

experiments. The resulting calibration constants were: αns = 323 ± 8 N/V for the bar

without a sample attached to it, and αns = 294 ± 11 N/V for the bar with a sample

attached to it. Figure 2.8 shows the maximum measured force as a function of the impact

velocity, Ui. The data points corresponding to the measurements including the sample,

modify slightly the response of the sensor.

Most of the experiments presented in this thesis were beyond the elastic limit. The

time required to produce the maximum elastic deformation τe given by Equation 1.10 ,

is estimated using the elastic velocity, Uel. This time is greater than the collision time

involving plastic deformation since the impact velocity is larger than the elastic velocity

(Ui > Uel). In Figure 2.9 the contact time nondimensionalized by the maximum elastic
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Figure 2.7: Typical signal obtained from the embedded quartz crystal in the SHPB.
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Figure 2.8: Contact force plotted as a function of the impact velocity Ui, comparing the
results of using only the pressure bar, with the results of the pressure bar with the attached
sample.
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time is plotted versus the normalized impact velocity. For all the collisions, the contact

time decreases as the impact velocity increases. The collision time is divided in elastic and

elastic plastic. The elastic deformation time is a function of the impact velocity, meaning

that for larger impact velocities the elastic deformation happens faster. The rest of the

collision time corresponds to the plastic period, τp, given by Equations 1.10 and 1.27. The

plastic period is “independent” of the impact velocity, it is only a function of the dynamic

pressure, pd, and it monotonically decays as ∼ O(1/
√

pd). The discussion in Section 4

suggested that in the elastic-plastic regime, pd can vary between 1.1 < pd/Y < 2.8. As

the impact velocity increases, the equivalent load does as well increasing the strain applied

on the materials, resulting on increasing the dynamic pressure. As seen in Figure 2.9, the

compression time nondimensionalized by the maximum elastic collision time, τ∗e , decreases

as the impact velocity increases.
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Figure 2.9: Contact time nondimensionalized by the maximum elastic time plotted as a
function of U∗.
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2.1.5 Glycerol-water mixtures

Glycerol-water mixtures (0 − 80% weight, 1 − 50 × 10−3 Pa s) were used as the viscous

fluid. To estimate the viscosity two parameters were needed, the specific gravity of the

mixture and its temperature. A hydrometer calibrated from 1.000 to 1.225 SpGr, was used

to read the specific gravity. The temperature of the fluid was constantly monitored with

a digital thermometer 4 immersed in the tank. The resulting viscosity was estimated by

interpolating tabulated values (Lide (2001)).

Table 2.5: Different fluid viscosities and densities

Fluid Glycerol (% weight) Temperature, T Viscosity, µ Density, ρf

(oC) (Pa · s)×10−3 (kg m−3)

Air 0 25 0.0019 1.205
Water 0 25 0.9028 997.1

Glycerol-water 24 25 1.8070 1055.4
Glycerol-water 54 25 6.6610 1134.7
Glycerol-water 62 25 10.4070 1156.6
Glycerol-water 75 25 28.3500 1191.9
Glycerol-water 78 25 39.5400 1200.0
Glycerol-water 82 25 61.6000 1210.7

Figure 2.10 shows the changes in viscosity as a function of the temperature for different

concentrations. The viscosity is sensitive to the temperature; throughout the experiments,

the variations were kept within 2–4 o C.

4OMEGA HH11
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Figure 2.10: Variations in viscosity due to temperature for glycerol-water mixtures between
0–82 % wt. The selected range was representative for the experiments presented in this
thesis.
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Chapter 3

Experimental techniques

This section describes the various techniques used during this experimental work. Although

the experimental setup is simple, preparing and post-processing each individual experiment

turned out not to be trivial. The sequence of steps used during the experiments can be

summarized as follows: sample surface preparation, image processing, and characteriza-

tion of the indentation parameters (measuring and processing). Each of those steps are

described in detail, and applied to one experiment. The experiment event number is: 1207,

corresponding to a stainless steel particle colliding with an alloy 6061. The surrounding

liquid was a mixture of 82% glycerol dilute in water.

3.1 Sample surface preparation

The impacting samples were cylindrical discs (see Figure 2.1) made out of aluminum rods.

The properties of the different alloys are summarized in Table 2.2. Each sample was ma-

chined individually by either: cutting and facing them on both sides using a lathe, or by

cutting them on a bench saw and then lapping both sides, ensuring that the surfaces were

flat. The sample surfaces were polished after being machined. Since the smallest indenta-

tions created after the impact were on the order of the semi-raw surface roughness, it was

impossible to observe them on the samples without surface treatment. The average surface

roughness after machining was about 0.38 < σs < 0.64 µm (see Figure 3.1). The ECOMET

3 BUEHLER, which is a semi-automatic grinder and polisher, was used to smooth down

all the the sample surfaces up to σs ∼ 0.029 µm. To obtain the final surface roughness, six

simultaneous samples were placed on a circular holder that was coupled to the ECOMET

3; this circular holder was pressed up against a plate, where different grits were placed, and
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rotated differentially. The surfaces were gradually polished from the more coarse grits to the

smooth polishing cloths. The grit sizes were 180, 320, and 600 (see Figure 3.2). After the

grits, the samples were polished with adequate polishing cloths and different water-based

suspensions of polycrystalline diamond, 1 9 µm and 3 µm (see Figure 3.3).

Table 3.1: Different sample processes and their respective root mean square Rq and surface
roughness, σs. Note that after the 9 µm solution the variations on σs are small.

Sample preparation
process Rq σs

(µm) (µm)

Lathe 0.465 0.376
Lap 0.925 0.638
320 grit 0.419 0.336
600 grit 0.184 0.144
9 µm solution 0.028 0.020
3 µm solution 0.140 0.097
2 µm solution 0.049 0.038

Table 3.2: Different sample processes and their respective root mean square Rq and
surface roughness, σs. Note that after the 9 µm solution the variations on σs are small

Different values for measured surface roughness, σs, and root mean square, Rq, are

shown in table 3.2. The variations on σs are small for the diamond solutions; therefore,

most of the samples’ final surface roughness was a result of the 9 µm suspension. On top of

that, the surface roughness influences the accuracy of measurements in contact dynamics

(Joseph et al. (2001)).

Figures 3.1, 3.2, 3.3, and 3.4 show the typical surface roughness for each of those steps.

The images were taken with the optical profilometer, WYKO (see Section 3.3).

1The cloth works as a matrix for the abrasives, which are the diamond particles.
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Figure 3.1: Typical WYKO 2-D and 3-D pictures of the surfaces of the samples after being
machined with the lathe (a, b). The lower panel (c, d) shows the typical surfaces of the
samples after being lapped and pre-ground.
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(d) Grit 600, 3-D

Figure 3.2: Typical WYKO 2-D and 3-D pictures of the surfaces of the samples after being
ground down with the 320 grit (a, b) and the 600 grit (c, d)
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(b) 9µ m diamond solution, 3-D
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(c) 3µ m diamond solution, 2-D
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(d) 3µ m diamond solution, 3-D

Figure 3.3: Typical WYKO 2-D and 3-D pictures of the surfaces of the samples after being
polished with two different diamond solutions: 9µ m (a, b) and 3µ m (c, d)
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Figure 3.4: Typical WYKO 2-D and 3-D pictures of the surfaces of the samples after being
polished with the micro-cloth and 0.5 µm diamond solution

3.2 Image processing

The motion of the sphere was recorded with a Redlake MotionScope 8000 high-speed camera

with a recording frame rate ranging from 60 to 8000. The maximum resolution of the

camera, 480 × 420 pixels, corresponded to 60 fps. Since the camera has a fixed amount

of storage memory, increasing the frame rate corresponded to decreasing the resolution

of the images. Most of the experiments were recorded at 1000 fps. The experiment was

illuminated with two sources of light placed opposite to the camera. To avoid reflections

from the particles, the background light was moderately diffused by wrapping translucent

white paper on the back and sides of tank. A typical raw image obtained from the high

speed camera is shown in Figure 3.5.

After recording each experiment, the resulting images were analyzed by using ImageJ 2.

Sequenced frames were extracted from the recorded movies and transformed into black and

white images based on the threshold of each frame: as shown in Figure 3.5 values below the

threshold were transformed into white pixels; likewise, values above the calculated threshold

corresponded to black pixels.

The position of the centroid of the particle was tracked for each frame. The resolution

of the images was 352 × 240 pixels, and the centroid was tracked without modifying the

aspect ratio of the images. On average, the major and minor axis of the fitted ellipse were

160 by 150 pixels. Assuming an effective diameter for the ellipse and comparing it with
2http://rsb.info.nih.gov/ij/

http://rsb.info.nih.gov/ij/
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the actual particle diameter in mm, the data was scaled. Figure 3.5 shows typical images

resulting from the particle tracking process.

Figure 3.5: The captured images cropped and converted into black and white images based
on the threshold. The center of the b&w image was tracked. The images in the lower row
are separated by 100 frames; the lower-right image shows the contact between the particle
and the wall.

The particle impact and rebound velocities, Ui and Ur, were calculated by linearly

fitting the data before and after the collision. From the resulting velocities, the coefficient

of restitution is defined as:

e = −Ur

Ui
. (3.1)

The number of data points used to fit the lines was selected based on the expected

velocity. Relatively slower collisions required more data points than faster collisions. The

scatter in the data was more pronounced for slow collisions, experiments where the velocity

approached zero rather slowly were more sensitive to the small variations on the effective

diameter, i.e., the variations on the number of pixels corresponding to the particle diameter

were on the order of the particle displacement between frames. For example, three different
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collisions are shown in Figure 3.6; as mentioned before, the number of recorded points

within the same window of time is a lot smaller for relatively fast collisions than it is for the

slower ones. For the largest velocity presented (◦), few points were necessary to describe

the impact velocity. On the other hand, for the slowest experiment (+), the number of

points required was larger.
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Figure 3.6: Trajectories of a steel particle impinging on Al 2024 alloys. Three different
scenarios are shown: (+) St = 16 and Re = 22, (�) St = 44 and Re = 61, and (◦) St = 80
and Re = 111.

For convenience, (x, t) = 0 was defined as the intersection point of the lines describing

the impact and rebound velocities. Figure 3.7 shows, on the upper panel, the corresponding

data points describing the trajectory of a steel particle impacting an aluminum alloy 2024

sample; the surrounding liquid was a 70% by weight glycerol-water mixture. The impact

and rebound velocities resulting from the slopes of the fitted lines were: Ui = 193 mms−1

and Ur = 96 mm s−1, with a coefficient of restitution, e = 0.50±0.01. The plot in the lower

panel corresponds to the instantaneous particle velocity which was calculated using fourth-

order central differences scheme. The corresponding errors on the coefficient of restitution

were calculated based on the uncertainty in calculating Ui and Ur.
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Figure 3.7: Particle position (top) and resulting velocity (bottom) for a steel particle, 12.7
mm in diameter, impacting a sample of Al 2024. The corresponding Stokes number, St = 68,
Re = 95. The sample presented a permanent indentation after the collision.
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Alternatively, an image cross-correlation method was implemented, where an image

template taken from a given sequence of images was cross-correlated with all the frames.

The maximum of the cross-correlation function indicated the location of the center of the

particle. Figure 3.8 shows the resulting horizontal position of the particle’s center as a

function of time. In the lower panels, the frame and its resulting correlation with the

template are shown. All the experiments were processed by using ImageJ software, due

to a relatively large scatter resulting from the cross-correlation method compared to the

software.

Figure 3.8: The particle position in pixels as a function of time. The lower panels show the
center of the particle resulting from the maximum of the cross-correlation function shown
on the lower-right panel.
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3.3 Wyko, optical profilometer

The Wyko optical profilometer is a non-contact white-light interferometer which can mea-

sure surfaces heights from 0.1 nm to 500 µm with a vertical resolution of 0.1 nm. The

samples were measured using 5X and 10X objectives, depending on the expected size of

the indentations. By using the built-in software it was possible to obtain the 3D infor-

mation required to measure the indentation parameters for each sample. The resulting

deformations from the experiments were characterized by their crater diameter, dc, and

their indentation depth, H. Figure 3.9 shows a representation of the typical deformation

parameters resulting from a particle collision with a flat wall.

Figure 3.9: Geometry of spherical indentation resulting from a solid particle on a flat surface

Besides the deformation parameters, the topological characteristics of the surfaces for each

sample were also measured, since the variations of the surface roughness influences the

accuracy of the measurements in contact dynamics (Joseph et al. (2001)). The measured

quantities were: the surface roughness, σs, and the “root mean square”, Rq

σs =
1
A

∫ Lx

0

∫ Ly

0
|z(x, y)− ẑ(x, y)| dydx (3.2)

where z(x, y) is the height within the sampling area, A, and ẑ(x, y) is the center plane from

where the mean square deviation is a minimum. This implies that the volume of roughness

above this center plane and below are exactly the same. From a statistical point of view,

the root mean square, Rq, or the standard deviation of the height of the surface from the



46

mean center plane, z̄(x, y) is defined as:

R2
q =

1
A

∫ Lx

0

∫ Ly

0
(z(x, y)− z̄(x, y))2 dydx. (3.3)

For most of the surfaces presented in this work, σs and Rq were on the same order of

magnitude, since z̄(x, y) ≈ ẑ(x, y). Hence, the term “surface roughness” will be used only

as σs throughout this thesis. Figure 3.12 shows typical y−z and x−z surface profiles. Those

profiles were measured after the sample of alloy 606 was polished following the procedure

previously described.

3.4 Tilt correction and surface smoothing

The output raw data from the optical profilometer, Wyko, was post-processed separately.

The first correction was done by suppressing the erroneous peaks and valleys. Secondly,

although the samples were lapped and their surfaces were nearly parallel, the output raw

data often presented some tilting, which in some cases was on the order of magnitude

of the measured indentations. Finally, the resulting indentation parameters have larger

length scales compared to the average surface topography. The surfaces were smoothed by

suppressing the higher wavelengths using a low-pass filter.

3.4.1 Peaks and valleys suppression

The output data resulting from the built-in software of the WYKO profilometer used to

measure the surfaces’ topography is often noisy. The raw measurement often has gaps

that correspond to a reflected beam that was not captured; the software represents those

gaps with either large peaks or deep valleys. To remove those gaps and preserve the surface

roughness, the peaks and valleys are replaced by predicted values, which are estimated based

on the roughness on the vicinity of the peak or valley. Each of the vertical and horizontal

profiles from the raw image were fitted to a large-order polynomial (15th); the peaks and

valleys are values larger than two standard deviations of the corresponding profiles and

those values are replaced by the fitted values. The cut off criteria of 2σs was an arbitrary

definition. Figure 3.10 shows the raw output data and the result of the suppression discussed

before. The experiment corresponds to the event number 1027; the same experiment will
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be used as an example throughout this section.

Figure 3.10: The upper panel shows the output data from the Wyko software; the lower
panel shows the resulting smoothed surface by using the peaks-and-valley suppression filter.
The images are the result of the impact of a stainless-steel particle (See Table 2.1) in a 70%
glycerol-water mixture. The corresponding Stokes number and the xxxxxx

3.4.2 Tilt correction

Most of the 3D surfaces are fairly isotropic (or weakly anisotropic), in terms of surface

roughness, in any direction (Thomas (1982)). As a result of the surface preparations —

grinding and polishing — the surfaces are almost two-dimensional on the x − y plane.

However, the individual profiles, x−z and y−z, have a preferential slope (See Figure 3.11),
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in a particular direction or in both directions. The magnitude of the tilt cannot be neglected

for most of the cases. In surface technology, the tilt is known as the RMS slope parameter

defined as the root mean square of the ordinate slopes dx/dz within the sampling length

(Griffiths (2001)). Since the surfaces are nearly isotropic, the slope of one individual profile is

comparable with any other slope in the same direction; therefore, the slopes dx/dz and dy/dz

of single profiles were estimated and then subtracted from the rest of the corresponding

profiles.
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Figure 3.11: Typical x− z and y − z raw profiles corresponding to the measured surface of
a 6061 alloy sample. On each profile, the fitted line and the equation is shown. The fitted
data was subtracted from the corresponding profiles (see Figure 3.12).

Figure 3.11 shows the typical tilted profiles. By subtracting the tilting factor the zero

in z direction corresponds to the average surface roughness; this is convenient for further

analysis. Figure 3.12 is a typical example of the result from this analysis, where the profiles

from Figure 3.11 were un-tilted. In addition to the tilt correction, z = 0 corresponds now

to the average of the surface roughness.
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Figure 3.12: The X and Y profiles resulting from the tilt correction. Notice that the z = 0
corresponds with the average of the surface roughness.
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3.4.3 Low-pass filter

Typically, the characterization of the post-collision surfaces requires measurements of the

surface roughness and the indentation parameters. In terms of wavelengths, those two

sets of measurements could be separated since their wavelengths are clearly different; the

indentation parameters have larger wavelengths than the surface roughness. To characterize

the surface roughness, the Equations 3.2 and 3.3 were used on the profiles resulting from

the peak and valley suppression. After the valley and peak suppression filter, a low-pass

filter was applied to remove the roughness and the waviness. At large wave numbers the

surface topography is dominated by the roughness. Moderate wave numbers describe the

waviness of the surface. At a very small wave numbers, the indentation’s form is preserved;

the indentation parameters were measured after combining these three effects.

3.4.3.1 Ideal surface

Figure 3.13 shows an ideal surface profile representing the three characteristic wavelengths

discussed above. The surface was artificially made by superimposing sinusoidal functions

with three different wavenumbers and amplitudes. The lower panel shows the associated

power spectrum in Fourier space. The peaks correspond to the characteristic wavenumbers

previously defined. The following sequence of images shows the result of low-pass filtering

the profiles using cutoff wave numbers below the characteristic wave numbers. Figure 3.14

shows the result of removing the roughness using a cutoff wave number that is slightly

below the characteristic roughness wave number; the resulting profile keeps both waviness

and form. The wavelength of the indentation parameters is larger than the waviness. The

upper panel of Figure 3.15 shows the profile resulting from the second low-pass filter with

a cutoff wave number below the waviness peak. The lower panel compares the ideal raw

data with the data resulting from low-pass filtering below the waviness characteristic wave

number.

For this ideal example, the window of wave numbers between two characteristic wave num-

bers were equally valid since the power of those wavenumbers is equal to zero. Real surfaces

have more complicated power spectrums and there is no generally agreed wavelength that

divides roughness from waviness; it is a matter for subjective assessment.
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Figure 3.13: Ideal indentation surface profile (top), and the corresponding power spectrum
(bottom).
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Figure 3.14: Ideal surface profile (top), and the profile resulting from low-pass filtering the
roughness while still preserving the waviness (bottom).
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Figure 3.15: Surface profile resulting from low-pass filtering both the surface roughness and
the waviness from the ideal surface profile (top), and the combined raw profile and the
low-pass filtered surface profile (bottom).
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3.4.3.2 Real surface

For the same event used in Figures 3.12 and 3.11, the corresponding x − z and y − z

indentation profiles are shown in Figures 3.16 and 3.17. Those profiles were previously

filtered by suppressing the peaks and valleys, and tilt corrected3. The associated power

spectrums are plotted below each profile.
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Figure 3.16: x−z indentation profile (top), and the corresponding power spectrum (bottom)
showing the waviness and roughness wave numbers. Event number: 1027

After the two previous filtering stages, the entire domain of the images was divided in

x− z and y− z profiles, which were individually low pass filtered. In Fourier space a sharp

step function was superimposed, removing all the wave numbers greater than a cutoff wave

number, κc; the remaining data points were inverse transformed, resulting in a smooth

curve preserving the shape of the indentation. Figure 3.18 shows the result of the low-pass

filter used on the profiles from Figures 3.16 and 3.17. The cutoff wave number used was

κc = κx = κy = 0.05µm−1. This cutoff wave number allows wavelengths, λ, greater than

3Note that the indentation depth is on the order of the previous tilting absolute distance.
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Figure 3.17: y−z indentation profile (top), and the corresponding power spectrum (bottom)
showing the waviness and roughness wave numbers. Event number: 1027
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125 µm. The next section describes the indentation parameters, such as the crater diameter,

which is on the order of the remaining wavelengths.
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Figure 3.18: Raw and low-pass filtered profiles, y− z (top) and x− z (bottom). The cutoff
wave number used was κ = 0.05µm−1. Event number: 1027
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3.5 Indentation parameters

The indentations were characterized by the crater diameter, dc, and the indentation depth,

H. Figure 3.9 shows the indentation parameters resulting from a spherical indenter with

diameter, dp. For all the indentations measured, the data was pre-filtered using the three

stages described in Section 3.4.

Figure 3.19 shows 3D images resulting from the first two filtering stages (upper panel)

and the final low-pass filter (lower panel). The indentation parameters were measured after

the final low-pass filter stage. Since all the collisions presented in this work were normal,

the indentations should follow closely the shape of the impacting particle (quasi-conformal

elastic-plastic contact), as shown in Figure 3.9. To start the analysis, the reference point

was taken as the location of the theoretical indentation’s center, (xtc, ytc), corresponding to

the minimum depth of the previously filtered data.

3.5.1 Crater diameter, dc

From the contours of the full-filtered data, the crater diameter was measured by fitting

circles and ellipses, in a least-squares sense, to the concentric closed contours. The re-

sulting fitted contours were post-processed, and based on a set of geometrical constraints

the appropriate contour was elected. The algorithm chose the best contour based on the

following three parameters: The circular eccentricity, given by Equation 3.4, is defined as

the absolute distance from the theoretical center of the indentation, (xtc, ytc), to the center

of the actual fitted circles, (xcfit, ycfit). The eccentricity of the fitted ellipse was defined

as the distance from the indentation’s theoretical center to the center of the fitted ellipses

(xefit, yefit):

Scxy =
√

(xcfit − xtc)2 + (ycfit − ytc)2. (3.4)

For any given closed contour, the fitting quality, CC, was defined as the distance from

the data points to the center of its corresponding fitted circle; in a sense this is equivalent

to the error on fitting those points as a radial square deviation. The expression used to
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Figure 3.19: Typical surface indentation resulting from the first two filtering stages (top),
and the corresponding low-pass filtered surface (bottom). Event number 1027
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estimate this parameter is given by:

CC =
1
N

N∑
i=1

√
|r2

fit − (xi − xtc)2 + (yi − ytc)2|. (3.5)

The third parameter, the theoretical radius rt, was used to constrain the domain of the

analyzed data, and also to estimate both the minimum and maximum values of the fitted

radius. Based on the measured indentation depth, H, and the geometry of the idealized

indentation shown in Figure 3.9, the expression for rt is given by:

rt =
√

H2 − 2 dp H. (3.6)

The parameters mentioned above were carefully monitored for each indentation mea-

surement. Following the analysis of the previous example (event 1027) Figure 3.20 shows,

on the right panel, the raw image obtained using the optical profilometer; the correspond-

ing fitted circle is superimposed as well. On the left panel, the 2D contour lines used for

the analysis and the fitted circle and ellipse are plotted. The corresponding 3D image and

the best-fitted contour are shown in Figure 3.21. For this particular example, the measured

crater diameter was dc = 260.22 µm. Experiments reported previously by Clark (1995) used

optical microscope techniques to measure the indentations’ diameters, by taking the mean

of two diameters at right angles without looking at the circularity of the craters. Adding

the third component, the depth, improves the quality of the measurements. Without losing

the indentation’s shape, the indentation parameters could be measured confidently within

the surface roughness range, i.e., indentation parameters on the order of the surface rough-

ness are not very reliable. The fitting quality was used to determine the error generated on

estimating the crater diameter.
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Figure 3.20: Typical original image of the indentation (bottom) and the 2D contours (top)
corresponding to event number 1027. The measured crater diameter, represented by the
superimposed circle, was dc = 260.22 µ m.
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Figure 3.21: 3D contours and their respective x − y projection for the indentation corre-
sponding to event number 1027. The thick black line represents the best-fitted contour.

3.5.2 Indentation depth, H

For most of the cases the first approximation for the center of the crater did not coincide

with the measured center, Scxy 6= 0. Hence, the final indentation depth, H, was defined

as the depth located at the center of the final fitted circle, H = z(xcfit, ycfit). The error

between the first approximation depth and the real depth was not as dramatic as the

difference between the theoretical radius (Equation 3.6) and the real radius. For the example

shown in Figure 3.20, the ratio of measured to theoretical indentation depth values was:

H/Ht = 0.99 with a ratio of crater diameter to expected diameter of dc/2rt = 1.59. The

contour selected to fit the crater diameter was slightly less than the zero, CL = −0.05 µm.

The corresponding final indentation depth was H = −0.58 µm.

3.6 Discussion

The typical experimental techniques for particle-wall collisions were extended, allowing the

surface of the wall to deform plastically. Due to the non-reversibility of the deformations,

each experiment was done on a newly prepared sample. In addition to the image processing
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required to track the position of the particle over time, the 3D profiles of the indentations

were measured. The range of impact velocities used in this work produced small indenta-

tions; some of them on the order of the surface roughness. By low-pass filtering the raw

data, the effects of the surface roughness and, if present, the waviness were removed. For

relatively large deformations, the surface roughness was negligible compared to the size of

the indentation.
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Chapter 4

Coefficient of restitution

The coefficient of restitution represents, in a very general way, the energy losses during

a collision. This section shows the experimental results for dry collisions, where the sur-

rounding fluid is air, and for collisions submerged in various viscous fluids. The collisions

occur within the elastic-plastic regime. Therefore, for dry collisions, it is expected that the

coefficient of restitution decreases as the impact velocity increases. When the viscous effects

are important, the coefficient of restitution has a complex behavior which is combined with

the losses due to plastic deformation. This section presents the experimental results on the

coefficient of restitution for both cases.

4.1 Dry coefficient of restitution

As described in Section 1, for dry collisions at sufficiently low impact velocities (Ui < Uel)

the resulting deformation is elastic and, in theory, e = 1. Beyond the elastic limit, yield

begins causing the coefficient of restitution to gradually decrease with increasing severity of

impact. Johnson carried out an analysis to estimate the coefficient of restitution resulting

from a rigid particle impacting a soft half-space. Considering the rebound to be elastic, the

kinetic energy of the rebound can be calculated from the size of the indentation, which is

a function of the dynamic pressure, pd. The expression for the coefficient of restitution is

given by

eJ = KJ

√
pd

E∗

(
ρpU

2
i

pd

)−1/8

(4.1)

where KJ =
√

(3/2)1/2 63/4π/5 ≈ 1.718.

Figure 4.1 shows the coefficient of restitution for steel particles impinging on blocks
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Figure 4.1: Measurements of the coefficient of restitution of a steel ball on blocks of differ-
ent materials. The experimental data was taken from Goldsmith (1960). The solid lines
represent the predicted decay of e ∼ O(Ui)−1/4.
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of different materials. This experimental work was previously completed by Goldsmith

(1960). Unfortunately, estimating the coefficient of restitution based on Equation 4.1 from

this work is not possible, due to the lack of detailed information on the materials used during

those experiments. For the materials used in Goldsmith (1960) the elastic properties varied

widely.

The model proposed by Johnson (1985), and the experiments carried out by Goldsmith

(1960), neglect the influence of the surrounding fluid; the experiments reported were dry

collisions. Since the impact velocities used for those experiments are on the same order

of magnitude as the experiments reported in this thesis, in Figure 4.2 the corresponding

set of dry collisions for the three different alloys are presented. As mentioned by Johnson,

the typical e ∼ U
−1/4
i is valid only for fully plastic collisions. Under those conditions, the

dynamic pressure, pd, is constant, pd/Y ≈ 2.8. However, between the elastic and the fully

plastic regime, the dynamic pressure is 1.1 < pd/Y < 2.8. The compliance relationship for

an elastic-pastic contact is not precisely defined. For the three different alloys, Figure 4.2

suggests that the beginning of the fully plastic regime was reached only for the alloys 6061

(2) and 2024 (∗), but not for 7075 (2). The lines of slope −1/4 seemed to fit well with the

experiments.

Prior to the theoretical model proposed by Johnson, in a more empirical manner Tabor

(1951) estimated the coefficient of restitution based on an energy balance. By assuming that

the energy of plastic deformation is proportional to the residual volume of the indentation

after rebound, the implicit expression proposed by Tabor in terms of the coefficient of

restitution, eTa, is given by

eTa(
1− β e2

Ta

)β =
1

1− β

(
Ui

Uel

)2β−1

(4.2)

where β = (2n− 1)/(4n + 1) is a constant related to the Meyer index, n. The Meyer index

varies between values of 2 for a perfectly plastic metal, and 2.5 for an annealed metal. The

perfectly elastic contact can be recovered by using n = 3, which yields e = 1.

More recently, studies on contact mechanics and coefficients of restitution were undertaken

by Thornton (1997), who found an analytical solution for the normal coefficient of restitution
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Figure 4.2: Comparison between the experimental results of Goldsmith (1960) and the
normal collision of a steel particle in air on the three different alloys. The solid lines (–)
correspond to a power-law regression fit, forcing the predicted decay of e ∼ O(Ui)−1/4.
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for elastic-plastic spheres. The expression, which is velocity dependent, is given by

eTh =

√
6
√

3
5

√
1− 1

6

(
UY

Ui

)2

 UY
Ui

UY
Ui

+ 2

√
6
5 −

1
5

(
UY
Ui

)2


1/4

(4.3)

where UY is the relative impact velocity below which the collisional interaction is assumed

to be elastic. In evaluating this model, UY = Uel.

All of the models discussed above (Johnson, Tabor, Thornton) rely on a dynamic coef-

ficient to describe the elastic-plastic regime, which does not yet have a constitutive relation

describing the variations on the coefficient of restitution due to the impact. The comparison

of the three aforementioned models, with the experimental data for dry collisions, is shown

in Figure 4.3. For the model proposed by Johnson, pd = 1.1σY . In Tabor’s model, n = 2.

Thornton suggested that Uel might vary as Ui increases. In general, for Ui/UY >> 1, the

collision is fully plastic. In that case, Uel is no longer a suitable parameter for evaluating

the coefficient of restitution. Instead, the fully plastic velocity, UY p, the velocity at which

the deformation is fully plastic, is used. This velocity can be estimated with a slight mod-

ification in Equation 1.12. The main variation consists on replacing σel = 1.65Y , which is

the limit of elasticity, with σel = 2.8Y , the beginning of the fully plastic regime. In the

fully plastic regime, the characteristic velocity UY p remains invariant.
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Figure 4.3: Comparison between the models proposed by Tabor (1951) (—), Thornton
(1997) (- - -), and Johnson (1985) (· · · ), and the experiments for the three different alloys
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4.1.1 Force Sensor

Within the same range of velocities, single particle collisions using the pressure bar with

an embedded quartz crystal transducer are presented. The deformable surfaced used for

those experiments were samples of aluminum alloy 6061 and the same particles used for

the previous experiments was used. The impact and rebound velocities were estimated as

before. However, adding the sensor modified the response of the bar to the collision. The

coefficient of restitution was significantly reduced. Only the impact velocity was used to

characterize the collision forces. It was assumed that the rebound velocity behaved just as

the previous experiments, where the bar had no additional discontinuities (See Section4).

Figure 4.5 shows the contact force measured for few samples. The experiments are compared

with the Hertzian prediction of the contact Force. The collisions showed remained within

the elastic-plastic regime. As the impact velocity increases, the equivalent load increases

causing the plastic strain to be more dominant.

During the elastic-plastic regime, the collision time seems to remained unchanged respect

to the predictions using Hertzian contact theory. The collision time for the experiments is

shown in Figure 4.6.
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Figure 4.4: Typical force-time plots generated by a stainless-steel particle on aluminum
alloy 6061 at various velocities. The measurements were done on air.
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Figure 4.5: Contact force as a function of the impact velocity, Ui. The experiments are
compared with the Hertzian theory. All of the collisions showed permanent deformations.
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Figure 4.6: Contact time as a function of the impact velocity, Ui. The experiments are
compared with the Hertzian theory. All of the collisions showed permanent deformations.
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4.1.2 Discussion

The results presented correspond to dry collisions, where the coefficient of restitution de-

creases monotonically with the impact velocity due to plastic deformation on the surfaces.

Those results were compared with models that predict the decay on the coefficient of resti-

tution as a function of the impact velocity. Figure 4.3 shows, for each alloy, the coefficient

of restitution as a function of U∗. As mentioned before, the elastic-plastic regime is not well

defined within a dynamic process. The dynamic pressure, pd, might vary with the impact

velocity, which in a sense represents the load applied at the contact area.
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Figure 4.7: Johnson’s model compared with the alloy 6061 experiments (◦). The solid lines
(–) were estimated based on Equation 4.1 for different values of pd.

Figure 4.7 shows, only for the alloy 6061, the coefficient of restitution as a function

of the impact velocity. The solid lines were obtained using Johnson’s model, each line

was estimated by choosing different values of pd, showing that, by varying the impact

velocity, the data points intersect lines with different values of pd, suggesting that for a

dynamic process, pd is a function of Ui. This behavior was observed as well for the other
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two models when comparing the data points. Thornton emphasized that the characteristic

velocity Uel might not be a suitable parameter during the entire elastic-plastic regime.

The model proposed by Tabor is based on the Meyer’s index, which is an “adjustable”

parameter. Kharaz and Gorham (2000) found values of the Meyer index by best fitting

their experimental data points to Tabor’s theory.

So far, the upper and lower limit of the elastic-plastic regime are well defined. However,

within this regime, the commonly used models require adjustable parameters to describe

the variations on the coefficient of restitution as a function of the impact velocity.
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4.2 Hydrodynamic effects on the coefficient of restitution

The hydrodynamic effects in particle interactions, specifically particle-wall collisions, are

dominated by the viscosity of the surrounding liquid. As the particle approaches the wall

it experiences, in some cases, a deceleration due to the energy consumed in displacing the

fluid between the particle and the wall. Experimental results for particle-wall collisions with

hydrodynamic effects (McLaughlin (1968), Zenit and Hunt (1998), Joseph et al. (2001),

Gondret et al. (2002)) in the absence of plastic deformations reported a critical Stokes

number, Stc, below which the viscous effects completely dominate, resulting in a coefficient

of restitution of 0. Beyond that critical value, the coefficient or restitution increases as the

Stokes number increases. The coefficient of restitution for elastic collisions, asymptotically,

reaches a value close to 1.

Figure 4.8 shows the experimental results (Joseph (2003)) for the coefficient of restitution
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Figure 4.8: Coefficient of restitution, e, as a function of the Stokes number, Sti, for steel
particles on a Zerodur wall. The solid line is the best fit of the data points. The results
were obtained from Joseph (2003).
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for stainless steel particles on the Zerodur wall in glycerol-water mixtures as a function of

the Stokes number based on the impact velocity, Sti. As mentioned before, for Sti > 103,

e ≈ 1. In this figure, the solid line (—) corresponds to the best fit to the experimental data

points; this line diverges from the simplified model e = 1−Stc/St. The best fit to the points

is: efit = 1 − 8.65/St0.75. Extrapolating from this curve yields the critical Stokes number

Stc ≈ 18. This curve will be used as a reference for the elastic collisions, corresponding to

the greatest possible value for the coefficient of restitution.

This section presents the results for the coefficient of restitution as a function of two

parameters: the impact velocity nondimensionalized by the elastic velocity, and the Stokes

number, based on the impact velocity. The results are sorted by type of alloy.

Figure 4.9 shows the coefficient of restitution as a function of U∗. The symbols represent

the different liquids used for each set of experiments. For collision in air, the minimum

coefficient of restitution measured was e = 0.88±0.01 with U∗ = 4.87; this specific collision

produced a permanent indentation on the sample, which accounts for the deviation of

the coefficient of restitution from the elastic value, e ≈ 1. The value of the coefficient

of restitution dropped with the increase in viscosity of the surrounding liquid, i.e., for a

given U∗, the coefficient of restitution increased as the viscosity decreased. Moreover, the

decaying rate of the coefficient of restitution seemed to slow down as the viscosity increased.

Eventually, this rate is reversed for the high viscosity fluids. Instead of gradually decaying,

the coefficient of restitution gradually increased up to what appears to be a maximum value.

4.2.1 Alloy 6061

As shown in Figure 4.9, the results corresponding to the 62% glycerol (4) experiments

show a quick growth for the coefficient of restitution starting at e ≈ 0 up to e ≈ 0.64,

where the coefficient of restitution remained constant, within experimental error, for the

the interval of 6.00 < U∗ < 13.16. For this range of velocities, the samples experienced

plastic deformation (see Section 5.1.1), suggesting that the initial kinetic energy is balanced

with the energy loss due to plastic deformation viscous dissipation. Within this interval, as

the impact velocity increased, the energy consumed by plastic deformation increased while

the energy used to displace the fluid in between the particle and the wall decreased. This

fortunate combination resulted in a constant coefficient of restitution, which only accounts

for the overall energy budget regardless of the specific type of energy losses. If the impact
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velocity were to further increase, the coefficient of restitution would have eventually dropped

as the energy loss due to deformation begins to dominate. The limited range of velocities

presented in this thesis did not cover regimes where the plastic deformation dominated over

the hydrodynamic effects.
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Figure 4.10: Alloy 6061: Coefficient of restitution, e, as a function of the Stokes number,
Sti

For immersed elastic collisions, previous studies (Joseph et al. (2001)) have shown that

the Stokes number is a suitable parameter to characterize the coefficient of restitution.

However, the plastic deformation present in immersed elastic-plastic collisions consumes

energy, yielding the Stokes insufficient to fully describe the system. Figure 4.10 shows the

results of immersed collisions of steel particles on alloy 6061 with the curve fitted to the

measurements done by Joseph (2003). The data compare well with the measurements at

low Stokes numbers, where the collisions are either elastic or the deformations are small.

The experiments begin to deviate from the solid line (—) at higher St, where the severity

of the deformations increases. In this figure, the region of constant coefficient of restitution,
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corresponding to the 60% glycerol (4), is bounded between 154 < Sti < 340.
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4.2.2 Alloy 2024

The measured restitution coefficient of stainless steel particles impacting on samples of alu-

minum alloy 2024 as a function of the nondimensionalized impact velocity, U∗, is shown in

Figure 4.11. For collisions in air, and the low glycerol-water concentrations (24% and 54%),

the coefficient of restitution decreases as U∗ increases. The decay rate of the coefficient of

restitution with the impact velocity decreases as the viscous effects increase. The experi-

ments completed with 62% glycerol (4) showed the same apparent constant coefficient of

restitution reported for the alloy 6061. Within the interval 4.39 < U∗ < 9.68, the mean

value of the coefficient of restitution is: e = 0.64 ± 0.01. For this material, the maximum

coefficient of restitution was e = 0.88 ± 0.01 at U∗ = 2.48. The elastic properties between

the alloys 6061 and 2024 are comparable, therefore, the response of the materials to the

collisions is also comparable.
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Figure 4.11: Alloy 2024: Coefficient of restitution, e, as a function of the nondimensional-
ized impact velocity, U∗ = Ui/Uel

Figure 4.12 shows the coefficient of restitution as a function of the Stokes number. As
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a reference, the elastic limit is represented by the solid line (—). As mentioned before, the

elastic limit is based on experimental data from collisions involving elastic materials, i.e., no

plastic deformation took place. In this figure, the quasi-constant coefficient of restitution

interval, corresponding to the 60% glycerol (4), is bounded between 157 < Sti < 346.
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Figure 4.12: Alloy 2024: Coefficient of restitution, e, as a function of the Stokes number,
Sti
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4.2.3 Alloy 7075

Experiments were also performed using the alloy 7075, the hardest of the three alloys. The

measured coefficients of restitution resulting from steel particles impinging on samples of

this aluminum alloy are plotted as a function of U∗, as shown in Figure 4.13. The results

show a maximum value in the coefficient of restitution of e = 0.93 ± 0.03 at U∗ = 0.77.

The maximum value for the coefficient of restitution was slightly higher than for the other

aluminum alloys, since according to the value of U∗ plastic deformations were not reached.

A possible explanation for the deviation from the elastic limit may be attributed to the

intrinsic experimental errors.

The coefficient of restitution for this alloy presents two possible quasi-constant regions

corresponding to the 62% (4) and 54% (∗) glycerol experiments. The apparent constant

coefficient of restitution regime for the 62% glycerol (4) has a value of e = 0.71 ± 0.02,

which spans over the range of 2.00 < U∗ < 3.22. The measured coefficient of restitution

for the collisions in the aqueous solution of glycerol at 54% wt., remained, within the

experimental error, constant between 1.57 < U∗ < 3.46. Those collisions had an average

value of e = 0.81 ± 0.01. Compared to the two previous alloys, U∗ is smaller for 7075

aluminum since the value of Uel is considerably larger.

Figure 4.14 shows the measured coefficient of restitution resulting from collisions of

stainless steel particles impinging over samples of alloy 7075 as a function of St. The re-

sponse of this particular alloy to the impacts is relatively close to the elastic limit, compared

to the two previous alloys. Although the plateau on the coefficient of restitution seems to

occur at two different concentrations of aqueous solution of glycerol (54% and 62%). The

results suggests that, for “harder” materials, the balance between the energy of deformation

and the hydrodynamic losses occurs at higher coefficient of restitution values. The energy

lost due to viscous dissipation is approximately constant irrespective of the contacting ma-

terials. However, the energy required to cause plastic deformations is a function of σel,

which for this alloy (7075) is considerably larger than the previous two alloys. Also, the

plastic deformations are considerably smaller in magnitude than the deformations on softer

materials.

The constant coefficient of restitution period occurs between 256 < Sti < 565 and

208 < Sti < 335 for the 54% (∗) and the 62% (4) glycerol solutions, respectively.
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Figure 4.13: Alloy 7075: Coefficient of restitution, e, as a function of the nondimensional-
ized impact velocity, U∗ = Ui/Uel
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Figure 4.14: Alloy 7075: Coefficient of restitution, e, as a function of the Stokes number,
Sti.
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4.3 Discussion

Figure 4.3 shows the coefficient of restitution as a function of the Stokes number. This plot

summarizes all the experiments for the three different alloys conducted for this thesis. The

colors used to differentiate the alloys, are: blue — alloy 6061, red — alloy 2024, and black

— 7075.

In terms of the coefficient of restitution, the elastic collisions are fully described as a

function of the Stokes number. However, as shown in Figure 4.3, the plastic deformation

introduces an extra energy loss mechanism that is not included in either of the two pre-

vious parameters. For low Stokes numbers, the collisions approximate the elastic regime

dominated by the viscous effects. In the case of the experiments with alloy 7075, the coef-

ficient of restitution increases monotonically with the Stokes number, closely following the

elastic limit line (—). The other two alloys deviate from the line at a lower Stokes num-

bers. For the softer materials, the impact velocity reaches the elastic limit at lower Stokes

number. The viscous effects are still dominating the collision process until the coefficient

of restitution plateau, where the two dominant energy losses are balanced: the energy in

plastic deformation and the viscous dissipation. Beyond this threshold, the coefficient of

restitution is monotonically decreasing, since the plastic deformation dominates the energy

budget. When plasticity occurs, the Stokes number is no longer a suitable parameter to

describe the collisions, Each set of experiments branches out from the solid line since the

energy balances differently for each combination of yield strength and liquid concentration.

For example, in Figure 4.14 for St ≈ 250 there are two possible values for the coefficient of

restitution, those values are determined by the viscosity of the surrounding liquid.
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Figure 4.15: Coefficient of restitution, e, as a function of the Stokes number, Sti. The
points in blue correspond to the alloy 6061, red — alloy 2024, and black — alloy 7075. The
solid line (—) is the best fit to the experimental data from Joseph (2003), corresponding to
the elastic limit.
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Chapter 5

Elastic-plastic deformations

The result of a various number of experiments are presented in this section. The experiments

were carried out using particles with the same properties impacting several targets. The

results are presented in two different ways: the solid mechanics viewpoint, where the fluid

effects are not considered; and the fluid mechanics perspective including the effect of the

surrounding fluid through the impact Stokes number, St. As a result of the impact, some

specimens showed permanent deformations on the surface. For those cases the typical

indentation parameters are presented as the indentation depth, H, and the crater diameter,

dc. Combining the impact and rebound velocities, the coefficient of restitution, e, was

estimated. The error bars for the indentation parameters were estimated from the misfit of

the filtered contours to a circle for the dc measurements, and by adding the surface roughness

and the contour level at which the crater diameter was optimally fitted. The error bars on

the coefficient of restitution represent the correlation between the estimated velocities and

the data. For small Stokes numbers, the error bars are more pronounced since the fluid

effects are larger, and the small changes of the particle position with time, close to the

collision point, are on the order of the estimated velocities resulting in a poor correlation.

The results are grouped according to the material properties of the target, tabulated in

Table 2.2. Each experiment was performed on a new and pre-stressed free surface. After

each experiment the specimen was replaced with a new one so that the targets had roughly

the same initial conditions between experiments.
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Table 5.1: Elastic quantities

Material Alloy Elastic velocity, Uel Combined yield strain, Y/E∗

( m s−1)

Aluminum 6061 0.024 0.0048
Aluminum 2024 0.033 0.0054
Aluminum 7075 0.101 0.0085
Ultra-Hard

Wear-Resistant
Stainless Steel 440C 4.631 0.0317

5.1 Solid mechanics perspective

This section summarizes the deformation parameters measured for the three different alloys

used in this thesis. The idea behind this perspective is to present the results using the

typical contact-mechanics argot, ignoring the hydrodynamic parameters. For all the plots

presented below, the different symbols represent the surrounded liquids used in this work.

5.1.1 Al-6061

The following section presents the individual results for the most extensively studied mate-

rial, which was the 6061 alloy. The impacting particles were stainless-steel spheres 12.7 mm

in diameter (See Table 2.1). Figure 5.1 shows the crater diameter, dc, nondimensionalized by

the particle diameter, Dp = 2R, as a function of the normalized impact velocity, U∗, defined

as the ratio of the particle impact velocity to the elastic velocity. Considering a Hertzian

contact, the maximum elastic contact radius normalized with the particle radius can be cal-

culated using Equation 1.14 the corresponding value is r∗e/R = 0.012. For U∗ > 1, plastic

deformation is expected to occur. However, the maximum stress concentration occurs just

below the surface; therefore, no “visible” permanent deformations are observed for U∗ = 1.

The first permanent indentation observed corresponds to U∗ ≈ 4, with dc/2R ≈ 0.012. This

value is on the order of the value predicted by the Hertzian theory. The nondimensional-

ized crater diameter increases with the normalized impact velocity as dc/2R ∼ O(
√

U∗).

Figure 5.2 presents the measurements of the indentation depth, H, nondimensionalized by

the particle radius, R, as a function of U∗. The minimum permanent indentation observed
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Figure 5.1: Crater diameter nondimensionalized by the particle diameter, dc/2R, plotted
as a function of the nondimensionalized impact velocity, U∗ = Ui/Uel. The overall average
surface roughness is σs = 0.068± 0.03 µ m.
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corresponds to the same case as the minimum crater diameter reported. Hence, the inden-

tation depth relative to to the particle radius is H/R ≈ 2.50×10−5, at U∗ ≈ 4. On average,

the lowest values of H are on the order of the surface roughness. For all the experiments

done using the alloy 6061, the overall average surface roughness is σs = 0.068 ± 0.03 µ m.

Hence, σs/R = 1.08 ± 0.43 × 10−5, which is on the order of magnitude of the minimum

value of H/R. Typically, the measurements of the smallest deformations show very large

scatter in the data. The maximum elastic penetration estimated from the Hertzian theory ,

δ∗e/R = 1.55× 10−4, is large compared to the minimum indentation depth, suggesting that

for small deformations, the elastic contribution to the total deformation is considerable.

The data points corresponding to the experiments done in water (+) and 40% glycerol (�)
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Figure 5.2: Indentation depth nondimensionalized by the particle radius, H/R, plotted as
a function of the nondimensionalized impact velocity, U∗ = Ui/Uel. The overall average
surface roughness is σs = 0.068± 0.03 µ m.

presented in this section, are missing the corresponding measurements on the coefficient

of restitution. Due to excessive blurriness on the images it was impossible to rely on the
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rebound velocity measurements. The impact velocity was estimated using several points

before the contact, which is valid for large Stokes numbers, since the deceleration of the

particle due to the presence of the wall was imperceptible. The indentation parameters were

obtained using the typical procedure described in Section 3. In both Figures 5.2 and 5.1,

there are two points corresponding to the 40% glycerol (4) that exhibit a clear offset from

the experimental trend, those two data points belong to the set of data that was obtained

with the malfunctioning camera.

5.1.2 Al-2024

Figure 5.3 shows the crater diameters measured after stainless steel particles impacted sev-

eral samples of alloy 2024. The crater diameters are nondimensionalized by the radii of

the particles and they are plotted as a function of U∗. As expected, the permanent in-

dentations are visible for U∗ > 1. The minimum value was measured at U∗ ≈ 2.7, with

dc/2R ≈ 0.011. The overall average surface roughness of the samples in this set of experi-

ments is: σs = 0.054 ± 0.019 µm. The maximum contact radius resulting from the elastic

deformation, re ∗ /R = 0.014, is again on the order of magnitude of the minimum value

observed. The normalized crater diameter increases monotonically with U∗ as ∼ O(
√

U∗).

The measured indentation depths, nondimensionalized by the radius of the impacting par-

ticle, are shown in Figure 5.4 as a function U∗, the normalized impact velocity. The mini-

mum indentation depth occurs approximately at U∗ ≈ 2.7, with H/R ≈ 1.50 × 10−5. The

Hertzian prediction for the maximum normal displacement, estimated using Equation 1.13

is: δ∗e/R = 1.97× 10−4.

5.1.3 Al-7075

In addition to the data presented using alloys 6061 and 2024, the alloy 7075 was also

used. The elastic velocity for this alloy is relatively higher than for the previous alloys. In

Figure 5.5, the nondimensionalized crater diameter formed as a result of the collisions is

plotted as a function of U∗. Although the range of impact velocities, 11 < Ui < 500 mm/s

was the same for the three different alloys, the range of U∗ for this alloy is reduced compared

to the previous ones. As a result of increasing Uel, the tendency for a material to deform

plastically decreases. The minimum crater was measured at U∗ ≈ 1.8, with dc/2R ≈ 0.011.

The estimated maximum r∗e/R = 0.022 is in this case slightly larger than the minimum value
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Figure 5.3: Crater diameter nondimensionalized by the particle diameter, dc/2R, plotted
as a function of the nondimensionalized impact velocity, U∗ = Ui/Uel. The overall average
surface roughness is σs = 0.054± 0.019 µm.
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measured. The corresponding nondimensionalized indentation depth is shown in Figure 5.6,
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Figure 5.5: Crater diameter nondimensionalized by the particle diameter, dc/2R, plotted
as a function of the nondimensionalized impact velocity, U∗ = Ui/Uel. The overall average
surface roughness is σs = 0.037± 0.008 µm.

plotted as a function of the normalized impact velocity. The minimum indentation depth

was measured at U∗ ≈ 1.8, with H/R ≈ 1.4 × 10−5. Again, in comparison with the

estimated maximum elastic deformation, δ∗e/R = 4.89×10−4, the minimum depth measured

is significantly smaller than the maximum elastic displacement. The nondimensionalized

average surface roughness is σs/R = 5.83±0.12×10−6, which is smaller than the minimum

value measured.
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Figure 5.6: Indentation depth nondimensionalized by the particle radius, H/R, plotted as
a function of the nondimensionalized impact velocity, U∗ = Ui/Uel. The overall average
surface roughness is σs = 0.037± 0.008 µm.
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5.2 Discussion

For three different alloys used in this thesis, the indentation parameters were previously

reported individually. The different symbols for those plots were used to distinguish, if

existent, the variability of the deformations with the surrounding liquid. Within experi-

mental uncertainty, the data show the deformations to be independent of the surrounding

fluid. Figure 5.7 shows, for all the experiments, the dimensional indentation depths for the

three different alloys as a function of the impact velocities, omitting the distinction of the

surrounding liquids. The solid lines represent the best linear fit of the data points. As sug-

gested by Bitter, the indentation depth increases linearly with the impact velocity. During

the elastic deformation regime (Ui < Uel) the material response to the collisions, given by

Equation 1.13 is also linear, for the combination of materials selected for this work.
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Figure 5.7: Indentation depth, H, as a function of the impact velocity, Ui

In addition to the indentation depth, the crater diameter resulting from the impacts is

shown in Figure 5.8. The solid lines were estimated based the analysis done by Bitter.
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The expression for the crater diameter was obtained by substituting H ≈ r2
c/2R in Equa-

tion 1.26, where rc = dc/2. For alloys 2024 and 6061, almost no difference in the crater

size was noticed from the measurements. However, the measurements of the crater diam-

eter corresponding to the aluminum alloy 2024 appear to be slightly larger than the ones

for the alloy 6061, which has the lowest yield strength (see Table 2.2). In Figure 5.8, the

predicted crater sizes, based on the material properties, are as expected; for a given impact

velocity, they are slightly larger for the Al — 6061 (blue - -), than for the Al — 2024 (red

−). Those small differences can be observed from the model proposed by Bitter, but are

less apparent in the experiments. The same misfit with the theory can be observed in Fig-

ure 5.7, where the indentation depth measurements corresponding to the Al — 2024 are, on

average, slightly larger than the values measured for the Al — 6061. A possible explanation

for this inconsistency can be attributed to the average values on the elastic properties of

those materials. Often, the yield strength is an average value. If the difference between the

values of yield strength provided by the manufacturer of the Al — 2024 and Al — 6061

is smaller than the standard deviation of the nominal values, then the expected response

of those materials may appear to be contradictory, especially when looking at fine-scale

differences on materials with similar elastic properties.

Figure 5.7, clearly shows the difference between Al — 7075 and the other two alloys.

Typically, the indentation depth nondimensionalized by the particle radius is a represen-

tation of the localized strain, often called interference. In Figure 5.9, H/R is plotted as a

function of U∗. As expected, the hardest of the three alloys, Al — 7075 requires a higher

impact velocity to cause the same deformation as the other two alloys.
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Chapter 6

Energy of deformation

This section presents a the general chart that spans the elastic and elastic-plastic deforma-

tion regimes for fully immersed collisions. In addition to the energy of deformation, the

hydrodynamic effects contribute significantly to the total energy losses during a collision.

Extending the findings done by Eirich and Tabor (1948) and H.M.Clark and Burmeister

(1992), it is shown that the fluid pressure during a collision can increase significantly.

6.1 Deformation parameter

The Hertz theory of the elastic impact is valid only during the elastic deformation regime.

The boundary between elastic and elastic-plastic regimes can be determined by the defor-

mation parameter, D. In general, this parameter compares the kinetic energy of the striker

with the yield strength of the softer material (energy of deformation). Thus, D is defined

as

D =
ρpU

2
i

Y
. (6.1)

The experiments presented in this thesis used rigid particles as strikers and soft targets.

Yield is expected to occur on the soft samples. The corresponding yield strength of the

three different aluminum alloys was used to determine their elastic limit. Table 6.1 shows

the elastic limits in terms of the deformation parameter, estimated using Uel. As discussed

before, the elastic velocity(Uel) is used as a reference for the elastic limit for collisions.



101

Table 6.1: Elastic limit of the materials in terms of the deformation parameter, D

Material Alloy Elastic velocity, Uel Deformation parameter, Del

( m s−1)

Aluminum 6061 0.024 1.58 ×10−8

Aluminum 2024 0.033 2.56 ×10−8

Aluminum 7075 0.101 1.58 ×10−7

6.1.1 Residual volume

The residual volume, Vr, is defined as the volume of the indentation left on the soft material

after the impact. This volume is approximated to a “spherical” cap, Vr = 1/6π H(3(dc/2)2 +

H2). In this section, the residual volume is used to represent the magnitude of the indenta-

tion. Figure 6.1 shows the residual volume nondimensionalized by the volume of the particle,

Vp, as a function of the nondimensional strain, dcE
∗/dpY , for the different aluminum alloys

used in this thesis.

For nondimensional strains below 2.6, the residual volume is zero. For those strain

values, the deformations remain elastic.

6.2 Fluid pressure

For immersed particle-wall collisions where the hydrodynamic effects cannot be neglected,

the collision process results in a significant increase of the pressure in the liquid between the

particle and the wall. As mention in Section 1.1, this increasing pressure may slow down

the particle as it approaches the wall. Besides slowing down the particle, the pressure might

also elastically deform either the particle or the wall. As shown in Figure 1.5, the minimum

distance of approach with significant deformation, δm, is a function of the Stokes number.

The solution given in Section 1.5.2 is limited in applicability since the minimum approach

distance is constant, which is valid for a small range of Stokes numbers.

The following analysis is the result of the combination of the approaches done by Eirich

and Tabor (1948) and H.M.Clark and Burmeister (1992). For simplicity, they started with

a cylinder of finite length approaching a plane. The pressure in the liquid was calculated
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Figure 6.1: Nondimensional residual volume, V ∗ = Vr/Vp, as a function of the nondimen-
sional strain dcE

∗/dpY (Johnson (1985)). The colors represent: blue — alloy 6061, red —
alloy 2024, and black — alloy 7075.
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as a function of the impact velocity of a simplified particle. As the cylinder approaches

the wall with a velocity U , the pressure of the interstitial fluid increases to its maximum

value, pmax, corresponding to the critical thickness of the viscous fluid layer, δi0. Eirich and

Tabor (1948) found a relation for the pressure as a function of the approaching velocity.

The maximum value for that expression is given by

pmax = 0.934

(
ρ3

pU
5
i0dp

µ

)1/2

, (6.2)

with the corresponding film thickness

δi0 =
(

15
32

µdp

ρpUi0

)1/2

= R

(
5
24

)1/2( 1
St

)1/2

. (6.3)

The film thickness where the pressure is maximum for a given fluid changes as a function

of the critical impact velocity, Ui0. In the right panel of Figure 6.2 the maximum pressure

is plotted as a function of the Stokes number, Sti0, based on the Ui0; the symbols represent

different viscosity values. On the left panel, the film thickness, δi0, at which the pressure is

maximum is plotted. To compare Figure 6.2 with previous studies, δio was nondimenzion-

alized by the particle radius, R, shown in Figure 6.3. The expression for the film thickness

given by Equation 6.3 can be written as a function of St and it decays as ∼ (Stio)−1/2.

Compared to the work done by Davis et al. (1986), which used a fixed value to approxi-

mate the critical distance, δi0 ≈ 0.01R is only valid for small Stokes numbers. Based on the

previous work done by Eirich and Tabor (1948), Figure 6.3 (left panel) shows that for large

Stokes numbers, δio/R < 0.01. However, for Stio < 20 the assumption by Davis et al. re-

mains consistent, i.e., δio/R ≈ 0.01. The pressure at the lowest point of the particle should

match the maximum pressure of the squeezed liquid. As shown in Figure 6.3 (right), the

maximum pressure in the squeezed liquid can be large enough to cause plastic deformations

on either the particle or the wall. For any given impact velocity, Uio, the lower the viscosity,

the larger the pressure in the squeezed film. The detail on Figure 6.3 (right) shows surfaces

of constant velocity (dashed lines) ranging from 0.05–1.00 m/s, increasing from the bottom

to the top.
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Figure 6.2: Simplified model proposed by Eirich and Tabor (1948) of a collision through
liquid films. The particle approaching the wall corresponds to a stainless-steel solid sphere
with a diameter, dp = 12.7 mm, and a density ρp = 7800 kg m−3. The left panel represents
the fluid film thickness, δi0, at which the pressure in the squeezed film is maximum, pmax.
The panel on the right-hand side shows the variations of pmax as a function of Stio; the
different symbols correspond to different values of viscosity.
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Figure 6.3: Nondimensionalized fluid film thickness, δi0, by the particle radius, R, (left
panel) at which the pressure in the squeezed film is maximum, pmax. For a wide range
of Stokes numbers (within the experimental range), the curve does not suggest a constant
value for δio/R. The panel on the right-hand side shows a detail of the maximum pressure.
The dashed lines represent constant velocity surfaces decreasing from top to bottom.
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6.3 Comparison between surface deformation and coefficient

of restitution

As the energy of the collision is consumed on plastic deformation, the coefficient of resti-

tution decreases. Figure 6.4 shows the coefficient of restitution as a function of the Stokes

number. The size of the symbols is proportional to the residual volume of the indenta-

tion. The larger indentations occur, as expected, for the aluminum alloys with lower yield

strength. For the aluminum alloy with the highest value on yield strength, Al — 7075,

the coefficients of restitution are the highest, and the magnitude of the indentations are

significantly smaller.

The results in Figure 6.4 suggest that the magnitude of the indentation does not depend

uniquely on the Stokes number. At a fixed Stokes number, the magnitude of the indentation

(for a given material) is considerably larger for the glycerol-water mixtures with higher

viscosity. This result is consistent with the analysis of the fluid pressure (see Figures 6.2

and 6.3). The combination of material properties and the surrounding liquid determine

the maximum value for the coefficient of restitution. The same value on the magnitude of

the indentation corresponds to various values on the coefficient of restitution. Collisions

mixing hydrodynamic effects and surface deformations are not described by the parameters

typically used for immersed elastic collisions.

For elastic collisions, the coefficient of restitution monotonically increases with the Stokes

number. Figure 6.5 shows the coefficient of restitution as a function of the Stokes numbers

for several combination of materials and liquids. Note that the coefficient of restitution

approaches one (e ≈ 1) as the Stokes number increases. For those experiments (Joseph

et al. (2001)), neither the particles nor the surfaces suffered plastic deformation. Compared

with Figure 6.4, when the surfaces undergo plastic deformations, the coefficient of restitution

does not reach the elastic limit, i.e., e = 1. Within this interval of Stokes numbers, the

values on the coefficient of restitution deviate from the experimental trend obtained by

Joseph et al. (2001).
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Figure 6.4: Coefficient of restitution as a function of the Stokes number. The size of the
symbols is proportional to the residual volume of the permanent indentation relative to the
volume of the impacting particle. The colors represent the different aluminum alloys: blue
— alloy 6061, red — alloy 2024 and black — alloy 7075.
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Figure .: Coefficient of restitution, e, as a function of Stokes number based on the impact velocity for collisions of all particles
on the Zerodur wall in water.Figure 6.5: Coefficient of restitution as a function of the Stokes number. The experiments

were done using several single particles impacting on a Zerodur block in different liquids
(Joseph et al. (2001)).
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6.4 General map for immersed collisions

The experiments presented in this thesis spanned two of the important deformation regimes,

the elastic and the elastic-plastic regimes. In addition to those regimes typically studied

in the absence of significant viscous forces, the experiments also covered the regimes where

the hydrodynamic effects become important.

Figure 6.6 shows the nondimensionalized deformation parameter, D∗ = D/Del, as a

function of the Stokes number. The size of the symbols represent the magnitude of the

indentation based on the residual volume.The different values for the elastic limit in the

deformation parameter, Del, are shown in Table 6.1. This figure spans the following four

regimes: elastic without rebound, elastic with rebound, elastic-plastic without rebound, and

elastic-plastic with rebound.

The deformation regimes are determined by D∗. For D∗ < 1, the collisions remain in the

elastic regime. For D∗ > 1, the deformation is elastic-plastic. The collisions present small

plastic deformations, which are comparable in magnitude with the elastic deformations.

The critical Stokes number, Stc, is used as the boundary for the hydrodynamic effects. For

St < Stc, no rebound occurs after the collision; correspondingly, for St > Stc the particle

rebounds after the collision. The results clearly show that for a fix Stokes number, the

crater size increases as D∗ increases. Similarly, for a given D∗, above the elastic limit, the

crater size increases as the Stokes number increases.

Figure 6.7 shows the nondimensionalized deformation parameter, D∗ = D/Del, as a

function of the Stokes number. The size and color of the symbols represent intervals of the

coefficient of restitution. The sequence of dots showed at D∗ = 1 represents the elastic limit,

the region below that line correspond to the region of maximum coefficient of restitution.

When the Stokes number is low enough, so that some lubrication effects are still important,

for a given Stokes number, as D∗ increases, the coefficient of restitution increases until

it reaches a maximum and then it gradually drops back due to plastic deformation. For

relatively high stokes numbers, the coefficient of restitution is already a maximum at D∗ = 1,

therefore, it begins to drop as we increased D∗. From this diagram, it is clear that the

coefficient of restitution depends on both the fluid properties and the material properties.
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6.4.1 Elastic regime without rebound

This regime is limited by the D∗ < 1 and St < Stc. In this regime most of the kinetic energy

of the particle is dissipated by the viscous drag. For some experiments, the hydrodynamic

forces were large enough to fully stop the particle before the collision. For most of those

slow collisions, the strain in the samples resulting from the impact was not enough to

produce plastic deformations. The stored elastic energy on the materials did not overcome

the hydrodynamic load.

6.4.2 Elastic regime with rebound

This regime, limited only by the deformation parameter, D∗ < 1, shows the dependency of

the coefficient of restitution with the Stokes number. The experimental results previously

done by Joseph et al. show that beyond the critical Stokes number, Stc, as the inertia

of the particle increases overcoming the hydrodynamic effects, the coefficient of restitution

monotonically increases. The summary of those experiments is shown in Figure 6.4. The

elastic properties of the particles and the targets did not exceed the elastic limit, showing

no effect on the measured coefficients of restitution. In this thesis, as shown in Figure 6.6,

only the hardest material Al — 7075, contributed with a few points in this regime. None

of those points presented permanent plastic deformations. This particular alloy remained

closer to the elastic coefficient of restitution.

6.4.3 Elastic-plastic regime without rebound

For collisions below the “no rebound” condition given by the critical Stokes number, com-

binations with relatively soft materials take place in this regime. As shown in Figure 6.3

the pressure in the liquid between a solid body approaching a wall increases as the velocity

and viscosity increases. The value of those pressures can be large enough to produce plastic

deformation in the softer material. As discussed before in this thesis, the plastic deforma-

tion begins below the surface of the materials. Thus, in Figure 6.6, the few experimental

points in this regime did not show any noticeable permanent deformation.
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6.4.4 Elastic-plastic regime with rebound

As the particle velocity is increased for relatively low yield strength materials, the elastic

limit is reached (D∗ > 1). This regime combines collisions above the elastic limit and also

beyond the critical Stokes number, Stc. The majority of the experiments presented in this

thesis span this regime.

For low Stokes numbers (St ∼ 100) the hydrodynamic effects are not negligible, but nei-

ther are the the plastic deformations. The energy losses are split in two: viscous dissipation

and plastic deformation. As shown in Figure 6.4, those two energy-loss mechanisms balance

each other at the maximum value of the coefficient of restitution. Beyond this equilibrium

regime, the energy losses on plastic deformation become dominant, resulting in a decrease

of the coefficient of restitution dampened only by the small hydrodynamic effects. As shown

in Figure 6.6, the severity of the deformation, in terms of magnitude, increases with Stokes

number, showing the balance between the two energy-loss mechanisms. For large Stokes

numbers, St > 1000, the magnitude of the deformations remained unchanged, suggesting

that viscous losses are negligible. Hence, the energy-loss mechanisms are dominated by the

plastic deformations. The energy losses, as a bulk, are best appreciated by looking at the

coefficient of restitution in Figure 6.4, where the elastic-plastic regime is represented by

the points deviating from the solid line (−) representing the trend for the elastic collisions.

In this figure, with the increasing on the coefficient of restitution with the Stokes number,

increases, the coefficient of restitution

6.5 Discussion

This section proposed a general map in which collisions can be divided in four regimes

according to the energy-loss mechanism. The combination of materials selected in this

experimental work, and the low impact velocities limited the coverage of the map to only

viscous losses and elastic-plastic deformations. Plastic deformations required either larger

particle impact velocities or softer targets. To asses that the collisions remained within

the elastic-plastic regime, the nondimensionalized strain was compared with typical quasi-

static experiments of spherical indenters (Pane and Blank (2006)).The general map can

be best explained by simultaneously looking at both the coefficient of restitution and the

deformation parameter (Figures 6.6 and 6.4).
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The proposed regimes suggested that during the collision process, the pressure in the

liquid between the particle and the sample might be large enough to cause plastic defor-

mation in the materials that are in contact, even if the particle does not rebound after the

collision. For bouncing particles at low Stokes numbers, the two energy-loss mechanisms

are significant for a short range of Stokes numbers, beyond which the plastic deformation

become more dominant. Finally, the hydrodynamic effects are neglected for large Stokes

numbers, where the only energy loss mechanism is the plastic deformation.
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Chapter 7

Conclusion

7.1 Summary of results

This thesis presents the experimental results describing the hydrodynamic influence on the

surface deformation resulting from immersed rigid particles impinging on soft walls. The

experiments presented consist of controlled normal single particle-wall collisions. A single

particle attached to a thin string was moved in a pendular trajectory towards various soft

samples attached to a long bar. The experiments were conducted in air, and in various aque-

ous glycerol-water mixtures. The indentation parameters were measured for the samples

presenting permanent deformations.

The instantaneous coefficient of restitution, e, was used to quantify the overall energy

loss. In the elastic regime, the coefficient of restitution is well characterized by the Stokes

number. The critical Stokes number, below which no rebound occurs (e = 0), was found

to be Stc ≈ 10 for the aluminum alloys Al — 6061 and Al — 2024, and for the alloy Al —

7075 the critical value was Stc ≈ 15.

The combination of materials and impact velocities selected for this work spanned the

elastic and elastic-plastic deformation regimes. The impact velocities needed to cause yield

in metal surfaces are very small; therefore, for most of the impacts between metallic bodies

some degree of plasticity may be present. Within the elastic-plastic regime, there is an

extra critical Stokes number based on the elastic velocity, Uel, below which the collisions

remain elastic. This elastic Stokes number, Stel, is not unique and increases as the viscosity

decreases. For some combination of fluids and materials, the elastic limit was reached even

for collisions that showed no rebound.

Based on those two critical Stokes numbers, Stc and Stel, the general collision chart
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presented in this thesis spans the following four regimes:

Within this last regime, the hydrodynamic effects are dominant at low Stokes numbers.

As the inertia of the particle increases, the permanent indentations become larger. Simulta-

neously, the coefficient of restitution also increases. During the elastic recovery, the kinetic

energy of rebound overcomes the viscous forces. Consequently, the coefficient of restitution

increases until it reaches a maximum value. The experimental results suggested that this

maximum value is a combination of the elastic properties of the materials and the viscosity

of the surrounding liquid. The energy devoted to plastic deformation becomes significant

when the maximum value in the coefficient of restitution is reached. The two energy-loss

mechanisms seemed to reach partial equilibrium. During this interval of partial equilibrium,

as the Stokes number increases, the hydrodynamic effects become less dominant; however,

since the size of the indentation increases, the apparent excess of energy on the total budget

is consumed as plastic deformation, keeping the coefficient of restitution constant during

this interval. If the collisions were perfectly elastic, the coefficient of restitution would

monotonically increase with the Stokes number.

Eventually, the energy of deformation becomes more dominant and the hydrodynamic

effects negligible. Hence, the coefficient of restitution gradually falls with increasing Stokes

numbers. The experimental results suggested that the decaying rate of the coefficient of

restitution is damped by the hydrodynamic effects.

The experiments conducted in air showed a decrease in the coefficient of restitution as

the impact velocity increased. The results were compared with three different models for

elastic-plastic regimes. This particular deformation regime is not precisely defined, resulting

in a poor agreement with the models. The models are based on dynamic properties that

change with the severity of the impact, from the elastic limit to the fully plastic limit.

The asymptotic decay on the coefficient of restitution of e ∼ V −1/4 is valid only for fully

plastic deformations, i.e., impact velocities a lot larger than the elastic velocity. The fully

plastic regime was not covered by any of the experimental results presented in this work.

In order to observe small variations in the indentations formed by dry and wet collisions

in the border line of the elastic-plastic regime, the surface of the samples were mirror

polished. The deformation parameters were carefully measured. However, the experimental

results showed that the magnitude of the indentation parameters is independent of the

viscosity of the surrounding liquid within the elastic-plastic regime. Within the experimental
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error, the size of the indentations for collisions in air were on the order of magnitude of the

immersed collisions. Existing theories on the wear of plastic surfaces were compared with

the measured deformation. The predicted crater diameter formed by the particle impacts

compared relatively well with the experimental results. For the three different aluminum

alloys, the estimated value overestimated the experimental values.

The crater dimensions and therefore the energy absorbed by plastic deformation is

clearly independent of the liquid or gas medium and only a function of the incident velocity

and the material properties. This must mean that viscous effects in the thin contact or

near-contact film of fluid are negligible. In other words that the high speed flow in that film

is dominated by inertial effects and that vicous stresses are negligible; the fluid pressure in

the film did not reach a value sufficient to contribute to creating a crater. If it were not for

the craters in air we could say that all the other fluids have similar densities and therefore

the film flows and pressures are the same for a given incident velocity. The viscous effects

are only different on the rest of the surface of the sphere that is not in contact. So what

makes the coefficient of restitution different is not the flow in the film but the flow over the

rest of the sphere.

7.2 General comments and future directions

The hydrodynamic effects combined with the elastic-plastic deformation were studied. The

limitations on the experimental setup used in this work confined the results within elastic

and elastic-plastic regimes. The fully plastic regime remained unresolved. Extending the

range of impact velocities and using softer materials as targets would be a good way to span

the blank areas in the general collision chart.

Due to the limited range of impact velocities, it was not possible to observe the behavior

of the particle-wall collision for a given combination of materials and a given liquid. It was

mentioned that the coefficient of restitution increases with the Stokes number. When the

energy devoted to plastic deformation becomes important, the coefficient of restitution

reaches a maximum value, remaining constant within a range of Stokes numbers. For

further increase on the Stokes number, the behavior of the coefficient of restitution is merely

qualitative.

Also of interest is the problem where the particles are soft. In fluid-particle systems,
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the containers might be more rigid than the particles reversing the deformation problem

presented in this thesis. Using a similar pendulum setup, soft particles impacting hard

surfaces at various velocities might show a similar behavior on the energy loss mechanisms

as the severity of the deformations increases. Those experiments might as well be extended

for binary collisions.

In order to complement the understanding in the field of erosion in fluid-particulate

systems, the study of permanent deformations due to oblique collisions would be necessary.

Cutting is the type of wear produced by oblique collisions, in which material from the surface

is actually removed by the striker. Previously, for elastic collisions it has been shown that

oblique collision can be decoupled into tangential components and normal components.

Studying oblique collisions allowing the surfaces to deform, and comparing those results

with the normal collisions experiments conducted in this thesis, might show whether cutting

wear decouples into tangential shearing and normal indentations.

During the stage of deciding the final experimental setup, a few collisions were done using

free-fall techniques, resulting in large impact velocities. Looking at one of the permanent

indentations formed during those experiments, evidence of cavitation marks was observed

inside the indentation. This observation adds an extra erosion mechanism on the immersed

collisions. For a full understanding of the erosion process this additional mechanism deserves

some attention.
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