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Appendix A Numerical Approach for Chain Statistics of Self-

Associating Chains at Infinite Dilution in &Solvent

A.1 Model Description

Our objective is to determine the size of a linear chain of N monomers, f of which are
modified to act as stickers capable of forming pair-wise only, physical associations. The
stickers are assumed to be equidistantly spaced / monomers apart along the chain, and the
energy of association is ¢k7. We will assume Gaussian chain statistics for any segment of the

chain whose configuration is unrestrained by reversible crosslinks.

To calculate the size of the chain in the very dilute regime (all associations are
intramolecular), we define a semi-Markov process X(7), ¢ > 0 such that each state i is fully
specified by identifying which pairs of stickers form bonds. (Note here that a given state has
an infinite number of chain configurations.) The chain goes from one state to the next by

either breaking or forming a bond, as illustrated in Figure A.1.

This semi-Markov process is completely specified if we know both (a) the distribution of
times T; the chain spends in any given state i and (b) the probabilities P; that once it leaves
state i it next enters state j. Thus, if we can determine the distributions of T, compute the
transition probabilities P;, and calculate relevant properties of the chain in any state i, then
we can estimate the long-run average of chain properties such as size by simply running the
Markov process for a sufficiently long time. Fortunately, although the total number of states
is extremely large for f as small as 20, the number of states that are accessible in one step
from any given state is much more manageable, that is, P; = 0 for most values of j for a given

state i.

Assume the polymer chain enters state i at time ¢. Clearly, the state it enters next is
determined by which bond is broken or formed first; and the time spent in the present state is
the time it took for that bond-breaking or bond-forming event to take place. Because the
times for bond breaking and bond forming are random variables, in order to solve the
problem we need to determine the distribution of the breaking time and the forming time of

all the possible bonds, for any state i.
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Consider the breaking of a single bond. A bond that has been “alive” for any given time
s is just as strong as a bond which has just formed; in other words the expected time to break
a bond given that is has been “alive” for time s is independent of 5. Accordingly, bond
breaking is a memoryless (hence exponential) process, and the time to break a bond is given

by the exponential density function:

f (t)=%exp(-é] t>0
where 7, is the expected time to break a bond, and has the same value for all bonds. Bond
forming can also be argued to be an exponential process, as discussed below, with expected
time 7y dependent on the number of monomers L, in the shortest connected path between the
two free stickers ¢ and ¢’. Observe that the shortest path L,, between stickers depends on the
pair of stickers ¢ and ¢’ and on the current state of the chain; for example, the shortest

distance between stickers 1 and 6 in state (b) of Figure A.1 is L, ¢ = 2L

Let’s now see if we can determine expressions for 7, and 7z Rubinstein and Semenov!
give 7, = 1y exp(¢ + &), where 7 is the monomer relaxation time and &7 is a potential
barrier for bond breaking and also the activation energy for bond forming. I get 7= 7/pp;to

a first approximation (as discussed below), where p, = (6/nL>)"?

is the contact probability
that the two stickers separated by L monomers be within distance b of each other (b is the
Kuhn length, assumed to be the maximum distance over which the stickers can associate),
and p, is the sticking probability that a bond is formed at any given “visit.” If p, = (V,/b°)
exp(-&) where V), is the bond volume, then we get 7z = a 7 exp(&) L*? where o =

(B*1V,)(m/6)"2.

Let {pp’}: be the set of all pairs of stickers that are bonded in state 7, and {T},,"}; be the
set of random variables corresponding to their breaking time. Among the unpaired stickers in
state i, let {gq’}; be the set of all possible pairings for formation of a new bond, and {Ty,,};
be the set of random variables corresponding to their expected bond-forming time. For a
given state i, then, we have independent, exponential random variables {T;,,'}; and {T;4,}:
with expected values E[T},,] =7 and E[Tj,,] = @ 7 exp(&) (Ly,1)’° Where Ly, is the
number of monomer in the shortest connected path between the two free stickers p and p’ in

state i. The probability that the next state is achieved by breaking a specific bond pp’, or by
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forming a specific bond gq’ is the probability that Tj,, or Ty, is the shortest of all the
breaking and forming times. For independent exponential random variables this probability
is (the rate of the given exponential variable)/(the sum of all the rates). Thus, the probability
that the next state is obtained from forming a bond between any two free stickers g and g is:
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where Q is the number of bonds in the present state i and the sum is over all the possible pairs
of unpaired stickers in the present state. The probability that the next state is obtained from

breaking a given bond is:
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Note that these probabilities are independent of the activation energy. Given that all the
breaking times and forming times are independent exponential random variables, the time T;
to transition from any state i to the next is also exponentially distributed, with rate equal to

1/(sum of all the rates), so with mean:
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In this case (exponentially distributed transition times), the semi-Markov process is a
continuous-time Markov chain. Continuous-time Markov chains are characterized by the
Markovian property that, given the present state, the future is independent of the past. This
result is intuitive for the bond-breaking and bond-forming processes which determine the
time-evolution of our chains: given the present state, the next state and the time to transition
into the next state are both independent of what states were visited previously or how long
the chain has been in the present state already. As a result of the memoryless property of a
continuous-time Markov chain, the amount of time T; spent in state i, and the next state
visited are independent random variables. The reader is referred to a text by Ross® for an
excellent description of Markov chains, semi-Markov chains, and continuous-time Markov

chains.



A.2 Distribution Function for the Time to Form a Bond

Consider a strand of L monomers with 2 stickers at its ends. What is the probability
density function of the random variable T the time for the stickers to form a bond (given that

they are not bonded at the present time)?

Clearly there is an infinite number of configurations for the strand, where a configuration
is specified by specifying the position vectors 1, I, . I of all the monomers. However, if
we break up space into a 3D lattice with arbitrarily small but finite volume elements, then
there is now a finite number of strand configurations. If we further define a macroscopic
time 7y over which the polymer configuration does not change (and renormalize time in units
of 7y), then the configurations the strand takes over time constitute an irreducible (all the
states communicate), positive recurrent (the expected time to return to the present state is

finite for all the states) Markov chain. Therefore, there exist stationary probabilities

n, =1lim P} independent of initial state u for all states v.

n—oo

Given a probability density function for the initial polymer configuration, there exists a
distribution function for Ty the time it will take for the stickers to bond given that they are not
bonded at the present time ¢ = 0. If the probability density of the initial chain configuration is
the stationary probability density, and given that the sticker ends have not bonded after time
s, the probability density to find the chain in any given configuration at time s is still equal to
the stationary probability density. Therefore, nothing has changed after time s, so that the
remaining time it will take to form a bond is independent of 5. Accordingly, bond forming is

a memoryless (hence exponential) process, and the time to break a bond is given by:

£, (1) =iexp[-iJ
’ 7 7

where 7;is the expected value of T, To determine 7y for a strand of L monomers with stickers
at its ends, we need to know the time it takes for the stickers to come within close enough
distance of each other to associate. Assume stickers form a bond with sticking probability p;
if they come within distance b (= Kuhn length) of each other. Consider another semi-Markov
process with the following two states only: the strand is in state 1 if the stickers are within
distance b of each other, and in state 2 otherwise. Let x4 and g4 be the mean times spent in

states 1 and 2, respectively (we do not need to know the distribution of transition times). For
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& = 0 (corresponding to a non-associating strand of L monomers), the long-run fraction of

time spent in state 1 is:

%IUI :p :(6]1/2
hmthe, 0 \m D

where p. is the contact probability for the chain ends to be within distance b of each other,
and the only assumption is that of Gaussian statistics. But the mean time spent in state 1 is z
~ 1y, from which we get /6 = 7 (1-p.)/p.. Note here that the above expression for y; is also
valid when ¢ # 0 if stickers fail to stick while the strand is in state 1, and that the above

expression for s is likewise also valid when ¢ # 0. By conditioning on the present state of

the chain, the expected time to form a bond is:

E[T,]=E[T,[1]p,+E[T,|2]P,
=E[T|U]p. +(u, +E[T,[1])(1- p.)
=u,(1- p,)+E[ T,|1].

We find the expected time to bond given that the strand is in state 1, E[T¢|1], by

conditioning on whether the stickers stick the first time around:
B[ T, U]~ p,z, +(m + 1 +E[ T, 1])(0- p,)

where p, = (Vy/b®) exp(-¢,) is the probability that the stickers form a bond while the chain

segment is in state 1. So after rearranging:

E[TAI]:%-%.

S

1- p)(1-
Substituting, we get: E[TJ ~ T(1-p)(-p.p,) N
pcps pcps

A.3 Simplifying Assumptions of the Model

We made two simplifying assumptions in our construction of the model. First, we have
assumed Gaussian statistics for any strand whose configuration is unrestrained by reversible
crosslinks. This assumption is reasonable in é-solvents only to the extent that congestion is

not an issue. In reality there is a limit to the number of monomers that can be collapsed into
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a given volume, and for a high-enough number density of paired stickers and long-enough

chains, congestion is expected to become important.

Second, in our derivation of the time for bond formation we assumed that the initial
configuration of the strand between the stickers was chosen according to the stationary
probabilities m,, where a state u corresponds to a specific configuration of the strand.
Justification for this assumption is derived from the fact that the probability density of the
strand configuration will reach the stationary probability density, for any arbitrary initial
probability density, after a sufficiently long time during which the stickers do not pair up.
The assumption however presents limitations for a pair of stickers right after their bond is
broken: due to spatial proximity, these may reassociate before the strand between them
reaches its stationary probability density. In other words, the memoryless Markovian
property may be violated to that extent in that the future is not completely independent of the
past.

A.4 References and Notes
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Stickers are indexed from one end of the chain to the other:

1 2 3 4 5 6

7
(a) X—¢—X—X ZaN —<
<>
/ monomers
Assume the chain is in the following state at time t:
Bonded:
(1,3)
(b) (4.5)
2,7
Free:
6
Say the next state occurs by breaking a bond, e.g. (2,7):
Bonded: Free:
(1,3) 2
(©) (4.5) 6
7
AV
A

And the following state occurs by forming a bond, e.g. (6,7):

Bonded:
(1,3)
4,5)
(d) (6.7)

Free:
2

Figure A.1 Schematic illustration of the transition from one state of the chain to another by

bond breaking and bond forming, for a chain with /= 7 stickers.



