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Abstract

This thesis explores techniques for and applications of free-space beam shaping.
After reviewing the basic principles of scalar diffraction theory, I discuss and
experimentally demonstrate several approaches to two- and three-dimensional
transverse beam synthesis; these include analytical solutions of varying complexity
as well as methods for computer optimization of beams with arbitrary constraints.
Analytical solutions are also presented for the temporal analogy of nondiffracting
beams, i.e., nondispersing pulses, and repercussions to time-dependent diffraction

theory are discussed.

Next these beam shaping methods are applied to imaging photolithography,
addressing ways to improve both resolution and focal depth therein with the use
and proper design of phase masks. In this work it is evident that computation time
plays a critical role in the applicability of phase masks to photolithography,
because phase mask design algorithms tend to scale unfavorably with mask size. I
therefore introduce an approximation to the Hopkins equation which reduces the
computation time for partially coherent imaging by one to two orders of
magnitude. Following this the question of spatial coherence in phase mask-

assisted photolithography becomes interesting, and the optimal coherence for such
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systems is investigated both theoretically and experimentally. The properties of
incoherent imaging are next applied to a slightly different problem--imaging
through random media. A new technique for ballistic imaging is presented,
discussed theoretically, simulated, and demonstrated experimentally, and its
advantages and drawbacks are analyzed. Finally, a theoretical overview of the
fundamental limits to space-time beam shaping is presented, several results of

which are demonstrated.

Due to the diversity of the subjects discussed, introductions and brief histories are

given at the beginning of relevant chapters.
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Chapter One

Scalar diffraction theory

Most of the problems addressed herein deal with scalar diffraction phenomena.
Therefore, it is appropriate to begin with an overview of scalar diffraction theory,
which I shall supplement with some remarks on time-dependent diffraction.

1.1. Preliminaries

Maxwell’s equations are, in point form,

V-€E)=p
V-WH)=0
VxE < JEH) (1.1a-d)
ot



They describe the space-time relationship between the electric (E) and magnetic
(H) field vectors, and are consistent with all observed electromagnetic phenomena.

If u is scalar and constant in time and position, then taking the curl of (1.1c) yields

B JpH) 9 9 0(eE)
VxVxE——Vx—at ——uat(VXH)—-—Mat(Jjee+ FX

) (1.2)

Assuming next that J ;.. = 0 and that € is a scalar constant, (1.2) becomes

5 I’E
VxVXE=V(V-E)-V E=-—|.L€a—2 (1.3)
t

and, using (1.1a) with p=0, we arrive at the vector wave equation

2
ue%—‘zE-=V2E~V(V-E)=V2E (1.4)
t

In rectangular coordinates, we see (1.4) is equivalent to a system of three scalar

wave equations, one for each component of E:

1 32%E,
VzEt =—2 zl ’
c® ot

i=x,y,2z (1.5)



Therefore, in linear problems, we can solve the scalar wave equation for each
component of E independently, and superimpose these components to form the
vector solution. Our problem is then reduced to finding a solution of the scalar

wave equation

V2E-——=0 (1.6)

given initial conditions or boundary conditions on E(x,y,z,t).

1.2. Time-harmonic fields

At this point we assume a time dependence of the form

E(x,y,2,t) = f(x,y,2)e™ (1.7)

ie., a monochromatic field, which transforms (1.6) into the Helmholtz wave

equation,

Vif=-—f=-k’f (1.8)

We next introduce the polar coordinates



which imply the inverse transformations

x = rsin¢ cosd
y=rsin¢sinb,

z=rCcosd

and write (1.8) explicitly in terms of the polar coordinates:

192 1 2

1 %5,
r arz(rf)+rzsin¢a¢

. of
(sind ‘a—q;) + Z——“—— =-k

in% ¢ 902 !

If 7 hasno 8- or ¢- dependence, this reduces to

(1.9a,b,c)

(1.10a,b,c)

(1.11)

(1.12)



whose solutions are the spherical waves

ikr
)= a° (1.13)
r
We can use these in Green’s Theorem,
df o
2 12 \gy = 9f  dg
JJJ eV f-N"gd ,LJ (65— f3)ds (1.14)

by letting V be the volume between a spherical shell §; of radius € centered at r,
and our surface of interest S, (Figure 1.1), i.e., = §; + S, (this is necessary
because Green’s theorem applies only to singularity-free volumes). The left side of

(1.14) vanishes if both g and fsatisfy (1.8)

[[[gv2r- m2g)av=[[[(ek? r- £2g)av=0 (1.15)
\%4 14



Figure 1.1. The singularity-free integration volume is between our closed surface

of interest Sy and a small spherical shell of radius € around the singularity at r,.

leaving

’ ike
H( s S H(ga YL PR ik R AL

Sy

u(rg))
(1.16)

which, letting € — 0, yields the Helmholtz-Kirchhoff integral theorem:



Figure 1.2. The closed surface S, consists of the infinite plane S, and the infinite

hemispherical surface Ss.

tkrOS P a eikros
ﬂ( of )ds (117)

u(ro) = ros on an ros

where rps is the distance from r, to the surface element under consideration. This
specifies f at every point inside a closed surface S, in terms of its value and
derivative on the surface. In the case where we know the field and its derivative
on an infinite flat plane S,, we can calculate the field at any point by closing an
infinite hemispherical surface §; around it (Figure 1.2), so that Sp=S; + S;. If f

satisfies the radiation condition [1],



ikr
£ — hO,0)—,
r—yoo r
(1.18)
10 1
~-—Ji——> (ik—=)
for, Jo 7

the integral over S; disappears and the field everywhere is completely determined
by the field and its derivative on the plane. To eliminate the dependence on the
field’s derivative at the plane, we can adopt the Rayleigh-Sommerfeld Green’s

function

oikros eikr”os
glros) = - (1.19)
08 08

where Tyg is the mirror image of rog about the surface S,. Since ryg = rgg and

aI'OS ~ A A~ 2 afOS
-5;l—-=cos(n,rOS)z—-cos(n,rOS)=—— P (1.20)

(1.19) vanishes over S, while

ikrOS

% k- o)

3 - cos(n,Fog ) (1.21)



which, substituted in (17), yields the Rayleigh-Sommerfeld integral

ikros

1
-= n,roe )d 1.22
pr— ?\.) 08 cos(n,rpg )ds ( )

foros)=J[irs )

So
1.3. Analytic approximations to Rayleigh-Sommerfeld diffraction
There are several approximations we can make to this integral to make it more
analytically tractable. First, we might assume our point r, is many wavelengths

from the plane S,:

etkros

ros >> A= f(ro) = H—}j- Flrg) ——cos(f, Fog )ds (1.23)

So ros

For simplicity, let us assign, without loss of generality, S, to be the x-y plane at

z=0. Then
COS(ﬁ,I’:OS)= z/rOS (124)

and our integral becomes



10

(x-x')

max

object plane

Figure 1.3. Under the Fresnel approximation (shown here in two dimensions), the
axial distance (z) from the object must be much larger than the maximum

transverse distance (x-x' )nqx from any point on the object.

ikr
ze'™os

1
f("o)ElT'in(X,y,Z=0) 3 ds
So ros

(1.25)

eik J22+(x— x')zwk(y—y')2

dx'dy'
S 2+ (x=x)+(y-y)?

where (x',3') = (x, y)'z=0.
Further simplification ensues if our axial distance from the object is much greater

than the lateral displacement from any point on the object (Figure 1.3), i.e.,
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225> (x=x) +(y—-y)? V¥x',y3 f(x',y)#£0 (1.26)
In this case,
z 1

=— 1.27
zz+(x—x')2-l~(y—y’)2 z (1.27)

and

] (=) +(3-y)*
, - - fhza| Lt T
ezk\/zz+(x—x)2+(}"Y)2 - et ? 2

(1.28)
k(=] :
sk e . e e
~e 2z ] _ etkze 22
Under this condition, called the Fresnel approximation, (1.25) becomes
ikz ﬁ{ W2 n2
e . (=x)2+(3-y)] L
fxpa)=— [[ £x,ye2 dx'dy (1.29)
inNZ
So
If our observation point is so far from the object that
x>>x, y>>y
ie., x >> x5 3y >> y? (1.30a,b)

while (1.26) is maintained, it resides in the far field or Fraunhofer regime, where
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ikz

ik 2%

e —(+yh) ~im—(ec+3y)

f(x,y,z)= o e?z R H f(x',y")e EY R dx'dy' (1.31)
iAz

i.e., the diffracted field is proportional to a scaled Fourier transform of the object.

1.4. Time-dependent diffraction

To solve the wave equation (1.6), we first seek a solution g satisfying

1 92
v2g -—2525= —4m8(x— x)B(y— y)(z— 2 )8(t —t") = ~4S(r — 1 (1 — 1').
C
(1.32)
Since
. 1 § (K (E =)= —t) you 13
8(r—r )8 —t)=—][e dod *k (1.33)
16m
and the Fourier transform of g(r, ¢, ¥, t' ), G(k, w), satisfies
g -1t =)= [l CCTI0COG 1 p)dnd %, (1.34)

(1.32) gives us
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= , 1.35
G k,0) a3 (%K% - w?) (1.33)

whose inverse Fourier transform, assuming outwardly propagating waves, is

' 1
gr—r,1—1")= ]r—r’la(t (z—|—-—‘)) (1.36)

Substituting this and (1.32) in Green’s theorem (1.14) integrated over time:

Hﬂ(gV -N g)dv-fﬂ(ga —fg )ds (1.37)

AtV

and using the dummy variables n’, s’, ¢’, »’ for integration, we obtain

[ (3 2\l
JH(g >d ar'= IJHW@',r>s<r'—r>s<f—:>—i2L a—fi- -gt—godd

AtS av _|

= Amf(r,t) - jﬂ[ fgf

(1.38)
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which is valid if we can change the order of the time and volume integrals. If we
take the upper boundary of At large enough that g vanishes there, and call the

lower boundary ¢,, (1.38) can be rewritten

dv' (1.39)

d 0 9
anse = [[[e5- f5§>ds'dt~+cizjvﬁ(ga_j_ g_g

AtS =

This gives us the value of fat (r¢) in terms of its values and derivatives on the
bounding surface S over the time interval A¢, and within the bounded volume V at
the time boundary #,, analogously to the Kircchoff integral (1.17) for time-
harmonic fields. The Kircchoff integral is, in fact, a special case of (1.39), from
which it can be directly arrived at by assuming fand df /dn' vanish at ¢, and a
time-harmonic field [2]. Still, it is natural to suspect that (1.39) is not yet the most
general diffraction integral, because its form is not intrinsically Lorentz-invariant,
i.e., it does not treat the time variable symmetrically with the space variables.
From a practical viewpoint, (1.39) is inapplicable to radiation from a time-varying
surface, due to the change in integration order in (1.38). More general treatments,
as well as applications to specific problems, can be found in References 3-6 and in

chapter three of this thesis.



15

1.5. Summary

Although it invokes several approximations to Maxwell’s equations, scalar
diffraction theory explains a wide range of electromagnetic phenomena, most
notably in free-space propagation. The paraxial (Fresnel) approximation, in
particular, is accurate enough for almost all optical signal processing applications,
and simple enough to yield analytic solutions to many problems [4]. With modern
laser sources and filtering techniques, illumination systems can be made to
approach complete monochromaticity, and even sources with a finite linewidth can
usually be treated effectively as superpositions of monochromatic sources [6].
Time-dependent diffraction has therefore lost some of its relevance to classical
applications, and its importace will be felt most strongly in modern fields utilizing

ultrashort pulses, such as mode locking and high-speed optical communication [7].
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Chapter Two

Beam shaping

2.1. Introduction

In this chapter we explore ways to shape electromagnetic beams in two and three
dimensions. Because the two-dimensional problem is more involved, I shall begin
with the three-dimensional case. In 1987, J. Durnin showed [1] that the three-

dimensional field distribution

2
E(x, y,z,t) = ei(BZ—CDl) JA(B)eia(xcosEHysinO)de’ (2.1)
0

where 0>+ B’=w’/c? and A is an arbitrary function of 8, is a solution of the three-

dimensional scalar wave equation

V2+e 2% /e HE=0. 2.2)



18

Solution (2.1) contains the Bessel beam as a special case, and maintains a constant
transverse intensity profile independent of propagation distance (z). In chapter 3 I
shall present an alternative way of deriving (2.1) which yields several other
interesting solutions. Several variations and generalizations of the Bessel beam
have since been proposed [2-5], each with specific relative advantages. A number
of unrelated “nondiffracting” beams have also been proposed [6-8]. In 1994,
Rosen proposed a general method for optimizing the length of nondiffracting
beams given arbitrary constraints on the aperture [9]. This method uses the

Rayleigh-Sommerfeld integral [10]

1 2T oo QiR
w' (@) =u@r=00,2)=— | [ 7,6 Z—coso-r'dr'd®’ 2.3)
iA 00 R

to compute the axial field distribution »’( z), where A is the wavelength, k= 27/A,

(r’,8’) are the aperture coordinates, fr’,0’) is the aperture field distribution,
R=+r2+z%, and ¢ = tan"! . By defining p=r? and {=7, Rosen showed that
z

we can derive a convolution relation between the axial field u({) and the circularly

averaged aperture distribution

2
)= [ 7(p.0)a0 2.4)
0
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Using a POCS-type optimization algorithm [11,19], we can then impose the
desired constraint on our aperture distribution, project it to the axial field, impose
the desired axial constraint, and project back to the aperture. By iterating this
procedure, we tend to converge to a solution which minimizes (locally) the error in
realizing both constraints. This approach has been shown to outperform the
various analytical variations of the Bessel beam, given corresponding aperture-
plane constraints. By adding a Fourier-transforming lens behind the aperture and
using the Fresnel approximation, Rosen and Yariv [12] were able to generalize the

POCS optimization scheme to arbitrary axial field distributions.

2.2. Analytic twe-dimensional beams

In two dimensions, the scalar wave equation becomes

=0 (2.5)

If we require a harmonic z-t dependence as in (2.1), i.e.,

E(x,z,t) = ' ®79) f(x), (2.6)
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we see by substituting (2.6) in (2.5) that the two-dimensional analogy of the Bessel

beam is simply a plane wave,
[ 2 a2 [ 2 a2
f(x)= A'N® —B7x y peive B 2.7

which is indeed nondiffracting but is also uninteresting. In order to obtain an
analytical beamlike solution whose intensity remains constant over a finite subset
of the propagation axis, Rosen, Salik, and Yariv [13] assumed the following field

distribution at the front focal plane of a lens:
g(x') = exp|~i2n(lx' b|P - (x'8)?) 2.8)

Assuming Fresnel diffraction, the field at the rear focal plane is

pik(@t2f) = [ & ( ;2 \
u(x,z)= ———-;_\/—I——f—'—_wg(x )ex;i——t ?L 27 +x'x| _}dx (2.9)

which, substituting (2.8) and using the stationary phase approximation [14],

becomes
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2(0,2) = e*[C + D(z | 2Af2 —a %)= *(C'+ D'2),
(2.10)

—aA+al< z/2?»f2< A+a~?

where C and D are complex comstants, C’'=C - Dfa’, D'=D/2Af,
A= p[4(1+ p)]”P"(2b%), and 0 < a. < 1. If, on the other hand, we place g*(x' ) at
the lens’s front focal plane, we get the axial field distribution u*(0,-z), which is

linear with the opposite slope of (2.10) over the mirror-image region on the z-axis;
: ' *® ' — - t r 1 2
thus, by placing [g(x')+ g *(x")]/2= cos[—z2rr(|x blP—(x' k) )} before the lens

and setting the center of the linear region at zero (a = 4/2/ A(1—-0) ), we obtain a
region of constant intensity centered at z = 0. For a given beam width, we have

demonstrated [13] a doubling in focal depth (compared to Gaussian beams) using

this technique.
2.3. Optimized two-dimensional beams

It is natural to try to improve this performance using optimization techniques, as
we did in the three-dimensional case; in addition, we expect such an approach to
make arbitrary one-dimensional axial distributions realizable. In the Fresnel

approximation, the two-dimensional field u(x,z) behind a transparency g(x’ ) is [10]
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ezkz ot ik 2']
(2 = = [ g(x)expL £ x—x) i @.11)

Next we wish to impose certain conditions on u(x,z) for some subspace Ry < R,

R={(x,z)/z> 0}. In general, we can represent these conditions as an error function

E to be minimized over Ry:

Elg(c)=  [Jelu(x2)ldxdz, 2.12)
(x,z)e Ry

where e is the error density at point (x,z).

For example, if we want the intensity /u(x,z)/> to come close to some I,(x,z) for

(x,z) € Ry, we might employ a Euclidean distance-square error function

Elg(x)]= H[lo(x,z)—]u(x,z)lz]zdxdz
(x,2)e Ry

( 1% 5] 2)?
= H {Io(x,z)—— Ig(x)exq_?(x x') de |L dxdz

(x,2)E R, —oo J

(2.13)



23

In general, the only way to find the g(x’) that minimizes E is to try all possible
complex functions--usually an unattractive option. If, however, we write g(x’) =
A(x )Jexplid(x;)], where A and ¢ are elements of a one-dimensional function space,

so that E[g(x’ )] = E(A,$), then assuming that £ is smooth in A and ¢, we have

dE =V zE-dA+V4E - do (2.14)

where V 4 E and V4 E are energy gradients with respect to amplitude and phase,

respectively. Hence we see that sufficient (though not necessary) conditions for

dE = 0 are that V4 = 0 and V,E = 0. Now we can optimize A and ¢

independently using any convenient algorithm; although, in general, it may take
more than one iteration of each to attain a local minimum for both amplitude and
phase, this is still faster in most cases than treating the full (N x N)-dimensional
problem, which is computationally N° as complex as the N-dimensional problem (N
being the length of vectors A and ¢ after quantization). A POCS-type algorithm
may also be attempted, as done by Rosen for the three-dimensional problem, but
we found in general that the algorithm converged very slowly and to poor

solutions in the two-dimensional case.

Next we turn to the specific problem of shaping the intensity distribution along the

propagation axis, [I(z), while maintaining some transverse constraint,

2 . . -
lu(x,z = ZO)‘ € §,. Here S, is the space of allowed transverse intensities.
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g(x’)

z=-2f

z=-f

Figure 2.1. Configuration for realizing desired field around z=0, with mask at

=-—2ﬁ

Figure 2.2. Mask used to generate one-dimensional PND beam.
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Following Rosen and Yariv [12], we assume for computational convenience (and
without loss of generality) that z,=0 and there is a lens with focal length fat z=-f
(Figure 2.1). If we place our transparency g(x’') at z=-2f the one-dimensional

Fresnel approximation yields [15]

ik(z+2 f) o [ 2 N
u(x,z)= i_\/—i?u_f—_ J g(x')exli— ‘—k—(fx—zizzﬁ-{—)—l_‘dx' (2.15)

and there is a convenient Fourier transform relationship between g(x’) and
u(x)=u(x,z=0), easing the computational burden of the transverse constraint.
Unfortunately, the axial profile is not as easy to compute. Setting x = 0 in (2.15),

we have

eik(z+2f) 7 I{ ikzx'2p
u(z)=u(x=0,2)=—— ] g(x")exp — dx' (2.16)
Vg 2% )

Although this can be treated as a Fourier transform in the variable ¥ %, doing so
introduces significant quantization error, which is avoided if we integrate directly.

Next we can express g(x’ ) in terms of u(x,z = 0) because of the Fourier relation

g(x) = \/;i—;e‘z""f Ju, ()™ 1 ax 2.17)

-



26

Thus we can define a transformation between the x- and z-axis distributions behind

the lens:

gikz = I_ 12 -|
Tlu, (1)) = ' (2) j [, (x)exxiﬂz_%?ilhd xdx' 2.18)

0O O

Now we can bypass any mask-plane functions by optimizing u,(x) subject to the
constraint u, (x) € S, to yield /u’( z))* as close as possible to our desired 7'(z). To
optimize u,(x), we can still decompose it into amplitude and phase, as in (2.14).

After arriving at the optimal u,(x), we simply use (2.17) to obtain our mask, g(x’ ).

In practice, our optical system has a finite aperture, placing limits on the validity of
the Fresnel approximation. To quantify this, we add the third term of the binomial
expansion in the expression for the longitudinal field distribution behind the lens

[10]:

Lik(@+21) = [ %2 % it -n
u(z)=u(0,z)=w—£g(x)eXPf 'klzf 2(z+ f) 8(z+ f) JJ

~

(2.19)

where g(x) is the field immediately before the lens. There are two points of

stationary phase in (2.19): x, =0and x, = (z+ f)\/-2z/ f, where the root x;, is
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introduced by the fourth-order phase term. In the optical regime (k >> 1), n

order to ignore the contribution of this root in the integral, we must satisfy the
condition (z+ f)m > D/2, where D is the lens diameter. From this
condition we conclude that the Fresnel approximation is valid for z> - f+ D/ 8.
With the conventional optics that we use (where f>> D) our beams do not exist in

the region z< — f+ D/ /8, and the Fresnel approximation holds.

In order to realize the complex holograms as real, positive masks, we use a

standard off-axis implementation:
§(x') =1+ R g(x e im0/, (2.20)

which is real and positive if g(x’) is properly normalized. The exponential shifts

the z-axis of our desired pattern to a transverse distance of fin® after the lens. To

see this, we substitute g(x')e! %Sm0 intg (2.15):

eik(z+2f) o . |— zk(zx'2+2ﬁtx )‘{
X

R 1y, ikx'sing RAZX To XX )
u(x,Z)— \/W _wg(x )e € I1' 2f U
(2.21)

k(2 1) =2 ik (zx' +2ﬁc x)—|

S L e
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where x = x— fsinB. Now taking the real part adds the same pattern, inverted
around (x,z) = (-fsin 8, 0), and the DC term simply contributes a focused spot at
the origin, which does not affect our shifted pattern if fand 6 are large enough. A

typical mask is shown in Figure 2.2.

A natural application of the axial beam shaping technique, requiring only one axial
and one transverse constraint, is a one-dimensional PND beam. We forced u{x) to
assume a transverse Gaussian pulse width of ¢ = 1, and a background level <
25% of the peak amplitude (Figure 2.3a). I'(z) was simply set to a constant over
Az = 65pixas, With 2f= 128, as shown in Figure 2.3b; outside this region there

were no constraints on I’ (z). We used the error function
Bl =] | W@ T () dz (2.22)

where u’(z) is given by (2.18). This is the Euclidean distance square in field
amplitude, and a simple gradient descent [16] was used to alternately optimize
lufx)| and Phaselu(x)] (the algorithm always covered within eight iterations for
vectors of 64 pixels). Figure 3c shows the simulated field amplitude along the z-
axis (solid curves), compared with a Gaussian beam of the same width (dashed
curves), and three transverse cross sections along the beam. Figure 3d shows the
two intensities experimentally, over the portion of the x-z plane close to the focus

(Az=15cm, f=30cm).
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Next we utilize the more general method of considering the entire two-dimensional
field distribution to realize a desired axial profile with more than one transverse
constraint. Specifically, we wish to produce a sequence of two PND beams
separated by a dark region (Figure 2.4a). Using integral (2.15) with a Euclidean

error function in amplitude:

Elet)=  [[IyToGez)—u(x, )1 dxdz, (2.23)

(x,2)e Ry

and again we used a gradient descent to optimize lg(x’ )| and Phase[g(x’)]. The
simulated and actual beam intensities over the x-z plane are shown in Figures 2.4b
and 2.4c, respectively, over a distance Az = 8cm. While the analytical solution
above doubles the focal depth of a Gaussian beam, this optimization method yields

an increase of tenfold in focal depth.
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Figure 2.3. (a) Transverse intensity constraint for one-dimensional PND beam
(Gaussian beam with sidelobe intensity < 25% of peak intensity), (b) axial intensity

constraint for one-dimensional PND beam (zero indicates no constraint).
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(d)

Figure 2.3. (c) Simulated field amplitude of optimized one-dimensional PND beam
(solid) on the propagation axis and at three transverse planes along the axis,
compared to a Gaussian beam of the same width (dashed). (d) Measured axial
field amplitude distribution of optimized one-dimensional PND beam generated by

the hologram in Figure 2.2 (top) and Gaussian beam of the same width (bottom).
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SECOHD #1D BEAM
/

Figure 2.4. (a) Two-dimensional constraint for realizing two PND beams
separated by a dark region, (b) simulated intensity distribution over the x-z plane,
and (c) Observed intensity distribution over Az=8 cm. Lens focal length=30 cm,

A=633 nm, and mask spatial frequency =206 cm™ (mask width = 1.24 cm).
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In(error)
o
L

length

Figure 2.5. Log(total error) of optimized PND beam vs. beam width and beam
length. Evidently the error increases with beam length and decreases with beam
width. Thus, for a fixed allowable realization error, a larger beam width leads to a

longer PND beam length, as in analytical solutions.

2.4. Limits of computer-optimized beams

Hafizi and Sprangle [17] have argued that analytical nondiffracting beams are

necessarily infinite in extent, and therefore that truncating them reduces the
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nondiffracting region to a finite subset of the propagation region. We therefore
expect the same scaling laws to apply to optimized PND beams, and tested the
dependence of the minimum z-axis error in optimized one-dimensional PND beams
on the size of the z constraint, Az, and the allowed pulse width 6. In all finite-
power canonical beams, the region of near-constant amplitude, Az, increases with
the beam width (e.g., for Gaussian beams we have [18] Az= nmG/A).  An
appropriate analogy here is the region Az over which constant intensity can be
attained within a given error. To see this dependence, we optimized PND beams
with varying Az and 6 and plotted these parameters versus the minimum error
attained (Figure 2.5). Although there are deviations, the clear trend is an increase
in error with larger Az and smaller 6. Thus, to maintain constant error, any
increase in focal depth Az requires an offsetting increase in the beam width ©.
Additionally, it is clear from (2.16) that changing the wavelength A rescales the z-
axis (i.e., increasing A contracts the z-axis) given a constant beam width, meaning
the realized focal depth is inversely proportional to wavelength. As expected,
optimization allows us to improve depth of focus but does not affect its general

dependence on fundamental physical parameters.
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Chapter Three

Self-focusing pulses in free space

3.1. Introduction

Beginning in 1983 with Brittingham’s focus wave mode [1], there have been
several efforts to find nondispersing/nondiffracting solutions to the free-space
scalar wave equation [2,3,4]. In 1987, Durnin introduced the Bessel beam [5],
which maintains a constant transverse intensity profile on its propagation axis; this
beam has a pulse-like transverse shape (e.g., see [6] for a definition), but is not
temporally localized. In this chapter I shall introduce exact, closed-form solutions
to the wave equation which are pulse-like both spatially and temporally, and
maintain constant transverse shapes as they propagate; furthermore, we will find
that the pulse width along its propagation axis narrows as it propagates from the

origin, approaching a delta function with infinite distance.
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3.2. Wave equation separability

We begin with the free-space three-dimensional scalar wave equation:

_’E ¥E ’E 19E

VE= t——t—= 3.1
dx? 8y2 0z2 % &’ -1
Next let us consider functions of the form
E(x,y,z,t)= E(x,y,p), 3.2)
where
pr=z2-c* (3.3)
With the introduction of the complex angular coordinate
-1 ict
0=tan — (3.4
VA
it is easy to show that
Jd’E 10%E 10 OE 1 0%E
i bk el (o R v (3.5)
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Using (3.2) and (3.5), Eq. (1) simplifies to:

19 ) (62E 82E)
o dp ap x> 3y

We now assume E is separable between (x,y) and p, i.e.,
E(x,y,p) = A(x, y)P(p)
so that, dividing (3.6) by E, we get

1dP 1 dP 1 9%A 9°
2

— st __.__..___T+__

P dp? -

(3.6)

3.7

(3.8)

Since the left side of this equation is independent of (x,y) and the right side is

independent of p , we can equate both sides to some complex constant, say o 2,

[=5

’p 14dP

— +——=0"P
dp” pdp

2 2
d A+§____ 25

(3.9

(3.10)
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Multiplying (3.9) by p2 , we arrive at the modified Bessel equation

d*p dpP
2 2.2
pr—=+p—-apP=0 (3.11)
dp® " dp
whose solution is
P(p) = al(ap)+ a,K(ap) (3.12)

where a; and a, are arbitrary complex constants and [,, K, are zero-order

modified Bessel functions. Equation (3.10) has several solutions, which we will

express as a general sum of plane waves:

i(x!x+m) _i&!x+mz!
Axy)=lcefm 1de e (3.13)

where ¢, and d, are arbitrary complex constants, and m is real (we can further
generalize this solution by summing E = A (x,y)P,(p) over all possible & ; see
chapter 8 for the repercussions of such generalizations).

If, for example, we assume (analogously to Eq. 3.2) that

A(x,y)=A(r) (3.14)

where
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rr=x 4y (3.15)

then (3.10) simplifies to

1ea 1A _ 2 (3.16)
Adr TA dr
or
2
r2d—f‘+ r 2L akan0 (3.17)
dr dr

which has the Bessel-function solutions

A(r)=b,J,(ar)+ b,Y,(ar). (3.18)

3.3. Nondiffracting self-focusing pulses

An interesting special case of (3.12) arises when @ is real and a;=0. We then

have

E(x,y,zt)= a2A(x,y)K0(0c-J 7 —cztz) (3.19

which has a pulse-like shape in the z-¢ plane. A notable property of solution (3.19)

and, in fact, all solutions of the form (3.2), is that the transverse distributions
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intensity

(b)

Figure 3.1. (a) Field intensity of solution (15) as a function of (z,¢t) with a=1. (b)
Contour plot of field intensity in (z,¢)-plane, with ¢ normalized to unity; narrowing

contours indicate narrowing pulse width.
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E(x,y.zt)l_, = E(x,yzt) __ = Ax,y)P(0) (3.20)

are independent of z and ¢, and are therefore nondiffracting solutions propagating
forward and backward on the z-axis at velocity ¢; the z-¢ pulse is plotted in Figure
1a, where we see the pulse peak propagating from the origin on the axes z=ct and
z=-ct. This property is shared by the electromagnetic “splash modes” [7], which
can also be written in form (2) and thus used as a basis for expanding the Bessel
pulse. If for A(x,y) we use solutions (3.18) with b,=0, our pulses have the
transverse distribution J (r) and are therefore localized both spatially and
temporally. Furthermore, if we examine the longitudinal pulse width as a function
of distance traveled, we find it actually decreases as they propagate from the origin
(Fig. 1b: the contours indicate regions of constant intensity; therefore, as the
contour lines converge the pulses narrow). This follows from (3.19) if we rewrite

it as

E(x,y,zt) = a,A(x, y)K (o J(z+ct)(z—-ct)) (3.21)

If, for example, we consider the pulse traveling at z=ct, the scaling factor
o/(z+ct) causes it to narrow as lz+ ct| increases, forming a ‘self-focusing’ pulse
(likewise for the pulse at z=-ct). Thus the temporal pulse is widest at (z,¢)=(0,0)
while the spatial pulse maintains a constant width. By using an imaginary o, we

can
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Numerical solutions of Eq. (3.9) with (a) unconstrained initial

Figure 3.2.

(b) constrained

2

conditions: pulses behave as predicted by Eq. (3.15) and Figure 1

and (c) constrained

pulse intensity (25% of pulse power is clipped at the origin);

1/0).

pulse width (pulse is truncated at z
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interchange the z,¢ and x,y planes; however, these solutions are less useful because

Jo (@p ) diverges for imaginary p and we lose the z-¢ pulse shape.

3.4. Realization of self-focusing pulses

It should be noted that there are several potential difficulties in realizing such
pulses. First, as we would expect from its convergent nature [8], the self-focusing
pulse described above has an infinite temporal bandwidth, and therefore can only
be approximated in practice (similarly, the x-y nondiffracting Bessel beam has an
infinite spatial bandwidth). Likewise, both the spatial and temporal pulses must be
truncated at some maximal pulse width [5]. Finally, K (op) becomes infinite as
p — oo, and therefore our pulse must either be normalized by its zero-limit or
clipped at some maximum intensity. These practical limitations inevitably alter the
pulse properties discussed above; intuitively, we expect spatio-temporal truncation
to decrease the pulse’s lifetime, and frequency truncation to limit the minimum

pulse width [8].

To affirm the above behavior, we calculated numerical solutions of (3.9) using the
finite difference method [10, 14]. Figure 3.2a confirms the behavior seen in Figure
3.1 when the Bessel pulse is unconstrained by finite boundary/initial conditions. I
simulated the effects of two constraints on the pulses’ initial conditions: truncation

of maximal pulse width and limiting of maximum pulse intensity. In Figure 3.2b
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we see that clipping its peak intensity causes the Bessel pulse to widen into other
modes; Figure 3.2c shows how truncating its maximal duration results in escape of
the pulse’s energy and deterioration of its lifetime. These results are consistent
with general theoretical considerations [8,10] and with the qualitative discussion
above. It is clear that the effectiveness of devices utilizing these pulses will be
limited by their maximum power output and required pulse repetition rate.
Practical use will also be complicated by the pulses’ bidirectionality, although
Einstein causality allows the destruction of one pulse without affecting the other
(except the tail, which can be made to contain an arbitrarily small fraction of the

pulse energy), since they both propagate at c.

3.5. Spherical pulses

The complex polar coordinates (p,0) introduced in (3.3) yielded solutions of the
wave equation which were symmetric within the (x,y) and (zict) planes, but
implicitly distinguished between the two planes. It is natural to attempt to extend
this symmetry by seeking solutions which treat all coordinates identically. To this

end we introduce the following polar coordinates:
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0 = tam"l-}i
X
2 2
1 X +y
=1
¢ = tan .
» 2+}'2+22
¢ =tan” | T (3.22a-d)

ict

r=\/x2+y2+zz-czt

so that

x =rsin@ sin¢ cosd

y = rsin® sin¢ sin®
(3.23a-d)
z =r sin@ cosd

ict =7 COSQ

Note that these coordinates have no immediate geometric meaning, since they can
assume complex values for certain values of (x,y,z,¢). In a straightforward manner,

we can show that the Lorentzian



R e (3.24)

becomes

928 1282 (3.25)

in the new coordinate system for functions which are independent of the angular

coordinates 0 ,¢ ,¢ . Thus the wave equation becomes

3.2 +r—aT=;-3“5;‘(r sr—)=0 (3.26)
whose solutions are the functions
a
E(ry=—. 3.27)

Solutions (3.27) evidently are pulses (Figure 3.3a,b), and by introducing the spatial

radius
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p2=x +y“+z (3.28)

they can be rewritten

a a

a
E(r)=—F= (3.29)

r x2+y2+22—0212 (p+et)(p—et)

Thus the pulse propagates from the origin at p =ct, and around this point the

solution becomes

p=ct a a

Ew) = o) S 2t (p ety

(3.30)

The scaling factor 2p =2¢t therefore causes the pulse to narrow as p and t
increase (Figure 3.3c,d), approaching zero width as p = ¢t — o, analogously to
the time pulses (3.19). We thus have a spherically symmetric pulse with a time-
dependent singularity at radius c¢, whose width is inversely proportional to its

distance from the origin.
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Figure 3.3. (a) Field E of spherical pulse vs. p’=x"+y’+z" given ct=1. Notice the
field is odd around the singularity p=1. (b) Field E of spherical pulse vs.
p’=x+y’+z> and c1. The singularity propagates from the origin at speed ¢, ie.,
p=ct. (c) Intensity |EI> of spherical pulse vs. p’>=x’+y’+z” and ct. The pulse width
(FWHM) decreases as the singularity propagates from the origin. (d) Contour plot
of intensity vs. p” and ct. Narrowing contours indicate decreasing pulse width with

distance from the origin.
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3.6. Time-dependent diffraction revisited

We next aim to use functions (7) as Green’s functions in solving the wave
equation. Interesting Green’s functions for diffraction theory represent point
sources and therefore contain singularities (e.g., time-harmonic spherical waves, or
solutions (3.19)). We are particularly interested in using the spherical pulses
because their form is inherently covariant, implying the resulting diffraction integral
may also be. Because our functions are time-dependent, we must generalize

Green’s theorem [10],

W m2e-e92 pav = [IN-me-svpaz=[JrE-s2has w3
) z

G

where ¢ is the volume defined by a closed surface Z, to a four-surface § defining a

four-volume V [12]:

[[[cp%g-g0% fas = [[[N- (pg - g0f)av (3.32)
S |4

Where ¢ =—x+=—§+=-2+5—q and g=ict, X,¥,Z,q being unit vectors along
dx dy° 0z dq

the x, y, z, and t axes, respectively. Here § must be a closed four-surface defining

the four-volume V. A typical closed four-surface is shown in Figure 3.4; it consists
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of a time-dependent closed surface which starts at zero area, ends at zero area, and
whose shape varies continuously over time (more complex surfaces can be
constructed, but must obey the same criteria that describe surfaces in three

dimensions [10,12]). Since

02_82+a2+82+82_82+82+a2~‘1_82
Cx? ay? 322 g P 9yt 02 lan?

(3.33)

Figure 3.4. Typical closed four-surface projected onto three-dimensional (x,y,t)
space. In four dimensions, at each ¢ the four-surface consists of a closed surface

over (x,y,z), instead of the closed contours over (x,y) shown above.
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Figure 3.5. Four-volume of integration V is defined by the four-surfaces So and §1,

which together form the closed four-surface §.

the left-hand side of (3.32) disappears, leaving

[IIN- (pg - g012as = [[[ (fg-i*— gg—f:)ds - 0. (3.34)
s s

Since Green’s theorem only applies to functions continuous on the volume in
question (and with continuous first and second derivatives), we introduce, as we
did in chapter 1, a small surface §; around the origin (Figure 3.5), let Sy be our
surface of interest, and take our volume of integration between §; and §,, i.e., § =

S1+So. Note that the origin (x,y,2,¢)=(0,0,0,0) is the only place where we have to
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integrate out the singularity, because the spherical pulse is odd around its

singularity everywhere else (Figure 3.3a,b). Thus (3.34) becomes

IH(g - F s - - JH(g o (335)

Using (3.27), we have at radius r; from our source

1
glro1) =—>>»
o}
(3.36)
dg 2
é*(rm) = - COS(n rOl)

'01

where the cosine is between the radius vector and the outward normal to the 3-

surface S. We can define S, as a 4-sphere’s shell so that on it cos(n,rp;)=-1 and

1
g(r01—€)—€2 ,
(3.37)
dg 2
5;0‘01 =g)= 6_3

Thus as € gets small,
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1 @ ( 2 £—0
HJ(ga r s = n s e’ fa;‘”) =5 o) = —4n” frop)

(3.38)

and, returning to (3.35),

0 (35 1 1)
foon) = zm( s 2L s, - peedl [ - r3clisy 639

which is a generalization of the Helmholtz-Kircchoff integral theorem [13] to
include time-varying sources and apertures. Due to the implicitly covariant form
(3.22d) of rp, we are guaranteed that (3.39) is Lorentz-invariant [15], and
simplifies to the familiar (1.39) when we assume an open, time-independent
integration surface, from which the familiar results of free-space scalar diffraction

can be derived [16].
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Chapter Four

Photolithography and nondiffracting images

4.1. Introduction to imaging photolithography

Due to its inherently high throughput, imaging photolithography has become the
dominant technology in the semiconductor industry. Photolithographic imaging
systems (“steppers”) consist of several high-aperture lenses which together are
compensated for geometrical and chromatic aberrations at the design wavelength.
They are therefore well-modeled as finite-aperture aberration-free imaging
systems, as in Figure 4.1, and obey the same general resolution and focal depth

relations [1]:

Af A AxE A
Ax=k13°< -ﬁ’ C=ko oc ——— (4.1a,b)
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where Ax is the mask-plane system resolution, A the wavelength, fthe focal length,
D the aperture, NA the numerical aperture, O the mask-plane depth of focus, and ;
and k, proportionality constants which depend on the processing method used. In
order to increase the device and interconnect density at the wafer, the system
resolution Ax must be made as fine as possible, which in general means decreasing
the wavelength A or increasing the numerical aperture. Increasing numerical
aperture, however, dramatically reduces the focal depth, as in (4.1b); when the
image’s focal depth is exceeded by the photoresist depth or wafer curvature, the
photoresist is exposed unreliably and defects may result. Therefore, it is more
desirable to improve resolution by decreasing the illumination wavelength, and this
strategy has prevailed in the industry for the last ten years. Currently, 248 nm
excimer laser illumination is being used to print 0.25-micron features at advanced
foundries, while 193 nm illumination and 0.18-micron features are at the
intermediate development stages. At such wavelengths, it is challenging to find
optical materials with sufficiently low absorption and sufficiently high refractive
indices; fused silica is currently the material of choice in 248-nm systems, and is
likely to prevail at 193 nm. Below this wavelength, it is unclear whether lenses
have a relative advantage over mirrors; furthermore, since there are currently no
economical lasers below 193 nm, synchrotron sources may be the only option for
high-volume manufacturers. It is therefore clear that any system modifications
outside the stepper which improve resolution or focal depth are eagerly pursued by

the industry.
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Figure 4.1 Photolithographic imaging systems (steppers) can be modeled as finite-
aperture, aberration-free demagnifying 4-f imaging systems at the design

wavelength, where most aberrations are compensated for.

4.2. Phase masks

Phase masks were introduced to photolithography by Marc Levenson in 1982 [2],
and have since been shown to improve both resolution and focal depth therein.

Traditional photolithography masks are binary-transmission, meaning they either
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Figure 4.2. The slits in (a) are not resolved (b) after imaging by a finite aperture

whose impulse response is wider than the slit separation.

absorb or transmit the incident illumination at a given pixel (spatial element).
Phase masks have the added capability of introducing a phase shift at each pixel.
Their performance is based on the destructive interference between adjacent
features with opposite phase, after being imaged by a finite aperture. For example,

consider the simple two-feature pattern in Figure 4.2a. In the Fresnel
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approximation, an aberration-free imaging system multiplies the Fourier transform

of the image by the pupil function [3]; thus in one dimension,

F[E,(0)]= FLE; (x)]P(x/Af) (4.2)

where Ej(x) is the mask pattern (field) to be imaged, E,(x) is the output field, P is
the pupil function (a Rect if no aberrations are present), and F denotes Fourier

transforming. In the spatial domain, this equation becomes

E,(x)= E; (x\)*F [ P(x/\f)] (4.3)

where * denotes convolution. Thus the pattern in Figure 4.2a, composed of two
adjacent slits, is unresolved after imaging (Figure 4.2b) because the field between
them is too large (and so, therefore, is the intensity). However, when one of the
slits assumes a T phase shift as in Figure 4.3a, their fields interfere destructively
after imaging (Figure 4.3b), and the features remain well-resolved (Figure 4.3c).
For partially coherent illumination [4], it is more accurate to use the Hopkins

formula

E,(x2) = [[ B (OB #(3) (3K (x 1, 0K * (7', x,2)dx dF' (4.4)
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Figure 4.3. Fields of two adjacent features (a) interfere destructively (b) after
imaging by an aperture whose impulse response is wider than the slit separation,

and the features are well resolved when intensity is measured (c).
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instead of (2); here K is the impulse response F[P], J is the mutual intensity
function, Ei(x’) is the field at the mask, and E.(x,z) is the field around the wafer
(image plane; see Figure 4.4). The effects of phase masks are then complicated by
the fact that the destructive interference between adjacent features is hampered by
their less-than-unity correlation. These effects are discussed at length in chapter 6,
where it is shown that phase masks always offer some improvement over

transmission masks, although the size of the advantage can vary significantly with

tlumination coherence.
K(X, xlaz) zZ = O
-
J(x',?c" -
s
E(x') 1(x,z2)

Figure 4.4. Mask field E illuminated by a uniform-intensity, partially coherent
source with mutual intensity function J, forms image intensity / (given by the

Hopkins formula) after propagating through system with impulse response XK.
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One-dimensional images can always be assigned a phase layout in which adjacent
features have opposite phase. This, however, is not true for two-dimensional
images. Consider, for example, the image in Figure 4.5a. Because it contains
three features, each of which is adjacent to the other two, we must assign the same

phase to two of the features, as in Figure 4.5b. Thus, while the entire original

(b)

Figure 4.5. Phase conflict: Image in (a) has three adjacent features and therefore
suffers phase conflict (b: gray feature is m-phase shifted). Both the transmission
mask and the phase mask patterns are therefore unresolvable after imaging (c and

d).
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(transmission) mask suffers unacceptable distortion after imaging (Figure 4.5c), the
phase mask also becomes unacceptably distorted between the two same-phase
features (Figure 4.5d). This effect, intrinsic to images of two (or more)
dimensions, is called phase conflict, and is one of the problems this chapter

addresses.

Important work in the area of phase mask layout was done by Zakhor’s group [5-
7]. They have adopted a pixel-by-pixel approach to designing phase masks, which
entails finding an optimal amplitude and phase distribution over the mask using an
optimization algorithm similar to gradient descent [6]. This approach has several
problems. First, their pixel-wise optimization time scales with the number of pixels
to the third power (or more), due to the fact that the imaged pattern must be
calculated for each mask variation, and these variations must be scanned over all
the pixels. Given industrial mask sizes of at least 10* x 10* = 10° pixels, the run
times become prohibitive. This issue is addressed in their recent paper [7], where
they introduce a modified algorithm which saves the scanning over pixels, and
therefore scales as the number of pixels squared (for calculating the imaged
pattern). Although that is an improvement, it is still not viable for industrial-scale
masks. A second problem with this approach is that it requires at least four levels
of phase to be effective. This is because it is difficult to distinguish “important”
mask areas (where resolution is critical) from “unimportant ones” (where some

diffraction is tolerable), and because optimization algorithms such as gradient
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descent tend to find local optima, not global ones (due to their faster computation
times). This problem is also inherent in the approach of Ref. [7], and makes the
technique unappealing due to the difficulty of manufacturing four-phase-level

masks.

Another contributor to this area is Watanabe, who takes a multiple-exposure
approach to solving phase conflict [8]. Although this approach has been discussed
in several places, it is inherently unattractive to the industry because it involves
twice the photolithography time as single-exposure techniques, and also introduces

alignment and mechanical errors between the two exposures.

Kailath discusses a rule-based approach based on superposition of subsolutions,
which scales with the number of pixels squared [9]. However, the improvement
introduced is in the computation time for the imaged pattern, and entails an
approximation of partially coherent imaging by a fully coherent system. This is
accurate only for near-fully coherent imaging due to its reliance on the linearity of
field superpositions. Since all lithography currently uses partially-coherent to fully-
incoherent illumination, this approach is applicable to only a small fraction of
practical cases. Furthermore, the actual optimization employed by Kailath is a
Gerschberg-Saxton type algorithm, which is fast but tends to settle on highly

suboptimal minima [10], sacrificing phase mask performance for computational
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speed. Finally, this approach also requires either four phase levels per mask or

two-mask imaging [9], both of which are problematic to manufacture.

Besides phase conflict, the traditional Levenson design also does not guarantee any
improvement in focal depth, although it is not inherently incompatible therewith.
Given an imaging system, either resolution or focal depth may be the factor
limiting feature size, and we would like an approach to phase mask design which
can address either or both. It is tempting to adopt the beam shaping methods

discussed in chapter 2 to the specific problem at hand.

4.3. Phase mask design via beam shaping

We begin by considering the image constraints imposed by the photoresist. A
typical photoresist response curve is shown in Figure 4.6. Below some threshold
intensity 7, (0.3 in the figure) the incident illumination is not detected; above some
intensity /; (0.7 in the figure) the illumination is detected; and between these two
levels the detector behaves unpredictably. It is this intermediate region that we
wish to avoid. This allowed intensity variation affords us a degree of freedom in
designing the mask--instead of imposing a transmissivity of zero or one (binary

transmission), we are allowed in dark regions to transmit an amplitude as high as
o and in light regions as low as JE . Additionally, since the photoresist is

insensitive to the field’s phase, we may implement an arbitrary phase shift at each
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mask pixel and therefore design the phase distribution to maximize our image’s

focal depth or resolution.



72

o
w -
T T
.

©
o
T

N

N

photoresist exposure
~.

.

=]

0.2 04 08 08 1
incident intensity

Figure 4.6. Typical photoresist exposure curve; photoresist performs a
thresholding. Incident intensities below the threshold interval (.3 - .7 here, in
normalized units) leave resist unexposed, incident intensities above the threshold
interval leave resist completely exposed, and incident intensities within the

threshold interval expose the photoresist unreliably.

image first final
plane critical critical
plane plane

Figure 4.7. Extended focal depth of k6 can be divided into subintervals of ©, over

each of which the image must remain focused to insure the overall depth of focus.
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We are now in a position to tackle the mask design problem. To extend our
original depth of focus ¢ by some multiple, say to kG, we must ensure that the
image remains focused in the entire volume between the image plane and the final
focused plane. Given some minimum feature size Ax, the distance ¢ over which
we know little diffraction will occur is given by (4.1b). Thus, to ensure a focal
depth of ko, we must check the image at intervals of ¢ (henceforth termed critical
planes) and insure that it remains focused at each of these (Figure 4.7). To this
end, we define an error measure (e.g., Euclidean distance square--cf. chapter 2)
after thresholding that quantifies the deviation of our image from the desired one,
calculate it at each critical plane, and sum over all these planes to obtain the total
error of our field distribution. Because we are concerned with image coordinates
that may stray significantly from the z axis, we use the Rayleigh-Sommerfeld
kernel [11]

ikR
ze

k(x’x"y7y'7z)= _’
iAR2

4.5)

R=y(x-x)2+ (y=y)? +2°

in the Hopkins equations to calculate the field diffracted from the image plane.
The field at the image plane is calculated from the mask-plane field using the

kernel in (4.3) generalized to two transverse dimensions, assuming a pupil function



74

P(r /Af) =circ(r / D) = P(p) =circ(Ap /D) (4.6)

where r =[x + y2 andp = u? +v? are the space- and frequency-domain radial

variables, respectively, meaning

Jl(D\/(x— )2+ (y- y')z)

D\/(x— )2+ (y—y)2

k(x,x',y,y,z=0)= 4.7)

Next we independently optimize the mask’s amplitude and phase distributions, a
process which (as shown in chapter 2) converges to an error minimum for the
complex mask distribution. In this case we iteratively perform a pattern search
optimization [12, 13] on the amplitude and phase until a common minimum is
attained. We optimize until a postthresholding error of zero is reached on all
critical planes (if zero error is not attainable, we consider the problem unsolvable
by our method, given mask resolution and photoresist thresholding parameters).
At this point we have the desired complex mask distribution, which may be

physically realized in several different ways [14].
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Figure 4.8a. Simulated intensity patterns at three critical planes of optimized
amplitude-phase mask (top row) and of binary-amplitude mask (bottom row).
Notice the amplitude-phase mask remains well-focused on all critical planes, while

the transmission mask defocuses substantially.
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Figure 4.8b. Simulated intensity patterns after thresholding of optimized
amplitude-phase mask (top row) and of binary-amplitude mask (bottom row).
Notice the binary-amplitude mask incurs major defects at two critical planes, while

the optimized mask suffers no defects throughout the focal volume.
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Figure 4.9. Experimental configuration for realizing the mask function gx,y) using

computer-generated holograms.
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Figure 4.10a. Actual intensity patterns at three critical planes (i)-(iii) of binary-
amplitude (transmission) mask and (iv)-(vi) of optimized amplitude-phase mask
realized by Fourier holograms. Notice the amplitude-phase mask remains well-

focused on all critical planes, while the transmission mask defocuses substantially.
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Figure 4.10b. Actual intensity patterns after thresholding at three critical planes
(i)-(iii)) of binary-amplitude (transmission) mask and (iv)-(vi) of optimized
amplitude-phase mask realized by Fourier holograms. The phase mask retains a
reliable post-thresholding image throughout the imaging volume, while the

transmission mask image is unreliable at two critical planes.
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4.4. Nondiffracting images

To demonstrate the generality of this technique, we chose the aperiodic,
multicornered image shown in Figure 4.8a. The simulated intensity patterns after
diffraction for a binary transmission mask and an optimized amplitude-phase mask
are shown in Figure 4.8b, and the postthresholding detector response is shown in
Figure 4.8c. Although the binary-mask image becomes unacceptably distorted at
the final critical plane, the optimized image remains completely undistorted. Next
we implemented the amplitude-phase masks as Fourier-transform holograms, as
shown in Figure 4.9. Given our desired mask distribution g(x’,y' ), we Fourier

transform to G(x'’,y’’ ), then take

G'(x",y") = min(RefG (<", y" e I 4 RefG (a7, e 2+,
(4.8)

yielding a real-positive mask. Multiplying G by &' 2™ 7"

shifts our pattern to a
propagation angle 8 = Au in both the xz and yz planes; taking the real part (or,
equivalently, adding the complex conjugate) causes the inverted pattern to appear

at an angle -6. Finally, adding the constant simply introduces a focused spot that

does not interfere with our pattern if 6 is large enough.
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Figure 4.11. Resolution enhancement of optimized phase mask (simulation).
Transmission mask in (a) forms pattern in (b) after imaging by a finite aperture and
(c) after photoresist thresholding. Levenson-type phase mask in (d) forms image
(b) after imaging and (c) after thresholding; notice phase conflict on right side of
image. Optimized phase mask in (g) forms image (h) after imaging and (i) after
thresholding, solving the phase conflict problem (d, g: gray indicates %t-phase shift

areas).
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Figure 4.12. Resolution enhancement of optimized phase mask (experiment).
Transmission mask in (a) forms pattern in (b) after imaging by a finite aperture and
(c) after photoresist thresholding. Levenson-type phase mask in (d) forms image
(b) after imaging and (c) after thresholding; notice phase conflict on right side of
image. Optimized phase mask in (g) forms image (h) after imaging and (i) after
thresholding, solving the phase conflict problem. These results confirm the

simulation results in Figure 4.11 (d, g: gray indicates T-phase shift areas).
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Using a CCD to record the transverse images and postprocessing to simulate
photoresist thresholding, we obtained the results in Figures 4.10a and 4.10b,
respectively. As predicted by our simulations, the optimized mask images remain
focused significantly farther than the binary images. In this example, we improved
focal depth approximately twofold by using optimized amplitude-phase masks; in
practice, the improvement in focal depth depends on the sharpness of the
photoresist threshold, attainable mask resolution, and pattern irregularity. Of
these, photoresist thresholding is by far the most influential parameter, since a
sharper threshold means larger tolerable amplitude fluctuations and more freedom

in optimizing the mask.

Our next example is of phase conflict elimination and resolution enhancement. We
begin with the simple phase conflicting pattern in Figure 4.5a. In this case, a
comparison with Levenson-type phase masks is in order, since they are the
standard binary-phase, binary-amplitude tool for resolution enhancement. This
comparison will emphasize the need for phase conflict elimination in Levenson-
type masks. Figures 4.11a-c and d-f show the mask, image after finite-aperture
imaging, and post-thresholding photoresist pattern for transmission and Levenson-
type phase masks, respectively. After optimization, the mask-plane field
distribution is shown in Figure 4.11g, and the simulated wafer-plane intensity

distribution before and after thresholding is shown in Figures 4.11b,c. Clearly
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optimization has solved the phase conflict problem and made the features

resolvable.

This is confirmed experimentally using the same computer-generated-holographic
technique as above to realize the complex mask field. Figures 4.12b-c¢ show the
measured image plane intensity and post-thresholding image pattern, respectively,
for the transmission mask in Figure 4.12a. The corresponding images are given in
Figures 4.12e-f for the Levenson mask in Figure 4.12d and Figures 4.12h-i for the

Levenson mask in Figure 4.12g,

Although the optimization method used here compares favorably with other
proposed techniques [5-10] in its run times, scaling with the number of pixels
square, they are still prohibitively long for industrial-scale masks. Therefore, we
implemented a heuristic algorithm which inserts auxiliary phase regions as the one
in Figure 4.11a in regions of phase conflict. Due to its rule-based approach, this
algorithm’s run times scale with the number of mask pixels, which make it viable
even for VLSI masks. We tested it on the typical mask layout shown in Figure
4.13a, whose pre- and post-thresholding images are given in Figures 4.13b,c,
respectively. Its corresponding Levenson mask (Figure 4.13d) leaves several
problem spots before and after thresholding (Figures 4.13e,f, respectively); while
the fast-optimized binary phase mask (Figure 4.13g) is completely resolved before

(Figure 4.13h) and after (Figure 4.13i) thresholding. Despite its apparent success,
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this heuristic approach leads in general to poorer results than the full-mask
optimization, and we therefore expect the latter to enable smaller features or larger
focal depths. This performance difference can be tempered, without significant
run-time increase, by performing a full-mask optimization after the heuristic
algorithm has produced the first-order solution. Since the initial layout is now
much closer to an error minimum than was the original binary transmission mask,
the full optimization converges far more quickly. A detailed exploration of the

ideal algorithm combination is beyond the scope of this work.
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Figure 4.13. Large-scale phase mask optimization. Transmission mask (a)
becomes image (b) after imaging by a finite aperture, forming photoresist pattern
(c) after imaging. Levenson-type phase mask (d) forms image (e) after imaging
and (f) after thresholding; notice phase conflicts at vertical coordinates 70 and 110.
Optimized phase mask (g) forms image (h) after imaging and (i) in photoresist,

where the phase conflict is eliminated (d, g: gray indicates T-phase shift areas).
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Chapter Five

Average coherence approximation

5.1. Introduction to partially coherent illumination

Monochromatic illumination systems always possess complete spatial coherence
[1]. Since all physical illumination sources have a nonzero linewidth, their
radiation is more generally described as partially coherent. Thus partially coherent
imaging is important in a variety of fields, including astronomy, photolithography,
and medicine. Given a coherent impulse response K, propagation through a

system (Figure 5.1) is described by the Hopkins equation [2]:

2 ~ o~ ~ ~ ~ o~ ~
B, (<, 3" = I ECGe, y)E *(2.5)0 (5, 13 %, 5)K (x, 33 %,y )K * (R, 33 %', ¥ Vdxdydxdy
6.1

where E is the input field, J is the illumination’s mutual intensity function, (x,y) are
the system’s input coordinates, and (x’,y ) are the system’s output coordinates (see

Ref. 10 for an elegant derivation of this equation).
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Figure 5.1. Schematic diagram of general optical system described by the Hopkins

equation.

Though general, the Hopkins equation is tedious to compute, both analytically and
numerically; still, it is used almost universally in analysis and simulation of partially
coherent systems [3-5]. There have been several attempts to simplify this
expression and derive alternative formulas which are less computationally
demanding [6-9], but they have all addressed special cases of the impulse response
or mutual intensity functions. In this chapter I introduce an approximation to the
Hopkins equation which is valid for a wide range of coherence functions and
impulse responses, and considerably reduces the computation time required for
determining the output intensity. This approximation is particularly useful when,

given J and K, the output intensity is desired for varying input fields, e.g., in
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iterative routines which optimize the input field to obtain a desired output intensity

distribution [3].
5.2. One-dimensional approximation

For simplicity, we begin with one transverse dimension, then generalize to two-
dimensional problems. The one-dimensional Hopkins integral is, analogously to

(5.1),

£, o) = [[ EGOE * ()7 (x, DK (x, K * (%, x")dxd% (5.2)

Our strategy is to decompose the contribution to E,(x’) by each input point E{(x)
into a coherent component and an incoherent component, then sum the
contributions of all points in the x plane to the field intensity at x¥’. The coherent
radiation component interferes coherently with the coherent radiation from all
other points x, while the incoherent component interferes incoherently with all
other radiation. Thus we wish to reduce the two-dimensional integral (5.2) to a
sum of two one-dimensional integrals, one addressing the coherent radiation
component and the other, the incoherent component. While (5.2) treats the
interference between every two points at the input plane separately, we shall try to
lump the field correlation between a given input plane point x and all other input

plane points into an average coherence at x. To determine the coherent and
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incoherent components of radiation from each point, we must somehow average
its coherence J(x, x) with all other points x (Figure 5.2). This average should be
weighted by the contribution of the points x to the intensity at x’, and this
contribution is given by /K(x,x’)/* . Thus we can define a function fx,x') which
gives the fraction of the intensity at x which interferes coherently with all other

coherent field contributions.

kG B (xR)az
”K(x',;c')lzd;

f(x,x")

(5.3)
J(x,x%)

k) = TG %)

where x and X are dummy variables at the input plane and the functions K and J

are normalized to insure 0< f<1 (this condition is imposed since f is by

definition the fraction of incident power which is spatially coherent).
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Figure 5.2. Schematic representation of system configuration in the average

coherence approximation (x can be an n-dimensional vector, in general).

We are now able to consider the coherent and incoherent contributions to the field

at ¥’ independently, using the following relations:

’Eo (x')‘2 = IE(x) * K(x,x')l2 E(x) coherent

(5.4)

'Eo (x‘)'2 = lE(x)I2 "‘|K(x,x')}2 E(x) incoherent

where f(x)*g(x,x' )= J f(x)g(x,x )dx is a general superposition integral.

In our case, K(x) is assumed to have two components, one coherent and one

incoherent, i.e.,
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lK(x,x');2 = ch (x,x')‘2 + lKi (x,x')l2 = ‘w/ f(x,x')K(x,x')}2 + 11/1- f(x,x')K(x,x')l'2

(5.5)

so that the output intensity is given by

£, ) = |EG)*K; (e +EGOP *[K, (o)

=B * oK o) +[EG * W= fGox DK (x|

(5.6)
and we have effectively reduced the double integral of the one-dimensional

Hopkins equation to a sum of two single integrals. Using the form of fx) defined

in (5.3), (5.6) implies

5, ) =|[ BT oK o 0a]” + [IEP - roc oK o, ax

(5.7)
5.3. Two-dimensional approximation

The two-dimensional generalization is straightforward; (5.3) becomes
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H K (x', y',:?,?)l2 W (x,y,X,3)dxdy

(x,y,x',y") = (5.8
Jyxy [k y 5.5 azdy
while (5.7) is now
12, ey = [ BGe y i TG 7o 7K G vy +
(5.9)

[[IEGupPla= £Geyax, y DKy %, 9) dxdy.

Note that although an integration is required to compute f; this need only be done
once given the system parameters K and J, after which computing the output
intensity requires only one integration dimension per transverse field dimension.

Furthermore, if our system is space-invariant, i.e.,

K(X,}',f:}/)= K(x-x':y-}/) and J(x:y; )’E, i):-](x'fl}k j}) (5°10)

then the integrals of (5.3), (5.7), (5.8), and (5.9) become convolutions which are
efficiently calculated using fast Fourier transforms (because of the space-
invariance, (5.3) and (5.7) become one-dimensional convolutions, and (5.8) and
(5.9) become two-dimensional convolutions). Further simplification is possible if
we assume specific forms for K and J. For example, if we assume one-dimensional

imaging by a rectangular aperture of size D then
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K(x,%') = Sinc(x; A - (xd_ = sin(~ (xd_ *) 5.11)

A
where d = ‘l—f- is the system’s resolution radius, so that

x—x'

IK G, x)? = Sine % ( —) (5.12)
and if our illumination source is rectangular [8],
o e XX a o m(x—X)
J(x,%)=Sinc( )= — sin (5.13)
a T(x—x) a
where a is the coherence radius. Thus we have
' 1 . 2 x—-x . X—x ~
flx,x") = = JSmc ( YSinc( )dx . (5.14)
L2, XTX . d a
JSmc (—)dx
d
Using the substitutions x = ¥ — x' and x = x — x', this simplifies to
1 o X X=X,
Fxx') = 5[ Sinc? ()Sine(—)d (5.15)
a

.2 ~
Sinc”(—)d
[sin (a3

which, by Fourier transforming and assuming d> 2a, becomes
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1

flx, %) < smcz(";" ). (5.16)

This can now be used a priori in (5.7), eliminating the integration due to fx,x’ ).

5.4. Error of the approximation

To evaluate the error of the average coherence approximation, we recall that J is
unity for coherent imaging systems and is a delta function for incoherent systems.
Therefore (in one transverse dimension), Eq. (5.7) is identical to a Hopkins

integral where J(x, x ) is replaced by

J'(6,%,%) = fO6,x") f(Z,x) + /0= Flx,x D= f(ZX, xS (x=%).  (5.17)

Therefore, the error in field intensity as given by (5.7) is

e(x)= [ EG)E * (K (x', 0K * (x', %) (x, ¥)dxd%

[EGE*@)K (', 0K *(x', %) (x,%, % dxdZ
(5.18)
= JE(x)E *(XK(,x)K *(x', X)(J(x,%)= J'(x,%,x"))dxdx.



98

This expression is easier to compute than a direct subtraction of (5.7) from (5.2),

and is used in the examples below.

The error will in general depend on the spatial coordinates, input field, system
kemel K and coherence function J; specifically, the error becomes smaller as
/K(x ,x)] becomes sharper (its energy is concentrated near some (x',x)). If our

system is an imaging system, for example, then as its numerical aperture becomes

larger, |K(x, x’)l2 — 8 (x— x") and therefore (assuming J is normalized)

flx,x")= JS (x=x")J(x,x)dx = J(x',x) =
e(x) = [E)E* @)K (x', x)K *(x', )T (x, X)dxd% ~
2
([ EVIG 0K ( xax| + JJEo[ - J(x' 0K (' %) dx)

=BG A= T, x) - 1+ J(x',x)

(5.19)

Furthermore, our error goes to zero as we approach full coherence and full
incoherence. In the fully coherent case, J(x,x’ )=1, thus fx,x’' )=1. From Eq. (6) it

is clear then that

£, () =BG K (5.20)
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which is the exact expression for coherent propagation. For the incoherent case,

J(x,x)=8(x-x")>

(5.21)
W2
ey = — R
T(x )| K (x, x| dx
and, again using Eq. (5.6), we arrive at
£, ) = eGP |k () (5.22)

which is the exact expression for incoherent illumination. A notable case where
the error does not approach zero is when the impulse response K becomes very
wide; then our averaging of the coherence actually loses information and the

results in general may vary from the Hopkins calculation.

5.5. Examples

Empirically, the average coherence approximation (ACA) yields excellent
agreement with the exact Hopkins integral for a wide range of input fields and
coherence functions. Figure 5.3 compares the ACA and Hopkins integral results

[12] for a finite, asymmetric one-dimensional aperture after imaging by a finite
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aperture (J is a Sinc with coherence diameter half the image size). We can see that
there is agreement to within 5% of maximum intensity throughout the output
plane, and the average error/pixel is 0.15%. Figure 5.4 compares the output
intensities for a two-dimensional input pattern imaged through a finite aperture.
Finally, in Figure 5.5 we plot the ACA’s average error per pixel (compared to the
Hopkins integral) over the output plane for various widths of the coherence
function J, assuming Rayleigh diffraction with z=16 pixels. As expected, the error
minima lie at full coherence and full incoherence (they are nonzero due to

quantization error).
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Figure 5.3. One-dimensional slit in (a), after imaging through finite aperture (b),
yields patterns in (c) using Hopkins integral (solid) and ACA (dashed). Here

J(x,x’) is a Sinc half as wide as the image.
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Figure 5.4. Pattern in (a) after imaging through a finite aperture becomes (b)
under the average coherence approximation and (c) using the full Hopkins
equation. Aperture size is half the image bandwidth, and coherence diameter is

half the image size; average error/pixel=.95%=.0095.
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Figure 5.5. ACA error vs. normalized coherence diameter for 1-D finite aperture

undergoing Fresnel diffraction.
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5.6. Computation time

We can estimate the relative computation times of the Hopkins integral and the
average coherence approximation by using order-of-magnitude considerations.
We assume a grid of n points (i.e., a jx k two-dimensional grid would have n= k).

The Hopkins integral, assuming a shift-invariant system, can be computed using a
triple correlation for the inner integral, IE(? )J(x,X)K *(x,x")dx, which requires

6n> logn + 2n2 + 2n? logn complex operations assuming FFIT’s with O(n logn)
are used. The outer integral imposes n iterations of the inner integral plus two
complex multiplications, which implies a computational order of
n(8n2 logn + 2n2 + 2n2) = 4n3(2logn +1). The average coherence
approximation requires two FFT’s, a complex multiplication and an inverse FFT to
compute fxx'), plus two integrals, each involving two FFT’s, a complex

multiplication and an inverse FFT. Thus the total computational order is

2(2n% logn)+n? +2n2% logn + 2(2(2n2 logn) + n% + 2n% logn) = 3n% (Slogn + 1).

We can see the ACA scales approximately with n*logn, while the Hopkins integral
scales as n’logn, which for a two-dimensional image is a difference of 2 orders of
magnitude. Empirically, the ACA has yielded results 10-50 times faster than the

Hopkins integral, depending on the size of the input pattern.
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5.7. Summary

In summary, we have introduced an approximation to the Hopkins integral for
propagation of partially coherent fields, which is computationally simpler both
analytically and numerically, and yields good agreement with the Hopkins integral
for a wide range of input patterns and system transfer functions. We have
presented several analytical conditions for the accuracy of this approximation, and
numerically analyzed its performance for a range of system parameters. Finally,
we have seen that the average coherence approximation can be computed
significantly faster than the Hopkins integral for iterative, constant-system

applications.
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Chapter Six

Spatial coherence and phase masks

6.1. Introduction

Since Marc Levenson’s introduction of phase masks to photolithography [1], there
have been numerous improvements in their design and fabrication [2-6]. One issue
not yet considered is the effect of illumination source spatial coherence on the
effectiveness of phase masks in improving resolution and focal depth. As the
illumination wavelength has grown shorter (to accommodate the classical

) .. wavelength
resolution limit Axoe« —= - £ ), sources have become more
NA  numerical aperture

spatially coherent [7], and with the use of excimer laser illumination we approach
complete spatial coherence. It has generally been assumed that increased spatial
coherence improves the performance of phase masks, since it enhances the
destructive interference between adjacent (opposite phase) features. Although this
is true for periodic patterns, I will show in what follows that more complex images

involve a trade-off between the contrast enhancement of coherent alternating
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features and the larger effective aperture of incoherent imaging, independently of
speckle phenomena. This effect is particularly pronounced in complex 2-D images

where phase conflict [7] is a problem.

6.2. Minimizing imaging error

Let us begin by defining a criterion for imaging system performance. To quantify
image quality, we introduce an error measure [4] that compares the imaged

intensity distribution /{x,y,z) to the desired 3-D intensity /o(x,y,z).

K(x,x',2) z=0

TR
_](x";’ -
-

E(x') I(x,z)

Figure 6.1. Schematic diagram of partially coherent imaging system described by

the Hopkins integral.
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Shifting to one transverse dimension for notational simplicity, the output intensity

due to an input field E(x’ ) (see Figure 6.1) is given by the Hopkins integral
1062) = [[EGYE*@)I(x 3K (x',x,2)K * (&', x,2)dx' d5" 6.1)
where J(x',x') is the input plane mutual intensity function and K(x,x') is the

coherent system impulse response [8]. A Euclidean error over one plane will be,

for example,

e2(2) = [|1(xe,2) - I (x,2)| dx 6.2)

where I,(x,z) is the two-dimensional desired intensity distribution, and over a

volume it is the sum of single-plane errors

e? = Jez (z)dz =H|I(x,z) - Io(x,z)’zdxdz . (6.3)

We can include photoresist thresholding in this error measure by replacing /(x,z)

with T'[I(x,z)], the photoresist exposure response (Figure 6.2).

If our illumination source is spatially incoherent and uniform along an aperture d

then in the far field [9],
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Figure 6.2. Typical photoresist exposure vs. incident intensity (given exposure

time). The resist acts as a thresholding agent.

o~y ~

J(x',%") = Sinc(> s" )=n(xs_;')sin1t(x s") (6.4)

where s = AL/d is the coherence diameter, i.e., the distance within which the fields
at two points correlate significantly over time (here A is the wavelength and L the
distance from the aperture). We may substitute this into Eq. (6.1), which in turn

can be replaced in Eq. (6.3) to yield an explicit expression for e in terms of s:

2

x-X' . -
WK (x',x,2)K *(x',x,z)dx'dx'— I 5(x,2)

82 = dedz

HE(x')E *(x")Sinc(

N

(6.5)
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which we differentiate with respect to s and equate to zero to find the values of s
that maximize and minimize e (since e > 0, minimizing e implies minimizing e”).
We thus find the following sufficient (but not necessary) alternative conditions for
the minimization of e’:

x'-x'

HE(x')E *(X")Sinc( )K(x',x,2)K * (X', x,2)dx'dx" = I§(x,2), (6.6)

and (nonequivalently)

)~

-x' ~ ~
YK(x',x,z)K *(X',x,z)dx'dx"
s

0= -:—HE(x')E *(%")Sinc(>
S

E(XHE*(x") - . x-x' w(x'-X") x'-x' -
= H N K(x',x,z2)K *(x',x,z)[sinT ( )— CcosT ( Ydx'dx'
T (x—x s s 5
(6.7)
which is satisfied by

e 5y 2 B (6.8)

Eq. (6.6) simply states that when our output intensity distribution equals the
desired intensity Iy, the error e=0, which must be a minimum since e 2 0. Eq.
(6.8) guarantees that a local extremum for the output intensity error exists at the

fully coherent limit; however, the nature of this extremum (maximum or minimum)
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depends on the input field E and impulse response K, since all higher derivatives of
the error function also vanish at the coherent limit. Thus, the optimal value for s

lies in general somewhere between full coherence and full incoherence.
6.3. Experimental verification of coherence-dependent imaging error

Our experiments and simulations [11] suggest that for large images, the most
influential factor in determining the optimal coherence s is the smallest resolvable
mask feature Ax'=mAx=mAf/D=mA/NA, where m is the imaging
demagnification and NA is the numerical aperture. Initially, we used the
experimental setup in Figure 6.3 to test the coherence-dependent resolvability of
two narrow slits as the aperture (determined by the width of the Fourier-plane

pupil P) is varied, i.e., D, = Af / P.

mask plane )
Fourier plane image plane

— L, p |

Figure 3. Experimental setup for measuring two-point imaging error as function of

illumination spatial coherence.
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The results, shown in Figure 6.4, ndicate that m general the optimal s (s, ) lies

between the coherent and incoherent limits, in agreement with the theoretical
conclusions drawn from (5). We use here the standard definition of full coherence
as a coherence width larger than the mask size (normally tens of millimeters) and
full incoherence as a coherence width of zero. Although Figure 6.4 does not
extend to the fully coherent case, the normalized error remains saturated at about

4.2 beyond 2s, .

__ = simulation, * = experiment, x = experiment - noise
20

18F
16

14} *

imaging error
=

[=3 fav]

T

[
Y

coherence diameter

Figure 4. Results of experiment shown in Figure 3 and numerical solutions of (9)
(wavelength = 633 nm; system resolution Ax= 6.3 pm). Speckle and DC noise
were measured without image mask and subtracted from *-series to yield x-series.
Coherence diameter is in units of Ax, and error is normalized according to (9).

Total error saturates at about 4.2 as we approach full coherence.
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We find that, specifically, s,,, varies linearly with system resolution, i.e., inversely

with numerical aperture, in both experiments and simulations. This linear variation
is shown explicitly in Figure 6.5a, where the two-slit imaging error is calculated as
a function of coherence and resolution, and in Figure 6.6a, which shows the same
error measure calculated for 20 randomly generated images and averaged. To
remove the dependence of error on incident flux, we used the normalized error

measure:

2
e2 (2)= 'Hl(x,z) - IO(x,z)‘ dx 69)

J Io(x,z)lzdx

Since the normalization factor is constant in s, it does not alter any of the

theoretical conclusions drawn in Eqgs. (6.4-6.8).

6.4. Optimal spatial coherence

In all cases presented here, the optimal coherence diameter is closer to incoherence
than to full coherence (assuming a mask size of at least a few millimeters), and
increases linearly with system resolution (inversely with numerical aperture). The
same variation occurs in a quantized form when we introduce photoresist

thresholding in Figures 6.5b and 6.6b.
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Figure 5. Imaging error plotted vs. illumination coherence and system resolution
for two-point imaging: (a) aerial image error, (b) photoresist exposure error.
Notice the minimum error varies linearly with the minimum feature size (inversely

with the numerical aperture). Simulation wavelength = 248 nm.
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Empirically, we find in general that

Sopt = 3mAf /D =3m)A/ NA (6.10)

independently of the mask size (slit separation). Although this is an empirical
formula, it is intuitively appealing because a three-resolution-element coherence
diameter just allows a feature to destructively interfere with its two (opposite-
phase) nearest neighbors while maintaining the larger effective aperture size of
incoherent illumination. Thus a smaller coherence diameter would compromise the
destructive interference between adjacent pixels, since their fields would add
incoherently, while a larger coherence diameter would reduce the width of the

transfer function without significantly enhancing inter-pixel interference.

The reciprocal dependence on numerical aperture implies that smaller numerical
apertures favor more coherent illumination, which is also intuitive since the relative
advantage of phase masks is greatest when the NA is small. For typical
photolithography masks, mAf/ D = L5um at the mask plane, meaning the optimal
coherence diameter for enhancing resolution and focal depth is around 4.5 pm,
much closer to the incoherent limit than to coherent illumination. Again, this effect

is independent of speckle, which further degrades coherently illuminated images.
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Figure 6. Imaging error plotted vs. illumination coherence and system resolution,
averaged for 20 randomly generated images: (a) aerial image error, (b) photoresist

exposure error. Wavelength = 248 nm.
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6.5. Conclusion

From these results we can draw immediate conclusions for projection
photolithography. Most important is that, independently of speckle, coherent
illumination is rarely optimal even when using phase masks. The optimal
coherence diameter depends explicitly on the imaged pattern, but in general varies
inversely with the system’s numerical aperture, or linearly with resolution.
Although the computation time for numerically solving Eq. (6.5) becomes
prohibitive for large images, approximate solution techniques [10] lessen the
burden. Finally, since phase masks tend to improve focal depth as well as

resolution, we may expect s, to also increase with focal depth. This is evident

from the classical expression Az o< Ax2 /A <)X/ NAZ, where Az is the depth of

focus, implying

Sopt o< myAAZ . (6.11)

Given illumination coherence s, this places an upper limit on the allowable focal

depth before imaging degradation occurs.



119

References

1. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans.

Electron. Devices 29, 1828 (1982).

2. Y. Liu, A. K. Pfau, and A. Zakhor, SPIE 1674, 14 (1992).

3.Y.C.Pati and T. Kailath, JOSA A 11, 2438 (1994).

4. B. Salik, J. Rosen, and A. Yariv, Opt. Lett. 20, 1743 (1995).

5. K. D. Lucas, A. J. Strojwas, and K. K. Low, SPIE 2197, 489 (1994).

6. B.J. Lin, Circuits & Devices, March 1993, 28.

7. M. D. Levenson, Solid State Technology, February 1995, 57.

8. H. H. Hopkins, Proc. Roy. Soc. A208, 263-277 (1951).

9. M. Born and E. Wolf, Principles of O ptics (Pergamon, Oxford, 1965), p. 526.



120

10. B. Salik, J. Rosen, and A. Yariv, “Average coherence approximation for

partially coherent optical systems,” JOSA A 13, {1996).

11. B. Salik and A. Yariv, “Effect of spatial coherence on photolithographic phase

mask performance,” submitted to JJAP (12/96).



Chapter Seven

Ballistic imaging through self-interference

In this chapter I will describe a novel method of imaging through random media.
This work is related to the preceding material in its utilization of coherence effects
to enhance imaging; still, there are several issues unique to this problem, which I

will now briefly motivate.

7.1. Introduction to imaging through scattering media

In many imaging applications, a scattering medium lies between the object to be
imaged and the imaging system (Figure 7.1). This is true for applications such as
biological tissue analysis, materials characterization, and remote imaging (in fact it
is true, but probably not limiting, in every practical application, including
photography and, due to gravitational distortion, even space-based astronomy).
As the illumination from the object to be imaged propagates through a random

medium, there is in general a fraction thereof which is unscattered, called the
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ballistic signal component. This fraction depends on the size, séattering, and
absorption of the intervening medium. A prevailing strategy in imaging through
random media is separating the unscattered (ballistic) signal from scattered
illumination. This has been achieved with a variety of techniques, including time-
resolved detection [1], spatial coherence holography [2], and temporal coherence
holography [3]. All these techniques require access to the illumination source,
through either control of its spatio-temporal behavior or acquisition of a reference
pulse. In many applications, e.g., astronomy, space-based imaging, and remote
targeting, the illumination source is inaccessible and these methods are therefore
inapplicable. In such cases, which often involve turbulent media (e.g., the
atmosphere), existing imaging methods such as shift-and-add or speckle
interferometry [4] must operate with short exposure times and invoke strong
assumptions about the object and propagation medium, e.g., isoplanacity [5]. In
this chapter I shall introduce a novel technique for imaging through random and
turbulent media which utilizes ballistic photon detection and does not require

source manipulation of any kind.
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Figure 7.1. Imaging through random media: a scatterer (in general distributed)

lays between the object and imaging system.

7.2. Theoretical preliminaries

Let us begin by reviewing the theoretical basis for ballistic imaging. We begin with

the inhomogeneous vector three-dimensional wave equation

2iky, 8(8E)+_1_82(8E)
c

2 200 . _
V2E + k§eE = -V (E- V(Ine)) % tT1 g

(7.1)

which assumes monochromatic illumination of frequency @ = ck, and zero space

charge. We now allow the permittivity € to vary around some average <€ >:
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e(r,t)y=<e>{+€(r,1)), k2 =<g> kg (7.2)

which expands (7.1) to

2

V2B 4 k28 =k B -V(E-VE)- 22 L (e EE)+ <e>9° ieE)
c Ot 2 *?

(7.3)

To simplify this unwieldy expression, we make some assumptions about the
fluctuations in €. First, we characterize these fluctuations by a characteristic length
1, characteristic velocity v, and characteristic time T = I/v. Then, if the fluctuation
amplitude € >> v/c, we can neglect the last two terms of (7.3) and arrive at the

vector stochastic wave equation:
2 20 .2 —
VE+k“E=-k“€E-V(E-V¢) 7.4)

The rightmost term represents “depolarization,” or a coupling between the
polarization directions, and gives the equation its vectorial nature (thus, if we
explicitly write the equation for each field component, we end up with three
coupled equations). If this term is small compared to the first term on the right,
the equation decouples into three independent equations, one for each polarization

direction, which in rectangular coordinates all assume the form
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V2E; +k2(1+€)E; = 0. (1.5)

Next we attempt to use (7.5) to find a diffraction integral for scalar propagation
through a random medium, in analogy to free-space scalar diffraction (see chapter

1). We assume, without loss of generality, a Green’s function of the form
G(r,r')=Gy(,r)Gg(r,r') (7.6)

where Gy is the free-space Green’s function of our choice. Normally a Fresnel-
type kernel of the form

N [ ik 2 ]
Go(r,r )—ix(z_“z.)ex 2(Z_Z,)[(x—x) +(y=y) ]|J (7.7)

is sufficient, due to the large propagation distances involved (here z is the axial
coordinate and x,y are the transverse coordinates). Substituting this in the Green’s
function derivation of diffraction theory (chapter 1), we arrive at the following

modified diffraction integral:

w ik w2 n2
1 = ((x=x)"+(y-¥)")
E(x,y,z=L)= —'KL e2L Gg(x,y,L;x", y' O)Eo(x', y' )dx'dy'
i

(7.8)
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where E, is the object field, (x’,y ) are the transverse coordinates at the object
plane, L is the distance from the object, and (x,y) are the transverse coordinates at
the observation plane. A Taylor expansion of Gg in powers of x, y, ¥, ', and L
produces a DC term corresponding to free-space propagation, and therefore

proportional to the amplitude of the ballistic signal.

° °
o ©
o o
° o °
L, (ARS— -] ° —
° o
° ° °
o o

pulse illumination
time-resolved

image

shutter

Figure 7.2. Ballistic imaging via pulsed illumination: imaging shutter is

synchronized to capture first arriving light.
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7.3. Methods of ballistic imaging

Let us next review the existing methods for differentiating ballistic from scattered
signals. The first such technique was introduced by Duguay and Mattick in 1971
[1], and entails illuminating the object to be resolved with short pulses (Figure
7.2). As the pulsed signal propagates through a scatterer, the distribution of
scattering distances will cause a broadening of the pulse, with weakly scattered
signal components forming the leading edge of the pulse and highly scattered
components forming the trailing edge. By using a shutter synchronized to the
illumination pulsing at the imaging aperture, we can eliminate the contribution of

scattered photons to the image.

L] °
o o
temporally s % % o {\
incoherent > & b0 ° e 4 >
source e ° . 3 U
time-resolved
image

Figure 7.3. Holographic technique for capturing first arriving light: Reference

beam is delayed to interfere coherently at image plane with ballistic signal.
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A continuous-wave method of isolating ballistic photons was introduced by
Abramson in 1978 [3]. This technique requires illumination of the object by a
temporally incoherent source (Figure 7.3). When the image-plane field is mixed

with a properly delayed

scattering
medium

combined
image

incoherent
object

Figure 7.4. Schematic configuration of self-interference imaging. Images
propagating through different paths but identical distances in scatterer are aligned

and superimposed at the image plane.
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reference beam (the delay should equal the delay a ballistic signal would experience
in propagating from object plane to image plane), the ballistic signal interferes
coherently with the reference beam, forming a grating proportional to the former,
while all scattered signal components interfere incoherently due to their inherent
time delay, forming a DC background pattern. Thus the ballistic image can be
extracted by holographically or electronically retrieving the (high-frequency)

grating-superimposed information and discarding all low-frequency components.

These two temporal discrimination methods have direct spatial counterparts [2].
Specifically, time-resolved imaging is analogous to spatially-resolved scanning
imaging, where a narrow beam illuminates the object and the imaging aperture
accepts only small-angle (low-spatial frequency) signal components, thereby
eliminating highly-scattered components (which tend to exit at large angles).
Temporal coherence imaging, on the other hand, is analogous to spatial coherence
imaging, where the object is illuminated with a spatially incoherent source and the
imaged field is mixed with a properly aligned reference beam. Here the
interference between image and reference beam is coherent only if an image
component is displaced by less than a coherence diameter while propagating
through the scatterer. Thus the grating formed at the image plane will almost

exclusively contain information from weakly scattered or ballistic components.
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[B(x) + 51 (x))e 71 20x/A

O [b(x) + 5 (x)]e 0>
Figure 7.5. Ballistic components b(x) interfere at an angle 20 to form a grating of

frequency 6/A at the image plane; scattered components s;(x) interfere incoherently

and do not form a grating.

7.4. Ballistic imaging via self-interference

Next consider an object illuminated with low-coherence light, as in Figure 7.4.
After propagating through a scattering medium, two images of the object will
interfere coherently only if their path difference Ad through the medium is small
compared to the coherence length, ie., Ad <I, =ct, (for spatially incoherent

objects, the relative displacement must be less than the coherence width). Thus if
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we interfere two images of the same object acquired at points equidistant from the
object (extended objects are treated below), only the ballistic signals from both
images (and the small fraction scattered through the same path lengths to both

images) will interfere coherently at the image plane.

When we interfere the images at an angle 0 (Figure 7.5), the total intensity at the
image (x-y) plane is

~i21(8,,x+8,, y)/A i27(0,,x+8,,y) /A |2

Gy =[60e )+ 51690 + By + 5206 9)e

= ls1 o) +]s2 e ) + o (x, 9] cos® 2m@ ,x+0,3) /M) + CT

ey

where A is the illumination wavelength, b(x,y) is the ballistic (coherent) field
component, and si(x,y) are the scattered (incoherent) components at the two
lenses, whose cross terms (CT) disappear over time averages larger than the
coherence time. Thus the coherent components b(x) form a grating of spatial
frequency 6/A, on which our ballistic image information is superimposed. To form
this grating, the two images must overlap to within the coherence width of the
object illumination; this serves as a useful calibration tool, since we can adjust the
images’ positions until the strongest possible grating forms at the image plane, at

which point they overlap exactly. Also, the grating frequency must be large
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enough to sample our image without information loss, i.e., it must obey the
Nyquist criterion

Ugrating =0 /A>2B @)

=0 >2AB

where B is the image’s spatial bandwidth. Two-dimensional systems must obey

this relation in each dimension independently.

7.5. Object-plane constraints

Note that there is no assumption of isoplanacity in this analysis, i.e., light from
different points on the object need not travel identical paths through the scatterer;
this distinguishes the method from almost all other atmospheric compensation
techniques [4]. Still, we do need to ensure that light from any given point on our
object travels the same distance to both imaging systems, to within a coherence
length. Assuming the center of the object is equidistant from the centers of the

two imaging systems, this requires

dAx/21 < 1, (3)

where d is the distance between the imaging systems, Ax is the object size, ! is the

object’s distance (from the center of the two imaging systems), and /. is the
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illumination coherence length (see Figure 7.4). This requirement is usually far less
stringent than isoplanacity, and does not depend on the properties of the scattering

medium.

7.6. Experimental technique and results

Once the grating is formed, we can extract the ballistic signal in several ways--
holographically, by exposing film to the grating and then illuminating it with a
coherent plane wave; electronically, by capturing the image with a CCD and frame
grabber (assuming the grating period is smaller than the CCD elements) and using
discrete Fourier transforms to extract the information superimposed on the grating;
or optically, using spatial filtering to isolate the grating information (this requires
conversion of our image to a spatially coherent one, which can be done using
conoscopic holography [6]). The latter two methods are preferable from a
practical viewpoint, since they allow real-time imaging; we demonstrate the second

below due to its experimental simplicity.
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(a) (b) (©)

Figure 7.6. Simulation of smiley-face (a) to be resolved through a distributed
scatterer, (b) imaged without compensation, and (c) imaged with self-interference

technique.

Using a distributed scatterer model [7,9] we simulated the performance of the
image self-interference technique assuming a ballistic signal fraction 10™ of the
object intensity (i.e., 0.1% of the light emanating from our object is transmitted
ballistically through the scatterer). This model introduces point scatterers
throughout the propagation volume, whose distribution produces the desired mean
scattering free path. Our simulation results, shown in Figure 7.6, indicate that the
self-interfered image (c) has far lower noise than the conventionally acquired image

(b); both assume an infinite lens aperture.
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Next, to test the degree to which scattered light interferes coherently with the
ballistic component, we mixed an incoherent noise beam with a coherently
illuminated image, as in Figure 7.7, and attempted to reconstruct the coherent
image using self-interference (we extracted the grating electronically; examples of
high- and low-coherent component gratings are shown in Figure 7.8a and 7.8c,
respectively). The incoherent noise was generated by routing a portion of the
coherent illumination beam through a rotating diffuser; thus its center wavelength
was unchanged, and separation was necessarily coherence-based. As expected,
perfectly aligned images allow the incoherent beam to form a grating with itself,
and the degree to which the images are aligned determines the grating strength. In
Figure 7.8 we give examples of well-aligned and misaligned images: in Figures
7.8a,b a coherently-illuminated image with incoherent background, and in figures
b,c an incoherently-illuminated image. Figure 7.9 shows the variation of image
SNR (after self-interference) with radial image displacement, along with a fitted
theoretical curve assuming a Gaussian mutual correlation function. The results
indicate a coherence width of 850 um (corresponding to the FWHM of the mutual
correlation function), which is the lower bound for detectable scattering distances
using this source and diffuser (HeNe laser at 633 nm and 1725 rpm, 14.3 cm

diameter diffuser).
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Figure 7.7. Experiment to determine effectiveness of self-interference in
eliminating incoherent noise, and to measure coherence length of HeNe laser and
rotating diffuser (=633 nm, diffuser diameter = 14.3 cm, diffuser speed = 1725

RPM).
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(@) (b)

(©) (d)

Figure 7.8. Typical self-interference results: incoherently-illuminated image with
no background noise (a) aligned and (b) misaligned; and coherently-illuminated

image with incoherent background noise (a) aligned and (b) misaligned.
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Figure 7.9. Variation of image-plane SNR with misalignment of images.
Theoretical (solid) curve is the expected SNR vs. misalignment for a Gaussian

mutual-intensity function with an 850 pm coherence diameter.

Finally, we employed the self-interference method to compensate for a distributed
scatterer transmitting 2% ballistic illumination (scattering coefficient a=.782 cm’’;
length=5 cm) with an interference angle of .22 radians and wavelength of 633 nm.
The grating was recorded on a CCD and extracted digitally; images resulting from
no compensation, ordinary spatial filtering to eliminate highly-scattered rays, and
self-interference (all normalized by their maximum intensities) are shown in Figure
7.10. These conform to the theory, simulations, and preliminary experiment
above, showing a significant restoration of the image via self-interference and a

large advantage over spatial filtering alone. The results are somewhat better when
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the distributed scatterer is replaced by a thin diffuser as in Ref. 2, but this case is
less relevant since self-interference is most useful for long-range imaging. Also,
we expect objects reflecting with a polarization preference (unlike the laser-
diffuser combination) to enjoy a somewhat beiter SNR due to the depolarizing
effects of scattering [8]. Because of the ballistic component’s low intensity, the
final image suffers from CCD quantization errors due to limited sensitivity; this
problem can be alleviated by using a longer integration time, even in the case of a
turbulent medium, since most of the light affected by the turbulence interferes

incoherently with the other image.

(a) (b) (©)

Figure 7.10. Result of imaging the smiley face through a 5-cm scatterer with
scattering factor a=.782 cm’, (a) without any compensation, (b) with spatial
filtering to eliminate highly-scattered light, and (c) with image self-interference and

electronically extracted ballistic grating.
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Compared to reference-beam interferometric techniques, this method produces a
much weaker ballistic grating, since the interference intensity is proportional to the
ballistic signal intensity, whereas in reference-beam techniques it is proportional to
the product of the ballistic and reference beam amplitudes. The resulting
degradation in SNR should therefore only be tolerated when an aligned reference

beam is not available.

7.7. Conclusion

As noted in Reference 2, both temporal and spatial incoherence can be used to
differentiate ballistic from scattered illumination. Temporal coherence methods
utilize the longer propagation time of scattered light, while spatial coherence
methods rely on the spatial displacement thereof. The extent to which these two
techniques overlap is unknown, but with self-interference both spatially and
temporally incoherent sources may be imaged, and the image quality will increase
with their degree of incoherence. Since light scattered less than a coherence length
interferes coherently at the image plane, our image resolution varies directly with
the illumination coherence length (assuming a large aperture). This, along with its
tolerance for large integration times and independence of isoplanacity assumptions,

makes the technique useful for many long-range imaging applications.
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Chapter Eight

Realizability of arbitrary space-time field

distributions

I wish to conclude by addressing the limits to the synthesis of arbitrary desired

field distributions over various subsets of four-dimensional space-time.

8.1. Introduction

This issue has been treated for many interesting special cases [1-5], and is
motivated by the need for “wavefront engineering” in fields from photolithography
[6] to super-resolution imaging [7]. Here I will adopt a general approach
assuming only scalar free-space propagation. The assumption of scalar fields
actually restricts our solution space, and therefore to the extent that a scalar field
distribution is realizable, so is at least one vector field distribution with the same

intensity.
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8.2. One spatial dimension
We begin, for concreteness, with a time-harmonic field (this is relevant to most

applications), after which we shall generalize the results to arbitrary time

dependence:

E(x,y,z,t) = f(x,y,z)eimt 8.1)

The wave equation then becomes

192%E
ViE=——F
c® ot
(8.2)
2
()
=V f=-—5 f=-k§f
c
where kg = Vo2 /2.
When £ has no y- or z-dependence, the Laplacian becomes
2
d
vip-4S 8.3)
dx

and the solutions of (8.2) are

fx) = Ae k0¥ 4 geikox (8.4)
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Given two free parameters, A and B, we can specify the field arbitrarily at only two
points on the x-axis. More generally, for every frequency o (spatial frequency ko)
in our solution, we can specify the field arbitrarily at two additional points on the
x-axis. Thus a field specified at N points on the x-axis requires in general N/2

frequencies to realize.

8.3. Two spatial dimensions

Given ko, there are infinitely many solutions to the two-dimensional analogue of

(8.2),

9%y 9?2
axzf + ﬁ: —k§ f(x,7). 8.5)

We decompose the solutions to separable eigenfunctions:

Feoy) = f,(x) f,(y)
8.6)
192, 19%

2
— +
T a1, 8y

=—k{

implying each term on the left must equal a constant, e.g.,



2
T Ly T —k s - —k ’
fx ax? A Y
(8.7)
k2 k2 =g
which yield space-harmonic solutions of the form (8.4) in x and y:
F(x,9) = (Age %% 4 Bet*xX) (a6 1 B ™77y (8.8)

Retaming only the forward-traveling waves (this will not affect our results) and

labeling o=k,/21t=1/A,,
: —i . ~iy. k- (2m0 )?
o (6 7) = A e R A e = p e TIBR g TV (2mt) (8.9)

ky
— to the x-axis. A
kx

which is a plane wave propagating at an angle 6 = tan ™!

general superposition of these functions can be written

) oo ) ) 3 5
Foap= [ opda = [ Ay e 284 TVKO-ER ) Ty (810)
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We wish to realize some g(x,y) defined at a discrete number of points (x,y);. Since
these points are discrete, we can always define a fine enough rectangular mesh of

points x,, y» which comes arbitrarily close to the points (x,y); (Figure 8.1). Thus,

letting Ag = Axy Ao s

t : : 2 2
Flrgsy )= [ ag e 2mmd g mom ko ~(21007 g 8.11)

It is straightforward to show that the eigenfunctions (8.8) are mutually orthogonal
over the continuous plane (x,y); what we need, however, is a set of linearly

independent eigenfunctions over the discrete plane (x,, ym).

Setting

nx my,
x, = _A—IQ Ym =_&Q, (8.12)

0<n< N, 0S<m< M

where x, and y, are the maximum x and y distances, respectively, the inner product

of ﬁu and ]&2 is
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fay

Figure 8.1. An arbitrary discrete set of points can always be covered arbitrarily

well by a rectangular mesh.

N-1M-1

oy Jony )= Y Y im@r-0)x, 2w (B2-B )yn
ﬂ=0m=0

(8.13)

N-=1 M-1
Y ei2m@a—apnxg/N Y 2w (=P Imyo/M
n=0

m=0
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where we assigned B; = k& -(2n0;)* /21 = 7\52—01?. We seek a set of NM

linearly independent eigenfunctions; the first summation will provide N orthogonal

a’s, e.g.,
o= j/xp,0<j< N-1 8.14)
J 0

which span the space of functions over {x,}. With respect to the first summation,

any fy N is equivalent to f, 5 viz

Nz‘l —i2n ( )nxO/N

n=0 n

51 -izw (- )nxO/N , N=1 -2 (“Dynxg /N
—i2xen _ xg

e e = e

0 n=0

MZ

]

(8.15)

so0 to get a set of NM linearly independent eigenfunctions over {x,, y.} we need for

each fy ; @ set of M functions { f feN } which are linearly independent with

respect to {y.}. Since

2 ) 9 j+cN\2
B,-+c,v=\/7h0 —@ jren)T =4 Ay _(_;o—lj (8.16)
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is not guaranteed to be an integer multiple of y;l’ as o j oy is of x;l, it is
difficult to find a set of M mutually orthogonal functions { f, ien } with respect to

{yn}. We will therefore content ourselves to prove linear independence. To do

this, it is sufficient to show that any set of M functions { f, e €€ C} are

linearly independent over {y,} provided

B jre,n =B jic,n #FaM [ yo
(8.17)
Vge Z;Vey,cne €

i.e., that no two functions in the set are equivalent with respect to the second

summation in (8.13). Suppose we start with a set { f, sen SCE C } which have

evenly spaced {B j, .x } separated by 1/y,, i.e., they are orthogonal with respect to

{y=}, but are not all solutions of (8.5). An arbitrary function f, jran G0 then be

expanded as a sum of these functions over {y,}:

—i2 : M
e TmyoB jran / = ZW

ceC

—i2tmyoB o /M
L‘e ’

(8.18)
0<m< M

where w, are the expansion coefficients
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M-1 .
w, = Z e—zZTtmyOB ﬁdN/MelznmJ’OB Hen I M ,
m=0
8.19)
ceC.

If now we wish to replace some function f e in our orthogonal set by

oN

& an the new set will still span the space of functions over {y,} if and only if

WE can express fy sreqn OVET {y~} as a linear superposition of the new functions.
0

N

But from (8.18) we have

e*imm)’oﬂ jreon I M =_.1__e‘i27‘m}‘03 jran /M + Z _""Le—ﬂﬂmmﬁ ﬁcN/M’

WO cE C—L‘O WO

0<m< M

(8.20)

which is analytic iff wy # 0. Thus the set { an o sy €EC - co} spans the

space of functions over {y,} iff

M-1 .
wp = Z e—-127tmyoﬂ ﬁdN/Me’Z'":mYOB jregh I M 20 8.21)

m=0

or, equivalently,
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B jran =B jren #qM [ yg
(8.22)
Vge Z;Vee C—¢y

which, together with the orthogonality of the original set, is the same as condition
(8.17). We can now repeat this procedure by replacing a member of our new basis
with another arbitrary function, as in (8.20); we thus show that any set of M

functions { f jron SCE C } are a basis over {y,} iff they satisfy condition (8.17).

By choosing M such functions for every j we form a set of NM linearly
independent eigenfunctions spanning the set of possible functions over {x,, y.}. In
fact, there are (countably) infinitely many such choices we can make for every j;
recall, furthermore, that we limited ourselves in (8.14) to functions which are
orthogonal over {x,}, which restricted & to discrete values. Replacing that
requirement with linear independence over {x,}, as we required over {y,}, allows
us an uncountably infinite solution space. This means that every discrete field
distribution in the xy-plane is realizable as a solution of the 2-D scalar wave
equation, and in fact a field specified on a rectangular mesh of NM two-

dimensional points is physically realizable with NM two-dimensional plane waves.

8.4. Three spatial dimensions

In rectangular coordinates, the wave equation (8.2) is
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3%2f 925 32
S =il sy

which, decomposing to separable eigenfunctions, becomes

f(x’}') = fx (x) fy(Y) fz(z)

192%f, 19%f, 13%;,
= — 2 +— ) +— 7 =—k0
fx Ox fy dy Iz 0z

implying

2
193% 2 19S5 130,
fr ox? 7y 0y?

-k,
Y f, 92 z

KZ4kS+k]=k§

whose solutions are

(8.23)

(8.24)

(8.25a,b)

flx,y,z)= (Axe—ik"x + Bxeik"x)(Aye”lkyy + Byelkyy)(Aze_ikzz + Bzeikzz). (8.26)

The condition (8.25b) allows us two continuous degrees of freedom, with which

we wish to realize a discrete 3-D field distribution. Since we showed above that a

discrete 2-D field is realizable given one continuous degree of freedom, we simply
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use our extra free parameter (say k,) to span the extra dimension (say z). For

example, using
z,=ZT, 0<i<L (8.27)

2z, being the maximum z-distance, and setting

Yj=kgi/2n=jlzg, 0% j<L (8.28)

the inner product over z of two forward-propagating eigenfunctions is

=1 =1 i2x j‘jlzo/L
(fzj9 fz]. )= 5“ ezZ?t(’Y 7Y )z _ S e zy - 817 (8.29)
1=0 =0

giving us L orthogonal eigenfunctions spanning the set of functions over {z}. For
each of these, we can solve the two-dimensional problem of finding NM linearly
independent eigenfunctions over {x,, y.} using the procedure given above, giving
us NML eigenfunctions which are linearly independent over {x,, y., z} and thus
form a basis thereon. An arbitrary discrete three-dimensional field distribution
defined on a rectangular mesh of NML points is therefore realizable by a

superposition of NML three-dimensional plane waves.
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8.5. Three spatial dimensions + time

To treat this case we must drop the assumption of monochromatic illumination.

We therefore revert to the full wave equation

2
? tf =0 (8.30)

1
322 02 d
and again assume separability of E(x,y,z,) to extract the following eigensolutions:

_: . s ik
E(X,y,l,t)-_— (Axe zkxx +Bxelkxx)(Aye lkyy+ Byel yy)x (8 31)
(Aze“ikzz + BzeikzZ)(Ate—i(Ol ¥ Bteiﬂ)l)

with k,%+k)2,+kz2 =02 /c?= kg as in (8.25b). We now have three free

continuous parameters (o is not fixed) with which to realize a four-dimensional
discrete field distribution. In the same manner that we extended our two-
dimensional results to the three-dimensional case, we may use two of the free
parameters (say, k, and ®) to generate sets of eigenfunctions orthogonal over the
corresponding lattices (say, z and ¢), then use the last degree of freedom to
generate a set of eigenfunctions that spans the remaining two-dimensional lattice,

as in the 2-D case discussed above.
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8.6. Realization of arbitrary fields

In order to obtain the relative weights of the eigenfunctions in our realization, we

first write our desired field distribution u,, as a sum of orthogonal functions g x
on the grid (we use two dimensions for simplicity):
ine d -k myg
N=1M-1 N=1M=1  _jogdIX0 _inn
U= 2 2vigX =X Xvge N n M (8.32)
=0k=0 " =0 k=0
Note these functions are not necessarily solutions of the wave equation, since in
general
. L )
D2+ 2n (8.33)
X0 Y0 0

However, we know from (8.18) that each of our eigenfunctions can also be written

k.

nm

on the discrete grid as a sum of the orthogonal functions g
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] k
_ SIMs1 op L0 jpp = YO
fexdN = g7 2R 0% cyay IN+myBoran /M) - % % ed, xo N, Ty M
j=0 k=0
N-1M-1
d
= 2 WCJ‘ gn{‘n,
=0 k=0
0<sm<MO0<n< N
(8.34)

Writing (8.34) as a tensor product, F=GW (in the two-dimensional case F, G, and
W are all N x N x M x M tensors), we can express the orthogonal basis G on our

* and g* are

grid in terms of F, viz. G= F W', which is nonsingular if both f
linearly independent sets of functions. We can also write (8.32) as a tensor

product U=GV (in two dimensions U and V are N x M), implying

U=FWlv=r (8.35)
where V' =WV is the coefficient matrix for the F representation of U.

We used this technique to realize a randomly generated complex discrete field
distribution over a grid of 4 x 4 elements. Figure 8.2a,b shows the desired real and
imaginary parts of the field at the grid points, while Figure 8.2c,d shows the
realized real and imaginary distributions everywhere, which match the desired field

at the appropriate points. In so doing, we took advantage of the fact that, using

the g * definition in (8.32), v is simply the discrete Fourier transform of u,n,



(b) (d)

Figure 8.2. Realization of two-dimensional discrete field distribution. (a) and (b):
randomly generated 4pxaq X 4pixa discrete real and imaginary parts of field
distribution, respectively; (c) and (d): realized real and imaginary parts of field
distribution which match the desired distributions in (a) and (b), respectively, at the

appropriate points in 2-D space.

while w‘f is the DFT of fcteV , allowing us to use fast fourier transforms to

calculate these tensors.
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8.7. Converseness with Nyquist sampling

It has been pointed out to me [8] that the theorems proven here are analogous to
the Nyquist sampling theorem for continuous signals. Specifically, the Nyquist
theorem states [9] that a continuous signal of bandwidth B should be sampled at
intervals smaller than 1/2B in order to avoid loss of information (in other words,
information preservation is guaranteed if the sampling interval is smaller than
1/2B). The theorem given here for one dimension describes the synthesis of
discrete fields by superposition of plane waves, and state in general that a field
defined on N points requires N/2 plane waves to realize (N plane waves if we
disallow backward-propagating solutions). Assuming a discrete spatial interval of
Ax, then, the signal support is NAx, meaning our bandwidth is
B=(N/2)/(NAx)=1/2Ax. Thus we have the converse of the Nyquist sampling
theorem: Given a discrete field defined on intervals 1/2B, a continuous field of
bandwidth B can always be constructed which equals the discrete field everywhere

the latter is defined.

8.8. Average intensity on volume elements

For most applications, we are concerned more with the intensity distribution than

the field distribution; furthermore, we usually measure not the intensity at



159

particular points, but integrated over discrete volume elements. Therefore, the
question of whether arbitrary local-volume-integrated intensity distributions are
synthesizable becomes interesting. We will treat the two-dimensional case here,
since it is the simplest case for which arbitrary discrete monochromatic field
distributions are synthesizable, and the results are readily generalizable to higher
dimensions. We assume throughout a continuous field distribution, which is the
case if we have no charges and use a finite number of plane waves to synthesize

our field.

The intensity / at every point is proportional to the square of the field strength;

n n+1
therefore, averaged over a volume element xe€ [7V~ X0y x0),
[m m+1 )it
€ [—yo,—yp),itis
y MJ’O M Y0
n+l  m+1
. X0 Yo
2
18 = E(x,y)| dydx 8.36
nm AxAy ,,j mj ’ ( Y)I » ( )
N0 Yo

where Ax=x_ /N,Ay=yy/M are the pixel dimensions. As Ax,Ay — 0, this

can be approximated by
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lim 7% = —— B xg, " )’ZA A 'E(" - )Iz (8.37)
=——\E(—xqy,—— xAy=|E(— xq,— .
AxlAIerO nm = Ay [N 0y 70 YEIEUN M0y 70

with an error of the order (AxAy)’ at each pixel, implying an integrated intensity
error on the xy-plane of the order AxAy (Figure 8.3). This order of error can be
improved by using higher-order approximations, e.g., the trapezoid rule or

Cramer’s rule [10].

Ax
T

*%\:\3\\%& RS

RS RAARENY

pii

(a) (b)

Figure 8.3. (a) Approximating the intensity distribution by a sequence of

rectangles. (b) In one dimension, the integral error over one pixel (rectangle) of

Al
width Ax is at most Ax- Axr, which for continuous /(x) scales as Ax? when Ax is
>4

small.
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(@)

(b)

Figure 8.4. (a) Sparsely specified field (intensity) distribution leads to (b) large
intensity fluctuations within area elements, while densely specified intensity

distribution (c) leads to smaller deviations within area elements.
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Therefore, by making Ax and Ay smaller in the specification of our discrete field
distribution (or, equivalently, making N and M large), we can come arbitrarily
close to any desired intensity distribution over the xy-plane. This is illustrated in
Figure 8.4, where the large Axand Ay in (a) lead to the large intensity variations
over area elements in (b), while finer Ax and Ay, as specified in (c) lead to smaller
fluctuations (d). The amplitudes of the specified discrete field are uniquely
determined by (8.37), while the phases are free parameters in this problem. The
generalization to three-dimensional and time-dependent intensity distributions is

straightforward.

8.9. Conclusion

Using monochromatic illumination, it is evidently possible to realize arbitrary
discrete two- and three-dimensional field distributions, while one- and four-
dimensional distributions require multiple frequencies. These conclusions depend
only on the number of free variables resulting from the wave equations, and
therefore it does not matter which dimensions we choose to specify; for example, a
two-dimensional distribution may be specified on the xy-, yz-, or xz- planes.
Furthermore, by dropping the assumption of time harmonic fields, we can include ¢
as one of the specifiable dimensions. It is clear that, using monochromatic plane
waves in three dimensions, we can realize arbitrary discrete field distributions in

one and two dimensions, since these are special cases of three-dimensional



163

distributions. Therefore, it is important to remember that the treatment above
addresses the realizability of N-dimensional discrete fields using plane waves in N
dimensions, and thus that the realized fields are constant in the other (3-N)

dimensions.



164

References

1. J. Rosen and A. Yariv, “Synthesis of an arbitrary axial-field profile by

computer-generated holograms,” Opt. Lett. 19, 843-845 (1994).

2. B. Salik, J. Rosen, and A. Yariv, “Nondiffracting images under coherent

illumination,” Opt. Lett. 20, 1743 (1995).

3. R. Piestun, B. Spektor, and J. Shamir, “Wave-fields in 3 dimensions--analysis

and synthesis,” JOSA A13, 1837-1848 (1996).

4. T. Dresel, M. Beyerlein, and J. Schwider, “Design and fabrication of computer-

generated beam-shaping holograms,” Appl. Opt. 35, 4615-4621 (1996).

5. B. Salik, J. Rosen, and A. Yariv, “One-dimensional beam shaping,” JOSA A

12, 1702-1706 (1995).

6. Y. Liu, A. K. Pfau, and A. Zakhor, “Systematic design of phase-shifting masks
with extended depth of focus and or shifted focus plane,” IEEE Trans. Semic

Manuf. 6, 1-21 (1993).



165

7. C.J. R. Sheppard, “Leaky annular pupils for improved axial imaging,” Optik

99, 32-24 (1995).

8. J. Obrien, private communication 2/2/97.

9. A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing, New

Jersey: Prentice-Hall (1989).

10. Louis Leithold, The Calculus with Analytic Geometry, New York: Harper &

Row, 1968, p. 513.



