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4 Summary and Reflections 

4.1 Summary of results 

In the above body of work, I describe the anatomy of the von Economo neurons.  

I have shown that the VENs in fronto-insula and anterior cingulate cortex form a single 

population when characterized on the basis of their dendritic architecture, and that, using 

this same criteria, this population is distinct from pyramidal neurons.  In particular, I have 

shown that a typical VEN has a sparse dendritic tree, with less than half the total 

dendritic length of a typical pyramidal neuron. 

I have additionally shown that the VENs express a rich array of surface receptors, 

many of which implicate these cells in the mediation of social decision making (see 

below).  For example, I found that most VENs strongly express the D3 receptor, whereas 

only about half of the layer 5 pyramidal cells do, and that this expression is dense on the 

soma and on the apical dendrites.  Other notable discoveries include the VEN expression 

of the 5HT-1b receptor, and the 5HT2b receptor, the latter of which is the first described 

occurrence of this receptor on cells in the human brain. 

These results lend themselves to a hypothesis supporting the role of the VENs in 

fast decision making during uncertain circumstances, particularly in social contexts.  We 

probed this hypothesis functionally by doing an fMRI study of humor, which activated 

both FI and ACC. 
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4.2 The social cognition hypothesis 

In light of the above evidence, we hypothesize that the recently evolved von 

Economo neurons are a functional specialization of a circuit involved in making 

appropriate responses during quickly changing, ambiguous circumstances (Allman et al., 

2005). Links between the von Economo cells and interoception – including, literally, “gut 

feelings” – could provide the basis for their role in fast decision making in the absence of 

explicit reasoning.   In apes and humans, complex social interactions between 

conspecifics provide a forum in which this cognitive capacity would prove to be 

particularly useful.  This is because participants must rapidly synthesize an enormous 

number of relevant but often ephemeral informational cues in order to act appropriately.  

We thus propose that von Economo cells mediate the rapid assessments and behavioral 

modifications required for the successful navigation of social interactions.    

4.3 Future directions 

As with any body of research, more work needs to be done.  The receptor 

immunohistochemistry done in this paper is by no means exhaustive, and new antibodies 

are developed every year, increasing opportunities for exploration.  Double labeling of 

various receptors will indicate if they are co-expressed; for example, V1a vasopressin 

(see Appendix) and D3 colocalization would further implicate these cells in mediating the 

rewarding aspects of social bonding.  We can also further explore the role of the GTF2i 

protein that is absent in William’s syndrome patients and upregulated in humans 

compared to other primates (see Appendix).   
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There are also additional, basic questions about the VENs that could be 

addressed in the future.  For example, are the VENs inhibitory or excitatory?  Certainly 

all of the available evidence suggests that they are excitatory – for example, they are 

projection neurons, and have a receptor profile similar to other layer 5 pyramidal neurons 

– but with the successful application of an antibody that recognizes GAD or EEAC, this 

question may be definitively answered.  Another basic question that I was unable to 

explain during my tenure as a graduate student was the origin of the axon in these cells.  

In many Nissl-stained VENs, the axon appears to sprout from the side of the soma.  

However, confirming this will require either electron micrographs or the colocalization of 

axon-specific markers with somatic marker.  Given the confluence of axons in the grey 

matter, this is not a straightforward task, and may require the application of an antibody 

specific to the axon hillock itself.  Finally, I am extremely interested to see the results of 

the computational models of the von Economo Golgi stains.  Will the VENs have a 

distinctive physiological “fingerprint” as a result of their unusual dendritic morphology?  

And if not, what else might have driven the evolution of a new cell shape so late in 

phylogeny? 

There are additional ways to test the social cognition hypothesis (with respect to 

VENs) in addition to immunohistochemical and Golgi methods.   Stereological counts of 

the VENs will be illuminating, particularly performed on brains of donors who had 

pathological disorders involving social dysfunction:  autism, William’s syndrome, 

acallosal agenesis, and fronto-temporal dementia.  New and imaginative fMRI studies 

will bolster (or debunk) the hypothesis regarding FI and ACC coactivation during social 
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interactions.  Finally, lesion studies will permit us to assess whether damage to FI 

results in a selective deficit in social intelligence. 
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5 Appendix A –  V1a Receptor and GTF-2ii in the VENs 

Functional imaging paradigms associated with social behavior reliably activate 

both VE cell regions.  For example, both ACC and FI are active during the act of lying 

(telling untruths), and they are both active when a subject receives an unfair offer while 

playing the Ultimatum game(Sanfey et al., 2003; Spence et al., 2004).  Studies by Bartels 

and Zeki show both regions are active when subjects view the face of their love partner or 

child (Bartels and Zeki, 2000; Bartels and Zeki, 2004).  Singer and colleagues showed in 

2004 that both VE cell regions are active when a person feels empathy for pain, that is, 

when they know that their loved one, outside of the scanner, is being delivered an electric 

shock (Singer et al., 2004b).  Interestingly, the extent of activation an individual shows 

under these conditions is directly correlated to that individual’s score on a trait 

measurement for empathy.  Finally, in a separate study, Singer and colleagues 

demonstrated that left FI is specifically active when subjects view faces of individuals 

who are reported to behave in a trustworthy fashion (Singer et al., 2004a). 
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5.1 Vasopressin V1a 

Fortunately, there is an excellent 

molecular model that allows us to 

specifically implicate the von Economo 

neurons in these various social behaviors.  A 

body of work by Insel and Young indicates 

that the oxytocin and vasopressin V1a 

receptors mediate social bonding (Insel et al., 

1998; Lim et al., 2004; Young et al., 2001).  

Insel and colleagues also suggest that these 

molecules may interact with dopamine to 

impart the rewarding aspects of social 

bonding (Insel et al., 1998).  I tested adult 

human ACC and FI tissue for reactivity to 

antibodies raised against the vasopressin 

V1a, V1b, V2  receptors and oxytocin 

receptor.  My results show that the antibodies 

specific for the V1a receptor label a 

subpopulation of VE cells, as well as 

pyramidal neurons in layers 2/3 and 5 of ACC and FI (Figure 20).  V1b receptors, while 

apparent on a subpopulation of large pyramidal cells in layer 5 of ACC, did not label the 

VENs.  However, the pattern of labeling was interesting in that the apical dendrites 

 
 
Figure 16  VEN from ACC labeled with a V1a 
receptor antibody. 
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labeled with the V1b receptor antibody formed columns that spanned layer 5 to layer 1.  

The vasopressin V2 and oxytocin receptor antibodies did not reveal any specific labeling.  

 

5.2 GTF-2iRD1 

One of the most remarkable immunocytochemical findings for the VENs is their 

strong dendritic staining with the antibody to a gene product for the gene GTF2iRD1 (see 

Figure 21). This finding is the result of collaboration between the Korenberg and Allman 

labs. GTF2iRD1 together with GTF2i are duplicated genes which are part of the set of 

genes that are deleted in William’s syndrome (Pérez Jurado et al, 1998). The loss of this 

duplicated pair is associated with poor visuospatial abilities and possibly hypersocial 

behavior in this syndrome (Hirota et al, 2003; Korenberg, personal communication). 

GTF21RD1’s duplicate GTF2i is among the 25 most upregulated genes in an 

array of 7645 genes tested in a comparison between humans and chimpanzees (Preuss et 

al 2004). GTF2i expression is 2.5 to 4.2 times greater in humans than in chimpanzees. 

The gene products for GTF2i and GTF2iRD1 function both as transcription factors in the 

cell nucleus and signal transducers in the cytoplasm (Roy, 2001).  

In the VENs, the gene products extend far out into the dendrites where they may 

mediate interactions between the dendritic periphery and gene transcription in the nucleus 

(Figures 21 and 22).  This cytoplasmic labeling is constrained to layer 5 in humans and 

does not occur at all in monkeys.  In monkey tissue, the antibody for this gene product 

labels cell nuclei only, without layer specificity (Figure 21).  
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Figure 17.  Labeling for the protein product of GTF2i-RD1, a gene that is deleted in 
William’s syndrome.  (A)  Low power photomicrograph of human FI (16 year old male).  
Note extensive cytoplasmic labeling in layer 5.  (B) High power image of a labeled von 
Economo neuron from the same specimen as in (A).  (C)  Low power photomicrogaph of 
macaque frontal cortex labeled with the same antibody as in (A) and (B).  Note non specific 
nuclear labeling.  Scale bar applies to both (A) and (C).  (D).  High power photomicrograph 
of neurons from (C).  Scale bar applies to both (D) and  (B).   
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Figure 18  VENS and a pyramidal cell in ACC labeled with an antibody against the protein product of  
GTF2iRD1.  Scale bar applies to both images. 
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6 Appendix B – Table of Immunohistological Results 

Immunohistochemistry on human tissue is subject to inconsistencies that arise 

from variations in postmortem interval, fixation length, and postfixation storage time, not 

to mention all of the vagaries inherent in the art.  For this reason, the following table 

should be taken with a grain of salt.  For example, purely negative results, labeled “no 

labeling,” may not necessarily indicate that absence of that particular molecule, but 

merely that the antibody did not recognize it.  Non-specific results – labeling of 

everything, including extracellular space – are also denoted by “no labeling.”  Negative 

results are reportable only when a cell population that excludes the von Economo neurons 

is distinctly labeled by a particular antibody – for example, those for calbinden, 

calretinen, and parvalbumin.  In some cases, the labeling profile does not lend itself to 

identification of the labeled elements by virtue of morphology.  For example, the 

serotonin transporter antibody labels elements throughout the grey matter, but it is 

impossible to say whether the VENs are included in this labeling without a cytoplasmic 

or nissl counterstain. Use of fluorescent chromophores would be the best approach in 

these cases, for I tried in several instances to do double labeling with 

immunoprecipitation chromagens (i.e., DAB, TMB, and others), without satisfactory 

results.   
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antigen 
VENs 
labeled? comments 

5HT-1b R yes 

Labels pyramids only in layer 2/3, neurons and fibers in layer 5, and fibers 
only in layer 6.  Also labels pyramids in human BA 47, 6, 32, 9, and 10 and 
macaque frontal cortex. 

5HT-2a R faint 
Non specific;  labels all pyramids and VENs, similar to macaque results 
described by Goldman-Rakic. 

5HT-2b R yes 
Layer 5 specific in ACC and FI.  In macaque, labels frontal cortex with 
region specific profile.  

5HT-2c R no No labeling 
5HT-3 R no No labeling 
β-3 adrenergic R yes Pyramids and VENs in layer 5 ACC; FI not tested 
Calbindin no Layer 2/3 pyramids, glial cells in ACC 
Calretinin no Small round bipolar cells in layer 2/3 
Caspase-3 no Pyramids, a few VENs 

DAT yes 
Soma and apical of VENs, somas of layer 3 and 5 pyrs, punctate labeling 
throughout extracell space and white matter 

GABAb R yes 
Deep layer labeling of pyramids and VENs.  Most prominent on basal part 
of soma. 

GAD – Labeled nucleoli only (?) 

GAT-1 – 
Labeled "cartridges" as reported previously, but was unable to determine 
whether they are apposed to VENs 

GluR1 yes Pyramids and VENs in layer 5 ACC; FI not tested 
GluR2 yes Pyramids and VENs in layer 5 ACC; FI not tested 
HR1 R no No labeling 
Kappa opioid R no No labeling 
Map-2 yes All neurons 
Mu opoid R no No labeling 
NMDAr1 yes Pyramids and VENs in layer 5 ACC; FI not tested 
Non-
phosphoylated 
neurofilament yes Large pyramids in all layers and VENs 
OxytocinR no No labeling 
Phosphorylated 
neurofilament – Every axon 
Parvalbumin no Multipolar non-spiny interneurons 
Prolactin R no No labeling 
Serotonin 
transporter – small punctate clusters in deep layers, many agains blood vessels 
Tau – All fibers 

Trk-b yes 
Somas and apical dendrites of VENs and layer 5 pyramids in ACC; FI not 
tested 

Tryptophan 
hydroxylase no No labeling 
Vasopressin R 
V1a yes Somatic, all pyramids and VENs 
Vasopressin R 
V1b no Long apical dendrite labeling from Layer 5 pyramids up to Layer 1 

Table 6  Table of immunohistochemical results.  R = receptor. 
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