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Abstract

At synapses in the nervous system, ligand-gated ion channels convert the chemical
signal of neurotansmitter release into the electrical signal of ion flux.  These proteins
underlie the proper transmission of information from one nerve cell to another, and
disorders of these channels lie at the heart of many addictions and neurological diseases.
We examine their function with the diverse palette of structural alterations available through
unnatural amino acid mutagenesis.
Section 1: Studies of Nicotine Binding to the Acetylcholine Receptor

In previous studies, we have used fluorinated Trp derivatives to conclusively identify
a cation-π interaction with Trp 149 in the binding of acetylcholine (ACh) to the muscle-type
nicotinic acetylcholine receptor (nAChR).  We have incorporated mimics of ACh, termed
tethered agonists, in the binding site to produce self-activating channels.  Using tertiary
tethered agonists that would only become cations and activate the channel when protonated,
we probed the local pKa of the binding site.  They were found to be protonated only at pH’s
much lower than their pKa in free soluion, implying a perturbed pKa for the binding pocket,
which has implications for the binding of tertiary agonists like nicotine (Nic).

It has previously been shown that Nic does not participate in a straight-forward
cation-π interaction with Trp 149 as ACh does.  We have identified a hydrogen bond
between the Nic pyrrolidine N-H and the backbone carbonyl of Trp149 by introducing an
ester linkage at this point, weakening the carbonyl H-bond accepting ability.  Calculations
performed on hydrogen bound complexes of ACh, Nic, and the Nic analog epibatidine (Epi)
explain the trends observed for ligand activation of the nAChR.  ACh binds through a
cation-π interaction, Nic binds primarily through a H-bond, and Epi binds through both.

Expanding upon this study, we have performed molecular dynamics (MD)
simulations of the recently crystallized ACh binding protein (ACHBP) and of models of the
ligand binding domain of the α7 nAChR subtype.  We have found that ACHBP, which has
been used extensively as a structural model for ligand binding to nAChRs, binds ligands in
a dramatically different manner than nAChRs:  ACHBP, which does not need to gate, is
preorganized to bind ligands in a “lock and key” fashion.  The nAChR, which must gate,
has a more flexible binding pocket, and bind ligands through an induced fit mechanism.
Ligand-bound structures from these simulations have been taken on to quantum mechanical/
molecular mechanical (QMMM) calculations to model the effects of unnatural amino acid
mutations in an environment that simulates the full nAChR binding pocket.  The MD and
QMMM protocol should be generally applicable to our unnatural amino acid mutagenesis
studies of the nAChR.
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Section 2: Development of Tools for Studying Learning and Memory with
Unnatural Amino Acids

The nAChR is essential to neurotransmission at the junction between nerve and
muscle cells, and it plays an important role in many central nervous system processes.
However, its role in learning and memory is limited, at least in our current molecular models
of these events.  In a sense, the formation of a memory consists of the strengthening of
some synaptic connections and the weakening of others.  These processes, termed long term
potentiation (LTP) and depression (LTD) respectively, are primarily governed by
modifications to glutamate receptors (GluRs).  We have developed tools for studying the
mechanism and timecourse of these modifications, and we have demonstrated the first
incorporation of unnatural amino acids into a GluR.

Two major types of changes are believed to underlie LTP and LTD: alterations to
the functional properties of a single glutamate channel and changes in the number of GluRs
present at a synapse (trafficking).  One common mechanism for initiating both of these
changes is the phosphorylation of Ser, Thr, and Tyr hydroxyl groups.  Many such residues
are present in a GluR and are targets for phosphorylation, making it difficult to understand
the effects of phosphorylation at any one residue.  We describe the first incorporation of
“caged” phosphoamino acids that should permit precise temporal control of the onset of
phosphorylation.  This cage consists of a photocleavable protecting group applied either to
the wild-type amino acid or to the chemically synthesized, phosphorylated amino acid.

While phosphorylation can act as a functional group signal to alter protein function
and trafficking, it appears that the initial trigger for both LTP and LTD involves removal of a
Mg2+ ion from the channel of the NMDA-type GluR.  This allows Ca2+ flow through the
receptor, and the rise Ca2+ concentrations leads to changes in the phosphorylation states of
GluRs.  We have begun dissecting the NMDA receptor Mg2+ blockade site by
demonstrating that the mechanism of Mg2+ binding does not seem to be a cation-π
interaction, contrary to expectations based on conventional mutagenesis studies.  Our
studies of the NMDA receptor are interesting in themselves, and provide us with entrée into
the study of GluRs, new to these labs.  We hope to incorporate the caged amino acids into
GluRs to study the effects of phosphorylation in molecular models of learning and
memory.
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