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Chapter 4.  Plastic Yield Criterion (Hencky-Mises Failure Criterion) and How Its 

Interaction with Spatially Heterogeneous Stress Biases Earthquake Failures Toward 

the Stress Rate Tensor, 
 
!!"
T

 

Overview of Why Understanding the Fracture Criterion Is Important 

 In this chapter we wish to demonstrate that as the amplitude of the heterogeneity 

increases, the orientations of the failures in our simulations become increasingly biased 

toward the stress rate tensor, 
 
!!"
T

.  We will do this by 1) analyzing the fracture criterion 

used to bring points to failure as synthetic earthquakes and 2) examining P-T plots of 

synthetic focal mechanisms from our simulations.   

If the real Earth has significant spatially heterogeneous stress, which we have 

reason to believe it does, our observation of bias toward the stress rate, 
 
!!"
T

, has important 

implications for interpreting stress inversion studies.  Currently, it is assumed that the 

popularly used stress inversion schemes [Angelier, 1975; 1984; Carey and Brunier, 1974; 

Etchecopar, et al., 1981; Gephart, 1990; Gephart and Forsyth, 1984; Mercier and Carey-

Gailhardis, 1989; Michael, 1984; 1987] measure the spatially uniform component of the 

tectonic stress tensor, which we call !"
B

 (the background stress).  If the Earth also 

experiences a bias toward the 
 
!!"
T

 in the presence of spatially heterogeneous stress as 

seen in our simulations, then this bias must be subtracted to correctly estimate !"
B

.  If the 

heterogeneity has too large of an amplitude, the correction may be possible, and one will 

not be able to determine !"
B

.  An outline of how one might begin to subtract out this 
 
!!"
T

 

bias and determine !"
B

 is presented in Chapter 5.  In any case, our simulation results 

imply that one must be very careful in interpreting stress inversion results, as they may be 

more complicated than commonly assumed. 
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 In the real Earth, stress inversion schemes are commonly used to infer deviatoric 

stress information from focal mechanism orientations.  In particular, the three principal 

deviatoric stress axes orientations are calculated along with a dimensionless quantity that 

relates the magnitudes of the principal stresses, the stress ratio, R =
!
2
" !

3

!
1
" !

3

#

$%
&

'(
 [e.g., 

Rivera and Kanamori, 2002].  In this study we are not addressing whether or not the 

stress inversion schemes accurately invert the given focal mechanism data.  Instead, we 

are questioning an assumption that goes into the interpretation of the results.  The implicit 

assumption we question is, “Focal mechanisms are a good uniform random measurement 

of stress in the Earth’s crust.”  In other words, “the points which fail and produce 

earthquake focal mechanisms uniformly sample the actual stress field, and upon 

inversion, yield the spatial mean stress tensor, !"
B

.”  In our simulations, we show that the 

interaction of the failure criterion with spatially heterogeneous stress produces a bias to 

which orientations and stress ratios, R , are most likely to fail, a bias toward our stress 

rate tensor, 
 
!!"
T

.  If this is indicative of the real Earth, then the answer to our question 

would be no, focal mechanism data sets are not a good uniform random sampler of stress.  

Not all points fail in the real Earth as earthquakes in a regional stress study, only a minute 

fraction.  The points that are most likely to fail will be those aligned with 
 
!!"
T

; hence, the 

set of focal mechanisms included in inversion studies will produce an inverted stress 

tensor biased toward 
 
!!"
T

.  See Figure 4.1 for a simple scalar example of bias to visually 

demonstrate this concept. 

 In Figure 4.1 we show a scalar quantity represented by the length of the vertical 

bars.  Set A represents the entire data set and Set B is the first half of the data.  The scalar 
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quantities have been arranged so that the larger values happen first and cluster in Set B.  

Because the larger values occur first, estimates of the scalar value will be biased if they 

use only the first half of the data set, Set B.  Similarly, we ask, could the focal 

mechanisms used in standard stress inversions be a biased sampling of stress in the real 

Earth?  Only a small fraction of all the possible points in a study region fail within the 

study window when applying stress inversions, and there is the possibility that this small 

subset of all possible points could have a biased average orientation.  If so, interpretations 

of stress inversions may need to be revised.  This is a difficult question to answer by 

observation alone, which is why we numerically investigate this problem. 
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Figure 4.1.  This is a simple scalar example of bias.  The entire data set is represented by 

Set A.  The first half of the data set is represented by Set B.  In this case, the larger values 

happen first and cluster in Set B.  One cannot estimate the mean of Set A by measuring 

only Set B, because of the bias towards larger scalar values in Set B.  Similarly, if there 

is a bias in which points fail as earthquakes, produce focal mechanisms, and are included 

in stress inversion studies, then the results of stress inversion studies may also be biased; 

consequently, stress inversion studies may not reflect the spatial mean stress as 

commonly assumed. 
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Fracture Criterion Used to Produce Earthquakes—Hencky-Mises Plastic Yield 

The Hencky-Mises plastic yield condition [Housner and Vreeland, 1965] is the 

preferred fracture criterion for this thesis because of its simplicity.  It predicts failure 

when the maximum shear stress is greater than a threshold value.  The measure used is an 

invariant quantity so this failure criterion works regardless of the coordinate system or 

orientation of the individual stress tensors.  The coefficient of friction is essentially zero 

(optimally oriented planes) and pressure does not enter into the equation.  (If one wishes 

to investigate non-zero pressures and coefficients of friction see Appendix C, Coulomb 

Fracture Criterion.)  Last, because we are dealing with optimally oriented planes, the 

conjugate planes become mathematically indistinguishable.  The equation for this plastic 

yield is  

 !I
2
=
2

3
"
0

2  (4.1) 

[Housner and Vreeland, 1965] where !
0
 is the uniaxial yield stress and !I

2
 is the second 

invariant of the deviatoric stress tensor, !" , where 

 !I
2
= !"

11

2
+ !"

22

2
+ !"

33

2
+ 2 !"

12

2
+ !"

23

2
+ !"

13

2#$ %&.  (4.2)   

 At this point it is useful to introduce the tensor scalar product to aid us in our 

equation derivations.  The scalar product of two tensors, A  and B , can be defined as  

 A :B = AijBij
j=1

3

!
i=1

3

! .  (4.3) 

In this notation the second invariant of the deviatoric stress tensor can now be written as,  

 !I
2
= !" : !" ,  (4.4) 

which is a much more compact notation. 
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In our simulations, we wish to determine when each individual point in the 3D 

grid fails; hence, we are interested in examining the failure equation for each single 

spatial grid point, x
i
, where x

i
 is the 3D coordinate of the ith  point in the grid.  The 

equation for a single point is 

 !I
2
x
i
,t( ) = !" x

i
,t( ) : !" x

i
,t( ).  (4.5) 

It is the summation of the squared deviatoric stress matrix elements.  If our deviatoric 

stress tensor at any point in the grid is  

 
 
!" x

i
,t( ) = !"

H
x
i( ) + !"

B
+ !!"

T
 t  (4.6) 

where !"
H
x
i( )  is the spatially heterogeneous stress, !"

B
 is the spatially and temporally 

uniform background tectonic stress, and 
 
!!"
T

 t  is the linearly increasing secular 

component of tectonic stress from plate motion, then our failure criterion can be rewritten 

as 

 
 
!I
2
x
i
,t( ) = !"

H
x
i( ) + !"

B
+ !!"

T
 t( ) : !"

H
x
i( ) + !"

B
+ !!"

T
 t( ).  (4.7) 

Multiplying through, we have 

 
 

!I
2
x
i
,t( ) = !"

H
x
i( ) : !"

H
x
i( ) + !"

B
: !"

B
+ !!"

T
: !!"

T( )t 2

                                     + 2 !"
H
x
i( ) : !"

B
+ 2 !"

H
x
i( ) : !!"

T
 t + 2 !"

B
: !!"

T
 t.

 (4.8) 

Note that  

!"
H
x
i( ) + !"

B( ) : !"
H
x
i( ) + !"

B( ) = !"
H
x
i( ) : !"

H
x
i( ) + 2 !"

H
x
i( ) : !"

B
+ !"

B
: !"

B
 (4.9) 

and  

 
 
2 !"

H
x
i( ) + !"

B( ) : !!"
T

 t = 2 !"
H
x
i( ) : !!"

T
 t + 2 !"

B
: !!"

T
 t.  (4.10) 

Therefore, we can rewrite our second invariant as 
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!I
2
x
i
,t( ) = !"

H
x
i( ) + !"

B( ) : !"
H
x
i( ) + !"

B( )

               + !!"
T

: !!"
T( )t 2

+ 2 !"
H
x
i( ) + !"

B( ) : !!"
T

 t.
 (4.11) 

Interestingly, the first term is simply the second invariant of the deviatoric stress tensor at 

time t = 0 .  This means we can write our equation as 

 
 
!I
2
x
i
,t( ) = !I

2
x
i
,0( ) + !!"

T
: !!"

T( )t 2
+ 2 !"

H
x
i( ) + !"

B( ) : !!"
T

 t  (4.12) 

where 

 !I
2
x
i
,0( ) = !"

H
x
i( ) + !"

B( ) : !"
H
x
i( ) + !"

B( ).  (4.13) 

We now ask, at what time, t
F

, does !I
2
=
2

3
"
0

2 , for each point x
i
, where t

F
 is the time of 

failure?  To address this question conceptually, we can divide !I
2
x
i
,t( )  into three 

components,  

 
 

!I
2
x
i
,t( ) = !I

2
x
i
,0( ) +

d !I
2
x
i
,t( )

dt
t " !!#

T
: !!#

T( )t 2  (4.14) 

where 
 

 

 
 

d !I
2
x
i
,t( )

dt
= 2 !!"

T
: !!"

T( )t + 2 !"
H
x
i( ) + !"

B( ) : !!"
T
.  (4.15) 

 
For small stressing rates, 

 
!!"
T

, and small times, t  (which will be true for the simulations 

shown), all the 
 

!!"
T
: !!"

T( )t  terms are ! 0 . 

Therefore, we have two main terms, 

 !I
2
x
i
,t( ) " !I

2
x
i
,0( ) +

d !I
2
x
i
,t( )

dt
t  (4.16) 

where 
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 !I
2
x
i
,0( ) = !"

H
x
i( ) + !"

B( ) : !"
H
x
i( ) + !"

B( )  (4.17) 

and 
 

 
 

d !I
2
x
i
,t( )

dt
" 2 !#

H
x
i( ) + !#

B( ) : !!#
T
.  (4.18) 

 The first term of equation (4.16), !I
2
x
i
,0( ) , shows the state of the system at t = 0  

and the heterogeneity of the system.  The second term, 
d !I

2
x
i
,t( )

dt
, describes how quickly 

points are either increasing or decreasing their maximum deviatoric shear stress.  For a 

point to fail quickly, it generally needs to satisfy the following three criteria. 

• !I
2
x
i
,0( ) <

2

3
"
0

2 .  In other words, the point x
i
, at t = 0 , must have an !I

2
 less 

than the the failure threshold of 
2

3
!
0

2 , to be considered in the simulation.  We 

find that the placement of the failure threshold, 
2

3
!
0

2 , determines what part of the 

heterogeneity we sample; i.e., do we place 
2

3
!
0

2  above the maximum !I
2
x
i
,0( )  

and sample extreme outliers that would have already plastically yielded, or do 

we place the failure threshold at the 1.5–2.0 standard deviation level within 

!I
2
x
i
,0( )  and exclude the top 5–15% of the points as outliers? 
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• 

 

2

3
!
0

2
" #I

2
x
i
,0( )

2

3
!
0

2

!1 .  For a point x
i
 to fail quickly and be considered in the first 

2,000 failures of the simulations, it needs to start with a value of !I
2
x
i
,0( )  quite 

close to the failure threshold, 
2

3
!
0

2 , at t = 0 . 

• 
d !I

2
x
i
,t( )

dt
> 0 , and preferably maximized.  The time derivative of !I

2
x
i
,t( )  must 

be greater than zero if there is to be any failure at all.  If !I
2
x
i
,0( ) <

2

3
"
0

2  and 

d !I
2
x
i
,t( )

dt
> 0  then the point x

i
 is progressing toward the failure threshold 

2

3
!
0

2 .  

If !I
2
x
i
,0( ) <

2

3
"
0

2  and 
d !I

2
x
i
,t( )

dt
< 0  the point x

i
 is moving further away from 

the failure threshold 
2

3
!
0

2 .  Obviously, the larger the positive rate of change, 

d !I
2
x
i
,t( )

dt
, the more quickly x

i
 progesses toward failure. 

 

Placement of the Failure Threshold 

We opt to normalize !I
2
x
i
,0( )  so that the failure threshold 

2

3
!
0

2  falls somewhat 

below the maximum !I
2
x
i
,0( )  value to avoid outliers for several reasons:  1) The points 

with largest values of !I
2
x
i
,0( )  would already have plastically failed.  2) Sampling the 

extreme outliers in the simulations results in non-steady earthquake rates.  There are very 

few events at first, as one samples the extreme outliers, then the rate rapidly accelerates 
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as one begins to sample the rest of the heterogeneity.  Normalizing !I
2
x
i
,0( )  so that 

2

3
!
0

2  

falls at 1.5 or 2.0 standard deviations produces relatively constant earthquake rates over 4 

orders of magnitude in time.  3) The distribution of tensors present in the family of 

heterogeneous stress tensors, !"
H
x
i( ) , with values of !I

2
x
i
,0( )  close to the failure 

threshold, 
2

3
!
0

2 , partially depends on where the failure threshold falls within the !I
2
x
i
,0( )  

distribution.   If 
2

3
!

0

2
= Maximum "I

2
x
i
,0( ) , then all the points close to 

2

3
!
0

2  will have 

!"
H
x
i( )  ≈ !"

B
.  If 

2

3
!
0

2  falls at the 1.5 or 2.0 standard deviation level for !I
2
x
i
,0( )   (i.e. 

excluding the top ~ 15% or ~ 5% points in !I
2
x
i
,0( )  respectively), there is still bias 

toward !"
B

, but there is generally a greater variety of !"
H
x
i( )  that produce 

 

2

3
!
0

2
" #I

2
x
i
,0( )

2

3
!
0

2

!1 .  If 
2

3
!
0

2  falls at the 1.5 standard deviations level for !I
2
x
i
,0( )  or 

less, we start throwing out too many points associated with the !"
B

 orientation, and a hole 

appears right at the !"
B

 orientation in our P-T plots.  

On the other hand, if !I
2
x
i
,0( )  is normalized so that 

2

3
!
0

2  falls at the 2.0 standard 

deviation level for !I
2
x
i
,0( ) , with 95% of the points in !I

2
x
i
,0( )  below the failure 

threshold, we find a satisfactory tradeoff.  Simulations with this normalization of 

!I
2
x
i
,0( )  have fairly steady earthquake rates over several orders of magnitude in time and 

still provide a good variety of !"
H
x
i( )  close to and aligned with !"

B
.  
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Plots of !I
2
x
i
,0( )with units of Stress

2!" #$  and the failure threshold, 
2

3
!
0

2 , in 1D are 

shown in Figure 4.2 for four different values of spatial smoothing, 

! = 0.0, 0.5, 1.0, and 1.5 . Within each plot, !I
2
x
i
,0( ) is shown for three different values 

of the Heterogeneity Ratio, HR =
Mean  !"

H
x
i( ) : !"

H
x
i( )#$ %&   

 !"
B

: !"
B

  
, where !"

H
x
i( ) : !"

H
x
i( )  

is the second invariant of the heterogeneous stress tensor, !"
H
x
i( ) , and !"

B
: !"

B
 is the 

second invariant of the spatially homogeneous, background stress tensor, !"
B

.  In order of 

increasing heterogeneity amplitude, we have HR = 0.1  plotted in red, HR = 0.3  plotted 

in green, and HR = 1.0  plotted in blue.   They have been normalized so that 95% of the 

points fall below the same failure threshold level, 
2

3
!
0

2 , the !I
2
x
i
,0( )  2.0 standard 

deviation level.  
2

3
!
0

2  is plotted with the thick, horizontal, dashed, black line. The main 

points we wish to show are simply that 1) as HR  increases, the heterogeneous amplitude 

!I
2
x
i
,0( )  increases, 2) as ! increases, the spatial smoothing of !I

2
x
i
,0( )  increases. 
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Figure 4.2 a) 

 
Figure 4.2 b) 
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Figure 4.2 c) 

 
Figure 4.2 d) 
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Figure 4.2.  Plots of !I
2
x
i
,0( )  for 1,001 points in 1D, to show what the maximum shear 

stress looks like at t = 0.0 .  To create !I
2
x
i
,0( ) , we generate !"

H
x
i( )  with different levels 

of spatial filtering, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 , and add it 

component-wise to a background stress tensor, !"
B

, using three different heterogeneous 

amplitudes within each plot.  Within each plot, we have HR = 0.1  in red, HR = 0.3  in 

green, and HR = 1.0  in blue. !I
2
x
i
,0( )  is normalized so that the failure threshold, 2

3
!
0

2 , 

the thick, dashed, black line, falls at the 2.0 standard deviation level of !I
2
x
i
,0( )  values.  

This means approximately 95% of the values of !I
2
x
i
,0( )  are below 2

3
!
0

2 .  Any points 

below 2
3
!
0

2  can be counted as failures in the simulation, and any points above 2
3
!
0

2  at 

time t = 0  are considered outliers that have previously plastically failed.  The points that 

are most likely to fail first are those that have !I
2
x
i
,0( )  close to the failure threshold, 

2

3
!
0

2 , i.e., 

 

2

3
!
0

2
" #I

2
x
i
,0( )

2

3
!
0

2

!1 , and are quickly moving toward failure, i.e., 
d !I

2
x
i
,t( )

dt
 

large and positive. 
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Why the Most Likely Points to Fail Are Biased Toward 
 
!!"
T

, When the 

Heterogeneity Ratio, HR , Is Large 

 To understand why we have an increasing bias toward 
 
!!"
T

 as the heterogeneous 

ratio, HR  (a measure of the heterogeneity amplitude), increases, we once more look at 

equation (4.16), !I
2
x
i
,t( ) " !I

2
x
i
,0( ) +

d !I
2
x
i
,t( )

dt
t .  We rewrite the first and second terms.  

The first term on the right hand side, !I
2
x
i
,0( ) , which describes the initial stress state, can 

be rewritten as 

 !I
2
x
i
,0( ) = !"

H
x
i( ) : !"

H
x
i( ) + 2 !"

H
x
i( ) : !"

B
+ !"

B
: !"

B
 (4.19) 

or  

 !I
2
x
i
,0( ) = !"

H
x
i( ) : !"

H
x
i( ) + 2 !"

H
x
i( ) : !"

B
+ C

0
 (4.20) 

where the constant  

 C
0
= !"

B
: !"

B
.  (4.21) 

The second term on the right hand side of equation (4.16), 
d !I

2
x
i
,t( )

dt
, which 

describes whether or not the points are going toward failure, can be rewritten as,  

 
 

d !I
2
x
i
,t( )

dt
" 2 !#

H
x
i( ) : !!#

T
+ 2 !#

B
: !!#

T
 (4.22) 

or 

 
 

d !I
2
x
i
,t( )

dt
" 2 !#

H
x
i( ) : !!#

T
+ C

1
 (4.23) 

where the constant is 

 
 
C
1
= 2 !"

B
: !!"

T
.  (4.24) 
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Since C
1
 is a constant, it has the same value at every point x

i
 and C

1
 simply 

determines when 
d !I

2
x
i
,t( )

dt
> 0 .  For example, if 

 
!!"
T
= #c !"

B
, where c  is a constant, we 

will have C
1
< 0 , and a number of points will now go away from failure instead of 

toward it.  If the heterogeneity is sufficiently small, HR << 1 , and C
1
< 0 , we may find 

there are no failures right away.  Determining the set of points that have 
d !I

2
x
i
,t( )

dt
> 0  is 

the main effect of C
1
, but because it is a constant, we can ignore it when assessing which 

points are more likely to fail than others; instead, we need to primarily look at the terms 

that are a function of x
i
, to determine why the failures are biased toward 

 
!!"
T

.   

The term that is a function of x
i
 in 

d !I
2
x
i
,t( )

dt
 is 

 
2 !"

H
x
i( ) : !!"

T
.  Because it 

involves component-wise cross-terms of the heterogeneous stress tensor, !"
H
x
i( ) , and 

the stress rate tensor, 
 
!!"
T

, we predict that the points that have the largest, positive 

d !I
2
x
i
,t( )

dt
 will be those where !"

H
x
i( )  is on average aligned component-wise with 

 
!!"
T

.   

What about !I
2
x
i
,0( ) ?  How does this affect which points are most likely to fail?  

Examining equations (4.20) and (4.21), we see that the value of the constant C
0
 simply 

raises or lowers all the points in !I
2
x
i
,0( ) ; it has no bearing on which points are most 

likely to fail, because we normalize the overall size of !I
2
x
i
,0( ) , so that the 95% level is 

at the failure threshold, 
2

3
!
0

2 .  Now the other two terms in equation (4.20) are more 

interesting because they do have different values as a function of x
i
.  2 !"

H
x
i( ) : !"

B
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involves component-wise cross terms between the heterogeneous stress, !"
H
x
i( ) , and the 

background stress, !"
B

; therefore, this term will tend to promote points with !"
H
x
i( ) on 

average aligned with !"
B

 to be near the failure threshold.  However, there is one more 

term to consider, !"
H
x
i( ) : !"

H
x
i( ) , which is simply the second invariant of !"

H
x
i( ) .  

!"
H
x
i( ) : !"

H
x
i( )  promotes points to be near the failure criterion if the overall size of 

!"
H
x
i( )  is large irrespective of orientation.  Consequently, if 

!"
H
x
i( ) : !"

H
x
i( ) >> 2 !"

H
x
i( ) : !"

B
, then there will be little to no bias to which !"

H
x
i( )  

orientations are close to the threshold, and the 
 
2 !"

H
x
i( ) : !!"

T
 term will primarily choose 

points to fail where !"
H
x
i( ) is on average aligned with 

 
!!"
T

.  Now if 

!"
H
x
i( ) : !"

H
x
i( ) << 2 !"

H
x
i( ) : !"

B
, we expect the bias in !"

H
x
i( )  toward !"

B
 to be 

significant for points near the failure threshold.   

Another way to quantify this is in terms of the Heterogeneity Ratio, 

HR =
Mean  !"

H
x
i( ) : !"

H
x
i( )#$ %&   

 !"
B

: !"
B

  
, where if HR << 1 , 

!"
H
x
i( ) : !"

H
x
i( ) << 2 !"

H
x
i( ) : !"

B
, and the !"

HFailure

x
iFailure

( )  (the heterogeneous stress of 

those points that fail) will be biased toward the !"
B

.  As HR  increases, !"
HFailure

x
iFailure

( )  

will be decreasingly biased toward !"
B

 and increasingly biased toward 
 
!!"
T

, until as 

HR >> 1 , !"
H
x
i( ) : !"

H
x
i( ) >> 2 !"

H
x
i( ) : !"

B
, and 

 
!"
HFailure

x
iFailure

( ) # !!"
T

.   

Now that we have examined how the failure criterion, !I
2
x
i
,t( ) =

2

3
"
0

2 , affects the 

selection of !"
HFailure

x
iFailure

( ) , biasing it toward !"
B

 for HR << 1  and toward 
 
!!"
T

 for 
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HR >> 1 , keep in mind that the final stress tensor at failure is a summation of three terms, 

 
!"
Failure

x
iFailure

,t
Failure( ) = !"

HFailure

x
iFailure

( ) + !"
B
+ !!"

T
 t .  For small, 

 
!!"
T

 t , the orientation of our 

failure stress tensors are primarily a tradeoff between !"
HFailure

x
iFailure

( )  and  !"
B

.  If 

HR << 1 , !"
Failure

x
iFailure

,t
Failure( ) # !"

B
, and if HR >> 1 , 

!"
Failure

x
iFailure

,t
Failure( ) # !"

HFailure

x
iFailure

( ) . 

In summary:  

• If HR << 1  

o !"
HFailure

x
iFailure

( )  biased toward !"
B

. 

o !"
Failure

x
iFailure

,t
Failure( ) # !"

B
 

• If HR >> 1  

o 
 
!"
HFailure

x
iFailure

( ) # !!"
T

  

o !"
Failure

x
iFailure

,t
Failure( ) # !"

HFailure

x
iFailure

( )  

o 
 
!"
Failure

x
iFailure

,t
Failure( ) # !!"

T
 

• As HR  increases 

o !"
HFailure

x
iFailure

( )  becomes increasingly biased toward 
 
!!"
T

 instead of !"
B

 

o !"
HFailure

x
iFailure

( )  becomes increasingly important in the !"
Failure

x
iFailure

,t
Failure( )  

equation. 

o Therefore, !"
Failure

x
iFailure

,t
Failure( )  rotates from !"

B
 to 

 
!!"
T

. 

o And the heterogeneity of !"
Failure

x
iFailure

,t
Failure( )  increases. 
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Demonstration of the Bias Toward 
 
!!"
T

 as Heterogeneity Increases:  Simulations of 

the San Gabriel Mountains and the Southern San Andreas Fault Zone 

 In this section we simulate two different regions, the San Gabriel Mountains, 

Region #1, and the Southern San Andreas Fault Zones, Region #2, which we assume to 

have different background stresses, !"
B1

 and !"
B2

 (Figures 4.3 and 4.4).  The same stress 

rate is applied, 
 
!!"
T

, which is simply oriented 45°  relative to the major plate boundary, 

the San Andreas Fault (Figure 4.5, bottom).  As spatial heterogeneity increases, the 

simulations rotate from their respective background orientations ( !"
B1

 and !"
B2

) to the 

stress rate orientation,  !!"
T

 (Figure 4.5).  We run a series of simulations for each region 

with 32 different heterogeneity ratios, HR , spanning 0.1 ! HR ! 100  and for 

! = 0.0, 0.5, 1.0, and 1.5.   We save the first 2,000 failures as our synthetic focal 

mechanisms, !"
Failure

x
iFailure

,t
Failure( ) .  Indeed, as HR  increases, !"

Failure
x
iFailure

,t
Failure( )  

rotates 

from !"
B   to 

 
!!"
T

 and the heterogeneity of !"
Failure

x
iFailure

,t
Failure( )  increases as seen in P-T 

plots of !"
Failure

x
iFailure

,t
Failure( )  (Figures 4.6–4.7).  Figure 4.8 is interesting because it 

visually displays that the simulation failures tend to occur at the intersection of 

d !I
2
x
i
,t( )

dt
> 0  and 

2

3
!
0

2
" #I2 xi ,0( )

2

3
!
0

2

$ 5%  (the top 5%  of the points close to the failure 

threshold), per our previous discussion.   

 One detail we need to emphasize is that since we are using a plastic yield criterion 

in this chapter, similar to Coulomb Failure with µ = 0.0 , failures occurs on maximally 
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orientated planes, ± 45° from the !
1
 and !

3
 axes.  This means that the P axis is aligned 

with the !
1
 principal stress, and the T axis is aligned with the !

3
 principal stress.  

Generally, the P and T axes are not aligned with the principal stresses, as in the case of 

Coulomb Failure with µ > 0.0 .  Appendix A explains the mathematics behind this.  For 

this chapter, however, we use the special case of maximally oriented planes, which have 

P and T axes aligned with !
1
 and !

3
 respectively. 
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Figure 4.3.  Figure modified from Townend and Zoback [2004].  The dashed box with 

the #1 is magnified in Figure 4.4 a) to zoom in on the San Gabriel Mountains, our Region 

#1.  The dashed red box with the #2 is magnified in Figure 4.4 b) to zoom in on the 

Southern San Andreas Fault, our Region #2.  The orientations of maximum compressive 

stress in the Townend and Zoback figure are calculated using earthquake focal 

mechanism inversions, borehole breakouts, and hydraulic fracturing. 
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a) 

 
b) 

Figure 4.4.  a) is a magnified inset from Figure 4.3.  The diagram to the right shows the 

stress orientation we use for the San Gabriel Mountains background stress, !"
B1

.  We 

also have drawn the !
1
 and !

3
 axes next to the inset, where the inward pointing, red 

arrows indicate a N ! S  direction of the principal compression axis, and the small blue 

circle indicates a vertical direction of the principal tension axis.  In b) we have the 

second magnified inset from Figure 4.3.  The diagram to the right shows the stress 

orientation used for our Southern San Andreas simulations background stress, !"
B2

, with 

a principal compressive stress direction (red arrows) almost perpendicular to the fault. 
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Figure 4.5.  The inward pointing red arrows for !
B1

, !
B2

, and 
 
!!
T

 show the directions 

of their respective !
1
 axes.  The outward pointing blue arrows for !

B2
 and 

 
!!
T

 and the 

upward/downward blue arrow represented by the blue circle for !
B1

 show the directions 

of their respective !
3
 axes.  As the amplitude of spatial heterogeneity, HR , increases, 

the simulation stress tensors (component-wise average of the first 2,000 points that fail in 

our 3D grid) increasingly rotate from the background stress to the stress rate, 
 
!!"
T

.  Even 

though our two regions, the San Gabriel Mountains and the Southern San Andreas Fault, 

have very different background stresses, as HR  increases, the simulations for the two 

regions will become increasing similar until for  HR! 1 they will be indistinguishable 

from one another and will have an average failure stress tensor, !"
Failure

x
iFailure

,t
Failure( ) , 

aligned with stress rate, 
 
!!"
T

.  Figures 4.6–4.7 demonstrate this effect with P-T plots of 

simulations for different values of HR .  
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Figure 4.6.  P-T plots of Region #1 on top, the San Gabriel Mountains, and Region #2  

on the bottom, the Southern San Andreas, for different levels of spatial heterogeneity, 

HR =
Mean  !"

H
x
i( ) : !"

H
x
i( )#$ %&   

 !"
B

: !"
B

  
.  The spatial smoothing !  shown here is ! = 0.5 , 

and the plots for ! = 0.0  and ! = 1.0  look almost identical. The P axes are in red and 

the T axes are in blue.  HR , which compares the relative size of the heterogeneous stress 

to the background stress, increases from HR = 0.1  (almost no heterogeneity) to 

HR = 100  (almost all heterogeneity).  For HR = 0.1 , there is little to no scatter of the P-

T orientations, and they are centered on the respective background stress orientations, 

!"
B1

 and !"
B2

.  As HR  increases, the scatter of the P-T axes increases, and the average 

orientations of the simulations rotate toward the stress rate orientation, 
 
!!"
T

.  It becomes 

increasingly difficult to distinguish between the two regions as the spatial stress 

heterogeneity increases, until for HR = 100 , the San Gabriel Mountains simulations and 

the Southern San Andreas Fault simulations look almost identical.  If stress heterogeneity 

in the real Earth is this extreme, one could only measure the stress rate, 
 
!!"
T

; there would 

be no information for determining the actual background stress, which could be quite 

different from 
 
!!"
T

.  
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Figure 4.7.  P-T plots of Region #1 on top, the San Gabriel Mountains, and Region #2  

on the bottom, the Southern San Andreas, for different levels of spatial heterogeneity, 

HR =
Mean  !"

H
x
i( ) : !"

H
x
i( )#$ %&   

 !"
B

: !"
B

  
.  The spatial smoothing !  shown here is ! = 1.5 , 

and the effect of the spatial smoothing is apparent in the P-T plots.  The same 

heterogeneous grid is used for all the simulations with ! = 1.5  and one can see how the 

spatial filtering distorts the P-T patterns seen in the simulations for ! " 1.0 .  There is 

still a rotation as HR  increases as seen in Figure 4.6 and for HR = 100 , the two regions 

become indistinguishable as in Figure 4.6.  This degree of spatial smoothing is 

unrealistic for the real Earth but is kept as an end-member case. 
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Figure 4.8.  This figure containing P-T plots is taken from the simulation for Region #2, 

the Southern San Andreas Fault, with ! = 0.0 , and HR = 1.0 .  It is intended to show that 

simulation failures tend to occur at the intersection of 
d !I

2
x
i
,t( )

dt
> 0  and 

2

3
!
0

2
" #I2 xi ,0( )

2

3
!
0

2

$ 5%  (the top 5%  of the points close to the failure threshold).  All the 

plots in this figure show the orientations of !"
H
x
i( ) , not the full stress tensor.  The top 

left two plots are the P axes in red and the T axes in blue for the points close to the 

failure threshold, 2
3
!
0

2 ; i.e., the 10,000 points plotted are a random sampling of those 

points within the 3D heterogeneous grid where 

2

3
!
0

2
" #I2 xi ,0( )

2

3
!
0

2

$ 5%  is true.    The 

bottom left two plots are the P axes and T axes for points going toward failure; i.e., the 

10,000 points plotted are a random sampling of those points where 
d !I

2
x
i
,t( )

dt
> 0  is true.  

The bottom right two plots show the P and T axes for the first 2,000 failures within the 

simulation.  The top right two plots compare all three quantities and show that the 

simulation failures do indeed occur at the intersection of 
d !I

2
x
i
,t( )

dt
> 0  and 

2

3
!
0

2
" #I2 xi ,0( )

2

3
!
0

2

$ 5% .  

2

3
!
0

2
" #I2 xi ,0( )

2

3
!
0

2

$ 5%  is plotted in green,  
d !I

2
x
i
,t( )

dt
> 0  is 

plotted in magenta, and the first 2,000 simulation failures are plotted in black.  Note that 

the black points occur at the intersection of the green and magenta. 
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Quantifying the Rotation from !"
B

 to 
 
!!"
T

 as Heterogeneity Increases 

 The most obvious way to quantify the rotation from  !"
B

 to 
 
!!"
T

 as heterogeneity 

increases, HR  increasing, would be to calculate the following:  1) The angular difference 

between !"
Failure

x
iFailure

,t
Failure( )  and !"

B
, which we call ! "#

Failure
"#
B

.  2) The angular 

difference between !"
Failure

x
iFailure

,t
Failure( )  and 

 
!!"
T

, which we call 
 
! "#

Failure
"!#
T

.  As HR  

increases and the average failure orientations rotate from !"
B

 to 
 
!!"
T

, ! "#
Failure

"#
B

 will 

increase and 
 
! "#

Failure
"!#
T

 will decrease.  If we wish to normalize this quantity, we can 

calculate 
 

! "#
Failure

"#
B

! "#
B

"!#
T

 and 
 

! "#
Failure

"!#
T

! "#
B

"!#
T

, which typically have values ranging from ≈ 0.0 to 

≈ 1.0.  For example, if 
 

! "#
Failure

"#
B

! "#
B

"!#
T

= 0.0 , the points that have failed in the simulation are 

on average aligned with the background stress, !"
B

.  This is what we would expect for  

HR = 0.0 .  Concurrently, we would expect 
 

! "#
Failure

"!#
T

! "#
B

"!#
T

$ 1.0  if 
 

! "#
Failure

"#
B

! "#
B

"!#
T

= 0.0 .  If 

HR!" , then we would expect the reverse, 
 

! "#
Failure

"!#
T

! "#
B

"!#
T

$ 0.0  and 
 

! "#
Failure

"#
B

! "#
B

"!#
T

$ 1.0 , 

where the points that have failed in the simulation are on average aligned with 
 
!!"
T

.   

If 
 

! "#
Failure

"#
B

! "#
B

"!#
T

$ ! "#
B

"!#
T
%
! "#

Failure
"!#
T

! "#
B

"!#
T

, then we know that the angular difference 

is purely due to a tradeoff of !"
B

 and 
 
!!"
T

, not any other orientations (except for small 

fluctuations due to randomness in the grid); consequently, we can think of these as:  1) 

normalized angular differences in terms of the normalized bias toward the stressing rate 

tensor, 
 
!!"
T

, where 
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! "#
Failure

"#
B

! "#
B

"!#
T

$ ! "#
B

"!#
T
%
! "#

Failure
"!#
T

! "#
B

"!#
T

$ Normalized  Bias (% rotation toward "!#
T

)  and 2)  

angular differences in terms of the angular bias toward the stressing rate tensor, where 

 
! "#

Failure
"#
B
$ ! "#

B
"!#
T
% ! "#

Failure
"!#
T
$  Bias (angular rotation toward "!#

T
) . 

The next question we have to address in quantifying the relationship between the 

stress heterogeneity, HR , and Bias / Normalized  Bias , is how to calculate the angular 

difference between our average failure stress tensor, !"
Failure

x
iFailure

,t
Failure( ) , and either !"

B
 

or 
 
!!"
T

.  In the real Earth, we have limitations on the information we can glean about the 

stress field using earthquakes.  For a single focal mechanism, we can determine only the 

orientations of the P, T, and B axes (three-parameters).  If one assumes the Hencky-Mises 

failure criterion and maximally oriented planes then this also gives us the orientation of 

the three principal stresses (three-parameters); however, if we invert a set of focal 

mechanisms, we can determine both the orientations of the three principal stresses 

(without having to assume maximally oriented planes) and the stress ratio, 

R =
!
2
" !

3

!
1
" !

3

#

$%
&

'(
 [e.g., Rivera and Kanamori, 2002] (four-parameters).  This means that a 

focal mechanism inversion can yield the relative sizes of the components within the 

failure deviatoric stress tensor, but not the overall size.   

This leads us to two different methodologies for quantifying the angular 

difference between two stress tensors.  The first methodology calculates the minimum 

angular difference when only the three orientation parameters are available.  This is 

particularly helpful when comparing individual focal mechanism orientations.  One 

would determine the four different possible sets of strike, dip, and rake, !," ,#( ) , for 
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each focal mechanism or stress tensor, allowing for 0 ! " ! 180°  (Appendix A).   Then 

one would convert the four sets of !," ,#( )  into quaternions for each focal mechanism or 

stress tensor.  Last, using quaternion algebra (see Chapter 3), one would calculate the 

minimum rotation between two focal mechanisms or stress tensors, by calculating the 16 

possible sets of !
R
, "

R
,#

R[ ]( )  and choose the minimum !
R

. 

The second methodology uses the scalar product of two deviatoric stress tensors to 

calculate an angular difference.  Since the scalar product is a scalar quantity, invariant 

upon rotation, we can define an angle between the rank two tensors, A  and B , as  

 !AB = cos
"1 A :B

A B

#

$%
&

'(
 (4.25) 

where  

 A = A :A  

and 

 B = B :B.  

Note that this measure of angular difference yields a result different from !
R

.  It isn’t a 

physical rotation in 3D space.  Instead, it is a measure of the similarity of the two tensors 

including information about the relative sizes of the eigenvalues. 

 Since a deviatoric stress tensor has five independent quantities, normalizing by 

A B  reduces the independent quantities to four in the calculation of !AB ; therefore, 

this type of calculation of angular difference is most useful when we know both the 

orientations of the three principal stresses and one other quantity like the stress ratio as in 
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focal mechanism inversions.  From the three principal stresses and stress ratio, one way 

to reconstruct the deviatoric stress tensor would be as follows: 

• Let !"
3
= 1.0  

• Combine the stress ratio equation, R =
!"
2
# !"

3

!"
1
# !"

3

$

%&
'

()
, and the deviatoric constraint 

!"
1
+ !"

2
+ !"

3
= 0  to derive !"

1
= #

2 # R
1+ R

$
%&

'
()

!"
3
. 

• Then let, !"
2
= # !"

1
+ !"

3( )  

• Then combine these principal stresses with principal orientations to produce the 

deviatoric stress tensor.  See Appendix A. 

As expected, the overall size of this deviatoric stress tensor is unspecified, but it does 

yield the relative sizes of each component. 

 In Figures 4.9–4.12, we apply these two different methodologies for calculating 

the angular difference between !"
Failure

x
iFailure

,t
Failure( )  and !"

B
 for our two regions, San 

Gabriel Mountains and the Southern San Andreas Fault.  Figures 4.9 and 4.10 plot the 

rotation away from !"
B

 toward 
 
!!"
T

 as a function of heterogeneity for our two regions 

using our first methodology, by showing the three-parameter Bias  in Figure 4.9 and the 

three-parameter Normalized  Bias  in Figure 4.10.  Figures 4.11 and 4.12 plot the same 

quantities as 4.9 and 4.10; only this time, we use the second methodology, four-parameter 

Bias  in Figure 4.11 and four parameter Normalized  Bias  in Figure 4.12.  Each point on 

the plots is an average over three simulations with different spatial smoothness, ! = 0.0 , 

! = 0.5 , and ! = 1.0 . 
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 Interestingly, when we use the three-parameter method of calculating Bias  

Region #2, the Southern San Andreas, rotates smoothly from the !"
B

 orientation to the 

 
!!"
T

 orientation as heterogeneity, HR , increases, but Region #1, the San Gabriel 

Mountains, does not.  Region #1, plotted in blue, quickly jumps from the !"
B

 orientation 

to the 
 
!!"
T

 orientation at HR ! 2.0  (Figures 4.9 and 4.10).  When we use the four 

parameter method of calculating Bias , both Region #1 and Region #2 rotate smoothly 

from !"
B

 to 
 
!!"
T

 as heterogeneity, HR , increases (Figures 4.11 and 4.12).  This occurs 

because the stress ratio R ! 1.0  for all HR  in Region #2, so it does not really matter 

which methodology we use, the three-parameter or four-parameter method of calculating 

angular difference, because all the information is contained in the three principal stress 

orientations.  However, for Region #1, the stress ratio, R , is significantly changing along 

with the principal stress orientations, and it follows that the three-parameter method of 

calculating Bias  is insufficient to fully represent the change in orientation as a function 

of HR .  That is why we see a step function at HR ! 2.0  for Region #1.  Regions #1 and 

#2 are extreme examples of this effect; most combinations of !"
B

 and 
 
!!"
T

 will have 

behavior in between these two for the three-parameter methodology of calculating Bias .   

At the same time, whenever possible, it is best to use the four-parameter 

methodology of calculating Bias , which uses the inner product to produce stable Bias  

and Normalized  Bias  curves as a function of HR .  For example, even though Regions #1 

and #2 have very different background stresses, their Normalized  Bias  curves are quite 

similar.  Chapter 5 will expand upon this topic by generating synthetic Bias  and 

Normalized  Bias  curves using the four-parameter methodology that can be compared to 

real data to estimate stress parameters in the real Earth. 
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Figure 4.9 a) 
 

 
Figure 4.9 b) 
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Figure 4.9.  Plots of angular Bias  toward the stressing rate orientation, 
 
!!"
T

, as a 

function of heterogeneity ratio, HR , for the a) San Gabriel Mountains and the b) 

Southern San Andreas Fault.  Bias is calculated two different ways in this plot.  The solid 

black line shows the angular difference between, !"
Failure

x
iFailure

,t
Failure( )  and !"

B
, 

! "#
Failure

"#
B

, and the dashed red line, which plots almost exactly on top shows 

 
! "#

B
"!#
T
$ ! "#

Failure
"!# .  The angular difference for these two quantities, ! "#

Failure
"#
B

 and 

 
! "#

B
"!#
T
$ ! "#

Failure
"!# , is calculated using our three-parameter method.  This methodology 

uses quaternions to determine the minimum rotation angle, ! , between two focal 

mechanisms or the principal orientations in a stress tensor. The red dashed line and the 

solid black lines are averages over simulations with three different levels of spatial 

smoothing, ! = 0.0 , ! = 0.5 , and ! = 1.0 .  The Southern San Andreas simulations 

smoothly rotate from the !"
B

 orientation to the 
 
!!"
T

 as HR  increases, but the San Gabriel 

Mountain simulations jump abruptly from !"
B

 to 
 
!!"
T

 at HR ! 2.0 .  This occurs because 

our fracture criterion is applied to the deviatoric stress tensor, not just the three 

orientation angles; hence, one must take into account the changes in the stress ratio, R , 

in addition to changes in the three principal orientations to adequately parameterize the 

rotation of !"
Failure

x
iFailure

,t
Failure( )  from !"

B
 to 

 
!!"
T

 as HR  increases for any pair of !"
B

 and 

 
!!"
T

. 



IV-39 

 

 
Figure 4.10 a) 
 

 
Figure 4.10 b) 
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Figure 4.10.  Exactly the same plots as Figure 4.9 except that the Normalized  Bias  is 

now being plotted instead of the angular Bias , where all the angles have been divided by 

the maximum possible angular difference, 
 
! "#

B
"!#
T

.  The possible range of values is now 

0.0 ! Normalized  Bias ! 1.0 , where the Normalized  Bias  is really the percent rotation 

toward the 
 
!!"
T

 orientation. 
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Figure 4.11 a) 

 
Figure 4.11 b) 
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Figure 4.11.  Plots of angular Bias  toward the stressing rate orientation, 
 
!!"
T

, as a 

function of heterogeneity ratio, HR , for the a) San Gabriel Mountains and the b) 

Southern San Andreas.  Bias  is calculated two different ways in this plot.  The solid 

black line shows the angular difference between, !"
Failure

x
iFailure

,t
Failure( )  and !"

B
, 

! "#
Failure

"#
B

, and the dashed red line, which plots almost exactly on top shows 

 
! "#

B
"!#
T
$ ! "#

Failure
"!# .  The angular difference for these two quantities, ! "#

Failure
"#
B

 and 

 
! "#

B
"!#
T
$ ! "#

Failure
"!# , is calculated using our four-parameter method.  This method takes 

the tensor scalar product of deviatoric stress matrices that have been calculated from the 

three principal stress orientations and the stress ratio,R , and calculates an angle.  The 

red dashed line and the solid black lines are averages over simulations with three 

different levels of spatial smoothing, ! = 0.0 , ! = 0.5 , and ! = 1.0 .  In this figure, using 

the four-parameter method, both the Southern San Andreas Fault simulations and the 

San Gabriel Mountain simulations smoothly rotate from !"
B

 to 
 
!!"
T

 as HR  increases, 

which is more desirable than the abrupt transition seen for the San Gabriel Mountains 

seen in Figure 4.9 using the three-parameter method. While the four-parameter method 

for calculating angular differences is by far the best, it can only be applied when one has 

an estimate of the stress ratio, R .  If one has only orientation information, such as strike, 

dip, and rake !," ,#( )  when dealing with individual focal mechanism orientations, then 

one cannot use this four-parameter methodology. 
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Figure 4.12 a) 

 
Figure 4.12 b) 
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Figure 4.12.  Exactly the same plots as Figure 4.11 except that the Normalized  Bias  is 

now being plotted instead of the angular Bias , where all the angles have been divided by 

the maximum possible angular difference, 
 
! "#

B
"!#
T

.  The possible range of values is now 

0.0 ! Normalized  Bias ! 1.0 , where the Normalized  Bias  is really the percent rotation 

toward 
 
!!"
T

.  Note how similar are the Normalized  Bias  plots of the San Gabriel 

Mountains and Southern San Andreas as they both smoothly rotated toward 
 
!!"
T

 using 

this four-parameter method of estimating angular differences. 
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