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Abstract

Lithotripsy is at the forefront of treatment of kidney stones. By firing shock waves at the stone, it can be

broken down into small fragments. Although the treatment is non-invasive, both short- and long-term side

effects occur. In order to understand and rectify these shortcomings, lithotripsy has been the subject of

ongoing research. Based on in vitro experiments, it has been ascertained that the cloud of cavitating bubble

produced in the wake of the shock wave is a crucial element in the stone comminution process.

Various solutions designed to maximize stone comminution and/or decrease tissue damage have been

proposed over the years. However, the particulars of the comminution mechanism(s) are still undetermined.

In this work, a numerical model of the two-phase flow inside an electrohydraulic lithotripter was used to

provide additional insight in the behavior of the bubble cloud. The numerical model is based on an ensemble

averaged two-phase flow model for a compressible liquid. The differential equations were discretized following

the WENO shock capturing scheme in prolate spheroidal and cylindrical coordinate systems. The initial

conditions for the flow field are estimated based on empirical observations and then validated by comparing

the predicted pressure measurements and bubble cloud behavior against experimental values.

In order to gain additional insight in the mechanism for stone comminution, a variety of relevant initial

conditions were modeled. The following lithotripter configurations were analyzed: free-field, dual-pulse

and single-pulse with an artificial stone at the focus. The impact of parameters such as the intensity of

the initial shock wave and the pulse rate frequency (PRF) has been investigated. Based on an energy

argument, conclusions regarding the efficiency of stone comminution are presented. In addition, based on

these conclusions, avenues for improvement of the numerical model are highlighted.
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Chapter 1

Introduction

Shock wave lithotripsy is the most common treatment for kidney stone disease. This form of therapy was

developed over twenty years ago, and has proven to be fast, effective, and relatively free from the trauma

and expense associated with surgery. Extracorporeal shock wave lithotripsy (ESWL) works by firing focused

shock waves at the kidney stone inside the patient. A typical treatment consists of firing from one to three

thousand shock waves at a rate of around one Hertz. The appropriate number, rate, and intensity of shock

waves for a particular treatment is based on size, shape, composition, and location of the stone.

Different types of lithotripters have been approved for clinical use and are classified by the type of shock

wave source they utilize. Figure 1.1 illustrates some particular configurations. In this study, we will focus

on the Caltech-EHL which is a research electrohydraulic lithotripter based on the Dornier HM3 commercial

lithotripter. A diagram of the lithotripter used in this study with relevant dimensions is shown in Figure

1.2.
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Figure 1.1: Classification of lithotripters.
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Figure 1.2: Dimensions of the reflector used for this study.

Although effective in breaking kidney stones, ESWL can also cause significant short- and long-term

damage to the kidneys. Damage has been observed on both cellular1 and systemic level2. A common side

effect of a lithotripsy treatment is the presence of blood in the urine (hematuria). Typical legions in the

1See work of Blomgren et al. (1997), Lifshitz et al. (1997), Connors et al. (2000), Lokhandwalla et al. (2001), Paterson
et al. (2002a) and Sapozhnikov et al. (2002)

2See work of Evan et al. (1997),Evan et al. (1998) and Connors et al. (2000)
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kidney tissue caused by an ESWL treatment can be seen in Figure 1.3. Therefore, the shock wave dosage

must be carefully prescribed to prevent loss of kidney function.

Subcapsular hematoma

Figure 1.3: Damage to pig kidney after shock wave lithotripsy treatment. Courtesy of Philip M. Blomgren,
Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis.

Because of widespread use of lithotripsy and potential side effects, there have been numerous research

efforts aimed at understanding the mechanisms of stone breakage and tissue damage. The exact mechanisms

for stone comminution are still a topic of debate. Figure 1.4 illustrates two mechanisms that have been

substantiated by empirical observation: spallation and erosion. Spallation is a material failure caused by

tensile stress produced as the compressive part of the lithotripter wave is reflected by the distal stone–liquid

interface as a tensile wave. In the case of a cylindrical artificial stone, this reflected wave combines with

the tensile tail of the incident wave to produce a plane of maximum tensile stress that can cleave the stone.

Erosion is caused by the action of cavitation bubbles near the stone. The tensile component of a lithotripsy

shock wave typically generates a cloud of cavitating bubbles that collapse violently after the passage of the

wave. Pitting is likely caused by micro-jetting or secondary shock wave generation during violent bubble

collapse. The bulk of the empirical evidence suggests that cavitation is an important comminution mechanism

(Crum 1988, Sass et al. 1991, Sass et al. 1992, Coleman & Saunders 1993 and Bailey et al. 2003).

Regarding cavitation, previous research has focused on determining the pressure field produced by a

particular lithotripter, and the response of a single bubble at the lithotripter focus. The following sections

present an overview of the previous research and also motivate the need for a more detailed modeling of

cavitation in lithotripsy such as the present work.
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Figure 1.4: Mechanisms of stone comminution. Photographs courtesy of Erin Hatt, Department of Anatomy
and Cell Biology, Indiana University School of Medicine, Indianapolis.
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1.1 The pressure field produced by a lithotripter

The pressure field in an electrohydraulic lithotripter can be decomposed into several components. The initial

shock wave is generated by the discharge across a spark gap (see Figure 1.5 and 1 in Figure 1.6) located

at the first focus of an ellipsoidal reflector. Since the reflector is not a complete enclosure, part of the shock

wave is reflected towards the second focal point (reflected wave) while the rest expands unhindered (incident

wave) ( 2 and 3 in Figure 1.6). A diffraction or “edge” wave is created as the shock wave reaches the edge

of the reflector ( 3 in Figure 1.6).
va
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1  Spark firing 2  Vapor production 3   Shock propagation + bubble expansion

Figure 1.5: Initial shock wave generation.

Based on the work of Cole (1948) on underwater explosions, the initial shock wave generated by the spark

gap can be approximated by a positive triangular pulse. As the spherical wave expands and reflects from

the ellipsoidal surface, a region of negative pressure (tensile stress) develops because of curvature mismatch

and finite wave thickness, as we show in Section 3.1.1. Therefore a pressure wave of large negative pressure

can propagate in the liquid without generating a vapor explosion.

As the shock wave reaches the edge of reflector, an additional tensile wave (edge wave) is produced as

a consequence of diffraction. The edge wave combines with the tensile tail of the reflected wave near the

second focus of the reflector to produce the negative pressure tail as seen in Figure 1.7.

Many empirical measurements of the pressure field for the Dornier HM3 lithotripter have been reported

in the work of Coleman et al. (1987) and (Müller) (1989, 1990). Because of difficulties in accessing clinical

machines, a research lithotripter (Caltech-EHL) was designed after the HM3, and its pressure field was

characterized in a similar manner (Cleveland et al. 2000). A typical measurement for the pressure at the

focus (F2) of the Caltech-EHL is shown in Figure 1.7. Although the pressure profile can vary significantly

from lithotripter to lithotripter, the basic shape remains essentially the same. The peak pressure of the shock
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Figure 1.6: Shock wave propagation in an electrohydraulic lithotripter.

wave ranges from 20-100 MPa while the maximum negative pressure can vary from 7 to 15 MPa. Figures

1.8 and 1.9 present average pressure measurements made on the same lithotripter using a membrane and a

fiber optic hydrophone, respectively. The bands in the Figures 1.8 and 1.9 represent the bounds for one and

two standard deviations (σ) from the average measurement. These measurements are typically performed

in clean degassed water for a small number of pulses. The variability is strongly influenced by the degassing

and filtration of the water as well as the condition of the spark gap electrode.

Previous researchers have modeled the pressure field using linear and nonlinear acoustics. These models

have an advantage over models based on the full equations (as considered here) in that they are not adversely
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Figure 1.7: Experimental pressure measurement at the focal point of a Caltech-EHL lithotripter. Data
courtesy of Michael R. Bailey, Center for Industrial and Medical Ultrasound, Applied Physics Lab, University
of Washington, Seattle.

affected by the presence of the shock front; however, some form of modeling must be introduced to account

for diffraction effects at the edge of the reflector. In the work of Hamilton (1993), the spherical wave was

propagated to the wall of the reflector using linear geometrical acoustics and the reflection (and corresponding

diffraction) were calculated analytically using the Kirchoff integral method (see the work of Born & Wolf

(1980)). Similarly, Christopher (1994) reported pressure field results for the HM3 using a non-planar source

algorithm. The work of Coleman et al. (1991) and Averkiou & Cleveland (1999) used models based on

the KZK equation (see Zabolotskaya & Khokhlov 1969 and Kuznetsov 1970). Averkiou & Cleveland (1999)

reported some agreement between the numerical model and experimental results. A different approach

based on geometrical shock dynamics was used in the work of Cates & Sturtevant (1997). This approach

is particularly suited for the propagation of strong shock waves and can represent the formation of a triple

shock intersection.

The above-mentioned approaches are based on approximations to the Euler equations, and they do not
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Figure 1.8: Average pressure measurement and variability (40 points) at the focal point of a Caltech-EHL
(GALCIT) using PVDF membrane hydrophone at 18 kV. Data from (Cleveland et al. 2000).

represent all the wave features (nor the impact of cavitation). In the present work the pressure field is

modeled by solving the full Euler equations which have been appropriately modified to account for the

presence of bubbles. This model has the advantage of being able to fully represent diffraction. However,

it does require a special algorithm for the propagation of shock waves, which are discussed in Section 2.5.

In this area, several methods have been developed over the years to overcome problems related to shock

induced spurious oscillations. For the purpose of this work, we have used the Weighted Essentially Non-

Oscillatory method (WENO) developed originally by Liu et al. (1994). This approach ensures that only

smooth polynomials are used in the construction of the finite difference template and prevents the formation

of these oscillations.

1.2 Bubble dynamic response to the pressure field

As mentioned in the previous section, the pressure experienced in the focal area is composed of a high

amplitude shock wave followed by a smooth tensile region that can be over one hundred atmospheres below
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Figure 1.9: Average pressure measurement and variability (10 points) at the focal point of a Caltech-EHL
(GALCIT) using a fiber optic hydrophone at 20 kV. The presented data is a courtesy of Robin O. Cleveland,
Department of Aerospace and Mechanical Engineering, Boston University, Boston (2003).

the vapor pressure of water. Even though this loading only lasts for a few microseconds, it is more than

sufficient to nucleate cavitation bubbles. Although degassing and filtering can be used to control the density

of sites (small bubbles, impurities, etc.), it is not possible to control the nuclei in vivo. The study of the

bubble field during lithotripsy poses several challenges. The density of bubble nucleation sites cannot be

measured a priori because of their small size (see Appendix F for more details). In addition, bubble activity

resulting from the passage of the shock wave only lasts for a fraction of a millisecond and high-speed cameras

are needed to capture the details of the bubble cloud. Figure 1.10 shows a sequence of photographs of a

typical cavitation cloud in the Caltech-EHL. On these photographs, the bubbles appear as dark spheres. At

the scale shown here, only larger bubbles can be seen (bubble radius of at least 0.1 mm). The largest bubbles

observed are of the order of 1 to 1.5 mm in diameter. Bubble nuclei are evenly distributed within the field

of the lithotripter; however, as seen in Figure 1.10, only the bubbles located in a cigar-shaped region near

the focal point achieve significant growth and duration.

In addition to high-speed photography, other diagnostic tools have been used to characterize the bubble
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Figure 1.10: High-speed photographs of the bubble cloud in a Caltech-EHL lithotripter. Courtesy of Dahlia
L. Sokolov, Center for Industrial and Medical Ultrasound, Applied Physics Lab, University of Washington,
Seattle.

field: the passive cavitation detector and laser scattering. The passive cavitation detector (PCD) is composed

of a semi-spherical piezoelectric shell and is used to capture spherical acoustic waves produced at the focal

point. Because of its construction, only spherical waves emanating from the focal point of the detector will

be amplified. The use of laser scattering to measure the bubble radius was first introduced by Jöchle et al.

(1996) and Hubert et al. (1998). By measuring the fraction of laser light scattered by the surface, the bubble

radius can be approximated.

Numerical models have also been used to provide a greater understanding of the impact of the shock

wave on the bubble field. So far, all models presented have been based on the assumptions that

• the presence of bubbles had no impact on the propagation of the pressure wave,

• there was no interaction between the bubbles.

Empirical measurements of the pressure at the focal point and an approximate curve fit to the data (Church

1989) have been used as input to spherical bubble dynamics models such as the Gilmore equation in order

to predict bubble activity at the focus.

More sophisticated bubble models, that account for heat and mass transfer in spherical isolated bubbles,

have also been used. The work of Matula et al. (2002) compares results from such a model to laser scattering
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measurements of the bubble field in the focal region of a lithotripter. The complex model showed some

improvements over the conventional Gilmore model and gives predictions for the quantity of noncondensible

gas coming out of solution into the bubble. The mass transfer across the bubble interface is an important

issue in the impact of the pulse rate frequency. The additional mass in the bubble increases its equilibrium

radius which in turn, changes the response to the next lithotripsy pulse. The role of pulse rate frequency

has been noted in the work of Hubert et al. (1998) and Sapozhnikov et al. (2002) and is discussed in greater

detail in Section 1.4 of this work. Even though the continuum approach for the bubbly mixture presented in

this work does not model discrete bubbles, it does require a model for bubble dynamics in order to determine

the internal state of the mixture. For the purpose of this analysis, the Gilmore model was used. Since the

internal state of the mixture must be computed at every point in the grid (around 400000 points), the use of

a more sophisticated bubble model was not practical. A model similar to the work of Matula et al. (2002)

and Preston et al. (2002) was used as a post-processing stage to determine approximate increases in the

bubble equilibrium radii after each pulse.
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1.3 Bubble cloud effects in SWL

1.3.1 Mixture compressibility

The presence of bubbles in the liquid can considerably increase the compressibility of the mixture. Using

a linearized model for the bubble dynamics, the speed of propagation of small perturbations in a low void

fraction mixture can be shown to be

1
C2

≈ 1− βD

C2
L

+
βD[

ρG

ρL
C2

G +
2
3

S

ρLRo
− ω2R2

o

3

] , (1.1)

ω = wave frequency,

where

C is the speed of sound in the mixture

CL is the speed of sound in pure liquid

CG is the speed of sound in gas

βD is the void fraction

ρG is the density of gas in bubble

ρL is the density of pure liquid

S is the surface tension

Ro is the equilibrium bubble size

ω is the frequency of wave
The resulting speed of sound in the low-frequency limit is plotted in Figure 1.11 as a function of void

fraction for typical bubble radii reached in SWL. At low void fractions, the bubbly mixture can have a larger

compressibility than either pure liquid or pure gas.

Based on the above result, one might expect the bubble field to have a significant impact on the focusing

of the shock wave in a lithotripter. Although the propagation of the reflected shock wave is not significantly

affected by the presence of cavitation, the propagation of the edge wave is. As it will be shown in Section

3.1.3, the edge wave expands in the bubbly mixture from the wake of the reflected wave. To our knowledge,

this effect has not been analyzed in the literature.

In cases where obstructions are present in the focal area, interaction between the wave propagation and

the bubble field are clearly visible. For these cases, part or all of the shock wave is reflected back into a

mixture with a rapidly growing void fraction. The reflected waveform can be significantly affected by this

rapid change in the compressibility of the mixture.
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Figure 1.11: Speed of sound as a function of void fraction in the limit of zero frequency for different equilib-
rium radii.

A clear example of the effect of the bubble field on the wave propagation occurs in dual-pulse lithotripters.

As depicted in Figure 1.12, the dual-pulse lithotripter consists of two coaxial conventional electrohydraulic

lithotripters firing at the same target. This configuration was originally proposed by Sokolov et al. (2001)

to improve control of the area of bubble activity. Based on geometrical acoustics, the peak pressure at the

focal point is expected to be approximately doubled that of a conventional lithotripter.

Figure 1.12: Diagram of a dual-pulse lithotripter as proposed by Sokolov et al. (2001).

In their study, Sokolov et al. (2001) collected high-speed images of the cavitation cloud in the focal region

of a dual-pulse lithotripter (see Figure 1.13). As in Figure 1.10, the bubbles in Figure 1.13 appear as dark

spots on the image. As anticipated, the bubble cloud in the focal region is much shorter but wider than its
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Figure 1.13: High-speed photographs of bubble cloud in a dual-pulse lithotripter. Courtesy of Dahlia L.
Sokolov, Center for Industrial and Medical Ultrasound, Applied Physics Lab, University of Washington,
Seattle.

single-pulse counterpart (¡50 cm compared to 10 cm). Moreover, pressure measurements at the focal point are

approximately twice the amplitude of a single source as predicted by linear acoustics (Sokolov et al. 2001).

An interesting feature noticeable in Figure 1.13 is appearance of bands where hardly any bubbles can be

observed. The presence of these bands of minimal cavitation cannot be explained solely by the superposition

of the incident and the delayed reflected wave. Another explanation based on bubble translation was put

forward, but no significant bubble motion was observed in experiments (Sokolov et al. 2001). In the present

work, we propose that this behavior arises from nonlinear coupling between the pressure and cavitation field.

Using the numerical model described in this work, it can be shown that this coupling is an essential element

to the formation of these structures in the bubble cloud.

1.3.2 Cloud dynamics

For a single bubble in a pure liquid, an analysis can be done to relate the time to collapse of the bubble

and its maximum radius. In the work of Lord Rayleigh (1917), an approximate time for the collapse of a

spherical cavity filled with vapor only was derived assuming an otherwise uniform incompressible flow field:

Rayleigh collapse time: tc/2 = 0.915Rmax

√
ρ

P∞ − Pv
. (1.2)
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This derivation can also be extended to the growth of a bubble under certain conditions. For the cases

prevalent in lithotripsy, a short duration high intensity pressure pulse perturbs a field of very small bubbles.

Typically, the timescale associated with the pulse (5–10 µs) is much shorter than that of the bubble growth

(150–300 µs). Given this large difference in timescale, the pressure pulse can be approximated by a impulse

acting on the surrounding liquid. The ensuing bubble growth is then caused by the inertia of the moving

liquid. For large bubble growth, the bubble interior can be approximated as being composed entirely of

vapor. Given these assumptions, bubble growth is equivalent to a reverse collapse phase. Therefore, under

these conditions, the total time to collapse for such a bubble is then twice the Rayleigh collapse time:

tc = 1.83Rmax

√
ρ

P∞ − Pv
. (1.3)

This simple result is interesting in that it predicts a linear relationship between the maximum bubble radius

and its lifetime given an impulse-like pressure perturbation. In Figure 1.14, this result is compared to

Rayleigh-Plesset and Gilmore bubble models forced by shock waves based on Church’s model for a pressure

wave at the focus of a lithotripter (see Church 1989 and Figure 1.15). The maximum bubble size and time

to collapse obtained from either numerical models agreed well with the above theoretical prediction.
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Figure 1.14: Relationship between time to collapse and maximum bubble radius.
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Figure 1.15: Pressure trace for a Church model waveform.

The linear relationship between the maximum bubble radius and time to collapse is particularly interesting

in that it is not applicable in cavitating bubble clouds where the void fraction is non-negligible. Collective

bubble behavior can differ greatly from that of individual bubbles. As seen in the work of Brennen (1995),

Wang & Brennen (1995), Wang (1996), and Reisman et al. (1998), the growth and duration of bubbles

within a cloud can greatly vary depending on position. In Reisman et al. (1998), a numerical model of a

spherical bubble cloud was implemented and its response to a far field pressure fluctuation was analyzed

(see Figure 1.16). Their results have shown that bubbles in the center of the cloud are partly shielded from

the pressure fluctuation and do not grow as much as bubbles located near the edge. However, because of

the coupling between the bubble cloud and the flow field, the bubbles at the core of the cloud exhibited a

longer collapse time. During the expansion of the bubbles within the cloud, the surrounding liquid must flow

outward in order to make room for the volume occupied by the growing bubbles. As a consequence of this

flow field, the pressure decreases within the bubble cloud. Subjected to slightly lower pressures, bubbles at

the core of the cloud expand for a longer duration.

The above results help explain observations made at the focal point of a lithotripter. Sokolov et al.

(2001) reported approximate maximum bubble radii of 0.5 mm and 1.1 mm for free-field and dual-pulse

lithotripter, respectively, and a time to collapse of 340 ± 31 µs and 608 ± 33 µs for each configuration. As

shown in Figure 1.14, these values fall far from the theoretical prediction.
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A. From the work of Reisman et al. (1998).

1.4 The role of pulse rate frequency in lithotripsy

A feature specific to treatment by lithotripsy is the rate at which the shock waves are delivered. Experimental

studies have been conducted on this topic and have concluded that the firing rate of the lithotripter has a

measurable impact on the effectiveness of the treatment (Paterson et al. 2002b). Frequency of pulses of 2

Hz and 1 Hz (which are typical rates used by clinicians) was found to be less effective in stone comminution

than a rate of 1/2 Hz. A plausible explanation for this observation is that a higher PRF frequency leads to

larger bubbles in the focal region that in turn, would deflect part of the shock wave and shield the stone

(Bailey et al. 2003). During the period of large bubble growth, the non-condensible gas dissolved in the

liquid diffuses into the bubbles. After they collapse, this gas remains trapped in the bubbles since the surface

area available for diffusion is reduced by five to six orders of magnitude. Because of this one-sided diffusion,

the equilibrium size of bubbles would then increase, raising the compressibility of the mixture which in turn,

diverts more of the acoustic energy of the shock waves away from the objective. Based on this reasoning,

it follows that a larger time delay between pulses would allow a greater amount of noncondensible gas to

dissolve back into the liquid phase.
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1.5 Overview of the thesis

This study provides a first complete numerical model for an electrohydraulic lithotripter where both pressure

and bubble field are predicted conjointly. Unlike some of the previous works in this area, empirical mea-

surements are only used to assist in proposing and validating initial conditions. Moreover, the mathematical

model for the wave propagation is not approximated and can fully describe all relevant features. In addition

to providing a virtual model for the lithotripter, this work also permits the analysis of the energy released by

bubbles within the focal region. Although no direct quantification of comminution potential can be made, a

measure based on the energy released by the bubbles is used as a surrogate. This approach differs from past

work in that it considers the overall behavior of the bubble cloud and how it influences individual bubble

dynamics. Based on this analysis, new recommendations can be formulated to improve the effectiveness of

the treatment.
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Chapter 2

Simulation model

2.1 Equations for continuum-based two-phase flow model

Numerical models for bubbly cavitating flow can be divided into two categories:

• a discrete approach where individual bubbles are tracked in the fluid and the coupling interaction is

applied directly,

• a continuum model where the coupling between the bubble and pressure field is averaged in some way.

The first approach has the advantage of requiring less modeling, and has the potential of representing

any type of bubbly flow. However, it is also computationally intensive. To be effective, flow features must be

resolved on the order of the bubble size (microns in this case) and the axisymmetry of the lithotripter con-

figuration can no longer be exploited. Numerical approaches are being developed for this kind of simulation

but, at this stage, simulations with several thousands of bubbles are not practical.

In cases where the solution is not strongly dependent on the initial configuration of the bubbles, the spatial

distribution of bubbles can be represented by a continuous number density field. This field describes the

probability of finding bubbles at a given location. Similarly, the states of bubbles can be described with field

variables. The coupling between the bubble field and pressure field is achieved by averaging. Two different

types of averaging have been proposed in the past: volume averaging (Biesheuvel & van Wijngaarden 1984)

and ensemble averaging (Zhang & Prosperetti 1994). For either case, the derivation of a closed system

of homogenized equations requires that variations in the bubble states and number density field are small

compared to the length-scales associated with the mixture flow field.
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2.1.1 Flow field in the vicinity a bubble

The flow field in the neighborhood of a bubble can be very complex in general. In order to reduce the

complexity of the numerical model to a manageable level, several assumptions regarding the flow field

surrounding the bubble are necessary. In this work, the first assumption used is that bubbles remain

spherical at all times. This has for direct consequence that bubble fission and fusion are neglected. An

equally important assumption made in this work is that bubbles are sufficiently far apart to neglect direct

bubble–bubble interactions which is typically valid for void fractions less than a few percent. The third

assumption made here is that the fluid is inviscid and the fourth is with regards to whether or not the fluid

is compressible.

2.1.1.1 Incompressible fluid

If the fluid surrounding a spherical bubble is inviscid and incompressible, it can then be represented by a

potential function. Since the bubble is assumed to be spherical, it is limited to radial and translational

motion. The kinematic boundary condition on the bubble-liquid interface is

(∇φ−w) · n = Ṙ. (2.1)

The total force applied by the liquid in the radial direction on the bubble-liquid interface must balance the

force from the gaseous interior:

∫
bub surface

pdA = 4πR2pB . (2.2)

As for translational motion, since the bubble is effectively massless, the net force applied on the bubble must

be equal to zero.

∫
bub surface

pndA = 0 (2.3)

Given the above assumptions, equations for the rate of change of the bubble radius and position can be

obtained. These classical derivations are presented in Appendix C and only the final equations are discussed

here. From the radial force balance (equation 2.2), one obtains the Rayleigh-Plesset equation:

RR̈ +
3
2
Ṙ2 − 1

4
(u−w) · (u−w) =

p− pB

ρ
, (2.4)
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where

p is the pressure far away from the bubble,

u is the velocity far away from the bubble,

R is the bubble radius,

w is the bubble translational velocity,

pB is the liquid pressure at the bubble surface.
From the axial force balance (equation 2.3), one obtains the following result:

(u̇− ẇ) = 2
∇p

ρ
− 3

Ṙ

R
(u−w). (2.5)

It is interesting to note that this equation can be rewritten as

d

dt

(
3
2
R3(u−w)

)
=
∇p

ρ
, (2.6)

where the bracketed term on the left side is proportional to the added mass of the bubble times the relative

velocity of the bubble with respect to the fluid.

2.1.1.2 Compressible fluid

If the fluid surrounding the bubble is compressible, then the finite speed at which waves propagate in the

liquid must be considered. Several analyses (Gilmore 1952, Keller & Miksis 1980 and Prosperetti & Lezzi

1986 to name a few) have been presented over the years that introduce first and second order correction for

the compressibility. The validity of these approaches is limited to low Mach number (i.e., Ṙ/C << 1 where

C is the speed of sound in the liquid and Ṙ is the bubble radial velocity). However, even at supersonic Mach

numbers (Ṙ/C > 1), the model predictions are still close to experimental observations (Gilmore 1952). The

model used in this work to predict bubble motion was proposed by Gilmore (1952):

[
1− Ṙ

C

]
RR̈ +

3
2

[
1− 1

3
Ṙ

C

]
Ṙ2 =

[
1 +

Ṙ

C

]
H +

R

C

dH

dt
H =

∫ pB(R,t)

p

dp

ρ
, (2.7)

where pB is the pressure in the liquid at the surface of the bubble.

For small pressure fluctuations, the bubble radial velocity Ṙ is much less than the speed of sound in
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liquid C and equation 2.7 can be simplified to

Ṙ

C
<< 1, (2.8)

H =
∫ pB(R,t)

p

dp

ρ
≈ pB − p

ρ
, (2.9)

RR̈ +
3
2
Ṙ2 =

pB − p

ρ
(2.10)

which is the same as the Rayleigh-Plesset equation discussed in the previous section.

There is no compressible counterpart to the translation equation 2.3. In cases such as Sokolov et al.

2001, the Gilmore equation was used to compute the bubble growth and collapse but used a model based on

the incompressible model to determine bubble translation. However, it should be noted that equation 2.3

predicts unrealistic relative velocities for violent bubble collapse.

2.1.2 Phase averaged equations

Given one of the above models for the behavior of an individual bubble, equations for the averaged bubbly

mixture can be derived. The phase average for the density and momentum can be expressed as

〈ρM 〉 = βC〈ρC〉+ βD〈ρD〉, (2.11)

〈ρMuM 〉 = βC〈ρCuC〉+ βD〈ρDuD〉, (2.12)

βC = 1− βD, (2.13)

where the subscripts M,D,C refer to mixture, disperse (bubble) and continuous (liquid) phase properties.

In addition, the variable βD is define as the volume fraction occupied by bubbles or void fraction. Since the

density of the liquid is over three orders of magnitude larger than that of the bubble interior, the density of

the disperse phase can be neglected:

ρD ≈ 0, (2.14)

〈ρM 〉 ≈ βC〈ρC〉, (2.15)

〈ρMuM 〉 = βC〈ρCuC〉. (2.16)

An additional simplification to the above can be obtained by assuming that the fluctuations in the mix-

ture caused by the bubble activity are incompressible. This effectively decouples the density and velocity
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fluctuations:

〈ρMuM 〉 = 〈ρM 〉〈uM 〉. (2.17)

The governing equation for the mixture continuum can be expressed in the following form:

∂

∂t
〈ρM 〉+∇ · 〈ρMuM 〉 = 0, (2.18)

∂

∂t
(〈ρM 〉〈uM 〉) +∇ · (〈ρM 〉〈uMuM 〉) +∇〈pM 〉 = 〈σ〉. (2.19)

Since both phases are assumed to be inviscid, the average stress tensor is zero 〈σ〉 = 0. In addition, the

momentum convection term can be rewritten in terms of the primitive variables ρM and uM , and a Reynolds

stress term:

∂

∂t
〈ρM 〉+∇ · 〈ρMuM 〉 = 0, (2.20)

∂

∂t
(〈ρM 〉〈uM 〉) +∇ · (〈ρM 〉〈uM 〉〈uM 〉) = −∇〈pM 〉+∇ · [ρM (〈uM 〉〈uM 〉 − 〈uMuM 〉)] . (2.21)

In order to close the above set of equations, details regarding the averaging must be introduced. The

resulting expression can be dependent on the form of averaging used. For this work, an ensemble phase

average based on the work of Zhang & Prosperetti (1994) was used to derive the final equations. A detailed

derivation can be found in Appendix C. It is interesting to note that following a different approach to the

averaging process, for the same order of accuracy, identical equations can be obtained.

Although the approach for the derivation of the average mixture pressure presented in Appendix C is

more rigorous, the same result can be obtained by volume averaging the liquid and bubble pressure:

〈pM 〉 ≈ (1− βD)〈pC〉+ βD〈pB〉, (2.22)

where pB is the pressure in the liquid at the surface of a bubble. Similarly, a bubble induced Reynolds stress

term can be readily derived by assuming that the local perturbation of the flow field by a bubble is:

u′ = R2Ṙ
x
r3

, (2.23)

where x is relative position from the bubble center and r = |x|. The velocity perturbation can then be
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integrated to yield

u′u′ = R4Ṙ2 xx
r6

, (2.24)∫
u′u′dV = R3Ṙ2

∫
bub surface

nndA =
4
3
πR3Ṙ2I, (2.25)

where I is the identity tensor. By taking this last result and multiplying it by the number of bubbles present

per unit volume, we obtain an expression for the bubble induced Reynolds stress term which is identical to

the one found in Appendix C:

〈uu〉 = βDṘ2. (2.26)

It should kept in mind that these simple derivations are only applicable for a simple case where the properties

of the disperse and continuous phases are approximately uniform over the averaging length-scale. This

averaging volume must be sufficiently large such as to contain a large number of bubbles.

2.2 Final equations

The final form of the governing equations for the mixture are (the averaging brackets 〈〉 and mixture subscript

M have been omitted in order to simplify the notation)

∂ρ

∂t
+∇ · (ρu) = 0, (2.27)

∂ρu
∂t

+∇ · (ρuu) +∇pC = ∇
[
βD(pC − pB(R)− ρṘ2)

]
, (2.28)

pC − po =
ρoC

2

α

[(
ρC

ρo

)α

− 1
]

, (2.29)

pB = −2S

Ro

[(
Ro

R

)
−
(

Ro

R

)3γ
]
− (po − psat vap)

[
1−

(
Ro

R

)3γ
]

+ po, (2.30)

ρC =
ρ

(1− βD)
, (2.31)

βD =
4
3
πNR̄3, (2.32)

∂N

∂t
+∇ ·Nu = 0. (2.33)
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The governing equations for the bubble phase are

RR̈ +
3
2
Ṙ2 =

pB − pC

ρC
, (2.34)

or

[
1− Ṙ

C

]
RR̈ +

3
2

[
1− 1

3
Ṙ

C

]
Ṙ2 =

[
1 +

Ṙ

c

]
H +

R

C

dH

dt
H =

∫ pB

pC

dpC

ρC
, (2.35)

for the Rayleigh-Plesset and Gilmore cases respectively.
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2.3 Initial conditions

2.3.1 Bubble field

Establishing appropriate initial conditions for the simulation is difficult. Although the properties of the

quiescent liquid can be readily obtained, the distribution of microscopic bubble nuclei cannot be measured

empirically while at rest. Therefore, the initial conditions for the bubble field must be estimated and then

validated by comparing the resulting larger scale bubble growth and pressure measurement to experimental

observations (see Appendix F for details about initial estimates). This iterative process is illustrated in

Figure 2.1. Based on past work and available literature, the bubble number density was estimated to be

5–50 bubbles/cm3 while the equilibrium bubble radius to be 3–50 µm (see Appendix F).

Estimated values:
   Nuclei number density: No
   Equilibrium bubble radius: Ro

Numerical
simulation

Maximum bubble radius
Lifetime of bubble cloud
Size + shape of bubble cloud

input output

Comparison with 
empirical

observations

Iteration

Figure 2.1: Iterative process for initial bubble conditions.

2.3.2 Pressure field at early times

In its early stages of propagation, the spherical shock wave can be modeled using the linearized Euler

equations. This is applicable since cavitation effects are negligible1 until a tensile region develops and the

associated velocities are small (negligible momentum convection). Although nonlinear effects are present,

this model is sufficient for the purpose of determining the initial condition. In spherical coordinates, the

1As mentioned previously, the initial void fraction is negligible and since the wave is strictly positive at this stage, there is
no positive bubble growth.
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relevant equations are

∂ρ

∂t
+

1
r2

∂r2ρv

∂r
= 0, (2.36)

∂ρv

∂t
+ c2 ∂ρ

∂r
= 0, (2.37)

c = speed of sound.

These can be combined to give the wave equation:

∂2ρ

∂t2
+

c2

r2

∂

∂r

(
r2 ∂ρ

∂r

)
= 0, (2.38)

whose solution is

ρ =
f(r − ct)

r
+

g(r + ct)
r

, (2.39)

where the first solution is an expanding wave and the second is an imploding wave. The corresponding

velocity field can be found by integration:

ρv = − 1
r2

∫
∂ρ

∂t
r2dr, (2.40)

= − 1
r2

∫ [
−c

f ′(r − ct)
r

+ c
g′(r + ct)

r

]
r2dr, (2.41)

=
c

r
(−f(r − ct) + g(r + ct)) (2.42)

+
c

r2

(∫ r−ct

f(z)dz −
∫ r+ct

g(z)dz

)
+

h(t)
r2

.

where h(t) is a constant of integration. Since the desired initial condition is an expanding wave, the solution

should have the following form

ρ =
f(r − ct)

r
, (2.43)

ρv = c

[
−f(r − ct)

r
+

1
r2

∫ r−ct

0

f(z)dz

]
+

h(t)
r2

. (2.44)

Because the numerical model does not account for the vapor cavity generated by the spark, the density

and velocity fields must be prescribed even at the focal point (r = 0) so the integration constant h(t) must

be zero. Consequently, a strictly positive pressure wave form would require a non-zero radial velocity field
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ahead of the pulse (see Figure 2.2).
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non-zero velocity
ahead of wave

Figure 2.2: Positive pressure waveform and associated velocity field.

This is clearly not an appropriate initial condition for the velocity field. To alleviate this problem an

artificial mass source is added to the equations. This source accounts, in a simplified way, for the vapor

cavity generated by the spark process.

ρv = ρv′ − 1
r2

∫ r

S(z)z2dz (2.45)

∂ρ

∂t
+

1
r2

∂r2ρv′

∂r
= S(r) (2.46)

∂ρv′

∂t
+ c2 ∂ρ

∂r
= 0 (2.47)

Since the source term in the continuity equation is independent of time, the second order wave equation for

the density 2.38 is still applicable. Therefore, the added mass source, S(r), has no impact on the possible

solutions for the density.

ρ =
f(r − ct)

r

ρv′ = c

[
−f(r − ct)

r
+

1
r2

∫ r−ct

0

f(z)dz

]
+

1
r2

∫ r

S(z)z2dz (2.48)

The added source term must satisfy two conditions: the velocity field must be zero ahead of the shock wave
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and the velocity must be zero at the center. Using these restrictions, the source term must have the form:

ρv′ = −c
f(r − ct)

r
+

c

r2

[∫ r−ct

0

f(z)dz −msH(r)
]

, (2.49)

ms =
∫ rshock

0

f(z)dz, (2.50)

H(r) =


0 r � ro

1 r � ro

where ro is before the shock wave. (2.51)

Figure 2.3 illustrates the impact of the source term. Curve 1 is the uncorrected velocity. Curve 2 includes

the contribution of a source term satisfying the zero velocity condition ahead of the shock wave but is singular

at the origin. The singularity is eliminated in curve 3 with an appropriate shape function H(r). The velocity

field behind the expanding shock wave is illustrated in Figure 2.4. The strength of the distributed mass source

is constant which provides a constant decaying velocity field between it and the spherical shock wave.
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Figure 2.3: Contribution of the source term to the flow field.
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Wave propagation
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Figure 2.4: Wave propagation and corresponding velocity field.
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2.4 Grid and boundary conditions

2.4.1 Computational grid

As mentioned previously, the boundary of the reflector is ellipsoidal. In order to minimize the discretization

error in the implementation of the boundary condition, the boundary should coincide with the coordinate

axis. In this case, the coordinate system of choice is prolate spheroidal. Given the position vector R = (x, y, z)

defined by

R =
[√

ζ2
2 + d2 cos(ζ1), ζ2 sin(ζ1) cos(ζ3), ζ2 sin(ζ1) sin(ζ3)

]
, (2.52)

ζ1ε[0, π], ζ2ε[0,∞), ζ3ε[0, 2π], (2.53)

the metrics for this system are found to be

hi =
∣∣∣∂R
∂ζi

∣∣∣, (2.54)

h1 =
√

ζ2
2 + d2 sin2(ζ1), (2.55)

h2 =

√
ζ2
2 + d2 sin2(ζ1)

ζ2
2 + d2

, (2.56)

h3 = ζ2 sin(ζ1). (2.57)

1

2

x

y

z
2d

� 3

ζ

ζ

ζ

Figure 2.5: Prolate ellipsoidal grid.

Figure 2.5 illustrates the grid. There is a coordinate singularity located at each focal point of the

domain. Similar to cylindrical and spherical grids, the distance between two grid points shrinks to zero

as one approaches the singularities. Because of the stability requirements for explicit time integration, the
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largest stable time step permissible is inversely proportional to the grid spacing. Consequently, the region

surrounding the focal point must be treated specially in order to avoid an overly restrictive time step.

The prolate spheroidal grid is ideally suited for the modeling of the reflector. However, in the opposite

region of the domain where the shock wave focuses on the target area, a cylindrical grid is better suited for

the task. In the computational domain used in this work, both grids were used (see Figure 2.6). On the

plane between both focal points, the spheroidal grid meshes to first order accuracy with the cylindrical grid

in the axial direction (and exact in the radial direction). Figure 2.7 illustrates the junction between the two

grids.

Figure 2.6: Schematic of the computational domain used in this work.

Cylindrical

Real domain Logical domain

Prolate spheroidal Cylindrical Prolate spheroidal

Figure 2.7: Schematic of the junction between prolate ellipsoidal and cylindrical grid.

There is a discontinuity in the derivatives at the junctions between domains. However, as seen from

Figure 2.7, the jump between the two metrics grows as

hspheroidal
1 − hcylindrical

1 ≈ ζ2
2

2d
+ O[ζ4

2 ].
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The difference is negligible for all but the outer part of the domain. So far, the results obtained with the

present model have shown no measurable reaction to this discontinuity in the grid.

2.4.2 Boundary conditions

The following boundary conditions are required for the modeling of a lithotripter:

• centerline boundary at the axis of symmetry

• reflective boundary at the surface of the reflector

• non-reflective boundary at the outer edge of the domain

The implementation of the centerline condition follows from the earlier work of Mohseni & Colonius

(2000). In this approach, the first grid point is located half a grid spacing away from the axis of symmetry

(see Figure 2.8). Fictitious (reflected) nodes are added to the domain with values taken from their image

counterpart. Scalar quantities are mirrored while vector orientations are reflected. Using this approach, the

nodes located near the boundary can be treated using the same numerical procedure as interior nodes.

centerline

domain interior

reflected nodes

-direction

-direction
∆x

∆x/2

node
number

0

-1

1

2

3

Figure 2.8: Centerline treatment.

A similar treatment is used for the solid boundary of the reflector. As mentioned previously, the fluid

mixture is assumed to be inviscid so there can be no mass flow across the solid interface. The following set

of equations describes the flow of at the boundary.

u1

∣∣∣
wall

= 0, (2.58)

�
�
�7

0
∂u1

∂t
+

�
�
��
0

u1

h1

∂u1

∂ζ1
+

u2

h2�
�
�7

0
∂u1

∂ζ2
+

∂p

∂ζ1
= 0 → ∂p

∂ζ1

∣∣∣
wall

= 0. (2.59)
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By applying the same treatment as the symmetry boundary, the no through flow boundary condition can

be approximately satisfied.

The treatment of the outer boundary requires a more detailed explanation. The non-reflective boundary

condition is based on the work of Thompson (1987). This approach is based on a one-dimensional decom-

position of the equation into (approximately) outgoing and incoming waves. This boundary condition is

designed to absorb a flat wave hitting the edge of a Cartesian grid. However, in other types of curvilinear

coordinates, this method can lead to spurious reflections. The error associated with the approximate bound-

ary condition is inversely proportional to h1h2h3 so it is minimal sufficiently far away (assuming that the

metrics grow monotonically with coordinates). Therefore, given a sufficiently large domain, the Thomson

boundary condition can be applied with minimal reflection.

2.4.3 Mesh stretching

Although essential for the accuracy of the non-reflective boundary condition at the outer edge, a larger

computational domain is significantly more expensive to compute. To reduce the cost extending the domain,

grid stretching is used in the outer part of the domain where accuracy is not a main concern. As discussed in

Colonius et al. (1993), aliasing can occur in the stretched grid. The high-frequency content of outgoing wave

can no longer be represented over the coarser grid and is aliased back into lower frequency wave traveling

backwards into the domain. Following the approach of Colonius et al. (1993), spatial filtering is used over

the outer edge of the grid to progressively eliminate the high frequency modes before they can be reflected.

For the purpose of this work, the following mesh stretching function was used:

ζ2 = A

[
x−Dlog

(
cosh((x− C)/D)

cosh(−C/D)

)]
+ B

[
x + Dlog

(
cosh((x− C)/D)

cosh(−C/D)

)]
, (2.60)

dζ2

dx
=

A

2
[1− tanh ((x− C)/D)] +

B

2
[1 + tanh ((x− C)/D)] , (2.61)

where

A = normal grid spacing,

B = stretched grid spacing,

C = location where grid stretching begins,

D = width of the transition region.
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As mentioned above, filtering is especially necessary in the transition region between the normal and stretched

grid. In the present work, a very simple filtering scheme with the following template was implemented:

φ̂i = aφi +
2
3
(1− a) [φi+1 + φi−1] +

1
6
(a− 1) [φi+2 + φi−2] . (2.62)

The parameter a controls the amount of filtering. Figure 2.9 shows the damping as a function of the input

frequency. By progressively increasing the filter parameter a, the higher frequency components are eliminated

before they can be aliased.

0 /2 ππ

a=1
a=7/8
a=6/8
a=5/8

Frequency

1.0
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0.4
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0.8

Figure 2.9: Spectral properties of filter.
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2.5 Shock capturing algorithm

Typical finite difference methods exhibit poor performance for representing shock waves. As illustrated in

Figure 2.10, any polynomial fitting across a steep gradient results in spurious oscillations. Various numerical

devices, such as artificial viscosity, have been developed in the past to filter out the high frequency component

of the wave. In some cases, these methods can be tuned such as to balance the added dissipation with the

production of spurious oscillations.

Actual solution Polynomial approximation

Figure 2.10: Polynomial fitting across sharp discontinuity.

Essentially non-oscillatory shock capturing methods are based on a different approach. Instead of at-

tempting to filter the oscillations generated by the interpolation, these methods are designed to choose the

interpolation template that will cause the smallest oscillations (Harten & Osher 1986, Harten et al. 1986).

To illustrate this approach, let us consider the linear first-order wave equation.

∂φ

∂t
+ U

∂φ

∂x
= 0. (2.63)

If we integrate the above equation over discrete control volumes, we obtain

∂

∂t

∫ xi+1/2

xi−1/2

φ(x, t)dx + U
(
φ(xi+1/2, t) + φ(xi−1/2, t)

)
= 0, i = 1...n. (2.64)

If we use the notation

Φi(t) ≡
1

∆x

∫ xi+1/2

xi−1/2

φ(x, t)dx,

φi+1/2(t) ≡ φ(xi+1/2, t),
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then the discretized equations have the form:

∂Φi(t)
∂t

= − U

∆x

(
φi+1/2(t)− φi−1/2(t)

)
. (2.65)

To solve the above system of ODE’s, we must approximate the values of φi+1/2(t) given values for Φi(t).

Figure 2.11 illustrates the available choices of polynomial for a fourth-order approximation of φi+1/2(t). Note

that all five polynomials are upstream biased.
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Figure 2.11: Possible polynomial template for fourth-order approximation of φi+1/2(t).

For the case presented in the above Figure, it is clear that the polynomial in the upper left corner is

the best choice to evaluate the value of φi+1/2(t). In Liu et al. (1994), the authors present a procedure to

determine the best interpolation template in the general case (illustrated in Figure 2.12). They further prove

that this approach guarantees that the solution at the next time step will have minimum oscillation in the

L2–norm sense.

After careful consideration, one might notice that in regions where the solution is smooth, there is no

real advantage to select one interpolation template over another. Furthermore, since there is no advantage

in discarding templates, one should combine them to obtain a much higher-order interpolation polynomial.
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Figure 2.12: Flowchart for the selection procedure for the ENO interpolation template.

In Harten et al. (1987), the authors presented an approach in which interpolated values are given by a

weighted average of all admissible templates (weighted ENO or WENO). The weights are functions of the

norm of the derivatives such that in cases where sharp gradients are present the method reverts to the above

ENO approach, and otherwise, to the highest order polynomial approximation possible. For the purpose of

this work, the measure of smoothness for the polynomial template was taken from the work of Jiang & Shu

(1996) and are given by

• Second-order polynomial:

ISk = (Φk+1 − Φk)2.

• Third-order polynomial:

ISk =1/2
(
(Φk − Φk−1)2 + (Φk+1 − Φk)2

)
+(Φk+1 − 2Φk + Φk−1)2.
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• Fourth-order polynomial:

ISk =1/3
(
(Φk−1 − Φk−2)2 + (Φk − Φk−1)2 + (Φk+1 − Φk)2

)
+1/2

(
(Φk − 2Φk−1 + Φk−2)2 + (Φk+1 − 2Φk + Φk−1)2

)
+(Φk+1 − 3Φk + 3Φk−1 − Φk−2)2.

• Fifth-order polynomial:

ISk =1/4
(
(Φk−1 − Φk−2)2 + (Φk − Φk−1)2 + (Φk+1 − Φk)2 + (Φk+2 − Φk+1)2

)
+1/3

(
(Φk − 2Φk−1 + Φk−2)2 + (Φk+1 − 2Φk + Φk−1)2 + (Φk+2 − 2Φk+1 + Φk)2

)
+1/2

(
(Φk+1 − 3Φk + 3Φk−1 − Φk−2)2 + (Φk+2 − 3Φk+1 + 3Φk − Φk−1)2

)
+(Φk+2 − 4Φk+1 + 6Φk − 4Φk−1 + Φk−2)2.

The admissible polynomial stencils are then be combined using the following weights (Jiang & Shu 1996):

αk =
Cr

k

(ε + ISk)p , (2.66)

ωk =
αk

α1 + ... + αr
, (2.67)

P (x) =
r∑

i=1

pi(x)ωi, (2.68)

where ε is a small number (ε = 10−8 in this work), p is some power greater than unity (p = 3 in this work),

and r is the order of the polynomial stencil. The coefficients Cr
k are found in Table 2.1 and represent the

optimal weights if all stencils are equally smooth.

k=1 k=2 k=3 k=4 k=5
r=2 1/3 2/3 — — —
r=3 1/10 6/10 3/10 — —
r=5 4/504 80/504 240/504 160/504 20/504

Table 2.1: Optimal weights for combination of polynomial stencils.

Additional methods have been devised to reduce the excessive dissipation of the WENO method at sharp

interfaces. Methods such as the sub-cell resolution approach (Harten 1989) and artificial compression method

(Yang 1990). For the purpose of this work, the artificial compression method (ACM) was implemented.

Details for this approach can be found in the work of Yang (1990) and Jiang & Shu (1996). This method

requires the input of a parameter α. In cases presented here, a value of α = 11 was selected instead of the
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α = 33 proposed in Yang (1990). This value was obtained through trial and error and was found to be a

reasonable compromise between compensating the WENO dissipation and preventing spurious oscillations.
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2.6 Time marching algorithm

To ensure the smoothing properties of the WENO scheme, the discretized equations must be integrated using

a TVD (total variation diminishing) time marching algorithm. A family of TVD Runge-Kutta scheme can

be found in the work of Shu & Osher (1988) and Gottlieb & Shu (1998). In the present work, a third-order

method was used.

dx
dt

= f(x, t) (2.69)

x∗ = xn + f(xn, t)∆t (2.70)

x∗∗ =
3
4
xn +

1
4
x∗ +

1
4
f(x∗, t)∆t (2.71)

xn+1 =
1
3
xn +

2
3
x∗∗ +

2
3
f(x∗∗, t)∆t (2.72)

Although this time marching scheme is well suited for the integration of the discretized average mixture

equations, it is not optimal for the disperse bubble phase. Very violent bubble activity occurs in lithotripsy

so the time integration must be accurate to extremely small timescales. Since bubble collapse is of very short

duration, it is much more efficient to use adaptive time stepping. The Rosenbrok adaptive time marching

scheme performs well with stiff systems of equations and was used to compute the bubble activity in this

work (see Press et al. 1996).

dx
dt

= f(x) (2.73)

M ≡ df
dx

(2.74)(
2

∆t
I−M

)
x1 = f(xn) (2.75)(

2
∆t

I−M
)

x2 = f(xn + 2x1)− 8
∆t

x1 (2.76)(
2

∆t
I−M

)
x3 = f

(
xn +

48
25

x1 +
6
25

x2

)
+

371
25∆t

x1 +
12

5∆t
x2 (2.77)(

2
∆t

I−M
)

x4 = f
(
xn +

48
25

x1 +
6
25

x2

)
− 112

125∆t
x1 − 54

125∆t
x2 − 2

5∆t
x3 (2.78)

xn+1 = xn +
19
9

x1 +
1
2
x2 +

25
108

x3 +
125
108

x4 (2.79)

error =
17
54

x1 +
7
36

x2 +
125
108

x4 (2.80)

Clearly, the time integration for the mixture is incompatible with that of the bubble phase. However,
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two observations allows for the coupling of these two methods.

1. Even if the bubbles present within a control volume were to change rapidly, the associated pressure

waves can only propagate at the speed of sound in the liquid. Therefore, waves caused by rapid

fluctuations of the bubble radius do not have time to travel outside the control volume and are averaged

out.

2. The timescale associated with bubble dynamics can be much shorter than that of the pressure field.

However, much of the bubble behavior is dominated by the inertia of the surrounding liquid. Therefore,

large amplitude bubble motion is rather insensitive to fluctuations in the far field pressure.

Following these two observations, we can conclude that for a sufficiently small timescale (smaller than that

associated with the average mixture but larger than that associated with bubble dynamics), both phases can

be integrated independently of one another over very short times. In other words, all fluctuations beyond

this frequency will be averaged out over the control volume and are therefore neglected. This approach is

beneficial in two ways: an appropriate time marching algorithm is used for each phase and the adaptive

shrinking/enlarging of the time step for a bubble at a particular location is independent of other locations.

This segregated time integration method for the continuous and disperse phase is not as accurate as

a combined approach where the same adaptive time step is used for the entire domain and all equations

are integrated simultaneously. However, the computational cost associated with the combined approach is

prohibitively large as the time step for the domain would shrink by several order of magnitude whenever a

bubble in the domain would be near collapse. In terms of performance, it is therefore more advantageous to

use a segregated time marching with a small time step in order to compensate for the lower accuracy of the

method. The errors associated with the time-step segregation are quantified in the next section.
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2.7 Spatial and temporal resolution study

To ensure that the results presented in this study are accurate, a grid resolution study was conducted. Two

simulations were performed (Run35c and Run35d2) with identical parameters with the exception that the

grid for Run35d has 150% of the number of grid points of Run35c in each direction. Furthermore, because

of the greater spatial resolution, the time step for Run35d was half that of Run35c. Figures 2.13 and 2.14

compare the pressure field and bubble response for both simulations.
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Figure 2.13: Comparison of the bubble response at the focus for high and normal resolution simulations.

In Figure 2.13 and 2.14, some differences between the high and normal resolution simulations can be

noticed. The pressure amplitude of the shock wave is larger with the enhanced grid (see Figure 2.13). In

addition, the time to collapse for a bubble at the focal point of the lithotripter is slightly larger for the

regular grid (see Figure 2.14). However, in the present context, these differences are relatively minor and

the general behavior of the bubble cloud is the same in both cases. Therefore, the spatial grid used was

considered sufficient for the purpose of this study.

To ensure that the time step used is appropriate, comparisons were made for the same conditions of

Run35c but for different time steps. Table 2.2 presents peak pressures, maximum bubble growth and time

to collapse at the focus as a function of the time step used in the coupled integration. It is interesting to

note in the following table that the peak pressures are relatively insensitive to the choice of time step. This

2A table of input parameter and results for various simulations can be found in Appendix A.
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is to be expected since the accuracy of the propagation of the shock wave is determined mainly by the CFL

number which is well below the stability requirement (CFL ≤ 1) for all cases. Because of the segregated time

integration, the bubble dynamics can be affected by the choice of time step. As mentioned in the previous

section, a larger time step may result in a loss of accuracy in the coupling between the two phases. Based

on the results from Table 2.2, we can determine that the time steps used in the present work (∆t = 0.020 µs

and 0.025 µs) are sufficiently small to ensure that the error introduced by the segregated time integration is

much smaller than that introduced by other modeling aspects.

∆t (µs) CFL Pmax(MPa) Pmin(MPa) Rmax (mm) tc (µs)
.0125 0.056 27.25 -13.44 0.770 225.9
.0170 0.076 27.47 -13.59 0.769 226.2
.0210 0.094 27.20 -13.64 0.770 226.0
.0250 0.112 27.38 -13.58 0.771 226.6
.0300 0.135 27.31 -13.45 0.777 228.0
.0350 0.157 27.43 -13.66 0.777 228.4
.0400 0.180 27.38 -13.44 0.781 229.4
.0450 0.202 27.40 -13.33 0.789 231.3
.0500 0.225 27.41 -13.29 0.795 232.7

Table 2.2: Impact of time step on pressure and bubble results.
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Figure 2.14: Pressure along side the axis of symmetry for high and normal resolution simulations.
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Chapter 3

Results on shock wave focusing and
cloud cavitation on SWL

3.1 Shock wave focusing in lithotripters

In the past, various approaches have been used to analyze shock wave focusing in lithotripsy. Cates &

Sturtevant (1997) used shock propagation to compute the reflection of a planar shock wave from a parabolic

reflector. Results for the incident and reflected wave based on a linear acoustic approach were presented

in Hamilton (1993) and Averkiou & Cleveland (1999). In Averkiou & Cleveland (1999), the authors used

nonlinear geometrical acoustics to propagate the initial wave inside the reflector, and a nonlinear KZK model

(Zabolotskaya & Khokhlov 1969 and Kuznetsov 1970) for the wave propagation outside. This approach can

represent the diffraction of the wave at the edge of the reflector. However, it is limited to waves with

wavelength much smaller than the characteristic length of the domain. In the present work, we compare

several approaches including the nonlinear Euler equations, the second order wave equation, and a geometrical

acoustics approximation.

3.1.1 Closed ellipsoidal bowl

To demonstrate the differences between these approaches and their relevance to the modeling of lithotripsy,

we can look at the propagation of a spherically expanding wave from the focal point of a closed ellipsoidal

reflector (see Figure 3.1).

In addition, to ensure that grid resolution was not an issue in these tests, a long smooth initial pulse was

used. Figure 3.2 compares the initial pulse used for this test to a typical initial condition used for lithotripsy

simulation.
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Figure 3.1: Geometry of closed ellipsoidal reflector bowl.
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Figure 3.2: Comparison of smooth initial condition and the lithotripsy initial condition.

Figure 3.3 presents the results for the pressure along the axis of symmetry at different times. Geometrical

acoustics are compared to linear wave propagation, linearized Euler and nonlinear Euler equations. The point

F1 indicates the first focal point of the reflector and the location of the spherical expanding wave. The linear

wave propagation and linearized Euler curves are indistinguishable from each other in Figure 3.3. Since both

model are equivalent, the only difference between them is due to small numerical errors in their respective

implementation.
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Figure 3.3: Pressure along the axis of symmetry for closed bowl using: geometrical acoustics, linear wave

propagation, linear Euler equations and nonlinear Euler equations.

The results presented in Figure 3.3 illustrate several important features of a wave propagating inside an

ellipsoidal bowl. These features are detailed in Figure 3.4:
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Figure 3.4: Comparison between methods: highlights of important features.

A The incident wave is well represented in all methods. Because of the dependence of speed of sound on

pressure, the wave propagates slightly faster in the nonlinear Euler case.

B The amplitude of the reflected wave is too large in the geometrical acoustic approach. The amplitude

and position of the reflected wave in the nonlinear model are slightly larger and propagates faster than

linear cases, as expected (see A).

C An important feature not predicted by geometrical acoustics is the growth of a tensile region behind the

reflected wave. This region of negative pressure is an important factor in the modeling of lithotripsy.

As some of the numerical results will show, this zone can contribute to as much as half of the negative

pressure measured at the focus (the other half is generated by an edge wave produced by the truncated

reflector, as discussed in 1.1).

D Another important feature is the elevated pressure between the reflected wave and the bowl. The pressure

in this region decreases as the reflected wave travels towards the second focus. Once again, this flow feature

is not represented by the geometrical acoustics method. However, results from the linear wave propagation

and nonlinear Euler equations agree very well with each other.

Both C and D are caused by the finite thickness of the incident wave. If the thickness of the pulse is reduced

to a value much smaller than the length-scale associated with the reflector then the agreement with the

geometrical acoustic method would be better. However, given the thickness of the lithotripsy incident wave,

these effects cannot be neglected.
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3.1.2 Edge wave and diffraction effects

As previously described in Section 1.1, the edge wave is caused by the diffraction of the wave (both incident

and reflected) from the edge of the reflector bowl. In previous work such as Averkiou & Cleveland (1999),

special modeling was required to represent diffraction. Acoustic models such as the KZK equation (Zabolot-

skaya & Khokhlov 1969, Kuznetsov 1970) can account for diffraction in a limited way. Other approaches

such as Hamilton (1993) use Kirchhoff’s integral (Born & Wolf 1980) to solve for the reflected and edge

wave. In all previous works, special treatment was required to account for diffraction. Since Euler equations

account for all acoustical effects, no special treatment was required in this work to produce the edge wave.

3.1.3 Pressure field in a lithotripter

The pressure field calculated using the numerical model presented here can be compared to experimental

results and previously proposed theoretical models. In Figure 3.5, the maximum and minimum pressure

recorded at the reflector’s opening are compared to the pressure estimated using geometrical acoustics (see

Appendix D for details on geometrical acoustics). The results are similar to those presented in Section 3.1.1.

Since the initial pulse is now thinner, the agreement between the these results and the acoustical approach

is somewhat better. However, this comparison still highlights the limitation of the acoustical approach. Our

model predicts the development of a tensile region behind the reflected shock wave that cannot be represented

using the geometrical acoustic approach. Similarly, the finite thickness of the pulse can be observed as a two

and a half millimeter pressure rise region following the reflector.

Although the exact details of the edge wave are difficult to quantify, several observation can be made.

Although its initial intensity is very small (order of 0.1 MPa), the strength of the edge wave increases as it

propagates toward the axis of symmetry. Figure 3.6 shows a snap shot of the pressure field in the area of

the edge of the reflector a few microseconds after the passage of the reflected wave.

The propagation of the edge wave is more complex than the propagation of the reflected wave itself. The

reflected wave propagates in a relatively quiescent medium. Although the bubble field is perturbed by the

incident wave, the time delay between its passage and that of the reflected wave is sufficient for the bubble

activity to decay. However, bubbles in the wake of the reflected wave absorbed a considerable amount of

energy and are growing rapidly (see Figure 3.7). The propagating edge wave distorts and, depending on the

void fraction, develops a positive component (see Figure 3.8).

In the focal region, the reflected wave and edge wave are combined. In Figure 3.9, the pressure at

the focal point of lithotripter is compared to experimental measurements in the Caltech-EHL. Numerical
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Figure 3.5: Minimum and maximum pressure at the mouth of the reflector for the present model and
geometrical acoustics.

results compare well with the experimental observations in terms of the amplitude and duration of the

tensile component. As for the discrepancy in the pressure rise of the shock wave, the sharp pressure jump is

prevented by the dissipative properties of the WENO method used in the present numerical model. A grid

with significantly higher resolution (10–100 times) would reduce this damping and allow for a sharp pressure

rise at the shock wave. However this would increase the computing cost by a prohibitive factor (103–106

times).

The size of the focal region is often used as a means of comparing different lithotripter models. This area,

often defined by the 6dB drop from the peak pressure, can provide some insight into the spatial distribution

of the shock wave energy. The peak pressure amplitudes for a typical simulation case (Run000) is shown

in Figure 3.10.
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53



Time (µs)

Pr
es

su
re

 (M
Pa

)

180 182 184 186
-20

-10

0

10

20

30

40

50

60 Average + error measurement, Caltech-EHL (GALCIT)
   Cleveland et al. (2000)

Typical measurement, Caltech-EHL (APL)
   Data courtesy of M.R. Bailey,
   Center for Industrial and Medical Ultrasound,
   APL, University of Washington, Seattle

Numerical model, Ro = 20 mm, No =  0 bubbles/cm3
  

Figure 3.9: Pressure at the focal point of the lithotripter: comparison between experimental results and the
present model for pure liquid.

54



-60-40-200204060
0

20

40

x (mm)

r (
m

m
)

-60-40-200204060
0

20

40

x (mm)

r (
m

m
)

Peak Pressure
 (MPa)

30

0

15

Peak Pressure
 (MPa)

-15

0

-7.5

6 dB contour

Maximum compressive stress

Maximum tensile stress

F2

6 dB contour

Figure 3.10: Distribution of maximum and minimum pressure in the lithotripter field using the present
numerical model.

55



3.2 Bubble clouds in lithotripsy

3.2.1 Cloud cavitation in a free-field lithotripter

3.2.1.1 Exploration of the initial parameter space

In their work, Sokolov et al. (2001) reported that the bubble cloud in the focal area of a Caltech-EHL

lithotripter can be approximated by a 1.5 cm wide by 10 cm long cylinder. Using the present numerical

model, estimated size and shapes of bubble cloud were obtained and compared to the empirical observations.

Changes to the initial bubble number density and equilibrium bubble size in the simulation can lead to

visible difference in the shape and duration of the bubble cloud in the focal region. Figure 3.11 compares

four different simulations to high-speed pictures from a typical experimental run. This comparison clearly

shows that the duration of the bubble cloud (tc) is a function of both the equilibrium radius and the bubble

number density. As for the comparison with the experimental images, both similarities and discrepancies can

be noted. At first glance, it appears that the experimental bubble cloud (dark spots on the photographs) is

wider than its numerical counterpart. However, since void fraction contours are presented in the numerical

results (proportional to the cube of the bubble radius), the comparison with experiments should only be

made with the larger bubbles. Consequently, if we disregard the smaller bubble on the outer edge of the

cloud, the agreement between the two results is better. Furthermore, the numerical model represents an

ensemble average of possible bubble configuration and should therefore be compared to the average of many

experiments.

Another point of interest is the discrepancy in the location of the center of the bubble cloud between

the experiment and the numerical calculations. It is difficult to ascertain the cause of this discrepancy. As

seen in Figure 3.12, the experimental bubble cloud does not appear to be centered about the focus of the

lithotripter as expected. It should be noted that this pre-focal location of the bubble cloud appears to be

consistent with the results reported by Sokolov et al. (2002) that shows improved stone comminution for

stones placed two centimeters in front of the focal point.

The discrepancy between the observed and predicted location of the bubble cloud could be caused by an

error in the initial shape of shock wave. As shown in Staudenraus & Eisenmenger (1993), PVDF membrane

hydrophone can under-predict the duration of the negative (tensile) component of the pressure at the focal

point. Crum (2003) has suggested that the actual tensile component could be as much as twice the duration

of the measured one. Since the width of the initial spherical pulse used in this work was determined by

matching the duration and intensity of the focal pressure measured using PVDF hydrophone (see Figure
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Figure 3.11: Comparison of bubble cloud between numerical simulations with various parameters and experi-
ments. High-speed images are a courtesy of Dahlia L. Sokolov, Center for Industrial and Medical Ultrasound,
Applied Physics Lab, University of Washington, Seattle.

3.9), a wider initial pulse may be required. A wider initial pulse would increase the tensile component

generated behind the reflected wave due to the curvature mismatch between the wave and the reflector

(see Section 3.1.1). This would also result in increased bubble activity in the wake of the reflected wave.

Consequently, the edge wave generated as the reflected wave leaves the ellipsoidal bowl would travel slower

in the higher void fraction mixture. Therefore, the location of the maximum tensile stress would be located

before (prefocally) the current location and predict the center of the bubble cloud closer to the observed

value.
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Expected focal point

Figure 3.12: Expected position of the focal point for the experimental lithotripter. Courtesy of Dahlia L.
Sokolov, Center for Industrial and Medical Ultrasound, Applied Physics Lab, University of Washington,
Seattle.

3.2.1.2 Time to collapse

The measured time to collapse for the Caltech-EHL has been reported to be in the vicinity of 320 µs.1 This

value provided a guide for the calibration of some of the simulation parameters. As mentioned in Appendix

F, the equilibrium bubble radius is typically estimated in the literature using the measured value for the

time to collapse from PCD and a numerical model for the bubble dynamics. However, as seen in Figure 3.13,

the relationship between the equilibrium radius and the time to collapse is complicated by a dependency on

the bubble number density.

By conducting series of simulations with different initial bubble conditions, parameters which yielded the

appropriate time to collapse were identified. Cases Run105a (tc = 333 µs) and Run105d (tc = 315 µs)

compared well with experimental images not only in terms of the lifetime but also in terms of the dimensions

of the bubble cloud (see Figure 3.14).

3.2.1.3 Maximum bubble size

In their description of the bubble field, Sokolov et al. (2001) reported a peak bubble radius in the focal area to

be approximately 0.5 mm. It should be noted that the maximum bubble size does fluctuate from experiment

to experiment. For example, the maximum bubble radius in the high-speed picture used in Figures 3.11 and

3.14 is approximately 0.75 mm. The numerical model can predict a wide range of maximum bubble radius

(from 0.52 mm to 0.91 mm) depending on the initial simulation parameters. However, selecting appropriate

bubble equilibrium radii and number density to yield matching values of Rmax and tc for bubbles in the

1In the work of Sokolov et al. (2001), the authors reported a value of tc of 340 ± 31 µs using a passive cavitation detector
(PCD) and a value of 300± 20 µs based on high-speed photography.
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Figure 3.13: Time to collapse for the bubble cloud predicted by the present numerical model as a function
of the initial bubble radius. Data shown was taken from table A.3 in Appendix A.

focal region proved difficult. Figure 3.15 shows the maximum radius and time to collapse for a variety

of simulation parameters. The Rayleigh collapse relationship between Rmax and tc is shown by a straight

line while the grey rectangle represents the range of empirical observations. Using the present numerical

model, we were unable to exactly match values corresponding to what has been presented in the literature.

However, the first order coupling between the bubble field and pressure field used here is clearly present a

better approximation than any decoupled approach which, as mentioned previously in Section 1.3.2, would

fall very close to the Rayleigh collapse line.

3.2.1.4 Selection of appropriate simulation parameters and relevant results

Based on the comparisons made in the previous sections, a few combinations of simulation parameters

(density and size of bubble nuclei and intensity of initial spherical shock wave) provided results closest to

empirical observations. As seen in Table A.3 in Appendix A, simulations using a bubble number density in

the range of 10 to 20 bubbles/cm3 and an equilibrium bubble radius in the range of 3 to 35 µm provided

the closest match to empirical observations made in Sokolov et al. (2001). These values for the bubble
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Figure 3.14: Comparison of bubble cloud between experiments and numerical simulations with similar time
to collapse. High-speed images are a courtesy of Dahlia L. Sokolov, Center for Industrial and Medical
Ultrasound, Applied Physics Lab, University of Washington, Seattle.

density and initial radius are close to the previously reported estimates of approximately 3 to 30 µm and 70

bubbles/cm3 (Sokolov et al. 2001). A more detail discussion on estimated values can be found in Appendix

F. Results for a typical simulation with this range (Run000) are presented in Figures 3.16 to 3.18.

As discussed previously, the bubble cloud observed in the experimental Caltech-EHL is centered at some

distance before the focal point (from 1 to 2 cm). This is contrary to what is generally observed in the present

numerical results. As seen in Figure 3.16, the bubble cloud is approximately centered about the focus. With

regards to the size and shape of the bubble cloud, the numerical results compare well with the expected size

if we define the edge of the cloud by the 0.2% void fraction contour level (see Figure 3.16). Although this

value may seem rather small, it should be kept in mind that it represents bubbles of approximately 0.3 mm

which is 35% of the maximum bubble size for this simulation.

The pressure at the focus for Run000 is slightly different from the trace shown in Figure 3.9 for the pure

liquid case. As mentioned previously, the presence of the growing bubble field in the wake of the reflected

wave impacts the propagation of the edge wave (see Figure 3.8). As a result, a trailing positive pressure

peak can be seen at the focal point (see Figure 3.17).
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Figure 3.15: Relationship between Rmax and tc for various simulations compared to experimental observa-
tions. Data shown was taken from Table A.3 in Appendix A.
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Figure 3.16: Comparison of the bubble cloud for Run000 (at time 320 µs) and a typical size of bubble cloud
seen in experiments (dashed line).
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62



0
2
4
6
8

10

35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35
x (mm)

r (
m

m
) time = 220 µs

0.5%

1%

0
2
4
6
8

10

35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35
x (mm)

r (
m

m
) time = 270 µs

0.5%

1%

0
2
4
6
8

10

35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35
x (mm)

r (
m

m
) time = 320 µs

0.5%

1%

0
2
4
6
8

10

35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35
x (mm)

r (
m

m
) time = 370 µs

0.5%
1%

0
2
4
6
8

10

35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35
x (mm)

r (
m

m
) time = 420 µs

0.5%
1%

0
2
4
6
8

10

35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35
x (mm)

r (
m

m
) time = 470 µs

0.5%1%
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3.2.2 Pressure waves in collapsing cloud

As mentioned in Section 1.3.2, interactions within a cloud of bubbles can have a significant impact on the

response of individual bubbles. For cases with large bubble number densities, pressure waves are produced

during the collapse of the bubble cloud. Figure 3.19 shows a simplified illustration of the features of the

collapsing bubble cloud.

Bubble collapse
front

Void fraction

Pressure field

Higher pressure 
due to sudden drop

in void fraction

Pressure waves
emitted

Overall pressure increase
inside bubble cloud

Bubble cloud

Figure 3.19: Illustration of the pressure field during collapse of the bubble cloud.

Figure 3.20 presents the numerical results for the void fraction and pressure field for a collapsing bubble

cloud. Although some of the features are complex, the structures illustrated in Figure 3.19 can be identified.

This effect is not due to the pressure wave emitted by collapsing bubbles but rather by changes in the bulk

density of the mixture. As the bubble collapse front advances towards the center of the cloud, the liquid

must rush in to fill the volume which was originally occupied by the collapsed bubbles. As a consequence

of this flow field, the pressure increases in front of the receding edge of the bubble cloud. This effect is the

reverse of the interaction which allow bubbles at the core of the cloud to have a longer time to collapse (see

Section 1.3.2).
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Figure 3.20: Pressure field (color contours) and void fraction (black lines) in the focal region during collapse

of the bubble cloud. Data from Run000.

3.2.3 Energy focused by bubbles

The energy stored by a cavitating bubble as it initially interacts with the pressure field is ultimately released

during its violent collapse. Part of this energy will be released in the form of an expanding spherical pressure

wave (which can be measured by a passive cavitation detector (PCD)). In the case where the collapse is

asymmetric, part of the stored energy will be released in the form of a micro-jet which, if close to a solid
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object such as a kidney stone, can cause pitting of the surface. The details of the amount of energy release

in jetting versus pressure wave or heat generation are complex and have not yet been modeled in this work.

However, it is clear that the stone comminution capability of a cavitating bubble is a function of the work

done on it by the mean pressure field.

In post-processing the simulation data, the energy released by a bubble was computed using a slightly

different bubble model. We consider the Herring model (Herring 1941):

[
1− 2

Ṙ

c

]
RR̈ +

3
2

[
1− 4

3
Ṙ

c

]
Ṙ2 =

pB − p∞(t)
ρ

+
R

c

d

dt

(
pB − p∞(t)

ρ

)
, (3.1)

which is nearly identical to the Gilmore model discussed earlier and has the advantage that certain terms

can be integrated analytically. Rewriting the above equation:

1
R2

1
2

d

dR

(
R3Ṙ2

)
+

1
R2

3
2c

d

dR

(
R3Ṙ3

)
=

pB − p∞(t)
ρ

+
R

c

d

dt

(
pB − p∞(t)

ρ

)
. (3.2)

Integrating the equation once:

1
2

(
1 + 3

Ṙ

c

)
R3Ṙ2 =

∫
pB

ρ
R2dR +

∫
R3Ṙ

ρc

dpB

dR
dR− 1

ρ

∫ [
p∞ +

R

c

dp∞
dt

]
R2dR + constant. (3.3)

The Ṙ/c dependence on the left hand side of the above equation was found to be negligible in cases relevant

to this work. Similarly, the second term on the right hand side was also found to be negligible. The above

equation can therefore be simplified down to

1
2
R3Ṙ2 ≈

∫ R

Ro

pB

ρ
R2dR− 1

ρ

∫ R

Ro

[
p∞ +

R

c

dp∞
dt

]
R2dR, (3.4)

Kinetic energy:
1
2
ρR3Ṙ2,

Bubble potential energy:
[∫

pBR2dR

]
R

,

Initial bubble energy:
[∫

pBR2dR

]
Ro

,

Work done by liquid:
∫ R

Ro

[
p∞ +

R

c

dp∞
dt

]
R2dR.

To analyze the energy absorbed by a bubble during collapse in the context of lithotripsy, we compared
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a simulation with and without bubble cloud cavitation. The parameters for the two simulations were the

same except for the bubble number density. In the ‘no bubble cloud’ case, the bubble number density was

set to zero which decouples the pressure field from the bubble dynamics. The bubble number density for the

’bubble cloud’ simulation was set to 10 bubble/cm3. As a first comparison, Figure 3.21 shows the pressure

at the focus for both cases. It is interesting to note that apart from the pressure rise in the tail of the pulse,

the two waves are very similar.
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Figure 3.21: Impact of bubble cloud on pressure at focus. Data from Run000 and Run000v.

Given the similarity between the above pressure waves, it would be expected that the resulting bubble

dynamics should be also similar. However, the computer model predicts significantly different bubble be-

havior for these cases. Figure 3.22 compares the bubble history, small-scale pressure fluctuation and bubble

energy at the focal point for coupled and uncoupled cases. As seen in the upper part of Figure 3.22, the

bubble growth and collapse for the bubble cloud case is far from symmetric. Due to the presence of the

bubble cloud, the bubble does not absorb as much energy from the passage of the shock wave and exhibits

a slower growth rate than in the case without the bubble cloud because of the trailing positive peak in the

pressure (Figure 3.21). Furthermore, the expansion of the bubbles within the cloud displaces liquid outward

and decreases the mixture pressure inside. Consequently, bubbles can grow for a longer duration and the

maximum radius is achieved much later than in the noninteracting case. It is also important to note that

based on the history of the bubble radius, bubble collapse inside the cloud appears more violent.

From the bottom plot of Figure 3.22, it is interesting to note that the energy at the peak bubble radius

Rmax, is approximately the same, which leads to the conclusion that the exact details of the lithotripter
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waveform are not as important as the maximum bubble size. Without the pressure rise due to interactions

within the cloud, all waveforms producing similar peak bubble growth would be equivalent (assuming similar

size bubble cloud). A second, perhaps even more important conclusion from these results, is that the

collapsing bubble cloud provides nearly half the work done by the fluid on a bubble. This is particularly

surprising since the pressure amplitudes related to the cloud collapse are two orders of magnitude smaller

than that of the lithotripter shock wave. However, the work done (PdV work) by the fluid is very large

because the bubble radius changes several orders of magnitude. In addition, since cloud interactions are a

direct function of the void fraction, the energy released increases steadily with the maximum void fraction

(see Figure 3.23),

As seen in Figures 3.22 and 3.23, a bubble at the focal point can absorb and release up to 50 µJ.

Considering that a bubble cloud can contain up to several hundred large bubbles, the amount of energy

contained within the cloud can be estimated to be of the order of 1-10 mJ. This value appears relatively

small compared to the energy contained in the initial spherical pulse which is of the order of 100 mJ. However,

since the shock wave propagates relatively unhindered past the bubble cloud, only a small portion of the

wave energy is expected to be retained by the cloud.
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Figure 3.22: Impact of bubble cloud on bubble radius, small-scale pressure and bubble energy at focus. Data
from Run000 and Run000v.
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shown was taken from Table A.3 in Appendix A.
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3.3 Dual-pulse and partially obstructed lithotripter

3.3.1 Bubbles and pressure superposition in dual-pulse lithotripter

In the work of Sokolov et al. (2001), the pressure at the focus of a dual-pulse lithotripter was observed to be

approximately equal to twice that of a single-pulse lithotripter. Since pressure-related nonlinear effects are

small2, it would be expected that the pressure field of the dual-pulse lithotripter can be approximated by the

superposition of the pressure field from two single-pulse lithotripter. As expected, Figure 3.24 shows that

the pressure at the focal point for the dual-pulse lithotripter model is approximately twice that observed in

the conventional lithotripter for identical simulation parameter in the absence of bubbles.
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Figure 3.24: Comparison between pressure at focus for the dual-pulse and single-pulse lithotripter using the
present model with zero void fraction.

Using the pressure profiles presented in Figure 3.24, the following bubble response can be obtained (see

Figure 3.25). For the decoupled case (No = 0), the time to collapse for the dual-pulse is approximately 430

µs while it is 167 µs in the conventional lithotripter. This is an increase of over 2.5 times which is larger

than the 1.8 factor reported in Sokolov et al. (2001). An interesting effect seen in all dual-pulse simulation

is the impact of the refocused wave. The propagating waves originated from each lithotripter are eventually

2At the maximum pressure, the speed of sound in the liquid increases by less than 3%.
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refocused by the reflector of the opposing lithotripter and reach the F2 point at approximately 544 µs. The

impact of the refocused wave can be seen in Figure 3.25 where the pressure pulse created a small spike in

the bubble response.
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Figure 3.25: Comparison between bubble response at focus for the dual-pulse and single-pulse lithotripter
using the present model with zero void fraction.

3.3.2 Structure in the dual-pulse bubble cloud

If the zero void fraction assumption is relaxed, differences begin to appear in the shape of the bubble cloud

in the focal region of a dual-pulse lithotripter. Figure 3.26 presents a comparison between a decoupled sim-

ulation (rightmost column) where the void fraction is assumed to be negligible for the purpose of computing

the mixture pressure, a simulations with coupled interaction (third and fourth columns from the left) and

experimental results (first three columns from the left). It is interesting to note that the portion of the

bubble cloud along the axis of symmetry for the decoupled case is similar in size and shape to the ones

observed in the coupled simulations. However, the coupled approach is able to predict the observed growth

of bubbles in the prefocal region. The fundamental shape of the bubble cloud in the simulations has been

altered by the coupled effects between the pressure and bubble field.
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Figure 3.26: Comparison between experimental observation and numerical simulations of the bubble cloud

in the focal region of a dual-pulse lithotripter. Experimental results are a courtesy of Dahlia L. Sokolov,

Center for Industrial and Medical Ultrasound, Applied Physics Lab, University of Washington, Seattle.
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Although the dimensions of the modeled bubble cloud are not an exact match to the experimental pho-

tographs, the present coupled approach does provide a significant improvement over the previous decoupled

model, which is equivalent to the zero void fraction case. The numerical model predicts a smaller (3 cm wide

instead of the 4 cm reported in Sokolov et al. (2001)) and shorter (3 cm long instead of the 4 cm reported)

bubble cloud. However, the numerical model does predict the presence of a gap of lesser cavitation activity.

This band is found at the observed location but is smaller than the 2 mm gap reported Sokolov et al. (2001).

A clearer view of the gap in the cavitation cloud can be seen in Figure 3.27 where the bubble radius along the

axis of symmetry is plotted. Based on these results, it is clear that the presence of the observed gap in the

bubble cloud can be explained by the interaction of the bubble field and the propagation of the shock waves.

The discrepancies in the cloud dimensions can be explained by void fraction limitations in the numerical

model. The void fraction in the focal region of the dual-pulse lithotripter can rise up to the order of 15%

while the effectiveness of the numerical model decreases rapidly for void fraction larger than 1%.
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Figure 3.27: Bubble radius along the axis in the focal region of a dual pulse lithotripter (focus x = 0, t = 290
µs, Ro = 5 µm, No = 5 bubbles/cm3).

For typical dual-pulse lithotripter simulations with non-zero void fraction, the maximum bubble radius

was found to be approximately 1.9 mm, which is about a 2.3 times increase over the peak bubble radius
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in the single-pulse lithotripter model. This value is significantly larger than the 1.1 mm peak bubble size

reported in Sokolov et al. (2001).

3.3.3 Impact of an artificial stone in the lithotripter field

To facilitate laboratory experiments, many different materials have been used to make artificial stones.

Typically, these stones will be cylindrical in shape and of the order of a half a centimeter in diameter

and one centimeter in length. Although the present model is limited to the representation of perfectly

rigid objects, the numerical results can nonetheless present interesting results. Figure 3.28 present the void

fraction contour for a low void fraction simulation where a rigid cylindrical object has been placed at the

focal point.

From the numerical simulations, the time to collapse for the bubble cloud generated in front of the stone

can be found to be between 247 and 323 µs depending on the initial conditions (see table A.5). These

values are significantly smaller than collapse time observed in experiments (approximately 700 µs Bailey

et al. (2003)). In order to understand the cause of this discrepancy, two factors must first be considered.

First, the numerical results for cases without cloud cavitation yield a collapse time between 159 to 179 µs

(see table A.5). Therefore, the presence of cloud cavitation caused an increase of approximately 1.7 times in

the time to collapse which is similar to the increase seen in the dual-pulse lithotripter. A second observation

is the impact of the reflection due to the artificial stone. In the numerical simulations where the stone is

treated as a perfect reflector, the reflected wave significantly reduced bubble growth and lifetime. However,

the actual material behavior of an artificial stone, although much less compressible than the liquid, is far

from acting as a perfect reflector. The occasional spalling failure observed in experiments clearly indicate

that a non-negligible part of the incident shock wave is transmitted through the stone. At the present stage,

we believe that given a more realistic boundary condition for the numerical representation of the stone

(possibly including the effect of shear waves), the region in front of the stone would exhibit longer bubble

growth. Combined with the effects of cloud cavitation, we would expect a time to collapse much closer

to the experimental observations. This hypothesis can be verified in future work by the introduction of a

numerical model for the behavior of the stone and also by performing similar experiments with materials

with significantly different sound speeds3.

In their work, Sokolov et al. (2002) reported that prefocal positioning (of the order of 20 mm) of an

3For hardened steel or Pyrex glass, we would expect the reflection to be stronger and yield bubble cloud with shorter time
to collapse.
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Figure 3.28: Snapshot of void fraction contours for lithotripter with artificial stone at focus.

artificial stone resulted in faster comminution in in vitro experiments. Using the present model, various

simulations were conducted to investigate this empirical observation. As seen in Figure 3.29, the present

numerical model predicted similar shapes and sizes for the bubble cloud in front of the stone. Based on

these preliminary calculations, the differences in the intensity of the pressure field and minor fluctuation

in maximum void fraction would suggest that optimal stone comminution should occur anywhere between

the focal point and a few millimeter (less than 5 mm) behind it (post-focal). It is important to note that

as mentioned previously in discussing the comparison between the observed and predicted bubble clouds

in the free-field lithotripter, the high-speed photography shows that the bubble cloud is typically centered

approximately 10–20 mm before the focal point. Consequently, a more general conclusion is that stone

comminution should be the most effective at the center of the free-field bubble cloud. If correct, this

conclusion would be consistent with the numerical results shown in Figure 3.29.
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Figure 3.29: Snapshot of void fraction contours for different stone positions.

3.3.4 Impact of a large cylindrical reflector in the field of a lithotripter

In the work of Lokhandwalla (2001), a two-inch metal cylinder was introduced in the field of the Caltech-EHL.

For cases where the reflector was located 20 mm post-focus, the part of the bubble cloud in the neighborhood

of the focal point was observed to behave differently from the part located in front of the reflector. At the

focal point, cavitation detectors measured a time to collapse similar to the free-field case (tc ≈ 287± 19 µs).

This suggests that the reflector is sufficiently far away such as not to impact the bubble field at the focus.

Additionally, in the region in front of the reflector, the observed time to collapse was approximately doubled

(tc ≈ 452± 89 µs) which suggests that the reflector is sufficiently large to behave in a similar fashion as the

dual-pulse reflector. A similar behavior is predicted by the present model. Figure 3.30 presents a comparison

for the bubble cloud for two different set of input parameters (bubble nuclei size and density). Although the

value for the time to collapse for the different locations are smaller than the observed one, the ratio of the

tc at the base of the reflector and the focal point compares very well to the empirical observations (left case:

1.53; right case: 1.57; experiments: 1.58).

77



An important observation that can be made from Figure 3.30 is the presence of a gap in the bubble

field in front of the reflector. This is not surprising since this configuration is similar to the dual-pulse case.

However, an noteworthy difference is that in this case, the lithotripter wave has a much smaller amplitude

when it reaches the reflector ( 20MPa instead of 70MPa).Accordingly, the maximum void fraction reached is

significantly less than for dual-pulse cases ( 3% instead of 7-15%) and consequently, permits a more accurate

representation of the cavitating field by the numerical model.

It is interesting to note that similar pressure wave as observed in the collapse of a bubble cloud in a free-

field lithotripter can be observed during the collapse of the bubble cloud in front of the reflector. Although

the pressure waves in this case are not as clear, pressure increase due to the overall cloud collapse can be

seen in Figure 3.31.
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Figure 3.30: Comparison of predicted void fraction contours for flat reflector located 20 mm post-focal.
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Figure 3.31: Pressure field in the focal region during collapse of the bubble cloud in front of a flat reflector
located 20 mm post-focal.
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3.4 Pulse-repetition frequency

From in vitro experiments, it has been noted that the frequency of shock firing can have a measurable

impact on the amount of damage inflicted on the stone (Lifshitz et al. 2000, Weir et al. 2000 and Paterson

et al. 2002b). Typical pulse-repetition frequency for clinical treatment is of the order of 1 Hz. While many

clinicians tend to use frequencies up to 2 Hz in order to minimize the duration of treatment, empirical evidence

suggests that a frequency of 1/2 Hz is not only more effective at stone comminution but also minimizes tissue

damage (Paterson et al. 2002b). As previously mentioned in Section 1.4, one mechanism by which PRF

impacts the treatment performance is by altering the equilibrium size of bubbles in the mixture. Using the

model describe in Appendix G, we were able to compute the net amount of gas diffusing from the liquid into

a bubble subjected to a typical lithotripsy pulse and the resulting equilibrium bubble radius. For the results

presented here, the calculations were based on the assumption that the liquid was degassed to 100 Torr, or

13.2% of saturation concentration, a typical value used in experiments.

3.4.1 Single bubble analysis

Using the single bubble with gas diffusion model, we can obtain a first level analysis of the pulse-repetition

case. For a given time delay between pulses, the bubble model can be used to predict the accumulation of gas

inside the bubble after a series of identical pulses. Figure 3.32 shows the increase in noncondensible gas and

the bubble radius for four consecutive pulses half a second apart using the pressure waveform developed by

Church (1989). As mentioned in Section 1.2, this waveform has been used to fit experimental measurements

and has been used as a pressure pulse model for single bubble numerical simulation (Matula et al. 2002).

The pressure model and the parameter used here were taken from Matula et al. (2002) and are shown below

(see Figure 3.33):

P (t) = 2Pmaxe
−αt cos

(
ωt +

π

3

)
, (3.5)

Pmax = 35 MPa,

α = 35 MHz,

ω = 2π50 kHz.

After a sufficient number of pulses, the bubble reaches an equilibrium where the mass of gas acquired
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Figure 3.32: Equilibrium radius for single bubble stimulated by train of lithotripsy pulse at 1/2 Hz.

during growth is balanced by the gas lost during the interval between pulses. In Figure 3.34, the increase

in bubble radius between two pulses is plotted as a function of the initial bubble radius. The zero increase

crossover point thus determines the bubble radius for which a dynamic equilibrium is reached. From Figure

3.34, the bubble radius converges to 57 µm for a 0.5 Hz pulse frequency while the bubble radius converged

to 84 µm for the 2 Hz pulse frequency (for the Church waveform).

3.4.2 PRF in free-field lithotripter

The impact of the pulse rate frequency on the effectiveness of the lithotripter is far ranging. As seen in

Table A.3, the results are strongly dependent on the equilibrium bubble radius Ro which, as discussed in

the previous section, is determined by the PRF.

Based on the theory covered in the previous section and the results in Table A.3, several observations

can be made regarding the energy released by a collapsing bubble:

• in absence of cloud interactions (low void fraction), energy increases with equilibrium radius Ro,

• the energy released can be substantially increased due to cloud interactions,
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Figure 3.33: Church-based pressure pulse used for single bubble PRF analysis.

• shock wave focusing is hindered (lower peak pressure) by high void fraction mixture,

• lower peak shock wave pressure results in lower maximum bubble radius Rmax.

From these observations, initial conditions promoting energetic bubble collapse should include high bubble

number density and an intermediate bubble equilibrium size. Consequently, given a particular value of the

bubble number density there should be an optimal value of equilibrium radius for which a bubble delivers a

maximum of energy during its collapse.

The bubble energy for different equilibrium radius and number density is presented in Figure 3.35. The

optimal equilibrium radius for a maximal energy release can be clearly identified from these results. For a

number density of No = 20 bubbles/cm3, the optimal bubble nuclei is approximately Ro = 20 µm while for

a number density of No = 10 bubbles/cm3, the optimal nuclei size is in the range of 20−−35 µm. In order

to provide a more insightful comparison, the energy released was renormalized with respect to the limiting

case of null number density and very small bubble nuclei (see Figure 3.35).

By calculating the amount of noncondensible gas diffusing into the bubble during its growth and the

subsequent degassing, the pulse rate frequency corresponding to a particular case was determined. The

computation is similar to that described in Section 3.4.1, but the actual pressure history from simulation is
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Figure 3.34: Bubble radius increase after one pulse.

used instead. Figure 3.36 presents the normalized energy as a function of the PRF. From this figure, the

optimal frequency for No = 20 bubbles/cm3 is approximately 1 Hz while the case No = 10 bubbles/cm3 has

an optimal frequency of approximately 2 to 5 Hz.

After a closer examination of Figure 3.36, several important observations can be made. As discussed

in Section 3.2.3, the energy released by the bubble collapse at the center of a cloud can be from 2 to 3.5

times that of a single bubble collapse (No = 0 bubbles/cm3) case) depending on the bubble number density.

However, as shown in Figure 3.37, an increase in the initial void fraction also results in reduced shock wave

intensity at the focal point (shielding). From Figure 3.36, the cross-over point where cloud shielding overtake

and beneficial effect of cloud collapse occurs at a PRF of approximately 30 Hz. We note that in Figures 3.35

and 3.36, a measure of the uncertainty of the results is shown in order to indicate that trends in the plots

are significant. The error bars are based on an analysis presented in Appendix B.

3.4.3 Impact of lithotripter intensity

To further understand the impact of treatment parameters on the effectiveness of lithotripsy, the amplitude

of the initial spherical pulse was varied. The exact impact of changing the intensity level (voltage) of a

lithotripter is difficult to ascertain. Figure 3.38 presents the data collected for the peak pressure at the
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Figure 3.35: Normalized energy released at bubble collapse as a function of equilibrium radius Ro.

focal point from three different Caltech-EHL for their various voltage settings (Cleveland et al. 2000). As a

comparison, Figure 3.39 presents the values of peak pressure at the same location using our numerical model

as a function of the energy of the spherical shock wave in the initial conditions. Because of limitations in the

numerical model, the range of input energy that can be accurately computed is limited. Although a precise

one-to-one correspondence between the input energy and voltage setting is impossible to establish, one is

clearly related to the other.

The selection of the amplitude setting has a clear impact on the conditions at the focal point. As seen

in Figure 3.40, the increased amplitude of the shock wave translates into an increase in the collapse energy

of a bubble at that location. Based on this result, it would appear that the most efficient lithotripter should

be the most powerful one. However, increasing the shock wave amplitude also increases the maximum size

and duration of bubbles within the cloud. Consequently, the bubble nuclei in the focal region will increase

in size due to the added mass transfer, unless the PRF setting is appropriately reduced.

For the runs shown in Figures 3.39 and 3.40, the PRF value for which the nuclei size is preserved, can

be calculated using our post-processing model. As seen in the data labels in Figure 3.40, an increase of 50%
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in the initial pulse energy requires a decrease of over 200% in the pulse rate frequency. Otherwise bubble

nuclei will grow and result in increased bubble cloud shielding. The rapid decrease in PRF associated with

higher amplitude suggests significantly longer treatment. However, if we assume that the energy released

in the bubble collapse is a valid surrogate for the damage inflicted on the stone, then a measure of damage

per treatment duration can be obtained by multiplying it by the PRF. Figure 3.41 presents this damage

rate as a function of the initial pulse energy. It is interesting to note that for given conditions of the bubble

field, the damage rate is rather insensitive to the pulse strength. Based on the error bars, we can conclude

that within the uncertainty of the model, no significant trend can be established and that given a desired

bubble nuclei size and number density (optimal or otherwise), the rate of stone comminution is not likely

to improve with increasing lithotripter intensity level. This observation is especially interesting in that it

provides for an additional degree of freedom in the selection of treatment parameters. Within this range of

pulse intensity and corresponding repetition frequency, an appropriate combination can be selected such as

to minimize tissue damage while still preserving an optimal rate of stone comminution.
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Figure 3.37: Impact of bubble cloud shielding on the peak pressure at the focal point.

3.4.4 PRF and artificial stone in lithotripter field

Because the simulation data was easier to interpret, the analysis in the previous section focused on cases

without a stone present in the field. The added reflections due to an artificial stone complicated the analysis

of the flow in the focal region. However, we believe that effects such as bubble cloud shielding and cloud

interactions during collapse are still present in cases with stone. Even though pressure waves associated with

the collapse of the bubble cloud cannot be as readily identified in the results, bubble cloud interactions can

increase energy released by a collapsing bubble locate in front of the stone by a factor of up to 5 to 6 times.

Figure 3.42 presents the normalized 4 energy release in front of the stone as a function of the PRF. Note that

the corresponding PRF for each simulation was calculated following the same post-processing procedure as

in the free-field case.

During the collapse of the cloud, bubbles may fission into smaller nuclei, which would increase the bubble

number density and nuclei size present for the following shock wave. In addition, bubbles can dissolve into

the liquid while new bubbles can be nucleated by the passage of the next shock wave. These effects are partly

4As in the free-field case, the energy was normalized by the energy released by a small bubble in the absence of cloud
interaction (decoupled case).
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Figure 3.38: Experimental measurements of peak pressure at focus as function of lithotripter voltage for
Dornier’s HM-3 (two machine: HM3-A and HM3-B) and Caltech-EHL (three machine: APL-UW, Anat-IU
and GALCIT). Data from (Cleveland et al. 2000).

function of the PRF and can significantly alter the number density in the focal region. Since they occur

in the aftermath of the shock wave while bubbles are too small to be observed, these phenomenon cannot

be quantified directly but are observed indirectly via the relationship between bubble number density and

PRF (Sapozhnikov et al. 2002). Currently, there are no numerical models able to predict accurately these

processes. Consequently, the relationships between PRF and the bubble size nuclei presented in this work

do not reflect the impact of any of these bubble generation/destruction mechanisms.

3.4.5 Concentration of gas in solution

As mentioned in the beginning of this section, the PRF calculations presented above were based on the

assumption that the liquid was degassed to 100 Torr which corresponds to a concentration 13.2% of the

saturation concentration. Although the concentration of non-condensible gas can be monitored and controlled

for in vitro experiments, the concentration for in vivo applications can vary greatly (for example, the normal

partial pressure of arterial blood gases can range from 100 to 150 Torr). Using the numerical results from

a typical free-field case, the corresponding equilibrium bubble radius was computed for a range of gas

concentration and PRF (see Figure 3.43). Selecting a cross section of this plot corresponding to a PRF of 1

Hz, the bubble equilibrium size can change significantly depending on the partial pressure of non-condensible

gas. Following these observations, the in vitro testing of the present numerical predictions regarding PRF
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Figure 3.39: Peak pressure at focus as function of initial shock wave energy for the present numerical model
for the case No = 20 bubbles/cm3, Ro = 20µm.

should be conducted in a carefully monitored liquid.
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Chapter 4

Summary

4.1 Final conclusions

In this study, a numerical model of the cavitating flow in an electrohydraulic lithotripter was implemented,

tested and used to provide new details on the mechanism of stone comminution. This numerical model is

based on an ensemble averaged two-phase flow model, first proposed by Zhang & Prosperetti (1994), modified

for a compressible liquid. The differential equations were discretized following the WENO shock capturing

scheme in a prolate spheroidal and cylindrical coordinate systems. Details were also presented regarding the

derivation and implementation of the non-reflective, reflective and symmetry boundary conditions.

Numerical simulations with a value of the order of 20 bubbles/cm3 for the bubble number density and

bubble nuclei size of approximately 20 µm presented the closest match with empirical observations in terms

of the growth, dimensions and lifetime of the bubble cloud in the focal region of a free-field Caltech-EHL.

This value of nuclei density is less than values estimated from high-speed pictures (anywhere between 30

and 70 bubbles/cm3). However, the bubble counting procedure is highly subjective and may account for the

discrepancy with the numerical predictions.

The pressure history predicted by the numerical model at the focal point of the lithotripter fell within the

range of expected experimental measurements at the same location. However, due to expected limitations in

the WENO shock capturing scheme, the numerical representation of the shock front is smeared over several

grid points unlike the sharp pressure rise seen from measurements. Moreover, cases with low bubble number

density were found to be in a closer agreement with observations than cases with higher void fraction. This

conclusion was not surprising since it was noted that such measurements are typically obtained with clean

degassed water with a minimal number of shock waves.

Using the present numerical model, we were able to discern a new mechanism for the generation of
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tensile stress behind the reflected shock wave. The numerical results showed the growth of a region of

negative pressure behind the reflected wave which is attributed to the finite thickness of the wave and

the curvature mismatch between the initial spherical wave and the ellipsoidal reflector. To our knowledge,

previous analyses were based on acoustic approach (high frequency limit or infinitely thin wave) and thus

have not reported this mechanism.

For the purpose of calibration and validation of the simulation parameters, the size, shape and duration

of predicted bubble clouds were compared to high-speed images of a free-field lithotripter. The closest

comparisons were obtained with the initial bubble field set to 20 bubbles/cm3 and bubble nuclei radius

within the range of 10 to 30 µm. Further validation of the model was obtained by comparing numerical

and experimental results for the dual-pulse lithotripter configuration. The banded structure of the bubble

cloud initially observed in experiments was evident in the simulations conducted using the present model.

Since theoretical and numerical analyses based on a decoupled approach were unable to predict this banded

structure, we can infer that the growth of bubbles in the prefocal region is due to the coupling interaction

between the bubble and liquid phase. Some discrepancies in the width of the band of reduced cavitation

activity were observed and attributed to the limited capability of the numerical model to represent bubble

cloud interactions for void fractions as high as those observed in the focal region.

Using the energy balance derived from the Herring bubble model, the energy stored and released by a

bubble was computed for the bubble cloud simulations presented in this study. The energy lost by a bubble

during its violent collapse was then used as a surrogate for the its potential to inflict damage.

In an additional post-processing step, the amount of non-condensible gas transfer in and out of the bubble

was estimated using a one-dimensional model for the gas diffusion in the liquid and an approximate model

for the behavior of the gas mixture inside the bubble. From these results, we were able to estimate the

growth of a bubble nuclei due to gas trapping as well as the amount of time needed for the nuclei to dissolve

back to its initial size. Given this period, the simulation parameter established a priori can be related to a

value of the pulse rate frequency.

Using the coupled two-phase flow model, interactions within the bubble cloud were studied. During the

bubble growth phase, the pressure at the center of the bubble cloud decreased slightly below the ambient

pressure for cases with non-zero void fraction. This effect is a result of the flow field generated by the

expanding bubbles within the cloud. Because of this interaction between the bubble cloud and the pressure

field, bubbles in the center of the cloud can exhibit a much longer time to collapse than predicted given their

maximum size and is observed in experiments.
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During the collapse of the bubble cloud, the numerical model predicts an reverse interaction where the

rapid decrease of void fraction causes fluid to rush towards the center of the bubble cloud and results in

a rise in pressure. This increase in pressure, although smaller by two orders of magnitude than the initial

shock wave, can results in up to a six fold increase in the bubble collapse energy release over cases where

little or no cloud interactions are present.

Based on the values obtained for the energy released by a bubble collapse for cases covering a range of

simulation parameters, conditions for optimal damage were identified. The damage potential was found to

increase with the maximum void fraction. Although the maximum bubble size tends to grow with nuclei

size, a high value of the initial void fraction results in shielding and smaller peak radius.

Using the present numerical model, optimal conditions for the bubble field were identified. As a first step

in this process, the optimal initial bubble size given all other parameters fixed (bubble number density and

initial shock wave parameters) was found. The same procedure was then carried out for different values of

bubble number density. As expected, the optimum nuclei size decreases with increasing number density in

order to avoid shielding. Additionally, the energy released by bubbles for the optimal case increased with

the number density due to the increase in the interaction within the bubble cloud. When the optimal values

of bubble nuclei were translated into equivalent pulse rate frequencies, the range of 1-1.2 Hz was found to

be optimal for bubble number densities of 10 and 20 bubbles/cm3. The values for the PRF were computed

using a concentration of non-condensible gas equivalent to that obtained after degassing the liquid to 100

Torr.

4.2 Practical implications for lithotripsy

Based on the conclusions presented above, suggestions for practical improvements of lithotripsy can be stated.

Past experimental work had anticipated the importance of the role of cloud cavitation in stone comminution.

The present model emphasized this conjecture and suggests that collective interactions are driving force in

stone comminution.

We have shown that a larger number of smaller bubbles produce a increase in the energy released during

the bubble cloud collapse. This increased is counterbalanced by the shielding effect of higher void fraction

mixture. Several practical suggestions to improve the amount of energy delivered by the bubble cloud can

be derived from the above conclusions:

• low PRF should be maintained during the bulk of the treatment in order to maintain small bubble
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nuclei,

• since for a fixed bubble nuclei there are no real benefits to increased shock level, the lithotripter should

be operated at a lower intensity and slightly increased frequency,

• increasing the number of bubble nuclei present in the vicinity of the stone is crucial; this can be achieved

by a high initial PRF and/or high intensity in order to promote large bubbles which can then split

into a large number of smaller bubbles.

The actual conditions inside a patient undergoing a lithotripsy treatment are far from the simplified

model presented in this work. However, the trends captured by our model are of practical importance and

appeal for experimental verification.

4.3 Current limitations and future work

The present work opens a new avenue in the analysis of lithotripsy. The coupling between the two phases

enabled the understanding of the inner workings of the bubble cloud in the focal region of a lithotripter.

However, because of low order expansions in the derivation of the relevant equations, the accuracy of the

present model decreases for void fractions greater than 5-10%. The inclusion of higher-order corrections in

the averaged equations will improve the accuracy of the model for higher void fraction, but it should be noted

that for the derivation shown in this work, a more limiting constraint is the lack of direct bubble–bubble

interactions. Additionally, the differential equation representing the evolution of the bubble field assumed

an uniform flow field in the neighborhood of the bubble which prohibits any shock wave–bubble interactions.

Although appropriate corrections for these interactions have not been implemented in this work, we suspect

that the introduction of direct bubble–bubble interactions would provide a greater improvement to the

numerical model and should bring the numerical results for stone and dual-pulse cases in closer agreement

with experimental observations.

The ability of the present work to provide a practical insight into the optimization of a lithotripsy

treatment is limited on two fronts. First, empirical evidence suggests that under otherwise similar conditions,

different treatment PRF can result in mark differences in the density of bubble nuclei in the focal region.

This is most likely caused by bubbles fissioning during collapse. Since our present results show a strong

dependence of the comminution potential to the bubble number density, bubble fission modeling will be

needed before final conclusions regarding optimal treatment PRF can be made. A second limitation to the

direct application of this work is the absence of an estimate for tissue damage. The introduction of a model
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for kidney damage would allow to use of this numerical model to propose treatment parameters with minimal

side effects to the patient.

Finally, since the results presented in this work have shown that the very modest pressure increase within

the collapsing bubble cloud can significantly increase the damage potential of bubbles, it might be possible

to increase it further by the use of an externally generated pressure wave. Although, this approach has

been attempted experimentally by firing a second shock waves at the target with limited success, the use

of the present model can be used to optimize the parameters of this secondary wave such as the time delay

and intensity. Alternatively, the introduction of another wave source such as a piezoelectric device can be

modeled using the approach presented in this work.
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Appendix A

Compilation of simulation results

In Table A.3, all relevant data for the simulation of the free-field lithotripter based on the Caltech-EHL has

been compiled. The following is an itemized descriptions of the type of entries:

Name: name of simulation trial1

Ro: equilibrium bubble radius

N: initial bubble number density in bubbles per cm3

Pmax: maximum pressure at focus

Pmin: minimum pressure at focus

Max void: maximum void fraction at focus

Rmax: maximum bubble radius at focus2

Efinal: Energy in the bubble at its collapse (at focus) in µJ

tc: time to collapse for bubble at focus

PRF: frequency in Hz of shock wave delivery such that the bubble nuclei size at the focal point returns

has time to return to its original size between pulses

Energy: energy contained in the initial spherical shock wave in mJ.

1The entries which match the closest the experimental evidence have been coded in yellow.
2Entries coded in green are within the range of empirical observations
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Run110a 5 0 27.44 -14.00 0.00 0.77 12.3 144 0.61 145
Run102g 15 0 27.44 -14.00 0.00 0.80 13.0 157 1.25 145
Run000v 20 0 27.44 -14.00 0.00 0.79 13.7 149 2.03 145
Run104a 50 0 27.44 -14.00 0.00 0.86 17.2 170 12.84 145
Run106a 80 0 27.44 -14.00 0.00 0.90 19.7 171 69.24 145

Run36a 10 5 27.30 -13.70 1.13 0.81 23.9 246 0.64 148
Run102e 15 5 27.21 -13.20 1.04 0.79 16.3 237 1.05 145
Run104b 50 5 25.74 -12.37 0.96 0.77 17.2 229 14.83 145

Run112a 1 10 27.30 -12.91 1.81 0.76 19.9 249 0.42 145
Run112b 3 10 27.39 -13.34 1.83 0.76 20.0 251 0.45 145
Run110b 5 10 27.27 -13.00 1.89 0.77 21.1 254 0.49 145
Run112c 7 10 27.26 -13.31 1.88 0.77 20.7 256 0.57 145
Run112d 10 10 27.19 -12.98 1.97 0.78 22.1 260 0.70 145
Run112e 15 10 27.16 -13.02 2.03 0.79 23.1 264 1.02 145
Run112f 20 10 27.10 -12.86 2.11 0.80 24.5 267 1.46 145
Run112g 25 10 26.84 -12.86 2.13 0.80 25.0 268 2.07 145
Run112h 30 10 26.48 -12.83 2.05 0.79 24.8 266 3.06 145
Run112i 35 10 26.14 -12.39 1.99 0.78 24.9 261 4.63 145
Run112j 40 10 25.64 -11.82 1.77 0.75 22.7 249 7.42 145
Run112k 45 10 24.96 -11.82 1.66 0.74 21.6 236 11.81 145
Run104c-ext 50 10 24.71 -11.76 1.40 0.69 18.4 220 22.87 146
Run106b 80 10 23.45 -9.04 0.75 0.56 17.9 138 373.28 149

Run102f 15 15 27.10 -12.80 3.46 0.82 29.0 308 0.88 145
Run104d-ext 50 15 23.76 -10.67 1.68 0.64 19.2 213 31.04 146

Run113a 1 20 27.23 -12.66 4.42 0.81 31.3 301 0.37 145
Run113b 3 20 27.31 -12.57 4.61 0.82 33.6 306 0.39 145
Run113c 5 20 27.29 -12.67 4.54 0.82 32.2 307 0.43 145
Run113d 7 20 27.26 -12.43 4.85 0.83 35.2 312 0.47 145
Run113e 9 20 27.28 -12.46 4.83 0.83 35.1 314 0.55 145
Run113f 11 20 27.09 -12.63 4.55 0.82 30.5 313 0.67 145
Run113g 14 20 27.10 -12.29 4.97 0.84 36.2 318 0.78 145
Run113h 17 20 26.99 -12.26 4.99 0.84 36.9 318 0.98 145
Run000a 20 20 26.96 -12.41 5.37 0.86 40.8 321 1.15 145
Run105c 25 20 26.47 -12.39 5.12 0.85 37.3 331 1.62 145
Run105d 30 20 25.84 -12.17 4.34 0.80 32.6 315 2.73 145
Run105e 35 20 25.44 -11.49 3.73 0.76 30.1 294 4.66 146
Run105f 40 20 24.29 -11.07 2.81 0.70 23.5 263 9.46 146
Run105g 45 20 23.24 -10.25 2.37 0.66 19.4 232 16.78 146
Run104e-ext 50 20 22.52 -9.17 1.82 0.60 18.5 200 47.66 147
Run106c 80 20 17.30 -8.45 0.34 0.34 4.6 125 500.85 153

Run102h 15 25 26.93 -12.38 7.65 0.90 44.1 367 0.70 145
Run104f-ext 50 25 21.11 -7.59 2.13 0.59 19.9 190 50.85 147

Run110d 5 30 27.37 -12.21 9.79 0.92 52.7 370 0.34 145
Run106d 80 30 18.63 -8.53 0.28 0.28 3.6 125 494.62 158

Run106e 80 40 17.69 -8.69 0.22 0.24 2.5 125 491.49 162

Table A.3: Compilation of simulation result for free-field lithotripter based on the Caltech-EHL.
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Run100a 5 20 23.81 -18.20 7.89 0.98 41.9 297 0.35 131
Run100b 10 20 23.87 -18.98 8.66 1.01 47.3 306 0.45 131
Run100c 15 20 24.34 -18.14 9.12 1.03 50.4 312 0.60 131
Run100e 25 20 25.33 -17.76 9.74 1.05 54.3 315 1.08 131
Run100f 30 20 25.85 -17.14 11.61 1.12 65.8 323 1.23 131
Run100g 35 20 25.21 -19.42 10.44 1.08 62.7 305 1.89 131
Run100h 40 20 22.67 -19.50 7.39 0.96 39.7 268 4.13 131
Run100i 45 20 19.11 -18.83 6.82 0.93 37.5 247 6.37 131
Run100j 50 20 17.70 -18.08 8.01 0.99 44.8 251 7.49 131
Run110b 10 0 23.77 -19.23 0 0.76 11.3 159 0.98 131
Run110d 20 0 23.77 -19.23 0 0.78 11.7 163 2.25 131
Run110f 30 0 23.77 -19.23 0 0.80 12.2 168 4.54 131
Run110h 40 0 23.77 -19.23 0 0.82 16.6 172 8.26 131
Run110j 50 0 23.77 -19.23 0 0.86 17.6 179 14.86 131

Table A.5: Compilation of simulation result for lithotripter with stone at focus.
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Appendix B

Error estimation and model
uncertainty

In addition to input parameters for the initial conditions, the implementation of the numerical model requires

several parameters which are not based on physical properties. The following list presents some of the most

relevant parameters related to the numerical implementation:

• spatial grid resolution,

• overall domain size,

• size of step in time integration,

• order of approximation in model for the ensemble averaged two-phase mixture,

• compressibility in shock capturing scheme.

In order to quantify the relative importance of these parameters, were each varied individually. Tables

B.1, B.2 and B.3 present an impact assessment for the WENO compressibility, domain size and modeling

accuracy.

As mentioned in Section 2.5, the artificial compression method (ACM) used to compensate for the

excessive WENO dissipation requires an arbitrary model parameter. Table B.1 shows the impact of increasing

the value of this parameter by a multiplicative factor. Results appeared somewhat better for the nominal

value of compression however, increasing it by a factor of up to 2.5 times still generated acceptable results.

It should be noted that increasing the value of the nominal compression by 3 times produced substantial

spurious oscillations. Since the value of artificial compression is an arbitrary parameter, fluctuations caused

by changes in its value thus provide a measure of error/uncertainty in the numerical implementation.
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Result R
un

00
0a

R
un

11
1a

R
un

11
1b

R
un

11
1c

R
un

11
1d

Average Std. Dev. (%)
Compression x1.0 x2.0 x1.5 x2.5 x3.0
Pmax(MPa) 26.96 26.85 27.03 26.89 27.05 26.96 0.29
Pmin(MPa) -12.41 -12.49 -12.33 -12.89 -13.19 -12.62 2.72
Max void (%) 5.37 5.16 5.07 5.14 4.99 5.27 6.06
Rmax(mm) 0.86 0.85 0.85 0.85 0.84 0.86 1.99
Ecollapse(µJ) 40.8 38.8 38.2 39.3 38.2 39.8 5.07
tc(µs) 321 320 319 320 319 323 2.68
PRF (Hz) 1.15 1.19 1.21 1.20 1.23 1.17 6.23

Table B.1: Impact of artificial compression parameter in WENO on selected numerical results.

The presence of non-reflective boundary condition can become a source of error because of approximations

in its numerical implementation but also if it truncates important features within the domain of interest.

During the course of this work, several preliminary cases involved shorter domain to facilitate computation.

It was later found that the domain boundary truncated the bubble cloud and impacted the results. Table B.2

provides a summary of comparison between the long and short domain versions of selected cases. Although

the final results presented here were computed strictly with the longer domain, this analysis provides a

measure of the potential impact of placement and implementation of the non-reflective boundary.
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Run000 long 26.96 -12.41 5.37 0.86 40.8 321 1.15
Run105b short 26.96 -12.41 5.86 0.89 43.4 341 1.03
Std. Dev.(%) 0.00 0.00 9.12 3.49 6.37 6.23 10.40
Run104c-ext long 24.71 -11.76 1.40 0.69 18.4 220 22.87
Run104c short 24.71 -11.77 1.46 0.70 16.8 230 20.97
Std. Dev.(%) 0.00 0.09 2.86 1.45 8.70 4.55 8.31
Run104d-ext long 23.76 -10.67 1.68 0.64 19.2 213 31.04
Run104d short 23.76 -10.67 1.76 0.65 17.5 222 29.23
Std. Dev.(%) 0.00 0.00 4.76 1.56 8.85 4.23 5.83
Run104e-ext long 22.52 -9.17 1.82 0.60 18.5 200 47.66
Run104e short 22.52 -9.17 1.89 0.61 17.8 208 43.48
Std. Dev.(%) 0.00 0.00 3.85 1.67 3.78 4.00 8.77
Run104f-ext long 22.11 -7.59 2.13 0.59 19.9 190 50.85
Run104f short 22.11 -7.60 2.20 0.60 18.7 196 46.65
Std. Dev.(%) 0.00 0.13 3.29 1.69 6.03 3.16 8.26
Average (%) 0.00 0.04 4.74 1.97 6.75 4.43 8.31

Table B.2: Impact of size of domain on selected numerical results.
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As presented in Section 2.2, the mixture momentum equation 2.28 has a contribution of order βD. To

assess the impact of the various contributions to this correction, the following simulations were conducted

with their respective correction:

Run100: ∇ [βDpC ] ,

Run100b: ∇
[
βD(pC − ˙̄R2)

]
,

Run100c: ∇
[
βD(pC − pB(R̄)− ˙̄R2)

]
.

A comparison of the results is presented in Table B.3. It should be noted that the impact of the correction

term is significantly less than the error introduced by the WENO compression or the truncation of the

domain.
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Run100 27.28 -12.55 3.31 0.93 49.9 335 0.63
Run100b 27.28 -12.56 3.28 0.92 50.0 335 0.64
Run100c 27.25 -12.65 3.25 0.92 48.4 335 0.64
Std. Dev.(%) 0.06 0.44 0.96 0.33 1.81 0.00 0.91

Table B.3: Impact of βD modeling correction on selected numerical results.

Since an appropriate domain size and modeling corrections were used in the cases presented here, the

errors presented in Table B.2 and B.3 represent measures of sensitivity of the results to a potentially poor

numerical implementation and should not be considered as error estimates.

For the present work, the choice of the compression parameter is arbitrary, hence the data shown in

Table B.1 provide a measure of the range of a priori equally valid results. Since the appropriate value for

this parameter cannot be determined from first principle, the simulation results are obtained with a measure

of uncertainty.
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Appendix C

Derivation of the ensemble averaged
equations

C.1 Ensemble phase averaging

In this work the liquid phase is assumed to be inviscid and compressible and its behavior can be described

by the compressible Euler equations:

∂ρ

∂t
+∇ · (ρu) = 0, (C.1)

∂ρu
∂t

+∇ · (ρuu) +∇p = 0, (C.2)

where
ρ is the liquid density

u is the liquid velocity

p is the liquid pressure
The Tait equation of state for water is used to close the above set of equations:

p + B

po + B
=
(

ρ

ρo

)α

, (C.3)

where

α = 7.15,

B = po +
ρoC

2

α
,
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and C is the speed of sound in pure liquid and is taken to be 1500 m/s.

The procedure for deriving the relevant dynamical equations is identical to the one presented in the work

of Zhang & Prosperetti (1994). In this case however, the liquid phase is taken to be compressible. The final

equations therefore differ slightly from the ones found in Zhang & Prosperetti (1994).

C.1.1 Preliminaries

In what follows the subscript C stands for the continuum phase. The ensemble average of an arbitrary

quantity f is defined in the continuous phase by

〈fC〉 (x) =
1

βCN !

∫
dCNP(N, t)χC(x;N)f(x, t|N), (C.4)

where∫
dCN ≡

∫
dyNdRNdRN

o dwNdṘN

≡
∫

dy1dR1dRo1dw1dṘ1

∫
dy2dR2dRo2dw2dṘ2

. . .

∫
dyNdRNdRoNdwNdṘN ,

fC(x, t|N) is the value of function fC at location x and time t given

the configuration of N bubbles

fC(x, t|y, R, Ro,w, Ṙ) is the value of function fC at location x and time t given

the presence of a bubble of state (R,Ro,w, Ṙ) located at y

yi is the location of the ith bubble

Ri is the radius of the ith bubble

Roi is the equilibrium radius of the ith bubble

wi is the translational velocity of the ith bubble

Ṙi is the radial velocity of the ith bubble
Additionally, we define an indicator function:

χC(x;N) =


1 if |x− y| > Ri for all i,

0 otherwise,
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such that the following

βC =
1

N !

∫
dCNP(N, t)χC(x;N).

is the fraction of volume occupied by liquid in the continuum phase.

The function P(N, t) is the probability of finding N bubbles in a given state. The number of bubbles

present in the mixture is assumed to remain constant, which is consistent with the assumption that bubbles

remain spherical. Given the additional assumptions detailed in Section C.1.4, the bubble model can be

reduced to three state variables R,Ro and Ṙ.

Since bubbles are neither created nor destroyed, the probability is conserved.

∂P
∂t

+
N∑

i=1

∂

∂xi
(wiP) +

∂

∂wi
(ẇiP) +

∂

∂Ri
(ṘiP) +

∂

∂Ṙi

(R̈iP) +
∂

∂Roi

(ṘoiP) = 0 (C.5)

For negligible gas diffusion into the bubble (see Section C.1.4), the last term in the above equation can be

neglected.

∂P
∂t

+
N∑

i=1

∂

∂xi
(wiP) +

∂

∂wi
(ẇiP) +

∂

∂Ri
(ṘiP) +

∂

∂Ṙi

(R̈iP) = 0 (C.6)

The probability of finding a bubble at location x and in state (R,Ro,w, Ṙ, t) is found by integrating over

all the possible states of the other N − 1 bubbles:

P(x, R, Ro,w, Ṙ, t) =
∫

dCN−1P(N, t), (C.7)

and consequently, we can write

∂P
∂t

(x, R, Ro,w, Ṙ, t) =
∫

dCN−1 ∂P
∂t

(N, t). (C.8)

Replacing the time derivative at the probability field by equation C.6, we can write

∂P
∂t

(x, R, Ro,w, Ṙ, t) = −
N∑

i=1

∫
dCN−1 ∂

∂xi
(wiP) +

∂

∂wi
(ẇiP) +

∂

∂Ri
(ṘiP) +

∂

∂Ṙi

(R̈iP). (C.9)

Integrating by parts and using expression C.7 for the probability of finding a bubble, we can simplify the

106



above expression to:

∂P
∂t

(x, R,w, Ṙ, t) = −
[

∂

∂x
w +

∂

∂w
ẇ +

∂

∂R
Ṙ +

∂

∂Ṙ
R̈

] ∫
dCN−1P(N, t),

= −
[

∂

∂x
w +

∂

∂w
ẇ +

∂

∂R
Ṙ +

∂

∂Ṙ
R̈

]
P(x, R, Ro,w, Ṙ, t). (C.10)

The bubble number density is defined as

N(x, t) =
∫

dRdRodṘdwP(x, R, Ro,w, Ṙ, t). (C.11)

Using the above definition and the equation C.6, we can write a bubble number density conservation equation:

∂N

∂t
(x, t) =

∫
dRdRodṘdw

∂P
∂t

(x, R, Ro,w, Ṙ, t),

= − ∂

∂x
(wN) (C.12)

The time derivatives of an averaged quantity is essential in the formulation of averaged governing equa-

tions. Starting from the definition of the ensemble phase average, we can write

∂

∂t
(βC 〈fC〉 (x, t)) =

1
N !

∫
dyNdRNdRN

o dwNdṘN ∂

∂t
[P(N, t)χC(x;N)fC(x, t|N)] . (C.13)

Using the chain rule and the probability conservation equation C.6, we can expand equation C.13:

∂

∂t
(βC 〈fC〉 (x, t)) =

1
N !

∫
dyNdRNdRN

o dwNdṘN ∂

∂t
(P(N, t))χC(x;N)fC(x, t|N)

+
1

N !

∫
dyNdRNdRN

o dwNdṘNχC(x;N)
∂

∂t
(fC(x, t|N)) ,

=− 1
N !

∫
dyNdRNdRN

o dwNdṘNχC(x;N)fC(x, t|N)

N∑
i=1

[
∂

∂yi
(wiP) +

∂

∂wi
(ẇiP) +

∂

∂Ri
(ṘiP) +

∂

∂Ṙi

(R̈iP)
]

+
1

N !

∫
dyNdRNdRN

o dwNdṘNχC(x;N)
∂

∂t
(fC(x, t|N)) .

(C.14)
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Using integration by parts on the first integral, we obtain

∂

∂t
(βC 〈fC〉 (x, t)) =

1
N !

∫
dyNdRNdRN

o dwNdṘNP
N∑

i=1

[
wi

∂

∂yi
(χCfC) + ẇi

∂

∂wi
(χCfC)

+Ṙ
∂

∂R
(χCfC) + R̈

∂

∂Ṙ
(χCfC)

]
+

1
N !

∫
dyNdRNdRN

o dwNdṘNχC(x;N)
∂

∂t
(fC(x, t|N)) .

(C.15)

Expanding and combining the fC derivatives in C.15, we obtain

∂

∂t
(βC 〈fC〉 (x, t)) =

1
N !

∫
dyNdRNdRN

o dwNdṘNP
N∑

i=1

[
wi

∂

∂yi
(χCfC) + ẇi

∂

∂wi
(χCfC)

+Ṙi
∂

∂Ri
(χCfC) + R̈i

∂

∂Ṙi

(χCfC)
]

+
1

N !

∫
dyNdRNdwNdṘNχC(x;N)

∂

∂t
(fC(x, t|N)) ,

(C.16)

which can be expressed in terms of the ensemble average operator as

∂

∂t
(βC 〈fC〉 (x, t)) =〈

∂fC

∂t
+

N∑
i=1

wi
∂fC

∂yi
+ ẇi

∂fC

∂wi
+ Ṙi

∂fC

∂Ri
+ R̈i

∂fC

∂Ṙi

〉

+
1

N !

∫
dyNdRNdRN

o dwNdṘNPfC

N∑
i=1

[
wi

∂χC

∂yi
+ Ṙi

∂χC

∂Ri

]
.

(C.17)

Using the definition of the indicator function χC , the last integral in the above expression can be simplified

to a surface integral:

∂

∂t
(βC 〈fC〉 (x, t)) =

〈
∂fC

∂t
+

N∑
i=1

wi
∂fC

∂yi
+ ẇi

∂fC

∂wi
+ Ṙi

∂fC

∂Ri
+ R̈i

∂fC

∂Ṙi

〉

−
∫

dRdRodwdṘ

∫
|y−x|=R

dSyP(y, R, Ro,w, Ṙ, t)fC(x, t|y, R, Ro,w, Ṙ)(n ·w + Ṙ).

(C.18)

The first term on the right hand side of equation C.18 is the averaged time derivative. This term includes

contributions from both the explicit time derivative of fC and the fluctuations caused by the changing bubble

field. The time derivative of the solution for a particular bubble configuration normally accounts for both
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direct and indirect effects. Therefore, we can rewrite equation C.18 as

∂

∂t
(βC 〈fC〉 (x, t)) =

〈
∂fC

∂t

〉
−
∫

dRdRodwdṘ

∫
|y−x|=R

dSyP(y, R, Ro,w, Ṙ, t)fC(x, t|y, R, Ro,w, Ṙ)(n ·w + Ṙ).
(C.19)

The spatial derivatives are derived in a similar fashion starting from the definition of the average:

∇(βC 〈fC〉)(x, t) =
1

N !

∫
dyNdRNdRN

o dwNdṘNP(N, t)∇ [χC(x;N)fC(x, t|N)] . (C.20)

Applying the chain rule on the above expression, we obtain

∇(βC 〈fC〉)(x, t) =
1

N !

∫
dyNdRNdRN

o dwNdṘNP(N, t)χC(x;N)∇fC(x, t|N)

+
1

N !

∫
dyNdRNdRN

o dwNdṘNP(N, t)fC(x;N)∇χC(x, t|N).
(C.21)

Using the definition of the indicator function χC , the gradient of the ensemble average of a quantity is

∇(βC 〈fC〉)(x, t) = βC 〈∇fC〉

−
∫

dRdRodwdṘ

∫
|y−x|=R

dSyP(y, R, Ro,w, Ṙ, t)fC(x, t|y, R, Ro,w, Ṙ)n.
(C.22)

Combining expression C.19 and C.22, we can write the following result:

∂

∂t
(βC 〈fC〉) +∇ · (βC 〈fCu〉) = βC

〈
∂fC

∂t
+∇ · (fCu)

〉
+
∫

dRdRodwdṘ

∫
|y−x|=R

dSyP(y, R, Ro,w, Ṙ, t)fC(x, t|y, R, Ro,w, Ṙ)(w · n + Ṙ− u · n).
(C.23)

Based on the assumption that bubbles are assumed to remain spherical at all times, the boundary condition

for the flow field at the surface of a bubble is

u · n = w · n + Ṙ. (C.24)

Therefore, equation C.23 can be simplified to

∂

∂t
(βC 〈fC〉) +∇ · (βC 〈fCu〉) = βC

〈
∂fC

∂t
+∇ · (fCu)

〉
. (C.25)
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Another important relation regarding the ensemble averaging is based on the assumption that the prob-

ability density and average properties vary slowly in space so that the probability P(y, ...) can be expanded

in a power series about the point x.

P(y, R, Ro,w, Ṙ, t) ≈ P(x, R, Ro,w, Ṙ, t) + (y − x) · ∇xP(x, R, Ro,w, Ṙ, t). (C.26)

Defining the relative position s = x− y, we can write

∫
|y−x|=R

dSyP(y, R, Ro,w, Ṙ, t)fC(x, t|y, R, Ro,w, Ṙ)

=
∫
|s|=R

dSsP(x− s, R, Ro,w, Ṙ, t)fC(y + s, t|y, R, Ro,w, Ṙ). (C.27)

(C.28)

For bubble related fluctuations, the function fC depends only on the relative position:

fC(y + s, t|y, R, Ro,w, Ṙ) = fC(s, t|R,Ro,w, Ṙ). (C.29)

The above integral can therefore be approximated by

∫
|y−x|=R

dSyP(y, R, Ro,w, Ṙ, t)fC(x, t|y, R, Ro,w, Ṙ)

≈
∫
|s|=R

dSsP(x, R, Ro,w, Ṙ, t)fC(s, t|R,Ro,w, Ṙ)

−
∫
|s|=R

dSss · ∇xP(x, R, Ro,w, Ṙ, t)fC(s, t|R,Ro,w, Ṙ), (C.30)

Another relevant relation is the second order approximation of the gradient operator:

βD∇〈fC〉 ≈
∫

dRdRodṘdw
∫
|y−x|=R

dSyP(x, R, Ro,w, Ṙ, t)nfC(y, t). (C.31)
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C.1.2 Ensemble averaged Euler equations

The conservative variables for the average mixture are

ρM = βCρC + βDρD,

ρMuM = βCρCuC + βDρDuD.

However, since the disperse (vapor) phase is three orders of magnitude less dense than the continuous (liquid)

phase, the mixture variables are well-approximated by

ρM ≈ βCρC , (C.32)

ρMuM ≈ βCρCuC . (C.33)

The conservation of mass for the average mixture is

∂

∂t
(βC 〈ρC〉) +∇ · (βC 〈ρCuC〉) = βC

〈
∂ρC

∂t
+∇ · (ρCuC)

〉
,

= 0. (C.34)

The momentum conservation for the average mixture is

∂

∂t
(βC 〈ρCuC〉) +∇ · (βC 〈ρCuCuC〉) = βC

〈
∂ρCuC

∂t
+∇ · (ρCuCuC)

〉
,

= −βC 〈∇pC〉 . (C.35)

These equations need to be closed by expressing quantities such as 〈ρCuC〉, 〈ρCuCuC〉 and 〈∇pC〉 in terms

of 〈ρC〉, 〈uC〉 and average bubble properties. We first consider the average pressure gradient term. Since

bubbles are effectively massless, the total force exerted on the bubble interface must be equal to zero.

∫
dRdRodṘdw

∫
|y−x|=R

dSyP(x, R, Ro,w, Ṙ, t)npC(y, t|x) = 0 (C.36)

Furthermore, bubbles are assumed spherical and the pressure at the bubble interface is uniform and only a
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function of the bubble radius.∫
dRdRodṘdw

∫
|y−x|=R

dSyP(x, R, Ro,w, Ṙ, t)nnpC(y, t|x) =∫
dRdRodṘdw

∫
|y−x|=R

dSyP(x, R, Ro,w, Ṙ, t)nnpB(R) = βD
R3pB(R)

R3
I.

(C.37)

Using the above relations, we can write

∫
dRdRodṘdw

∫
|y−x|=R

dSyP(y, R, Ro,w, Ṙ, t)npC(y, t|x)

=
∫

dRdRodṘdw
∫
|y−x|=R

dSyP(y, R, Ro,w, Ṙ, t)npB(R,Ro),

≈
∫

dRdRodṘdw
∫
|y−x|=R

dSy

��������������:0

P(x, R, Ro,w, Ṙ, t)npB(R,Ro)

−∇x ·
∫

dRdRodṘdw
∫
|y−x|=R

dSyP(x, R, Ro,w, Ṙ, t)nnpB(R,Ro),

≈ −∇

(
βD

R3pB(R)
R3

)
, (C.38)

consequently, using relations C.36 and C.37, we can simplify the above result to

βC〈∇pC〉 = ∇(βC〈pC〉)−
∫

dRdRodṘdw
∫
|y−x|=R

dSyP(y, R, Ro,w, Ṙ, t)npC(x, t|y),

≈ ∇(βC〈pC〉)−
∫

dRdRodṘdw
∫
|y−x|=R

dSy

��������������:0

P(x, R, Ro,w, Ṙ, t)npB(R,Ro)

+∇ ·
∫

dRdRodṘdw
∫
|y−x|=R

dSyP(x, R, Ro,w, Ṙ, t)nnpB(R,Ro),

≈ ∇
(

βC〈pC〉+ βD
〈R3pB(R,Ro)〉

〈R3〉

)
, (C.39)

where pB(R) is the pressure in the liquid at the surface of a bubble located at x at time t. The momentum

conservation equation for the mixture can thus be written as

∂

∂t
(〈ρMuM 〉) +∇ · (〈ρMuMuM 〉) +∇

(
βC〈pC〉+ βD

〈R3pB(R)〉
〈R3〉

)
= 0. (C.40)

By rearranging terms, we obtain

∂

∂t
(〈ρMuM 〉) +∇ · (〈ρMuMuM 〉) +∇〈pC〉 = ∇

[
βD

(
〈pC〉 −

〈R3pB(R)〉
〈R3〉

)]
. (C.41)
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Correlations such as 〈ρMuM 〉 and 〈ρMuMuM 〉 require a model for the flow field surrounding bubbles.

For the purpose of this work, the flow field in the vicinity of the bubble was assumed to be incompressible

and irrotational (see Section C.1.3 for more details). As a direct consequence, the density and velocity

fluctuations are uncorrelated.

〈ρMuM 〉 = 〈ρM 〉〈uM 〉, (C.42)

〈ρMuMuM 〉 = 〈ρM 〉〈uMuM 〉. (C.43)

The velocity correlation can be expressed as a Reynolds stress term:

〈uMuM 〉 = 〈uM 〉〈uM 〉

−
∫

dRdRodṘdw
∫
|y−x|>R

dSyP(y, R, Ro,w, Ṙ, t)(uC(x, t|y)− uC(x, t))(uC(x, t|y)− uC(x, t)).
(C.44)

Using an expansion of the above result about the point x, we can write

〈uMuM 〉 − 〈uM 〉〈uM 〉

≈ −
∫

dRdRodṘdw
∫
|y−x|>R

dSyP(x, R, Ro,w, Ṙ, t)(uC(y, t|x)− uC(y, t))(uC(y, t|x)− uC(y, t))

+∇x ·
∫

dRdRodṘdw
∫
|y−x|>R

dSy(y − x)P(x, R, Ro,w, Ṙ, t)

(uC(y, t|x)− uC(y, t))(uC(y, t|x)− uC(y, t)).

(C.45)

Given that the flow field is incompressible and irrotational in the vicinity of the bubble, we can write the

potential as (note that the subscript C for the continuous phase is dropped for simplicity)

φ = −R2Ṙ

r
+ u · s +

(u−w) · s
2

(
R

r

)3

, (C.46)

where u and w are the velocity of the liquid and bubble respectively. The relative position vector and

magnitude are defined as s = y− y and r = |s|. The velocity fluctuation due to the presence of a bubble at

x is

∇φ− u =
R2Ṙ

r3
s− 3

2
s(u−w) · s

(
R3

r5

)
+

1
2
(u−w)

(
R3

r3

)
. (C.47)
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Hence,

∫
|s|>R

dVs

(
u(y|x, R, Ro, Ṙ,w)− u(y)

)(
u(y|x, R, Ro, Ṙ,w)− u(y)

)
=
∫
|s|>R

dVs

[
R2Ṙ

r2
n− 3

2
n(u−w) · n

(
R3

r3

)
+

1
2
(u−w)

(
R3

r3

)]
[

R2Ṙ

r2
n− 3

2
n(u−w) · n

(
R3

r3

)
+

1
2
(u−w)

(
R3

r3

)]
,

=
∫
|s|>R

dVs
R4Ṙ2

r4
nn− 3

R5Ṙ

r5
nn(u−w) · n +

R5Ṙ

r5
n(u−w)

+
9
4
nn ((u−w) · n)2

(
R6

r6

)
− 3

2
n(u−w)(u−w) · n

(
R6

r6

)
+

1
4
(u−w)(u−w)

(
R6

r6

)
,

=
∫
|s|=R

dSsR
3Ṙ2nn− 3

2
R3Ṙnn(u−w) · n +

1
2
R3Ṙn(u−w)

+
3
4
R3nn ((u−w) · n)2 − 1

2
R3n(u−w)(u−w) · n +

1
12

R3(u−w)(u−w),

=
4
3
πR3Ṙ2 +

3
15

πR3 [I(u−w) · (u−w) + 2(u−w)(u−w)]

−2
3
πR3(u−w)(u−w) +

1
3
πR3(u−w)(u−w),

=
4
3
πR3

[
Ṙ2I +

3
20

I(u−w) · (u−w) +
1
20

(u−w)(u−w)
]

. (C.48)

Similarly,

∫
|s|>R

dVss
(
u(y|x, R, Ro, Ṙ,w)− u(y)

)(
u(y|x, R, Ro, Ṙ,w)− u(y)

)
=
∫
|s|>R

dVsrn

[
R2Ṙ

r2
n− 3

2
n(u−w) · n

(
R3

r3

)
+

1
2
(u−w)

(
R3

r3

)]
[

R2Ṙ

r2
n− 3

2
n(u−w) · n

(
R3

r3

)
+

1
2
(u−w)

(
R3

r3

)]
,

=
∫
|s|>R

dVs
R4Ṙ2

r3
nnn− 3

R5Ṙ

r4
nnn(u−w) · n +

R5Ṙ

r4
nn(u−w) +

9
4
nnn ((u−w) · n)2

(
R6

r5

)
− 3

2
nn(u−w)(u−w) · n

(
R6

r5

)
+

1
4
n(u−w)(u−w)

(
R6

r5

)
,

=
∫
|s|=R

dSs

{
−R4Ṙ2 log(R)nnn− 3R4Ṙnnn(u−w) · n + R4Ṙnn(u−w)

+
9
8
R4nnn ((u−w) · n)2 − 3

4
R4nn(u−w)(u−w) · n +

1
8
R4n(u−w)(u−w)

}
.

(C.49)
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Combining the above two results, we can write the Reynolds stress tensor as:

Mc = 〈uu〉 − 〈u〉〈u〉,

≈ βD

[
R3Ṙ2

R3
I +

3
20

R3(u−w) · (u−w)
R3

I +
1
20

R3(u−w)(u−w)
R3

]

+
6
10

I∇ ·

(
βDR4Ṙ(u−w)

R3

)
+

1
10
∇

(
βDR4Ṙ(u−w)

R3

)
+

1
10

[
∇

(
βDR4Ṙ(u−w)

R3

)]T

.

(C.50)

To summarize the development, we find that the governing equations are:

∂

∂t
〈ρM 〉+∇ · (〈ρM 〉〈uM 〉) = 0, (C.51)

∂

∂t
(〈ρM 〉〈uM 〉) +∇ · (〈ρM 〉〈uM 〉〈uM 〉) +∇〈pC〉

= ∇
[
βD

(
〈pC〉 −

〈R3pB(R)〉
〈R3〉

)]
−∇ · (ρMMc) ,

(C.52)

where Mc is given by equation C.50.

The derivation of the momentum equation C.52 is rooted in the first order expansion of the local probabil-

ity density function P(y, R, Ro,w, Ṙ, t) in the neighborhood of one bubble diameter (|y−x| ≤ R). Therefore,

rapid changes in the properties of the cavitation field, such as a band of decreased cavitation in the case

of the dual-pulse lithotripter, are represented with decreased accuracy. The introduction of higher-order

expansions in the derivation should remedy this limitation.

The closure of the above equations requires the introduction of modeling for averages of bubble states

and velocities. These issues are addressed in Section C.1.3.

C.1.3 Equations for the disperse phase

The derivation of the equations for the average mixture and disperse phase requires a model for the behavior

of a discrete bubble. If we assume that the lengthscales associated with the flow gradients are significantly

larger than R, then the bubble will behave as if it was in a uniform flow field extending to infinity. Although

this assumption is usually made in numerical modeling of cavitation, it must be invoked carefully in the case

of lithotripsy since the shock wave is thin compared to R. However, the derivation and implementation of

a numerical model capable of representing the interaction between shock waves and bubbles is beyond the

scope of this work. Therefore, the flow field in the vicinity of a bubble was taken as uniform in spite of the

presence of large gradients in the average mixture during the passage of the shock wave.
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Another important assumption in the derivation of the disperse phase equations is the absence of direct

bubble–bubble interactions. As discussed before, the model only accounts for indirect coupling between

bubbles via changes in the average mixture pressure. This assumption is appropriate for simulations with

void fractions of the order of a few percent since direct bubble–bubble interactions are only effective when

bubbles are within a few bubble diameter from each other. However, it should be noted that for larger void

fractions, the numerical model may yield overlapping bubbles since the growth of a bubble is not restricted

by the presence of neighboring bubbles.

We first consider relatively slow bubble motion for which the flow field near a bubble is nearly incom-

pressible. If in addition it is irrotational, the flow field can be derived from a potential. For simplicity, this

potential is formulated in a frame of reference traveling at the bubble translational speed w:

φ = −R2Ṙ

r
+ (u−w) · s +

(u−w) · s
2

(
R

r

)3

. (C.46’)

It should be noted that in this frame of reference the Bernoulli equation is

∂φ

∂t
+

1
2
∇φ · ∇φ− 1

2
w ·w + ẇ · s +

p

ρ
= C(t). (C.53)

Since C(t) is only a function of time, we can write

C(t) =
[
∂φ

∂t
+

1
2
∇φ · ∇φ− 1

2
w ·w + ẇ · s +

p

ρ

]
r→∞

, (C.54)

∂φ

∂t
+

1
2
∇φ · ∇φ−

�
�

��1
2
w ·w +���ẇ · s +

p

ρ

= (u̇− ẇ) · s +
1
2
(u−w) · (u−w)−

�
�

��1
2
w ·w +���ẇ · s +

p∞
ρ

,

(C.55)

or,

∂φ

∂t
+

1
2
∇φ · ∇φ +

p

ρ
= (u̇− ẇ) · s +

1
2
(u−w) · (u−w) +

p∞
ρ

. (C.56)

Since the liquid velocity u is assumed to be locally uniform u = u(t), the pressure field is therefore linear in

space p∞ = A(t) + B(t) · s.

The velocity at the bubble surface is

∇φ = Ṙn− 3
2
n(u−w) · n +

3
2
(u−w), (C.57)
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and

∇φ · ∇φ = Ṙ2 + 3Ṙ(u−w) · n− 3Ṙ(u−w) · n +
9
4
(u−w) · (u−w)

−9
2
(u−w) · n(u−w) · n +

9
4
(u−w) · n(u−w) · n,

= Ṙ2 +
9
4
(u−w) · (u−w)− 9

4
(u−w) · n(u−w) · n. (C.58)

Theraefore, the pressure at the bubble surface can be written as

p− p∞
ρ

= RR̈ + 2Ṙ2 − 3
2
R(u̇− ẇ) · n− 3

2
Ṙ(u−w) · n + R(u̇− ẇ) · n +

1
2
(u−w) · (u−w)

−1
2

[
Ṙ2 +

9
4
(u−w) · (u−w)− 9

4
(u−w) · n(u−w) · n

]
,

= RR̈ +
3
2
Ṙ2 − 1

2
R(u̇− ẇ) · n− 3

2
Ṙ(u−w) · n− 5

8
(u−w) · (u−w)

+
9
8
(u−w) · n(u−w) · n.

(C.59)

The total radial force on the bubble wall must be zero:

∫
dS p− pB = 0, (C.60)

pB − p∞
ρ

=
1

4πR2

∫
dS

{
RR̈ +

3
2
Ṙ− 1

2
R(u̇− ẇ) · n− 3

2
Ṙ(u−w) · n

−5
8
(u−w) · (u−w) +

9
8
(u−w) · n(u−w) · n

}
,

= RR̈ +
3
2
Ṙ− 5

8
(u−w) · (u−w) +

3
8
(u−w) · (u−w),

= RR̈ +
3
2
Ṙ− 1

4
(u−w) · (u−w), (C.61)

where pB is the pressure in the liquid at the surface of the bubble. The above result is the well known

Rayleigh-Plesset equation:

RR̈ +
3
2
Ṙ2 − 1

4
Urel · Urel =

p∞ − pB(t)
ρ

. (C.62)
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Similarly, if we assume that the bubble is massless then the net force applied to it must be zero:

∫
dS pn = 0, (C.63)∫
dS

{
p∞
ρ

Rn(RR̈ +
3
2
Ṙ)n− 1

2
Rn(u̇− ẇ) · n− 3

2
Ṙn(u−w) · n

−5
8
n(u−w) · (u−w) +

9
8
n(u−w) · n(u−w) · n

}
= 0,

∇p∞
ρ

R− 1
2
R(u̇− ẇ)− 3

2
Ṙ(u−w) = 0, (C.64)

so

(u̇− ẇ) = 2
∇p∞

ρ
− 3

Ṙ

R
(u−w). (C.65)

The above results are the classical solutions for a bubble in an incompressible flow field. The potential

used in this model was also used in the derivation for the Reynolds stress and pressure gradient term in the

ensemble phase average of the mixture. However, this approach is limited to slow bubble expansion and

collapse. For more violent bubble behavior, compressible effects can no longer be ignored.

Several extensions have been proposed to provide a first or second order correction for compressibility

effects. A general analysis was presented by Prosperetti & Lezzi (1986), which covers many of the different

compressible models developed previously. In this approach, the authors considered two regions of fluid: an

inner region where the liquid is approximately incompressible and a compressible outer region where the fluid

kinetic energy is negligible. A singular-perturbation analysis was then performed to match these two layers

and obtain an ODE for the rate of change of the bubble radius as a function of the difference between the

bubble wall pressure and the forcing pressure. The final result, called the general Keller-Herring equation, is

[
1− (λ + 1)

Ṙ

C

]
RR̈ +

3
2

[
1− (3λ + 1)

3
Ṙ

C

]
Ṙ2 =[

1 + (1− λ)
Ṙ

C

](
H − p∞

ρ

)
+

R

C

∂

∂t

(
H − p∞

ρ

)
.

(C.66)

where p∞ is the pressure at that location in the absence of a bubble, po is a reference pressure and enthalpy

H is defined as

H =
∫ p∞

po

dp

ρ
. (C.67)
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The above bubble model is valid for arbitrary values of λ. For the purpose of this work, the free parameter

λ was chosen to be zero which corresponds to the well known Gilmore equation (Gilmore 1952):

[
1− Ṙ

c

]
RR̈ +

3
2

[
1− 1

3
Ṙ

c

]
Ṙ2 =

[
1 +

Ṙ

c

]
H +

R

c

dH

dt
H =

∫ pB(R,t)

p∞(t)

dp

ρ
, (C.68)

where pB is again the pressure in the liquid at the surface of the bubble.

Both compressible and incompressible bubble models were used in this work to compute the evolution

of the bubble field. However, because of limitations in the derivation of the compressible bubble model,

only the incompressible model was used to compute Reynolds stress term for the ensemble averaged Euler

equations.

So far in this analysis, the conditions prevailing inside the bubble have not yet been modeled. All

equations have been expressed as a function of the liquid pressure at the bubble wall pB . In the next section,

modeling of the bubble interior is used to express pB as a function of the bubble radius and other parameters.

C.1.4 Bubble interior

The bubble interior can be modeled as a mixture of vapor and non-condensible gas. In the work of Matsumoto

& Takemura (1994), the governing equations (unsteady, radial diffusion equations) for both vapor and gas

as well as the behavior of the liquid were solved numerically for the single bubble case. However, for the

purpose of this work, such calculations would be prohibitively expensive to perform at each point in space.

Instead, the behavior of a single bubble must be reduced to a simpler model.

The most commonly used simplification for the modeling the bubble interior is the assumption that the

gas mixture is uniform in composition, pressure and temperature for all times. This effectively eliminates all

dynamics related to mass, momentum and heat transfer within the bubble. The following lists the complete

set of assumptions regarding the state of the bubble interior used in this work:

• The gas core of the bubble is composed of a uniform mixture of vapor and an adiabatic non-condensible

gas.

pair

ργ
air

= constant γ = ratio of specific heats
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• The gas mixture is assumed to be at a spatially uniform temperature and pressure.

p = p(t) = pair(t) + pvap(t)

• The mass flux of non-condensible gas across the bubble interface is assumed to be negligible.

4
3
πR3ρair = constant

• The vaporization/condensation of the vapor is presumed sufficiently rapid to ensure equilibrium con-

dition across the bubble interface.

pvap = psaturated vapor(Twall) Twall = temperature at the bubble interface

• Mass and heat transfer in the surrounding liquid is neglected.

Twall = T∞ → pvap = constant

Given the above simplifications, the following can be stated:

pB(R) = − 2S

R(t)
+ pvap + po

(
Ro

R(t)

)3γ

, (C.69)

S = surface tension coefficient,

po, Ro = pressure and radius at some reference time,

pB(R) = pressure in the liquid at the bubble surface.

Taking the rest (initial) condition as the reference:

pB = po −
2S

Ro

[(
Ro

R

)
−
(

Ro

R

)3γ
]
− (po − psat vap)

[
1−

(
Ro

R

)3γ
]

. (C.70)

C.1.5 Modeling the probability distribution

The average mixture equations of Section C.1.2 are function of correlations of bubble properties such as 〈R3〉

and 〈R3pB(R)〉. These correlations can be obtained by averaging the bubble states governed by equations
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presented in Section C.1.3. The integrals can be approximated by averaging over a population of bubbles

of discrete states, which are evolved independently (Wang 1999). However, this requires the computation

of a large number of different bubble states for each location, which is impractical in large simulations. For

a more practical model, two alternatives were investigated. Following the work of Zhang & Prosperetti

(1994), a narrow distribution of states can be considered. Given a sufficiently compact distribution, the

probability field can be approximated by a single state. An alternative approach for wide distributions

involves representing the probability field in terms of shape functions that can be evolved in time using

approximate governing equations. Although this later approach does offer some benefits over the former, it

was not used in this work because of unresolved issues in the modeling. For the interested reader, notes and

comments on this novel approach can be found in Appendix H.

Following the work of Zhang & Prosperetti (1994), given a probability field assumed to be narrowly

distributed about the averages, the following simplification can be made:

P(x, R, Ro,w, Ṙ, t) ≈ δ(R− R̄(x, t))δ(Ṙ− ¯̇R(x, t)δ(w − w̄(x, t))N(x, t). (C.71)

where N(x, t) is the bubble number density. Consequently

Mc ≈ βD

[
− ˙̄R2I− 3

20
(u− w̄) · (u− w̄)I− 1

20
(u− w̄)(u− w̄)

]
− 6

10
I∇ ·

(
βDR̄ ˙̄R(u− w̄)

)
− 1

10
∇
(
βDR̄ ˙̄R(u− w̄)

)
− 1

10

[
∇
(
βDR̄ ˙̄R(u− w̄)

)]T
,

(C.72)

C.1.6 Relative motion of bubbles

So far, the only modeling that has been introduced to account for the motion of bubbles relative to the

average liquid is equation C.65. Since the forces involved are small, translational forces over the bubble were

neglected in this work. Consequently, the bubbles are assumed to move with the same velocity as the fluid.

This is consistent with the observation made by Sokolov et al. (2001).

w̄ ≈ u (C.73)

As a result of this approximation, the Reynolds stress term can be simplified to

Mc = βD
˙̄R2I. (C.74)
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and the number density transport equation becomes

∂N

∂t
+

∂

∂x
(uN) = 0. (C.75)

C.2 Final equations

The final form of the governing equations for the mixture (the averaging brackets 〈〉 and mixture subscript

M have been omitted in order to simplify the notation)

∂ρ

∂t
+∇ · (ρu) = 0, (C.76)

∂ρu
∂t

+∇ · (ρuu) +∇pC = ∇
[
βD(pC − pB(R)− ρṘ2)

]
, (C.77)

pC − po =
ρoC

2

α

[(
ρC

ρo

)α

− 1
]

, (C.78)

pB = −2S

Ro

[(
Ro

R

)
−
(

Ro

R

)3γ
]
− (po − psat vap)

[
1−

(
Ro

R

)3γ
]

+ po, (C.79)

ρC =
ρ

(1− βD)
, (C.80)

βD =
4
3
πNR̄3, (C.81)

∂N

∂t
+∇ ·Nu = 0. (C.82)

The governing equations for the bubble phase are

RR̈ +
3
2
Ṙ2 =

pB − pC

ρ
, (C.83)

or

[
1− Ṙ

c

]
RR̈ +

3
2

[
1− 1

3
Ṙ

c

]
Ṙ2 =

[
1 +

Ṙ

c

]
H +

R

c

dH

dt
H =

∫ pB

pC

dpC

ρC
, (C.84)

for the Rayleigh-Plesset and Gilmore cases, respectively.
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Appendix D

Linear acoustics inside reflector

As a first order approximation of the propagation of waves inside the reflector bowl, geometrical acoustics

is often used in the past. Although this approach cannot represent diffraction effects, it can accurately

model wave reflection off solid surface in cases where the wavelengths associated with the incident wave are

much smaller than the curvature of the reflector. This section present the basic calculations for the linear

geometrical acoustic model of a spherical wave propagating inside an ellipsoidal bowl. Figure D.1 and D.2

present the relevant variables for this particular case.

2d

 c

ϕ

b
a

ye

x

Figure D.1: Geometry of ellipsoidal reflector.

A1

A2=A1(r2/r1)2

A3=A2(r4/r3)2

r1

r2
r3

r4

reflector

F1F2

Figure D.2: Geometry of beam propagation.
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From the geometry of the reflector (see Figure D.1), we can write the following relations:

L = b + c (D.1)

b2 = c2 − 2c(2d) cos(φ) + (2d)2 (D.2)

Simplifying the last equation, we can write:

b =
L2 − 2(2d) ∗ L cos(φ) + (2d)2

2(L− (2d) cos(φ))
(D.3)

Assuming that the wave propagates as a beam (as seen in Figure D.2) and that its amplitude scales with

area−1/2, the amplification factor for the pressure measured at the mouth of the reflector is

pmouth

pinitial
=
√

A1

A3
(D.4)

=
(

r1

r2

)(
r3

r4

)
(D.5)

=
b0c

b(c− a)
(D.6)

=
b0(L− b)

b
√

y2 + x2
(D.7)

Along the axis of symmetry, the wave amplitude is

p(z) =
(zo

z

)
[f(z − zo− ct) + f(z + zo + ct)] +

(
zo

L/2− d

)(
d + L/2
2d− z

)
f(z − ct + L− 2d) (D.8)

where f(z) is the profile of the initial wave and z is the distance from F1 in the direction of F2.
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Appendix E

Wave propagation

In this section, the discretization of the second order wave propagation inside an ellipsoidal reflector bowl is

presented (see Figure E.1). The second order wave equation is

c2 ∂2φ

∂t2
= ∇2φ (E.1)

with the Neumann boundary condition

∇φ · n = 0 (E.2)

on the axis of symmetry and on the surface of the reflector.

2d
x

η

r

ζ

∆

φ φttc2 2=

∆

φ =n 0

∆

φ =n 0

Figure E.1: Geometry of ellipsoidal reflector bowl.

In order to simplify the discretization of the problem, the Laplacian operator was cast in the following

prolate spheroidal coordinate system (see Figure E.1):

∇2φ =
1

ζ2 − η2

[
1

ζ2 − 1
∂

∂ζ

(
(ζ2 − 1)

∂φ

∂ζ

)
+

1
1− η2

∂

∂η

(
(1− η2)

∂φ

∂η

)]
(E.3)
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where

ηε[−1, 1], ζε[1, ζreflector]

r = d
√

(η2 − 1)(ζ2 − 1), x = dζη

The above form has the advantage that the operator as the form

(ζ2 − η2)∇2φ = Lζ(φ) + Lη(φ)

Since the operator L is a linear operator of one dependent variable and the grid is rectangular, only one

discretization of the operator is required for each direction.

In this work, the operator L was discretized using finite difference approximation. Given

φ ≈ a0 + a1(x− xo) + a2(x− xo)2 + a3(x− xo)3 + a4(x− xo)4, (E.4)

Lx(φ) ≈ a1C(x) + a2 [2 + 2C(x)(x− xo)] + a3

[
6(x− xo) + 3C(x)(x− xo)2

]
+a4

[
12(x− xo)2 + 4C(x)(x− xo)3

], (E.5)

where

C(x) ≡ 2x

x2 − 1
,

or

φ ≈ V (x) ·A, (E.6)

Lx(φ) ≈ LV (x) ·A, (E.7)

where

A ≡ [a0, a1, a2, a3, a4],

V (x) ≡
[
1, (x− xo), (x− xo)2, (x− xo)3, (x− xo)4

]
,

LV (x) ≡
[
0, C(x), 2 + 2C(x)(x− xo), 6(x− xo) + 3C(x)(x− xo)2, 12(x− xo)2 + 4C(x)(x− xo)3

]
.
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Using the above approximation, we can evaluate the operator L at a node i in terms of (φi−1, φi, φi+1,Li−1,Li+1).

xo = xi

φi−1 ≈ V (xi−1) ·A

φi ≈ V (xi) ·A

φi+1 ≈ V (xi+1) ·A

Li−1 ≈ LV (xi−1) ·A

Li+1 ≈ LV (xi+1) ·A

Or



φi−1

φi

φi+1

Li−1

Li+1


≈ M ·A, (E.8)

where

M =



V (xi−1)

V (xi)

V (xi+1)

LV (xi−1)

LV (xi+1)


.

Using the above, we can write

Li ≈ LV (xi) ·M−1 ·



φi−1

φi

φi+1

Li−1

Li+1


, (E.9)
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or equivalently

bi−1Li−1 + Li + bi+1Li+1 ≈ ci−1φi−1 + ciφi + ci+1φi+1, (E.10)

bi = bi(xi−1, xi, xi+1),

ci = ci(xi−1, xi, xi+1).

Based on the above result, the evaluation of the operator L for a grid line in the domain requires the

evaluation of the b’s and c’s constant (which only needs to be done once), and solving a tridiagonal system

of equation.

The wave equation was integrated in time using a second order implicit Euler method

c2 φn − 2φn−1 + φn−2

∆t2
≈ ∇2φn, (E.11)

where the superscript refers to the appropriate time unit. Combining the time integration with the discrete

approximation of the Laplacian operator, we obtain

(ζ2
i − η2

j )
c2

∆t2
(
φn

ij − 2φn−1
ij + φn−2

ij

)
≈ Lζ

ij + Lη
ij , (E.12)

where

bζ
i−1Li−1j + Lijb

ζ
i+1Li+1j ≈ cζ

i−1φi−1j + cζ
i φij + cζ

i+1φi+1j , (E.13)

bη
i−1Li−1j + Lijb

η
i+1Li+1j ≈ cη

i−1φi−1j + cη
i φij + cη

i+1φi+1j , (E.14)

where (bζ , cζ) and (bη, cη) are the b, c coefficients evaluated in the ζ-direction and η-direction respectively.

The overall solution algorithm used here is described as follows:

1. Generate rectangular grid in ζ, η coordinates.

2. Compute bζ , cζ , bη, cη for the grid.

3. Set initial condition φ0 = φ(0,x) and φ−1 = φ(0,x)−∆tφt(0,x).

4. Set n = 1.

5. Set φ∗ = φn−1
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6. Solve tridiagonal system for Lζ for each η = constant line.

Lζ = Lζ(φ∗)

7. Solve tridiagonal system for Lη for each ζ = constant line.

Lη = Lη(φ∗)

8. Evaluate:

φ∗∗ = 2φn−1 − φn−2 + (ζ2 − η2)
∆t2

c2
(Lζ + Lη)

9. Set φ∗ = αφ∗∗ + (1− α)φ∗.

10. Goto step 6 until φ∗∗ ≈ φ∗ to sufficient accuracy.

11. Set φn = φ∗∗ and n = n + 1.

12. Goto step 5.

The value of α in above step 9 is a relaxation parameter used to control the convergence of the iteration

process. For the purpose of this work, a value of α = 0.7 was found to be adequate.
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Appendix F

Estimation of bubble cloud
parameters from experiments

As mentioned earlier in this work, the numerical model requires some characterization of the bubble cloud.

In this present work, the cloud was assumed homogeneous and monodisperse so only two parameters are

necessary for characterization: bubble initial size and number density of nuclei. The estimation of either

parameters is complicated at best since bubbles are too small to be identified while the liquid is at rest.

The problem of estimating the initial bubble size in the liquid is a rather important one since it is required

in order to use any type of numerical model for bubble dynamics. To solve this problem, the conventional

approach uses two measurements that can be made relatively accurate: the pressure trace and the time

between initial bubble growth and its first collapse (or time to collapse tc). The pressure signal can be

obtained using a membrane or the more accurate fiber optic pressure transducer. Although the time to

collapse can be roughly estimated from high-speed photography, the more accurate approach is to used a

focused hydrophone (passive cavitation detector) aimed at the appropriate location. Using the empirically

measured pressure history as the forcing pressure in an appropriate model for bubble dynamics (Gilmore,

Rayleigh-Plesset, Keller-Miksis, etc...) a plot of the numerical prediction for the time to collapse as a function

of initial radius can be made.

The estimation of the bubble number density is an equally daunting task. As in the previous case, this

parameter must be estimated from observations made during the firing of the lithotripter. The number of

bubble nuclei present can be approximated using high-speed pictures of the bubble cloud during its maximum

growth. As see in the following Figure (F.2), the larger bubbles can be easily identified however, the others

(smaller bubbles and out of focus bubbles) are much more difficult to count. Close packing of bubbles also

prevent an accurate census.
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Figure F.1: Collapse time for a bubble at focus using Gilmore equation.

Edge detection

Figure F.2: Counting bubbles in high-speed picture of a bubble cloud for a free-field lithotripter.

As illustrated in the above figure, an estimation can be made of the number of bubbles present within

a region of known size. For example, in the white square shown in Figure F.2, a total of approximately 32

bubbles can be identified. Although the dimension of the area shown is known (8 by 8 millimeters in this

case), the depth of the field of view is unknown.

As shown in Figure F.3, the bubble density observed from the side view is the density integrated in the

y–direction. This is further complicated by the limitation in the depth of field of view of the optical system

for the high-speed camera.

In Figure F.2, approximately 32 bubbles can be identified within the highlighted box (8-by-8 mm). From

the same picture, the cloud thickness can be roughly estimated at 35 mm. Using these numbers, the total
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Figure F.3: Estimating nuclei density from side view section.

included volume encompassed by the box is slightly less than 2.24 cm3 (8x8x35=2240 mm3) which translates

to a bubble number density of 32/2.24 = 14.29 bubble/cm3. By applying this approach on various regions

over several different photographs, typical values for the bubble number density range from 5-50 bubbles/cm3.

Clearly, this range can vary considerably since both the bubble census and cloud size estimates are highly

subjective. However, this approximate value for the bubble number density is consistent with observations

from other researchers. As discussed in the results section of this work, the results from our numerical model

based on these initial values are in reasonable agreement with empirical observations.
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Appendix G

Modeling gas diffusion for single
bubble model

In this section, we will cover the extension required to introduce gas diffusion model for a single bubble in

uniform field. The equations relevant to the bubble exterior for this case are

∂ρ

∂t
+

1
r2

∂

∂r

(
r2ρur

)
= 0, (G.1)

∂ρur

∂t
+

1
r2

∂

∂r

(
r2ρurur

)
+

∂p

∂r
= 0, (G.2)

p = Cp

(
ρβ − 1

)
, (G.3)

∂Cρ

∂t
+

1
r2

∂

∂r

(
r2Cρur

)
=

1
r2

∂

∂r

(
r2ρD

∂C

∂r

)
. (G.4)

(G.5)

It should be noted that in the above equations, it is implicitly assumed that the presence of dissolve gas

does not impact on the liquid phase (which can be easily justified considering the concentration of gas is of

the order of 10−5) and that thermal effects are negligible. A first simplification can be made to the above

set by assuming that the flow field is incompressible in the region near the bubble. The resulting equations

are

ur =
R2Ṙ

r2
, (G.6)

∂C

∂t
+ ur

∂C

∂r
=

1
r2

∂

∂r

(
r2D

∂C

∂r

)
. (G.7)

A very useful transformation for the last equation was presented in the work of Plesset & Zwick (1952)
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and Eller & Flynn (1965).

z =
1
3
(
r3 −R3

)
(G.8)

∂

∂r
=

∂

∂z
r2 (G.9)

∂

∂t
=

∂

∂τ
− ∂

∂z
R2Ṙ (G.10)

The equation for the concentration of gas in the transformed coordinates is

[
∂C

∂τ
−R2Ṙ

∂C

∂z

]
+

R2Ṙ

r2

[
r2 ∂C

∂z

]
=

∂

∂z

(
r4D

∂C

∂z

)
, (G.11)

∂C

∂τ
=

∂

∂z

(
r4D

∂C

∂z

)
. (G.12)

The last equation is particularly useful since the convective term has been removed from the equation.

For the purpose of this work, the governing equation was discretized in the slightly different way:

x =
(
3z + R3

o

)1/3
, (G.13)

∂

∂z
=
(
3z + R3

o

)−2/3 ∂

∂x

=
1
x2

∂

∂x

, (G.14)

∂C

∂τ
=

1
x2

∂

∂x

[
(x3 + R3 −R3

o)
4/3

x2

∂C

∂x

]
. (G.15)

In the above transformation, a new parameter Ro is introduced. There are no restrictions on its value

other than it must be positive. Based on numerical tests, it was found that for cases involving lithotripsy

shock waves, a good choice is to set the value to the initial equilibrium bubble size (Ro = Rinitial).

For the purpose of this work, the above formulation was discretized following an implicit finite volume

approach. The spatial derivative was approximated to 2nd order accuracy while the time derivative was

approximated using 1st order Euler method. Because the bubble can grow to several orders of magnitude,

a stretched grid was used to minimize computational costs. Grid spacing as a function of the dependent

variable x is shown in Figure G.1.

To validate the implementation, the model was used to compute the concentration field surrounding a

sphere of fixed radius with constant concentration at the boundary. The solution for this problem is the well
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Figure G.1: Grid spacing for stretched grid.

known error function.

∂C

∂t
= D

1
r2

∂

∂r

(
r2 ∂C

∂r

)
(G.16)

C(t, r = R) = Cwall (G.17)

C(t = 0, r) = C∞ (G.18)

C(t, r)− C∞ = (Cwall − C∞) Erfc
(

r −R√
4Dt

)
(G.19)

∂C

∂r
(t, r = R) = −Cwall − C∞√

πDt
(G.20)

Figure G.2 shows the error of numerical model in the gradient and total flux for this diffusion problem.
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Figure G.2: Comparison between numerical model and analytical solution for simple diffusion problem
(Ro = 10µm).
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Appendix H

Dynamics of probability distribution
of bubble states

This section presents some of our notes regarding simplifications in the modeling of a distribution of bubble

states. For the purpose of this analysis, consider the following simplified probability distribution function

for the bubble state at a particular location:

P = P(R, Ṙ, t), (H.1)

and the corresponding governing equation for the evolution of this probability field is

∂P
∂t

+
∂

∂R

(
ṘP
)

+
∂

∂Ṙ

(
R̈P
)

= 0. (H.2)

The above equation can be discretized and solved numerically. This type of problem is usually solved using a

Monte-Carlo approach and represent the evolving probability field by a set of discrete samples. This approach

is advantageous in that the number of samples is independent of the number of states (dimensionality of

the problem). However, every sample represents a bubble and may collapse violently at some point. Since

computing a bubble collapse is expensive, computing a large sample set can become prohibitively expensive.

A different approach to the problem is to discretized the problem as a convection problem.

Using the assumptions presented in this work, we can write

R̈ = R̈(R, Ṙ, t). (H.3)
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If we use the Rayleigh-Plesset bubble model then the above expression can be written as

RR̈ +
3
2
Ṙ2 + f(R) +

p∞(t)
ρ

= 0. (H.4)

The above equation can be integrated once to yield:

1
2
R3Ṙ2 +

∫
f(R)R2dR = E(t), (H.5)

where E(t) is the bubble energy which include the equilibrium energy and work done on the bubble by the

pressure field. The energy term can be separated in the rest energy (Eo) and the pressure work term (the

viscous damping term has been neglected in this analysis but can easily be introduced).

E(t) = Eo +
∫ t

0

p∞(t)
ρ

R2Ṙdt (H.6)

If we assume that the pressure field is zero, then the second order differential equation reduces to a first

order equation. This simplification suggests a new set of variable instead of the (R, Ṙ) combination. Using

the polar coordinates (r, θ), the dependent variables can be rewritten as

r sin(θ) ≡ 1√
2
R3/2Ṙ, (H.7)

r cos(θ) ≡

√∫
f(R)R2dR− Eo, (H.8)

r2 = E(t), (H.9)

and the inverse relation,

R = g (r cos(θ)) . (H.10)

The differential equations in the new coordinates are

ṙ =
R1/2 sin(θ)√

2
p∞(t)

ρ
, (H.11)

rθ̇ =
R1/2f(R)√

2 cos(θ)
− R1/2 cos(θ)√

2
p∞(t)

ρ
. (H.12)
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The probability conservation equation can be rewritten in terms of this new coordinate system:

∂P ′

∂t
+

∂

∂r
(ṙP ′) +

∂

∂θ

(
θ̇P ′
)

, (H.13)

where

P ′ =
R5Ṙf(R)

4r3 cos(θ) sin(θ)
P (H.14)

If the absence of a forcing pressure field, the equations simplify to

ṙ = 0, (H.15)

rθ̇ =
R1/2f(R)√

2 cos(θ)
. (H.16)

Figure H.1 shows the evolution of a smooth probability distribution in a zero pressure field. The right side

of Figure H.1 shows the probability field in the transformed coordinates (using r cos(θ) ≡ x and r sin(θ) ≡ y)

while the left side presents the field in the corresponding (R, Ṙ) coordinates. The computed bubble radius

average for this case is shown in Figure H.2 as well as the result for a single bubble starting with the same

initial average condition.

The differences between the smooth and narrow probability distribution are clear from Figure H.2:

• the average bubble radius oscillates at a slightly lower frequency,

• the average bubble radius does not collapse significantly but rather oscillates about a value larger than

the equilibrium radius,

• the amplitude of oscillations for average radius diminishes steadily as if under the influence of some

damping field.

These observation are a consequence of the shape of the probability distribution. The smoother the field,

the more pronounced the above effects will be.

For large bubble oscillations, a much larger part of the period is spent at a radius above the equilibrium.

Consequently, it is rather improbable to find a bubble during its collapse phase. For a smooth distribution,

only a very small portion of the field enter the collapse region of the phase space at any given time. Since

bubble motion is very fast during collapse, a probability packet entering quickly exits this region. This
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transition from pre to post-collapse is illustrated in Figure H.3. This seemingly discontinuous propagation

of the probability field results in a very smooth average behavior.

The observed damping in Figure H.2 is caused by variations in the oscillation frequency in the probability

field. More energetic bubbles oscillate at a slower rate and therefore get progressively out of phase with less

energetic bubbles. Consequently, a smooth probability field is stretched more and more after each oscillation.

This stretching results in the so called damping observed above.

The average bubble motion for the smooth probability distribution seen in Figure H.2 is significantly less

stiff than its narrow distributed counterpart. This suggests that a model representing the average could be

much faster to compute. At the present stage, the only method available to represent the evolution of the

average is the semi-lagrangian approach used above. The semi-lagrangian approach used in this example has

the advantage of not having to compute the rapid changes due to bubble collapse however, because of the

large number of nodes used in the grid (Figure H.1 was computed on a 1000x100 grid) this formulation far

more expensive to compute than an approach based on a Monte-Carlo approach.

For the simplified case where both the pressure field and viscous damping are zero, the governing equation

for the probability density simplifies to:

∂P ′

∂t
+

∂

∂θ
(P ′θ̇) = 0. (H.17)

For a given energy level (r = constant) the probability field oscillates with periodicity τ .

P ′(t, θ) =
∞∑

n=1

an exp
[
2πin

t

τ

]
fn(θ) (H.18)

Inserting the above solution in equation H.17, we can obtain a solution for the fn(θ) functions:

fn(θ) =
1
θ̇

exp

[
−2πin

τ

∫ θ

0

dθ

θ̇

]
. (H.19)

The general probability field can thus be expressed as:

P ′(t, θ) =
∞∑

n=1

an

θ̇
exp

[
2πin

τ

(
t−
∫ θ

0

dθ

θ̇

)]
. (H.20)

It is interesting to note that for a smooth distribution, the probability field can be represented accurately
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by a small number of modes.

P ′(t, θ) =
N∑

n=1

an

θ̇
exp

[
2πin

τ

(
t−
∫ θ

0

dθ

θ̇

)]
, (H.21)

〈R〉 =
N∑

n=1

an exp
[
2πint

τ

]
R̄n, (H.22)

R̄n ≡
∫

R(θ)
θ̇

exp

[
−2πin

τ

∫ θ

0

dθ

θ̇

]
dθ. (H.23)

The averaged nonlinear second order ODE can be expressed in terms of a linear PDE (equation H.2,

H.13 or H.17). At this stage, we have not found any way of converting the high dimensional linear problem

back to a simpler nonlinear ODE model representing the average.
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