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Chapter 6

Conclusions

This thesis has presented a hybrid full-field experimental method combining phase-shifting pho-

toelasticity and transmission Coherent Gradient Sensing for in-plane tensorial stress determination

for fracture studies. In order for this method to achieve its goals, a new analysis for transmission

wavefront shearing interferometry applied to photoelastic materials has been developed and ex-

perimentally verified for the specific wavefront shearing interferometer Coherent Gradient Sensing.

The hybrid experimental method has been developed and experimentally verified for photoelastic

materials by good comparison between experimental and theoretical stress fields for a compressed

polycarbonate plate with a side V-notch. The hybrid experimental method has also been validated

for full-field tensorial stress determination around Mode I–dominant cracks in photoelastic materi-

als, a study that is the first to achieve these goals, serving as the foundation for future research in

extending this method for fracture studies in anisotropic materials.

The new analysis of transmission wavefront shearing interferometry for photoelastic materials

derives an intensity expression Iimage for the complicated interference pattern that, in general, is the

sum of two interference patterns such that Iimage = Io +I1o cos[ϕsum +ϕdiff ]+I2o cos[ϕsum−ϕdiff ]

(Equation (2.16)); ϕsum is the phase related to σ1 + σ2 and is the only phase that results for these

interferometers applied to optically isotropic materials, ϕdiff is a phase related to σ1 − σ2, and

I1o and I2o are coefficients determined by the polarization of the input electric field. The control

of the input electric field polarization by polarization optics prior to the photoelastic specimen, in

addition to phase-shifting techniques, allow for determination of the desired ϕsum. This analysis
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has been verified using a compressed polycarbonate plate with a side V-notch using CGS with the

experimental phase maps comparing well with theory based on Williams (1952). This analysis serves

as the governing theory for determination of x and y derivatives of σ1+σ2 for the hybrid experimental

method presented in this thesis.

A six-step phase-shifting photoelasticity method has been presented utilizing different angles for

the polarization optics in a circular polariscope to obtain six images related to σ1 − σ2 and the

isoclinic angle, α, which is the angle between the Cartesian and principal coordinate systems. This

method allows for full-field determination of σ1 − σ2 and α. Since the first two polarization optics

of the circular polariscope, a polarizer and λ/4 plate set for circular polarization of the electric field

prior to the specimen, are also useful for determination of ϕsum from CGS, then a non-polarizing

beamsplitter or a translating mirror immediately after the sample allows for these two experimental

techniques to be combined to investigate the same field of view of a specimen. The phase-shifting

techniques produce “wrapped” phase fields that require unwrapping before the stress fields can be

determined, a task achieved by a data-quality–guided unwrapping algorithm by Ghiglia and Romero

(1994) based on preconditioned conjugate gradient (PCG) numerical methods used to solve discrete

Poisson equations. A slightly modified version of the algorithm has been implemented for integration

of the x and y derivatives of stress to determine σ1 + σ2 + ci, where the constant of integration ci

is determined by a traction free boundary condition. The in-plane tensorial stress components

can then be determined from full-field σ1 + σ2, σ1 − σ2, and α, as demonstrated for a compressed

polycarbonate plate with a side V-notch. Some potential error sources have been identified as

rotational misalignment of the polarization optics and transmission and reflectance coefficients of

the non-polarizing beamsplitter, and mitigation techniques have been developed to minimize error,

particularly in the isoclinic angle. Despite these error sources, the experimental and theoretical data

have good agreement. This experimental verification of the hybrid experimental method is the basis

for the application of the method for determination of the in-plane tensorial stress around a loaded

crack in a photoelastic material.

The first study to experimentally determine full-field in-plane tensorial stress around a crack in a
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photoelastic material has been presented. The hybrid method has been applied to Mode I–dominant

cracks in Homalite-100 for small fields of view, for a range of Mode I stress intensity factors from

around one-quarter to just below the fracture toughness of Homalite-100, and for a small range

of mode-mixity KII/KI from −0.010 to 0.020. The experimental stress fields show K-dominant

behavior, allowing for excellent comparison to full-field theoretical data based on the 2D asymptotic

crack solution using the experimentally calculated KI and KII values. These values have been

calculated from stress fields incorporating both CGS and photoelasticity data and allow for global

error less than 5% for most fields and no greater than 7.8%, showing that the two techniques work

well together for stress determination around cracks. Common error sources identified in Chapter

3 are characterized for this application and can be mitigated with careful experimentation and

with improved analysis algorithms. This study has successfully met the objective of this thesis: to

apply a hybrid experimental method for full-field in-plane tensorial stress determination suitable for

fracture studies in photoelastic materials with the ability to view local stresses around a crack for

small (mm-scale) fields of view for small specimens. This study is the foundation for future research

in extending this method for fracture studies in anisotropic materials.

Future research discussed in this thesis for the hybrid CGS-photoelasticity experimental method

involves improvements to the current method and then extension of it for fracture studies in

anisotropic materials, particularly crystalline materials. Errors associated with the rotational mis-

alignment of the polarization optics and to the non-polarizing beamsplitter may be mitigated with

careful alignment procedures and by characterizing the quality and tolerances of the optics. A robust

algorithm should be developed to improve the user-correction of any remaining errors due to these

sources in the isoclinic angle data. Since this experimental method ultimately uses the σ1 +σ2 stress

field data, then the derivative assumption relating the CGS phases to spatial derivatives of stresses

and the error associated with this assumption may be eliminated by treating the phases as finite

differences based on staggered grids. The vertical and horizontal phase data may be used in an

algorithm, which requires future implementation, to solve a discrete Poisson equation to determine

σ1+σ2. Extending the experimental method to crystalline materials requires (i) a detectable photoe-
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lastic effect from the crystal and (ii) extensive analysis of the interference patterns in the individual

experimental techniques. A preliminary investigation of the ferroelectric BaTiO3 has shown that

this crystal has a detectable photoelastic effect, but this effect is confounded by the spontaneous

polarization of the ferroelectric. Further analysis is required to determine the physical meaning of

interference patterns from both photoelasticity and CGS for this ferroelectric. Established theories

such as photoelasticity for crystals and the electro-optic effect serve as tools for new analyses that

extend the CGS-photoelasticity experimental method to meet its ultimate goal of full-field stress

determination for fracture criteria development for active anisotropic materials.
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Appendix A

Stress in Principal, Cartesian, and
Polar Coordinate Systems

A.1 Relations Between Stress Fields in Principal, Cartesian,

and Polar Coordinate Systems

A.1.1 Principal and Cartesian Coordinate Systems

Transforming the 2D stress tensor σ from Cartesian to the principal coordinate system and vice versa

requires the rotation matrix Rα, given in Equation (A.1), where α is the angle between the Cartesian

and principal coordinate systems, as shown in Figure A.1. Equation (A.2) shows transforming σ

from Cartesian to principal coordinates. Equation (A.3) shows transforming σ from principal to

Cartesian coordinates in terms of the sum and differences of the principal stresses.

Rα =





cos(α) − sin(α)

sin(α) cos(α)




(A.1)
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Figure A.1: Schematic of Cartesian and principal coordinate systems
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


= RT

α





σxx σxy

σxy σyy




Rα

= RT
α





σxx cos(α) + σxy sin(α) −σxx sin(α) + σxy cos(α)

σyy sin(α) + σxy cos(α) σyy cos(α)− σxy sin(α)





=





[σxx cos2(α) + σyy sin2(α)

+ 2σxy cos(α) sin(α)]

[(σyy − σxx) cos(α) sin(α)

+ σxy(cos2(α)− sin2(α))]

[(σyy − σxx) cos(α) sin(α)

+ σxy(cos2(α)− sin2(α))]

[σxxsin2(α) + σyy cos2(α)

− 2σxy cos(α) sin(α)]





=





[σxx

( 1+cos(2α)
2

)

+σyy

( 1−cos(2α)
2

)
+ σxy sin(2α)]

[(σyy − σxx)
( sin(2α)

2

)

+σxy cos(2α)]

[(σyy − σxx)
( sin(2α)

2

)

+σxy cos(2α)]

[σxx

( 1−cos(2α)
2

)

+σyy

( 1+cos(2α)
2

)
− σxy sin(2α)]





=





[ 12 (σxx + σyy) + 1
2 (σxx − σyy) cos(2α)

+σxy sin(2α)]

[− 1
2 (σxx − σyy) sin(2α)

+σxy cos(2α)]

[− 1
2 (σxx − σyy) sin(2α)

+σxy cos(2α)]

[ 12 (σxx + σyy)− 1
2 (σxx − σyy) cos(2α)

−σxy sin(2α)]





(A.2)
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



σxx σxy

σxy σyy




= Rα





σ1 0

0 σ2




RT

α

= Rα





σ1 cos(α) σ1 sin(α)

−σ2 sin(α) σ2 cos(α)





=





σ1 cos2(α) + σ2 sin2(α) (σ1 − σ2) cos(α) sin(α)

(σ1 − σ2) cos(α) sin(α) σ1 sin2(α) + σ2 cos2(α)





=





σ1

( 1+cos(2α)
2

)
+ σ2

( 1−cos(2α)
2

)
(σ1 − σ2)

( sin(2α)
2

)

(σ1 − σ2)
( sin(2α)

2

)
σ1

( 1−cos(2α)
2

)
+ σ2

( 1+cos(2α)
2

)





=





1
2 (σ1 + σ2) + 1

2 (σ1 − σ2) cos(2α) 1
2 (σ1 − σ2) sin(2α)

1
2 (σ1 − σ2) sin(2α) 1

2 (σ1 + σ2)− 1
2 (σ1 − σ2) cos(2α)





(A.3)

A.1.2 Polar and Cartesian Coordinate Systems

Transforming the 2D stress tensor σ from Cartesian to the polar coordinate system and vice versa

requires the rotation matrix Rθ, given in Equation (A.4), where θ is the angle between the Carte-

sian x-axis and the radius vector. Equation (A.5) shows transforming σ from Cartesian to polar

coordinates. Equation (A.6) shows transforming σ from polar to Cartesian coordinates. Since the

simplifications are similar to the equations in Section (A.1.1), not all the steps are shown.

Rθ =





cos(θ) − sin(θ)

sin(θ) cos(θ)




(A.4)
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



σrr σrθ

σrθ σθθ




= RT

θ





σxx σxy

σxy σyy




Rθ

=





[σxx cos2(θ) + σyy sin2(θ)

+σxy sin(2θ)]

[− 1
2 (σxx − σyy) sin(2θ)

+σxy cos(2θ)]

[− 1
2 (σxx − σyy) sin(2θ)

+σxy cos(2θ)]

[σxx sin2(θ) + σyy cos2(θ)

−σxy sin(2θ)]





(A.5)





σxx σxy

σxy σyy




= Rθ





σrr σrθ

σrθ σθθ




RT

θ

=





[σrr cos2(θ) + σθθ sin2(θ)

−σrθ sin(2θ)]

[ 12 (σrr − σθθ) sin(2θ)

+σrθ cos(2θ)]

[ 12 (σrr − σθθ) sin(2θ)

+σrθ cos(2θ)]

[σrr sin2(θ) + σθθ cos2(θ)

+σrθ sin(2θ)]





(A.6)

A.1.3 Polar and Principal Coordinate Systems

The 2D stress tensor σ may be transformed from Cartesian to the Polar coordinate system and vice

versa using the relations in Sections A.1.1–A.1.2. The stress components σrr, σrθ, and σθθ are given

in terms of the principal stresses, the principal direction (in terms of the angle α), and the angle θ,

as given in Equations (A.7)–(A.9). The principal stress components are given in terms of the σrr,

σrθ, and σθθ, the principal direction, and the angle θ, as given in Equation (A.10).
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σrr = [12 (σ1 + σ2) + 1
2 (σ1 − σ2) cos(2α)] cos2(θ)

+ [ 12 (σ1 + σ2)− 1
2 (σ1 − σ2) cos(2α)] sin2(θ) + 1

2 (σ1 − σ2) sin(2α) sin(2θ)

= 1
2 (σ1 + σ2) + 1

2 (σ1 − σ2) cos(2α)[cos2(θ)− sin2(θ)]

+ 1
2 (σ1 − σ2) sin(2α) sin(2θ)

= 1
2 (σ1 + σ2) + 1

2 (σ1 − σ2)[cos(2α) cos(2θ) + sin(2α) sin(2θ)]

= 1
2 (σ1 + σ2) + 1

2 (σ1 − σ2) cos(2θ − 2α)

(A.7)

σrθ = 1
2{[

1
2 (σ1 + σ2)− 1

2 (σ1 − σ2) cos(2α)]

− [ 12 (σ1 + σ2) + 1
2 (σ1 − σ2) cos(2α)]} sin(2θ) + 1

2 (σ1 − σ2) sin(2α) cos(2θ)

= − 1
2 (σ1 − σ2) cos(2α) sin(2θ) + 1

2 (σ1 − σ2) sin(2α) cos(2θ)

= − 1
2 (σ1 − σ2)[sin(2θ) cos(2α)− cos(2θ) sin(2α)]

= − 1
2 (σ1 − σ2) sin(2θ − 2α)

(A.8)

σθθ = [12 (σ1 + σ2) + 1
2 (σ1 − σ2) cos(2α)] sin2(θ)

+ [ 12 (σ1 + σ2)− 1
2 (σ1 − σ2) cos(2α)] cos2(θ)− 1

2 (σ1 − σ2) sin(2α) sin(2θ)

= 1
2 (σ1 + σ2)− 1

2 (σ1 − σ2) cos(2α)[cos2(θ)− sin2(θ)]

− 1
2 (σ1 − σ2) sin(2α) sin(2θ)

= 1
2 (σ1 + σ2)− 1

2 (σ1 − σ2)[cos(2α) cos(2θ) + sin(2α) sin(2θ)]

= 1
2 (σ1 + σ2)− 1

2 (σ1 − σ2) cos(2θ − 2α)

(A.9)
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σ1,2 = 1
2{[σrr cos2(θ) + σθθ sin2(θ)− σrθ sin(2θ)]

+ [σrr sin2(θ) + σθθ cos2(θ) + σrθ sin(2θ)]}

± 1
2{[σrr cos2(θ) + σθθ sin2(θ)− σrθ sin(2θ)]

− [σrr sin2(θ) + σθθ cos2(θ) + σrθ sin(2θ)]} cos(2α)

± [ 12 (σrr − σθθ) sin(2θ) + σrθ cos(2θ)] sin(2α)

= 1
2 (σrr + σθθ) ± 1

2 (σrr − σθθ)[cos2(θ)− sin2(θ)] cos(2α)− σrθ sin(2θ) cos(2α)

± 1
2 (σrr − σθθ) sin(2θ) sin(2α) ± σrθ cos(2θ) sin(2α)

= 1
2 (σrr + σθθ) ± 1

2 (σrr − σθθ)[cos(2α) cos(2θ) + sin(2α) sin(2θ)]

∓ σrθ[sin(2θ) cos(2α)− cos(2θ) sin(2α)]

= 1
2 (σrr + σθθ) ± 1

2 (σrr − σθθ) cos(2θ − 2α)∓ σrθ sin(2θ − 2α)

(A.10)

A.2 Important Stress Terms and Derivatives

A.2.1 Terms Involving the Sum of Principal Stresses

Coherent Gradient Sensing (CGS) involves the sum of principal stresses, so σ1+σ2 and its derivatives

must be developed in terms of Cartesian and polar coordinates. From Equations (A.3) and (A.10),

the sum of principal stresses may be written as

σ1 + σ2 = σxx + σyy = σrr + σθθ. (A.11)

Given Equation (A.11), the derivatives of σ1 + σ2 with respect to r and θ may be written as

∂σ1 + σ2

∂r
=

∂(σxx + σyy)
∂r

=
∂(σrr + σθθ)

∂r
, (A.12)

∂σ1 + σ2

∂θ
=

∂(σxx + σyy)
∂θ

=
∂(σrr + σθθ)

∂θ
. (A.13)
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With Equations (A.11)–(A.13), the derivatives of σ1 + σ2 with respect to x and y are

∂σ1 + σ2

∂x
=

∂r

∂x

∂(σ1 + σ2)
∂r

+
∂θ

∂x

∂(σ1 + σ2)
∂θ

= cos(θ)
∂(σ1 + σ2)

∂r
− sin(θ)

r

∂(σ1 + σ2)
∂θ

= cos(θ)
∂(σxx + σyy)

∂r
− sin(θ)

r

∂(σxx + σyy)
∂θ

= cos(θ)
∂(σrr + σθθ)

∂r
− sin(θ)

r

∂(σrr + σθθ)
∂θ

,

(A.14)

∂σ1 + σ2

∂y
=

∂r

∂y

∂(σ1 + σ2)
∂r

+
∂θ

∂y

∂(σ1 + σ2)
∂θ

= sin(θ)
∂(σ1 + σ2)

∂r
+

cos(θ)
r

∂(σ1 + σ2)
∂θ

= sin(θ)
∂(σxx + σyy)

∂r
+

cos(θ)
r

∂(σxx + σyy)
∂θ

= sin(θ)
∂(σrr + σθθ)

∂r
+

cos(θ)
r

∂(σrr + σθθ)
∂θ

.

(A.15)

A.2.2 Terms Involving the Difference of Principal Stresses and Directions

Both photoelasticity and CGS for photoelastic materials involve the difference of principal stresses;

additionally, CGC for photoelastic materials involve the derivatives of σ1 − σ2 and of α. These also

must be written in terms of Cartesian and polar coordinates. The difference of principal stresses

may be written in the following manner using Equation (A.3) and (A.10):

σ1 − σ2 = (σxx − σyy) cos(2α) + 2σxy sin(2α)

= (σrr − σθθ) cos(2θ − 2α)− 2σrθ sin(2θ − 2α).
(A.16)

Taking the r and θ derivatives of σ1 − σ2 in terms of Cartesian coordinates produces equations

that involve the r and θ derivatives of α, but using tan(2α) = (2σxy/(σxx − σyy)) can eliminate the
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terms involving the derivatives of α.

∂(σ1 − σ2)
∂r

=
∂(σxx − σyy)

∂r
cos(2α) + 2

∂σxy

∂r
sin(2α)

+ 2
∂α

∂r
[2σxy cos(2α)− (σxx − σyy) sin(2α)]

=
∂(σxx − σyy)

∂r
cos(2α) + 2

∂σxy

∂r
sin(2α)

+ 2
∂α

∂r
[2σxy cos(2α)− 2σxy cos(2α)]

=
∂(σxx − σyy)

∂r
cos(2α) + 2

∂σxy

∂r
sin(2α)

(A.17)

∂(σ1 − σ2)
∂θ

=
∂(σxx − σyy)

∂θ
cos(2α) + 2

∂σxy

∂θ
sin(2α)

+ 2
∂α

∂θ
[2σxy cos(2α)− (σxx − σyy) sin(2α)]

=
∂(σxx − σyy)

∂θ
cos(2α) + 2

∂σxy

∂θ
sin(2α)

+ 2
∂α

∂θ
[2σxy cos(2α)− 2σxy cos(2α)]

=
∂(σxx − σyy)

∂θ
cos(2α) + 2

∂σxy

∂θ
sin(2α)

(A.18)

Writing these derivatives in terms of polar coordinates first requires determining r and θ deriva-

tives of σxx − σyy and σxy:

σxx − σyy = σrr(cos2(θ)− sin2(θ))− σθθ(cos2(θ)− sin2(θ))− 2σrθ sin(2θ)

= (σrr − σθθ) cos(2θ)− 2σrθ sin(2θ) (A.19)

∂(σxx − σyy)
∂r

=
∂(σrr − σθθ)

∂r
cos(2θ)− 2

∂σrθ

∂r
sin(2θ) (A.20)

∂(σxx − σyy)
∂θ

=
[∂(σrr − σθθ)

∂θ
− 4σrθ

]
cos(2θ)− 2

[∂σrθ

∂θ
+ (σrr − σθθ)

]
sin(2θ). (A.21)

With Equations (A.17), (A.18), (A.20), and (A.21), the r and θ derivatives of σ1 − σ2 may be
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written in terms of polar coordinates:

∂(σ1 − σ2)
∂r

=
∂(σrr − σθθ)

∂r
cos(2θ − 2α)− 2

∂σrθ

∂r
sin(2θ − 2α) (A.22)

∂(σ1 − σ2)
∂θ

=
∂(σrr − σθθ)

∂θ
cos(2θ − 2α)− 2

∂σrθ

∂θ
sin(2θ − 2α)

− 2(σrr − σθθ) sin(2θ − 2α)− 4σrθ cos(2θ − 2α). (A.23)

The x and y derivatives of σ1−σ2 in terms of Cartesian and polar coordinates are easily obtained

from Equations (A.17), (A.18), (A.22), and (A.23).

∂(σ1 − σ2)
∂x

= cos(θ)
∂(σ1 − σ2)

∂r
− sin(θ)

r

∂(σ1 − σ2)
∂θ

=
[
cos(θ)

∂(σxx − σyy)
∂r

− sin(θ)
r

∂(σxx − σyy)
∂θ

]
cos(2α)

+ 2
[
cos(θ)

∂σxy

∂r
− sin(θ)

r

∂σxy

∂θ

]
sin(2α)

(A.24)

∂(σ1 − σ2)
∂y

= sin(θ)
∂(σ1 − σ2)

∂r
+

cos(θ)
r

∂(σ1 − σ2)
∂θ

=
[
sin(θ)

∂(σxx − σyy)
∂r

+
cos(θ)

r

∂(σxx − σyy)
∂θ

]
cos(2α)

+ 2
[
sin(θ)

∂σxy

∂r
+

cos(θ)
r

∂σxy

∂θ

]
sin(2α)

(A.25)

∂(σ1 − σ2)
∂x

= cos(θ)
∂(σ1 − σ2)

∂r
− sin(θ)

r

∂(σ1 − σ2)
∂θ

=
[
cos(θ)

∂(σrr − σθθ)
∂r

− sin(θ)
r

(∂(σrr − σθθ)
∂θ

− 4σrθ

)]
cos(2θ − 2α)

− 2
[
cos(θ)

∂σrθ

∂r
− sin(θ)

r

(∂σrθ

∂θ
+ (σrr − σθθ)

)]
sin(2θ − 2α)

(A.26)

∂(σ1 − σ2)
∂y

= sin(θ)
∂(σ1 − σ2)

∂r
+

cos(θ)
r

∂(σ1 − σ2)
∂θ

=
[
sin(θ)

∂(σrr − σθθ)
∂r

+
cos(θ)

r

(∂(σrr − σθθ)
∂θ

− 4σrθ

)]
cos(2θ − 2α)

− 2
[
sin(θ)

∂σrθ

∂r
+

cos(θ)
r

(∂σrθ

∂θ
+ (σrr − σθθ)

)]
sin(2θ − 2α)

(A.27)
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The analysis for CGS for photoelastic materials requires determining the x and y derivatives of

α; this first requires the r and θ derivatives of α, which come from taking the r and θ derivatives of

tan(2α) = 2σxy/(σxx − σyy):

∂

∂r
[tan(2α)] =

∂

∂r

[ 2σxy

σxx − σyy

]

∂α

∂r

2
cos2(2α)

=
∂σxy

∂r

2
σxx − σyy

− ∂(σxx − σyy)
∂r

2σxy

(σxx − σyy)2

∂α

∂r
=

cos2(2α)
σxx − σyy

[∂σxy

∂r
− tan(2α)

2
∂(σxx − σyy)

∂r

]
, (A.28)

∂

∂θ
[tan(2α)] =

∂

∂θ

[ 2σxy

σxx − σyy

]

∂α

∂θ

2
cos2(2α)

=
∂σxy

∂θ

2
σxx − σyy

− ∂(σxx − σyy)
∂θ

2σxy

(σxx − σyy)2

∂α

∂θ
=

cos2(2α)
σxx − σyy

[∂σxy

∂θ
− tan(2α)

2
∂(σxx − σyy)

∂θ

]
. (A.29)

The x and y derivatives of α may be written as

∂α

∂x
= cos(θ)

∂α

∂r
− sin(θ)

r

∂α

∂θ

=
cos2(2α)
σxx − σyy

{
cos(θ)

[∂σxy

∂r
− tan(2α)

2
∂(σxx − σyy)

∂r

]

− sin(θ)
r

[∂σxy

∂θ
− tan(2α)

2
∂(σxx − σyy)

∂θ

]}
,

(A.30)

∂α

∂y
= sin(θ)

∂α

∂r
+

cos(θ)
r

∂α

∂θ

=
cos2(2α)
σxx − σyy

{
sin(θ)

[∂σxy

∂r
− tan(2α)

2
∂(σxx − σyy)

∂r

]

+
cos(θ)

r

[∂σxy

∂θ
− tan(2α)

2
∂(σxx − σyy)

∂θ

]}
.

(A.31)
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Appendix B

Derivation of Analytical Solutions
for Various Loading Conditions

B.1 V-Notch Stress Field Derivation

Williams (1952) presented a derivation of the stress fields of a thin plate with an “angular corner”

cut out of it under uniaxial tensile load with various boundary conditions. This derivation is most

commonly utilized for the derivation of the stress field of a Mode-I crack, which is a corner of angle

0o, in a plate. Here, the derivation is applied to a thin plate with a 60o V-shaped notch under

uniaxial compression, as shown in Figure B.1. β is the angle of the material about the notch tip

at the origin; therefore here β = 300o = 5π/3. The V-notch is symmetric about the x-axis, and

the compressive load is applied along the y-axis. The free-free boundary conditions are for the

edges of the corner and not the boundaries of the plate, since the solution is for an infinite plate:

σrθ = σθθ = 0 at θ = ±β/2.

The 2D stress field for this configuration may be derived using the following Airy stress potential:

φ(r, θ) = rλ+1F (θ), (B.1)

where F (θ) solves the differential equation

( d2

dθ2
+ (λ + 1)2

)( d2

dθ2
+ (λ− 1)2

)
F (θ) = 0. (B.2)
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Figure B.1: Schematic of compressed plate with a side V-notch

The general solution to Equation (B.2) is

F (θ) = A1 cos[(λ + 1)θ] + A2 sin[(λ + 1)θ] + A3 cos[(λ− 1)θ] + A4 sin[(λ− 1)θ]. (B.3)

The 2D stress components are the following in terms of r, F (θ), and λ:





σrr σrθ

σrθ σθθ




=





1
r

∂φ
∂r + 1

r2
∂2φ
∂θ

∂2φ
∂r

∂2φ
∂r − ∂

∂r

(
1
r

∂φ
∂θ

)





=





rλ−1[F
′′
(θ) + (λ + 1)F (θ)] −λrλ−1F

′
(θ)

−λrλ−1F
′
(θ) λ(λ + 1)rλ+1F (θ)




.

(B.4)

The F
′
(θ) and F

′′
(θ) are

F
′
(θ) =− (λ + 1)A1 sin[(λ + 1)θ] + (λ + 1)A2 cos[(λ + 1)θ] (B.5)

− (λ− 1)A3 sin[(λ− 1)θ] + (λ− 1)A4 cos[(λ− 1)θ]

F
′′
(θ) =− (λ + 1)2A1 cos[(λ + 1)θ]− (λ + 1)2A2 sin[(λ + 1)θ] (B.6)

− (λ− 1)2A3 cos[(λ− 1)θ]− (λ− 1)2A4 sin[(λ− 1)θ].

In light of the traction-free boundary conditions at θ = ±β/2 and the above equations for stress,
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the following equations involving λ emerge:

σθθ

∣∣
θ=+

β
2

= 0 = λ(λ + 1)rλ−1{A1 cos[(λ + 1)β
2 ] + A2 sin[(λ + 1)β

2 ] (B.7)

+ A3 cos[(λ− 1)β
2 ] + A4 sin[(λ− 1)β

2 ]}

σθθ

∣∣
θ=−β

2

= 0 = λ(λ + 1)rλ−1{A1 cos[(λ + 1)β
2 ]−A2 sin[(λ + 1)β

2 ] (B.8)

+ A3 cos[(λ− 1)β
2 ]−A4 sin[(λ− 1)β

2 ]}

σrθ

∣∣
θ=+

β
2

= 0 = −λrλ−1{−(λ + 1)A1 sin[(λ + 1)β
2 ] + (λ + 1)A2 cos[(λ + 1)β

2 ] (B.9)

− (λ− 1)A3 sin[(λ− 1)β
2 ] + (λ− 1)A4 cos[(λ− 1)β

2 ]}

σrθ

∣∣
θ=−β

2

= 0 = −λrλ−1{(λ + 1)A1 sin[(λ + 1)β
2 ] + (λ + 1)A2 cos[(λ + 1)β

2 ] (B.10)

+ (λ− 1)A3 sin[(λ− 1)β
2 ] + (λ− 1)A4 cos[(λ− 1)β

2 ]}.

Constants A1–A4 cannot be uniquely determined solely from the four boundary conditions be-

cause Equations (B.7)–(B.10) form a homogenous system of equations; therefore the determinant

of this system must go to zero. Williams (1952) determined the eigen-equation for this free-free

boundary condition:

sin(λβ) = ±λ
sin(β)

β
. (B.11)

Equation (B.11) determines the values of λ as a function of β. For continuity of displacements,

λ > 0. The min Re λ such that λ > 0 is chosen, which results in unbounded stresses near the

tip of the notch. For β = 5π/3, this λ is λo = 0.512221. Therefore, the Airy stress potential is

Equation (B.12) in terms of A1 and A2:

φ(r, θ) = rλo+1
[
A1

{
cos[(λo + 1)θ]−

cos[(λo + 1)β
2 ]

cos[(λo − 1)β
2 ]

cos[(λo − 1)θ]
}

A2

{
sin[(λo + 1)θ]−

sin[(λo + 1)β
2 ]

sin[(λo − 1)β
2 ]

sin[(λo − 1)θ]
}]

.

(B.12)

With uniaxial extension or compression along the y axis, only the symmetric portion of the Airy
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stress potential applies, as given in Equation (B.13).

φsym(r, θ) = A1r
λo+1

{
cos[(λo + 1)θ]−

cos[(λo + 1)β
2 ]

cos[(λo − 1)β
2 ]

cos[(λo − 1)θ]
}

. (B.13)

With Equations (B.4) and (B.13), the 2D stresses may be written in terms of the constant A1:

σrr(r, θ) =
A1

r1−λo

{
− λo(λo + 1) cos[(λo + 1)θ] (B.14)

+ λo(λo − 3)
cos[(λo + 1)β

2 ]
cos[(λo − 1)β

2 ]
cos[(λo − 1)θ]

}

σθθ(r, θ) =
A1λo(λo + 1)

r1−λo

{
cos[(λo + 1)θ]−

cos[(λo + 1)β
2 ]

cos[(λo − 1)β
2 ]

cos[(λo − 1)θ]
}

(B.15)

σrθ(r, θ) =
A1λo

r1−λo

{
(λo + 1) sin[(λo + 1)θ]− (λo − 1)

cos[(λo + 1)β
2 ]

cos[(λo − 1)β
2 ]

sin[(λo − 1)θ]
}

. (B.16)

The constant A1 is related to the applied stress in the far-field. Since the 2D stress field is in units of

N/m2, then A1 is linearly related to applied stress, σapp, and is related to the depth of the V-notch,

d, to the power 1− λo, such that

A1 = Cσappd
1−λo , (B.17)

where C is a fitting constant depending on specimen geometry. With this factor, the 2D stresses

become

σrr(r, θ) =
Cσappd1−λo

(r)1−λo

{
− λo(λo + 1) cos[(λo + 1)θ] (B.18)

+ λo(λo − 3)
cos[(λo + 1)β

2 ]
cos[(λo − 1)β

2 ]
cos[(λo − 1)θ]

}

σθθ(r, θ) =
Cσappd1−λoλo(λo + 1)

(r)1−λo

{
cos[(λo + 1)θ]−

cos[(λo + 1)β
2 ]

cos[(λo − 1)β
2 ]

cos[(λo − 1)θ]
}

(B.19)

σrθ(r, θ) =
Cσappd1−λoλo

(r)1−λo

{
(λo + 1) sin[(λo + 1)θ]− (λo − 1)

cos[(λo + 1)β
2 ]

cos[(λo − 1)β
2 ]

sin[(λo − 1)θ]
}

. (B.20)
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Appendix C

Phase-Shifting Photoelasticity

Pockels developed a mathematical theory for photoelasticity in crystals known as Pockels’ Phe-

nomenological Theory (Narasimhamurty, 1981). This theory can be used to develop the well-known

Stress Optic Law for photoelastic materials that are isotropic in structure and to develop stress-

related equations for refractive index change in crystalline materials. The basics of this theory,

based on (Narasimhamurty, 1981), are presented in this appendix, and the Stress Optic Law is

derived.

A flexible and comprehensive method for analysis of a polariscope is by the use of matrices

representing the action of each type of polarizing optic, i.e., using the matrix theory of photoelasticity.

Theocaris and Gdoutos (1979) presented the matrices for Jones matrix algebra, which assumes that

the incident light is polarized. The equations for the electric field after a polariscope result from Jones

matrix algebra. The intensity of the interference pattern may then be calculated. Another, more

general, method to determine the intensity of the images from a polariscope is Mueller calculus

with Stokes vectors. This method does not require that the incoming light be polarized. A full

treatment of Jones matrix algebra and Mueller calculus applied to the circular polariscope follows

in this appendix.

By using appropriate configurations of the circular polariscope elements, different interference

patterns related to the isoclinic angle and the isochromatic phase may be manipulated during analysis

of the patterns to separate these two quantities of interest. This type of phase shifting is unlike the

common methods that introduce a known phase shift, but capitalizes on the adaptability of the
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circular polariscope to achieve different trigonometric functions of the desired phases. The entire

derivation of the six-step method used in this research is provided below.

C.1 Photoelasticity of Crystals: Pockels’ Phenomenological

Theory

The impermeability tensor (1/K)ij is given by Bij = 1/n2
ij . The triaxial ellipsoid surface called

the optical index ellipsoid has the formula Bijxixj = 1. The optical properties of crystals are often

expressed in terms of the principal refractive indicies, by way of the refractive index ellipsoid, given

by

x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1. (C.1)

The assumptions used in this theory are the following:

1. In a homogeneously deformed solid, the effect of deformation is only to alter the optical

parameters of the optical index ellipsoid.

2. When the strain is within the elastic limits, the change of an optical parameter (polarization

constant) of the solid due to deformation can be expressed as a homogeneous linear function

of the nine stress components, σij , or nine strain components, εij .

C.1.1 Mathematical Formulation in Terms of the Photoelastic Constants

An undeformed crystal has an index ellipsoid of Bo
ijxixj = 1. A stressed crystal has an index ellipsoid

of Bijxixj = 1. Using the second assumption about linearity of the stress (strain)-impermeability

tensor, then

Bij −Bo
ij = −qijklσkl (C.2)

Bij −Bo
ij = pijklεkl. (C.3)
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The pijkl components are called the strain-optical or elasto-optic constants. The qijkl components

are called the stress-optical or piezo-optic coefficients

Assuming the ∆Bij , σkl, and εkl second-rank tensors are symmetric, then the 81 components of

the qijkl fourth-rank tensor reduce to 36 independent components (qijkl = qjikl and qijkl = qijlk),

and also the 81 components of the pijkl fourth-rank tensor reduce to 36 independent components

(pijkl = pjikl and pijkl = pijlk). The pijkl and qijkl tensors can be related by the elastic stiffness

constants, cijkl, and compliance constants, sijkl:

qijkl = pijmnsmnkl (C.4)

pijmn = qijklcklmn. (C.5)

The common notation uses two suffixes. The impermeability tensor Bij can be written as Bi

with i = 1 − 6 (B11 = B1, B22 = B2, B33 = B, B23 = B4, B31 = B5, and B12 = B6). The

stress and strain tensors adopt the same corresponding notation as the impermeability tensor. The

photoelastic coefficient tensors, pijkl and qijkl, are written as pij and qij with i, j = 1 − 6. The

governing photoelastic equations Equation (C.2) and Equation (C.3) become

Bi −Bo
i = −qijσj (C.6)

Bi −Bo
i = pijεj . (C.7)

With this two-suffix notation, the relationships between pij and qij are related by cij and sij with

i, j = 1− 6:

pij = qikckj (C.8)

qij = pikskj . (C.9)
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C.1.2 Considering Crystal Symmetry

The above mathematics applies most generally to triclinic crystals. The photoelastic coefficients

can be further simplified with higher crystal symmetry. The isotropic case reduces the photoelastic

tensors to two independent coefficients each:

pisotropic =





p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 1
2 (p11 − p12) 0 0

0 0 0 0 1
2 (p11 − p12) 0

0 0 0 0 0 1
2 (p11 − p12)





(C.10)

qisotropic =





q11 q12 q12 0 0 0

q12 q11 q12 0 0 0

q12 q12 q11 0 0 0

0 0 0 (q11 − q12) 0 0

0 0 0 0 (q11 − q12) 0

0 0 0 0 0 (q11 − q12)





. (C.11)

A cubic crystal systems in group 11, (Td, O, Oh (43̄m, 43, m3m)), reduce to three constants;
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magnesium oxide (MgO) has this symmetry.

pcubic−11 =





p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 p44





(C.12)

qcubic−11 =





q11 q12 q12 0 0 0

q12 q11 q12 0 0 0

q12 q12 q11 0 0 0

0 0 0 q44 0 0

0 0 0 0 q44 0

0 0 0 0 0 q44





. (C.13)

C.1.3 Connection to Linearized Theory

The isotropic case greatly simplifies the photoelastic equations:

B1 −Bo
1 = −(q11σ1 + q12σ2 + q12σ3) (C.14)

B2 −Bo
2 = −(q12σ1 + q11σ2 + q12σ3) (C.15)

B3 −Bo
3 = −(q12σ1 + q12σ2 + q11σ3) (C.16)

B4 −Bo
4 = −(q11 − q12)σ4 (C.17)

B5 −Bo
5 = −(q11 − q12)σ5 (C.18)

B6 −Bo
6 = −(q11 − q12)σ6. (C.19)
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For an isotropic material, Bo
1 = Bo

2 = Bo
3 = (1/(n2

o)), where no is the refractive index of the

unstressed material; also, Bo
4 = Bo

5 = Bo
6 = 0. By manipulating Equations (C.14)–C.16), the

following equations result:

1
n2

1

− 1
n2

2

= −(q11 − q12)(σ1 − σ2) (C.20)

1
n2

1

− 1
n2

3

= −(q11 − q12)(σ1 − σ3) (C.21)

1
n2

2

− 1
n2

3

= −(q11 − q12)(σ2 − σ3). (C.22)

If the quadratic refractive index term is ignored, then Bi−Bj terms can be simplified. For example,

1
n2

1

− 1
n2

2

=
n2

2 − n2
1

n2
1n

2
2

# −(n1 − n2)(n1 + n2)
n4

o

# −(n1 − n2)(2no)
n4

o

# −(n1 − n2)
n3

o/2
,

(C.23)

assuming n2
1n

2
2 # n4

o and (n1 + n2) # 2no. Equations (C.20)–C.22) become the following:

n1 − n2 =
n3

o

2
(q11 − q12)(σ1 − σ2) (C.24)

n1 − n3 =
n3

o

2
(q11 − q12)(σ1 − σ3) (C.25)

n2 − n3 =
n3

o

2
(q11 − q12)(σ2 − σ3) (C.26)

The Maxwell equations for the photoelastic effect for isotropic materials are the above Equations

(C.24)–C.26, given (n3
o/2)(q11−q12) = (C1−C2) = C, where C is the relative stress-optic coefficient.

If the coordinate system is in the principal axes, then σ4 = σ5 = σ6 = 0, and σ1, σ2, and σ3 are the

principal stresses.

The cubic equations with three constants result in the same relations as the isotropic case. In the

plane stress case, σ3 is zero. If the third principal axis is the optical axis, then only Equation (C.24)
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needs to be considered experimentally.

C.1.4 Stress Optic Law

A photoelastic plate under stress acts as a linear retarder plate for polarized light with linear

retardation δ with a fast axis at angle α relative to the x axis. The change in refractive index in

the plane perpendicular to the optical axis is related to δ by the thickness of the plate h and the

wavelength λ,: n1 − n2 = δλ/(2πh). Therefore, the governing equation, the Stress Optic Law, may

be written as the following (Kobayashi, 1993; Narasimhamurty, 1981):

σ1 − σ2 =
δλ

2πcoh
=

Nλ

coh
, (C.27)

where N = δ/2π is the “fringe order”.

C.2 Matrix Theory of Photoelasticity and Circular Polar-

iscopes

C.2.1 Jones Matrix Algebra

A circular polariscope includes an incident collimated beam of light, followed by a linear polarizer at

angle ρ to the x axis, a 1/4 wave plate with fast axis at angle ξ to the x axis, a photoelastic material,

another 1/4 wave plate with fast axis at angle φ to the x axis, and a second linear polarizer at angle

ζ to the x axis, sometimes called the analyzer. Figure C.1 shows a schematic of the polariscope.

Assuming that the collimated laser beam is polarized, then Jones matrix algebra may be used to

analyze the electric field components incident to the sample (Theocaris and Gdoutos, 1979). Note:

Theocaris and Gdoutos (1979) employs reference axes such that the x and y are perpendicular to

the incident beam relative to the front of the optics. The reference axes x and y used in this research

are perpendicular to the light beam, which is along the +z axis, on the back of the optics, as shown
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Figure C.1: Polarization optics before the transparent sample

in Figure C.1. The electric field prior to the polarizer is given in vector form by Equation (C.28):

E =





Eoxexp[j(kz − ωt + ϕx)]

Eoyexp[j(kz − ωt + ϕy)]




. (C.28)

The Jones vector, a, represents the time-averaged x and y spatial amplitude and phase components

of the electric field, ax and ay. Thus the Jones vector of the collimated light in Equation (C.28) is

acollimated =





ax

ay




=





Eoxexp[j(kz + ϕx)]

Eoyexp[j(kz + ϕy)]




. (C.29)

After passing through a polarization optic, the electric field obviously changes, represented by

the multiplication of the Jones matrix of the the polarization optic and the Jones vector of the

incident electric field. Therefore, Jones matrix algebra is a compact way of determining the changes

in an initially linearly polarized electric field due to polarization optics. The Jones matrices for a

linear polarizer at angle ρ to the x axis and for a 1/4 wave plate with fast axis at angle ξ to the x
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axis are as follows:

Pρ =





cos2(ρ) −cos(ρ)sin(ρ)

−cos(ρ)sin(ρ) sin2(ρ)




(C.30)

Qξ =





j cos2(ξ) + sin2(ξ) (1− j)cos(ξ)sin(ξ)

(1− j)cos(ξ)sin(ξ) j sin2(ξ) + cos2(ξ)




. (C.31)

Generally, the electric field incident to the sample in Figure C.1 is given by Equation (C.32):

aincident = QξPρa
collimated. (C.32)

For example, if ρ = π/2 and ξ = 3π/4, then the electric field components have the same constant

Ao =
√

2Eoy/2, as shown in Equation (C.33):

aincident = Q 3π
4
Pπ

2
acollimated =

√
2Eoyexp[j(kz + ϕy)]

2





exp[j 3π
4 ]

exp[j π
4 ]





=





Aoexp[j(kz + φx)]

Aoexp[j(kz + φy)]




. (C.33)

A photoelastic material is modeled in terms of polarization optics as a linear retardation plate

with retardation δ (the isochromatic phase) with fast axis at angle α (the isoclinic angle) to the x

axis. The Jones matrix for such a linear retardation plate is as follows:

Rδ,α =





ejδ cos2(α) + sin2(α) (1− ejδ)cos(α)sin(α)

(1− ejδ)cos(α)sin(α) ejδ sin2(α) + cos2(α)




. (C.34)

The general full expression for the electric field after a circular polariscope with all five elements is
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as follows:

Eout = PζQφRδ,αQξPρE. (C.35)

The intensity of the resulting image is a result of taking the dot product of the final electric field

with its complex conjugate:

Iimage = Eout · Ẽout
= Eout

x Ẽout
x + Eout

y Ẽout
y . (C.36)

If ρ = π/2 and ξ = 3π/4, then the intensity of the image reduces to the following:

Iimage = 2E2
oy{1 + cos(δ) sin[2(ζ − φ)]− sin(δ) cos[2(ζ − φ)] sin[2(α− φ)]}. (C.37)

C.2.2 Mueller Calculus with Stokes Vectors

A Stokes vector, denoted S is another representation of the polarization of the electric field similar

to the Jones vector except the Stokes vector has four time-averaged parameters, as shown in Equa-

tion (C.38), where <> represents time averaging. The first Stokes parameter, so, is the intensity of

the electric field, making it a convenient parameter to find the intensity of an image.

S =





so

s1

s2

s3





=





< axãx + ayãy >

< axãx − ayãy >

< 2%{axãy} >

< 2&{axãy} >





. (C.38)

Mueller matrices describe how the polarization changes after the light passes through a polarization

optic, where the parameters of these matrices modify the Stokes vector representation of light polar-

ization. The Mueller matrices, given the coordinate convention in Figure C.1, for a linear polarizer
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at angle ρ to the x axis and for a 1/4 wave plate with fast axis at angle ξ to the x axis are as follows:

PM
ρ =





1 cos(2ρ) − sin(2ρ) 0

cos(2ρ) cos2(2ρ) − sin(2ρ) cos(2ρ) 0

− sin(2ρ) − sin(2ρ) cos(2ρ) sin2(2ρ) 0

0 0 0 0





(C.39)

QM
ξ =





1 0 0 0

0 cos2(2ξ) − sin(2ξ) cos(2ξ) sin(2ξ)

0 − sin(2ξ) cos(2ξ) sin2(2ξ) cos(2ξ)

0 − sin(2ξ) − cos(2ξ) 0





. (C.40)

The Mueller matrix of a linear retarder with retardation δ and fast axis α, the model for a photoelastic

material, is

RM
δ,α =





1 0 0 0

0 cos2(2α) + sin2(2α) cos(δ) − sin(2α) cos(2α)(1− cos(δ)) sin(2α) sin(δ)

0 − sin(2α) cos(2α)(1− cos(δ)) sin2(2α) + cos2(2α) cos(δ) cos(2α) sin(δ)

0 − sin(2α) sin(δ) − cos(2α) sin(δ) cos(δ)





.

(C.41)

The Stokes vector of a general circular polariscope, with two polarizers, two 1/4 wave plates, and

a photoelastic material, is the multiplication of the incident Stokes vector and the Mueller matrices
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of all the elements. The Stokes vector of the incident electric field is

Sincident =





E2
ox + E2

oy

E2
ox − E2

oy

2EoxEoy cos(ϕx − ϕy)

2EoxEoy sin(ϕx − ϕy)





. (C.42)

The general form of the Stokes vector for a circular polariscope is

Sout = PM
ζ QM

φ RM
δ,αQM

ξ PM
ρ Sincident. (C.43)

Given a circular polariscope with the first polarizer at angle ρ = π/2, the first 1/4 wave plate at

angle ξ = 3π/4, from Equation (C.43), the first Stokes parameter, the intensity of the electric field,

may be reduced to

Iimage = sout
o = 2E2

oy{1 + cos(δ) sin[2(ζ − φ)]− sin(δ) cos[2(ζ − φ)] sin[2(α− φ)]}, (C.44)

which is the same as the intensity determined by Jones matrix algebra in Equation (C.37).

C.3 Six-Step Phase Shifting

With the flexibility of the polariscope optics, many different combinations of intensities involving

the isoclinic angle and isochromatic phase are possible. Choosing a certain set of these intensities

allows for the separation of these two phases. The set of six images chosen for this research are

given in Table C.1, where the first two elements do not change angle (ρ = π/2 and ξ = 3π/4) and

the second 1/4 wave plate and second polarizer are at angles φ and ζ, respectively. The intensities

for these images come from Equation (C.44).
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Image φ ζ

I1 = 2Eoy(1 + cos(δ)) π/2 3π/4
I2 = 2Eoy(1− cos(δ)) π/2 π/4

I3 = 2Eoy(1− sin(δ) sin(2θ)) π π

I4 = 2Eoy(1 + sin(δ) cos(2θ)) π/4 π/4
I5 = 2Eoy(1 + sin(δ) sin(2θ)) π/2 π/2
I6 = 2Eoy(1− sin(δ) cos(2θ)) 3π/4 3π/4

Table C.1: Photoelasticity phase shifting: Angles refer to fast axis of optics
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