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Abstract

Fracture criteria of anisotropic materials can be established with understanding of full-field stresses

near a crack. The anisotropy of the stresses implies that the full in-plane tensorial stress is required,

but current experimental optical techniques only give the sum or difference of principal stresses, mo-

tivating the development of an experimental method that combines two experimental techniques to

determine all of the stress components. The proposed hybrid experimental method of phase-shifting

photoelasticity and transmission Coherent Gradient Sensing (CGS) can determine the full-field in-

plane tensorial stress around a crack. This thesis establishes this method for stress determination

around cracks in photoelastic materials, the foundation for future studies extending this method to

anisotropic materials.

The first step in developing this experimental method requires a new theory for the use of

CGS, a wavefront shearing interferometry technique, for photoelastic materials. The first analysis

and experimental verification of transmission wavefront shearing interferometry for photoelastic

materials are presented. These interferometers applied to optically isotropic materials produce a

single interference pattern related to one phase term, but when applied to photoelastic materials,

they produce the sum of two different interference patterns with phase terms that are the sum

and difference, respectively, of two stress-related phase terms. The two stress-related phase terms

may be separated using phase shifting and polarization optics. These concepts are experimentally

demonstrated using CGS in full field for a compressed polycarbonate plate with a side V-shaped

notch with good agreement with theoretical data derived from Williams’ solution for a thin plate

with an angular corner. The analysis may be applied to any wavefront shearing interferometer by

modifying parameters describing the wavefront shearing distance.
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The new method that combines phase-shifting photoelasticity and transmission CGS is first

developed to determine the tensorial stress field in thin plates of photoelastic materials. A six-step

phase-shifting photoelasticity method determines principal stress directions and the difference of

principal stresses. The transmission CGS method utilizes a standard four-step phase-shifting method

to measure the x and y first derivatives of the sum of principal stresses. These stress derivatives

are numerically integrated using a weighted preconditioned conjugate gradient (PCG) algorithm,

which is also used for the phase unwrapping of the photoelastic and CGS phases. With full-field

measurement of the sum and difference of principal stresses, the principal stresses may be separated,

followed by the Cartesian and polar coordinate stresses using the principal stress directions and the

polar angle. The method is demonstrated for in-plane tensorial stress determination for a compressed

polycarbonate plate with a side V-shaped notch with good comparison to theoretical stress fields.

The CGS-photoelasticity experimental method is applied to determine stresses around Mode I-

dominant cracks in Homalite-100. The cases presented here range in Mode I stress intensity factor,

KI , from about one-quarter to just below the fracture toughness and have small mode-mixity ratios

KII/KI . This experimental method demonstrates the calculation of mode-mixity ratios as small

as 0.0043 with a range of −0.010 to 0.020. The experimental stress fields have excellent agreement

with the full-field 2D asymptotic crack solution using the KI and KII values calculated from the

experimental data. With this foundation of stress determination around cracks in photoelastic

materials and with some future analysis, this experimental method can be extended to determine

stresses in anisotropic crystals for fracture studies.
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co relative photoelastic (stress-optic) constant, Equation (3.1), Page 39 m2/N

d depth of V-notch, Page 21

dshear lateral shearing distance, Page 10 m

E Young’s (elastic) modulus Pa

E±1
1 amplitude in p̂1 direction of E±1, Equation (2.11), Page 14

E±1
2 amplitude in p̂2 direction of E±1, Equation (2.11), Page 14

E1 amplitude for p̂1 direction of input electric field, Equation (2.9), Page 13

e1 rotational misalignment of input λ/4 plate, Page 43 radian

Eimage
1 electric field amplitude in p̂1 direction at the image plane, Equation (2.11), Page 14

E2 amplitude for p̂2 direction of input electric field, Equation (2.9), Page 13

e2 rotational misalignment of output λ/4 plate, Page 43 radian

Eimage
2 electric field amplitude in p̂2 direction at the image plane, Equation (2.11), Page 14

e3 rotational misalignment of output polarizer, Page 43 radian

Ex x amplitude of input electric field, Equation (2.1), Page 11

Especimen
x x amplitude of electric field after specimen, Equation (2.2), Page 11

Ey y amplitude of input electric field, Equation (2.1), Page 11

Especimen
y y amplitude of electric field after specimen, Equation (2.2), Page 11

g constant related to photoelasticity used in ∆S1,2, Equation (2.7), Page 13

G1,2 Ronchi grating 1, 2, Page 10



xxv

h nominal specimen thickness, Page 11 m

hd height of wrapped phase discontinuities, Page 17 radian

I intensity (irradiance) of an interference pattern

Icirc irradiance (intensity) at the image plane from circularly polarized electric field input, Equa-

tion (2.24), Page 19

Icirc
c constant for compound interference pattern from circularly polarized electric field input

depending on Icirc
o and ϕdiff , Equation (2.24), Page 19

Icirc
o constant for compound interference pattern from circularly polarized electric field input,

Equation (2.24), Page 19

IEx irradiance (intensity) at the image plane from pure Ex ı̂ input, Equation (2.22), Page 18

IEx
c constant for compound interference term for pure Ex ı̂ input depending on IEx

o , α, and ϕdiff ,

Equation (2.22), Page 18

IEx
o constant for compound interference pattern for pure Ex ı̂ input, Equation (2.22), Page 18

IEy irradiance (intensity) at the image plane from pure Ey ̂ input, Equation (2.23), Page 19

IEy
c constant for compound interference term for pure Ey ̂ input depending on IEy

o , α, and ϕdiff ,

Equation (2.23), Page 19

IEy
o constant for compound interference pattern for pure Ey ̂ input, Equation (2.23), Page 19

Iimage irradiance (intensity) of electric field at the image plane, Equation (2.12), Page 14

Iimage
1 irradiance (intensity) of Eimage

1 , Equation (2.12), Page 14

Iimage
2 irradiance (intensity) of Eimage

2 , Equation (2.12), Page 14

Iisotropic irradiance (intensity) of CGS image for an isotropic material, Page 17

I1o constant in Iimage
1 depending on A±1

x,y, α and φx,y, Equation (2.16), Page 16



xxvi

I2o constant in Iimage
2 depending on A±1

x,y, α and φx,y, Equation (2.16), Page 16

Ic constant for compound interference term depending on I1o, I2o, and ϕdiff , Equation (2.17),

Page 16

Ii i-th phase-shifted image (i = 1–6 for photoelasticity, i = 1–4 for CGS)

Io constant in Iimage, Equation (2.16), Page 16

Io intensity (irradiance) of a photoelastic interference pattern, Equation (3.2), Page 39

k wave number, Page 11 radian/m

KIc fracture toughness, Page 88 MPa/
√

m

KII Mode II stress intensity factor, Equation (4.1), Page 82 MPa
√

m

KI Mode I stress intensity factor, Equation (4.1), Page 82 MPa
√

m

L half of the CGS shearing distance, Page 181 pixel

Lf height of image field of view, Page 15

Mi coefficients in intensity for polariscope with non-polarizing beamsplitter, i = 1–4, Equa-

tion (3.5), Page 42

N photoelastic fringe order, Equation (3.1), Page 39

no refractive index, Page 11

p pitch, i.e., line density of Ronchi grating, Page 10 1/m

r polar coordinate for radius

Rx,y reflectance coefficients along the {x, y} directions for a non-polarizing beamsplitter, Page 41

s sum of the in-plane principal stresses, Page 51

t time s



xxvii

Tx,y transmission coefficients along the {x, y} directions for a non-polarizing beamsplitter, Page 41

thresh user-defined threshold value used in correction of the wrapped isoclinic angle, Page 49

w opening width of V-notch, Page 21

W δ
i quality-driven weight function for PCG algorithm for the isochromatic phase for mixed-mode

fracture at point i, Page 84

W ∂x
i quality-driven weight function for PCG algorithm for the CGS phase related to the x deriva-

tive of σ1 + σ2 for mixed-mode fracture at point i, Page 84

W ∂y
i quality-driven weight function for PCG algorithm for the CGS phase related to the y deriva-

tive of σ1 + σ2 for mixed-mode fracture at point i, Page 84

W f width of image field of view, Page 15

x Cartesian coordinate

y Cartesian coordinate

z Cartesian coordinate

CGS Coherent Gradient Sensing, Page 10

FCT fast cosine transform, Page 29

G energy release rate, Page 1 N/m

NRMSD RMSD normalized by range of data, Page 32

PCG preconditioned conjugate gradient, Page 29

RMSD root mean square deviation, Page 32

Sub-scripts and Super-scripts

()circ related to circularly polarized electric field input

()Ex related to pure Ex ı̂ input



xxviii

()Ey related to pure Ey ̂ input

()image refers to image plane

()in refers to input plane prior to specimen

()resid refers to residual stresses

()specimen refers to plane immediately after specimen

()c refers to a compound quantity

()p written in principal coordinate system

Vectors and Matrices

ı̂ x direction unit vector

̂ y direction unit vector

p̂i principal unit vectors for i = {1, 2, 3}, Equation (2.9), Page 13

W quality-driven weight function for PCG algorithm, Equation (2.28), Page 32

E(0,±1) transmitted, then ±1 diffracted wavefront, Page 10

E(±1,0) ±1 diffracted, then transmitted wavefront, Page 10

E±1 once diffracted electric field vector after Ronchi gratings, Page 14

Eimage
p electric field vector at the image plane, Equation (2.11), Page 14

Ein input electric field vector, Equation (2.1), Page 11

Ein
p input electric field vector in principal coordinates, Equation (2.9), Page 13

Especimen
p electric field vector after the specimen in principal coordinates, Equation (2.10), Page 14

f(KI , KII) function to be minimized by nonlinear least-squares fitting algorithm to determine KI

and KII , Equation (4.5), Page 85



1

Chapter 1

Introduction

Active materials that have coupled responses to external stimuli, such as ferroelectric crystals that

exhibit electromechanical actuation and nonlinear optical properties, are advantageously used in

applications such as actuators, microdevices, and photonics. In order to improve fabrication tech-

niques that focus on making flat surfaces for these applications and to characterize device failure,

their fracture properties need to be determined. Such materials undergo anisotropic fracture, but

the criteria for anisotropic fracture are not well established. The commonly used fracture criteria

from isotropic fracture mechanics of maximum Mode I stress intensity factor (max-KI), zero Mode

II stress intensity factor (KII = 0), maximum hoop stress (max-σθθ), and maximum energy release

rate (max-G) lead to the same prediction of crack propagation path in isotropic materials, but not in

anisotropic materials (Goldstein and Salganik, 1974; Cotterell and Rice, 1980; Hodgdon and Sethna,

1993; Azhdari and Nemat-Nasser, 1998). A set of theoretical numerical, and experimental studies

of fracture in sapphire, a brittle anisotropic crystal, by Azhdari and Nemat-Nasser (1996, 1998) and

Azhdari et al. (1998) determined that a stress-based fracture criterion best determines the crack

kinking properties for this material. Such studies motivate determining anisotropic fracture criteria

by knowledge of the anisotropic stress field around a crack tip, allowing for calculation of quantities

such as KI , KII , σθθ, and G, which may be compared to determine what best predicts the crack

path and the critical conditions for crack initiation and propagation for a given anisotropic material.

In plane-stress problems for these materials, the anisotropy of the stress field implies that the

sum or difference of the in-plane principal stresses is not sufficient to determine fracture properties,
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as it is for linearly elastic isotropic materials. Therefore, the study of aniostropic fracture motivates

the development of experimental methods employing full-field techniques to determine the full-field

tensorial stress (i.e., σxx, σyy, and σxy) for fracture studies. This thesis presents the development

and experimental validation of a hybrid experimental method of phase-shifting photoelasticity and

transmission Coherent Gradient Sensing (CGS), a wavefront shearing interferometry technique, for

full-field in-plane tensorial stress determination around cracks in photoelastic materials, which serves

as the foundation for future work in extending this method for fracture studies in anisotropic crys-

talline materials.

1.1 Transmission Wavefront Shearing Interferometry for Pho-

toelastic Materials

Wavefront shearing interferometry is a well-established optical technique for measuring many optical,

material, and mechanical properties such as wavefront slope characterization (Murty, 1964), surface

deformation (Park et al., 2003), and even fracture of materials (Tippur et al., 1991a,b; Rosakis, 1993;

Krishnaswamy, 2000). Shearing interferometry essentially is the interference of a coherent wavefront

with a copy of itself “sheared” or translated by a lateral distance dshear; this technique is self-

referencing and hence is insensitive to rigid body motion (Park et al., 2003; Tippur et al., 1991a,b;

Rosakis, 1993). The general analysis of the interference pattern for standard wavefront shearing

interferometers depends only on the wavefront characteristics and the distance dshear. Once the

parameters for producing the sheared wavefront and interfering the two wavefronts are characterized

for a particular shearing method, then the analysis may be specified for that particular method. With

several methods to produce the wavefront shearing, the choice of shearing interferometer depends

on the requirements of the application, such as measurement sensitivity or compactness.

An important consideration to the analysis is how the wavefront is formed. For techniques

that involve transmission through a material of interest, the shape and optical properties of the

material are considered (e.g., spherical wavefront emanating from an optically isotropic plano-convex
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lens.) In the case of a deformed material that is originally planar, thickness and refractive index

variations in the material result in optical path differences that may be related to stresses. A general

analysis of the optical path difference in this case has previously been completed for the method

of caustics (Papdopoulos, 1993; Kobayashi, 1993; Shimizu et al., 1998). Though not a wavefront

shearing interferometry technique, the method of caustics, which has been used for large stress

gradient applications, does consider optical path differences due to a deformed material, resulting

in a shadow spot in the far field. The method of caustics only gives a point measurement, which

motivated the development of CGS that is capable of measuring full-field stress or displacement

gradients when used in transmission or in reflection, respectively (Tippur et al., 1991a,b). CGS is

a wavefront lateral shearing interferometer that achieves shearing by a pair of amplitude gratings;

sensitivity adjustment is achievable through choice of grating line density, separation between the

gratings, and light wavelength. Previously, CGS in transmission has been used only for optically

isotropic materials (Tippur et al., 1991a,b; Krishnaswamy, 2000). CGS in reflection has been used

for opaque isotropic materials (Tippur et al., 1991a,b), for materials with reflective coatings (Tippur

et al., 1991a,b; Lee et al., 2001), and for composite materials (Rosakis, 1993; Liu et al., 1998). No

previous studies have considered CGS in transmission for optically anisotropic materials.

Taking inspiration from the method of caustics applied to photoelastic materials, this study

presents the first general analysis of an initially planar wavefront transmitted through a photoelastic

material, in terms of electric field and optical path difference, for a general wavefront shearing

interferometer; the analysis is then specifically applied to CGS. The analysis may easily be modified

for any wavefront shearing interferometer by changing the experimental parameters related to the

distance dshear.

This study demonstrates that the resultant interference pattern is no longer a simple function of

a single phase term related to the sum of principal stresses, denoted ϕsum, as in the case of optically

isotropic materials. Due to the optical anisotropy from the stress birefringence, the interference

patterns from the x and y coordinates of the electric field, Ex and Ey, are no longer equivalent.

Considering the interference patterns along the orthogonal principal axes of the photoelastic spec-
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imen, denoted Iimage
1 and Iimage

2 , the phase terms of these distinct interference patterns, ϕ1 and

ϕ2, are ϕsum + ϕdiff and ϕsum − ϕdiff , respectively, where ϕdiff is related to the difference of

principal stresses. Thus, ϕdiff obscures the desired phase information, ϕsum, due to the optical

anisotropy of the material. ϕdiff is zero for an optically isotropic material, and therefore is not an

issue for isotropic materials. For a general incident electric field, wavefront shearing interferometry

for photoelastic materials results in an image that is the superposition of Iimage
1 and Iimage

2 , which

is too complicated to analyze by itself. The desired phase ϕsum may be recovered by using phase

shifting and polarization optics. These concepts are demonstrated using CGS for a compressed

polycarbonate thin plate with a V-shaped side notch with good agreement between experimental

and theoretical data.

1.2 Experimental In-Plane Tensorial Stress Determination

The analysis of various complex geometries and materials requires the full-field measurement of the

in-plane tensorial stress, but full-field optical interference techniques generally provide a linear com-

bination of stress or strain components. For example, standard photoelasticity yields the difference

of the principal stresses (σ1−σ2) and the principal directions, meaning the angle between the Carte-

sian and principal coordinate systems known as the isoclinic angle (Patterson et al., 1997; Siegmann

et al., 2005). Coherent Gradient Sensing (CGS) in transmission, on the other hand, provides a

spatial derivative of the sum of the principal stresses (σ1 +σ2) when applied to thin plate specimens

(Tippur et al., 1991a; Rosakis, 1993). Methods for the determination of the in-plane stress tensor

often combine either one experimental technique with a theoretical or numerical analysis component

or two experimental techniques. Among the single experimental and theoretical/numerical hybrid

methods are photoelasticity and a shear difference method, which calculates stress components on

a raster scan from initial values of stress determined by photoelastic parameters at the boundary

points (Haake et al., 1996; Greene et al., 2007), a hybrid photoelasticity and finite element method

technique (Berghaus, 1991), and a hybrid technique combining thermoelasticity, which relates to the

change in the sum of principal stresses with surface temperature, and both theoretical and numerical
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methods (Huang et al., 1990a,b). A double experimental hybrid technique utilizes reflection pho-

toelasticity as a strain witness and thermoelasticity (Barone and Patterson, 1996; Sakagami et al.,

2004); the opaque nature of photoelastic coatings in the infrared spectrum allows these techniques

to investigate the same surface of the specimen (Greene et al., 2007; Barone and Patterson, 1998).

Interferometric photoelasticity gives both the isochromatic phase, related to the difference of prin-

cipal stresses, and the isopachic phase, related to the sum of principal stresses; these two fields may

be separated using a Mach-Zehnder interferometer combined with a circular polariscope (Yoneyama

et al., 2005).

In this study, the proposed technique combines two full-field optical techniques, CGS in trans-

mission and photoelasticity, used simultaneously with the aid of phase-shifting diagnostics. The x

and y derivatives from the CGS data are numerically integrated to provide the sum of principal

stresses, which, when combined with the difference of principal stresses and principal stress direc-

tions derived from photoelasticity, yield full-field in-plane stresses in principal, Cartesian, or polar

coordinate systems. This method is the most similar to interferometric photoelasticity, given that

the sum and difference of principal stress fields both require phase shifting to extract phase infor-

mation and that both techniques are used in transmission. The proposed technique differs from

interferometric photoelasticity in that the sum of the principal stresses comes from stress gradient

measurements. Additionally, the CGS optic parameters, as described in Chapter 2, may be varied

to adjust the measurement sensitivity to optimize the fringe density. This study concentrates on

the hybrid technique in transmission; further analysis would be required to determine if this method

could be used in reflection, where the separation of the principal strains are considered. The use of

this method in reflection would be similar to the combined reflection photoelasticity/thermoelasticity

(Greene et al., 2007; Barone and Patterson, 1998), but in this case, a photoelastic coating would

affect the displacement derivative measurement on the same surface using reflection CGS.

This study demonstrates the combined experimental techniques for polycarbonate, a linear elastic

photoelastic material. The test configuration is a plate with a side V-shaped notch along the −x

axis, compressed uniformly along the y axis. A six-step phase-shifting photoelastic method based on
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Patterson et al. (1997) and Siegmann et al. (2005) utilizes a circular polariscope, except here a non-

polarizing beamsplitter is positioned after the specimen to split the light such that the transmitted

light travels through the remaining polariscope optics and the reflected light travels through the

CGS optics. The photoelastic data involve two phases, the isoclinic angle α and isochromatic phase

δ, related to the principal stress directions and the difference of principal stresses, respectively.

Phase shifting allows for the separation of these two phases, but produces “wrapped” data with a

limited range due to inverse trigonometric functions. The wrapped isoclinic angle and isochromatic

phase are both unwrapped using a global least square integration phase unwrapping algorithm called

weighted preconditioned conjugate gradient (PCG) method (Ghiglia and Romero, 1994; Baldi et al.,

2002). This robust method allows for discrete jumps in phase that may arise due to a free surface,

imperative to studying specimens with cracks or cutouts.

Since a transmission CGS interference pattern for a photoelastic material is a superposition of

two interference patterns, phase-shifting techniques combined with appropriate control of the input

polarization state prior to the specimen, achieved by the first two optics of the circular polariscope,

lead to the elimination of ϕdiff , leaving the desired phase ϕsum. The remaining phase is unwrapped

using the weighted PCG algorithm. The x and y derivatives of σ1 +σ2 from the CGS data from the

vertical and horizontal shearing directions are integrated using the PCG algorithm as well. With

the constant of integration identified by a boundary condition, the full-field sum and difference

of principal stresses allow for separation of the principal stresses, which may be transformed into

Cartesian or polar coordinate systems utilizing the isoclinic angle. Experimental data of the test

problem shows good agreement with theoretical data generated from an asymptotic solution derived

from Williams’ (1952) solution for a thin plate with an angular corner.

1.3 Full-Field Experimental Methods for Fracture Studies

Having established the use of the proposed hybrid experimental method for full-field tensorial stress

determination around a V-notch stress concentration in polycarbonate, the next stage in this study

is to demonstrate the method for full-field tensorial stress determination around a crack in a pho-
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toelastic material. To the author’s knowledge, the only study of full-field tensorial stress determi-

nation in a cracked material is by Sakagami et al. (2004), who used thermoelasticity and reflection-

photoelasticity applied to a mechanically loaded plate with a small central crack-like slit. This study

determines the full-field stresses for an aluminum alloy plate 450 mm×80 mm×6 mm in dimension

with a central crack-like slit through the thickness, 16mm in length and 0.2 mm in width. Their

field of view is 200 mm× 80 mm centered around the slit. Although qualitative comparison of their

full-field experimental tensorial stresses to their boundary element method simulation appears poor,

they report less than 5% error in their KI calculation as compared to theory. The study by Sak-

agami et al. (2004) does demonstrate the capability for tensorial stress determination using their

hybrid method for this situation, but for a large field of view, for a crack-like slit, and for an opaque

isotropic material.

This thesis is intended to demonstrate full-field tensorial stress determination using the proposed

hybrid transmission optical methods in photoelastic materials with an actual crack and for small

fields of view around 4.6 mm×4.6 mm, zoomed in very close around the crack. This study is the first

to use a hybrid experimental method for full-field tensorial stress determination around cracks in

photoelastic materials. The photoelastic material used here is Homalite-100, a brittle thermosetting

polyester, often used as a model material for dynamic linear elastic fracture studies (Bradley and

Kobayashi, 1971; Irwin et al., 1979; Dally, 1979; RaviChandar, 1982). Straight pre-cracks in the

Homalite-100 specimens are loaded via a wedge opening load, which simulates Mode I loading. Four

different load cases are presented, with calculated KI values ranging from about one-quarter to just

below the fracture toughness, the critical value of KI for crack propagation, of Homalite-100. The

experimental stress fields exhibit K-dominant stress behavior and show excellent comparison with

the 2D asymptotic crack solution for mixed-mode fracture using the calculated KI and KII values

from the experimental σxx and σyy. The experimental stresses indicate that the wedge loading is

not purely Mode I, but can have a slight Mode II component, with measured mode-mixity KII/KI

ranging from −0.010 to 0.020, demonstrating that this experimental method is sensitive enough to

capture slight mixed-mode fracture. Since these cases are for small fields of view, these experimental
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stress fields are for the local crack behavior, an important asset in studying small-scale specimens.

The current method does have some known local error sources that can be improved, as will be

discussed. This study of full-field tensorial stress determination around cracks in a photoelastic

material lays the foundation for future research in extending this hybrid experimental method for

determining fracture criteria in anisotropic crystals and in active materials like ferroelectric crystals.

1.4 Thesis Outline

This thesis is divided into four main chapters with a chapter for conclusions and three appendices of

supporting derivations. Chapter 2 presents the first analytical derivation of transmission wavefront

shearing interferometry applied to photoelastic materials and provides experimental verification of

the theory using CGS as the specific wavefront shearing interferometry technique, based on Kramer

et al. (2009a). Chapter 3 introduces six-step phase-shifting photoelasticity, describes how CGS

and photoelasticity are combined experimentally and how the data is analyzed, and demonstrates

the proposed phase-shifting full-field CGS-photoelasticty experimental method for in-plane tensorial

stress determination in a compressed polycarbonate plate with a side V-notch, based on Kramer

et al. (2009b). Chapter 4 demonstrates the proposed experimental method for in-plane tensorial

stress determination around Mode I–dominant cracks in Homalite-100. Chapter 5 describes future

improvements to the experimental method and possible extension of this method for fracture studies

in anisotropic materials. Chapter 6 provides concluding remarks for the thesis. Appendix A presents

the relationships between the principal, Cartesian, and polar in-plane tensorial stress components,

as well as relevant derivatives of stresses. Appendix B derives the 2D stress field for a plate with

a side V-notch under uniform normal loading used for the theoretical solution in the experimental

verification studies in Chapters 2 and 3. Appendix C presents details on the theory of phase-shifting

photoelasticity.


