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C h a p t e r  2  

OPTICAL COHERENCE TOMOGRAPHY

Through the understanding of optical coherence tomography (OCT), the fundamental limits

of imaging performance can be identified. Within these limits functionality improvements

can be identified to move beyond the capabilities of currently available OCT systems. It is 

important to determine the ability of OCT to adapt towards quantitative diagnostics for

AMD progression.

2.1 Basics of Optical Coherence Tomography (OCT) 

2.1.1 Michelson Interferometer with Single Wavelength Light Source

Optical coherence tomography is based upon a Michelson interferometer configuration.

Consider a single wavelength narrow bandwidth laser source incident on a Michelson

interferometer. The incoming light is split using a beamsplitter into two interferometer 

arms, designated as the reference and sample arms. The light is reflected back through the

beamsplitter to be collected by the photodetector, which converts the measured power into

an electrical current.

Looking at the complex form of the electric field of the laser light, the light traveling 

through the reference arm of the interferometer arrives at the detector has the form of

))(exp(
~

0,RtotalRR kziEE , where 41, 2 zzzz RRtotal  is the total optical path the light 

has traveled through the interferometer, 0  is phase of electric field of light source before it

enters the interferometer, and k=2  for the light source of wavelength . Similarly, the 

electric field traveling through the sample arm of the interferometer is of the form

))(exp(
~

0,StotalSS kziEE , where 41, 2 zzzz SStotal  is the total optical path traveled

in this case. 
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Figure 2.1: Free space Michelson interferometer with single
reflector in each arm, designated as reference and sample.

The photodetector measures intensity of light, calculated by the magnitude of the total 

electric field arriving at the detector.
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0,0,

2

))(exp())(exp(
~~

RtotalRStotalSRSDetector kziEkziEEEI

)cos(2 0,0,

22

RtotalStotalRSRS kzkzEEEE

))(2cos(2
22

RSRSRS zzkEEEE

),())(2cos(2 RSDetectorRSRSRS zzkIzzkIIII        (2.1) 

where
22~
SSS EEI and

22~
RRR EEI .

The interferometric signal measured only depends on relative optical path differences of the

two interferometer arms.
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2.1.2 Michelson with Broad Bandwidth Light Source

For a broad bandwidth light source, treat each wavelength component as an individual light 

source which does not interfere with any other wavelength than itself. Define

 and , where S(k) is normalized spectral function of the light

source, and R

)(0 kSIRI RR )(0 kSIRI SS

a is percentage of original light intensity I0 reaching the detector for light

traveling through arm a. Assuming uniform efficiency of the detector over the light source

spectra, the detector measures the sum of all light source contributions for all wavelengths.

Calculating in terms of k-space:

dkzzkIzzI

k

RSDetectorRS ),()(

dkzzkkSIRRkSIRIR

k

RSRSRS )))(2cos()(2)()(( 000

dkzzkkSIRRIRR

k

RSRSRS ))(2cos()(2)( 00 .           (2.2) 

The function is an autocorrelation of the light source spectra 

that is defined as the Weiner-Khinchin theorem (Fourier transform of the magnitude of the

electric field). The coherence function, which will be defined as  and is centered 

around z = z

dkzzkkS

k

RS )))(2cos()(

)(zfC

S - zR, is a function which determines the effect on the interference signal when 

reflections from the two arms of the interferometer are not of equal path length. 

The coherence length  is the quantitative metric of the spatial extent each interference

reflection is measured over. This is defined as the full width half-maximum (FWHM) of 

the envelope of the spatial measurement of the coherence function. The coherence length

describes the ability of the system to separate different interference reflections from each 

other.

Cl
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Figure 2.2: Measured light intensity at output of the Michelson
interferometer as a function of the difference of the optical path
lengths from the interferometer arms for the cases of single
wavelength light (left) and broad bandwidth light (right). The full
width half maximum (FWHM) of the interference fringe maximum
is labeled as the coherence length.

2.1.3 Comparing Reflectivity to Interferometer Detector Signal 

Consider the Michelson interferometer setup with a layered structure in the sample arm

instead of a single reflector. The interference signal measured is the coherence function 

convoluted with the reflectivity profile of the sample.
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Figure 2.3:  Ideal reflectivity profile over depth versus theoretical
intensity signal over depth. The interference fringe signal is the
convolution of the reflection profile with the coherence function.
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2.2 Axial Resolution

The ability to separate fringes from reflections of different depths depends on the shape of

the coherence function, which relies on the light source properties. This depth separation is 

referred to as the axial resolution. Consider the extreme cases:

a) For an infinitely narrow light source spectrum such that S(k)= S0 )( 0k ,

)(zfC = .          (2.3))))(2cos()))(2cos()( 0 RS

k

RS zzkdkzzkkS

In this case, interference fringes are observed for all RS zz  values. All reflections from

every depth within the same are observed all at the same time, resulting in the 

measurements being dominated by the strongest reflection.

b) For an infinitely broadband light source such that S(k)=1 for all k, 

)(zfC = .             (2.4) )()))(2cos()( RS

k

RS zzdkzzkkS

For this case, no interference would be observed unless the interferometer arms were of 

identical optical path lengths. 

Spectral Shape and Coherence Function Tradeoffs 

A finite-width broad bandwidth light source will measure interference over a spatial extent 

determined by the light source properties. The coherence function contains the 

oscillatory interference fringe function based on the center wavelength of the light source 

combined with an envelope function which defines the spatial extent of the interference

measurement. The coherence length  can be considered as the axial resolution, which

determines the minimum depth difference at which two identical distinct reflections can be 

differentiated from each other.

)(zfC

Cl
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For a Gaussian source spectra where the interferometer arm length difference is defined

, the coherence function  can be calculated using the

light source spectral form S(k) = S

RS zzz dkkzkSzf

k

C )2cos()()(

0 exp(-4 ln 2 (k-k0)
2
/ kFWHM

2
), where the spectrum is

centered around k0=2  and  is the center wavelength of the light source:

dkkzikSdkkzkSzf

kk

C )2exp()(Re)2cos()()(

')'2exp()'()2exp(Re

'

0 dkzkikSzki

k

.          (2.5) 

Using , where))'(exp()'( 2
0 kCSkS

0' kkk  and :
2

/2ln4 FWHMkC

')'2exp()'exp()2exp(Re)(

'

2
00 dkzkiCkzkiSzf

k

C

)/exp()2exp(Re 2
00 Czzkif

)2ln4/exp()2cos( 22

00 zkzkf FWHM .                (2.6)

In this case, the envelope function is a Gaussian function with a full width half maximum

(FWHM) of CFWHMFWHM lkz /2ln4 . Defining the coherence length  in terms of

wavelength uses 

Cl

FWHMFWHMk 2

0

2  to calculate: 

FWHMFWHM

Cl

2

0

2

0 44.0
2ln2

.             (2.7) 

For the given light source bandwidth from the above equation, maximizing FWHM of the 

light source should produce the best axial resolution. Consider a top-hat spectra centered

around k0 with spectral width kFWHM:
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which leads to a coherence length of:

FWHMFWHM

C
k

l

2

060.0
79.3

.              (2.9) 

To compare these coherence length calculations directly, consider the case of the top-hat

spectrum and the Gaussian spectrum with similar spectral extent such that

FWHMGaussianFWHMTophatFWHM 22 ,, , as shown in Figure 2.4.
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Figure 2.4: Plots of Gaussian (red) and top-hat (blue) spectral

functions for the case of FWHM,Tophat = 2 FWHM,Gaussian

= FWHM.

In this case, the top-hat source coherence function is 
FWHM

TophatCl

2

0
, 30.0 , and the

Gaussian source coherence function is )(47.144.0 ,
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The coherence length  cannot be considered as the only important factor to consider.

With the typical sample containing reflections that vary over several orders of magnitude,

the spatial form of the coherence function determines how the weaker reflections are 

identified when located close to a strong reflection. If all of the reflections were identical

within a sample, this would not be a consideration.

Cl

The interference signal in OCT is defined by the magnitude of the envelope of the 

coherence function convoluted with the reflectivity profile of the sample over depth. So for

a normalized OCT signal of a given reflector, the coherence length is defined by the width,

defined by the -6dB points (as opposed to the -3dB points used for the FWHM of the 

coherence envelope). On a linear scale, the side lobe variations of the coherence function 

due to the top-hat spectra do not seem to have much of an effect. On a logarithmic scale, 

the side lobes of this function are significant and extend out spatially far beyond the 

coherence length. On this scale, the coherence function of the Gaussian source spectra can 

be seen to have a larger coherence length but without any side lobes.
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Figure 2.5: Calculated coherence functions of the spectra in Figure
2.4, plotted against the relative path length of the interferometer 
arm. The linear (left) and logarithmic (right) plots of the coherence
functions are presented. The top-hat coherence function (blue) has a 
smaller coherence length, but has substantially more side lobes on 
the function. The Gaussian coherence function (red) shows no side
lobes in either plot.
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These two cases demonstrate the tradeoffs between coherence function shape and

coherence length for a given source spectrum. The top-hat spectrum was the largest

spectral FWHM for a given spectral width. The coherence length minimum for this given

spectral width was at the tradeoff for the side lobes of the function. The coherence function 

created from the Gaussian spectra contains no side lobes, but has a relatively larger

coherence length. Spectral shaping of the light spectrum allows adjustments between the 

coherence length and side lobes of the coherence function.

As illumination spectral widths become wider, dispersion compensation becomes more 

important. Dispersion mismatch between the interferometer arms causes a reflection to 

appear at different optical depths for different wavelength components of the light source,

effectively broadening the coherence function and increasing the coherence length.

2.3 Acquiring Fringe Data to Create OCT Images

Optical coherence tomography (OCT) is the method of imaging which plots the spatial

distribution of the envelope of interference fringes from a broad bandwidth light source in a

Michelson interferometer configuration. The main question is: How is the envelope of the

interference fringes determined?

For a single photodetector power measurement of an interference fringe, the measurement

is of the form:

)()( RSCINTDCRS zzfPPzzP

)))(2cos()( 0 RSRSEINTDC zzkzzfPP .            (2.10)

DCP  is the sum of all the powers measured by the photodetector,  is the maximum

power of the interference fringe, and  is the envelope function portion of the

coherence function, normalized to a maximum of 1. The quantity of interest is 

, which is the non-normalized envelope function. The difficulty in

INTP

)(zf E

)( RSEINT zzfP
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determining this factor from one detector measurement is due to two additional unknown

variables beyond the quantity of interest:  and DCP RS zz .
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Figure 2.6: Schematic illustrating the lack of information for using a
single point measurement to measure the interference fringe
intensity.

The interferometric portion of the signal ))(2cos( 0 RS zzk is very sensitive to the relative 

position  of the two reflections. It is easier to consider this signal in terms of the 

relative phase 

RS zz

RS  of the interference fringe because, while the envelope function

is sensitive to distance changes on the order of microns, the fringe oscillation 

 is sensitive to changes on the order of nanometers (1000 times more

sensitive).

)( RSE zzf

))(2cos( 0 RS zzk

The relative phase of the interferometer RS  is defined as 0/)(4 RS zz , so any 

relative motion in the system with a magnitude of at least 2/0  will see a full oscillation in 

the interference fringe. By controlling the relative motion between the two arms of the 

interferometer, the fringe amplitude can be sampled and identified. The method of 

sampling the fringes through the change of interferometer optical path length is referred to 

as time domain optical coherence tomography (TDOCT) [1,2].
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Figure 2.7: Schematic image of an interference fringe sampled using
a small interferometer path length change.

There are several methods to sample the interference fringes to produce an OCT image.

The most commonly used method utilizes a linear scan of the reference arm path length to 

sample all of the interference fringes over the entire depth of the sample. Keeping

consistent with ultrasound scan terminology, a single scan along the depth of the sample is 

called an A-scan. Creating a two dimensional reflectance image through multiple A-scans

over a range of transverse locations is called a B-scan.

As a screening tool for the retina, there is an additional interest in flexibility of the scan 

directions. Transverse images, also called en face images or C-scans, allow imaging at one 

depth of the interference fringes over the entire plane of the retina. If the primary

acquisition of OCT data is through A-scans, the only way an en face image could be 

created would be through a 3D data set composed of A-scans measured over all transverse

locations of interest. With mechanical scanning technologies limiting the maximum A-scan 

rate in TDOCT, it is not practical to produce transverse images this way. 

To improve the flexibility of the imaging of the TDOCT system, the primary scan direction 

should be transverse to the direction of the incoming light (defined as axial). In this case,

transverse scans followed by depth or axial scans would produce B-scan images.
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Transverse scans followed by transverse scans in the perpendicular direction would

produce C-scans. En face images are ideal in retinal imaging to screen an entire retina for

signs of a disease, but allowing for it to occur at a single tissue depth of interest.

To acquire fringe information to allow for transverse scanning as the primary scan

direction, the interference fringes must be sampled. The easiest way to sample requires 

changes in the relative optical path length much smaller than the axial resolution, which has 

numerous options available for creating small phase changes in the system at high speeds 

to measure the fringes [3-7].

2.4 SNR of Time Domain OCT

In TDOCT, the interferometric signal is measured as a current by the photodetector.

Looking at the maximum fringe signal, the interferometer current i( ) is given by: RS zz

))(2cos(
'2

)(
0

RS

SR

RS zzk
h

PP
zzi               (2.11)

where '  is the quantum efficiency of the photodetector to convert photons to electrons.

 are the powers arriving at the detector from the reference and sample arms of the

interferometer, respectively and 

SR PP ,

0h  is the average energy of the photon from the light 

source.

The signal in OCT is the spatial average of the square of the interferometer current

over several fringes: 

2I(z)

2
0

2
22

)(

'2
)(I(z)

h

PP
zi SR

z
.             (2.12) 

The signal-to-noise ratio (SNR) in OCT is defined by the ratio of the OCT signal by the 

variance of the total noise of the system:
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2

noise
2 /I(z)SNR .           (2.13) 

There are three types of noise sources occurring over time ’ acquisition of a given pixel in 

the TDOCT acquisition: detector noise, shot noise, and relative intensity noise (which is

also referred to as excess noise). The total noise in OCT is determined by the summation of 

the variance of all three types of noise sources:

2

excess

2

shot

2

detector

2

noise .           (2.14) 

The detector noise can be considered a constant source of noise, independent of the amount

of power incident on the detector. 

constant
2

detector               (2.15) 

Shot noise is defined by the statistical fluctuations which occur for the measure of a finite 

number of particles in a detector over a given amount of time. For electrical currents, the 

expected probability distribution for the number of electrons during the acquisition of the 

detector is given by a Poissonian distribution around the expected mean number of 

electrons. For this distribution, the variance of the measured electrons is equal to the mean 

number electrons measured within the time ’ of the detector, which is determined from the

total power incident on the detector. For the case of , which is applicable for most

OCT imaging scenarios, the shot noise variance is given by: 

SR PP

')(

'

')(

)('

00

2

h

P

h

PP RSR
shot .           (2.16)

Relative intensity noise (RIN) describes the optical intensity fluctuation noise of the light 

source [8]. With the same assumption of :SR PP

'

'

'

)('
2

0

2

0

2 cohRcohSR
excess

h

P

h

PP
.             (2.17) 
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In this equation coh  is the coherence time, defined by 
FWHM

coh
c

2

0

2/1
2ln2

, where c 

is the speed of light, 0  is the center wavelength, and FWHM  is the bandwidth of the light

source.

Each of the different noise sources dominate in different regimes, which are determined by

the total incident power on the detector, which is approximately described by PR. From the 

properties of the individual noise sources and the OCT signal dependence on PR, the ideal

SNR performance would occur in the regime where the shot noise dominated the noise

sources.

For the ideal SNR shot-noise limited case, given a TDOCT pixel acquisition time ’:

SNRTDOCT
)(

''2

')/('

)/('2

00

2
0

2

h

P

hP

hPP S

R

SR .               (2.18) 

2.5 Spectral Domain Optical Coherence Tomography (SDOCT)

Time domain optical coherence tomography (TDOCT) measures the interference in the 

case where a sample reflection has the same optical path length as the reference reflection.

By measuring all of the interference fringes from all wavelength components at the same

time within a photodetector, all of the non-equal path length fringes are rejected through 

destructive interference with each other.

The interference fringes have the form of ))(2cos( RS zzk for a given optical path 

difference of the interferometer arms of RS zz . Measuring the interference fringes in k-

space allows for the measurement of all of the interferometer fringes, not just the ones at 

equal path length. Each depth reflection will produce fringes of different spectral 

frequencies. The Fourier transform of the measurement of the interference fringes in k-

space separates the reflections from different depths. This technique is referred to as 

Fourier domain optical coherence tomography (FDOCT) [9]. 
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There are two different methods which fall under the category of FDOCT. The first method

measures the interference fringes in k-space using a spectrometer to separate the 

wavelength components for measurement. This technique is called spectral domain optical

coherence tomography (SDOCT) [10,11]. The other method utilizes a swept source laser 

with a narrow-band instantaneous spectral line width in the interferometer to vary the 

wavelength over time to be measured by a photodetector. This technique is referred to as 

swept source optical coherence tomography (SSOCT) or optical frequency domain imaging

(OFDI) [12,13]. Regardless of the FDOCT method chosen, the calculation of the OCT 

signal from the spectral information remains the same.

Power measured in k-space for sample reflections (labeled by j, sample path locations zj

=2( )  with reflected power labeled as PRSj zz Sj:

j

jSjR

j

SjR kzkPkPkPkPkP )cos()()(2)()()(

ji
ji

jiSjSi zzkkPkP
,

))(cos()()(2
2

1
.          (2.19)

For most scenarios PSj << PR which allows the last term to be ignored. By removing the DC 

component of the measured power signal ~ PR (k), we are left with the approximate

summation of all the sample reflections interfering with the reference reflection.

j

jSjRR kzkPkPkPkP )cos()()(2)()(

j

jSjR kzkSPP )cos()(2              (2.20)

The function S(k) is the normalized spectral function of the light source defined earlier.

Taking the Fourier transform of this interferometric signal in k-space allows the separation

of the reflections from different depths:
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dkikzkzkSPPkPkPFT
j

jSjRR )exp()cos()(2))()(( .      (2.21) 

With the assumption that S(k) changes slowly relative to , and making the

assumption that z

)cos( jkz

j=2( ) 0 simplifies the equation to:RSj zz

dkzzikkSPPkPkPFTzI j

j

SjRR ))(exp()())()(()(
~

)(
~

jC

j

SjR zzfPP .              (2.22)

)(
~

jC zzf is the complex form of the coherence function derived earlier in this chapter 

such that Real[ ]=)(
~

jC zzf )( jC zzf and the amplitude of this function is the definition of 

the envelope of the coherence function. The signal in OCT is the magnitude of the Fourier 

transform of the interference signal in k-space: 

222

)(
~

))()(()(
~

jC

j

SjRR zzfPPkPkPFTzI .                 (2.23)

The result is a summation of the magnitude of the envelope of the coherence functions

centered around each of the sample reflection locations zj =2( ), weighted by the

power collected from each of the reflections P

RSj zz

Sj. This is identical to the form of the OCT

signal measured in TDOCT. 

One option available to SDOCT is the ability to adjust the coherence function through

numerical spectral shaping. With the direct measurement of the spectral interference

fringes, numerical shaping of the fringes before the Fourier transform is performed can 

alter the shape of the coherence function  and improve the coherence length while

suppressing the side lobes.

)(zfC
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For retinal imaging, the ideal method of FDOCT is not easy to determine. Only recently 

has there been developments of fast swept source lasers centered at wavelengths capable of 

retinal imaging (1300 nm light is absorbed too much while propagating through the 5cm of 

aqueous humor of the eye) [14,15,16]. High-speed line scan CCD cameras are readily

available for incorporation into a spectrometer design [17,18,19]. For the extent of this

project, SDOCT is chosen as the FDOCT method used for retinal imaging.

2.6 SNR of SDOCT

Define spectral domain optical coherence tomography (SDOCT) system, where the power

from the reference arm arriving at the spectrometer is PR and power from the sample arm

arriving at the spectrometer is PS. Assume that PS << PR. Integration time of the 

spectrometer is . The spectrometer has M pixels used in k-space measurements. Assume

shot-noise-limited performance of the SDOCT system.

Number of electrons on CCD pixel in k-space: 

j

DCSjjj kNkFkzkSkF )()()cos()(2)( .          (2.24) 

)(kS j is the interferometric signal is defined as 0/)()()( hRkPkPkS jSRj  for a sample

reflection  at optical path difference zjR j =2( RSj zz ) of interferometer. The summation of 

this signal is taken over all of the sample reflections. Define
k

RR kPP )( ,
k

SS kPP )( .

)()( kNkFDC  is the shot noise distribution of electrons. The mean number of electrons 

 is given by )(kFDC 0/)( hkPR , where  is the combined light collection and electron

conversion efficiency of the spectrometer for photons of energy 0h . is the random

portion of the Gaussian distribution with variance and zero mean.

)(kN

0)(
2 /)( hkPRkN

Using the property of the Fourier transform: )()()( BFTAFTBAFT , the Fourier 

transform (FT) of F(k) produces the OCT intensity amplitude )(
~
zI :
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j

DCSjjj kNFTkFFTkzkSFTkFFTzI ))(())(())cos()(2())(()(
~

.  (2.25) 

Breaking it into the real and imaginary components of the complex Fourier transform of M 

data points in k-space: 

M

k

ikzkFkFFTzizIzI )exp()())(())(exp()()(
~

.             (2.26) 
M

k

M

k

kzkFikzkFziIzI )sin()()cos()()()( ImRe

Assume the number of data points in FT, defined as M, is large enough such that a delta 

function accounts for the Fourier transform of an oscillatory function. Let the arbitrary 

choice of  zj 0 for all reflection locations be taken into account as well.

These assumptions lead to: 

)(
2

)sin()sin()cos()cos( jj

M

k

j

M

k

zz
M

zkkzzkkz , .  (2.27) 0)sin()cos( j

M

k

zkkz

DC Term 

M

k

R

M

k

DC

M

k

DCDC kP
h

zkFzikzkFkFFT )()()()()exp()())((
0

0

)(
h

P
z R         (2.28)

Interferometric Signal 

Define the signal . Using the 

identity

)exp()cos()(2))(exp()()(
~

ikzkzkSzizSzS
M

k j

SjjjS

)sin()sin()cos()cos()cos( SjjSjjSij kzkzkz :
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)exp())sin()sin()cos())(cos((2)(
~

ikzkzkzkSzS
M

k j

SjjSjjj .      (2.29) 

Assume changes slowly compared to  and . With this assumption

make the approximation within the summation:

)(kS j )cos( jkz )sin( jkz

)cos()cos( jkzkz )sin()sin( jkzkz

)(
2

1
jzz

M

k j

SjjSjjj kzkzikzkzkSzS ))sin()sin()sin()cos()cos())(cos((2)(
~

=
M

k j

jSjSjj zzikS
1

)())sin())(cos(( )()()exp( j

M

k

j

j

Sj zzkSi

M

k

jjSR

j

Sj zzRkPkPi
h

)()()()exp(
0

= )()exp(
0

jj

j

Sj

SR
zzRi

h

PP
= ))(exp()( zizS S .          (2.30) 

Noise Analysis 

The noise calculated in OCT comes from the Fourier transform component of the noise 

distribution in k-space: 

))(( kNFT = ))(exp()()(
~

zizNzN N .          (2.31) 

To understand how the noise transforms, Parseval’s theorem for finite length Fourier 

transforms is required.

Using , where f(k) is a real function such that :)exp()()(
~

zikkfzf
M

k

)())(( kfkf

M

z

M

k

M

z

zikkfzfzfzf )exp()()(
~

))(
~

)((
~
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.                  (2.32)

This theorem is important for relating the Fourier transforms of the shot noise distribution 

in k-space N(k), measured on the CCD. With :)exp()())(exp()()(
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With the definition for the mean variation over all k-space measured as 0)(kN :
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ImRe ziNzNzizNzN N .             (2.36) 

Each component of Fourier Transform of random Gaussian noise distribution results in a 

Gaussian distribution as well. The real and imaginary components NRe(z), NIm(z) of the

Fourier transform of the noise distribution N(k) are random Gaussian distributions, all 

centered around zero mean such that 0)()()( ImRe zNzNkN . With each 

component being independent of each other, the phase of the noise )(zN is completely

random. Determining the properties of the noise components:
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The transform components NRe(z), NIm(z) have identical distributions, which means that 

. Therefore: 
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The probability distribution of the real noise component, which is identical to the imaginary

component distribution is calculated to be of the form:
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The probability distribution of the noise amplitude N(z) is determined from the individual

component distributions: 
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Normalizing the distribution for the noise amplitude:
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Using the probability distribution, the standard deviation of the magnitude of the noise N
2

is calculated: 
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OCT Calculations 

Combining all of this analysis, the OCT intensity amplitude, given by the Fourier transform

of F(k) is of the form, at z 0:
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The properties of the signal and noise terms have been derived previously. The magnitude

of the OCT intensity can be calculated: 
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Averaging the OCT intensity, since N  is completely random:

22
2

N(z)S(z)(z)I
~

.             (2.46)

SNR Definition

System SNR sensitivity definition in OCT is described by the ratio of magnitude of the 

signal S
2
 where the reflection R=1 to the standard deviation of the noise magnitude:
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Compare this to TDOCT SNR of equation (2.18): SNRTDOCT
)(

''2

0h

PS .

If SDOCT can acquire an entire depth scan (A-scan) in the same time TDOCT acquires one 

depth location data , both techniques will produce comparable SNR. The efficiency of

data collection using SDOCT is much greater than that of TDOCT [20,21,22].



47

2.7 SDOCT Limitations

2.7.1 SDOCT Limitation #1: Mirror Terms in SDOCT

In SDOCT, the OCT intensity is determined by the Fourier transform of the interference 

fringes measured in k-space: 

dkikzkzkSPPzI
j

jSjR )exp()cos()(2)(
~

            (2.48) 

The assumption is made that all of the sample reflections are located at longer path lengths 

than the reference path length, such that zj =2( RSj zz ) 0. Because  cannot

distinguish between reflections located at 

)cos( jkz

jz and jz , all images will experience a 

mirroring effect over the sample interferometer arm position equal to path length position 

of the reference arm.

Figure 2.8: Mirroring example of the SDOCT image for two 
different reference arm positions. The change in the reference arm
position of an intensity image (left) creates a mirrored image (right)
in this case. 

2.7.2 SDOCT Limitation #2: Maximum Imaging Depth in SDOCT 

Nyquist theorem defines for a sampling rate of f0, the maximum resolvable frequency is

f0/2. Frequencies of f0–f are aliased due to limited sampling to a measured frequency of f.

The fastest oscillation that can be measured completes a full oscillation in exactly two

sampled points.
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In terms of k-space measurements of the interference fringes, with an average sampling

spacing of k , the maximum resolvable signal completes a full oscillation within k2 .

With the interference signal ))(2cos( RS zzk , the maximum resolvable path length 

difference of 
42

)

2

0

k
zz MAXRS(  in air, where

2

0

2
k .

2.7.3 SDOCT Limitation #3: SNR Drop with Depth in SDOCT 

The spectrometer used in SDOCT creates k-space measurements by integrating over a 

finite region of k-space. Oscillations in k-space are affected by this finite sampling method.

Looking at the interference fringe power measured on the spectrometer at wavenumber k 

for interference signal ))(2cos( SR zzk :
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Using the assumption that k << k, the interference measurement can be approximated as: 
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Comparing the fringe power amplitude measurement to an ideal case where k 0:
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This ratio translates to drop in the measured OCT signal over the image depth in SDOCT:
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In the ideal case, k in this definition would be the minimum k-space separation of the 

CCD pixels, designated by CCDk . In reality, k  is also determined by the ability of the 

imaging elements to focus an individual wavelength onto each CCD pixel. If the focused

spot size of a given wavelength is larger than the CCD pixel, the OCT signal drop will

depend on the focused spot size in k-space, designated by FOCUSk . Assuming that the

focused spot size makes the SNR drop over depth dependant on FOCUSk , the maximum

imaging depth is dependant on CCDk .

Looking at the SNR drop at the maximum imaging depth
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In terms of wavelength:
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In the ideal case where the spectrometer measurement is limited by the CCD pixel width,

the SNR drop at the maximum depth is calculated:

6.4348.041.01
)0(

))(( 2

zSNR

zzzSNR MAXSR
dB.        (2.55) 

2.8 Phase Changes as Basis of Contrast

As described in Chapter 2.3, the oscillatory portion of the interferometric signal 

can be described by a relative phase))(2cos( 0 RS zzk RS such that: 

))(2cos( 0 RS zzk  = )cos( RS .           (2.56)
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The limitation of the phase is the inability to determine the relative position of the 

reflections from each interferometer arm beyond an accuracy of 2/0 . This results in a 

phase accuracy limitation of 2 :

RS  = mzz RS 2/)(4 0           (2.57) 

where m is an integer to limit the phase measurement to RS . The cyclic 

nature of the phase measurements limits the usefulness of the absolute phase measurement

of a sample reflection. Changes in the phase measurement can be useful due to the 

sensitivity to small relative motions occurring between the sample and reference

reflections:

zzzk RSRS

0

0

4
)(2)( .             (2.58) 

Due to the cyclic nature of the phase, only phase changes between the limits

can be identified properly. Phase changes can identify motions up to a maximum of 4/0 ,

much smaller than the resolution capabilities of the OCT system. The motion calculated by 

the phase change is only along the axial direction, parallel to the imaging light direction.

Using the phase change information of the scatterers within a sample, the tiny motions

measured can provide additional contrast to the structural information provided by OCT 

imaging.

2.8.1 Definition of Phase Noise

With the OCT signal )(
~
zI , the calculated phase )(z can deviate from the expected sample

phase )(zS depending on the relative noise properties: 
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zizNzizSzNzSzizIzI NS .    (2.59) 

To determine the noise effects on the error on phase measurements, a probability analysis 

of the phase is required. Since the phase accuracy does not depend on the sample phase, set
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0)(zS  for convenience. For this case, the phase can be determined through 

trigonometric means:
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z .             (2.60)

The noise components NRe(z) and NIm(z) have the same Gaussian distribution described

earlier. For the case where S >> N, the phase determination can be simplified.
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The probability distribution of the phase )(z is proportional to the distribution of the noise

component, calculated earlier:
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which has a calculated variance of: 
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Phase error is dependant on the local signal to noise ratio for a given reflector. Phase

changes measured for a reflector of OCT signal S
2
(z) require two phase measurements,

each with phase error associated with it. The phase variance determined for phase changes 

is twice the value of the error for a single phase measurement:
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2.9 Choosing Between TDOCT and SDOCT

There are several factors that need to be compared in deciding between TDOCT and

SDOCT as the ideal system to produce phase contrast imaging for retinal imaging.
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2.9.1 SNR Comparison

Comparing the SNR of 1 pixel in TDOCT to the SNR of an A-scan of SDOCT: 

SNRTDOCT

0

2

h

P TDSTD , SNRSDOCT

0h

PS .             (2.65) 

It can be approximated that SDOCTTDOCT SNRSNR  when the acquisition time of 1 depth 

location in TDOCT matches the acquisition time of an entire depth scan in SDOCT. With

such a large improvement of image acquisition efficiency, SDOCT is the optimum choice

in general.

2.9.2 Phase measurements with TDOCT versus SDOCT 

SDOCT intrinsically measures the phase from all of the depth reflections at the same time.

Any unwanted bulk axial motion of the sample can be analyzed and removed from contrast

measurements. TDOCT has only one measurement of phase for each pixel acquired. If bulk

sample motion removal is required, additional hardware and analysis would be required in 

the TDOCT system to measure a reference phase for removal. With the ease of 

simultaneously acquiring the phases from all of the sample depths, SDOCT is the optimum

choice under this regard.

2.9.3 Spectral shaping and Dispersion compensation

As described in Chapter 2.2, optimal imaging in OCT depends on the shape of the 

coherence function. The width of the function determines the axial resolution, while the 

shape and side lobes of the function determine the image artifacts created by strong 

reflections within the sample. Another factor which determines the shape of the coherence

function is the relative dispersion between the optical paths of the interferometer arms in

the system. Mismatches between sample and reference interferometer arms can broaden 

and distort the coherence function, reducing image quality. 
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Variations in the dispersion properties of different samples can ultimately limit the axial 

resolution without any further adjustment to the system dispersion. SDOCT can 

numerically compensate for dispersion mismatches between the interferometer arms as 

well as adjust the spectral shape to improve the coherence function shape. TDOCT can 

only alter these factors through optical adjustment to the system. 

2.9.4 Minimum time required per transverse location 

The minimum time per transverse location in SDOCT is determined by the acquisition rate 

of the spectrometer camera, which is limited by currently available commercial 

technologies. TDOCT can theoretically achieve a much faster acquisition rate of each pixel 

for currently available hardware. If faster acquisition speeds are required than can be 

achieved with SDOCT, TDOCT is the only available option to meet those requirements.  

2.9.5 Limitations of SDOCT

Considering all of the limitations of SDOCT described in Chapter 2.7, proper optical 

alignment of the thin retinal sample can reduce most of the negative effects of these 

limitations. 

Unless the OCT imaging situation requires a transverse pixel dwell time shorter than 

SDOCT is capable of, SDOCT has comparable or superior performance to TDOCT and is 

clearly the optimal choice for proceeding with phase contrast imaging. 
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