

Investigations of Ion Channel Structure and Function

- I. Studies of Nicotine Binding to the Acetylcholine Receptor**
- II. Development of Tools for Studying Learning and Memory
with Unnatural Amino Acids**

Thesis by

E. James Petersson

In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

California Institute of Technology

Pasadena, California

2005

(Defended May 18, 2005)

© 2005

E. James Petersson

All Rights Reserved

For My Family:
Mom, Dad, and Poopcat (1986 – 2005)

Acknowledgements

“Via ovum cranium difficilis est.”

- Adlai E. Stevenson, Choate ‘18

Adlai Stevenson was right, the way of the egghead is hard, and it would be nearly impossible without a lot of help. First off, I must give props to the Dog; Dennis Dougherty has been the perfect advisor for me. The freedom he has given me to follow my interests is unusual in today’s productivity-oriented graduate school environment. I certainly didn’t know how unusual it was when I joined the group six years ago, all I knew was that unnatural amino acids and brains were cool. Dennis has given me a long leash (“Enough rope to hang yourself,” in his own words), and I have tried to learn as much as I could about as many different areas of Chemistry as I could while I was at Caltech. This may seem like an overly ambitious goal, perhaps it only seems reasonable because Dennis knows so much about so many things himself. Of course, Dennis is also a consummate family man, a D.A.D. all the way through; and I would be remiss if I did not thank Ellen and the girls for making me feel at home whenever the group came over to the house.

Like any graduate student, I owe a lot to students who came before me, people who taught me both practical techniques and about being a graduate student in general. Justin Gallivan took me under his wing when I arrived, making me feel welcome both in the lab and on the softball field. I thank Lintong Li for getting me started with my first project - the tethered agonist - and for brightening our lab with the birth of George, back before Darren and David jumped on the having-children bandwagon. Don Elmore brought cheer and enthusiasm to our lab in all matters, whether it was talking about ion channel gating or establishing the tradition of the group birthday cake and embarrassing story (for my money, the “Dawn” Elmore story is still tops). Don brought this same attitude to his teaching while at Caltech, and I am sure that his students at Wellesley will count themselves lucky for having had him as a Professor. For almost a year, Niki Zacharias and I were the synthetic arm of the Dougherty group. She now works for Dennis and Henry’s company, Neurion, where she continues to be the synthetic arm. No doubt, her experience has made possible Neurion’s quick start. She has also been a model of humanitarianism to me, not only in her volunteer work, but also in a more personal way: Niki always found a way to make the group feel more like family, often through the use of baklava. David Dahan and his wife Kirsty were always ready to share my love of hockey; I am sure their son Étan is already stopping slapshots down in San Diego. Joshua Maurer may have been a dead-ringer for

Eeyore, but he also brought much needed humor to the Dougherty Country Day School in the form of Pint-Sized Punch Lines. Gabriel Brandt established the importance of taking the long, off-campus lunch, a time when really important issues like 12-stranded DNA healing could be discussed.

Justin, Josh, and Gabe deserve special mention as mentors at least as important as Dennis in my grad. school career. All of these guys were great in many ways, but each has a particular trait at which they are excel, a trait which I have tried to emulate in my capacity. Justin's scientific creativity, and the drive that he applies to accomplish his goals, are inspiring. It's nice to talk to someone who thinks he's going to change science rather than merely publish papers. Gabe's encyclopedic knowledge, covering matters as diverse as catalysis and MRI studies of acupuncture, set the bar very high for the reading habits of the rest of us. It also made it all too easy to not do the reading. It was always faster to just ask Gabe for a citation than to use Web of Science. Josh was impressive for his willingness to help other students with their research, not to mention the broad knowledge that allowed him to do it so effectively. As curmudgeonly as Josh was, I have never seen a student more giving of his time. I am sure that his group at Washington University will be extremely productive, even if Josh has to do it all himself. ("You guys go home, I'll take care of it.")

My classmates, Sarah Monahan May, Darren Beene, and Steve Spronk, have been a great support system. A lot has changed for Sarah since she arrived at Caltech, and I have enjoyed being her friend throughout. I hope to continue my friendship with her and her husband Jeremy on the east coast. Steve is always enthusiastic, and has been a fun labmate (If he were a aura-colored dog based on a cartoon character, he would be a turquoise golden-retriever Bart Simpson who says "Whassssuuuuuuup!"). Darren Beene is a man whose winding path has given him a wonderful combination of childishness and wisdom. He was a great comrade both within and without the lab. It has not been the same without our coffee breaks every afternoon during these last nine months of my time at Caltech. I wish Darren, Wendy, Max, and E. (I like to think he's named after me) only the best.

This brings me to the younger folks. Erik Rodriguez, although only a third year grad. student, has been with our lab since his SURF project as an undergrad. Erik's fastidious nature will keep things running well in the lab when I'm gone, as long as he stops exposing himself to professors. Lori Lee and Amanda Cashin both defected from other labs, and we are certainly the better for it. I am sure Lori will become a successful researcher (if she ever sends out her postdoc applications) and that she will someday discover a cure for Fitzberger's syndrome. Amanda will probably own a bioconsulting firm in three years, so I will need to keep in touch to get my start-up going when I am a professor. Tingwei Mu is the last member of the old guard, who remember the way the labs

used to be. I am sure he will do great things with Jeff Kelly and have a lot of fun making that drive back and forth to Pasadena in his convertible. Amy Eastwood is fleet of foot and light of heart. As keeper of the HPLC and photochemistry knowledge, I wish her the best of luck. If nothing else does, I hope the “dress-better to feel-better” strategy works. Ariele Hanek is pretty quick in her own right. She, Jinti Wong, and Joanne Xiu are tackling the problem of the gating of the nAChR, a problem that makes the binding site studies look simple. If Joanne can connect all the tiles in the Matching Game, then they can definitely tackle nAChR gating. It looks like Jinti is taking over my position in the long-distance relationship business. Kristin Rule will probably get her hands into as many different problems as I did; for someone who joined the group to do computing and biology, she’s sure doing a lot of synthesis. Katie “The Rook” McMenimen has been a great collaborator over the last year, allowing me to boss her around and get a taste of being a P.I. If my grad. students are half as smart and hard-working as Katie, I will go far as a professor. She and Kiowa Bower will continue to research drug binding to the NMDA receptor and I’m sure they will make many interesting discoveries, as long as Kiowa doesn’t take all the PCP himself. Finally, this brings me to Michael Torrice, who will be the last of the Lake Ave. lunchers when I am gone. The pairing of our senses of humor as next-desk neighbors has been beneficial for everyone. The rest of the lab has probably been as happy not sitting next to Michael as I have been sitting next to him.

Well, that’s it for the group, and I had better pick up the pace if I’m ever going to finish these acknowledgements. Henry Lester and the Lester group have always been a great source of biological knowledge, or at least commiseration, to me over the years; particularly those on the unnatural amino acid side of things: John Leite, Fraser Moss, Mohammed Dibas, and Rigo Pantoja. Henry has always treated me with great respect as a young scientist, even when my ideas were kooky and made no sense, but he probably just does this because I return the favor.

The rest of the Chemistry department has also been good to me. The number of people who have been a source of help in science or in blowing off steam over the years are too numerous to give each of them each an anecdote; just know that I am thankful. I of course must thank my committee explicitly (and the reader is free to call me a butt-kisser at this point). It has been great to know Linda Hsieh-Wilson both from my thesis committee and from the interaction of our two labs. Watching from up close as her group grew over the years has been really cool, and what I have seen has taught me a lot about what to do (and occasionally, what not to do) as a young P.I. I am grateful to David Tirrell for his generosity toward me with his time. For a guy that wears more hats than anyone else in the department, Dave always seemed to be the first one to get a letter of recommendation written

for me, and he never turned me away from his office when I came by to talk about one of my synthetase ideas. Thankfully, Bill Goddard has not let his opinion of my father influence his opinion of me. I think I may hold some kind of record in that Bill has stayed awake through virtually every minute of my thesis committee meetings. Feel free to sleep through my thesis defense, Bill.

Outside of the Chemistry department, I have had many friends around campus, from other departments and from various sports activities: ultimate Frisbee, rock climbing, GSC softball and football, and the Caltech hockey team (yes, we have a hockey team). My roommates over the years have been one of the main things that has kept me sane (debateably so) here: Matt, Ron, Ben, Ali, the Johns, Greg, and of course, Ted. T is one of the smartest people I have met here, a true intellectual whose love of science as a whole is vastly underappreciated. Thanks to all of you for giving me something fun to come home to when I left the lab. The Mentor Ave. house probably won't last much longer than the end of this thesis, but it has provided a lot of good times. Hopefully it has one more thesis defense party left in it.

There is one person who fits into all of the above categories: chemistry department member, ultimate player, and erstwhile roommate. Meeting Wendy Jen would have made my time at Caltech worth it even if nothing else had gone right. It's hard to believe that the whole world can revolve around such a small person, but mine does. I would go on, but I'm sure Wendy is embarrassed enough already.

Finally, this brings me to my parents. The apple certainly has not fallen far from the tree. Precisely, it fell three doors down the hall on the third floor of Crellin from J. D. Roberts' office, under whom my father received his Ph.D. from Caltech twenty-five years ago. While the comparisons to my father are more obvious; in a strange way, what I do brings together what both of my parents do. My father is a theoretical chemist, and my mother a psychotherapist, so the work in this thesis comes from both of them. It certainly would not have been possible to get to this point without a lot of support (and some occasional yelling and guilt trips) from both of them. This thesis is for them, I hope it makes them proud.

No thesis introduction would be complete without a sage scientific quote:

StrongBad: "Say something smart."
Homestar: "Science."
StrongBad: "Say something else smart."
Homestar: "Science again."

Abstract

At synapses in the nervous system, ligand-gated ion channels convert the chemical signal of neurotransmitter release into the electrical signal of ion flux. These proteins underlie the proper transmission of information from one nerve cell to another, and disorders of these channels lie at the heart of many addictions and neurological diseases. We examine their function with the diverse palette of structural alterations available through unnatural amino acid mutagenesis.

Section 1: Studies of Nicotine Binding to the Acetylcholine Receptor

In previous studies, we have used fluorinated Trp derivatives to conclusively identify a cation- π interaction with Trp 149 in the binding of acetylcholine (ACh) to the muscle-type nicotinic acetylcholine receptor (nAChR). We have incorporated mimics of ACh, termed tethered agonists, in the binding site to produce self-activating channels. Using tertiary tethered agonists that would only become cations and activate the channel when protonated, we probed the local pK_a of the binding site. They were found to be protonated only at pH's much lower than their pK_a in free solution, implying a perturbed pK_a for the binding pocket, which has implications for the binding of tertiary agonists like nicotine (Nic).

It has previously been shown that Nic does not participate in a straight-forward cation- π interaction with Trp 149 as ACh does. We have identified a hydrogen bond between the Nic pyrrolidine N-H and the backbone carbonyl of Trp149 by introducing an ester linkage at this point, weakening the carbonyl H-bond accepting ability. Calculations performed on hydrogen bound complexes of ACh, Nic, and the Nic analog epibatidine (Epi) explain the trends observed for ligand activation of the nAChR. ACh binds through a cation- π interaction, Nic binds primarily through a H-bond, and Epi binds through both.

Expanding upon this study, we have performed molecular dynamics (MD) simulations of the recently crystallized ACh binding protein (ACHBP) and of models of the ligand binding domain of the $\alpha 7$ nAChR subtype. We have found that ACHBP, which has been used extensively as a structural model for ligand binding to nAChRs, binds ligands in a dramatically different manner than nAChRs: ACHBP, which does not need to gate, is preorganized to bind ligands in a “lock and key” fashion. The nAChR, which must gate, has a more flexible binding pocket, and bind ligands through an induced fit mechanism. Ligand-bound structures from these simulations have been taken on to quantum mechanical/molecular mechanical (QMMM) calculations to model the effects of unnatural amino acid mutations in an environment that simulates the full nAChR binding pocket. The MD and QMMM protocol should be generally applicable to our unnatural amino acid mutagenesis studies of the nAChR.

Section 2: Development of Tools for Studying Learning and Memory with Unnatural Amino Acids

The nAChR is essential to neurotransmission at the junction between nerve and muscle cells, and it plays an important role in many central nervous system processes. However, its role in learning and memory is limited, at least in our current molecular models of these events. In a sense, the formation of a memory consists of the strengthening of some synaptic connections and the weakening of others. These processes, termed long term potentiation (LTP) and depression (LTD) respectively, are primarily governed by modifications to glutamate receptors (GluRs). We have developed tools for studying the mechanism and timecourse of these modifications, and we have demonstrated the first incorporation of unnatural amino acids into a GluR.

Two major types of changes are believed to underlie LTP and LTD: alterations to the functional properties of a single glutamate channel and changes in the number of GluRs present at a synapse (trafficking). One common mechanism for initiating both of these changes is the phosphorylation of Ser, Thr, and Tyr hydroxyl groups. Many such residues are present in a GluR and are targets for phosphorylation, making it difficult to understand the effects of phosphorylation at any one residue. We describe the first incorporation of “caged” phosphoamino acids that should permit precise temporal control of the onset of phosphorylation. This cage consists of a photocleavable protecting group applied either to the wild-type amino acid or to the chemically synthesized, phosphorylated amino acid.

While phosphorylation can act as a functional group signal to alter protein function and trafficking, it appears that the initial trigger for both LTP and LTD involves removal of a Mg^{2+} ion from the channel of the NMDA-type GluR. This allows Ca^{2+} flow through the receptor, and the rise Ca^{2+} concentrations leads to changes in the phosphorylation states of GluRs. We have begun dissecting the NMDA receptor Mg^{2+} blockade site by demonstrating that the mechanism of Mg^{2+} binding does not seem to be a cation- π interaction, contrary to expectations based on conventional mutagenesis studies. Our studies of the NMDA receptor are interesting in themselves, and provide us with entrée into the study of GluRs, new to these labs. We hope to incorporate the caged amino acids into GluRs to study the effects of phosphorylation in molecular models of learning and memory.

Table of Contents

Acknowledgements	iv
Abstract	viii
Table of Contents	x
List of Schemes	xi
List of Figures	xii
List of Tables	xviii

Introduction

Chapter 1: Chemical Scale Neuroscience with Unnatural Amino Acids and Computational Modeling	1
--	---

Section 1: Studies of Nicotine Binding to the Acetylcholine Receptor

Chapter 2: Understanding Ligand Discrimination at the Nicotinic Acetylcholine Receptor Binding Site	18
Chapter 3: Probing the Local pK_a of the Nicotinic Acetylcholine Receptor Binding Site with Tethered Agonist Unnatural Amino Acids	32
Chapter 4: Probing Nicotine Binding with Backbone Mutagenesis and Comparison to Epibatidine, a High Affinity Nicotine Analog	60
Chapter 5: Computational Modeling of Nicotine and Carbamoyl Choline Binding to the $\alpha 7$ Nicotinic Acetylcholine Receptor	88

Section 2: Developing Tools for Studying Learning and Memory with Unnatural Amino Acids

Chapter 6: The Role of Glutamate Receptors and Phosphorylation in Molecular Models of Learning and Memory	158
Chapter 7: Biochemical Control of Protein Phosphorylation	169
Chapter 8: Investigating the Magnesium Blockade of the <i>N</i> -Methyl-D-Aspartate Receptor	208

Section 3: Miscellaneous Experiments

Chapter 9: MALDI-TOF MS Methods for Evaluation of <i>in vitro</i> Aminoacyl tRNA Production	223
Chapter 10: Preparation of Photoactivatable Agonists for Studies of Fluorescently Labeled Nicotinic Acetylcholine Receptors	233
Chapter 11: Application of Tethered Agonist Methods to the 5-HT ₃ Receptor	248

List of Schemes

Section 1: Studies of Nicotine Binding to the Acetylcholine Receptor

Chapter 4: Scheme 1. Conversion of Thr150 to Tah and its effect on H-bonding to nicotine.	64
---	----

Section 2: Developing Tools for Studying Learning and Memory with Unnatural Amino Acids

Chapter 6: Scheme 1. AMPAR and NMDAR Gating.	159
Chapter 6: Scheme 2. Ser, Thr, and Tyr Phosphorylation.	160
Chapter 7: Scheme 1. Nitrobenzyl Photodeprotection Mechanism.	170
Chapter 7: Scheme 2. Synthesis of C ₂ pTyr (pTyr(ONb) ₂) cyanomethyl ester.	172
Chapter 7: Scheme 3. Synthesis of C ₂ pSer (pSer(ONb) ₂) and C ₂ pThr (pThr(ONb) ₂) cyanomethyl esters.	173
Chapter 7: Scheme 4. Attempts to synthesize CpSer <i>via</i> differentially protected phosphoramidite reagents.	175
Chapter 7: Scheme 5. Synthesis of phosphoramidite reagent for generation of singly caged phosphoamino acids.	176
Chapter 7: Scheme 6. Synthesis of singly caged phosphoamino acids.	177

Section 3: Miscellaneous Experiments

Chapter 10: Scheme 1. Photoactivation of nAChR Agonists.	234
Chapter 10: Scheme 2. Synthesis of NV-Carbamoyl Choline.	235
Chapter 10: Scheme 3. Attempted Syntheses of DMCm-Carbamoyl Choline.	235
Chapter 10: Scheme 4. Attempted Syntheses of DMCm-Carbamoyl Choline.	236
Chapter 10: Scheme 5. Attempted Syntheses of DMCm-Carbamoyl Choline.	236
Chapter 10: Scheme 6. Synthesis of DMCm-Carbamoyl Choline.	236
Chapter 10: Scheme 7. Synthesis of NVOC-Epibatidine.	237
Chapter 10: Scheme 8. Synthesis and Photoisomerization of Bis-Q.	240

List of Figures

Introduction

Chapter 1: Figure 1. Synaptic Transmission.	1
Chapter 1: Figure 2. Hille's 1971 Model of the Sodium Channel Pore.	2
Chapter 1: Figure 3. Oocyte Electrophysiology.	3
Chapter 1: Figure 4. Unnatural Amino Acid Mutagenesis.	5
Chapter 1: Figure 5. Unnatural Amino Acid Mutagenesis by Nonsense Suppression.	6
Chapter 1: Figure 6. Semisynthesis of the aminoacylated suppressor tRNA.	7
Chapter 1: Figure 7. <i>in vivo</i> Nonsense Suppression in oocytes.	7
Chapter 1: Figure 8. Amino and hydroxy acids incorporated through nonsense suppression by Dougherty and coworkers.	9
Chapter 1: Figure 9. Models of the nAChR Binding Site.	12
Chapter 1: Figure 10. Biochemical Tools for Studying Learning and Memory.	13

Section 1: Studies of Nicotine Binding to the Acetylcholine Receptor

Chapter 2: Figure 1. Pentameric assembly of the nAChR.	19
Chapter 2: Figure 2. The Agonist Binding Site of the nAChR.	19
Chapter 2: Figure 3. The Cation- π Interaction.	20
Chapter 2: Figure 4. The F-Trp Series at α 149.	21
Chapter 2: Figure 5. Fluorination Plot for ACh at α Trp 149.	21
Chapter 2: Figure 6. nAChR Structural Insights from ACHBP.	22
Chapter 2: Figure 7. HEPES Ammonium Binds to ACHBP Trp 143.	23
Chapter 2: Figure 8. Dose-Response Relations for Nic at nAChRs (β/γ 9'S) with the F-Trp Series at α Trp 149.	24
Chapter 2: Figure 9. Comparison of ACh and Nic Binding to the nAChR.	24
Chapter 2: Figure 10. norACh and MeNic Binding to the nAChR.	26
Chapter 3: Figure 1. Tethered Agonism.	33
Chapter 3: Figure 2. Efficacy.	34
Chapter 3: Figure 3. Probing the Binding Site with Tethered Agonists.	35
Chapter 3: Figure 4. Tertiary Tethered Agonists.	36
Chapter 3: Figure 5. Syntheses of the tethered agonist amino acid monomers.	37
Chapter 3: Figure 6. TyrO3T tethered agonism is reversibly modulated by pH.	38
Chapter 3: Figure 7. Examples of Primary Electrophysiological Data: TyrO3T and TyrO3S at α 149.	39
Chapter 3: Figure 8. Examples of Primary Electrophysiological Data: TyrO3Q at α 149 and wild type.	40

Chapter 3: Figure 9. TyrO3P shows no constitutive activity.	41
Chapter 3: Figure 10. Comparison of pH effects on WT receptor activation by ACh and TyrO3Q constitutive activity.	42
Chapter 3: Figure 11. Tethered Agonists at α 149: Tethered agonist efficacy as a function of solution pH.	42
Chapter 3: Figure 12. Efficacy as a function of solution pH for tethered agonists at α 149, α 93, and γ 55/ δ 57.	43
Chapter 3: Figure 13. Protonatable nAChR agonists.	44
Chapter 3: Figure 14. pK_a shifts of acids and bases in water/solvent mixtures of varying dielectric constants.	44
Chapter 3: Figure 15. AChBP residue solvent accessible surface area (SASA).	45
Chapter 3: Figure 16. Tertiary Agonists: norACh and nicotine efficacy as a function of solution pH.	46
Chapter 3: Figure 17. Dose-response relations for NVOC-TyrO3T(NV) at α 149.	48
Chapter 3: Figure 18. Fluorescent labeling of α 149 Lys mutant nAChRs.	50
Chapter 3: Figure 19. Previous Studies of pH Effects on nAChR Currents.	51
Chapter 4: Figure 1. Images of the nAChR.	60
Chapter 4: Figure 2. nAChR Agonists: ACh, Nic, and Epi.	61
Chapter 4: Figure 3. Fluorination Plot for nAChR Agonists.	63
Chapter 4: Figure 4. Representative dose-response relations with Thr and Tah. at α 149, α 93, and γ 55/ δ 57.	64
Chapter 4: Figure 5. Crystal structure data and computational modeling of agonist binding.	66
Chapter 4: Figure 6. Summary of Hydrogen Bond Study.	70
Chapter 4: Figure 7. The Effects of the Position of the Pyridine Nitrogen on Epi Potency.	71
Chapter 5: Figure 1. Change in Nic Binding Mechanism in Binding to F-Trp.	88
Chapter 5: Figure 2. Fluorination Plot with Cation- π Complexes.	89
Chapter 5: Figure 3. Sequence alignment of the human α 7 nAChR and <i>Lymnea stagnala</i> ACHBP.	91
Chapter 5: Figure 4. Nic and CCh Charge Parameters.	93
Chapter 5: Figure 5. System Energy of First MD Run.	94
Chapter 5: Figure 6. Protein RMSD of First MD Run.	95
Chapter 5: Figure 7. Box RMSD of First MD Run.	96
Chapter 5: Figure 8. Snapshots of Box Residues from First MD Run.	96
Chapter 5: Figure 9. Protein and Individual Box RMSD from First MD Run.	97
Chapter 5: Figure 10. Space-filling Model Images of the Full Pentamers of α 7 and ACHBP.	97
Chapter 5: Figure 11. Protein and Individual Box RMSD from Model 2 MD Run.	98

Chapter 5: Figure 12. Comparison of Box D Stability from MD Simulations with α 7 Model 1 and α 7 Model 2.	99
Chapter 5: Figure 13. System Energy of Third MD Run.	99
Chapter 5: Figure 14. Protein RMSD of Third MD Run.	100
Chapter 5: Figure 15. Box Residue RMSD of Third MD Run.	101
Chapter 5: Figure 16. Snapshots of Box Residues from Third MD Run.	102
Chapter 5: Figure 17. ACHBP: Trp 143/ Trp 53; α 7: Trp 147/ Trp 53 Sidechain plane angles from Third MD Run.	104
Chapter 5: Figure 18. ACHBP: Trp 143/ Tyr 89; α 7: Trp 147/ Tyr 91 Sidechain plane angles from Third MD Run.	105
Chapter 5: Figure 19. ACHBP: Trp 143/ Tyr 185; α 7: Trp 147/ Tyr 186 Sidechain plane angles from Third MD Run.	106
Chapter 5: Figure 20. ACHBP: Trp 143/ Tyr 190; α 7: Trp 147/ Tyr 193 Sidechain plane angles from Third MD Run.	107
Chapter 5: Figure 21. Images of ACHBP Box Residues from Crystallographic Studies by Sixma.	109
Chapter 5: Figure 22. Images of the Muscle nAChR Box Residues from an Unliganded Cryoelectron Microscopy Image by Unwin.	110
Chapter 5: Figure 23. QMMM Calculations of Nic Binding Energy.	111
Chapter 5: Figure 24. QMMM Calculations of CCh Binding Energy.	111
Chapter 5 Supporting Information: nAChR Sequence Alignment.	137
Chapter 5 Supporting Information: Representative Images of Box Residues from MD Simulations of ACHBP and α 7.	138 - 157

Section 2: Developing Tools for Studying Learning and Memory with Unnatural Amino Acids

Chapter 6: Figure 1. LTP and LTD.	158
Chapter 6: Figure 2. Molecular Mechanisms Involved in the Initiation and Maintenance of Synaptic Plasticity.	161
Chapter 6: Figure 3. Scaffolding of GluRs.	162
Chapter 6: Figure 4. AMPAR Channel modulation by Phosphorylation.	164
Chapter 6: Figure 5. Expression of the NMDAR receptor in CHO-K1 cells.	164
Chapter 6: Figure 6. AMPAR Trafficking.	165
Chapter 6: Figure 7. NMDAR Channel Modulation.	166
Chapter 7: Figure 1. Phosphorylation is a Dynamic Modification.	169
Chapter 7: Figure 2. Control of Phosphorylation with Photocleavable Protecting Groups.	169
Chapter 7: Figure 3. Nitrobenzyl Photodeprotection Mechanism.	170
Chapter 7: Figure 4. Photolysis Rig and Example Decaging of 3 in the Pore of the nAChR.	171

Chapter 7: Figure 5. Photochemical control of phosphorylation onset.	171
Chapter 7: Figure 6. Amino acid analogs and their electrostatic potential surfaces.	172
Chapter 7: Figure 7. Coupling of Cyanomethyl Esters.	173
Chapter 7: Figure 8. Attempts to Couple Cyanomethyl Esters to Generate pSer(ONb) ₂	174
Chapter 7: Figure 9. <i>in vitro</i> PAGE Gel Assesment of Suppression Efficiency.	174
Chapter 7: Figure 10. Steric Restrictions to Incorporation of C ₂ pTyr	175
Chapter 7: Figure 11. Optimization of coupling of cyanomethyl ester 31 to dCA.	177
Chapter 7: Figure 12. MALDI MS Spectra for CpThr Coupling.	178
Chapter 7: Figure 13. Test Suppression in nAChR α subunit.	178
Chapter 7: Figure 14. Schematic representation of the effect of VASP phosphorylation on actin polymerization.	179
Chapter 7: Figure 15. Suppression Efficiency in VASP-S153TAG.	180
Chapter 7: Figure 16. Suppression at VASP position 153 with CSer or CpSer.	180
Chapter 7: Figure 17. MALDI-TOF MS of tRNA _{CUA} .	191
Chapter 7: Figure 18. Test of Irradiation Effects on WT VASP.	195
Chapter 7: Figure 19. Test of CSer Decaging and Phosphorylation.	195
Chapter 7: Figure 20. Suppression at VASP position 153 with CSer or CpSer.	196
Chapter 7 Supporting Information: Figure 1. Protecting Groups.	200
Chapter 7 Supporting Information: Figure 2. Real Time Electrophysiological Monitoring of Protein Decaging.	204
Chapter 8: Figure 1. NMDA receptor opening requires the presence of the ligands Glu and Gly and membrane depolarization to alleviate the Mg ²⁺ block.	208
Chapter 8: Figure 2. Toplogy of an Individual Subunit of the NMDAR.	210
Chapter 8: Figure 3. View of the Mg ²⁺ Blockade Site.	211
Chapter 8: Figure 4. Fluorination Plot for ACh at Trp 149 of the nAChR α subunit.	212
Chapter 8: Figure 5. Wild Type NMDAR Expression.	213
Chapter 8: Figure 6. Misincorporation Phenotype.	215
Chapter 8: Figure 7. Wild Type Recovery.	215
Chapter 8: Figure 8. Primary Electrophysiological Data for NMDAR Recordings.	216
Chapter 8: Figure 9. F-Trp Dose-Response Curve.	216
Chapter 8: Figure 10. F ₂ -Trp Preliminary Electrophysiological Data.	217
Chapter 8: Figure 11. Calculated Mg ²⁺ Cation- π Binding.	217
Chapter 8: Figure 12. Vector map of NR2B in pAMV with the TAG codon inserted at the 607 site.	219

Section 3: Miscellaneous Experiments

Chapter 9: Figure 1. T4 RNA Ligase Reaction.	223
Chapter 9: Figure 2. Gel Separation of tRNA Species.	224
Chapter 9: Figure 3. MALDI Mass Spectra of Various tRNA Species.	226
Chapter 9: Figure 4. T4 RNA Ligase Reaction Efficiency.	227
Chapter 9: Figure 5. MS of High Purity tRNA Species.	228
Chapter 10: Figure 1. nAChR Gating Mechanism.	234
Chapter 10: Figure 2. HPLC Monitoring of NV-Carbamoyl Choline.	238
Chapter 10: Figure 3. Decaging of NVOC-Epibatidine as Monitored by MS.	239
Chapter 10: Figure 4. Application of NVOC-Epibatidine to Oocytes Expressing Wild Type nAChRs.	239
Chapter 10: Figure 5. UV Spectra of Various Bis-Q Mixtures.	240
Chapter 10: Figure 6. Bis-Q Purification and Storage.	241
Chapter 10: Figure 7. 300 MHz NMR Spectra of 9 in D ₂ O and 13 in CD ₃ CN.	244
Chapter 10: Figure 8. FPLC Trace of a Bis-Q Purification Run.	246
Chapter 10: Figure 9. Bis-Q <i>cis/trans</i> ratio vs. A ₃₂₀ /A ₂₆₆ .	248
Chapter 11: Figure 1. Sequence Alignment of 5HT _{3A} R, Muscle nAChR, and ACHBP.	248
Chapter 11: Figure 2. Identification of a Cation-π Interaction Between 5-HT and 5HT _{3A} R	249
Chapter 11: Figure 3. Computational Model of 5-HT Binding to the 5HT _{3A} R.	249
Chapter 11: Figure 4. Examples of Electrophysiological Data: TyrO3P and TyrO3Q at 5HT _{3A} R 183.	251
Chapter 11: Figure 5. Examples of Electrophysiological Data: Trp and No Amino Acid at 5HT _{3A} R 183.	252
Chapter 11: Figure 6. Examples of Electrophysiological Data: Trp Suppression with 10:1 5HT _{3A} R 183 TAG 13'S/5HT _{3B} R.	253
Chapter 11: Figure 7. Examples of Electrophysiological Data: TyrO2Q Suppression with 10:1 5HT _{3A} R 183 TAG 13'S/5HT _{3B} R.	254

List of Tables

Section 1: Studies of Nicotine Binding to the Acetylcholine Receptor

Chapter 4: Table 1. Mutations Testing Cation- π Interactions at α 149.	62
Chapter 4: Table 2. Mutations Testing H-Bond Interactions at α 150.	64
Chapter 4: Table 3. Calculated Binding Energies.	65
Chapter 4: Table 4. Solvent Effects on Binding Energy Differences.	65
Chapter 4: HF/6-31G geometries in Gaussian “standard” orientation.	74 – 85
Chapter 5: Table 1. “Box” Residue Conversation and Ligand Affinity Variation.	90
Chapter 5: Table 2. α 7 and ACHBP Box RMSD Relative to Unliganded Simulation.	108
Chapter 5: Table 3. Trp Fluorination Effects on Neutral Nic Binding.	112
Chapter 5: Table 4. Energies Calculated from Geometries Extracted from from QM/MM Calculations	113
Chapter 5: Calculated Acetylcholine F-Trp Binding Energies.	117
Chapter 5: Calculated (–) Nicotine F-Trp Binding Energies.	118
Chapter 5: Calculated (–) Epibatidine F-Trp Binding Energies.	119
Chapter 5: Calculated (+) Epibatidine F-Trp Binding Energies.	120

Section 3: Miscellaneous Experiments

Chapter 11: Table 1. Tethered Agonist Experiments with the 5HT ₃ R.	256
--	-----