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Chapter 3. Creating a Spatially Heterogeneous Full Stress Tensor

The previous chapter discussed how one would filter a scalar quantity in three
dimensions. The ultimate goal is to filter both full and deviatoric stress tensors, which
are comprised of six and five independent quantities respectively.

Rotational equilibrium requires that a 3D stress tensor is symmetric. This

symmetry means that six degrees of freedom are required to specify stress. The other

3
equilibrium condition, Z
=t 94

i

= f., which specifies no internal accelerations if there are

no internal sources, provides an additional three constraints; however, the introduction of
this equilibrium condition would force us to introduce random sources (dislocations)
within the medium to produce our heterogeneous slip. Otherwise, by St. Venant’s
principle, the inside of a medium far away from the external boundaries and with no

internal sources would have an approximately uniform stress distribution by definition if

3
o,
Z—"’ = f; 1s satisfied. Since the introduction of random sources requires additional

=1 ox,

assumptions about the statistics of fault distributions, fault sizes, slip on faults, etc., in

| &g,
this study we opt for not satisfying Z L =

j=t OX;

/: so that we can produce stress

l

heterogeneity without the introduction of internal sources. Again in this study we are
primarily interested in producing a first-cut statistical description of the Earth’s crust,

parameterized by two numbers, Heterogeneity Ratio and o , without having to model the

individual sources that create the heterogeneity.
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For deviatoric stress tensors, the pressure is subtracted out such that the trace
(summation of the diagonal elements) equals zero. This additional constraint reduces the

degrees of freedom from six to five. The formula for pressure is
p:(l/?’)(all +622+633) (3.1)

and when we subtract the pressure from our stress tensor, we have the following

deviatoric stress tensor,

’ 7 ’

o,—p 0, O3 0, O, Oy

_ ’ ’ ’
0, O, —P 053 =10, 0y Oy (3.2)

7 7 7

O3 Oy Oy~ P O3 Oy O3,
where

o), +05,+05=0. (3.3)

The constraint can also be written as
03, =—(0], +0%), (3.4)

and our deviatoric stress tensor can be rewritten as

’ ’ ’

GI 1 0-12 613

o, —(o],+0%) 05 | [5D.OF. forasymmetric, deviatoric stress tensor | (3.5)
’ ’ ’

0-13 0-23 0-33

Recognizing that a symmetric, full stress tensor has six degrees of freedom and a
symmetric, deviatoric stress tensor has five degrees of freedom, the question arises,
“How does one filter a tensor with five or six degrees of freedom?” At first glance we
might wish to simply filter o,,, 0,,, 03; 0,,, 0,;,and 0,; as six independent scalar

quantities for the full stress tensor or filter o},, 03;, 0},, 0,;, and o7, as five

independent scalar quantities for the deviatoric stress tensor, using the strategy outlined
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in Chapter 2. Unfortunately, o, and o7, are always defined for a particular coordinate

i
system. If we filter in this way, then we find that the general characteristics of the
filtered stress are changed when we rotate from one coordinate frame to another. To
resolve this problem, we need to rethink how to write our stress tensors.

An alternative way would be to represent the five degrees of freedom of the
deviatoric stress tensor in terms of two scalar invariants of the stress tensor, and three
orientation angles. Likewise, we can represent the full stress tensor with three scalar

invariants and three orientation angles.

Invariant Filtering

It is fairly staightforward to filter invariants, quantities that remain unchanged
upon rotation of the stress tensor or coordinate system. We have many choices of
invariants to choose from. For simplicity, we choose to filter the principal stresses (o, ,

0, ,and 0;). For the full stress tensor, we use all three of these principal stresses and for

the deviatoric stress tensor we will filter o,, 0,, and o, then subtract out the pressure,

p, so that
0/=0,—p
0,=0,—p (3.6)
0,=0;—p.

This reduces the independent invariant quantities from three to two because
o/ +0,+0;=0.
When generating and filtering each scalar principal stress (o,, 0, , or 0;), we

begin with Gaussian random noise, clip it at the three standard deviation level, and then
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apply the 3D filtering described in Chapter 2 to produce 3D filtered heterogeneity with

1D spectral falloffs of some specified o . The Gaussian white noise that we start with is
clipped at the three standard deviation level to remove extreme outliers because in the
real Earth there is probably a limit on the amplitude of deviatoric stress, perhaps

200 MPa, beyond which the rock will begin to fail. Each scalar is given a zero mean;

then the composite set of principal stresses (0,, 0, , and 0;) are given an overall size
defined by I, = 1.0, where

I,=0/’+0}’+0)’ +20],>+20. +20], (3.7)
or

I,=0/>+0,"+0}". (3.8)

We choose 6, =0.0, 6,=0.0, and 6, =0.0 when generating our heterogeneous stress
tensor, G/, (xl) , so that any mean values will be subsumed into the spatially
homogeneous background stress tensor, 67 . This means that there are times when

0, >0, > 0, does not hold for the heterogeneous principal stresses. The problem can be
solved by sorting the principal stresses and their associated orientations to produce
degenerate principal stress orientations. However, we will visualize the principal stresses
in Figures 3.1-3.2 without sorting.

Figure 3.1 shows o, and o] for 10,000 Gaussian random points along a 1D
length, filtered with ¢ =0.0,  =0.5, a =1.0, and o =1.5. The left-hand plots display
the filtered principal stresses, and the right-hand plots display the Fourier transform of the
principal stresses as a function of spatial frequency. Additionally, on the right-hand

plots, a straight, thick black line shows the expected o spectral falloff. Since o,, 0,,
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and o, are generated using the identical process, it is only necessary to plot one of the
principal stresses to show the filtered properties. The main point of the plots in Figure
3.1 is to show that indeed our principal stresses, 0,, 0,, and 0, and deviatoric principal
stresses, 0|, 0,, and 05, have the correct spectral falloff. They should because it is a
simple application of the principle already demonstrated in Chapter 2. It is not
unexpected that our deviatoric principal stresses also have the correct spectral falloff.
Deviatoric stresses are the principal stresses with the pressure subtracted, where the
pressure is described by equation (3.1). We know that for filtered random processes, the
linear sum of filtered random processes have the same spectral properties as the two

individual processes if the same filter is used. Specifically, if R (x) and R,(x) are two

Gaussian processes, then if

R(x)=R (x)+R,(x) (3.9)

(3.10)

Figure 3.2 shows plots of 2D cross sections through 3D grids of 201x201x201

points. The principal stress, o, the deviatoric principal stress, o], and the pressure, p,

are shown for « =0.0,00=0.5, ¢ =1.0,and v =1.5. For each ¢, the 2D cross section
of stress is visualized two different ways: 1) On the left, are surface plots where the
vertical amplitude and color corresponds to the amplitude of the scalar principal stress.
2) On the right, are map view plots, where only the color corresponds to the amplitude of
the scalar principal stress. The 2D cross sections are taken from the same location in

each 3D grid, about halfway along the Z axis.
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Figure 3.1. Filtered scalar invariants, ¢, and o, for 10,000 points in 1D. We start

with Gaussian white noise and apply the filtering strategy from Chapter 2 to produce o,
with spectral 1D falloffs of a.. Ina) o =0.0 is applied, which means no filtering of the
Gaussian white noise, b) oo = 0.5 is applied, ¢) a =1.0 is applied, and d) oo =1.5 is
applied. Then we subtract out the pressure, p=(1/ 3)(6, +0,+ 0'3) to produce o with
the same spectral 1D falloff as o,. On the left are plots of the filtered stresses as a

function of 1D length, and on the right are the Fourier transforms of the stresses plotted
as a function of spectral frequency. The desired o spectral falloff is represented by a
thick black line, and we find that indeed the spectral falloff of the filtered principal

stresses closely follows the desired falloff represented by the thick line.
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Figure 3.2. Plots of filtered scalar invariants, 6,, o,, and p for 2D cross sections of

3D grids. The original 3D grids are 201x201x201; therefore, the 2D cross sections are
201x201 points. The cross sections are x-y planes at 7 =101, approximately the center
of the grid. We start with Gaussian white noise and apply the filtering strategy from
Chapter 2 to produce filtered scalar invariants with spectral 1D falloffs of a. In a)

a =0.0 is applied, which means no filtering of the Gaussian white noise, b) o =0.5 is
applied, ¢) o« =1.0 is applied, and d) o =1.5 is applied. On the left are surface plots of
the filtered scalars where the 2 spatial dimensions of the 2D cross section are
represented by the x and y axes and the amplitude of the scalar quantities is represented
by the vertical height and color. On the right, are map view plots of the same 2D cross
sections where the scalar amplitude is represented by color. The same color scale is
used for the left and right hand plots, which goes from -2.5 to 2.5 for aa=0.0, 0 = 0.5,

and oo =1.0 and from -2.0 to 2.0 for . =1.5.
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Upon inspection one can notice a few features. The principal stress, o, tends to have a
larger amplitude than the deviatoric principal stress, o, but similar spatial smoothing.

By design as the value of & increases so does the spatial smoothing. Since Figure 3.2
shows only 2D cross sections through a 3D grid, and the mean is set to zero for the entire
3D grid, the means of the 2D cross sections are not necessarily zero; in fact, the means of

the 2D cross sections are often non-zero.

Orientation Filtering
The next three quantities we wish to consider filtering are the three angles
describing the orientation of the stress tensor. There are several sets of three angles we
could choose. We could choose
e Three Euler angles that describe the rotation of a stress tensor relative to a
reference orientation. This would be analogous to the strike, dip, and rake of slip
vector on a fault plane.
e Azimuth and plunge of the P axis plus an angle describing the orientation of the T
axis about the P axis
e A total rotation angle, @, about a rotation axis, [6,¢] that represents a single
rotation from a reference stress orientation to our desired point stress orientation.
The representation we prefer to use is the third one, a total rotation angle, o,
about a rotation axis, [9,¢] . This seems to be the most natural set of three angles to filter
if our intended goal is to filter stress tensor orientations. Namely, when we filter @, we
are simply filtering the amplitude of the rotation (amplitude of the spherical linear

interpolation from the reference orientation to our desired orientation). When we filter
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the angles in the rotation axis, [G,gi)] , we are filtering the axis about which the rotation
takes place, where [G,gi)] describe the path of the spherical linear interpolation. So by
filtering these three quantities (w,[0,¢] ), we smooth out in space the total 3D orientation

of the stress tensor. See Figures 3.3 and 3.4 for graphical explanations of this
representation. Figure 3.3 explains how the rotation axis is defined; it passes from the

origin through the point with colatitude, 6, and longitude, ¢ (this point is called the pole
of rotation). Figure 3.4 shows how once the rotation axis is defined with [G,gi)] , We can

then apply our single rotation of amplitude @, about this axis, [G,gi)] .

Figure 3.3. How the rotation axis, [9,¢] , is defined. The rotation axis, is the thick black
arrow projecting out of the unit sphere. 0 is the colatitude of the rotation axis, the angle
between the Up vector and the rotation vector, while ¢ is the longitude of the rotation

axis, the angle between the North vector and the horizontal projection of the rotation

axis, in a right-hand coordinate system about the Up vector.
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A 0=0

¢ = Any Value

05

Figure 3.4. Two examples of our (w,[@,gb]) representation of 3D rotations. In a) we

have 0 =0 and ¢ = any value for the rotation axis. For b) we have 6 = /2 and
¢ = m/2 for the rotation axis. Both a) and b) have an @ = 1t/2 rotation about their

respective rotation axes.

Now that we have defined the three scalar angles we wish to filter, an amplitude,

@, plus a rotation axis, [0,¢], how do we go about filtering them? We first wish to
generate completely random sets of ((0,[6,¢]) , then filter the three angles. Random sets
of ((0,[6,¢]) are ((0,[6,¢]) such that the summation of N stress tensors as N — oo

combined with random o7, o;, and o7, produces an expected value of
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0.0 0.0 0.0
c’={00 00 0.0, i.e.,E(G') =0. This is important because when we create our
0.0 0.0 0.0

filtered heterogeneous component of the stress tensor, there should be no net orientation

to the deviatoric, heterogeneous term in 3D.

E<c’ >=0 (3.11)

Heterogeneous

To create truly random sets of (w,[9,¢]) , it 1s helpful to work in quaternion space,

producing random quaternions, then transform them back to (a), [G,gb]) space.

A quaternion is simply a four-component vector that represents a 3D rotation.
Analogy can be used to understand this. To describe a point on a 3D unit sphere, there

are two different ways to represent the position. One representation would be a three-

component vector, u = [ux,uv,uz], with the constraint that |i| = \/u® + uy2 +ul=1,s0

that the point lies on the surface of the 3D unit sphere. This reduces the degrees of
freedom from three to two. Another representation would be in terms of two angles, 6

and ¢. In the case of a 4D unit hypersphere, we again have two possible analogous

representations. We can use a four-component vector, a quaternion, g = [qo,q, ,qz,q3] ,

with the constraint that |§| = \/ q; +q; + ¢ +q; =1, so that the point lies on the surface

of the 4D unit sphere and the degrees of freedom reduce from four to three.

Alternatively, we can use three angles, @, 0, and ¢ . Thus this problem of producing
random (w,[9,¢]) reduces to the problem of choosing completely random points on the

surface of a unit 4D hypersphere, which was solved by Marsaglia [1972].
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The method of Marsaglia [1972] for picking random points on a 4D hypersphere,

which produces unbiased 3D orientations, is summarized at the following web link

http://mathworld.wolfram.com/HyperspherePointPicking.html [ Weisstein]. In this

method, one uses a uniform random number generator to pick pairs of points (x, ,xz) and
(x3,x4) , keeping only those pairs that satisfy the following constraints, x; + x; <1 and
x; +x; <1. For each set of points that are retained, one calculates the random

quaternion, G~ = [qg,qf,qf,qf ] , as follows,

2 2

R 1—x —x
x4\/ 2, 2
x5 +x;

qy =
qr =x
L (3.12)
9 =X
1—x>—x2
q§=x3 ] 2

X +x; .
Once the random unit quaternions are calculated, we then transform the four-

vectors into their equivalent angles, (w,[9,¢]) . We use the standard relation between a
quaternion, g = [qo,q,,qz,%] , and our set of angles, (w,[9,¢])

q, = cos(w/2)

g, = sin(®/2)sin(6)cos(¢)
g, =sin(®/2)sin(0)sin(¢)
g, = sin(®/2)cos(6)

(3.13)

where

Gl =@+ ++q’ =1.

Conversely, we can turn the quaternions into our three angles, w, 8, and ¢.
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=2cos ' (g,)
0 =cos (g, /sin(w/2)) (3.14)
¢=tan"(q,/q,)
where 0° <@ <360°, 0°<60<180°, and 0° < ¢ <360°.

After generating random points on the 4D hypersphere (quaternions) and

transforming these points into our orientation representation, (w,[9,¢]) , WE can now

filter these three angles separately using the scalar filtering technique outlined in the
previous chapter. As we will show in Figures 3.11, the filtering process introduces an
orientation bias. We remove this bias by stacking at least 10-20 simulations where a
random rotation has been added to the orientations in each simulation. Any orientation
bias cancels out in the stacking process also seen in Figure 3.11.

To add a random rotation to our stress orientations, we again employ quaternions.

Quaternions allow rotations to be added algebraically. For example, if we have a stress

tensor orientation represented by the quaternion §* = [q(f,qf‘,q;,q?] and we wish to add
: : -B B B B B
on the 3D rotation represented by quaternion ¢° = [qO 241 »q5 »q; ] to produce a final

orientation represented by quaternion G = [qoc 4y G5, q5 ] , the algebra would simply be

(adapted from
http://www.mathworks.com/access/helpdesk/help/toolbox/aeroblks/aeroblks.html,

Quaternion Multiplication) [Mathworks, 1994-2006],

B_A

C B A B A B A
4y =949 — 44 — 49,49, — 439,
a9 =949, + a9y — 49 + 959,
B A

g5 =409, + 49 + 434y — 454,
45 =495 — 49 + 459, + 459 -

(3.15)
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As expected, the order of rotations is important, i.e., rotations are noncommutative.
Figure 3.6 shows 1D plots of our filtered orientation angles, (w,[9,¢]) , before

and after random rotations have been added. The amplitude angles, @, are plotted on the

left as a function of 1D linear distance, and the rotation axes, [9,¢] , are plotted on the

right as points on an equal area plot where 0° < w < 360°, 0° <60 <180°, and

0° < ¢ <360°. The longitude, ¢, is represented by the azimuthal angle about the

circular, equal area plot as shown in Figure 3.5, and 6 is represented by the radial
distance from the center of the circle. 8 = 0° at the center, and 6 = 180° at the
circumference. At first this may seem like an odd representation until one thinks about
the plot in terms of latitude, A =90°— 6, instead of the colatitude, 6. In terms of the
latitude, A, A =90° at the center and A =-90° at the circumference, which is similar to

an equal area P-T plot that shows the full plunge range of = 90°.

The top and bottom rows show (w,[9,¢]) , where random orientations have been

filtered with an o then multiplied with a reference quaternion. The top row shows the

unrotated (w,[9,¢]) , and the bottom row shows the rotated (w,[9,¢]) . When the
reference quaternion is [qo =1,49,=0,9,=0,q, = 0] , as seen in the top row, (w,[9,¢]) 1S
unchanged upon multiplication, because [qo =14,=0,q9,=0,g, = 0] produces no
rotation; @ =2cos ™ (g,)=2cos™' (1.0)=0°. When the reference quaternion is
something other than [qo =1,49,=0,9,=0,q,= 0] , as seen in the bottom row, (w,[9,¢])

is rotated upon quaternion multiplication.
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If there is no filtering, a = 0.0, then our ((0,[6,¢]) s are produced using the

random unit quaternion generator, and the rotation axes, [6,¢], are uniformly distributed
on the equal area plot as seen in Figure 3.6 a). As the filtering constant, ¢, increases, the

spatial smoothing of ((0,[6,¢]) increases: 1) @ becomes smoother as a function of

distance. 2) The rotation axes, [9,¢] , at first clump for o = 0.5 and o =1.0, then track a
clearly distinguishable linear path on the equal area plot for o =1.5. The rotated and
unrotated cases have fairly similar properties (degree of spatial smoothing, clumping,
etc.); therefore, we should be able to stack the filtered and randomly rotated ((0,[6,¢]) s

to produce no net orientation, while maintaining to first order, the « -filtered properties of

each individual run.

sss

MRS TR
NS

<

Figure 3.5. A cartoon of the equal area plots used in Figure 3.6 for the rotation axes,
[9,¢]. The longitude, ¢, is the azimuth of the circle, and latitude, A =90°—0, is plotted
as a function of radial distance where, A =90°—0=90° at the center and

A =90°—-0=-90°, at the circumference. Note the cartoon is not necessarily to scale.
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Figure 3.6. A series of 1D simulations are shown with different degrees of smoothing,

a, applied where a) . =0.0, b)) =0.5,¢) x=1.0, andd) o« =1.5. Each simulation is
approximately 10,000 points. For each a, there are a total of four subplots. On the top
left is a 1,000-points-long segment of the filtered rotation angle, ®. As expected, as o
increases, the spatial smoothness of the rotation angle, ®, increases. On the bottom left
is again @, but after a random rotation has been applied to the orientation angles. It
appears to maintain its filtered properties to first order upon inspection. See Figure 3.8
for a more thorough evaluation of what happens to the spectral properties upon rotation

of coordinate system. On the top right is an equal area plot with the rotation axes, [0,0],

plotted as black dots. On the bottom right is another equal area plot of the rotation

poles, [0,0], after a random rotation has been applied. Again the spatially smoothed

rotation poles maintain their spectral properties to first order.

For o =0.0, no spatial smoothing or completely random orientations produce
completely random rotation poles on our equal area plot. This unbiased distribution
remains unchanged upon rotation of coordinate systems. As o increases, the rotation

poles begin clumping together until they form 1D lines, representing the wander of the

1D data set.
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In Figure 3.7, our three orientation angles, (w,[9,¢]) , for 1D simulations are

visualized in a different way. 3D unit spheres have been plotted with a wire mesh, then

the position of the rotation axes, [0,], are plotted as points on the sphere. Last, the
color of the points represents the amplitude angle, @ according to the horizontal color

bars underneath. On the left, are the unrotated, (w,[9,¢]) , and on the right are the

rotated, (w,[9,¢]) . When there is no filtering, o = 0.0, the rotation axes, [9,¢] , are

uniformly distributed over the sphere, and the color, which represents the amplitude, o,

is random. Additionally, when o = 0.0 the angles, (w,[9,¢]) , appear to be unchanged

upon rotation. There is the same random pattern after rotation as before. As the filtering,
o, increases, the spatial smoothing of the points on the sphere increases, and the spatial

smoothing of the colors increases, representing the smoothing of the three angles,

(w,[9,¢]) , until at ¢ = 1.5 the data form clear demarcated linear tracks. The rotated data

on the right have similar smoothness as the unrotated data to first order.
The spectral properties of the unrotated and rotated @ are plotted in Figure 3.8 to
examine how closely our filtered angles approach the desired « spectral falloff. While

not shown, the rotation axes, [6,¢], have similar properties, but ¢ is more difficult to

plot because one needs to wrap the phase appropriately before calculating the spectral
properties. The plots on the left in Figure 3.8 show the angle @ as a function of 1D
length, and the plots on the right in Figure 3.8 show the Fourier transform of the angle w
as a function of spatial frequency. The right-hand plots also have a thick black line,
which shows the desired o spectral falloff. To first order, w, follows the desired «

spectral falloff for both the rotated and unrotated cases with the lowest frequencies
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sometimes a little underrepresented. The exact spectral falloft for our three orientation

angles, (w,[9,¢]) , 1s calculated in Table 3.1, where the spectral falloffs for 200 1D

simulations, approximately 10,000 points each is averaged for different values of « .

Then the results of Table 3.1 are plotted in Figure 3.9. We find that indeed the unrotated,

(w,[9,¢]) , has exactly the spectral falloff we want, o, but the rotated angles, are slightly

rougher for o <0.6.
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Unrotated (@,[6,¢]), o =0.0 Rotated (@,[6,9]), o =0.0
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Figure 3.7 a)
Unrotated (@,[6,¢]), a=0.5 Rotated (@,[6,9]), a=0.5
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Figure 3.7 b)
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Unrotated (,[6,¢]), o0 =1.0 Rotated (@,[6,9]), o =1.0
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Figure 3.7 ¢)
Unrotated (,[6,¢]), o =1.5 Rotated (@,[6,9]), a=1.5
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Figure 3.7 d)
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Figure 3.7. This is another way to visualize our filtered orientation data. The position

of the plotted points on the 3D spheres represents the rotation axes 0,9, and the color

represents the rotation about the poles, @, where blue =0° and red = 360°. Of course,

for a=0.0, there are random positions of the points and random colors, representing

the random 3D orientations, (w,[@,gb]). As o increases, the spatial smoothing of point

locations increases until there are linear tracks. Concurrently, as o increases, the
spatial smoothing of color increases until the color changes smoothly from one to

another along the 1D lines for oo =1.5. This demonstrates that we have successfully

smoothed the three orientation angles, (w,[@,gb]), together. On the left, we plot
(w,[@,gb]) without the random rotation added, and on the right, we plot (w,[@,gb]) with

the random rotation added. These show that (w,[@,gb]) still has similar properties

regardless of the random rotation added.
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Figure 3.8. A series of 1D simulations are shown with different degrees of smoothing,

a, applied where a) . =0.0, b)) =0.5,¢) x=1.0, andd) o« =1.5. Each simulation is
approximately 10,000 points. In this figure, @ is plotted for all 10,000 points on the left,
and its spectral falloff is plotted on the right. The top plots represent @ before the
random rotation is added, and the bottom plots represent @ after the random rotation is
added. The main feature to notice is that @ does indeed have the approximately the
appropriate spectral falloff both before and after the random rotation. The thick black
line represents the expected o falloff, and the smoothed ® data for all the cases we tried
between 0.0 < ox < 1.5 approximately follows this expected thick black line. Sometimes,

the very low frequencies are a little underrepresented, but overall this works quite well.
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Table 3.1. The Spectral Falloff Calculated for Each Filtered Angle as a Function of «

) 6 1) 0] 6

o Unrotated | Unrotated | Unrotated Rotated Rotated
Falloff Falloff Falloff Falloff Falloff

0 -4.16E-03 -2.79E-03 -1.62E-03 -4.85E-03 1.19E-03
0.1 0.1020 0.1016 0.0978 0.0548 0.0489
0.2 0.2010 0.2016 0.2008 0.1358 0.1317
0.3 0.2985 0.2951 0.3039 0.2299 0.2211
0.35 0.3480 0.3525 0.3461 0.2796 0.2645
0.4 0.4011 0.4003 0.4019 0.3459 0.3301
0.5 0.5003 0.5008 0.5021 0.4623 0.4352
0.6 0.6001 0.6006 0.6007 0.5841 0.5475
0.7 0.7016 0.7006 0.7005 0.6872 0.6609
0.8 0.8008 0.7987 0.8066 0.8009 0.7778
0.9 0.8999 0.8999 0.8970 0.8987 0.8822
1 1.0000 1.0051 1.0030 1.0023 1.0028
1.1 1.0986 1.0980 1.0969 1.0924 1.1060
1.2 1.2026 1.1982 1.1961 1.2031 1.2030
1.3 1.2963 1.3026 1.2996 1.2984 1.2964
1.4 1.3960 1.4012 1.4020 1.4002 1.3977
1.5 1.5033 1.4986 1.4989 1.4980 1.4944

If everything is working properly, the spectral falloff should = o«. For each o, we
e generate 200 1D simulations, approximately 10,000 points each,
e determine the spectral falloff for the log-log plots of the data,
e then average the slopes for all 200 simulations.
As expected, the spectral falloff of the unrotated angles, @, 0, and ¢ equals o for
0.0 <a <1.5. The rotated simulations have spectral falloffs close to o, but tend to be a
little spatially rougher, especially for o < 0.6 (Figure 3.9). We calculate the spectral
falloff of only the @ and 6 rotated angles because the jumps in ¢ for a rotated

simulation make it difficult to accurately assess a new spatial roughness.
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Figure 3.9. Plots of Table 3.1 data. The top plot shows spectral falloff as a function of

o for the unrotated data, and the bottom plot shows the spectral falloff as a function of
o for the rotated data. In both cases, the desired relationship is a linear line with a
slope of 1.0 and an intercept of 0.0, indicated by a thick black line. In the top plot, the

unrotated, @ (in blue), 0 (in red), and ¢ (in green) plot directly on top of the desired

black line. In the bottom plot, the rotated @ (in blue) and 0 (in red) tend to be slightly
rougher spatially for a < 0.6, which produces spectral falloff values (negative slopes on

a log-log plot) that are slightly less than o .

Now that we have determined how to create filtered, approximately random,
heterogeneous stress tensor orientations in terms of our three angles (w,[9,¢]) and
thoroughly examined their spectral properties, we can convert (w,[9,¢]) into strike, dip,
and rake, (©,8,1). Last, we will combine (©,8,1) with filtered o,, 0, , and 0, to
produce our full-filtered heterogeneous stress tensor. Technically, in the code used for
this thesis, once (w,[9,¢]) has been filtered, we convert it first into the associated
quaternion vectors, ' = [qOF 41 qs . qh ] , where F stands for filtered, then calculate

(©,6,1). Using the derived equations in Appendix B, we have,

PR

tan F _F _F F
9 9 -9 493

(3.16)
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tan® = —— F _F
90 9, + 4, 4;

tand =

2(q; q +4q5 g+ )/sinA
F _F F _F F _F F _F (318)
4o 90 — 4 4 —9 9> T 45 45 -
Appendix A describes how to combine (0,5,4) with 0,, 0,, and o, to produce the full

heterogeneous stress tensor. It also explains how to convert (©,8,1) into the azimuth
and plunge of the P-T axes, (6,,5,) and (6,,65,).

Plots of (GP,SP) and (GT,ST) from filtered 1D heterogeneous orientations,
(w,[9,¢]) , are shown in Figure 3.11 for four different levels of smoothing,

a=0.0,05,1.0,and 1.5. (GP,SP) and (GT,ST) are plotted on equal area plots for a
plunge range of + 90° as diagrammed in Figure 3.10. Typically, P-T equal area plots
only have a plunge range of 0°—90°, because if for example, d, <0, then one can just
apply the following transformation, 0,'=—-06, and 6,'=6, + 7, to create a vector with a

non-negative plunge that produces the same stress tensor. However, in our simulations,
when o =1.5, it is interesting to see the unbroken linear track of the 1D simulation in P-

T space, and this can only be seen if we use the full range of £ 90°. In the top row, the

P-T angles, (GP,SP) and (GT,ST) , are plotted for filtered, unrotated (w,[9,¢]) , and in the
bottom row the same data are plotted after a rotation. The quaternion vector listed for
each plot is the quaternion that is multiplied with (w,[9,¢]) , Where,

[qo =14,=0,q9,=0,q, = 0] produces no rotation, and g # [qo =1,4,=0,9,=0,q, = O]

produces a rotation. For o =0.0, the points in P-T space on the equal area plots are

uniformly distributed. This means that indeed, the random quaternion generator does
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produce random orientations in 3D. Last, as the spatial smoothing, ¢, increases, the
smoothing in P-T space increases. Thus, it would appear that the spatial smoothing of

our orientations ((0,[6,¢]) translates well into (6,,8,) and (6,,6,).

Azimuth =0°
o = =

I ST

s

y
g 5SS
las i
Azimuth = 270° ({({{({(({{ﬁiﬁgg?};}%’f‘ﬁl
\\\\\\\\\\\\““"v‘;;l///\\ S

Azimuth =90°

Azimuth = 180°

Figure 3.10. A cartoon of the equal area plots used in Figure 3.11 for the P-T azimuths

and plunges, (GP,5P) and (GT,ST) . The longitude, 0, is the azimuth of the circle, and
plunge, 3, is plotted as a function of radial distance where, § =90° at the center, and

0 =-90° at the circumference. Note the radial lines are not necessarily to scale.
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(dp=1,01=0,0,=0,03=0) (dp=1,01=0,02=0,03=0)
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(dg =0.42, 94 = 0.34, g, = -0.36, q3 = —0.76) (9g=0.42, g = 0.34, g, = -0.36, q3 = —0.76)

Figure 3.11 a)
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P Axes, All 10,000 Points, oo = 0.5 T Axes, All 10,000 Points, 0. = 0.5
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P Axes, All 10,000 Points, oo = 0.5 T Axes, All 10,000 Points, oo = 0.5
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Figure 3.11 b)
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Figure 3.11 ¢)
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Figure 3.11. The Principal Compression Axes (P axes) and Principal Tension Axes (T

axes) are plotted as on equal area plots for a series of simulations. The P axes are red
on the left, and the T axes are blue on the right. The plunge range is + 90° on the equal

area plots instead of the usual 0°—90°, so that when o =1.5 one can more easily track

the linear track of the data in P-T space. The top rows show P-T angles, (GP,SP) and
(6,,5T ) , for the filtered and unrotated, (w,[@,gb]), and the bottom row shows the same
data except that (w,[@,gb]) were rotated. The quaternion by which the data (w,[@,gb])
were multiplied is listed on each plot, where [qo =14,=0,q9,=0,q, = 0] produces no

rotation, and q # [qo =1,4,=0,9,=0,q, = O] produces a rotation.

Note that for a) e =0.0 the P-T axes are evenly and randomly distributed on the
equal area plots for both the unrotated and rotated cases. This indicates there is no
orientation bias for o = 0.0, which is not surprising since our unfiltered orientations
were by design generated randomly. For b) o =0.5 one can see that the axes are still
somewhat randomly distributed, but there is a slight radial clumping for the unrotated P-
T plots, and this clumping of orientations is rotated for the bottom P-T plots. As o
increases further, to ¢) o =1.0, more fine-scale structure and orientational clumping
arises, and it still has some orientational bias. Last, when d) o« =1.5, the orientations
smoothly vary from one point to another such that it forms a continuous, wandering line
in P-T space. One can see that for o > 0.0, a single filtered simulation may not generate
randomly orientated data; hence, this is why we wish to stack many simulations where
each data set has been given a random rotation. Figure 3.13 shows the efficacy of this

approach.
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While the filtering of the orientation angles, (w,[9,¢]) , works quite well in

producing filtered, P-T axes angles, (GP,SP) and (GT,ST) , it also produces an orientation

bias. Since we wish to generate heterogeneous stress with no orientation bias, we employ
the strategy mentioned previously. Generate at least 10-20 filtered data sets, add a
random rotation to each data set, then stack the data sets. Figure 3.13 compares the
stacking of multiple data sets with and without the random rotations to demonstrate the
necessity of randomly rotating the data sets before stacking them. P-T axes are plotted in
Figure 3.13, using the typical 0°—90° plunge range for P-T equal area plots. This
typical plunge range is diagrammed in the Figure 3.12 cartoon. In Figure 3.13, the top

row of P-T equal area plots for each « has stacked 200 1D simulations, each 1,001

points long, without any random rotations applied to (w,[9,¢]) . The bottom row of P-T

equal area plots for each o has stacked 200 1D simulations, each 1,001 points long, with

a random rotation applied to (w,[9,¢]) for each simulation.

One finds that stacking the data alone (top rows), without any random rotations
applied, helps, but still produces an average bias in the P-T orientations; one can visually
see this in Figure 3.13 with the uneven coverage of the equal area plots especially for
o =1.5. When one adds a random rotation to each simulation and then stacks multiple
simulations (bottom rows), the P-T orientations begin to average out until the equal area
plots are fairly uniformly covered, and there is little to no orientation bias.

Underneath each set of P-T plots, we have also listed the component-wise mean

heterogeneous stress tensor, that is calculated as follows:

1 N2 N1

’ — 7 [/ R RN | R VP V]
GHeterogeneouxMean - Nl N2 ZZGHeterogeneous(o-l ’62 ’0-3 ’w ’0 ’¢ ) (319)

j=1i=1
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where N1 is the number of points in each simulation and N2 is the number of

simulations. Note, filtered deviatoric principal stresses, o, ,0,, and 5 have been

’
Heterogeneous

combined with our orientation angles (w,[9,¢]) , to generate G for each

simulation; then the above component-wise mean equation above is applied. Last, the
square root of the second invariant of the deviatoric stress tensor, /7, , is calculated for
the component-wise mean heterogeneous stress tensor. In Chapter 4, we will see why

I, =0/’+0} +0% +20] +20, +20]7, is so important; I} is an invariant measure

of the maximum shear stress and is the quantity used to determine when points fail for

our grid. Also, as mentioned in Chapter 1, \/Z is used in calculating the ratio of

heterogeneous stress to background stress. Therefore, /I,

2 HeterogeneousMean

is a natural way

of measuring the size of the residual average stress tensor. The smaller the

I bererogencousean the better when attempting to produce heterogeneous deviatoric stress

tensors with an approximately zero component-wise mean. We find that in Figure 3.13
indeed, stacking the data alone is insufficient to produce approximately zero mean stress
tensors; adding a rotation to each simulation then stacking is necessary if one wishes to
have a zero mean stress tensor for any filtering power, « .

Our last figure with filtered 1D data, is Figure 3.14, which shows one component

of the filtered deviatoric stress tensor, o7, , and its spectral properties. The other
components of the deviatoric stress tensor, 0,,, 0%, O},,0,;, and o},, have similar
spectral properties and are not shown. The main point of Figure 3.14 is to show that even

if the orientations (w,[9,¢]) and the principal stresses, o] ,0;, and o are all filtered
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with an o > 0.0, the components of the stress tensor in a Cartesian coordinate system,
G/, Oy, O3, O,,0,,,and o}, do not have the « spectral falloff. To create our stress
tensor, we have rotated principal stresses at each point into their specified reference
frames. The simple act of rotating principal stresses into different reference frames, even
using smoothed rotations, causes the symmetric stress tensor to not have the same o
smoothing as the principal stresses. Even if one started with a Cartesian stress tensor and
smoothed each component separately, then rotated to another reference frame, one loses
all the o smoothing spectral properties. So Figure 3.14 helps demonstrate why we
choose not to filter the components of a stress tensor for a particular reference frame but

instead choose to filter the principal stresses and orientation angles.

Azimuth =0°

Azimuth = 270° Azimuth = 90°

Azimuth = 180°

Figure 3.12. A cartoon of the equal area plots used in Figure 3.13 for the P-T azimuths
and plunges, (GP,5P) and (97’57) . The longitude, 0, is the azimuth of the circle, and
plunge, 8, is plotted as a function of radial distance where 8 =90° at the center, and

0 =0° at the circumference. Note the radial lines are not necessarily to scale.
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Figure 3.13. For 4 different levels of smoothing, @) aa=0.0, b) x=0.5, ¢) a=1.0, and

d) a=1.5, we stack the results of 200 simulations, 1D length of 1,001 points each, and

inspect whether or not there still is an orientation bias. In the top row, each simulation’s

three orientation angles, (w,[@,gb]), are filtered, converted to the P-T angles, (GP,SP)
and (6,,5T ) , then stacked. In the top row each simulation’s three orientation angles,
(w,[@,gb]), are filtered, given a random rotation, converted to the P-T angles, (GP,SP)

and (6,,5T ) , then stacked. Below each set of P-T equal area plots is an associated

’
HeterogeneousMean

o stress tensor. This is calculated as follows. For each simulation, filtered

principal stresses, o), 0,, and o with \|I, =1.0, are combined with the unrotated or
rotated angles, (w,[@,gb]), to produce filtered heterogeneous stress tensors. Then all the

stress tensors from all the simulations are averaged component-wise to create,

’ 7 . .
GHeterogeneousMean : LClSt, \’ 12 HeterogeneousMean IS ShOWl’l as a measure Ofthe size Of

’
HeterogeneousMean *

’
HeterogeneousMean

o It shows the extent to which the components of G have not

canceled out in the stacked simulations, and there is still a bias in the heterogeneous
stress. ldeally, we want stacked simulations that have the following properties: 1) P and

T equal area plots with uniform distributions of points (indicating no orientation bias) 2)

’
HeterogeneousMean

o with each component approaching zero, therefore, \/ I' —0

2 HeterogeneousMean
as the number of stacked runs — o . We find that stacking filtered data alone is
insufficient (the top row), that one needs to both randomly rotate each simulation and

then stack the data to produce heterogeneous stress with no orientation bias and a

! ~
\/I 2 HeterogeneousMean ~— 0 fOl" Clll o.
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Figure 3.14. We plot the one component of a stress tensor for different levels of o

smoothing. The other components of the stress tensor have similar spectral properties.

Smoothed orientation angles, (w,[@,gb]), and smoothed principal stresses, o|,0,, and

o, are combined together to produce a symmetric stress tensor in a particular reference
frame. Note that the independent components of the stress tensor are much rougher than
the smoothed orientation angles and principal stresses. When the smoothed principal

stresses, O|,0,, and O, are rotated into their respective reference frames using the
smoothed angles, (w,[@,gb]), to produce the Cartesian stress tensor components, much of

the oo smoothing is lost. This occurs because the symmetric stress tensor is defined for a
Cartesian coordinate system in a particular reference frame, and stress components can
lose their spectral properties upon rotation. This property is the reason we chose to filter
the principal stresses and orientation angles rather than components of the Cartesian

Stress tensor in a particular reference frame.
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The last few plots show results for our 201x201x201 3D grids. Figures 3.15-3.18

show 2D slices through our filtered 3D grids at the Z =100 height, midway through the
3D grids. The quantities shown in Figures 3.15-3.18 are shown for four different levels

of smoothing, o = 0.0, 0.5, 1.0, and 1.5 . In Figures 3.15-3.17, we find plots of the
filtered and rotated 3D orientation angles, ((0[9,(])]). Note for each o, a different
random seed is used to create the 3D grid prior to filtering, and a different random
rotation is applied to each grid. Random rotations can change the mean values of
(w[@,q)]); hence, the 2D slices of ((0[9,(])]) , shown in Figures 3.15-3.17, have different
mean levels for different oc. This has nothing to do with the filtering. It is simply a

function of the different random rotations that are applied.

In Figure 3.18 we have plots of o7, the first diagonal component of the
deviatoric stress tensor. The 3D deviatoric stress tensor is calculated by combining the

filtered, and rotated 3D orientation angles, ((0[9,(])]) with filtered 3D principal stresses,

o/, 0,,and o;. We only show one component of the filtered 3D deviatoric stress

tensor because the other components are similar. Again the components of the deviatoric
stress tensor are not as spatially smooth as the orientation angles or principal stresses as
we saw in the 1D. The only pattern we find within the filtered deviatoric stress tensor is
that the standard deviations of the off-diagonal components tend to be ~14% smaller than

the standard deviations of the diagonal components.
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0

Figure 3.15. 2D slices of the angle, w, through a 3D grid for four different levels of

smoothing, a) «x=0.0,b) x=0.5,¢) x=1.0, andd) a=1.5. Each grid is

201x201x201 points, for a total of over 8 million grid points. The 2D slices shown are in

the x-y plane approximately halfway through the grid at z = 100. All the planes exhibit

similar spatial smoothing. Since it is a different simulation for each o, with a different

random rotation of the angles (w,[0,¢>]) for each simulation, the mean value of the

angle, ®, is different from simulation to simulation.
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Figure 3.16. 2D slices of the angle, 0, through a 3D grid for four different levels of
smoothing, a) x=0.0,b) x=0.5,¢) x=1.0, andd) aa=1.5. The 2D slices shown are
in the x-y plane approximately halfway through the grid at z = 100. All the planes

exhibit similar spatial smoothing. Since it is a different simulation for each o, with a

different random rotation of the angles (w,[9,¢>]) for each simulation, the mean value of

the angle, 0, is different from simulation to simulation.
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Figure 3.17. 2D slices of the angle, ¢, through a 3D grid for four different levels of
smoothing, a) x=0.0,b) x=0.5,¢) x=1.0, andd) aa=1.5. The 2D slices shown are
in the x-y plane approximately halfway through the grid at z = 100. All the planes

exhibit similar spatial smoothing. Since it is a different simulation for each o, with a

different random rotation of the angles (w,[@,q)]) for each simulation, the mean value of

the angle, ¢, is different from simulation to simulation.
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Figure 3.18. 2D slices of the first diagonal component of the deviatoric stress tensor,
o/,, through a 3D grid for four different levels of smoothing, @) oo =0.0, b) o0 =0.5, ¢)
a=1.0, andd) ax=1.5. The 2D slices shown are in the x-y plane approximately
halfway through the grid at z = 100. o}, is rougher than the smoothed principal stresses,

o/, 0,,and 07, or smoothed orientation angles (w,[@,gb]). See Figure 3.14, the 1D

example, for an explanation. The other components of the deviatoric stress tensor show

similar spectral properties, i.e., degree of spatial smoothing.
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The next question we ask is how random are our 3D grids for different levels of
spatial smoothing, o . Figure 3.19 explores this. Using the azimuth and plunge ranges
illustrated in the Figure 3.12 cartoon, Figure 3.19 plots the P-T axes from randomly
selected points within our 3D grids for four different levels of ¢. For each «, 100,000

points are randomly selected and plotted, a component-wise mean stress tensor,

’ 1 : : ’ .
O ererogencousmtean » 18 Calculated, and its associated |1 Heterogeneousmtean (& M€ASUTeE Of the size of

’
HeterogeneousMean

o ) is shown. If the 3D grid has unbiased orientations, we would expect to

see a uniform coverage of the equal area P-T plots as we see in Figure 3.19 a) and if the

stress heterogeneity has a zero mean (which is what we are trying to design), we would

expect the components of 67, oeencousmean 10 D€ Close to zero and (/17 ,.rocencousmtean 10 DE

very small. For comparison, the deviatoric principal stresses used in creating the stress
tensor, have an /I, =1.0 . We find that for the o = 0.0 case, Figure 3.19 a), the P-T

equal area plots are uniformly covered with points as one might expect for no filtering.

As «a increases, the spatial clumping of data on the P-T plots increases. Interestingly,
V15 Heterogencoussiean 18 Quiite small for both & = 0.0 and o= 0.5, less than 1% when

compared to the size of the input principal stresses, \/E =1.0. As o increases,

/ ’ . _ ’ ’ -
eventuauy’ 12 HeterogeneousMean Increases to = 2% for o= 10 and 12 HeterogeneousMean - 8%

for ¢ =1.5. Consequently, if one remains within the range of 0.0 < < 1.0, there will
be less than 2% bias within the heterogeneity stress tensor for our 3D grids.

For first order calculations, a single filtered 3D heterogeneous stress grid should
be sufficient to approximate heterogeneous stress with zero mean for 0.0 < <1.0 if one

averages over the entire grid. For 1.0 <o <1.5, other issues will arise. Namely, as «
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increases and the heterogeneous stress is increasingly smoothed, there will develop
regions within the grid that will be more likely to fail than others (large 7, ), which can
produce an average orientation bias in simulations that generate synthetic focal
mechanisms. Again the answer will be to stack results from simulations with different
3D heterogeneous stress grids. See Chapter 4 for an explanation as to why regions with
large I, are more likely to fail.

Figure 3.19 demonstrates that there is little to no bias when one averages over our
entire 3D grids, but what happens if one averages over only a subregion of our 3D grids?
This is another subject unto itself [Heaton, 2006, in preparation], but for now we just
want to show that as the spatial smoothing, ¢, increases, there is increased clustering of
orientations in P-T space, and the stress tensor has a significant non-zero mean for
subregions. Also some subregions will be more likely to fail than others, those with

larger I;. Figure 3.20 diagrams how we divide our grid into subregions (with the

unprimed numbers) and the subdivide into sub-subregions (with the primed numbers).

. , ; .
Figure 3.21 shows P-T plots, G%,..,ocncousmtean > A4 \/ 15 tserogencouspean 10T SAMple subregions

and sub-subregions. The azimuthal and plunge ranges are the same as in Figure 3.19.
For each «, one subregion, (1,1,1), containing 100,000 points and one sub-subregion,
(1°,1°,1°), containing 1,000 points are plotted. As expected, for ¢ = 0.0, it is still
uniform, random, even in the subdivisions of the grid. For o = 0.5, a little spatial
clumping begins. Itis for ¢ =1.0 and « =1.5, that we begin to notice marked

differences between the average orientations of subdivisions and the entire grid. For

example, o =1.0, (1,1,1) has a /1] ,,...ccncousmrean = 18% , and the sub-subregion (17,17,1)
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haS an \’ I; HeterogeneousMean = 43% . Compare that to the \’ I; HeterogeneousMean = 2% for

randomly selected points from the entire 3D grid in Figure 3.19. When o =1.5, the

effect can become even more extreme. (1,1,1) hasa /1,

2 HeterogeneousMean

. > 1% 1° ’ . ’ —
Sub—Subreglon (1 ’1 ’1 ) haS a \’ 12 HeterogeneousMean 160% Whereas \’ 12 HeterogeneousMean 8%

for randomly selected points in Figure 3.19.

=~ 29% , and the
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Figure 3.19. We have P (Principal Compression Axis in red) and T (Principal Tension

Axis in blue) plots for 3D, filtered, heterogeneous grids at four different levels of
smoothing, a) «=0.0,b) =0.5,¢) =10, andd) x=1.5. Each grid is
201x201x201 points for a total of over 8 million grid points. We randomly choose
100,000 points from the over 8 million possible points and plot their P and T Axes axes
on equal area plots. For these P-T plots, we choose the conventional plunge range

shown in Figure 3.12. For each o, we calculate the component-wise mean tensor for the

. 7’ . . ’
100,000 randomly selected points, ' ,.,oeencousmtean @A its associated \[17 ,.orocencousttean -

which has units of stress. For comparison, the principal stresses that are used in
creating, the stress tensors have a (|1, =1.0. Ina) aa=0.0, there is no clumping of the

points on the P-T plots indicating that the heterogeneous stress is without any

appreciable orientation bias and is uniformly distributed over orientation space. Also

’ . . . . _
I3 Heterogencousitean » @ Measure of the size of the stress bias, is quite small for o= 0.0, less

than 1%. As o increases, the spatial clumping of the points begins to appear to a small

degree. In 3D simulations, this is a much smaller effect than in 1D if the entire 3D grid

is being sampled. As o increases , \[1} puerosencoussiean @IS0 begins to increase to =2% for

a=1.0 and=8% for a=1.5.
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Figure 3.20. A diagram of how we divide, then subdivide the 3D grid. The first division,

produces subregions, approximately 100,000 points each. The second division produces

sub-subregions, approximately 1,000 points each.
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I reorogoeomean. = 16007

Figure 3.21 d)
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Figure 3.21. This is similar to Figure 3.19, except that we plot the P and T axes for all

the points within different subregions. The grid is first divided into 4x4x5 subregions of
approximately 100,000 points each. Then the (1,1,1) subregion is subdivided into 5x5x4
sub-subregions, of approximately 1,000 points each. The purpose of this exercise is to
show that as the spatial smoothing increases, subregions develop coherent orientation
patterns. Therefore, even if the entire grid has little to no orientation bias, a subregion
might have a significant orientation bias due to the long spatial wavelength coherence of
orientations. We plot one sample subregion, (1,1,1), and one sample sub-subregion
(1°,1°,1°), for each level of smoothing, a) x=0.0, b) x=0.5, ¢) x=1.0, and d)
a=1.5. We find that for no smoothing, a) o =0.0, it does not matter whether we are
looking at a subregion or the entire grid as in Figure 4.17. The subregions have random,

uniform distributions of P and T axes on equal area plots. There is no appreciable

clumping and \|I e erogencousmtean = 0-0 for each subregion. Now as « increases so does
the spatial clumping in P-T space and the value of \|1] pu.eocencoussiean - A1.fACE, for 00 =1.5,

I bererogencousitean = 1.6, for (1°,1°,1°), the same order magnitude as I =1.0, the value of

I, for the input principal stresses. This indicates a very strong orientation bias in the

sub-subregion. Therefore, as « increases the differential between subregion orientation
bias and the entire grid orientation, grid bias increases. This is interesting, because as
we will see in later chapters, this orientation clustering in space reproduces some of the

clustering statistics seen in the real Earth.
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Summary of How to Create a Filtered 3D Heterogeneous Stress Tensor with
Approximately Zero Mean
Now that we have explored some of the characteristics of our filtered principal
stresses, orientation angles, and stress matrices in both 1D and 3D, let us summarize how
to create our full heterogeneous stress matrices:
e Spatially filter three or two invariants of the stress tensor. We choose to filter the
principal stresses for simplicity.
o Generate 3D grids with Gaussian random noise for o,, 0, , and o,
independently.
o Filter each principal stress in 3D using the Chapter 2 methodology.
o Use all three filtered, independent principal stresses, o,, 0, , and 0;, to
create the full stress tensor with six independent quantities.

o Or use the deviatoric principal stresses, o, 0, , and 07, where

0/=0,-p
o,=0,-p and p=(1/ 3)(6ll +0,, + 633) , so that the constraint
0;=0;-p

o, +0;+0;=0 is satisfied, to create the deviatoric stress tensor with five
independent quantities.
e Create approximately random, spatially filtered orientations:
o Generate a set of completely random orientations using a random unit
quaternion generator.

o Convert the quaternions into three angles, a rotation axis, [0,¢], and a

rotation @ about the rotation axis.
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o Spatially filter these three angles, (w,[9,¢]) .

o Resize the angles so that their spatial means have the following values,
®=180°, 8 =90°, and ¢ = 180°, and their possible ranges fall within,
0°<w<360°, 0°<0<180°, and 0°<¢ <360°.

o Convert the spatially filtered (w,[9,¢]) , back into its associated filtered

quaternion, " = [qOF G5 qs . qh ]
o Add a random rotation to this filtered quaternion, using algebraic

quaternion multiplication.

o Then convert this filtered, randomly rotated quaternion into strike, dip,
and rake, (©,8,1).
o Combine the spatially filtered fault parameters, (0,8,4), with the spatially
filtered principal stresses, to produce an approximately randomly oriented,
spatially filtered, heterogeneous stress matrix.

e Use the heterogeneous stress matrix in simulations that produce synthetic focal

mechanisms.

e Repeat the above steps at least ten times and stack the results to produce data that

have no substantial orientation bias in the heterogeneity.
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