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Appendix A   Numerical Approach for Chain Statistics of Self-

Associating Chains at Infinite Dilution in θ-Solvent 

A.1   Model Description 

 Our objective is to determine the size of a linear chain of N monomers, f of which are 

modified to act as stickers capable of forming pair-wise only, physical associations.  The 

stickers are assumed to be equidistantly spaced l monomers apart along the chain, and the 

energy of association is εkT.  We will assume Gaussian chain statistics for any segment of the 

chain whose configuration is unrestrained by reversible crosslinks.   

 To calculate the size of the chain in the very dilute regime (all associations are 

intramolecular), we define a semi-Markov process X(t), t > 0 such that each state i is fully 

specified by identifying which pairs of stickers form bonds.  (Note here that a given state has 

an infinite number of chain configurations.)  The chain goes from one state to the next by 

either breaking or forming a bond, as illustrated in Figure A.1. 

 This semi-Markov process is completely specified if we know both (a) the distribution of 

times Ti the chain spends in any given state i and (b) the probabilities Pij that once it leaves 

state i it next enters state j.  Thus, if we can determine the distributions of Ti, compute the 

transition probabilities Pij, and calculate relevant properties of the chain in any state i, then 

we can estimate the long-run average of chain properties such as size by simply running the 

Markov process for a sufficiently long time.  Fortunately, although the total number of states 

is extremely large for f as small as 20, the number of states that are accessible in one step 

from any given state is much more manageable, that is, Pij = 0 for most values of j for a given 

state i.   

 Assume the polymer chain enters state i at time t.  Clearly, the state it enters next is 

determined by which bond is broken or formed first; and the time spent in the present state is 

the time it took for that bond-breaking or bond-forming event to take place.  Because the 

times for bond breaking and bond forming are random variables, in order to solve the 

problem we need to determine the distribution of the breaking time and the forming time of 

all the possible bonds, for any state i. 
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 Consider the breaking of a single bond.  A bond that has been “alive” for any given time 

s is just as strong as a bond which has just formed; in other words the expected time to break 

a bond given that is has been “alive” for time s is independent of s.  Accordingly, bond 

breaking is a memoryless (hence exponential) process, and the time to break a bond is given 

by the exponential density function: 
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where τb is the expected time to break a bond, and has the same value for all bonds.  Bond 

forming can also be argued to be an exponential process, as discussed below, with expected 

time τf dependent on the number of monomers Lqq’ in the shortest connected path  between the 

two free stickers q and q’.  Observe that the shortest path Lqq’ between stickers depends on the 

pair of stickers q and q’ and on the current state of the chain; for example, the shortest 

distance between stickers 1 and 6 in state (b) of Figure A.1 is L1,6 = 2l.  

 Let’s now see if we can determine expressions for τb and τf. Rubinstein and Semenov1 

give τb = τ0 exp(ε + εa), where τ0 is the monomer relaxation time and εakT is a potential 

barrier for bond breaking and also the activation energy for bond forming.  I get τf ≅ τ0/pcps
 to 

a first approximation (as discussed below), where pc = (6/πL3)1/2 is the contact probability 

that the two stickers separated by L monomers be within distance b of each other (b is the 

Kuhn length, assumed to be the maximum distance over which the stickers can associate), 

and ps is the sticking probability that a bond is formed at any given “visit.”  If ps ≈ (Vb/b3) 

exp(-εa) where Vb is the bond volume, then we get τf ≈ α τ0 exp(εa) L3/2 where α = 

(b3/Vb)(π/6)1/2.  

 Let {pp’}i be the set of all pairs of stickers that are bonded in state i, and {Tb,pp’}i be the 

set of random variables corresponding to their breaking time.  Among the unpaired stickers in 

state i, let {qq’}i be the set of all possible pairings for formation of a new bond, and {Tf,qq’}i 

be the set of random variables corresponding to their expected bond-forming time.  For a 

given state i, then, we have independent, exponential random variables {Tb,pp’}i and {Tf,qq’}i, 

with expected values E[Tb,pp’] =τb and E[Tf,qq’] = α τ0 exp(εa) (Lqq’[i])3/2, where Lqq’[i] is the 

number of monomer in the shortest connected path  between the two free stickers p and p’ in 

state i.  The probability that the next state is achieved by breaking a specific bond pp’, or by 
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forming a specific bond qq’ is the probability that Tb,pp’ or Tf,qq’ is the shortest of all the 

breaking and forming times.  For independent exponential random variables this probability 

is (the rate of the given exponential variable)/(the sum of all the rates).  Thus, the probability 

that the next state is obtained from forming a bond between any two free stickers q and q’ is: 
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where Q is the number of bonds in the present state i and the sum is over all the possible pairs 

of unpaired stickers in the present state.  The probability that the next state is obtained from 

breaking a given bond is: 

 
[ ] 

-1 -3/2

1P =
+ e

qq' i

ε

qq'
Q α L⋅∑

. 

Note that these probabilities are independent of the activation energy.  Given that all the 

breaking times and forming times are independent exponential random variables, the time Ti 

to transition from any state i to the next is also exponentially distributed, with rate equal to 

1/(sum of all the rates), so with mean: 
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 In this case (exponentially distributed transition times), the semi-Markov process is a 

continuous-time Markov chain.  Continuous-time Markov chains are characterized by the 

Markovian property that, given the present state, the future is independent of the past.  This 

result is intuitive for the bond-breaking and bond-forming processes which determine the 

time-evolution of our chains:  given the present state, the next state and the time to transition 

into the next state are both independent of what states were visited previously or how long 

the chain has been in the present state already.  As a result of the memoryless property of a 

continuous-time Markov chain, the amount of time Ti spent in state i, and the next state 

visited are independent random variables.  The reader is referred to a text by Ross2 for an 

excellent description of Markov chains, semi-Markov chains, and continuous-time Markov 

chains.   



  A-4 

A.2   Distribution Function for the Time to Form a Bond 

 Consider a strand of L monomers with 2 stickers at its ends.  What is the probability 

density function of the random variable Tf, the time for the stickers to form a bond (given that 

they are not bonded at the present time)?   

 Clearly there is an infinite number of configurations for the strand, where a configuration 

is specified by specifying the position vectors r1,  r2,…, rL of all the monomers.  However, if 

we break up space into a 3D lattice with arbitrarily small but finite volume elements, then 

there is now a finite number of strand configurations.  If we further define a macroscopic 

time τ0 over which the polymer configuration does not change (and renormalize time in units 

of τ0), then the configurations the strand takes over time constitute an irreducible (all the 

states communicate), positive recurrent (the expected time to return to the present state is 

finite for all the states) Markov chain.  Therefore, there exist stationary probabilities 

 independent of initial state u for all states v. n

n
π = lim Pv →∞ uv

 Given a probability density function for the initial polymer configuration, there exists a 

distribution function for Tf, the time it will take for the stickers to bond given that they are not 

bonded at the present time t = 0.  If the probability density of the initial chain configuration is 

the stationary probability density, and given that the sticker ends have not bonded after time 

s, the probability density to find the chain in any given configuration at time s is still equal to 

the stationary probability density.  Therefore, nothing has changed after time s, so that the 

remaining time it will take to form a bond is independent of s.  Accordingly, bond forming is 

a memoryless (hence exponential) process, and the time to break a bond is given by: 
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where τf is the expected value of Tf.  To determine τf for a strand of L monomers with stickers 

at its ends, we need to know the time it takes for the stickers to come within close enough 

distance of each other to associate.  Assume stickers form a bond with sticking probability ps 

if they come within distance b (= Kuhn length) of each other.  Consider another semi-Markov 

process with the following two states only: the strand is in state 1 if the stickers are within 

distance b of each other, and in state 2 otherwise.  Let μ1 and μ2 be the mean times spent in 

states 1 and 2, respectively (we do not need to know the distribution of transition times).  For 
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ε = 0 (corresponding to a non-associating strand of L monomers), the long-run fraction of 

time spent in state 1 is: 
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where pc is the contact probability for the chain ends to be within distance b of each other, 

and the only assumption is that of Gaussian statistics.  But the mean time spent in state 1 is μ1 

≈ τ0, from which we get μ2 ≈ τ0 (1-pc)/pc.  Note here that the above expression for μ1 is also 

valid when ε ≠ 0 if stickers fail to stick while the strand is in state 1, and that the above 

expression for μ2 is likewise also valid when ε ≠ 0.  By conditioning on the present state of 

the chain, the expected time to form a bond is: 
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 We find the expected time to bond given that the strand is in state 1, E[Tf |1], by 

conditioning on whether the stickers stick the first time around: 
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where ps ≈ (Vb/b3) exp(-εa) is the probability that the stickers form a bond while the chain 

segment is in state 1.  So after rearranging: 
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A.3   Simplifying Assumptions of the Model 

 We made two simplifying assumptions in our construction of the model.  First, we have 

assumed Gaussian statistics for any strand whose configuration is unrestrained by reversible 

crosslinks. This assumption is reasonable in θ-solvents only to the extent that congestion is 

not an issue.  In reality there is a limit to the number of monomers that can be collapsed into 
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a given volume, and for a high-enough number density of paired stickers and long-enough 

chains, congestion is expected to become important. 

 Second, in our derivation of the time for bond formation we assumed that the initial 

configuration of the strand between the stickers was chosen according to the stationary 

probabilities πu, where a state u corresponds to a specific configuration of the strand.  

Justification for this assumption is derived from the fact that the probability density of the 

strand configuration will reach the stationary probability density, for any arbitrary initial 

probability density, after a sufficiently long time during which the stickers do not pair up.  

The assumption however presents limitations for a pair of stickers right after their bond is 

broken:  due to spatial proximity, these may reassociate before the strand between them 

reaches its stationary probability density.  In other words, the memoryless Markovian 

property may be violated to that extent in that the future is not completely independent of the 

past.  
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Stickers are indexed from one end of the chain to the other:

3 5 61 4 2 7
(a) 

 

Assume the chain is in the following state at time t:

Say the next state occurs by breaking a bond, e.g. (2,7):

And the following state occurs by forming a bond, e.g. (6,7):

Free: 
2 
6 
7 

Bonded: 
(1,3) 
(4,5) 
(6,7) 
 
Free: 
2

Bonded:
(1,3) 
(4,5) 

Bonded:
(1,3) 
(4,5) 
(2,7) 
 
Free: 
6

l monomers 

(b) 

(c) 

(d) 

 

Figure A.1   Schematic illustration of the transition from one state of the chain to another by 

bond breaking and bond forming, for a chain with f = 7 stickers. 

 


