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Chapter IV   Modeling of the Association Behavior of Linear 

Chains with Strongly Associating Endgroups 

4.1   Introduction  

 Our work so far has investigated whether linear chains possessing associating functional 

groups grafted at random positions along the entire chains can be useful as mist-control 

additives to aviation fuel.  Molecular designs involving both self-associating interactions and 

donor-acceptor interactions were studied, and the effects of extent of functionalization as 

well as concentration of polymer components on shear and extensional rheology of dilute 

solutions in non-polar hydrocarbon solvents were examined.  We have found that for both 

self-associating and donor-acceptor systems, intra- and intermolecular associations cause 

collapse of the chains and interfere with the mechanism of mist control by inhibiting 

stretching of the chain in extentional flow.  In this chapter, we consider molecular designs 

that overcome chain collapse by clustering associating groups at the ends of polymer chains.  

In particular, we construct a model that predicts, for long linear chains endcapped with 

strongly associating A and B groups, the equilibrium partitioning of the polymer into 

supramolecular linear chains and supramolecular loops of all sizes (Scheme 4.1).  We assume 

that the A and B endgroups associate with each other pair-wise with interaction energy εkT, 

but that neither the A nor the B endgroups self-associate.   

4.2   Theoretical  

To model the equilibrium aggregation of telechelic polymers A----A and B----B into 

supramolecular cyclic and linear chains of any length (Scheme 4.1), we consider the simpler 

case of association of telechelic polymers A1----A2 and B1----B2, and argue that results are the 

same (Section 4.2.6).  In doing so, we assume that the end-groups A1 and A2, and likewise B1 

and B2, are distinguishable but of identical reactivity (as might be the case, for example, if 

one atom of A1 were a different isotope than the corresponding atom of A2).  What is the 

equilibrium distribution of all the aggregates for a given energy of association εkT?  We can 

estimate this equilibrium assuming ideal solutions by making use of the following lattice 

model.1 

4.2.1   Model Description 
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 Consider a solution composed of Ns solvent molecules and NAtotal and NBtotal telechelic 

 A1----A2 and B1----B2 chains, of respective length MA and MB elementary units (monomers).  

The solution volume V is partitioned into lattice sites of volume a3, where a3 is the volume of 

a solvent molecule and also the volume of a monomer.  We will assume that there is no 

volume change upon mixing, so that V = a3(Ns + NAtotalMA + NBtotalMB) = Λa3, where Λ is the 

total number of “sites.”  We will use the subscript s to refer to the solvent and the subscripts i 

or j to refer to single-chain and supramolecular components.  Unless otherwise specified, 

sums ∑j are over all polymer components in solution, i.e., the telechelic starting materials and 

all polymer aggregates.  The volume fractions of solvent and polymer component j are φs = 

Ns/Λ and φj = NjMj/Λ, where Mj is the number of monomers of polymer component j.  Let φ = 

∑j MjNj/Λ  = 1−φs denote the total polymer volume fraction in solution.  The center-of-mass 

and configurational entropy of the polymer components and solvent is: 

 ln (0, )= Ω + Δ∑ j
j

S k N Smix  (4.1) 

where Ω(0,Nj) is the number of possible configurations of Nj molecules of polymer 

component j, each of length Mj, onto MjNj sites (referring to pure polymer before mixing), so 

that the sum accounts for the entropy of all the polymer components before mixing.  Here we 

have retained the notation of Hill2 for the entropy of a pure solution of Ni linear polymer 

chains of length Mi: 

 1ln (0, ) ln ln( ) ( 1) lni i i i i i i i i i i i
i i

cN N N N M N M N M N N M
M N

⎛ −
Ω = − + + − + − ⎜

⎝ ⎠

⎞
⎟

⎟

 (4.2) 

where c is the coordination number, i.e., the number of sites neighboring any given monomer 

where the next monomer on the chain may be found.  The entropy of mixing of the solvent 

and all polymer components, ΔSmix, is approximated using the Flory-Huggins expression: 

 ln lnmix s s j j
j

S k N N
⎛ ⎞

Δ = − +⎜
⎝ ⎠

∑φ φ . (4.3) 

Equation 4.1 does not account for the entropic cost of loop closure for supramolecular cycles; 

that contribution will instead be absorbed into the standard chemical potential of the cyclic 

components, as discussed later.  The entropic contribution to the mixture’s free energy is 

therefore: 
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 Next, the contribution to the solution free energy due to solvent-solvent, polymer-solvent, 

and polymer-polymer interactions is estimated by the random mixing approximation: 

 2 2(1 ) 2 (1 )int ss pp psF h hδ φ φ φ φ⎡ ⎤= Ω − + + −⎣ ⎦  (4.5) 

where δ is one-half the local coordination number, and hij are the microscopic interaction 

energies of the polymer and solvent species.  The total free energy F of the solution is the 

sum of FS, Fint, and of contributions from the internal free energy of solvent and polymer 

components: 

 0
int S s s j j

j
F F F N N 0μ μ= + + + ∑  (4.6) 

where μi
0

 is the standard chemical potential of the single-chain or supramolecular chain 

component i.  Using φ = (MiNi + ∑j≠i MjNj)/Λ with Λ = Ns + MiNi + ∑j≠i MjNj, the contribution 

to the chemical potential of polymer component i due to interactions is: 

 2
,

j i

int
int i i s pp i

i N

F M M
N

μ ω φ
≠

∂
= = − +

∂
ω  (4.7) 

where for convenience we have introduced ωmn = δhmn and ω = ωpp + ωss -2 ωps.  The entropic 

contribution to the chemical potential of polymer component i is: 
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 (4.8) 

or, after rearranging: 

 
1 ln

j i

jS i
i s i

ji i jN

F M f
kT N M M

φφ φ
≠

⎡ ⎤⎛ ⎞∂
= − + +⎢ ⎥⎜ ⎟∂ ⎢ ⎥⎝ ⎠ ⎣ ⎦

∑  (4.9) 
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where fi = ln(c-1) + Mi[1-ln(c-1)].  Differentiation of Equation 4.6 and substitution of 

Equations 4.7 and 4.9 give the following expression for the chemical potential of component 

i, valid for the single-chain building blocks and all aggregates: 

 0 2ln
j i

ji
i i i s i i s

ji i jN

F kT M f M M
N M M

φφμ μ φ ω φ
≠

⎧ ⎫⎡ ⎤⎛ ⎞∂ ⎪ ⎪= = + − + + − +⎢ ⎥⎨ ⎬⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∑ pp iω

B

. (4.10) 

 Consider a supramolecular component i made up of ni A1----A2 building blocks and mi 

B1----B2 building blocks: its size is Mi = niMA + miMB.  At the equilibrium partitioning of the 

telechelic building blocks into aggregates of all size, its chemical potential satisfies the 

equilibrium condition: 

 i i A in mμ μ μ= +  (4.11) 

where μA and μB are the chemical potentials of building blocks A1----A2 and B1----B2, 

respectively.  Substituting the expressions for μi, μA, and μB from Equation 4.10 into Equation 

4.11 above, we obtain, after rearrangement, the following mass-action relation for polymer 

component i: 

 0 0 0ln ln lni A B
i i i A i B i i i A

i A

kT f n m kT n m n f m f
M M M
φ φ φμ μ μ

⎡ ⎤
i B

B

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + = + + + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦
 (4.12) 

where φA, φB are the volume fractions of the telechelic building blocks A1----A2 and B1----B2, 

respectively.  Equation 4.12 above can be rewritten as follows: 

 exp( )
i in m

i A B
i

i A i B A Bn M m M M M
φ φ φ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= Γ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 (4.13) 

where  0 0 01 ( ) ( 1) li i A i B i i in m n m c
kT

μ μ μΓ = + − + + − −n( 1) . (4.14) 

The conservation equations are then: 
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Γ

Γ

 (4.15) 
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 In our construction of the model, terms arising from microscopic interactions, as well as 

terms arising from the center-of-mass and configurational entropy (except loop closure) of 

polymer components and solvent in solution have been carried out explicitly.  On the other 

hand, terms arising from (i) the energy of association of the endgroups within a polymer 

aggregate, and (ii) the entropic cost of loop closure for cyclic supramolecular aggregates, are 

instead absorbed into the standard chemical potentials μj
0 of the aggregates.  We now proceed 

to derive expressions accounting for these effects. 

4.2.2   Entropic Cost of Loop Closure 

 The entropic cost of loop closure is determined by calculating the probability of loop 

closure, as follows:  For Gaussian linear chains of N Kuhn monomers of length b, the 

probability density function for the end-to-end vector r is:3 

 
3
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3⎧ ⎫⎛ ⎞= −⎨ ⎬⎜ ⎟
⎝ ⎠ ⎩ ⎭

rr . (4.16) 

The argument within the exponential is -3r2/(2Nb2) ≅ 0 for ||r|| << <r2>1/2, so the probability 

that the chain ends be within a small distance x of each other, where x/b ~ O(1), is: 
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 (4.17) 

For real chains, excluded volume interactions of the monomers at chain ends reduce the 

probability density function G(r,N) by the factor 
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2
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 (4.18) 

where the exponent g ≅ 0.28,4 so that the probability of cyclization becomes 

 
3
2 2

, 2
0

3 14 ex
2

g a
3/ 2p(0) ~g g

cyc realG dr r
Nb bN

N ν
νπ

π
+⎛ ⎞ ⎛ ⎞≈ ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ∫ − −  (4.19) 



  4-6 

where the fractal exponent ν is 0.588 in good solvent.  The loop closure probability thus 

scales as N-3/2 for Gaussian chains and N-1.66 for swollen chains.  The entropic cost of loop 

closure is simply ΔSloop = -klnGcyc. 

 In dilute or semi-dilute solutions, all chain segments smaller than the thermal blob gT ≈ 

b6/v 2 (where v is the excluded volume parameter) have nearly Gaussian statistics because 

excluded volume interactions are weaker than the thermal energy.  If, for our solution 

composed of any number of different (single and supramolecular) chains j of size Mj, at total 

polymer volume fraction φ = ∑jφj, we assume that the polymer chains are dilute enough to 

ignore polymer-polymer interactions, we can use the following expression in the calculation 

of the entropic cost of loop closure ΔSloop = -klnGcyc for any cyclic aggregate q: 

 

1 1.6632

, 3

6 q
cyc q

T T

MxG
g b gπ

−
⎛ ⎞ ⎛ ⎞⎛ ⎞≈ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
. (4.20) 

By doing so we are simply assuming that all chain segments larger than gT are fully swollen.   

4.2.3   Inventory of Polymer Components   

 As a starting point in classifying the polymer aggregates, we group them together as 

shown in Figure 4.1.  Let index g refer to groups, and φg refer to the cumulative volume 

fraction of all the polymer components that belong to group g.  All the polymer components j 

that belong to any particular group g have the same values of Mj = Mg, nj = ng, mj = mg, and Γj 

= Γg, so the equilibrium condition and the conservation equations can be rewritten as: 

 exp( )
g gn m

g A B
g g

g g g g A Bn M m M M M
φ φ φ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= Ω⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎝ ⎠
Γ  (4.21) 
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= Ω ⎜ ⎟ ⎜ ⎟
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⎝ ⎠ ⎝ ⎠

∑

∑

Γ

Γ

 (4.22) 

where Ωg refers to the number of distinct species in group g.  

 How many components belong to each group?  For linear aggregates there are two 

possibilities: (i) if ng + mg is even (i.e., ng = mg), then no sequence read from left to right will 



  4-7 

be the same as a sequence read from right to left, so the number of ways to arrange the 

molecules is Ωg = 2 g gn m+

2n m+

2 1 2)− −

; (ii) if ng + mg is odd, then every sequence read from left to right will 

have a matching sequence read from right to left, so the number of ways to arrange the 

molecules is Ωg = .  Supramolecular cycles can only be formed if ng = mg.  The 

number of ways to form such a loop is derived below; to a very good approximation it is 

. 

1g g −

/ gn, 2 (2 gn
cyc gΩ = +

4.2.4   Number of Ways to Form Loops 

 We seek to determine the number of different loops that can be formed by linking n  

A1----A2 and n B1----B2 telechelic chains end-to-end via association of A and B endgroups, as 

shown in Figure 4.2 (left).   We are assuming that A1 groups are distinguishable from A2 

groups, and likewise B1 groups are distinguishable from B2 groups, but that the n A1----A2 

molecules are indistinguishable, and likewise are the n B1----B2 molecules.  The question is 

equivalent to the combinatorial problem of counting necklaces formed using beads of 

different colors, in which two necklaces are considered equivalent if one can be rotated to 

give the other.  The way to recognize the equivalence is to break up the loops into adjacent 

pairs of telechelics (with one A1----A2 and one B1----B2 molecule per pair), and map the 

loops into necklaces made up of n beads of 4 different colors as shown in Figure 4.2.  The 

formula for the number of different necklaces is:5  

 /1( ) ( ) 4n d

d n

m n d
n

ϕ⎡ ⎤= ⋅⎣ ⎦∑  (4.23) 

where the sum is over all numbers d that divide n, and ϕ(d) is the Euler phi function.   

 In reality, the above formula overcounts the number of ways to form polymer loops by a 

factor of 2.  To see this, observe that any loop can be “read” in two ways (clockwise and 

counter-clockwise) to give two distinct necklaces.  This is true because we cannot create an 

arbitrary loop which can be “read” the same clockwise and counterclockwise, no matter 

where we begin to read (Figure 4.3).  Consider now the m(n) distinct necklaces obtained from 

n beads, and the s(n) distinct loops obtained from n A1----A2 and n B1----B2 telechelic chains, 

forming sets {necklacesn}and {loopsn}.  Each necklace in {necklacesn} uniquely maps into a 

polymer loop in the set {loopsn}, but every loop in {loopsn} maps back to two different 

necklaces, which must belong to {necklacesn}.  The elements of {necklacesn} can therefore 
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be arranged pairwise as shown in Figure 4.4, revealing that there are twice as many elements 

in {necklacesn} than in {loopsn}.  The number of distinct loops s(n) that can be formed by 

linking n A1----A2 and n B1----B2 telechelic chains end-to-end via association of A and B 

endgroups is therefore: 

 /1( ) ( ) 4
2

n d

d n
s n d

n
ϕ⎡ ⎤= ⋅⎣ ⎦∑ . (4.24) 

4.2.5   Standard Chemical Potential of Polymer Aggregates 

 In Equations 4.13–4.15 and 4.21–4.22, we chose to absorb into the expressions for the 

standard chemical potential of the aggregates μj
0 the contributions due to the energy of 

association of the endgroups and to the entropic cost of loop closure.  The equation for the 

standard chemical potential of any polymer component j within group g is therefore: 

  (4.25) 
0 0

,0
0 0

( ) ln if cyc

( 1) if linear,
g A g B g g cycl g

g
g A g B g g

n m kT n m kT G

n m kT n m

μ μ ε
μ

μ μ ε

⎧ + − + −⎪= ⎨
+ − + −⎪⎩

lic

lic

so that Γg in the equilibrium and conservation relationships (Equation 4.21 and 4.22) is:  

  (4.26) ,( ) ( 1) ln( 1) ln if cyc

( 1) ( 1) ln( 1) if linear .
g i i i cycl g

g
g g g g

n m n m c G

n m n m c

ε

ε

+ + + − − +⎧⎪Γ = ⎨ + − + + − −⎪⎩

4.2.6   Distinguishable versus Indistinguishable Endgroups  

  Consider the reversible association reactions shown in Scheme 4.2 (endgroups are 

indistinguishable in case b, but distinguishable in c).  In each of cases a, b, and c, let φA and 

φB be the volume fractions of the starting materials, and φdimer be the total volume fraction of 

product dimers.  For the product in case a and each of the products in case c, the equilibrium 

condition (Equation 4.13) is the same:  

 exp( )dimer A B

A B A BM M M M
φ φ φ⎛ ⎞ ⎛ ⎞⎛ ⎞

= Γ⎜ ⎟ ⎜ ⎟⎜ ⎟+⎝ ⎠ ⎝ ⎠⎝ ⎠
 in case a (4.27) 

and 
1

4 exp( )dimer A B

A B A BM M M M
φ φ φ⎛ ⎞ ⎛ ⎞⎛ ⎞

= Γ⎜ ⎟ ⎜ ⎟⎜ ⎟+⎝ ⎠ ⎝ ⎠⎝ ⎠
 in case c (4.28) 
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where MA and MB are the number of monomers in the starting materials, and Γ = ε + ln(c-1) 

according to Equation 4.26.  In Equation 4.28, ¼ φdimer is the volume fraction of each of the 

product dimers, so the difference in Equations 4.27 and 4.28 simply reflects the difference in 

the number of ways to form dimers, i.e., Ωc = 4 while Ωa = 1.  The correspondingly larger 

equilibrium fraction of dimers in case c can be intuitively understood to be a mere 

consequence of the increased contact probability of the endgroups to form the product:  the 

rate of dissociation of dimers is equal in both cases, but the rate of association of reactants is 

expected to be 4 times greater in case b. 

 What is the equilibrium condition for the total volume fraction of product dimers in case 

b?  If the endgroups A, A1, and A2 have precisely the same reactivity, and likewise the 

endgroups B, B1, and B2, there cannot be any difference in the equilibrium partitioning of the 

molecules in cases b and case c, so that the equilibrium condition for case b is Equation 4.28, 

not Equation 4.27.  We generalize this argument to conclude that the solution to the 

equilibrium problem presented in Scheme 4.1, where endgroups are indistinguishable, is 

expected to be that solution which we developed for telechelics A1----A2 and B1----B2, where 

endgroups are distinguishable.  A less careful modeling of the association of telechelic 

polymers A----A and B----B might miscalculate the cumulative equilibrium volume fraction 

of polymer aggregates that fall within any group g by omitting the factor Ωg in Equation 4.21.  

4.2.7   Addition of End-Capping Chains 

 Addition of “end-capping chains” can be used to alter the relative partitioning into linear 

vs. cyclic aggregates, and the model can be extended to capture that behavior.  Consider the 

addition of Ncaptotal end-capping A---- chains, of length Mcap and total volume fraction φcaptotal.  

Let pj = pg refer to the number of end-capping A---- chains in any polymer component j 

belonging to group g and let φcap be the equilibrium volume fraction of free A---- chains.  The 

equilibrium condition for any group g becomes: 

 exp( )
gg g

pn m
g cA B ap

g g
g A g B g cap A B capn M m M p M M M M

φ φφ φ⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞ ⎞
= Ω Γ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜+ + ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝

⎟⎟
⎠

 (4.29) 

with   (4.30) 
[ ]
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g
g g g

n m n m c G
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ε

ε
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where for endcapped aggregates Ωcap,g = 2 /g gn m
gp+ , and the expressions for Ωg for cyclic 

and non-endcapped linear aggregates are given in Section 4.2.3.  The conservation equations 

become: 
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⎛ ⎞⎛ ⎞ ⎛ ⎞
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∑

∑

∑

 (4.31) 

4.3   Computational 

 We want to test whether linear chains possessing strongly associating endgroups can be 

useful as mist-control additives to aviation fuel.  In the present chapter, computational results 

are given for a case of practical significance that can be tested experimentally using 

anionically polymerized telechelics:  monodisperse polyisoprene (PI) chains with strongly 

associating endgroups, in dilute solutions in Jet-A solvent.  We will address the nature of the 

endgroups in Section 4.5.6.   

4.3.1   Choice of Parameters 

 The model has assumed that solvent molecules and polymer elementary units have the 

same size a3.  In general, we cannot expect that to be the case.  If the volume of a solvent 

molecule (vs) differs from that of a monomer, how should we choose the lattice size a, and 

how many lattice sites M should be assigned to a polymer chain of molecular weight MWp? 

 We want to model a mixture of Ns solvent molecules and Np monodisperse polymer 

chains of molecular weight MWp.  If we wish to preserve the volume fraction and number 

densities of polymer and solvent molecules, then we require that Nsa3 = Nsvs and NpMa3 = 

Np(MWp/MWo)vmon, where vmon and MWo are the volume and molecular weight of a chemical 

monomer.  These conditions require that a3 = vs and M = (MWp/MWo) (vmon/a3), meaning that 

the number and size of the elementary units into which we break up the chains is determined 

by the solvent size vs.  In this way, we have sacrificed the freedom to map the polymer chain 

as we might otherwise wish to: for instance, use of Equations 4.16–4.20 assumes that the 
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polymer chain has been mapped into an equivalent freely jointed chain with M = MWp/MWK 

Kuhn monomers, where MWK is the molecular weight of a Kuhn momomer. 

 An alternative is to model a solution of Np monodisperse polymer molecules of given 

number density Np/V and volume fraction φp. This method lets the monomer size determine 

the lattice size and renormalizes the number of solvent molecules, as follows.  Preserving the 

polymer volume fraction and number density requires that Ns,modela3 = Ns,realvs and NpMa3 = 

Np(MWp/MWo)vmon, where Ns,real and Ns,model are the number of real and model solvent 

molecules dissolving the polymer chains, and other parameters are the same as above.  In this 

manner we are free to map the polymer chains in whatever way we choose to.  The cost of 

that improvement is that the number density of the solvent molecules is not preserved, but 

since that number does not appear in the equilibrium equations (Equation 4.13–4.14), it 

seems inconsequential.   

 In what follows, we have adopted the latter approach and chosen to break up the chain 

into M = MWp/MWK Kuhn monomers using a3 = vmonMWK/MWo = vK, where vK is the volume 

of a Kuhn monomer, and Ns,model = Ns,realvs/vK.    

4.3.2   Parameter Values 

 We are choosing to break-up the polymer into Kuhn monomers of molecular weight 

MWK, and to set the lattice size as a3 = vK = MWK/(NAρ), where NA is Avogadro’s constant 

and ρ is the polymer density.  For 1,4-PI polymer,6 ρ = 0.83 g/cm3 and MWK = 113 g/mol, 

giving a ≈ 6.1 Å.  To quantitate the entropic cost of loop closure, numerical values are 

needed for the end-to-end distance x we require to close the loop and for the number of 

monomers in a thermal blob gT ≈ b6/v 2.  For simplicity we arbitrarily choose x/b = 1.  The 

excluded volume parameter v was estimated7 to be such that v/b3 ≈ 0.10 for PI in Jet-A, 

giving gT ≈ 100.  Finally, we assume that the random walks of the chains on the lattice 

correspond to a coordination number of c = 6.   

4.3.3   Computations 

 The following procedure was used to calculate the volume fraction of all polymer 

components (i.e., single-chain starting materials and aggregates of all sizes) at equilibrium, 

for polymer solutions of A1----A2 and B1----B2 telechelics and A---- “end-cap” chains of 
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specified molecular weights at specified initial concentrations φAtotal, φBtotal, and φcaptotal 

(polymer components were grouped as shown in Figure 4.5): 

 First, choose a number of groups Tgroups to include in the analysis (even though there 

is an infinite number of possible polymer components, we expect that above a certain 

size, polymer aggregates will have negligible equilibrium volume fraction and can 

therefore be ignored) 

 Calculate ng, mg, Mg, Ωg, Gcyc,g (if appropriate), and Γg for polymer group g, for g = 

1… Tgroups 

 Solve the three conservation equations, Equations 4.31, for (φA, φB, φcap) 

 Calculate φg for g = 1… Tgroups using Equation 4.29 

 Repeat with a new value of Tgroups twice that of the previous one until changes in the 

calculated values of φg from one value of Tgroups to the next are negligible.   

4.4   Results 

 To translate model results into terms relevant to experiment, the equilibrium distribution 

of aggregates is described in terms of the concentration of the various size supramolecular 

species.  In the context of polymer-induced mist-suppression, all linear aggregates of a given 

length are equivalent, and all cyclic aggregates of a given length are likewise equivalent.  

Therefore, the cumulative volume fractions φlinear(MW) and φloop(MW) of all the linear 

species and of all the cyclic species of a given molecular weight MW will be used to evaluate 

the impacts of the following parameters on rheological solution properties: binding energy, 

concentration and degree of polymerization of the single-chain building blocks, and presence 

or absence of “end-capping” chains (Figures 4.6–4.11).   

4.4.1   Mixtures of A----A and B----B Chains Only 

 At the lowest level of complexity, we consider solutions of telechelics of equal molecular 

weights (MWA = MWB = MWp) and equal initial volume fractions (φAtotal = φBtotal = φtotal/2).  In 

this case, the problem is reduced to understanding the association behavior as a function of 

MWp, φtotal, and the energy of interaction ε.   The rationale for the part of the parameter space 

which we investigate here is given in the Section 4.5.2.   
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 Comparison of model results for MWp = 106 g/mol (labeled 1000k in figures) at total 

polymer volume fraction φtotal of 1400 ppm and 800 ppm (Figures 4.6–4.7) demonstrates two 

important effects of total polymer concentration.   First, at fixed MWp and ε, increasing 

concentration results in a higher fraction of the polymer becoming involved in larger linear 

aggregates (compare first and second rows in Figures 4.6–4.7): the decrease in φlinear with 

increasing aggregate MW is not as sharp at 1400 ppm, and the position of the peak in φlinear 

vs. MW is shifted to the right at 1400 ppm for each ε (most visibly for ε =18, left column of 

Figure 4.7).  Second, the relative partitioning of the polymer into linear rather than cyclic 

aggregates is insensitive to total polymer concentration φtotal.   

 Consider now the effect of the length of the individual chains (MWp), by comparing 

results for 5 × 105 chains at 1400 ppm (third row, Figures 4.6–4.7) and 1 × 106 g/mol chains 

at 800 ppm (second row).  These concentrations were chosen to correspond to one-fourth of 

the overlap concentration of the single-chains, i.e., φtotal = ¼ φ* based on the respective 

values of MWp.  We observe that the shape of the φlinear vs. MW curves for both these systems 

is nearly identical, for each value of ε investigated. On the other hand, the relative proportion 

of loops vs. linear chains is substantially higher for the shorter chains, due to the smaller 

entropic cost of cyclization for shorter loops.     

 Finally, the effect of the energy of association on the equilibrium distributions is very 

pronounced (the columns of Figures 4.6–4.7 are in ascending order by association energy).  

First, higher values of ε strongly increase the population of loops of all sizes, i.e., increasing ε 

increases the relative fraction of loops compared to linear aggregates.  Second, increasing ε 

greatly broadens the distribution of φlinear vs. MW, decreasing the magnitude of the peak in 

the distribution.  At values of ε ≤ 14, aggregates are few and the dominant components are 

the telechelic building block themselves.  At values of ε ≥ 20, the dominant components are 

cycles of low MW, but the distribution of linear supramolecules is nearly flat, meaning that 

very large aggregates have a significant cumulative volume fraction at equilibrium.  

Intermediate values of the energy of association, corresponding to 16 ≤ ε ≤ 18, provide a 

balance of interactions strong enough to drive formation of large superchains and weak 

enough to accommodate a significant population with unpaired ends (i.e., linear superchains).  



  4-14 

4.4.2   Mixtures of A----A, B----B, and A---- Chains 

 Important changes in the partitioning of the polymer occur as end-capping A---- chains 

are added to solutions of A----A and B----B telechelics.  At the lowest level of complexity 

again, we consider solutions of polymer additives of equal molecular weight (MWA = MWB = 

MWcap = MWp).  We consider solution compositions that maintain equal number densities of 

A and B endgroups, i.e., such that φcaptotal = 2(φBtotal -φAtotal).  Therefore, the total polymer 

fraction of A---- end-capping chains, φcaptotal, must be in the range from 0 to 2/3.  Define X = 

φAtotal/φBtotal as the ratio of telechelics A----A to telechelics B----B; that ratio decreases from 1 

to 0 as the fraction of A---- increases from 0 to 2/3. 

 Results obtained for solutions of MWp = 106 g/mol at total volume fraction φAtotal + φBtotal 

+ φcaptotal = 800 ppm (Figures 4.8–4.11) confirm that introducing end-caps favors the 

formation of linear species.  At fixed ε, MWp, and φtotal, the fraction of polymer involved in 

cycles decreases with increasing volume fraction of A---- end-caps, as expected (see top row 

of Figures 4.8–4.11).  This is true at all values of ε and occurs simply because the presence of 

A---- components decreases the fraction of linear chains that can form loops.  Note that the 

increase in the concentration of linear species upon addition of A---- (offsetting the decrease 

in φloop) heavily favors short, rather than long aggregates: in fact, the population of very long 

linear superchains is reduced by adding end-caps (decreasing X), and this was also true at all 

values of ε (most visible in bottom row of Figures 4.8 and 4.9).  In other words, increasing 

the volume fraction φcaptotal of end-capping chains causes a narrowing of the distribution of 

linear aggregates, meaning that a higher fraction of polymer is involved in smaller linear 

supramolecules. 

 A striking qualitative difference between the binary (A----A + B----B) and the ternary 

systems is in the behavior as ε → ∞.  In the absence of end-capping A----, the ratio of linear 

to cyclic supramolecules vanishes as ε → ∞ (Figure 4.7).  As the free energy penalty for 

leaving unpaired stickers diverges, no linear chains can survive in the absence of end-caps.  

When end-caps are present, one is free to increase ε without extinction of linear species; 

instead as ε → ∞ a limiting distribution is achieved (Figure 4.11) in which doubly end-

capped linear species and cyclic species equilibrate in a manner that can be quantitatively 

controlled by the choice of the relative number of A---- single chains.    
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4.5   Discussion 

4.5.1   Using the Model to Design Anti Misting Additives 

 While the model may find wide utility for diverse applications involving rheology 

modifiers, here we wish to identify a set of parameter values for which the equilibrium 

distribution of the polymer components is suitable for mist-suppression applications.  The 

figures of merit for this application are deduced from the prior literature on ultra-long 

polymers, which themselves are not acceptable because turbulent flow during transport of 

fuel cleaves the chains and eliminates their effectiveness.  As a guide to experiments to 

determine whether or not the efficacy of ultra-long chains and the resistance to shear 

degradation of associative polymers can be combined, we use the present model to guide the 

selection of chain lengths, association strengths, and mixture compositions that hold the 

greatest promise.   

 Chao and coworkers8 reported that polyisobutylene chains of molecular weight ~ 5 × 106 

g/mol were satisfactory mist-suppressing agents at concentrations as low as 50 ppm in 

kerosene.  Considering that cyclic polymer chains are expected only to be as effective as 

linear chains of half their size, the cumulative amount of linear species of MW ≥ 5 × 106 

g/mol and cycles of MW ≥ 10 × 106 g/mol should be 50 ppm or more.  Given that aviation 

fuel is continuously circulated on the aircraft as a heat transfer fluid, the kinetics of 

equilibration may play a role, i.e., in practice long linear aggregates may not achieve their 

equilibrium distribution (refer to Section 4.5.4).  If so, polymer designs and mixture 

compositions that maximize the equilibrium fraction of polymer involved in linear 

supramolecular aggregates in the 5–10 × 106 g/mol range may lead to maximal mist 

suppression in practice.   

4.5.2   Parameter Space 

 By restricting the level of complexity (choosing the A----A, B----B, and A---- building 

blocks to be of the same molecular weight MWp, and by requiring that A and B endgroups 

have equal number densities in solution), the parameter space is reduced to 4 dimensions.  

Within the parameter space {MWp, ε, φtotal, X}, we seek to optimize the equilibrium 

partitioning of the polymer for mist-control applications given the constraints of the problem.  
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Here we consider the bounds that are imposed on MWp and φtotal in the context of fuel 

additives. 

 First, we should use the highest possible values of MWp, since at fixed ε and φtotal the total 

fraction of polymer trapped in loops decreases monotonically with increasing MWp.  In 

reality the upper-bound of MWp is limited by mechanical degradation of the polymer.  

Unintentional chain scission of our telechelics would result in an excess of end-capping 

species that would greatly reduce the size of supramolecular chains that form.  Literature on 

shear degradation shows that flexible linear chains of less than a few million g/mol resist 

degradation associated with flow through pumps and turbulent pipeline flow.  Therefore, we 

imposed MWp = 106 g/mol as our upper bound and compared results with MWp = 0.5 × 106 

g/mol in order to quantitate sensitivity to changes in MWp.   

 Next, implementation of a polymer-based mist-control technology cannot be possible 

unless changes in shear viscosity of the fuel due to polymer addition are very small.  Here we 

chose an upper bound in total volume fraction of polymer to be one-fourth of the overlap 

concentration of the A----A and B----B, and A---- building blocks, recognizing that 

supramolecular chains formed by physical associations may reach or exceed their overlap 

concentration.  So long as the very long supramolecules remain below their particular c*, the 

shear viscosity of the solution is expected to remain within permissible bounds.  For the two 

chain lengths selected above, this constraint imposes a maximum polymer volume fraction of 

800 ppm for MWp = 106 g/mol and 1400 ppm for MWp = 5 × 105 g/mol.  To quantify the 

improvements in mist control arising from increases in concentration, results for 106 g/mol 

chains at both 800 and 1400 ppm were compared.   

 With the above choices for MWp and φtotal, the problem is reduced to two dimensions, ε 

and X, which were examined over their physically relevant ranges.    

4.5.3   Implication for Mist-Control Applications 

 Our criterion for optimal results with regard to mist-suppressing applications corresponds 

to maximizing the equilibrium fraction of polymer involved in linear supramolecular 

aggregates in the 5–10 × 106 g/mol range.  Two key features of the distributions that satisfy 

this objectives are (i) favorable partitioning of the polymer into linear rather than cyclic 
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aggregates, and (ii) a concentration vs. molecular weight curve for linear aggregates that is 

narrowly distributed and centered around ~ 5 × 106 g/mol.   

 According to the above criteria, model results show that partitioning of the polymer into 

linear superchains is favored at higher values of MWp and φtotal, as expected, but that ~ 2-fold 

changes in MWp or φtotal about the ~ {106 g/mol, 800 ppm} upper-boundary determined by the 

problem constraints yield only small changes in the overall shapes of the φlinear, φloop  

distributions (compare first and second rows, and first and third rows at fixed ε in Figures 4.6 

and 4.7).  Effects of the energy of interaction were much more pronounced.  For example,  

a ≤ 15% change in ε from 14 to 16 yielded a dramatic change in the shape of the size 

distribution of aggregates for all values of {MWp, φtotal} (Figure 4.6).  

 The strong dependence of the size distribution of linear and cyclic aggregates on energy 

of interactions has important implications for mist-control applications.  For mixtures of A---

-A and B----B molecules, model predictions indicate that “good” results are only achieved in 

a narrow range of association energy, 16 ≤ ε ≤ 18.  The following two complications 

immediately arise.  First, the preparation of telechelic chains of such length (~ 106 g/mol) 

terminated with endgroups that all bind with a precise target strength of interaction of such 

magnitude (> 16 kT) poses a tremendous synthetic challenge (see Section 4.5.6).  Second, the 

strength of physical associations is strongly temperature dependent and the operating 

temperature range of interest for aviation fuel is very broad (-50 to +50 oC), so it is doubtful 

that any system could be designed to maintain the binding energy of the polymer endblocks 

within such a narrow range. 

 Addition of A---- end-capping chains to A----A + B----B mixtures solves the above 

problem, at least under equilibrium conditions.  For instance, model results for 106 g/mol 

chains at φtotal = 800 ppm and X = 0.5 (Figure 4.11) show that for any value of ε  ≥ 20, the 

equilibrium volume fraction of linear superchains of 5 × 106 g/mol is greater than 100 ppm 

and that of 7 × 106 g/mol superchains is greater than 50 ppm.  This means that the mist-

suppression effectiveness of such a polymer solution under equilibrium conditions will be 

robust with respect to fluctuation in ε due to temperature variations or to variations in 

molecular structure of the endgroups.  The model, therefore, indicates that it should be 

feasible to create polymers whose equilibrium distribution of aggregates provides the 

requisite concentration of very long supramolecular chains over a wide range of temperature.  
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At this point, we need to inquire whether it is reasonable to expect that equilibrium 

partitioning of the polymer will be found under conditions of practical import.   

4.5.4   Time to Reach the Equilibrium Distribution 

 Earlier we explored whatever values of {ε, X} allowed us to optimize the equilibrium 

distribution of polymer components.  In doing so we assumed that under conditions of 

practical importance, equilibrium is restored as fast it is disturbed.   How long does it take to 

reach the equilibrium partitioning of the polymer into aggregates of all sizes? Let us start by 

considering the lifetime of a bond.  The relaxation time τ0 ~ ηb3/kT of a monomer in solution 

of shear viscosity ~ 1 mPa.s is on the order of 10-10 sec, so the lifetime of a donor-acceptor 

physical bond τb ~ τ0 exp(ε) is on the order of 0.001–10 sec for ε = 17–25.  Therefore, even if 

we assumed that equilibrium could be reached with a mere 103 bond breaking and bond 

forming events, for endgroups associating with energy 20–25kT, that time is on the order of 

1–104 s.  Consider now that processes such as recirculation of the fuel within an aircraft are 

expected to breakup polymer aggregates down to individual components at intervals of a few 

minutes during, for example, passage through pumps.  Given the level of uncertainty in our 

calculations, experimentation is required to reach a definite conclusion about whether or not 

solutions of A----A plus B----B plus A---- polymer chains reassociate into large superchains 

sufficiently rapidly to be used as mist-suppressing agents for aviation fuel.   

4.5.5   From Telechelics to Heterotelechelics 

 What experiments do the model results motivate us to conduct? We found that ternary 

mixtures of A----A, B----B, and A---- chains in dilute solutions deserve the effort required to 

synthesize the polymer.  Unfortunately, they suffer to some extent from the same problems as 

mixtures of A----A and B----B chains only (whose binary mixtures do not appear to be viable 

candidates for mist-suppressing applications):  (i) to provide 50 ppm of superchains > 5 × 106 

g/mol, the overall polymer concentration must be several hundred ppm because a lot of 

polymer is “lost” in useless small cycles and small linear aggregates, and (ii) the reassembly 

of superchains takes time, and the longer the superchain the longer it takes for its population 

to build up to its equilibrium value.    

 The above insight suggests that a better alternative would involve the design of a polymer 

system for which loops are prohibited and associations would result in the systematic 
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formation of well-defined linear chains.  An example of such a design is shown in Scheme 

4.3.  It involves two sets of specific interactions, such that A endgroups interact only with B 

endgroups, and C endgroups likewise only with D endgroups.  The molecules in Scheme 4.3 

are designed such that for a stoichiometric blend of the building blocks and at high enough 

binding affinity of the A+B and C+D associations, nearly all the polymer chains should 

assemble into pentamers (in 4 bond-forming events only) even at arbitrarily low polymer 

volume fraction φtotal.  As a result, satisfactory mist suppression could be achieved with < 100 

ppm of A----A, B----C, and D---- chains of size MW = 106 g/mol. 

4.5.6   Nature of the Endgroups 

 We now address an important synthetic challenge.  What chemical moieties might we use 

at the chain ends to generate association energies in the 17–25kT range?  Let A and B refer to 

the small molecules corresponding to these endgroups.  We first inquire what equilibrium 

constant of association Kass the above association energies correspond to.  For the association 

reaction of the free-endgroups A + B → AB, our model predictions are: 

 ( )0 0 01exp exp( )AB A B
AB A B

AB A BM M M kT
φ φ φ μ μ μ ε

⎛ ⎞⎛ ⎞ ⎡ ⎤= − − −⎜ ⎟⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠⎝ ⎠
= . (4.32) 

For small molecules in dilute solution, this expression is consistent with the equilibrium 

condition for ideal solutions (Raoult’s law), xAB/xAxB = exp[-(μAB
0 - μA

0 - μB
0)], where x is 

mole fraction.  It follows from Equation 4.32 that Kass ≡ CAB/CACB = υsexp(ε), where C is 

molar concentration and υs is the molar volume of the solvent.   Thus, achieving binding 

energies of the endgroups in the range of ε = 17–25 corresponds to association constants Kass
  

on the order of 107 to 1010 M-1!   

 Although interacting chemical structures of binding constants up to 106 M-1 are known 

(Figure 4.12), the synthetic challenge of preparing telechelic polymer chains of size 106 

g/mol with well-defined endgroups of binding constants ~ 107 to 1010 M-1 is daunting.  In 

addition to the challenge of finding a suitable donor-acceptor pair, synthesis of telechelics 

becomes increasingly more difficult with increasing size.  Furthermore, the possible 

poisoning of the endgroups (which would be present at < ppb levels in dilute polymer 

solutions) by minute amounts of acids, bases, metals etc… present in the solvent, thereby 

rendering the polymer ineffective, is an important concern.   
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 A worthwhile alternative involves the use of short polymer endblocks featuring an 

arbitrary number of donor-acceptor type functional groups.  For example, synthesis of 106 

g/mol polymer chains endcapped with 1,2-PB endblocks of a few thousands g/mol would 

enable the preparation of associating polymer of tunable binding affinities by post-

polymerization functionalization of the 1,2-PB.  This strategy would provide more flexibility 

in the choice of binding energy and also facilitate fast and effective optimization of material 

properties via rapid adjustments in the number and the identity of the functional side-groups.   

4.6   Conclusions   

 In this chapter we developed a model to understand the self-assembling behavior of 

polymer chains designed to overcome the effect of chain collapse (refer to Chapters 2 and 3) 

by clustering stickers at the ends of polymer chains.  We showed that symmetric linear chains 

displaying strongly associating endgroups (A----A and B----B binary mixtures) suffer instead 

from loop formation, which traps large amounts of the polymer into small cyclic aggregates 

with low mist-control properties.  We found that more favorable equilibrium distributions for 

the purpose of mist-control applications can be achieved by addition of end-capping A---- 

chains.  Future work might involve experimentation to determine whether ternary mixtures of 

A----A, B----B, and A---- polymer chains that associate end-to-end with binding energies > 

107 M-1 can build up large superchains sufficiently rapidly to be used as mist-suppressing 

agents for aviation fuel.  This presents a synthetic challenge which we addressed above.  We 

reasoned that functional endgroups would best be achieved by synthesis of short polymer 

endblocks bearing a suitable number of selected functional groups (hydrogen bond donor and 

acceptor pairs, for instance). 

 Insight generated from the present model also suggests the design of end-to-end 

associating molecules which cannot form loops.  Breaking symmetry to enable the exclusive 

formation of large linear supramolecules from self-assembly of end-functionalized polymer 

chains (Scheme 4.3) requires synthesis of polymer molecules featuring several orthogonal 

(i.e., non-interacting) pairs of complementary (i.e., donor-acceptor) endgroups.  Preparation 

of such materials required the development of new synthetic tools:  in the next chapter we 

present straightforward and rapid protocols for the preparation of functional polymer 

materials of controlled architecture and functionality.    
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4.7   Figures and Schemes   

Polymer components:          Group index g:   Degeneracy Ωg: 

 

Figure 4.1   Grouping of polymer components, where A and B generically refer to A1 or A2 

and B1 or B2 endgroups.  Each group is composed of all the different possible aggregates 

obtained by the assembly of the A1----A2 and B1----B2 building blocks.  For example, group 3 

is composed of the following 4 distinct aggregates:  A1----A2B1----B2, A1----A2B2----B1,  

A2----A1B1----B2, and A2----A1B2----B1.   
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Figure 4.2   Mapping of polymer loops into necklaces of 4 colors.  The 4 colors correspond 

to: A1A2B1B2, A1A2B2B1, A2A1B1B2, A2A1B2B1.  For example, we can choose A1A2B1B2 = 

black, A1A2B2B1 = white, A2A1B1B2 = blue, and A2A1B2B1 = green. 
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Figure 4.3   We cannot arbitrarily create a loop that “reads” the same clockwise and 

counterclockwise.  Therefore, every loop maps into exactly two distinct necklaces. (Color 

assignments are given in Figure 4.2.)  
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Figure 4.4   There are twice as many distinct necklaces as there are distinct loops. 
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A  1 
Polymer component:         Group index g: 
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Figure 4.5   Grouping of polymer components in the presence of A---- end-capping chains.  

Each group is composed of all the different possible aggregates obtained by the assembly of 

the A1----A2, B1----B2, and A---- building blocks, as before (Figure 4.1).  
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Figure 4.6   Model predictions for strength of interaction εkT = 14kT (left) and εkT = 16kT 

(right).
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Figure 4.7   Model predictions for strength of interaction εkT = 18kT (left) and εkT = 20kT 

(right). 
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Figure 4.8   Model predictions in the presence of end-capped chains, when εkT = 16kT. 
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Figure 4.9   Model predictions in the presence of end-capped chains, when εkT = 18kT. 



  4-30 

400x10-6

300

200

100

0

φ lo
op

 X = 0.4
 X = 0.6
 X = 0.8
 X = 1.0

1000k chains at φtotal = 800 ppm

 
400x10-6

300

200

100

0

φ lin
ea

r

14x106121086420
Molecular Weight (g/mol)

φendcap

1000k chains at φtotal = 800 ppm

φendcap

 X = 0.4
 X = 0.6
 X = 0.8
 X = 1.0

 

Figure 4.10   Model predictions in the presence of end-capped chains, when εkT = 20kT. 
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Figure 4.11   Limiting equilibrium distribution (as ε → ∞) obtained in the presence of end-

capping A---- polymer chains. 
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Figure 4.12   Sextuple hydrogen-bonding motifs derived from nucleobase structures, of 

binding constants ~ 106 M-1 in organic solvents of low polarity.9, 10 
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Scheme 4.1   Molecular Design for Self-Assembly of Difunctional Polymeric Building 

Blocks into Larger Linear Chains via Physical Interactions 
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Scheme 4.2   Contact Probabilities and Equilibria 
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Scheme 4.3   Molecular Design Aimed at the Exclusive Formation of Well-Defined 

Supramolecular Linear Chains   
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