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Chapter 2

OPTICAL COHERENCE TOMOGRAPHY

Through the understanding of optical coherence tomography (OCT), the fundamental limits
of imaging performance can be identified. Within these limits functionality improvements
can be identified to move beyond the capabilities of currently available OCT systems. It is
important to determine the ability of OCT to adapt towards quantitative diagnostics for

AMD progression.
2.1 Basics of Optical Coherence Tomography (OCT)
2.1.1 Michelson Interferometer with Single Wavelength Light Source

Optical coherence tomography is based upon a Michelson interferometer configuration.
Consider a single wavelength narrow bandwidth laser source incident on a Michelson
interferometer. The incoming light is split using a beamsplitter into two interferometer
arms, designated as the reference and sample arms. The light is reflected back through the
beamsplitter to be collected by the photodetector, which converts the measured power into

an electrical current.

Looking at the complex form of the electric field of the laser light, the light traveling

through the reference arm of the interferometer arrives at the detector has the form of

~

Ey = Epexp(i(kz,,, z +®,)) , Where z =z, + 2z, + z, is the total optical path the light

total ,R

has traveled through the interferometer, ¢, is phase of electric field of light source before it

enters the interferometer, and k=2n/A for the light source of wavelength A. Similarly, the
electric field traveling through the sample arm of the interferometer is of the form

Es=E, exp(i(kz .5 + @) , Where z =z, +2z,+z, 1s the total optical path traveled

total ,S

in this case.
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Figure 2.1: Free space Michelson interferometer with single
reflector in each arm, designated as reference and sample.

The photodetector measures intensity of light, calculated by the magnitude of the total

electric field arriving at the detector.
~ ~ 2 ) . 2
]Detector = ‘ES + ER‘ = ‘ES eXp(l(thota/,S + 2 )) + ER eXp(l(thotal,R + Do ))‘

= Eg" + Ep’ +2EE, c08(kz o115 + Po = kZ o102 = P0)

= E + Ep° +2EGE, cos(2k(zg — z3))

=Ig+ 1+ 21l co8(2k(zs = zg)) = I perecior (K25 — Zp) 2.1)

~ |2 2 ~ |2 2

where [ :‘ES‘ =E;"and [, :‘ER‘ =E,.

The interferometric signal measured only depends on relative optical path differences of the

two interferometer arms.
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2.1.2 Michelson with Broad Bandwidth Light Source

For a broad bandwidth light source, treat each wavelength component as an individual light
source which does not interfere with any other wavelength than itself. Define
I, =R,1,S(k) and I; = R, ,S(k), where S(k) is normalized spectral function of the light
source, and R, is percentage of original light intensity Iy reaching the detector for light
traveling through arm a. Assuming uniform efficiency of the detector over the light source
spectra, the detector measures the sum of all light source contributions for all wavelengths.

Calculating in terms of k-space:

I(ZS - ZR) = IIDetector (k9 Zg —Zp )dk
k
= j((RSJO + RpIy)S(k) + 24/ RgRy 1,S(k) cos(2k(z — z,))dlk
k
= (Rs + Rp)I, + 2y/RsR, I, IS(k)cos(Zk(zS —z)dk | 2.2)
k

The function '[S (k)cos(2k(zs — zz)))dk is an autocorrelation of the light source spectra
k

that is defined as the Weiner-Khinchin theorem (Fourier transform of the magnitude of the
electric field). The coherence function, which will be defined as f.(z) and is centered
around z = zg - zg, is a function which determines the effect on the interference signal when

reflections from the two arms of the interferometer are not of equal path length.

The coherence length /. is the quantitative metric of the spatial extent each interference

reflection is measured over. This is defined as the full width half-maximum (FWHM) of
the envelope of the spatial measurement of the coherence function. The coherence length
describes the ability of the system to separate different interference reflections from each

other.
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Figure 2.2: Measured light intensity at output of the Michelson
interferometer as a function of the difference of the optical path
lengths from the interferometer arms for the cases of single
wavelength light (left) and broad bandwidth light (right). The full
width half maximum (FWHM) of the interference fringe maximum
is labeled as the coherence length.

2.1.3 Comparing Reflectivity to Interferometer Detector Signal

Consider the Michelson interferometer setup with a layered structure in the sample arm
instead of a single reflector. The interference signal measured is the coherence function

convoluted with the reflectivity profile of the sample.

Reflectivity

Detector Intensity

Figure 2.3: Ideal reflectivity profile over depth versus theoretical
intensity signal over depth. The interference fringe signal is the
convolution of the reflection profile with the coherence function.



29
2.2 Axial Resolution

The ability to separate fringes from reflections of different depths depends on the shape of
the coherence function, which relies on the light source properties. This depth separation is

referred to as the axial resolution. Consider the extreme cases:

a) For an infinitely narrow light source spectrum such that S(k)=Soo(k,),

fo(2)= IS(k) cos(2k(zg — zp)))dk oc cos(2ky(zg — zy))) . (2.3)
k

In this case, interference fringes are observed for all z; —z, values. All reflections from

every depth within the same are observed all at the same time, resulting in the

measurements being dominated by the strongest reflection.

b) For an infinitely broadband light source such that S(k)=1 for all k,

fe(2)= [SU)cos(2k(zs = 2 )k o 5(z5 = z1). 2.4)
k

For this case, no interference would be observed unless the interferometer arms were of

identical optical path lengths.
Spectral Shape and Coherence Function Tradeoffs

A finite-width broad bandwidth light source will measure interference over a spatial extent
determined by the light source properties. The coherence function f.(z)contains the
oscillatory interference fringe function based on the center wavelength of the light source
combined with an envelope function which defines the spatial extent of the interference
measurement. The coherence length /. can be considered as the axial resolution, which
determines the minimum depth difference at which two identical distinct reflections can be

differentiated from each other.
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For a Gaussian source spectra where the interferometer arm length difference is defined

z=z¢ —z,, the coherence function f¢(2)= IS (k)cos(2kz)dk can be calculated using the
k

light source spectral form S(k) = Sp exp(-4 In 2 (k—ko)z/AkFWHMz), where the spectrum is

centered around ko=2m1/A( and A, is the center wavelength of the light source:

fo(z) = j S(k) cos(2kz)dk = Re[ j S(k) exp(izkz)ko
k k

= Re[exp(iZkoz) j S(k')exp(i2k'z)dk'] . (2.5)
2

Using S(k') = S, exp(—=C(k")?), where k'=k —k, and C=4In2/ Ak, :

folz) = R{SO exp(i2k,z) Iexp(—Ck'z )exp(z'Zk'z)dk']
:

= Re(fo exp(i2k,z) exp(—z* /C))

= f, cos(2kyz) exp(=Ak pyypy, 2> /410 2) . (2.6)

In this case, the envelope function is a Gaussian function with a full width half maximum

(FWHM) of Az,,,,, =4In2/Ak,,,,, =[.. Defining the coherence length /. in terms of

wavelength uses Ak, = (2% 2JA1FWHM to calculate:
0

, _2m2 A

C

2
0440

2.7)
T Ay AR i

For the given light source bandwidth from the above equation, maximizing FWHM of the
light source should produce the best axial resolution. Consider a top-hat spectra centered

around ko with spectral width Akpwim:
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Ko+ Mk gy /2
fo(z) = j S(k)cos(2kz)dk = S, j cos(2kz)dk
k

ko—Ak g 12

=7 cos(2koz)w (2.8)

b
K ewenZ

which leads to a coherence length of:

2
=31 60—t (2.9)
AICFWHM A/’i’FWHM

To compare these coherence length calculations directly, consider the case of the top-hat
spectrum and the Gaussian spectrum with similar spectral extent such that

A2 it ophar = 28 ewrng Gaussian = 2D A pwrng » @S shown in Figure 2.4.
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Figure 2.4: Plots of Gaussian (red) and top-hat (blue) spectral

functions for the case of A}\'FW'HNLTophﬂt = ZAXFW'HM,Gaussian

= 2AMEwnM.

2
In this case, the top-hat source coherence function is /¢ 7, =0.30———, and the
FWHM
2
. .. B o

Gaussian source coherence function is /¢ g,ian = 0-44————=1.47(L¢ 1p1ar) -

FWHM
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The coherence length /. cannot be considered as the only important factor to consider.

With the typical sample containing reflections that vary over several orders of magnitude,
the spatial form of the coherence function determines how the weaker reflections are
identified when located close to a strong reflection. If all of the reflections were identical

within a sample, this would not be a consideration.

The interference signal in OCT is defined by the magnitude of the envelope of the
coherence function convoluted with the reflectivity profile of the sample over depth. So for
a normalized OCT signal of a given reflector, the coherence length is defined by the width,
defined by the -6dB points (as opposed to the -3dB points used for the FWHM of the
coherence envelope). On a linear scale, the side lobe variations of the coherence function
due to the top-hat spectra do not seem to have much of an effect. On a logarithmic scale,
the side lobes of this function are significant and extend out spatially far beyond the
coherence length. On this scale, the coherence function of the Gaussian source spectra can

be seen to have a larger coherence length but without any side lobes.
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Figure 2.5: Calculated coherence functions of the spectra in Figure
2.4, plotted against the relative path length of the interferometer
arm. The linear (left) and logarithmic (right) plots of the coherence
functions are presented. The top-hat coherence function (blue) has a
smaller coherence length, but has substantially more side lobes on
the function. The Gaussian coherence function (ted) shows no side
lobes in either plot.



33
These two cases demonstrate the tradeoffs between coherence function shape and

coherence length for a given source spectrum. The top-hat spectrum was the largest
spectral FWHM for a given spectral width. The coherence length minimum for this given
spectral width was at the tradeoff for the side lobes of the function. The coherence function
created from the Gaussian spectra contains no side lobes, but has a relatively larger
coherence length. Spectral shaping of the light spectrum allows adjustments between the

coherence length and side lobes of the coherence function.

As illumination spectral widths become wider, dispersion compensation becomes more
important. Dispersion mismatch between the interferometer arms causes a reflection to
appear at different optical depths for different wavelength components of the light source,

effectively broadening the coherence function and increasing the coherence length.

2.3 Acquiring Fringe Data to Create OCT Images

Optical coherence tomography (OCT) is the method of imaging which plots the spatial
distribution of the envelope of interference fringes from a broad bandwidth light source in a
Michelson interferometer configuration. The main question is: How is the envelope of the

interference fringes determined?

For a single photodetector power measurement of an interference fringe, the measurement

is of the form:

P(zg—zp)=Ppe + Py fe(zg —2z)

= Ppc + Py fe(zg —zg) c0s(2ky (25 — zg))) . (2.10)

P, 1s the sum of all the powers measured by the photodetector, P,, is the maximum
power of the interference fringe, and f.(z) is the envelope function portion of the
coherence function, normalized to a maximum of 1. The quantity of interest is

Py fe(zg —zg), which is the non-normalized envelope function. The difficulty in
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determining this factor from one detector measurement is due to two additional unknown

variables beyond the quantity of interest: P,. and zg —z,.

Detector Power

22y

Figure 2.6: Schematic illustrating the lack of information for using a
single point measurement to measure the interference fringe
intensity.

The interferometric portion of the signal cos(2k,(zg — z)) is very sensitive to the relative
position zg —z, of the two reflections. It is easier to consider this signal in terms of the
relative phase ¢; — @, of the interference fringe because, while the envelope function
Jr(zg — zp ) is sensitive to distance changes on the order of microns, the fringe oscillation
cos(2k,(zg —zz)) 1is sensitive to changes on the order of nanometers (1000 times more

sensitive).

The relative phase of the interferometer ¢, — ¢, is defined as 47(zy —zz)/4,, so any
relative motion in the system with a magnitude of at least 1,/2 will see a full oscillation in
the interference fringe. By controlling the relative motion between the two arms of the
interferometer, the fringe amplitude can be sampled and identified. The method of
sampling the fringes through the change of interferometer optical path length is referred to

as time domain optical coherence tomography (TDOCT) [1,2].
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Figure 2.7: Schematic image of an interference fringe sampled using
a small interferometer path length change.

There are several methods to sample the interference fringes to produce an OCT image.
The most commonly used method utilizes a linear scan of the reference arm path length to
sample all of the interference fringes over the entire depth of the sample. Keeping
consistent with ultrasound scan terminology, a single scan along the depth of the sample is
called an A-scan. Creating a two dimensional reflectance image through multiple A-scans

over a range of transverse locations is called a B-scan.

As a screening tool for the retina, there is an additional interest in flexibility of the scan
directions. Transverse images, also called en face images or C-scans, allow imaging at one
depth of the interference fringes over the entire plane of the retina. If the primary
acquisition of OCT data is through A-scans, the only way an en face image could be
created would be through a 3D data set composed of A-scans measured over all transverse
locations of interest. With mechanical scanning technologies limiting the maximum A-scan

rate in TDOCT, it is not practical to produce transverse images this way.

To improve the flexibility of the imaging of the TDOCT system, the primary scan direction
should be transverse to the direction of the incoming light (defined as axial). In this case,

transverse scans followed by depth or axial scans would produce B-scan images.
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Transverse scans followed by transverse scans in the perpendicular direction would

produce C-scans. En face images are ideal in retinal imaging to screen an entire retina for

signs of a disease, but allowing for it to occur at a single tissue depth of interest.

To acquire fringe information to allow for transverse scanning as the primary scan
direction, the interference fringes must be sampled. The easiest way to sample requires
changes in the relative optical path length much smaller than the axial resolution, which has
numerous options available for creating small phase changes in the system at high speeds

to measure the fringes [3-7].

2.4 SNR of Time Domain OCT

In TDOCT, the interferometric signal is measured as a current by the photodetector.

Looking at the maximum fringe signal, the interferometer current i(zg — z ) 1s given by:

—2z)) (2.11)

i(zg —zp) =

217'\[ P, P.
%cos@k(zs

Vo

where 7' is the quantum efficiency of the photodetector to convert photons to electrons.
Py, P, are the powers arriving at the detector from the reference and sample arms of the
interferometer, respectively and %v, is the average energy of the photon from the light

source.

The signal in OCT 1(z)*is the spatial average of the square of the interferometer current
over several fringes:

_ 21 PyP

07 (o), - 2L
0

(2.12)

The signal-to-noise ratio (SNR) in OCT is defined by the ratio of the OCT signal by the

variance of the total noise of the system:
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SNR =1(z)*/o,... . (2.13)

noise

There are three types of noise sources occurring over time T’ acquisition of a given pixel in
the TDOCT acquisition: detector noise, shot noise, and relative intensity noise (which is
also referred to as excess noise). The total noise in OCT is determined by the summation of

the variance of all three types of noise sources:

2
noise Gdetector

Pro (2.14)

2
o + O-shot excess

The detector noise can be considered a constant source of noise, independent of the amount

of power incident on the detector.

* = constant (2.15)

O-detector

Shot noise is defined by the statistical fluctuations which occur for the measure of a finite
number of particles in a detector over a given amount of time. For electrical currents, the
expected probability distribution for the number of electrons during the acquisition of the
detector is given by a Poissonian distribution around the expected mean number of
electrons. For this distribution, the variance of the measured electrons is equal to the mean
number electrons measured within the time t” of the detector, which is determined from the

total power incident on the detector. For the case of P, >> P, which is applicable for most

OCT imaging scenarios, the shot noise variance is given by:

o 2:77'(PR‘*‘PS)z n' Py
shot (hv)r'  (hvy)r'’

(2.16)

Relative intensity noise (RIN) describes the optical intensity fluctuation noise of the light

source [8]. With the same assumption of P, >> P :

2 2
GexcessZ :[ﬂ'(PR +PS)J Tcoh z(n'PRJ Tcoh . (217)

hv, 7' hv, 7'
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A

, Where ¢

coh —

1/2
In this equation 7, is the coherence time, defined by 7, = 2In2
V4 AV p—

is the speed of light, 2, is the center wavelength, and AA,,,,, is the bandwidth of the light
source.

Each of the different noise sources dominate in different regimes, which are determined by
the total incident power on the detector, which is approximately described by Pr. From the
properties of the individual noise sources and the OCT signal dependence on Pg, the ideal
SNR performance would occur in the regime where the shot noise dominated the noise

Sources.

For the ideal SNR shot-noise limited case, given a TDOCT pixel acquisition time t’:

12 2 ' '
SNR1pocr= 21" PyP I(hvy) _2n'Bt

. (2.18)
n' Py I(hvy)t' (hvy)

2.5 Spectral Domain Optical Coherence Tomography (SDOCT)

Time domain optical coherence tomography (TDOCT) measures the interference in the
case where a sample reflection has the same optical path length as the reference reflection.
By measuring all of the interference fringes from all wavelength components at the same
time within a photodetector, all of the non-equal path length fringes are rejected through

destructive interference with each other.

The interference fringes have the form of cos(2k(z5—z;)) for a given optical path
difference of the interferometer arms of zg —z,. Measuring the interference fringes in k-
space allows for the measurement of all of the interferometer fringes, not just the ones at
equal path length. Each depth reflection will produce fringes of different spectral
frequencies. The Fourier transform of the measurement of the interference fringes in k-
space separates the reflections from different depths. This technique is referred to as

Fourier domain optical coherence tomography (FDOCT) [9].
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There are two different methods which fall under the category of FDOCT. The first method

measures the interference fringes in k-space using a spectrometer to separate the
wavelength components for measurement. This technique is called spectral domain optical
coherence tomography (SDOCT) [10,11]. The other method utilizes a swept source laser
with a narrow-band instantaneous spectral line width in the interferometer to vary the
wavelength over time to be measured by a photodetector. This technique is referred to as
swept source optical coherence tomography (SSOCT) or optical frequency domain imaging
(OFDI) [12,13]. Regardless of the FDOCT method chosen, the calculation of the OCT

signal from the spectral information remains the same.

Power measured in k-space for sample reflections (labeled by j, sample path locations z;

=2(zg —zy) with reflected power labeled as Pg;:

P(k) = Py(k)+ D Py (k)+ 2 [P (k) Py (k) cos(kz ;)
J J
+ %Zz, [P, (k)P (k) cos(k(z; - z,)) . (2.19)

i,j
i#j

For most scenarios Ps; << Pr which allows the last term to be ignored. By removing the DC
component of the measured power signal ~ Pr (k), we are left with the approximate

summation of all the sample reflections interfering with the reference reflection.

P(k) - P, (k) ~ ZZ‘/PR (k)Pg; (k) cos(kz ;)

~ Z 2 /PRPS/S(k)cos(kzj) (2.20)

The function S(k) is the normalized spectral function of the light source defined earlier.
Taking the Fourier transform of this interferometric signal in k-space allows the separation

of the reflections from different depths:
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FT(P(k)— Py (k)) ~ Zz‘lPRPSj IS(k) cos(kz ; )exp(ikz)dk . (2.21)

With the assumption that S(k) changes slowly relative to cos(kz;), and making the

assumption that z=2(zy -z, ) =0 simplifies the equation to:
I(2)= FT(P(k) - Py(k) = > [ PPy j S(k)exp(ik(z —z,))dk
J —o

= Z,/PRPS]. fe(z-z)). (2.22)

fe (z-z;)is the complex form of the coherence function derived earlier in this chapter

such that Real[ fc (z—z,) |7 fc(z - z;) and the amplitude of this function is the definition of

the envelope of the coherence function. The signal in OCT is the magnitude of the Fourier

transform of the interference signal in k-space:
~ 2 2 ~ 2
@[ = |FT(PU) = PoD] = Y PePy|Fe(z=2))] . (223)
J

The result is a summation of the magnitude of the envelope of the coherence functions

centered around each of the sample reflection locations z; =2(zy, -z, ), weighted by the

power collected from each of the reflections Pg;. This is identical to the form of the OCT

signal measured in TDOCT.

One option available to SDOCT is the ability to adjust the coherence function through
numerical spectral shaping. With the direct measurement of the spectral interference
fringes, numerical shaping of the fringes before the Fourier transform is performed can

alter the shape of the coherence function f.(z) and improve the coherence length while

suppressing the side lobes.
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For retinal imaging, the ideal method of FDOCT is not easy to determine. Only recently

has there been developments of fast swept source lasers centered at wavelengths capable of
retinal imaging (1300 nm light is absorbed too much while propagating through the Scm of
aqueous humor of the eye) [14,15,16]. High-speed line scan CCD cameras are readily
available for incorporation into a spectrometer design [17,18,19]. For the extent of this

project, SDOCT is chosen as the FDOCT method used for retinal imaging.

2.6 SNR of SDOCT

Define spectral domain optical coherence tomography (SDOCT) system, where the power
from the reference arm arriving at the spectrometer is Pr and power from the sample arm
arriving at the spectrometer is Ps. Assume that Ps << Pg. Integration time of the
spectrometer is 1. The spectrometer has M pixels used in k-space measurements. Assume

shot-noise-limited performance of the SDOCT system.

Number of electrons on CCD pixel in k-space:

Fk)= Zzs J(kycos(kz, + dg) + Fpe (k) + N(k). (2.24)

S (k) is the interferometric signal is defined as S, (k) =i,/ P (k)Ps (k)R v/ hv, for a sample
reflection R; at optical path difference z; =2(z; -z, ) of interferometer. The summation of

this signal is taken over all of the sample reflections. Define P, = ZPR (k), Pg = ZPS (k).
k k

Fpo(k)+ N(k) is the shot noise distribution of electrons. The mean number of electrons
F,-(k) is given by nP,(k)r/hv,, where n is the combined light collection and electron
conversion efficiency of the spectrometer for photons of energy #v,. N(k)is the random

portion of the Gaussian distribution with variance o*v«) = 7P, (k)r/hv,and zero mean.

Using the property of the Fourier transform: FT(A+ B)=FT(A)+ FT(B), the Fourier
transform (FT) of F(k) produces the OCT intensity amplitude 7(z):
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I(z)=FT(F(k)) = Y FT(2S ,(k)cos(kz ; + §)) + FT (Fpe (k) + FT(N(k)) . (2.25)

J

Breaking it into the real and imaginary components of the complex Fourier transform of M

data points in k-space:

I(z) = 1(z)exp(ig(2)) = FT(F(k)) = Y F(k)exp(ikz)
k

M M
= Iy (2) +il,, (2) = Y F(k)cos(kz) — iy F(k)sin(kz) . (2.26)
k k

Assume the number of data points in FT, defined as M, is large enough such that a delta
function accounts for the Fourier transform of an oscillatory function. Let the arbitrary

choice of z;=0 for all reflection locations be taken into account as well.

These assumptions lead to:
M M M M
D cos(kz)cos(kz ;) = ) _sin(kz)sin(kz ;) = 75(z ~z,), Y cos(kz)sin(kz;) =0. (2.27)
k k k
DC Term
M M 772_ M
FT(Fpe (k) = Y Fpc (k) exp(=ikz) = 8(2) Fpc (k) = 8(2)5 7= > P (k)
k k 0 k

nPyt

= 5(2) (2.28)

hv,

Interferometric Signal

M
Define the signal S(z) = S(z)exp(ids(2)) = DD 28, (k)cos(kz, + ¢ ) exp(—ikz) . Using the
ko j

identity cos(kz; + @g;) = cos(kz ;) cos(gy; ) — sin(kz ;) sin(¢g; ) :
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S(z) = fZ“zS‘, (k)(cos(kz ;) cos(dg; ) — sin(kz ;) sin(gg ) exp(—ikz) . (2.29)
ko j

Assume S (k) changes slowly compared to cos(kz;) and sin(kz,). With this assumption

make the approximation within the summation: cos(kz)cos(kz;) = sin(kz)sin(kz )

= %5(2 -z;)
§(z) = i z 28 (k)(cos(kz ;) cos(kz) cos(gs; ) + isin(kz ;) sin(kz) sin(gy; )
L

=Y 8,(k)(cos(dg) + isin(¢g)S(z — z;) = Zexp(igésj )Zk: S, (k)5(z-z;)

k=1

M
= %Zexp(i% )Y JPe(b)Ps(K)R,;8(z - z )
0 &

77\/ R sfzexp(l%j \/75(2 z;)=S(z)exp(igs (2)) - (2.30)

Noise Analysis

The noise calculated in OCT comes from the Fourier transform component of the noise
distribution in k-space:

FT(N(k))=N(z) = N(z)exp(igy (2)). (2.31)

To understand how the noise transforms, Parseval’s theorem for finite length Fourier
transforms is required.

Using f(z) = i f(k)exp(—ikz), where f(Kk) is a real function such that (f(k))" = f(k):
k

M

- - M - M
D F@(f@) =) f(2)Y f(k)exp(ikz)
z z k
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S|P =3 r0Y F@rexplikn) =YY" (k) explikn) Y £ (k') exp(-ikz)
z k z z k k'
M M M
=2 FE)Y fKD)Y exp(ilk —k')z)
k k' z

S|F@ = MY r®Y rwnstk-ky= MY |k (2.32)
z k k' k

This theorem is important for relating the Fourier transforms of the shot noise distribution

M
in k-space N(k), measured on the CCD. With N(z) = N(z)exp(ig, (z)) = z N(k)exp(ikz) :
k
M. M 5
Z‘N(z)‘ = MY INGK)[ . (2.33)
z k
With the definition for the mean variation over all k-space measured as (N (k)> =0:

f\ﬁ(z)\z _ M<W(z)‘2> _ Mf]N(k)F _ M2<|N(k)|2> M (oPvw)  (234)
z z k

k

nPyt

<‘]\7(z)‘2>z = M<O'2N(k)>k =%M<PR(]€)>,{ =

0 Vo

(2.35)

N(z) = N(2)exp(idy (2)) = N (2) +iNy, (2) . (2.36)

Each component of Fourier Transform of random Gaussian noise distribution results in a
Gaussian distribution as well. The real and imaginary components Nge(z), Nim(z) of the
Fourier transform of the noise distribution N(k) are random Gaussian distributions, all
centered around zero mean such that (N(k))=(Ng.(2))=(N,,(2))=0. With each
component being independent of each other, the phase of the noise ¢, (z)is completely

random. Determining the properties of the noise components:
NG| = Nee@)® + Ny () (237)

(L )= (Ve 4 (N @) = 00 + o™ (238)
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The transform components Ngre(z), Nim(z) have identical distributions, which means that

2 2 .
Oyre =Onm - Iherefore:

1/~ 2 Pyt
ovee’ =onw’ =3 (W) =T (239
0

The probability distribution of the real noise component, which is identical to the imaginary

component distribution is calculated to be of the form:
P(NRe) = Po exp(_]\/v]{e2 /2o-Nre2) . (240)

The probability distribution of the noise amplitude N(z) is determined from the individual

component distributions:

N
P(N) = [P(Ng)P(N = N? = Ny 2 )N,
0

N
= J‘])oz exp(_NRez /26Nre2)exp(_(N2 - ‘]\']Rez)/zo-Nre2 )dNRe
0

N
= ij exp(—(N?)/ 20, )dN . . (2.41)
0

Normalizing the distribution for the noise amplitude:

P(N) = %Nexp(—(Nz )/ < ‘ﬁ(z)‘z >). (2.42)
<|N@)| >
Using the probability distribution, the standard deviation of the magnitude of the noise N

1s calculated:

o= <‘]\7(z)‘2> _ BT (2.43)

hv,
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OCT Calculations

Combining all of this analysis, the OCT intensity amplitude, given by the Fourier transform
of F(k) is of the form, at z# 0:

1(z)=I(z)exp(ig(z)) = FT(F(k)) = S(z) + N(2)
= S(z)explig(2)) + N(2)exp(idy (2)) . (2.44)

The properties of the signal and noise terms have been derived previously. The magnitude

of the OCT intensity can be calculated:

T@f =10 =32)° + N@)* -~ 25@N(2) cos(d (2) - dy (2)) (2.45)
Averaging the OCT intensity, since ¢, is completely random:

<‘T(z)‘2> =5@)° +(N(@2)*). (2.46)

SNR Definition

System SNR sensitivity definition in OCT is described by the ratio of magnitude of the

signal S* where the reflection R=1 to the standard deviation of the noise magnitude:

S(z,R =1)? s* ((m/ hv )y PrPs )2 nPst
SNRspocr = = = - . (2.47)
O\ <N(Z)2> (nz/hvy)Py hv,
2n' Pt

Compare this to TDOCT SNR of equation (2.18): SNRpocr=

(hvy) ‘

If SDOCT can acquire an entire depth scan (A-scan) in the same time TDOCT acquires one
depth location data t, both techniques will produce comparable SNR. The efficiency of
data collection using SDOCT is much greater than that of TDOCT [20,21,22].
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2.7 SDOCT Limitations

2.7.1 SDOCT Limitation #1: Mirror Terms in SDOCT

In SDOCT, the OCT intensity is determined by the Fourier transform of the interference

fringes measured in k-space:
T(2)~ Y 2,/ Py j S(k)cos(kz ;) exp(ikz)dk (2.48)
J —o

The assumption is made that all of the sample reflections are located at longer path lengths

than the reference path length, such that z; =2(zy —2z,)=0. Because cos(kz;) cannot

distinguish between reflections located at ‘z j‘and—‘z ;1» all images will experience a

mirroring effect over the sample interferometer arm position equal to path length position

of the reference arm.

—z = Zg position

Increasing Zg
(Deeper into sample)

Figure 2.8: Mirroring example of the SDOCT image for two
different reference arm positions. The change in the reference arm
position of an intensity image (left) creates a mirrored image (right)
in this case.

2.7.2 SDOCT Limitation #2: Maximum Imaging Depth in SDOCT

Nyquist theorem defines for a sampling rate of f;, the maximum resolvable frequency is
fo/2. Frequencies of fy—f are aliased due to limited sampling to a measured frequency of f.
The fastest oscillation that can be measured completes a full oscillation in exactly two

sampled points.
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In terms of k-space measurements of the interference fringes, with an average sampling

spacing of &k, the maximum resolvable signal completes a full oscillation within 26k .

With the interference signal o cos(2k(zg —z;)), the maximum resolvable path length

. V4 A0 .. 27
difference of - =——=""_inair, where ok = ——1.
(Zs —Zp) pax 25k 48A 12

0
2.7.3 SDOCT Limitation #3: SNR Drop with Depth in SDOCT

The spectrometer used in SDOCT creates k-space measurements by integrating over a
finite region of k-space. Oscillations in k-space are affected by this finite sampling method.
Looking at the interference fringe power measured on the spectrometer at wavenumber k

for interference signal cos(2k(z, —z5)):

k+ok/2
P(kyor —- Jeos(2k'(zy 2 )k (2.49)

k—ok/2

Using the assumption that ok <<k, the interference measurement can be approximated as:

5* (zp —zs )’
P(k)occos(2k(zy —z4))| 1 - 6 } (2.50)
Comparing the fringe power amplitude measurement to an ideal case where ok —=0:
2 N2
P (| -z’ ) os1)
P(k,0k =0) 6

This ratio translates to drop in the measured OCT signal over the image depth in SDOCT:

SNR(ZZZR—Zs):(1_&2(ZR_ZS)2]Z (2.52)

SNR(z = 0) 6
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In the ideal case, ok in this definition would be the minimum k-space separation of the

CCD pixels, designated by &k, . In reality, ok is also determined by the ability of the
imaging elements to focus an individual wavelength onto each CCD pixel. If the focused
spot size of a given wavelength is larger than the CCD pixel, the OCT signal drop will
depend on the focused spot size in k-space, designated by &k ocys . Assuming that the
focused spot size makes the SNR drop over depth dependant on &k s, the maximum
imaging depth is dependant on &, -

T e

Looking at the SNR drop at the maximum imaging depth (zg —z) )¢ = = :
2&CCD 45]’CCD

2
SNR(z =(zp — 25 yax) _ 1_”_257‘st2 (2.53)
SNR(z = 0) 24 ékCCDz . .
In terms of wavelength:
2
SNR(Z:(ZR_ZS)MA_X): 1_0415}”LCUS2 (254)
SNR(z =0) é7%(:02 . '

In the ideal case where the spectrometer measurement is limited by the CCD pixel width,

the SNR drop at the maximum depth is calculated:

SNR(z = (2 = Zs) pux ) 2
=(1-0.41)* =0.348 = —4.6
R = 0) ( ) dB. (2.55)

2.8 Phase Changes as Basis of Contrast

As described in Chapter 2.3, the oscillatory portion of the interferometric signal

cos(2k,(zg — zz)) can be described by a relative phase @, — @, such that:

cos(2ky(z5 = zg)) = cos(fs — ) . (2.56)
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The limitation of the phase is the inability to determine the relative position of the

reflections from each interferometer arm beyond an accuracy of A,/2. This results in a

phase accuracy limitation of 2
s —Pp =4r(zg —zx)/ Ay + 27im (2.57)

where m is an integer to limit the phase measurement to — 7 < ¢ — @, < 7. The cyclic

nature of the phase measurements limits the usefulness of the absolute phase measurement
of a sample reflection. Changes in the phase measurement can be useful due to the
sensitivity to small relative motions occurring between the sample and reference

reflections:

A= A, ~ ) = 2z~ 2) =z @.58)
0

Due to the cyclic nature of the phase, only phase changes between the limits —7 < Ag< 7
can be identified properly. Phase changes can identify motions up to a maximum of 4,/4,

much smaller than the resolution capabilities of the OCT system. The motion calculated by
the phase change is only along the axial direction, parallel to the imaging light direction.
Using the phase change information of the scatterers within a sample, the tiny motions
measured can provide additional contrast to the structural information provided by OCT

imaging.
2.8.1 Definition of Phase Noise

With the OCT signal 7(z), the calculated phase #(z) can deviate from the expected sample

phase ¢, (z) depending on the relative noise properties:

1(z)=1(2)exp(ip(2)) = S(z) + N(z) = S(z) exp(idh (2)) + N(z) exp(ighy (2)). (2.59)

To determine the noise effects on the error on phase measurements, a probability analysis

of the phase is required. Since the phase accuracy does not depend on the sample phase, set
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¢s(z)=0 for convenience. For this case, the phase can be determined through

trigonometric means:

NIm(Z)

tan(¢(z)) = m .

(2.60)

The noise components Ngre(z) and Niy(z) have the same Gaussian distribution described

earlier. For the case where S >> N, the phase determination can be simplified.

- Ny, (2)
P(z) = —S(z) . (2.61)

The probability distribution of the phase ¢(z) is proportional to the distribution of the noise

component, calculated earlier:
2
P(p) = P(N,, = $S) = P, exp(=4”S” /(N(2)*) ") (2.62)

which has a calculated variance of:

o, (2) = . (2.63)

Phase error is dependant on the local signal to noise ratio for a given reflector. Phase
changes measured for a reflector of OCT signal S*(z) require two phase measurements,
each with phase error associated with it. The phase variance determined for phase changes

is twice the value of the error for a single phase measurement:

Fef
S(z)> SNR(z)

o\ (2)=20,(2) = (2.64)

2.9 Choosing Between TDOCT and SDOCT

There are several factors that need to be compared in deciding between TDOCT and

SDOCT as the ideal system to produce phase contrast imaging for retinal imaging.
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2.9.1 SNR Comparison

Comparing the SNR of 1 pixel in TDOCT to the SNR of an A-scan of SDOCT:

21 P. P,
SNRrpoct = %, SNRspoct = 75T

Vo Vo

(2.65)

It can be approximated that SNR,,,-r = SNRg,ocr When the acquisition time of 1 depth

location in TDOCT matches the acquisition time of an entire depth scan in SDOCT. With
such a large improvement of image acquisition efficiency, SDOCT is the optimum choice

in general.

2.9.2 Phase measurements with TDOCT versus SDOCT

SDOCT intrinsically measures the phase from all of the depth reflections at the same time.
Any unwanted bulk axial motion of the sample can be analyzed and removed from contrast
measurements. TDOCT has only one measurement of phase for each pixel acquired. If bulk
sample motion removal is required, additional hardware and analysis would be required in
the TDOCT system to measure a reference phase for removal. With the ease of
simultaneously acquiring the phases from all of the sample depths, SDOCT is the optimum

choice under this regard.

2.9.3 Spectral shaping and Dispersion compensation

As described in Chapter 2.2, optimal imaging in OCT depends on the shape of the
coherence function. The width of the function determines the axial resolution, while the
shape and side lobes of the function determine the image artifacts created by strong
reflections within the sample. Another factor which determines the shape of the coherence
function is the relative dispersion between the optical paths of the interferometer arms in
the system. Mismatches between sample and reference interferometer arms can broaden

and distort the coherence function, reducing image quality.
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Variations in the dispersion properties of different samples can ultimately limit the axial

resolution without any further adjustment to the system dispersion. SDOCT can
numerically compensate for dispersion mismatches between the interferometer arms as
well as adjust the spectral shape to improve the coherence function shape. TDOCT can

only alter these factors through optical adjustment to the system.

2.9.4 Minimum time required per transverse location

The minimum time per transverse location in SDOCT is determined by the acquisition rate
of the spectrometer camera, which is limited by currently available commercial
technologies. TDOCT can theoretically achieve a much faster acquisition rate of each pixel
for currently available hardware. If faster acquisition speeds are required than can be

achieved with SDOCT, TDOCT is the only available option to meet those requirements.

2.9.5 Limitations of SDOCT

Considering all of the limitations of SDOCT described in Chapter 2.7, proper optical
alignment of the thin retinal sample can reduce most of the negative effects of these

limitations.

Unless the OCT imaging situation requires a transverse pixel dwell time shorter than
SDOCT is capable of, SDOCT has comparable or superior performance to TDOCT and is

clearly the optimal choice for proceeding with phase contrast imaging.

2.10 References

1. D. Huang et al., “Optical coherence tomography,” Science 254, 1178 (1991).

2. W. Drexler et al., “In vivo ultrahigh resolution optical coherence tomography,” Opt.
Letters 24, 1221 (1999).

3. Z. Yaqoob et al., “Homodyne en face optical coherence tomography,” Opt. Letters 31,
1815 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=o0l-31-12-1815.

4. B. Hoeling et al., “Phase modulation at 125kHz in a Michelson interferometer using an
inexpensive piezoelectric stack driven at resonance,” Rev. Sci. Instr. 72, 1630 (2001).




54

5. M. Pircher et al., “Retinal cone mosaic imaged with transverse scanning optical
coherence tomography,” Opt. Letters 31, 1821-1823 (2006).

6. K. Grieve et al., “Ocular tissue imaging using ultrahigh-resolution, full-field optical
coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 4126 (2004).

7. R.G. Cucu et al., “Combined confocal/en face T-scan based ultrahigh-resolution optical
coherence tomography in vivo retinal imaging,” Opt. Letters 31, 1684 (2006)

8. B. Bouma, E. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker,
Inc., 2002).

9. AF. Fercher et al., “Measurement of intraocular distances by backscattering spectral
interferometry,” Opt. Commun. 117, 43 (1995).

10. M. Wojtkowski et al., ”In vivo human retinal imaging by fourier domain optical
coherence tomography,” J. Biomed. Opt. 7, 457-463 (2002).

11. R. Leitgeb et al., “Ultrahigh resolution Fourier domain optical coherence tomography,”
Opt. Express 12, 2156 (2004). http://www.opticsexpress.org/abstract.cfm?id=79930.

12. S. R. Chinn et al., “Optical coherence tomography using a frequency-tunable optical
source,” Opt. Letters 22, 340-342 (1997).

13. B. Golubovic et al., “Optical frequency-domain reflectometry using rapid wavelength
tuning of a Crd+:forsterite laser,” Opt. Letters 22, 1704-1706 (1997).

14. E. C. Lee et al., “In vivo optical frequency domain imaging of human retina and
choroid,” Opt. Express 14, 4403-4411 (2006),
http://www.opticsexpress.org/abstract.cfm?1d=89920.

15. H. Lim et al., “Optical frequency domain imaging with a rapidly swept laser in the 815-
870 nm range,” Opt. Express 14, 5937-5944 (2006),
http://www.opticsexpress.org/abstract.cfm?id=90546.

16. R. Huber et al., “Amplified, frequency swept lasers for frequency domain reflectometry
and OCT imaging: design and scaling principles,” Opt. Express 13, 3513-3528 (2005),
http://www.opticsexpress.org/abstract.cfm?&id=83745.

17. “Line Scan Cameras,” Basler Vision Technologies,
http://www.baslerweb.com/beitraege/beitrag_en_17842.html.

18. “CCD Monochrome Linescan Cameras,” Atmel Corporation,
http://www.atmel.com/dyn/products/devices.asp?family_1d=612.

19. “Line Scan Cameras,” DALSA, http://vfm.dalsa.com/products/linescan.asp.

20. M. Choma et al., “Sensitivity advantage of swept source and Fourier domain optical
coherence tomography,” Opt. Express 11, 2183-2189 (2003),
http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183.

21. R. Leitgeb et al., “Performance of fourier domain vs. time domain optical coherence
tomography,” Opt. Express 11, 889-894 (2003),
http://www.opticsinfobase.org/abstract.cfm?URI=o0e-11-8-889.

22.J. F. de Boer et al., “Improved signal-to-noise ratio in spectral-domain compared with
time-domain optical coherence tomography,” Opt. Letters 28, 2067-2069 (2003).




