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Abstract

We test the matrix theory conjecture in the pp-wave by studying two-body interac-
tions between gravitons and membranes. We compute the one-loop effective potential
of matrix theory and compare it to the light cone Lagrangian of linearized supergrav-
ity. We have exact agreement in the absence of M-momentum transfer. We also find
the effective potential that smoothly interpolates between the spherical membrane re-
sult and the graviton result. We also collect here partial results from our investigation

of interactions with M-momentum transfer.
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Chapter 1

Introduction

The matrix theory [1] is conjectured to be a non-perturbative description of the
mysterious M-theory, which is believed to underlie the various string theories [2, 3].
While there are several possible definitions of the term “M-theory”, in this thesis we
will use it to refer to the eleven-dimensional quantum theory that arises in the strong
coupling limit of ITA string theory. The low energy limit of M-theory is conjectured
to be the eleven-dimensional supergravity, so via supergravity we can indirectly study
the properties of M-theory. This thesis is devoted to the comparison between matrix
theory and supergravity, thereby providing tests of the matrix theory conjecture.

M-theory contains gravitons, membranes and five-branes. As evidence for the
matrix theory conjecture, the authors of [1] computed graviton scattering in flat space
using matrix theory and found exact agreement with eleven-dimensional supergravity.
Since then more detailed investigations have been performed in flat space [15, 17, 16].

The matrix theory action in the maximally supersymmetric pp-wave background
was proposed in [4]. One is naturally led to the question of whether this new matrix
theory will give the same predictions as supergravity in the pp-wave background. In
this thesis we provide positive evidence for the matrix theory conjecture in pp-wave
by studying the interactions between gravitons and membranes using matrix theory
and supergravity and confirm that the two sides agree.

The method we use to compare the two sides is similar to the one in flat space.
We begin with graviton-graviton interaction [5]. On the supergravity side, we have

one graviton at the origin (the source) and another graviton (the probe) moving in
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the vicinity. The Einstein equation gives the gravitational field generated by the
source graviton, which we can then use to compute the light cone Lagrangian L;.
of the probe graviton. On the matrix theory side, we first identify the matrix field
configuration (the background field) that represents the two gravitons in the eleven-
dimensional picture. We then expand about this background field and integrate
out the fluctuations to compute the effective action V.;;. Since both the light cone
Lagrangian and the effective potential represent the interactions between the two
gravitons, if matrix theory indeed describes M-theory we will have the equality £;. =
Vers. With a slight abuse in terminology, we will often refer to both £;. and V¢ as
the effective potentials. The methods to compare graviton-membrane and membrane-
membrane interactions are similar [5].

On the supergravity side, we will use linear approximation when solving the field
equations. This means all the metric components computed this way will be propor-
tional to no higher than the first power of gravitational coupling x%,, higher order
effects such as recoiling and other back reactions can then be neglected. On the ma-
trix theory side, the interactions begin at one loop, and for the purpose of comparing
to linearized supergravity, only the one-loop effective potential is needed.

There is in fact one extra subtlety in the above comparison. A careful analysis
shows that the regimes of validity of the two sides do not overlap so the two effective
potentials may not match even if the matrix theory conjecture is correct. This issue is
the same as in flat space, where a non-renormalization theorem [14] ensures that the
results are compatible despite the subtlety. Since the pp-wave background preserves
the same number of supersymmetries as in flat space, a similar non-renormalization
theorem may be at work to allow for a meaningful comparison of the two sides.
Since such a theorem has not yet been proven, we may take the agreement of the
effective potentials as evidence for the existence of the non-renormalization theorem
in pp-wave. In this thesis we will not focus on this issue further.

We will first consider the interactions when there is no M-momentum?! transfer.

The relation £;. = Vs is shown to hold for two-body interactions of gravitons and

IThe term M-momentum refers to the momentum in the x~ direction.
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membranes, hence providing evidence for the matrix theory conjecture in pp-wave.
The last part of the thesis concerns membrane interactions with M-momentum trans-
fer, however we cannot compare the results directly because we are only able to derive
partial results on both sides.

This thesis is organized as follows. Chapter 2 briefly reviews the pp-wave ge-
ometry and the matrix theory action in this background. It also explains how the
gravitons and the membranes are represented in matrix theory. Chapter 3 describes
the effective potentials of both sides, how they are computed and the approximations
involved. Chapter 4 presents the detailed computations of the two-graviton case with-
out M-momentum transfer. The effective potentials from both sides are compared
and exact agreement is found. The level of difficulty increases substantially when
membrane interaction without M-momentum transfer is considered in Chapter 5. On
the supergravity side, we systematically diagonalize the Einstein equations to solve
for the metric and the three-form field in the near membrane limit. On the matrix
theory side we expand the field fluctuations in spherical harmonics to evaluate the
effective potential. Due to the complexity of the field equations of eleven-dimensional
supergravity, we will only compute the effective potential of the supergravity side in
the near membrane limit (z < 79) and the graviton limit (z > ry), where z denotes
the separation of the two membranes and r( is the radius. On the matrix theory
side, it is possible to compute the expression for general z and rg, and by taking
the appropriate limits, we are able to find perfect agreement with supergravity. In
other words, the matrix theory result provides a smooth interpolation between the
near membrane limit and the graviton limit. We also compare our results with the
those of Shin and Yoshida [31, 32| and where there is overlap we again have perfect
agreement. Chapter 6 considers membrane interaction with M-momentum transfer.
We begin by constructing a three-dimensional action on a sphere that represents the
two membranes. Just as in flat space, we expect M-momentum transfer to be repre-
sented by instanton solutions to the field equations. One simple instanton solution
is presented. However, we are not able to write down the higher instanton solutions

explicitly. To obtain a partial result without the instanton solutions, we consider a
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circular probe trajectory. Using supersymmetry alone we are able to show that the

-
Mw

effective action vanishes up to order (== )*, where My, is the radial separation of the
two membranes in the 2! to 23 directions and r is the radius of the probe trajectory in
the 2* to 2° directions. On the supergravity side the computation is similar to earlier
chapters, but the presence of x~ dependence greatly complicates the equations. The
metric is computed order by order in curvature corrections and the results are pre-
sented up to the singular terms. In order to compare with the prediction of the gauge
theory side directly we need even higher curvature corrections from the supergravity

solutions. This work is still in progress. We conclude this thesis by a discussion in

Chapter 7. Our notations can be found in Appendix A



Chapter 2

A Brief Review of the PP-wave
Geometry

In this chapter we will briefly review the maximally supersymmetric eleven-dimensional
pp-wave background. The term “pp-wave” stands for “plane-fronted gravitational

waves with parallel rays” and a pp-wave metric has the general form:
ds? = 2dudv + H (u, 2)du® + 2K o (u, 2%)dudz® + (dz*)? (2.1)

The term “plane-fronted” refers to the fact that the wave fronts u = constant are
planar (flat) and “parallel rays” refers to the existence of a covariantly constant null
vector 0,.

We are interested in a special case of the above pp-wave metric that preserves
all 32 supersymmetries in eleven dimensions. The maximally supersymmetric eleven-

dimensional pp-wave metric and the four-form field strength are given by:

%(wl)z + é(:ﬁ“)2> (dz™)? 4 (dz*)? + (dz*)? (2.2)

Figze = p (2.3)

ds’ = 2dxTdr — i? (

All the other components of the field strength are identically zero. The index con-
vention throughout this thesis is: u,v, p, ... take the values +, —,1,...,9; A, B,C, ...
take the values 1,...,9; 4,7, k,... take the values 1,...,3; and a,b,c,... take the

values 4, ...,9. This supergravity solution was discovered by Kowalski-Glikman [11]
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and is also known as KG space. This solution has 32 supersymmetries and the Killing
spinors are worked out in detail in [10]. In this thesis we will simply refer to this so-
lution as the pp-wave. In the following sections we will discuss how this metric arises

from the Penrose limit and the M-theory object that appears in this background.

2.1 The Penrose Limit

There are only four maximally supersymmetric solutions of eleven-dimensional super-
gravity. They are Minkowski space, AdS, x S7, AdS; x Sy and the pp-wave solution
above. As it turns out, the pp-wave solution can be obtained by taking the Penrose
limit of either AdS; x S; or AdS7; x Ss. We will show how this is achieved in this
section.

Roughly speaking, the Penrose limit is an expansion of the metric about an almost

null geodesic. We begin with the metric of AdS, 2 X Sy 4ot
ds® = RQ{)\Z(— cosh® p dt* + dp® + sinh® p d22)
+ (cos? 0 dip® + db? + sin® 0 dfli,)} (2.4)

p+1
p'+1”

where \ =

Next we define the new coordinates:

x
p = R (2.5)
o = % (2.6)

—Adt + dvp 1
—ee = —_— 2.
7 uRde (2.7)
M = pdxt (2.8)

V2

The Penrose limit is achieved by taking R — oo. This implies A\dt ~ di) and hence can
be interpreted as the trajectory of a particle traveling along an almost null geodesic.

Note also that a mass parameter p is introduced so that z* has the dimension of



length.
After this limit, we get the metric:

2

1
22+ y?) (de™)? 4 di p+1+dg§,+1 (2.9)

ds* = 2dxtdx™ — 5 (/\2

For instance, for AdSy x S7, we have p =2, p’ =5 and A = 1/2. Then by rescaling

" — \/Lfs we get the pp-wave metric in eqn(2.4).

2.2 The Matrix Theory in the PP-wave Background

The matrix theory action in pp-wave was first derived in [4]:

9 9
1
/dtTr{E jﬁ (Do X*)? +inD01/1+ § XA, XB)?

A=1 —1

+OPR) S WP 0+ 5 (—(§>2Z<X">2 RIS ) — i

B=1 i=1

M3 >
—%z 3 e”kX’XJXk} (2.10)

i,J,k=

where D; X = 9, X" —i[Xy, X4]. All the variables are N x N Hermitian matrices. M
is the eleven-dimensional Planck mass and R is the radius of compactification in the
2~ direction in the DLCQ formalism [8]. Putting u = 0 reduces the above action to

the matrix theory action in flat space. For finite N the action describes the sector

with momentum P_ = %.

The potential energy term in the action can be written as:

1 1 21
3 <§XZ + i§eijk[Xj,Xk]) + 5%)(3 + (cross terms of X; and X,) (2.11)
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The vacuum states are therefore given by:

X, = 0 (2.12)
Xi

"
= = 2.13
3 (2.13)

where J; are N dimensional SU(2) generators that satisty [J;, J;| = i€;jxJi. The vacua
are labeled by the ways of dividing J; into irreducible representations. The vacuum
solutions above can be understood as DO branes blowing up into fuzzy sphere due
to the Myers effect [12]. As N — oo these solutions can be interpreted as spherical
membranes of M-theory centered at the origin. For example, for an N dimensional

irreducible solution, the radius is given by:

1 0 uN
=4/ =TrX2=5"y/N2 -1~ "—. 2.14
PEVNTTY TG 6 (2:14)
where we have assumed N > 1.
The computation for a membrane with momentum P_ = % on the supergravity

side gives the same radius after the identification M3 = 277T. This interpretation
of the vacuum solutions as membranes is very natural. Just like the case in flat
space, the above matrix theory action can be derived by discretization of the action
of the spherical membrane in the pp-wave background [13]. This identification with
membranes of M-theory allows us to compute their interactions with matrix theory,
which is the subject of section 5.2. The result will then be compared with a direct

calculation using supergravity in section 5.1.

2.3 Interactions in the PP-wave Background

In this thesis we will study the two-body interactions of gravitons and membranes.
Roughly speaking we will calculate the interactions using matrix theory and super-
gravity independently and see if the results match. In chapter 3 we will explain in

detail how the comparison between matrix theory and supergravity is made. In this
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section, we will briefly describe how the two bodies interacting are described in matrix
theory.

As stated in the section 2.2, each N dimensional irreducible component in the
matrix X corresponds to a spherical membrane of radius ry = %m . Therefore,
to represent two concentric spherical membranes of radii ’é\/@ and ‘é\/@

we can choose X; to be:

(2.15)

where Ny, Ns indicate the dimensions of the corresponding irreducible representations.
We have also assumed X, = 0.

It is easily checked that such a configuration preserves 16 of the supersymmetries
and has vanishing interaction amplitude. To introduce non-trivial interactions, we

will add to the above configuration a small perturbation:

0X4 = (2.16)
0 0
where A =1,2,---,9 and ™) is the N; dimensional identity matrix.

This perturbation can be interpreted as shifting the center of one of the spheres
to the position x4. In the following chapters we will call this membrane the probe
membrane and the one at the origin the source membrane. In general this perturba-
tion will break all the supersymmetries and leads to non-vanishing interactions. By
allowing time dependence in x4, we can study the interactions with different probe
trajectories.

So far we have been talking only about membranes, so a natural question is how
gravitons are represented in the matrix theory. We know that in flat space, a graviton
with P_ = N/R at the origin is represented by X4 = 0) where 0¥) denotes a N x N
null matrix. In the pp-wave, 0N) can be regarded as N one-dimensional irreducible

representation of the SU(2) algebra. Applying the statements made about spherical
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membranes earlier, 0Y) thus represents N membranes with radii 7y = 0, each carries
one unit of momentum P_ = 1/R. This collection of N point-like particles at the
origin taken together is simply a graviton with momentum P_ = N/R. In other
words, a graviton is a collection of spherical membrane with zero radius.
For example, a configuration with a graviton with momentum P_ = N;/R and a
spherical membrane with momentum P_ = Ny /R both centered at the origin is given

by:

(2.17)

Again we have put X, = 0. We can also displace the graviton by adding the same
perturbation from eqn(2.16), therefore a spherical membrane at the origin and a

graviton at position x4 is represented by:

x; [NV ‘ 0

X, = o (2.18)
z, TN ‘ 0

X, = o (2.19)
0 \0N2

Similarly, the configuration of a graviton at origin and a graviton at the position x4

is represented by:

Q?AI(Nl) ‘ 0

X4 =
0 ‘ 0Nz2)

(2.20)

Later in this thesis we will expand the matrix theory action about the above
configurations. The field fluctuations are then integrated out to give the effective

action which is compared with the computation on the supergravity side.
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Chapter 3

The Effective Potential of Matrix
Theory and Supergravity

3.1 The Two Sides of the Duality

In this thesis we will compute the effective potential of the matrix theory for var-
ious objects up to one-loop. This effective potential, denoted as V,s¢, will then be
compared to the light cone Lagrangian density £;. on the supergravity side. With
a slight abuse in terminology, we will often refer to both as the effective potential.
One can intuitively understand why these two objects should be compared with each
other despite their different origins in the following way. On the matrix theory side,
the effective action is defined by integrating out all the higher loops quantum effects.
This action can then be used as if it is a tree level action, which automatically takes
into account all the higher loops effects. Therefore, one should compare the effective
potential of the matrix theory side with a tree level Lagrangian that describes the
same physics. The light cone Lagrangian of supergravity is precisely such an object.
It is used only at tree level, and describes the interactions of objects in eleven dimen-
sions, which is the conjectured arena of the matrix theory. In this chapter we will
describe in detail how the effective potentials are computed on both sides.

The computation of the effective potential is carried out in the DLCQ formalism.
This formalism was proposed in Susskind’s finite N conjecture [7], and further elu-

cidated by [8, 9]. In this formalism x~ and x~ + 27 R are identified. P_ is therefore
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quantized in units of 1/R.

The implications of such a light-like compactification, however, are far from trivial
[22]. One such complication arises from the longitudinal zero modes, which appear
to cause perturbative amplitudes to diverge. In addition, there are concerns that
the DLCQ of M-theory in the low energy limit is not necessarily the DLC(Q of 11-
dimensional supergravity because some exotic degrees of freedom such as membranes
wrapped around the lightlike direction may contribute.

Here we are going to take the viewpoint in [23]. Essentially, the presence of a
source exerts a pressure that decompactifies the region surrounding it, rendering =~
effectively spacelike by providing a nonzero ¢g__ component in the metric. In the
limit of large N, this bubble of 11-dimensional space expands, and the approximation
of supergravity as a low energy description is thus justified. This view is further
elucidated in [24], and we do not expect new issues to arise in the pp-wave background.

On the matrix theory side, the effective potential is computed up to one-loop.
As in flat space, it corresponds to terms of order k2, on the supergravity side. The
relation x3; = 167°/M? [16] means only terms of order 1/M? are relevant on the
matrix theory side for the purpose of such comparison. A natural length scale that

arises on the matrix theory side is 1/(M?R)'/2, which for convenience we will denote!

as (a)/2,

3.2 The Membrane Limit and the Graviton Limit

In this thesis the two types of M-theory objects we will be looking at are gravitons and
membranes. We will argue in this section that certain limits of the effective potential
has to be taken before a comparison between matrix theory and supergravity is possi-
ble. A naive comparison of the effective potential on both sides will not work because
the effective potential V.;; includes matrix theory corrections to supergravity. Here
we should point out the term “corrections” is a slight misnomer in the sense that

the terms in the effective potential corresponding to such “corrections” could in fact

'This o should not be confused with the string scale .
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be larger than the terms corresponding to supergravity in extreme short distances.
Therefore, when we use the term “corrections to supergravity,” we are by no means
implying the “corrections” are automatically a small perturbation to the supergravity
results. These matrix theory corrections, while interesting in their own rights, are
not our focus here. Here we are not interested in how matrix theory modifies su-
pergravity predictions, rather we are interested in whether matrix theory is capable
of reproducing known results from supergravity. Therefore before a comparison is
made, such corrections must first be removed. In other words, we must make sure
our parameters are chosen such that the matrix theory corrections do not dominate.

Besides having to take care of the matrix theory corrections, we also have to make
sure the equations are indeed describing the correct M-theory objects. In the pp-
wave there is an interesting connection we could make between a graviton and an M2
brane. Under the influence of the 3-form background whose strength is proportional
to a parameter u, each stable M2 brane curls up into a sphere, with its radius rg
proportional to p and its total momentum in the 2~ direction, i.e., we have ro ~ puP_.
If one takes the limit of © — 0 while keeping the total momentum P_ fixed, then
the radius of the sphere goes to zero and we get a point-like graviton. If on the
other hand, we increase P_ simultaneously, keeping the momentum density p_ ~
P_/r? fixed so that the radius goes to infinity, then the end product will be a flat
membrane instead. Thus the gravitons and the flat membranes of flat space could
both be regarded as different limits of spherical membranes in pp-wave. One could
make another observation by considering two spherical membranes separated by a
distance z. If z > ry, then one expects the membranes to interact like two point-
like gravitons. If z < ry then the interaction should be akin to that between flat
membranes. Therefore by computing the interactions between membranes of arbitrary
radii and separation, we could then take different limits to understand the interactions
of both gravitons and membranes.

With this picture in mind, we will now state the two limits we are interested in:



14

The membrane limit:

— > 1 (3.1)
o
= <« N (3.2)
ap
The graviton limit:
= o1 (3.3)
ap
= > N (3.4)
ap

where we used z to denote the separation of the two spherical membranes in the z#
to x? directions. a = ﬁ as before.

The membrane limit is derived from the condition:

1 z
— — 1 .
N<<r0<< (3.5)

The first inequality ensures that the effect of non-zero z is greater than any matrix
theory corrections to supergravity, which we are not interested in. The second in-
equality ensures we are at the near membrane limit. Using ry = %, we arrive at
the limit as stated.

The graviton limit is when z is much greater than ry, so that the two spheres
interact approximately like two point-like gravitons. We still enforce the condition
% < % for comparison with supergravity but reverse the second inequality in the
membrane limit to % > 1 to arrive at the graviton limit stated above. An equivalent
point of view is that the point-like gravitons polarize into membranes in the pres-
ence of the 3-form potential A,,, through Myers’ dielectric effect. In order to treat
the polarized gravitons as (almost) point-like objects, we must require that the two
gravitons be separated by a distance substantially greater than the fuzzy radius of

each graviton.

Later on in section 5.3 we will compute an effective potential that smoothly inter-
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polates between these two limits. In the next two sections we will describe how the
supergravity light cone Lagrangian £;. and the matrix theory effective potential V,s¢

are computed.

3.3 The Light Cone Lagrangian of Supergravity

In this section, we will derive the light cone Lagrangian of a graviton and also that
of a membrane in an arbitrary background. This Lagrangian will be compared to the
effective potential on the matrix theory side in later chapters.

We will begin with the simple case of a graviton, and then move on to the case of a
membrane in the pp-wave background, and eventually we will show how to obtain the
light cone Lagrangian of a membrane in an arbitrary background. The Lagrangian
will be derived using two approaches. The first is the quicker method of explicit gauge

fixing, the second is using the more rigorous method of constrained Hamiltonian.

3.3.1 The Light Cone Lagrangian of the Graviton

A graviton is a massless point particle. To derive the light cone Lagrangian, we
will first assume it has a mass m and in the end takes the mass to zero. With this

assumption, we have as our first step:

L=—my/—G,XrX" (3.6)

Next we are going to do a Legendre transform, removing any explicit X~ in favor of

P_. We first define P_:

p— & _ n G_, X" (3.7)

0X= /@, XnXv

Now we take the limit m — 0 keeping P_ fixed. This implies GWX kX" — (. In the

light cone gauge we fix X+ = 7. Writing G, = g, + hyw, where g, denotes the

iz

background pp-wave metric and h,, denote the perturbation on the background, we
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could solve for X~ from the equation GWX rXY = 0:
) 1 . L
X- = —§(X2 + gt + hu XP'XY) (3.8)

We have written (X*)? as X? for simplicity. In the last line one sees that X~ also

appears on the right-hand side, but it always appears in the company of h,,, so

nz

in first-order perturbation theory, the X~ on the right-hand side is understood as
the zeroth-order approximation X~ ~ —%(X 2+ g,.). Effectively we treat the last
equation as an iterative formula for X .

We are now ready to write down the light cone Lagrangian for the graviton:
Lio=L—P X~ (3.9)
Taking the limit m — 0, we have:
Lie=—-P. X" = %P_(XQ + g+ hu XPXY) (3.10)

Again, the X~ on the right-hand side is understood as the zeroth-order approximation
X~ (X7 +giy).
Explicitly, we have the light cone Lagrangian:
1 -2 1 -2 2 -2 - A
Ly = §P_ X"+ g4t + Zh__(X + g4)” = hoa(X7+g40) X

—h_+<X2 + g++) + hABXAXB + 2h+AXA + h++} + O[hQ] (311)

3.3.2 The Light Cone Lagrangian for the Membrane in the

PP-wave Background

In this section we will illustrate how to find the light cone Lagrangian for a membrane
in the pp-wave background. The purpose of this section is to provide a simple warm-
up exercise for the next section, which involves a membrane in a general background.

A second reason for this section is that some of the gauge choices are best explained in
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the simple case of a pure pp-wave background. Because the most general results will
be presented in the next section, in the current section we will make the simplifying
assumption A,,, = 0. This of course is a deviation from the actual pp-wave back-
ground, but it is sufficient for our purpose of illustrating the techniques. The 3-form
will be restored in the next section. We will also put the tension of the membrane T'
to one. T' can be restored by dimensional analysis.

Without the 3-form field, the Lagrangian density for the membrane in a pp-wave
background is given by:

L=—V=g (3.12)

where go5 = G,,0,X"03 X" and g denotes its determinant. Here o, 8 = 0,1, 2 label
the world volume coordinates of the membrane, while pu, v =+, —,1,2,--- ,9 denote
the target space coordinates.

We choose the light cone gauge X+ = 0% = 7. Using r, s = 1, 2 to label the spatial

world volume coordinates, we have:

goo = 2X + X%+ g,y (3.13)
gor = up=0,X + X9, X4 (3.14)
Grs = Grs = 0, X0, X (3.15)

Again we have written (X4)? as X2 for simplicity.

The Lagrangian density can now be rewritten as:

L=—/Ag (3.16)

where

A = —goo+ u-g us (3.17)

1
g = detg,, = 5{XA, XPY = (0, X40,X7 — 0,X 9, XP)" (3.18)

N | —
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The momentum density p_ is found to be:

oL 7
== /2 3.19
e A (3.19)

Next we fix the gauge explicitly by choosing uw, = 0. This gauge choice is fixed
using the reparametrization freedom on the spatial world volume coordinates of 0.
We will comment more on this gauge choice at the end of the section.

After u, is set to zero, we could solve X~ in terms of p_ using eqn(3.19):

. 1 1 .
X =—= <—2§+X2—|—g++> (320)
2 \p~
Noting that L = —/Ag = —g % = —p%g, we can now compute the light cone
Lagrangian density:
L. = L—p_X~ (3.21)
11 1 o,
= ——g+5p- 9+ X"+ g4 (3.22)
p_ 2 P
1 - 1
= oP- X'+ g4 — p—%9 (3.23)

Similarly, the light cone Hamiltonian can also be computed. The result is:

1 1
Hie=— (> +3) — =p_ 3.24
! 2p_(p +9) = 5P+ (3.24)
where p? = (pa)?.
From the Hamiltonian, we could see that p_ = 0, which was the motivation

behind choosing the gauge u, = 0. In the language of constrained Hamiltonians, this
is equivalent to setting to zero the Lagrange multipliers ¢ in the “total” Hamiltonian
Hr = H;. + "¢, where ¢, are the primary constraints. This more rigorous approach

will be discussed in section 3.3.4.
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3.3.3 The Light Cone Lagrangian of the Membrane in a Gen-

eral Background

In this section, we will compute the light cone Lagrangian of a membrane in a back-
ground G, = g, + hy, to the first-order in perturbation on the pp-wave background
using the techniques developed in the last two sections. First we would like to specify
a gauge choice. As usual we will choose X = 7. As for the gauge choice of u,, we
wish to choose a gauge such that p_ = 0. The precise details of this choice turns
out not to be a concern for the following reasons. First, from the last section, we
saw that u, = 0 is an appropriate gauge choice that achieved p_ = 0 in the pp-wave
background?. This means that when a perturbation h,, is present, u, will be at least
first-order in h. However, u, enters only in A = —Goo + u,G™us, which is second
order in wu,. Therefore the second term can be ignored in first-order perturbation
theory even if u, is non-zero. Effectively, we can approximate A ~ —G throughout.

The perturbation from the pp-wave background on the metric and the 3-form field
will be denoted as h,, and a,,, respectively. The 3-form field in the exact pp-wave
background is taken to be Ag’jfj) = %eiijk so that Fiozy = pu. G and Ay, denotes
the general background while g, is the pp-wave metric as before.

The Lagrangian density of a membrane in a general background is given by:
E = =V AG + Aw,pf)oX“alX”agXp (325)

where G = det(g,s + h,s) The momentum density p_ is given by:

o

po =\ ~(1+h X" +a_,,0, X0, X" (3.26)

Using A = —Gy, we have:

~A=2X"+g, + X2 h, XXV (3.27)

20ne can show easily that this statement remains true even when the 3-form field is restored.
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Solving for X~ in terms of p_, we have:

. 1( . 1 -
X~ = ——{X2+g+++—2G
2 p

+hMVXMXV + _zgh_MXM + —39a_,w81X“82X”} (328)
p- p-

Same as in eqn(3.8), whenever X~ appears on the right-hand side, it is understood
as the zeroth-order approximation X~ ~ -3 (X 2 4ge + p%g).

Next we use the equation of p_ to rewrite the Lagrangian density:

- /A
A AR (3:29)
1 L
= — 1 X A XM, XV, XP ‘
P — afwﬁle‘agXV( + hoy XH)G + A0 X401 XV 05 (3.30)

1. 1 .
= G — —gh_ X"+ A, 00X 0, X 0, X"
p- p-
1

—])—2§CL,H1,61XN82XV (331)

Now we can construct the light cone Lagrangian density:

L. = L—p_ X~ (3.32)
1

) 1 _ 1 L
_ §p_{ X2 4g,, — p—QG} 5Pl XPX 4 A0 X4 0, X " 0:X7(3.33)

As before, X~ on the right-hand side is understood as X~ ~ —% <X2 +gi4+ p%g).
Separating the Lagrangian density by £;, = [Zl(fp ) 1 5L, we have:

1 . 1 . .
ol = §p—{X 24 g — 27 } * geijkalX D, X7 X" (3.34)
1 s 1 =
5£lc — Ep—hNVXMXV —+ a,uypaoXMaleagXp — 2—5G (335)
D_

where 6G = §det G,, = G — 3.
Because the light cone Lagrangian is the primary object we use to compare to the

matrix theory, in the next section we will use the more rigorous method of constrained
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Hamiltonian to derive the light cone Lagrangian. Although the intermediate steps

differ, the final result is the same as the one we found in this section.

3.3.4 The Light Cone Hamiltonian with Constraints

In this section, we will re-derive the results of the previous sections using the rigor-
ous method of constrained Hamiltonian. Basically, in this approach the light cone
Hamiltonian is defined as the momentum in the “+” light cone direction. The light
cone Lagrangian is obtained by a Legendre transform on the light cone Hamiltonian.
Unlike the previous approach, here the gauge choice is left open until the last stage
of the derivation. In this section we will denote the momentum density® by II,,.

Once again, we begin with the Lagrangian density:

,C = —\/ — det Gaﬂ + AWP(%X“(%X”@gX” (336)

The momentum density is given by:

oL o v
I = 5gpn) = V0 G(0X") Gt Ay X 0,X7 (3.37)

Defining TT, = IT, — Ay,,0, X790, X" = —/—G G*(9,X")Gy,, then we have the

primary constraints:

(bO = G/Wﬁ,uﬂu + é =0 (338)
¢7‘ = ﬁuarXu =0 (339)

where r, s = 1,2 and G = det G, as before.

3Both I1,, and p, denote momentum density. In our convention, we usually reserve p, to denote
momentum density with respect to the physical distance on the membrane (by choosing o, to have
the dimension of length), hence giving it the dimension of (mass). In this chapter, however, the
distinction between the two is not important because we have not yet specified the explicit choice for
the coordinates o,.. The two different notations are used to conform to the conventions commonly
used in the two approaches.
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The “total” Hamiltonian density is given by:
Hr =H + ¢, (3.40)

The equations of motions are evaluated with Hp. The original Hamiltonian H in
the above equation is defined by ‘H = HMX # — L as usual. However, due to the

reparametrization degrees of freedom, H = 0, therefore we simply have:
Hr = c“¢o (3.41)

The equations of motion are deduced from the total Hamiltonian Hy = [ d*0cHr:

0H T aHT 8HT

L, = —$op= -t + ara@X“) (3.42)

. SHr  OHp

Xt = - 4
50, — OII, (343)

The symbol § denotes functional derivative. In the second line, we have used the
fact that the Hamiltonian is independent of 9,11,,. Using the constraints, we get the

following equations of motions:

= (o4 6¢CY o agbﬂt
11, O (c 8(&)@)) “ X (3.44)
Xt = 280G, + ¢ 9, XM (3.45)

The right-hand side of Hu can be evaluated with the help of the following equations:

oI, - oG
I
TR

9o —_ 9

20, X" (0, X") (3:46)
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with
ol T T
o xR — o TRX G X
aé r « T « r a r a
508,57 = Cno {207 (21X )Gl + 205(0: X )Gy — 2G (8]0, X + 5501 X )}
(3.47)
Oy OG- - NI Ple.
P () ¢ +26 OXH £+8X“ (3.48)
with
Oy Ay, o
aX’J’ - aX’J’ (91X 82Xp
oG 0G4
OX 1 = 3X5 (alXaaLXBGm + G110: X0, X" — 2G1231X"‘82X/3)
(3.49)
and
s Do,
N A <N — TH — )
aoxn = e Gxa (3.50)
Using the light cone gauge X = 7, we get from eqn(3.45):
1= 200G+Vﬁy (351)

1

. . . 0 . _
which implies ¢’ = L

As for the gauge choice of ¢", we first look at the exact

pp-wave geometry. In this case, eqn(3.44) gives:
I = 0,(TL) (3.52)

This motivates a gauge choice of ¢" = 0 so that II_ = 0.
In the case of a background geometry perturbed from the pp-wave, ¢ can differ

from zero, but it turns out in first-order perturbation theory the details on ¢" does
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not matter because it will cancel out in the end. We have of course encountered this
very same statement in section 3.3.3, where the detailed choice of u, turned out not
to affect the final light cone Lagrangian.
Now we are ready to construct the light cone Lagrangian. First we define the light

cone Hamiltonian density:
Hie = —114 (3.53)

Next we define the light cone Lagrangian density via the above light cone Hamiltonian

density:
Lo =T XA — Hye = T, XA 411, (3.54)

To compute the light cone Lagrangian in this approach, we first have to find II, .
This could be done by solving for I1, from the constraint equation ¢y = 0. Next we
need to write IT4 in terms of X4, This can be done using eqn(3.45).

To illustrates the techniques, we apply the above steps to the exact pp-wave

background. In this case, the constraint ¢, gives:

LI +¢g M2+ +5=0 (3.55)

where T1? = (I14)2. Solving this constraint for IT, gives:

I, = I,+A.;,0,X0,X7 (3.56)
1 - -
= = {H2 ygT2 4 g} A0 X8, X7 (3.57)

In the pp-wave background, one sees that II_ =II_ and II; = II; because A, =0
and 0, X = 0. Eqn(3.45) gives us:
1

XA =201, = T (3.58)
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which implies I14 = II_X4. The light cone Lagrangian is therefore given by:

L — TXA 411, (3.59)
- 1
= II_X2%-— Tl {IP+ g 12 + g} + A apdi X0 X7 (3.60)
1 =) 1 _ M 7 i vk
= —JI_<X -+ g+ — _Qg -+ —Gijkalx 82X]X (361)
2 1= 3
where we have used g~ = —¢g, .. This light cone Lagrangian is of course identical

to the one we found in eqn(3.61).

The above techniques can be applied to the perturbed pp-wave background, al-
though the calculation is a lot more involved. Writing the light cone Lagrangian as
L. = Ll(fp) + 0L, we have El(fp) as before, while §£;. is given by:

-1 N

0Ly = ﬁ{ — h__(fLr);p =2l (hy— — gyyh ) (T4 )pp

— 2T(T1, ) a1y XV 0 X P — 2TT _a1,,,00 X 0y X" — 2h_ AT 4(114),,
-1 (h++ +(g41)*h— — 29++h+—) — 2l (hya — g+sh-a)lla

+ 2TH_g++a_Vp81X”82X” - hABHAHB - 2THAaAI,p81X”82Xp + T25G}

(3.62)

where (fI+)pp = —21_[% {H2 — g 112 + g} and the momentum Il appearing in this
equation can be approximated by (I14),, = I1_ X7 in first-order perturbation theory.
The Lagrangian is found to be independent of the gauge choice ¢". After appropriate
substitutions, this light cone Lagrangian is found to be identical to the result in

eqn(3.35).

3.4 The Effective Potential of Matrix Theory

In this section we will describe how to construct the one-loop effective potential of
matrix theory. We will use the background field method, which begins with expand-

ing the action about a certain background to quadratic order in fluctuations. The



26
fluctuations are then integrated out to produce the effective action. We will take a
short cut at the second step by using the “sum over mass formula,” which will be

explained in detail below.

3.4.1 The Background Field Method

We will follow the background field method as reviewed in [25]. X is expanded into
the background field B and the field fluctuation Y, i.e., X = B+ Y. Only the part
of the action that is quadratic in Y will be of interest below.

First recall again the matrix theory action in the maximally supersymmetric pp-

wave background [4]:

9

9 3 2
/dtT’F{Z% DOXA +Z'¢TDO¢+% Z [XA XB]z

A=1 A,B=1

FOPR) S TP IXE ] 4 o (—(%)QZW’ RPICY ) Yo

B=1 =1 a=

3
— (]w;% 7;1 eUkX’XJXk} (3.63)
where Do X = 9, X4 — i[X,, X*]. Here and in the rest of this thesis, unless stated
otherwise, we will always assume the indices ¢ goes from 1 to 3, a goes from 4 to 9,
and A goes from 1 to 9.

Assume X is of the order of a parameter z, then taking the ratios of any of the u-
dependent terms to the p-independent non-derivative terms gives the quantity (%£)2.
In other words, the assumption a—zﬂ > 1 in section 3.2 when enforcing the membrane
and graviton limits is identical to treating the new terms arising from the pp-wave
background as a perturbation to flat space. Note that this is exactly the opposite
of the approximation made in [13], where the p-independent terms are treated as
perturbations to the p-dependent terms. As explained earlier, this limit ensures
we are not in the extreme short distance regime where matrix theory corrections

dominate. While the computation of the matrix theory one-loop effective potential
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is possible no matter what the value of ai# is, an agreement with supergravity is
expected only when ai# > 1.
In addition to the action above, there are terms arising from the ghosts and gauge

fixing, which we simply state below:

ng

/ dtTr{ - %(atxo + i[BA,XA])Q} (3.64)

Sghost = /dtTr{E@fc — 0ye[ Xy, ] +¢[BA, [X4, c]]} (3.65)
The complete matrix theory action is:
Sy =95+ ng + Sghost (3.66)

To simplify the notation, we will often put M3R = 1/a = 1. This factor can be

restored by dimensonal analysis.

3.4.2 Expansion about the Background

To illustrate the background field method, we now look at the case of two-graviton
interactions in detail. The membrane calculation can be carried out similarly.

The fields X, ¢, and ¢ are expanded about a purely bosonic background. Here we
set N, = Ny =1, i.e., we set all the matrices to dimension of 2 x 2. We will restore

N, and Nj in the end:

X,=B,+VRY, ; pu=01,2.,9
xqa O z
B, — A ; v, — Ca NA
0 0 Za Ca

0 0 2

By = S
00 Zo o

0 € ¢

o= _ | 5 e= B
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The above background has the interpretation of one graviton (the source) sitting
at the origin?, while another graviton (the probe) approaches from the position given
by 24 in the matrix B. We will use the shorthand r2 = 3% _, (24)2.

After a Wick rotation, where we define S = iS®) and 7 = it, and at the same

(

time rotating X to Z'XOE), the quadratic part of the action is: °

st = | dr{ 2000260 — G+ 2G5+ (/DG + 3G~ + (1/6))Go

1~ IS ~
T (02 + /3G + G0+ (/6P
+Z0(=02 + 1) 2 — 2i0, 21 (Zr20 — Z021)
4 Zi(=0% 4+ 12 + (1)3)?) 2 + Za (0 + 1% + (1)6)?) 20 — @',ueijkxﬁjzk}

(3.67)

S}fr)mion = /dT{U(af + i%’h%)ﬁ +7(0- + i%’mz)ﬁ*‘ 25(& —TAYA T i%”ms)@}

(3.68)

g

Somst = / dT{€036+’E“03’€+61(83—r2>c2+6<83—r2)c1} (3.60)

3.4.3 The Sum Over Mass

The partition function, Z of the above action can be computed as a product of
functional determinants. The 1-loop effective action I' is then simply related to Z

via:

exp(-I')=Z (3.70)

4 Another possible interpretation is a transverse five brane at the origin [28].
SFor simplicity, all subsequent superscripts of (F) on the Euclideanized fluctuation fields will be
omitted.
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The 1-loop effective potential is defined as:

I'= —/dT ‘/eff (371)

The minus sign in front of the integral is slightly unconventional, but it was put there
for the convenience of comparison with supergravity. It was chosen such that the
tree level part of the effective potential is simply the light cone Lagrangian (L),
rather than —(L;.),,. After V.p is computed, the result could then be analytically
continued back into Minkowski signature by replacing vg — ivy,.

To first approximation, however, it is not necessary to compute the functional
determinants. As was suggested by Talfjord and Periwal [27] and Taylor [26], one
could deduce the effective potential by simply evaluating the mass spectrum of the
fluctuating fields. From the masses, the 1-loop contribution to V.s; could be easily

deduced using the formula:

Vvelf—floop — _% ( Z my — Z my — Z mg> (372)

real bosons real fermions real ghosts

The physical reasons for this is that at large distances, i.e., the limit where super-
gravity is valid, all the string stretching between the DO-branes can be assumed to lie
in their ground state. This result can also be verified using the complete expression
for Vess in terms of functional determinants. We provide an argument for this in
Appendix A. In what follows, we will omit the superscript “1-loop,” assuming this
is understood. The contribution from tree level, which does not concern us here, is
simply the Lagrangian with X replaced by B. Both contributions will be put back
together at the end in eqn(4.7).

One important point to note is that this method is valid only up to the lowest
powers of v, as is already known in the flat space case. In flat space, the above
formula reproduces every term predicted by a supergravity computation with the
right coefficients, but the matrix theory corrections to supergravity, i.e., terms with

even higher powers of v and 1/r which would not be found in supergravity, will not
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come out with the correct coefficients. In fact, the parameter a can be treated as the
counting parameter for this purpose. All terms of order o, which is basically x%, in
the supergravity language, will be found on the supergravity side, but terms on the
matrix theory side with higher powers of «, which represent short distance effects,
should be treated as corrections. To compute them correctly, one needs to make use
of the complete expression in terms of functional determinants.

For our purpose, however, the above approach is sufficient. We are not inter-
ested in computating the correction to supergravity, rather we would like to check
whether the terms already predicted by supergravity in the pp-wave background can

be reproduced by a matrix theory calculation.
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Chapter 4

Two-Graviton Interaction without
M-momentum Transfer

4.1 A Simple Case

In the next section we will work out a more efficient method to compute V. without
explicitly diagonalizing the mass matrix. Nevertheless, it is instructive to work out
the simplest case in a direct approach to get the basic idea of the computation.

In this simple case, we put 2® = b and 2° = v7, while all the other z# are set to
zero'. Here b is a constant, which can be interpreted as the impact parameter of the
approaching probe graviton towards the source sitting at the origin. In this thesis we
often use z to denote the separation in the z* to 2 directions, but we use r in this
chapter to avoid confusion with field fluctuations z#. In this case, the mass matrix
constructed from eqn(3.67), (3.68) and (3.69) is easily diagonalized to give the mass
spectrum listed in Table 4.1. It should be noted that the velocity in the table above
is measured in Euclidean time 7, i.e., v = %. In a comparison with supergravity, a
Wick rotation back into Minkowski time ¢ = —i7 is required, which introduces extra

minus signs in Vzy.

With the mass spectrum at hand, V.;; can be evaluated using eqn(3.72):

!Note that by putting all % to zero for i = 1,2, 3, we made sure that in this case the Myers term
will not contribute to the mass matrix.
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m? Fields

0 o

1232 ¢oi=1,2,3
u?/6? ¢* :a=4,..9
0 0

(1232 ¢ oii=1,2,3
112 /62 (* sa=4,..9
r? + u?/3? Z 2 i=1,2,3
r? + u*/62 zZ¢. 2% a=4,..8
7"2—1—77+ Z0 +2°,20 + 2°
r? 4+ z0 — 22,20 - 2°
es n_(8)

e n_(8)

r? 4+ /4% +v 6 (8)

r? 4+ pu?/4? — v 6 (8)

0 €, €

0 €€

r? cr,er 1=1,2

Table 4.1: The Mass Spectrum for a Simple Case. 7 is the separation of the gravitons.
The numbers inside the round brackets indicate the number of physical degrees of

freedom of the fermions with the given mass. 7. is given by %[g—s + (g—;)Q + 1602] .
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1 1
Vs = —53(2)65 + 65 —85) - 5{6 P2+ 237+ 1012 1 12/ + 2/72 1 1y

+20/12 4+ — 812+ 2 /42 + v — 812+ p2 /42 — v — 4r} (4.1)

At this point it is useful to restore the factors of M3R, which we denote as 1/a.
For instance, the first square root term in the about equation becomes:
22

St (42)

This can in turn be written as:

L ane)

The expression for Vs given above, being a matrix theory result, is only expected
to match with supergravity in the large r limit (if it does at all!). Defining the large
r limit by eqn(3.3), we can then expand the 1-loop effective potential in powers of

o?p? /r?. Thus, expanding Vs, gives:

15 4 7 2,,2 1 4
LA WP

Vo = (oo
1= 7 o 5 T res s

Wick rotating v, and restoring IV, IV, gives:

N,N; 150" 7 po? 1 pt 5
R 167 06 5 meses) T O] (44)

Verr =

The o® terms give the factor 1/M?, which translates into k%, in the supergravity
language. This is the order we are interested in. We throw away the higher powers
of a (which are always accompanied by powers of 1/r) because they correspond to
short distance corrections to supergravity, just as in flat space.

Here the first term is just the flat space result. The second and the third term

are the interesting ones, with new p?v? and p* dependence created by the pp-wave
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background. A comparison of their coefficients with supergravity will show exact

agreement.

4.2 Mass Matrix Computation

In the more general cases, when the velocity and the impact parameter point in
arbitrary directions, calculating the effective potential V. by finding the entire m?
spectrum, then taking their square roots and expanding them in powers of x4 and v
becomes inefficient, since in the most general case this involves finding the eigenvalues
of mass matrices of very high dimension.

Instead, it is possible to make use of the sum over mass formula in eqn(3.72)
without explicitly diagonalizing the mass matrix. Let us denote the square of the
mass matrix as W = M?2. Since there is never any mixing between the bosons, the
fermions and the ghosts, we can study their mass matrices separately.

In terms of W, the sum over mass formula becomes:

V—elf}loop — —%t’l“(\/ﬁb_ \/W_ \/Wg) (45)

The square root of W can be defined unambigously by its expansion in powers
of a/r? in the supergravity limit, as was discussed in Section 4.1. Note that M, is
defined to be the mass matrix for real bosons. If it is taken to be the mass matrix for

the complex bosons, then there will be an extra factor of two in front of \/W,.

4.2.1 Simple Recipe for Mass Matrix

In this subsection we will give a simple recipe for writing out M? for both the bosons
and the fermions. The mass for the ghosts is exactly the same as in the simple case
of Section 4.1.

First of all, we should note that the mass of ¢* and (* are always u/3 and p/6
respectively for ¢ = 1,2,3 and a = 4,...,9. The mass of all eight physical degrees
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in 7 is always pu/4. These are independent of the background B. Mixing occurs
only among the z# and among the 6 and 6. Hence in what follows, we will denote
the component arising from say z42% in the bosonic Lagrangian simply as (M?)ap

without mentioning z explicitly. Note also that M? is symmetric.

4.2.1.1 Rules for Bosons

L (M?)oo =712 (M%) =12+ p?/3% (M?)aa = 1° + 12 /6%

2. i = vy mixes ¥ and 24 = (M?)g4 = —2v,4

3. ' = by mixes 22 and 2%... etc = (M?);, = iperb;

Note that Rule 3 applies only to 2% but not z%. Such mixing is the effect of the Myers

term in the matrix theory action.

4.2.1.2 Rules for Fermions

The mass matrix for the fermions can be written in a closed form:

9 3.
M2 =12 4 2/42 ey 46
e 4 pt/ +;mm+; 1 {7, 123} (4.6)

4.3 The General Case

Once the mass matrix squared W = M? is known, eqn(4.5) can then be used to
compute the 1-loop effective potential explicitly. In accordance with our earlier dis-
cussions, only terms up to order o ~ 167°/M? = k2, are kept. After restoring all

factors of M?R, N,, and Ny, the 0 and 1-loop effective potential is given by:
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eff + MOR3 o

9 9 3 9
1/ 0 —loop _ p (Z VAt gy NpN, { 15(3 5, v3)? _ PP Ty v
1677 967> 967>

152
32r7

Z (ZU Z )*2@%%)2”
Z(;@a)?] —12Z(xi)2-2(x“)2} (4.7)

A 3
poNpNs 1 i\2
BN 32|}
RO 7687 (=) 2. - 2.

=1

2

+

This is the equation to be compared with the supergravity result. Notice the effective
potential has manifest SO(3) x SO(6) symmetry, as should be expected from the
symmetry of the original matrix theory action. Just as in flat space [18], one should
be able to recast this 1-loop effective potential in the form T*'G,,. A comparison
with the supergravity side will indeed confirm this, as this is precisely the form of the
effective potential on the supergravity side as derived in Appendix B.

Having computed the effective potential on the matrix theory side, the next step
will be to compare it with the result from a supergravity calculation. Before this
could be done, the issue of gauge choice has to be addressed.

It is necessary to make a gauge choice when solving the Einstein equations. A
gauge choice corresponds to a choice of the coordinate system one uses to describe the
physics. On the matrix theory side, such a choice of coordinates was made right from
the very beginning: The action in eqn(2.10) was written in coordinates that made the
SO(3) x SO(6) symmetry manifest. Before a comparison is possible, a corresponding
choice of coordinates (i.e., a choice of gauge) has to be made on the supergravity side.

A comparison of the above equation with the general expression for Vi in
eqn(4.44) will in the end determine the correct gauge choice for the supergravity
computation. There will be a further discussion about gauge choice in the supergrav-

ity section.



37
4.4 The Supergravity Light Cone Lagrangian

To find the two-body effective action, one only needs to solve for the metric pertur-
bation caused by the source graviton at the linear order (~ k2,).
The action is given by:

S=Sc+Sa+Sp (4.8)

Sq is the Einstein action for the metric:

1
SG = /{—2 dlll'\/ |g|R (49)
11

S 4 is the action for the three-form:

2 \/ 1 1
Sy = ——/d“x {—|g| FuuAépu,,)\g + — et A F F

5%1 2.9.4! 12 31(4!)2 pipopst pa. e ps. o pn
(4.10)
Sp is the action for the source graviton (the subscript P means “particle”):
P =Ypry G \Y - m .
2 J-o Be)TH T dE dg

with Cp being some constant.

The above action gives the equations of motion for the metric, the 3-form field,
and the source graviton, all listed below.
The Einstein equation:

1

RW—2

Ry = K1, ([THV]A + [Tuu}p) (4.12)

The Maxwell equation:

v 1 v 1
Oy (\/ lg| F* Aé) _ @6 Mp SO o F e =0 (4.13)



38

The geodesic equation (with the gauge choice 3 = constant):

d>yH dy? dy”
H = =
df2 + pv (y) df dé-

(4.14)

[T,] 4, and [T,,], are the stress tensors obtained by varying S, and Sp w.r.t. the

metric, given below:

1 1
[T/W]A = 12/1%1 (FM&szf\gp - gguVFpaApra/\g) (4-15)
1 oo 1 dyP (&) dy?
il (2) = Cr s )0 (2 | eI 06—y o)

Setting C'p to zero means the absence of the source graviton. In this case, a
solution to the above equations of motion is the pp-wave background. The metric g,

and the 4-form field strength are given by:

3 9
1 . 1
gp— =1, gop = —p? [5 Z(xZ)Z + 36 Z(m“)Ql ; 9aB = 0ap (4.17)
i=1 a=4
Flazy = (4.18)

In our convention, u, v, p, ... take the values +, — 1,...,9; A, B, C, ... take the values
1,...,9;1,7,k,... take the values 1,...,3; and a, b, c, ... take the values 4,...,9
The introduction of a source graviton, i.e., a non-zero Cp, perturbs the above

pp-wave solution:

G = Gu + My = Gy Frvpe — Fuvpe + fuvpo

It suffices to solve the geodesic equation at the zeroth-order of Cp, which gives a

solution
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and the corresponding stress tensor of the source graviton is then:

9

[THV]P (r) = P_gu+gy+5(x_) H 5(=’EA) (4.19)
A=1
where P_ = % is a constant and in what follows we will use P_ instead of Cp.

Note that the order of k%, is the same as the order of P_. Also note that the only
non-vanishing component of [T},,], is [T__], = P_d(z7) [T, 0 ().

In what follows we will integrate everything over the = direction, thus getting rid
of §(z~) and derivatives w.r.t . On the matrix theory side, the effective potential
was only computed up to 1-loop. In supergravity language, that means we are only
looking at order x%,. To find the effective potential on the supergravity side up to this
order, we need only the linearized (i.e., to the linear order of P_) Einstein equation
and Maxwell equation.

We consider static solutions which has no ™ dependence. Also we restrict our
attention to metric and gauge field perturbations that go to zero at infinity. The

linearized Einstein equation in 11 dimension is:

1
OR,, = K2 |0T,, + 59 (T*heos — ¢*°6Tog) | = T (4.20)
where the perturbation to the total stress tensor is given by
0T0p = [0T0p) 4 + [Taslp (4.21)

[0T%.p) 4 is the perturbation to the stress tensor of the gauge field, which is to be
expressed in terms of the perturbation to the field strength.

First look at the (——) component of the Einstein equation:

9
1 O*h__

R =—= — 4.22

R 2 e~ QA dzA (422)
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and

9
T _ =k} 0T _ =k}, [T__]p = &}, P_ ] 6(=*) (4.23)
A=1

where [07__], = 0 (as can be readily verified) has been used.

This gives

KL P15 1
o 16177

(4.24)

where we use ¥ to denote the 9-dimensional vector in the transverse directions.

The (—A) component of the Einstein equation is,

9

9
1 0%*h_4 1 ?h_g
O = 2 Z O0xBOxB + 2 = OxrAdxB (4.25)

and

T 4=0 (4.26)
which gives

h_sa=0 (4.27)

Now we look at the linearized Maxwell equation, in terms of the gauge potential
perturbation a,,, (note fiuw, = O\@up — Ouupr + Ovapry — Oparu). We choose to
work in the “Lorentz gauge” where Z%Zl Opauwp = 0. The upper (AB+) component

of the Maxwell equation gives:

9 9
Z 8%(1,43_ — Z 8,3 [h——FDAB+] =0 (428)

D=1 D=1
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Using the expression for h__ that we just found, we have:

3 k

2
puri P- 15 x
ij— = — E ik —= 4.29
% 32 & T (429
while all other asp_’s vanish. This gives the field strength:
2 3 )2
puki P- 15 > o (xh) 1
i —€jk | T2 -3
For = [ T
2 3 k.b
uki P 15 xx
f—z‘jb 7_[_4 —32 E eijk |:7_|f|9 :| (430)

k=1

Next consider the upper (ABC') component of the Maxwell equation. Using the

fact that h_y = 0 and asp— = 0 except for a;;_, we have:

9
02 =0
DAABC =
D=1

(4.31)

hence, all aypc = 0. Now the (A + —) component. Using h_4 = 0 we get

9
Z a%a,A__i_ =0
D=1

(4.32)

thus aa—y = 0. Now we go back to look at the (+A) component of the Einstein

equation. Using h_4 = 0, we get

Using aa—+ =0, aapc =0, and h_4 = 0, we get

Ta=0

So we conclude that

hia=0

(4.33)

(4.34)

(4.35)
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Now consider the (+—) component of the Einstein equation

9 9
1 a2h+_ 1 8g++ ah__
ORy— = 2 Z OrAoxA + 2 orA OxA

(4.36)
A=1 A=1
and
1 1?2
I = 6( e — f1f-123) (4.37)
In writing 7, _, we made use of the following equations:
2
1
or, |, = —h__
[ + ]A 4/4}%1
1
0Tiyls = 4_251'3' (_2Nf7123 - Mth—)
K11
1
[0The] 4, = Z—gﬂﬁc(QﬂfL1zs+-u2h__)
K11
’ 3
0T; = T a2 ijk ) = 4.
[ b]A 4]{& ejkf kb ( 38)

jk=1

Solving this Einstein equation we have:

,U 511
h+_ — 1
T

52’ 1()” + L 1] (4.39)

64 |z 192 5

The (AB) component of the Einstein equation reads:

+2

9 9 9 9
1 hAB 0? hac 0? hpc 0? hco 0? hy_
ORAp = —3 [ g

0xCo2C 0xBOzC 0xA0xC OxrA0xB OxA0xB
c= c=1 c=1 c=1
1 g++ 82}7[77 3g++ 8h,, (9g++ 3h,,
— (2h__ 4.4
T3 { N tonE T 2 oagE * opa ggp T s gpn | (A0
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and

1
- g@j (2p1f 123 + p*h__)

A
I

1
The = 65bc (2Mf—123 + /fh,,)

3
Ty = — % > et (4.41)
jik=1
So far the need to make a gauge choice for the metric has not arisen. Now to
solve for hap we must make a gauge choice for the metric. Let G"” and I') = denote
the complete inverse metric and Christoffel symbol respectively (by “complete,” we
mean they include both the unperturbed and perturbed part). We shall fix the gauge
by specifying G*T' .

As can be easily verified,
9
GTl, = ) Ochc=0
c=1

9
Gl = Z (=h-cOcgit + Ochyc — g140ch-_c) =0

1

9

1

GPUF;‘U = Ochac — 58,4 (Z hoeo +2hy - — g++h) (4.42)
c=1 Cc=1

Q
©

so we need to specify GP"F;‘J to fix the gauge.

A

bo» WE can rewrite ORAp as

Using the above expressions for G*7T°

L[~ Phap  O(GTL)  9(GrTE)
ORsp = —= - KA £
2 | 4= 02¢0z¢ OxB OxA
1 3g++ 3h__ 3g++ 3h__
— 4.4
T3 ((‘%jA 078 02 OiA (4.43)

In general relativity we often use the “harmonic gauge” where we set G””ch =0
(which is satisfied by the unperturbed pp-wave background). Here, however, we shall

opt for a different gauge.
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As derived in the section 3.3.1, the effective potential is given by:

L = §P‘{X2 + i+ oho (X2 gi4)? = hop (X2 + gy ) XT

4
—h_ (X% +g4y) +hUXIXJ+2h+IXI+h++} (4.44)
where P_ = N,/R and X? = (X')? = v®. As h, 4, h_4 all vanish, they simply drop

out of the effective potential.

The computation on matrix theory side in section 4.3 tells us that in the effective
potential there are no terms of the form v®® for a # b, nor are there terms of the
form viv®. This suggests we choose the gauge such that ha, o< 04, and h;, = 0. To

make hg, X g5, We set:
poTa 1
GPIY, = Eh__aag++ (4.45)
then, to make h;, = 0, we set:
po T 1 I
Oy (G Fpo—) = §ai9++abh—— - §Eijkf—jkb

which implies

;. 3du HHP !
G’”’FZ = 4.46
96 7t |Z|7 ( )
In this gauge, the Einstein equation gives:
M “11 15 Zk 1( ) 1
hap = Ogp —————— — 4.47
R R REGE (4.47)
Pt P 1 Zk (@) 11 p2ei, P15 2t
hij = 0ij——— —15 - — 4.48
06 EIEE 64 |7 (4.48)

Now let us look at the upper (AB—) component of the Maxwell equation. It gives
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the following equations:

9 9 9
Z O ijr — Gi+ Z Ohaij— — Z Opg++ (Opaij— + Osajp— + Ojap;_)

D=1 D=1 D=1

3 9 3
»s { S Do+ S ot — o)
k=1 D=1 m=1
1 9
D) <9++h—— + Z hDD)] } =0 (4.49)

D=1

+ O

9
> Opaer =0 (4.50)
D=

9
> Opaiwy =0 (4.51)
D=1

Solving them gives:

_ e “11 - R & M2 - 202
Gy = (Zle”k )384‘3?’7[ 29;( 2+ )] (4.52)
aper = 0 (453)

apy = O (4.54)

They give the field strength:

3 9 3 9
//LR P_ a m a
e [ S ST S 3t )2]
a=4 m=1 a=4

=1

3 9 b 3 9
wri P 5 = m a
Frm = % (Z qjkxk> ey [—41 D @m 4> (x )2] (4.55)

m=1 a=4

As can be easily checked, all the a,,, we have found indeed satisfy the Lorentz gauge.
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Finally, we consider the (++) component of the Einstein equation:

R,y = — —ZﬁAh+++ Z aAg—H-thAB_ - Z 0a9++0ahpp

ABl ABl

+ Z hap0a0pg++ + 5 28A9++8Ah+ + - Zg++3A9++3Ah——

A B=1 1o

1
T Z h— (8A9++)2 (4.56)

A=1
and
1 - [
T, =- 5 <2f+123 + Z hn‘) + 59+ (2f 123 + ph__) (4.57)
i=1

From this we find

4,.2 3
wrki P 1 ;
hy, =" — {116 [Z(:p )2

™ 6912 |7] —

To summarize, the nonzero components of the metric perturbation are : h__
leqn(4.24)], hy— [eqn(4.39)], hap [eqn(4.47)], hij [eqn(4.48)], hiy [eqn(4.58)]; and the
nonzero components of the field strength perturbation are: f_;;x, f—ij [eqn(4.30)] and
Fiijhs Frip [ean(4.55)].

Substituting the expressions for the metric into our formula for V., in eqn(4.44)

averaging hy, over z~(i.e., dividing by 27 R), and noting that x}; = %2 P = X
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we find
N, 15 N,N, v*
‘/e — P2 e p-'s ~
o= gpW )+ 16 MOR3 | 7|7
2 1\2 212 3y27 3
NN [ [ 11 15 @2+ @] R
Ve {{ 967 32 77 ;@)

1550 aladvivl 71 1532+ (22 + (2%)2] o, Loy
6 @ | Te%Er 3 7 ;M

2 9 9

ZW] — 123 @ Y

a=4 a=4

4 3
WN,N, 1 .
32 E x
R3M9 768 |ff‘7 ( )

=1

+

(4.59)

Comparison of the above formula with eqn(4.7) on the matrix theory side shows exact
agreement.

We would like to emphasize the approximations involved once again. We treated
the source graviton as a perturbation to the exact pp-wave background, and the
calculation was performed only to first-order in P_. However the solution that we

found for these linearized equations is exact in pu.
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Chapter 5

Two-membrane Interactions
without M-momentum Transfer

5.1 Supergravity Computation

5.1.1 Diagonalizing the Field Equations for Arbitrary Static

Source

In this subsection we present the diagonalization of the linearized supergravity equa-
tions of motions for arbitrary static sources. There is, of course, no highbrow knowl-
edge involved here: we are just solving the linearized Einstein equations and Maxwell
equations, which are coupled; and by “diagonalization” we basically just mean the
prescription by which we get a decoupled Laplace equation for each component of the
metric and three-form perturbations. The unperturbed background is the 11-D pp-
wave, and we only consider static, i.e., zT-independent, field configurations, thanks to
the fact that the sources considered are taken to be static, i.e., with ™ -independent
stress tensor and three-form current.

Since we leave the source arbitrary, what we will present here are the left-hand side
of the linearized equations. These are tensors whose computation is straightforward
though a bit tedious: the reason we present them here is because they are necessary
when solving the field equations, and to the best of our knowledge have not been
explicitly given elsewhere.

A somewhat related problem is the diagonalization of the equations of motion
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when the source is absent. This requires field configurations with z*-dependence.
One work along this line is [36]. Roughly speaking, borrowing the language of elec-
tromagnetism, what’s considered in [36] are electromagnetic waves in vacuum, while
what we are considering here are electrostatics and magnetostatics for arbitrary static
sources.
The nonzero components up to (anti)symmetry of the Christoffel symbol, Riemann

tensor, and Ricci tensor of the 11-D pp-wave are

1 _ 1
Ff+ = - §aAQ++7 Ia= §8A9++

1 1
Riarp=— 50A839++7 Riy =— 530809++ (5.1)

Now we perturb the pp-wave background by adding a source. Denote the metric
perturbation 6g,, by h,,, and the gauge potential perturbation by 0A4,., = au,.
hyw, au, are treated as rank-two and rank-three tensors, respectively, the covariant
derivative V acting on them is defined using the connection coefficient of the unper-
turbed pp-wave background, and indices are raised/lowered, traces taken using the
background metric g, .

We will deal with the Einstein equations first. Define l_zw, = hy — %gw,h, where

h = g"”h,,. Without the source, the Einstein equation is
1 2
Ry — éRg;w — £ [Twla =0 (5.2)
Recall that the stress tensor of the gauge field is

1 1 .
[Twls = 2 (Fux\gpFukgp - gguqu Anga,\g) (5.3)

12k7,

The source perturbs the Einstein equation to

1
) (RMV - éRgW> — H%lé[TMV]A = KJ%I[TMV]S (54)

with [1),,]s standing for the stress tensor of the source.
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As usual, it helps to proceed in an organized manner, grouping different terms in
the above perturbed Einstein equations. One finds, § (RW) — %Rgup) = —%V"VJLM,—I—
K, p+Qup, and £3,0[T,]4 = N+ Ly, where the explicit expressions of the symmet-
ric tensors V"VUBW,, K, Quu Ny, and L, can be obtained after some work. Their

definitions and components are given below !
o VV,hu
_ _ _ 1 _
VoV hy = 9" 0,0,h iy + | =(0404g4 4 ) Iy + 5(8A9++8A9++)h77
+2 (0491 40-hya — Oagr+0ahy ] (5.5)
_ _ 1 _ _ _
VoVehy = g"0,0,hy — 5(8A8Ag++)h__ + 04g1+0_h_y — 0494+ 0ah__
(5.6)

_ _ 1 _ _ _ _
VoVhic = g"0,0,hyc— b) (0404944 )h—cH0494+0_hac—0cg+4-0_hy_—0ag10ah_c

(5.7)
VoVoh__ = g"0,0,h__
(5.8)
VoVoh_c = g"0,0,h_c — cgosO_h__ (5.9)
VUVJBCD = g“”@ué?,,ﬁc,g - 6cg++8_7z_p — 8D9++6_B_C (510)
o K,, Its definition is
= 1 £ A o £p 1 Eo .
KMP = 5 (RM hfp + Rp hg,u) + R 1p hgg + EQWJR hgg - §Rhup (511)

!Notice that 0, will never appear because we only consider the static case; also note g 0,0, =
—g41+0% + 0404 for static configurations.
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Its components are given by

1 - 1 - 1 _
Ky = <—§5A5A9++) (h+— + §9++h——) + B (040Bg++) hap (5.12)
1 _

K+_ == (—58A3Ag++> h__ (513)

1 - 1 _
Kiy= (—Zacacg_H_) h_4+ (—58A839++> h_p (514)
K._=0 (5.15)
K_oo=0 (5.16)

1 1 _

Kap = 5 040Bg 44 — §5ABaCan++ h__ (5.17)

e Q, Its definition is Qup = 3(Vugp + Voau) — 3940V Ga, where g, = VPhg,.
As one can recognize, (), contains the arbitrariness of making different gauge choices
when solving the Einstein equation, where one makes a gauge choice by specifying

the g,’s. The components of @), are

1 1
Q--=04q, Qa= 5(5—% +0aq-), Q-4 = §(g++5—Q— — 0aqa)
1 1
Qap = 5(@1613 + 0Bqa) — §5AB<8—Q+ — g++0-q- + 0aqa)
1
Qra= b [04q+ — (0ag++)q-]

1 1
Q4 = §(aAQ++)QA - §9++(a—Q+ = g++0-q- + 0aqa) (5.18)

e N, It is defined to be the part of x3,6[T,,]4 that contains only the metric
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perturbation, but not the three-form gauge potential perturbation. Its components

are given by

=1 a=4
2 2
N+_ - ,U/—]_Z__, N—i—i = M—]TL_“ N+b - 0
4 2
N _ =0, N;=0, N,=0
©woos -
Nij = _Iéijh——> Nib = Oa Nab = Zéabhf—— (519)

e L,, Thisis defined to be the part of K3,0[T),,]4 that contains only the three-

form perturbation, but not the metric perturbation. Its components are given by

1
Lit=p (5F123+ - §9++5F123) , Ly =0, Ly; = %Eijk5F+jk77 Liy= %5171231)
L =0, L;=0, L,=0

L;j = g5z‘j5F123—, Ly = %ez’jkéFbjk—a Lyq = —g5bd5F123— (5.20)

Next let us deal with the Maxwell equation. In the absence of the source, it is

1
e

O (V -9 FAMWNB) - ——FM---WFMS---MM =0 (5-21)

where 7) is either +1 or —1 depending on the choice of convention, which one can
fix later by requiring the consistency of the conventions for the equations and the
solutions under consideration. When the source is present, we add its current JH1#2H3

to the right-hand side of the above equation, and get

1
V=9

ﬁ 6”1""“11

5 — — ___F
1152 /=g "7

FI-L8~-~,M11 — J#1#2#3 (522)

O (\/__g F>\H1#2M3) _

Here 0 denotes the perturbation to the left-hand side due to the introduction of a
source.
We can write the left-hand side of the above equation as the sum of two totally

antisymmetric tensors Z#1#2#3 4 SHb2k3 ywhere ZM1H283 s defined to be the part that
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contains the metric perturbation only, and S#1#2#3 is defined to be the part that

contains the three-form perturbation only. One finds

ZV 7 = pepOih_y, Z70 =0, ZT = peij(0-h_y —Oxh__), Z =0, Zt*=0
3
) [ ; ;
Z7Y = peijr lak (gh —h= — Z h“) — Obluy
) L N~ ;
7% = —piegn [8_ (gh —h= - Z h“') — Oph

zte =0, 7% =0 (5.23)

. 27" = peipdibw, 27 =0

, 29" = e (0-hiy — Oph_y)

and

S+_A = g“”@uﬁya_+,4 + aBg++a_CLBA_ — 8_ (V“CLM_’_A) + 8A(V“au+_) <524)

S+AB = g“”ﬁﬂal,a_AB — EL(V”%AB) + GA(V“aﬂ_B) — aB(V”CL#_A) (525)

SiAB = glwauauaJrAB - g++S+AB
+{[(0ag1+)(0-a_yB) + 0a(V"a,yB) — Oa (app-Opgyy)] — [A < Bl}
—(0pg++)0Fp_ap — M%G_ABM"'WI%JF‘;FM.-.W (5.26)
SABE — gwja,uauaABE - (3A9++)(8—G—BE) - (aBg++)(a—a—EA> - (aEg—H-)(a—a—AB)

—04(V*aupEp) — 05(V*aupa) — Op(V*auas) — ,u27]_4EABEM"'MlQHéFm.--M

(5.27)

Notice that SH1#2#2 contains V*a,,y and its derivatives. Those terms correspond to
the gauge freedom for the three-form gauge potential.

Now that we have collected the expressions for the various tensors, we are ready
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to diagonalize the field equations. Recall that the Einstein equation is
1 _
—5V Vol + Ky + Qv = Nw = Ly = k31 [ Tuls (5.28)
and the Maxwell equation is

ZHK2ps 4 Quik2Hs — JH1K203 (5.29)

The right-hand side of these equations is given by specifying the source that we
consider (recall that the three-form current J is of order k%)), hence we only need to
concentrate on diagonalizing the left-hand sides.

As will be seen shortly, it is useful to define “level” for tensors: lower +/upper
— indices contribute +1 to the level; lower —/upper + indices contribute —1 to
level; and the upper A/lower A indices contribute zero to the level. We shall see
that the field equations should be solved in ascending order of their levels. The
following is the detailed prescription of the diagonalization procedure. Let us use the
shorthand notation (E.E.),, for the lower (uv) component of the Einstein equation,
and (M.E.)"M#283 for the upper (ppeps) component of the Maxwell equation.

e at level —2

The only field equation at this level is (E.E.)__, which reads, upon using the

expressions of the various tensors V”VUBW, K, Q... etc., that we have given above
1 0y 7 2

This equation can be immediately solved for h__ after specifying the source term and
the gauge choice term Q)__.
e at level —1

We have (E.E.)_,4, which reads

5 (#0004~ (Pag)(@-h )] +Q s = W[ )5 (531)
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which can now be solved for h_4, using the h__ found previously. Also at this level

is (M.E.)*4B which reads,

9" 0.0va—ij — 0_(V*auij) + 0;(V*a,—;) — (V“ i)
+ueip(O_h_y — Okh__) = J

00,00y — O_(Vam) + 0((VPa,_y) — 0(VFa,_y) = JH

)

g"0,0,a_pc — O_ (V¥ aup) + 0p(VFa,_c) — 0.(VFa,—p) = Jtbe (5.32)

from which we can find a_4p, upon specifying the gauge choice V#q,,, for the three-
form and using the h_4 and h__ found previously.
e at level 0
At this level we have (E.E.),_, (M.E.))*=4 (E.E.)sp, and (M.E.)APE.
(E.E.);_ is of the form

1 _
—§g“"8ﬂ&,h+, = known terms (5.33)

From now on, we will not write down the detailed equations; “known terms” refers to
the gauge choice terms @, V*a,,, source terms, and terms containing previously
found i_LW’s and a,,,’s, one can write those down by looking up the expressions given
earlier for the various tensors. Solving the above equation we get h,_. Solving
(M.E.)*=4 gives a_, 4.

(E.E.)ap and (M.E.)*PE are coupled, so a little more work is needed. The

bee i3 apee, hence

following are the details. First notice that the only unknown in (M.E.)
solving this equation we find ape ((M.E.)" contains the usual term g"*9,0,ap.. and
also a term of the form 0_ag4y which comes from the F' A F' in the Maxwell equation,
hence it is not quite a Laplace equation. But, that being said, one shouldn’t have

any difficulty solving it.)

(M.E.)* is of the form 9" 0,0,a;. = known terms, solving which gives a;pe.
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(M.E.)% and (E.E.) are coupled in the following manner

9" 0,0,a,j5 + ueijka_l_zkb = known terms

1 - 1
—§g‘“’8u(9yhkb + Z—lueklmﬁ,almb = known terms (5.34)

Decoupling these two equations is quite easy. Let us take ajo, and hg, as the repre-

sentative case. One sees that these two equations can be recombined to give

(90,0, + ipud_)(hay + iai9) = known terms

(g"0,0, — ipO_ ) (hsy — iai2) = known terms (5.35)

Solving these equations gives (hs, + ia12) and (hsy — iay12), and in turn hs, and ajg.
(M.E.)""* is coupled to (E.E.);; and (E.E.)y through the quantity H = 2377 | hy—

% 23:4 haq in the following manner

" 0,0, a123 + pO_H = known terms
1 - 1

_§gw’auayhij + §u5ij8_a123 = known terms
1

1
—ngaua,,hbd — §/L5bd8,a123 = known terms (5.36)

Combining the last two equations gives
—g"0,0,H + 4p0_a123 = known terms (5.37)
Recombining this with first equation, we get

(g"0,0, + 2ipu0_)(H + 2ia123) = known terms

(g"0,0, — 2ipu0_)(H — 2iai23) = known terms (5.38)

solving which individually gives H and ai23. Using the resulting expression for ajs3
one can then find h;; and hyg. Thus we are done with (E.E.)4p and (M.E.)APE.

e at level 1
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(M.E.)=48 is of the form ¢"*0,0,a, 45 = known terms, solving which gives a, 4p.
(E.E.); 4 is of the form —%g““6M6VB+A — known terms, solving which gives h 4.
o at level 2

(E.E.);4 is of the form —1¢#79,0,h,, = known terms, solving which gives A .
Thus we have diagonalized the whole set of Einstein equations and Maxwell equations.

5.1.2 Application to a Spherical Membrane Source using the

Near-Membrane Expansion

Now let us apply the general formalism of the previous subsection to the case of
interest, with the source being a spherical membrane sitting at the origin of the
transverse directions, i.e., having (X')? + (X?)?2 + (X?)? =2, X* =0,..., X% = 0,
and XT = ¢, X~ = 0. The gauge choice we shall take is: ¢, = 0 (hence all the
Qap’s vanish); and V*a,,y» = 0. The nonzero components of the stress tensor and

three-form current for this source are given by

To
_ (Pro)*!
T = (52) I, (5.39)
and
k
ii HUTo Xz
7= h(-2) (52 e (T, (5.40)

where r = vV zizt.

Now let us explain what we mean by “near-membrane expansion.

7

Define w =
r—ro, 2 = Vatz®, and £ = vw? + 22, which parameterize the distance away from the
source membrane. We shall assume that w, z, £ are of the same order of magnitude.

The near-membrane expansion is an expansion in &/rg. When one sits very close to
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membrane, one just sees a flat membrane, which is the zeroth-order of the expansion.
As one moves away from the membrane, one begins to feel the curvature of membrane,
which gives the higher order corrections in the expansion. One should also note that
the zeroth-order of this expansion is just the flat space limit: y© — 0, ry — oo, with
uro kept finite.

It is instructive to see how the zeroth-order works. At this order, in the Einstein
equations and Maxwell equations, the effective source terms (which are of the forms
(0941 )hu, etc.) arising from the various tensors K, Ny, L., Z*° etc. are less
singular then the delta-functional sources [T),,]; and J*?, and can thus be thrown
away. Then the resulting equations are trivially decoupled. Also, at this order, we can

treat the z'’s in [T},,]s and J**? as constant vectors. One finds (using the subscript 0

to denote “zeroth order”)

Pl =0, ol = (42 e oo, faalo=0, ol =0
oeclo = = (52 oo fameala =0, fioho = (%22)" (55 - o¥) il
[hivlo =0, [hpelo =0, [ZABE]O =0
[ayijlo = — (%)3 Gmki—o[h]m [agiplo =0, [atpclo =0, [hialo=0
o= (52) o (5.41)
where [h__]o satisfies
N2, 1
{_ (50) #+ @w)e o "'<ax9)21 [h=—lo
_ _F_lR (%)_1 W2 To(w)5(z")...0(z%)  (5.42)

(where we have multiplied the right-hand side of the equation by due to the

1
2TR

Fourier transform along the x~ direction), and is given by

Bro

h_Jo=AZL = = £-9) {3 +3 (%l@f) + (%ki) 2] (5.43)
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with A = #

For the zeroth-order we can put rj, = ro. From eqn(3.61) we have ry = % if
we choose the world volume coordinates to be o! = # and 02 = ¢. We can use then
eliminate r in favor of II_. Putting the above zeroth-order solution of h__ into the
light cone Lagrangian 0L, given in eqn (3.35), for a spherical probe membrane with
radius 7y, sitting at rest in the 1,2, 3 directions, and moving about in the 4 through
9 directions: (X1)*+ (X?)2 + (X?)? =rf, X*(t),..., X (t),and XT =¢, X~ =0, one
finds:

6Ly = %H[B]O(X“X“)Q (5.44)
It is worth noting that, keeping only the leading order term in k_ in [h__]o, eqn
(5.44) becomes the v? Lagrangian for the case of longitudinal momentum transfer
between two membranes in the flat space, given in [37].
Now let us go on to consider higher orders in the near-membrane expansion. Since
in this thesis we do not consider longitudinal momentum transfer, we shall set k_ = 0
(which makes many fields equations decouple).

Denote

O = 0404
(when acting on functions of (w, z))

with Og = 88—52 + 88—;2 + g% = 02 + 0,0, being the zeroth-order Laplace operator, and

00 = - 2_0 being curvature correction to it.
o+w Ow
At level —2
(E.E.)__

Oh - _%fgflm(w)a(ﬁ)...a(ﬁ) (%)_1 (5.46)
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Let

ho_=T[h__Jo+h__ (5.47)

with [h__]o = A2, which satisfies

5_57
- 1 wro\ 1
0 __ 2 4 9y (HTo
olh——Jo = ==}, To(w)d(a*)...d(x )( : ) (5.48)
Then (E.E.)__ becomes
Ogdh__ + 60[h__]o + d06h__ =0 (5.49)

Now we look at the order of magnitude of each term in the above equation. Notice that

Oy ~ 5%, 00 ~ -L.. The second term is thus ~ A—, which tells us dh__ ~ A@.

roé 7087

Solving the equation iteratively we find

- - w w2 w3 w4
Sho_ =[h o[ -2 +2 -2 Y 5.50
i () 250
and thus
ho—aall L o(E (5.51)
TS g+ w o '

We did not compute the O (E—:) terms, because we are only interested in the part of
0
the solution that is singular as & — 0. Solving the other field equations is similar, so

we just present the results below, omitting the O (757:) symbol.
0

At level —1
hoa=0
A_pe = 0
A_;p = 0
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At level 0
_ o\ 2 3A S5w? 722 r
b= (B[ (B TR n
3 '3 4ry  8r5) ro+w
ata = 0
aABD = 0 (553)
_ 1 1 5w 17Tw? 122 3w
hypp = kb PA— [ == l————t - - == — ——
A iro (1202 122 243
1 2 3 4 1 2.2
e N GRTY
4 ry 271y 2 7
- il ro\2 . 3 w 22wl w22 wt w2z 4
hij=" —3 (M) Ayl 42— ——+ 3
r 3 & ro T4 U o o o o
2 2 3 2
_ﬁm@@yAil+lﬂ Jw 1z lw 3w
3 &> 279  12r5  24rg 4ry 8 rp

lw* 1 w?2? 124
S SWE L 2L (555
3 re 24 rd * 37’3} (5.55)
1{1w 7Tw? 1922 7T wd 19wz?

Bbd = 5bd ([/JTO)QAé._g)

2r 187 7203 1873 T2 1§
7wt 19w?s?
-8 2 (5.56)
18rg 72 1

At level +1
Qype = 0
ayip =0

70\ 2 1 woow 5z 3w Twz
CL_H‘]‘ = —eijkxk (%) ,LLA—{l —+ 2— — — — —— + -+ -5

34 522 14
_JL__£i+_i} (5.57)

hys=0 (5.58)
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At level +2
Ty = (MT0>4A3{ ] 5w 3lw? 122 17Tw?

3)°%6\ 0 Tin e T uzTna

1wz 1w* 23w?2?2  172°
—ET—8+§%+QF+3—2%} (5.59)
Again, let the probe membrane have a radius ), = 9 + w, with the trajectory
(X2 + (X2 + (X3)?2 =, X4(t),...,X (), and XT = ¢, X~ = 0. We shall take
v = VXX to be of order uz (recall that the supersymmetric circular orbit has
v = %uz; so here we are considering generically nonsupersymmetric orbits that can

be regarded as deformations of the supersymmetric circular one). Putting in the

#l- - and in the end

supergravity solution given above into eqn (3.35 ), using T' = 35—,
0

keeping only the part of 6L;. that is singular as & — 0, we find the probe’s L;. to be
Elc = (Llc>pp + §£lc (560)

with (L), being the action in the unperturbed pp-wave background, and

(dw?2? + 72%) — 72uv2 (2w? + 52?) + 3888v!

1
5L, =TI_A
= 10368¢£5

(5.61)

Notice that the above dL;.’s singular behavior as £ — 0 is homogeneous: ~ % (since

v is of order pz). The expression in the numerator: p*(4w?2? + 72%) — 72202 (2w? +
52?) 4 3888v? nicely factorizes into (36v* — 2%u?)[108v? — (4w? + 72%)u?], which shows
that for the special case of the supersymmetric circular orbit v = %,uz considered in
[31], 6L, vanishes as expected.

To be more precise, so far we have been talking about Lagrangian density. Since

the membrane worldvolume is taken to be a unit sphere, the Lagragian is given by

kHT? (360% — 2242)[108v% — (dw? + 72%) 7]
43 Ry? 115265
a (36v% — 22u2)[108v% — (4w? + 72%)p?)

= = 5o (5.62)

SLie = / d0doo Ly,
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I .. .
35— to eliminate IT_ in terms of 7" and 7j,
T sin 6

where to get the first line we used 7' =
and set 7, ~ r( in the end to remove higher - order curvature correction. To get the
second line we used the expressions for x3;, T, and « in terms of M and R given at
the end of subsection 3.

Here we would like to make a brief comparison of the above membrane result with
the graviton result given in [5].

First of all, the membrane result contains the variable w (the difference in radius
between the probe membrane and the source membrane), which has no counterpart
in the graviton case. Secondly, in terms of the x! through 3 directions, the two
membranes are sitting at rest at the origin; this corresponds to setting 2 = 0 and

v; = 0 in the graviton case.

If we set w = 0 in eqn (5.62), i.e., consider two membranes of the same size, then

& =z, and

(6 Li) membrane = (36v% — 221%)(108v? — 7221?) (5.63)

a
11524225

while for the gravitons, upon setting N, = Ny = N, 2* =0, and v; = 0 in eqn (19) of
[5], we have
a3 N?

(6 Lic)graviton = W(?)(SUZ — 221%)(1400° — 72%1?) (5.64)

When comparing the above two expressions, note the difference between the numer-
ators: (108v? — 722%) for membrane, and (140v? — 72%p?) for graviton. Also notice
their different power law dependence on z: z% for membrane and Z% for graviton,
which cannot be undone by integrating over the membrane (ry, the radius of the
membrane, has nothing to do with z, the separation of the membranes in the X* to

X? directions).
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5.2 Matrix Theory Computation - The Membrane

Limit

Shin and Yoshida have previously calculated the one-loop effective action for mem-
brane fuzzy spheres extended in the first three directions and having periodic motion
in a sub-plane of the remaining six transverse directions. In reference [31] they consid-
ered the case of supersymmetric circular motion for an arbitrary radius and angular
frequency £ (this orbit preserves eight supersymmetries and was first found by [4]).
Here we generalize that analysis to orbits which are not supersymmetric. The proce-
dures are: expanding the action to quadratic order in fluctuations, writing the fields
in terms of the matrix spherical harmonics introduced in [13] 2 | diagonalizing the
mass matrices of the bosons, fermions, and ghosts, and finally summing up the masses
to get the one-loop effective action. In doing so, we shall adopt the notations of [31].

We shall consider the background

B! 0
=0 (5.65)
0 B(z)
where
i S a
By = g‘](l)leNl By =0 Inxm
i Koo i a a
By = §J(2)Nszz + 2 () Iy s, Blyy = 2%(t)1n, %, (5.66)

with the J"s being su(2) generators. The above background has the interpretation of
one spherical membrane (labeled by the subscript (1)) sitting at the origin, and the
other spherical membrane (labeled by the subscript (2)) moving along the arbitrary
orbit given by {z'(t), z*(t)}.

2For the computation below, one only needs the transformation of the matrix spherical harmon-
ics under SU(2), however, for detailed construction of the matrix spherical harmonics, see, e.g.,
Appendix A of [49].
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The fluctuations of the bosonic fields are given by

. z%, @
(@) Zp,
Zl &

v = (1) (5.67)
(@) Zj,

As it turns out, the part of the bosonic action containing the diagonal fluctuations
Z°, Z" does not contain any new terms in addition to those given in [31]. So we do
not write it out here. (It shall be the same situation for the fermionic and ghost parts
of the action; it is the off-diagonal fluctuations that give the one-loop interaction
potential between the two membranes.) The action for the off-diagonal fluctuations

18

Sop = /dt Tr[ — |82 + 22|10 + ( ) o P2 — 2 (g) #' Re((J1 0 ®°)(d°)1)
H

. 2 . .
+|(I)i|2 2|(I)z|2 ( > |(Dz+261jkjj (I)k|2+ (%) |JZOCI)Z|2

+2(5) a'Re((J' 0 @°)(0")) - 2m<<<1>°>*<1>1 — (®)72")
_’_|(I)'a|2 o ( ) |<I>a|2 | io CI)“|2
+2 (g) 2 Re((J' 0 ) (99)1) — QZx“(((IDO)Tq)“ - (<I>“)T<I>°)] (5.68)

where 22 = 2z’ + 2%2%, and dots mean time-derivatives.

We specialize to the case where, 2' = 0,2% = b,2° = vt, with (2%)? + (29)?
denoted by z2. The effective potential will be computed by summing over the mass
of the fermionic and ghost fluctuations and then subtracting the mass of the bosonic
fluctuations. This method, which we will refer to as the sum over mass method, is
the same as the one used in [5]. Although the above trajectory has the form of a
straight line with constant velocity in the (2®,2%) plane, the final expression of V,;
in terms of z = \/(z%)? and v = \/W should suffice for the purpose of comparing

with supergravity for arbitrary orbits 2%(¢). One may ask whether the sum over mass
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formula is valid when the masses of the fluctuations are time-dependent (one origin
for such a time-dependence is the acceleration of the trajectory). In section 4.2 and
Appendix A of [5], it was carefully shown that, in the case of two-graviton interaction
in the pp-wave background, the sum over mass formula was sufficient in computing
the terms that could occur on the supergravity side. The time-dependence in the
masses of the fluctuations will give terms of the form of matrix theory corrections
to supergravity (i.e., terms that dominate at extreme short distances and cannot be
observed in supergravity), which does not concern us since we are only interested in a
comparison with supergravity. Here we expect a similar argument to hold in the case
of two-membrane interaction. The rather non-trivial agreement with supergravity
presented at the end of this section and also the agreement with the work of Shin and
Yoshida [32] in section 5.3.2 confirm the validity of the sum over mass method.

Expand the fields in terms of matrix spherical harmonics

L(N1+N2)-

WYY (59)

j=3|N1—Na| m=—j

For our choice of background the masses of modes in thei =1,2,3 and a =4,5,6,7,8
directions are the same as those in [31]. For the gauge field and a = 9 direction we

have

3(N1+N2)—

/dtj_Nl . [—|¢9m2+ (z2+ (%)Zj(jﬂ)) 60
5l — (z2+(%)2+(§) (J+1)) 60,
~2i0 ((#5,)" O = (#5)" )] (5.70)

where there is an implicit sum over —j < m < j. It is straightforward to diago-

nalize the mass matrix for these modes. Combining all contributions from bosonic



67

fluctuations we get an bosonic effective potential® given by,

%(N1+N2)72

V= ) <2j+1>¢z2+(§)2<j+1>2

j=%|N1—Na|—-1

(N1+N2
- (27 + 1)1/ 22+

j= 3 |N1 N2|+1

L (N1+N2)-1

- (2j+1)\/22+(§)2j'(j+1)

j=%|N1*N2|

%(N1+N2

1
S e w e

J= 2INl Ny

%(NH—NQ) 1
1 1 4
- 2j+1) /22 + y+1)+8)+§ (5) + 1602

Jj= 2|N1 No|

1 1 0
r 1 [ ( ) 1602
+ GG+D+) -5\ (%) + u)
(5.71)
Now for the fermions we start with the action given in [31]
Ly = Tr(i0Ty — Ui~I[w, BY) — i%\wfyw?’\ll) (5.72)
with
v
v | @ X (5.73)
X' P

Again the action for the diagonal fluctuations has no new terms, and for the off-

diagonal part we decompose the SO(9) spinor x using the subgroup SO(3) x SO(6) ~

3Note that our convention differs from that of [31] by an overall minus sign. See section 3.1.
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SU(2) x SU(4) preserved by PP-wave, 16 — (2,4) + (2,4)

1 XA«
X=—F— : (5.74)
V2 yAa
Substituting this into Lpg,
Ao 1 \Aa Ko s\Aas B i
Lp="Tr|i(x") XAa—Z(X) an—g(X) (0")ad" © xap
-~ ar L . .y K. af i NS
Hi(X) X0 + (N X0 + g(XT)A (0")5.J" 0 Xap
+a' (= (N (0")xas + (XN (072X a5)
+2 (X" phsxE + N *P) X Ba)
(5.75)

with the o%’s and p®’s being the gamma matrices for SO(3) and SO(6) respectively.

We now substitute our specific background and expand in modes,

L (Ny+N2)-3/2 1 3
Lp = 3 [m}mﬁjm + AR T — 3 (j + Z) (T} Tjm — #hFm)
J=5IN1—N2|~-1/2
2 (T i+ (0 )|
£(N1+N2)—1/2 1 1
Y {z‘n}mmm + U milim = 3 (j + 1) (Dl = Ty )
j=3|N1—Na|+1/2

0 (] R+ () ) | (5.76)

where again there is an implicit sum over m. This can be diagonalized and contributes
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to the effective action

3(N14N2)-3/2 e 3
Vi = 2 > (2j+1)<\/22+<§> (j+1)2+v
j=2IN1—Na|-1/2
2 H>2 SN
+\/z +(3 (y+4) v
1(N1+N2)—1/2

+2 ) (2j+1)<\/z2+(§>2(j+;1)2+v

J=3|N1—Na|+1/2

ENOR

(5.77)

There is also the contribution from the ghosts, however, this has no new terms for

our choice of background,

L(N14+Ng)—1

vG=2 S 2+ 1>\/z2 + (%)29‘(9‘ +1) (5.78)

j=3IN1—Nz|

and the total effective action is the sum of the three pieces
Vesg = Vigs + Vi + VG (5.79)
We introduce the variables N and u,
Ny =N+ 2u Ny, = N, (5.80)

where u will be related to the difference in radii of the two spheres and from now on

we will restore o using dimensional analysis. Define

1 4
nm o= 2+ 5\/(%) + 16a%0v?

vi = 224+ av (5.81)
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and assuming that v > 1 (rather than assuming u > 0 because the lower limit of
the first summation in eqn (5.71) has to be non-negative) we can write the effective

action so that j always starts from 0 and finishes at N — 1.

N-1

Vi = —é Z{ (2j +2u — 1) [% + (%)2 (j +u)2]

j=0

2

2

+(25 + 2u + 3) {zQ + (%)2 (j+u+ 1)2}

[

+(2§ 4 2u + 1) [22 + (%)2 (J+uw(+u+ 1)}

D=

+5(2) + 2u+1) {22 + (%)2 (J+u+ 1/2)21

+<2j+2u+1)({ni_l'<%>2((j+u)(j+u+1)+_)]2

[N

+ [rf + (%)2((3' +u)(j+ut1)+ %)}

)

eI

—2(2j + Zu)( {ui + (%)2 (G +u+ 1/4)21
+ {ui + (%)2 (j+u+ 1/4>2] ;)

—2(2j + 2u + 2) ( {ui + (%)2 (+u+ 3/4)2]

1
2

3
+ |2+ <%>2(j +u+3/4)° %
- 3
2 3
—2(2j +2u+1) [22 + (%) J+u)(+u+ 1)} } (5.82)
Let us write the above summation as

N-1
Vers = Y V() (5.83)

=0

and use Euler-Maclaurin sum formula to convert it into integrals
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Viss = [ V)i = 00 + VO] + 15 V) = V(0)]
1

—=5 V() = V()] 4+ (5.84)

It is useful to first see what we are expecting from such an integral. From

eqn(5.82), we see that a typical term of V(j) is roughly of the form:

1
V(i) = aj\/,zQ—l—av—l—oﬂ,u?j?
j j 1 z v
— uN?L . (22 (22 5.85

Putting the above form of V into eqn (5.84) and defining new variables v = j /N

and ( = (;—H)2 + 507 » not keeping track of the exact coefficients, we have:

1
Vepp = MN3/O dvv\/72+(%)2+/ﬂ\72( 1+(%)2>

1

1
¢ Ko a3 S
A2 (202 lad A2 4 (22
¢y, 1S L ..<
= uN*SFo(2) + —Fi(>2) + = Fo(>) + - .
. { o) ¥ i) T e (5.86)
where F,, are functions of % =% (<aiu>2 + QLMQ) originating from the n-th derivative

of v (we shall see in the next paragraph why we use % as the argument for F), ). Note
that each F), is weighted by a factor ﬁ
First we look at the term Fy. Assuming in a power expansion of Fy(z) there exists

a term 3, after expanding in « it would contribute to Vs a v* term of the form

uN 3(%)3 ~ ;”245, which has the correct form of membrane interactions and has the

correct order of IV (see section 3.1). If in the power expansion of Fy(z) there also exists

N2a3vt

a term x!, then it would contribute to V.; a v* term of the form pN3(%) ~ 22

This is the same expression as graviton interactions. The details of the coefficients
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and whether such terms exist in the power expansion of course has to be seen by
actually performing the integration, however as we will see later, the integrals do
produce terms of the correct interactions, in both the membrane and the graviton
limit.
Next we look at F), for n > 0. The whole argument in the last paragraph goes

through, except now every term is weighted by an extra factor of ﬁ For example,

1 ot
N©™ :U'2Z5 .

the membrane-like interaction produced by F}, looks like This factor of ﬁ
means that this term is in fact a matrix theory correction to supergravity, because it
vanishes as N — oo. Therefore, we could see that in converting the summation into
a series of integrals, only the first one is needed for comparison with supergravity.
All the other F), with n > 0 produces only matrix theory corrections which is not the
subject of interest here.

Now we go back to eqn (5.82). As discussed above, we only need the integral

part Fy, which we calculate using Mathematica. After calculating the integrals, u

ap

5 u, and the answer is expanded first

is replaced by the supergravity variable w =
in large N, keeping only the leading order (which is order NV), and then expanded

! order (which is the appropriate order for a

in small «, keeping only up to the («)
comparison with supergravity in the membrane limit). Finally the answer is converted
back into Minkowski signature by sending v* — —v?. We obtain the following one-

loop potential in the membrane limit*:

(3602 — 22w?) (10802 — (4w? + 722)u2)) . (5.87)

Verr =
= ( 1152(w? + 22)5/2y:2

We find exact agreement when this expression is compared with the supergravity

light cone Lagrangian given in eqn (5.62).

4This is only the effective potential in the membrane limit because when we expand in large N
and keeping only the lowest order we essentially send the radius of the spheres ro ~ auN to infinity,
thus compare with z we have % < 1. Note also that the order the limits are taken is important. If
the small « limit is taken before the large N limit, implicitly we would be assuming aiﬂ > N which
is the graviton limit.
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5.3 The Interpolation of the Effective Potential

5.3.1 The Interpolation

The purpose of this section is to find the effective potential that interpolates between
the membrane limit and the graviton limit. Due to the complexity of the field equa-
tions on the supergravity side, this problem could only be attacked on the matrix
theory side. On the matrix theory side, however, there is a subtlety that needs to be
taken into account before such a potential could be found. Here we will analyse only
the v* term, the p2v? term as well as pu* term can be studied in exactly the same way.

From the supergravity side, what we wish to find is more or less clear. Near the

membrane, when % < 1, we expect an expansion like:

OéU4 z z V4

Verr = ozt o+ G+ G G ) o5

Far away from the membrane, when % > 1, we expect an expansion:

4 .2
avs T To To 2 To 3 To 4
Vipr=—5=50+—=+(=)P+ =)+ (=) +- - 5.89
1= s (U 2 (D (2 (D)) (5:59)
2
We have used W = 52%:5;% to rewrite the graviton result so that it looks more

similar to the membrane effective potential.
Therefore, we are basically looking for a function C(z) which appears in the effec-

tive potential in the following way:

OéU4 z

c(=) (5.90)

w225 g

Verr =

As one could see, both the graviton and the membrane action is in this form. C(z)
should have the appropriate limit at x — 0 and x — oo to give the correct potential at
the membrane and the graviton limit respectively. Physically it represents curvature
corrections due to the finite size of the spherical membrane.

So now we go to the matrix theory side to try to find C(x). The subtlety is that the
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effective potential on the matrix theory side not only includes curvature corrections
but also the matrix theory corrections to supergravity which we are not interested in,
not to mention that the sum over mass formula is incapable of deducing such matrix
theory corrections exactly [5].

For our purpose of comparing with supergravity, therefore, all matrix theory cor-
rections to supergravity should be thrown away. Such corrections appear on the ma-
trix theory side as 1/N corrections, mixed together with the curvature corrections,

and it looks something like:

avt z 1 z 1 z
Vs = 3 (@) + 102+ )+ ) (5.0)

To To

In such an expansion, only the Cy term should be kept. The readers are cautioned
that naively sending N to infinity will not give us the correct interpolating potential
because 7 also depends on N and such limit would only result in the effective potential
in the membrane limit.

There are many ways such matrix corrections could appear. For example, in a

typical matrix theory computation we may get terms of the form:

avt

2 2 2
Vers ~ u2z7(z + o) (5.92)
Rewriting the above gives:
av? a?p®N? 1
‘/@ff ~ IM2Z5 (1 + 22 m) (593)
av? rd 1
~ P (1+ ?m) (5.94)

The second term could now be identified as a matrix theory correction and is irrelevant
to us.
To isolate the curvature corrections (which we want) from the matrix theory cor-
rections (which we do not want), we look at eqn(5.91) more carefully. We could see
1 _ ap

that since = fe all the matrix theory corrections will appear in higher order in «.
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Therefore to get the interpolating effective potential from the matrix theory side, we

could follow the steps below:
1. Change the summation over j in eqn(5.82) into an integral over j from 0 to NV;
2. Replace N by 60%, and u by i—iﬁ;

3. Expand in small a and keeping only the lowest order (which shall turn out to
be order o', with all lower orders vanishing ). This is the interpolating effective

potential.

With Mathematica, the interpolating effective potential for two spheres of the

same radius (w = 0) in Minkowski signature is found to be:

o 36v% — 22 u?
(225 1152(4r3 + 22)5/2

x {1082}2( — 2" 4+ 1675/ 4r] + 22 + 832 [Ard + 22 4+ 2" [4rd + 22)
— 22 (1127’3\ [Ar3 + 22 + T2t (=2 4+ 1 /4r2 + 22) + 8r3 2% (=22 + Ty /412 + 22)> }

(5.95)

Verr =

We see that V,p; always carries a factor of 36v? — z2u?, meaning the effective
potential vanishes whenever v = £2. This is expected because such configurations
correspond to circular orbits which preserve half of the supersymmetries.

Expanding this potential in the membrane limit of large ry we get:

a(3888v" — 360v°2°p” + T2'u") (360 — 2°p?)(108v% — 722 ?)

5.96
1152p225 1152225 (5-96)

Verr =

This result is of course identical to the matrix theory result (with w = 0) in section
5.2 where the membrane limit was taken in advance.
In the graviton limit of small ry, after replacing ro by auN/6, we have:

N2a?(7200" — 560222 0% 4 2 ) N2a?(2007 — 221°) (360 — 2%1?)
76827 B 76827

Verr = (5.97)
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The two limits of the effective action could then be compared with that of the
supergravity side. Indeed from the expressions (5.63) and (5.64) we see that we have
perfect agreement.
In above we have only given the expression of the interpolating potential for two
membranes with the same radius (w = 0). We have also found the interpolating
potential with w included, using the same steps given above. However we choose to

omit the rather lengthy expression here for brevity.

5.3.2 Comparison with Shin and Yoshida

As mentioned in section 5, ref. [31], considered the case of supersymmetric circular
motion with angular frequency £ and found a flat potential, which agrees with what
we have found (see the comment under eqn(5.95) ).

In a subsequent paper, [32], the authors considered the case of a slightly elliptical

orbit with separation, z,

t t
z = \/(rg + €)? cos? (%) + (ry — €)2 sin? (%)
t
= \/7"5 + €2 + 2ry€ cos (%) (5.98)

and velocity, v,

v = %\/ (<r2 + s (55) + (1 — )2 cos? (*g))
_ %\/((rg + €2 — 2ry¢ cos (%)) (5.99)

where € is the small expansion parameter for the eccentricity of the orbit. They

considered the large separation limit, 75 > 0, and found an effective action, eqn(1.2)



7
of [32],

1 N)? 1.1
Ly = o fatanin (252 - Sl %)

_ %é‘/dt (oz3,u4N2) (% _ M(l _ L)l> (5.100)

after expanding to O(e') and O(1/r9). Note that in the equation above we have
restored p and «, and set Ny = Ny = N, r; = 0. To compare this with our result
we substitute the above expressions of z(t) and v(t) into our interpolating potential
eqn (5.95) and expand in the parameters 1/ry and e. As we are only comparing
effective actions we average our potential over one period of oscillation. We find for

our time-averaged potential,

1 1 2
Vers = 0464/12&7"3 <— - 11T—0>

32 re 9
35 44 axm (1 1l(auN)*1
_ 35 N2 (L Hlowd)” 1 5.101
gsa” M\ 36 19 (5.101)
(where to reach the final line we used ry = %) which agrees with eqn (5.100)

after throwing away the # matrix theory corrections in the latter. In calculating
the matrix theory effective potential in section 5.2 we assumed a constant velocity.
However, as we can see by this comparison, as long as we ignore matrix theory
corrections, it leads to the correct result. Thus we see that we can consistently

neglect acceleration terms in the effective potential as discussed earlier.
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Chapter 6

Membrane Interaction in PP-wave
with M-momentum Transfer

In this chapter, we are interested in comparing the effective actions of matrix theory
and supergravity arising from interactions between two membranes in the eleven-
dimensional pp-wave geometry. In particular, we would like to allow for M-momentum
transfer, and check the agreement on both sides. This computation is similar in spirit
to the previous chapters, though the details and techniques involved on the matrix
theory side are very different.

Unfortunately, the complexity of the equations involved has so far prevented us
from obtaining a direct comparison between matrix theory and supergravity. Never-
theless, limited predictions can be made on both sides under certain approximations,
this chapter is a collection of the results so far.

In section 6.1 we will give a description of the theories on both sides. The gauge
theory will be presented in two equivalent descriptions we call the A-formalism and
the Y-formalism. In section 6.2 one can find the vacuum solutions of the gauge
theory. A precise correspondence of the two theories is given, mapping variables on
the gauge theory side to those on the supergravity side. The magnetic flux on the
gauge theory side is identified with the total momentum of the membranes on the
supergravity side. The pu — 0 limit will also be discussed. As before it is necessary to
carefully distinguish the graviton limit and the flat membrane limit. Section 6.3 gives

the simplest instanton solution of the Euclideanized gauge theory. Connections with
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matrix theory are also discussed. Section 6.4 describes our attempts in finding higher
instantons of the theory. A particularly interesting point is how the self dual equations
in pp-wave can be mapped to those in a conformally flat space. Section 6.5 looks at
the supersymmetries of the Lagrangian and examines the BPS conditions. In section
6.7 the interaction between a source membrane at the origin and a probe membrane
in circular orbit is studied. Although the precise computations cannot be carried
out because of the lack of the general instanton solution, a limited prediction can
be made under certain approximations, and awaits confirmation by the supergravity
side. In section 6.8 we present the results from the supergravity side so far. This is
followed by brief comments on the limitations of our results and the current status
of the project in section 6.9. Our notations and some frequently used equations are

collected in Appendix A.

6.1 The Gauge Theory

Now we will describe the gauge theory we use to compute the effective action. There
are many approaches to get the non-Abelian three-dimensional theory for our instan-
ton computations. One is to take the Abelian supermembrane action in pp-wave [13]
for a single membrane and generalize to a non-Abelian theory using the constraints
from supersymmetry and gauge symmetry. Here we take a different route worked out
in [28] by taking the continuum limit of the matrix theory action. A small advantage
of this method is that the coupling constant of the resulting three-dimensional gauge

theory is readily identified with M-theory parameters as we will see below.
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Once again we begin with the matrix theory action in pp-wave:

9 1 9
S = /dtTr{;ﬁ (Do X*)? +zszDow+ ; (X4, XB]?
9 1 3 ' 9
+(R) Y TP X, ] + 5 (—(§>ZZ<X’)2 - (%)@(Xﬂ)?) — kg0
B=1 =1 a=4
(MR < . Aﬁ
— T X' XIXF L (6.1)
SR ij,k=1 ’

where D, X = 0, X4 — i[Xy, X*]. From this point onwards we will put M = R = 1
unless stated otherwise.

A vacuum solution of this matrix theory action is X; = £.J;, where J; is a repre-
sentation of the SU(2) algebra. The three-dimensional gauge theory can be obtained

by expanding about this vacuum. First we define:

I
==t 6.2
r=t (62)
&:§¢+n (6.3)
Next we do the following replacement:
Tr — N/dQQ (6.5)

3 1 TP
Y, Y= oY= |y, .
R
X, —>,/ ,/ X, WPX (6.7)

\/N (6.8)

The last three rescaling of the variables are done for later convenience. The Poisson
bracket is defined in Appendix A, and so is z;, which is the Cartesian coordinates
parametrizing a unit sphere in R3. The variable Z that appears in one of the above

relations denote a general matrix function, such as X and Y. Note also that the
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momentum along the X~ direction (the M-momentum) P = N/R = N once we put
R =1, and from now on we will use P exclusively in this chapter instead of N. We
will often omit the subscript “-” when referring to the M-momentum.

After all these steps, one obtains the following three-dimensional action:

1 1 1 1 '
S = /d7d2§2 TT{§(8TY;)2 + §(aTXaY — §X§ — 5(Y; + i€l Y + %geijk[yj, Yi))?

+

N | —

(LiX.)* + 392 [Xa, Xo]? + T 0pp — izw%gw + g Vo[ Xas ] + zﬁ%ﬁw}

(6.9)

Here d*Q) is the solid angle element on the sphere. The operators L; and £; are defined
by L;Z = i{x;, Z} = —i€;jpx;0xZ and L;Z = L, Z + g|Y;, Z] and g is given in terms

of M-theory parameters as g = ;ﬁ?;—l/jl/? = 22mp [y = m = 31/271/2 \/%. Here
ro = &P and p = # are the radius and the momentum density of the spherical
0

membrane respectively. From now on we will omit the symbol Tr for trace, which
should be clear in the context.

Since we are interested in two-membrane interactions, from now on we will restrict
our attention to the gauge group U(2). All the fields appearing in the above action
are treated as 2 x 2 matrices, or equivalently they can be expanded in terms of the
generators of SU(2), appearing below as % in addition to the U(1) component. Just
as it was in our previous graviton computation, we keep the U(1) part so as to allow
for configurations where the center of mass of the system is not located at the origin.

It is convenient to define B; =Y, + i€;;,L; Yy, + %geijk[Y}-, Yi]. As we will see later,
the right-hand side becomes the magnetic field B; = %eiijjk in the flat membrane
limit.

This action has 16 supersymmetries and a gauge symmetry under the following
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transformation:

1

Y - U YU+ -U'LU (6.10)
g

X - U XU (6.11)

W — U WU (6.12)

The above gauge theory has an unconventional form, which we shall refer to as
the Y-formalism. We shall note in passing that restoring A, is an easy task, but
we would not go into it at this point. It will be restored below in the A-Formalism.
Although the fields Y do not transform exactly as gauge fields do, it is possible to
make a field redefinition to make it look like a proper gauge theory. To this end we

define:
Y = 2;® + e Ay (6.13)

Direct substitution gives:

1
B, = xi(§€jklijkl — CD) + D;® = %i(CSC 9F9¢ — (I)) + D;® (615)

After restoring A,, the bosonic action in this A-formalism is now given by:

1
S = /deQQ§{FT29 + csc® OF2, — (csc OFp — @)°

+ (D, ®)? — (Dg®)* — csc? 0(Dy®)?
+ (D, X0)? — (DgX,)? — csc? 0(DyX,)?

1

4

1
Xo+ 597X, Xo) + ¢7[2, Xa]z} (6.16)

If one takes away the mass term for X as well as the ® term in (cscOFp, — ®)?,

this is the action one would naively expect on R x S?, with various factors of cscf
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coming from the metric on S2. The inclusion of these terms, however, as we will see
later when discussing the instanton equations, actually makes it possible to map the
problem to an equivalent one in flat space. The term (csc §Fps — ®)? is an interesting
one. It contributes a factor of F92¢ to the action just as for a flat space gauge theory,
but at the same time plays the role of a Higgs potential fixing the field ¢ at infinity.
There are no free parameters as those in a usual Higgs potential, and the theory is
supersymmetric. It may be of interest to consider the effect of this term in greater
details.

In finding the instanton solutions below, we will first put X, = 0. Ignoring the
terms dependent on X for now, the above bosonic action can be rewritten once more
to a more suggestive form in one higher dimension, similar to how a three-dimensional
instanton can be written as a solution of a four-dimensional theory. To do this we
first introduce a fictitious coordinate #® on which none of the fields depends. We

define the following four-dimensional metric on R x S2:
ds® = —d7? + df* + sin*0d¢* + (dz®)* = gmpdz™dz" (6.17)

m, n labels the coordinates of RV x S2.
Defining A = ® and F., = Fiun — €romn®, with F,,, being the usual field
strength F.,, = OnA, — OnA;m + 19[An, Ay and e o0 = +4/|g| = sind, we can

rewrite the X-independent part of the bosonic action simply as !:

S = / dnm{ — ifmnfm"} (6.18)

6.2 The Vacuum Solutions

We have obtained the three-dimensional gauge theory in both the A-formalism and
the Y-formalism. In this section we will study its vacuum solutions and give their

interpretations on the eleven-dimensional supergravity picture.

n particular, we have Fg,, = ig[®, A,,].
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We first look at the Y-formalism. From the action in eqn(6.9) we see that the

stationary vacuum solution must satisfy the following conditions:

X, =0 (6.19)

Bi = Y; +ienL; Vi + %gezjk[yj, Y] =0 (6.20)

In the absence of A,, of course all the fields have to be time independent. Putting
Y = 0 gives you the trivial vacuum, but as we will see below, the general vacuum is

labeled by an integer n.

6.2.1 The n =1 Hedgehog Vacuum

We will begin with a simple ansatz, Y; o< 0;. Direct substitution gives:

vi= (%) (6.21)

® = 1;Y; = —a5(=) (6.22)

We shall call this the hedgehog vacuum for the obvious reasons.

6.2.2 The general n Vacua

The general solutions are found by means of an ansatz. I will merely state the results

here:

)

1
Y, = _[ncos¢cosn¢+SiD¢Sinn¢](2 3
g

2

02

)

+ é[n cos ¢ sin ng — sin ¢ cos ne|(

Yo = ;[nsin¢cosn¢—cos¢sinn¢](%)—|—;[nsin¢sinn¢+cos¢cosn¢](2)
_ ™o
Y3 = 9(2) (6.23)

Through a finite gauge transformation U = cos(0/2) — isin(6/2)(sin(ng)oy —
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cos(ng)os), the above solution can be transformed into a singular gauge where all

fields point along the o3 direction in SU(2):

nl—cosf . 03

n , os
Ys = —(—= 6.26
s = 4P (6.26)

This gauge is evidently singular at # — 7, so in fact requires a second cover on the

lower hemisphere with 1= replaced by 1£%¢.
In the A-formalism, we have:
n, os
o =—( 6.27
g( 5) (6.27)

In addition, for the nth vacuum we can see immediately that in this gauge, A is also
proportional to o3 everywhere (except at the south pole).

As we have seen in the previous section, the fields Y can be mapped to the gauge
fields A, which we will not do explicitly here. One should note for the sake of our
considerations on instantons later, although it is always possible to go to a singular
gauge where ® always points in the o3 direction, it is in general impossible to make

both ® and A to be in the o3 direction at all times.

6.2.3 The Interpretations of the Vacua

From the definition X = %J +Y and ¢ = z,Y;, one sees that ® is related to the radial
separation of the membrane. It is easiest to see this in the singular gauge in eqn(6.27)
where @ is diagonal. There the two diagonal elements can be interpreted as the radial
perturbation of the two membranes away from the mean radius oy, meaning that we
have one membrane at ry — #% and the second one at ry+ #%. The extra factor
of gy/2ro here comes from the rescaling from eqn(6.6) to eqn(6.8).

Hence we find the radial separation of the two membranes to be g\/T;To‘ On the
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supergravity side, one can show easily that two spherical membranes carrying total
M-momentum P; and P, have radii %Pl and %Pg respectively and therefore a radial

separation of £AP, where AP = Py — P5. Equating the two, we have:

n

[
—AP = 6.28
6 g/ 27“0 ( )

But gv/2r9 = 3/u, so we arrive at the important relation:
2n = AP (6.29)

In other words, in the supergravity picture, 2n denotes the difference in total mo-
mentum of the two membranes?.

Through the relation 0 = z;B8;, = ® — Fj,, we can also relate n to the field strength
and hence the total flux on the sphere. Putting it together, the integer n that labels
the vacua represents on the gauge theory side the magnetic flux on the sphere, while
on the supergravity side carries the meaning of AP/2, the averaged difference in total
momentum of the two membranes. Therefore, the process of M-momentum transfer
between two membranes in eleven dimension is represented on the gauge theory side
by an instanton process through which the magnetic flux changes. For example, an
instanton that takes us from the n_ vacuum to the n, vacuum represents the process

where the radial separation of the two membranes changes from £n_ to £n.

6.2.4 The Flat Space Limit

Now that we have the correct interpretations of the various fields and parameters,
this is a good place to discuss the flat space limit © — 0. As stated in the previous

subsection, the radial separation of the two spherical membranes for finite p is given

2The reason that it is 2n instead of n is that we implicitly fixed the total momentum L P = P, + P,

. ; JUo
of the system to be even when we expand the theory around a configuration of X* = 0T T ),

implying that ¥ P, which equals the dimension of the matrix, is even. Therefore AP = P, — P, =
2P; — X P must be even too. Another way to say this is to begin with two membranes of the same
momentum. Each time one unit of momentum is transfered from one to the other, the difference
between the momentum increases by two units.
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by:
i

_HAp_F
Ar = GAP 3" (6.30)

Therefore, to get to the limit where the two flat membranes are separated by a finite
distance, we have to take the limit ¢ — 0 while keeping un fixed. We will call this
the flat membrane limit.

It is useful to understand this another way. Suppose the two membranes carry
total momentum P; and Ps, then the radii are r; = %‘Pl and ry = %Pg respectively.
The above limit is taken such that Ar = r; — ry is fixed. Of course a flat membrane
is simply a spherical membrane of infinite radius, so both P; and P, have to go to

infinity to make r; and r, infinite. For a flat membrane, a useful parameter is the

momentum density:

P 3
= = 6.31
P= g 2w pur (6.:31)
The difference in p of the two membranes to the lowest order is simply:
A
Ap = p—r (6.32)
r

So we see that Ap goes to zero as r — oo in the flat membrane limit. In other words,
the two membranes with finite separation in flat space carry identical momentum
density p. This is expected for two membranes at rest in flat space, and of course we
can change p by boosting one of the membranes.

To summarize, the flat membrane limit takes ¢ — 0 and r, P, AP,n — oo while
keeping Ar, un, pAP, p fixed.

Another interesting flat space limit is taking ;1 — 0 while keeping the total mo-
mentum P fixed. In this case, we can see that each spherical membrane collapses
into a point particle sitting at the origin. The momentum density becomes infinite.
These point particles can be interpreted as the usual point gravitons, or D0 branes in
the ITA perspective. We call this the graviton limit. It would be interesting to see if

the results of the three-dimensional gauge theory would reduce to those for point-like
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particle in this limit. For instance, it may be possible to use this limit to find graviton

scattering in flat space with M-momentum transfer, which as far as I can tell has not

yet been done. In this thesis, however, we will be concerned with the flat membrane

limit only.

6.3 The Instanton

6.3.1 The Instanton Equations

We begin by Euclideanization of the action. For now we will only be interested in

configurations with X, = 0, so we will retain in this section only the relevant terms.

We begin with the Y-formalism.

Replacing 7 — —i7 and defining S = —iS, we have:
1
Sp = /dmﬂ%{(@m? + B?}

As before, BZ = Y; + iEijijYk + %geijk [Y;, Yk]

Rearranging the terms gives:
1
Sy — / Ar O (£0,Y; + B F B:0,Yi}
B;0,Y; can be written as a total time derivative:

L |
Bio.Y, = 0,{5Y7 + SeinYiLyYi + 596 YiY;Ye)

Defining K (7) = [ d®*Q{3Y? + LejViL;Ye + %geijkYinYk}, we have:

Sp = % / drd2Q(+0,Y; + B, T [K (+00) — K(—00)]

The instanton equation is therefore given by:

+0,Y,+ B, =0

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)
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In the A-formalism, Euclideanization gives:

1
Sp = 3 /dezQ{ng+csc2 OF2,4(csc 0Fpy—®)*+ (D, ®)*+(Dp®)*+csc” 0( Dy @)}

(6.38)

2

Alternatively, Euclideanizing the metric on RM x S? in eqn(6.17) gives a four-

dimensional metric on R? x S
ds? = dr? + d6? + sin®0dé? + da®’ = Jmndz™dz" (6.39)
Having Frup = Fiun — €romn® as before 3, the Euclidean action becomes:
1 2 mn
Sg = 1 drd*QFnF (6.40)
Defining ﬁmn = %5mnpq.7:pq, the action can be rewritten as:
1 - -
Sp=3 / Ar O { (£ + Fon) EF ™+ F) F g7 P} (6.41)

Simplifying the second term:

1 1
:Fg / de2Q Emnqumnqu :F§ / deHdgb{DTCI)(F% — sin 0(13) + F.,-qug(I) + F¢7-D9q)}

1
= F / drdQQDT(ZCI>2) (6.42)

Note that in the first line we canceled the factor of sin in d?Q) against the 1/sin @
from the integrand to give dfd¢. Integration by part and the Bianchi identity for
F,., was used to arrive at the second line, while keeping track of all the boundary

conditions carefully. In the end the sin @ in front of ® restore the measure to d?.

In analogy with the Y-formalism, we define K (1) = % [ &*Q Trd*. The action

SRemember that &,,,,, contains a factor of 1/|g].
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can now be written as:

Sp = / drd*Q) {%(ifmn + Fpu ) (EF™ + fm")} F [K(+00) — K(—00)]  (6.43)

Defining ®.. by the relation ®(7 — Fo00) = ®.(§), the instanton that takes the n_

vacuum to the ny vacuum has an action:

So = F[K(+00) — K(—00)]

m
= §|‘I’i—@2|

Putting in &, = %, we have:

The instanton equations follow:

In terms of ® and F,,, (picking the upper sign for convenience):

cscllFpy —® = —D.®
Fr¢g = —csctDy®
csclFy, = —Dp®

6.3.2 The n=1— n =0 Instanton

A particularly simple instanton can be found by the ansatz:

(6.44)
(6.45)

(6.46)

(6.47)

(6.48)
(6.49)
(6.50)

(6.51)
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Choosing the upper sign in the instanton equation, we have:

1
f(r) = exp(7 —70) + 1 (6:52)

Tp 1s an integration constant.

This instanton takes us from the n = 1 vacuum to the n = 0 vacuum. We call this
the (1,0) instanton (see Appendix A for notations). In the eleven-dimensional point
of view, it represents two spherical membranes of different radius exchanging one unit

of M-momentum resulting in two overlapping membranes with the same radius.

6.3.3 Connection with Matrix Theory

First we write out the instanton equations of our three-dimensional theory in the

Y-formalism in full:
i
ﬂ:aTY; -+ Y; + ’iEijijYk + §g€ijk [Y;, Yk] =0 (653)
Compare this with the instanton equation for matrix theory in pp-wave [43] (rewritten

in our convention after the field rescaling in eqn(6.6)):

?

One can hardly fail to notice the resemblance and this is of course no accident.
Expanding X about its vacuum solution as X = éJ +Y, eqn(6.54) gives?:

l

+0.Y; + Y, + i€ J; Yy + 5

geik[Y5, Y] = 0 (6.55)

This is identical with the three-dimensional instanton equation after the replacement:

[J;,Ye] — i{z;, Y} = L; Yy (6.56)

4The factor of é in front of J is due to the field rescaling in eqn(6.6).
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This is of course the same procedure as taking the continuum limit. It is worthwhile
to understand this procedure in more details. We will see shortly that it gives us a
new matrix theory instanton that is related to our three-dimensional (1,0) instanton.
Let us begin with a k£ X k matrix Y in the three-dimensional theory. Each element

of this matrix can be expanded in terms of spherical harmonics Y™ (0, ¢):

00 +l

Yas(0,0) = Y clglvimi(6, ¢) (6.57)

=0 m=-—I

a,=1,2,---  k labels the elements of the matrix Y.
This Y of the U(k) three-dimensional theory can be mapped to a U(Nk) theory
in one dimension the usual way, by replacing each of the spherical harmonics by their

N x N matrix representation:
Yo, ¢) — Y (6.58)

p,v = 1,2,--- N labels the elements of the N x N matrix Y. Note also that
[ now only goes up to N — 1, in other words Y™ for I = 0,1,--- , N — 1 forms a
complete basis for all N x N matrices.

The matrices y}f;” I can be constructed by writing the spherical harmonic Y (6, ¢)
in terms of x; on a sphere in R* and then replacing every z; by the N x N represen-
tation of .J},.

Y in the U(Nk) theory is now:

N—1 +
Yiwem = 2 D caj Vi (6.59)
=0 m=—1
From this we can see immediately that the differential operator L; of the U(k) theory
should be replaced by the matrix Iog.J7, in the U(NE) theory. Here I is the identity
matrix while J7 is the generator of SU(2). The index j will be suppressed in some of
the following equations for simplicity.

Therefore, given an instanton solution Y (6, ¢) of the U(k) three-dimensional the-
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ory, we can translate it back into the one-dimensional U(Nk) theory where the solu-

tion X is represented by °:

1 .
Xap(pr) = p o + Yiap)(av)

N—-1 +1

1 , m]~+llm
- L X3 g o)

=0 m=-1

Let us now apply this to translate our (1,0) three-dimensional U(2) instanton into
a matrix theory instanton. From eqn(6.51) we see that Y is independent of # and ¢,
so only the [ = 0, m = 0 spherical harmonic component appears in the expansion,

and this Y% is mapped simply to the N x N identity matrix Iy:
Yool — 1 1y (6.61)
Therefore, the matrix theory X that corresponds to this (1,0) instanton is given by:
1 i i
X; = ;{IQ@JN‘{’f(T)JQ@]N} (6.62)

The symbol ® denotes direct product, and J3 is simply 5
To be a little bit more general, if Y}/ is a k x k instanton solution of the three-
dimensional U(k) theory that is independent of § and ¢, it can be transformed into

X in the U(NE) theory by:
1 i i
X; = §]k®JN+Yk ® Iy (6.63)

This can be verified by a direct substitution.

This is only strictly true in the N — oo limit.
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6.4 The Higher Instantons

In the previous section we gave the explicit expression for the (1,0) instanton, i.e.,
one that tunnels from the n = 1 vacuum to the n = 0 vacuum. It is natural is ask
whether it is possible to construct other instantons. We will denote an instanton that
tunnels from n_ vacuum to n, vacuum as the (n_,n, ) instanton.

A difference with flat space can already be seen from the results that we have. In
flat space, an instanton is labeled by a single integer k, which represents a tunneling

process between a n + k vacuum and a n vacuum [44, 45]. The k-instanton action is
k(Ar)

e2

proportional to and is independent of n.

. . . . n2 _TL2
However, in our case, an (n_,n.) instanton gives an action of Sy ~ | 5 *‘,

which depends not only on the difference & = n, — n_ but on both numbers. In
the flat membrane limit, where n — oo while k is kept finite, this action becomes

So ~ 2k~ unk | BEAT) e used the identification p ~ e? in flat space [37]. Indeed

g P e?

our instanton gives the flat space result in the appropriate limit. Nevertheless, the
fact that the instanton depends on both n_ and n, also tells us that it is inherently

a more involved problem.

6.4.1 The Conformally Flat Picture

In the A-formalism, finding an instanton means solving eqn(6.47). Even without the
extra terms coming from our pp-wave problem, explicit solutions for the equivalent
flat space problem is difficult to write down. Finding solutions for these equations
appears to be a rather formidable task. However, a simple rearrangement of the terms
simplifies the equations such that they become identical to those in flat space.

Define r = €™ and A, = %(D, the equations (choosing the upper sign) becomes:

1
r2sin 6 Fop = —Drds (664
1 1
—Fo = — D A 6.65
o rsing ¢t ( )
1 1
. = ——DpA 6.66
rsing ¢ oo ( )
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This is of course the self dual equations of a four-dimensional space with a metric:

4
ds® = dr® +r?d0® + r’sin®0dg” + (da*)’ = > (a')? (6.67)
m=1
In other words these are simply the self dual equations of flat space.
To understand this mapping better, we can go back to the R? x S? picture in

eqn(6.39). The metric we had there was:
ds? = dr* + d6® + sin?0d¢® + dz®’ (6.68)

By r = €7, and defining rdz® = dz*, the metric becomes:

4

1 1 :
ds = —(dr? + 2 d6° + P sin®0de* + de') = {7 («)?) (6.69)
m=1

This metric is flat up to a conformal transformation. One can quickly verify that the
conformal factor in front does not affect the self dual equations, meaning the self dual
equations in all conformally flat spaces are in fact identical to those in flat space, and
this is the underlying reason of the simplification we obtain above.

Writing the one form ®dz® = Asdx* = Ayrdz® gives the relation Ay = %QD that
we used above. From now on, we shall call this the conformally flat picture.

In terms of Cartesian coordinates, the self dual equations are simply:
Fij = —€jr DAy (6.70)

where €193 = +1.

Although we managed to map our instanton problem into one in flat space, our
trouble is far from over. Because of the relation A4 = %CD, all solutions that have ®
finite at 7 — —oo must have a pole in A4 at the origin in the conformally flat picture.
Furthermore, for ® to settle at a stable vacuum at 7 — +o00, A, must falls off as %

as r — 4o00. In other words, we are looking for a very specific type of solution in

the conformally flat space that contains a singularity at the origin. As far as we can
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tell, such solutions are not well studied, as they correspond to monopoles that carries

infinite energy in flat space.

6.5 The BPS Condition

The supersymmetry transformation of the action in eqn (6.9) is given by:

0Y; = —iel iy
0X, = —igT’yaw
1. 1 1. 1. 1 1
oY = 53/;% + 531'%7123 + éXa% — §Z£iXa%"Ya — Zzg[Xm Xp)Yab — ZXa%%Qg €

(6.71)

where ¢ = eXp(—i’le?)T)Go with €y a constant spinor.

6.5.1 The r # 0 Case: Circular Orbits

Although most of what we will do in the rest of this chapter has to do with X, = 0,
in this section we will consider a slightly more general case where the membranes
move in a circular orbit around the origin in the 45-plane. As we will see shortly, this
configuration preserves 8 supersymmetries [47]. When we return to the discussions
of the X, = 0 case, all we have to do is to put the radius of the orbit r to zero. With

this in mind, we choose:

1

Xy = rcos(§7') (6.72)
1

X5 = rsin(ﬁT) (6.73)

Here r is a U(2) matrix which may be time dependent®. The readers should recall

7 = &t due to earlier rescaling, so this is a rotation of angular frequency &.

6Tt can be time dependent even for a circular orbit because only the eigen values of r is related
to the physical radius, but not the r matriz itself.
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The supersymmetry transformation for ) can then be simplified to:
1

1 . _ 1 .
0 = 5{(YZ + Bivias)vi + iLir( 008(57')’)/4 + Sln(éT)’}/g,)’)/i
1

+ (COS(%T)’M + sin(§7')75) [%T745(1 + Y12345) + 7]} (6.74)

Noting that cos(37)ys + sin(37)7s = exp(—27457)74, 0% can be rewritten after

pulling out all the explicit time dependence:

1 1 .
o = 5{ exp ( - 171237) (Y; + Bivi2s)7i

1 )
+ exp ( — 1(2’)/45 — ’}/123)7') Z;Cﬂ”)@’)’i

1 1 .
+exp (— 1(2745 - 7123)7')74[57"745(1 + Y12345) + T]}Eo (6.75)

Before we rewrite this equation in another yet simpler form, consider first the case

of a stationary configuration for r # 0. In this case Y =B =7 =0, and 81 becomes:

1 1 . 1 1
o = —{ exp (——(2745—7123)7)@ﬁﬂ“%%ﬂLeXP (—Z(2745—7123)7)74[—7“745(1+712345)]}60

2 4 2

(6.76)
From this we can see that 8 supersymmetries can be preserved by having L;r = 0
and 7j9345€0 = —€p. First we consider the U(1) part of r, which satisfies the first
condition if it is constant over the sphere. To this we can add an SU(2) part, for
which the first condition can be satisfied by having r o« ® if ® # 0 and r = constant
if ® = 0. Of course if » = 0 then the condition 7;9345€0 = —€o does not apply and all
supersymmetries are unbroken.

Now we return to the general case in eqn(6.75), but instead of assuming it is a sta-
tionary state, we assume only that the membranes tends to a stationary configuration
at the infinite past with r» # 0, i.e., Y =B=7=0as T — —oo. Then the arguments
in the last paragraph tell us that the unbroken supersymmetries in the infinite past
is given by the condition 7934569 = —€p. Recall that ¢ is time independent, it im-

plies the unbroken supersymmetries at finite time (if there are any) must satisfy this
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condition also. This gets rid of the term %7’745(1 + 12345) for all finite time. It also

tells us Y4569 = +7123€0 and this means we can do the following replacement:

1 1

exp (- 1(2745 — M23)7) — exp (— 171237') (6.77)
Therefore under the condition ;234569 = —€p the supersymmetry transformation
for 91 can be written as:
1 1 . . )
(S’QD = 5 exp ( — 171237') {(Y; + 817123)’}/1' + Zﬁﬂ"’}q’}/i + ")/47'}60 (678)

Out of the eight ¢y that satisfy vi9345¢9 = —€p, the fraction of them that gives
01 = 0 at all times are the unbroken supersymmetries.
Since we are interested in instanton solutions, we need to Euclideanize the above

equation by 7z = ¢7. Omitting the subscript g, we have:

1 1

(51/] = EZ exp (Z'Z’}/lggT){(&rY; — Bii’}/lzg)%' + Eﬂ“’)&;% + ’)/4877’}60 (679)

where 712345€0 = —€o.

At this point it is tempting to say +0,Y; — B; = L;r = 0.r = 0 and impose
1712360 = T€o to get 4 unbroken supersymmetries. Once again, we first consider the
U(1) component of r. Indeed all these conditions can be satisfied if r = constant x I.
This configuration can be interpreted as two membranes overlapping one another
in the 45-plane (remember that each membrane is a single point in the 45-plane)
and circling the origin together. Therefore the instanton process involving two such
membranes preserves 4 supersymmetries.

It is natural to ask if it is possible to add a SU(2) component to the U(1) part of
r above and still preserves 4 supersymmetries. However, for a non-trivial instanton
solution £;7 = 0 and 0,r = 0 cannot be satisfied at the same time once r contains
a SU(2) component. This can be seen by differentiating £;r = 0 with respect to 7.
Since L; contains Y (see Appendix A for the notation), it implies 0,Y = 0, which

cannot be true for the non-trivial instanton solutions.
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6.5.2 The r =0 Case

When r = 0, the Euclideanized 01 is given by:

1. 1 _ 1 .
o = 5L exp (2171237) {(@Yi - Bﬂ%%)%}ﬁo = 5{(373/;' - Bﬂ’}’l%)%}f (6.80)
Note that we no longer require yi9345€9 = —¢€g in the r = 0 case.

Requiring 69 = 0 gives the instanton equations as well as the condition for un-

broken supersymmetries:

+0,Y,—B; = 0 (6.81)

’i’}/1238 = e (682)

Therefore the instantons given in section 6.3 and 6.4 preserves half of the supersym-
metries.

The broken supersymmetries give us the fermionic zero modes A. For simplicity,
we will pick the lower sign from now on. Hence by putting —0,Y; — B; = 0 and
iv123¢ = +e (note that the broken supersymmetries have the opposite sign to the

unbroken supersymmetries) into 41, we have:

A = —Bivie = 0. Yyvie (6.83)

Now let us look at the condition for ¢y. If we take the complex conjugate, using
the fact that the SO(9) gamma matrices in our convention are real and symmetric,

we get:

Y123€0 = +€o (6.84)

i”legES = —ES (685)

This means that €y cannot be real. This in turns implies that the fermionic zero

modes A must also be complex. The reason we began with real SO(9) spinors of
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dimension 16, and yet arrived at eight complex zero modes lies in the Euclideaniza-
tion of the fermions, after which the fermions are doubled. In terms of Majorana
spinors, it means the reality condition is no longer imposed after Euclideanization.

Understanding this point will be the subject of the next section.

6.6 The Euclideanization of Fermions

It is not a surprise that when we Euclideanize a theory, the fermions have to be
treated carefully. In our case, the spinors representing the fermions originate from
the group SO(9, 1), which has a minimum representation of 16 real dimension”. After
Euclideanization, the group becomes SO(10), which has a minimum representation
of 32 real dimension. One can of course take the Fuclideanized action as the start-
ing point, in which case one deals with spinors of 32 real dimension right from the
beginning. Such an approach was taken in [37]. An equivalent approach is to use
the “doubling trick” on fermions after Euclideanization, in effect bringing the real
dimension of the spinors to 32.

Let us first review some of the ideas in flat space. In this section, we will denote
the Minkowski space-time indices by u,v,---, and their Euclidean counterparts by
m,n,---. Here we pick a representation such that I'*! = —I'°T#(I'")~!, Under a

Lorentz rotation, a spinor transforms as follows:
U = exp(T'™) W (6.86)
Defining ¥ = ¥T? one can show it transforms opposite to W:
U = Uexp(—T") (6.87)
Therefore Lorentz invariants that appear in the action can be created by combining

U with W.

In Euclidean space, we define 7 = iz". This gives I'™ = iI'’. Therefore all the

"The term real dimension is the number of real components in the spinor representation.
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gamma matrices are now hermitian:
rm=1m (6.88)

This gives:
Ut = Ul exp(—T") (6.89)

but one should note that U’ # W exp(—I"**) after Euclideanization.
To construct the Euclidean action for the fermions, we will follow the procedure

in [48]. During Euclideanization in four dimensions, the spinors are rotated by the

matrix S = exp(I'*°7/4):

U = SV (6.90)
vt = g (6.91)
e = s-'r+s (6.92)

For Majorana spinors, the result of Euclideanization is particularly simple. In
Minkowski space, a reality condition ¥ = U”'C is imposed on the Majorana spinors.
After Euclideanization, the net effect of the spinor rotation is simply the replacement
of ¥ by WT(C, where C is the charge conjugation matrix® satisfying the following

conditions:

cr = —C (6.93)
crec—t = -1’ (6.94)

It is easy to see that under Euclidean rotation, ¥'7'C = U7 C exp(—I'*"). The invari-
ance of the action follows. One very important aspect of the Euclideanized action is
that the reality condition is no longer imposed on the spinor W. This is the origin

of the “fermion doubling” that was mentioned earlier. To understand this point bet-

8Strictly speaking, we should replace C by Cg = STCS, but in fact the Minkowski C' will suffice
and we need not rotate the gamma matrices either in the Majorana formulation. See [48] for details.
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ter, we will look at the degrees of freedom being integrated over in the path integral

formalism in four dimensions.

6.6.1 Euclideanization in Four Dimensions

A Dirac spinor in four dimensions can be written in the Weyl basis? as U = ,
X
where 1 and x are each two component spinors.

e For a Dirac spinor in Minkowski space, the path integral involves integration

over 1,1, X, X, a total of 8 real degrees of freedom.

e For a Majorana spinor in Minkowski space, the reality condition gives 1 = ¥,

and the path integral is now over 1,1, a total of 4 degrees of freedom.

e After Euclideanization the Majorana spinor no longer have a reality condition,
hence we do not require 1) = y. However, by the construction above using U7'C,
¢ and x do not appear in the action, so the path integral is only over v, y, a

total of 4 degrees of freedom.

It should be clear from this simple counting that even though the fermions are
“doubled” in the sense that the reality conditions is removed, the total degrees of
freedom being integrated over in fact remains unchanged. The distinction between
the second and the third case above is more than just formal. Take the condition for

unbroken supersymmetry:

[ = iM% = —¢ (6.95)
€

In the Weyl basis, it implies we must have € = ® |. This condition can only be
0

satisfied after the reality condition is removed, and is therefore made possible only

by Euclideanization.

9The Weyl basis is the representation with a diagonal I's.
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To make this last point clearer, one can look at the kinetic term of the fermions

in four dimensions. Restoring the spinor indices for the Dirac spinor, we have:

U= 1/@ (6.96)
Xa
We can pick the representation:
0 o#
' = (6.97)
—aot 0
e 0
C= (6.98)
0 _Edﬁ
Writing o#D,, = D and 6" D,, = D, we have:
WI*D,¥ = —ixDx — ity Dy (6.99)
iWTCTHD, W = —2iyDy (6.100)

The two equations are of course the same if the reality condition is imposed such
that v» = x. The second equation is the one that should be used in constructing the
Euclidean action, and it can be seen here that unlike the first equation, only ¢ and y
appears, while 7 and y are absent, as pointed out earlier in the counting of degrees
of freedom.

Everything that was said about Majorana spinors in four dimensions can be re-
derived using Weyl spinors as well, but we will not go into the details here. In the
following we will simply Fuclideanize the fermionic action of Majorana spinors by
replacing ¥ by ¥TC and removing the reality condition. In this procedure the total

degrees of freedom in the path integral is unchanged.
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6.6.2 FEuclideanization of the Membrane Action

The fermionic action before Euclideanization was given in eqn(6.9):

S = /deQQ {inDT¢ - zgw%gw + 99" Va[Xo, U] + dJT%Eﬂ/J} (6.101)

Here ¢ are real 16-component spinors of SO(9) and £,V = —i(e;jx;02° DoV +
To prepare for Euclideanization, we restore I'’ and expand 1 to real 32-component

spinors of SO(9,1) denoted as V:
_ L 3 _
Sp = /deQQ{ — iUT°DeW + UT'Li% — i7 U150 + gUT*[X,, \If]} (6.102)

We defined the Dirac conjugate as U = WIT?, It can be seen to reduce to the previous

equation most easily by putting y = 0 in the following basis:

0 I
I = Lg®io = 1 (6.103)
—Iis 0
,yA
M = @0 = (6.104)
A
ol 0
v = [V (6.105)
X

This basis, however, is not the most convenient one for our purpose. The pp-wave
theory has SO(3) x SO(6) symmetry and at the same time, as we saw in section
6.4.1, the action can be expressed most compactly in four-dimensional notation just
as in flat space. Therefore, we choose a basis that makes the SO(3,1) x SO(6) ~
SL(2,C) x SU(4) € SO(9,1) subgroup explicit:

0 Tody R
' = _ ® 5 (6.106)
6mao¢ O

r = Loy (6.107)
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I 0 0 y
where 4 = iy*. .4 = ! and y* = Pas , while m =0,1,2,3

0 —I4 ﬁaAB 0
;a=4,5--- 9and u,v =20,1,2,--- ,9 just as before. A, B =1,2,3,4 now denote

the SU(4) indices and should not be confused with the target space indices which
have the same notation. p and p are 4 x 4 antisymmetric matrices that are related

by pl = p so that I'* are hermitian. They satisfy the relation:
PPt + pbpt = 20 (6.108)
As for the o matrices we follow the Wess and Bagger notation:

o™ = (1,5) (6.109)

5" = (1,-5) (6.110)
The gamma matrices satisfy T*T = —I'°T'*(I'")~! as well as the Clifford algebra:
1 .
§{F“,F”} =n" =diag(—,+,+, - ,+) (6.111)

For completeness we give also an explicit form for the p matrices:

e O 1€ 0 0 io®
p4 = ) /05 = ) pG = i ’
0 ¢! 0 —ie! —i(e®)T 0
_— 0 1 g 0 iot o 0 io?
p - I p - 9 P -
-1 0 —i(eH)T 0 —i(e?)T 0
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Expanding the 32 x 32 gamma matrices further, we have:

0 0 o™ 0 0 p» 0 0 Von
0 0 0 —om 0 0 0 )A
Fm: 3 1'\(1_ ? \Ij: .
—5™ 0 0 0 0 0 0 p° o
0 & 0 0 0 0 p° oA
(6.113)

Due to the property of the unitary group, complex conjugation takes an SU(4) su-
perscript 4 to a subscript 4 and vice versa. With this in mind one can check that all
the upper and lower indices match perfectly in the action, and any SL(2,C) x SU(4)
invariant quantities should be constructed accordingly. The SU(4) index can be un-
derstood from the four-dimensional point of view as a label for the different “species”
of fermions related by R-symmetry.

The charge conjugation matrix is given by:

0 €% 0 0
e 0 0 I e 0 0 0
Cc = ® = (6.114)
0 €4 I, 0 0 0 0 €46
0 0 €4z 0
0 €z 0 O
€ag 0 0 I €ap 0 0 O
ol = R = | (6.115)
0 € I, 0 0 0 0 €
0 0 &9 0
Using the relations ec’e = —G and e67e¢ = —o it is not difficult to check the usual
properties of the charge conjugation matrix:
ct = —C (6.116)

crec—t = -1t (6.117)
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Two other matrices we will use frequently are the chirality operator:

-l O

[T = 2 = (6.118)
0 +Il6

Is 0 0 0

0 —Is 0 0
o9 = ° (6.119)

0 0 —Ig O

0 O 0 Iy

For later convenience we also write out explicitly the following expressions:

O = (g G2 RS ) (6.120)
U= (3 dea v g ) (6.121)
o= (g 0 —dea ) (6.122)
O (! G R (6.123)
(6.124)

If the chirality condition ' 9% = +¥ is imposed, the 32-component spinor will be

reduced to:

U= (6.125)

We can also impose the reality condition, reducing the degrees of freedom by half:
v'C = (6.126)

This gives the following relations between the component fields (and their complex
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conjugate):

A = g (6.127)

i o=~ (6.128)

The reality condition and the chirality projection are compatible in Minkowski space
but not in Euclidean space.

We will Euclideanize by keeping the chirality condition while abandoning the
reality condition. To relate the Minkowski action to the Euclidean action we define
5 = iy, Sp = —iSy and 'y, = i['},. All ¥ in the action are replaced by ¥TC.

Omitting the subscript g from now on, the fermionic action becomes:

. 3
Sp = / d7d2Q{i\I/TCFTDT\I/ —UTCT' L,V + ZZ\I/TCFI%\IJ — gUTCTX,, \IJ]}
(6.129)
U is now given by the eqn(6.125).

Expanding in component form, the fermionic action is:

= =T —=1 '3——7' 1 —a 1 - a =
Sp = /deQQ 2 {ZXU Dy — x"'Lap — i7xo Y+ §g¢p [ X, 9] + S9XP (X, x]}
(6.130)

We have defined 6™ = io® and 67 = ia°.

Just as in the four-dimensional example
we looked at, the total degrees of freedom to be integrated over in the path integral
formalism remains 16, the same as its Minkowski counterpart. This is because only
¢ and Y appears while 7 and y are absent. Once again the readers are reminded of
the fact that this would not be the case had we not used U7C' instead of ¥. Since
the reality condition is removed, there is now no constraints between v and Y.

From now on we will often switch between the 32-component formalism in terms

of I'* and ¥ and the component form of ¢) and Y.
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6.6.3 The BPS Condition Revisited

After Euclideanization, the supersymmetric transformation of the fermion when X, =

0 1s:

1.
o0 = 51“”(Fn- — BiT™#)e (6.131)

where & = exp(3T7%7)¢g
Choose the sign so that F,; + B; = 0, then we have:

1 .
oV = FTZEF”(l + T (6.132)

The unbroken supersymmetry is now given by the condition I'"'**¢ = —¢. The con-

stant spinor €y written in component form is now:

€0 = (6.133)

€0 = (6.134)
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This in turn gives the fermionic zero modes:

A = 00 = Fuei T (6.135)
0
0
= (6.136)
0
NaA
where A4 = —e%TFTi(éTJi)dBEBA. Labeling each zero mode by the indices 45, the 8
zero modes are now given by:
YA T _i& =YA
)‘[BB} —ei TF(a70") VGFBB] (6.137)

In order to perform the path integral for the fermions, for each of the above zero

modes we multiply by a Grassmann number & 5B,

3 & ir T A
NG = ¢[BBIY hp = el Fr(a7a") e VﬁB]g[ﬁBl (6.138)
Now we choose the basis of the zero modes such that € _?;;] = 5§5;. Removing the

square bracket on & for simplicity, we arrive at the eight zero modes written in terms
of Grassmann numbers:

A4 = —ei7Fi(570") € (6.139)

The indices *4 on ¢ labels the different fermionic zero modes, but can also be treated

as proper spinor and SU(4) indices.
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6.7 The Membrane Interaction

6.7.1 The Interaction Term

In this section, the indices run as follows:

ij = 1,2,3

m’n = Tﬂ(p79’¢

a,f = ¢,0,¢
Wy = 71,00
Q = 0,9
Defining:
Lo = el Oga* - T = el O (6.140)
Iy = z,I" [? = ol

then we have I'; = z,1'® + ;27 9q2"T'*.

In terms of these gamma matrices, the action becomes:
Sp = / drdQQ{i\I/TCFmDm‘IJ + iZ\IJTcrmgqf — gUTCTX,, qf}} (6.141)
Now we want to look at the interaction of the membranes from the term:
Liny = —gVTCT[X,, V] (6.142)
Put X, = X,®, where X, is just a c-function (as opposed to a matrix), we havel:
Liny = iWTOX, "Dy W (6.143)

As before, DpWV = ig[®, V].

10The relation X, = X,® is a condition that should be checked carefully. In fact it is only
approximately true when time dependent perturbation is present. For circular orbit this is good
enough under certain limit, see the next subsection for details.
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In first-order perturbation theory, ¥ can be assumed to be the zero modes when

X, is absent, hence they satisfy:

3
"Dy W + 7Ty ¥ = 0 (6.144)
This gives:
DgV = —T"*"D, ¥ — Zr‘l’rmqf (6.145)

Using this equation we could simplify the interaction term (not keeping total deriva-

tives):

Livy = %\IJTC’XaF“Dq,\II - %D@Tcxarw
= —%\IITCX(ZF“F‘I’“D#\D - %DH\IITC’XGF“F@“\I/ - %imTcxararérqu

]

= éwTCDu(XaF“P‘I’“)\I! — szcxararq’rmqf

1
- %chaﬂ(xa)rarq’ﬂqf — 10T OX DT T oW

1 1
= @'\pTcrar‘I’T(ﬁarxa + 7Xalr123) ¥ (6.146)
We assumed in the above calculation that X, was dependent on 7 only and used the

following formulae:

F<I>€¢ = +\/§F123 (6.147)
1

an = —§€mnpqrqu7123 (6148)

DI = V, I =20 93 = 2I'* T 193 (6.149)

The first term in Ly is the velocity term that appeared in flat space, while
the second arises from the mass term of the fermions and vanishes in the flat space

limit. For zero modes that satisfy I';193W = +W, L,y simplifies further. Written in
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component form, we finally get:

1 1 - y
EINT - _§i<aﬂ'xa + §Xa))\aA(€5-q>UT)dﬁ’pr43)\ﬁB (6150)

= MAN (6.151)

where A = —3i(0:Xq + 5Xa)(€6%07) 5 30% -

Naively, the Grassmann path integral with a properly defined measure should
give a contribution of y/det A which is now very easy to evaluate, but in fact this is
not quite true. While A is an 8 x 8 matrix, the determinant produced by the path
integral is a determinant in both the matrix space and the functional space. The
eight fermionic zero modes A is a complete basis in the 8 x 8 matrix space but not
the functional space. Evaluating its contribution to the path integral requires using
the explicit expression of A and doing the eight Grassmann integrations. However,
without the expressions for a general (n_, n, ) instanton this integration could not be

carried out explicitly.

6.7.2 Interaction for Circular Orbit

Computing the interaction amplitude for a general trajectory under a general instan-
ton involves computing integrals that require the explicit form of the (n;, ns) instanton
solution. Since the explicit solution is currently unknown, and is likely to take a very
complicated form even if found, we will be content to investigate the special case of
a circular orbit, which as we will argue below gives a zero amplitude under certain
approximations and is thus independent of the precise form of the measure.

First, we would like to revisit the assumption X, = X,® used in the previous sub-
section, where X, is a c-function. We begin by inspecting the Euclideanized equations

of motion for a circular orbit in the 45-plane, written in terms of Z = X, 4+ i X5 and
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Z = X4 - iX5Z
2 1 2 1 2 7
DZ+ 12 +9® (2. 2] - 597(2, 2. 2] = 0
= 15 s
—D?7 + 2 7@, [®, Z]] — 592[2, (Z,Z]] = 0 (6.152)

where D again denotes the covariant derivative on the sphere.

For a vacuum configuration, D, ® = 0, and it is clear that Z = MLWGT/ 2r®d and
7 = ﬁe”/%@ with r a constant and My, = |®|, satisfy the above equation of
motion!!, so indeed the form X, = X,® is justified.

The situation is different, however, when an instanton is present. First of all, ||
no longer stays constant because of the transition between distinct vacua. Defining

the constants ®. by the following equation in the singular gauge:
g3
O(1 — +o0) = CI)i(E) (6.153)

Then in the past infinity, when the membranes tends to the ®_ vacuum, Z should be
of the form Z = q)%eT/ 2r® and likewise Z = ﬁeT/ 2r® in the future infinity. When
the instanton is non-trivial, ®_ = &, so this prefactor itself must change with time.
To negate this complication, we make an assumption that |®, — ®_| < &,. In
this case, the change in this prefactor is negligible, and could simply be replaced by
My = (&4 —®_)/2. For an (n,n— 1) instanton, this is the same as requiring n > 1,
which is the limit that is visible on the supergravity side. This limit is therefore quite
natural for a comparison to supergravity. However, such a requirement also means
the (1,0) instanton could not be used for a direct comparison with supergravity.
Under the assumption'? n > 1, we know that Z should take the form Z =

MLGT/ 2r® in past and future infinity. However, whether this is true during the
w

intermediate time is not for certain. One thing we know about such a transition

'1®] could be defined in the singular gauge by ® = [®|%. Hence My = || is a constant for a
vacuum configuration.

12The readers are also reminded that we are doing first-order perturbation theory, which is an
expansion on the small parameter /My, meaning that the separation in the 4 to 9 directions is
assumed to be small compared with the separation between the two membranes.
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is that the action should be minimized, meaning that Z should take up the form
that minimizes the action while interpolating between the two vacua. This means we
should look for Z that satisfies the equations of motion. To find out what Z should

look like, we define:

T

7 = —e
MWe (®+W)

7 = (e 4 W) (6.154)
My

where W and W are unrelated matrix-valued functions and r is a constant just as
before.

In order that Z gives the correct vacua in the past and in the future, W and W
must go to zero at past and future infinity. Substitution into the equations of motion,

and using the fact D?® = D, ®, we have:

DW + D,W — ¢*[®,[®,W]] = —2D.® + 0[<MLW)2]
DW — D,W — ¢*[®,[®,W]] = 0+ 0[(MLW)2] (6.155)

Note that the last term in eqn(6.152) was dropped because it is of order (r/My,)?
smaller compared with the rest of the equation.

Treating the right-hand side as the driving term, we could see that W = 0 to
the lowest order, while W will be some non-trivial function. In other words, while Z
could be approximated by Z = MLWe_T/ 2® in the first-order perturbation in r /My,
Z must be modified by this unknown function W. Even though we do not know how
to solve for W, the relation W = 0 is enough to ensure that the amplitude of such
transition be zero. To see this we note that in eqn(6.150), X, always appears with
p?, and using the explicit form for the p matrices given in eqn(6.112), we have:

€(Xy +iX5) 0

Xap® = (6.156)
0 6_1(X4 - ZX5)

Since eqn(6.150) was derived assuming X = X&, which as we just see is only valid
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for Z = X, —iX5 but not for Z = X4 + iX5, the upper left matrix element is not
to be trusted. The lower right element, namely e !(X; — iX5), however, is correct
up to the order we are interested in. Therefore we could put (X4 — iX;s) = e~ /?r.
Since the interaction term L;yr in eqn(6.150) is proportional to (9,X, + %Xa)p“, this
gives zero in the lower right matrix element. This zero means the term in L;y7 that
looks like A% (ea®07) QBS\BB will be absent when A = 3, B = 4. In other words, of
the eight fermionic zero modes that need to be saturated by the fermions in L;y7,
four of them are absent at the lowest order of /My, because of this cancellation, and
thus the amplitude remains zero for a circular orbit in an instanton background.

The circular orbit in an instanton background is not supersymmetric, but the
above calculation shows that when the separation r in the 4 to 9 directions is suf-
ficiently small compared to My, the separation of the membranes in the 1 to 3
directions, the amplitude for quantum tunneling between such vacua is zero. A dif-
ferent way to put it is that such configuration is almost supersymmetric such that
the amplitude is suppressed.

Recall that V. ~ v/det A, if it were not for the cancellations above, we would

-
Mw

have an interaction of order (=), with each of the eight fermion zero modes con-

tributing a factor of (MLW)U 2. However, due to the fact that the circular orbit is
“almost supersymmetric,” the interaction term for such a trajectory begins at least
at order (MT_W)E) In fact from eqn(6.155), we see that W begins only at order (]\4’"—‘}[/)2
Putting it in v/det A, it implies that the interaction term in fact appears only at order
(37-)° and higher.

Rephrasing in the eleven-dimensional picture, we begin with two concentric spher-
ical membranes in the X! to X3 directions whose radii differ by Arg = My,. Now we
allow one of the membranes to move in a circular orbit of radius r in the X* to X?

directions around the membrane fixed at the origin. If M-momentum transfer takes

place, the interaction amplitude should be non-zero. However, if we assume MTW < 1,

then the amplitude expanded in this small parameter should occur only above order

(+=)*. This is our limited prediction on the matrix theory side.
My



117
6.8 The Supergravity Side

The computation of the supergravity light cone Lagrangian proceeds in similar fashion
as in section 5.1. The Einstein equations are diagonalized and solved order by order
in curvature corrections expanded in the small parameters (%), (72) and () where
¢ = Vw? + 22. For simplicity we will often denote these small parameters as (%)
below but it should be clear in the context. The major difference in this section is
that we no longer assume the M-momentum transfer £ to be zero. This makes the
equations much more involved. In this thesis the metric is determined up to the
singular terms, i.e., terms that go to infinity as & — 0. However, as we will elaborate
later, yet higher order in curvature corrections is necessary for a comparison to the
matrix theory result on circular trajectory. In this chapter we will briefly describe
the results we have obtained so far.

The linearized Einstein equations are in general Laplace equations with singular

sources. The simplest of these is the equation of h__:

Oh__ = w3, T6(w)d(z*)...6(z?) (%)4 (6.157)

where O = g,  k* + 0404 = Oy + 60 with

B 1o, \ 2 0? 9 50
o = - (5) +(w+@+;a (6.158)

2 2
5O — (,1”"01{5)2(23 w z) 2 0

(6.159)

3 ro rd  A4rd ro + w Ow

The other equations can be written using the systematic approach described in section
5.1. The metric and the three-form potential up to third order in curvature corrections

are:

o oxp (= B0k "o o a
h-=4a 553 [3 <r0+w) +3<?k§> (T0‘|‘w>

s (Boke)’ (1 _Sw 9wt 32—) + (M)’ <_—1) Z 0(5’))] (6.160)

2rg 812  4r2 3
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At level —1, we find

- . exp (—&0kE) 3w 3w? 122
h_i: IN—— 3 >~/ k 2 1——— - -
! ges K 2r0 (272 272

+ (k) (1-32) + 0] Gy

27”0

- o p XD (= 5PRE) ?
hog=ua A%ZW [(1 . rﬂo + %‘i) + (%kﬁ) (1 . ﬂ) + 0(53)1

L exp (— HRkE) lw l1w?+22 1w w?2?
_ij = ik = A 3(1—=-—+ - - =
-is €kt g & 2r0+6 re 2 r} i e
Uro lw  lw?+22  1w?
3 (M) (1- 55 + ¢ -
* 3 : ( 2719 +6 3 2 r3
1o, 0\ 2 w  Tw? 2P pro . \3 [ —1\ w 5
Boke) (1-2 - 25 - )+ (Bke) (5 )= +0
+<3 ¢ < ro 813 13 N 3 : 2 r0+ (&)

At level 0,

2 exp(—Tkg) 2 2
_ Uro 5w 7z To
hy_=—— ] A 3(1 -+ - || —
() a e (R n) (359))
UTo S5w? 722 To
3| —k 1 -+ -—
+ (3 é)( +(4r(2) +8T% ro + W

2 2 2 3
WUTo lw 3w Dz UTo -1\ w

a_44=0, ape=0, ap =0 (6.165)



9rg 3612 23 36713
1 /pur 2 2¢ 13w£ 5
+3< . K¢) ( tiaye ) HOE)] (6.160)

3'1"0

— B2k 2 1 1 w? 3
aijbzeijkxkbeexp( 3 f)wz [(WOk§> ( § n 3w§ w?E L5 5¢ )

7 exp (—5k 5 17Tw? 122 3u°
b — bt ASP SR o[y Bw  ATw? 12 3
265 drg 1202 1207F 201}

lwz? 3w 1Tw??
4r3 2r 2 1}
r 5w 17w? 122 3wd 1wz?
(Ei) (1 d L e
drog  12r5  12r5 2715 4 1§
1 /pro Tw 43w? 5 22 1 /prg
- k) e e ——( k:) Y LoE)] (6.167
3< 3 ( 47‘0+247“§ 24 12 6 ¢ +0E)| )

and

q::z;]

hij = G+ 6K (6.168)

with

3

T w22 w wz?
3<ﬂk5) (1————+—3+2—3)

Uro 3w 1lw? 522 Uro 1\ w 5
() (1B i 1)+ (509) () 1 o)

0

G <@>2Aexp (— %kf) |:3 ( w 2_2 ’LU_3 w_2;2 w? w? 2?2 2_4)
55

K = _<@)2A—6Xp(_ )
3 £
5 1+1w+7w2 1 22 1w3+3w22+1w4 1w2z2+1z4
2rg 120 2402 4Ard 8y Ary 24 ry 371

2rg 1273 2402 413 8 rd

(@kf) (1 + g% + %i—i) + (ﬂké‘) (—%) ;U—O + 0(55)] (6.169)

0

(@kg)( 1w+1w_2_iz_2_1w_3+§w_22)
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ZL‘b

Bbd —

(6.170)
with

Q=0 (6.171)
g exp (= %PkE)

€5
{(1 w 7 w? 1922 7w 19 wz? 7wt 19 w2z2>
_l’_

Sr0 1872 T2/ 87 T3 18 72
) (1w 7Tw? 1922 7wl 19w22>

27y 1872 TR 187 T2

1ro, \2 1w_iw_2 1 22 5
kg) (6T0 57 taig) HOE) (6.172)

HT(J)QAQXP (= 152K¢) { (Wok€>( LE 2wg 1w 7 §3>

£ 619 3rg 6y 127

<w"o ,@2 (_lé _ Qw—f) + 0(55@6-173)

At level 41
Qype = 0 (6.174)
Ay = 0 (6.175)
uro\3 1 . exp (— mkf)
a+ij = —Eijk.flfk <7> T_OA 65 3 .
w? 522 3w Twz? 3wt bw?z2 1z
3(1+2- - -5 +sg+1 o — 3731 +t59
To U 4 7"0 2, 4 ry 27, 4 7, 21,

2

T w? 522 3w Twz?
k ) 1y W22 v LW
( ¢ (+ re 4T0+2T8+4T8

Uro 3w Jw? 1z o 1\ w
+ (M) (1 Ton st 5—) (Hone) (‘5) p +O<f5>}
(6.176)



. exp (= “5K¢)
= 1'A 3
s 162¢3
_ exp (— 40k¢) 3w 1522
hio =20 k l——————=
fa = I HTG 210 3278
At level +2
his = <@)4A—6Xp C52H)
5 1+5w+31w2_122+17w3_1w22+
2rg 1203 2403 1273 12 1]

5w 3lw? 122
+3 (55ke) (1+—3+—w———z—+

2rg 1273 247}

(’”%g) (1 + 2— +

87"0

+0(&%)] (6.177)

)« (3 (-27)

0(&%)] (6.178)

1wt 23 w?z? N 17 24
327‘3

g% 24 7"3
17 w3 1 wz?
1273 12 13

11w? 122 WUTo 3 1\ w
G is)+ () (=) Lroe) am)

The light cone Lagrangian can be computed using the metric and three-form

potential we obtained above.

Using the subscript and superscript to denote the

power of velocity v and M-momentum transfer k in the Lagrangian respectively, we

have:

@ 1, exp(— BUEE) /purg —1\ w
oLy = I vta = ( k;g) 5 ) (6.180)
58 =0, 6£P =0, 6¥ =0, (6.181)

1

8 €5

2r9 871§

e — In_ota 22 C SR (i (13w 0w 12

+o— - ZT—Q) (6.182)

0



1 — B0k

@_ L 2 1 XD ( %kﬁ) Hro, %o 2 2
5L L ( . k§> () (6w +522)  (6.184)
1 exp (—E2kE) 2
s = 2 (xta xS EE) e (2 (6159
sc =0 (6.186)
1 exp (— ﬂkﬁ) HTo 7o
5 (1 _ T *A 3 Ly 1
Li g " & 3( 3 é) To +w (6.187)
5e) = Lo (g xna SR SR e (w (6.188)
3T T 0 7263 a o '
W _ 1 2et AP TR e
0Ly’ =TI vkp’A 3% (w — 7o) (2w* + 52*) (6.189)
(1) 1 b by A SXP (_ %kg) -
scM =0 (6.191)

Putting k = 0 gives the same result as chapter 5 for zero momentum transfer. In the
above expressions for d L, we only kept the singular terms, i.e., terms that go to infinity
as & — 0. In general when even higher curvature corrections are included, there will

be regular terms in the Lagrangian. However, for any fixed value of v, the singular
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terms will dominate if we take the membrane limit such that & — 0. Therefore, the
above expression is the supergravity prediction for the interaction amplitude for the

near membrane limit with finite velocity.

6.9 The Limitation of the Computation

At this point we have not yet achieved a direct comparison between matrix theory
and supergravity. On the matrix theory side, we have a very limited prediction about

the vanishing of the interaction amplitude for circular trajectory up to certain order

”
Mw

in the small parameter . To compute the effective action for a general trajectory
will require carefully calculating the measure of the path integral which we have not
carried out in this thesis. On the supergravity side, the curvature expansion is carried
out only up to the singular terms. We can see that these terms are insufficient for

the purpose of verifying the matrix theory claim for circular trajectory by studying

a typical term in dL:

6L ~T1_Ae"* %(35)2@4 + 022 + ety (6.192)

where [ = %Ok and we did not keep track of the exact coefficients in the equation
above. The first term which is proportional to v* is singular in the limit & — 0 with v
fixed. This term has already been included in the Lagrangian in eqn(6.183). The last
term, however, is regular as £ — 0 with v fixed. This term can come from a metric

component of the form:

hes = ARG (B! = () A (367 5 (5" (6.193)

where the last equality emphasize that it belongs to the fourth-order curvature cor-
rection. Note that h, . is regular in the limit & — 0.

For a circular orbit, v ~ p&, matrix theory predicts that the three terms in
eqn(6.192) (with the correct coefficients) will cancel out each other. However, since

the last term is not yet computed on the supergravity side, we are unable at this
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point to make the final comparison, which will require finding even higher curvature
correction terms for the metric. One also has to deal with the complementary solution

of the Laplace equation carefully, but we will leave that as possible future work.
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Chapter 7

Discussion

In this thesis we compared interactions of gravitons and membranes computed using
matrix theory and supergravity. We found agreement in the absence of M-momentum
transfer. This can be viewed as evidence for the matrix theory conjecture in the pp-
wave background. It also points to the existence of a non-renormalization theorem
similar to the one in flat space [14].

We can extend the above results by pushing the matrix computations to higher
loops. On the supergravity side, this corresponds to terms of higher order in 3.
This means we have to take into account recoil and other back reactions carefully.
We can also generalize to three-body interactions, for which interesting terms will
begin to appear at two loops. The configurations considered in this thesis all have
a source located at the origin, we can instead allow both the source and the probe
to take up more general trajectories and get a more general result for the effective
potentials. We can also push our computation on the supergravity side beyond the
near-membrane expansion, finding the solution to the field equations which will then
give the 0L, to be compared with the fully interpolating potential (5.95) found on
the matrix theory side. The major obstacle in such pursuits is the large amount of
algebra involved.

For interactions with M-momentum transfer, we need to push the supergravity
calculation to even higher order to get a limited comparison with matrix theory. The
instanton equation of the three-dimensional theory is also quite interesting in its own

right and deserves deeper study.
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One other generalization is to consider more complicated membrane configura-
tions. We have restricted our attention to a probe membrane which is spherical and
has no velocity in the z! through * directions. For example, we could consider de-
forming the probe membrane so that it is no longer a perfect sphere. It means that
the coordinates of the membrane X* will now be some general function of 6 and ¢,
and in particular it no longer has to appear only as a point in the 4 through 9 di-
rections. We can also give the probe membrane a nonzero velocity in the z! through
x? direction. These generalizations give more interesting dynamics and can be fairly
easily carried out. On the supergravity side, this just requires putting the relevant
probe configuration into the light cone Lagrangian; on the matrix theory side, this
requires replacing the background configurations B4 in this thesis with some more
general configurations.

There are also M-theory pp-wave backgrounds with fewer supersymmetries, and
matrix theories in these pp-waves backgrounds have been proposed [54, 55]. It will
be interesting to investigate the gauge/gravity duality in these less supersymmetric
settings.

Our final remark concerns the non-renormalization theorem. Although it is not
emphasized in this thesis, the non-renormalization theorem is a necessary ingredient
for a meaningful comparison between matrix theory and supergravity. Our results
give evidence for its existence, but it is obviously desirable to derive it directly using
the symmetries of the pp-wave background. In flat space the derivation relies on the
SO(9) symmetry of the transverse space, but in pp-wave this is broken to SO(3) x
SO(6) by the mass parameter . It remains to be seen how the flat space result can

be generalized.
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Appendix A

Notations

Notations and Some Frequently Used Equations

The Indices:
Target space indices:
wv, ... =+, —1,2..9
AB,..=1,2..9
ik .. =1,2,3
ab,...=4,5, .9
World volume indices for a membrane (the three-dimensional gauge theory):
a,0,..=1,2,3
SU(2) group indices in the adjoint representation:
m,n,p=1,2,3
Ezceptions:
Occasionally we use m,n = 1, 2, 3, 4 to label the coordinates of the four-dimensional
gauge theory on R x S2% and 7,4,k = 1,2,3 as a label for 2; which parametrizes a

unit two sphere in R3. Superscript 4# are used to denote SU(4) indices as well.
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In section 6.7 we use the following indices:

ij = 1,2,3

m?” = T7®767¢

aaﬁ = q)a9a¢
luvy = 7’,0,@5
Q = 0,¢

The interpretations of variables:

M: The eleven-dimensional Planck constant.

R: The light-like compactification radius in the DLCQ formalism of matrix theory.
i: The pp-wave parameter. In our convention the four form field strength F'y 193 = pu.
ro: The physical radius of the spherical membrane in the eleven-dimensional picture.
P: The total M-momentum carried by the membrane.

p: The M-momentum density of the membrane. This is basically the total momentum
above divided by the area of the membrane.

g: The coupling constant in the three-dimensional gauge theory.

x;: The Cartesian coordinates parametrizing a unit two sphere in R3.

The operators:

{f.9} = 55(00.f0s9 — D990y [)

L, Z = i{x;, Z} = —ie;,x ;02

L7 = L7+ glY:, 7]

D7 = 0;Z —ig|A;, Z]

Dpan = Vyan, —iglA%, a,) = Ona, — TP, a, —ig[A%, a,] = Dima, — T2, a,
Fy = 0,4, — 8,A; —ig[As, A}

The four-dimensional theory on R? x S? (after Euclideanization):
ds? = dr? + db? + sin*0d¢® + (dz®)? = gndz™dz™

A =

Fon = Foin — €remn®
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Fon = OmAy — 0pAm — ig[Am, Ay
Era9p = +1/|9l€rv04 = sin
Dpan = Vya, —iglA?, a,) = Ona, — TP, a, —ig[A%, a,] = Dima, — TP, a,

(ala) = [ drd*Qg™aman,

Euclideanization
TR = iTM

SE = —iSy

'™ =40

0" =10

7 = io?

Gamma Matrices

Lo = € ad OgxF

Ly = ;1"

[ = ;I + €527 0 T

Lagy = +/9l123

Ton = =2 Emnpa T T 13

DI =V, [P = 21T 93 = 2T 195

Other notations:

1

S VED

T=put

d*Q = dOdpsind

Fij = 0;A; — 0;A; — ig[Ai, Ayl

B; =Y, +i€iji LYy + tgei[V;, Vil = Vi + eijn(L;Ye — LiY5)

o™ = (1,d)

o™= (1,-7)

An (n;,ny) instanton is an instanton that takes us from the n; vacuum to the ny
vacuum.

The SO(9) gamma matrices 7 are chosen to be real and symmetric with dimension
16 x 16.

The SO(9,1) gamma matrices I' are complex with dimension 32 x 32.
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Some Frequently Used Equations:

P
To
J2
HpTo

(’pP

{x’hxj}

K(7)

D>d

N/R

3%/ 1/2 3 12_1/2 | P
pPPIR T VI T T \/;

Y; + ’iEijijYk + %gEijk[Y;‘, Yk] = xl(fl) — F9¢) - qu)
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