STUDY OF THE NONLINEAR
PROPAGATION OF FEMTOSECOND
LASER PULSES

Thesis by

Martin Centurion

In Partial Fulfillment of the Requirements for the

Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2005

(Defended May 11, 2005)



© 2005

Martin Centurion

All Rights Reserved

i



ii

ACKNOWLEDGEMENTS

In my five years as a student at Caltech | have learned a great deal about both science and
life. The journey has been as rewarding as challenging. | am very grateful to my advisor
Demetri Psaltis for the many lessons he taught me about optics, research and life as a
scientist. |1 will always be indebted to him for accepting me in his group (even though 1 did
not know the first thing about optics), where | have greatly benefited from his creativity

and vision. His trust and support have been instrumental in my accomplishments.

I would like to thank my mentor in the lab and good friend, Zhiwen Liu. It was a pleasure
and a great opportunity to work with such a brilliant mind, who also had the patience to
teach me. | am indebted to George Panotopoulos and Jose Mumbru for their guidance
during my first years. George was and endless source of judicious advice and a dear friend.
Jose was a reference on experimental skills and also provided a touch of humor when it
was most needed. Hung-te Hsieh was my companion in the bumpy road to graduation, it
was refreshing to share and office with him as he always brought plenty of excitement.
Very special thanks to Lucinda Acosta for the administrative support, but more importantly
for her moral support and friendship. She provided comfort in the times of frustration and

helped me maintain a positive attitude.

I greatly benefited from collaborating with Ye Pu, a very good experimentalist and
electronics wizard with whom | shared countless hours in the lab, Mankei Tsang, who
helped me with the theoretical work, and Karsten Buse, who gave me excellent comments
and advice during his visits from Germany. For their help and support, | would also like to
thank Yayun Liu, David Erickson, Chris Moser, Greg Steckman, Greg Billock, Wenhai
Liu, Manos Fitrakis, Todd Meyrath, Zhenyu Li, Hua Long, Jim Adleman, Eric Osthy,
David McKeen and Bayiang Li. My friends, both here and at home have allowed me to

keep a healthy balance between work and play.



Caltech was also the place where I met my beautiful wife Lucia, who became my mus,e1V
and endless source of happiness. Her love is truly a blessing. My older brother has been a
positive influence in my life, and | know he will always be there for me. All of my family
has supported me in this adventure and surrounded me with their affection. Finally, | would
like to dedicate this work to my father and my mother. Every success is a direct

consequence of their influence in my life and their love.



ABSTRACT

This work presents a comprehensive study of the propagation of femtosecond pulses and
the formation and evolution of spatial solitons. The first half (Chapters 2-3) is devoted to
the implementation of a novel ultrafast holographic system to capture the nonlinear
propagation of laser pulses with femtosecond resolution. Femtosecond pulses are used to
record holograms of the ultrafast changes in the material properties. Amplitude and phase
changes of the laser beam inside the medium are reconstructed numerically. The strength of
the nonlinear material response and the density of free electrons can be recovered from the
phase information in the hologram. A single hologram can be captured with fine spatial
resolution, or a time-sequence of holograms can be captured in a single shot with reduced
spatial resolution. We have observed dramatic differences in the light propagation

depending on the material properties.

The second part of the thesis (Chapters 4-5) covers the formation and evolution of spatial
solitons in a Kerr medium. We have measured the evolution of the beam profile as a
function of pulse energy and propagation length. The optical beam breaks up into a pattern
of connected lines (constellation) and self-focused spots (solitons). The solitons self-focus
to a minimum diameter and release their excess energy through conical emission, which in
turn overlaps with the background constellation and seeds the formation of new solitons.
The solitons also show a collective self-organizing behavior caused by their mutual
interactions. The evolution of 1-D arrays of solitons was captured using Femtosecond

Time-resolved Optical Polarigraphy, a technique that measures the transient birefringence



vi
induced by the pulses in the medium. When the array was generated in an unstable

configuration, the solitons re-arranged themselves into an array with a (larger) more stable

period. A transition to a chaotic state is observed when the input power is increased above a
threshold level. A time-averaged pulse propagation equation was used to numerically solve
for evolution of the beam. There was good agreement between the experimental results and

the computer simulation.
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