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Chapter 6

Conclusions

This thesis has presented a hybrid full-field experimental method combining phase-shifting pho-
toelasticity and transmission Coherent Gradient Sensing for in-plane tensorial stress determination
for fracture studies. In order for this method to achieve its goals, a new analysis for transmission
wavefront shearing interferometry applied to photoelastic materials has been developed and ex-
perimentally verified for the specific wavefront shearing interferometer Coherent Gradient Sensing.
The hybrid experimental method has been developed and experimentally verified for photoelastic
materials by good comparison between experimental and theoretical stress fields for a compressed
polycarbonate plate with a side V-notch. The hybrid experimental method has also been validated
for full-field tensorial stress determination around Mode I-dominant cracks in photoelastic materi-
als, a study that is the first to achieve these goals, serving as the foundation for future research in
extending this method for fracture studies in anisotropic materials.

The new analysis of transmission wavefront shearing interferometry for photoelastic materials
derives an intensity expression I?™%9€ for the complicated interference pattern that, in general, is the
sum of two interference patterns such that 19 = I, + I1, co8[@sum + Pdif ) + 120 COS[Psum — Pdif f]
(Equation (2.16)); @sum is the phase related to o1 4+ o2 and is the only phase that results for these
interferometers applied to optically isotropic materials, ¢gq;¢¢ is a phase related to o1 — o2, and
I, and I, are coefficients determined by the polarization of the input electric field. The control
of the input electric field polarization by polarization optics prior to the photoelastic specimen, in

addition to phase-shifting techniques, allow for determination of the desired gyy,. This analysis



193

has been verified using a compressed polycarbonate plate with a side V-notch using CGS with the
experimental phase maps comparing well with theory based on Williams (1952). This analysis serves
as the governing theory for determination of x and y derivatives of o1 +09 for the hybrid experimental
method presented in this thesis.

A six-step phase-shifting photoelasticity method has been presented utilizing different angles for
the polarization optics in a circular polariscope to obtain six images related to o1 — o2 and the
isoclinic angle, «, which is the angle between the Cartesian and principal coordinate systems. This
method allows for full-field determination of o7 — 02 and «a. Since the first two polarization optics
of the circular polariscope, a polarizer and A/4 plate set for circular polarization of the electric field
prior to the specimen, are also useful for determination of gy, from CGS, then a non-polarizing
beamsplitter or a translating mirror immediately after the sample allows for these two experimental
techniques to be combined to investigate the same field of view of a specimen. The phase-shifting

[43

techniques produce “wrapped” phase fields that require unwrapping before the stress fields can be
determined, a task achieved by a data-quality—guided unwrapping algorithm by Ghiglia and Romero
(1994) based on preconditioned conjugate gradient (PCG) numerical methods used to solve discrete
Poisson equations. A slightly modified version of the algorithm has been implemented for integration
of the x and y derivatives of stress to determine o1 + 02 + ¢;, where the constant of integration ¢;
is determined by a traction free boundary condition. The in-plane tensorial stress components
can then be determined from full-field o1 4+ 02, 01 — 02, and «, as demonstrated for a compressed
polycarbonate plate with a side V-notch. Some potential error sources have been identified as
rotational misalignment of the polarization optics and transmission and reflectance coefficients of
the non-polarizing beamsplitter, and mitigation techniques have been developed to minimize error,
particularly in the isoclinic angle. Despite these error sources, the experimental and theoretical data
have good agreement. This experimental verification of the hybrid experimental method is the basis
for the application of the method for determination of the in-plane tensorial stress around a loaded

crack in a photoelastic material.

The first study to experimentally determine full-field in-plane tensorial stress around a crack in a
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photoelastic material has been presented. The hybrid method has been applied to Mode I-dominant
cracks in Homalite-100 for small fields of view, for a range of Mode I stress intensity factors from
around one-quarter to just below the fracture toughness of Homalite-100, and for a small range
of mode-mixity K;;/K; from —0.010 to 0.020. The experimental stress fields show K-dominant
behavior, allowing for excellent comparison to full-field theoretical data based on the 2D asymptotic
crack solution using the experimentally calculated K; and Kj; values. These values have been
calculated from stress fields incorporating both CGS and photoelasticity data and allow for global
error less than 5% for most fields and no greater than 7.8%, showing that the two techniques work
well together for stress determination around cracks. Common error sources identified in Chapter
3 are characterized for this application and can be mitigated with careful experimentation and
with improved analysis algorithms. This study has successfully met the objective of this thesis: to
apply a hybrid experimental method for full-field in-plane tensorial stress determination suitable for
fracture studies in photoelastic materials with the ability to view local stresses around a crack for
small (mm-scale) fields of view for small specimens. This study is the foundation for future research
in extending this method for fracture studies in anisotropic materials.

Future research discussed in this thesis for the hybrid CGS-photoelasticity experimental method
involves improvements to the current method and then extension of it for fracture studies in
anisotropic materials, particularly crystalline materials. Errors associated with the rotational mis-
alignment of the polarization optics and to the non-polarizing beamsplitter may be mitigated with
careful alignment procedures and by characterizing the quality and tolerances of the optics. A robust
algorithm should be developed to improve the user-correction of any remaining errors due to these
sources in the isoclinic angle data. Since this experimental method ultimately uses the o1 4 o5 stress
field data, then the derivative assumption relating the CGS phases to spatial derivatives of stresses
and the error associated with this assumption may be eliminated by treating the phases as finite
differences based on staggered grids. The vertical and horizontal phase data may be used in an
algorithm, which requires future implementation, to solve a discrete Poisson equation to determine

o1+09. Extending the experimental method to crystalline materials requires (i) a detectable photoe-
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lastic effect from the crystal and (ii) extensive analysis of the interference patterns in the individual
experimental techniques. A preliminary investigation of the ferroelectric BaTiOsz has shown that
this crystal has a detectable photoelastic effect, but this effect is confounded by the spontaneous
polarization of the ferroelectric. Further analysis is required to determine the physical meaning of
interference patterns from both photoelasticity and CGS for this ferroelectric. Established theories
such as photoelasticity for crystals and the electro-optic effect serve as tools for new analyses that
extend the CGS-photoelasticity experimental method to meet its ultimate goal of full-field stress

determination for fracture criteria development for active anisotropic materials.
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Appendix A

Stress in Principal, Cartesian, and
Polar Coordinate Systems

A.1 Relations Between Stress Fields in Principal, Cartesian,

and Polar Coordinate Systems

A.1.1 Principal and Cartesian Coordinate Systems

Transforming the 2D stress tensor o from Cartesian to the principal coordinate system and vice versa
requires the rotation matrix R, given in Equation (A.1), where « is the angle between the Cartesian
and principal coordinate systems, as shown in Figure A.1. Equation (A.2) shows transforming o
from Cartesian to principal coordinates. Equation (A.3) shows transforming o from principal to

Cartesian coordinates in terms of the sum and differences of the principal stresses.

cos(a) —sin(a)

sin(e)  cos(«)
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A
02

Figure A.1: Schematic of Cartesian and principal coordinate systems

Oz €OS(0) + 04y sin(a)

Oyy sin(a) + o4, cos(a)

Oz cOS2 () + 0y sin? (@)
+ 20, cos(a) sin(a)]
[(0yy — 0) cos(a) sin(a)
+ 0y (cos () — sin®(a))]
g (520
[0y — 0a) (2220)

+04y cos(2ar)]

+0gy sin(2a)]
[~1(000 — 0yy) sin(20)

+04y cos(2

f)) + 04y sin(2a)]

[%(Uﬂcw +0oyy) + %(Um — 0yy) cos(2a)

— 0 sin(a) + 04y cos(a)

Oyy cOs(a) — 0y sin(a)

[(0yy — 0gz) cos(a) sin(a)
+ 0y (cos® (@) — sin®(a))]
[0228i0* (@) + 0y cos? (@)

— 204, cos(a) sin(a)]

[(oyy — 0ua) (Sm(272a)>

+0g4y cos(2ar)]

[Umw ( 1—0025(2a) )

1+4cos(2a)
+oyy (755

) — 04y sin(2a)]

[—%(am — oyy) sin(2a)
+0g4y cos(2ar)]
[%(Um +oyy) — %(am — oyy) cos(2a)

a)l

— 0y sin(2a)]

(A.2)
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Ozx  Oxy op 0
=R, RY
Owy Oyy 0 oo
o1 cos(a)  o7sin(a)
= R(X
—ogsin(a) o3 cos(@)

o1 cos?(a) 4 oy sin’(a)

_(01 — 09) cos(a) sin(a)

o ( 1+cos(2a)) 1oy

e ( 1—0025(2a) )

(01 = 02) ()

%(01 +o9) + %(01 — 09) cos(2a)

(01 — 02) sin(2a)

(01 — 02) cos(a) sin(a)

o1 sin?(a) + o cos?(a)

(01— 02) (5)

o1 ( 1—cos(2a) ) + oy ( 1+4cos(2a) )

2 2

(01 — 02) sin(2a)

%(01 + 02) — %(01 — 02) COS(QQ)

A.1.2 Polar and Cartesian Coordinate Systems

Transforming the 2D stress tensor o from Cartesian to the polar coordinate system and vice versa

requires the rotation matrix Ry, given in Equation (A.4), where 6 is the angle between the Carte-

sian z-axis and the radius vector. Equation (A.5) shows transforming o from Cartesian to polar

coordinates. Equation (A.6) shows transforming o from polar to Cartesian coordinates. Since the

simplifications are similar to the equations in Section (A.1.1), not all the steps are shown.

cos(6)
Ry =

sin(6)

—sin(6)

cos(0)



199

Orr  Orf Ozx Ogy
=R; Ry
oro 009 Ozy  Oyy
[C2a cos? (0) + oy sin? () [f%(am — 0yy) sin(26) (A.5)
+03y sin(20)] +04y cos(20)]
[—5(00a — 0yy) sin(26) [0 5i0%(0) + 0y, cOS?(6)
+0g4y cos(20)] — 0y Sin(26)]
Oz Orr  Org
=Ry Ry
Oy Org 009
[0 cOs?(0) + o799 5in*(6) [2(oyr — 090) sin(26) (A.6)

— 09 8in(26)]
[%(Urr — 099) sin(29)

+0,9 cos(20)]

+0,9 cos(20)]
[0 5in?(8) 4 0gg cos? ()

+0,98in(20)]

A.1.3 Polar and Principal Coordinate Systems

The 2D stress tensor o0 may be transformed from Cartesian to the Polar coordinate system and vice
versa using the relations in Sections A.1.1-A.1.2. The stress components o,.., 0.9, and ogg are given
in terms of the principal stresses, the principal direction (in terms of the angle «), and the angle 6,
as given in Equations (A.7)—(A.9). The principal stress components are given in terms of the ...,

o9, and ogg, the principal direction, and the angle 6, as given in Equation (A.10).
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Oy = [%(01 +09) + %(01 — 09) cos(2a)] cos? ()
+ [%(01 +09) — %(01 — 09) cos(2a)] sin?(6) + %(01 — 02) sin(2a) sin(26)

= L(01 4 02) + (01 — 02) cos(2a)[cos*(0) — sin(0)]

(A7)
+ 3(o1 — 02) sin(2a) sin(26)
= L(01 4 02) + 2 (01 — 02)[cos(2a) cos(20) + sin(2v) sin(26)]
= L(01 4+ 02) + 2(01 — 02) cos(20 — 2av)
aro = 5{[3(01 + 02) — 3(01 — 02) cos(20v)]
— [3(01 4+ 02) + 3(01 — 02) cos(2a)]} sin(260) + 3 (01 — 02) sin(2a) cos(26)
= —1(01 — 02) cos(2a) sin(20) + 1 (01 — 02) sin(2a) cos(26) (A8)
= —1(01 — 02)[sin(26) cos(2a;) — cos(26) sin(2a)]
= —1(o1 — 02) sin(20 — 2a)
000 = [1(01 + 02) + L(01 — 02) cos(2a)] sin? ()
+ [L (01 + 02) — L(a1 — 09) cos(2a)] cos?(8) — L(01 — 02) sin(2a) sin(26)
= L(o1 + 03) — 3(01 — 02) cos(2a) [cos?(0) — sin®(6))]
(A.9)

— 1(o1 — 02) sin(2cv) sin(26)
= 2(01 + 02) — £(01 — 02)[cos(2a) cos(26) + sin(2cv) sin(26)]

= 2(01 + 02) — 5(01 — 02) cos(26 — 2a)
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012 = H{[osr cos?(0) + 09 sin®(0) — 0 sin(26)]
+ [0y 5in?(0) + cgg cos?(0) + 0,4 sin(20)]}
+ ${[o7 cos®(0) + oo sin®(0) — 7,0 sin(20)]
— [0 8in*(0) + 0gp cos?(0) + 7,9 5in(26)]} cos(2a)
+ [1(0yr — 00) sin(26) + 7,4 cos(26)] sin(2cv) A10)

= L(oyr + 009) £ (0 — 0p9)[cos?(0) — sin®(0)] cos(2a) — 7,0 sin(26) cos(2a)

+ (0w — 00p) sin(20) sin(2a) & 7,4 cos(26) sin(2a)
= (o + 099) £ 2(07r — 0g9)[cos(2cx) cos(26) + sin(2a) sin(26)]

F 0,4[sin(20) cos(2a) — cos(26) sin(2a)]

= %(JM +ogg) £ %(Uw — 0gg) €08(20 — 2a0) F 09 8in(20 — 2a)
A.2 TImportant Stress Terms and Derivatives

A.2.1 Terms Involving the Sum of Principal Stresses

Coherent Gradient Sensing (CGS) involves the sum of principal stresses, so 01402 and its derivatives
must be developed in terms of Cartesian and polar coordinates. From Equations (A.3) and (A.10),

the sum of principal stresses may be written as

01+ 02 = Ogg + Oyy = Opr + 0p. (A.11)

Given Equation (A.11), the derivatives of o1 + o9 with respect to r and 6 may be written as

0oy + 02 00ge +0yy)  O(0r + 000)
ar or o or ’ (A.12)

0oy + 02 O0ge +0yy)  O(0r + 000)
00 00 N 00 ' (A-13)




202

With Equations (A.11)—(A.13), the derivatives of o1 + o2 with respect to = and y are

doy + oy ga(al + 09) n %8(01 + 09)

or T Oz or or o7}
— cos(6) d(o1 +02) sin(f) d(o1 + 02)
87“ T 69 (A14)
0(0gg +0 sin(0) 0(ogy + o
_ COS(G) ( 6r yy) _ T( ) ( 89 yy)
_ COS(@) 8(07«7«6—: 090) B Slnr(g) 8(arra—g 0'99)’
80'1 + 09 _ ga(al -|—0'2) + @8(01 -|—0'2)
oy dy ar dy 00
— sin() 0(o1 + 02) n cos(f) O(o1 + 09)
or T 00 (A.15)
. O(oge + 0 cos(0) ONopy +0
_ sm(@) ( ar yy) 4 T( ) ( 69 yy)
_ Sin(@) G(JM(;; 0'99) I COi(e) a(arraz 0'99) .

A.2.2 Terms Involving the Difference of Principal Stresses and Directions

Both photoelasticity and CGS for photoelastic materials involve the difference of principal stresses;
additionally, CGC for photoelastic materials involve the derivatives of o1 — o9 and of a. These also
must be written in terms of Cartesian and polar coordinates. The difference of principal stresses

may be written in the following manner using Equation (A.3) and (A.10):

01— 02 = (Ogg — Oyy) cOS(200) + 204, sin(2a)
(A.16)

= (0pr — 0gg) €08(20 — 2a0) — 20,9 sin(20 — 2a).

Taking the r and 6 derivatives of 07 — 05 in terms of Cartesian coordinates produces equations

that involve the r and 8 derivatives of o, but using tan(2«) = (204y/(0gz — 0yy)) can eliminate the
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terms involving the derivatives of a.

(o1 —03)  O0(02z — Oyy) 004y
or B or cos(2a) +2 or

sin(2a)
+ Zg [204y cos(2a) — (0zz — Oyy) sin(2c)]

_ 002z — 0yy)

5 cos(2ar) + 2% sin(2a) (A.17)
r

or
O
+2— 5 [204y cos(2a) — 204, cos(2a)]

_ Nozz — Oyy)

0oy
5 cos(2a) + 2 o Y sin(2a)
(o1 —02)  O0(04z — Oyy) 0oy
50 = 50 cos(2a) + 2 50 Y sin(2a)
+ 220 [204y cos(2a) — (0pz — Oyy) sin(2¢)]
_ 90wz = 0yy) 9o, A18
= 50 cos(2a) + 2 50 Y sin(2a) ( )
+ 2(29 [204y cos(2a) — 204, cos(2a)]
_ O(0zz — Oyy) 0o,
=5 cos(2a) + 2 50 Y sin(2a)

Writing these derivatives in terms of polar coordinates first requires determining r and 6 deriva-

tives of 04, — 0yy and oyy:

Oz — Oyy = Opr(cos?(0) — sin®(0)) — ogg(cos?(0) — sin(0)) — 20,4 sin(26)

= (07 — 0pg) c08(20) — 20,4 sin(26) (A.19)
a(U.LL - Uyy) _ 8(0'7'7' - 099) Oro .
5 = 5 cos(20) — 2 o sin(26) (A.20)
6(Uwa: - Uyy) _ 8(0’,«,« - 009) 80r9 .
= g = 4o cos(20) — 2| T+ (o, 099)} sin(26). (A.21)

With Equations (A.17), (A.18), (A.20), and (A.21), the r and @ derivatives of o1 — o2 may be
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written in terms of polar coordinates:

8(01 - 02) o a(arr - 099) aUTG .

5 = 5 cos(20 — 2a) — 2 o sin(26 — 2a)
3(01 - 0'2) _ a(arr - 090) 80'7“0 B

50 = 50 cos(260 — 2ar) — 2 50 sin(20 — 2a)

— 2(0p — 0pp) 8in(20 — 20) — 40,9 cos(20 — 2a).

(A.22)

(A.23)

The x and y derivatives of o1 — 09 in terms of Cartesian and polar coordinates are easily obtained

from Equations (A.17), (A.18), (A.22), and (A.23).

d(oy —02) d(o1 —o02)  sin(f) d(o1 — 02)
Oz = cos(f) or T 00
_ 02z — oyy) - sin(9) 9(0zs — oyy)
= [cos(ﬂ) 5 . 50 ] cos(2a)
0oy sin(f) 0o,y 7 .
+ 2| cos(6) 5% - o0 ] sin(2«)
8(0’1 - 02) . 8(01 - 02) COS(Q) 8(01 - 0'2)
oy O —+— 90
— |« (0aw — ayy) | €08(0) O(0wa — Oyy)
= [sm(@) 5 + . 50 ] cos(2a)
. 00y  cos(0) 00zy7 .
+ 2| sin(0) o 50 } sin(2«)
8(01 - 02) - 8(01 - 02) . Sln(g) 8(0'1 - 0'2)
Ox = cos(f) or T 00
= [cos(é)) 5‘(UM8— 960) — sin(9) (3(0rr8; %60 — 40T9>} cos(20 — 2a)
r r
-2 [cos(@) 5;;9 - Smr(e) (5‘;59 + (orr — 099))} sin(20 — 2a)
8(01 702) . 3(0'1 70’2) COS(G) 8(0'170'2)
T A - 06
= [sm(e) a(JMa; %00) + COST(Q) (8(07‘7”8; %00) _ 40T9>} cos(20 — 2a)

Oorg  cos(0) (0@9

-2 sin0) g+ =0 (T

+ (0 — 099))} sin(260 — 2a)

(A.24)

(A.25)

(A.26)

(A.27)
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The analysis for CGS for photoelastic materials requires determining the x and y derivatives of

«; this first requires the r and 6 derivatives of «, which come from taking the r and 6 derivatives of

tan(2a) = 204y /(0za — Oyy):

0 0 204y
E[tan(Zoz)] =% [7%” — Uyy:|
8704 2 Doy 2 7 0(0zz — Oyy) 204y
Or cos2(2a) O Oy — Oy or (2 — Oyy)?
da cos?(2a) [00,y  tan(20) O(0zs — 0yy)
O Opw — Oy [ ar 2 or }’ (A.28)
0 0 20,y
gl = 55 [
(9704 2 0oy 2 B 0(Oze — Oyy) 20,y
00 cos2(2a) 00 0p — 0y, 06 (Opa — Oyy)?
da cos*(2a) [0y  tan(2a) O(0ue — oyy)
W gee oy [t~ Tt (A.29)
The x and y derivatives of a may be written as
da da  sin(f) Oa
Pl e
cos?(2a) Dozy  tan(2a) 0(0oze — oyy)
= 5 Ty _ A.30
Oz — Oyy { cos(0) [ or 2 or } ( )
_ sin(f) [&sz _ tan(20) 9(0as — Uyy)} }
7 a0 2 a0 ’
Oa . Oa cos(f) O
oy sin(6) or + r 00
cos?(2a) 00gy  tan(2a) O(ozy — oyy)
Oz — Oyy { sin(6) [ or 2 or } ( )
cos(0) [&TW _ tan(2a) 0(0as — O'yy)]}
r 00 2 00 )
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Appendix B

Derivation of Analytical Solutions
for Various Loading Conditions

B.1 V-Notch Stress Field Derivation

Williams (1952) presented a derivation of the stress fields of a thin plate with an “angular corner”
cut out of it under uniaxial tensile load with various boundary conditions. This derivation is most
commonly utilized for the derivation of the stress field of a Mode-I crack, which is a corner of angle
0°, in a plate. Here, the derivation is applied to a thin plate with a 60° V-shaped notch under
uniaxial compression, as shown in Figure B.1. [ is the angle of the material about the notch tip
at the origin; therefore here f = 300° = 57/3. The V-notch is symmetric about the z-axis, and
the compressive load is applied along the y-axis. The free-free boundary conditions are for the
edges of the corner and not the boundaries of the plate, since the solution is for an infinite plate:
o9 =099 =0at 6 =+5/2.

The 2D stress field for this configuration may be derived using the following Airy stress potential:
o(r,0) = r1F(6), (B.1)
where F'(6) solves the differential equation

(j% +(+1)?) (5722 +(A=1)2)F(0) =0. (B-2)
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Figure B.1: Schematic of compressed plate with a side V-notch

The general solution to Equation (B.2) is

F(0) = Ay cos[(A+1)0] + Agsin[(A + 1)0] + A3 cos[(A — 1)8] + Agsin[(A — 1)0]. (B.3)

The 2D stress components are the following in terms of r, F(0), and A:

Oprr  Orp 19¢ + %832;) B;¢
Or g 827('Zs _% %aﬁ
C - ’ ’ ( 9) (B.4)
PAUE () + A+ 1)F(0)] =M 1F(0)
o VAN () A+ D)r ML)
The F'(0) and F" () are
F () = — (A4 1) Ay sin[(A+ 1)8] + (A + 1) Az cos[(A + 1)0] (B.5)
— (A=1)Agsin[(A = 1)8] + (A — 1) A4 cos[(A — 1)6]
F'(0) = — (A +1)%A4;5 cos[(A + 1)0] — (A + 1)2 Ay sin[(A + 1)6] (B.6)

— (A =1)2A3cos[(A — 1)0] — (XA — 1)? Ay sin[(X — 1)4].

In light of the traction-free boundary conditions at § = +//2 and the above equations for stress,
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the following equations involving A emerge:

o00| _ 5 =0=XAA+1)r* " {Acos[(A+ 1) 5] + Agsin[(A + 1) 5] (B.7)
+ Az cos[(A — 1) 2] + Aysin[(A — 1) 2]}
oonl,__p = 0= A+ 1)r 1Ay cos[(A+ 1)5] — Ay sin[(A + 1) 2] (B.8)
+ Ag cos[(A — 1) 5] — Aasin[(A — 1)}
ool 5 =0=—-X"H=(A+ DArsin[(A+1)5] + (A + 1) Az cos[(A + 1) 5] (B.9)
— (A= DAgsin[(A = 1)F] + (A = 1) Ay cos[(A — 1) 5}

ool 5 =0=—X""HA+DArsin[(A+ 1) 5]+ (A + 1) Az cos[(A + 1) 5] (B.10)

+ (A= D) Azsin[(A — 1) 8] + (A = 1) Ay cos[(A — 1) 2]}.

Constants A;—A4 cannot be uniquely determined solely from the four boundary conditions be-
cause Equations (B.7)—(B.10) form a homogenous system of equations; therefore the determinant
of this system must go to zero. Williams (1952) determined the eigen-equation for this free-free

boundary condition:

sin(\3) = i)\smﬂ(ﬁ ). (B.11)

Equation (B.11) determines the values of A as a function of 3. For continuity of displacements,
A > 0. The min Re X such that A > 0 is chosen, which results in unbounded stresses near the
tip of the notch. For 8 = 57/3, this A is A\, = 0.512221. Therefore, the Airy stress potential is

Equation (B.12) in terms of A; and As:

cos|(A, 8
(1, ) = Aot [Al{ cos[(ho + 1)6] — (o + 1);] cos[(hg — 1)9]}
cos[(Ao — 1)5] (B.12)
AQ{ sin[(\, + 1)) — SRl + 1] sin(Ao — 1)9]}]
sin[(\, — 1)5]

With uniaxial extension or compression along the y axis, only the symmetric portion of the Airy



209

stress potential applies, as given in Equation (B.13).

cos[(A, + 1)

(5, 0) Alrxﬁl{cosmoﬂ)a}* cos[(hg — 1)

cos[(Ao — 1)9]}. (B.13)

[Sliey (Nl

With Equations (B.4) and (B.13), the 2D stresses may be written in terms of the constant A;:

oo (1, 0) = r;‘%&{ — (e + 1) cos[(hg + 1)0] (B.14)
+ 2000 — 3) 2238 : 3% cosl(A — 1)0]}

o0 (r, 0) = W{ cos[(No + 1)0] — fm cos[(ho — 1)9]} (B.15)

ovo(r,0) = ﬁﬂj {0+ 1)sin[(A, + 1) = (0 — 1)M sin[(h — 0]}, (B.16)

The constant A; is related to the applied stress in the far-field. Since the 2D stress field is in units of
N/m?, then A; is linearly related to applied stress, o4,,, and is related to the depth of the V-notch,
d, to the power 1 — ),, such that

Ay = Cogppd ™0, (B.17)

where C' is a fitting constant depending on specimen geometry. With this factor, the 2D stresses

become
Tappd'
(1, 0) = O(r)ldA{ — Mo+ 1) cos[(he + 18] (B.18)
cos[(Xo + 1)5]
+ Ao = 8) 2 S coslh - 1)6]}
COappd ™ Ao(Xo + 1) ] cos[(Ao + 1)%] ]
Go0(r, 0) = e {COb[(AO +1)8) - =13 cos(No — 1)9]} (B.19)
 Cogppd ™0, , o eos[(Me+ D] -
ore(r,0) = (71)1—_/\0{()\0 + 1) sin[(Ao + 1)0] — (N 1)008[()\0 - é sin[(Ao 1)9]} (B.20)
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Appendix C

Phase-Shifting Photoelasticity

Pockels developed a mathematical theory for photoelasticity in crystals known as Pockels’ Phe-
nomenological Theory (Narasimhamurty, 1981). This theory can be used to develop the well-known
Stress Optic Law for photoelastic materials that are isotropic in structure and to develop stress-
related equations for refractive index change in crystalline materials. The basics of this theory,
based on (Narasimhamurty, 1981), are presented in this appendix, and the Stress Optic Law is
derived.

A flexible and comprehensive method for analysis of a polariscope is by the use of matrices
representing the action of each type of polarizing optic, i.e., using the matrix theory of photoelasticity.
Theocaris and Gdoutos (1979) presented the matrices for Jones matrix algebra, which assumes that
the incident light is polarized. The equations for the electric field after a polariscope result from Jones
matrix algebra. The intensity of the interference pattern may then be calculated. Another, more
general, method to determine the intensity of the images from a polariscope is Mueller calculus
with Stokes vectors. This method does not require that the incoming light be polarized. A full
treatment of Jones matrix algebra and Mueller calculus applied to the circular polariscope follows
in this appendix.

By using appropriate configurations of the circular polariscope elements, different interference
patterns related to the isoclinic angle and the isochromatic phase may be manipulated during analysis
of the patterns to separate these two quantities of interest. This type of phase shifting is unlike the

common methods that introduce a known phase shift, but capitalizes on the adaptability of the
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circular polariscope to achieve different trigonometric functions of the desired phases. The entire

derivation of the six-step method used in this research is provided below.

C.1 Photoelasticity of Crystals: Pockels’ Phenomenological

Theory

The impermeability tensor (1/K);; is given by B;; = 1 /nfj The triaxial ellipsoid surface called
the optical index ellipsoid has the formula B;jz;z; = 1. The optical properties of crystals are often
expressed in terms of the principal refractive indicies, by way of the refractive index ellipsoid, given
by

2

2
S+5
n: n

Lz
o}
nZ

=1 (C.1)

2
Yy
The assumptions used in this theory are the following:

1. In a homogeneously deformed solid, the effect of deformation is only to alter the optical

parameters of the optical index ellipsoid.

2. When the strain is within the elastic limits, the change of an optical parameter (polarization
constant) of the solid due to deformation can be expressed as a homogeneous linear function

of the nine stress components, o;;, or nine strain components, €;;.

C.1.1 Mathematical Formulation in Terms of the Photoelastic Constants

An undeformed crystal has an index ellipsoid of B;z;x; = 1. A stressed crystal has an index ellipsoid
of B;jxixz; = 1. Using the second assumption about linearity of the stress (strain)-impermeability
tensor, then

Bij — B = —Gijki0kl (C.2)

Bij — Bj = Pijki€hi- (C.3)



212

The p;jr components are called the strain-optical or elasto-optic constants. The g;j,; components
are called the stress-optical or piezo-optic coefficients

Assuming the AB;;, ok, and € second-rank tensors are symmetric, then the 81 components of
the g;ji fourth-rank tensor reduce to 36 independent components (g;jx = ¢jikt and Gijkr = Gijik),
and also the 81 components of the p;jx; fourth-rank tensor reduce to 36 independent components
(Pijkt = Pjirt and DPijri = Pijik). The pijr and i tensors can be related by the elastic stiffness

constants, c;;x;, and compliance constants, s;;5:

Qijkl = PijmnSmnkl (04)

DPijmn = QijklCkimn- (C5)

The common notation uses two suffixes. The impermeability tensor B;; can be written as B;
with ¢ = 1 — 6 (By; = By, Bas = By, B33 = B, Bsg = By, B3y = Bs, and Bijs = Bg). The
stress and strain tensors adopt the same corresponding notation as the impermeability tensor. The
photoelastic coefficient tensors, p;jr; and g, are written as p;; and ¢;; with ¢,5 = 1 — 6. The

governing photoelastic equations Equation (C.2) and Equation (C.3) become

Bi — B;) = _qijaj (CG)

Bi — Bf = Pij€;- (C7)

With this two-suffix notation, the relationships between p;; and ¢;; are related by c;; and s;; with

1,7 =1—06:

Dij = QikChj (C.8)

Qij = PikSkj- (C.9)
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C.1.2 Considering Crystal Symmetry

The above mathematics applies most generally to triclinic crystals. The photoelastic coefficients

can be further simplified with higher crystal symmetry. The isotropic case reduces the photoelastic

tensors to two independent coefficients each:

_p11 D12 P12 0

P12 P11 P12 0

isotropic _ b1z P12 Pu 0

4 -

0 0 0 %(Pn — p12)

0 0 0 0

|0 0 0 0

_‘hl Q12 q12 0

Gz 11 Q12 0

isotropic _ |12 21 0
0 0 0 (qu—q2)

0 0 0 0

|0 00 0

%(pn — p12)

(Q11 - 912)

%(Pll — p12)

((]11 - Q12)

(C.10)

(C.11)

A cubic crystal systems in group 11, (Ty, O, Oy (43m, 43, m3m)), reduce to three constants;
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magnesium oxide (MgO) has this symmetry.

pi1 pr2 piz O 0 0
pi2 puu piz O 0 0
pi2 pi2 pi1 O 0 0

pcubicfll _ (012)

0 0 0 0 pu O

qgui qi2 @2 0 0 O
gi2 qu q2 0 0 0

, q1z2 @12 quu O 0 0
qcubchll _ ) (013)

0 0 0 0 0 qu

C.1.3 Connection to Linearized Theory

The isotropic case greatly simplifies the photoelastic equations:

By — BY = —(q1101 + q1202 + q1203) (C.14)
By — By = —(q1201 + q1102 + q1203) (C.15)
Bz — B3 = —(q1201 + q1202 + q1103) (C.16)
By — Bf = —(qu1 — q12)04 (C.17)
Bs — Bf = —(qu1 — q12)05 (C.18)

Bs — B§ = —(q11 — q12)0%. (C.19)
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For an isotropic material, B = By = B§ = (1/(n?)), where n, is the refractive index of the
unstressed material; also, B = B = B§ = 0. By manipulating Equations (C.14)-C.16), the

following equations result:

ni% - nlg = —(q11 — q12)(01 — 02) (C.20)
1 1
w2 n2 T —(q11 — qu2)(01 — 03) (C.21)
1 1
2w —(q11 — q12) (02 — 03). (C.22)

If the quadratic refractive index term is ignored, then B; — B; terms can be simplified. For example,

1 r n3 —n?
nt n3  ning
_ —(n1 —n2)(n1 +n2)
~ e
o (C.23)
_ —(n1—n2)(2n,)
~ o
—(n1 — no2)

1R

n3/2

assuming nn3 ~ nt and (n; + ng2) ~ 2n,. Equations (C.20)-C.22) become the following:

3
n
ny—n2 = ?O(lhl — q12)(01 — 02) (C.24)
n3
ny —ng = ?O(QH — q12)(01 — 03) (C.25)
n3
ng —ng = EO(QM — q12)(02 — 03) (C.26)

The Maxwell equations for the photoelastic effect for isotropic materials are the above Equations
(C.24)-C.26, given (n2/2)(q11 —q12) = (C1 —C2) = C, where C is the relative stress-optic coefficient.
If the coordinate system is in the principal axes, then o4 = 05 = 06 = 0, and 01, 02, and o3 are the
principal stresses.

The cubic equations with three constants result in the same relations as the isotropic case. In the

plane stress case, o3 is zero. If the third principal axis is the optical axis, then only Equation (C.24)



216

needs to be considered experimentally.

C.1.4 Stress Optic Law

A photoelastic plate under stress acts as a linear retarder plate for polarized light with linear
retardation § with a fast axis at angle « relative to the z axis. The change in refractive index in
the plane perpendicular to the optical axis is related to d by the thickness of the plate h and the
wavelength A\: ny —ng = dA/(27h). Therefore, the governing equation, the Stress Optic Law, may

be written as the following (Kobayashi, 1993; Narasimhamurty, 1981):

oA N
_— p— = .2
o102 2mcoh coh’ (C.27)

where N = §/27 is the “fringe order”.

C.2 Matrix Theory of Photoelasticity and Circular Polar-
iscopes

C.2.1 Jones Matrix Algebra

A circular polariscope includes an incident collimated beam of light, followed by a linear polarizer at
angle p to the x axis, a 1/4 wave plate with fast axis at angle £ to the z axis, a photoelastic material,
another 1/4 wave plate with fast axis at angle ¢ to the x axis, and a second linear polarizer at angle
¢ to the z axis, sometimes called the analyzer. Figure C.1 shows a schematic of the polariscope.
Assuming that the collimated laser beam is polarized, then Jones matrix algebra may be used to
analyze the electric field components incident to the sample (Theocaris and Gdoutos, 1979). Note:
Theocaris and Gdoutos (1979) employs reference axes such that the z and y are perpendicular to
the incident beam relative to the front of the optics. The reference axes x and y used in this research

are perpendicular to the light beam, which is along the +z axis, on the back of the optics, as shown
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Polarizer

Specimen

Figure C.1: Polarization optics before the transparent sample

in Figure C.1. The electric field prior to the polarizer is given in vector form by Equation (C.28):

E,zexplj(kz — wt + o))
E = ) (C.28)

Eoyexplj(kz — wt + ¢y)]

The Jones vector, a, represents the time-averaged x and y spatial amplitude and phase components

of the electric field, a, and a,. Thus the Jones vector of the collimated light in Equation (C.28) is

_ Qg E,cexpli(kz + ¢z )]
acollzmated — — . (029)

ay Eoyeaplj(kz + ¢y)]

After passing through a polarization optic, the electric field obviously changes, represented by
the multiplication of the Jones matrix of the the polarization optic and the Jones vector of the
incident electric field. Therefore, Jones matrix algebra is a compact way of determining the changes
in an initially linearly polarized electric field due to polarization optics. The Jones matrices for a

linear polarizer at angle p to the z axis and for a 1/4 wave plate with fast axis at angle £ to the z
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axis are as follows:

cos?(p) —cos(p)sin(p)
P, = (C.30)

—cos(p)sin(p) sin’ (p)

j cos® (&) + sin?(€) (1 — j)cos(§)sin(§)
Qe = . (C.31)

(1= j)cos(§)sin(§) jsin®(€) + cos*(€)

Generally, the electric field incident to the sample in Figure C.1 is given by Equation (C.32):
aincident _ QgPpacollimated. (032)

For example, if p = 7/2 and & = 37/4, then the electric field components have the same constant

A, = V/2E,,/2, as shown in Equation (C.33):

e
collimated __ \/iEoyemp[j(kZ + (py)] exp[] 1 ]
2

alnczdent _ Q%P%a

explj %]

B Aexpli(kz + ¢s)] (C.33)

Aexplj(kz + ¢y)]

A photoelastic material is modeled in terms of polarization optics as a linear retardation plate
with retardation 0 (the isochromatic phase) with fast axis at angle « (the isoclinic angle) to the x

axis. The Jones matrix for such a linear retardation plate is as follows:

9% cos?(a) + sin?(a) (1 — e7%)cos(a)sin(a)
RJ,Q = . (034)

(1 — e cos(a)sin(a) el9 sin?(ar) + cos?(a)

The general full expression for the electric field after a circular polariscope with all five elements is
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as follows:

E = P.QyRs,Q:P,E. (C.35)

The intensity of the resulting image is a result of taking the dot product of the final electric field

with its complex conjugate:

(o}

image ou out out frou out frou
rmes = BB = EQMESY + By R (C.36)

If p = 7/2 and & = 37w/4, then the intensity of the image reduces to the following:
image 2 : . .
["me9¢ = 2B {1+ cos(0) sin[2(¢ — @)] — sin(d) cos[2(¢ — ¢)] sin[2(a — ¢)]}. (C.37)

C.2.2 Mueller Calculus with Stokes Vectors

A Stokes vector, denoted S is another representation of the polarization of the electric field similar
to the Jones vector except the Stokes vector has four time-averaged parameters, as shown in Equa-
tion (C.38), where <> represents time averaging. The first Stokes parameter, s,, is the intensity of

the electric field, making it a convenient parameter to find the intensity of an image.

So < ply + Qyly >
51 < Uply — Qyly >
S = = . (C.38)
S2 < 2R{azay} >
s3 < 2%{agza,} >

Mueller matrices describe how the polarization changes after the light passes through a polarization
optic, where the parameters of these matrices modify the Stokes vector representation of light polar-

ization. The Mueller matrices, given the coordinate convention in Figure C.1, for a linear polarizer
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at angle p to the z axis and for a 1/4 wave plate with fast axis at angle £ to the z axis are as follows:

1 cos(2p) —sin(2p) 0
cos(2p) cos?(2p) —sin(2p) cos(2p) 0
P) = (C.39)
—sin(2p) —sin(2p) cos(2p) sin?(2p) 0
0 0 0 0
1 0 0 0
0 cos?(2¢€) — sin(2€) cos(2€) sin(2¢)
QY = (C.40)
0 — sin(2€) cos(2¢) sin?(2€) cos(2¢§)
0 —sin(2¢) —cos(2¢) 0

The Mueller matrix of a linear retarder with retardation § and fast axis «, the model for a photoelastic

material, is

1 0 0 0

0 cos?(2a) + sin?(2a) cos(d) — sin(2a) cos(2ar) (1 — cos(9)) sin(2a) sin(d)
R}, =

0 —sin(2a) cos(2ar) (1 — cos(d)) sin?(2a) 4 cos?(2a) cos(d) cos(2a) sin(0)

0 —sin(2«) sin(9) — cos(2a) sin(9) cos(9)

The Stokes vector of a general circular polariscope, with two polarizers, two 1/4 wave plates, and

a photoelastic material, is the multiplication of the incident Stokes vector and the Mueller matrices



221

of all the elements. The Stokes vector of the incident electric field is

BS, + E3,
o Ecz)r - Egy
S'anzdent _ ) (042)
2E 3 Eoy cos(0r — )

2Eoz Eoy sin(pg — ¢y)

The general form of the Stokes vector for a circular polariscope is
Sout — Pg/IQg/IR(SI\an Qg/lpg/ISincident. <C43)

Given a circular polariscope with the first polarizer at angle p = 7 /2, the first 1/4 wave plate at
angle £ = 37 /4, from Equation (C.43), the first Stokes parameter, the intensity of the electric field,

may be reduced to
Limage = so* = 2E3y{1 + cos(9) sin[2(¢ — @)] — sin(d) cos[2(¢ — ¢)] sin[2(a — ¢)]}, (C.44)

which is the same as the intensity determined by Jones matrix algebra in Equation (C.37).

C.3 Six-Step Phase Shifting

With the flexibility of the polariscope optics, many different combinations of intensities involving
the isoclinic angle and isochromatic phase are possible. Choosing a certain set of these intensities
allows for the separation of these two phases. The set of six images chosen for this research are
given in Table C.1, where the first two elements do not change angle (p = 7/2 and £ = 37/4) and
the second 1/4 wave plate and second polarizer are at angles ¢ and (, respectively. The intensities

for these images come from Equation (C.44).
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Image 1) ¢
I = 2E,,(1 + cos(6)) /2 | 3m/4
I, =2E,,(1 — cos(9)) /2 | ©/4

I3 = 2E,,(1 — sin(J) sin(26)) v T

Iy =2FE,y(1 +sin(d) cos(20)) | n/4 | /4
Is = 2E,,(1 +sin(d) sin(260)) | ©/2 | ©/2
Is = 2E,,(1 —sin(0) cos(20)) | 3n/4 | 37/4

Table C.1: Photoelasticity phase shifting: Angles refer to fast axis of optics
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