

Appendix D

Recombinant expression and purification of a xylanase from the thermophilic fungus *T. aurantiacus*

Abstract

The *Thermoascus aurantiacus* xylanase 10A (TAX) is of interest for industrial and enzyme engineering purposes because of its ability to hydrolyze polymers of xylose at elevated temperatures. Previous expression of this xylanase has relied on natural production from fungal cell cultures, limiting the quantities that can be produced and hindering genetic manipulation that could be used to optimize existing activity or engineer novel activities. Here, we optimize the gene sequence of TAX for expression in *E. coli* and successfully express the protein in quantities up to 150 mg per liter of culture. In addition, a quick single-step purification protocol is developed that results in highly pure protein.

Introduction

Endo- β -1,4-xylanases are of industrial interest because of their hydrolytic activity against the internal glycosidic bonds of xylan, which is the major polysaccharide component of plant cell walls. The optimization of the stability and catalytic activity of such enzymes has potential applications in paper bleaching as well as in food and animal feed processing. Thus, thermostable xylanases such as xylanase 10A from the thermophilic fungus *Thermoascus aurantiacus* (TAX) are particularly well suited for industrial applications at elevated temperatures. Previously, TAX had only been obtained from the endogenous expression in *T. aurantiacus* found in samples of Indian soil.¹ Although natural expression gave sufficient quantities for crystallization studies, cultivation of fungal cells was necessary, requiring between 3 and 13 days of incubation to produce the protein.²

Our interest in TAX focused on its potential use as a scaffold for computational enzyme design. Three features of TAX make it attractive for these purposes: (1) The protein is thermostable, which generally indicates a robust scaffold more amenable to multiple mutations than its mesophilic homologs.³ (2) TAX has a large natural binding pocket that could accommodate large substrates and multiple catalytic residues. (3) A high-resolution crystal structure is available at 1.7 Å with the natural ligand bound in the active site.⁴

The engineering of any protein requires an expression system amenable to genetic manipulation, thus the natural fungal system is not appropriate for the expression of designed TAX variants. Here, we present an efficient, recombinant *E. coli* expression

and purification protocol that yields up to 150 mg of active enzyme per liter of culture and is readily transferable to a high-throughput format.

Materials and Methods

Optimization of the TAX-His₆ gene

The protein sequence for TAX was taken from the FASTA sequence of the crystal structure of TAX (PDB:1GOR).⁴ A hexahistidine purification tag was added to the C-terminus of the protein sequence preceded by a Factor Xa cleavage site resulting in the C-terminal sequence: GSIEGRGHHHHHH. The gene for TAX-His₆ was designed from the protein sequence using DNA 2.0 Gene Designer and optimized for expression in *E. coli*.⁵ A unique *Nde*I restriction site was incorporated at the 5' end of the gene, and a stop codon (TAG) along with a unique *Bam*HI restriction site were incorporated immediately following the 3' end of the gene. The gene and protein sequences for TAX-His₆ are shown in Figure D-1.

Design of the oligonucleotides

Forty-eight overlapping oligonucleotides for the construction of the TAX-His₆ gene were designed using Assembly PCR Oligo Maker.⁶ The overlapping oligonucleotides spanned the length of the gene and were less than 40 base pairs long with 16 to 20 base-pair overlapping regions (Table D-1). All oligonucleotides were synthesized by Integrated DNA Technologies at a 20 mmol scale with no additional purification.

Gene construction

The full-length TAX-His₆ gene was constructed by recursive PCR based on the method of Stemmer *et al.*⁷ The protocol for gene construction is outlined in Chapter III, Materials and Methods. After construction, the gene was amplified using the primers TAX_forward 5'-(TAAGAAGGAGATACATATGG)-3' and TAX_reverse 5'-(AACTCAGCTTCCTTCGGG)-3', which were calculated to have melting temperatures of 63.9 and 67.6°C, respectively. The purified gene fragment was digested using *Bam*H/I/*Nde*I (New England Biolabs) and was then ligated into a similarly digested pET11a plasmid (Novagen) yielding the TAX-His6-pET11a plasmid. The plasmid was then transformed into *E. coli* XL-1 Blue cells (Stratagene) and the gene sequence was confirmed by DNA sequencing.

Overexpression of TAX-His₆

TAX-His₆-pET11a was transformed into *E. coli* BL-21(DE3) cells for expression. A single colony was then used to inoculate 50 mL of LB containing 100 µg/mL ampicillin, which was then grown overnight at 37°C with shaking. 30 mL of the pre-culture was used to inoculate 1 L LB/ampicillin. The culture was grown at 37°C with shaking to an OD₆₀₀ of approximately 0.3. The temperature was then reduced to 25°C and expression was induced at an OD₆₀₀ of 0.6 with the addition of 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). The culture was grown 18 hours and the cells were harvested by centrifugation.

Purification of TAX-His₆

The harvested cells were resuspended in lysis buffer (10 mM imidazole, 100 mM Tris pH 7.4, 300 mM NaCl), lysed mechanically with an Emulsiflex-C5 (Avestin), and then clarified by centrifugation at 10,000 \times g for 40 min. The supernatant was then applied to 3 mL of Ni-NTA resin (Qiagen), which had been equilibrated with lysis buffer. The column was washed with 10 column volumes of lysis buffer and 10 column volumes of wash buffer (20 mM imidazole, 100 mM Tris pH 7.4, 300 mM NaCl). The protein was eluted with 3 column volumes of elution buffer (200 mM imidazole, 100 mM Tris pH 7.4, 300 mM NaCl). The eluate was dialyzed exhaustively against 50 mM sodium citrate, 50 mM NaCl, pH 5.5 and then concentrated using Amicon 10,000 MWCO centrifugal concentrators (Millipore).

Protein concentration determination

Protein concentrations were determined by UV absorbance after protein denaturation in 8 M guanidinium hydrochloride for 10 min with a dilution of at least 10 \times . An extinction coefficient at 280 nm of 55,280 M⁻¹cm⁻¹ was used.

Protein characterization

CD and MS were carried out as in Chapter III, Materials and Methods. CD spectra and thermal denaturation curves were obtained using 10 μ M protein in 50 mM MES, pH 5.5, 100 mM NaCl.

Xylanase activity assays

The specific activity of TAX-His₆ was assayed using pNP- β -D-glucopyranoside as in Lo Leggio *et al.*⁴ 2.5 mM substrate in 50 mM sodium citrate, pH 5.3 was incubated at 50°C for 5 min. The reaction was initiated with the addition of purified TAX-His₆ to a final volume of 300 μ L. Protein concentrations between 170 μ M and 1.7 μ M were used. The reactions were mixed and incubated at 50°C for 15 min. The reaction was quenched with the addition of 400 μ L of 20% Na₂CO₃ and the amount of liberated pNP was determined by measuring the absorbance at 410 nm. An extinction coefficient at 410 nm of 18,400 M⁻¹cm⁻¹ was used for pNP at pH 10.0.

Results and Discussion

We observed very high levels of TAX-His₆ expression in the BL-21 (DE3) *E. coli* cells (Figure D-2, lane 2) and were able to obtain 150 mg of highly pure protein per liter of culture after a single Ni-NTA affinity chromatography purification step (Figure D-2, lane 6). A majority of TAX-His₆ was expressed into the soluble fraction (Figure D-2, lane 3), but a significant amount of protein was found in the insoluble fraction, perhaps a result of the very high total amount of expressed protein. The mass was confirmed with electrospray mass spectrometry (Figure D-3), and is within 2 amu of the expected mass (34,433 kDa).

CD analysis shows that TAX-His₆ is folded and has a Tm of 75.2°C (Figure D-4). Unfortunately, no CD data is available for direct comparison with fungally expressed TAX. One source reports that TAX retains 40% of its activity at temperatures as high as

80°C for 1 hour. In the recombinant TAX-His₆, the protein is fully and irreversibly unfolded at this temperature. One subtle difference between TAX from fungal sources and from *E. coli* is the pyroglutamic acid modification of the N-terminal glutamate that is seen in the crystal structure of fungal TAX that is probably not present in the recombinant protein.⁴ However, it is not clear that this small modification is enough to cause significant destabilization. The hexahistidine tag and Factor Xa cleavage site that were added to the protein sequence in TAX-His₆ may also contribute to the differences in stability, although we did not attempt to cleave the tag to determine if this was the cause of the destabilization. In addition, the strain of *T. aurantiacus* that was used to produce the xylanase in the crystal structure, which was the source of our protein sequence, is not explicitly stated. If the xylanase produced by the strain used in the temperature studies (C436) differed from the one that was used to produce the protein for the crystal structure, the protein sequences could be different, perhaps resulting in variations in thermal stability.

TAX-His₆ has a specific activity for pNP- β -D-glucopyranoside of 13.6 \pm 3.9 U/mg. This is similar to the reported value from the natural expression system (12.7 U/mg), indicating that the enzyme is functionally unchanged when expressed in *E. coli*.⁴

Conclusions

We were able to express TAX-His₆ recombinantly, and because of our optimization of the gene for expression in *E. coli*, we obtained up to 150 mg of highly pure protein per liter of culture. The recombinantly expressed TAX-His₆ is folded, stable, and functionally indistinguishable from the protein obtained from the fungal

expression system. The high bacterial expression levels, ease of purification, and thermostability of TAX-His₆ make it an ideal scaffold for *de novo* computational enzyme design and other enzyme engineering studies. In addition, the method of constructing the TAX-His₆ gene through recursive PCR of overlapping 40-mer oligonucleotides facilitates future enzyme engineering projects on this scaffold. Multiple mutations can easily be introduced by simply substituting a subset of oligos that encode the mutations and carrying out the gene assembly and cloning steps to create the gene for the modified protein.

Acknowledgements

We would like to thank Leila Lo Leggio for discussion about the fungal TAX crystal structure and expression system.

References

1. Lo Leggio, L.; Kalogiannis, S.; Bhat, M. K.; Pickersgill, R. W., High resolution structure and sequence of *T. aurantiacus* xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with $(\beta)\alpha$ -barrel architecture. *Proteins* **1999**, *36*, 295-306.
2. Kalogiannis, S.; Owen, E.; Beever, D. E.; Bhat, M. K., Screening of ten strains of *Thermoascus aurantiacus* and characterization of a major xylanase. *Med. Fac. Landbouww. Univ. Gent.* **1995**, *60*, 1995-1998.
3. Besenmatter, W.; Kast, P.; Hilvert, D., Relative tolerance of mesostable and thermostable protein homologs to extensive mutation. *Proteins* **2007**, *66*, 500-506.
4. Lo Leggio, L.; Kalogiannis, S.; Eckert, K.; Teixeira, S. C.; Bhat, M. K.; Andrei, C.; Pickersgill, R. W.; Larsen, S., Substrate specificity and subsite mobility in *T. aurantiacus* xylanase 10A. *FEBS Lett* **2001**, *509*, 303-308.
5. Villalobos, A.; Ness, J.; Gustafsson, C.; Minshull, J.; Govindarajan, S., Gene Designer: a synthetic biology tool for constructing artificial DNA segments. *BMC Bioinformatics* **2006**, *7*, 285.
6. Rydzanicz, R.; Zhao, X. S.; Johnson, P. E., Assembly PCR oligo maker: a tool for designing oligodeoxynucleotides for constructing long DNA molecules for RNA production. *Nucleic Acids Res* **2005**, *33*, W521-525.
7. Stemmer, W. P.; Crameri, A.; Ha, K. D.; Brennan, T. M.; Heyneker, H. L., Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. *Gene* **1995**, *164*, 49-53.

Table D-1. Assembly oligonucleotides for the construction of the TAX-His₆ gene.
 Overlapping regions are indicated with bold text and same-colored sections of adjacent oligonucleotides are complementary. All oligonucleotides are written from 5' to 3'.

name	sequence	length
TAX-1t	TAAGAAGGAGAT ATACATATGGCAGAACGCG	31
TAX-1b	TCAGTTGGTCAACGGATTGAG CCGTTCTGCCATATGTAT	40
TAX-2t	CAATCCGTTGACCAACTGATTAAAGCTCGTGGTAAAGTGT	40
TAX-2b	GTCGGTTGCAACACCGAA ATACACTTACACGAGCTTTA	40
TAX-3t	TTCGGTGTGCAACCGAC CAGAACCGCTGACCACGGC	39
TAX-3b	CTGAATGATGCCCGCGTT CTTGCCAGTGGTCAGGCGGT	38
TAX-4t	AACCGCGCGATCATTAG GCA GATTCGGTCAGGTTACCC	40
TAX-4b	CCCATTTCATGGAGTTCTCTG GGGTAACCTGACCGAAATC	40
TAX-5t	GAGAACTCCATGAAATGGGACCGACGGAGCCTTCTCAA	39
TAX-5b	CGCCAGCGAAGTTGAAGTT GCCTTGAGAAGGCTCGGTGCG	40
TAX-6t	AACTTCAACTTCGCTGGCG CA GACTACCTGGTAACGG	39
TAX-6b	CAGCTTACCGTTCTGCTG CGCCCGAGTTACCCAGGTAGTC	39
TAX-7t	CAGCAGAACGGTAAGCTG ATC CGCGGTACATCGCTGGTT	39
TAX-7b	AGACGGCAGCTGGCTGT GCCA AACCAGCGTATGACCGCG	39
TAX-8t	ACAGCCAGCTGCCGTCTGGGTGTCTTCCATCACCATA	39
TAX-8b	TCACGTTGGTCAGAGTGT TTTATCGGTATGGAAGACAC	40
TAX-9t	AAACACTCTGACCAACGTGAT GAAGAACATATCACTACCC	40
TAX-9b	TGCCTTTATAACGGGTCA TAGGGTAGTGTATGGTTCTTC	41
TAX-10t	GATGACCCGTTATAAAGGCA AAA TCCGCGGTGGGATGTT	40
TAX-10b	CCTCGTTGAATGCTTCATTCA ACACATCCCACGCGCGGA	39
TAX-11t	GAATGAAGCATTCAACGAGGACGGCAGCCTGCGCCAGAC	39
TAX-11b	CACCGATCACATTAGAAAA ACGGTCTGGCGCAGGCTGC	39
TAX-12t	TTTTCTGAATGTGATCGGTGA A GATTACATCCGATCGCAT	41
TAX-12b	GCAGCACGGGCGGTCTGGA ATGCGATCGGGATGTAATC	38
TAX-13t	AGACCGCCCGTGTGCTG AGAT CCAAACGCTAAGCTGTACA	39
TAX-13b	AGTCCAGGTTGAACTGTTAA TGTACAGCTTAGCGTTGG	40
TAX-14t	TAACGATTACAACCTGGACTCTGCGTCTTATCCGAAACCC	41
TAX-14b	AACACGGTTCACGATGGC CTGGGTTTCGGATAAGACGC	39
TAX-15t	GCCATCGTGAACCGTGT AAAC AGTGGCGTGCCTGG	38
TAX-15b	GCGATGCCGTGATCG GAACG CCAGCCGCACGCCACT	38
TAX-16t	CGATCGACGGCATCGGC TCC CAGACGCATCTGCTGCA	38
TAX-16b	AGCACGCCAGCGCCCTGGC TGCAGACAGATGCGCTTG	38
TAX-17t	AGGGCGCTGGCGTGCTG CAGGCCCTGCCGCTGCTGGC	37
TAX-17b	ACCTCCGGAGTGCCGG CGCTTGCAGCAGCGGCCAGGG	37
TAX-18t	CCGGCAGTCCGGAGGTGCA ATCACCAGCTGGATGTAG	39
TAX-18b	ATCAGTCGGGCTTGC CCGCTACATCAGCTCGGTGAT	39
TAX-19t	GCGCAAGCCCGACTGATTAT GTCAACGTGTAACGCG	38
TAX-19b	CACAAGACTGCACATTAGGCA CGCGTTCACGACGTTGAC	40
TAX-20t	CTGAATGTGCA GTCAGTCTTGTGTTGGCATTACCGTATGGGT	39
TAX-20b	CCAAGAACGAGATCGGC AAACACCCATACGGTAATGCC	39
TAX-21t	GCCGATCCTGATTCTGG CGCG CATCCACTACCCGCTG	39
TAX-21b	GGTTGAAATTACCGTCGAACAG CAGCGGGTAGTGGATG	39
TAX-22t	GTTCGACGGTAATTCAACC GAAACCAAGCTTACAACGCTA	41
TAX-22b	CTGTTGCAAGGTCTG AACGA TAGCGTTGTAAGCTGGTTTC	40
TAX-23t	GTTCAAGGACCTGCAACAGGGCAGC ATCGAGGGTCTGGT	39
TAX-23b	CCTAATGGTGGTGGT GATGGTACCGACCAAGGCCCTCGATGC	39
TAX-24t	CATCACCAACCACCATAGGGA TCCGGCTGCTAACAAAGC	39
TAX-24b	AACTCAGCTCCTTCGG GCTTGTAGCAGCCGGA	36

T. aruaniacus xylanase (TAX-His₆)

TAA GAA GGA GAT ATA **CAT ATG** GCA
NdeI A

1 GAA GCG GCT CAA TCC GTT GAC CAA CTG ATT AAA GCT CGT GGT AAA GTG TAT TTC GGT GTT
 1 E A A Q S V D Q L I K A R G K V Y F G V

61 GCA ACC GAC CAG AAC CGC CTG ACC ACT GGC AAG AAC GCG GCG ATC ATT CAG GCA GAT TTC
 21 A T D Q N R L T T G K N A A I I Q A D F

121 GGT CAG GTT ACC CCA GAG AAC TCC ATG AAA TGG GAC GCG ACC GAG CCT TCT CAA GGC AAC
 41 G Q V T P E N S M K W D A T E P S Q G N

181 TTC AAC TTC GCT GGC GCA GAC TAC CTG GTG AAC TGG GCG CAG AAC GGT AAG CTG ATC
 61 F N F A G A D Y L V N W A Q Q N G K L I

241 CGC GGT CAT ACG CTG GTT TGG CAC AGC CAG CTG CCG TCT TGG GTG TCT TCC ATC ACC GAT
 81 R G H T L V W H S Q L P S W V S S I T D

301 AAA AAC ACT CTG ACC AAC GTG ATG AAG AAC CAT ATC ACT ACC CTG ATG ACC CGT TAT AAA
 101 K N T L T N V M K N H I T T L M T R Y K

361 GGC AAA ATC CGC GCG TGG GAT GTT GTG AAT GAA GCA TTC AAC GAG GAC GGC AGC CTG CGC
 121 G K I R A W D V V N E A F N E D G S L R

421 CAG ACC GTT TTT CTG AAT GTG ATC GGT GAA GAT TAC ATC CCG ATC GCA TTC CAG ACC GCC
 141 Q T V F L N V I G E D Y I P I A F Q T A

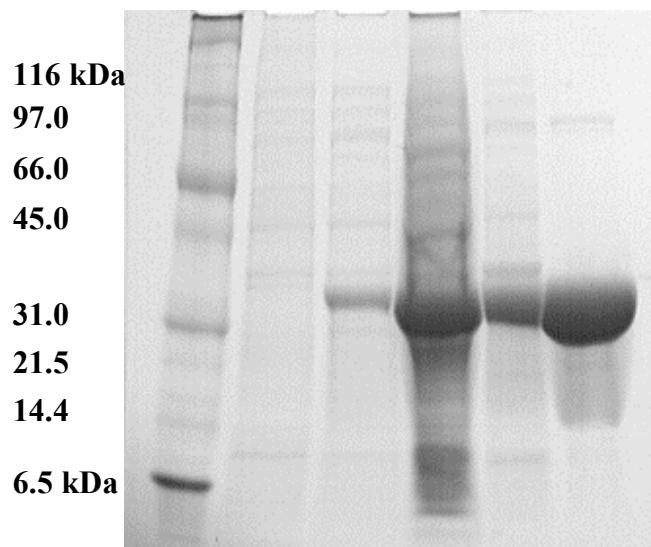
481 CGT GCT GCA GAT CCA AAC GCT AAG CTG TAC ATT AAC GAT TAC AAC CTG GAC TCT GCG TCT
 161 R A A D P N A K L Y I N D Y N L D S A S

541 TAT CCG AAA ACC CAG GCC ATC GTG AAC CGT GTT AAA CAG TGG CGT GCG GCT GGC GTT CCG
 181 Y P K T Q A I V N R V K Q W R A A G V P

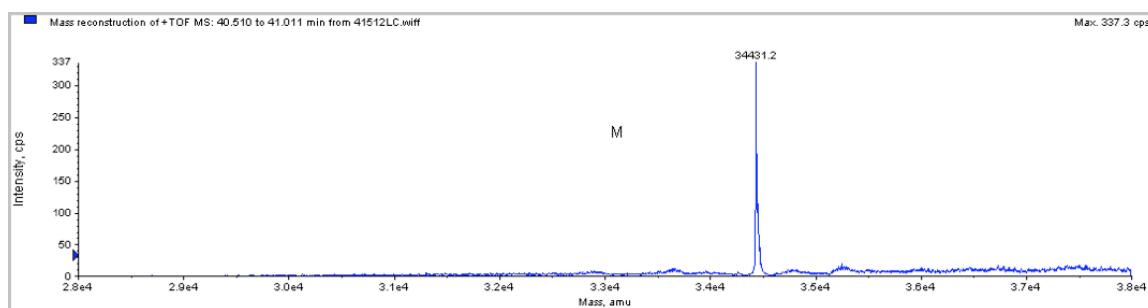
601 ATC GAC GGC ATC GGC TCC CAG ACG CAT CTG TCT GCA GGC CAG GGC GCT GGC GTG CTG CAG
 201 I D G I G S Q T H L S A G Q G A G V L Q

661 GCC CTG CCG CTG GCA AGC GCC GGC ACT CCG GAG GTT GCA ATC ACC GAG CTG GAT GTC
 221 A L P L A S A G T P E V A I T E L D V

721 GCG GGC GCA AGC CCG ACT GAT TAT GTC AAC GTC GTG AAC GCG TGC CTG AAT GTG CAG TCT
 241 A G A S P T D Y V N V V N A C L N V Q S


781 TGT GTG GGC ATT ACC GTA TGG GGT GTT GCC GAT CCT GAT TCT TGG CGC GCA TCC ACT ACC
 261 C V G I T V W G V A D P D S W R A S T T

841 CCG CTG CTG TTC GAC GGT AAT TTC AAC CCG AAA CCA GCT TAC AAC GCT ATC GTT CAG GAC
 281 P L L F D G N F N P K P A Y N A I V Q D


901 CTG CAA CAG GGC AGC **ATC GAG GGT CGT** GGT **CAC CAT CAC CAC CAT** **TAG**
 301 L Q Q G S **I E G R** G H H H H H H H

GGA TCC GGC TGC TAA CAA AGC CCG AAA GGA AGC TGA GTT
BamHI

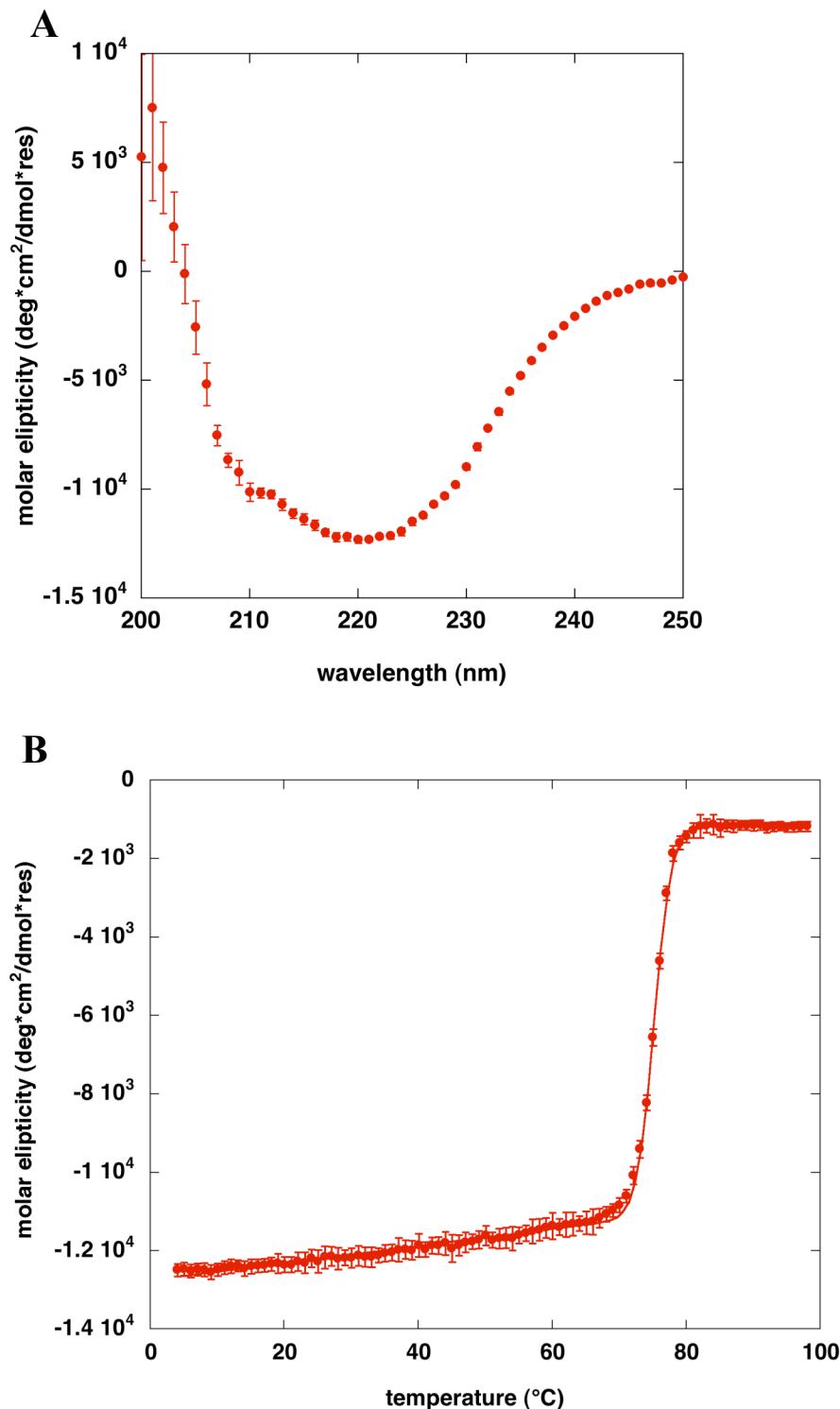

Figure D-1. Protein and DNA sequences for TAX-His₆. The hexahistidine tag is shown in pink, the Factor Xa cleavage site is in red, and the restriction endonuclease cleavage sites are in green.

Figure D-2. SDS-PAGE analysis of TAX-His₆ expression and purification. Approximate molecular weights are indicated. Lane 1: Molecular weight marker. Lane 2: uninduced cells. Lane 3: cells after 18 hours of induction. Lane 4: lysate supernatant. Lane 5: lysate pellet. Lane 6: Ni-NTA affinity column eluate.

Figure D-3. Mass spectrometry analysis of TAX-His₆. The actual mass (34431.2) is within 2 amu of the expected mass (34433 amu).

Figure D-4. CD analysis of TAX-His₆. (A) Far-UV wavelength scan, 25°C. (B) Thermal denaturation monitored at 222 nm. All experiments were carried out with 10 μ M protein in 50 mM MES, pH 5.5, 50 mM NaCl.