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Abstract

Recent experimental evidence for the ©*(1540) has given rise to much theoretical interest in
exotic baryons. The O is a baryon that has strangeness S = +1, meaning that it contains
an anti-strange quark. Thus it cannot be constructed from three quarks, unlike all other
known baryons; it needs at least an extra quark-antiquark pair. It is usually modeled as a
pentaquark state in the 10 representation of the group SU(3), with flavor content suudd.

This thesis considers possible heavy pentaquarks, in which the antiquark is charmed or
bottom rather than strange. In the context of the diquark model of Jaffe and Wilczek, it
is argued that negative-parity pentaquarks of this type may be lighter than their positive-
parity counterparts, and hence are likely to be stable against strong decay. Estimates are
made for their masses, and their weak decays are discussed. Isospin relations are found
between the decay rates for different possible decay channels.

Negative-parity heavy pentaquarks are also considered in a less model-dependent way,
in the context of a 1/N, expansion, where N, is the number of colors. Heavy quark effective
theory is also employed. Mass relations are found between the mass splittings of heavy
pentaquarks and those of nonexotic baryons, and SU (3)-breaking corrections to these rela-
tions are computed. The results could be helpful in interpreting experimental data if heavy

pentaquarks are observed.
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Chapter 1

Introduction

The structure of hadrons is surprisingly poorly understood. The Standard Model gives a
detailed description of the couplings of quarks and gluons, and at very high energy scales,
>> Agcp, the strong coupling constant o is small enough that a perturbative expansion
is useful. At very low energies, one can apply chiral perturbation theory, essentially consid-
ering hadrons to be fundamental particles and ignoring their constituent quarks. However,
at intermediate energies around Agcp—corresponding to a length scale around the size of
a hadron-the strong coupling constant becomes large, and yet the quark structure is too
important to be ignored. A hadron is full of “brown muck” consisting of gluons and quark-
antiquark pairs popping in and out of existence; this muck tends to obscure our view of
the hadron’s interior. Thus in order to understand what is going on inside a hadron, we
are reduced to developing phenomenological quark models, to using abstract techniques like
the large N, expansion, or to doing numerical calculations on the lattice.

In order to refine our understanding of hadrons, it is helpful to have as much empirical
data as possible. It is particularly useful to be able to observe the behavior of quarks in
new and different environments, in bound states of unusual composition. That is one reason

why the prospect of exotic hadrons has been so intriguing.

1.1 The ©+(1540)

1.1.1 History

Since the early days of the quark model, there has been speculation about exotic hadronic
states. A meson consists of a quark plus an antiquark, a baryon of three quarks; why

not, say, a tetraquark with two quarks and two antiquarks, or a dibaryon with six quarks?



2

Of course, atomic nuclei can contain large numbers of quarks, but they behave, to a good
approximation, as collections of three-quark nucleons, and are not considered to be “exotic”
in this sense.

One possibility that received a fair amount of attention was the pentaquark, an exotic
baryon containing four quarks and an antiquark. (The name “baryon” is appropriate be-
cause such a state has baryon number one, although it is not made up of the usual three
quarks.) In the 1980’s, experimental searches were made for pentaquarks, and tentative
listings appeared in the Particle Data Book [1], only to disappear shortly thereafter. (For a
review of the history of exotic baryon searches, see [3].) In 1988, the Particle Data Group

announced, ([2], quoted in [4]),

“The general prejudice against baryons not made of three quarks and the lack of any
experimental activity in this area make it likely that it will be another 15 years before this

issue is decided.”

This statement was to prove prophetic.

It was shown in the mid-’80’s that the chiral soliton model for baryons [6] gives rise to
exotic SU(3) flavor multiplets, such as the 10 and the 27, whose members have quantum
numbers that cannot be produced by any combination of three quarks. However, these were
generally dismissed as unphysical until 1997, when Diakonov, Petrov, and Polyakov used
the model to predict a particle they named the Z* [5]. The Z was a baryon in the 10,
with minimal quark content sudud. Diakonov, et al. predicted a mass of 1530 MeV and a
strikingly narrow decay width, less than 15 MeV, for the ZT.

In 2003, exactly 15 years after the Particle Data Group statement above, the LEPS
collaboration [10] experimentally detected a baryon that appeared to be nothing other than
the Z*. It decayed to NK, meaning that it had positive strangeness (i.e., contained an
anti-strange quark), and thus could not be constructed from just three quarks. It had a
mass of 1540 MeV and a width below the resolution of the detector, less than 25 MeV.
Many other experiments [11] soon went on to observe this exotic baryon, now renamed the

©7 and thought by many to be a pentaquark.’

!Some authors [12] have suggested that the ©F may in fact be a heptaquark, a bound state of K, N, and
. This view will not be discussed further here.
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Figure 1.1: The 10 multiplet of SU(3);. The vertical axis represents hypercharge, Y; the
horizontal axis represents the third component of isospin, I3. The three states at the vertices
of the triangle have exotic quantum numbers; the white circles represent cryptoexotic states.

1.1.2 The 10 Multiplet

Given its flavor content, the ©®1 could have isospin 0, 1, or 2. However, no isospin partners
have been detected, supporting the interpretation that it has I = 0 and is at the tip of the
10 SU(3)s multiplet (Figure 1.1), as predicted by Diakonov, et al.. The three states at
the vertices of the triangle, shown in black in the figure, have quantum numbers that are
truly exotic: they could not arise from a combination of just three quarks. In addition to
the ©T at the top of the diagram, there has been some experimental evidence for the state
in the bottom left corner, with valence quark content udsds. The NA49 Collaboration [13]
g/;; it is listed in the 2004
Particle Data Book [16] as the ®(1860), at the one-star confidence level. Other experiments

observed a mass of 1862 MeV for this state, which it called =

[14] have reported null results in searches for the Z/® pentaquark.

The states shown in white in Figure 1.1 are known as “cryptoexotic” states. Each
contains a quark and an antiquark of the same flavor—for example, @usud or ddsus. This
results in quantum numbers that are indistinguishable from those of an ordinary three-quark
baryon. Thus, experimenters may already have observed some of these states without
realizing that they were part of a pentaquark multiplet. The designers of quark models

explaining the ©® have explored the possibility that a number of known baryons may be



members of the 10 [3, 7).

1.2 Experimental Questions

1.2.1 Is it real?

The O is listed in the 2004 Particle Data Book [16] with three stars. It should be noted,
however, that a significant number of experiments have searched for the © without success
[15], casting doubt on its existence. Much speculation has occurred as to how the O
might avoid detection in some experiments while being seen clearly in others. There are
some suggestive differences between the experiments that see the ©®* and those that do
not. Many of the experiments with positive results involve photoproduction, while those
with negative results use either ete ™ production or high-energy proton collisions [17, 18].
Perhaps the production of the ©7 is suppressed in some mechanisms and enhanced in others.
Hicks [18] points out that, in the case of eTe™ annihilation, the production of (three-quark)
baryons occurs at a lower rate than that of mesons, and suggests that the rate may be still
lower for pentaquarks. Karliner and Lipkin [19] suggest that the ©" may arise only via
a particular production mechanism, such as the decay of a cryptoexotic N* resonance. It
is, of course, possible that the ®T may turn out not to exist, though it appears somewhat
unlikely that so many positive results, from different experiments looking at different types
of reactions, could all be explained away. (For a table showing all the experiments and the
reactions they observed, see [18].) On the other hand, it should be noted that most of the
experiments reporting positive results have low statistics, while those with negative results
have higher statistics. Clearly, more experimental evidence is needed; new high-statistics
experiments that are planned or already under way at CLAS and COSY-TOF will likely
settle the question within the next year or so [20].

Quite recently, Jefferson Lab issued a press release announcing the results of the latest
experiment at CLAS [21]. Observing the same reaction in which the ©®" was previously
detected at SAPHIR, (yp — KT Kn), with much higher statistics, CLAS found no signal.
This result casts a great deal of doubt on the existence of pentaquarks, although it does
not represent definitive proof that the © is not real. As of this writing, the results are not
yet in from JLab’s g10 experiment, which uses a deuterium target to reproduce the original

CLAS experiment that reported positive results, with higher statistics. A recent response
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to JLab’s announcement [22] suggests that the yp reaction at CLAS may have produced
a null result because of an asymmetry in the interactions of the proton and the neutron;
however, this suppression mechanism works much better if the ©T has spin 3/2, which
appears unlikely.

In this thesis, we will take an agnostic position as to the reality of the ©*. None of the
models we investigate can make a definitive statement about whether or not pentaquarks
exist; however, given the assumption that the measurements of the ©T are real, these
models allow us to extrapolate the properties of other types of pentaquarks. If the ©%
does turn out to exist, theorists will face the problem of explaining why it fails to appear
in certain experiments. On the other hand, if the consensus turns out to be that the ©%
measurements were false, we will face a different puzzle: why don’t pentaquarks exist? QCD
as we currently understand it certainly allows for them; could there be some hidden aspect
of hadron dynamics that rules them out? Still another possibility is that there is no exotic
baryon with the mass and width of the ©, but that real pentaquarks are lurking somewhere

else in the hadron spectrum and have yet to be discovered.

1.2.2 Width and Parity

Nearly all the experiments that have found evidence for the ©T have reported that its
width is below the resolution of their detectors, i.e., < 10 — 20 MeV, although ZEUS and
HERMES give the width as 8 + 4 and 13 + 9 MeV respectively [18]. Indirect upper limits
based on elestic scattering put the width even lower, at a few MeV or even < 1 MeV [24].

This narrow width is unexpected and intriguing. In an uncorrelated quark model, the
width would be several hundred MeV; it should be easy for a pentaquark to fall apart into
a baryon and a meson. Follow-up work in the chiral soliton model after the original paper
by Diakonov, et al. predicted a width of ~ 100 MeV [8].

There have been several correlated quark model proposals attempting to account for the
narrowness of the ©F, including the diquark model [7] and the triquark model [9], which
will be discussed further in the next chapter. The basic idea is that it would be relatively
difficult to rearrange specially correlated groups of quarks into the final state KN, and
hence the decay would proceed slowly. It has also been argued that a narrow decay width
arises naturally in a QCD sum rule approach [23].

The parity and spin of the ©T have not been determined experimentally. Most re-
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searchers assume that the spin is %; it is unlikely that the ground state could have a higher
spin. The parity, however, is somewhat controversial. The diquark and triquark pictures
require positive parity, as does the chiral soliton model. It has been argued [31] that a
positive-parity pentaquark should always have a very narrow decay width, regardless of
specific dynamical assumptions, because a positive-parity wavefunction would have quite a
small overlap with the wavefunction of the final state K + N. Positive parity thus looks
attractive because it would help explain the oddly narrow width of the ©T.

On the other hand, studies using QCD sum rules [25] have indicated negative parity.
So have some lattice QCD studies [26], including a lattice calculation with operators based
on the diquark model [27]. (Other lattice searches [28] have found no bound pentaquark
state at all.) There are a number of technical issues that call into question the reliability
of studies of these two types, as discussed in [3]. In the case of the QCD sum rules, some
important OPE contributions may have been neglected. In the lattice studies, the quark
masses used are much heavier than the physical values, and additional work at lighter quark
masses might change the results; there is also a question of whether the appropriate operator
has been chosen to represent the pentaquark. In any case, the parity of the ® remains an
important experimental question. There have been several suggestions of ways to measure
the parity, by looking at the patterns of pentaquarks’ strong decays and at their production

mechanisms [29)].

1.3 Heavy Pentaquarks

Now that there is evidence for the ©7, it is natural to consider the possibility of other exotic
baryons as well. The various models that have been used to explain the properties of the
O provide a framework in which to analyze different types of pentaquarks, including those
beyond the 10 multiplet. In this thesis, we will explore the possibility of heavy pentaquarks,
i.e., those containing charm or bottom quarks.? There is some (highly controversial) ex-
perimental evidence for a charmed pentaquark [37], which will be discussed further in the
next chapter.

Chapter 2 considers the implications of Jaffe and Wilczek’s diquark model for heavy

20One might imagine that the methods used here could easily be extended to pentaquarks containing top
quarks as well. However, the top quark decays much more quickly than the time scale for hadron formation.

2
Its decay width may be estimated by ™22 ~ 1 GeV.
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pentaquarks. We argue that, due to Fermi and Bose statistics, negative-parity heavy pen-
taquarks should be lighter than their positive-parity counterparts in the diquark picture.
We predict a triplet of such states, estimate their masses, and show that they are likely to be
stable against strong decay, making them potentially accessible to experimental searches.
Their possible weak decays are analyzed, and isospin and SU(3) relations are found for
many of the decay rates.

Chapter 3 considers negative-parity heavy pentaquarks in a broader context, using the
large N, expansion. This allows some properties of the pentaquark states to be derived
without the need for any particular dynamical assumptions. Heavy quark symmetry also
comes into play, allowing additional relations to be predicted. We relate the masses of
various heavy pentaquark multiplets to one another, and also to nonexotic heavy and light
baryons, and we consider SU(3) breaking effects.

Appendices A and B contain figures and tables related to the material in Chapter 3.
Appendix C turns away from the subject of pentaquarks; it contains earlier research on
gravity in extra dimensions [74]. We calculate the gravitational potential energy between
infinitely long parallel strings with tensions 7 and 7. Classically, it vanishes, but at one
loop, we find that the long range gravitational potential energy per unit length is U/L =
24G% 7172/ (5ma?) + ..., where a is the separation between the strings, Gy is Newton’s
constant, and we set i = ¢ = 1. The ellipses represent terms suppressed by more powers of
GnT;. Typically, massless bulk fields give rise at one loop to a long range potential between
p-branes in space-times of dimension p + 2 + 1. The contribution to this potential from
bulk scalars is computed for arbitrary p (strings correspond to p = 1) and in the case of

three-branes its possible relevance for cosmological quintessence is commented on.



Chapter 2

Stable Heavy Pentaquarks in the
Diquark Model

2.1 Correlated Quark Models and Positive-Parity Pentaquarks

As mentioned above, in order to help explain the narrow width of the ®*, a number of
correlated quark models have been been proposed. These include the diquark model of
Jaffe and Wilczek [7] and the triquark model of Karliner and Lipkin [9]. Each of these
posits that the ©® pentaquark has orbital angular momentum ¢ = 1, and thus positive
parity. Such a configuration should lead to a narrow width because of its small overlap with
the conventional K N state into which the © decays, as argued in [31].

In the triquark model, the ©T is pictured as a ud diquark plus a uds triquark. The
two quarks in the diquark are combined antisymmetrically; it has spin 0 and is in a 3
of color and a 3 of flavor. The u and d within the triquark are combined symmetrically,
into a state of spin 1, color 6, and flavor 3. They combine with the 5 to form a color
triplet triquark with spin 1/2 and flavor 6. Karliner and Lipkin argue that there must be
a relative P-wave between the diquark and triquark, because otherwise repulsive hyperfine
interactions between the two clusters would break up the pentaquark into K + N. With the
P-wave, the angular momentum barrier separates the triquark and diquark and prevents
such color-magnetic interactions between them.

In the diquark model, the ©7 is divided into two ud diquarks, each in a state of spin
0, 3 color, and 3 of flavor, plus a single 5 antiquark. If we ignore color and approximate
the diquarks as point particles, the two are identical bosons; thus their wavefunction must

be symmetric in spin and flavor in order to obey Bose statistics. However, the overall



X
X
|

spin—flavor

orbital

color

total

Figure 2.1: Young tableaux for the four quarks in the ©*. The spin-flavor part of the wave-
function is completely symmetric, while the color part has mixed symmetry. In order to get
a completely antisymmetric total wavefunction, there must be some orbital antisymmetry,
provided by a P-wave.

wavefunction of the © must be completely antisymmetric according to Fermi statistics.
We must insert a unit of orbital angular momentum between the two diquarks in order to
provide the necessary antisymmetry, as illustrated in Figure 2.1. In this way, the P-wave
structure arises naturally within the diquark model.

Both groups have considered possible heavy analogues of the ©: the ©. (with the §
replaced by a ¢), and the O, (with a b). Jaffe and Wilczek made a simple mass estimate

suggesting that these states might be stable against strong decay [7]. Their results,

me, ~ 2710 MeV

me, ~ 6050 MeV, (2.1)

are respectively 100 MeV and 165MeV below the strong decay thresholds to pD~ and
nBT. This would be quite interesting if true: states that are stable against strong decay
are likely to be long-lived and hence relatively easy to find experimentally. However, given
the uncertainties involved, and the fact that these masses are rather close to threshold, such
a conclusion is questionable.

Other models give other results: using their triquark model, Karliner and Lipkin esti-
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mated [30]

me, ~ 2985 MeV

me, ~ 6398 MeV, (2.2)

putting both states above the strong decay threshold. Estimates based on a constituent
quark model [32] also fail to support stability against strong decay, and so does a lattice
QCD calculation with operators inspired by the diquark model [27]. On the other hand, a
calculation involving so-called tensor diquarks (spin 1, flavor 6) [33] gives masses close to
those found by Jaffe and Wilczek [34].

The H1 Collaboration has published a claim for the detection of a charmed pentaquark
[37]. The mass they observe, 3099 MeV, is higher than any of the estimates above. Some
authors [38] have suggested that this state, if indeed it exists, may be an excited state of

the ©.. Other experiments have searched for the same particle and found nothing [39].

2.2 Negative-Parity Heavy Pentaquarks

As discussed in a recent work by the author and collaborators [40], the diquark picture
suggests a way of constructing heavy pentaquarks that are more likely to be stable against
strong decay. The idea is straightforward: with a heavy antiquark, it is possible to make
an exotic state in which the two diquarks have different flavor content. Diquark pairs of
u, d, and s quarks come in three types: (ud), (ds), and (su); as noted above, these form
antitriplets with respect to SU(3) flavor and SU(3) color. We will denote the interpolating
fields for these diquarks by

¢aa _ eabceaﬂ'yqbﬂqyy , (23)

where «, 8, and y are SU(3) color triplet indices and a, b, and ¢ SU(3) flavor triplet indices
(i.e., for g, @ = 1 corresponds to an up quark, a = 2 to a down quark, and a = 3 to a
strange quark).

In the ©T(1540), the two diquarks are in the 6 of SU(3) flavor, and the pentaquark

itself is in the 10, as mentioned above. In this notation, it looks like

gaeaﬂ7¢35¢37’ (2'4)
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and the Oy, in the 6 of SU(3)y, similarly become

Qa€a67¢3ﬂ¢37- (25)
Here we consider heavy pentaquarks of another type:

Ty = €abc €afy c* ¢bﬁ¢c’y )

Ry = €abe €apy 0* $P 6 . (2.6)

In these states, the two diquarks are no longer identical bosons; the spin-flavor part of their
wavefunction no longer needs to be completely symmetric. This eliminates the need to
insert extra antisymmetry via orbital angular momentum (Figure 2.2). Such a pentaquark
can be in an £ = 0 state, giving it negative overall parity. The lack of P-wave excitation
energy in these states suggests that they may be lighter than the ©. and .

Note that the states we’ve defined here are indeed truly exotic, being baryons with
charm = —1 (or beauty = 1) and strangeness = —1, —2.} Consider, for example, the case in
which the heavy antiquark is a ¢: as far as flavor quantum numbers are concerned, we have
T1 = ¢(ud)(su), To = €(ud)(sd) and T3 = ¢(su)(sd). In contrast, the lighter S-wave analog
of T, with ¢ — 3 is cryptoexotic; it mixes with excited nucleon states via annihilation and
is therefore hard to detect.

To emphasize the strangeness and charge of the states in this multiplet, we will often use
the notation Ty = T, Ty = T,~, T3 = T, for charm and Ry = R}, R1 = R, R3 = RY, for
bottom. Here {T?, T, } and {R}, R?} form isospin doublets, while T, and RY, are isospin
singlets.

The possibility of exotic pentaquarks of the form 7T; 5 was noted in 1987 [41, 42], and
the E791 collaboration later performed an experimental search [43] in the mass range 2.75 —
2.91 GeV, with a null result. (In Ref. [42] the states T7 2 were called Pz.) In the context of
the diquark model, the exotic 3 multiplet T, with the diquarks in a relative S-wave was first

discussed by Cheung [32], but no mass estimate was given. Here we make mass estimates

IStrangeness and beauty, or bottomness, are defined to be negative for an s or b quark, and positive for
an 5 or b antiquark, while charm has the opposite sign convention. This definition arose from a historical
accident in the case of strangeness, but has been extended to other quarks based on their charge: those with
positive charge follow the sign convention of charm, while those with negative charge follow the convention
of strangeness.
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X
X
|

orbital

spin—flavor

color

Figure 2.2: Young tableaux for the four light quarks in a negative-parity heavy pentaquark.
The spin-flavor part of the wavefunction is no longer completely symmetric, so the two
diquarks may be in an S-wave.

for T, and R, in the diquark picture. We point out that the R, and T, may be well below
the strong threshold, and that the T, could be ~ 200 MeV lighter than the E791 search
window. The exotic nature of these states can be determined through measurement of weak
decays, and we devise isospin and SU(3) relations which could be used to test their flavor

quantum numbers further if they are observed.

2.2.1 Mass Estimates

For our purposes, the most important feature of the 7, and R, states is that, within the
diquark picture, they are more likely to be stable against strong decays than ©.3, since
they do not require the excitation energy associated with a P-wave, Up_yape. To make a

rough estimate of their masses, we write

mr, —MmMe, = MR, —MeE, = As - quvavea (27)

where T and R, denote the isodoublet states. Here A is the change in mass resulting from
removing a (ud) diquark and adding a (us) or (ds), while Up_yave is the energy associated
with the P-wave. A; takes into account that the T (R;) contains a strange quark, unlike

the ©, (©3). To estimate the extra mass contributed by the strange quark, we use

As ~mg, —mp, = 184 MeV . (2.8)

total
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Why is this a reasonable estimate of the mass difference? There is evidence [44] suggesting
that many ordinary three-quark baryons, including nucleons and charmed baryons, are well-
modeled as a diquark plus one extra quark. Some of this evidence arises from the spectra of
uds and udc baryons, which reflect the different binding energies of the antisymmetric (spin
0) and symmetric (spin 1) ud diquarks. More evidence comes from jet events producing
A and ¥ baryons. The A and ¥ have the same flavor content, but the A contains an
antisymmetric ud diquark, making it easier to assemble and hence more common than the
3.

Still other indications came from deep inelastic scattering experiments with nucleons.
When the nucleons were bombarded with high-energy electrons, they sometimes behaved
as though all their energy were concentrated in a single quark. This happened four times
as often with protons as with neutrons; the factor of four was conjectured to arise from the
square of the quark’s charge ((%)2 for the up quark, (—%)2 for the down quark). But why
did this never happen with the down quark in the proton or the up quark in the neutron?
The answer was conjectured to be that inside each nucleon, two quarks, an up and a down,
are tied together in a tightly bound structure: a diquark. Thus the diquark idea has a long
history, and much supporting evidence, completely independent of pentaquarks.

In Eq. (2.8), we look at the mass difference between (us)c and (ud)c, where (us), etc.,
represent spin 0 diquarks. That is, in an environment containing a charm quark, we replace
a strange diquark with a non-strange one. This is just like going from Ts to ©, aside from
the angular momentum (which will be accounted for later) and the fact that another light
diquark goes along for the ride. Of course, there is a fair amount of uncertainty associated
with the latter point; a five-quark environment may well produce a different mass than a
three-quark one, and we stress that this is a rough estimate. Nevertheless, it is a sensible
approximation in light of our present knowledge about baryons. (Incidentally, taking the
difference between the masses of the A and the proton, (ud)s and (ud)u, does not change
the estimate much: Ay >~ mp —my = 177MeV.)

In a similar way, we estimate the P-wave energy by
Up_wave = mpr — myp, = 310MeV, (2.9)

where A[ denotes the excitation of the A, with (ud) in a P-wave relative to ¢; my, =
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2594 MeV. This estimate is supported by P-wave excitation energies for baryons built of
light u,d, s quarks; for example, mp(1405) — ma = 291 MeV. Again, we assign a sizable
uncertainty to the estimate in Eq. (2.9); it is easily possible that it overestimates (or
underestimates) the P-wave excitation energy for £ = 1 between two diquarks. It also
neglects possible Pauli-blocking effects between identical quarks in different diquarks.
Using Egs. (2.7) and (2.9) along with the Jaffe-Wilczek estimate, mg, = me + ma, —

mp =~ 2709 MeV, gives the T mass estimate

mr, ~ me + mp, —mp +mg, —mpr = 2580 MeV . (2.10)

For the strong decay Ts — D;p, the sum of the Ds and proton masses is 2910 MeV; i.e.,
eq. (2.10) puts the state 330 MeV below threshold and 170 MeV below the E791 [43] search
region.

A similar analysis in the case for which the heavy quark is a bottom quark gives the
mass formula

MR, = Mg + ma, — ma +ms, — mpr, = 5920 MeV, (2.11)

which is 390 MeV less than the sum of the B; and proton masses. Thus, even with the large
uncertainties in the mass estimates in Egs. (2.10, 2.11), it appears quite likely that these
states are stable against strong decays.

The extra strange quark in Tss and R will increase the mass of each by about Ag

relative to T and R, respectively, so that

mr,, ~ mr, + A = 2770 MeV (2.12)

mp,, ~ mpg, + As = 6100 MeV . (2.13)

However, the presence of the extra strange quark does not make T,s; and Rss closer to

threshold: their strong decays must involve two s quarks in the final state, e.g., Rss — Bs A.

2.2.2 Decays

For the charmed and bottomed exotics, promising weak processes for detection are ¢ — sdu,
b — ¢c3, and b — ¢ud. (See Figure 2.3 for an example.) Typical nonleptonic decay channels

such as T9 — p¢pn~ and T, — AK+7n n~ [42] always break up the diquarks. This may
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Figure 2.3: A possible nonleptonic decay via the weak process ¢ — 3dii: T° — AK®. The
@ and the lower u on the right hand side annihilate, leaving the A, uds, and the K9, 3d.

substantially decrease the corresponding partial widths, particularly if the narrowness of
the ©T(1540) is partly due to such an effect. For bottom, this penalty can be postponed by
decays to charmed exotics that preserve the diquark correlation, for example, @, — .7 [45].
In our case, the analogues are R, — T,n" and R, — T,D*. Among the two-body b — cud
decays, these exotic-to-exotic channels are also dynamically favored by factorization [46],
which favors producing an energetic ud meson, and suppresses decays to energetic mesons
built out of other flavor combinations that appear in the decay.

In order to search experimentally for these pentaquarks, it is important to consider
decays in which the products can be easily detected. In general, charged particles can be
detected at, e.g., the Tevatron [36], while neutral ones cannot; however, it is possible to
infer the presence of a neutral particle that decays in a distinctive way to several charged
particles. For example, the p® can be reconstructed because it decays to two charged pions.

Assuming the T, and R, states decay weakly, there are several promising discovery

channels. For charm, the nonleptonic decays include
TO - AK®, pr~, ppn~, AK 7=, KK~ p, KA, K°K+T2~ | (2.14)
T, — K= A, pr—n~, pprn n~ ,AK 777,

T, = Ar",E"K% ¢n~A, K"'n~ 2=, K°’K~A, K"n " p.
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For bottom with b — écs:

RY — J/%p, D°A., D™SFF a= AT, J/U¢p, J/ VKA, D, Dfp, D, K*A,,  (2.15)
D;K°sH DODFA, DA,

R? — K°A, D™ A., D22, n7p, J/OK°A, D; K*X0, D7 KA., D°¢x?,
D™D}FA, D™ ¢A,,

R% — ¢A, J/WUA, D7 A, K™p, J/U¢A, J/WKTZ", D;DF A, D] ¢A., D°DFE",
and with b — cud:

RY = DA™, D7ntp, D°K%, D7 T A, D KOATT, (2.16)
R% — D;p, D°A, D;nt A%, DYK°A°, D=K®, D=ntA,

R% — D°2° D7 K%, D°K°A, D'z "=~

In general, the quantum numbers of the final states in eqs. (2.14-2.16) are not sufficient
to tell us that the initial state was exotic. Weak decays of Ap. and Zp . can mimic some of
these channels through Cabibbo-suppressed or penguin transitions, as shown in Figure 2.4.2
Exceptions are the T, decays in Eq. (2.14) and the R} decays (b — ¢ud) in Eq. (2.16):
for these two cases the final quantum numbers, ddd and ¢suuu respectively, are sufficiently
exotic. In other cases, kinematic information is necessary. For two cases, the kinematic
information is fairly minimal: T, (¢ — 3ud) only has contamination from weak b-baryon
decays, and R} (b — &c5) only has contamination from weak c-baryon decays.

The dynamics of nonleptonic decays is complicated, and some channels may be sup-
pressed relative to others. Therefore it is desirable to search in as many channels as possible.
If we consider measurements of multiple weak decays, there are isospin relations between
the nonleptonic decays of the R, states. Such relations can be derived using the method
of [35]. For example, for the process b — ¢dii, the weak Hamiltonian has the quantum
numbers (bc)(du) and therefore has isospin 1. It can be written as H,g, where the indices
a, B are symmetric and can take the values 1, 2; the only nonzero component is Hy;. On
the other hand, the weak Hamiltonian for the process b — écs is an isospin scalar. We can

combine these Hamiltonian with mesons and baryons to produce all possible scalar terms.

%In one case there are even Cabibbo-allowed Ay decays that mimic the R, decaying through b — &c3.
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Figure 2.4: A Cabibbo-suppressed decay mode of the =0 that mimics the process in Figure
2.3.

For example, to look at decays of the R, pentaquarks to a K meson plus the isospin scalars

A and J/¥, we may write the effective Hamiltonian as
aR,HK*AJ/ ¥, (2.17)

where a is an unknown coefficient. This tells us that the decay rates for R} — k™ AJ/¥ and
RY — K)AJ/¥ are both proportional to |a|?, giving the first isospin relation in Eq. (2.18)
below. More complicated effective Hamiltonians can arise when the final state includes
particles that are isospin doublets (such as N or K) or triplets (such as ¥ or «).

Isospin relations for the b — &c3 transition include

S

I'(R%, — D°Z%) = T(RY, — D™E), (2.18)

88 —c
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Figure 2.5: A semileptonic decay mode, T? — npe~ 7.

while for b — cud,

I'(Rss — Dy ATTK™) = 3T(Rss — Dy ATK"),

I'(RF - AT DF) =31 (R? - ATD}). (2.19)

For ¢ — sdu transitions of T, the isospin relations may be harder to test. We find, for

example,

(T, — 7 X°K% =T(T; — »°2~ K?)

T(T,, = ¢n°%~

r

) =TI(

) =T(T;; — ¢n~x°),
I(T,;, = ¢K°A™) =T(T,; - ¢K A,

)

20(T,, — K°7°A™) = 31(T,, — K7 AY). (2.20)

The T, and R, states can also decay semileptonically, as in Figure 2.5, and there are
isospin and SU (3) relations between semileptonic decays.

For T, states decaying with a single baryon in the final state, the isospin relation
D(T, = peve) = T(T; — neve) (2.21)

relates the Cabibbo-allowed T? and T,  decays. For decays with a baryon and a meson in
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the final state, we find the following isospin relations:

2T (T? — 70pen.) = T(T? — wtnen,) = 2I(T; — n°ned.) = T(T, — 7w pede.), (2.22)

T(T? — npev.) = T(T; — nnet.),

(T — Kt Aer,

) =T

oT(T? — K1X%7,) = T(T° — K% Ten.) = T(T, — K% ew,) = 2T(T; — K°%%7,),
) =T
) =T

(T, — K%Aer,).

For semileptonic decays involving ¢ — s, the weak Hamiltonian transforms as a 3 of SU(3).
To find SU(3) relations, we will need the baryon octet B and the pseudoscalar meson octet

My, where the matrix of octet baryons is written as

LA +
2 + 5 b)) P
s N S (2.23)

= . n + +
atsw 7 K
M= _— _:r/_“ﬁ + % KO ) (2.24)

K~ KO —\/gn

We can contract T, and the Hamiltonian H® (whose only nonzero component is H?) with
By and M to obtain all possible scalar terms; as in the isospin case, this will tell us how
the decay rates are related. For example, with decays to a single baryon plus leptons, we

get
H.f = cT,H"BE, (2.25)

and we find

20 (T? — pew,) = 2T(T, — ned.) = 3T (T, — Aeie). (2.26)

There is also one (independent) SU(3) relation between the semileptonic decays to a meson



20

and a baryon for the strangeness -1 states:
(T2 — npeve) — 2T(TC — K Ae,) = T(T? — K°Sten,) — T(T? — ntnew.). (2.27)
Similar results can be derived for semileptonic R, decays. Isospin relations include,

T'(RF — D°Aetve) = T(R? — D™ Ae'v,)

T(RF — D;petv,) = T(RY — Dynetv,)

T(RY, — D°Z"etv,) = T(RY, — D™E%"w,). (2.28)
The weak Hamiltonian for these b — ¢ decays is an SU(3) singlet, and so it is not possible
to derive an SU(3) relation analogous to Eq. (2.27).

A crucial aspect of the detectability of these exotic states is their production rate via
fragmentation of the heavy quark. A crude estimate, inspired by the fact that A production
via fragmentation is a factor of ~ 0.3 less than B production, is that every additional quark
(or antiquark) costs 0.3. This suggests that the production rate for the R, (or T;) states
may be ~ 1072 of the B, (or D;) mesons, in agreement with earlier estimates for pentaquark

production [47].

2.2.3 Other Possible S-wave States

The combinations of quarks Qsuud and Qsudd do not have to have I = 1/2. For example,
an S-wave (ud) quark pair in a spin one configuration can be a color antitriplet if it is in
an I = 1 configuration. Combining this with the other v quark gives the possibility of an
I = 3/2 final state. However, it appears likely that these states are heavier than the states
we have been considering. Phenomenological evidence for this comes from the fact that the
Y. is heavier than the A, (and the ¥ is heavier than the A). These other isospin states will
decay to the ones we are considering via emission of a photon, and, if the mass splitting is
large enough, by emission of a pion.

It is also possible to construct S-wave pentaquark states in which a heavy quark, say
a charm, is part of one of the diquarks. The exotic states of this type are part of the 15
representation of SU(3) (Figure 2.6).
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Figure 2.6: The 15 representation of SU(3). The exotic states are shown in black, cryp-
toexotic states in white.

They include,

Fy' = F7 =u(ds)(ed),  FP?=F"=d(su)(cu),  F3' = Fg =1u(ds)(cs),

F22 = Ff = d(su)(cs), F3 = F™ = 5(ud)(cu) , F33 = F = 5(ud)(cd). (2.29)

(The other 11 members of this multiplet are cryptoexotic states.) The charge-two states
are particularly distinctive; if they are stable against strong decay, they could be detected,
for example, via the mode F™™ — pr™. Unfortunately, we are not able to draw conclusions
about the masses of the states in the 15 multiplet from the observed © mass. They may
be heavy enough to decay strongly to a B or D meson plus a baryon.

F*+ and F* form an isospin doublet, while F;, F;"™ have I = 3, and Fj,, F;; have

I =1 (their isospin partners being cryptoexotic states). If we assume these states decay
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weakly, there are a number of isospin relations for the decays of the charmed F' states:

[(F, -7 E ) =T(F " - at=%"), (2.30)

T(F = K'Stety),

S

[(F;, - K X ev

T(F,, - K Eetv) =T(F,; = K°Z%"v),

s

T(F*T = KT Aetv) =T(FT = K%Aev),

t o atnetv) =T(FT = 7 petv) = 2I(FT — 7%netv),

I
—
'11

)
)
)
T(F™ — npetv)
)
2T (FT — 7%eTv)

) =

(

(

(
T(F™ — nmnetv),

(

(F*
AN(FHT = K2% 1) =T(F™ = K'STetv) =T(FT - K2l Tv) = 2I(FT = K2 etv).
The analogous states with a bottom quark in one of the diquarks are

Fyy =F,,” =ua(ds)(bd),  Ff=F;=d(su)(bu), Fj =F, =u(ds)(bs),

FZ =Fp,=d(su)(bs), F3=F =5ud)(bu), F5 =F) =5ud)(bd). (2.31)

Again, some have a distinctive charge, -2 in this case.

There are isospin relations for these states as well, including semileptonic decays,

I'(F,,” —» DS~ e ) =T (F; —» DtStenu,)

T(F, - — D°Z7e 1,) = ['(Fp, = D"E% )

bss

(
) =T

T(F — KA 7.) = T(F — K°Ae )
) =T

I'(F}t = Dfpe~v.) = T(F) — D}ne ve), (2.32)



and nonleptonic decays,

I'(F,t = pDfD;) =T(F, = nD}D;)

Fb
I(F;" — pAJ/¥) =T(Fy) — nAJ/P)
I'(F — KT"AJ/%) =T(F) — K°AJ/¥)

T(F;" — nD°A.) = T(FY — nD™A.)

T(Ff — K'S1J/9) =T (F,;” - K~27J/¥)

I(F), - E2°D*D,)=T(F_- -2 DD,)

bss

(
(Fy
(
(Fy
I'(F; - ©tD'D;) =T(F,,” —» % D°D;)
I(
I'(
I(

T(Fp, — 7t J/¥Q") =T (F

bss

~(rJ/I0). (2.33)

Because we have no estimate for the masses of these states, it is uncertain whether they
will ever be seen experimentally. If they are heavy enough to decay strongly, they may
appear as broad resonances that would never be detectable. On the other hand, the "
itself decays strongly, and yet it is narrow enough to produce a clear experimental signal.
The structure and dynamics of the F' and Fj states could conceivably be such that they,

too, will be narrow enough to be visible, whether they decay strongly or weakly.

2.3 Summary and Discussion

In this chapter, we have explored some of the implications of the diquark model for heavy
exotic baryons. Most notably, we have shown that some such states might be relatively
accessible to an experimental search. An observation of heavy pentaquarks of the form T,
or R, that were stable against strong decay, in addition to being exciting in its own right,
would provide support for the diquark interpretation of the ®t. While the predictions
here are quite rough, they suggest that an experimental search for such states could be
worthwhile. The decay channels and isospin relations listed here could serve as guidelines
for what to look for in such an experiment.

It may also be useful to study these pentaquarks further in lattice QCD, to help de-
termine whether our estimates are reasonable. Lattice calculations are the only currently

available method of working directly with QCD, as opposed to using a particular constituent
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quark model or a general symmetry-based method like the large N, expansion. As noted
in the Introduction, lattice studies of the ©T have suffered from a number of problems and
have generally been inconclusive; however, computing power and methodology are contin-
ually improving, and it is likely that these problems will be fixed in due time. It would be
quite interesting to see whether a lattice calculation would agree with our estimates for the

T, and R, masses.
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Chapter 3

Heavy Pentaquarks in the Large N,
Expansion

3.1 The Large N, Formalism

As mentioned in Chapter 1, the strong coupling constant «, is not a useful expansion
parameter at energies of ~ Agcp or below, because gy > 1 in this regime. However, 't
Hooft showed in the 1970’s [48] that there is another expansion parameter valid in any regime
of QCD: 1/N,, where N, is the number of colors (i.e., the gauge group is SU(N.)). ’t Hooft

showed that a Feynman diagram for vacuum quark-gluon interactions is proportional to
g
(g2Ne) 23 Vi N, (3.1)

where g is the quark-gluon coupling constant, V,, is the number of n-point vertices in the

diagram, and x is the diagram’s Euler characteristic, a topological invariant defined by
x=2-2H - L, (3.2)

with H being the number of handles (formed by nonplanar gluon exchange), and L being
the number of quark loops.

It is evident from Eq. (3.1) that Feynman diagrams with increasing numbers of vertices
grow with increasingly large powers of N,, unless the N, — oo limit is taken with g?> N, held
fixed. This procedure is known as the 't Hooft limit, and can be implemented by rescaling
g — g/v/N.. After this rescaling, Eq. (3.1) tells us that diagrams with nonplanar gluon

exchange will be suppressed by 1/N2 for each such gluon, while diagrams with quark loops
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will be suppressed by 1/N, for each loop.

At first sight, this appears to be a very strange sort of expansion. After all, in na-
ture, N, is fixed at 3. For large N,, baryons become unwieldy-looking objects made of N,
quarks. However, the 1/N, expansion turns out to be a useful way of quantifying spin-flavor
symmetry breaking effects. Spin-flavor symmetry for baryons formally becomes an exact
symmetry in the t Hooft limit; this symmetry is explicitly broken by corrections suppressed
by powers of 1/N,. In the expansion, N, is always taken to be an odd integer; an even N,
would produce baryons that were bosons rather than fermions. Putting in the real-world
value N, = 3 gives an expansion parameter of 1/3; thus 1/N, effects are suppressed by
about the same amount as flavor SU(3) breaking effects.

Large N, is a rich and complicated subject that has been treated only briefly here. For
a recent review, see [50]. See [52] for a somewhat different approach to 1/N, calculations
than that employed here.

Now, let us consider more closely the large N, treatment of baryons. In the N, — oo
limit, baryons form irreducible representations of contracted spin-flavor SU(6).; for finite
N, this symmetry is broken, generating mass splittings within each representation. The

symmetry breaking can be parameterized using polynomials in the SU(6) generators:

)

St = qT(% ®1)q
)\a
T =4'(1® 7)q
ia _ 10 o A

where ¢t and g are quark creation and annihilation operators, ¢¢ are the Pauli matrices, and
A% are the Gell-Mann matrices. An n-body operator, which acts on n quark lines in a baryon,
comes with a factor N!~™. The generator G'® sums coherently over all the quark lines and
hence is order N.. T® may also sum coherently when three or more flavors are considered.
(When the discussion is limited to two flavors, as in [58], the isospin is fixed in the large
N, limit, so T is order 1.) Thus a given n-body operator contributes at order N, ~™~™P,
where m is the number of times G*® appears and p is the number of times T appears. To

describe mass splittings, one constructs all possible scalar operators up to a given order in

1/N,; each such operator appears in the expansion with an unknown coefficient of order
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unity. Depending on the symmetry of the baryon states under consideration, there may be
operator reduction rules allowing some operators to be eliminated; for example, for states
that are completely spin-flavor symmetric, it is unnecessary to include operators in which
flavor indices are contracted using dqp or €gp.. A complete list of the reduction rules for
completely symmetric states is given in [51].

It is important to note that the irreducible representations of SU(6). are not identical
to those of the uncontracted SU(6). In the contracted symmetry group, a single SU(6)
representation can split into several “towers” whose masses are not the same even in the
N, — oo limit [60, 61]. In the two-flavor case, when the symmetry group is SU(4)., such a
tower is labeled by K = 0,1/2,1,..., where the states in the tower have spin and isospin
satisfying |I —J| < K. Baryons with strangeness form separate towers, labeled by K = %ns,

where ng is the number of strange quarks.

3.1.1 Pentaquarks in Large N,

The 1/N, expansion has recently been extended to exotic baryons, including partners of
the © [63, 55] and heavy pentaquarks in which the antiquark is a ¢ or a b [55]. In order
to treat exotic baryons in a group-theoretical way, the concept of “exoticness” is defined
[64] as the minimum number of ¢G pairs needed to construct a baryon with a given set of
quantum numbers. The precise definition of exoticness requires some care. For an SU(3)
representation with Dynkin indices (p, q), the corresponding Young tableau has N, + 3r
boxes, where N, + 3r = p+ 2¢g and p+ g > r > 0. The integer r appears to correlate
with the number of additional quarks beyond N, and in an earlier work, [56], r was called
“exoticness.” However, this is not quite what one would like “exoticness” to mean. For
example, the 28 of SU(3) has a Young tableau with six boxes (Figure 3.1), and thus has
r = 3. But it is not possible to construct a state in this representation with four quarks and
one antiquark, as one can see in a straightforward manner by calculating the direct product
3®3®3®3®3 in SU(3) and noting that 28 does not appear in the result. The proper
way to define exoticness for the representation (p, q) is
T if r <g,

E= (3.4)
2r—q ifr>gq.
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This gives the intuitive result for E: a baryon with exoticness E contains N. + E quarks
and F antiquarks. (A cryptoexotic pentaquark has E = 0; r is defined using the minimal
diagram that yields a state with a given set of quantum numbers.) For the 28, (p, ¢) = (6,0);
r=1>q, so Eq. (3.4) gives E = 2.

Figure 3.1: The 28 of SU(3). This representation has r = 1 but exoticness E = 2.

In [55], Jenkins and Manohar derive relations between the masses and decay rates of
various multiplets of E = 1 baryons, both light and heavy. Their work assumes that the
pentaquark states are in the completely symmetric representation of spin-flavor SU(6) and
thus have positive parity. In the case of heavy pentaquarks, this means that the four light
quarks are in the 126 of SU(6), which decomposes into three different spin-flavor states:
60, 151, and 15’5 (Figure 3.2).

X 1« [] [ITT] w CILIT]

flavor E spin 0 flavor 15 spin 1 flavor 15’ spin 2

Figure 3.2: Young tableaux showing the flavor SU(3) x spin SU(2) decomposition of the
completely symmetric 126 of SU(6), giving three different multiplets. States in the com-
pletely symmetric representation are distinctive because the Young tableaux for their spin
and flavor look the same.

The assumption of positive parity is sensible because it has been shown, in the context
of a constituent quark model [57], that the hyperfine flavor-spin interactions between quarks
in a hadron are most attractive for completely symmetric states. However, as noted in the
previous chapter, a positive-parity pentaquark would need to have one quark in an orbitally
excited ¢ = 1 state in order to satisfy Fermi statistics. It is not clear whether the resulting

P-wave energy would always be sufficiently offset by the attractive flavor-spin interactions to
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make the positive-parity pentaquarks lighter than their negative-parity counterparts. Thus
it is worthwhile to apply the large N, formalism to the negative-parity case; this has been
done in two recent papers. One [53], by the present author, focused on heavy pentaquarks;
the other [71] also looked at light pentaquarks and considered the possibility that both the

©T and the ©, seen by H1 may have negative parity.

3.1.2 Non-Exotic Excited Baryons

The 1/N, expansion for excited baryons provides a model for working with states of mixed
spin-flavor symmetry. References [58, 59, 60, 61] study excited baryons in the 70 of SU(6);

they generalize this representation for V. > 3 as shown in the Young diagram in Figure 3.3.

Figure 3.3: Extension of the excited baryons to large N.. The top row of the tableau on
the right has N. — 1 boxes.

In this picture, a baryon contains one excited quark, with angular momentum ¢ = 1, and
N.—1 “core” quarks, which are completely symmetric in spin-flavor SU(6). The expansion
is made using two sets of SU(6) generators: s¢, t, g'®, acting on the excited quark; and S¢,
T¢, G2, acting on the core. The reduction rules for these operators are determined in [58];
the reduction rules for completely symmetric states apply to the core and excited operators

separately, while additional rules govern the combining of the two types.

3.2 Negative-Parity Pentaquarks in Large N,

We wish to examine exotic negative-parity baryons containing V. + 1 light quarks and one
heavy antiquark, which can be extended to large N, in a similar manner to the excited
baryons, as shown in Figure 3.4. Here too, it makes sense to construct operators from
two different sets of generators. The term “excited” does not apply in this case, because

the pentaquarks have no orbital angular momentum. However, dividing the states into
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Figure 3.4: Extension of the negative-parity pentaquarks to large N.. The top row of the
tableau on the right now has N, boxes.

N, symmetrized quarks (which we will continue to call the “core”), plus one extra, still
captures their symmetry properties in a useful way. The same operators and reduction rules
constructed for the excited baryons in [58, 59, 60] may be used to describe the negative-
parity pentaquarks. In fact, the situation simplifies significantly in the pentaquark case,
because the seven operators depending on £ all vanish. We are left, at order 1/N,, with six

linearly independent operators:!

0, 1

1
02 = ES‘%’
O3 = FS’S’

1
O4= Fct“Tc“,

t“{ Gy,

O¢ = NZ —g"28iTe, (3.5)

The 210 of SU(6), which describes the N, + 1 light quarks, can be decomposed into flavor
® spin to give seven different multiplets? (see, e.g., [62]): 1577, 155 157 157, 61, 87,
and 3%

In extending this decomposition to large N, the spin and strangeness of each state

remain fixed; we add to the core a spin 0, isospin 0 combination of up and down quarks.

!The expansion should also contain operators depending on the exoticness E, such as E1 and 1 L B2,
However, since £ = 1 for all the pentaquark states, these operators do not tell us anything new about the
mass splittings.

2The superscript P indicates pentaquark states. Later we will use E to denote excited baryons and N
for normal baryons.
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| X | X [ X [ [] X

flavor 3 spin 0 flavor 3 spin 1 ﬂavor_6 spin 1 flavor 15 spin 0

[1 X [ [ s N N e I I I 26 [

flavor 15 spin 1 flavor 15 spin 2 flavor 15’ spin 1

Figure 3.5: Young tableaux showing the flavor SU(3) times spin SU(2) decomposition of
the mixed-symmetry 210 of SU(6), giving seven different multiplets.

The flavor representations change with N,.; however, we will always use the N, = 3 values
for notational purposes in this paper. (We will also continue to use the term “pentaquark”
for the large- N, analogues of such states.) Figure B.1 contains diagrams of the four different
flavor representations for N, = 3, and Figure B.2 illustrates how they are extended to larger
values of ..

The 3(1]3 is the multiplet called T, or R, in [40] and the previous chapter; the three states
have the flavor content Quuds, Qudds, and Qudss. Interestingly, the large-N, version of
this state can still be thought of in terms of the diquark model. In this view, a “diquark” for
arbitrary N, still consists of two quarks combined antisymmetrically in color and flavor; it
may be written ¢‘[fl 4]’ where a is a flavor index and «, 8 are antisymmetrized color indices.
The full state is then

d1...d(N.—3)/2 Aa b d d(N.—3)/2
T, e = ‘ngabcffvl'72 TNe Qa¢ﬂ’h¢§z% '7}175'“4’VNCC—1VNC' (3.6)

The 30P is the only one of the seven multiplets that can be constructed using Jaffe and
Wilczek’s original spin 0, flavor 3 diquarks. However, if we also allow spin 1, flavor 6
diquarks—called tensor diquarks in [33] and “bad” diquarks in [4]-many other multiplets

become possible. The remainder of this chapter makes no reference to the diquark model;
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the results are model-independent.?

It is straightforward to determine what the “core” of each state should look like: S, =
Siotal T %, and the core flavor representation can be written in Dynkin index notation as
(p,q) = (28, %) For six of the seven multiplets, there is only one possible value of
Se. In particular: S, = ; for the 155, 67, 37, and 3% states; S, = 2 for the 15/ and 158
states. The 157 state is somewhat more complicated, because the flavor-spin decomposition
of the totally symmetric representation of SU(6) also contains a 15;. The correct core is
a linear combination of S, = % and S, = %, whose coefficients can be determined using
Casimir operators. Reference [58| finds the analogous coefficients for total spin S and a

core of N, — 1 quarks; we may simply use their result with S =1 and N, — N, + 1:

N.+5

3(N. + 1) Se =

3 2(N, — 1)
§> V3V +1)

S, = %> . (3.7)

Evaluating the matrix elements of some of these operators, particularly Os, is rather a
nontrivial task; it cannot be done by a simple N, — N, + 1 substitution. One method of

evaluation is to construct the wavefunction for each state as in section II of [59]:

Se % S (Pe; QC) (17 0) (p7 q)

1952 (9,0), Y, I 15 8c) = >
Secz 82 S, (Y'caIcaIcz) (y,i,iz) (Y,I,Iz)

1 ..
X |ScScz§ (pc, C_Ic)a Y., IcIcz> §5z§ (1a 0)73!7@, Zz> -

(3.8)

Here S is the total spin (for the four light quarks), (p,q) are Dynkin indices describing
the total irreducible representation of SU(3), and Y and I are the total hypercharge and
isospin. The variables with the subscript ¢ refer to the corresponding quantities for the
core, and the lower-case letters refer to the “extra” quark (which, of course, always has spin

% and SU(3) representation (1,0)). The second quantity in brackets is a Clebsch-Gordan

3In fact, there is a rather subtle issue regarding model-independence: do the results of this analysis
follow from large-N. QCD alone, or do they depend on the large-N. quark model? The ordinary ground-
state baryons are stable in the large-IN. limit, with properties entirely determined by symmetry; the quark
model in this case is just a convenient way of counting states, introducing no dynamical assumptions beyond
large-N. QCD. However, this is not true for the excited baryons; they have widths that go as N2, and so
using the quark model for them does introduce new dynamical assumptions. References [64] address this
problem in detail, and show that the treatment of excited baryons in large N, makes sense. A recent paper
by Cohen and Lebed [65] extends this treatment to exotic multiplets such as the large N. analogue of the
10, which contains the ©F.
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coefficient for SU(3), which can be written in terms of isoscalar factors and ordinary SU(2)
Clebsch-Gordan coefficients. The sum runs over all possible values of S.,, s,, etc. In the
case of the 157 states, we need to combine the two possible values of S, using the coefficients
in Eq. (3.7).

We can then use the Wigner-Eckart theorem to express each matrix element in terms of
Clebsch-Gordan coefficients and the reduced matrix elements of S¢, T2, Gi¢, s¢, t¢, and g*®.
The SU(2) Clebsch-Gordan coefficients may be calculated in, e.g., Mathematica, or looked
up in any of many published tables; analytic formulas for the necessary SU(3) isoscalar
factors appear in [66, 67].# One may also use the bosonic operator method described in
[68]. Explicit values for the relevant matrix elements appear in Appendix A.

The values of some of these matrix elements illustrate the tower structure. In particular,
the flavor 3 states are in a different tower from the others. The values of O4 for these two
states differ at O(1) from those for the 6, 15 and 15’ states, so the two towers can have
different masses as N, — oo. For this reason, it is not possible to construct a simple mass
relation involving the 3; — 3¢ splitting and the other heavy pentaquark multiplets.

There is, however, one mass relation among the other negative-parity heavy pentaquarks:
155 —157F = 2(67 — 155) + O(1/N3). (3.9)

Note that this relation holds to order 1/N2. In addition to Os and Og, the operator
On = Nig,,S'gtaT‘;1 also contributes at O(1/N?2), and the relation remains true when this
contribution is added.

The pentaquark states can also be related to the excited baryons, using the results from
[59], and to the ground state octet and decuplet baryons. (Note that the core of the octet

is a linear combination of S, = 1 and S, = 0, with coefficients given in [58].) The mass

4In case anyone actually wants to attempt this, it should be noted that there are a couple of typos in
these otherwise very useful papers. On page 31 of [66], the entry in Table 4 for exAy = —3%, A=A+ %,
p = 2 is incorrect: the factor (A+ g+ 2 — ¢ + 1) in the numerator should be (A + p + 2 — g), and the
factor (u + p — ¢) in the denominator should be (ux + p — ¢+ 1). In Table 1 of [67], page 684, the entry for
e2ho = =12, Ay = A+ 1, (N, 1') = (\,p — 1) is incorrect: the factor (u — 2) in the numerator should be
(1 —q)
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relations include,

67 —158 = §(<4SE> - (*10%)) + O(1/N?), (3.10)

7 17
(8F - 35) - -(15F — 150 + 1T (15F — 158) =

%((210E> — (*85)) + %((48E> — (*85)) + O(1/N2), (3.11)
141(15’P 155)+ﬁ(15p 157) — ?1)(151’ 67)—20157 - 30) =
(103), — 81)5) +2(*17) + 3<8E>—§<210E>+0(1/N3)- (3.12)

Here 103 /2 and 81 /2 are the ordinary octet and decuplet containing the ground-state nucle-

ons and As. <210E>, <48E>, <28E>, and <21E> are spin averages of the excited baryons:

(*107) = ;(2101/2 + 2(2103/2))
<28E> = %(2852 ( 83/2))
(17) = %( 12T 2(? 3/2))

('87) = 6( 81/2 +2(* 3/2) +3(* 85/2)) (3.13)

There is some ambiguity involved in identifying the 852 and 83E/2 multiplets with physical
states, because mixing presumably occurs, and the values of the mixing angles are not
known with certainty. The results here will be calculated assuming zero mixing. We will

identify the exited baryons as follows (choosing the non-strange states in the 8 and 10
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cases):

217/, = A(1405)
213, = A(1520).

(3.14)

The order N, contribution to the pentaquark mass is about 1 GeV, so we estimate
O(1/N2) corrections to be of order 30 MeV, and O(1/N3) to be of order 10 MeV. Assuming
no mixing and using the Particle Data Group values [16] for the masses of the nonexotic
baryons, we can give numerical estimates for the right-hand sides of Egs. (3.10) - (3.12).
The mass difference <48E > - <210E > is quite small, about 4 MeV; the error in Eq. (3.10) is
estimated to be considerably larger than this. Thus Eq. (3.10) indicates that the 6 and
155 masses are close together, with a splitting of 4 & 30 MeV, but cannot tell us which one
is heavier. The same applies to the 15/F and 155 masses, by Eq. (3.9). The right-hand side
of Eq. (3.11) is about 83 MeV, again with an error of + 30 MeV. If all three pentaquark
splittings on the left-hand side were equal, each would be about 40 + 30 MeV. Based on
the estimate in [40] that the isospin 3 members of the 3} should have mass 2580 MeV, this
very rough guess suggests that the corresponding members of the 3{3 would have mass 2620
+ 30 MeV, meaning that they would also be too light to decay to a D, plus a proton. The
right-hand side of Eq. (3.12) comes to -260 + 30 MeV.

It is clear from comparing experimental evidence with expressions obtained in the large
N, expansion that there is some mixing between the different 8 states with the same spin

and isospin. Such mixing can be parameterized by two angles 0y, and 0y,, constrained to
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be in the interval [0,7) and defined by
N (1535) cosfy, sinfy, 285

= 120 (3.15)

N (1650) —sinfy, cosfy, 87

N (1520) cosfy, sinfy, 283 (3.16)

N (1700) —sinfy, cosfn, 48:,,E/2

Using data from the strong decays of the non-strange excited baryons, Goity, Schat, and

Scoccola [59] estimate these angles to be

O, = 0.61 £ 0.09,

On, = 3.04 £ 0.15. (3.17)

Note that this value of Oy, is consistent with 0 mod =; 6y, , however, may make a difference
to our relations.

On the other hand, in a later paper [61] Pirjol and Schat find multiple different possi-
bilities for the mixing angles, depending on the mass hierarchy of the three different towers
to which the excited baryons are assigned. A number of subsequent papers have attempted
to narrow down the correct mixing angles based on empirical data. Cohen and Lebed [64]

find

On, ~ 0.96,

On, ~ 2.72, (3.18)
while a recent paper by Scoccola [73] holds that there is still some ambiguity, with

On, = 0.39 £ 0.11,

On, = (2.82 or 2.38) + 0.11. (3.19)

This wide range of results indicates that there is still a good deal of uncertainty on the
subject, and we will not attempt to provide a definitive resolution here. We will simply

note that our numerical results may need some adjusting according to which mixing angles
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are chosen. For example, the mass of the spin-averaged state <48> appears in Eq. (3.10).
With no mixing, this mass is 1679 MeV, very close to the <210> mass. Using the mixing
angles in (3.17), we get 1672 MeV for the mass of the (*8), while with the values in (3.18),
we get 1656 MeV. Using the two different cases in (3.19), we get 1670 MeV and 1647 MeV
respectively. Thus the right-hand side of the relation (3.10) could decrease by up to 32 MeV
depending upon the choice of mixing angles. This is not a large change, but it is somewhat
important because it could cause the mass splitting to change sign. However, as indicated
above, the uncertainty in the relations is such that we cannot be sure about the sign in any
case. The relations (3.10)-(3.12) should be taken as rough guidelines rather than precise

predictions.

3.2.1 Heavy Quark Effective Theory

Hadrons containing heavy quarks are simpler in some ways than their light counterparts.
Intuitively, a heavy quark, with mass >> Agcp, is mostly untroubled by the “brown muck”
inside a hadron; it is only lightly buffeted by the gluons and less-massive quarks zipping
around it. The simplifications due to the presence of heavy quarks have been rigorously
quantified by a number of researchers; reference [69] explains heavy quark physics in detail.
Two types of symmetry characterize the interactions of heavy quarks in hadrons. The
first is heavy quark spin symmetry: in the limit mg — oo, a heavy quark’s interactions with
gluons are spin-independent, so arbitrary transformations can be made to the heavy quark’s
spin without changing the dynamics. The second is heavy quark flavor symmetry: the heavy
quark mass is clearly irrelevant as mg — 0o, so one can also interchange heavy quark flavors
without changing the dynamics. The leading-order symmetry-breaking corrections for each
of these symmetries are proportional to 1/mg.
Hadrons containing a heavy quark have been studied using heavy quark effective theory
(HQET). The HQET Lagrangian,
(iD)? ~ 9Guot
Al

= 71; v - D v 71) v_Z
Luger = Qu(iv-D)Qy + Q 2mQQ 0@ 4mg

Q,+0 (%) , (3.20)

Q

describes the interactions of a heavy quark @) with velocity v inside a hadron. The velocity-
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dependent field @, is related to the original quark field @ by [69]

Q(z) = €7 [Qu(2) + Qu(@)], (3.21)

where Zg is a renormalization factor with Zg(u =mq) =1, Zy/Z. = [as(mp) /o (mc)]9/25,
and
imQu-x 1+
Qu(z) = emer= (),

Qu(z) = eimQ”"“’#Q(m)- (3.22)

This field redefinition absorbs the mass mg of the heavy quark, so that there is no mass
term in the Lagrangian (3.20).

The mass of a hadron with one heavy quark can be expanded in 1/mg:

- A1 Ao 1
M(Hg) = A - —d — |- 2

Here A accounts for the mass of the light degrees of freedom, and A\; and )y are defined by

A = (Ho(v)| Qu(iD)*Qy | Ho(v)) (3.24)

A = 57 (Ho(v)] QugGuuo™ @y |Ho(v) (3.25)

In Eq. (3.25), the Clebsch factor dy is equal to —4(Jy - Jg). The parameters A, A1, and Ao
differ depending on whether the hadron in question is a baryon or a meson; here we will be
focusing on baryons.

Heavy quark effective theory can be combined with the large N, formalism to produce
an expansion in 1/N, and 1/mg [70]. In the limit m; — oo, me — oo, N; — oo, holding
me/mp and N.Agcp/my fixed, there is a combined light-quark and heavy-quark spin-flavor
symmetry SU(6); x SU(4),. The breaking of this symmetry can be parameterized as in
the previous section, except that now we must include the heavy quark spin operator Jé,
which contributes at order 1/mg.

In the heavy pentaquarks we consider here, the light quarks combine with the heavy

antiquark to produce the twelve states 315’172, 315252, 51531'9/2, 5155/2, 315{3/2, 31531'3/27 115{3/2,
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36P

3gP
1/2° 6

39P
3/20 3

39P
1/2° 3

3/27 and 137

1/2° (The notation here is 27¢T1F 7, where j, is the light-

quark spin, F is the flavor representation, and J is the total spin of the state.) The singlet

operators at order 1/(N.mg) are

1

Or = Nomg Sido

Og = NcinQ siJé

O = %mQt“{Jé),G?}
O = N;mQ g IHTE, (3.26)

where Jé) is the spin of the heavy antiquark. Matrix elements of these operators appear in

Table A.2. We find the mass relations

_ _ 9 1
385, —2 61y = E(515§/2 =5 155),) — 5(315352 = 151,) + O(1/NZmgq),  (3:27)
5
°155, —° 155, = 5(3155/2 —2150,) + O(1/NZmg), (3.28)
365, —> 67y = 635 — 615 + O(1/Nmg), (3.29)

where 6{\;2 and 6{,,\;2 are the non-exotic heavy baryon multiplets containing the X.; and
27 p» respectively. In the charmed case, the masses of the X. and X are 2455 MeV and
2520 MeV respectively, so the mass splitting in Eq. (3.29) is 65 MeV [16]. For the bottom
case, mass measurements of the ¥, and ¥j are not currently available.

States with the same spin and flavor quantum numbers may mix. There are three mixing
angles, for the two 3,5 states, the two 15,5 states, and the two 1535 states. Each pair
mixes at order 1/(Nqmg); off-diagonal matrix elements corresponding to the mixing can

also be found in Table A.2.

3.2.2 SU(3) Breaking

The breaking of SU(3) flavor symmetry can be quantified by the parameter e ~ 0.3. SU(3) is
broken at order € by octet operators, at order, 2 by operators in the 27 representation, and
at order €3 by operators in the 64. By calculating the matrix elements of these operators,
one can find relations between different flavor states, such as the famous Gell-Mann-Okubo

formula for the mass splittings among the octet baryons.
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SU(3) breaking can be combined with the 1/N, expansion to produce a hierarchy for
baryon mass splittings [72]. For example, the baryon mass relations
5 — —k
5(6N—3E+A—4:)—(2A—: -Q)=0, (3.30)
and

1
g(N—3Z+A+E) =0, (3.31)

are both order € in SU(3) breaking, but the former is order NO while the latter is order
1/N. in the large N, expansion. Experimentally, the relation (3.30) is broken at the 20%
level, while (3.31) is broken only at the 6% level. The relation

1
5(~2N — 9T + 3A +85) + (24~ — Q) =0, (3.32)

is order ¢/N2; it is good to the 1% level. This is a good example of the usefulness of
the 1/N, expansion for describing and predicting the baryon mass spectrum; before 1/N,
calculations were done, it was not understood why some of these relations worked so much
better than others.

In the case of negative-parity pentaquarks, there are three octet operators that break

SU(3)s at O(eN?) [59, 71]°:

By =1t

By, =T?
1 L

By = —d*®g""GP. (3.33)
Ne

SRef. [59] includes a fourth operator that depends on the orbital angular momentum ¢; this is irrelevant
here because £ = 0 for the states we are considering.
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Here d* is the completely symmetric SU(3) coefficient; its relevant nonzero values are

811 — 822 — 4833 _ 1

V3

844 — 4855 — 866 _ 877 _ _ 1
2/3
1
a8 = — . (3.34)

V3

Explicit values for the matrix elements of these three operators are given in Appendix A.
The operator B is actually of order eN. here; however, the order N, part has the same
value, 2N7“3, for each of the seven multiplets, so it does not affect the splittings.

By considering empirical evidence, reference [59] finds that in the case of the excited
baryons in the 70 of SU(6), the operator Bs is weak and does not contribute much to the
SU(3) breaking. This may or may not be true in the case of heavy pentaquarks. The
contributions from Bj are listed in Table A .4.

From Tables A.3 and A.4, we see that within the 6; multiplet, the masses of states with
different strangeness are split only at order ¢/N, ~ 10%, and the three different masses are
equally spaced. If we label the states by their S values as 61(0), 61(—1), and 61(—2), then

we have the relation

M(6,(—1)) — M(6,(0)) = M(6,(—2)) — M(6,(—1)) + O(¢/N?). (3.35)

For the other six multiplets, the corresponding mass splittings are order ¢ ~ 30%,
because of the operator Bs. Equal-spacing relations similar to Eq. (3.35) can be derived
for the other multiplets as well, though they will be satisfied only to order e. (Of course, in
the case of the 3 multiplets, such a relation is not terribly useful, because each has only two
possible combinations of strangeness and isospin, and thus one mass splitting.) In the 15
multiplets, there are some states with the same strangeness but different isospin: S = —1
states can have I = 3/2 or I = 1/2, and S = —2 states states can have I = 1 or I = 0.
(This is illustrated in the diagram in Figure B.1; the circles surrounding some states indicate
degeneracies.) The mass splittings between states with the same S but different I are all
of order €¢/N,.

Pirjol and Schat [71] predict that the two isospin multiplets with (I, J;) = (1/2,2) and
(3/2,0), some of the S = —1 members of the 159 and 152 multiplets, will be split only
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at O(1/N,) to all orders in SU(3) breaking. This is a result of the fact that those two
multiplets are in the same tower, labeled by K = 3/2. The explicit matrix elements listed
in Table A.3 confirm the prediction for the order ¢ SU(3) breaking. This can be seen by

expanding each matrix element to order N?:

1 N, 35 1
15¢| (c1B1 + c2B2 + ¢c3B3) |15 c1+ co— ——=c3+ O(1/N,),
(150l (011 + caBa + eaBa) 150) = - cr 4 (e 2 ) Lo o/
1 N, 35
159| (¢1B1 + ¢c9 B9 + c3B3) |159) = ——ec¢1 + | —= +
(18a] (1B + oy + caB) [152) = (

1
2\/5 ﬁ) Co — m63+0(1/NC).

(3.36)

At order 1/N., however, the matrix elements depend on both strangeness and isospin in the
combination A = 4I% + 41 — S, so the (I, J;) = (1/2,2) and (3/2,0) states will be split at
this order.

It so happens that the O(e) values of By, By, Bs given in Eq. (3.36) are the same
for the 15} and 15; as well. Therefore, the matching-strangeness states from any of these
multiplets are split only at order e¢/N.. At S = —1, this includes the states with (I, Jy)
values (1/2,0), (3/2,1), and (3/2,2) as well as those listed above. Presumably some of this
degeneracy will be broken at higher orders in SU(3) breaking.

We can also derive some relations between the mass splittings in different multiplets.

For example (again denoting states by their strangeness S),

M (30(=2)) — M(30(—1)) = M(31(-2)) — M(3:1(-1))

157(=2)) — M (15} (=1)) + O(e/N.). (3.37)

(Eq. (3.37) holds for either isospin value of the 15¢(.S) and 152(S) states.)
So far, we have ignored mixing among the various multiplets. States in the 159 will
not mix, because there are no other multiplets with spin 2, but for the other states, mixing

can potentially be an important effect. The following table shows the values of isospin and
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strangeness for which mixing can potentially occur between the different multiplets:

Multiplets (1,5)
307150 (1/27_1)a (07_2)
3,,6 1/2, —1);
b (1/2,-1) (3.38)

31,15 (1/2,-1);
61,15 (1/2,-1);
159,15,  (3/2,-1); (1,-2

(0,-2)
(1,-2)
); (1/2,-3).

As noted in [71], the tower structure provides some information about the pattern of
SU(3) breaking. For example, there will be mixing among the states with S = —1 and
(I,Jq) = (1/2,0), from the 3¢ and the 150, even though these states are in different towers.
However, in the large N, limit, the eigenvalues of the mass matrix must coincide with the
masses of the corresponding tower states. The same can be said for mixing between the 31
and the 61, 151, and 15.

The matrix elements of By and B2 corresponding to mixing are listed in the last five
rows of Table A.3. It is interesting to note that in each case, (Bs) = — (B1). However, this
does not necessarily mean that the two contributions cancel; B; and Bs in general have
different coefficients in the effective Hamiltonian, and these coefficients may not even have
the same sign. The mixing from the three coefficients is of order ¢//N, for the first three
cases listed in (3.38), and of order ¢/N, for the last two.
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3.2.3 Heavy Quark, Light Antiquark States

The states of the form gQqqq discussed in Chapter 2 can also be considered in the context
of large N,.. Positive-parity, P-wave states of this type come from a completely symmetric
representation of SU(6). This representation decomposes into the spin-flavor representa-
tions 249, 245, 151, and 153, which contain exotic states, plus 3y and 61, which are not

exotic. These are illustrated in Figure 3.6.

flavor 24 spin 2 flavor 24 spin 1 flavor 1_5 spin 1 flavor TS

flavor 3 spin 0 flavor 6 spin 1

Figure 3.6: Young tableaux showing the flavor SU(3) x spin SU(2) decomposition of the
positive-parity Qqqq pentaquarks. The two representations in the lower row contain no
exotic states.

The negative-parity, S-wave pentaquarks with a heavy quark come from a mixed-
symmetry representation of SU(6), whose spin-flavor decomposition is shown in Figure
3.7. Here we get quite a few more multiplets: 24, 241, 24¢, 152, 151, and 15¢, which
contain some exotic states, plus the nonexotic 31, 3, 61, and 6.

The 15¢ is the multiplet considered in Chapter 2. It can be constructed from “good”
antisymmetric diquarks (if we allow one diquark to contain a heavy quark). The other
negative-parity states can be built from combinations of “good” and “bad” diquarks.

The large N, formalism could be applied to these negative-parity states as well, but
doing so would probably not be worth the trouble. In this case, we would have to treat
three particles as “special:” the heavy quark, the antiquark, and the “extra” quark not

included in the core. So many different operators would need to be included that it would

[T] X< [CII1] [T] X [ | X [ | X

spin 0
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[T1 < 1T [T1 X [ ] [T] X
flavor 24 spin 2 flavor 24 spin 1 flavor 24 spin 0
| < LT | X [ ] | X
flavor FS spin 2 flavor 1_5 spin 1 flavor ?5 spin 0
X X [ ] [1 X [1 X [ ]
ﬂavor_3 spin 0 ﬂavor_3 spin 1 flavor 6 spin 0 flavor 6 spin 1

Figure 3.7: Young tableaux showing the flavor SU(3) x spin SU(2) decomposition of the
negative-parity gQQqqq pentaquarks. The four representations in the last row contain no
exotic states.

be unlikely for any useful relations to emerge.

3.3 Summary and Discussion

It should be emphasized that the large N, expansion makes no prediction as to the existence

of pentaquarks or other exotic states. Nothing in this thesis can settle the experimental

question of whether the ©T is real, or whether it has any heavy counterparts. What we

have done is to outline a method of studying these exotic baryons, should they prove to be

of physical interest.

In this chapter, we have generalized the negative-parity pentaquarks introduced in Chap-

ter 2. By moving from a specific constituent quark model, the diquark model, to the broader

context of large N., we have uncovered a whole host of other possible negative-parity heavy

pentaquarks. As with the F' and Fj, states described in Section 2.2.3, it is far from certain

whether any of these other pentaquarks are stable against strong decay, or whether they
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have other properties causing them to be narrow enough to be observable. Nevertheless,
we have at least shown how they can be accommodated in the large N picture, and de-
rived some relations that they must obey if they do indeed exist. Of particular note is the
prediction that the 3; states, like the 3y states considered in Chapter 2, may also be light
enough to be stable against strong decay.

At this point, it is up to the experimentalists to determine whether the ©7 is real or
an unfortunate artifact of misguided data analysis. As noted in the introduction, planned
experiments at CLAS and COSY-TOF will hopefully settle this question soon. If the
©7 does turn out to exist, this thesis points to some interesting places to look for other

pentaquark states.
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A.1 Matrix Elements of Light Operators
Oy O O3 Oy Os Os On
1 @2 1 iqQe 1 jaqa 1 jagqQi ia 1 _iaQiga 1 Q2iara
Nc]- WCSC ES Sc Et Tc N_gt {SC,GC } N—cgg ScTc N—gSCt Tc
3P N 3 _ 3 __ N.46 _ 1 N.+6 1
0 c iN, 4N, 6N, 2N2 8N2 8N2
3P N 3 1 _N.+6 1 _N.+6 1
1 c aN, 4N, 6N, 2N2 24N2 8N2
6r N, 3 1 N.—9 __3N.+5 N.—9 1
1 c 4N, 4N, 12N, 4N2 48N2 16N2
157 | N 3 3 N.+3 N+3 __ N.+3 1
0 c iN, 4N, 12N, 4N? 16 N2 16NZ
15°7 | N TN.+16 | _ 7N.+16 | NZ—3N.—25 _ 3N.+23 —N.+19 7
1 c 4N2 12N2 12N2 24N2 48N2 48N2
15P N, 15 3 N.—15 _ 5(Nc+1) N.—15 5
2 c 4N, 4N, 12N, 4N2 16 N2 162
15'F N 15 _ 5 Nc+9 3N +11 _ 5(Ne+9) 5
1 c iN, iN, 12N, 4N2 48N2 16N2
10V N 2 1 N.+5 3No+7 _ Ne+5 1
3/2 c N. 2N, 12N, 6N2 24N? 6N2
8N N 3(Ne—1) | _ 3(Ne—1) | N2—10N+9 —3N2+2N, N2+14N, 1
1/2 c 2N2 4N2 12N2 8N3 16N3 8N2

Table A.1: Matrix elements of singlet operators Oy through Og and O11 to order 1 /Nc2 It
should be noted that the ezact matrix elements for the 155 multiplet are in agreement with
the results of [71]. For Table I, m was expanded as % - % + ..., and only terms up

to order 1/N? were kept.




A.2 Matrix Elements of Heavy Operators

Or Os Og O10
7 i Ti 2 af Tt ia za a
VST | w ST | nst T G} | g YT
1
30, 0 0 0 0
3 1 1 1
33/2 IN.mq IN.mg 0 24N, mq
39P __1 ___1 1
312 IN.mq IN.mq 0 12N.mq
3gP 1 1 ! 1
3/2 IN.mq IN.mq IN.mq 48N.mq
3gP S T IR T 1 1
1/2 IN.mq IN.mq IN.mq 24N, mq
1 P
157, 0 0 0 0
315F _3 1 1 1
3/2 8Nomg 8Nomg 8Nomg 96N.mq
315P -3 -1 1 -1
1/2 4Nch 4Nch 4NCmQ 48NCmQ
5 /2 IN.mq IN.mq IN.mgq 48N, mq
515F -9 -3 _3 N S
3/2 8N.mq 8N.mq 8N.mgq 32N.mq
315 5 __ 1 1 _ 1
3/2 8N.mq 8N.mg 8N.mq 96N, mq
315 __ 5 1 _ 1 1
1/2 4N:mq 4Ncmg 4N:mq 48N:mq
6 1 1 1 1
3/2 4N.mq IN.mq IN.mgq 48N.mq
6N 1 ___1 1 __ 1
1/2 2Ncmqg 2Ncmq 2Ncmq 24Nc.mq
3gP 1gP __ V3 V3 0 _ 1
12~ 212 IN.mg IN.mg 3v3N.mg
315 _1 15 1 _ 1 _ 1 o 1
1/2 1/2 | 2v2N.mg 2v2Nemg 2v/2Nemg 24v/2N.mg
5157 _31gP __ /5 5 V5 V5
3/2 3/2 8N,mgq 8v3N,mg 6Nemg 96N, mq

Table A.2: Matrix elements of heavy operators O7 through O to order 1/N.mg. The last
three rows show off-diagonal matrix elements, which are related to the mixing angles. All
results in this table are expanded to O(1/(N.mg).
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49

Bl BQ
t8 T8
3P (V243N (5+1)—(35+10)) N34+3N2(S+3)+N.(245+17)
0 V3(Ne+1)(Ne+5) 2v/3(Ne+1)(Ne+5)
3P _ (N243Ne(S+1)—(35+10)) N343N2(5+3)+N(245+17)
1 V3(N+1)(Nc+5) 2v/3(Ne+1)(N+5)
6P N.+65—-5 N2+ N.—6S5+6
1 2v/3(Ne+1) 2v/3(Ne+1)
15P 4N.4+3A+185—4 4N244N.(35+5)+3(145+8)—34
0 8v/3(N.+5) 8v/3(N.+5)
15P 8N3+N2(3A+305—24) 24N2+N3(725)—N2(9A+905+527)
1 164/3N3 48+/3N3
15P 8N.—3A—185+16 8N24+8N.(354+1)+3A—3(145+8)
2 16v/3(N.+1) 16v/3(N+1)
15/P 2N +155+14 2N2+2N(3S+7)+27S
1 4v/3(Nc+7) 4v/3(N+7)
3P _15P | _3_1 \/(_5)(Nc_1)(Nc+2S+5) 3 1 \/(—S)(Nc—l)(Nc+25+5)
0 0 2N +5 Ne+1 2 N.+5 Ne+1
3P _g" V3 1 [(Net3)(Ne—1) V3 1 [(Ne+3)(Ne—1)
1 1 2 Nq+1 N:+5 2 N.+1 N:+5
3P _ 15P 1 (Ne=1)4/(=8)(Nc+25+5) 1 (Ne=1)4/(=8)(Ne+25+5)
67 _15P _1 1 (=8)(2—S)(N.—1) 11 (=8)(2—S)(N.—1)
1 1 V2 Nc+1 Nc+5 V2 Ne+1 Nc+5
15/P _ 15P f\/ —8)(5+4)(Ne+5) f\/( 5)(S+4)(Nc+5)
1 1 TINZSD) (Nt 7) (NZ—1)(Nc+T7)

Table A.3: Matrix elements of two of the SU(3) breaking operators at order €, By and Ba.
The results for the 15; have been expanded to order 1/N.. I is the isospin and S is the
strangeness of a particular state. Note that all matrix elements not diagonal in I and S
vanish. For example, the 3; and 6; mix only for S = —1,1 = 1/2.

The factor A depends on both strangeness and isospin: A = 412 + 41 — S2.
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A.4 Matrix Elements of SU(3) Breaking Operator Bs

B3
1 j8ab ia vib
md a glaGZC
3P (24+35)N2+(24+188) N +(70+39S5)
0 8v/3N,(Ne+1)(Ne+5)
3P _ (2+3S)N2+(24+185)N+(70+395)
1 32v/3Nc(Ne+1)(Ne+5)
6P _ (3Ne+T7)(Ne+35+1)
1 48+/3N.(No+1)
15P _ 4N24+N,(145+16+A)+465+124+A
0 64+v/3N.(N.+5)
15P _ 24N2+4(1985+3A+16)N3
1 961/3N4
15P _ 8N24N.(225+24—A)—265-32—-TA
2 128+/3N.(N.—1)
15'P _ 6N24N.(44+275)+(14+69S)
1 96v/3N.(N.+7)

3P _15P 3N24+4N.—7 (—=38)(Nc+25+5)
0 0 324/3N.(Ne+5) V NZ-1

3P _ EP _ 3N3+29N2-+93N.+99 Ne—1
1 1 128v/3N.(No+1)(Ne+3) Y (Ne+5)(Ne+3)

3P _15P | _(NE20Nc+0) (25 (Ner25+5)

32+/3N.(N+1)(N.4+5)
8f _ 18P Nc+3 (Ne—1)(—65)(2-5)
6, — 15 48+/3N,(Nc+1) \/ Nc+5
P P V5 Ne+3 [ (Net5)(2-5)
157" — 15 T 96 N (N.+7)(N2-1)

Table A.4: Matrix elements of the third SU(3) breaking operator at order ¢, Bs.
As before, A = 4I? + 41 — S§%. The entry for 15; has been expanded to O(e/N..
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Appendix B

Flavor SU(3) Multiplets

B.1 Negative-Parity Heavy Pentaquark Multiplets for N, = 3

Y Y
°
o | o o o
° I, e o o I,
Y Y
e o o e o o o o
o o (o o o o o o
o (o o I, ¢ o o I,
o | o LRI
°

Figure B.1: The four possible SU(3) flavor multiplets for the negative-parity heavy pen-
taquarks at N, = 3. The top row shows the 3¥ and the 6%; the bottom row shows the 15°
and the 15’7,
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B.2 Extension to N, > 3

Y Y
[ J [
[ [ J o
¢ 13 O @) IS
N, =3 N, =5
Y
[ J [ J
O ® O
N, =7
o ©]© o I,
O O

Figure B.2: Extension of the 3 to V. > 3. The 3, shown at top left for N, = 3 and written
in Dynkin index notation as (1,0), becomes (1, NC2_1) for arbitrary odd N, > 3. The first
two cases are shown here: N, = 5 gives the 8 representation, (1,1), and N, = 7 gives the
15, (1,2). In each case, the states of interest are shown in black. For all N, they have the
same isospin and strangeness values, (I,S) = (1/2,—1) and (0,—2). Their hypercharges

are % and N03_5, respectively.




53

Appendix C

The Long Range Gravitational
Potential Energy Between Strings

In classical 2+1 dimensional general relativity, a point mass at rest does not result in a
curved space-time away from the location of the particle. Instead, the space-time remains
flat, but with a deficit angle cut out; the size of that angle is proportional to the mass
of the particle [75]. This corresponds to a curvature singularity at the location of the
particle. Hence in 2+ 1 dimensional space-time there is no classical force between two point
masses. Similarly, in 3 4+ 1 dimensional general relativity, an infinitely long straight string,
characterized only by its tension, leaves the exterior space-time flat, and the classical force
between two parallel infinitely long straight strings vanishes [76]. The main purpose of
this paper is to calculate the leading quantum mechanical long range force, or, equivalently
potential energy, between such strings. Towards the end of this paper, we will also consider
contributions to the long range force that would arise if, in addition to the massless graviton,
there were a massless scalar in the bulk. We then briefly discuss the generalization of this
to other co-dimension two objects (i.e., p-branes in p 4+ 2 4+ 1 dimensional space-time). In
models with two large extra dimensions, this potential between three-branes may be relevant
for cosmological quintessence [77].

The action for the two-string system is taken to be

S =85,+ 51+ 5. (C.1)
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The bulk action, Sp, is the usual Einstein-Hilbert action

Sy = —2M(=2) / d"z /g R, (C.2)

where R is the curvature scalar, and Newton’s constant Gy is related to the mass M by
GN = 1/(32rM?). Even though the long range potential is finite, it is convenient to regulate

the theory using dimensional regularization, and in Eq. (C.2) n =4 — e. For the two string

S — —Ti/d“:v [ 6@z — 7), (C.3)

where g is the induced metric on the world-sheet of string i. Note that in n dimensions

actions, S;, we take

the string world-sheets have dimension n — 2, so they are still co-dimension two objects.
We have chosen to align the strings along the 1 axis; the separation between the two strings

—

is @ = T; — @. Indices that go over the 4 space-time coordinates 0,1,2,3 (n space-time
coordinates in n dimensions) are denoted by capital Roman letters; those that just go over
the 2 space-time coordinates of the string world-sheet 0,1 are denoted by Greek letters.
Finally, indices that take on values in the two spatial directions perpendicular to the strings
are denoted by lower case Roman letters, and vectors in the 2,3 plane are denoted with
arrows. We align the local space-time coordinates on the string world surfaces with those of
the bulk space-time, so the components of the induced metric tensor are the same as those
of the bulk metric but restricted to the 0,1 values of the indices, i.e., gg% = Gap-

Expanding the gravitational field as!
guMN = nun + hyn /M2, (C.4)

we determine the leading quantum contribution to the potential between the two strings
by computing one-loop Feynman diagrams with vertices that follow from the action in Eq.
(C.1). This is similar to the computation of the quantum correction to the Newtonian
potential between point masses? in four space-time dimensions [78]. The main difference
between the string and point mass cases is that for strings the classical force vanishes; hence

our computation gives the leading contribution to the force instead of a small correction.

'Here n = diag[—1,1,1,1] is the usual flat space-time metric tensor.
2There is some ambiguity in precisely how the potential is defined. This issue is less severe for strings
since the classical potential vanishes.
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't Hooft and Veltman calculated the infinite part of the one-loop gravitational effective
action [79]. We adopt the same background field gauge fixing, so the momentum space

propagator for the canonically normalized graviton field is

Dap,cp(z —y) = PapopD(z —y), (C.5)
where D(z — y) is the usual scalar propagator with Fourier transform D(q) = —i/(q? — ie)
and

1 2
Pap,MN = E[UAMUBN +NANTIBM — 2"7AB77MN]- (C.6)

It is convenient to use their gauge fixing convention, because then the contribution of some
of the Feynman diagrams to the quantum force between strings can be deduced from their
work. Unless explicitly stated otherwise, indices on h and P are raised and lowered with
the flat space metric tensor 7.

In this paper, we treat the tensions as small compared with M?, and only keep the
terms in the potential proportional to the product of the two tensions 7179, neglecting
terms suppressed by additional powers of Gy7;. Using perturbation theory, it is easy to
understand why the part of the classical potential proportional to 717 vanishes. It comes

from the Feynman diagram in Figure C.1. Using
Vo® =1+ h2/2MT270 4 h2 hE/8M=2) — pg pE/aM D 4 (C7)

it follows that this diagram is proportional to Pg,l, = 7By Pog = 0.

O ©)

Figure C.1: Classical contribution to the potential. The numbers 1 and 2 represent the two
string world-sheets.

In background field gauge, one decomposes the graviton field into quantum and classical
pieces: h = h+ iL, where the bar denotes the classical part and the tilde the quantum part.
The leading quantum correction occurs at one-loop. The quantum fields are contracted to

make the propagators that occur in the loop; the classical fields are contracted for the other



Figure C.2: Feynman diagram that determines the one-loop contribution to the potential
from terms localized on the string world-sheets that are quadratic in the graviton field.

propagators. (In the figures, classical gravitons are drawn as wavy lines, quantum gravitons
as curly lines.)

First we consider Figure C.2. The coupling of the gravitons to the string world-sheet
comes from the quadratic terms in the expansion of the square root of the induced metric

in h. The contribution to the effective action that results from this Feynman diagram is

PaBP)\é Pa)\PJﬁ Pa)\P/Bé
. T1T: ) pRZ) ) ER) ) )
iASepf = — ]\142 < 22 — = ﬂ8 Ay A S 2 /d2w1d2x2D(:c1 —x9)%. (C.8)

Eq. (C.8) is evaluated using

LT 2L K, 2 LT
/d2$1d2$2D(:E1 — x2)2 = g d°k Ko(k) .

a2 | (2o 2m)?2 ~  'a?l67d (C-9)

where K((k) is a Bessel function of imaginary argument, the integrals go over the world-

sheets of the two strings, and
pPar=o, Pg3PES=2. (C.10)

The effective action can be interpreted as minus the potential energy times the time,
AScsy = —AU T. Putting these results together, we find that the contribution to the
potential energy per unit string length from this diagram is

T1T2 1
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Figure C.3: Feynman diagrams that give the contribution to the potential from gravitational
self interactions. The shaded circle includes gravitons and ghosts in the loop.

Next consider the diagrams in Figure C.3. ’t Hooft and Veltman [79] found that the

divergent part of the one-loop gravitational effective action for pure Einstein gravity is

geff _ M /d"m L g2y Tp pAB). (C.12)
tisop = " g3 (1, _ ) 1207 " 20

From this we can deduce the insertion appropriate for the shaded circle in Figure C.3 by

expanding out the curvature tensor to linear order in the gravitational field. We get
R? = [(8°hL)(0%h3Y) — 2(8°hE)(060EhCE) + (OkONKEN ) (06OEhF)| /M2, (C.13)
and

Ry RME = E(aKath)(aKaMh%) — (O Oy hE) (08N KM + %(aKath)(a%KM)
1 1
+ 5(aKaLhW)(aKaNhW) + 5(aKaLhLM)(aNaMhKN) — (O OLhE ) (82hEM)

+ (82hKM)(62hKM)] /M=), (C.14)

>~ =

The contribution from the one loop diagram in Figure C.3 is deduced by inserting in the
momentum space vertex associated with the the action in Eq. (C.12) an additional factor
of ¢*"2=2) =1 — €In(q¢?)/2 + .... Without this factor, the contribution to the long range
force between strings would vanish. It is the finite nonanalytic part of the effective action,
not the divergent part, that is actually responsible for the long range force. The momentum

space integral that must be done is then

1 d2q s o\ 2\(n/2-2) _ 1
n—4 / (2m)? exp(iq-@)(7) -~ 27ma?’ (C-15)
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Figure C.4: Contribution to the one loop potential that arises from the three-graviton vertex
from the Einstein-Hilbert action.

Putting these results together, the contribution from the diagrams in Figure C.3 to the long

range potential energy per unit length between strings is

1 1 1 11 1 1 1
AU/L:&( [—2+2— ]+l{——+1 —————— +—__D

16m3a2 M4 \ 120 21 "20| 2 2 4 42 4
T1T2 11
=12 (__——), C.16
16m3a2 M4 ( 120) (C-16)

The successive terms in the square brackets are the contributions of the corresponding terms
in the square brackets of Egs. (C.13) and (C.14).

Next we consider the contribution to the long range force from the Feynman diagrams
in Figure C.4. For this we need the bulk three-graviton vertex from the Einstein-Hilbert

term. It comes from expanding the action in Eq. (C.2) to cubic order in h, yielding

2

S3h = —W /dn.’l}' El + EQ + £3, (017)

where £; is the part that comes from expanding the curvature tensor to order 7 in h.

Explicitly,

1 1 1 1
L) = ghﬁhga%g - ghﬁhgaKaNhKN - Zhﬁhgaﬂhg + ZhﬁhgaKBNhKN, (C.18)
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1 1 1
Ly = Sh4(OLh"") (Ouhi) — SHAOLR"")(Opha]) + Sh4(97hE)(Oshiy)

3 1 1
- ghg(aLhEM)(aLhEM) + Zhj(ath)(ath‘g ) — EhNLhﬁa%NL + hWNER4 0y 0 h M
1
- EhNLhﬁaNaLh%, (C.19)

and

L5 = ~hG(0"E) Onhd) + hE(Ouh"™)(0h3)) — $hE(OK) P6h)

— SHE(OLRTM) @reE) + SHE DLk ) (0 hara) — hE(OLA™M) (Dohy)

+ SHE(0 hare) (9h™™) — 2hG(0h ) (Ouuh) + hE(Bah™)(Ouh )

+ hG(O*hE) (B h) — %hg(ath)(aLh%) + WS hBLO?hp Ny — 2h Y WBL Oy AL WY

+ hghBLaNaLh% + hNLhMKBKaMhNL — hNLhMKaKaLhNM. (020)

The integral needed to compute Figure C.4 is

LT

= 67502 (C.21)

/d2x1d2w2d4x(8gD(:c1 —2))D(z — x2)?

and we find that it gives the following contribution to the gravitational potential per unit

length:
_ N7 1 1 3 1 1
AU/L—16W3a2M4<{0+0+1 2]+[ g HO+0+7 12+0+3+0]
1 1
+ 0+0+0+0+0+0—§+0+0+1—1+0+0+0—§+0D, (C.22)

In Eq. (C.22) the three square brackets contain the contributions from the three Lagrange
densities L1, Lo, and L3 respectively, and each successive term in these square brackets
represents the contribution of the corresponding term in the Lagrange density. Summing

them up, we get

1T 1
AU/L = {grsaoar <§) : (C23)

for the contribution from diagrams which contain a three graviton vertex from the Einstein-
Hilbert action.

In the background field gauge, the gauge fixing term also contributes to the hhh vertex.
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Figure C.5: One loop contribution to the potential that arises from the three-graviton vertex
from gauge fixing.

Using the definition gap = nap + hap/M (n/2-1) the gauge fixing term is [79]
- 1 - ~ 1 ~
Sgp=— / d"z+\/G (DNh% - 5DMh§> (DShMS - 5Dth) : (C.24)

where in Eq. (C.24) indices are raised and lowered with the classical metric g and the
covariant derivative is with respect to this metric. Expanding to linear order in h, the

above becomes

n 1 TAra iN\(q.iMS

where the ellipses in the brackets denote other terms linear in A, and the ellipses outside of
the brackets denote terms higher order in A. Only the term explicitly displayed in equation
(C.25) contributes at one loop; the other terms linear in h (represented by the ellipses inside
the brackets) each give zero. We find that the contribution of Figure C.5 to the long range

potential is

__nm (1
AU/L = o M4( 12). (C.26)

All other possible one loop contributions vanish. For example, there is a cubic coupling
of hy, on the brane from expanding the induced metric to that order. The one loop graph

formed from this coupling vanishes since Pg,f =0.
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So far we have not included the degrees of freedom that correspond to transverse fluctu-
ations of the strings. However, they must exist, by reparametrization invariance and general
covariance. These fluctuations are characterized by scalar fields ¢‘(1i) which are localized on
the world-sheet of string i. The terms in the string actions (C.3) involving the fields gb‘(’i)

are deduced from the dependence of the induced metric® on them,

g,(fg =G + gab(au¢?i))(au¢l(7i))- (C.27)

Expanding the square root of the determinant of the above induced metric yields a coupling
of hg to the scalar fields. However, the graph with a ¢ loop vanishes in dimensional
regularization since it is proportional to [ d"=2)f = 0.

Summing the various one loop contributions to gravitational potential energy between

strings gives

T172 3 240%\,7'17’2
L[ =—=" |[|— | = —3 "= 2
u/ 16m3a2 M4 (40) 5ma? (C-28)

The above equation is the main result of this paper. It gives a repulsive gravitational force
between the strings at large distances.

From the effective field theory point of view, it is possible that the tree level effects of
higher dimension operators are of the same size as the one loop pieces we have calculated,
but this turns out not to be the case. Nontrivial operators localized on the string world
sheet with less than two derivatives are forbidden by general covariance. Furthermore, we
know that many operators do not contribute to the long range force. Consider, for example,

adding to the string world-sheet actions the following two-derivative term:

55 = A / do\[g) B 6@ (7 - &), (C.29)

where the \; are dimensionless couplings. Classically there is no contribution to the long
range force between the branes linear in these couplings. At this order it only gives local
effects proportional to §(2) (&) or derivatives of this delta function. Similar remarks hold for
operators in the bulk that are quadratic in the curvature tensor. We will not attempt a
complete analysis of the tree level effects from higher dimension operators; however, there

is no tree level contribution to the potential that is as important at large a as the one loop

3See, for example, [80].
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Figure C.6: One loop contribution to the potential from massless bulk scalar with brane

mass terms.

piece we have calculated.
Effects similar to what w p-branes in a space-times of dimen-
sion p + 3. Assuming that gravity is the only massless degree of freedom in the bulk, there
will be a long range €ontribution to the potential per unit p-brane volume proportional to
G%VTng /aP*! frof one loop quantum effects. If there are other massless degrees of freedom
in the bulk, these will also contribute to the long range force. Consider, for example, a
scalar field theory with space-time dimension p + 3 and two parallel p-branes. Neglecting

gravity, the action for this system is taken to be
S =5y+ 51+ So, (C.30)

where the bulk action, Sp, comes from the massless Klein Gordon theory:

1
Sp = -3 /dp+3:1: Arx™x, (C.31)
and the brane actions are
Ai +3.. 25(2) (= _ =
S; = -5 APz x0T - T;). (C.32)

Because of the x — —x symmetry there is no tree level force between the branes from x

exchange. Assuming that the couplings \; are small and neglecting effects higher order in
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these coupling constants, the one loop diagram in Figure C.6 gives the long range potential®

AMAl(2 + 3)2
Uy =-——222 (2:’2) . (C.33)
ap+1p2p+47r(§+2)p(g)

If the couplings A1 and A2 have opposite signs, this potential is repulsive. It can be natural
for the scalar to have brane mass terms but no bulk mass. For example, x could be the
Goldstone boson associated with a global symmetry that is spontaneously broken in the bulk
but explicitly broken on the branes. At higher order the couplings \; become subtraction
point dependent [82].

Let’s focus on the case of three-branes in six dimensions. If the two dimensions per-
pendicular to the branes are compact but large extra dimensions of the type that has been
suggested to be related to the hierarchy puzzle [83], then the potential in Eq. (C.33) has
the right form to be suitable for cosmological quintessence®. The scalar field has mass di-
mension two, so the parameters \; are dimensionless. The separation between the branes
is related to the scalar fields that characterize the brane fluctuations. Assuming the two
compact extra dimensions are flat,® the action for the scalar fields that characterize the

fluctuations of the 3-brane world-sheets is

1 a a 1 a a
Sfiuct = —T1 /d4$1 §3u¢(1)3”¢(1) — Ty /d4x2§3u¢(2)6”¢(2) + . (C.34)

The repeated index a, which takes on the values 1,2, is summed over. From the four

dimensional effective field theory point of view, this action becomes

€ + a a T a a
S4£'L'fm == / d4.’E %Q‘Lqﬁcmau(bcm + % ,U'qbrela”(ﬁrel + . (035)
where 7, = T2 /(71 + T2) is the reduced tension, ¢%,, = (1) — #(2) and ¢, = (Tlc,b‘(‘l) +

7'2(75‘(’2)) /(71 + 72). The separation between the branes @ is the vacuum expectation value of
(;_S'rel, and the canonically normalized four dimensional field associated with the separation
between the branes is qg = \/Frq?,,e,. The potential for this scalar field is of the form U/V ~

—AiAa72/(62)2 ~ Mg,/ (¢%)2, when the brane tensions are of order the weak scale’. In

4For work in string theory on the force between branes see [81].

5This is similar to the proposal in [84].

8The physics that determines the size of the compact two extra dimensions is assumed to be unrelated
to the potential generated by x loops.

"With tensions this large it is no longer a good approximation to neglect the deficit angles associated
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cosmological quintessence the scalar field today is of order the Planck mass; this corresponds
to a separation between branes of order the size of the compact space (i.e., of order a
millimeter). Clearly, the impact of the physics that stabilizes the compact dimensions [85]
has to be taken into account before the true physical significance of this potential can be

ascertained.

with these three-branes.
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