

4 Summary and Reflections

4.1 Summary of results

In the above body of work, I describe the anatomy of the von Economo neurons. I have shown that the VENs in fronto-insula and anterior cingulate cortex form a single population when characterized on the basis of their dendritic architecture, and that, using this same criteria, this population is distinct from pyramidal neurons. In particular, I have shown that a typical VEN has a sparse dendritic tree, with less than half the total dendritic length of a typical pyramidal neuron.

I have additionally shown that the VENs express a rich array of surface receptors, many of which implicate these cells in the mediation of social decision making (see below). For example, I found that most VENs strongly express the D3 receptor, whereas only about half of the layer 5 pyramidal cells do, and that this expression is dense on the soma and on the apical dendrites. Other notable discoveries include the VEN expression of the 5HT-1b receptor, and the 5HT2b receptor, the latter of which is the first described occurrence of this receptor on cells in the human brain.

These results lend themselves to a hypothesis supporting the role of the VENs in fast decision making during uncertain circumstances, particularly in social contexts. We probed this hypothesis functionally by doing an fMRI study of humor, which activated both FI and ACC.

4.2 The social cognition hypothesis

In light of the above evidence, we hypothesize that the recently evolved von Economo neurons are a functional specialization of a circuit involved in making appropriate responses during quickly changing, ambiguous circumstances (Allman et al., 2005). Links between the von Economo cells and interoception – including, literally, “gut feelings” – could provide the basis for their role in fast decision making in the absence of explicit reasoning. In apes and humans, complex social interactions between conspecifics provide a forum in which this cognitive capacity would prove to be particularly useful. This is because participants must rapidly synthesize an enormous number of relevant but often ephemeral informational cues in order to act appropriately. We thus propose that von Economo cells mediate the rapid assessments and behavioral modifications required for the successful navigation of social interactions.

4.3 Future directions

As with any body of research, more work needs to be done. The receptor immunohistochemistry done in this paper is by no means exhaustive, and new antibodies are developed every year, increasing opportunities for exploration. Double labeling of various receptors will indicate if they are co-expressed; for example, V1a vasopressin (see Appendix) and D3 colocalization would further implicate these cells in mediating the rewarding aspects of social bonding. We can also further explore the role of the GTF2i protein that is absent in William’s syndrome patients and upregulated in humans compared to other primates (see Appendix).

There are also additional, basic questions about the VENs that could be addressed in the future. For example, are the VENs inhibitory or excitatory? Certainly all of the available evidence suggests that they are excitatory – for example, they are projection neurons, and have a receptor profile similar to other layer 5 pyramidal neurons – but with the successful application of an antibody that recognizes GAD or EEAC, this question may be definitively answered. Another basic question that I was unable to explain during my tenure as a graduate student was the origin of the axon in these cells. In many Nissl-stained VENs, the axon appears to sprout from the side of the soma. However, confirming this will require either electron micrographs or the colocalization of axon-specific markers with somatic marker. Given the confluence of axons in the grey matter, this is not a straightforward task, and may require the application of an antibody specific to the axon hillock itself. Finally, I am extremely interested to see the results of the computational models of the von Economo Golgi stains. Will the VENs have a distinctive physiological “fingerprint” as a result of their unusual dendritic morphology? And if not, what else might have driven the evolution of a new cell shape so late in phylogeny?

There are additional ways to test the social cognition hypothesis (with respect to VENs) in addition to immunohistochemical and Golgi methods. Stereological counts of the VENs will be illuminating, particularly performed on brains of donors who had pathological disorders involving social dysfunction: autism, William’s syndrome, acallosal agenesis, and fronto-temporal dementia. New and imaginative fMRI studies will bolster (or debunk) the hypothesis regarding FI and ACC coactivation during social

interactions. Finally, lesion studies will permit us to assess whether damage to FI results in a selective deficit in social intelligence.

5 Appendix A – V1a Receptor and GTF-2ii in the VENs

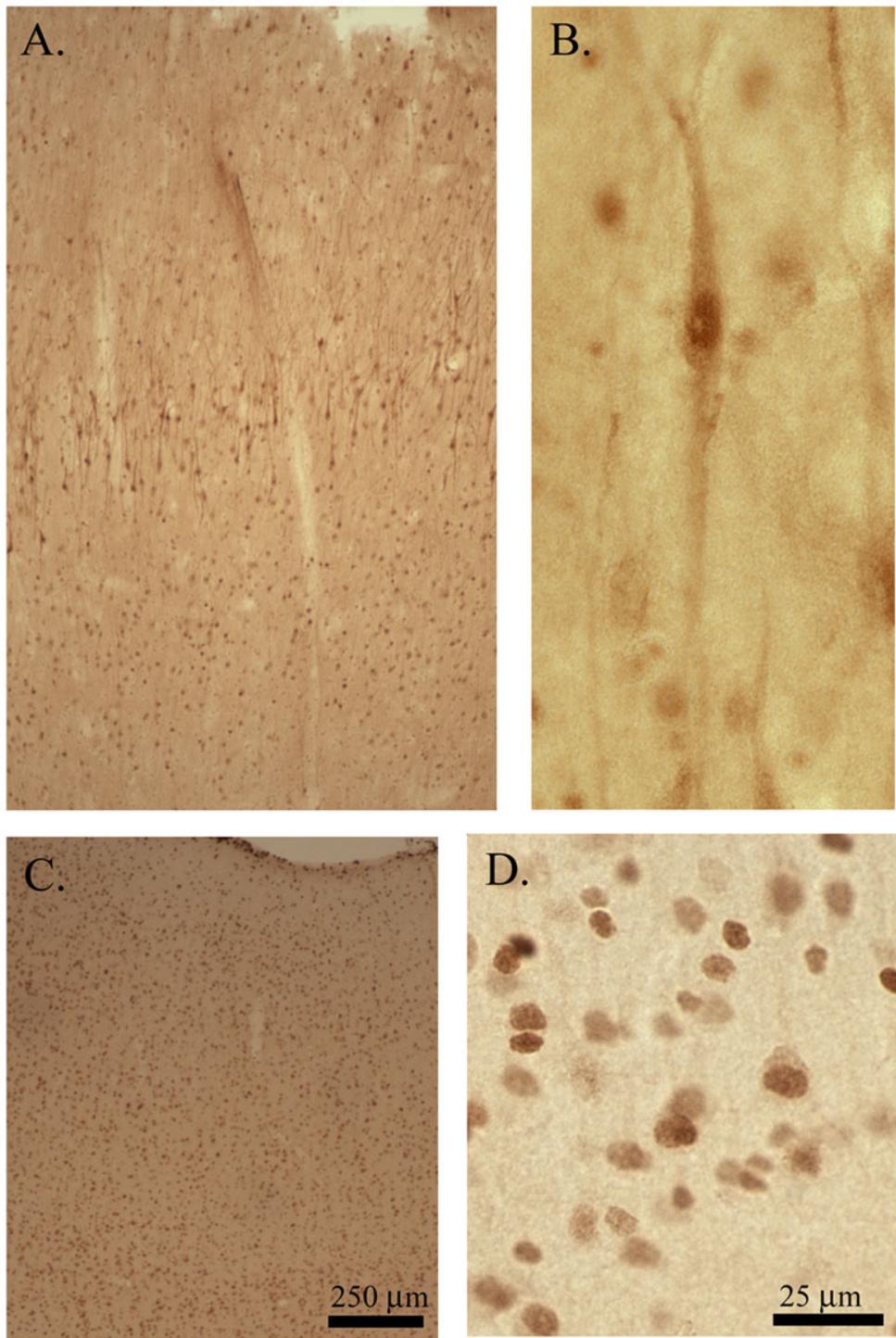
Functional imaging paradigms associated with social behavior reliably activate both VE cell regions. For example, both ACC and FI are active during the act of lying (telling untruths), and they are both active when a subject receives an unfair offer while playing the Ultimatum game(Sanfey *et al.*, 2003; Spence *et al.*, 2004). Studies by Bartels and Zeki show both regions are active when subjects view the face of their love partner or child (Bartels and Zeki, 2000; Bartels and Zeki, 2004). Singer and colleagues showed in 2004 that both VE cell regions are active when a person feels empathy for pain, that is, when they know that their loved one, outside of the scanner, is being delivered an electric shock (Singer *et al.*, 2004b). Interestingly, the extent of activation an individual shows under these conditions is directly correlated to that individual's score on a trait measurement for empathy. Finally, in a separate study, Singer and colleagues demonstrated that left FI is specifically active when subjects view faces of individuals who are reported to behave in a trustworthy fashion (Singer *et al.*, 2004a).

5.1 Vasopressin V1a

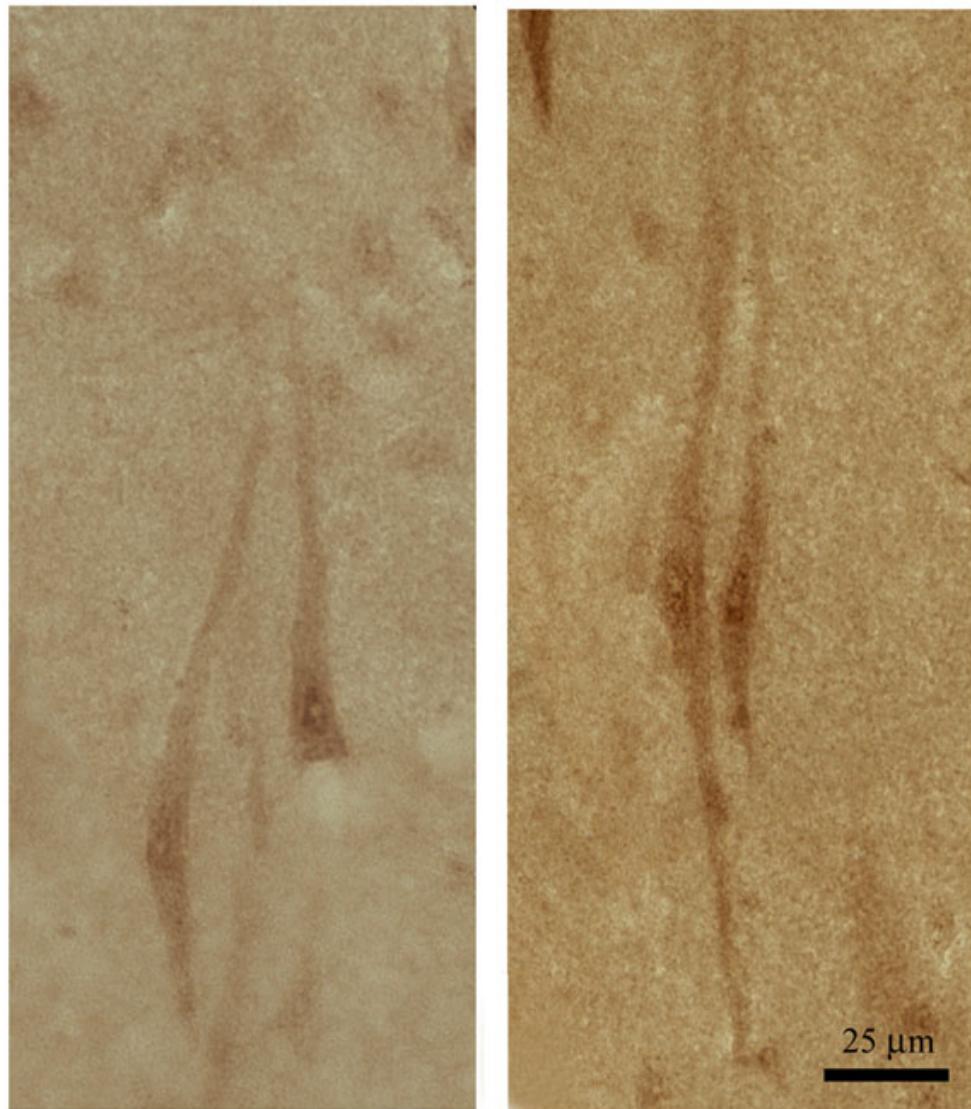
Figure 16 VEN from ACC labeled with a V1a receptor antibody.

pyramidal neurons in layers 2/3 and 5 of ACC and FI (Figure 20). V1b receptors, while apparent on a subpopulation of large pyramidal cells in layer 5 of ACC, did not label the VENs. However, the pattern of labeling was interesting in that the apical dendrites

Fortunately, there is an excellent molecular model that allows us to specifically implicate the von Economo neurons in these various social behaviors. A body of work by Insel and Young indicates that the oxytocin and vasopressin V1a receptors mediate social bonding (Insel et al., 1998; Lim et al., 2004; Young et al., 2001). Insel and colleagues also suggest that these molecules may interact with dopamine to impart the rewarding aspects of social bonding (Insel *et al.*, 1998). I tested adult human ACC and FI tissue for reactivity to antibodies raised against the vasopressin V1a, V1b, V2 receptors and oxytocin receptor. My results show that the antibodies specific for the V1a receptor label a subpopulation of VE cells, as well as


labeled with the V1b receptor antibody formed columns that spanned layer 5 to layer 1. The vasopressin V2 and oxytocin receptor antibodies did not reveal any specific labeling.

5.2 GTF-2iRD1


One of the most remarkable immunocytochemical findings for the VENs is their strong dendritic staining with the antibody to a gene product for the gene GTF2iRD1 (see Figure 21). This finding is the result of collaboration between the Korenberg and Allman labs. GTF2iRD1 together with GTF2i are duplicated genes which are part of the set of genes that are deleted in William's syndrome (Pérez Jurado et al, 1998). The loss of this duplicated pair is associated with poor visuospatial abilities and possibly hypersocial behavior in this syndrome (Hirota et al, 2003; Korenberg, personal communication).

GTF2iRD1's duplicate GTF2i is among the 25 most upregulated genes in an array of 7645 genes tested in a comparison between humans and chimpanzees (Preuss et al 2004). GTF2i expression is 2.5 to 4.2 times greater in humans than in chimpanzees. The gene products for GTF2i and GTF2iRD1 function both as transcription factors in the cell nucleus and signal transducers in the cytoplasm (Roy, 2001).

In the VENs, the gene products extend far out into the dendrites where they may mediate interactions between the dendritic periphery and gene transcription in the nucleus (Figures 21 and 22). This cytoplasmic labeling is constrained to layer 5 in humans and does not occur at all in monkeys. In monkey tissue, the antibody for this gene product labels cell nuclei only, without layer specificity (Figure 21).

Figure 17. Labeling for the protein product of GTF2i-RD1, a gene that is deleted in William's syndrome. (A) Low power photomicrograph of human FI (16 year old male). Note extensive cytoplasmic labeling in layer 5. (B) High power image of a labeled von Economo neuron from the same specimen as in (A). (C) Low power photomicrograph of macaque frontal cortex labeled with the same antibody as in (A) and (B). Note non specific nuclear labeling. Scale bar applies to both (A) and (C). (D). High power photomicrograph of neurons from (C). Scale bar applies to both (D) and (B).

Figure 18 VENS and a pyramidal cell in ACC labeled with an antibody against the protein product of GTF2iRD1. Scale bar applies to both images.

6 Appendix B – Table of Immunohistological Results

Immunohistochemistry on human tissue is subject to inconsistencies that arise from variations in postmortem interval, fixation length, and postfixation storage time, not to mention all of the vagaries inherent in the art. For this reason, the following table should be taken with a grain of salt. For example, purely negative results, labeled “no labeling,” may not necessarily indicate that absence of that particular molecule, but merely that the antibody did not recognize it. Non-specific results – labeling of everything, including extracellular space – are also denoted by “no labeling.” Negative results are reportable only when a cell population that excludes the von Economo neurons is distinctly labeled by a particular antibody – for example, those for calbinden, calretinin, and parvalbumin. In some cases, the labeling profile does not lend itself to identification of the labeled elements by virtue of morphology. For example, the serotonin transporter antibody labels elements throughout the grey matter, but it is impossible to say whether the VENs are included in this labeling without a cytoplasmic or nissl counterstain. Use of fluorescent chromophores would be the best approach in these cases, for I tried in several instances to do double labeling with immunoprecipitation chromagens (i.e., DAB, TMB, and others), without satisfactory results.

antigen	VENs labeled?	comments
5HT-1b R	yes	Labels pyramids only in layer 2/3, neurons and fibers in layer 5, and fibers only in layer 6. Also labels pyramids in human BA 47, 6, 32, 9, and 10 and macaque frontal cortex.
5HT-2a R	faint	Non specific; labels all pyramids and VENs, similar to macaque results described by Goldman-Rakic.
5HT-2b R	yes	Layer 5 specific in ACC and FI. In macaque, labels frontal cortex with region specific profile.
5HT-2c R	no	No labeling
5HT-3 R	no	No labeling
β -3 adrenergic R	yes	Pyramids and VENs in layer 5 ACC; FI not tested
Calbindin	no	Layer 2/3 pyramids, glial cells in ACC
Calretinin	no	Small round bipolar cells in layer 2/3
Caspase-3	no	Pyramids, a few VENs
DAT	yes	Soma and apical of VENs, somas of layer 3 and 5 pyrs, punctate labeling throughout extracellular space and white matter
GABAb R	yes	Deep layer labeling of pyramids and VENs. Most prominent on basal part of soma.
GAD	—	Labeled nucleoli only (?)
GAT-1	—	Labeled "cartridges" as reported previously, but was unable to determine whether they are apposed to VENs
GluR1	yes	Pyramids and VENs in layer 5 ACC; FI not tested
GluR2	yes	Pyramids and VENs in layer 5 ACC; FI not tested
HR1 R	no	No labeling
Kappa opioid R	no	No labeling
Map-2	yes	All neurons
Mu opioid R	no	No labeling
NMDAr1	yes	Pyramids and VENs in layer 5 ACC; FI not tested
Non-phosphorylated neurofilament	yes	Large pyramids in all layers and VENs
OxytocinR	no	No labeling
Phosphorylated neurofilament	—	Every axon
Parvalbumin	no	Multipolar non-spiny interneurons
Prolactin R	no	No labeling
Serotonin transporter	—	small punctate clusters in deep layers, many against blood vessels
Tau	—	All fibers
Trk-b	yes	Somas and apical dendrites of VENs and layer 5 pyramids in ACC; FI not tested
Tryptophan hydroxylase	no	No labeling
Vasopressin R V1a	yes	Somatic, all pyramids and VENs
Vasopressin R V1b	no	Long apical dendrite labeling from Layer 5 pyramids up to Layer 1

Table 6 Table of immunohistochemical results. R = receptor.

7 References

Aharon, I. I., Etcoff, N. N., Ariely, D. D., Chabris, C. C. F., O'Connor, E. E., and Breiter, H. H. C. (2001). Beautiful faces have variable reward value: fMRI and behavioral evidence. *Neuron* 32, 537-551.

Aizman, O. O., Brismar, H. H., Uhlén, P. P., Zettergren, E. E., Levey, A. A. I., Forssberg, H. H., Greengard, P. P., and Aperia, A. A. (2000). Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. *Nature neuroscience* 3, 226-230.

Allman, J., Hakeem, A., and Watson, K. (2002). Two phylogenetic specializations in the human brain. *Neuroscientist* 8, 335-346.

Allman, J. M., Watson, K. K., Tetreault, N. A., and Hakeem, A. Y. (2005). Intuition and autism: a possible role for Von Economo neurons. *Trends in Cognitive Sciences* 9, 367-373.

Aragona, B. J., Liu, Y., Yu, Y. J., Curtis, J. J. T., Detwiler, J. J. M., Insel, T. R., and Wang, Z. (2006). Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. *Nat Neurosci* 9, 133-139.

Azim, E., Mobbs, D., Jo, B., Menon, V., and Reiss, A. L. (2005). Sex differences in brain activation elicited by humor. *Proc Natl Acad Sci U S A* 102, 16496-16501.

Bartels, A., and Zeki, S. (2000). The neural basis of romantic love. *Neuroreport* 11, 3829-3834.

Bartels, A., and Zeki, S. (2004). The neural correlates of maternal and romantic love. *Neuroimage* 21, 1155-1166.

Bechara, A., Damasio, H., Damasio, A. R., and Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. *J Neurosci* 19, 5473-5481.

Bennett, M. P., Zeller, J. M., Rosenberg, L., and McCann, J. (2003). The effect of mirthful laughter on stress and natural killer cell activity. *Altern Ther Health Med* 9, 38-45.

Benson, D. (1993). Aphasia. In *Clinical Neuropsychology*, K. H. a. E. Valenstein, ed. (New York, Oxford University Press), pp. 25-27.

Bergson, C., Levenson, R., Goldman-Rakic, P. S., and Lidow, M. S. (2003). Dopamine receptor-interacting proteins: the Ca²⁺ connection in dopamine signaling. *Trends in Pharmacological Sciences* 24, 486-492.

Berk, L. S., Tan, S. A., Fry, W. F., Napier, B. J., Lee, J. W., Hubbard, R. W., Lewis, J. E., and Eby, W. C. (1989). Neuroendocrine and stress hormone changes during mirthful laughter. *Am J Med Sci* 298, 390-396.

Berns, G. S., McClure, S. M., Pagnoni, G., and Montague, P. R. (2001). Predictability modulates human brain response to reward. *J Neurosci* 21, 2793-2798.

Bippus, A. M. (2000). Making sense of humor in young romantic relationships: Understanding partners' perceptions. *Humor - Int J Humor Res* 13, 395-417.

Biro, D., Inoue-Nakamura, N., Tonooka, R., Yamakoshi, G., Sousa, C., and Matsuzawa, T. (2003). Cultural innovation and transmission of tool use in wild chimpanzees: evidence from field experiments. *Animal Cognition* 6, 213-223.

Borman, R. A., Tilford, N. S., Harmer, D. W., Day, N., Ellis, E. S., Sheldrick, R. L., Carey, J., Coleman, R. A., and Baxter, G. S. (2002). 5-HT(2B) receptors play a key role in mediating the excitatory effects of 5-HT in human colon in vitro. *Br J Pharmacol* *135*, 1144-1151.

Bouwknecht, J. A., Hijzen, T. H., van der Gugten, J., Maes, R. A., Hen, R., and Olivier, B. (2001). Absence of 5-HT(1B) receptors is associated with impaired impulse control in male 5-HT(1B) knockout mice. *Biol Psychiatry* *49*, 557-568.

Bressler, E. R., and Balshine, S. (2005). The influence of humor on desirability. *Evol Hum Behav* *27*, 29-39.

Bressler, E. R., Martin, R. A., and Balshine, S. (in press). Production and appreciation of humor as sexually selected traits. *Evol Hum Behav*.

Brett, M., J. A., R. V., and J. P. (2002). Region of interest analysis using an SPM toolbox. Paper presented at: 8th International Conference on Functional Mapping of the Human Brain (Sendai, Japan).

Breuer, T., Ndoundou-Hockemba, M., and Fishlock, V. (2005). First Observation of Tool Use in Wild Gorillas. *PLoS biology* *3*, e380-e380.

Bueno, L. (2005). Gastrointestinal pharmacology: irritable bowel syndrome. *Current Opinion in Pharmacology* *5*, 583-588.

Buss, D. M. (1988). The Evolution of Human Intrasexual Competition - Tactics of Mate Attraction. *J Person Soc Psych* *54*, 616-628.

Caceres, M., Lachuer, J., Zapala, M. A., Redmond, J. C., Kudo, L., Geschwind, D. H., Lockhart, D. J., Preuss, T. M., and Barlow, C. (2003). Elevated gene expression levels distinguish human from non-human primate brains. *Proc Natl Acad Sci U S A* *100*, 13030-13035.

Caldecott, J., and Miles, L., eds. (2005). *The World Atlas of Great Apes and their Conservation* (Berkeley, Univ. California Press).

Cann, A., Calhoun, L. G., and Banks, J. S. (1997). On the role of humor appreciation in interpersonal attraction: It's no joking matter. *Humor- Int J of Humor Res* *10*, 77-89.

Carmichael, S. S. T., and Price, J. J. L. (1994). Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. *Journal of comparative neurology* *346*, 366-402.

Carmichael, S. S. T., and Price, J. J. L. (1995). Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. *Journal of comparative neurology* *363*, 615-641.

Carmichael, S. S. T., and Price, J. J. L. (1996). Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. *Journal of comparative neurology* *371*, 179-207.

Caron, J. E. (2002). From ethology to aesthetics: Evolution as a theoretical paradigm for research on laughter, humor, and other comic phenomena. *Humor- Int J of Humor Res* *15*, 245-281.

Chase, D. L. D. L., Pepper, J. S. J. S., and Koelle, M. R. M. R. (2004). Mechanism of extrasynaptic dopamine signaling in *Caenorhabditis elegans*. *Nature neuroscience* *7*, 1096-1103.

Cline, H. T. (2001). Dendritic arbor development and synaptogenesis. *Current Opinion in Neurobiology* *11*, 118-126.

Coulson, S., and Williams, R. F. (2005). Hemispheric asymmetries and joke comprehension. *Neuropsychologia* *43*, 128-141.

Critchley, H. D. (2002). Electrodermal Responses: What Happens in the Brain. *Neuroscientist* 8, 132-142.

Critchley, H. D., Mathias, C. J., and Dolan, R. J. (2001). Neural activity in the human brain relating to uncertainty and arousal during anticipation. *Neuron* 29, 537-545.

Daw, N. D., Kakade, S., and Dayan, P. (2002). Opponent interactions between serotonin and dopamine. *Neural Netw* 15, 603-616.

de Almeida, R. M., Nikulina, E. M., Faccidomo, S., Fish, E. W., and Miczek, K. A. (2001). Zolmitriptan--a 5-HT1B/D agonist, alcohol, and aggression in mice. *Psychopharmacology (Berl)* 157, 131-141.

de Veer, M. W. M. W., Gallup, G. G. G. G., Theall, L. A. L. A., van den Bos, R. R., and Povinelli, D. J. D. J. (2003). An 8-year longitudinal study of mirror self-recognition in chimpanzees (*Pan troglodytes*). *Neuropsychologia* 41, 229-234.

Deshmukh, A., Rosenbloom, M. J., De Rosa, E., Sullivan, E. V., and Pfefferbaum, A. (2005). Regional striatal volume abnormalities in schizophrenia: effects of comorbidity for alcoholism, recency of alcoholic drinking, and antipsychotic medication type. *Schizophrenia Res* 79, 189-200.

Desimone, R. (1991). Face-selective cells in the temporal cortex of monkeys. *J Cog Neurosci* 3, 1-8.

Devereux, P. G., and Ginsburg, G. P. (2001). Sociality effects on the production of laughter. *J Gen Psych* 128, 227-240.

Duvernoy, H. (1991). The Human Brain. Surface, three-dimensional sectional anatomy and MRI. (Wien, Springer).

Duxon, M. S., Kennett, G. A., Lightowler, S., Blackburn, T. P., and Fone, K. C. (1997). Activation of 5-HT2B receptors in the medial amygdala causes anxiolysis in the social interaction test in the rat. *Neuropharmacology* 36, 601-608.

Elston, G. N., Benavides-Piccione, R., and DeFelipe, J. (2005). A study of pyramidal cell structure in the cingulate cortex of the macaque monkey with comparative notes on inferotemporal and primary visual cortex. *Cerebral Cortex* 15, 64-73.

Elston, G. N., and Rosa, M. G. (2000). Pyramidal cells, patches, and cortical columns: a comparative study of infragranular neurons in TEO, TE, and the superior temporal polysensory area of the macaque monkey. *J Neurosci* 20, RC117.

Elston, G. N., Tweedale, R., and Rosa, M. G. (1999). Cellular heterogeneity in cerebral cortex: a study of the morphology of pyramidal neurones in visual areas of the marmoset monkey. *J Comp Neurol* 415, 33-51.

Fernandez-Guasti, A., and Rodriguez-Manzo, G. (1992). Further evidence showing that the inhibitory action of serotonin on rat masculine sexual behavior is mediated after the stimulation of 5-HT1B receptors. *Pharmacol Biochem Behav* 42, 529-533.

Fiorillo, C. D., Tobler, P. N., and Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. *Science* 299, 1898-1902.

Fozard, J. R., and Saxena, P. R. (1991). Serotonin--molecular biology, receptors, and functional effects (Boston, Birkhäuser).

Freud, S. (1960). Jokes and their relation to the unconscious (New York, Norton and Company, Inc.).

Fridlund, A. J. (1991). Sociality of Solitary Smiling - Potentiation by an Implicit Audience. *J Pers Soc Psychol* 60, 229-240.

Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. *Trends Cog Sci 6*, 78-84.

Gallagher, H. L., Happe, F., Brunswick, N., Fletcher, P. C., Frith, U., and Frith, C. D. (2000). Reading the mind in cartoons and stories: an fMRI study of 'theory of mind' in verbal and nonverbal tasks. *Neuropsychologia 38*, 11-21.

Gardier, A. M., Kachaner, S., Kahn Shaghaghi, E., Blot, C., Bohuon, C., Jacquot, C., and Pallardy, M. J. (1994). Effects of a primary immune response to T-cell dependent antigen on serotonin metabolism in frontal cortex: in vivo microdialysis study in freely moving Fischer 344 rat. *Brain Res 645*, 150-156.

Garris, P. A., Ciolkowski, E. L., Pastore, P., and Wightman, R. M. (1994). Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. *The journal of neuroscience 14*, 6084-6093.

Gottfried, J. A., O'Doherty, J., and Dolan, R. J. (2002). Appetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging. *J Neurosci 22*, 10829-10837.

Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., and Grady, C. L. (1994). The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. *J Neurosci 14*, 6336-6353.

Hopf, F. W. F., Cascini, M. G., Gordon, A. S., Diamond, I., and Bonci, A. (2003). Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein betagamma subunits. *J Neurosci 23*, 5079-5087.

Insel, T. R., Winslow, J. T., Wang, Z., and Young, L. J. (1998). Oxytocin, vasopressin, and the neuroendocrine basis of pair bond formation. *Adv Exp Med Biol 449*, 215-224.

Ishai, A., Ungerleider, L. G., and Haxby, J. V. (2000). Distributed Neural Systems for the Generation of Visual Images. *Neuron 28*, 979-990.

Jackson, P. L., Brunet, E., Meltzoff, A. N., and Decety, J. (In press). Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. *Neuropsychologia In Press, Corrected Proof*.

Jacobs, B., Schall, M., Prather, M., Kapler, E., Driscoll, L., Baca, S., Jacobs, J., Ford, K., Wainwright, M., and Treml, M. (2001). Regional dendritic and spine variation in human cerebral cortex: a quantitative Golgi study. *Cerebral Cortex 11*, 558-571.

Jakab, R. L., and Goldman-Rakic, P. S. (1998). 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: Possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. *PNAS 95*, 735-740.

Just, M. A., Carpenter, P. A., Keller, T. A., Eddy, W. F., and Thulborn, K. R. (1996). Brain activation modulated by sentence comprehension. *Science 274*, 114-116.

Kanwisher, N. N., McDermott, J. J., and Chun, M. M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. *J Neurosci 17*, 4302-4311.

Keri, S., Juhasz, A., Rimanoczy, A., Szekeres, G., Kelemen, O., Cimmer, C., Szendi, I., Benedek, G., and Janka, Z. (2005). Habit learning and the genetics of the dopamine D3 receptor: evidence from patients with schizophrenia and healthy controls. *Behav Neurosci 119*, 687-693.

Kjaer, T. W., Nowak, M., Kjaer, K. W., Lou, A. R., and Lou, H. C. (2001). Precuneus-Prefrontal Activity during Awareness of Visual Verbal Stimuli. *Conscious Cogn 10*, 356-365.

Koch, C., Poggio, T., and Torre, V. (1982). Retinal ganglion cells: a functional interpretation of dendritic morphology. *Philosophical transactions of the Royal Society of London Series B, Biological sciences* 298, 227-263.

Le Foll, B., Goldberg, S. R., and Sokoloff, P. (2005). The dopamine D-3 receptor and drug dependence: Effects on reward or beyond? *Neuropharmacology* 49, 525-541.

Levesque, D., Diaz, J., Pilon, C., Martres, M. P., Giros, B., Souil, E., Schott, D., Morgat, J. L., Schwartz, J. C., and Sokoloff, P. (1992). Identification, Characterization, and Localization of the Dopamine-D3 Receptor in Rat-Brain Using 7-[H-3]Hydroxy-N,N-Di-Normal-Propyl-2-Aminotetralin. *Proceedings of the National Academy of Sciences of the United States of America* 89, 8155-8159.

Lim, M. M., Wang, Z., Olazabal, D. E., Ren, X., Terwilliger, E. F., and Young, L. J. (2004). Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. *Nature* 429, 754-757.

Linden, D. E. J., Bittner, R. A., Muckli, L., Waltz, J. A., Kriegeskorte, N., Goebel, R., Singer, W., and Munk, M. H. J. (2003). Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. *NeuroImage* 20, 1518-1530.

Lundstrom, B. N., Ingvar, M., and Petersson, K. M. (2005). The role of precuneus and left inferior frontal cortex during source memory episodic retrieval. *NeuroImage* 27, 824-834.

Mainen, Z. F., and Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. *Nature* 382, 363-366.

McClelland, D. C., and Cheriff, A. D. (1997). The immunoenhancing effects of humor on secretory IgA and resistance to respiratory infections. *Psych Health* 12, 329-344.

Michelon, P., Snyder, A. Z., Buckner, R. L., McAvoy, M., and Zacks, J. M. (2003). Neural correlates of incongruous visual information - An event-related fMRI study. *Neuroimage* 19, 1612-1626.

Miller, G. (2000). *The Mating Mind* (New York, Anchor Books).

Missale, C. C., Nash, S. S. R., Robinson, S. S. W., Jaber, M. M., and Caron, M. M. G. (1998). Dopamine receptors: from structure to function. *Physiological reviews* 78, 189-225.

Mobbs, D., Greicius, M. D., Abdel-Azim, E., Menon, V., and Reiss, A. L. (2003). Humor modulates the mesolimbic reward centers. *Neuron* 40, 1041-1048.

Mobbs, D., Hagan, C. C., Azim, E., Menon, V., and Reiss, A. L. (2005). Personality predicts activity in reward and emotional regions associated with humor. *Proc Natl Acad Sci U S A* 102, 16502-16506.

Moran, J. M., Wig, G. S., Adams, R. B., Janata, P., and Kelley, W. M. (2004). Neural correlates of humor detection and appreciation. *Neuroimage* 21, 1055-1060.

Murstein, B. I. (1985). Humor and interpersonal attraction. *J Pers Assess* 49, 637-640.

Nimchinsky, E. A., Gilissen, E., Allman, J. M., Perl, D. P., Erwin, J. M., and Hof, P. R. (1999). A neuronal morphologic type unique to humans and great apes. *Proc Natl Acad Sci U S A* 96, 5268-5273.

Nimchinsky, E. A., Vogt, B. A., Morrison, J. H., and Hof, P. R. (1995). Spindle neurons of the human anterior cingulate cortex. *J Comp Neurol* 355, 27-37.

Nusbaum, C., Mikkelsen, T. S., Zody, M. C., Asakawa, S., Taudien, S., Garber, M., Kodira, C. D., Schueler, M. G., Shimizu, A., Whittaker, C. A., *et al.* (2006). DNA sequence and analysis of human chromosome 8. *Nature* 439, 331-335.

O'Doherty, J., Critchley, H., Deichmann, R., and Dolan, R. J. (2003a). Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. *J Neurosci* 23, 7931-7939.

O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., and Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. *Nat Neurosci* 4, 95-102.

O'Doherty, J., Winston, J., Critchley, H., Perrett, D., Burt, D. M., and Dolan, R. J. (2003b). Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness. *Neuropsychologia* 41, 147-155.

Oakley, J. C., Schwindt, P. C., and Crill, W. E. (2001). Dendritic calcium spikes in layer 5 pyramidal neurons amplify and limit transmission of ligand-gated dendritic current to soma. *J Neurophys* 86, 514-527.

Petrovic, P., Dietrich, T., Fransson, P., Andersson, J., Carlsson, K., and Ingvar, M. (2005). Placebo in Emotional Processing-- Induced Expectations of Anxiety Relief Activate a Generalized Modulatory Network. *Neuron* 46, 957-969.

Polsky, A., Mel, B. W., and Schiller, J. (2004). Computational subunits in thin dendrites of pyramidal cells. *Nat Neurosci* 7, 621-627.

Preuss, T. M., Qi, H., and Kaas, J. H. (1999). Distinctive compartmental organization of human primary visual cortex. *Proc Natl Acad Sci U S A* 96, 11601-11606.

Riesenhuber, M., and Poggio, T. (2002). Neural mechanisms of object recognition. *Curr Opin Neurobiol* 12, 162-168.

Rodriguez-Manzo, G., Lopez-Rubalcava, C., Hen, R., and Fernandez-Guasti, A. (2002). Participation of 5-HT(1B) receptors in the inhibitory actions of serotonin on masculine sexual behaviour of mice: pharmacological analysis in 5-HT(1B) receptor knockout mice. *Br J Pharmacol* 136, 1127-1134.

Rorie, A. E., and Newsome, W. T. (2005). A general mechanism for decision-making in the human brain? *Trends Cogn Sci* 9, 41-43.

Ruby, P. P., and Decety, J. J. (2001). Effect of subjective perspective taking during simulation of action: a PET investigation of agency. *Nat Neurosci* 4, 546-550.

Sabatini, B. L., Maravall, M., and Svoboda, K. (2001). Ca(2+) signaling in dendritic spines. *Curr Opin Neurobiol* 11, 349-356.

Salovey, P., Rothman, A. J., Detweiler, J. B., and Steward, W. T. (2000). Emotional states and physical health. *Am Psychol* 55, 110-121.

Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., and Cohen, J. D. (2003). The neural basis of economic decision-making in the Ultimatum Game. *Science* 300, 1755-1758.

Sanz, C. C., Morgan, D. D., and Gulick, S. S. (2004). New insights into chimpanzees, tools, and termites from the Congo Basin. *The American naturalist* 164, 567-581.

Sarhan, H., Cloez-Tayarani, I., Massot, O., Fillion, M. P., and Fillion, G. (1999). 5-HT1B receptors modulate release of [3H]dopamine from rat striatal synaptosomes. *Naunyn Schmiedebergs Arch Pharmacol* 359, 40-47.

Sarhan, H., Grimaldi, B., Hen, R., and Fillion, G. (2000). 5-HT1B receptors modulate release of [3H]dopamine from rat striatal synaptosomes: further evidence using 5-HT moduline, polyclonal 5-HT1B receptor antibodies and 5-HT1B receptor knock-out mice. *Naunyn Schmiedebergs Arch Pharmacol* 361, 12-18.

Semendeferi, K., and Damasio, H. (2000). The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. *Journal of Human Evolution* 38, 317-332.

Semendeferi, K., Damasio, H., Frank, R., and Van Hoesen, G. W. (1997). The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. *Journal of Human Evolution* 32, 375-388.

Semendeferi, K. K., Lu, A. A., Schenker, N. N., and Damasio, H. H. (2002). Humans and great apes share a large frontal cortex. *Nature neuroscience* 5, 272-276.

Seymour, B., O'Doherty, J. P., Dayan, P., Koltzenburg, M., Jones, A. K., Dolan, R. J., Friston, K. J., and Frackowiak, R. S. (2004). Temporal difference models describe higher-order learning in humans. *Nature* 429, 664-667.

Shammi, P., and Stuss, D. T. (1999). Humour appreciation: a role of the right frontal lobe. *Brain* 122 (Pt 4), 657-666.

Sherwood, C. C., Lee, P. W., Rivara, C. B., Holloway, R. L., Gilissen, P. E., Simmons, R. M., Hakeem, A., Allman, J. M., Erwin, J. M., and Hof, P. R. (2003). Evolution of specialized pyramidal neurons in primate visual and motor cortex. *Brain Behav Evol* 61, 28-44.

Shin, L., Dougherty, D., Orrb, S., Pitman, R., Laskod, M., Macklind, M., Alperte, N., Fischmanc, A., and Rauch, S. (2000). Activation of anterior paralimbic structures during guilt-related script-driven imagery. *Biol Psychiatry* 48, 43-50.

Singer, T., Kiebel, S. J., Winston, J. S., Dolan, R. J., and Frith, C. D. (2004a). Brain responses to the acquired moral status of faces. *Neuron* 41, 653-662.

Singer, T., Seymour, B., O'Doherty, J., Kaube, H., Dolan, R. J., and Frith, C. D. (2004b). Empathy for pain involves the affective but not sensory components of pain. *Science* 303, 1157-1162.

Smoski, M. J., and Bachorowski, J. A. (2003). Antiphonal laughter between friends and strangers. *Cogn Emot* 17, 327-340.

Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L., and Schwartz, J. C. (1990). Molecular-Cloning and Characterization of a Novel Dopamine Receptor (D3) as a Target for Neuroleptics. *Nature* 347, 146-151.

Spence, S. A., Hunter, M. D., Farrow, T. F., Green, R. D., Leung, D. H., Hughes, C. J., and Ganesan, V. (2004). A cognitive neurobiological account of deception: evidence from functional neuroimaging. *Philos Trans R Soc Lond B Biol Sci* 359, 1755-1762.

Suls, J. (1972). A two stage model for the appreciation of jokes and cartoons. In *Psychology of Humor*, G. JH, and P. McGhee, eds. (New York, Academic Press).

Tootell, R. B., Dale, A. M., Sereno, M. I., and Malach, R. (1996). New images from human visual cortex. *Trends Neurosci* 19, 481-489.

Travis, K., Ford, K., and Jacobs, B. (2005). Regional dendritic variation in neonatal human cortex: A quantitative Golgi study. *Developmental Neuroscience* 27, 277-287.

Ungerleider, L. G., and Haxby, J. V. (1994). 'What' and 'where' in the human brain. *Curr Opin Neurobiol* 4, 157-165.

van Schaik, C. P., Deaner, R. O., and Merrill, M. Y. (1999). The conditions for tool use in primates: implications for the evolution of material culture. *Journal of Human Evolution* 36, 719-741.

van Schaik, C. P. C. P., Ancrenaz, M. M., Borgen, G. G., Galdikas, B. B., Knott, C. D. C. D., Singleton, I. I., Suzuki, A. A., Utami, S. S. S. S., and Merrill, M. M. (2003). Orangutan cultures and the evolution of material culture. *Science* 299, 102-105.

Venton, B. J. B. J., Zhang, H. H., Garris, P. A. P. A., Phillips, P. E. P. E. M., Sulzer, D. D., and Wightman, R. M. R. M. (2003). Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. *Journal of neurochemistry* 87, 1284-1295.

Vetter, P., Roth, A., and Haussner, M. (2001). Propagation of Action Potentials in Dendrites Depends on Dendritic Morphology. *J Neurophysiol* 85, 926-937.

von Economo, C., and Koskinas, G. N. (1929). The cytoarchitectonics of the human cerebral cortex. (London, Oxford University Press).

Wedzony, K., Fijal, K., and Mackowiak, M. (2005). Alterations in the dendritic morphology of prefrontal pyramidal neurons in adult rats after blockade of NMDA receptors in the postnatal period. *Brain Research* 1062, 166-170.

Weisenberg, M., Tepper, I., and Schwarzwald, J. (1995). Humor as a cognitive technique for increasing pain tolerance. *Pain* 63, 207-212.

Whiten, A. A., Goodall, J. J., McGrew, W. W. C., Nishida, T. T., Reynolds, V. V., Sugiyama, Y. Y., Tutin, C. C. E., Wrangham, R. R. W., and Boesch, C. C. (1999). Cultures in chimpanzees. *Nature* 399, 682-685.

Wightman, R. M. R. M., and Robinson, D. L. D. L. (2002). Transient changes in mesolimbic dopamine and their association with 'reward'. *Journal of neurochemistry* 82, 721-735.

Wong, R. O. L., and Ghosh, A. (2002). Activity-dependent regulation of dendritic growth and patterning. *Nat Rev Neurosci* 3, 803-812.

Young, L. J., Lim, M. M., Gingrich, B., and Insel, T. R. (2001). Cellular mechanisms of social attachment. *Horm Behav* 40, 133-138.

Ziv, A., and Gadish, O. (1989). Humor and marital satisfaction. *J Social Psychol* 129, 759-768.