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Abstract 
 
 

With a rapid movement toward personalized genetic medicine, tailoring treatment 

to individual patient needs based each one’s genetic code is becoming an important goal.  

The ability to develop small molecules capable of reprogramming the cellular machinery 

at the genetic level is one approach to the difficult challenge of treating diseases that 

result from aberrant gene expression.  Inspired by the architecture of the natural products 

netropsin and distamycin, polyamides are capable of binding the DNA minor groove 

with high affinity and fidelity.  Originally composed of 5-membered heterocyclic 

carboxamides, polyamides have evolved in both form and function.  A search has been 

initiated to develop new DNA specific oligomers that have different electronic and 

geometric properties.  Alteration of these properties may lead to a new class of 

compounds, capable of targeting DNA sequences that have previously been shown to be 

difficult to recognize.  Second-generation compounds containing novel heterocyclic 

recognition elements, within the context of both 5-membered heterocyclic carboxamides 

and fused 6-5 benzimidazole analogues, have recently been developed.  These molecules 

have successful DNA recognition profiles as well as favorable cell uptake properties, 

important considerations when searching for effective pharmacophores.  These new 

classes of rationally designed oligomers offer one approach to the challenging problem 

of regulating gene expression. 
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