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Chapter 3.  Creating a Spatially Heterogeneous Full Stress Tensor 

 The previous chapter discussed how one would filter a scalar quantity in three 

dimensions.  The ultimate goal is to filter both full and deviatoric stress tensors, which 

are comprised of six and five independent quantities respectively.  

Rotational equilibrium requires that a 3D stress tensor is symmetric.  This 

symmetry means that six degrees of freedom are required to specify stress.  The other 

equilibrium condition, 
!" ij

!x jj=1

3

# = fi , which specifies no internal accelerations if there are 

no internal sources, provides an additional three constraints; however, the introduction of 

this equilibrium condition would force us to introduce random sources (dislocations) 

within the medium to produce our heterogeneous slip.  Otherwise, by St. Venant’s 

principle, the inside of a medium far away from the external boundaries and with no 

internal sources would have an approximately uniform stress distribution by definition if 

!" ij

!x jj=1

3

# = fi  is satisfied.  Since the introduction of random sources requires additional 

assumptions about the statistics of fault distributions, fault sizes, slip on faults, etc., in 

this study we opt for not satisfying 
!" ij

!x jj=1

3

# = fi  so that we can produce stress 

heterogeneity without the introduction of internal sources.  Again in this study we are 

primarily interested in producing a first-cut statistical description of the Earth’s crust, 

parameterized by two numbers, Heterogeneity Ratio  and ! , without having to model the 

individual sources that create the heterogeneity. 
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For deviatoric stress tensors, the pressure is subtracted out such that the trace 

(summation of the diagonal elements) equals zero.  This additional constraint reduces the 

degrees of freedom from six to five.  The formula for pressure is 

 p = 1 / 3( ) !
11
+!

22
+!

33( )  (3.1) 

and when we subtract the pressure from our stress tensor, we have the following 

deviatoric stress tensor, 
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 (3.2) 

where 

 !"
11
+ !"

22
+ !"

33
= 0.  (3.3) 

 
The constraint can also be written as 

 !"
22
= # !"

11
+ !"

33( ),  (3.4) 

and our deviatoric stress tensor can be rewritten as 

!"11 !"12 !"13

!"12 # !"11 + !" 33( ) !" 23

!"13 !" 23 !" 33

$
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(
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.

 5 D.O.F. for a symmetric, deviatoric stress tensor[ ]  (3.5) 

 
 Recognizing that a symmetric, full stress tensor has six degrees of freedom and a 

symmetric, deviatoric stress tensor has five degrees of freedom, the question arises, 

“How does one filter a tensor with five or six degrees of freedom?”  At first glance we 

might wish to simply filter !
11

, !
22

, !
33

 !
12

, !
23

, and !
13

 as six independent scalar 

quantities for the full stress tensor or filter !"
11

, !"
33

, !"
12

, !"
23

, and !"
13

 as five 

independent scalar quantities for the deviatoric stress tensor, using the strategy outlined 
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in Chapter 2.  Unfortunately, ! ij  and !" ij  are always defined for a particular coordinate 

system.  If we filter in this way, then we find that the general characteristics of the 

filtered stress are changed when we rotate from one coordinate frame to another.  To 

resolve this problem, we need to rethink how to write our stress tensors.  

 An alternative way would be to represent the five degrees of freedom of the 

deviatoric stress tensor in terms of two scalar invariants of the stress tensor, and three 

orientation angles.  Likewise, we can represent the full stress tensor with three scalar 

invariants and three orientation angles. 

 

Invariant Filtering 

 It is fairly staightforward to filter invariants, quantities that remain unchanged 

upon rotation of the stress tensor or coordinate system.  We have many choices of 

invariants to choose from.  For simplicity, we choose to filter the principal stresses (!
1
, 

!
2

, and !
3
).  For the full stress tensor, we use all three of these principal stresses and for 

the deviatoric stress tensor we will filter !
1
, !

2
, and !

3
 then subtract out the pressure, 

p , so that  

 
!"
1
= "

1
# p

!"
2
= "

2
# p

!"
3
= "

3
# p.

 (3.6) 

 
This reduces the independent invariant quantities from three to two because 

!"
1
+ !"

2
+ !"

3
= 0 .  

 When generating and filtering each scalar principal stress (!
1
, !

2
, or !

3
), we 

begin with Gaussian random noise, clip it at the three standard deviation level, and then 
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apply the 3D filtering described in Chapter 2 to produce 3D filtered heterogeneity with 

1D spectral falloffs of some specified ! .  The Gaussian white noise that we start with is 

clipped at the three standard deviation level to remove extreme outliers because in the 

real Earth there is probably a limit on the amplitude of deviatoric stress, perhaps          

200 MPa, beyond which the rock will begin to fail.  Each scalar is given a zero mean; 

then the composite set of principal stresses (!
1
, !

2
, and !

3
) are given an overall size 

defined by !I
2
= 1.0 , where  

 !I
2
= !"

11

2
+ !"

22

2
+ !"

33

2
+ 2 !"

12

2
+ 2 !"

23

2
+ 2 !"

13

2  (3.7) 

or 

 !I
2
= !"

1

 2
+ !"

2

 2
+ !"

3

 2
. (3.8) 

 
We choose !

1
= 0.0 , !

2
= 0.0 , and !

3
= 0.0  when generating our heterogeneous stress 

tensor, !"
H
x
i( ) , so that any mean values will be subsumed into the spatially 

homogeneous background stress tensor, !"
B

.  This means that there are times when 

!
3
> !

2
> !

1
 does not hold for the heterogeneous principal stresses.  The problem can be 

solved by sorting the principal stresses and their associated orientations to produce 

degenerate principal stress orientations.  However, we will visualize the principal stresses 

in Figures 3.1–3.2 without sorting.   

Figure 3.1 shows !
1
 and !"

1
 for 10,000 Gaussian random points along a 1D 

length, filtered with ! = 0.0 , ! = 0.5 , ! = 1.0 , and ! = 1.5 .  The left-hand plots display 

the filtered principal stresses, and the right-hand plots display the Fourier transform of the 

principal stresses as a function of spatial frequency.  Additionally, on the right-hand 

plots, a straight, thick black line shows the expected !  spectral falloff.   Since !
1
, !

2
, 
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and !
3
 are generated using the identical process, it is only necessary to plot one of the 

principal stresses to show the filtered properties.  The main point of the plots in Figure 

3.1 is to show that indeed our principal stresses, !
1
, !

2
, and !

3
, and deviatoric principal 

stresses, !"
1
, !"

2
, and !"

3
, have the correct spectral falloff.  They should because it is a 

simple application of the principle already demonstrated in Chapter 2.  It is not 

unexpected that our deviatoric principal stresses also have the correct spectral falloff.   

Deviatoric stresses are the principal stresses with the pressure subtracted, where the 

pressure is described by equation (3.1).  We know that for filtered random processes, the 

linear sum of filtered random processes have the same spectral properties as the two 

individual processes if the same filter is used.  Specifically, if R
1
x( )  and R

2
x( )  are two 

Gaussian processes, then if 

 R x( ) = R
1
x( ) + R

2
x( )  (3.9) 

and if F x( )  is a spatial filter,  

 
F x( )* R x( ) = F x( )* R

1
x( ) + R

2
x( )!" #$

                   = F x( )* R
1
x( ) + F x( )* R

2
x( ).

 (3.10) 

Figure 3.2 shows plots of 2D cross sections through 3D grids of 201x201x201 

points.  The principal stress, !
1
, the deviatoric principal stress, !"

1
, and the pressure, p , 

are shown for ! = 0.0 ,! = 0.5 , ! = 1.0 , and ! = 1.5 . For each ! , the 2D cross section 

of stress is visualized two different ways:  1) On the left, are surface plots where the 

vertical amplitude and color corresponds to the amplitude of the scalar principal stress.  

2) On the right, are map view plots, where only the color corresponds to the amplitude of 

the scalar principal stress.  The 2D cross sections are taken from the same location in 

each 3D grid, about halfway along the ẑ  axis.  
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Figure 3.1 a) 
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Figure 3.1 b) 
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Figure 3.1 c) 
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Figure 3.1 d) 
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Figure 3.1.  Filtered scalar invariants, !
1
 and !"

1
, for 10,000 points in 1D.  We start 

with Gaussian white noise and apply the filtering strategy from Chapter 2 to produce !
1
 

with spectral 1D falloffs of ! .  In a) ! = 0.0  is applied, which means no filtering of the 

Gaussian white noise, b) ! = 0.5  is applied, c) ! = 1.0  is applied, and d) ! = 1.5  is 

applied.  Then we subtract out the pressure, p = 1 / 3( ) !
1
+!

2
+!

3( )  to produce !"
1
 with 

the same spectral 1D falloff as !
1
.  On the left are plots of the filtered stresses as a 

function of 1D length, and on the right are the Fourier transforms of the stresses plotted 

as a function of spectral frequency.  The desired !  spectral falloff is represented by a 

thick black line, and we find that indeed the spectral falloff of the filtered principal 

stresses closely follows the desired falloff represented by the thick line. 
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Figure 3.2 a) 
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Figure 3.2 b) 
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Figure 3.2 c) 
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Figure 3.2 d) 
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Figure 3.2.  Plots of filtered scalar invariants, !
1
, !"

1
, and p  for 2D cross sections of 

3D grids. The original 3D grids are 201x201x201; therefore, the 2D cross sections are 

201x201 points.  The cross sections are x-y planes at z = 101 , approximately the center 

of the grid. We start with Gaussian white noise and apply the filtering strategy from 

Chapter 2 to produce filtered scalar invariants with spectral 1D falloffs of ! .  In a) 

! = 0.0  is applied, which means no filtering of the Gaussian white noise, b) ! = 0.5  is 

applied, c) ! = 1.0  is applied, and d) ! = 1.5  is applied.  On the left are surface plots of 

the filtered scalars where the 2 spatial dimensions of the 2D cross section are 

represented by the x and y axes and the amplitude of the scalar quantities is represented 

by the vertical height and color.  On the right, are map view plots of the same 2D cross 

sections where the scalar amplitude is represented by color.  The same color scale is 

used for the left and right hand plots, which goes from -2.5 to 2.5 for ! = 0.0 ,! = 0.5 , 

and ! = 1.0  and from -2.0 to 2.0 for ! = 1.5 .  
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Upon inspection one can notice a few features.  The principal stress, !
1
, tends to have a 

larger amplitude than the deviatoric principal stress, !"
1
, but similar spatial smoothing.   

By design as the value of !  increases so does the spatial smoothing.  Since Figure 3.2 

shows only 2D cross sections through a 3D grid, and the mean is set to zero for the entire 

3D grid, the means of the 2D cross sections are not necessarily zero; in fact, the means of 

the 2D cross sections are often non-zero. 

 

Orientation Filtering 

 The next three quantities we wish to consider filtering are the three angles 

describing the orientation of the stress tensor.  There are several sets of three angles we 

could choose.  We could choose  

• Three Euler angles that describe the rotation of a stress tensor relative to a 

reference orientation.  This would be analogous to the strike, dip, and rake of slip 

vector on a fault plane. 

• Azimuth and plunge of the P axis plus an angle describing the orientation of the T 

axis about the P axis 

• A total rotation angle, ! , about a rotation axis, !,"[ ]  that represents a single 

rotation from a reference stress orientation to our desired point stress orientation. 

The representation we prefer to use is the third one, a total rotation angle, ! , 

about a rotation axis, !,"[ ] .  This seems to be the most natural set of three angles to filter 

if our intended goal is to filter stress tensor orientations.  Namely, when we filter ! , we 

are simply filtering the amplitude of the rotation (amplitude of the spherical linear 

interpolation from the reference orientation to our desired orientation).  When we filter 
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the angles in the rotation axis, !,"[ ] , we are filtering the axis about which the rotation 

takes place, where !,"[ ]  describe the path of the spherical linear interpolation.  So by 

filtering these three quantities (! , ",#[ ] ), we smooth out in space the total 3D orientation 

of the stress tensor.  See Figures 3.3 and 3.4 for graphical explanations of this 

representation.  Figure 3.3 explains how the rotation axis is defined; it passes from the 

origin through the point with colatitude, ! , and longitude, !  (this point is called the pole 

of rotation).  Figure 3.4 shows how once the rotation axis is defined with !,"[ ] , we can 

then apply our single rotation of amplitude ! , about this axis, !,"[ ] . 

 

Figure 3.3.  How the rotation axis, !,"[ ] , is defined.  The rotation axis, is the thick black 

arrow projecting out of the unit sphere.  !  is the colatitude of the rotation axis, the angle 

between the Up vector and the rotation vector, while !  is the longitude of the rotation 

axis, the angle between the North vector and the horizontal projection of the rotation 

axis, in a right-hand coordinate system about the Up vector. 
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a)       b) 
 
 

Figure 3.4.  Two examples of our ! , ",#[ ]( )  representation of 3D rotations.  In a) we 

have ! = 0  and ! = any value  for the rotation axis.  For b) we have ! = " 2  and 

! = " 2  for the rotation axis.  Both a) and b) have an ! = " 2  rotation about their 

respective rotation axes.   

 
 
 
 
 Now that we have defined the three scalar angles we wish to filter, an amplitude, 

! , plus a rotation axis, !,"[ ] , how do we go about filtering them?  We first wish to 

generate completely random sets of ! , ",#[ ]( ) , then filter the three angles.  Random sets 

of ! , ",#[ ]( )  are ! , ",#[ ]( )  such that the summation of N  stress tensors as N !"  

combined with random !"
1
, !"

2
, and !"

3
, produces an expected value of 
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!" =

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

#

$

%
%

&

'

(
(

, i.e.,E !" = 0 .  This is important because when we create our 

filtered heterogeneous component of the stress tensor, there should be no net orientation 

to the deviatoric, heterogeneous term in 3D. 

 E !"Heterogeneous
= 0  (3.11) 

To create truly random sets of ! , ",#[ ]( ) , it is helpful to work in quaternion space, 

producing random quaternions, then transform them back to ! , ",#[ ]( )  space. 

  A quaternion is simply a four-component vector that represents a 3D rotation. 

Analogy can be used to understand this.  To describe a point on a 3D unit sphere, there 

are two different ways to represent the position.  One representation would be a three-

component vector, 
 

!
u = u

x
,u

y
,u

z
!" #$ , with the constraint that 

 

!
u = u

x

2
+ u

y

2
+ u

z

2
= 1 , so 

that the point lies on the surface of the 3D unit sphere.  This reduces the degrees of 

freedom from three to two.  Another representation would be in terms of two angles, !  

and ! .  In the case of a 4D unit hypersphere, we again have two possible analogous 

representations.  We can use a four-component vector, a quaternion, 
 

!
q = q

0
,q
1
,q

2
,q

3[ ] , 

with the constraint that 
 

!
q = q

0

2
+ q

1

2
+ q

2

2
+ q

3

2
= 1 , so that the point lies on the surface 

of the 4D unit sphere and the degrees of freedom reduce from four to three.  

Alternatively, we can use three angles, ! , ! , and ! .  Thus this problem of producing 

random ! , ",#[ ]( )  reduces to the problem of choosing completely random points on the 

surface of a unit 4D hypersphere, which was solved by Marsaglia [1972].   
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The method of Marsaglia [1972] for picking random points on a 4D hypersphere, 

which produces unbiased 3D orientations, is summarized at the following web link 

http://mathworld.wolfram.com/HyperspherePointPicking.html [Weisstein].  In this 

method, one uses a uniform random number generator to pick pairs of points x
1
, x

2( )  and 

x
3
, x

4( ) , keeping only those pairs that satisfy the following constraints, x
1

2
+ x

2

2
< 1 and 

x
3

2
+ x

4

2
< 1.  For each set of points that are retained, one calculates the random 

quaternion, 
 

!
q
R
= q

0

R
,q
1

R
,q

2

R
,q

3

R!" #$ , as follows, 

 

q
0

R
= x

4

1! x
1

2
! x

2

2

x
3

2
+ x

4

2

q
1

R
= x

1

q
2

R
= x

2

q
3

R
= x

3

1! x
1

2
! x

2

2

x
3

2
+ x

4

2
.

 (3.12) 

 Once the random unit quaternions are calculated, we then transform the four-

vectors into their equivalent angles, ! , ",#[ ]( ) .  We use the standard relation between a 

quaternion, 
 

!
q = q

0
,q
1
,q

2
,q

3[ ] , and our set of angles, ! , ",#[ ]( )   

 

q
0
= cos ! 2( )

q
1
= sin ! 2( )sin "( )cos #( )

q
2
= sin ! 2( )sin "( )sin #( )

q
3
= sin ! 2( )cos "( )

 (3.13) 

where 

 
 

!
q = q

0

2
+ q

1

2
+ q

2

2
+ q

3

2
= 1.  

Conversely, we can turn the quaternions into our three angles, ! , ! , and ! . 
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! = 2cos
"1
q
0( )

# = cos
"1
q
3
/ sin ! 2( )( )

$ = tan
"1
q
2
q
1( )

 (3.14) 

where 0° !" ! 360° , 0° !" ! 180° , and 0° ! " ! 360° . 

 After generating random points on the 4D hypersphere (quaternions) and 

transforming these points into our orientation representation, ! , ",#[ ]( ) , we can now 

filter these three angles separately using the scalar filtering technique outlined in the 

previous chapter.  As we will show in Figures 3.11, the filtering process introduces an 

orientation bias.  We remove this bias by stacking at least 10–20 simulations where a 

random rotation has been added to the orientations in each simulation.  Any orientation 

bias cancels out in the stacking process also seen in Figure 3.11.   

To add a random rotation to our stress orientations, we again employ quaternions.  

Quaternions allow rotations to be added algebraically.  For example, if we have a stress 

tensor orientation represented by the quaternion 
 

!
q
A
= q

0

A
,q
1

A
,q

2

A
,q

3

A!" #$  and we wish to add 

on the 3D rotation represented by quaternion 
 

!
q
B
= q

0

B
,q
1

B
,q

2

B
,q

3

B!" #$  to produce a final 

orientation represented by quaternion 
 

!
q
C
= q

0

C
,q
1

C
,q

2

C
,q

3

C!" #$ , the algebra would simply be 

(adapted from 

http://www.mathworks.com/access/helpdesk/help/toolbox/aeroblks/aeroblks.html, 

Quaternion Multiplication) [Mathworks, 1994-2006], 

 

q
0

C
= q

0

B
q
0

A
! q

1

B
q
1

A
! q

2

B
q
2

A
! q

3

B
q
3

A

q
1

C
= q

0

B
q
1

A
+ q

1

B
q
0

A
! q

2

B
q
3

A
+ q

3

B
q
2

A

q
2

C
= q

0

B
q
2

A
+ q

1

B
q
3

A
+ q

2

B
q
0

A
! q

3

B
q
1

A

q
3

C
= q

0

B
q
3

A
! q

1

B
q
2

A
+ q

2

B
q
1

A
+ q

3

B
q
0

A
.

 (3.15) 
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As expected, the order of rotations is important, i.e., rotations are noncommutative.  

 Figure 3.6 shows 1D plots of our filtered orientation angles, ! , ",#[ ]( ) , before 

and after random rotations have been added.  The amplitude angles, ! , are plotted on the 

left as a function of 1D linear distance, and the rotation axes, !,"[ ] , are plotted on the 

right as points on an equal area plot where 0° <! < 360° , 0° < ! < 180° , and 

0° < ! < 360° .  The longitude, ! , is represented by the azimuthal angle about the 

circular, equal area plot as shown in Figure 3.5, and !  is represented by the radial 

distance from the center of the circle. ! = 0°  at the center, and ! = 180°  at the 

circumference.  At first this may seem like an odd representation until one thinks about 

the plot in terms of latitude, ! = 90° "# , instead of the colatitude, ! .  In terms of the 

latitude, ! , ! = 90°  at the center and ! = "90°  at the circumference, which is similar to 

an equal area P-T plot that shows the full plunge range of ± 90° . 

 The top and bottom rows show ! , ",#[ ]( ) , where random orientations have been 

filtered with an !  then multiplied with a reference quaternion.  The top row shows the 

unrotated ! , ",#[ ]( ) , and the bottom row shows the rotated ! , ",#[ ]( ) .  When the 

reference quaternion is q
0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ] , as seen in the top row, ! , ",#[ ]( )  is 

unchanged upon multiplication, because q
0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ]  produces no 

rotation; ! = 2cos
"1
q
0( ) = 2cos"1 1.0( ) = 0° .  When the reference quaternion is 

something other than q
0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ] , as seen in the bottom row, ! , ",#[ ]( )  

is rotated upon quaternion multiplication. 
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 If there is no filtering, ! = 0.0 , then our ! , ",#[ ]( ) s are produced using the 

random unit quaternion generator, and the rotation axes, !,"[ ] , are uniformly distributed 

on the equal area plot as seen in Figure 3.6 a).  As the filtering constant, ! , increases, the 

spatial smoothing of ! , ",#[ ]( )  increases:  1) !  becomes smoother as a function of 

distance.  2) The rotation axes, !,"[ ] , at first clump for ! = 0.5  and ! = 1.0 , then track a 

clearly distinguishable linear path on the equal area plot for ! = 1.5 .  The rotated and 

unrotated cases have fairly similar properties (degree of spatial smoothing, clumping, 

etc.); therefore, we should be able to stack the filtered and randomly rotated ! , ",#[ ]( ) s 

to produce no net orientation, while maintaining to first order, the ! -filtered properties of 

each individual run.  

 

Figure 3.5.  A cartoon of the equal area plots used in Figure 3.6 for the rotation axes, 

!,"[ ] .  The longitude, ! , is the azimuth of the circle, and latitude, ! = 90° "# , is plotted 

as a function of radial distance where, ! = 90° "# = 90°  at the center and 

! = 90° "# = "90° , at the circumference.  Note the cartoon is not necessarily to scale. 
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Figure 3.6 a) 
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Figure 3.6 b) 
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Figure 3.6 c) 
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Figure 3.6 d) 
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Figure 3.6.  A series of 1D simulations are shown with different degrees of smoothing, 

! , applied where a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 .  Each simulation is 

approximately 10,000 points.  For each ! , there are a total of four subplots.  On the top 

left is a 1,000-points-long segment of the filtered rotation angle, ! .  As expected, as !  

increases, the spatial smoothness of the rotation angle, ! , increases.  On the bottom left 

is again ! , but after a random rotation has been applied to the orientation angles.  It 

appears to maintain its filtered properties to first order upon inspection.  See Figure 3.8 

for a more thorough evaluation of what happens to the spectral properties upon rotation 

of coordinate system.  On the top right is an equal area plot with the rotation axes, !,"[ ] , 

plotted as black dots.  On the bottom right is another equal area plot of the rotation 

poles, !,"[ ] , after a random rotation has been applied.  Again the spatially smoothed 

rotation poles maintain their spectral properties to first order.   

 For ! = 0.0 , no spatial smoothing or completely random orientations produce 

completely random rotation poles on our equal area plot.  This unbiased distribution 

remains unchanged upon rotation of coordinate systems.  As !  increases, the rotation 

poles begin clumping together until they form 1D lines, representing the wander of the 

1D data set.  

 

 

 

 

 

 



III-29 

 

 In Figure 3.7, our three orientation angles, ! , ",#[ ]( ) , for 1D simulations are 

visualized in a different way.  3D unit spheres have been plotted with a wire mesh, then 

the position of the rotation axes, !,"[ ] , are plotted as points on the sphere.  Last, the 

color of the points represents the amplitude angle, !  according to the horizontal color 

bars underneath.  On the left, are the unrotated, ! , ",#[ ]( ) , and on the right are the 

rotated, ! , ",#[ ]( ) .  When there is no filtering, ! = 0.0 , the rotation axes, !,"[ ] , are 

uniformly distributed over the sphere, and the color, which represents the amplitude, ! , 

is random.  Additionally, when ! = 0.0  the angles, ! , ",#[ ]( ) , appear to be unchanged 

upon rotation.  There is the same random pattern after rotation as before.  As the filtering, 

! , increases, the spatial smoothing of the points on the sphere increases, and the spatial 

smoothing of the colors increases, representing the smoothing of the three angles, 

! , ",#[ ]( ) , until at ! = 1.5  the data form clear demarcated linear tracks.  The rotated data 

on the right have similar smoothness as the unrotated data to first order. 

 The spectral properties of the unrotated and rotated !  are plotted in Figure 3.8 to 

examine how closely our filtered angles approach the desired !  spectral falloff.  While 

not shown, the rotation axes, !,"[ ] , have similar properties, but !  is more difficult to 

plot because one needs to wrap the phase appropriately before calculating the spectral 

properties.  The plots on the left in Figure 3.8 show the angle !  as a function of 1D 

length, and the plots on the right in Figure 3.8 show the Fourier transform of the angle !  

as a function of spatial frequency.  The right-hand plots also have a thick black line, 

which shows the desired !  spectral falloff.  To first order, ! , follows the desired !  

spectral falloff for both the rotated and unrotated cases with the lowest frequencies 
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sometimes a little underrepresented.  The exact spectral falloff for our three orientation 

angles, ! , ",#[ ]( ) , is calculated in Table 3.1, where the spectral falloffs for 200 1D 

simulations, approximately 10,000 points each is averaged for different values of ! .  

Then the results of Table 3.1 are plotted in Figure 3.9.  We find that indeed the unrotated, 

! , ",#[ ]( ) , has exactly the spectral falloff we want, ! , but the rotated angles, are slightly 

rougher for ! < 0.6 . 
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Unrotated ! , ",#[ ]( ), $ = 0.0   Rotated ! , ",#[ ]( ), $ = 0.0  

 

Figure 3.7 a) 

Unrotated ! , ",#[ ]( ), $ = 0.5   Rotated ! , ",#[ ]( ), $ = 0.5  

 

Figure 3.7 b) 
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 Unrotated ! , ",#[ ]( ), $ = 1.0    Rotated ! , ",#[ ]( ), $ = 1.0  

 

Figure 3.7 c) 

Unrotated ! , ",#[ ]( ), $ = 1.5    Rotated ! , ",#[ ]( ), $ = 1.5  

 

Figure 3.7 d) 

 

 

 



III-33 

 

Figure 3.7.   This is another way to visualize our filtered orientation data.  The position 

of the plotted points on the 3D spheres represents the rotation axes !,"[ ] , and the color 

represents the rotation about the poles, ! , where blue = 0°  and red = 360° .  Of course, 

for ! = 0.0 , there are random positions of the points and random colors, representing 

the random 3D orientations, ! , ",#[ ]( ) .  As !  increases, the spatial smoothing of point 

locations increases until there are linear tracks.  Concurrently, as !  increases, the 

spatial smoothing of color increases until the color changes smoothly from one to 

another along the 1D lines for ! = 1.5 .  This demonstrates that we have successfully 

smoothed the three orientation angles, ! , ",#[ ]( ) , together.   On the left, we plot 

! , ",#[ ]( )  without the random rotation added, and on the right, we plot ! , ",#[ ]( )  with 

the random rotation added.  These show that ! , ",#[ ]( )  still has similar properties 

regardless of the random rotation added. 
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Figure 3.8 a) 
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Figure 3.8 b) 
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Figure 3.8 c) 
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Figure 3.8 d) 
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Figure 3.8.  A series of 1D simulations are shown with different degrees of smoothing, 

! , applied where a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 .  Each simulation is 

approximately 10,000 points.  In this figure, !  is plotted for all 10,000 points on the left, 

and its spectral falloff is plotted on the right.  The top plots represent !  before the 

random rotation is added, and the bottom plots represent !  after the random rotation is 

added.  The main feature to notice is that !  does indeed have the approximately the 

appropriate spectral falloff both before and after the random rotation.  The thick black 

line represents the expected !  falloff, and the smoothed !  data for all the cases we tried 

between 0.0 <! < 1.5  approximately follows this expected thick black line.  Sometimes, 

the very low frequencies are a little underrepresented, but overall this works quite well. 
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Table 3.1.  The Spectral Falloff Calculated for Each Filtered Angle as a Function of !  

!  
!  

Unrotated  
Falloff 

!  
Unrotated  

Falloff 

!  
Unrotated  

Falloff 

!  
Rotated  
Falloff 

!  
Rotated  
Falloff 

0 -4.16E-03 -2.79E-03 -1.62E-03 -4.85E-03 1.19E-03 
0.1 0.1020 0.1016 0.0978 0.0548 0.0489 
0.2 0.2010 0.2016 0.2008 0.1358 0.1317 
0.3 0.2985 0.2951 0.3039 0.2299 0.2211 

0.35 0.3480 0.3525 0.3461 0.2796 0.2645 
0.4 0.4011 0.4003 0.4019 0.3459 0.3301 
0.5 0.5003 0.5008 0.5021 0.4623 0.4352 
0.6 0.6001 0.6006 0.6007 0.5841 0.5475 
0.7 0.7016 0.7006 0.7005 0.6872 0.6609 
0.8 0.8008 0.7987 0.8066 0.8009 0.7778 
0.9 0.8999 0.8999 0.8970 0.8987 0.8822 
1 1.0000 1.0051 1.0030 1.0023 1.0028 

1.1 1.0986 1.0980 1.0969 1.0924 1.1060 
1.2 1.2026 1.1982 1.1961 1.2031 1.2030 
1.3 1.2963 1.3026 1.2996 1.2984 1.2964 
1.4 1.3960 1.4012 1.4020 1.4002 1.3977 
1.5 1.5033 1.4986 1.4989 1.4980 1.4944 

 

If everything is working properly, the spectral falloff should ≈ ! .  For each ! , we 

• generate 200 1D simulations, approximately 10,000 points each,  

• determine the spectral falloff for the log-log plots of the data,  

• then average the slopes for all 200 simulations. 

As expected, the spectral falloff of the unrotated angles, ! , ! , and !  equals !  for 

0.0 ! " ! 1.5 .  The rotated simulations have spectral falloffs close to ! , but tend to be a 

little spatially rougher, especially for ! < 0.6  (Figure 3.9).  We calculate the spectral 

falloff of only the !  and !  rotated angles because the jumps in !  for a rotated 

simulation make it difficult to accurately assess a new spatial roughness. 

 



III-40 

 

 

 

 



III-41 

 

Figure 3.9.   Plots of Table 3.1 data.  The top plot shows spectral falloff as a function of 

!  for the unrotated data, and the bottom plot shows the spectral falloff as a function of 

!  for the rotated data.  In both cases, the desired relationship is a linear line with a 

slope of 1.0 and an intercept of 0.0, indicated by a thick black line.  In the top plot, the 

unrotated, !  (in blue), !  (in red), and !  (in green) plot directly on top of the desired 

black line.  In the bottom plot, the rotated !  (in blue) and !  (in red) tend to be slightly 

rougher spatially for ! < 0.6 , which produces spectral falloff values (negative slopes on 

a log-log plot) that are slightly less than ! . 

 

 

 

Now that we have determined how to create filtered, approximately random, 

heterogeneous stress tensor orientations in terms of our three angles ! , ",#[ ]( )  and 

thoroughly examined their spectral properties, we can convert ! , ",#[ ]( )  into strike, dip, 

and rake, !," ,#( ) . Last, we will combine !," ,#( )  with filtered !
1
, !

2
, and !

3
 to 

produce our full-filtered heterogeneous stress tensor.  Technically, in the code used for 

this thesis, once ! , ",#[ ]( )  has been filtered, we convert it first into the associated 

quaternion vectors, 
 

!
q
F
= q

0

F
,q
1

F
,q

2

F
,q

3

F!" #$ , where F  stands for filtered, then calculate 

!," ,#( ) .  Using the derived equations in Appendix B, we have, 

 tan! =
q

0

F
 q

1

F
 + q

2

F
 q
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F

q
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F
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 - q
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F
 q
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F
 (3.16) 
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 (3.17) 

 tan! =
2 q

0

F
 q

1

F
 + q

2

F
 q

3

F( ) sin"

q
0

F
 q

0

F
#  q

1

F
 q

1

F
# q

2

F
 q

2

F
+ q

3

F
 q

3

F
.
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Appendix A describes how to combine !," ,#( )  with !
1
, !

2
, and !

3
 to produce the full 

heterogeneous stress tensor.  It also explains how to convert !," ,#( )  into the azimuth 

and plunge of the P-T axes, !
P
,"

P( )  and !
T
,"

T( ) .   

 Plots of !
P
,"

P( )  and !
T
,"

T( )  from filtered 1D heterogeneous orientations, 

! , ",#[ ]( ) , are shown in Figure 3.11 for four different levels of smoothing, 

! = 0.0, 0.5, 1.0, and 1.5 .  !
P
,"

P( )  and !
T
,"

T( )  are plotted on equal area plots for a 

plunge range of ± 90°  as diagrammed in Figure 3.10.  Typically, P-T equal area plots 

only have a plunge range of 0° ! 90° , because if for example, !
P
< 0 , then one can just 

apply the following transformation, !
P
' = "!

P
 and !

P
' = !

P
+ " , to create a vector with a 

non-negative plunge that produces the same stress tensor.  However, in our simulations, 

when ! = 1.5 , it is interesting to see the unbroken linear track of the 1D simulation in P-

T space, and this can only be seen if we use the full range of ± 90° .  In the top row, the 

P-T angles, !
P
,"

P( )  and !
T
,"

T( ) , are plotted for filtered, unrotated ! , ",#[ ]( ) , and in the 

bottom row the same data are plotted after a rotation.  The quaternion vector listed for 

each plot is the quaternion that is multiplied with ! , ",#[ ]( ) , where, 

q
0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ]  produces no rotation, and 

 

!
q ! q

0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ]  

produces a rotation.  For ! = 0.0 , the points in P-T space on the equal area plots are 

uniformly distributed.  This means that indeed, the random quaternion generator does 
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produce random orientations in 3D.  Last, as the spatial smoothing, ! , increases, the 

smoothing in P-T space increases.  Thus, it would appear that the spatial smoothing of 

our orientations ! , ",#[ ]( )  translates well into !
P
,"

P( )  and !
T
,"

T( ) . 

 

 

 

Figure 3.10.  A cartoon of the equal area plots used in Figure 3.11 for the P-T azimuths 

and plunges, !
P
,"

P( )  and !
T
,"

T( ) .  The longitude, ! , is the azimuth of the circle, and 

plunge, ! , is plotted as a function of radial distance where, ! = 90°  at the center, and 

! = "90°  at the circumference.  Note the radial lines are not necessarily to scale. 
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Figure 3.11 a) 
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Figure 3.11 b) 
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Figure 3.11 c) 
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Figure 3.11 d) 
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Figure 3.11.  The Principal Compression Axes (P axes) and Principal Tension Axes (T 

axes) are plotted as on equal area plots for a series of simulations.  The P axes are red 

on the left, and the T axes are blue on the right.  The plunge range is ± 90°  on the equal 

area plots instead of the usual 0° ! 90° , so that when ! = 1.5  one can more easily track 

the linear track of the data in P-T space.  The top rows show P-T angles, !
P
,"

P( )  and 

!
T
,"

T( ) , for the filtered and unrotated, ! , ",#[ ]( ) , and the bottom row shows the same 

data except that ! , ",#[ ]( )  were rotated.  The quaternion by which the data ! , ",#[ ]( )  

were multiplied is listed on each plot, where q
0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ]  produces no 

rotation, and 
 

!
q ! q

0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ]  produces a rotation. 

 Note that for a) ! = 0.0  the P-T axes are evenly and randomly distributed on the 

equal area plots for both the unrotated and rotated cases.  This indicates there is no 

orientation bias for ! = 0.0 , which is not surprising since our unfiltered orientations 

were by design generated randomly.  For b) ! = 0.5  one can see that the axes are still 

somewhat randomly distributed, but there is a slight radial clumping for the unrotated P-

T plots, and this clumping of orientations is rotated for the bottom P-T plots.  As !  

increases further, to c) ! = 1.0 , more fine-scale structure and orientational clumping 

arises, and it still has some orientational bias.  Last, when d) ! = 1.5 , the orientations 

smoothly vary from one point to another such that it forms a continuous, wandering line 

in P-T space.  One can see that for ! > 0.0 , a single filtered simulation may not generate 

randomly orientated data; hence, this is why we wish to stack many simulations where 

each data set has been given a random rotation.  Figure 3.13 shows the efficacy of this 

approach. 
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 While the filtering of the orientation angles, ! , ",#[ ]( ) , works quite well in 

producing filtered, P-T axes angles, !
P
,"

P( )  and !
T
,"

T( ) , it also produces an orientation 

bias.  Since we wish to generate heterogeneous stress with no orientation bias, we employ 

the strategy mentioned previously.  Generate at least 10–20 filtered data sets, add a 

random rotation to each data set, then stack the data sets.  Figure 3.13 compares the 

stacking of multiple data sets with and without the random rotations to demonstrate the 

necessity of randomly rotating the data sets before stacking them.  P-T axes are plotted in 

Figure 3.13, using the typical 0° ! 90°  plunge range for P-T equal area plots.  This 

typical plunge range is diagrammed in the Figure 3.12 cartoon.  In Figure 3.13, the top 

row of P-T equal area plots for each !  has stacked 200 1D simulations, each 1,001 

points long, without any random rotations applied to ! , ",#[ ]( ) .  The bottom row of P-T 

equal area plots for each !  has stacked 200 1D simulations, each 1,001 points long, with 

a random rotation applied to ! , ",#[ ]( )  for each simulation.   

One finds that stacking the data alone (top rows), without any random rotations 

applied, helps, but still produces an average bias in the P-T orientations; one can visually 

see this in Figure 3.13 with the uneven coverage of the equal area plots especially for 

! = 1.5 .  When one adds a random rotation to each simulation and then stacks multiple 

simulations (bottom rows), the P-T orientations begin to average out until the equal area 

plots are fairly uniformly covered, and there is little to no orientation bias.  

 Underneath each set of P-T plots, we have also listed the component-wise mean 

heterogeneous stress tensor, that is calculated as follows: 

  !"HeterogeneousMean =
1

N1  N2
!"Heterogeneous

 ij !"
1

 ij
, !"

2

 ij
, !"

3

 ij
,# ij

,$ ij
,% ij( )

i=1

N1

&
j=1

N 2

&  (3.19) 
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where N1  is the number of points in each simulation and N2  is the number of 

simulations.  Note, filtered deviatoric principal stresses, !"
1
, !"

2
, and !"

3
 have been 

combined with our orientation angles ! , ",#[ ]( ) , to generate !"Heterogeneous  for each 

simulation; then the above component-wise mean equation above is applied.  Last, the 

square root of the second invariant of the deviatoric stress tensor, !I
2

, is calculated for 

the component-wise mean heterogeneous stress tensor.  In Chapter 4, we will see why 

!I
2
= !"

11

 2
+ !"

22

 2
+ !"

33

 2
+ 2 !"

12

 2
+ 2 !"

23

 2
+ 2 !"

13

 2 , is so important; !I
2

 is an invariant measure 

of the maximum shear stress and is the quantity used to determine when points fail for 

our grid.  Also, as mentioned in Chapter 1, !I
2

 is used in calculating the ratio of 

heterogeneous stress to background stress.  Therefore, !I
2  HeterogeneousMean  is a natural way 

of measuring the size of the residual average stress tensor.  The smaller the 

!I
2  HeterogeneousMean  the better when attempting to produce heterogeneous deviatoric stress 

tensors with an approximately zero component-wise mean.  We find that in Figure 3.13 

indeed, stacking the data alone is insufficient to produce approximately zero mean stress 

tensors; adding a rotation to each simulation then stacking is necessary if one wishes to 

have a zero mean stress tensor for any filtering power, ! . 

 Our last figure with filtered 1D data, is Figure 3.14, which shows one component 

of the filtered deviatoric stress tensor, !"
11

, and its spectral properties.  The other 

components of the deviatoric stress tensor, !"
22

, !"
33

, !"
12

, !"
23

, and !"
13

, have similar 

spectral properties and are not shown.  The main point of Figure 3.14 is to show that even 

if the orientations ! , ",#[ ]( )  and the principal stresses, !"
1
, !"

2
, and !"

3
 are all filtered 
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with an ! > 0.0 , the components of the stress tensor in a Cartesian coordinate system, 

!"
11

, !"
22

, !"
33

, !"
12

, !"
23

, and !"
13

 do not have the ! spectral falloff.  To create our stress 

tensor, we have rotated principal stresses at each point into their specified reference 

frames.  The simple act of rotating principal stresses into different reference frames, even 

using smoothed rotations, causes the symmetric stress tensor to not have the same !  

smoothing as the principal stresses.  Even if one started with a Cartesian stress tensor and 

smoothed each component separately, then rotated to another reference frame, one loses 

all the !  smoothing spectral properties.  So Figure 3.14 helps demonstrate why we 

choose not to filter the components of a stress tensor for a particular reference frame but 

instead choose to filter the principal stresses and orientation angles. 

 

 

Figure 3.12.  A cartoon of the equal area plots used in Figure 3.13 for the P-T azimuths 

and plunges, !
P
,"

P( )  and !
T
,"

T( ) .  The longitude, ! , is the azimuth of the circle, and 

plunge, ! , is plotted as a function of radial distance where ! = 90°  at the center, and 

! = 0°  at the circumference.  Note the radial lines are not necessarily to scale. 
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Figure 3.13 a)  
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Figure 3.13 b) 
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Figure 3.13 c) 
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Figure 3.13 d) 
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Figure 3.13.  For 4 different levels of smoothing, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and 

d) ! = 1.5 , we stack the results of 200 simulations, 1D length of 1,001 points each, and 

inspect whether or not there still is an orientation bias.  In the top row, each simulation’s 

three orientation angles, ! , ",#[ ]( ) , are filtered, converted to the P-T angles, !
P
,"

P( )  

and !
T
,"

T( ) , then stacked.  In the top row each simulation’s three orientation angles, 

! , ",#[ ]( ) , are filtered, given a random rotation, converted to the P-T angles, !
P
,"

P( )  

and !
T
,"

T( ) , then stacked.  Below each set of P-T equal area plots is an associated 

!"HeterogeneousMean  stress tensor.  This is calculated as follows.  For each simulation, filtered 

principal stresses, !"
1
, !"

2
, and !"

3
 with !I

2
= 1.0 , are combined with the unrotated or 

rotated angles, ! , ",#[ ]( ) , to produce filtered heterogeneous stress tensors.  Then all the 

stress tensors from all the simulations are averaged component-wise to create, 

!"HeterogeneousMean .    Last, !I
2  HeterogeneousMean , is shown as a measure of the size of 

!"HeterogeneousMean .  It shows the extent to which the components of !"HeterogeneousMean  have not 

canceled out in the stacked simulations, and there is still a bias in the heterogeneous 

stress.  Ideally, we want stacked simulations that have the following properties:  1) P and 

T equal area plots with uniform distributions of points (indicating no orientation bias) 2) 

!"HeterogeneousMean  with each component approaching zero; therefore, I '
2  HeterogeneousMean

! 0  

as the number of stacked runs !" .  We find that stacking filtered data alone is 

insufficient (the top row), that one needs to both randomly rotate each simulation and 

then stack the data to produce heterogeneous stress with no orientation bias and a 

I '
2  HeterogeneousMean

! 0  for all ! . 
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Figure 3.14 a) 

Figure 3.14 b) 
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Figure 3.14 c) 

Figure 3.14 d) 
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Figure 3.14.  We plot the one component of a stress tensor for different levels of !  

smoothing.  The other components of the stress tensor have similar spectral properties.  

Smoothed orientation angles, ! , ",#[ ]( ) , and smoothed principal stresses, !"
1
, !"

2
, and 

!"
3
, are combined together to produce a symmetric stress tensor in a particular reference 

frame.  Note that the independent components of the stress tensor are much rougher than 

the smoothed orientation angles and principal stresses.  When the smoothed principal 

stresses, !"
1
, !"

2
, and !"

3
, are rotated into their respective reference frames using the 

smoothed angles, ! , ",#[ ]( ) , to produce the Cartesian stress tensor components, much of 

the !  smoothing is lost.  This occurs because the symmetric stress tensor is defined for a 

Cartesian coordinate system in a particular reference frame, and stress components can 

lose their spectral properties upon rotation.  This property is the reason we chose to filter 

the principal stresses and orientation angles rather than components of the Cartesian 

stress tensor in a particular reference frame.  
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 The last few plots show results for our 201x201x201 3D grids.  Figures 3.15–3.18 

show 2D slices through our filtered 3D grids at the Z = 100  height, midway through the 

3D grids.  The quantities shown in Figures 3.15–3.18 are shown for four different levels 

of smoothing, ! = 0.0, 0.5, 1.0, and 1.5 .  In Figures 3.15–3.17, we find plots of the 

filtered and rotated 3D orientation angles, ! ",#[ ]( ) .  Note for each ! , a different 

random seed is used to create the 3D grid prior to filtering, and a different random 

rotation is applied to each grid.  Random rotations can change the mean values of 

! ",#[ ]( ) ; hence, the 2D slices of ! ",#[ ]( ) , shown in Figures 3.15–3.17, have different 

mean levels for different ! .  This has nothing to do with the filtering.  It is simply a 

function of the different random rotations that are applied. 

In Figure 3.18 we have plots of !"
11

, the first diagonal component of the 

deviatoric stress tensor.  The 3D deviatoric stress tensor is calculated by combining the 

filtered, and rotated 3D orientation angles, ! ",#[ ]( )  with filtered 3D principal stresses, 

!"
1
, !"

2
, and !"

3
.  We only show one component of the filtered 3D deviatoric stress 

tensor because the other components are similar.  Again the components of the deviatoric 

stress tensor are not as spatially smooth as the orientation angles or principal stresses as 

we saw in the 1D.  The only pattern we find within the filtered deviatoric stress tensor is 

that the standard deviations of the off-diagonal components tend to be ≈14% smaller than 

the standard deviations of the diagonal components.   
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a)            b) 

     

c)           d)   

Figure 3.15.  2D slices of the angle, ! , through a 3D grid for four different levels of 

smoothing, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 .  Each grid is 

201x201x201 points, for a total of over 8 million grid points.  The 2D slices shown are in 

the x-y plane approximately halfway through the grid at z = 100.  All the planes exhibit 

similar spatial smoothing.  Since it is a different simulation for each ! , with a different 

random rotation of the angles ! , ",#[ ]( )  for each simulation, the mean value of the 

angle, ! , is different from simulation to simulation. 
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a)           b) 

      

c)           d) 

Figure 3.16.   2D slices of the angle, ! , through a 3D grid for four different levels of 

smoothing, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 .  The 2D slices shown are 

in the x-y plane approximately halfway through the grid at z = 100.  All the planes 

exhibit similar spatial smoothing.  Since it is a different simulation for each ! , with a 

different random rotation of the angles ! , ",#[ ]( )  for each simulation, the mean value of 

the angle, ! , is different from simulation to simulation. 
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a)            b) 

      

c)           d) 

Figure 3.17.  2D slices of the angle, ! , through a 3D grid for four different levels of 

smoothing, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 .  The 2D slices shown are 

in the x-y plane approximately halfway through the grid at z = 100.  All the planes 

exhibit similar spatial smoothing.  Since it is a different simulation for each ! , with a 

different random rotation of the angles ! , ",#[ ]( )  for each simulation, the mean value of 

the angle, ! , is different from simulation to simulation. 

 



III-64 

 

     
a)           b) 

     
c)           d) 
 
Figure 3.18.  2D slices of the first diagonal component of the deviatoric stress tensor, 

!"
11

, through a 3D grid for four different levels of smoothing, a) ! = 0.0 , b) ! = 0.5 , c) 

! = 1.0 , and d) ! = 1.5 .  The 2D slices shown are in the x-y plane approximately 

halfway through the grid at z = 100. !"
11

 is rougher than the smoothed principal stresses, 

!"
1
, !"

2
, and !"

3
, or smoothed orientation angles ! , ",#[ ]( ) .  See Figure 3.14, the 1D 

example, for an explanation.  The other components of the deviatoric stress tensor show 

similar spectral properties, i.e., degree of spatial smoothing. 

 



III-65 

 

 The next question we ask is how random are our 3D grids for different levels of 

spatial smoothing, ! .  Figure 3.19 explores this.  Using the azimuth and plunge ranges 

illustrated in the Figure 3.12 cartoon, Figure 3.19 plots the P-T axes from randomly 

selected points within our 3D grids for four different levels of ! .  For each ! , 100,000 

points are randomly selected and plotted, a component-wise mean stress tensor, 

!"HeterogeneousMean , is calculated, and its associated !I
2  HeterogeneousMean  (a measure of the size of 

!"HeterogeneousMean ) is shown.  If the 3D grid has unbiased orientations, we would expect to 

see a uniform coverage of the equal area P-T plots as we see in Figure 3.19 a) and if the 

stress heterogeneity has a zero mean (which is what we are trying to design), we would 

expect the components of !"HeterogeneousMean  to be close to zero and !I
2  HeterogeneousMean  to be 

very small.  For comparison, the deviatoric principal stresses used in creating the stress 

tensor, have an !I
2
= 1.0 .  We find that for the ! = 0.0  case, Figure 3.19 a), the P-T 

equal area plots are uniformly covered with points as one might expect for no filtering.  

As !  increases, the spatial clumping of data on the P-T plots increases.  Interestingly, 

!I
2  HeterogeneousMean  is quite small for both ! = 0.0  and ! = 0.5 , less than 1%  when 

compared to the size of the input principal stresses, !I
2
= 1.0 .  As !  increases, 

eventually, !I
2  HeterogeneousMean  increases to ! 2%  for ! = 1.0  and !I

2  HeterogeneousMean
" 8%  

for ! = 1.5 .  Consequently, if one remains within the range of 0.0 ! " < 1.0 , there will 

be less than 2% bias within the heterogeneity stress tensor for our 3D grids.   

For first order calculations, a single filtered 3D heterogeneous stress grid should 

be sufficient to approximate heterogeneous stress with zero mean for 0.0 ! " < 1.0  if one 

averages over the entire grid.  For 1.0 ! " ! 1.5 , other issues will arise.  Namely, as !  
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increases and the heterogeneous stress is increasingly smoothed, there will develop 

regions within the grid that will be more likely to fail than others (large !I
2

), which can 

produce an average orientation bias in simulations that generate synthetic focal 

mechanisms.  Again the answer will be to stack results from simulations with different 

3D heterogeneous stress grids.  See Chapter 4 for an explanation as to why regions with 

large !I
2

 are more likely to fail. 

Figure 3.19 demonstrates that there is little to no bias when one averages over our 

entire 3D grids, but what happens if one averages over only a subregion of our 3D grids?   

This is another subject unto itself [Heaton, 2006, in preparation], but for now we just 

want to show that as the spatial smoothing, ! , increases, there is increased clustering of 

orientations in P-T space, and the stress tensor has a significant non-zero mean for 

subregions.  Also some subregions will be more likely to fail than others, those with 

larger !I
2

.  Figure 3.20 diagrams how we divide our grid into subregions (with the 

unprimed numbers) and the subdivide into sub-subregions (with the primed numbers).  

Figure 3.21 shows P-T plots, !"HeterogeneousMean , and !I
2  HeterogeneousMean  for sample subregions 

and sub-subregions.  The azimuthal and plunge ranges are the same as in Figure 3.19.  

For each ! , one subregion, (1,1,1), containing 100,000 points and one sub-subregion, 

(1’,1’,1’), containing 1,000 points are plotted.  As expected, for ! = 0.0 , it is still 

uniform, random, even in the subdivisions of the grid.  For ! = 0.5 , a little spatial 

clumping begins.  It is for ! = 1.0  and ! = 1.5 , that we begin to notice marked 

differences between the average orientations of subdivisions and the entire grid.  For 

example, ! = 1.0 , (1,1,1) has a !I
2  HeterogeneousMean

" 18% , and the sub-subregion (1’,1’,1’) 
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has an !I
2  HeterogeneousMean

" 43% .  Compare that to the !I
2  HeterogeneousMean

" 2%  for 

randomly selected points from the entire 3D grid in Figure 3.19.  When ! = 1.5 , the 

effect can become even more extreme.  (1,1,1) has a !I
2  HeterogeneousMean

" 29% , and the 

sub-subregion (1’,1’,1’) has a !I
2  HeterogeneousMean

" 160%  whereas !I
2  HeterogeneousMean

" 8%  

for randomly selected points in Figure 3.19.   
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Figure 3.19 a) 
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Figure 3.19 b) 
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Figure 3.19 c) 
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Figure 3.19 d) 
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Figure 3.19.  We have P (Principal Compression Axis in red) and T (Principal Tension 

Axis in blue) plots for 3D, filtered, heterogeneous grids at four different levels of 

smoothing, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 .  Each grid is 

201x201x201 points for a total of over 8 million grid points.  We randomly choose 

100,000 points from the over 8 million possible points and plot their P and T Axes axes 

on equal area plots.  For these P-T plots, we choose the conventional plunge range 

shown in Figure 3.12.  For each ! , we calculate the component-wise mean tensor for the 

100,000 randomly selected points, !"HeterogeneousMean  and its associated !I
2  HeterogeneousMean , 

which has units of stress.  For comparison, the principal stresses that are used in 

creating, the stress tensors have a !I
2
= 1.0 .   In a) ! = 0.0 , there is no clumping of the 

points on the P-T plots indicating that the heterogeneous stress is without any 

appreciable orientation bias and is uniformly distributed over orientation space.  Also 

!I
2  HeterogeneousMean , a measure of the size of the stress bias, is quite small for ! = 0.0 , less 

than 1%.   As !  increases, the spatial clumping of the points begins to appear to a small 

degree.  In 3D simulations, this is a much smaller effect than in 1D if the entire 3D grid 

is being sampled.  As !  increases , !I
2  HeterogeneousMean  also begins to increase to ≈2%  for 

! = 1.0  and ≈ 8%  for ! = 1.5 .   
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Figure 3.20.  A diagram of how we divide, then subdivide the 3D grid.  The first division, 

produces subregions, approximately 100,000 points each.  The second division produces 

sub-subregions, approximately 1,000 points each. 
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Figure 3.21 a) 
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Figure 3.21 b) 
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Figure 3.21 c) 
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Figure 3.21.   This is similar to Figure 3.19, except that we plot the P and T axes for all 

the points within different subregions.  The grid is first divided into 4x4x5 subregions of 

approximately 100,000 points each.  Then the (1,1,1) subregion is subdivided into 5x5x4 

sub-subregions, of approximately 1,000 points each.  The purpose of this exercise is to 

show that as the spatial smoothing increases, subregions develop coherent orientation 

patterns.  Therefore, even if the entire grid has little to no orientation bias, a subregion 

might have a significant orientation bias due to the long spatial wavelength coherence of 

orientations.  We plot one sample subregion, (1,1,1), and one sample sub-subregion 

(1’,1’,1’), for each level of smoothing, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) 

! = 1.5 .  We find that for no smoothing,  a) ! = 0.0 , it does not matter whether we are 

looking at a subregion or the entire grid as in Figure 4.17.  The subregions have random, 

uniform distributions of P and T axes on equal area plots.  There is no appreciable 

clumping and !I
2  HeterogeneousMean

" 0.0  for each subregion. Now as !  increases so does 

the spatial clumping in P-T space and the value of !I
2  HeterogeneousMean .  In fact, for ! = 1.5 , 

!I
2  HeterogeneousMean

" 1.6 , for (1’,1’,1’), the same order magnitude as !I
2
= 1.0 , the value of 

!I
2

 for the input principal stresses.  This indicates a very strong orientation bias in the 

sub-subregion.  Therefore, as ! increases the differential between subregion orientation 

bias and the entire grid orientation, grid bias increases.  This is interesting, because as 

we will see in later chapters, this orientation clustering in space reproduces some of the 

clustering statistics seen in the real Earth.  
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Summary of How to Create a Filtered 3D Heterogeneous Stress Tensor with 

Approximately Zero Mean 

 Now that we have explored some of the characteristics of our filtered principal 

stresses, orientation angles, and stress matrices in both 1D and 3D, let us summarize how 

to create our full heterogeneous stress matrices: 

• Spatially filter three or two invariants of the stress tensor.  We choose to filter the 

principal stresses for simplicity.   

o Generate 3D grids with Gaussian random noise for !
1
, !

2
, and !

3
 

independently. 

o Filter each principal stress in 3D using the Chapter 2 methodology.   

o Use all three filtered, independent principal stresses, !
1
, !

2
, and !

3
, to 

create the full stress tensor with six independent quantities. 

o Or use the deviatoric principal stresses, !"
1
, !"

2
, and !"

3
, where 

!"
1
= "

1
# p

!"
2
= "

2
# p

!"
3
= "

3
# p

 and p = 1 / 3( ) !
11
+!

22
+!

33( ) , so that the constraint 

!"
1
+ !"

2
+ !"

3
= 0  is satisfied, to create the deviatoric stress tensor with five 

independent quantities. 

• Create approximately random, spatially filtered orientations: 

o Generate a set of completely random orientations using a random unit 

quaternion generator. 

o Convert the quaternions into three angles, a rotation axis, !,"[ ] , and a 

rotation !  about the rotation axis. 
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o Spatially filter these three angles, ! , ",#[ ]( ) . 

o Resize the angles so that their spatial means have the following values, 

! = 180° , ! = 90° , and ! = 180° , and their possible ranges fall within, 

0° !" ! 360° , 0° !" ! 180° , and 0° ! " ! 360° . 

o Convert the spatially filtered ! , ",#[ ]( ) , back into its associated filtered 

quaternion, 
 

!
q
F
= q

0

F
,q
1

F
,q

2

F
,q

3

F!" #$ . 

o Add a random rotation to this filtered quaternion, using algebraic 

quaternion multiplication. 

o  Then convert this filtered, randomly rotated quaternion into strike, dip, 

and rake, !," ,#( ) . 

• Combine the spatially filtered fault parameters, !," ,#( ) , with the spatially 

filtered principal stresses, to produce an approximately randomly oriented, 

spatially filtered, heterogeneous stress matrix. 

• Use the heterogeneous stress matrix in simulations that produce synthetic focal 

mechanisms. 

• Repeat the above steps at least ten times and stack the results to produce data that 

have no substantial orientation bias in the heterogeneity. 
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