171
Appendix B

LabWindow Code for Memory Measurement

#include <gpib.h>
/l#include <windows.h>
#include <utility.h>
[f#include "decl-32.h"
#include <stdio.h>
#include <string.h>
#include <userint.h>
#include <dataacq.h>
#include <ansi_c.h>
#include "MUX_AC.h"

static int daq, daql;

FILE *fp_out;

int Devicel;

int cross_point[9][9],set_bit[9][9];

int num_read, all_switch,all_control=-1, ramp, ramp_num=20;

double time_write, time_read, volt_write_on,volt_write_off, volt_read, volt_hold, threshold_high,threshold_low;
double adch0,adchl, volt_rampO, volt_rampl, ramp_rate;

const char tmp_file[10]="tmp.dat";

void main(){
inti;
Devicel=ibdev(0,18,0,10,1,0); /* initiate 707A */
ibwrt(Devicel,"REMOTE",6); /* enable remote mode */
ibwrt(Devicel,"E0X",3); /* Point to present relays */

daq = LoadPanel (0, "MUX_AC.uir", MUX);
DisplayPanel (daqg);

i=Al_Clear (1);

RunUserInterface ();

int select_ind (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)

{

daql = LoadPanel (1, "MUX_AC.uir", MUX1);
DisplayPanel (daql);

return 1;

int close_selection(int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

inti,m;
i=HidePanel(daqgl);
return O;

int switch_control(int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

intm;
if(all_control==-1){

m=SetCtrlAttribute(dag, MUX_ALL_SWITCHES, ATTR_DIMMED, 0);
}

else{
m=SetCtrlAttribute(dag, MUX_ALL_SWITCHES, ATTR_DIMMED, 1);

all_control=all_control*(-1);
return 1;

int configure_ind (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

172

inti,j,k,m,i_ramp;
char c[5],d[6];
if (all_control!=1){
m = GetCtrlVal (dag, MUX_Switchl_1, &cross_point[1][1]);
m = GetCtrlVal (dag, MUX_Switchl 2, &cross_point[1][2]);
m = GetCtrlVal (dag, MUX_Switchl_3, &cross_point[1][3]);
m = GetCtrlVal (dag, MUX_Switchl_4, &cross_point[1][4]);
m = GetCtrlVal (dag, MUX_Switchl 5, &cross_point[1][5]);
m = GetCtrlVal (dag, MUX_Switchl_6, &cross_point[1][6]);
m = GetCtrlVal (dag, MUX_Switchl_7, &cross_point[1][7]);
m = GetCtrlVal (dag, MUX_Switchl_8, &cross_point[1][8]);
m = GetCtrlVal (dag, MUX_Switch2_1, &cross_point[2][1]);
m = GetCtrlVal (dag, MUX_Switch2_2, &cross_point[2][2]);
m = GetCtrlVal (dag, MUX_Switch2_3, &cross_point[2][3]);
m = GetCtrlVal (dag, MUX_Switch2_4, &cross_point[2][4]);
m = GetCtrlVal (dag, MUX_Switch2_5, &cross_point[2][5]);
m = GetCtrlVal (dag, MUX_Switch2_6, &cross_point[2][6]);
m = GetCtrlVal (dag, MUX_Switch2_7, &cross_point[2][7]);
m = GetCtrlVal (dag, MUX_Switch2_8, &cross_point[2][8]);
m = GetCtrlVal (dag, MUX_Switch3_1, &cross_point[3][1]);
m = GetCtrlVal (dag, MUX_Switch3_2, &cross_point[3][2]);
m = GetCtrlVal (dag, MUX_Switch3_3, &cross_point[3][3]);
m = GetCtrlVal (dag, MUX_Switch3_4, &cross_point[3][4]);
m = GetCtrlVal (dag, MUX_Switch3_5, &cross_point[3][5]);
m = GetCtrlVal (dag, MUX_Switch3_6, &cross_point[3][6]);
m = GetCtrlVal (dag, MUX_Switch3_7, &cross_point[3][7]);
m = GetCtrlVal (dag, MUX_Switch3_8, &cross_point[3][8]);
m = GetCtrlVal (dag, MUX_Switch4_1, &cross_point[4][1]);
m = GetCtrlVal (dag, MUX_Switch4_2, &cross_point[4][2]);
m = GetCtrlVal (dag, MUX_Switch4_3, &cross_point[4][3]);
m = GetCtrlVal (dag, MUX_Switch4_4, &cross_point[4][4]);
m = GetCtrlVal (dag, MUX_Switch4 5, &cross_point[4][5]);
m = GetCtrlVal (dag, MUX_Switch4_6, &cross_point[4][6]);
m = GetCtrlVal (dag, MUX_Switch4_7, &cross_point[4][7]);
m = GetCtrlVal (dag, MUX_Switch4_8, &cross_point[4][8]);
m = GetCtrlVal (dag, MUX_Switch5_1, &cross_point[5][1]);
m = GetCtrlVal (dag, MUX_Switch5_2, &cross_point[5][2]);
m = GetCtrlVal (dag, MUX_Switch5_3, &cross_point[5][3]);
m = GetCtrlVal (dag, MUX_Switch5_4, &cross_point[5][4]);
m = GetCtrlVal (dag, MUX_Switch5_5, &cross_point[5][5]);
m = GetCtrlVal (dag, MUX_Switch5_6, &cross_point[5][6]);
m = GetCtrlVal (dag, MUX_Switch5_7, &cross_point[5][7]);
m = GetCtrlVal (dag, MUX_Switch5_8, &cross_point[5][8]);
m = GetCtrlVal (dag, MUX_Switch6_1, &cross_point[6][1]);
m = GetCtrlVal (dag, MUX_Switch6_2, &cross_point[6][2]);
m = GetCtrlVal (dag, MUX_Switch6_3, &cross_point[6][3]);
m = GetCtrlVal (dag, MUX_Switch6_4, &cross_point[6][4]);
m = GetCtrlVal (dag, MUX_Switch6_5, &cross_point[6][5]);
m = GetCtrlVal (dag, MUX_Switch6_6, &cross_point[6][6]);
m = GetCtrlVal (dag, MUX_Switch6_7, &cross_point[6][7]);
m = GetCtrlVal (dag, MUX_Switch6_8, &cross_point[6][8]);
m = GetCtrlVal (dag, MUX_Switch7_1, &cross_point[7][1]);
m = GetCtrlVal (dag, MUX_Switch7_2, &cross_point[7][2]);
m = GetCtrlVal (dag, MUX_Switch7_3, &cross_point[7][3]);
m = GetCtrlVal (dag, MUX_Switch7_4, &cross_point[7][4]);
m = GetCtrlVal (dag, MUX_Switch7_5, &cross_point[7][5]);
m = GetCtrlVal (dag, MUX_Switch7_6, &cross_point[7][6]);
m = GetCtrlVal (dag, MUX_Switch7_7, &cross_point[7][7]);
m = GetCtrlVal (dag, MUX_Switch7_8, &cross_point[7][8]);
m = GetCtrlVal (dag, MUX_Switch8_1, &cross_point[8][1]);
m = GetCtrlVal (dag, MUX_Switch8_2, &cross_point[8][2]);
m = GetCtrlVal (dag, MUX_Switch8_3, &cross_point[8][3]);
m = GetCtrlVal (dag, MUX_Switch8_4, &cross_point[8][4]);
m = GetCtrlVal (dag, MUX_Switch8_5, &cross_point[8][5]);
m = GetCtrlVal (dag, MUX_Switch8_6, &cross_point[8][6]);
m = GetCtrlVal (dag, MUX_Switch8_7, &cross_point[8][7]);
m = GetCtrlVal (dag, MUX_Switch8_8, &cross_point[8][8]);
}
else{

m = GetCtrlVal (dag, MUX_ALL_SWITCHES, &all_switch);

173

for(i=1;i<=8;i++){
for(j=1;j<=8;j++}{
cross_point[i][j]=all_switch;

}

}

m = GetCtrlVal (dagql, MUX1_Switchl_1, &set_bit[1][1]);
m = GetCtrlVal (dagl, MUX1_Switchl_2, &set_bit[1][2]);
m = GetCtrlVal (dagl, MUX1_Switchl_3, &set_bit[1][3]);
m = GetCtrlVal (dagl, MUX1_Switchl_4, &set_bit[1][4]);
m = GetCtrlVal (dagl, MUX1_Switchl_5, &set_bit[1][5]);
m = GetCtrlVal (dagl, MUX1_Switchl_6, &set_bit[1][6]);
m = GetCtrlVal (dagql, MUX1_Switchl_7, &set_bit[1][7]);
m = GetCtrlVal (dagl, MUX1_Switchl_8, &set_bit[1][8]);
m = GetCtrlVal (dagl, MUX1_Switch2_1, &set_bit[2][1]);
m = GetCtrlVal (dagql, MUX1_Switch2_2, &set_bit[2][2]);
m = GetCtrlVal (dagl, MUX1_Switch2_3, &set_bit[2][3]);
m = GetCtrlVal (dagl, MUX1_Switch2_4, &set_bit[2][4]);
m = GetCtrlVal (dagl, MUX1_Switch2_5, &set_bit[2][5]);
m = GetCtrlVal (dagl, MUX1_Switch2_6, &set_bit[2][6]);
m = GetCtrlVal (dagl, MUX1_Switch2_7, &set_bit[2][7]);
m = GetCtrlVal (dagl, MUX1_Switch2_8, &set_bit[2][8]);
m = GetCtrlVal (dagl, MUX1_Switch3_1, &set_bit[3][1]);
m = GetCtrlVal (dagl, MUX1_Switch3_2, &set_bit[3][2]);
m = GetCtrlVal (dagl, MUX1_Switch3_3, &set_bit[3][3]);
m = GetCtrlVal (dagl, MUX1_Switch3_4, &set_bit[3][4]);
m = GetCtrlVal (dagl, MUX1_Switch3_5, &set_bit[3][5]);
m = GetCtrlVal (dagl, MUX1_Switch3_6, &set_bit[3][6]);
m = GetCtrlVal (dagl, MUX1_Switch3_7, &set_bit[3][7]);
m = GetCtrlVal (dagl, MUX1_Switch3_8, &set_bit[3][8]);
m = GetCtrlVal (dagql, MUX1_Switch4_1, &set_bit[4][1]);
m = GetCtrlVal (dagl, MUX1_Switch4_2, &set_bit[4][2]);
m = GetCtrlVal (dagl, MUX1_Switch4_3, &set_bit[4][3]);
m = GetCtrlVal (dagl, MUX1_Switch4_4, &set_bit[4][4]);
m = GetCtrlVal (dagl, MUX1_Switch4_5, &set_bit[4][5]);
m = GetCtrlVal (dagl, MUX1_Switch4_6, &set_bit[4][6]);
m = GetCtrlVal (dagql, MUX1_Switch4_7, &set_bit[4][7]);
m = GetCtrlVal (dagl, MUX1_Switch4_8, &set_bit[4][8]);
m = GetCtrlVal (dagl, MUX1_Switch5_1, &set_bit[5][1]);
m = GetCtrlVal (dagl, MUX1_Switch5_2, &set_bit[5][2]);
m = GetCtrlVal (dagl, MUX1_Switch5_3, &set_bit[5][3]);
m = GetCtrlVal (dagl, MUX1_Switch5_4, &set_bit[5][4]);
m = GetCtrlVal (dagl, MUX1_Switch5_5, &set_bit[5][5]);
m = GetCtrlVal (dagl, MUX1_Switch5_6, &set_bit[5][6]);
m = GetCtrlVal (dagl, MUX1_Switch5_7, &set_bit[5][7]);
m = GetCtrlVal (dagl, MUX1_Switch5_8, &set_bit[5][8]);
m = GetCtrlVal (dagl, MUX1_Switch6_1, &set_bit[6][1]);
m = GetCtrlVal (dagl, MUX1_Switch6_2, &set_bit[6][2]);
m = GetCtrlVal (dagl, MUX1_Switch6_3, &set_bit[6][3]);
m = GetCtrlVal (dagl, MUX1_Switch6_4, &set_bit[6][4]);
m = GetCtrlVal (dagl, MUX1_Switch6_5, &set_bit[6][5]);
m = GetCtrlVal (dagl, MUX1_Switch6_6, &set_bit[6][6]);
m = GetCtrlVal (dagl, MUX1_Switch6_7, &set_bit[6][7]);
m = GetCtrlVal (dagl, MUX1_Switch6_8, &set_bit[6][8]);
m = GetCtrlVal (dagl, MUX1_Switch7_1, &set_bit[7][1]);
m = GetCtrlVal (dagl, MUX1_Switch7_2, &set_bit[7][2]);
m = GetCtrlVal (dagl, MUX1_Switch7_3, &set_bit[7][3]);
m = GetCtrlVal (dagl, MUX1_Switch7_4, &set_bit[7][4]);
m = GetCtrlVal (dagl, MUX1_Switch7_5, &set_bit[7][5]);
m = GetCtrlVal (dagl, MUX1_Switch7_6, &set_bit[7][6]);
m = GetCtrlVal (dagl, MUX1_Switch7_7, &set_bit[7][7]);
m = GetCtrlVal (dagl, MUX1_Switch7_8, &set_bit[7][8]);
m = GetCtrlVal (dagl, MUX1_Switch8_1, &set_bit[8][1]);
m = GetCtrlVal (dagl, MUX1_Switch8_2, &set_bit[8][2]);
m = GetCtrlVal (dagql, MUX1_Switch8_3, &set_bit[8][3]);
m = GetCtrlVal (dagl, MUX1_Switch8_4, &set_bit[8][4]);
m = GetCtrlVal (dagl, MUX1_Switch8_5, &set_bit[8][5]);
m = GetCtrlVal (dagl, MUX1_Switch8_6, &set_bit[8][6]);
m = GetCtrlVal (dagl, MUX1_Switch8_7, &set_bit[8][7]);
m = GetCtrlVal (dagl, MUX1_Switch8_8, &set_bit[8][8]);

174

m = GetCtrlVal (dag, MUX_TIME_WRITE, &time_write);

m = GetCtrlVal (dag, MUX_VOLT_WRITE_ON, &volt_write_on);
m = GetCtrlVal (dag, MUX_VOLT_WRITE_OFF, &volt_write_off);
m = GetCtrlVal (dag, MUX_VOLT_HOLD, &volt_hold);

m = GetCtrlVal (dag, MUX_Ramp, &ramp);

m = GetCtrlVal (dag, MUX_Ramp_Rate, &ramp_rate);

[***xx%%% starting the loop of configuring ******x/

/ test /

m=SetCtrlVal(dag, MUX_STOP_SCAN,1);

m=SetCtrlVal(dag, MUX_Config_complete,0);

m=SetCtrlVal(dag,MUX_Memory_Check_Done,0);

ibwrt(Devicel,"CA72X" 5); /* dummy line */

ibwrt(Devicel,"NA72X",5);

for(i=1;i<=8;i++){

for(j=1;j<=8;j++){
if (set_bit[i][j]==1){ /* check if the bit is selected */

c[0]=C";
c[1]='B};
c[2]=(char)(48+i);
c[3]='X}
c[4]=\0";
ibwrt(Devicel,c,4);
c[0]='N";
c[1]='A%
c[2]=(char)(48+i);
c[3]='X}
c[4]=\0";
ibwrt(Devicel,c,4);
if j<2){
c[0]="C";
c[1]='C,
c[2]=(char)(48+j+8);
c[3]="X"
c[4]=\04
ibwrt(Devicel,c,4);
c[0]='N";
c[1]="H";
c[2]=(char)(48+j+8);
c[3]="X";
c[4]=\04
ibwrt(Devicel,c,4);

else{

d[o]="C";

d1j=c;

d[2]='1; /* two-digit */
d[3]=(char)(48+j-2);

d[41="X";

d[5]="0";

ibwrt(Devicel,d,5);

d[o]=N",

d[1]="H

d[2]='1; /* two-digit */
d[3]=(char)(48+j-2);

d[4]="x;

d[5]="0";

ibwrt(Devicel,d,5);

}
for(k=1;k<=16;k++){
if((k!=1)&&(k!=j+8)){
if (k<10){

if (k<=8){
c[0]="C;
c[1]='A"; [* apply -1.0 volt to rows from Keithley 5-25-01 */
c[2]=(char)(48+k);
c[3]=X
c[4]=\04
ibwrt(Devicel,c,4);

/* Ground the columns */

3
}

175

else{
c[0]="C
c[11=H}
c[2]=(char)(48+k);
c[3]=X
c[4]="0";
ibwrt(Devicel,c,4);
}

else{

doj=c’;

d[1]=H;,

d[2]="1;

d[3]=(char)(48+k-10);

di4]=x’,

d[5]="0";

ibwrt(Devicel,d,5);

/* set write voltage */

Delay(0.1);
printf("\a");
if(ramp==1){

if(cross_point[i][jl==1){

[* ramp-up */

/* ramp-down */

else{

/* ramp-up */

volt_hold)/ramp_num;

/* ramp-down */

volt_rampO=volt_hold,;
volt_ramp1=0.0;
for(i_ramp=1; i_ramp<=ramp_num,; i_ramp++){

volt_rampO=volt_ramp0 + (volt_write_on/2-volt_hold)/ramp_num;
volt_rampl=volt_rampl + (volt_write_on/2)/ramp_num;
m = AO_VWrite (1, 0, volt_ramp0);

m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);
Delay(volt_write_on/ramp_num/ramp_rate);
Delay(time_write); /* hold */

for(i_ramp=1; i_ramp<=ramp_num; i_ramp++){

volt_rampO=volt_rampO - (volt_write_on/2-volt_hold)/ramp_num;
volt_rampl=volt_rampl - (volt_write_on/2)/ramp_num;

m = AO_VWrite (1, 0, volt_ramp0);

m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);
Delay(volt_write_on/ramp_num/ramp_rate);

}

volt_rampO=volt_hold;
volt_ramp1=0.0;
for(i_ramp=1; i_ramp<=ramp_num; i_ramp++){

volt_rampO=volt_ramp0 + (volt_write_off/2-

volt_rampl=volt_rampl + (volt_write_off/2)/ramp_num;
m = AO_VWrite (1, 0, volt_ramp0);

m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);
Delay(volt_write_off/ramp_num/ramp_rate);
Delay(time_write); /* hold */

for(i_ramp=1; i_ramp<=ramp_num; i_ramp++){

volt_rampO=volt_rampO - (volt_write_off/2-volt_hold)/ramp_num;
volt_rampl=volt_rampl - (volt_write_off/2)/ramp_num;

m = AO_VWrite (1, 0, volt_rampO0);

m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);
Delay(volt_write_off/framp_num/ramp_rate);

}

}
} [* with ramp */

176

else{
if(cross_point[i][j]==1){
m = AO_VWrite (1, 0, (volt_write_on/2));
m = AO_VWrite (1, 1, (-volt_write_on/2-0.06225)/0.9938);

}
else{

m = AO_VWrite (1, 0, (volt_write_off/2));

m = AO_VWrite (1, 1, (-volt_write_off/2-0.06225)/0.9938);
}

Delay(time_write);
m = AO_VWrite (1, 0, volt_hold);
m = AO_VWrite (1, 1, -0.06225/0.9938);
/* no ramp */
[***** set holding voltage to the row, and Ground to the column *****/
c[0]="C,
c[1]='A%
c[2]=(char)(48+i);
c[3]="X",
c[4]="\0
ibwrt(Devicel,c,4);
c[0]="N";
c[1]='B";
c[2]=(char)(48+i);
c[3]="X",
c[4]="\0
ibwrt(Devicel,c,4);
if j<2){
c[0]='C";
c[1]="H";
c[2]=(char)(48+j+8);
c[3]="X";
c[4]="0";
ibwrt(Devicel,c,4);
c[0]='N";
c[1]='C
c[2]=(char)(48+j+8);
c[3]="X";
c[4]=\0";
ibwrt(Devicel,c,4);

else{

d[0]="C";

d[1]="H"

d[2]="1 /* two-digit */
d[3]=(char)(48+j-2);

d[4]="X";

d[5]="0";

ibwrt(Devicel,d,5);

d[0]='N";

d[1]='Cc’;

d[2]='1; /* two-digit */
d[3]=(char)(48+j-2);

di4]=x’,

d[5]="0";

ibwrt(Devicel,d,5);

[*ibwrt(Devicel,"P0X",3); open all relays 5-21-01 */
} /* finish setting one selected bit */
} i

/* close i loop */
m=SetCtrlVal(dag,MUX_Config_complete,1);
return 1;

int configure (int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

inti,j,k,m,i_ramp;
char c[5],d[6];
if (all_control '=1){

177

m = GetCtrlVal (dag, MUX_Switchl_1, &cross_point[1][1]);
m = GetCtrlVal (dag, MUX_Switchl_2, &cross_point[1][2]);
m = GetCtrlVal (dag, MUX_Switchl_3, &cross_point[1][3]);
m = GetCtrlVal (dag, MUX_Switchl_4, &cross_point[1][4]);
m = GetCtrlVal (dag, MUX_Switchl_5, &cross_point[1][5]);
m = GetCtrlVal (dag, MUX_Switchl_6, &cross_point[1][6]);
m = GetCtrlVal (dag, MUX_Switchl_7, &cross_point[1][7]);
m = GetCtrlVal (dag, MUX_Switchl_8, &cross_point[1][8]);
m = GetCtrlVal (dag, MUX_Switch2_1, &cross_point[2][1]);
m = GetCtrlVal (dag, MUX_Switch2_2, &cross_point[2][2]);
m = GetCtrlVal (dag, MUX_Switch2_3, &cross_point[2][3]);
m = GetCtrlVal (dag, MUX_Switch2_4, &cross_point[2][4]);
m = GetCtrlVal (dag, MUX_Switch2_5, &cross_point[2][5]);
m = GetCtrlVal (dag, MUX_Switch2_6, &cross_point[2][6]);
m = GetCtrlVal (dag, MUX_Switch2_7, &cross_point[2][7]);
m = GetCtrlVal (dag, MUX_Switch2_8, &cross_point[2][8]);
m = GetCtrlVal (dag, MUX_Switch3_1, &cross_point[3][1]);
m = GetCtrlVal (dag, MUX_Switch3_2, &cross_point[3][2]);
m = GetCtrlVal (dag, MUX_Switch3_3, &cross_point[3][3]);
m = GetCtrlVal (dag, MUX_Switch3_4, &cross_point[3][4]);
m = GetCtrlVal (dag, MUX_Switch3_5, &cross_point[3][5]);
m = GetCtrlVal (dag, MUX_Switch3_6, &cross_point[3][6]);
m = GetCtrlVal (dag, MUX_Switch3_7, &cross_point[3][7]);
m = GetCtrlVal (dag, MUX_Switch3_8, &cross_point[3][8]);
m = GetCtrlVal (dag, MUX_Switch4_1, &cross_point[4][1]);
m = GetCtrlVal (dag, MUX_Switch4_2, &cross_point[4][2]);
m = GetCtrlVal (dag, MUX_Switch4_3, &cross_point[4][3]);
m = GetCtrlVal (dag, MUX_Switch4_4, &cross_point[4][4]);
m = GetCtrlVal (dag, MUX_Switch4_5, &cross_point[4][5]);
m = GetCtrlVal (dag, MUX_Switch4_6, &cross_point[4][6]);
m = GetCtrlVal (dag, MUX_Switch4_7, &cross_point[4][7]);
m = GetCtrlVal (dag, MUX_Switch4_8, &cross_point[4][8]);
m = GetCtrlVal (dag, MUX_Switch5_1, &cross_point[5][1]);
m = GetCtrlVal (dag, MUX_Switch5_2, &cross_point[5][2]);
m = GetCtrlVal (dag, MUX_Switch5_3, &cross_point[5][3]);
m = GetCtrlVal (dag, MUX_Switch5_4, &cross_point[5][4]);
m = GetCtrlVal (dag, MUX_Switch5_5, &cross_point[5][5]);
m = GetCtrlVal (dag, MUX_Switch5_6, &cross_point[5][6]);
m = GetCtrlVal (dag, MUX_Switch5_7, &cross_point[5][7]);
m = GetCtrlVal (dag, MUX_Switch5_8, &cross_point[5][8]);
m = GetCtrlVal (dag, MUX_Switch6_1, &cross_point[6][1]);
m = GetCtrlVal (dag, MUX_Switch6_2, &cross_point[6][2]);
m = GetCtrlVal (dag, MUX_Switch6_3, &cross_point[6][3]);
m = GetCtrlVal (dag, MUX_Switch6_4, &cross_point[6][4]);
m = GetCtrlVal (dag, MUX_Switch6_5, &cross_point[6][5]);
m = GetCtrlVal (dag, MUX_Switch6_6, &cross_point[6][6]);
m = GetCtrlVal (dag, MUX_Switch6_7, &cross_point[6][7]);
m = GetCtrlVal (dag, MUX_Switch6_8, &cross_point[6][8]);
m = GetCtrlVal (dag, MUX_Switch7_1, &cross_point[7][1]);
m = GetCtrlVal (dag, MUX_Switch7_2, &cross_point[7][2]);
m = GetCtrlVal (dag, MUX_Switch7_3, &cross_point[7][3]);
m = GetCtrlVal (dag, MUX_Switch7_4, &cross_point[7][4]);
m = GetCtrlVal (dag, MUX_Switch7_5, &cross_point[7][5]);
m = GetCtrlVal (dag, MUX_Switch7_6, &cross_point[7][6]);
m = GetCtrlVal (dag, MUX_Switch7_7, &cross_point[7][7]);
m = GetCtrlVal (dag, MUX_Switch7_8, &cross_point[7][8]);
m = GetCtrlVal (dag, MUX_Switch8_1, &cross_point[8][1]);
m = GetCtrlVal (dag, MUX_Switch8_2, &cross_point[8][2]);
m = GetCtrlVal (dag, MUX_Switch8_3, &cross_point[8][3]);
m = GetCtrlVal (dag, MUX_Switch8_4, &cross_point[8][4]);
m = GetCtrlVal (dag, MUX_Switch8_5, &cross_point[8][5]);
m = GetCtrlVal (dag, MUX_Switch8_6, &cross_point[8][6]);
m = GetCtrlVal (dag, MUX_Switch8_7, &cross_point[8][7]);
m = GetCtrlVal (dag, MUX_Switch8_8, &cross_point[8][8]);

else{
m = GetCtrlVal (dag, MUX_ALL_SWITCHES, &all_switch);
for(i=1;i<=8;i++){
for(j=1;j<=8;j++){

}

}

m = GetCtrlVal (dag, MUX_TIME_WRITE, &time_write);

m = GetCtrlVal (dag, MUX_VOLT_WRITE_ON, &volt_write_on);
m = GetCtrlVal (dag, MUX_VOLT_WRITE_OFF, &volt_write_off);
m = GetCtrlVal (dag, MUX_VOLT_HOLD, &volt_hold);

178

cross_point[i][j]=all_switch;

m = GetCtrlVal (daq, MUX_Ramp, &ramp);

m = GetCtrlVal (dag, MUX_Ramp_Rate, &ramp_rate);

[Fr*xxx%% starting the loop of configuring *******/

/

test /

m=SetCtrlVal(dag, MUX_STOP_SCAN,1);
m=SetCtrlVal(dag, MUX_Config_complete,0);
m=SetCtrlVal(dag,MUX_Memory_Check_Done,0);
ibwrt(Devicel,"CA25X",5);
ibwrt(Devicel,"NA25X",5);

for(i=1;i<=8;i++){
for(j=1;j<=
/*

/*

8+

if(cross_point[i][j]==1){

else{

c[0]="C";

c[1]=B}
c[2]=(char)(48+i);
c[3]=X;
c[4]=\04
ibwrt(Devicel,c,4);
c[0]='N";

c[1]="A';
c[2]=(char)(48+i);
c[3]=X"
c[4]=\04
ibwrt(Devicel,c,4);
if j<2){

c[0]="C

c[1]=C,
c[2]=(char)(48+j+8);
c[3]="X";

c[4]=\0";
ibwrt(Devicel,c,4);
c[0]='N";

c[1]="H";
c[2]=(char)(48+j+8);
c[3]="X";

c[4]="\0";
ibwrt(Devicel,c,4);

else{

d[o]="C’;

d[1]="C’;

d[2]="1;
d[3]=(char)(48+j-2);
d[4]="x;

d[5]="0";
ibwrt(Devicel,d,5);
d[0]="N";

d[1]="H"

d[2]=1;
d[3]=(char)(48+j-2);
d[41="X;

d[5]="0";
ibwrt(Devicel,d,5);
}

c[0]="C";
c[1]=B
c[2]=(char)(48+i);
c[3]="X";

/* dummy line */

2-17-01 */

/* two-digit */

/* two-digit */

C[4]1=\0";

179

ibwrt(Devicel,c,4);

if (j<4){
c[o]="C";
c[1]="A";

c[2]=(char)(48+j+6);

c[3]='X;
c[4]=\0";

ibwrt(Devicel,c,4);

else{

d[0]="C";
dL]=A;
d[2]=1;

d[3]=(char)(48+j-4);

d[41="X’,
d[5]=\0;

ibwrt(Devicel,d,5);

}

}
2-17-01 */
for(k=1;k<=16;k++){

if((K1=i)&&(k!=j+8)){

/* Ground the columns */

}
}

I* set write voltage */

Delay(0.1);
printf("\a");
if(ramp==1){

if (k<10){

else{

doj=c;
d[1]="H";
d[2]="1;

if (k<=8){
c[0]="C";

c[1]='A"; /* apply -1.0 volt to rows from Keithley 5-25-01 */
c[2]=(char)(48+k);
c[3]=X"
c[4]="\0";
ibwrt(Devicel,c,4);
}

else{

c[0]='C;

c[1]=H}

c[2]=(char)(48+k);
c[3]=X"
c[4]=\04
ibwrt(Devicel,c,4);
}

d[3]=(char)(48+k-10);

d[4]="x;
d[5]=\0";

ibwrt(Devicel,d,5);

}

if(cross_point[i][j]==1){

volt_rampO=volt_hold;

volt_ramp1=0.0;

for(i_ramp=1; i_ramp<=ramp_num; i_ramp++){

/* ramp-up */

volt_rampO=volt_ramp0 + (volt_write_on/2-volt_hold)/ramp_num;
volt_rampl=volt_rampl + (volt_write_on/2)/ramp_num;

m = AO_VWrite (1, 0, volt_rampO0);

m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);
Delay(volt_write_on/ramp_num/ramp_rate);
Delay(-volt_write_on/ramp_num/ramp_rate);

volt_hold)/ramp_num;

180

Delay(time_write);

* hold */

for(i_ramp=1; i_ramp<=ramp_num; i_ramp++){

/* ramp-down */

else{

volt_rampO=volt_ramp0 - (volt_write_on/2-volt_hold)/ramp_num;
volt_rampl=volt_rampl - (volt_write_on/2)/ramp_num;

m = AO_VWrite (1, 0, volt_ramp0);

m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);
Delay(volt_write_on/ramp_num/ramp_rate);
Delay(-volt_write_on/ramp_num/ramp_rate);

volt_rampO=volt_hold;
volt_ramp1=0.0;
for(i_ramp=1; i_ramp<=ramp_num; i_ramp++){

[* ramp-up */

Delay(time_write);

volt_rampO=volt_ramp0 + (volt_write_off/2-

volt_rampl=volt_rampl + (volt_write_off/2)/ramp_num;
m = AO_VWrite (1, 0, volt_ramp0);

m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);
Delay(volt_write_off/framp_num/ramp_rate);
Delay(-volt_write_off/ramp_num/ramp_rate);

* hold */

for(i_ramp=1; i_ramp<=ramp_num; i_ramp++){

/* ramp-down */

}

else{

}

[* with ramp */

volt_rampO=volt_rampO0 - (volt_write_off/2-volt_hold)/ramp_num;
volt_rampl=volt_rampl - (volt_write_off/2)/ramp_num;

m = AO_VWrite (1, 0, volt_ramp0);

m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);
Delay(volt_write_off/framp_num/ramp_rate);
Delay(-volt_write_off/ramp_num/ramp_rate);

if(cross_point[i][j]l==1){
m = AO_VWrite (1, 0, (volt_write_on/2));
m = AO_VWrite (1, 1, (-volt_write_on/2-0.06225)/0.9938);

}

else{

m = AO_VWrite (1, 0, (volt_write_off/2));
m = AO_VWrite (1, 1, (-volt_write_off/2-0.06225)/0.9938);

}

Delay(time_write);

m = AO_VWrite (1, 0, volt_hold);
m = AO_VWrite (1, 1, -0.06225/0.9938);
/* no ramp */
[***** set holding voltage to the row, and Ground to the column *****/

c[0]="C";

c[1]="A';
c[2]=(char)(48+i);
c[3]="X";

c[4]=\0";
ibwrt(Devicel,c,4);
c[0]="'N";

c[1]='B";
c[2]=(char)(48+i);
c[3]="X",

c[4]=\0";
ibwrt(Devicel,c,4);
if j<2){

c[0]="C";

c[1]='H";
c[2]=(char)(48+j+8);
c[3]="X";

c[4]="\0
ibwrt(Devicel,c,4);
c[0]='N";

181

c[1]=C,
c[2]=(char)(48+j+8);
c[3]="X";

c[4]="0
ibwrt(Devicel,c,4);

else{

d[o]=C;

d[1]="H";

d[2]='1; /* two-digit */
d[3]=(char)(48+j-2);

d[4]="X

d[5]="0"

ibwrt(Devicel,d,5);

d[0]="N’

d[1]=C";

d[2]="1; * two-digit */
d[3]=(char)(48+j-2);

d[41="x;

d[5]="0"

ibwrt(Devicel,d,5);

/* ibwrt(Devicel,"P0X",3); /* open all relays (skipped 5-25-01) */

/* close the loop */
m=SetCtrlVal(dag,MUX_Config_complete,1);
return 1;

int logic_check(int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2){
[*SetCtrlVal(dag,MUX_STOP_SCAN,1); */
return 1;

int memory_check(int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2){

[*SetCtrlVal(dag, MUX_STOP_SCAN,1); */

inti,jk,ii,m;

double r_dummy;

int fail[9][9];

double ADO[9][9][100],AD1[9][9][100];

char c[5],d[6];
DeleteGraphPlot (dag, MUX_GRAPH, -1, VAL_IMMEDIATE_DRAW);
m=SetCtrlVal(dag, MUX_Memory_Check_Done,0);
m=SetCtrlVal(dag,MUX_Set_phase,0);

/*
m=SetCtrlAttribute(dag,MUX_switchl_1r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switchl_2r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switchl_3r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switchl_4r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switchl_5r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switchl_6ér, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch2_1r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch2_2r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch2_3r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switch2_4r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch2_5r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch2_6ér, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switch3_1r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch3_2r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(daq,MUX_switch3_3r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switch3_4r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch3_5r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switch3_6ér, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch4_1r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch4_2r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dagq,MUX_switch4_3r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch4_4r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch4_5r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(daq,MUX_switch4_6ér, ATTR_DIMMED, TRUE);

182

m=SetCtrlAttribute(dag, MUX_switch5_1r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switch5_2r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switch5_3r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch5_4r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switch5_5r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switch5_6ér, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch6_1r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switch6_2r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switch6_3r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag, MUX_switch6_4r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dag,MUX_switch6_5r, ATTR_DIMMED, TRUE);
m=SetCtrlAttribute(dagq,MUX_switch6_6ér, ATTR_DIMMED, TRUE);
12-12-01 LED's removed and kept in an untitled panel */

for(i=1;i<=8;i++){

for(j=1;j<=8;j++){

PlotLine(dag, MUX_GRAPH, (i-1)*8+(j-1), cross_point[i][j], (i-1)*8+j, cross_point[i][j], VAL_BLUE);

}

}

m = GetCtrlVal (dag, MUX_TIME_READ, &time_read);

m = GetCtrlVal (dag, MUX_VOLT_READ, &volt_read);

m = GetCtrlVal (dag, MUX_Threshold_High, &threshold_high);

m = GetCtrlVal (dag, MUX_Threshold_Low, &threshold_low);

m = GetCtrlVal (dag, MUX_NUM_READ, &num_read);

m = GetCtrlVal (dag, MUX_VOLT_HOLD, &volt_hold);

fp_out=fopen(tmp_file,"w");

I* Devicel=ibdev(0,18,0,10,1,0); /* initiate 707A */
I* ibwrt(Devicel,"E0X",3); /* Point to present relays */
for(i=1;i<=8;i++){
for(j=1;j<=8;j++){

c[0]="C";
c[1]='D"; /* use relay row D to read (Vread+AC from function generater) */
2]=(char)(48+i);
c[3]="X";
c[4]="\0
ibwrt(Devicel,c,4);
c[0]='N";
c[1]='A;
c[2]=(char)(48+i);
c[3]="X";
c[4]=\0";
ibwrt(Devicel,c,4);
if j<2){
c[0]="C";
c[1]='G}; /* amp-meter */
c[2]=(char)(48+j+8);
c[3]="X";
c[4]="0";
ibwrt(Devicel,c,4);
c[0]='N";
c[1]="H; /* GND */
c[2]=(char)(48+j+8);
c[3]="X";
c[4]="0";
ibwrt(Devicel,c,4);

else{

d[0]="C";

d[1]='G"; /* amp-meter */
d[2)="1

d[3]=(char)(48+j-2);

di4]="x";

d[5]="0";

ibwrt(Devicel,d,5);

d[0]='N";

d[1]="H" /* GND */
d[2]="1;

d[3]=(char)(48+j-2);

di4]=x;

d[5]="0";

ibwrt(Devicel,d,5);

183

}
for(k=1;k<=16;k++){
if((k'=i)&&(k!=j+8)){
if (k<10){

if (k<=8){
c[0]="C;
c[1]='A"; /* apply -1.0 volt to rows from Keithley 5-25-01 */
c[2]=(char)(48+k);
c[3]="X";
c[4]="0
ibwrt(Devicel,c,4);

else{
c[0]="C;
c[1]='H;
/* Ground the columns */
c[2]=(char)(48+k);

c[3]="X",
c[4]="\0
ibwrt(Devicel,c,4);
}
else{
d[o)=C;
d[1]=H;,
d[2J="1
d[3]=(char)(48+k-10);
di4]=X’,
d[5]="0";
ibwrt(Devicel,d,5);
}
}
/* set read voltage and measure the current */
/* Delay (0.1); 5-25-01 */
printf("\a");
m = AO_VWrite (1, 0, volt_read); /* channel 0's output goes to relay row B directly
and goes to row D through function generater */
Delay (0.1); /* delay after setting the read voltage */
/*manually set phase on the lock-in 5_28 01 */
/*
m=SetCtrlVal(dag,MUX_Set_phase,1);
scanf("%f",r_dummy);
m=SetCtrlVal(dag,MUX_Set_phase,0); taken out for non-volatile devices 6-5-01*/
for (ii=0;ii<num_read;ii++){
m = Al_VRead (1, 0, 1, &adch0); /* output from current amplifier */
m =Al_VRead (1, 1, 1, &adchl); /* output from lock-in amplifier */
ADO[i][j][ii]=-adch0; [**** Current Amplifier revise the polarity!! *****/

AD1][i][j][ii]=adch1;

if(ii>0) m=PlotLine (dag, MUX_GRAPH, 8.0*(i-1)+j-1+(double)(ii-1)/(double)(num_read-1),
ADO[i][j][ii-1], 8.0*(i-1)+j-1+(double)(ii)/(double)(num_read-1), ADO[i][j][ii], VAL_RED);

if(ii>0) m=PlotLine (dag, MUX_GRAPH, 8.0*(i-1)+j-1+(double)(ii-1)/(double)(num_read-1),
ADL1Ji][j][ii-1], 8.0%(i-1)+j-1+(double)(ii)/(double)(num_read-1), AD1[i][j][ii], VAL_GREEN);

Delay (time_read/num_read);

[***** get holding voltage to the row, and Ground to the column *****/

c[0]="C";

c[1]='A";

c[2]=(char)(48+i);

c[3]='X";

c[4]=\04

ibwrt(Devicel,c,4);

c[0]='N";

c[1]='D";

c[2]=(char)(48+i);

184

c[3]=X

c[4]="0";
ibwrt(Devicel,c,4);
if j<2){

c[0]="C;

c[1]="H";
c[2]=(char)(48+j+8);
c[3]=X"

c[4]=\04
ibwrt(Devicel,c,4);
c[0]='N";

c[1]='G";
c[2]=(char)(48+j+8);
c[3]=X";

c[4]=\04
ibwrt(Devicel,c,4);
}

else{

doj=c’;

d[1]=H;,

d[2]='1; /* two-digit */
d[3]=(char)(48+j-2);

di4]=x’,

d[5]="0"

ibwrt(Devicel,d,5);

do]=N",

d[1]=G";

d[2]="1; /* two-digit */
d[3]=(char)(48+j-2);

d[4]="x";

d[5]="0"

ibwrt(Devicel,d,5);

}
fail[i][j]=0;
if(cross_point[i][j]==0){
for (ii=0;ii<num_read;ii++){
if(ADO[i][j][ii]>threshold_low) {
fail[i][i]=1;
break;

}

}
if(cross_point[i][j]==1){
for (ii=0;ii<num_read;ii++){
if(ADO[i][j][ii]<threshold_high) {

fail[i][j]=1;
break;
3
}
}
/* m=A0_VWrite (1, 0, 0.0);
ibwrt(Devicel,"P0X",3); 5-25-01 */

* close the loop */

[***** get holding voltage to the rows, and Ground to the columns *****/
for(k=1;k<=16;k++){
if (k<10){
if (k<=8){

c[0]="C’;

c[1]='A; /* apply -1.0 volt to rows from Keithley 5-25-01 */
c[2]=(char)(48+Kk);

c[3]="X;

c[4]="0";

ibwrt(Devicel,c,4);

else{
c[0]="C";
c[1]="H; /* Ground the columns */

185
c[2]=(char)(48+k);

c[3]=X"
c[4]="\0";
ibwrt(Devicel,c,4);
}

else{

d[o]=C;

d[1]="H";

d2J="1

d[3]=(char)(48+k-10);

d[4]="x";

d[5]="0";

ibwrt(Devicel,d,5);

}

/*
if(fail[1][1]==0) {

m=SetCtrlAttribute(dag, MUX_switch1_1r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switchl_1r,cross_point[1][1]);}
if(fail[1][2]==0) {

m=SetCtrlAttribute(dag, MUX_switchl_2r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switchl_2r,cross_point[1][2]);}
if(fail[1][3]==0) {

m=SetCtrlAttribute(dag,MUX_switchl_3r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switchl_3r,cross_point[1][3]);}
if(fail[1][4]==0) {

m=SetCtrlAttribute(dag,MUX_switchl_4r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switchl_4r,cross_point[1][4]);}
if(fail[1][5]==0) {

m=SetCtrlAttribute(dag,MUX_switchl_5r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switchl_5r,cross_point[1][5]);}
if(fail[1][6]==0) {

m=SetCtrlAttribute(dag,MUX_switchl_6ér, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switchl_6r,cross_point[1][6]);}
if(fail[2][1]==0) {

m=SetCtrlAttribute(dag, MUX_switch2_1r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch2_1r,cross_point[2][1]);}
if(fail[2][2]==0) {

m=SetCtrlAttribute(dag, MUX_switch2_2r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch2_2r,cross_point[2][2]);}
if(fail[2][3]==0) {

m=SetCtrlAttribute(dag, MUX_switch2_3r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch2_3r,cross_point[2][3]);}
if(fail[2][4]==0) {

m=SetCtrlAttribute(dag, MUX_switch2_4r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch2_4r,cross_point[2][4]);}
if(fail[2][5]==0) {

m=SetCtrlAttribute(dag,MUX_switch2_5r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch2_5r,cross_point[2][5]);}
if(fail[2][6]==0) {

m=SetCtrlAttribute(dag, MUX_switch2_6ér, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch2_6r,cross_point[2][6]);}
if(fail[3][1]==0) {

m=SetCtrlAttribute(dag,MUX_switch3_1r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch3_1r,cross_point[3][1]);}
if(fail[3][2]==0) {

m=SetCtrlAttribute(dag, MUX_switch3_2r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag, MUX_switch3_2r,cross_point[3][2]);}
if(fail[3][3]==0) {

m=SetCtrlAttribute(dag,MUX_switch3_3r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch3_3r,cross_point[3][3]);}
if(fail[3][4]==0) {

m=SetCtrlAttribute(daq, MUX_switch3_4r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch3_4r,cross_point[3][4]);}
if(fail[3][5]==0) {

m=SetCtrlAttribute(dag,MUX_switch3_5r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch3_5r,cross_point[3][5]);}
if(fail[3][6]==0) {

m=SetCtrlAttribute(dag,MUX_switch3_6ér, ATTR_DIMMED, FALSE);

186

m=SetCtrlVal(dag,MUX_switch3_6r,cross_point[3][6]);}
if(fail[4][1]==0) {

m=SetCtrlAttribute(dag,MUX_switch4_1r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch4_1r,cross_point[4][1]);}
if(fail[4][2]==0) {

m=SetCtrlAttribute(dag,MUX_switch4_2r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch4_2r,cross_point[4][2]);}
if(fail[4][3]==0) {

m=SetCtrlAttribute(dag, MUX_switch4_3r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch4_3r,cross_point[4][3]);}
if(fail[4][4]==0) {

m=SetCtrlAttribute(dag, MUX_switch4_4r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch4_4r,cross_point[4][4]);}
if(fail[4][5]==0) {

m=SetCtrlAttribute(dag, MUX_switch4_5r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch4_5r,cross_point[4][5]);}
if(fail[4][6]==0) {

m=SetCtrlAttribute(dag, MUX_switch4_6ér, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch4_6r,cross_point[4][6]);}

if(fail[5][1]==0) {

m=SetCtrlAttribute(dag,MUX_switch5_1r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch5_1r,cross_point[5][1]);}
if(fail[5][2]==0) {

m=SetCtrlAttribute(dag, MUX_switch5_2r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch5_2r,cross_point[5][2]);}
if(fail[5][3]==0) {

m=SetCtrlAttribute(dag,MUX_switch5_3r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch5_3r,cross_point[5][3]);}
if(fail[5][4]==0) {

m=SetCtrlAttribute(dagq,MUX_switch5_4r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch5_4r,cross_point[5][4]);}
if(fail[5][5]==0) {

m=SetCtrlAttribute(dag, MUX_switch5_5r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch5_5r,cross_point[5][5]);}
if(fail[5][6]==0) {

m=SetCtrlAttribute(dag, MUX_switch5_6r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch5_6r,cross_point[5][6]);}
if(fail[6][1]==0) {

m=SetCtrlAttribute(dag,MUX_switch6_1r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch6_1r,cross_point[6][1]);}
if(fail[6][2]==0) {

m=SetCtrlAttribute(dag,MUX_switch6_2r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch6_2r,cross_point[6][2]);}
if(fail[6][3]==0) {

m=SetCtrlAttribute(dag,MUX_switch6_3r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch6_3r,cross_point[6][3]);}
if(fail[6][4]==0) {

m=SetCtrlAttribute(dag,MUX_switch6_4r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch6_4r,cross_point[6][4]);}
if(fail[6][5]==0) {

m=SetCtrlAttribute(dag,MUX_switch6_5r, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch6_5r,cross_point[6][5]);}
if(fail[6][6]==0) {

m=SetCtrlAttribute(dag,MUX_switch6_6ér, ATTR_DIMMED, FALSE);

m=SetCtrlVal(dag,MUX_switch6_6r,cross_point[6][6]);}

12-12-01 taken out, because the LED's are removed*/

m=SetCtrlVal(dag,MUX_Memory_Check_Done,1);
for(i=1;i<=8;i++){
for(j=1;j<=8;j++){
for (k=0;k<num_read;k++){
fprintf(fp_out, "%d %d %d %f %f\n", i, j, cross_point[i][j], ADO[i][j1[k], AD1[i][j1[K]);
}

fclose(fp_out);
return 1;

187

int stop(int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2){
return 1;

int save_file(int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2){
inti;
int tmp1[6400],tmp2[6400],tmp3[6400];
float tmp4[6400], tmp5[6400];
char line[100];
char name[30];
fp_out=fopen (tmp_file,"r");
for (i = 0; i < num_read*64; ++i)
{
fgets(line,sizeof(line),fp_out);
sscanf(line,"%d %d %d %f %f", &tmpl[i], &tmp2[i], &tmp3[i], &tmp4[i], &tmp5[i]);

}
fclose(fp_out);
PromptPopup ("SAVE FILE", "Enter the file name (*.txt).", name, 20);
fp_out=fopen(name,"w");
for (i =0; i < num_read*64; ++i)
fprintf(fp_out,"%d %f %f\n",tmp3[i], tmp4[i], tmp5[i]);
fclose(fp_out);
return 1;

int quit(int panel, int control, int event,
void *callbackData, int eventDatal, int eventData2)
{

inti;
switch (event) {
case EVENT_COMMIT:
i = AO_VWrite (1, 0, 0.0);
i = AO_VWrite (1, 1, 0.0);
ibwrt(Devicel,"P0X",3);
QuitUserlInterface (0);
break;
case EVENT_RIGHT_CLICK:
break;

return 0;
}
/*
int load_individual_panel (int panel, int control, int event, void *callbackData, int eventDatal, int eventData2)
{

daql = LoadPanel (0, "MUX.uir",SET_INDIVI);

DisplayPanel (daql);

return 0;
3
*/
int clear (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData2)

{ o
inti;
switch (event) {
case EVENT_COMMIT:
DeleteGraphPlot (dag, MUX_GRAPH, -1, VAL_IMMEDIATE_DRAW);
I* DeleteGraphPlot (dag, DAQ_GRAPH_2, -1, VAL_IMMEDIATE_DRAW);
break;
}
return O;

*/

