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Chapter 4. Plastic Yield Criterion (Hencky-Mises Failure Criterion) and How Its

Interaction with Spatially Heterogeneous Stress Biases Earthquake Failures Toward

the Stress Rate Tensor, G/,

Overview of Why Understanding the Fracture Criterion Is Important

In this chapter we wish to demonstrate that as the amplitude of the heterogeneity
increases, the orientations of the failures in our simulations become increasingly biased
toward the stress rate tensor, 67.. We will do this by 1) analyzing the fracture criterion
used to bring points to failure as synthetic earthquakes and 2) examining P-T plots of
synthetic focal mechanisms from our simulations.

If the real Earth has significant spatially heterogeneous stress, which we have
reason to believe it does, our observation of bias toward the stress rate, &7, has important
implications for interpreting stress inversion studies. Currently, it is assumed that the
popularly used stress inversion schemes [4ngelier, 1975; 1984; Carey and Brunier, 1974;
Etchecopar, et al., 1981; Gephart, 1990; Gephart and Forsyth, 1984; Mercier and Carey-
Gailhardis, 1989; Michael, 1984; 1987] measure the spatially uniform component of the

tectonic stress tensor, which we call 67, (the background stress). If the Earth also
experiences a bias toward the &7, in the presence of spatially heterogeneous stress as
seen in our simulations, then this bias must be subtracted to correctly estimate 67 . If the

heterogeneity has too large of an amplitude, the correction may be possible, and one will

not be able to determine 67 . An outline of how one might begin to subtract out this &7,

’

bias and determine G, is presented in Chapter 5. In any case, our simulation results

imply that one must be very careful in interpreting stress inversion results, as they may be

more complicated than commonly assumed.
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In the real Earth, stress inversion schemes are commonly used to infer deviatoric
stress information from focal mechanism orientations. In particular, the three principal

deviatoric stress axes orientations are calculated along with a dimensionless quantity that

. . . o,—0
relates the magnitudes of the principal stresses, the stress ratio, R = (#] [e.g.,
0, ~0;

Rivera and Kanamori, 2002]. In this study we are not addressing whether or not the
stress inversion schemes accurately invert the given focal mechanism data. Instead, we
are questioning an assumption that goes into the interpretation of the results. The implicit
assumption we question is, “Focal mechanisms are a good uniform random measurement
of stress in the Earth’s crust.” In other words, “the points which fail and produce
earthquake focal mechanisms uniformly sample the actual stress field, and upon
inversion, yield the spatial mean stress tensor, 67 .” In our simulations, we show that the
interaction of the failure criterion with spatially heterogeneous stress produces a bias to
which orientations and stress ratios, R, are most likely to fail, a bias toward our stress
rate tensor, G/, . If this is indicative of the real Earth, then the answer to our question
would be no, focal mechanism data sets are not a good uniform random sampler of stress.
Not all points fail in the real Earth as earthquakes in a regional stress study, only a minute
fraction. The points that are most likely to fail will be those aligned with &7, ; hence, the
set of focal mechanisms included in inversion studies will produce an inverted stress
tensor biased toward &7 . See Figure 4.1 for a simple scalar example of bias to visually
demonstrate this concept.

In Figure 4.1 we show a scalar quantity represented by the length of the vertical

bars. Set A represents the entire data set and Set B is the first half of the data. The scalar
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quantities have been arranged so that the larger values happen first and cluster in Set B.
Because the larger values occur first, estimates of the scalar value will be biased if they
use only the first half of the data set, Set B. Similarly, we ask, could the focal
mechanisms used in standard stress inversions be a biased sampling of stress in the real
Earth? Only a small fraction of all the possible points in a study region fail within the
study window when applying stress inversions, and there is the possibility that this small
subset of all possible points could have a biased average orientation. If so, interpretations
of stress inversions may need to be revised. This is a difficult question to answer by

observation alone, which is why we numerically investigate this problem.
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Figure 4.1. This is a simple scalar example of bias. The entire data set is represented by
Set A. The first half of the data set is represented by Set B. In this case, the larger values
happen first and cluster in Set B. One cannot estimate the mean of Set A by measuring
only Set B, because of the bias towards larger scalar values in Set B. Similarly, if there

is a bias in which points fail as earthquakes, produce focal mechanisms, and are included
in stress inversion studies, then the results of stress inversion studies may also be biased,
consequently, stress inversion studies may not reflect the spatial mean stress as

commonly assumed.
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Fracture Criterion Used to Produce Earthquakes—Hencky-Mises Plastic Yield

The Hencky-Mises plastic yield condition [Housner and Vreeland, 1965] is the
preferred fracture criterion for this thesis because of its simplicity. It predicts failure
when the maximum shear stress is greater than a threshold value. The measure used is an
invariant quantity so this failure criterion works regardless of the coordinate system or
orientation of the individual stress tensors. The coefficient of friction is essentially zero
(optimally oriented planes) and pressure does not enter into the equation. (If one wishes
to investigate non-zero pressures and coefficients of friction see Appendix C, Coulomb
Fracture Criterion.) Last, because we are dealing with optimally oriented planes, the
conjugate planes become mathematically indistinguishable. The equation for this plastic
yield is

)
= gfg (4.1)

[Housner and Vreeland, 1965] where 7, is the uniaxial yield stress and I is the second

invariant of the deviatoric stress tensor, 6", where

’

’ 72 ’2 ’2 2 ’2 72
I;=o0] +05, +05 +2[ o +0% + 0 |. (4.2)
At this point it is useful to introduce the tensor scalar product to aid us in our

equation derivations. The scalar product of two tensors, A and B, can be defined as

3 3
A:B=2 3 AB;. 43)
i=1 j=1
In this notation the second invariant of the deviatoric stress tensor can now be written as,

I,=0":0, (4.4)

which is a much more compact notation.
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In our simulations, we wish to determine when each individual point in the 3D
grid fails; hence, we are interested in examining the failure equation for each single
spatial grid point, X., where X, is the 3D coordinate of the ith point in the grid. The
equation for a single point is

I(x,,t)=0’(x,.t): 6’(x,.1). 4.5)
It is the summation of the squared deviatoric stress matrix elements. If our deviatoric
stress tensor at any point in the grid is

o'(x,,t)=0(x,)+0,+6 t (4.6)
where 67, (xl) is the spatially heterogeneous stress, 67, is the spatially and temporally
uniform background tectonic stress, and G ¢ is the linearly increasing secular
component of tectonic stress from plate motion, then our failure criterion can be rewritten
as

I (x,.1)= (0% (x,)+ 05 + 67 1):(07, (x,)+ 67 + 67 1). (4.7)

Multiplying through, we have

L(x,.t)=0(x,):0%(x,)+ 0} :0,+(6] : 6, )t “48)
+207,(x,): 0, +207,(x,): 6} t +206),: 6} . '

1

Note that
(07, (x,)+0%): (0} (x,)+06%)=0%(x,): 6% (x,)+207 (x,): 6, + 0} 167 (4.9)
and

2(0% (x,)+6%): 6} 1=207,(x,): 6} t +26}: 6} 1. (4.10)

Therefore, we can rewrite our second invariant as
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1(5,0)=(0% (%) + 3 ): (07, (x ) +07)

4.11)
+(67 :67 )1 +2(07, (x,)+063): 67 .

Interestingly, the first term is simply the second invariant of the deviatoric stress tensor at

time #=0. This means we can write our equation as
I(x,.1)=I5(x,,0) + (67 :67)¢* +2(07, (x,) + 0} ) : &7 1 (4.12)
where
1;(x,,0)= (0}, (x,)+6%): (0} (x,) + 0}). (4.13)

. 2 . . .
We now ask, at what time, ¢,, does I, = E‘L'g , for each point x, , where ¢, is the time of

failure? To address this question conceptually, we can divide I, (xi,t) into three

components,
T, (X,
L(x,.t)=1; (xi,0)+%t—(6‘; 167 )1 (4.14)
where
AL \xt) E;i’t) =2(67 :67 )t +2(0%, (x,)+6%): 67. (4.15)

For small stressing rates, G, and small times, ¢ (which will be true for the simulations
shown), all the (&7 : 67 )¢ terms are =0.

Therefore, we have two main terms,

a3 (x,).

I(x,,t) = I;(x,,0) + "

(4.16)

where



IV-8

1;(x,,0)= (o, (x,)+6%): (0}, (x,) + o)) (4.17)
and
—dlé(x"’t)zz(o’ (x,)+0%):6; (4.18)
dt H i B)* T* °

The first term of equation (4.16), I, (xi,O) , shows the state of the system at 1 =0

dl}(x,.t)

and the heterogeneity of the system. The second term, J
t

, describes how quickly

points are either increasing or decreasing their maximum deviatoric shear stress. For a

point to fail quickly, it generally needs to satisfy the following three criteria.

2
o I;(x,0)< grg . In other words, the point X, , at # =0, must have an I less
. 2, . . . .
than the the failure threshold of gfo , to be considered in the simulation. We
2
find that the placement of the failure threshold, gré , determines what part of the

. . 2 .
heterogeneity we sample; i.e., do we place gré above the maximum 7, (xi,O)

and sample extreme outliers that would have already plastically yielded, or do

we place the failure threshold at the 1.5-2.0 standard deviation level within

I (xi,O) and exclude the top 5—15% of the points as outliers?
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ifg - Ié (Xi’o)

. 5 < 1. Fora point x; to fail quickly and be considered in the first
30

2,000 failures of the simulations, it needs to start with a value of 7, (xi,O) quite
. 2,
close to the failure threshold, g‘co ,att=0.

dr}(x,,t) - : " ,
. — 5 >0, and preferably maximized. The time derivative of 1] (xi,t) must
t

2
be greater than zero if there is to be any failure at all. If 7}(x,,0)<=1; and

a (x.1)

2
y >0 then the point x, is progressing toward the failure threshold =7 .
t

dr}(x,,t)

2
If 1;(x,,0) < grg and —> y <0 the point x, is moving further away from
t

2
the failure threshold =7.. Obviously, the larger the positive rate of change,
3

dl}(x,.t)

J , the more quickly x; progesses toward failure.
t

Placement of the Failure Threshold

2
We opt to normalize I}(x,,0) so that the failure threshold gré falls somewhat

below the maximum 7} (x,,0) value to avoid outliers for several reasons: 1) The points

with largest values of 1, (xi,O) would already have plastically failed. 2) Sampling the

extreme outliers in the simulations results in non-steady earthquake rates. There are very

few events at first, as one samples the extreme outliers, then the rate rapidly accelerates
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. . . 2
as one begins to sample the rest of the heterogeneity. Normalizing I, (xi,O) so that gré

falls at 1.5 or 2.0 standard deviations produces relatively constant earthquake rates over 4

orders of magnitude in time. 3) The distribution of tensors present in the family of

heterogeneous stress tensors, 6, (x, ), with values of 7}(x,,0) close to the failure

threshold, %1'2 , partially depends on where the failure threshold falls within the 7 (x.,0
3 Fo p y aep 2\ X,

. . . 2 2 . , . 2 2 3
distribution. If ETO = Maximum I}(x,,0), then all the points close to g‘co will have

2
o, (x,)=0o). If gré falls at the 1.5 or 2.0 standard deviation level for 7}(x,,0) (i.e.

excluding the top ~ 15% or ~ 5% points in 1, (xi,O) respectively), there is still bias

toward o, but there is generally a greater variety of 6/, (xl) that produce

ifg - Ié (Xi’o)

2
3%

2
<1. If gré falls at the 1.5 standard deviations level for 7 (x,,0) or

less, we start throwing out too many points associated with the 6/, orientation, and a hole

appears right at the ¢/, orientation in our P-T plots.

2
On the other hand, if 7;(x,,0) is normalized so that gré falls at the 2.0 standard

deviation level for 7}(x;,0), with 95% of the points in 7;(x;,,0) below the failure
threshold, we find a satisfactory tradeoff. Simulations with this normalization of

I (xi,O) have fairly steady earthquake rates over several orders of magnitude in time and

still provide a good variety of 67, (xl) close to and aligned with o7, .
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2
Plots of I} (x,,0) with units of [Stress2] and the failure threshold, gré ,in 1D are

shown in Figure 4.2 for four different values of spatial smoothing,

o =0.0,0.5, 1.0, and 1.5 . Within each plot, I, (xl.,O) 1s shown for three different values

\/Mean[ ¢, (x,): o, (xl)]

of the Heterogeneity Ratio, HR =
NEATA

, where 7, (x,): 6%, (x,)

is the second invariant of the heterogeneous stress tensor, 67, (xl) ,and 07, : 07 is the

second invariant of the spatially homogeneous, background stress tensor, 6. In order of

increasing heterogeneity amplitude, we have HR = 0.1 plotted in red, HR = 0.3 plotted

in green, and HR =1.0 plotted in blue. They have been normalized so that 95% of the

2
points fall below the same failure threshold level, gré , the 7;(x,,0) 2.0 standard

deviation level. %‘L’é is plotted with the thick, horizontal, dashed, black line. The main

points we wish to show are simply that 1) as HR increases, the heterogeneous amplitude

I;(x,,0) increases, 2) as « increases, the spatial smoothing of 7;(x,,0) increases.
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Figure 4.2. Plots of I, (xl.,O) for 1,001 points in 1D, to show what the maximum shear

stress looks like at t =0.0. To create I}(x,,0), we generate &’ (x,) with different levels
of spatial filtering, a) . =0.0, b) a=0.5,¢c) a=1.0, andd) o =1.5, and add it
component-wise to a background stress tensor, G, using three different heterogeneous

amplitudes within each plot. Within each plot, we have HR =0.1 inred, HR=0.3 in

2
green, and HR =1.0 in blue. I, (xl.,O) is normalized so that the failure threshold, g‘cé,
the thick, dashed, black line, falls at the 2.0 standard deviation level of I, (xl.,O) values.

2
This means approximately 95% of the values of I, (xl.,O) are below g‘cé Any points

2 2
below g‘cé can be counted as failures in the simulation, and any points above g‘cé at

time t =0 are considered outliers that have previously plastically failed. The points that

are most likely to fail first are those that have I, (xl.,O) close to the failure threshold,

2 2 ’
%1'2 ie ETO ° (Xi,O) < 1, and are quickl ing t d fail ) M
3 %00 e > , quickly moving toward failure, i.e., &

2
30

large and positive.
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Why the Most Likely Points to Fail Are Biased Toward G/, When the

Heterogeneity Ratio, HR , Is Large

To understand why we have an increasing bias toward &7, as the heterogeneous
ratio, HR (a measure of the heterogeneity amplitude), increases, we once more look at

dr; (x;,1)

equation (4.16), I (x,.t) = I;(x,,0) + "

t . We rewrite the first and second terms.

The first term on the right hand side, 1, (xi,O) , which describes the initial stress state, can
be rewritten as
I(x,,0)=06%(x,): 6% (x,)+ 20, (x,): 6} + 0, : 0 (4.19)
or
I(x,,0) =0, (x,): 0% (x;)+ 207 (x,): 6% + C, (4.20)
where the constant
C,=0%,:0%. (4.21)

dl(x.,t
The second term on the right hand side of equation (4.16), % , which
t

describes whether or not the points are going toward failure, can be rewritten as,

Ax,0) E;"’t) ~20%,(x,): 67 +207, : 6, (4.22)
or
Ax0) E;"’t) ~20,(x,): 6} +C, (4.23)

where the constant is

C, =20, :6,. (4.24)
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Since C, is a constant, it has the same value at every point x;, and C, simply

a (x.1)
dt

determines when >0. For example, if 6, = —c 07, where ¢ is a constant, we

will have C, <0, and a number of points will now go away from failure instead of

toward it. If the heterogeneity is sufficiently small, HR <<1, and C, <0, we may find

dr; (x;.1)

dt

there are no failures right away. Determining the set of points that have >0 is

the main effect of C,, but because it is a constant, we can ignore it when assessing which

points are more likely to fail than others; instead, we need to primarily look at the terms

that are a function of x,, to determine why the failures are biased toward &7, .

’

M is zo-H(xi):(s’T, Because it

The term that is a function of X, in J
t

involves component-wise cross-terms of the heterogeneous stress tensor, 67, (xl) , and
the stress rate tensor, &7, we predict that the points that have the largest, positive

dl)(x.,t) . ) X ) C
M will be those where 67, (xl) is on average aligned component-wise with 67, .

What about 7, (xl.,O) ? How does this affect which points are most likely to fail?
Examining equations (4.20) and (4.21), we see that the value of the constant C,, simply

raises or lowers all the points in 7, (xl.,O) ; it has no bearing on which points are most

likely to fail, because we normalize the overall size of I, (xl.,O) , so that the 95% level is
) 2, ) .
at the failure threshold, gfo . Now the other two terms in equation (4.20) are more

interesting because they do have different values as a function of x,. 267, (Xi) 10,
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involves component-wise cross terms between the heterogeneous stress, 67, (xl) , and the

background stress, 67 ; therefore, this term will tend to promote points with 67, (xl) on
average aligned with 67, to be near the failure threshold. However, there is one more

term to consider, 67, (x;,): 67, (x,), which is simply the second invariant of 67, (x,).

G, (Xi) o (X,-) promotes points to be near the failure criterion if the overall size of

orientations are close to the threshold, and the 267, (X,-) : 67 term will primarily choose
points to fail where 67, (xl) is on average aligned with &7.. Now if

o), (x,): 0, (x,) << 207 (x,): 6/, we expect the bias in 6/, (x,) toward &', to be
significant for points near the failure threshold.

Another way to quantify this is in terms of the Heterogeneity Ratio,

HRJMwn[jé <> )]

, where if HR << 1,

o), (x,): 0, (x,)<<20%(x,): 0%, and the oy (Xz’m,,»,u,.e ) (the heterogeneous stress of

those points that fail) will be biased toward the 67 . As HR increases, 6}, (Xl.F . )
will be decreasingly biased toward ¢’ and increasingly biased toward &7, until as

HR>>1, o, (x,): 0% (x,)>> 207, (x;): 05, and G}, (Xim,,»,m ) ~ 6.
Now that we have examined how the failure criterion, 7}(x,,t)= 2‘[3 , affects the

selection of 07, (Xl.F y ), biasing it toward 6/, for HR << 1 and toward &7, for
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HR >>1, keep in mind that the final stress tensor at failure is a summation of three terms,

’ =0 (xl.F ) )+ 0, +6; t. Forsmall, 6} t, the orientation of our

o Failure (Xin”»,m.e ’ tFailure ) Hpitire

failure stress tensors are primarily a tradeoff between & (Xl.F . ) and o). If

HFailure

HR<<1, o] (xl.F ) ,tFa”m) =0y, and if HR>>1,

Failure

, ’
)0 (x ).
O-Fall“"@ ( igaiture ** Failure GH Faiture \" Failure

In summary:

o If HR<<1

o O, (Xl.F y ) biased toward o, .

HFailure

’ ’
o GFailure (Xiﬂ,i,m ’ tFai/ure) - 6B

o If HR>>1

ptd ~’
X, )-
© 6 H raiture ( Failure 6 T

, ’
. X. t, . ) =0 (X ; )
Failure ( igaiture ** Failure H giture \ ™ Faiture

1

o
6T

=’
o GFailure (Xiﬂ,i,m ’ tFai/ure )

U

e As HR increases

~/

(Xl.F . ) becomes increasingly biased toward &7, instead of o7,

O HFailure
, ) ) ) ) ,
o) Hpo (X - ) becomes increasingly important in the 67, (X o ol Fa”m)
equation.

~ ’ ~/
o Therefore, G Fal.,m(X,.Fll”m_E,tFaﬂm) rotates from 67, to G7.

’
Failure

o And the heterogeneity of © (X,.F o ’tFailure) increases.
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Demonstration of the Bias Toward &7, as Heterogeneity Increases: Simulations of

the San Gabriel Mountains and the Southern San Andreas Fault Zone
In this section we simulate two different regions, the San Gabriel Mountains,
Region #1, and the Southern San Andreas Fault Zones, Region #2, which we assume to

have different background stresses, 67, and 67, (Figures 4.3 and 4.4). The same stress
rate is applied, &7, which is simply oriented 45° relative to the major plate boundary,

the San Andreas Fault (Figure 4.5, bottom). As spatial heterogeneity increases, the

simulations rotate from their respective background orientations (67, and 67, ) to the
stress rate orientation, 67 (Figure 4.5). We run a series of simulations for each region

with 32 different heterogeneity ratios, HR, spanning 0.1 < HR <100 and for

a=0.0,0.5,1.0,and 1.5. We save the first 2,000 failures as our synthetic focal

: 4 : ~
mechanisms, G Fal.,m(Xl.Fu”m_e,tFaﬂm). Indeed, as HR increases, G (X.F[ t ) rotates

. s .
Failure ipgine ? Failure

from 67 to &) and the heterogeneity of o (X.F[ t ) increases as seen in P-T

. s .
Failure ipgine * " Failure

’
Failure

plots of G (Xim,ﬂm-e ’tFailure) (Figures 4.6—4.7). Figure 4.8 is interesting because it

visually displays that the simulation failures tend to occur at the intersection of

2 2 ’
dr.(x.,t ST~ 1(x,0)
% >0 and 5 < 5% (the top 5% of the points close to the failure
t 2
—T
3 0

threshold), per our previous discussion.
One detail we need to emphasize is that since we are using a plastic yield criterion

in this chapter, similar to Coulomb Failure with ¢ = 0.0, failures occurs on maximally
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orientated planes, + 45° from the 0, and o, axes. This means that the P axis is aligned
with the o, principal stress, and the T axis is aligned with the o, principal stress.
Generally, the P and T axes are not aligned with the principal stresses, as in the case of
Coulomb Failure with 1 >0.0. Appendix A explains the mathematics behind this. For
this chapter, however, we use the special case of maximally oriented planes, which have

P and T axes aligned with o, and o, respectively.
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Figure 4.3. Figure modified from Townend and Zoback [2004]. The dashed box with
the #1 is magnified in Figure 4.4 a) to zoom in on the San Gabriel Mountains, our Region
#1. The dashed red box with the #2 is magnified in Figure 4.4 b) to zoom in on the
Southern San Andreas Fault, our Region #2. The orientations of maximum compressive
stress in the Townend and Zoback figure are calculated using earthquake focal

mechanism inversions, borehole breakouts, and hydraulic fracturing.
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Figure 4.4. a) is a magnified inset from Figure 4.3. The diagram to the right shows the
stress orientation we use for the San Gabriel Mountains background stress, 67,. We
also have drawn the o, and O, axes next to the inset, where the inward pointing, red
arrows indicate a N — S direction of the principal compression axis, and the small blue
circle indicates a vertical direction of the principal tension axis. In b) we have the
second magnified inset from Figure 4.3. The diagram to the right shows the stress

orientation used for our Southern San Andreas simulations background stress, G, with

a principal compressive stress direction (red arrows) almost perpendicular to the fault.
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San Gabriel Mountains

Background Orientation Southern San Andreas Fault

Background Orientation

Stress Rate

<«—'—> Orie?tation
(.
Figure 4.5. The inward pointing red arrows for G, G,,, and 6, show the directions
of their respective o, axes. The outward pointing blue arrows for 6., and 6, and the
upward/downward blue arrow represented by the blue circle for G ,, show the directions
of their respective O, axes. As the amplitude of spatial heterogeneity, HR, increases,

the simulation stress tensors (component-wise average of the first 2,000 points that fail in
our 3D grid) increasingly rotate from the background stress to the stress rate, 6. Even
though our two regions, the San Gabriel Mountains and the Southern San Andreas Fault,
have very different background stresses, as HR increases, the simulations for the two

regions will become increasing similar until for HR > 1 they will be indistinguishable

. . ey 4
from one another and will have an average failure stress tensor, G, (X ’tFailure)’

Failure

aligned with stress rate, &7.. Figures 4.6—4.7 demonstrate this effect with P-T plots of

simulations for different values of HR.
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Figure 4.6. P-T plots of Region #1 on top, the San Gabriel Mountains, and Region #2

on the bottom, the Southern San Andreas, for different levels of spatial heterogeneity,

JMean[ o/, (x,): 0 (x,)]
HR = — . The spatial smoothing o shown here is o0 = 0.5,
J 6,0
and the plots for a =0.0 and o =1.0 look almost identical. The P axes are in red and
the T axes are in blue. HR, which compares the relative size of the heterogeneous stress
to the background stress, increases from HR = 0.1 (almost no heterogeneity) to
HR =100 (almost all heterogeneity). For HR = 0.1, there is little to no scatter of the P-
T orientations, and they are centered on the respective background stress orientations,

’

6%, and ©%,. As HR increases, the scatter of the P-T axes increases, and the average
orientations of the simulations rotate toward the stress rate orientation, &7.. It becomes
increasingly difficult to distinguish between the two regions as the spatial stress
heterogeneity increases, until for HR =100, the San Gabriel Mountains simulations and
the Southern San Andreas Fault simulations look almost identical. If stress heterogeneity
in the real Earth is this extreme, one could only measure the stress rate, G, ; there would

be no information for determining the actual background stress, which could be quite

different from &7, .
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Figure 4.7. P-T plots of Region #1 on top, the San Gabriel Mountains, and Region #2

on the bottom, the Southern San Andreas, for different levels of spatial heterogeneity,

HR = \/Mean[ S (Xi) A (Xl)] . The spatial smoothing o shown here is a.=1.5,
J 6,0
and the effect of the spatial smoothing is apparent in the P-T plots. The same
heterogeneous grid is used for all the simulations with o =1.5 and one can see how the
spatial filtering distorts the P-T patterns seen in the simulations for a <1.0. There is
still a rotation as HR increases as seen in Figure 4.6 and for HR =100, the two regions

become indistinguishable as in Figure 4.6. This degree of spatial smoothing is

unrealistic for the real Earth but is kept as an end-member case.
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Figure 4.8. This figure containing P-T plots is taken from the simulation for Region #2,

the Southern San Andreas Fault, with o = 0.0, and HR =1.0. [t is intended to show that

dl(x.,t
simulation failures tend to occur at the intersection of % >0 and
t

<5% (the top 5% of the points close to the failure threshold). All the

plots in this figure show the orientations of 67, (Xi ) , not the full stress tensor. The top

left two plots are the P axes in red and the T axes in blue for the points close to the

failure threshold, iré ; i.e., the 10,000 points plotted are a random sampling of those

%Tg - Ié (Xi’o)

points within the 3D heterogeneous grid where > <5% is true. The
3%

bottom left two plots are the P axes and T axes for points going toward failure, i.e., the

dl(x.,t
10,000 points plotted are a random sampling of those points where % >0 is true.
t

The bottom right two plots show the P and T axes for the first 2,000 failures within the

simulation. The top right two plots compare all three quantities and show that the

’

Xt
simulation failures do indeed occur at the intersection of % >0 and
t

2 2 ’ 2 2 ’
370 IZ(Xi’O) 370 IZ(Xi’O) ' ' dlg(xi,t) '
<5%. < 5% is plotted in green, —————=>0 is
2, 2, dt
gTO gTO

plotted in magenta, and the first 2,000 simulation failures are plotted in black. Note that

the black points occur at the intersection of the green and magenta.
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Quantifying the Rotation from ¢/, to /. as Heterogeneity Increases
The most obvious way to quantify the rotation from 6’ to G/ as heterogeneity

increases, HR increasing, would be to calculate the following: 1) The angular difference

’
Failure

between G 6. 2) The angular

Failure

’ : )
(X - ’tFailure) and o', which we call Z&

difference between G,

Failure Failure

(Xl.Fu”m_e,tFaﬂm) and 67, which we call £6%,,,.67. As HR

increases and the average failure orientations rotate from 67 to 67, £6%,,,.05 Will

increase and £G",

Failure

G, will decrease. If we wish to normalize this quantity, we can

G it O 20 i O . . .
calculate —F4e—E and —Ffelre—L "which typically have values ranging from = 0.0 to
£07,06; £0,067;
. S o i . . . . .
~1.0. For example, if —F“<£ = (.0, the points that have failed in the simulation are
BY¥T

on average aligned with the background stress, 6’ . This is what we would expect for

46/ ) 6, . 46/ ) G/
HR=0.0. Concurrently, we would expect — L ~ 10 if — b =00, If
£07,06; Z0°,06;
Z6:':011'110’66;" ~ 00 and Z6:':(11'11#66:5’ ~

HR — oo, then we would expect the reverse, 1.0,

! =/ !’ =/
Z£07,06; Z£07,06;

where the points that have failed in the simulation are on average aligned with &7, .

YA f . L0707 :
If % ~ /0,67 — % , then we know that the angular difference
GBGT GBGT

is purely due to a tradeoff of 67 and &7, not any other orientations (except for small
fluctuations due to randomness in the grid); consequently, we can think of these as: 1)
normalized angular differences in terms of the normalized bias toward the stressing rate

tensor, 67, where
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’ ’

VA S ., ZCim0 , _ . .
— et ~ /6,67 — —F4—L ~ Normalized Bias (% rotation toward 67.) and 2)
Z£0°,06; Z0°,06;

angular differences in terms of the angular bias toward the stressing rate tensor, where

YA

Failure

’ e —/
GB = LGBGT - ZGl”(/zilure

G, = Bias (angular rotation toward 67.).

The next question we have to address in quantifying the relationship between the

stress heterogeneity, HR, and Bias / Normalized Bias , is how to calculate the angular

difference between our average failure stress tensor, G (X.F ot ), and either o,

Failure ipgine ? Failure
or 6 . In the real Earth, we have limitations on the information we can glean about the

stress field using earthquakes. For a single focal mechanism, we can determine only the
orientations of the P, T, and B axes (three-parameters). If one assumes the Hencky-Mises
failure criterion and maximally oriented planes then this also gives us the orientation of
the three principal stresses (three-parameters); however, if we invert a set of focal
mechanisms, we can determine both the orientations of the three principal stresses

(without having to assume maximally oriented planes) and the stress ratio,

R= (%) [e.g., Rivera and Kanamori, 2002] (four-parameters). This means that a
1~ Y3
focal mechanism inversion can yield the relative sizes of the components within the
failure deviatoric stress tensor, but not the overall size.
This leads us to two different methodologies for quantifying the angular
difference between two stress tensors. The first methodology calculates the minimum
angular difference when only the three orientation parameters are available. This is

particularly helpful when comparing individual focal mechanism orientations. One

would determine the four different possible sets of strike, dip, and rake, (@,5,/1) , for
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each focal mechanism or stress tensor, allowing for 0 <8 <180° (Appendix A). Then
one would convert the four sets of (@,5,/1) into quaternions for each focal mechanism or
stress tensor. Last, using quaternion algebra (see Chapter 3), one would calculate the
minimum rotation between two focal mechanisms or stress tensors, by calculating the 16
possible sets of (a)R,[QR,¢R]) and choose the minimum @, .

The second methodology uses the scalar product of two deviatoric stress tensors to

calculate an angular difference. Since the scalar product is a scalar quantity, invariant

upon rotation, we can define an angle between the rank two tensors, A and B, as

ZAB = cos_'[ A:B j (4.25)
[AllB]

where
All=va:A
and
|Bl=VEB:E.
Note that this measure of angular difference yields a result different from w,. Itisn’ta

physical rotation in 3D space. Instead, it is a measure of the similarity of the two tensors
including information about the relative sizes of the eigenvalues.
Since a deviatoric stress tensor has five independent quantities, normalizing by

|A||B|| reduces the independent quantities to four in the calculation of ZAB; therefore,

this type of calculation of angular difference is most useful when we know both the

orientations of the three principal stresses and one other quantity like the stress ratio as in
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focal mechanism inversions. From the three principal stresses and stress ratio, one way
to reconstruct the deviatoric stress tensor would be as follows:
e Leto;=10

’ ’

0-2 0.3
’

e Combine the stress ratio equation, R =| —
0, - 0;

), and the deviatoric constraint

’ ’ ’ : ’ 2-R ’
o, +0,+ 0% =0 toderive 0] =— TR 0.

e Thenlet, 0} =—(0]+0%)

e Then combine these principal stresses with principal orientations to produce the
deviatoric stress tensor. See Appendix A.
As expected, the overall size of this deviatoric stress tensor is unspecified, but it does
yield the relative sizes of each component.

In Figures 4.9-4.12, we apply these two different methodologies for calculating

the angular difference between G, (X.F ot ) and ¢, for our two regions, San

. s .
Failure ipgine * Failure

Gabriel Mountains and the Southern San Andreas Fault. Figures 4.9 and 4.10 plot the
rotation away from 6/, toward G/ as a function of heterogeneity for our two regions
using our first methodology, by showing the three-parameter Bias in Figure 4.9 and the
three-parameter Normalized Bias in Figure 4.10. Figures 4.11 and 4.12 plot the same
quantities as 4.9 and 4.10; only this time, we use the second methodology, four-parameter
Bias in Figure 4.11 and four parameter Normalized Bias in Figure 4.12. Each point on

the plots is an average over three simulations with different spatial smoothness, o = 0.0,

o=0.5,and x=1.0.
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Interestingly, when we use the three-parameter method of calculating Bias
Region #2, the Southern San Andreas, rotates smoothly from the G, orientation to the
G, orientation as heterogeneity, HR, increases, but Region #1, the San Gabriel
Mountains, does not. Region #1, plotted in blue, quickly jumps from the 6/, orientation
to the &7, orientation at HR = 2.0 (Figures 4.9 and 4.10). When we use the four

parameter method of calculating Bias , both Region #1 and Region #2 rotate smoothly

from ¢’ to G as heterogeneity, HR, increases (Figures 4.11 and 4.12). This occurs

because the stress ratio R =1.0 for all HR in Region #2, so it does not really matter
which methodology we use, the three-parameter or four-parameter method of calculating
angular difference, because all the information is contained in the three principal stress
orientations. However, for Region #1, the stress ratio, R, is significantly changing along
with the principal stress orientations, and it follows that the three-parameter method of
calculating Bias is insufficient to fully represent the change in orientation as a function
of HR. That is why we see a step function at HR = 2.0 for Region #1. Regions #1 and

#2 are extreme examples of this effect; most combinations of 67, and 6, will have

behavior in between these two for the three-parameter methodology of calculating Bias .
At the same time, whenever possible, it is best to use the four-parameter
methodology of calculating Bias , which uses the inner product to produce stable Bias
and Normalized Bias curves as a function of HR. For example, even though Regions #1
and #2 have very different background stresses, their Normalized Bias curves are quite
similar. Chapter 5 will expand upon this topic by generating synthetic Bias and
Normalized Bias curves using the four-parameter methodology that can be compared to

real data to estimate stress parameters in the real Earth.
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Figure 4.9. Plots of angular Bias toward the stressing rate orientation, G, as a

function of heterogeneity ratio, HR, for the a) San Gabriel Mountains and the b)

Southern San Andreas Fault. Bias is calculated two different ways in this plot. The solid

’

black line shows the angular difference between, 6%, (X - ,tFailm) and o,

£0,

Failure

G, and the dashed red line, which plots almost exactly on top shows

’
Failure

’
Failure

L6367 — £6%,.,..6 . The angular difference for these two quantities, £G, ., Gy and

£06,6, — £6%,.,..0, is calculated using our three-parameter method. This methodology

Failure
uses quaternions to determine the minimum rotation angle, @, between two focal
mechanisms or the principal orientations in a stress tensor. The red dashed line and the
solid black lines are averages over simulations with three different levels of spatial
smoothing, o« =0.0, aa=0.5, and o« =1.0. The Southern San Andreas simulations

smoothly rotate from the G’ orientation to the 6, as HR increases, but the San Gabriel
Mountain simulations jump abruptly from 6’ to &7 at HR =2.0. This occurs because

our fracture criterion is applied to the deviatoric stress tensor, not just the three
orientation angles; hence, one must take into account the changes in the stress ratio, R,

in addition to changes in the three principal orientations to adequately parameterize the

’
Failure

. — ’ Py . . ’
rotation of G (XiFuﬂm_e,tFaﬂm) from 6’ to 6. as HR increases for any pair of 67, and

~’

G .
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Figure 4.10. Exactly the same plots as Figure 4.9 except that the Normalized Bias is

now being plotted instead of the angular Bias, where all the angles have been divided by
the maximum possible angular difference, £6,67.. The possible range of values is now
0.0 < Normalized Bias <1.0, where the Normalized Bias is really the percent rotation

toward the &, orientation.
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Figure 4.11. Plots of angular Bias toward the stressing rate orientation, &7, as a

function of heterogeneity ratio, HR, for the a) San Gabriel Mountains and the b)

Southern San Andreas. Bias is calculated two different ways in this plot. The solid

’

black line shows the angular difference between, 6%, (X - ’tFailure) and o,

£0,

Failure

G, and the dashed red line, which plots almost exactly on top shows

’
Failure

’
Failure

£6,6, — £6%,.,..6 . The angular difference for these two quantities, £G,, ., Gy and

L0667 — £6%,.,..6, is calculated using our four-parameter method. This method takes

Failure
the tensor scalar product of deviatoric stress matrices that have been calculated from the
three principal stress orientations and the stress ratio, R, and calculates an angle. The
red dashed line and the solid black lines are averages over simulations with three
different levels of spatial smoothing, &« =0.0, «=0.5, and oo =1.0. In this figure, using
the four-parameter method, both the Southern San Andreas Fault simulations and the
San Gabriel Mountain simulations smoothly rotate from G’ to &, as HR increases,
which is more desirable than the abrupt transition seen for the San Gabriel Mountains
seen in Figure 4.9 using the three-parameter method. While the four-parameter method
for calculating angular differences is by far the best, it can only be applied when one has
an estimate of the stress ratio, R. If one has only orientation information, such as strike,

dip, and rake (©,8,1) when dealing with individual focal mechanism orientations, then

one cannot use this four-parameter methodology.
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Figure 4.12. Exactly the same plots as Figure 4.11 except that the Normalized Bias is

now being plotted instead of the angular Bias, where all the angles have been divided by

the maximum possible angular difference, £6,67.. The possible range of values is now

0.0 < Normalized Bias <1.0, where the Normalized Bias is really the percent rotation

toward &7.. Note how similar are the Normalized Bias plots of the San Gabriel
Mountains and Southern San Andreas as they both smoothly rotated toward &, using

this four-parameter method of estimating angular differences.
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