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Abstract

Fracture criteria of anisotropic materials can be established with understanding of full-field stresses
near a crack. The anisotropy of the stresses implies that the full in-plane tensorial stress is required,
but current experimental optical techniques only give the sum or difference of principal stresses, mo-
tivating the development of an experimental method that combines two experimental techniques to
determine all of the stress components. The proposed hybrid experimental method of phase-shifting
photoelasticity and transmission Coherent Gradient Sensing (CGS) can determine the full-field in-
plane tensorial stress around a crack. This thesis establishes this method for stress determination
around cracks in photoelastic materials, the foundation for future studies extending this method to
anisotropic materials.

The first step in developing this experimental method requires a new theory for the use of
CGS, a wavefront shearing interferometry technique, for photoelastic materials. The first analysis
and experimental verification of transmission wavefront shearing interferometry for photoelastic
materials are presented. These interferometers applied to optically isotropic materials produce a
single interference pattern related to one phase term, but when applied to photoelastic materials,
they produce the sum of two different interference patterns with phase terms that are the sum
and difference, respectively, of two stress-related phase terms. The two stress-related phase terms
may be separated using phase shifting and polarization optics. These concepts are experimentally
demonstrated using CGS in full field for a compressed polycarbonate plate with a side V-shaped
notch with good agreement with theoretical data derived from Williams’ solution for a thin plate
with an angular corner. The analysis may be applied to any wavefront shearing interferometer by

modifying parameters describing the wavefront shearing distance.
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The new method that combines phase-shifting photoelasticity and transmission CGS is first
developed to determine the tensorial stress field in thin plates of photoelastic materials. A six-step
phase-shifting photoelasticity method determines principal stress directions and the difference of
principal stresses. The transmission CGS method utilizes a standard four-step phase-shifting method
to measure the x and y first derivatives of the sum of principal stresses. These stress derivatives
are numerically integrated using a weighted preconditioned conjugate gradient (PCG) algorithm,
which is also used for the phase unwrapping of the photoelastic and CGS phases. With full-field
measurement of the sum and difference of principal stresses, the principal stresses may be separated,
followed by the Cartesian and polar coordinate stresses using the principal stress directions and the
polar angle. The method is demonstrated for in-plane tensorial stress determination for a compressed
polycarbonate plate with a side V-shaped notch with good comparison to theoretical stress fields.

The CGS-photoelasticity experimental method is applied to determine stresses around Mode I-
dominant cracks in Homalite-100. The cases presented here range in Mode I stress intensity factor,
K7, from about one-quarter to just below the fracture toughness and have small mode-mixity ratios
K;;/K;. This experimental method demonstrates the calculation of mode-mixity ratios as small
as 0.0043 with a range of —0.010 to 0.020. The experimental stress fields have excellent agreement
with the full-field 2D asymptotic crack solution using the K; and Kj; values calculated from the
experimental data. With this foundation of stress determination around cracks in photoelastic
materials and with some future analysis, this experimental method can be extended to determine

stresses in anisotropic crystals for fracture studies.
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Chapter 1

Introduction

Active materials that have coupled responses to external stimuli, such as ferroelectric crystals that
exhibit electromechanical actuation and nonlinear optical properties, are advantageously used in
applications such as actuators, microdevices, and photonics. In order to improve fabrication tech-
niques that focus on making flat surfaces for these applications and to characterize device failure,
their fracture properties need to be determined. Such materials undergo anisotropic fracture, but
the criteria for anisotropic fracture are not well established. The commonly used fracture criteria
from isotropic fracture mechanics of maximum Mode I stress intensity factor (max-K7), zero Mode
IT stress intensity factor (K;;y = 0), maximum hoop stress (max-ogg), and maximum energy release
rate (max-G) lead to the same prediction of crack propagation path in isotropic materials, but not in
anisotropic materials (Goldstein and Salganik, 1974; Cotterell and Rice, 1980; Hodgdon and Sethna,
1993; Azhdari and Nemat-Nasser, 1998). A set of theoretical numerical, and experimental studies
of fracture in sapphire, a brittle anisotropic crystal, by Azhdari and Nemat-Nasser (1996, 1998) and
Azhdari et al. (1998) determined that a stress-based fracture criterion best determines the crack
kinking properties for this material. Such studies motivate determining anisotropic fracture criteria
by knowledge of the anisotropic stress field around a crack tip, allowing for calculation of quantities
such as Ky, Ky, ogg, and G, which may be compared to determine what best predicts the crack
path and the critical conditions for crack initiation and propagation for a given anisotropic material.

In plane-stress problems for these materials, the anisotropy of the stress field implies that the

sum or difference of the in-plane principal stresses is not sufficient to determine fracture properties,
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as it is for linearly elastic isotropic materials. Therefore, the study of aniostropic fracture motivates
the development of experimental methods employing full-field techniques to determine the full-field
tensorial stress (i.e., 044, 0yy, and o4y) for fracture studies. This thesis presents the development
and experimental validation of a hybrid experimental method of phase-shifting photoelasticity and
transmission Coherent Gradient Sensing (CGS), a wavefront shearing interferometry technique, for
full-field in-plane tensorial stress determination around cracks in photoelastic materials, which serves
as the foundation for future work in extending this method for fracture studies in anisotropic crys-

talline materials.

1.1 Transmission Wavefront Shearing Interferometry for Pho-

toelastic Materials

Wavefront shearing interferometry is a well-established optical technique for measuring many optical,
material, and mechanical properties such as wavefront slope characterization (Murty, 1964), surface
deformation (Park et al., 2003), and even fracture of materials (Tippur et al., 1991a,b; Rosakis, 1993;
Krishnaswamy, 2000). Shearing interferometry essentially is the interference of a coherent wavefront
with a copy of itself “sheared” or translated by a lateral distance dgpeqr; this technique is self-
referencing and hence is insensitive to rigid body motion (Park et al., 2003; Tippur et al., 1991a,b;
Rosakis, 1993). The general analysis of the interference pattern for standard wavefront shearing
interferometers depends only on the wavefront characteristics and the distance dgspeqr. Once the
parameters for producing the sheared wavefront and interfering the two wavefronts are characterized
for a particular shearing method, then the analysis may be specified for that particular method. With
several methods to produce the wavefront shearing, the choice of shearing interferometer depends
on the requirements of the application, such as measurement sensitivity or compactness.

An important consideration to the analysis is how the wavefront is formed. For techniques
that involve transmission through a material of interest, the shape and optical properties of the

material are considered (e.g., spherical wavefront emanating from an optically isotropic plano-convex
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lens.) In the case of a deformed material that is originally planar, thickness and refractive index
variations in the material result in optical path differences that may be related to stresses. A general
analysis of the optical path difference in this case has previously been completed for the method
of caustics (Papdopoulos, 1993; Kobayashi, 1993; Shimizu et al., 1998). Though not a wavefront
shearing interferometry technique, the method of caustics, which has been used for large stress
gradient applications, does consider optical path differences due to a deformed material, resulting
in a shadow spot in the far field. The method of caustics only gives a point measurement, which
motivated the development of CGS that is capable of measuring full-field stress or displacement
gradients when used in transmission or in reflection, respectively (Tippur et al., 1991a,b). CGS is
a wavefront lateral shearing interferometer that achieves shearing by a pair of amplitude gratings;
sensitivity adjustment is achievable through choice of grating line density, separation between the
gratings, and light wavelength. Previously, CGS in transmission has been used only for optically
isotropic materials (Tippur et al., 1991a,b; Krishnaswamy, 2000). CGS in reflection has been used
for opaque isotropic materials (Tippur et al., 1991a,b), for materials with reflective coatings (Tippur
et al., 1991a,b; Lee et al., 2001), and for composite materials (Rosakis, 1993; Liu et al., 1998). No
previous studies have considered CGS in transmission for optically anisotropic materials.

Taking inspiration from the method of caustics applied to photoelastic materials, this study
presents the first general analysis of an initially planar wavefront transmitted through a photoelastic
material, in terms of electric field and optical path difference, for a general wavefront shearing
interferometer; the analysis is then specifically applied to CGS. The analysis may easily be modified
for any wavefront shearing interferometer by changing the experimental parameters related to the
distance dgpeqr-

This study demonstrates that the resultant interference pattern is no longer a simple function of
a single phase term related to the sum of principal stresses, denoted @syum, as in the case of optically
isotropic materials. Due to the optical anisotropy from the stress birefringence, the interference
patterns from the x and y coordinates of the electric field, E, and F,, are no longer equivalent.

Considering the interference patterns along the orthogonal principal axes of the photoelastic spec-
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Iim*9¢ and I9™9¢ the phase terms of these distinct interference patterns, ¢; and

imen, denoted
P2, are Yeum + Qdiff and QYeum — Yaifs, respectively, where @g;rr is related to the difference of
principal stresses. Thus, yg4ss obscures the desired phase information, @sum, due to the optical
anisotropy of the material. ¢q;f¢ is zero for an optically isotropic material, and therefore is not an
issue for isotropic materials. For a general incident electric field, wavefront shearing interferometry
for photoelastic materials results in an image that is the superposition of I:"™*¢ and I3™*9¢, which
is too complicated to analyze by itself. The desired phase @g,.,, may be recovered by using phase
shifting and polarization optics. These concepts are demonstrated using CGS for a compressed

polycarbonate thin plate with a V-shaped side notch with good agreement between experimental

and theoretical data.

1.2 Experimental In-Plane Tensorial Stress Determination

The analysis of various complex geometries and materials requires the full-field measurement of the
in-plane tensorial stress, but full-field optical interference techniques generally provide a linear com-
bination of stress or strain components. For example, standard photoelasticity yields the difference
of the principal stresses (01 — 02) and the principal directions, meaning the angle between the Carte-
sian and principal coordinate systems known as the isoclinic angle (Patterson et al., 1997; Siegmann
et al., 2005). Coherent Gradient Sensing (CGS) in transmission, on the other hand, provides a
spatial derivative of the sum of the principal stresses (o1 + 02) when applied to thin plate specimens
(Tippur et al., 1991a; Rosakis, 1993). Methods for the determination of the in-plane stress tensor
often combine either one experimental technique with a theoretical or numerical analysis component
or two experimental techniques. Among the single experimental and theoretical/numerical hybrid
methods are photoelasticity and a shear difference method, which calculates stress components on
a raster scan from initial values of stress determined by photoelastic parameters at the boundary
points (Haake et al., 1996; Greene et al., 2007), a hybrid photoelasticity and finite element method
technique (Berghaus, 1991), and a hybrid technique combining thermoelasticity, which relates to the

change in the sum of principal stresses with surface temperature, and both theoretical and numerical
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methods (Huang et al., 1990a,b). A double experimental hybrid technique utilizes reflection pho-
toelasticity as a strain witness and thermoelasticity (Barone and Patterson, 1996; Sakagami et al.,
2004); the opaque nature of photoelastic coatings in the infrared spectrum allows these techniques
to investigate the same surface of the specimen (Greene et al., 2007; Barone and Patterson, 1998).
Interferometric photoelasticity gives both the isochromatic phase, related to the difference of prin-
cipal stresses, and the isopachic phase, related to the sum of principal stresses; these two fields may
be separated using a Mach-Zehnder interferometer combined with a circular polariscope (Yoneyama
et al., 2005).

In this study, the proposed technique combines two full-field optical techniques, CGS in trans-
mission and photoelasticity, used simultaneously with the aid of phase-shifting diagnostics. The x
and y derivatives from the CGS data are numerically integrated to provide the sum of principal
stresses, which, when combined with the difference of principal stresses and principal stress direc-
tions derived from photoelasticity, yield full-field in-plane stresses in principal, Cartesian, or polar
coordinate systems. This method is the most similar to interferometric photoelasticity, given that
the sum and difference of principal stress fields both require phase shifting to extract phase infor-
mation and that both techniques are used in transmission. The proposed technique differs from
interferometric photoelasticity in that the sum of the principal stresses comes from stress gradient
measurements. Additionally, the CGS optic parameters, as described in Chapter 2, may be varied
to adjust the measurement sensitivity to optimize the fringe density. This study concentrates on
the hybrid technique in transmission; further analysis would be required to determine if this method
could be used in reflection, where the separation of the principal strains are considered. The use of
this method in reflection would be similar to the combined reflection photoelasticity/thermoelasticity
(Greene et al., 2007; Barone and Patterson, 1998), but in this case, a photoelastic coating would
affect the displacement derivative measurement on the same surface using reflection CGS.

This study demonstrates the combined experimental techniques for polycarbonate, a linear elastic
photoelastic material. The test configuration is a plate with a side V-shaped notch along the —z

axis, compressed uniformly along the y axis. A six-step phase-shifting photoelastic method based on
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Patterson et al. (1997) and Siegmann et al. (2005) utilizes a circular polariscope, except here a non-
polarizing beamsplitter is positioned after the specimen to split the light such that the transmitted
light travels through the remaining polariscope optics and the reflected light travels through the
CGS optics. The photoelastic data involve two phases, the isoclinic angle o and isochromatic phase
0, related to the principal stress directions and the difference of principal stresses, respectively.
Phase shifting allows for the separation of these two phases, but produces “wrapped” data with a
limited range due to inverse trigonometric functions. The wrapped isoclinic angle and isochromatic
phase are both unwrapped using a global least square integration phase unwrapping algorithm called
weighted preconditioned conjugate gradient (PCG) method (Ghiglia and Romero, 1994; Baldi et al.,
2002). This robust method allows for discrete jumps in phase that may arise due to a free surface,
imperative to studying specimens with cracks or cutouts.

Since a transmission CGS interference pattern for a photoelastic material is a superposition of
two interference patterns, phase-shifting techniques combined with appropriate control of the input
polarization state prior to the specimen, achieved by the first two optics of the circular polariscope,
lead to the elimination of ¢g;¢f, leaving the desired phase ¢gym. The remaining phase is unwrapped
using the weighted PCG algorithm. The x and y derivatives of o1 + o2 from the CGS data from the
vertical and horizontal shearing directions are integrated using the PCG algorithm as well. With
the constant of integration identified by a boundary condition, the full-field sum and difference
of principal stresses allow for separation of the principal stresses, which may be transformed into
Cartesian or polar coordinate systems utilizing the isoclinic angle. Experimental data of the test
problem shows good agreement with theoretical data generated from an asymptotic solution derived

from Williams’ (1952) solution for a thin plate with an angular corner.

1.3 Full-Field Experimental Methods for Fracture Studies

Having established the use of the proposed hybrid experimental method for full-field tensorial stress
determination around a V-notch stress concentration in polycarbonate, the next stage in this study

is to demonstrate the method for full-field tensorial stress determination around a crack in a pho-
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toelastic material. To the author’s knowledge, the only study of full-field tensorial stress determi-
nation in a cracked material is by Sakagami et al. (2004), who used thermoelasticity and reflection-
photoelasticity applied to a mechanically loaded plate with a small central crack-like slit. This study
determines the full-field stresses for an aluminum alloy plate 450 mm x 80 mm x 6 mm in dimension
with a central crack-like slit through the thickness, 16mm in length and 0.2 mm in width. Their
field of view is 200 mm x 80 mm centered around the slit. Although qualitative comparison of their
full-field experimental tensorial stresses to their boundary element method simulation appears poor,
they report less than 5% error in their K7 calculation as compared to theory. The study by Sak-
agami et al. (2004) does demonstrate the capability for tensorial stress determination using their
hybrid method for this situation, but for a large field of view, for a crack-like slit, and for an opaque
isotropic material.

This thesis is intended to demonstrate full-field tensorial stress determination using the proposed
hybrid transmission optical methods in photoelastic materials with an actual crack and for small
fields of view around 4.6 mm x 4.6 mm, zoomed in very close around the crack. This study is the first
to use a hybrid experimental method for full-field tensorial stress determination around cracks in
photoelastic materials. The photoelastic material used here is Homalite-100, a brittle thermosetting
polyester, often used as a model material for dynamic linear elastic fracture studies (Bradley and
Kobayashi, 1971; Irwin et al., 1979; Dally, 1979; RaviChandar, 1982). Straight pre-cracks in the
Homalite-100 specimens are loaded via a wedge opening load, which simulates Mode I loading. Four
different load cases are presented, with calculated K values ranging from about one-quarter to just
below the fracture toughness, the critical value of K for crack propagation, of Homalite-100. The
experimental stress fields exhibit K-dominant stress behavior and show excellent comparison with
the 2D asymptotic crack solution for mixed-mode fracture using the calculated K; and Kj; values
from the experimental o, and oy,. The experimental stresses indicate that the wedge loading is
not purely Mode I, but can have a slight Mode IT component, with measured mode-mixity Kr;/K;
ranging from —0.010 to 0.020, demonstrating that this experimental method is sensitive enough to

capture slight mixed-mode fracture. Since these cases are for small fields of view, these experimental
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stress fields are for the local crack behavior, an important asset in studying small-scale specimens.
The current method does have some known local error sources that can be improved, as will be
discussed. This study of full-field tensorial stress determination around cracks in a photoelastic
material lays the foundation for future research in extending this hybrid experimental method for

determining fracture criteria in anisotropic crystals and in active materials like ferroelectric crystals.

1.4 Thesis Outline

This thesis is divided into four main chapters with a chapter for conclusions and three appendices of
supporting derivations. Chapter 2 presents the first analytical derivation of transmission wavefront
shearing interferometry applied to photoelastic materials and provides experimental verification of
the theory using CGS as the specific wavefront shearing interferometry technique, based on Kramer
et al. (2009a). Chapter 3 introduces six-step phase-shifting photoelasticity, describes how CGS
and photoelasticity are combined experimentally and how the data is analyzed, and demonstrates
the proposed phase-shifting full-field CGS-photoelasticty experimental method for in-plane tensorial
stress determination in a compressed polycarbonate plate with a side V-notch, based on Kramer
et al. (2009b). Chapter 4 demonstrates the proposed experimental method for in-plane tensorial
stress determination around Mode I-dominant cracks in Homalite-100. Chapter 5 describes future
improvements to the experimental method and possible extension of this method for fracture studies
in anisotropic materials. Chapter 6 provides concluding remarks for the thesis. Appendix A presents
the relationships between the principal, Cartesian, and polar in-plane tensorial stress components,
as well as relevant derivatives of stresses. Appendix B derives the 2D stress field for a plate with
a side V-notch under uniform normal loading used for the theoretical solution in the experimental
verification studies in Chapters 2 and 3. Appendix C presents details on the theory of phase-shifting

photoelasticity.



