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4 Summary and Reflections

4.1 Summary of results

In the above body of work, I describe the anatomy of the von Economo neurons.
I have shown that the VENs in fronto-insula and anterior cingulate cortex form a single
population when characterized on the basis of their dendritic architecture, and that, using
this same criteria, this population is distinct from pyramidal neurons. In particular, I have
shown that a typical VEN has a sparse dendritic tree, with less than half the total
dendritic length of a typical pyramidal neuron.

I have additionally shown that the VENs express a rich array of surface receptors,
many of which implicate these cells in the mediation of social decision making (see
below). For example, I found that most VENSs strongly express the D3 receptor, whereas
only about half of the layer 5 pyramidal cells do, and that this expression is dense on the
soma and on the apical dendrites. Other notable discoveries include the VEN expression
of the SHT-1b receptor, and the SHT2b receptor, the latter of which is the first described
occurrence of this receptor on cells in the human brain.

These results lend themselves to a hypothesis supporting the role of the VENs in
fast decision making during uncertain circumstances, particularly in social contexts. We
probed this hypothesis functionally by doing an fMRI study of humor, which activated

both FI and ACC.
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4.2  The social cognition hypothesis

In light of the above evidence, we hypothesize that the recently evolved von
Economo neurons are a functional specialization of a circuit involved in making
appropriate responses during quickly changing, ambiguous circumstances (Allman et al.,
2005). Links between the von Economo cells and interoception — including, literally, “gut
feelings” — could provide the basis for their role in fast decision making in the absence of
explicit reasoning. In apes and humans, complex social interactions between
conspecifics provide a forum in which this cognitive capacity would prove to be
particularly useful. This is because participants must rapidly synthesize an enormous
number of relevant but often ephemeral informational cues in order to act appropriately.
We thus propose that von Economo cells mediate the rapid assessments and behavioral

modifications required for the successful navigation of social interactions.

4.3 Future directions

As with any body of research, more work needs to be done. The receptor
immunohistochemistry done in this paper is by no means exhaustive, and new antibodies
are developed every year, increasing opportunities for exploration. Double labeling of
various receptors will indicate if they are co-expressed; for example, V1a vasopressin
(see Appendix) and D3 colocalization would further implicate these cells in mediating the
rewarding aspects of social bonding. We can also further explore the role of the GTF2i
protein that is absent in William’s syndrome patients and upregulated in humans

compared to other primates (see Appendix).
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There are also additional, basic questions about the VENSs that could be

addressed in the future. For example, are the VENSs inhibitory or excitatory? Certainly
all of the available evidence suggests that they are excitatory — for example, they are
projection neurons, and have a receptor profile similar to other layer 5 pyramidal neurons
— but with the successful application of an antibody that recognizes GAD or EEAC, this
question may be definitively answered. Another basic question that I was unable to
explain during my tenure as a graduate student was the origin of the axon in these cells.
In many Nissl-stained VENS, the axon appears to sprout from the side of the soma.
However, confirming this will require either electron micrographs or the colocalization of
axon-specific markers with somatic marker. Given the confluence of axons in the grey
matter, this is not a straightforward task, and may require the application of an antibody
specific to the axon hillock itself. Finally, I am extremely interested to see the results of
the computational models of the von Economo Golgi stains. Will the VENs have a
distinctive physiological “fingerprint” as a result of their unusual dendritic morphology?
And if not, what else might have driven the evolution of a new cell shape so late in
phylogeny?

There are additional ways to test the social cognition hypothesis (with respect to
VENSs) in addition to immunohistochemical and Golgi methods. Stereological counts of
the VENs will be illuminating, particularly performed on brains of donors who had
pathological disorders involving social dysfunction: autism, William’s syndrome,
acallosal agenesis, and fronto-temporal dementia. New and imaginative fMRI studies

will bolster (or debunk) the hypothesis regarding FI and ACC coactivation during social



interactions. Finally, lesion studies will permit us to assess whether damage to FI

results in a selective deficit in social intelligence.
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5 Appendix A- Vl1a Receptor and GTF-2ii in the VENSs

Functional imaging paradigms associated with social behavior reliably activate
both VE cell regions. For example, both ACC and FI are active during the act of lying
(telling untruths), and they are both active when a subject receives an unfair offer while
playing the Ultimatum game(Sanfey et al., 2003; Spence et al., 2004). Studies by Bartels
and Zeki show both regions are active when subjects view the face of their love partner or
child (Bartels and Zeki, 2000; Bartels and Zeki, 2004). Singer and colleagues showed in
2004 that both VE cell regions are active when a person feels empathy for pain, that is,
when they know that their loved one, outside of the scanner, is being delivered an electric
shock (Singer et al., 2004b). Interestingly, the extent of activation an individual shows
under these conditions is directly correlated to that individual’s score on a trait
measurement for empathy. Finally, in a separate study, Singer and colleagues
demonstrated that left FI is specifically active when subjects view faces of individuals

who are reported to behave in a trustworthy fashion (Singer et al., 2004a).



5.1 Vasopressin Vl1a

Figure 16 VEN from ACC labeled with a Vla
receptor antibody.
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Fortunately, there is an excellent
molecular model that allows us to
specifically implicate the von Economo
neurons in these various social behaviors. A
body of work by Insel and Young indicates
that the oxytocin and vasopressin Vla
receptors mediate social bonding (Insel et al.,
1998; Lim et al., 2004; Young et al., 2001).
Insel and colleagues also suggest that these
molecules may interact with dopamine to
impart the rewarding aspects of social
bonding (Insel et al., 1998). I tested adult
human ACC and FI tissue for reactivity to
antibodies raised against the vasopressin
Vla, V1b, V2 receptors and oxytocin
receptor. My results show that the antibodies
specific for the V1a receptor label a

subpopulation of VE cells, as well as

pyramidal neurons in layers 2/3 and 5 of ACC and FI (Figure 20). V1b receptors, while

apparent on a subpopulation of large pyramidal cells in layer 5 of ACC, did not label the

VENSs. However, the pattern of labeling was interesting in that the apical dendrites
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labeled with the V1b receptor antibody formed columns that spanned layer 5 to layer 1.

The vasopressin V2 and oxytocin receptor antibodies did not reveal any specific labeling.

52 GTF-2iRD1

One of the most remarkable immunocytochemical findings for the VENS is their
strong dendritic staining with the antibody to a gene product for the gene GTF2iRD1 (see
Figure 21). This finding is the result of collaboration between the Korenberg and Allman
labs. GTF2iRD1 together with GTF2i are duplicated genes which are part of the set of
genes that are deleted in William’s syndrome (Pérez Jurado et al, 1998). The loss of this
duplicated pair is associated with poor visuospatial abilities and possibly hypersocial
behavior in this syndrome (Hirota et al, 2003; Korenberg, personal communication).

GTF21RD1’s duplicate GTF2i is among the 25 most upregulated genes in an
array of 7645 genes tested in a comparison between humans and chimpanzees (Preuss et
al 2004). GTF2i1 expression is 2.5 to 4.2 times greater in humans than in chimpanzees.
The gene products for GTF21i and GTF2iRD1 function both as transcription factors in the
cell nucleus and signal transducers in the cytoplasm (Roy, 2001).

In the VENS, the gene products extend far out into the dendrites where they may
mediate interactions between the dendritic periphery and gene transcription in the nucleus
(Figures 21 and 22). This cytoplasmic labeling is constrained to layer 5 in humans and
does not occur at all in monkeys. In monkey tissue, the antibody for this gene product

labels cell nuclei only, without layer specificity (Figure 21).



Figure 17. Labeling for the protein product of GTF2i-RDI, a gene that is deleted in
William’s syndrome. (A) Low power photomicrograph of human FI (16 year old male).
Note extensive cytoplasmic labeling in layer 5. (B) High power image of a labeled von
Economo neuron from the same specimen as in (A). (C) Low power photomicrogaph of
macaque frontal cortex labeled with the same antibody as in (A) and (B). Note non specific
nuclear labeling. Scale bar applies to both (A) and (C). (D). High power photomicrograph
of neurons from (C). Scale bar applies to both (D) and (B).
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Figure 18 VENS and a pyramidal cell in ACC labeled with an antibody against the protein product of
GTF2iRD1. Scale bar applies to both images.
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6  Appendix B — Table of Immunohistological Results

Immunohistochemistry on human tissue is subject to inconsistencies that arise
from variations in postmortem interval, fixation length, and postfixation storage time, not
to mention all of the vagaries inherent in the art. For this reason, the following table
should be taken with a grain of salt. For example, purely negative results, labeled “no
labeling,” may not necessarily indicate that absence of that particular molecule, but
merely that the antibody did not recognize it. Non-specific results — labeling of
everything, including extracellular space — are also denoted by “no labeling.” Negative
results are reportable only when a cell population that excludes the von Economo neurons
is distinctly labeled by a particular antibody — for example, those for calbinden,
calretinen, and parvalbumin. In some cases, the labeling profile does not lend itself to
identification of the labeled elements by virtue of morphology. For example, the
serotonin transporter antibody labels elements throughout the grey matter, but it is
impossible to say whether the VENs are included in this labeling without a cytoplasmic
or nissl counterstain. Use of fluorescent chromophores would be the best approach in
these cases, for I tried in several instances to do double labeling with
immunoprecipitation chromagens (i.e., DAB, TMB, and others), without satisfactory

results.
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VENSs
antigen labeled? | comments
Labels pyramids only in layer 2/3, neurons and fibers in layer 5, and fibers
only in layer 6. Also labels pyramids in human BA 47, 6, 32, 9, and 10 and
SHT-1b R yes macaque frontal cortex.
Non specific; labels all pyramids and VENs, similar to macaque results
SHT-2aR faint described by Goldman-Rakic.
Layer 5 specific in ACC and FI. In macaque, labels frontal cortex with
SHT-2b R yes region specific profile.
S5HT-2c R no No labeling
SHT-3R no No labeling
-3 adrenergic R | yes Pyramids and VENS in layer 5 ACC; FI not tested
Calbindin no Layer 2/3 pyramids, glial cells in ACC
Calretinin no Small round bipolar cells in layer 2/3
Caspase-3 no Pyramids, a few VENs
Soma and apical of VENs, somas of layer 3 and 5 pyrs, punctate labeling
DAT yes throughout extracell space and white matter
Deep layer labeling of pyramids and VENs. Most prominent on basal part
GABADb R yes of soma.
GAD — Labeled nucleoli only (?)
Labeled "cartridges" as reported previously, but was unable to determine
GAT-1 — whether they are apposed to VENs
GluR1 yes Pyramids and VENs in layer 5 ACC; FI not tested
GluR2 yes Pyramids and VENs in layer 5 ACC; FI not tested
HR1R no No labeling
Kappa opioid R no No labeling
Map-2 yes All neurons
Mu opoid R no No labeling
NMDAr1 yes Pyramids and VENSs in layer 5 ACC; FI not tested
Non-
phosphoylated
neurofilament yes Large pyramids in all layers and VENs
OxytocinR no No labeling
Phosphorylated
neurofilament — Every axon
Parvalbumin no Multipolar non-spiny interneurons
Prolactin R no No labeling
Serotonin
transporter — small punctate clusters in deep layers, many agains blood vessels
Tau — All fibers
Somas and apical dendrites of VENSs and layer 5 pyramids in ACC; FI not
Trk-b yes tested
Tryptophan
hydroxylase no No labeling
Vasopressin R
Via yes Somatic, all pyramids and VENs
Vasopressin R
Vl1b no Long apical dendrite labeling from Layer 5 pyramids up to Layer 1

Table 6 Table of immunohistochemical results. R = receptor.
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