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ABSTRACT 

 

 This thesis is composed of two separate and unrelated projects.  The first part of this 

thesis outlines an investigation into the synthesis and characterization of a novel zeolite 

supported super-base capable of carbon-carbon olefin addition to alkyl aromatics.  A 

zeolite supported basic material capable of such reactions would benefit many fine 

chemical syntheses, as well as vastly improve the economics associated with production of 

the high performance thermoplastic polyester polyethylene naphthalate. 

 The thermal decomposition of alkali—metal azides impregnated in zeolite X is 

investigated as a novel route to the synthesis of a zeolite supported super-base.  

Impregnation of the alkali—metal azide precursor is shown to result in azide species 

occluded within the pores of the zeolite support by using high speed, solid-state 23Na MAS 

and 2D MQMAS NMR, FTIR, and TGA characterization methods.  Addition of alkali—

metal azides to the zeolite results in redistribution of the extra-lattice cations in the zeolite 

framework.  Thermal decomposition of impregnated azide species produces further cation 

redistribution, but no neutral metallic clusters are detected by high speed, solid-state 23Na 

MAS NMR following thermal activation of the materials.  Instead, it is possible that 

inactive ionic clusters are formed.  The thermally activated materials do not promote base 

catalysis for the isomerization of 1-butene, the ethylation of toluene and o-xylene, and the 

alkenylation of o-xylene with 1,3-butadiene to produce 5-ortho-tolyl-pent-2-ene (5-OTP).  

The lack of catalytic activity in the materials is attributed to failure of the materials to form 

neutral metallic clusters during thermal treatment, possibly due to preferential formation of 

NMR silent ionic clusters.  The formation of neutral metallic clusters is found to be 
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insensitive to synthesis technique and activation procedure.  It is concluded that the 

impregnation of alkali—metal azides in zeolite X does not provide a reliable precursor for 

the formation of zeolite supported super-basic materials. 

 The second part of this thesis describes the oxidative dehydrogenation of ethane 

over partially reduced heteropolyanions.  Niobium and pyridine exchanged salts of 

phosphomolybdic (NbPMo12Pyr) and phosphovanadomolybdic (NbPMo11VPyr) acids are 

investigated as catalyst precursors to prepare materials for catalyzing the oxidative 

dehydrogenation of ethane to ethylene and acetic acid at atmospheric pressure.  The effects 

of feed composition, steam flow, temperature, and precursor composition on catalytic 

activity and selectivity are presented for both ethane and ethylene oxidation.  Production of 

ethylene and acetic acid from ethane using the catalytic materials exceeds that reported in 

the literature for Mo-V-Nb-Ox systems under atmospheric or elevated pressure.  Production 

of acetic acid from ethylene is also greater than that observed for Mo-V-Nb-Ox systems.  

Addition of vanadium reduces catalytic activity and selectivity to both ethylene and acetic 

acid while niobium is essential for the formation of acetic acid from ethane.  Other metals 

such as antimony, iron, and gallium do not provide the same beneficial effect as niobium.  

Molybdenum in close proximity to niobium is the active site for ethane activation while 

niobium is directly involved in the transformation of ethylene to acetic acid.  A balance of 

niobium and protonated pyridine is required to produce an active catalyst.  Water is found 

to aid in desorption of acetic acid, thereby limiting deep oxidation to carbon oxides.  A 

reaction scheme is proposed for the production of acetic acid from ethane over the catalytic 

materials. 
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CHAPTER 1 
 
 

INTRODUCTION AND ORGANIZATION OF THESIS PRESENTATION 
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 The work presented in this thesis is the result of two separate and unrelated 

projects.  Part I of this thesis outlines an investigation into the synthesis and 

characterization of a novel zeolite supported super-base capable of carbon-carbon olefin 

addition to alkyl aromatics.  A zeolite supported basic material capable of such reactions 

would benefit many fine chemical syntheses, as well as vastly improve the economics 

associated with production of the high performance thermoplastic polyester polyethylene 

naphthalate.  Although zeolites are well known for their acidic properties, their use as solid 

bases is much less widespread, despite the obvious advantages associated with solid versus 

homogenous base catalysis. 

 Chapter 2 presents a brief introduction to zeolites and their use in base catalysis.  

The utility of a zeolite supported super-basic material is described in the context of the 

industrially relevant reaction of o-xylene and 1,3-butadiene to produce 5-ortho-tolyl-pent-

2-ene.  The requirements associated with a super-basic solid catalyst and its synthesis are 

presented along with prior art supporting the use of alkali—metal azides as precursors to 

alkali—metal occluded zeolites.   Finally, a strategy for the creation of a novel zeolite 

supported super-basic catalyst is presented. 

 Chapter 3 explores the experimental methods for occluding alkali—metals within 

zeolite X using alkali azide precursors.  Synthesis conditions such as method of 

impregnation, activation technique, alkali—metal azide/alkali exchanged zeolite X pairing, 



 

 

3
and reactive conditions are described.  Characterization showing that the azides are easily 

occluded within the pores of zeolite X and reactivity results for base catalyzed reactions 

requiring weakly basic materials to very strongly basic materials are presented. 

 Chapter 4 provides a discussion of the results presented in Chapter 3.  The results of 

base catalysis are analyzed and conclusions about the use of the alkali—metal azide system 

as a route to the reliable synthesis of a zeolite supported super-basic materials are made. 

 Part II of this thesis describes the use of partially reduced heteropolyanions for the 

oxidative dehydrogenation of ethane to ethylene and acetic acid in high yield at 

atmospheric pressure and moderate temperature.  The syntheses of ethylene and acetic acid 

are usually performed in separate steps or at high pressures.  Acetic acid is traditionally 

synthesized from partially oxygenated precursors such as ethylene, the supply of which is 

becoming increasing strained.  Ethane, on the other hand, is easily obtainable.  Thus, a 

catalyst capable of producing ethylene and acetic acid directly from ethane is extremely 

valuable. 

 Chapter 5 introduces the state of the art in ethane and ethylene oxidation to ethylene 

and acetic acid, respectively, and describes the utility of the heteropolyanion system for use 

in direct ethane oxidation to ethylene and acetic acid.  A brief survey of heteropolyanions 

in oxidation catalysis is given, including previous work from this group. 

 Chapter 6 outlines the synthesis of the heteropolyanion materials and the results of 

their activity for the oxidation of ethane, ethylene and ethanol.  The effects of catalyst 

composition, reaction temperature, oxygen to hydrocarbon feed ratio, and water on 

catalytic oxidation of ethane, ethylene, and ethanol are investigated in an effort to 

determine the nature of the active site on the catalysts. 
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 Chapter 7 discusses the results of the reactivity data presented in Chapter 5.  

Conclusions and recommendations for further investigation into the active site of the 

catalyst are also discussed.  Catalytic activity of the heteropolyanion system is compared 

with data presented in the literature for the most active ethane and ethylene oxidation 

catalysts.  The active sites for ethane and ethylene oxidation are discussed and a reaction 

pathway for the oxidation of ethane to ethylene and acetic acid is presented based on the 

findings of this study. 

 Chapter 8 provides a summary of the work presented in Parts I and II.  The results 

of Part I are summarized and followed by a discussion of the feasibility of using alkali—

metal azide precursors for the synthesis of a zeolite supported super—basic catalyst.   The 

reactivity data collected for the partial oxidation of ethane, ethylene, and ethanol in Part II 

are summarized.  Conclusions and recommendations for the heteropolyanion systems are 

also discussed.
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