
Topologies of Complex Networks:
Functions and Structures

Thesis by

Lun Li

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007

(Defended April 16, 2007)



ii

c© 2007

Lun Li

All Rights Reserved



iii

To my parents Guobin and Guoqing,

my husband Zhenyu,

and my daughter Elaine.



iv



v

Acknowledgements

I would like to thank my advisor Professor John C. Doyle and coadvisor Professor

Steven H. Low from the bottom of my heart. Without their guidance, support and en-

couragement, this thesis would never have come true. John has provided me intellectual

freedom, deep insights, and great pictures in my research. His endless effort in pursuing

truth, devotion to athletics, and attention to charity has always been a source of inspira-

tion. Steven has helped me open a door to study theoretical technical details from problem

formulations to rigorous proofs. I have been fortunate to have both of them as my advisors.

Special thanks go to Dr. David Alderson and Dr. Walter Willinger, for enjoyable and

fruitful collaborations that contributed to a major part ofthis thesis. My gratitude also

extends to Professor Richard Murray, Professor Tracey Ho and Dr. Walter Willinger for

serving on my thesis committee.

I want to thank my advisor Professor Andy Packard at U.C. Berkeley for guiding my

first years in the United States, and thank my mentors and co-workers at Microsoft Research

for the summer of 2006, specially to Ranveer Chandra, Srikanth Kandula and Ming Zhang.

Thanks also go to Gloria Bain, Christine Ortega, Betta Dawson, Peggy, Charmaine

Boyd, Linda Dozsa for helping me with all sorts of problems. Iwould also like to thank

my friends and colleagues in Netlab and CDS, to Jiantao Wang for the collaboration of the

cross-layer optimization project and Antonis Papachristodoulou for the congestion control

work, to Xin Liu, Sarah Tan, Qian Li, Qiang Yang, Xiaolan Wu, Huirong Ai, Hualin Ye,

Rui Zhang-Shen, Qian Zhao, Jiantao Wang, Cheng Jin, Kevin Tang, David Wei, Chang

Liu, Yindi Jin, Stephen Prajna, Aristotelis Asimakopoulos, Lachlan Andrew, Morr Mehyar,

Zhipu Jin, Lijun Chen, Maryam Fazel, Denice Gayme, Ling Shi,Zhengrong Wang, Xiaoli

Feng, Yan Wu and Xiang Li for the friendship and support.



vi

Last but not least, I thank my parents for their help and care,my dear husband for his

love and support, and my daughter for my source of happiness.This thesis is dedicated to

them.



vii

Abstract

During the last decade, significant efforts have been made toward improving our under-

standing of the topological structures underlying complexnetworks and illuminating some

of the intriguing large-scale properties exhibited by these systems. The dominant theme of

these efforts has been on studying the graph-theoretic properties ofthe corresponding con-

nectivity structures and on developing universal theoriesand models that transcend system-

specific details and describe the different systems well in a statistical sense.

However, in this thesis we argue that these efforts have had limited success and are in

need of substantial correction. Using a highly engineered system, the Internet, as a case

study we demonstrate that networks are designed for a purpose, and ignoring that aspect

or obscuring it with the use of some generic but random mechanism can result in models

that misrepresent what matters for system functions. By accounting in a minimal manner

for both the functional requirements and structural features inherent in the design of an

engineered system, we propose an alternative, optimization-based modeling approach that

highlights the necessary trade-offs between system performance and the technological and

economic constraints that are crucial when designing the system. We show that our pro-

posed approach yields network models that not only match thelarge-scale graph-theoretic

properties of measured router-level topologies well but are also fully consistent with en-

gineering intuition and networking reality, especially asfar as their performance aspects

and robustness properties are concerned. In fact, we show that our design-inspired network

models can be easily distinguished from previously considered probabilistic network mod-

els and efficiently achieve the level of performance for which they weredesigned in the

first place.

While this thesis focuses on the Internet, it has much broader implications for com-
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plex networks and graph theory generally. To better differentiate between different graphs

that are identical in certain graph statistics, we introduce a structural metric, thes-metric,

and demonstrate that it provides insights into the diversity of graphs constrained by cer-

tain common properties and sheds new light on many classic graph concepts such as the

various notions of self-similarity, likelihood, and assortativity. Our s-metric clarifies much

of the confusion surrounding the sensational qualitative claims in the current graph theory

literature for complex networks and offers a rigorous and quantitative alternative.

Moreover, to examine the space of graphs that satisfy certain common properties, we

propose a new approach that is based on establishing a link between two graphs if and only

if one can be obtained from the other via a local transformation. Exploring the resulting

connected space of graphs by dividing it into countable subspaces provides a much clearer

picture on the whole space. We also show that this space of graphs has a rich and interesting

structure and that some properties of the latter can be related to features of the individual

graphs in this space (e.g., degree variability of a nodeg in the space of graphs and the

s-metric forg).
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Chapter 1

Introduction

1.1 Introduction to Complex Networks

A network is a collection of network components representing its fundamental units and

a set of connections characterizing any relationship between these components. Networks

are ubiquitous, ranging from biological networks to socialnetworks to technological net-

works. Examples of biological networks include the cellular network, which is an ensemble

of genes, proteins and other molecules, and their interactions to regulate cell activities; a

biological neural network consisting of functionally related neurons that perform a spe-

cific physiological function. The famous Erdös numbers in fact describe a social network

where mathematicians are assigned numbers indicating the “collaboration distance” to a

well-known mathematician Paul Erdös who wrote about 1500 papers in his life, mostly

coauthored with others. As an example of a technological network, the Internet, one of the

largest man-made networks, can be defined as a huge collection of millions of computers

and routers connected by physical links, or in a more coarse-grain level, can be considered

as consisting of thousands of administrative domains amongwhich data are transferred. All

these are just a small set of complex networks.

Over the last decade there has been significant interest and attention devoted toward un-

derstanding the infrastructure underlying complex networks, particularly their topologies

and the large-scale properties that can be derived. The topology of a complex network is

usually pictured as a graph, where nodes (or vertices) represent basic network components,

and links (or edges) portray their interactions. Studying the topological structure of com-
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plex networks has been one of the most fundamental steps to gain a basic understanding of

certain aspects of real-world phenomena of many kinds due toa simple reason: network

structures always affect network functions. For example, food webs are investigated as

the road-maps through Darwin’s entangled bank [90, 107]. Social network topologies can

help to prevent pandemic influenza from spreading when available to health care. Study-

ing the topological structure of complex networks also plays an important role to evaluate

and design network regulations and protocols that run on topof them. Although the topol-

ogy should not affect their correctness, it always affect their performance. Understanding

topology of complex networks can also protect networks fromfailures and attacks, so as to

achieve a better design and evolution of networks.

However, studying topologies of complex networks has proved to be a challenging

problem. Since a large-scale network is usually a collection of thousands or millions of

nodes, there is no single place from which one can obtain a complete picture of the topol-

ogy. Moreover, networks are dramatically changing and constantly evolving. For exam-

ple a web page on the World Wide Web can be created or removed ona daily basis, and

it is impossible to obtain a snapshot of this network. Furthermore, because the network

does not lend itself naturally to direct inspection, the task of “discovering” topologies has

been left to experimentalists who develop more or less sophisticated methods to infer this

topology from appropriate network measurements. Because of the elaborate nature of the

network, there are a multitude of possible measurements that can be made, each having its

own strengths, weaknesses, and idiosyncrasies, and each resulting in a distinct view of the

network topology.

Due to these challenges, the recent use of network models to describe complex sys-

tems has emphasized the study of graph theoretic propertiesas a means to characterize the

similarities and differences in the structures and the functions of systems across a variety

of domains [42, 95, 10, 96, 43, 27, 103]. Considerable effort has been directed at the em-

pirical analysis of graph theoretic properties of real systems and at trying to find unifying

properties across many complex networks. Even more attention has focus on to develop

generic and universal models to attempt to explain such unifying properties, so as to infer

more properties that are not easy to obtain by empirical analysis. An implicit assumption
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in many of these works is that graph theoretic properties adequately capture key system

features in order to serve as a basis for comparison and contrast.

One of the most celebrated properties discovered across many topologies of complex

networks is the high variability in degree distributions, and this high variability significantly

deviates from the low variability distribution such as Poisson distribution and exponential

distribution in traditional random networks. In particular, these highly variable distributions

follow a power-law relationship in many networks, such as both the router-level and AS-

level topologies of the Internet [48], the World Wide Web [11], the network of citation

between scientific papers [108], metabolic reaction network [59], and the telephone call

graph [7].

Since traditional graph theory on regular graph or random graph cannot explain the

high variability of degree sequence, the discovery of the power-law degree distribution has

stimulated a great deal of work in the construction of the so-called “scale-free” networks,

aiming to match the power-law distribution and other large scale statistical properties, as

well as to provide a universal theory to understand all complex networks. The most famous

model was proposed by Barabási and Albert [20], who describe a growing process called

preferential attachment for a complex network in which a newnode is added to the network

with probability proportional to the degree of existing nodes. As the high degree nodes can

connect to more and more nodes, i.e. rich and richer, these nodes significantly contribute

to the high variability in the power-law distribution. Since then, numerous refinements and

modifications to the original Barabási-Albert construction have been proposed and have

resulted in many types of scale-free network models that canreproduce power-law degree

distributions with different variation, for example the ability to tune the parameters of the

power-law distribution, in order to agree with different complex networks [10].

Despite of these variations, scale-free networks share many common features: the most

attractive one is that it has power-law degree distributionwhich makes it a plausible model

for many complex networks. In fact, scale-free theory has dominated the current litera-

ture of complex networks and has been considered as the universal law for any large-scale

networks since none of the previous graph theory can explainthe power-law degree distri-

bution. Moreover, scale-free graphs are claimed to exhibita host of startling “emergent”
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consequences of universal relevance, including intriguing self-similar and fractal proper-

ties, small-world characteristics [15], and “hublike” cores. Perhaps the central claim for

scale-free graphs is that they have highly connected hubs, which “hold the network to-

gether.” [11] As noted, the structures of such networks are highly vulnerable (i.e., can be

fragmented) to attacks that target these hubs [11]. At the same time, they are resilient to

attacks that knock out nodes at random, since a randomly chosen node is unlikely to be

a hub, and thus its removal has minimal effect on network connectivity. In the context

of the Internet, where scale-free graphs have been proposedas models of the router-level

topology [125], this has been touted as “the Achilles’ heel of the Internet” [11], a vul-

nerability that has presumably been overlooked by networking engineers. Proponents of

this modeling framework have further suggested that the emergent properties of scale-free

graphs contributes to truly universal behaviors in complexnetworks [25] and that preferen-

tial attachment as well is a universal mechanism at work in the evolution of these networks

[62, 43].

Notwithstanding the potential pitfalls of reducing a complex system (e.g., one that may

involve heterogeneous components, layered architectures, and feedback dynamics) to a

simple graph [44, 116, 71], there exists the practical problem that many descriptions based

on aggregate statistics do not uniquely characterize the system of interest. In fact, there

often exists considerable diversity among graphs that share any single statistical feature,

particularly when viewed through the lens of a specific application domain.

1.2 Summary of Main Results

In this thesis, we show that the current models and theories for understanding complex

networks are incomplete and in need for substantial corrective actions, for both functional

and structural reasons.

Using the Internet, a highly engineered network topology asan example, we illustrate

the role of network functions in modeling network topologies. Highly engineered networks

are designed for a purpose, and ignoring that aspect or obscuring it with the help of some

generic but random mechanism can result in models that are meaningless from an engi-
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neering perspective. By leveraging minimal functional requirements and constraints faced

by network engineers when designing the current Internet, we propose aHeuristic Optimal

Topology(HOT) model which considers the trade-off between performance optimization

and technology and economic constraint. The HOT model captures all the important large-

scale graphic properties as previous models, yet has fundamental functional and structural

differences. In contrast to the highly connected hubs at the center in scale-free networks,

all the high degree nodes are at the edges to aggregate as manyend users as possible, while

the core consists meshlike low degree nodes to carry as much traffic as possible. The ad-

vantages in performance and robustness of the HOT model are essential to the Internet

design and consistent with engineering reality, while scale-free models have a such bad

performance as to lend them no reason to exist in real Internet.

Our study shows there is enough diversity among graphs having the same power-law

node degree distribution that, although indistinguishable when viewed by this aggregate

statistic, these graphs can actually be interpreted as “opposites” when viewed from an en-

gineering perspective that incorporates technology constraints and is motivated by through-

put performance. We further introduce a structural metric (the s-metric) to quantitatively

characterize the extend to which a network has highly connected hubs, i.e., a graph is

scale-free. Thes-metric allows us to differentiate between all simple and connected graphs

constrained by common macroscopic connectivity, which is of particular interest when the

graphs satisfy highly variable degree sequence. We show that the s-metric, and in partic-

ular ansmax graph (a graph with maximals-value, therefore a perfect scale-free graph), is

relevant for many commonly studied graph properties. First, high degree nodes in thesmax

graph have highcentrality, and for trees this relationship was shown to be monotonic (see

[70]). Second,smax graphs areself-similarunder appropriately defined operations of trim-

ming, coarse graining, network motifs and random rewiring.Finally, thesmax graph has the

highest likelihood of being generated by the most popular power-law degree-based graph

model. As we aware, thes-metric is the first metric that is introduced targeting to the back-

ground set with all simple connected graphs with common highvariable degree sequence.

In the process of investigating the relationship between the s-value and the graph assorta-

tivity, we discover that the assortativity, as a popular metric directly borrowed from classic
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graph theory where all the graphs have low variability, is extremely misleading when it is

applied to high variability case. Therefore we advocate theimportance of choosing an ap-

propriate “background set” when evaluating a graph, as wellas the importance of making

sure that the comparative analysis of two graphs is conducted with respect to an appropriate

reference. In this regard, not all graph theoretic measureshave an obvious interpretation or

are directly comparable.

We propose performance-related metrics for the Internet router-level topology to char-

acterize the function of this specific complex network, and the s-metric as an orthogonal

view to depict the structural differences of all the networks with the same high variabil-

ity degree distributions. These macroscopic properties are fundamental to understand the

functions and structures of complex networks, and togetherproject the extremely diverse

space of graphs into a two-dimensional plane. As a complement of studying the topology

of complex networks, we further explore the space of graphs from a microscopic view,

where all the graphs are connected according to their structural relationship, defined by

some local transformations from one graph to another. This connected space of graphs is

noted as aGRAPHof graphs in which each node is a graph and each link represents a trans-

formation between the corresponding two graphs. Although the GRAPH of graphs is much

more complicated than each individual graph, we can break this giant space into many

countable subspaces having common properties, and enumerate all the possible graphs in

each subspace. As a result, our work depicts a much more detailed and cleared picture of

the space of graphs which has never been explored carefully before, and lends perspective

on the structural relationship among all the graphs in the same domain space. Interestingly

enough, we find that many properties of the GRAPH of graphs have direct connections to

the properties of graphs inside it. For example, when the GRAPH of graphs represents a

domain space of all the simple and connected graphs with the same numbers of nodes and

links, the degree of a node in the GRAPH is most relevant to thedegree variability of the

graph that node represents. While further constrained to the graphs with the same degree

sequence, many properties of the GRAPH are related to the graph s-metric.
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1.3 Thesis Organization

The rest of thesis is organized as follows:

We provides basic background knowledge to study complex networks in chapter 2.

Specifically, we give a precise definition of power-law distribution and its important prop-

erties. Then we overview scale-free networks literature, and the important properties of

scale-free networks.

In chapter 3, we emphasize the functions and constraints forrouter-level topology in

Internet and propose an optimization-based model which combines objectives, constraints

and other drivers of engineering design. We compare our model and scale-free model

by evaluating their performance related metrics such as total throughput and robustness to

worst case attack. We also explore several real Internet topologies to show their consistence

with our model.

In chapter 4, we propose a structural metric, thes-metric to differentiate graphs with

the same degree sequence. We investigate the relationship betweens-metric and scale-free

network and show thats-metric is in fact a measure of the extend to which a graph is scale-

free. We further explore the detailed relationship betweens-metric and some well-known

graph properties like similarity, likelihood and assortativity.

We present the GRAPH of graphs and the way to construct it in chapter 5. We describe

a method to explicitly calculate the probability of graphs with different degree variabilities,

and provide a much clearer picture of the space of graphs withthe same numbers of nodes

and links. We discuss properties of the GRAPH and their implications to variability of

degree and thes-metric of a graph.

In chapter 6, several of my other projects are described briefly. If the topologies of com-

plex networks can be thought as my horizontal research, my vertical interests span several

layers of Internet, including the application layer failure detection and identification, trans-

port layer congestion control, cross-layer joint optimization for TCP/IP.

We conclude and point out several related future directionsat the end.
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Chapter 2

Background and Related Work

This chapter provides the necessary background for our investigation of complex net-

works. In particular, we present some basic definitions and results regarding the power-law

distribution (also called Scaling distribution) and scale-free network models.

We point out the scaling and highly variable behaviors of thepower-law distributions,

and comment on some common mistakes for plotting power-law relations in a log-log scale.

We also talk about “more normal than normal,” the reason why power-law distribution is

ubiquitous in large scale networks from a pure mathematicalpoint of view.

In the second part, we first describe the basic properties andclaims of scale-free net-

works, and then review the existing scale-free network literature and present some of the

most popular models. This is followed by a brief critique of the existing theory of scale-free

networks in general.

2.1 Power-law and Scaling Behavior

A finite sequence y= (y1, y2, . . . , yn) of real numbers, assumed without loss of gener-

ality always to be ordered such thaty1 ≥ y2 ≥ . . . ≥ yn, is said to follow apower-lawor

scaling relationshipif

k = cyk
−α, (2.1)
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wherek is (by definition) therank of yk, c is a fixed constant, andα is called thescaling

index. Since logk = log(c)−α log(yk), the relationship for the rankk vs. y appears as a line

of slope−α when plotted on a log-log scale. In this thesis, we refer to the relationship (2.1)

as thesize-rank(or cumulative) form of scaling. While the definition of scaling in (2.1)

is fundamental to the exposition of our work, a more common usage of power-laws and

scaling occurs in the context of random variables and their distributions. That is, assuming

an underlying probability modelP for a nonnegative random variableX, let F(x) = P[X ≤

x] for x ≥ 0 denote the(cumulative) distribution function (CDF) of X, and letF̄(x) =

1− F(x) denote thecomplementary CDF (CCDF).

In this stochastic context, a random variableX or its corresponding distribution function

F is said to follow apower-lawor isscalingwith indexα > 0 if, asx→ ∞,

P[X > x] = 1− F(x) ≈ cx−α, (2.2)

for some constant 0< c < ∞ and atail indexα > 0. Here, we writef (x) ≈ g(x) asx→ ∞

if f (x)/g(x) → 1 asx → ∞. For 1 < α < 2, F has infinite variance but finite mean,

and for 0< α ≤ 1, F has not only infinite variance but also infinite mean. In general, all

moments ofF of orderβ ≥ α are infinite. Since relationship (2.2) implies log(P[X > x]) ≈

log(c) − α log(x), doubly logarithmic plots ofx vs. 1− F(x) yield straight lines of slope

−α, at least for largex. In contrast,exponential distributions(i.e., P[X > x] = e−λx) result

in approximately straight lines on semi-logarithmic plots.

If the derivative of the cumulative distribution functionF(x) exists, thenf (x) = d
dxF(x)

is called the(probability) density functionof X and implies that the stochastic cumulative

form of scaling or size-rank relationship (2.2) has an equivalentnoncumulativeor size-

frequencycounterpart given by

f (x) ≈ cx−(1+α), (2.3)

which appears similarly as a line of slope−(1+α) on a log-log scale. However, as discussed

in more detail in section 2.1.2 below, the use of this noncumulative form of scaling has
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been a source of many common mistakes in the analysis and interpretation of actual data

and should generally be avoided.

Power-law distributions are called scaling distributionsbecause the sole response to

conditioning is a change in scale; that is, if the random variableX satisfies relationship

(2.2) andx > w, then the conditional distribution ofX given thatX > w is given by

P[X > x|X > w] =
P[X > x]
P[X > w]

≈ c1x−α,

where the constantc1 is independent ofx and is given byc1 = 1/w−α. Thus, at least for

large values ofx, P[X > x|X > w] is identical to the (unconditional) distributionP[X > x],

except for a change in scale. In contrast, the exponential distribution gives

P(X > x|X > w) = e−λ(x−w),

that is, the conditional distribution is also identical to the (unconditional) distribution, ex-

cept for a change of location rather than scale. Thus we prefer the termscalingto power-

law, but will use them interchangeably, as is common.

It is important to emphasize again the differences between these alternative definitions

of scaling. Relationship (2.1) isnonstochastic, in the sense that there is no assumption of

an underlying probability space or distribution for the sequencey, and in what follows we

will always use the termsequenceto refer to such a nonstochastic objecty, and accord-

ingly we will usenonstochasticto mean simply the absence of an underlying probability

model. In contrast, the definitions in (2.2) and (2.3) arestochasticand require an underlying

probability model. Accordingly, when referring to a randomvariableX we will explicitly

mean an ensemble of values or realizations sampled from a common distribution function

F, as is common usage. We will often use the standard and trivial method of viewing a

nonstochastic model as a stochastic one with a singular distribution.

These distinctions between stochastic and nonstochastic models will be important in

our work. Our approach allows for but does not require stochastics. In contrast, the scale-

free literature almost exclusively assumes some underlying stochastic models, so we will
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focus some attention on stochastic assumptions. Exclusivefocus on stochastic models is

standard in statistical physics, even to the extent that thepossibility of nonstochastic con-

structions and explanations is largely ignored. This seemsto be the main motivation for

viewing the Internet’s router topology as a member of an ensemble of random networks,

rather than an engineering system driven by economic and technological constraints plus

some randomness, which might otherwise seem more natural. Indeed, in current litera-

ture “random” is typically used more narrowly than stochastic to mean, depending on the

context, exponentially, Poisson, or uniformly distributed. Thus phrases like “scale-free vs.

random” (the ambiguity in “scale-free” notwithstanding) are closer in meaning to “scaling

vs. exponential,” rather than “nonstochastic vs. stochastic.”

2.1.1 High Variability

An important feature of sequences that follow the scaling relationship (2.1) is that they

exhibit high variability, in the sense that deviations from the average value or (sample)

mean can vary by orders of magnitude, making the average largely uninformative and not

representative of the bulk of the values. To quantify the notion of variability, we use the

standard measure of(sample) coefficient of variation, which for a given sequencey =

(y1, y2, . . . , yn) is defined as

CV(y) = σ(y)/ȳ, (2.4)

whereȳ = n−1 ∑n
k=1 yk is the average size or (sample) mean ofy andσ(y) = (

∑n
k=1(yk −

ȳ)2/(n − 1))1/2 is the (sample) standard deviation, a commonly-used metricfor measuring

the deviations ofy from its average ¯y. The presence of high variability in a sequence of

values often contrasts greatly with the typical experienceof many scientists who work with

empirical data exhibitinglow variability—that is, observations that tend to concentrate

tightly around the (sample) mean and allow for only small to moderate deviations from this

mean value.

A standard ensemble-based measure for quantifying the variability inherent in a random
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variableX is the(ensemble) coefficient of variation CV(X)defined as

CV(X) =
√

Var(X)/E(X), (2.5)

whereE(X) andVar(X) are the (ensemble) mean and (ensemble) variance ofX, respec-

tively. If x = (x1, x2, . . . , xn) is a realization of an independent and identically distributed

(iid) sample of sizen taken from the common distributionF of X, it is easy to see that the

quantityCV(x) defined in (2.4) is simply an estimate ofCV(X). In particular, ifX is scaling

with α < 2, thenCV(X) = ∞, and estimatesCV(x) of CV(X) diverge for large sample sizes.

Thus, random variables having a scaling distribution are extreme in exhibiting high vari-

ability. However, scaling distributions are only a subset of a larger family ofheavy-tailed

distributions(see [123] and references therein) that exhibit high variability. It turns out that

some of the most celebrated claims on complex networks have as a necessary condition

only the presence of high variability and not necessarily strict scaling per se. The conse-

quences of this observation are far reaching, especially because they shift the focus from

scaling relationships, their tail indices, and their generating mechanisms to an emphasis on

heavy-tailed distributions and identifying the main sources of “high variability.”

2.1.2 Cumulative vs. Noncumulative Log-log Plots

While in principle there exists an unambiguous mathematical equivalence between

distribution functions and their densities, as in (2.2) and(2.3), no such relationship can

be assumed to hold in general when plotting sequences of realor integer numbers or

measured data cumulatively and noncumulatively. Furthermore, there are good practi-

cal reasons to avoid noncumulative or size-frequency plotsaltogether (a sentiment echoed

in [97]), even though they are often used exclusively in somecommunities. To illustrate

the basic problem, we first consider two sequences,ys andye, each of length 1000, where

ys = (ys
1, . . . , y

s
1000) is constructed so that its values all fall on a straight linewhen plotted on

doubly logarithmic (i.e., log-log) scale, i.e.,ys is a scaling sequence. Similarly, the values

of the sequenceye = (ye
1, . . . , y

e
1000) are generated to fall on a straight line when plotted on

semi-logarithmic (i.e., log-linear) scale thereforeye is an exponential sequence. The full
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sequences are plotted in figure 2.1. In particular, the doubly logarithmic plot in figure 2.1(a)

shows the cumulative or size-rank relationships associated with the sequencesys andye. In

full agreement with the underlying generation mechanisms,plotting on doubly logarithmic

scale the rank-ordered sequence ofys vs. rankk results in a straight line; i.e.,ys is scal-

ing (to within integer tolerances). The same plot for the rank-ordered sequence ofye has

a pronounced concave shape and decreases rapidly for large ranks—strong evidence for

an exponential size-rank relationship. Indeed, as shown infigure 2.1(b), plotting on semi-

logarithmic scale the rank-ordered sequence ofye vs. rankk yields a straight line; i.e.,ye is

exponential (to within integer tolerances). The same plot for ys shows a pronounced con-

vex shape and decreases very slowly for large rank values—fully consistent with a scaling

size-rank relationship.
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Figure 2.1: Plots of exponentialye (black circles) and scalingys (blue squares) sequences.
(a) Doubly logarithmic size-rank plot. (b) Semi-logarithmic size-rank plot. (c) Doubly
logarithmic size-frequency plot. (d) Semi-logarithmic size-frequency plot.

To highlight the basic problem caused by the use of noncumulative or size-frequency

relationships, consider Figure 2.1(c) and (d) that show on doubly logarithmic scale and
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semi-logarithmic scale, respectively, the noncumulativeor size-frequency plots associated

with the sequencesys andye: the largest value ofys is plotted on the x-axis and has fre-

quency 1 (y-axis), the second largest value ofys has also frequency 1, etc., until the end

where the smallest value ofys happens to occur 84 times (to within integer tolerances).

Similarly for ye, the smallest value happens to occur 180 times. It is common to conclude

incorrectly from plots such as these, for example, that the sequenceye is scaling (i.e., plot-

ting on doubly logarithmic scale size vs. frequency resultsin an approximate straight line)

and the sequenceys is exponential (i.e., plotting on semi-logarithmic scale size vs. fre-

quency results in an approximate straight line)—exactly the opposite of what is correctly

inferred about the sequences using the cumulative or size-rank plots in figure 2.1(a) and

(b).

In contrast to the size-rank plots of the style in figure 2.1(a)-(b) that depict the raw

data itself and are unambiguous, the use of size-frequency plots as in figure 2.1(c)-(d),

while straightforward to describe low variability data, creates ambiguities and can easily

lead to mistakes when applied to high variability data. First, for high precision measure-

ments it is possible that each data value appears only once ina sample set, making raw

frequency-based data rather uninformative. To overcome this problem, a typical approach

is to group individual observations into one of a small number of binsand then plot for each

bin (x-axis) the relative number of observations in that bin(y-axis). The problem is that

choosing the size and boundary values for each bin is a process generally left up to the ex-

perimentalist, and thisbinning processcan dramatically change the nature of the resulting

size-frequency plots as well as their interpretation.

These examples have been artificially constructed specifically to dramatize the effects

associated with the use of cumulative or size-rank vs. noncumulative or size-frequency

plots for assessing the presence or absence of scaling in given sequence of observed values.

While they may appear contrived, errors such as those illustrated in figure 2.1 are easy to

make and are widespread in the complex systems literature. In fact, determining whether

a realization of a sample of sizen generated from one and the same (unknown) underlying

distribution is consistent with a scaling distribution andthen estimating the corresponding

tail indexα from the corresponding size-frequency plots of the data is even more unreliable.
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Even under the most idealized circumstances using synthetically generated pseudorandom

data, size-frequency plots can mislead as shown in the following easily reproduced numer-

ical experiments (see [70] for details).

The log-log size-frequency plot Figure 2.1(c), however could be used incorrectly to

claim that the data is consistent with a scaling distribution, a surprisingly common error in

the scale-free and broader complex systems literature. Thus even if one a priori assumes

a probabilistic framework, (cumulative) size-rank plots are essential for reliably inferring

and subsequently studying high variability, and they therefore are used exclusively in this

thesis.

2.1.3 More “Normal” than Normal

While power-laws in event size statistics in many complex interconnected systems have

recently attracted a great deal of popular attention, some of the aspects of scaling distribu-

tions that are crucial and important for mathematicians andengineers have been largely

ignored in the larger complex systems literature. This subsection will briefly review one

aspect of scaling that is particularly revealing in this regard and is a summary of results

described in more detail in [80, 123].

Gaussian distributions are universally viewed as “normal,” mainly due to the well-

known Central Limit Theorem (CLT). In particular, the ubiquity of Gaussians is largely

attributed to the fact that they are invariant and attractors under aggregation of summands,

required only to be independent and identically distributed (iid) and have finite variance

[51]. Another convenient aspect of Gaussians is that they are completely specified by mean

and variance, and the CLT justifies using these statistics whenever their estimates robustly

converge, even when the data could not possibly be Gaussian.For example, much data

can only take positive values (e.g., connectivity) or have hard upper bounds but can still be

treated as Gaussian. It is understood that this approximation would need refinement if ad-

ditional statistics or tail behaviors are of interest. Exponential distributions have their own

set of invariance properties (e.g., conditional expectation) that make them attractive models

in some cases. The ease by which Gaussian data is generated bya variety of mechanisms
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means that the ability of any particular model to reproduce Gaussian data is not counted

as evidence that the model represents or explains other processes that yield empirically

observed Gaussian phenomena. However, a disconnect often occurs when data have high

variability, that is, when variance or coefficient of variation estimates do not converge. In

particular, the above type of reasoning is often misappliedto the explanation of data that

are approximately scaling, for reasons that we will discussbelow.

Much of science has focused so exclusively on low variability data and Gaussian or

exponential models that low variability is not even seen as an assumption. Yet much real

world data has extremely high variability as quantified, forexample, via the coefficient

of variation defined in (2.5). When exploring stochastic models of high variability data,

the most relevant mathematical result is that the CLT has a generalization that relaxes the

finite variance (e.g., finiteCV) assumption, allows for high variability data arising from

underlying infinite variance distributions, and yieldsstable lawsin the limit. There is a rich

and extensive theory on stable laws (see for example [109]),which we will not attempt to

review, but mention only the most important features. Recall that a random variableU is

said to have astable law (with index0 < α ≤ 2) if for any n ≥ 2, there is a real numberdn

such that

U1 + U2 + · · · + Un
d
= n1/αU + dn,

whereU1, U2, . . . , Un are independent copies ofU, and where
d
= denotes equality in

distribution. Following [109], the stable laws on the real line can be represented as a four-

parameter familySα(σ, β, µ), with the indexα, 0 < α ≤ 2; thescale parameterσ > 0; the

skewness parameterβ, −1 ≤ β ≤ 1; and thelocation (shift) parameterµ, −∞ < µ < ∞.

When 1< α < 2, the shift parameter is the mean, but forα ≤ 1, the mean is infinite. There

is an abrupt change in tail behavior of stable laws at the boundaryα = 2. While forα < 2,

all stable laws are scaling in the sense that they satisfy condition (2.2) and thus exhibit

infinite variance or high variability; the caseα = 2 is special and represents a familiar,

not scaling distribution—the Gaussian (normal) distribution, i.e.,S2(σ, 0, µ) = N(µ, 2σ2),

corresponding to the finite variance or low variability case. While with the exception of

Gaussian, Cauchy, and Levy distributions, the distributions of stable random variables are
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not known in closed form, they are known to be the only fixed points of the renormalization

group transformation and thus arise naturally in the limit of properly normalized sums

of iid scaling random variables. From an unbiased mathematical view, the most salient

features of scaling distributions are this and additional strong invariance properties (e.g.,

to marginalization, mixtures, maximization), and the easewith which scaling is generated

by a variety of mechanisms [80, 123]. Combined with the abundant high variability in real

world data, these features suggest that scaling distributions are in a sense more “normal”

than Gaussians and that they are convenient and parsimonious models for high variability

data in as strong a sense as Gaussians or exponentials are forlow variability data.

While the ubiquity of scaling is increasingly recognized and even highlighted in the

physics and the popular complexity literature [16, 31, 19, 18], the deeper mathematical

connections and their rich history in other disciplines have been largely ignored, with se-

rious consequences. Models of complexity using graphs, lattices, cellular automata, and

sandpiles preferred in physics and the standard laboratory-scale experiments that inspired

these models exhibit scaling only when finely tuned in some way. So even when accepted

as ubiquitous, scaling is still treated as arcane and exotic, and “emergence” and “self-

organization” are invoked to explain how this tuning might happen [14]. But given the

strong invariance properties of scaling distributions, aswell as the multitude of diverse

mechanisms by which scaling can arise in the first place [97],it becomes clear that an

ability to generate scaling distributions “explains” little, if anything. Once high variability

appears in real data, then scaling relationships become a natural outcome of the processes

that measure them.

2.1.4 Scaling Degree Sequence and Degree Distribution

Statistical features of graph structures that have received extensive treatment include the

size of the largest connected component, link density, nodedegree relationships, the graph

diameter, the characteristic path length, the clustering coefficient, and the betweenness

centrality (for a review of these and other metrics see [10, 96, 43]). However, the single

feature that has received the most attention is the distribution of node degree and whether
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or not it follows a power-law.

For a graph withn nodes, letdi denote the degree of nodei, 1 ≤ i ≤ n, and callD =

{d1, d2, . . . , dn} thedegree sequenceof the graph, again assumed without loss of generality

always to be orderedd1 ≥ d2 ≥ . . . ≥ dn. We will say a graph hasscaling degree sequence

D (or D is scaling) if for all 1 ≤ k ≤ ns ≤ n, D satisfies apower-law size-rank relationship

of the formk dαk = c, wherec > 0 andα > 0 are constants, and wherens determines the

range of scaling [80]. Since this definition is simply a graph-specific version of (2.1) that

allows for deviations from the power-law relationship for nodes with low connectivity, we

again recognize that doubly logarithmic plots ofdk vs. k yield straight lines of slope−α, at

least for largedk values.

This description of scaling degree sequence is general, in the sense that it applies to

any given graph without regard to how it is generated and without reference to any under-

lying probability distributions or ensembles. That is, a scaling degree sequence is simply

an ordered list of integers representing node connectivityand satisfying the scaling rela-

tionship of (2.1). In contrast, the current literature on complex networks focuses largely on

scaling degree distribution, and thus a given degree sequence has the further interpretation

as representing a realization of an iid sample of sizen generated from a common scaling

distribution of the type (2.2). This in turn is often inducedby some random ensemble of

graphs. This thesis will develop primarily a nonstochastictheory and thus focus on scaling

degree sequences, but will clarify the role of stochastic models and distributions as well. In

all cases, we will aim to be explicit about which is assumed tohold.

For graphs that are not trees, a first attempt at formally defining and relating the con-

cepts of “scaling” or “scale-free” and “self-similar” through an appropriately defined no-

tion of “scale invariance” is considered by Aiello Chung andLu and described in [8]. In

short, they view the evolution of a graph as a random process of growing the graph by

adding new nodes and links over time. A model of a given graph evolution process is then

called “scale-free” if “coarse-graining” in time yields scaled graphs that have the same

power-law degree distribution as the original graph. Here “coarse-graining in time” refers

to constructing scaled versions of the original graph by dividing time into intervals, com-

bining all nodes born in the same interval into supernodes, and connecting the resulting
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supernodes via a natural mapping of the links in the originalgraph. For a number of graph

growing models, including the Barabási-Albert construction, Aiello Chung and Lu show

that the evolution process is “scale-free” in the sense of being invariant with respect to time

scaling (i.e., the frequency of sampling with respect to thegrowth rate of the model) and

independent of the parameter of the underlying power-law node degree distribution (see [8]

for details). Note that the scale invariance criterion considered in [8] concerns exclusively

the degree distributions of the original graph and its coarse-grained or scaled counterparts.

Specifically, the definition of “scale-free” considered by Aiello et al. is not “structural” in

the sense that it depends on a macroscopic statistic that is largely uninformative as far as

topological properties of the graph are concerned.

2.2 Scale-Free Networks

The development of graphic models for complex network topology can be traced back

to 1959, when Erdös and Renyı́ [47] proposed random graph models and many properties

were discovered in the limit of large graph size. In 1998 and 1999, small-world networks

[120] and scale-free networks [20] were proposed separately and started an avalanche of

work on modeling of complex networks by focusing on generating different variations of

topology models to match the large-scale statistical properties. Scale-free networks, in par-

ticular, supposedly replicate empirically observed scaling node degree relationships that are

not easily captured by traditional graph model like regulargraphs or Erdös-Renyı́ random

graphs [20], leading the trend of the pursuit of universal properties that transcend specific

system details. It is in exactly what these properties are, and the theories to explain and

exploit them, where big confusion arises.

We review the existing scale-free literature describing some of the most popular models

and their most appealing features. This is then followed by abrief a critique of the existing

theory of scale-free networks in general.
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2.2.1 Main Scale-Free Properties

The main properties of scale-free graphs that appear in the existing literature can be

summarized as

• scale-free networks have scaling (power-law) degree distribution.

• scale-free networks can be generated by certain random processes, the foremost

among which is preferential attachment.

• scale-free networks have highly connected “hubs” which “hold the network together”

and give the “robust yet fragile” feature of error tolerancebut attack vulnerability.

• scale-free networks are generic in the sense of being preserved under random degree

preserving rewiring.

• scale-free networks are self-similar.

• scale-free networks are universal in the sense of not depending on domain-specific

details.

This variety of features suggest the potential for a rich andextensive theory. Unfor-

tunately, it is unclear from the literature which properties are necessary and/or sufficient

to imply the others, and if any implications are strict, or simply “likely” for an ensemble.

Many authors apparently define scale-free in terms of just one property, typically scaling

degree distribution or random generation, and appear to claim that some or all of the other

properties are then consequences. In this part, we aim to clarify exactly what options there

are in defining scale-free graphs and deriving their additional properties.

2.2.2 Existing Scale-Free Literature

We briefly review the existing treatment of the above properties, related historical re-

sults, and shortcomings of the current theory.

The ambiguity regarding the definition of “scale-free” originates with the original pa-

pers [20, 11], but have continued since. Here scale-free graphs appear to be defined both as
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graphs with scaling or power-law degree distributions and as being generated by a stochas-

tic construction mechanism based onincremental growth(i.e., nodes are added one at a

time) andpreferential attachment(i.e., nodes are more likely to attach to nodes that already

have many connections). Indeed, the apparent equivalence of scaling degree distribution

and preferential attachment, and the ability of thus-defined (if ambiguously so) scale-free

network models to generate node degree statistics that are consistent with the ubiquity of

empirically observed power-laws is the most commonly citedevidence that scale-free net-

work mechanisms and structures are, in some sense, universal [11, 10, 19, 20, 22].

Models of preferential attachment giving rise to power-lawstatistics actually have a

long history and are at least 80 years old. As presented by Mandelbrot [80], one early ex-

ample of research in this area was the work of Yule [126], who in 1925 developed power-

law models to explain the observed distribution of species within plant genera. Mandelbrot

[80] also documents the work of Luria and Delbrück, who in 1943 developed a model and

supporting mathematics for the explicit generation of scaling relationships in the number

of mutants in old bacterial populations [77]. A more generaland popular model of prefer-

ential attachment was developed by Simon [112] in 1955 to explain the observed presence

of power-laws within a variety of fields, including economics (income distributions, city

populations), linguistics (word frequencies), and biology (distribution of mutants in bacte-

rial cultures). Substantial controversy and attention surrounded these models in the 1950s

and 1960s [80]. A recent review of this history can also be found in [87]. By the 1990s,

though, these models had been largely displaced in the popular science literature by mod-

els based on critical phenomena from statistical physics [16], only to resurface recently in

the scientific literature in this context of “scale-free networks” [20]. Since then, numer-

ous refinements and modifications to the original Barabási-Albert construction have been

proposed and have resulted in scale-free network models that can reproduce power-law

degree distributions with anyα ∈ [1, 2], a feature that agrees empirically with many ob-

served networks [10]. Moreover, the largely empirical and heuristic studies of these types

of “scale-free” networks have recently been enhanced by a rigorous mathematical treatment

that can be found in [26] and involves a precise version of theBarabási-Albert construction.

The introduction of scale-free network models, combined with the equally popular
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(though less ambiguous) “small world” network models [120], reinvigorated the use of

abstract random graph models and their properties (particularly node degree distributions)

to study a diversity of complex network systems. For example, Dorogovtsev and Mendes

[43] provide a “standard programme of empirical research ofa complex network,” which

for the case of undirected graphs consist of finding (1) the degree distribution; (2) the

clustering coefficient; (3) the average shortest-path length. The presumption is that these

features adequately characterize complex networks. Through the collective efforts of many

researchers, this approach has cataloged an impressive list of real application networks,

including communication networks (the WWW and the Internet), social networks (au-

thor collaborations, movie actors), biological networks (neural networks, metabolic net-

works, protein networks, ecological and food webs), telephone call graphs, mail networks,

power grids and electronic circuits, networks of software components, and energy land-

scape networks (again, comprehensive reviews of these manyresults are widely available

[10, 19, 96, 43, 105]). While very different in detail, these systems share a common fea-

ture in that their degree distributions are all claimed to follow a power-law, possibly with

different tail indices.

Regardless of the definitional ambiguities, the use of simple stochastic constructions

that yield scaling degree distributions and other appealing graph properties represent for

many researchers what is arguably an ideal application of statistical physics to explain-

ing and understanding complexity. Since scale-free modelshave their roots in statistical

physics, a key assumption is always that any particular network is simply a realization

from a larger ensemble of graphs, with an explicit or implicit underlying stochastic model.

Accordingly, this approach to understanding complex networks has focused on those net-

works that are most likely to occur under an assumed random graph model and has aimed at

identifying or discovering macroscopic features that capture the “essence” of the structure

underlying those networks. Thus preferential attachment offers a general and hence attrac-

tive “microscopic” mechanism by which a growth process yields an ensemble of graphs

with the “macroscopic” property of power-law node degree distributions [21]. Second, the

resulting scale-free topologies are “generic.” Not only isany specific scale-free graph the

generic or likely element from such an ensemble, but also“... an important property of
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scale-free networks is that [degree preserving] random rewiring does not change the scale-

free nature of the network”(see Methods Supplement to [59]). Finally, this ensemble-based

approach has an appealing kind of “universality” in that it involves no model-specific do-

main knowledge or specialized “design” requirements and requires only minimal tuning of

the underlying model parameters.

Perhaps most importantly, scale-free graphs are claimed toexhibit a host of startling

“emergent” consequences of universal relevance, including intriguing self-similar and frac-

tal properties (see below for details), small-world characteristics [15], and “hublike” cores.

Perhaps the central claim for scale-free graphs is that theyhave highly connected hubs,

what we term SF hubs, which “hold the network together.” As noted, the structure of such

networks is highly vulnerable (i.e., can be fragmented) to attacks that target these hubs

[11]. At the same time, they are resilient to attacks that knock out nodes at random, since

a randomly chosen node is unlikely to be a hub and thus its removal has minimal effect on

network connectivity. In the context of the Internet, wherescale-free graphs have been pro-

posed as models of the router-level Internet [125], this hasbeen touted “the Achilles’ heel

of the Internet” [11], a vulnerability that has presumably been overlooked by networking

engineers. Furthermore, the hublike structure of scale-free graphs is such that the epidemic

threshold is zero for contagion phenomena [104, 17, 106, 105], thus suggesting that the

natural way to stop epidemics, either for computer viruses/worms or biological epidemics

such as AIDS, is to protect these hubs [39, 28]. Proponents ofthis modeling framework

have further suggested that the emergent properties of scale-free graphs contributes to truly

universal behavior in complex networks [25] and that preferential attachment as well is a

universal mechanism at work in the evolution of these networks [62, 43].

The scale-free story has successfully captured the interest and imagination of researchers

across disciplines, and with good reason, as the proposed properties are rich and varied. Yet

the existing ambiguity in its mathematical formulation andmany of its most essential prop-

erties has created confusion about what it means for a network to be “scale-free.” One

possible and apparently popular interpretation is that scale-free means simply graphs with

scaling degreesequences, and that this alone implies all other features listed above. We

will show that this is incorrect, and in fact none of the features follows from scaling alone.
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Even relaxing this to random graphs with scaling degreedistributionsis by itself inade-

quate to imply any further properties. One goal of this thesis is to clarify the reasons why

these interpretations are incorrect, and propose minimal changes to fix them. The opposite

extreme interpretation is that scale-free graphs are defined as having all of the above-listed

properties. We will show that this is possible in the sense that the set of such graphs is not

empty, but as a definition this leads to two further problems.Mathematically, one would

prefer fewer axioms, and we will rectify this with a minimal definition. We will introduce a

structural metric that provides a view of the extent to whicha graph is scale-free and from

which all the above properties follow, often with necessaryand sufficient conditions. The

other problem is that the canonical examples of apparent scale-free networks, the Internet

and biological metabolism, are then very far from scale-free in that they havenoneof the

above properties except perhaps for scaling degree distributions. This is simply an unavoid-

able conflict between these properties and the specifics of the applications, and cannot be

fixed.

As a result, a rigorous theory of scale-free graphs must either define scale-free more

narrowly than scaling degree sequences or distributions inorder to have nontrivial emer-

gent properties, and thus lose central claims of applicability, or instead define scale-free

as merely scaling, but lose all the universal emergent features that have been claimed to

hold for scale-free networks. We will pursue the former approach because we believe it is

most representative of the spirit of previous studies and also because it is most inclusive of

results in the existing literature. At the most basic level,simply to be a nontrivial and novel

concept, scale-free clearly must mean more than a graph withscaling degree sequence or

distribution. It must capture some aspect of the graph itself, and not merely a sequence of

integers, stochastic or not, in which case the scale-free literature and this thesis would offer

nothing new. Other authors may ultimate choose different definitions, but in any case, the

results in this thesis clarify for the first time precisely what the graph theoretic alternatives

are regarding the implications of any of the possible alternative definitions. Thus the def-

inition of the word “scale-free” is much less important thanthe mathematical relationship

between their various claimed properties, and the connections with real world networks.
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2.3 Summary

In this chapter, we provide background knowledge on the scaling distribution and scale-

free networks, which are essential for the exploration of complex networks.

To illustrate some key points about the existing claims regarding scale-free networks

as adopted in the popular literature and their relationshipwith scaling degree distributions,

we consider an application to the Internet where graphs are meant to model the Internet

connectivity at the router-level in the next chapter.
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Chapter 3

Internet Router-Level Topology

Previous studies on network topologies have focused on interpreting measurements or

on phenomenological descriptions and evaluation of graph-theoretic properties of topology

generators. Power-law degree distribution and scale-freenetworks dominate the current

literature.

Arguing against this approach, and taking the Internet router-level topology as an ex-

ample, we propose a complementary approach by emphasizing the network functionality

together with practical constrains and trade-offs. We claim that very simple models that

incorporate hard technological constraints on router bandwidth and connectivity, together

with abstract models of user demand and network performance, can successfully depict

and capture the intrinsic fundamentals of the Internet topology. In parallel, we provide

evidence that scale-free networks as constructed by a constrained random process are in-

herently flawed.

This chapter is organized in the following manner.

We introduce the router-level topology and our work briefly in section 1 and we review

the previous approaches to generating realistic Internet topologies in section 2. In sec-

tion 3, we provide an alternate approach to understanding topology structure that explicitly

incorporates router technology constraints, various economic constraints, and network per-

formance at work in the construction of real networks. Then in section 4, we explore sev-

eral real Internet topologies and show the consistence withour approach. In section 5, we

discuss several performance related metrics for comparingand contrasting networks, par-

ticularly with the popular scale-free networks. We give examples and presents our findings
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in section 6 and summarize our work at the end.

3.1 Introduction

A detailed understanding of the many facets of the Internet’s topological structure is

critical for evaluating the performance of networking protocols, for assessing the effective-

ness of proposed techniques to protect the network from nefarious intrusions and attacks,

or for developing improved designs for resource provisioning.

Recent attention on the large-scale topological structureof the Internet has been heav-

ily focused on theconnectivityof network components, whether they be machines in the

router-level graph [55, 29] or entire subnetworks (Autonomous Systems) in the AS-level

graph [52, 33]. A particular feature of network connectivity that has generated consider-

able discussion is the prevalence of heavy-tailed distributions in nodedegree(e.g., number

of connections) and whether or not these heavy-tailed distributions conform to power-laws

[48, 85, 34, 87]. This macroscopic statistic has greatly influenced the generation and eval-

uation of network topologies. In the current environment, degree distributions and other

large-scale statistics are popular metrics for evaluatinghow representative a given topol-

ogy is [56], and scale-free models and their different variations become the most popular

models for the Internet topology [30, 63, 84, 125, 10, 9, 100].

Yet, from our viewpoint, this perspective is both incomplete and in need for corrective

action. For one, there exist many different graphs having thesame distribution of node

degree, some of which may be consideredoppositesfrom the viewpoint of network en-

gineering. Furthermore, there are a variety of distinctly different random graph models

that might give rise to a given degree distribution, and someof these models may have

no network-intrinsic meaning whatsoever. Finally, we advocate here an approach that is

primarily concerned with developing a basic understandingof the observed high variabil-

ity in topology-related measurements and reconciling themwith the reality of engineering

design. From this perspective, reproducing abstract mathematical constructs such as power-

law distributions is largely a side issue.

In this chapter, we considera first-principles approachto understanding Internet topol-
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ogy at therouter-level, where nodes represent routers and links indicate one-hop connec-

tivity between routers. More specifically, when referring in the following to router-level

connectivity, we always mean Layer 2, especially when the distinction between Layer 2

vs. Layer 3 issues is important for the purpose of illuminating the nature of the actual

router-level connectivity (i.e., node degree) and its physical constraints. For router-level

topology issues such as performance, reliability, and robustness to component loss, the

physical connectivity between routers is more important than the virtual connectivity as

defined by the higher layers of the protocol stack (e.g., IP, MPLS). Moreover, we use here

the notion of “first-principles approach” to describe an attempt at identifying somemini-

mal functional requirements and physical constraints needed to develop simple models of

the Internet’s router-level topology that are at the same time illustrative, representative, in-

sightful, and consistent with engineering reality. Far from being exhaustive, this attempt

is geared toward accounting for very basic network-specificaspects, but it can readily be

enhanced if some new or less obvious functional requirements or physical constraints are

found to play a critical role. Also, in the process of developing models of the Internet

router-level connectivity that are “as simple as possible,but not simpler,” we focus on sin-

gle ISPs or ASes as the Internet’s fundamental building blocks that are designed largely in

isolation and then connected according to both engineeringand business considerations.

While there are several important factors that contribute to the design of an ISP’s router-

level topology (e.g., available technology, economic viability, customer demands, redun-

dancy and geography) and while opinions will vary about which and how many of these

factors matter, we focus here on a few critical technological and economic considerations

that we claim provide insight into the types of network topologies that are possible. In

essence, we argue the importance of explicit considerationof the basic trade-offs that

network designers must face when building real networks. Inparallel, we provide evi-

dence that scale-free network models of router-level connectivity whose construction is

constrained by macroscopic statistics but is otherwise governed by randomness are inher-

ently flawed. To this end, we introduce the notions ofnetwork performanceas a new means

for discerning important differences between generated and real network topologies. In so

doing, we show that incorporating fundamental design details is crucial to the understand-
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ing and evaluation of Internet topology.

3.2 Previous Work on Internet Topology

Two network topologies that have received significant attention from these experimental

approaches are theAS graph(representing organizational interconnectivity betweensub-

networks) and therouter-level graphof the Internet. Despite the challenges associated

with the careful collection and interpretation of topology-related network measurements,

significant efforts by the networking community are yielding an emerging picture of the

large-scale statistical properties of these topologies [48, 55, 4, 29, 113, 115].

The development of abstract, yet informed, models for network topology evaluation and

generation has followed the work of empiricists. The first popular topology generator to be

used for networking simulation was the Waxman model [121], which is a variation of the

classical Erdös-Rényi random graph [47]. The use of this type of random graph model was

later abandoned in favor of models that explicitly introduce nonrandom structure, particu-

larly hierarchy and locality, as part of the network design [40, 127]. The argument for this

type of approach was based on the fact that an inspection of real networks shows that they

are clearly not random but do exhibit certain obvious hierarchical features. This approach

further argued that a topology generator should reflect the design principles in common

use. For example, in order to achieve desired performance objectives, the network must

have certain connectivity and redundancy requirements, properties which are not guaran-

teed in random network topologies. These principles were integrated into the Georgia Tech

Internetwork Topology Models (GT-ITM).

Thesestructural topology generatorswere the standard models in use until power-law

relationships in the connectivity of both the AS-level and router-level graphs of the Inter-

net were reported by Faloutsos et al. [48]. Since then, the identification and explanation

of power-laws has become an increasingly dominant theme in the recent body of network

topology literature [125, 34, 85, 124]. Since the GT-ITM topology generators fail to pro-

duce power-laws in node degree, they have often been abandoned in favor of new models
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that explicitly replicate these observed statistics.1 Examples of these generators include the

INET AS-level topology generator [63], BRITE [84], BA [125], AB [10], GLP [30], PLRG

[9], and the CMU power-law generator [100].

Each of the aforementioned degree-based topology generators uses one of the following

three probabilistic generation methods. The first ispreferential attachment[20] which says

(1) the growth of the network is realized by the sequential addition of new nodes, and (2)

each newly added node connects to some existing nodes preferentially, such that it is more

likely to connect with a node that already has many connections. As a consequence, high-

degree nodes are likely to get more and more connections resulting in a power-law in the

distribution of node degree. For a precisely defined model that incorporates the key features

of preferential attachment and is amenable to rigorous mathematical analysis, we refer to

[26] and references therein. The second generation method is due to Chung and Lu [35]

who considered ageneral model of random graphs (GRG) with a given expected degree

sequence. The construction proceeds by first assigning each node its (expected) degree

and then probabilistically inserting edges between the nodes according to a probability that

is proportional to the product of the degree of the two given endpoints. If the assigned

expected node degree sequence follows a power-law, the generated graph’s node degree

distribution will exhibit the same power-law. The third generation method, thepower-law

Random Graph (PLRG)[9], also attempts to replicate a given (power-law) degree sequence.

This construction involves forming a setL of nodes containing as many distinct copies of a

given node as the degree of that node, choosing a random matching of the the elements of

L, and applying a mapping of a given matching into an appropriate (multi)graph.2

One of the most important features of networks that have power-law degree distribu-

tions and that are generated according to one of these probabilistic mechanisms is that they

all tend to have a few centrally located and highly connected“hubs” through which essen-

tially most traffic must flow. For the networks generated by preferential attachment, the

central “hubs” tend to be nodes added early in the generationprocess. In the GRG model

1See however a comment by E. Zegura on router-level topology modeling,
http://www.caida.org/analysis/topology/ router-level-topology.xml.

2It is believed that the PLRG and GRG models are “basically asymptotically equivalent, subject to bound-
ing error estimates” [9].
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as well as in the PLRG model, the nodes with high (expected) degree have higher proba-

bility to attach to other high degree nodes and these highly connected nodes form a central

cluster. When using these models to represent the Internet,the presence of these highly

connected central nodes in these networks has been touted its “Achilles’ heel” because

network connectivity is highly vulnerable to attacks that target the high-degree hub nodes

[11]. It has been similarly argued that these high-degree hubs are a primary reason for the

epidemic spread of computer worms and viruses [104, 28]. Thepresence of highly con-

nected central nodes in a network having a power-law degree distribution is the essence of

thescale-freenetwork models, therefore we do not specifically differentiate degree-based

models and scale-free models in this chapter.

However, this emphasis on power-laws and the resulting efforts to generate and ex-

plain them with the help of these degree-based methods have not gone without criticism.

A widely known deficiency is that degree-based methods for topology generation produce

merely descriptive models that are in general not able to provide correct physical expla-

nations for the overall network structure [124]. The claim is that, in the absence of an

understanding of the drivers of network deployment and growth, it is difficult to identify

the causal forces affecting large-scale network properties and even more difficult to predict

future trends in network evolution. Nevertheless, in the absence of concrete examples of

such alternate models, degree-based methods have remainedpopular representations for

large-scale Internet structure.

This chapter follows the previous arguments of [13] in favorof the need to explicitly

consider the technical drivers of network deployment and growth. In spirit, it delivers for

degree-based networks a similar message as [127] did for therandom graph-type mod-

els [121] that were popular with networking researchers in the early 1990s. While [127]

identified and commented on the inherent limitations of the various constructs involving

Erdös-Rényi-type random graphs, our work points toward similar shortcomings and unre-

alistic features when working with probabilistic degree-based graphs.
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3.3 A First-Principles Approach

A key challenge in using large-scale statistical features to characterize something as

complex as the topology of an ISP or the Internet as a whole is that it is difficult to un-

derstand the extent to which any particular observed feature is “fundamental” to its struc-

ture. Here, we consider a complementary approach for thinking about network topology, in

which we explore some of the practical constraints and trade-offs at work in the construc-

tion of real networks. In essence, we are asking the question, “What really matters when it

comes to topology construction?” and argue that minimally one needs to consider the role

of router technology and network economics in the network design process of a single ISP.

The hope is that even a preliminary understanding of key factors, when combined with a

more subtle use of statistics and graph theory, can provide aperspective that is more con-

sistent both with observed measurements and the engineering principles at work in network

design than with the current, at times conflicting, claims about the real Internet topology.

In particular, given the current emphasis on the presence ofpower-laws in the connectivity

of the router-level Internet, it is important to understandwhether such variability is plau-

sible, and if so, where it might be found within the overall topology. Fortunately, such an

explanation is possible if one considers the importance of router technology and network

economics in the design process.

3.3.1 Technology Constraints

In considering the physical topology of the Internet, a major constraint affecting the

types of topologies available network designers is relatedto the routing equipment used to

control the flow of traffic on the network, and the underlyingrouter technology constraints

are a significant force shaping network connectivity. Basedon the technology used in the

cross-connection fabric of the router itself, a router has amaximum number of packets that

can be processed in any unit of time. This constrains the number of link connections (i.e.,

nodedegree) and connection speeds (i.e., bandwidth) at each router. This limitation creates

a “feasible region” and corresponding “efficient frontier” of possible bandwidth-degree

combinations for each router. That is, a router can have a fewhigh bandwidth connections
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Figure 3.1: Technology constraint for Cisco 12416 Gigabit Switch Router(GSR): degree
vs. bandwidth.

or many low bandwidth connections (or some combination in between). In essence, this

means that routers must obey a form offlow conservationin the traffic that they can handle.

While it is always possible to configure the router so that it falls below the efficient frontier

(thereby underutilizing the router capacity), it is not possible to exceed this frontier (e.g.,

by having many high bandwidth connections).

Figure 3.1 shows the technology constraint for the Cisco 12416 GSR, which is one of

the most expensive and highest bandwidth routers availablefrom a 2002 Cisco product

catalog [6]. Each point on the plot corresponds to a different combination of line cards

and interfaces for the same router. This router has 15 available line card slots. When the

router is configured to have less than 15 connections, throughput per degree is limited by

the line-card maximum speed (10 Gbps) and the total bandwidth increases with the number

of connections, while bandwidth per degree remains the same(dash-dot lines). When the

number of connections is greater than 15, the total router bandwidth and bandwidth per

degree decrease as the total number of connections increases (solid lines), up to a maximum

of 120 possible connections for this router (dotted line). These three lines collectively

define the feasible region for configuring this router.

Although engineers are constantly increasing the frontierwith the development of new

routing technologies, each particular router model will have a frontier representing its fea-
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sible region, and network architects are faced with trade-offs between capacity and cost in

selecting a router and then must also decide on the quantity and speed of connections in

selecting a router configuration. Until new technology shifts the frontier, the only way to

create throughput beyond the frontier is to build networks of routers.3

The current Internet is populated with many different router models, each using po-

tentially different technologies and each having their own feasible region. However, these

technologies are still constrained in their overall ability to trade-off total bandwidth and

number of connections. Thus, networking products tend to bespecialized to take advan-

tage of one area of an aggregate feasible region, depending on their intended role within the

network hierarchy. Consider an aggregate picture of many different technologies (shown

in figure 3.2), used both in the network core and at the networkedge. In addition to the

Cisco 12000 GSR Series, the constraints on the somewhat older Cisco 7000 Series is also

shown. Edge technologies are somewhat different in their underlying design, since their

intention is to be able to support large numbers of end users at fixed (DSL, dial-up) or vari-

able (cable) speeds. They can support a much greater number of connections (upwards of

10,000 for DSL or dial-up) but at significantly lower speeds.The shared access technology

for broadband cable provides service comparable to DSL whenthe total number of users is

about 100, but can only provide service equivalent to dial-up when the number of users is

about 2000. Included also is the Linksys 4-port router, which is a popular LAN technology

supporting up to 5100 MB Ethernet connections. Observe thatthe limits of this less expen-

sive technology are well within the interior of the feasibleregion for core network routers.

Collectively, these individual constraints form an overall aggregate constraint on available

topology design.

We are not arguing that limits in technology fundamentally preclude the possibility of

high-degree, high-bandwidth routers, but simply that the product offerings recently avail-

able to the marketplace have not supported such configurations. While we expect that com-

panies will continue to innovate and extend the feasible region for router configuration, it

remains to be seen whether or not the economics (including configuration and management)

3Recent product announcements from router manufacturers such as Juniper Networks, Avici Systems, and
Cisco Systems suggest that the latest trend in technology development is to build scaleable multirack routers
that do exactly this.
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for these products will enable their wide deployment withinthe Internet.

3.3.2 Economic Considerations

Even more important than the technical considerations affecting router use are the eco-

nomic considerations of network design and deployment, which are driven by customer de-

mands and ultimately direct the types of technologies that are developed for use by network

providers. For example, the cost of installing and operating physical links in a network can

dominate the cost of the overall infrastructure, and since these costs tend to increase with

link distance, there is tremendous practical incentive to design wired networks such that

they can support traffic using the fewest number of links. The ability to share costsvia

multiplexing is a fundamental driver underlying the designof networking technologies,

and the availability of these technologies enables a network topology in which traffic is

aggregated at all levels of network hierarchy, from its periphery all the way to its core.

The development of these technologies has similarly followed the demands of cus-

tomers, for whom there is wide variability in the willingness to pay for network band-

widths (Figure 3.3). For example, nearly half of all users ofthe Internet in North America

still have dial-up connections (generally 56 kbps), only about 20% have broadband access

(256 kbps-6 Mbps), and there is only a small number of users with large (10 Gbps) band-
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width requirements [12]. Again, the cost effective handling of such diverse end user traffic

requires that aggregation take place as close to the edge as possible and is explicitly sup-

ported by a common feature that these edge technologies have, namely a special ability to

support high connectivity in order to aggregate end user traffic before sending it towards

the core.

The economic drive to minimize link costs promotes a topology that aggregates traffic

as close to the network edge as possible. The use of multiplexing in a variety of routing

technologies at the network edge supports this aggregation, and the wide variability in

the bandwidth demands and geographies of end user connections suggests that one should

expect wide variability in the measured connectivity of nodes at the network edge. Since

it is generally accepted that most of the computers in the network are at its edge, it is

reasonable to expect that the overall connectivity statistics of the network are dominated by

those at the edge, which lead to the high variability in the whole Internet node connectivity.

3.3.3 Service Requirements

In addition to the constraints imposed by economic and router technology limitations, it

is reasonable to expect that ISPs are driven to satisfy certain service requirements imposed

by their customers or the industry at large. For example, most ISPs utilize service level



38

agreements (SLAs), which serve as business contracts with their major customers and their

peers. SLAs typically specify terms such as delivered bandwidth and limits on service

interruptions, and they often include financial penalties for failure to comply with their

terms. While SLAs are often negotiated on an individual basis, competition among ISPs

often creates industry norms that lead to standard SLA terms. Conversely, some ISPs

use special terms in SLAs as a mechanism for differentiating their services and creating

competitive advantages over rival companies.

From the provider’s perspective, one simple metric for assessing whether or not a given

network topology is “good” is its ability to handle the bandwidth requirements of its edge

routers. We definenetwork performanceas the maximum throughput on the network under

heavy traffic conditions based on a gravity model [128]. That is, we consider flows on all

source-destination pairs of edge routers, such that the amount of flow Xi j between source

i and destinationj is proportional to the product of the traffic demandxi, xj at end points

i, j, Xi j = αxi xj, whereα is some constant. We compute the maximum throughput on the

network under the router degree bandwidth constraint,

max
α

∑

i j

αxi xj (3.1)

s.t. RX≤ B, (3.2)

whereX is a vector obtained by stacking all the flowsXi j = αxi xj andR is the routing

matrix (defined such thatRkl = {0, 1} depending on whether or not flowl passes through

routerk). We use shortest path routing to get the routing matrix, anddefineB as the vector

consisting of all router bandwidths according to the degreebandwidth constraint (Figure

3.2). Due to a lack of publicly available information on traffic demand for each end point,

we assume the bandwidth demand at a router is proportional tothe aggregated demand of

any end hosts connected to it. In this manner, we allow for good bandwidth utilization of

the higher level routers.4 While other performance metrics may be worth considering, we

claim that maximum throughput achieved using the gravity model provides a reasonable

4We also tried choosing the traffic demand according to other metric, such as the demand between routers
is the same, or is as the product of their degrees as in [54], and qualitatively similar performance values are
obtained but with different router utilization.
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measure of the network to provide afair allocation of bandwidth.

3.3.4 Heuristically Optimal Networks

Our objective is to develop a simple and minimal, yet plausible model for router-level

topology that conforms to the technology constraints of routers, reflects link costs and

high variability in end-user demand, and achieves reasonably “good” performance. We

have argued that the perspective of an ISP in building a national scale network topology

is driven by three factors. First, the need to minimize the long distance link costs means

that it is driven to aggregate traffic from its edges to its core. Second, the design of its

topology, particularly in the core, must conform to the technology constraints inherent

in routers. Third, the network should have good performance, measured in terms of its

ability to carry large volumes of traffic in a fair manner. While these are certainly not the

only factors affecting design, we claim that these three drivers are a sensible starting point

for understanding the relationship between ISP network design and resulting router-level

topology.

Collectively, these constraints and functional requirements suggest that a “good” de-

sign is one in which individual links at the edge of the network have are aggregated in a

manner such that the link capacities increase as one moves tothe network core. In particu-

lar, edge routers may be connected to a large number of low bandwidth users or a smaller

number of high bandwidth users. In contract, one can expect that the core is constructed as

a loose mesh of high speed, low connectivity routers which carry heavily aggregated traffic

over high bandwidth links. Accordingly, this meshlike coreis supported by a hierarchical

treelike structure at the edges whose purpose is to aggregate traffic through high connec-

tivity. We will refer to this topology asHeuristically Optimal Topology(HOT) to reflect

its consistency with real design considerations. By “heuristically” we have two meanings.

On one side, we only consider the minimal set of functional requirements and constraints

therefore the model reflects the most coarse grain level approximation. On the other side,

our model does not exactly aim for the optimal solution, but any one that can provide a

reasonable good performance. The optimal solution becomesless important since in the
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Figure 3.4: Abilene network. Each node represents a router,and each link represents a
physical connection between Abilene and another network.

Internet, since much more trade-off between constraints and functions need to take into

considerations and it is often impossible to find the best one.

3.4 Evidence from Real Internet

As evidence that this heuristic design shares similar qualitative features with the real

Internet, we consider the real router-level connectivity of the Internet as it exists for the

educational networks of Abilene and CENIC as well as a commercial tier-1 network from

AT&T.

3.4.1 The Abilene Network

The Abilene Network (Figure 3.4) is the Internet backbone network for higher educa-

tion, and it is part of the Internet2 initiative [1]. It is comprised of high-speed connections

between core routers located in 11 U.S. cities and carries approximately 1% of all traffic in
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North America.5 The Abilene backbone is a sparsely connected mesh, with connectivity to

regional and local customers provided by some minimal amount of redundancy. Abilene

is built using Juniper T640 routers, which are configured to have anywhere from five con-

nections (in Los Angeles) to twelve connections (in New York). Abilene maintains peering

connections with other higher educational networks (both domestic and international) but

does not connect directly to the commercial Internet.

3.4.2 The CENIC Network

Focusing in on a regional level, we consider California, where the Corporation for Ed-

ucation Network Initiatives in California (CENIC) acts as ISP for the state’s colleges and

universities [2]. Its backbone is similarly comprised of a sparse mesh of routers connected

by high-speed links (Figure 3.5). Here, routing policies, redundant physical links, and the

use of virtual private networks support robust delivery of traffic to edge campus networks.

Similar observations are found when examining (where available) topology-related infor-

mation of global, national, or regional commercial ISPs.

The CENIC backbone is comprised of two backbone networks in parallel—a high per-

formance (HPR) network supporting the University of California system and other univer-

sities, and the digital California (DC) network supportingK-12 educational initiatives and

local governments. Connectivity within each POP is provided by layer-2 technologies, and

connectivity to the network edge is not shown. Each router has only a few high bandwidth

connections, however each physical connection can supportmany virtual connections that

give the appearance of greater connectivity to higher levels of the Internet protocol stack.

ESnet and GEANT are other backbone networks.

In view of recent measurement studies [55, 4, 113], it is important to recognize that

the use of technologies at layers other than IP will affect what traceroutelike experiments

can measure. For example, the use of shared media at Layer 2 (e.g., Ethernet, FDDI rings)

either at the network edge or at exchange points between ISPscan give the appearance of

5Of the approximate 80,000 - 140,000 terabytes per month of traffic in 2002 [99], Abilene carried approx-
imately 11,000 terabytes of total traffic for the year [3]. Here, “carried” traffic refers to traffic that traversed
an Abilene router. Since Abilene does not peer with commercial ISPs, packets that traverse an Abilene router
are unlikely to have traversed any portion of the commercialInternet.
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Figure 3.5: CENIC backbone.

high degree nodes. In an entirely different fashion, the use of Multiprotocol Label Switch-

ing (MPLS) at higher levels of the protocol stack can also give the illusion of one-hop

connectivity at the lower layers when, in fact, there is none. Abilene is an ideal starting

point for understanding heuristically optimal topologies, because within its backbone, there

is no difference between the link layer topology and what is seen by IP.In contrast, the use

of Ethernet and other link layer switching technologies within the CENIC POPs makes the

interpretation and visualization of the physical intra-CENIC connectivity more difficult,

but inferring the actual link layer connectivity is greatlyfacilitated by knowing the con-

figurations of the individual CENIC routers as shown in figure3.6. In the time since the

Cisco catalog [6] was published, the introduction of a new line card (supporting 10x1GE

interfaces) has shifted the feasible region for the model 12410 router. Since this router has

nine available slots, this router can achieve a maximum of 90Gbps with either nine 10

GE line cards or nine 10x1GE line cards. Although the shape ofthe feasible region may

continue to change, its presence and corresponding implications for router configuration



43

and deployment will remain qualitatively the same.
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3.4.3 A Tier-1 ISP Network

One of the overriding concerns of commercial ISPs in sharingtopology data is that it

will reveal information about its customers, thereby putting them at risk to competition.

However, in cases where topology information is sufficiently anonymized and aggregated,

we have found ISPs more willing to share and publish connectivity data. Here, we present

aggregate router configuration information for AS 7018 (AT&T), as it existed during the

second half of 2003. This Tier-1 ISP has hundreds of routers across the United States and

is a major competitor in the national ISP market.

Figure 3.7 shows aggregate router configuration data for “core” and “access” routers

in the ISP’s network as it existed during the second half of 2003. Routers are grouped

into three different types: high-speed access routers, low-speed access routers, and core

routers. For each group, we show the convex hull surroundingthe points corresponding to

the bandwidth-degree configuration for each router. Also shown is the feasible configura-

tion region for a typical core router (i.e., the Cisco 12416 GSR) and a typical access router

(i.e., the Cisco 7600). Here, “core routers” can be understood as those that provide long-

haul connectivity between individual points of presence (PoPs) for the ISP. Conversely,

“access routers” can be understood as those that provide aggregation connectivity between
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the ISP and its customers within a PoP. For this ISP, access routers are further categorized

according to whether they facilitate high-speed or low-speed connections. Although we are

not able to show the configuration of individual routers for the ISP, we are able to present

the convex hull containing the bandwidth-degree configuration for the routers of each type.
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Figure 3.7: Configuration of a Tier-1 commercial ISP.

This aggregated information obscures individual router configurations as well as the

total number of routers in each group, but it provides usefulinformation nonetheless. First,

the maximum number of connections to a core router is 68, while the maximum number

of connections to a low-speed access router is 313. The maximum number of connections

to a high-speed access router is less than that for both low-speed and core routers. Also,

the relative position of these convex hulls reinforces the notion that routers are specialized

according to their role (again, Figure 3.2). The core routers in this AS tend to have higher

overall bandwidth than access routers, and they also tend tohave fewer connections than

many low-speed access routers. The high-speed access routers tend to have higher overall

bandwidth but fewer connections than low-speed access routers. Also shown in figure 3.7

is the feasible region for representative core and access routers.6 While certainly not all

of the routers deployed in this AS were these specific router models, it is likely that some

6While the technology represented in the 2002 catalog [6] is now outdated, we argue that the product
deployment lifecycle for routers makes it reasonable to believe that the production network of our ISP in
2003 is adequately reflected using this older technology.
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of them were. Nonetheless, a striking feature of Figure 3.7 is the way in which the core

routers conform rather tightly to the feasible configuration regions.

As a result of both educational networks topology and a commercial network configura-

tion, we fully expect border routers to again have a few relatively high bandwidth physical

connections supporting large amounts of aggregated traffic. In turn, high physical connec-

tivity at the router level is expected to be firmly confined to the network edge.

3.5 Topology Metrics

3.5.1 Commonly-Used Metrics

Previous metrics to understanding and evaluating network topologies have been dom-

inated by graph-theoretic quantities and their statistical properties, e.g., node-degree dis-

tribution, expansion, resilience, distortion and hierarchy [30, 56]. However we claim here

that these metrics are inherently inadequate to capture theessential trade-offs of explicitly

engineered networks.

Node degree distribution.In general, there are many networks having the same node

degree distribution, as evidenced by the process ofdegree-preserving rewiring. This par-

ticular rewiring operation rearranges existing connections in such a way that the degrees of

the nodes involved in the rearrangement do not change, leaving the resulting overall node

degree distribution invariant. Accordingly, since the network can be rewired step-by-step

so that the high degree nodes appear either at the network core or at its edges, it is clear that

radically different topologies can have one and the same degree distribution (e.g., power-

law degree distribution). In this fashion, degree-preserving rewiring is a means for moving

within a general “space of network graphs,” all having the same overall degree distribution.

Expansion, Resilience, Distortion.Introduced in [56], these metrics are intended to

differentiate important aspects of topology.Expansionis intended to measure the ability

of a node to “reach” other nodes within a given distance (measured by hops),resilienceis

intended to reflect the existence of alternate paths, anddistortionis a graph theoretic metric

that reflects the manner in which a spanning tree can be embedded into the topology. For
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each of these three metrics, a topology is characterized as being either “Low” (L) or “High”

(H). Yet, the quantitative values of expansion, resilience, and distortion as presented in [56]

are not always easy to interpret when comparing qualitatively different topologies. For

example, the measured values of expansion for the AS-level and router-level topologies

show a relatively big difference (Figure 2(d) in [56]), however both of them are classified

as “High,” suggesting that the degree-based generators compare favorably with measured

topologies. In contrast, it could be argued that Tiers generates topologies whose expansion

values match that of the measured router-level graph reasonably well (Figure 2(g) in [56]),

but Tiers is classified to have “Low” expansion. Such problems when interpreting these

metrics make it difficult to use them for evaluating differences in topologies in a consistent

and coherent manner.

Nonetheless, these metrics have been used in [56] to comparemeasured topologies at

the autonomous system (AS) level and the router level (RL) totopologies resulting from

several generators, including degree-based methods (PLRG, BA, BRITE, BT, JinCJ00)

and structural methods (GT-ITM’s Tiers and Transit-Stub),as well as several “canonical”

topologies (e.g., random, mesh, tree, complete graph). It was observed that AS, RL, and

degree-based networks were the only considered networks that share values “HHL” for

expansion, resilience, and distortion respectively. Furthermore, of the canonical topologies,

this “HHL” characterization was shared only by the completegraph (all nodes connected

to each other). However, one canonical topology that was notconsidered was the “star”

topology (i.e., having a single central hub), which according to their metrics would also

be characterized as “HHL,” and which explains why the degree-based graphs (having high

degree central hubs) fit this description. Yet, the fact thatboth a complete graph and a star

could have the same characterization illustrates how this group of metrics is incomplete in

evaluating network topology.

Hierarchy. For evaluating hierarchy, [56] considers the distributionof “link values,”

which are intended to mimic the extent to which network traffic is aggregated on a few

links (presumably, backbone links). However, the claim that degree-based generators, such

as PLRG, do a better a job of matching the observed hierarchical features of measured

topologies is again based on a qualitative assessment whereby previous structural genera-
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tors (e.g., Tiers in GT-ITM) create hierarchy that is “strict” while degree-based generators

result, like measured topologies, in hierarchies that are “moderate.” This assessment is

based on a model in which end-to-end traffic follows shortest path routes, however it also

ignores any constraints on the ability of the network to simultaneously carry that end-to-end

traffic.

These previous metrics appear to be inadequate for capturing what matters for real net-

work topologies. Many of them lack a direct networking interpretation, and they all rely

largely on qualitative criteria, making their applicationsomewhat subjective. In what fol-

lows, we use the experience gained by these previous studiesto develop metrics that are

consistent with our first principles perspective. In particular, we consider several novel

measures for comparing topologies that we show provide a minimal, yet striking compar-

ison between degree-based probabilistic networks and networks inspired by engineering

design.

3.5.2 Function-Related Metrics

Recognizing that the primary purpose for building a networkis to carry effectively a

projected overall traffic demand, we consider several means for evaluating the performance

of the network.

Throughput.We definenetwork performanceas the maximum throughput on the net-

work under heavy traffic conditions based on a gravity model [128]. This has been defined

the same as the service requirement section 3.3.3.

Perf= max
α

∑

i j

αxi xj , such thatRX≤ B.

Router Utilization. In computing the maximum throughput of the network, we also

obtain the total traffic flow through each router, which we termrouter utilization. Since

routers are constrained by the feasible region for bandwidth and degree, the topology of the

network and the set of maximum flows will uniquely locate eachrouter within the feasible

region. Routers located near the frontier are used more efficiently, and a router on the fron-



48

tier is saturated by the traffic passing through it. For real ISPs, the objective is clearlynot

to maximize throughput but to provide some service level guarantees (e.g., reliability), and

modeling typical traffic patterns would require additional considerations (such as network

overprovisioning) that are not addressed here. Our intent is not to reproduce real traffic,

but to evaluate the raw carrying capacity of selected topologies under reasonable traffic

patterns and technology constraints.

End User Bandwidth Distribution.In addition to the router utilization, each set of

maximum flows also results in a set of bandwidths that are delivered to the end users of the

network. While not a strict measure of performance, we consider as a secondary measure

the ability of a network to support “realistic” end user demands.

Robustness to Failure.Another important issue in the design of ISP topologies is related

to their reliability or robustness in the presence of equipment failure. Generally, network

robustness is quantified in terms of the ability of the network to maintain its functionality

after routers are removed and after rerouting of traffic. In the previous literature such as

[11], this functionality is characterized by connectivity, which means size of largest con-

nected cluster after removing failed nodes and related links from the network. Here we

consider a simple metric more appropriate for Internet as the amount of original traffic

(as measured by our previously defined notion of performance) that can still be served by

the remaining network, possibly after some rerouting, but with the routers’ bandwidth that

remains its original value from feasible region.

3.6 Comparing Topologies

In this section, we compare and contrast the features of several different network graphs

using the metrics described previously. Our purpose is to show that networks having the

same (power-law) node degree distribution can (1) have vastly different features, and (2)

appear deceivingly similar from a view that considers only graph theoretic properties.
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3.6.1 A First Example

Our first comparison is made between five networks resulting from preferential attach-

ment (PA), the GRG method with given expected node degree sequence, a generic heuristic

optimal design, an Abilene-inspired heuristic design, anda heuristic suboptimal design. In

all cases, the networks presentedhave the same power-law degree distribution. While some

of the methods do not allow for direct construction of a selected degree distribution, we are

able to use degree preserving rewiring as an effective (if somewhat artificial) method for

obtaining the given topology. In particular, we generate the PA network first, then rearrange

routers and links to get heuristically designed networks while keeping the same degree dis-

tribution. Lastly, we generate an additional topology according to the GRG method. What

is more important here are the topologies and their different features, not the process or the

particular algorithm that generated them.

Preferential Attachment (PA).The PA network is generated by following process: begin

with 3 fully connected nodes, then in successive steps add one new node to the graph, such

that this new node is connected to the existing nodes with probability proportional to the

current node degree. Eventually we generate a network with 1000 nodes and 1000 links.

Notice that this initial structure is essentially a tree. Weaugment this tree by successively

adding additional links according to [10]. That is, in each step, we choose a node randomly

and connect it to the other nodes with probability proportional to the current node degree.

The resulting PA topology is shown in in figure 3.8(b) and has an approximate power-law

degree distribution shown in figure 3.8(a).

General Random Graph (GRG) method.We use the degree sequence of the PA network

as the expected degree to generate another topology using the GRG method. Notice that

this topology generator is not guaranteed to yield a connected graph, so we pick the giant

component of the resulting structure and ignore the self-loops as in [56]. To ensure the

proper degree distribution, we then add degree one edge routers to this giant component.

Since the total number of links in the giant component is generally greater than the number

of links in an equivalent PA graph having the same number of nodes, the number of the

edge routers we can add is smaller than in the original graph.The resulting topology is
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Figure 3.8: Five networks having the same node degree distribution as shown in sub-figure
(a)

shown in figure 3.8(c), and while difficult to visualize all network details, a key feature to

observe is the presence of highly connected central nodes.

Heuristically Optimal Topology (HOT).We obtain our HOT graph using a heuristic,

nonrandom, degree-preserving rewiring of the links and routers in the PA graph. We choose

50 of the lower-degree nodes at the center to serve as core routers, and also choose the other

higher-degree nodes hanging from each core as gateway routers. We adjust the connections

among gateway routers such that their aggregate bandwidth to a core node is almost equally

distributed. The number of edge routers placed at the edge ofthe network follows accord-

ing to the degree of each gateway. The resulting topology is shown in figure 3.8(d). In this

model, there are three levels of router hierarchy, each of which loosely correspond (starting

at the center of the network and moving out toward the edges) to backbone, regional/local

gateways, edge routers. Of course, several other “designs”are possible with different fea-

tures. For example, we could have rearranged the network so as to have a different number

of “core routers,” provided that we maintained our heuristic approach in using low-degree

(and high bandwidth) routers in building the network core.
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Abilene-inspired Topology.We claim that the backbone design of Abilene is heuristi-

cally optimal. To illustrate this, we construct a simplifiedversion of Abilene in which we

replace each of the edge network clouds in figure 3.4 with a single gateway router sup-

porting a number of end hosts. We assign end hosts to gateway routers in a manner that

yields the same approximate power-law in overall node degree distribution. The resulting

topology with this node degree distribution is illustratedin figure 3.8(d).

Suboptimal Topology.For the purposes of comparison, we include a heuristically de-

signed network that has not been optimized for performance (Figure 3.8(f)). This network

has a chainlike core of routers, yet again has the same overall degree distribution.

Performance.For each of these networks, we impose the same router technological con-

straint on the nonedge routers. In particular, and to accommodate these simple networks,

we use a fictitious router based on the Cisco GSR 12410, but modified so that the maxi-

mum number of ports it can handle coincides with the maximum degree generated above

(see the dot-line in figure 3.9(b-f)). Thus, each of these networks has the same number of
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Figure 3.9: (a) Distribution of end user bandwidths for all the five different networks; (b)-
(f) Router utilization for each network. The colorscale of arouter on each plot differentiates
its bandwidth which is consistent with the routers in figure 3.8.
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nonedge nodes and links, as well as the same degree distribution among nonedge nodes.

Collectively, these assumptions guarantee the same total “cost” (measured in routers) for

each network. Using the performance index defined in section3.5, we compute the perfor-

mance of these five networks. Among the heuristically designed networks, the HOT model

achieves 1130 Gbps and the Abilene-inspired network achieves 395 Gbps, while the sub-

optimal network achieves only 18.6 Gbps. For the randomly generated graphs, the PA and

GRG achieve only 11.9 Gbps and 16.4 Gbps respectively, roughly 100 times worse than

the HOT network. The main reason for PA and GRG models to have such terrible perfor-

mance is exactly the presence of the highly connected “hubs”that create low-bandwidth

bottlenecks. The HOT model’s meshlike core, like the real Internet, aggregates traffic and

disperses it across multiple high-bandwidth routers. We calculate the distribution of end

user bandwidths and router utilization when each network achieves its best performance.

Figure 3.9 (a) shows that the HOT network can support users with a wide range of band-

width requirements, however the PA and GRG models cannot. Figure 3.9(d) shows that

routers achieve high utilization in the HOT network, whereas, when the high degree “hubs”

saturate in the PA and GRG networks, all the other routers areleft under-utilized (Figure

3.9(b)(c)). The networks generated by these two degree-based probabilistic methods are

essentially the same in terms of their performance.

Robustness to Failure.We use the PA model of Figure 3.8(b) and the HOT model of

Figure 3.8(d) to compare network performance in the presence of successive router loss.

Although robustness was not an explicit consideration in the heuristic construction of our

HOT model, it has sufficient redundancy to merit this comparison, and the result isillus-

trative both of the extreme differences in these two types of models and of the manner in

which our first-principles approach naturally allows for the incorporation of additional de-

sign considerations. Figure 3.10 shows the impact of deleting routers in succession from

PA and HOT networks. We delete routers in succession from thePA and HOT networks,

always targeting the worst-case router that has not yet beendeleted. The measure of per-

formance after deletion of a node is the amount of original traffic that can still be carried by

the remaining network. Note that traffic can be rerouted, but the original router constraints

remain intact.
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Consistent with scale-free claims [11], the scale-free network is indeed fragile to the

deletion of worst case nodes (here, worse case means highestdegree); after removing

the hubs, the performance drops by more than one order of magnitude. In contrast, the

HOT networks is not only more robust to worst-case deletions(here, worst case are low-

connectivity core nodes), but also shows high tolerance to deleting other nodes, particularly

high-degree edge routers. In fact, because the scale-free network has such poor nominal

performance to start with, it is worse intact than the HOT network after the latter has sus-

tained substantial damage.

While a comprehensive study of large-scale network robustness is well beyond the

scope of this thesis, our example illustrates two appealingfeatures of the proposed first-

principles approach. First, our detailed study of the technological and economic forces

shaping the router-level topology of a single ISP provides convincing evidence that in to-

day’s Internet, the existence of highly connected routers in the core of the network is a

myth. Size issues not notwithstanding, the real Internet isnothing like Figure 3.8 (b), but is

qualitatively more like the network shown in figure 3.8(d): it cannot possibly have a hub-

like core, and the highly connected nodes, if they exist, must be situated at the periphery

of the network. Second, when trying to answer the question “What really matters when

it comes to the ability of the Internet to perform in the presence of router or link losses?”

we note that the ability of the network to “see damage and workaround it” requires at

a minimum adding some link redundancy (e.g., multihoming) and incorporating a simple

abstraction of IP routing that accounts for the feedback mechanisms that react to the loss

or failure of a network component. In particular, our approach makes it clear why the type

of connectivity-only perspective pursued in [11] (i.e., one that completely ignores the ex-

istence of routing protocols sitting on top of the raw router-level connectivity) is bound

to provide an overly simplistic and even misleading view of network robustness. Indeed,

it is well known that the Internet’s actual fragilities are not to physical attacks on routers

or links, but to perturbations that were not part of the Internet’s original design objectives

[36], particularly misbehaving components or hijacked services.
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Figure 3.10: Robustness of network performance to router loss for the PA and HOT net-
works from Figure 3.8.

3.6.2 A Second Example

Figure 3.8 shows that graphs having the same node degree distribution can be very dif-

ferent in their structure, particularly when it comes to theengineering details. What is also

true is that the same core network design can support many different end-user bandwidth

distributions and that by and large, the variability in end-user bandwidth demands deter-

mines the variability of the node degrees in the resulting network. To illustrate, consider

the simple example presented in figure 3.11, where the same network core supports differ-

ent types of variability in end user bandwidths at the edge (and thus yields different overall

node degree distributions). The network in figure 3.11(a) provides uniformly high band-

width to end users; the network in figure 3.11(b) supports enduser bandwidth demands

that are highly variable; and the network in figure 3.11(c) provides uniformly low band-

width to end users. Thus, from an engineering perspective, not only is there not necessarily

any implied relationship between a network degree distribution and its core structure, there

is also no implied relationship between a network’s core structure and its overall degree

distribution.
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Figure 3.11: Distribution of node degree and end-user bandwidths for several topologies
having the same core structure: (a) uniformly high bandwidth end users, (b) highly variable
bandwidth end users, (c) uniformly low bandwidth end users.

3.7 Summary

The Internet router-level topology discussed in this chapter provides new insight into

the space of all possible graphs that are of a certain size andare constrained by common

macroscopic statistics, such as a given (power-law) node degree distribution. Scale-free

models provide a relatively easy way to generate the desiredpower-law degree distribution,

however their highly connected hubs have such bad performance as to make it completely

unrealistic that they could reasonably represent a highly engineered system like an ISP

network or the Internet as a whole. In contrast, we observe that even simple heuristically

designed and optimized models that reconcile the trade-offs between link costs, router con-

straints, and user traffic demand result in configurations that have high performanceand

efficiency.

While the list of key factors of the router-level Internet considered by ISPs is far from
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exhaustive in our model, what is striking is even simple domain-specific features shows

how graphs that may be sensible from a connectivity-only perspective are no longer viable

(e.g., nonrealizable or nonsensical) in the real world because of constraints that are imposed

by their application domains.

This chapter focuses on the functionality of a complex network, particularly for the

Internet router-level topology. We will introduce a structural metric for general complex

networks, and elaborate its relationship to scale-free networks in the next chapter.
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Chapter 4

The Structural Metric

In the previous chapter we have recognized that the power-law degree distribution and

many aggregate statistics do not uniquely characterize a particular complex network. Many

graphs with the same large-scale connectivity may have completely different structures and

provide different performances. While the definition of functionality for different complex

networks may vary, we introduce a structural metric, thes-metric, for general networks to

characterize the highly connected hubs in their topologies, and show it is both necessary and

useful for explaining the extreme differences among networks that have identical degree

sequence, especially if it is scaling. This metric also yields considerable insight into the

features of scale-free graphs. By focusing on a graph’s structural properties and not on how

it is generated, this approach does not depend on an underlying random graph model but is

applicable to any graph of interest.

We organize this chapter as follows. In section 4.1, we investigate the definition and

basic properties of thes-metric. We show how it relates to the “highly connected hubs” and

the performance of in the Internet router-level topology. We also define thesmax andsmin

graphs in both constrained and unconstrained graph space. We finally illustrate the funda-

mental relationship between thes-metric and diversity of degree sequences, thes-metric

and the joint degree distribution. In section 4.2 and 4.3, weresolve the confusion of two

important claims on scale-free networks: self-similarityand highly likely construction, and

give their relationships to thes-metric. Section 4.4 provides insights into graph assortativ-

ity, a metric which directly relates to thes-metric, however is inappropriate for evaluating

graphs due to the different background set in graph space. We conclude at the end.
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4.1 Definitions and Properties

Let g be an undirected, simple, connected graph havingn = |V| nodes andl = |E| links,

whereV andE are the sets of nodes and links, respectively. As before, definedi to be the

degree of nodei ∈ V, D = {d1, d2, . . . , dn} to be the degree sequence forg, again assumed

without loss of generality always to be orderedd1 ≥ d2 ≥ · · · ≥ dn.

Within the space of all graphs havingn nodes, letG(D) denote the considerably smaller

subset of graphs having particular degree sequenceD.

Not all sequences of integersD correspond to realizable graphs. One well-known char-

acterization of whether or not a sequenceD corresponds to a simple, connected graph is due

to Erdös and Gallai [46], who observed that a sequence of positive integersd1, d2, . . . , dn

with d1 ≥ d2 ≥ · · · ≥ dn is graphical if and only if
∑n

i=1 di is even and for each integerk,

1 ≤ k ≤ n− 1,
k∑

j=1

d j ≤ k(k − 1)+
n∑

j=k+1

min(k, d j).

The restriction to graphs having a particular degree sequence has been considered pre-

viously in the context of graph generation mechanisms [95, 35]. In particular, the Config-

uration Model (CM) [24, 89, 95] often serves as the null hypothesis of networks having a

particular degree sequence, since it yields graphs that aremaximally random (in the sense

of maximum entropy) while conforming to a specified degree sequenceD. In what follows,

we will always restrict attention to graphs with a specifiedD.

In considering the structural features of a particular graph, we define, for any graphg

having fixed degree sequenceD, thes-metric

s(g) =
∑

(i, j)∈E
did j =

∑

i∈V

∑

j∈V

1
2

diai jd j , (4.1)

whereA = [ai j ] is the node adjacency matrix for the graph such thatai j = 1 if nodesi, j are

connected,ai j = 0, otherwise. Accordingly, we assume without loss of generality that the

number of nodes and links in the graph are represented byn = |V| andl = |E|, respectively.

Note that the summation in (4.1) is easily computed for any graph and does not depend on

the process by which it was constructed.



59

Implicitly, the metrics(g) measures the extent to which the graphg has a “hublike” core

and is maximized when high-degree nodes are connected to other high-degree nodes. This

observation follows from theRearrangement Inequality[5], which states that ifa1 ≥ a2 ≥

· · · ≥ an andb1 ≥ b2 ≥ · · · ≥ bn, then for any permutation (a′1, a
′
2, . . . , a

′
n) of (a1, a2, . . . , an),

we have

a1b1 + a2b2 + · · · + anbn ≥ a′1b1 + a′2b2 + · · · + a′nbn (4.2)

≥ anb1 + an−1b2 + · · · + a1bn. (4.3)

Since highs(g)-values are achieved only by connecting high-degree nodesto each other,

and low s(g)-values are obtained by connecting high-degree nodes onlyto low-degree

nodes, thes-metric moves beyond simple statements concerning the presence of “hub”

nodes (as is true for any degree sequenceD that has high variability) and attempts to quan-

tify what role such hubs play in the overall structure of the graph. In particular, as we

will show below, graphs with relatively highs(g) values have a “hublike core” in the sense

that these hubs play a central role in the overall connectivity of the network. We will also

demonstrate that the metrics(g) provides a view that is not only mathematically conve-

nient and rigorous, but also practically useful as far as what it means for a graph to be

“scale-free.”

4.1.1 Performance vs. Structural Metrics

Before proceeding with a discussion of some of the features of the s-metric as well as

for graphs having highs(g) values, we revisit the toy models in figure 3.8 of Section 3.6.1

and consider the combined implications for the performance-oriented metricPerf(g) and the

structural metrics(g). Figure 4.1 is a projection ofg in simple and connected graph space

onto a plane ofPerf(g) vs. s(g) and will be useful throughout in visualizing the extreme

diversity in the graph space. As structure always affects function, figure 4.1 shows a striking

contrast which is observed by simultaneously plotting performance vs. the structural metric

for these models. The HOT network has high performance and low s-metric while the PA

and GRG networks have highs-metric but low performance. The interpretation of this
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picture is that a careful design process explicitly incorporating technological constraints

can yield high-performance topologies, but these are extremely far away from scale-free

networks. In contrast, equivalent power-law degree distribution networks constructed by

generic degree-based probabilistic constructions resultin more highly connected hubs, but

poor-performing topologies.

This viewpoint is augmented if one considers the process of pairwise random degree-

preserving rewiring (details will be discussed in section 4.2.4) as a means to explore the

space of graphs having the same overall degree distribution. In Figure 4.1, each point rep-

resents a different network obtained by random rewiring. Despite the factthat all of these

graphs have the same overall degree distribution, we observe that a large number of these

networks have relatively highs-metric and low performance. All of these graphs, including

the PA and GRG networks, are consistent with “scale-free” models in the sense that they

contain highly connected central hubs. The fact that there are very few high performance

graphs in this space is an indication that it would be “hard” to find a relatively good design

using random rewiring. We also notice that lows-metric itself does not guarantee a high

performance network, as the network in figure 3.8(f) shows that it is possible to identify
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small s and poorly performing networks. However, based on current evidence, it does ap-

pear to be the case that it is impossible using existing technology to construct a network

that is both high performance and highs.

4.1.2 Joint Degree Distribution

As we see that thes-metric provides a good tool to differentiate graphs in the space of

graphs with the same degree distribution, it is easy to justify this role from its relationship

to the graph joint degree distribution (also called degree correlations). Given an appropriate

statistical ensemble of graphs, the expectation of a randomvariable or random vectorX is

defined as

〈X〉 =
∑

g∈G
X(g)P(g). (4.4)

For example, for 1≤ i ≤ n, let Di be the random variable denoting the degree of nodei

for a graphg ∈ G and letD = {D1,D2, . . . ,Dn} be the random vector representing the node

degrees ofg. Then thedegree distributioncan be written in terms of an expectation of a

random variable, namely

P(k) =
1
n

〈 n∑

i=1

δ[Di − k]

〉

,

where

δ[Di(g) − k] =






1 if nodei of graphg has degreek

0, otherwise.

We follow [43, Section 4.6] and define the joint degree distribution between two adja-

cent nodes having respective degreek andk′ as follows.

Definition 4.1.1. The joint degree distribution between two neighbors havingdegrees k and

k′ is defined by

P(k, k′) =
1
n2

〈 n∑

i, j=1

δ[di − k]ai jδ[d j − k′]

〉

, (4.5)

where the ai j are elements of the network node adjacency matrix such that

ai j =






1 if nodes i, j are connected,

0 otherwise,
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and where the random variablesδ[Di − k] are as above.

As an expectation of indicator-type random variables,P(k, k′) can be interpreted as the

probability that a randomly chosen link connects nodes of degreesk and k′, therefore

P(k, k′) is also called the “degree-degree distribution” for links. Observe that for a given

graphg having degree sequenceD,

s(g) =
∑

(i, j)∈E
did j

=
∑

(i, j)∈E

∑

k∈D
kδ[di − k]

∑

k′∈D
δ[d j − k′]k′

=
∑

(i, j)∈E

∑

k∈D

∑

k′∈D
kδ[di − k]δ[d j − k′]k′

=
1
2

∑

k,k′∈D
kk′

n∑

i, j=1

δ[di − k]ai jδ[d j − k′].

Thus, there is an inherent relationship between the structural metrics(g) and the joint de-

gree distribution, which we formalize as follows.

Proposition 4.1.1.

〈s〉 = n2

2

∑

k,k′

kk′P(k, k′). (4.6)

Proof. For fixed degree sequenceD,

〈s〉 =
〈

1
2

∑

k,k′∈D
kk′

n∑

i, j=1

δ[di − k]ai jδ[d j − k′]

〉

=
1
2

∑

k,k′∈D
kk′

〈 n∑

i, j=1

δ[di − k]ai jδ[d j − k′]

〉

=
n2

2

∑

k,k′∈D
kk′P(k, k′).

�

This result shows that for an ensemble of graphs having degree distributionD, the ex-

pectation ofscan be written purely in terms of the aggregation of joint degree distribution.
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As graphs being constrained by the same degree distribution, which is the first order statis-

tics of the graph space, joint degree distribution providesthe flexibility on the second order

statistics in the space. Therefore, it is not hard to see thatthe s-metric, as the aggregation

of the joint degree distribution, plays the most important role to differentiate graphs with

the same degree distribution.

It immediately follows that even for the graphs with the samejoint degree distribution,

the third order degree distribution varies and thes-metric cannot tell the difference. Cer-

tainly, our methodology could enable us to expand thes-metric in terms of the aggregation

of third order degree correlation. Here we just uses-metric to argue attention should not

only devote to degree sequences in order to measure the structure of complex networks. It

is clear that such sequences alone are insufficient to characterize the aggregate structure of

a graph, and the graph space is extremely diverse. One can imagine that the space of graph

is shrinking when we put constraint on higher order of degreedistribution. However, the

higher order of degree distribution, the more difficult it is to characterize [78].

4.1.3 The smax and smin Graphs

In general, the setG(D) will have many elements exhibiting a range ofs-values. Within

this space, we define thesmaxandsmin graphs withinG(D) as those having the maximum and

minimum s values, respectively. To facilitate the derivation of these values, we introduce

the vector

Z ≡ {
d1 elements
︷     ︸︸     ︷

d1, . . . , d1,

d2 elements
︷     ︸︸     ︷

d2, . . . , d2, . . . ,

dn elements
︷     ︸︸     ︷

dn, . . . , dn
︸                                        ︷︷                                        ︸

∑n
i=1 di elements

}, (4.7)

which is simply derived from the original degree sequenceD. The smax and smin values

within G(D) can be described in terms ofZ in the following manner. SinceG(D) only

requires its elements to satisfy the degree sequenceD (and ignores issues such as connect-

edness, multiple links, etc.). According to equation (4.2), it is easy to show that within

G(D), one has

smax ≤
1
2

ZZT , (4.8)
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with equality achieved in practice only under certain circumstances (e.g., when the ele-

ments ofD are all even or there is an even number of elements having any particular odd

value). Accordingly, it follows that

smin ≥
1
2

ZẐT , (4.9)

whereẐ is simply the vectorZ with elements in reverse order. However, unlike the case

in (4.8) where equality is achieved in practice only sometimes and the actual value may

deviate considerably from the upper bound, the relationship in (4.9) holds with approximate

equality and typically thesmin value deviates from the lower bound by only a single pair of

links, if at all.

It is easy to see that thesmax value can be rewritten as

smax ≈
n∑

i=1

(di/2) · (di)
2 =

n∑

i=1

(di)
3/2, (4.10)

which is achieved in effect by creating primarily self-loops among the nodes in the network

and then connecting remaining “stubs” in order of decreasing di (see appendix A.1 for

details). To the best of our knowledge, there does not exist acomparable analytic formula

(or interpretation) for thesmin graph inG(D).

Many graphs of practical interest have additional conditions imposed by functional or

domain constraints, such as a requirement to be connected ora restriction against self-loops

or multiple connections. Thus, in our investigation we alsoconsider the restricted set of

all simple and connected graphshaving the same degree sequenceD, which we denote as

G(D). Note thatG(D) ⊂ G(D) and that most randomly generated graphs with particular

D will be neither simple nor connected, so this is an importantand nontrivial restriction.

From these definitions it follows that

1
2

ZẐT ≤ sG(D)
min ≤ sG(D)

min ≤ sG(D)
max ≤ sG(D)

max ≤
1
2

ZZT .

Although bounding values for the min and max elements ofG(D) can be directly obtained

from equations (4.8) and (4.9), obtainingsmax and smin values within the restricted space
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G(D) is more complicated.

Given a particular degree sequenceD, it is possible to use a deterministic procedure

in order to construct thesmax graph inG(D). The details of this construction procedure

are presented in appendix A.2, but the basic idea is to order all potential links (i, j) for

all i, j ∈ V according to theirweight did j and then add them one at a time in a manner

that results in a simple, connected graph having degree sequenceD. While simple enough

in concept, this type of “greedy” heuristic procedure may have difficulty achieving the

intended sequenceD due to the global constraints imposed by connectivity requirements,

but it works well in practice for most graphs (again, see A fordetails). Obtaining thesmin

value is less exact, and it is easy to show that thesmin graph is not unique. Whitney and

Alderson [122] have recently used a heuristic approach, originally proposed by Maslov

and Sneppen [81], which employs a Metropolislike algorithmbased on successive rewiring

to obtainsmin values withinG(D). Unfortunately, this method is inefficient and does not

reliably obtain the actualsG(D)
min value. However, in practice one finds that1

2 ZẐT ≈ sG(D)
min ≈

sG(D)
min , so in the remainder of this chapter we use thesG(D)

min value defined in (4.9), as an

approximate (and more conservative) bounding value forsG(D)
min .

4.1.4 Diversity of Degree Sequence

As a measure of graph structure, thes-metric provides a simple means for contrasting

the differences between graphs having the same degree sequence, andin this chapter we

use it exclusively as a means for measuring thediversitywithin this particular space of

graphs. In particular, the extreme pointssmax andsmin serve as meaningful reference points

for individual graphs and the space as a whole, and for a givenD the differencesmax− smin

provides a measure of how different the absolute extremes are. Using this perspective, it

is not hard to see that the amount of diversity for graphs having a particularD is related

to the amount ofvariability within the sequenceD itself. Following Section 2.1.1, we

characterize variability with the standard measure of(sample) coefficient of variation (CV),
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which for a given sequenceD = (d1, d2, . . . , dn) is defined as

CV(D) = σ(D)/〈d〉, (4.11)

where〈d〉 = n−1 ∑n
k=1 dk is the average node degree, and we measure deviations of thedi

from its average〈d〉 using the sample standard deviation,σ(D) = (
∑n

k=1(dk−〈d〉)2/(n−1))1/2.

For graphs with regular structure that have low variabilityin their degree sequenceD,

there is typically very little diversity in the corresponding space of graphsG(D). Consider

as an extreme example, a 1 dimensional lattice (i.e., achain) with the degree sequence

Dchain = {2, 2, 2, . . . , 2, 1, 1}. One can easily show that for a chain consisting ofn nodes,

CV(Dchain) =
n1/2(n− 2)1/2

21/2(n− 1)3/2

and thusCV(Dchain)→ 0 asn→ ∞. It is easy to see that there is no diversity among graphs

having degree sequenceDchain, since alln-node chains are isomorphic to one another in

G(D) and thussmin = smax.

For sequencesD with increasingCV(D), graph diversity as measured by the range

smax− smin also increases. Here, we leverage two classes of graphs as reference points. For

graphs with a degree sequence having an exponential form,k eλdk ≈ c for constantc > 0

(denoted here asDexp), one observes thatCV(Dexp)→ κ (a constant) asn→∞. In contrast,

thescale-freegraphs [20] exhibit divergentCV. It is easy to show that degree sequences

Dscaling with α < 2 follow CV(Dscaling) → ∞ asn → ∞. As we will show below, these

classes of graphs yield degree sequences with measurably different levels of diversity.

Although one might expect that graph diversity simply increases withCV(D), this need

not be the case. Consider astar consisting of a single central node that connects to all

others and having degree sequenceDstar = {n− 1, 1, 1, . . . , 1}. One can similarly show that

CV(Dstar) =
n1/2(n− 2)
2(n− 1)

,

and thusCV(Dstar) → ∞ asn→ ∞. However, like the chain, there is no diversity among

graphs having degree sequenceDstar (i.e., all stars are isomorphic to one another inG(D)
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andsmin = smax).

In order to make the previous discussion more concrete, we now consider a simple

experiment to investigate the role ofCV(D) in determining the diversity for graphs having

particularD. For purposes of exposition, we begin with a study of acyclicgraphs (i.e.,

trees) and then later comment on how our results apply to general graphs. Our experiment

uses incremental growth via preferential attachment as described in [21], in which each

newly added node connects to an existing nodek with probability

Π(k) = b
(dk)γ

∑

j(d j)γ
, (4.12)

wheredk is again the degree of nodek, andγ is a parameter that tunes the attachment mech-

anism. The resulting graph is simple and connected, thus an element ofG(D), although the

degree sequenceD that is realized will vary from trial to trial. Clearly,γ = 0 is equivalent

to uniform attachment (resulting inDexp), while γ = 1 is equivalent to linear preferential

attachment used in the Barabási-Albert model [10] (resulting in Dscaling). A similar type of

model was also considered in [67]. Note also that asγ → ∞ each newly added node at-

taches to the maximum degree node (resulting essentially inDstar), while asγ→ −∞ each

newly added node attaches to the minimum degree node (resulting essentially inDchain). In

what follows, we first restrict attention to the case whereb = 1 (i.e., we generate acyclic

graphs) and consider a range of values forγ in order to generate graphs having a variety of

degree sequences.

Figure 4.2 shows the result of an experiment in which for eachtrial we generate a tree

havingn = 100 nodes using preferential attachment rule given by equation (4.12). That

is, each trial results in a tree having its own degree sequence D ands-value. In generating

these graphs, we use various attachment exponentsγ, but only for the purpose of realizing

graphs with a diversity of degree sequences. In what followswe focus primarily on the

degree sequenceD and the constraints it places on the space of graphs, not the attachment

exponentγ that led toD. For each degree sequenceD, we then calculateCV(D) as well

as the correspondingsmax and smin values as described above. The resulting picture in

figure 4.2(a) shows a striking relationship betweenCV(D) and the range of possibles-
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Figure 4.2: Graph diversity and degree sequence diversity.(a) Thesmin and smax values
in bothG(D) andG(D) vs. theCV(D) of the corresponding degree sequence. Note that
sG(D)

min ≈ sG(D)
min . (b) Thesmin andsmax in G(D), each normalized by their respectivesmax.

values. One observes that while thesmax and smin values increase withCV(D) for both

the unconstrained spaceG(D) and the constrained spaceG(D), the differences given by

smax− smin for each space behave differently at the maximal values ofCV(D). Specifically,

this difference within the unconstrained spaceG(D) increases withCV(D), but it is zero at

bothextremes ofCV(D) for the simple, connected graphs inG(D) (again, the limiting cases

of a chain and a star). It is also worth noting that the values for sG(D)
min andsG(D)

min are so close

as to be indistinguishable, further supporting our choice to treat these values as equivalent.

Figure 4.2(b) presents the same information forsmax andsmin within G(D), but normalizes

the s-values for each graph against its respectivesmax value, thus resulting in a feasible

range [0, 1] for each graph. Collectively, this suggests that for a given degree sequence one

needs “enough” variability to enable diversity among simple, connected graphs but that

“too much” variability actually becomes a constraint within the spaceG(D), something

that Maslov et al. [82] have described as essentially a finitesize effect.

Although it is now well understood that there can be many graphs having the same

degree sequence and that these graphs may have considerablestructural differences, quan-

tifying these differences and their implications in terms of real systems remains the topic

of active research. Taken by itself, this observation is neither groundbreaking nor surpris-

ing. For some time, there has been a general recognition in the literature that the degree
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sequence of a graph can provide only a simplistic characterization of its properties, and this

has led many researchers to consider more sophisticated descriptions of graph structure.

4.2 The s-metric and Self-Similarity

When viewing graphs as multiscale objects, natural transformations that yield simpli-

fied graphs are pruning of nodes at the graph periphery or collapsing of nodes, although

these are only the simplest of many possible “coarse-graining” operations that can be per-

formed on graphs. These transformations are of particular interest because they are often

inherent in measurement processes that are aimed at detecting the connectivity structure

of actual networks. We will use these transformations to motivate that there is a plausible

relationship between high-s(g) graphs and self-similarity, as defined by these simple oper-

ations. We then consider the transformation of random pairwise degree-preserving (link)

rewiring that suggests a more formal definition of the notionof a self-similar graph.

4.2.1 Graph Trimming by Link Removal

Here, we consider the properties ofsmax graphs under the operation of graph trimming,

in which links are removed from the graph one at a time. Recallthat by construction, the

links in thesmax graph are selected from a list of potential links (denoted as(i, j) for i, j ∈

V) that are ordered according to their weightsdid j. Denote the (ordered) list of links in the

smax graph asE = {(i1, j1), (i2, j2), . . . , (i l, j l)}, and consider a procedure that removes links

in reverse order, starting with (i l, j l). Defineg̃k to be the remaining graph after the removal

of all but the firstk − 1 links, (i.e., after removing (i l, j l), (i l−1, j l−1), . . . , (ik+1, lk+1), (ik, lk)).

The remaining graph will have a partial degree sequenceD̃k = {d
′

1, d
′

2, . . . , d
′

k}, whered
′
m ≤

dm,m= 1, 2, . . . , k, but the original ordering is preserved, i.e.,d
′

1 ≥ d
′

2 ≥ · · · ≥ d
′

k. This last

statement holds because when removing links starting with the smallestdid j, nodes will

“lose” links in reverse order according to their node degree.

Observe for trees that removing a link is equivalent to removing a node (or subtree), so

we could have equivalently defined this process in terms of “node pruning.” As a result, for
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acyclicsmax graphs, it is easy to see the following.

Proposition 4.2.1.Let g be an acyclic smax graph satisfying ordered degree sequence D=

{d1, d2, . . . , dn}. For 1 ≤ k ≤ n, denote bỹgk the acyclic graph obtained by removing

(“trimming”) in order nodes n, n−1, . . . , k+1 from g. Then,̃gk is the smax graph for degree

sequencẽDk = {d
′

1, d
′

2, . . . , d
′

k}.

The proof of Proposition 4.2.1 follows directly from our proof of the construction of the

smax graph for trees (see Appendix A). More generally, for graphsexhibiting larges(g)-

values, properly defined graph operations of link trimming appear to yield simplified graphs

with high s-values, thus suggesting a broader notion of self-similarity or invariance under

such operations. However, additional work remains to formalize this notion.

4.2.2 Coarse Graining by Collapsing Nodes

A kind of coarse grainingof a graph can be obtained for producing simpler graphs

by collapsing existing nodes into aggregate or super nodes and removing any duplicate

links emanating from the new nodes. Consider the case of a treeg having degree sequence

D = {d1, d2, . . . , dn} satisfyingd1 ≥ d2 ≥ · · · ≥ dn and connected in a manner such that

s(g) = smax. Then, as long as node aggregation proceeds in order with thedegree sequence

(i.e., aggregate nodes 1 and 2 into 1′, then aggregate nodes 1′ and 3 into 1′′, and so on), all

intermediate graphs ˜g will also haves(g̃) = smax. To see this, observe that for trees, when

aggregating nodes 1 and 2, we have an abbreviated degree sequenceD′ = {d′1, d3, . . . , dn},

whered
′

1 = d1 + d2 − 2. Provided thatd2 ≥ 2 then we are guaranteed to haved
′

1 ≥ d3, and

the overall ordering ofD′ is preserved. Similarly when aggregating nodes 1
′
and 3 we have

abbreviated degree sequenceD
′′
= {d′′1 , d4, . . . , dn}, whered

′′

1 = d1 + d2 + d3 − 4. So as long

asd3 ≥ 2 thend
′′

1 ≥ d4 and ordering ofD
′′

is preserved. And in general, as long as each

new node is aggregated in order and satisfiesdi ≥ 2, then we are guaranteed to maintain an

ordered degree sequence. As a result, we have proved the following proposition.

Proposition 4.2.2.For acyclic g ∈ G(D) with s(g) = smax, coarse graining according to

the above procedure yields smaller graphs g′ ∈ G(D′) that are also the smax graphs of this

truncated degree distribution.
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For cyclic graphs, this type of node aggregation operation maintainssmax properties

only if the resulting degree sequence remains ordered, i.e., d1′ ≥ d3 ≥ d4 after the first

coarse graining operation andd1′′ ≥ d4 ≥ d5 after the second coarse graining operation,

etc.. It is relatively easy to generate cases where arbitrary node aggregation violates this

condition and the resulting graph is no longer self-similarin the sense of having a large

s(g)-value. However, when this condition is satisfied, the resulting simpler graphs seem to

satisfy a broader self-similar property. Specifically, forhigh-s(g) graphsg ∈ G(D), properly

defined graph operations of coarse graining appear to yield simplified graphs inG(D) with

high s-values (i.e., such graphs are self-similar or invariant under proper coarse graining),

but this has not been proved.

These are, of course, not the only coarse graining, pruning,or merging processes that

might be of interest, and for whichsmax graphs are preserved, but they are perhaps the

simplest to state and prove.

4.2.3 Subgraph-Based Motifs

While graph transformations such as link trimming or node collapse reflect some as-

pects of what it means for a graph to be self-similar, the graph transformation of random

pairwise degree-preserving link rewiring offers additional notions of self-similarity which

potentially are even richer and also connected with the claim in the scale-free literature that

scale-free graphs are preserved under such rewirings.

For any graphg ∈ G(D), consider the set of local degree-preserving rewirings ofdistinct

pairs of links. There are
(

l
2

)

= l(l − 1)/2 pairs of different links on which degree preserving

rewiring can occur. Each pair of links defines its own networksubgraph, and in the case

whereg is an acyclic graph (i.e., a tree), these form three distincttypes of subgraphs, as

shown in figure 4.3. Here rewiring operations that result in nonsimple graphs (shaded) are

assumed to revert to the original configuration. Thus defined, rewiring of motif (i) does

not result in any new graphs, rewiring of motif (ii) results in one possible new graph, and

rewiring of motif (iii) results in two possible new graphs.

Using the notationd2 =
∑

dk
2, s = s(g) we can enumerate the number of these sub-
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Figure 4.3: Three possible subgraph-based motifs in degree-preserving rewiring in acyclic
graphs.

Table 4.1: The numbers of the three motifs and successively the number for each possible
rewiring outcome in figure 4.3.

Outcome from degree-preserving rewiring

g′ ∈ G(D) g′ < G(D)

simple simple not simple

connected not connectednot connected

Case/Motif Count g′ = g g′ , g g′ , g g′ , g

(i) d2

2 − l 1 0 0 1

(ii) s− d2 + l 0 1 0 1

(iii) d2

2 − s+ l2−l
2 0 1 1 0

Totals l2−l
2

d2

2 − l l2+l
2 −

d2

2
d2

2 − s+ l2−l
2 s− d2

2

graphs as follows:

1. The two links share a common node. There are
∑n

i=1

(
di

2

)

= 1
2d2 − l possible ways that

this can occur.

2. The links have two nodes that are connected by a third link.There are
∑

(i, j)∈E(di −

1)(d j − 1) = s− d2 + l possible ways that this can occur.
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3. The links have end points that do not share any direct connections. There are
(

l
2

)

−
∑n

i=1

(
di
2

)

− ∑

(i, j)∈E(di − 1)(d j − 1) = 1
2d2 − s+ 1

2(l2 − 2) possible ways that this can

occur.

Collectively, these three basic subgraphs account for all possible
(

l
2

)

= l(l − 1)/2 pairs of

different links. The subgraphs in cases (i) and (ii) are themselves trees, while the subgraph

in case (iii) is not. We will refer to these three cases for subgraphs as “motifs,” in the spirit

of [86], noting that our notion of subgraph-based motifs is motivated by the operation of

random rewiring to be discussed below.

The simplest and most striking feature of the relationship between motifs ands(g) for

acyclic graphs is that we can derive formulas for the number of subgraph-based (local)

motifs (and the outcomes of rewiring) entirely in terms ofd2, s = s(g), and l. Thus,

for example, we can see that graphs having higherd2 (equivalently higherCV) values

have fewer of the second motif. If we fixD, and thusl andd2, for all graphs of interest,

then the only remaining dependence is ons, and graphs with highers(g)-values contain

fewer disconnected (case iii) motifs. This can be interpreted as a motif-level connection

betweens(g) and self-similarity, in that graphs with highers(g) contain more motifs that

are themselves trees, and thus more similar to the graph as a whole. Graphs having lower

s(g) have more motifs of type (iii) that are disconnected and thus dissimilar to the graph as a

whole. Thus high-s(g) graphs have this “motif self-similarity,” low-s(g) graphs have “motif

self-dissimilarity” and we can precisely define a measure ofthis kind of self-similarity and

self-dissimilarity as follows.

Definition 4.2.1. For a graph g∈ G(D), another measure of the extent to which g is self-

similar is the metric ss(g) defined as the number of motifs (cases i-ii) that are themselves

connected graphs. Accordingly, the measure of self-dissimilarity sd(g) is then the number

of motifs (case iii) that are disconnected.

For trees,ss(g) = s− d2/2 andsd(g) = −s+ (l2 − l + d2)/2, so this local motif self-

similarity (self-dissimilarity) is essentially equivalent to high-s(g) (low-s(g)). As noted

previously, network motifs have already been used as a way tostudy self-similarity and
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coarse graining [61, 60]. There, one defines a recursive procedure by which node connec-

tivity patterns become represented as a single node (i.e., adifferent kind of motif), and it

was shown that many important technological and biologicalnetworks were self-dissimilar,

in the sense coarse-grained counterparts display very different motifs at each level of ab-

straction. Our notion of motif self-similarity is much simpler, but consistent, in that the

Internet has extremely lows(g) and thus minimally self-similar at the motif level. The

next question is whether highs(g) is connected with “self-similar” in the sense of being

preserved under rewiring.

4.2.4 Degree-Preserving Rewiring

We can also connects(g) in several ways with the effect that local rewiring has on the

global structure of graphs in the setG(D). Recall the above process by which two network

links are selected at random for degree-preserving rewiring, and note that when applied to

a graphg ∈ G(D), there are four possible distinguishable outcomes:

1. g′ = gwith g′ ∈ G(D): the new graphg′ isequalto the original graphg (and therefore

also a simple, connected graph inG(D));

2. g′ , g with g′ ∈ G(D): the new graphg′ is not equal tog, but is still a simple,

connected graph in the setG(D) (note that this can includeg′ which are isomorphic

to g);

3. g′ = g with g′ < G(D): the new graphg′ is still simple, but is not connected;

4. g′ = g with g′ < G(D): the new graphg′ is no longer simple (i.e., it either contains

self-loops or parallel links).

There are two possible outcomes from the rewiring of any particular pair of links, as shown

in figure 4.3(a) and this yields a total of 2
(

l
2

)

= l(l − 1) possible outcomes of the rewiring

process. In our discussion here, we ignore isomorphisms andassume that all nonequal

graphs are different.

We are ultimately interested in retaining within our new definitions the notion that high

s(g) graphs are somehow preserved under rewiring provided thisis sufficiently random and
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degrees are preserved. Scaling is of course trivially preserved by any degree-preserving

rewiring, but highs(g) value is not. Again, Figure 4.1 provides a clear example, since

successive rewirings can take any of these graphs to any other. More interesting for high

s(g) graphs is the effect of randomrewiring. Consider again thePerf(g) vs. s(g) plane

from Figure 4.1. In addition to the five networks from Figure 3.8, we show thePerf(g)

ands(g) values for other graphs inG(D) obtained by degree-preserving rewiring from the

initial four networks. This is done by selecting uniformly and randomly from thel(l − 1)

different rewirings of thel(l−1)/2 different pairs of links, and restricting rewiring outcomes

to elements ofG(D) by resetting all disconnected or nonsimple neighbors to equal. Points

that match the color of one of the four networks are only one rewiring operation away,

while points represented in gray are more than one rewiring operation away.

The connections of the results in Table 4.1 to motif counts ismore transparent how-

ever than to the consequences of successive rewiring. Nevertheless, we can use the results

in Table 4.1 to describe related ways in which lows(g) graphs are “destroyed” by ran-

dom rewiring. For any graphg, we can enumerate among all possible pairs of links on

which degree preserving rewiring can take place and count all those that result in equal or

nonequal graphs. In Figure 4.3, we consider the four cases for degree-preserving rewiring

of acyclic graphs, and we count the number of ways each can occur. For motifs (i) and (ii),

it is possible to check locally for outcomes that produce nonsimple graphs and these cases

correspond to the shaded outcomes in figure 4.3. If we a prioriexclude all such nonsimple

rewirings, then there remain a total ofl(l − 1)− s+ d2/2 simple similar neighbors of a tree.

We can define a measure of local rewiring self-dissimilarityfor trees as follows. We dis-

tinguish between equal, not equal but connected and simple,not connected but simple, and

not simple graphs that are similar to each graph with the given motif selected for rewiring.

In Table 4.1, the total number of cases (column sum) is (l2 − l)/2, while the total number

(row sum) of outcomes is twice that atl2 − l.

Definition 4.2.2. For a tree g∈ G(D), we measure the extent to which g is self-dissimilar

under local rewiring by the metric rsd(g) defined as the number of simple similar neighbors

that are disconnected graphs.
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For trees,rsd(g) = sd(g) = −s+(l2− l+d2)/2, so this local rewiring self-dissimilarity is

identical to motif self-dissimilarity and directly related to low s(g) values. This is because

only motif (iii) results in simple but not connected similarneighbors.

4.3 The s-metric and Likelihood

While the introduction and exploration of thes-metric fits naturally within standard

studies of graph theoretic properties, it differs from the scale-free literature in that our

structural approach does not depend on a probability model underlying the set of graphs

of interest. The purpose of this section is to compare our approach with the more conven-

tional probabilistic and ensemble-based views. For many application domains, including

the Internet, there seems to be little motivation to assume networks are samples from an

ensemble, and our treatment here will be brief while trying to cover this broad subject.

Here again, we show that thes(g) metric is potentially interesting and useful, as it has a

direct relationship to notions of graph likelihood. This section also highlights the striking

differences in the way that randomness is treated in physics-inspired approaches vs. those

shaped by mathematics and engineering.

4.3.1 Probabilistic Approach

The starting point for most probabilistic approaches to thestudy of graphs is through

the definition of an appropriatestatistical ensemble(see for example [43, Section 4.1]).

Definition 4.3.1. A statistical ensemble of graphs is defined by

(i) a set G of graphs g, and

(ii) a rule that associates a real number (“probability”)0 ≤ P(g) ≤ 1 with each graph

g ∈ G such that
∑

g∈G P(g) = 1.

To describe an ensemble of graphs, one can either assign a specific weight to each

graph or define some process (i.e., a stochastic generator) which results in a weight. For
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example, in one basic model of random graphs, the setG consists of all graphs with a node

setV = {1, 2, . . . , n} havingl links, and each element inG is assigned the same probability

1/
(
n
l

)

. In an alternative random graph model, the setG consists of all graphs with node set

V = {1, 2, . . . , n} in which the link are chosen independently and with probability 0 < p < 1.

In this case, the probabilityP(g) depends on the number of links ing and is given by

P(g) = pl(1− p)n−l, wherel denotes the number of links ing ∈ G.

The use of stochastic construction procedures to assign statistical weights has so domi-

nated the study of graphs that the assumption of an underlying probability model often be-

comes implicit. For example, consider the four graph construction procedures listed in [43]

that are claimed to form“the basis of network science,”and include (1) classical random

graphs due to Erdös and Renyı́ [47]; (2) equilibrium randomgraphs with a given degree

distribution such as theGeneralized Random Graph (GRG)method [35]; (3) “small-world

networks” due to Watts and Strogatz [120]; and (4) networks growing under the mecha-

nism of preferential linking due to Barabási and Albert [20] and made precise in [26]. All

of these construction mechanisms are inherentlystochasticand provide a natural means for

assigning, at least in principle, probabilities to each element in the corresponding space of

realizable graphs. While deterministic (i.e., nonstochastic) construction procedures have

been considered [23], their study has been restricted to thetreatment of deterministic pref-

erential attachment mechanisms that result in pseudofractal graph structures. Graphs re-

sulting from other types of deterministic constructions are generally ignored in the context

of statistical physics-inspired approaches since within the space of all feasible graphs, their

likelihood of occurring is typically viewed as vanishinglysmall.

Using the construction procedure associated with thegeneral model of random graphs

with a given expected degree sequenceconsidered in [35] (also called theGeneralized

Random Graph (GRG) modelfor short) we show that thes(g) metric allows for a more

familiar ensemble-related interpretation as(relative) likelihoodwith which the graphg is

constructed according to the GRG method. To this end, the GRGmodel is concerned with

generating graphs with givenexpecteddegree sequenceD = {d1, . . . , dn} for nodes 1, . . . , n.

The link between nodesi and j is chosen independently with probabilitypi j , with pi j pro-

portional to the productdid j (i.e., pi j = ρdid j, whereρ is a sufficiently small constant),
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and this defines a probability measureP on the space of all simple graphs and thus induces

a probability measure onG(D) by conditioning on having degreeD. The construction is

fairly general and can recover the classic Erdös-Rényi random graphs [47] by taking the

expected degree sequence to be{pn, pn, . . . , pn} for constantp. As a result of choosing

each link (i, j) ∈ E with a probability that is proportional todid j in the GRG model, differ-

ent graphs are typically assigned different probabilities underP. This generation method is

closely related to thepower-law Random Graph (PLRG)method [9], which also attempts

to replicate a given (power-law) degree sequence. The PLRG method involves forming

a setL of nodes containing as many distinct copies of a given node asthe degree of that

node, choosing a random matching of the elements ofL, and applying a mapping of a given

matching into an appropriate (multi)graph. It is believed that the PLRG and GRG models

are“basically asymptotically equivalent, subject to bounding error estimates”[9]. Defin-

ing thelikelihoodof a graphg ∈ G(D) as the logarithm of its probability under the measure

P, we can show that the log likelihood (LLH) of a graphg ∈ G(D), can be computed as

LLH(g) ≈ κ + ρ s(g), (4.13)

whereκ is a constant.

Note that the probability of any graphg underP is given by [102]

P(g) =
∏

(i, j)∈E
pi j

∏

(i, j)<E
(1− pi j ),

and using the fact that under the GRG model, we havepi j = ρdid j, whereD = (d1, . . .dn)

is the given degree sequence, we get

P(g) = ρl
∏

i∈V
ddi

i

∏

(i, j)<E
(1− ρdid j)

= ρl
∏

i∈V
ddi

i

∏

i, j∈V(1− ρdid j)
∏

(i, j)∈E(1− ρdid j)
.
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Taking the log, we obtain

logP(g) = l logρ +
∑

i∈V
di logdi +

∑

i, j∈V
log(1− ρdid j)

−
∑

(i, j)∈E
log(1− ρdid j).

Defining

κ = l logρ +
∑

i∈V
di logdi +

∑

i, j∈V
log(1− ρdid j),

we observe thatκ is constant for fixed degree sequenceD. Also recall that log(1+ a) ≈ a

for |a| << 1. Thus, ifρ is sufficiently small so thatpi j = ρdid j << 1, we get

LLH(g) = logP(g) ≈ κ +
∑

(i, j)∈E
ρdid j.

This shows that the graph likelihoodLLH(g) can be made proportional tos(g) and thus we

can interprets(g)/smax asrelative likelihoodof g ∈ G(D), for thesmax-graph has the highest

likelihood of all graphs inG(D). Choosingρ = 1/
∑

i∈V di = 1/2l in the GRG formulation

results in the expectation

E(di) =
n∑

j=1

pi j =

n∑

j=1

ρdid j = ρdi

n∑

j=1

d j = di.

However, thisρ may not havepi j = ρdid j << 1 and can even makepi j > 1, particularly

in cases when the degree sequence is scaling. Thusρ must often be chosen much smaller

thanρ = 1/
∑

i∈V di = 1/2l to ensure thatpi j << 1 for all nodesi, j. In this case, the

“typical” graph resulting from this construction with havedegree sequence much less than

D, however this sequence will be proportional to the desired degree sequence,E(di) ∝ di.

While this GRG construction yields a probability distribution onG(D) by conditioning

on having degree sequenceD, this is not an efficient, practical method to generate members

of G(D), particularly whenD is scaling and it is necessary to chooseρ << 1/2l. The

appeal of the GRG method is that it is easy to analyze and yields probabilities onG(D)

with clear interpretations. All elements ofG(D) will have nonzero probability with log
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likelihood proportional tos(g). But even thesmax graph may be extremely unlikely, and

thus a naive Monte Carlo scheme using this construction would rarely yield any elements

in G(D). There are many conjectures in the scale-free literature that suggest that a wide

variety of methods, including random degree-preserving rewiring, produce “essentially the

same” ensembles. Thus it may be possible to generate probabilities onG(D) that can both

be analyzed theoretically and also provide a practical scheme to generate samples from

the resulting ensemble. While we believe this is plausible,it’s rigorous resolution is well

beyond the scope of this thesis.

4.3.2 Highly Likely Constructions

The interpretation ofs(g) as (relative) graph likelihood provides an explicit connection

between this structural metric and the extensive literature on random graph models. Since

the GRG method is a general means of generating random graphs, we can in principle

generate random instances of “scale-free” graphs with a prescribed power-law degree se-

quence, by using GRG as described above and then conditioning on that degree sequence.

(And more efficient, practical schemes may also be possible). In the resulting probability

distribution on the space of graphsG(D), high-s(g) graphs with hublike core structure are

literally “highly likely” to arise at random, while low-s(g) graphs with their high-degree

nodes residing at the graphs’ peripheries are “highly unlikely” to result from such stochas-

tic construction procedures.

While graphs resulting from stochastic preferential attachment construction may have

a different underlying probability model than GRG-generated graphs, both result in sim-

ple graphs having approximate scaling relationships in their degree distributions. One can

understand the manner in which high-s(g) graphs are “highly likely” through the use of

a simple Monte Carlo simulation experiment. An alternate approach to generating ran-

dom graphs having a power-law in their distribution of node degree is to use the type of

preferential attachment mechanism first outlined in [20] and consider the structural fea-

tures that are most “likely” among a large number of trials. Here, we generate 100,000

graphs each having 1000 nodes and measure thes-value of each. It is important to note that
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Figure 4.4: Results from Monte Carlo generation of preferential attachment graphs having
1000 nodes. Both the CDF and CCDF are shown.

successive graphs resulting from preferential attachmentwill have different node degree

sequences (one that is undoubtedly different from the degree sequence in figure 3.8(a)), so

a raw comparison ofs(g) is not appropriate. Instead, we introduce the normalized value

S(g) = (s(g) − smin)/(smax− smin) and use it to compare the structure of these graphs. Note

that this means also generating thesmax, smin graph associated with the particular degree

sequence for the graph resulting from each trial. Fortunately, the construction procedure in

Appendix A makes this straightforward, and so in this mannerwe obtain the normalized

S-values for 100,000 graphs resulting from the same preferential attachment procedure.

Plotting the CDF and CCDF of theS-values for these graphs in figure 4.4, we observe a

striking picture: all of the graphs resulting from preferential attachment had values ofS

greater than 0.4, most of the graphs had values 0.5 < S(g) < 0.9, and a significant number

had valuesS(g) > 0.9. In contrast, the graphs in figure 3.8 had values:S(PA) = 0.52,

S(HOT) = 0.05. Again, from the perspective of stochastic constructionprocesses, low-

S values typical of HOT constructions are “very unlikely” while high-S values are much

more “likely” to occur at random.

With this additional insight into thes-values associated with different graphs, the rela-

tionship in thePerf(g) vs. s(g) plot of Figure 4.1 is clearer. Specifically, high-performance

networks resulting from a careful design processare vanishingly rare from a conventional

probabilistic graph point of view. In contrast, the likely outcome of random graph construc-
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tions (even carefully handcrafted ones) are networks that have extremely poor performance

or lack the desired functionality (e.g., providing connectivity) altogether.

4.4 The s-metric and Assortativity

There is now a growing literature on the importance of correlation structure in net-

works [49, 95, 94, 41, 92, 111] and how to generate networks having particular correlation

structure [67, 110, 32, 78]. A simple measure of correlationstructure that has appeared

extensively in the literature is the assortativityr which is used to quantify the average ten-

dency of nodes to connect to others having similar degree. Itturns out that there is an in

inherent relationship between the assortativity and thes-metric, and a closer look at this

relationship yields considerable insight into both the diversity within the background set

G(D) as well as the interpretation ofr itself. In this regard, the assortativity, also noted as

Pearson Coefficient, is extremely misleading when measuring graphs with high variability

degree sequence since it is directly borrowed from classic graph theory where graphs with

low variability graphs dominate.

4.4.1 Assortativity Definition

Recently, Newman [93] introduced the following sample-based measure of graph as-

sortativity as defined by

r(g) =

[∑

(i, j)∈E did j/l
]

−
[∑

(i, j)∈E
1
2(di + d j)/l

]2

[∑

(i, j)∈E
1
2(d2

i + d2
j )/l

]

−
[∑

(i, j)∈E
1
2(di + d j)/l

]2
. (4.14)

This relationship can be written as

r(g) =

[∑

(i, j)∈E did j

]

−
[∑

i∈V
1
2d2

i

]2
/l

[∑

i∈V
1
2d3

i

]

−
[∑

i∈V
1
2d2

i

]2
/l
, (4.15)

where the first term of the numerator is exactlys(g). Although the assortativity is only a

summary statistic for the correlation profile of the graph asa whole, it provides interesting
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information nonetheless and is often cited as a key feature distinguishing various classes of

complex networks [93, 94, 96, 98].

4.4.2 Measuring Against Background Sets

Here, we argue thatr(g) has a natural interpretation as a “centered” and “normalized”

version ofs(g). In particular, observe that the first term of the denominator in (4.15) is

exactly thesmax value within the spaceG(D) as defined in (4.10). Accordingly, one can

rewrite the assortativity as

r(g) =
s(g) − s(gc)

sG(D)
max − s(gc)

, (4.16)

where we refer togc as the “center” of the spaceG(D).

To see whygc can be viewed as the center of this space of graphs, we consider the

following thought experiment:what is the structure of a deterministic graph with degree

sequence D and having zero assortativity?In principle, a node in such a graph will connect

to any other node in proportion to each nodal degree. In practice, such a graph may not

exist for generalD, however one can construct a deterministicpseudograph̃g having zero

assortativity in the following manner. LetA = [ai j ] represent a (directed) node adjacency

matrix of nonnegative real values, representing the “link weights” in the pseudograph. That

is, links are not constrained to integer values but can existin nonnegative fractional form.

The zero assortative pseudograph will have symmetric weights given by

ai j =

(
d j

∑

k∈V dk

)

di =

(

di
∑

k∈V dk

)

d j = a ji .

Thus, the weightai j for each link emanating out of nodei is in proportion to the degree of

node j, in a manner that is relative to the sum of all node degrees. Ingeneral, the graphs

of interest to us are undirected, however here it is notationally convenient to consider the

construction of directed graphs. Using these weights, the total weight among all links

entering and exiting a particular nodei equals

∑

j∈V
ai j +

∑

k∈V
aki = di + di = 2di.
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Accordingly, the total “link weights” in the pseudograph are equal to

∑

i, j∈V
ai j =

∑

j∈V
d j = 2l,

where againl corresponds to the total number of links in a traditional graph. By extension,

thes-metric for the pseudograph ˜gA represented by connectivity matrixA is calculated as

s(g̃A) =
∑

j∈V

∑

i∈V

1
2

diai j d j

=
∑

j∈V





∑

i∈V

1
2

di

(
d j

∑

k∈V dk

)

di



 d j

=

(∑

j∈V d2
j

)(∑

i∈V d2
i

)

2
(∑

k∈V dk

)

=

(∑

j∈V d2
j

)2

4l

=

(∑

j∈V
1
2d2

j

)2

l
,

showing thats(g̃A) = s(gc). Thus, in terms of itss-value,gc is equivalent to the center of

G(D).

In principle, one could imagine a deterministic procedure that uses the structural pseu-

dograph ˜gA to generate the zero assortativity graph among an “unconstrained” background

setG(D). That is, graphs resulting from this procedure could have multiple links between

any pair of nodes as well as multiple self-loops and would notnecessarily be connected.

The challenge in developing such a procedure is to ensure that the resulting graph has de-

gree sequence equal toD, although one can imagine that in the limit of large graphs this

becomes less of an issue. By extension, it is not hard to conceive a stochastic process that

uses the structural pseudograph ˜gA to generate a statistical ensemble of graphs having ex-

pected assortativity equal to zero. In fact, it is not hard tosee why the GRG method [35] is

very close to such a procedure.

Note that the total weight in the pseudograph between nodesi and j equalsai j + a ji =
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did j/2l. As discussed in [70], the GRG method is based on the choice ofa probabilitypi j =

ρdid j of connecting two nodesi and j, and also that in order to ensure thatE(di) = di one

needsρ = 1/2l, provided that maxi, j∈V did j ≤ 2l. Thus, the GRG method can be viewed

as a stochastic procedure that generates real graphs from the pseudograph ˜gA, with the one

important difference that the GRG method always results in simple (but not necessarily

connected) graphs. Thus, the zero assortativity pseudograph g̃A can be interpreted as the

“deterministic outcome” of a GRGlike construction method.In fact, it has recently been

shown that the statistical ensemble of graphs resulting from the stochastic GRG method

has zero assortativity [92].

Thus, the assortativityr (as a summary statistic of graph ) captures a fundamental fea-

ture of graph structure, one that is closely related to ours-metric. Notice that both centering

term and normalization term depend only onD and not on the specific graph, thus,r reflects

s is obvious from its definition, but the question is whether a consideration ofs by itself

provides insight. The calculation ofr values for the graphs in figure 3.8 shows that all val-

ues are in the interval [−0.4815,−0.4283]. In fact, all the simple and connected graphs with

the degree sequence as shown in figure 3.8 (a) haver value within [−0.49,−0.42], which

makes the assortativity matric almost unable to differentiate any simple connected graph

from their ensembles of the same degree sequence. The key reason is that the existing no-

tion of assortativity for an individual graphg is implicitly measured against a background

set of graphsG(D) that isnot constrained to be either simple or connected. Becauser is

computed relative to an unconstrained background set, in some cases this normalization

(against the unconstrainedsmax graph) and centering (against the ˜gA pseudograph) does a

relatively poor job of distinguishing among graphs having thesamedegree sequence, par-

ticularly when that degree sequence exhibits high variability. Specifically, one observes that

although they have nearly the same assortativity as defined by r, their structural differences

are highlighted bys and its normalized values,s/sG(D)
max andS(g), defined as

S(g) =
s(g) − smin

smax− smin
. (4.17)

In cases where network performance is measured by the maximum throughput under fixed
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node capacities, these structural differences translate to big differences in performance.

4.4.3 Empirical Results

For additional insight into the way in which differences ins translate to differences in

r, we extend the previous computational experiment (in section 4.1.4) to values ofrmax and

rmin within the constrained background setG(D). Note that these values can be computed

directly from the corresponding values ofsmax and smin. In Figure 4.5(b) we show these

values for each of the generated graphs in our experiment. There are several striking fea-

tures of this plot. The first is that the “normalization” of the s-metric in the calculation of

the assortativityr dramatically changes the sense of graph diversity among graphs having a

particularD. For values of relatively highCV(D), r < 0 and seems largely independent of

any diversity as measured by the range in allowables. In other words, a second important

conclusion is that all networks with highCV(D) haver < 0 and this seems largely a func-

tion of D and not any particular feature of the graph or whether it is a “technological” or

“social” network as argued in [98]. This idea has been made previously in [103, 82, 92, 32]

and has also been recently argued [122] based largely on empirical observations of real

networks having a range ofr-values. A third important takeaway is that for small values

of CV(D) one observes that small diversity as measured bysmax− smin translates to a large

range ofrmax − rmin. The last feature we can see is that the differences between the “un-

constrained” spaceG(D) and the space of simple, connected graphsG(D) may be more

important in determining graph properties than other features as measured by aggregate

statistics.

It is worth noting that althoughr(g) = 1 is achieved approximately by thesmax graph

within G(D) for all graphicalD, it is only in very special instances ofD where thesmin

graph is obtained. Specifically, whensmin = ZẐT , then it follows thatr(g) = −1 if and only

if zk + ẑk = z (a constant) for each of thek pairs of elements. In other words, although it is

true thatrmax = 1 for arbitraryD, one often observes thatrmin � −1 simply because of the

degree sequenceD itself.

Based on this analysis, one might reasonably conclude that the assortativityr is not a
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Figure 4.5: Comparison betweens andr with respect toCV

suitable metric for comparing the correlation structure ofgraphs from different domains.

Indeed, it is well understood that a more accurate approach is to consider higher order forms

of correlation. Yet the deeper question relates to how one should evaluate any observed

correlation structure. Recent efforts by several authors have warned against graph theoretic

analysis of networks in isolation. For example, Maslov et al. [81, 82] have argued that a real

assessment of a network’s correlation structure makes sense only when compared against

its “randomized” counterpart. In the context of ‘rich-club’ ordering in complex networks

(i.e., the tendency of high-degree nodes to connect to one another), Colizza et al. [37] have

also argued that the presence of high-degree nodes in a givennetwork is enough to ensure

that high-degree nodes are connected, and they similarly argue for the need to compare

the features of any subject network to a randomized baseline. Thus, important questions

include: What is the appropriate baseline against which to compare graphs? andHow

does this relate to the background set of graphs, as defined byG(D) or G(D)?

An inherent challenge in the study of graph diversity is thatthe combinatorics of even

relatively small networks typically result in a space of graphs that is incredibly large. In

this study, we have focused on graphs havingn = 100 (which are about the largest that can

be visualized easily) for purposes of exposition, and even here a comprehensive analysis

of the elements inG(D) andG(D) is challenging. In choosing preferential attachment as

our primary means for graph generation, we have tried to keepour methods closely tied to

the literature so that they may be easily replicated. An alternate approach could have been
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to identify specific degree sequencesD for which graph isomorphism reduces the number

of unique graphs to a small handful and the entire space of graphs (not justsmax andsmin)

is easily visualized. Identifying and exploring such examples may represent an important

step in future work.

The overall message of the results here is that one must carefully consider the inherent

diversity of graphs sharing a particular statistical measure when making claims based on

any such statistic. Nonetheless, additional work is required to understand fully the way in

which graph diversity affects such characterizations. While others have argued for the need

to compare against a “randomized” version of the graph, herewe have compared against

the entire feasible region, as measured by the range [smin, smax]. The examples here seem

to suggest that the distribution of graphs within eitherG(D) orG(D) is not uniform, and a

general characterization of these distributions is unknown. Ideally, one would like to know

more about where the randomized graph sits within the overall space (i.e., is it the “center”

of this space?) Moreover, there may be important differences between graph properties that

are imposed by structural constraints (e.g., by the degree sequenceD) and those relative to

what has been randomized.

Although this study provides additional insight into the way in which graph diversity

affects one’s ability to use aggregate statistics for characterizing complex networks, it has

done so primarily for acyclic graphs (i.e., trees), and morework is required to understand

the extent to which these same results hold for more general network structures. How-

ever, we now present preliminary empirical evidence that suggests the story for nontrees is

qualitatively the same.

In Figure 5.4, we show the results of a final experiment in which we again generate

trees havingn = 100 nodes according to attachment rule (4.12) for a range of exponentsp.

However, to each tree having an initiall = n − 1 links we then add an additionalkl links

by choosing end points probabilistically in correspondence with (4.12). In this manner, we

generate graphs havingn nodes and a degree sequenceD satisfying
∑

i di = 2(k+ 1)(n− 1)

(i.e., the average degree is〈d〉 ≈ 2(k+ 1)). Empirical evidence [96] suggests that, for many

real networks,〈d〉 < 10. For each degree sequenceD, we then compute the corresponding

smin, smax, rmin, and rmax values as was done previously. Figure 5.4 shows these values



89

plotted against the variation ofD, represented again asCV(D) and also now normalized as

CV(D)/Cmax
V (D) for purposes of comparison.
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Figure 4.6: Graph diversity among nontrees. In this experiment, an additionalk(n − 1)
links were added to initial trees of sizen = 100. (a)k = 1, 〈d〉 = 3.96,Cmax

V = 3.4451. (b)
k = 2, 〈d〉 = 5.94, Cmax

V = 2.7672. (c)k = 4, 〈d〉 = 9.9, Cmax
V = 2.0701. In the bottom

graphs, variation is measured withCV(D) while in the top graphs it is represented as the
normalizedCV(D)/Cmax

V (D).

One observes for graphs with increasing average degree (〈d〉 ≈ 4, 6, 10 in figure 5.4(a)-

(c) respectively) thatCV(D) decreases overall but the relative shape of the space of graphs

within G(D), as defined by the range [smin, smax], remains qualitatively consistent with that

of trees. However, the total variation as measured by the distance between (smax−smin)/smax

decreases with increasing link density. At the same time, for graphs with increasing link

density and having degree sequence withCmax
V (D), the differencesmax − smin is no longer

zero in general, indicating inherent diversity even at higher levels of variation.1. Graph

assortativity as measured by the range [rmin, rmax] is also qualitatively the same as for trees,

1However, when the degree sequenceD corresponds to a “multistar” (e.g., double-star, triple-star), the
overall picture in the upper row of figure 5.4 looks the same, except that thesmin/smax values jump abruptly
to 1 atCmax

V (D), since all “multistars” are isomorphic to one another inG(D).
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in that high-CV(D) is enough to dictate thatr < 0 but that considerable diversity exists for

low values ofCV(D). Although such results are not conclusive, we view them as generally

supportive of graph diversity as we have discussed it here.

4.5 Summary

This chapter provides enhanced understanding towards a theory of scale-free networks

by introducing a structural metric, thes-metric, that defines one possible measure of the

extend to which a graph is scale-free. Thes-metric is the first one that targets to differentiate

between all simple, connected graphs having an identical high variability degree sequence.

This structural view has rich and interesting connections to the previously studied graph

properties of scale-free networks, such as various notionsof self-similarity, likelihood and

assortativity. Our approach clarifies much of the confusionsurrounding the sensational

qualitative claims in the current literature and offers a rigorous and quantitative alternative.

We also suggest that when making statements about a graph based on these graph properties

one must consider the background set against which these properties are being evaluated.

The functional metric for the Internet topology in the previous chapter together with

the structural metric introduced here provide a two-dimensional plane to visualize the di-

versity of the graph space. In the next chapter, we will talk about the GRAPH of graphs, a

connected graph space, which enables a clear understandingof the whole space of graphs

from a microscopic viewpoint.
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Chapter 5

The GRAPH of graphs

Previously, we project the space of graphs with the same degree sequence into the func-

tional vs. structure plane and derive important relationships among graphs in this extremely

diverse space. In this chapter, we propose a new way to view the space of graphs by con-

necting graphs according to a fundamental microscopic transformation. We call this con-

nected space of graphs the GRAPH of graphs, where each node inthe GRAPH represents

a graph and a link indicates a local transformation between the two corresponding graphs.

The GRAPH of graphs provides a much clearer picture for the whole space of graphs, since

we can break this giant space into many subspaces with the same common properties, enu-

merate all of them, and then explicitly count the number of graphs in each subspace. The

GRAPH of graphs also lends perspective on the structural relationship among all the graphs

in this domain space. Interestingly enough, many properties of the GRAPH of graphs have

direct connections to the properties of graphs inside it. For example, when the GRAPH

of graphs represents a domain space of all the simple and connected graphs with the same

numbers of nodes and links, the degree of a node in the GRAPH ismost relevant to degree

variability of the graph that the node represents. While further constrained to the graphs

with the same degree sequence, many properties of the GRAPH are related to the graph

s-metric.

This chapter is organized as follows. We give motivation andoverview of our work

in section 5.1. In section 5.2, we first provide graph transformation standard, and propose

a fundamental graph transformation method, the general flip, which is proved to that it

satisfies the graph transformation standard. In section 5.3, the GRAPH of graphs by the
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general flip, G1 is discussed in great detail, including its properties, canonical graphs and

subspaces according to graph variability. Then in section 5.4 we propose an extension of

the general flip, the degree preserving flip, and the GRAPH of graph (G2) defined by it.

We conclude at the end.

5.1 Introduction

The space of graphs is extremely diversity, even when all thegraphs share some com-

mon large-scale properties, like the same numbers of nodes and links, or degree sequences.

Both the functional metric and structural metric introduced in the previous chapters can

highlight the differences among graphs having the same degree sequence. Yet, it is not

hard to recognize that any macroscopic statistic property is not possible to fully describe a

graph since the space of graphs has very high order statistics. In current literature, many

graphic metrics are proposed to measure the properties of these graphs, however there is

no systematic work to evaluate the effectiveness of these graphic metrics. Some metrics

which are used to investigate the properties of one network may not be informative for the

other networks because different networks exist for different purposes. For example, the

performance defined as the maximum throughput for the Internet may not make any sense

for the metabolic network. Many metrics may be misleading, especially when they are

constructed against a certain background set. As pointed out in section 4.4 graph assorta-

tivity r is implicitly measured against a background set of unconstrained graphs, leading

to a substantial bias when used as a metric to differentiate constrained graphs with highly

variable degree sequences. For these well evaluated metrics, exhaustively enumerating and

calculating their value may not be feasible due to intensivecomputational requirements. If

many metrics of two graphs have similar values, should we conclude that these graphs are

essentially the same, or we have to explore one more metric?

While more work needs to be done to refine these macroscopic properties in order

to thoroughly evaluate different graphs in the graph space, in this chapter, we propose

an alternative approach to study the space of graphs by introducing a very fundamental

relationship among these graphs according to their microscopic structural similarities and
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differences. This relationship is called the general flip, a way to transform one graph to

another by changing only one link in the graph. We can establish a connection between any

two graphs if they can be transformed to the other by one step general flip. In contrast to

the current literature on studying each individual graph model for complex networks where

each graph is an isolated point, our work focus on the entire space of graphs as a connected

network. As studying the interconnections among network components is an important

step to understand complex networks, building bridges among these isolated graphs will

provide deep insight into the space of graphs as well as the fundamental similarities and

differences of these graphs. When relationships zoom into microscopic structural level, it

gives a clear picture of how each graph can be transformed to another and how different

two graphs are.

The domain space of graphs we focus on is the set of all the simple and connected

graphs with the same numbers of nodes and links, where the setof all graphs with the same

degree sequence is a subspace. The general flip is the most fundamental transformation in

this domain space and any other transformations in it can be performed as several steps of

general flips. For example, we later will introduce the degree preserving flip, which is a

special case of two steps of general flip and can maintain the degree sequence of the graphs.

We will also show that the general flip can reach all the graphsin the domain space, that is

the general flip satisfies the generality defined by [79].

With the aid of the general flip, the space of graphs is no longer a set of isolated graphs,

but agraphof graphs (we call G1) where each node is a graph and each link represents a

local general flip between the two corresponding graphs. G1 contains all the simple and

connected graphs with the same numbers of nodes and links andit can be much more

complicated than graphs within it since the size of G1 usually exponentially increases with

the size of graphs. However a careful study of the propertiesof the GRAPH of graphs

provides many interesting results relating to the properties of graphs, such as the variability

of degree sequence and thes-metric of the graphs. For example, we prove that the degree

of each node in G1 is proportional to the variability of the corresponding graph degree

sequence, therefore graphs with the largest number of neighbors are those with the highest

variability in their degree sequence. We also propose a heuristic way to construct a graph
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with the highest variability, which is called the canonicalgraph, and prove that all graphs

can be transformed to this canonical form, therefore G1 is connected. The canonical form

is also the graph that is most likely to appear when we take a random walk on G1. All these

indicate in the space of graphs with the same numbers of nodesand links, variability of the

degree sequence plays an important role to measure the graphs. Furthermore by breaking

this giant space of graphs into many countable subspaces andthen enumerating all the

graphs in each subspace, we can obtain a much clearer pictureof the graph space which

has never been understood thoroughly. In fact, the graphs with lower degree variability

completely dominate the whole space. Even though each high degree variability graph has

higher probability in random walk, it is much more likely to arrive at low degree variability

ones due to this reason.

As an extension of the general flip, we introduce the degree-preserving flip, which is

a special case of two step general flips and it can also keep thesame degree sequence for

the graph. The connected graph space defined by degree-preserving flip is called G2 in

which all the graphs are simple and connected with a fixed degree sequence, therefore a

subspace of G1. The important discovery of this space is thatthe degree of each node in

G2 is directly related to thes-value of the graph defined before. Scale-free graphs (i.e.,high

s-value graphs) have more neighbors and are more likely to appear than other graphs when

a random walk is performed on G2. These suggest that when the degree sequence is fixed,

the s-metric is crucial to differentiate these graphs, which is consistent with our previous

argument. Unlike G1, G2 can be disconnected, which means that the degree-preserving

flip cannot transform one graph to another in some graph spaces. However, we prove that

when any of the graph in G2 has a diameter greater than or equalto three, G2 is connected.

5.2 The General Flip

Before getting into the details of general flip, we introducesome basic standards for

graph transformations.
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5.2.1 Transformation Standards

A graph transformation may be arbitrarily defined, however,there are some basic prop-

erties or standards that the transformation should satisfyas below (originally defined in

[79]):

• Soundness: No transformation maps to graphs which are not in the domainspace.

Here we study the domain space of all the simple and connectedgraphs, and restrict

to the graphs with the same numbers of nodes and links for the general flip, and we

further constrain the domain to the graphs with the same degree sequence for the

degree-preserving flip.

• Generality: The transformation process does not converge to a specific graph. All

graphs can be reached by this transformation and the probability for each graph to be

arrived should be nonzero at limit.

• Feasibility: The transformation can be described by a simple (distributed) routine

changing only a small number of edges of the graph, so that it can be easily imple-

mented.

We start by repeating some notations of graph theory as defined in previous chapters.

A graph is defined by a finite node setV = {1, 2, 3, . . . , n} of sizen = |V| and a link set

E := {(u, v) : u, v ∈ V, u , v}. Let di denote the degree (i.e., number of connections) of

nodei, and callD = {d1, d2, . . . , dn} the degree sequence of the graph. Denote the number

of links asl = |E| and
∑n

i=1 di = 2l.

5.2.2 The General Flip

The general flip is defined as follows: consider nodev ∈ V and its two neighborsu and

w (u,w ∈ V), such thatu,w are not connected, change the link (u, v) to (u,w), or change

the link (v,w) to (u,w) (see figure 5.1). Whenu, v,w are fully connected to each other, no

transform happens and the graph remains the same. The domainspace of graphs by this

transformation is all the simple and connected graphs with the same numbers of nodes and

links.
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Figure 5.1: The general flip.

Notice that during flipping, among the two links considered,only one link is changed

and the other link remains the same. This unchanged link is crucial for maintaining the

connectivity of the whole graph. Although there might be a lot of ways to change one

graph to another while preserving the number of nodes and links in the graph, the general

flip we defined makes it easy to preserve the simplicity and connectivity of graphs since

it only requires local information of three nodes. Methods such as random graph rewiring

[118] have to periodically check the connectivity of the graph in order to keep it connected,

which requires the globe information of the graph structure, therefore has much higher

computational complexity. The general flip is also the most fundamental transformation

methods for the space of simple and connected graphs having the same numbers of nodes

and links, and we will prove that any other method can be performed by general flip within

finite steps in this domain space.

We can prove the general flip satisfies the basic standards of graph transformation de-

fined above.

Lemma 5.2.1.The general flip is sound.

Proof. The domain space of the general flip is all the simple and connected graphs with the

same numbers of links and nodes. The general flip does not add or remove any node and

link, therefore it remains the same numbers of nodes and links in the graph. The general

flip also keeps the connectness of the graph since the new linkadded to the graph makes the

three nodes reconnected to each other, thus the whole graph stays connected. Furthermore,

if the original graph is simple, the transformed graph is also simple since no self-loop or
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duplicated link is introduced. The general flip keeps graphsin the same domain space

therefore it is sound. �

Lemma 5.2.2.The general flip is feasible.

Since the flip only requires the local information of three nodes and it can be described

by a simple (distributed) routine by changing only 2 connected links in the graph, the

general flip maintains the feasibility.

Lemma 5.2.3.The general flip is general.

Proof. We can prove the generality by first introducing a canonical graph in the domain

space and then proposing a series of general flips such that all the graphs in the domain

space can be transformed into this canonical graph. Realizethat the general flip is re-

versible, therefore all the other graphs can be reached fromthe canonical graph.

Definition 5.2.1. The canonical graph for general flips consists of a set of starnodes and a

set of edge nodes. All the star nodes are fully connected witheach other, and all star nodes

except for one are connected to all edge nodes. There are no extra links among edge nodes.

In the canonical graph, assume the number of star nodes asx, then there will bex− 1

of nodes having degreesn − 1 and one special star node having degreen − 1 − y where

0 ≤ y ≤ n− 1− x. Correspondingly,y edge nodes having degreesx− 1 are only connected

to thex − 1 nonspecial star nodes, andn − x − y edge nodes having degreesx which are

connected to all the star nodes. The canonical graph is unique (except for its isomorphic

graphs) which means that when fixingn and l, x and y is unique. For example, when

increasingx, i.e., changing some edge nodes to star nodes, there will be more than one star

node that cannot be fully connected to all the other nodes, while decreasingx, extra links

has to be put among edge nodes. There is a special case in whichy = 0 and any node with

degreex can be either counted either as a star node or as an edge node, but the graph is the

same, and we count this as an edge node without loss of generality.

Now we can define a series of general flips from any graph to the canonical form as

follows. Choose one nodeu1 as the first star node. From any other nodev , u1, find a

shortest path tou. If the lengthp of the shortest path is greater than one (i.e.,u1, v are not
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Figure 5.2: A series of general flips to make nodev connect tou1.

directly connected), without loss of generality, we assumethe path as (v, v2, v3, . . . , vp, u1).

Since it is the shortest path, all the nodes on the path form a chain, that is, one node cannot

connect to any other nodes on the path except for its two nearest neighbors on the path.

Therefore we can perform a series of general flips as: flip (v, v2), (v2, v3) to (v, v3), (v2, v3),

then flip (v, v3), (v3, v4) to (v, v3), (v2, v3), and so on, till flip (v, vp), (vp, u1) to (v, u1), (vp, u1)

(see figure 5.2). For all the other nodes which are not connected tou1, perform similar

general flips untilu1 is connected to all of them. The general flip can be blocked by a

triangle, however, along the shortest path, there is no suchtriangle that can block the flip

transformation. Otherwise we can find a shorter path by goingthrough the shortcut formed

by the third link in the triangle which is not on the shortest path.

For a tree, after a series of transformations, the resultinggraph is a star in which the

degree of the star node isn−1 and all the other nodes have degree 1. A star is the canonical

form of all trees and the process terminates. In nontree cases, the current graph will be

starlike and there is one node connecting to all the other nodes (edge nodes), while edge

nodes will have some extra connections among them. Now pick one of the edge nodes as

the second star nodeu2, for any other edge nodev with degree greater than one and not

connected tou2, do the following series of flips: flip (v, u1), (u1, u2) to (v, u2), (u1, u2), and

pick any neighbor ofv other thanu2, denoted asv1, flip (v, v1), (v1, u1) to (v, u1), (v1, u1) (see

Figure 5.3 for details). Herev1 exists since the degree ofv is greater than one, andv1 is

connected tou1 since the flip process always tries to maintain the connections betweenu1

and any other nodes, even if they could be changed in the intermediate process. By this

process, we can make all the nodes with degrees greater than or equal to two to connect to

the second star node.
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Figure 5.3: A series of general flips to make any edge nodev with degrees greater than one
to connect to the second star nodeu2.
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Figure 5.4: The balancing process to add link (v1, u2) and remove link (v2, v3)

After these transformations, we obtain a double star, wherethere are two star nodes

connecting all the edge nodes except for some possible degree one edge nodes only con-

necting to the first staru1. In this double star, if there coexist degree one edge nodes

and the edge nodes with degrees greater than two, we call thisgraphnot balanced. We

introduce a process to balance the double star. Supposev1 is one of the nodes with de-

grees equal to one, andv2 and v3 are nodes with degrees greater than two and there is

a link betweenv2 and v3. The balancing process is defined as the following flip pro-

cess: flip (v2, u1), (v1, u1) into (v2, v1), (v1, u1), flip (v2, v3), (v3, u1) into (v2, u1), (v3, u1), flip

(v1, v2), (v2, u2) into (v1, u2), (v2, u2) (see figure 5.4). It is easy to show the existence of these

links and that these general flips cannot be blocked. After this balancing process, we get a

double star in which all the edge nodes have degrees either less than or equal to two, or all

the edge nodes have degrees greater than or equal to two. In the first case, the flip process

terminates and we obtain the canonical form, while for the latter case, we change one edge

node to a star node, and continue.
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In summary, the canonicalization process includes two sub-processes, one is called the

centralization process, in which we connect the edge nodes to the newly added star node,

if the edge nodes have degrees greater thanx, wherex is the number of current star nodes.

The centralization process is followed by thebalancing process, in which we balance the

links among edge nodes so that when the graph containsx star nodes, either all the edge

nodes have degrees less than or equal tox, or all the edge nodes have degrees greater

than or equal tox1. In the former case, the process terminates and we get the canonical

graph, while in the latter case, we move one edge node to the set to star nodes and continue

with the centralization process. In the final canonical graph, the number of star nodesx is

uniquely determined by the numbers of nodes and links.

Since any graph can be transformed to the canonical form and each general flip process

is reversible, this means that the canonical form can also bechanged to any other graph,

and as a result all the graphs are reachable. As a result, the final stationary distribution for

any graph is nonzero according to [45]. We will study the stationary distribution of each

graph later. This finishes the proof of the generality of the general flip. �

Notice that we can define the canonical graphs arbitrarily since any graph can be trans-

formed to others by general flips. However, the canonical graph we define here has many

special properties to be discussed later. Also we point out there are many isomorphic

canonical graphs since we can pick the star node arbitrarilyeach time.

In the domain space of simple and connected graphs with the same numbers of links and

nodes, the general flip can be considered as the most fundamental transformation method

in this space. Since any two graphs can be interchanged to each other by performing a

series of general flips, any other transformation method within this space can be achieved

by a series of general flips. For example, the degree-preserving flip we will introduce later

is a special case of two step general flips.

1In the case when all the edge nodes have degrees equal tox, we count it as the first case.
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5.3 G1

The graph transformation defines a connection between any two graphs, therefore the

space of graphs is now aGRAPHof graphs which consists not only nodes representing all

the graphs, but also links describing graph transformations. We define G1 as the GRAPH

of graphs according to the general flip, such that each node inG1 represents a simple and

connected graph with the same numbers of nodes and links as the other graphs in G1, and

two nodes share a link if and only if the underlying graphs represented by the nodes can

be transformed to each other by one step general flip. Here we reuse the notation in the

previous section and defineg as a simple and connected graph, and we also denoteg as the

node in G1 that represents the graphg.

5.3.1 Properties of G1

G1 can be quite complicated due to the huge number of graphs inthe space. However,

exploring G1 reveals many interesting properties and provide us a much clearer picture

of the space of graphs. One immediate property can be derivedis that G1 is connected

because general flip is general as shown in the previous section. Moreover, we can roughly

estimate the number of graphs in G1 and the diameter of G1. Most interestingly, we find

that the degree of each nodeg in G1 is proportional to the variability of the degree sequence

of graphg that this node represents.

Lemma 5.3.1.The diameter of G1 is bounded by the order of n2.

The number of nodes is equal to the total number of all the simple and connected graphs

with the same numbers of nodes and links. This number is huge and it can exponentially

increase withn in general. For example, if the graph is acyclic, i.e. the number of links

l = n − 1, the total number of trees isnn−2 according to [117]. If each graph in G1 hasn

nodes andl links, without considering whether it is connected or not, the total number of

possible graphs in G1 isM!/l!, whereM =
(
n
2

)

is the total number of slots forl possible

links. This number is greater thanlM−l = ln(n−1)/2−l and can exponentially increases with

n. Due to the existence of the giant component when the number of links l is big, we can
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expect the number of connected graphs is not significantly smaller than this estimation.

However, the diameter of G1 is polynomial inn, i.e. the logarithmic of the size of G1. We

can derive this by counting the total number of general flips it takes from any graph to the

canonical form.

Proof. Recall that the transformation from any graph to the canonical form includes a set of

centralization processes and a set of balancing processes.In the first centralization process,

i.e. when picking the first star node, the maximum number of flips for any node to connect

to the star node is the shortest distance from this node to thestar node, therefore it is

bounded byD, the diameter of the graph, and the first centralization process will take less

thanDn flips. After that, each later centralization process takes less than 2n flips since the

diameter of the graph changes to two after the first centralization process. In the balancing

process, each balance step includes three flips and the totalflips for each balancing process

is less than 3n. The total number of star nodes depends on the ratio between the numbers of

links and nodes, which is approximated to the rounded integer of n−
√

n2 − 2l. Adding all

these flips together, the total number of flips from any arbitrary graph to the canonical form

is aboutDn+ 3n+ 5n(n−
√

n2 − 2l) flips, which is bounded by the order ofn2. This means

from any node in G1, we can always find a path to the node which represents the canonical

graph within a distance on the order ofn2. As a result, the diameter of the G1, i.e., the

maximum shortest distance between any two nodes, is less than or equal to the twice of the

distance from any node to the canonical node, and therefore it is also bounded by the order

of n2. �

Lemma 5.3.2.The degree of each node g in G1 equals
∑n

i=1 d2
i − 2l − 6∆, where∆ is the

total number of triangles in the graph g, di and l represent the degree and number of links

in the graph g.

Proof. The degree of each node in G1 is determined by the number of one-step general

flips that can happen in the graph represented by the node. This is related to the number

of 2-motifs in the graph and the number of triangles in the graphs. A 2-motif is defined

in section 4.2 and for any graph with degree sequenced1, d2, . . . , dn, the total number of
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2-motifs is
n∑

i=1

(

di

2

)

=
1
2

n∑

i=1

d2
i − l.

If the 2-motif chosen to perform the general flip also forms a triangle, the general flip

cannot happen, therefore we must remove this case when counting the number of total

general flips. Any triangle in the graph is included in three 2-motifs, and we denote the

number of triangles in the graphs as∆. If a 2-motifs does not contain a triangle, it in fact

can perform two different general flips, which corresponds two different neighbors that the

graph can reach in G1. Therefore degree of each node in G1 is calculated as:

n∑

i=1

d2
i − 2l − 6∆. (5.1)

�

As introduced in section 4.1.4,
∑n

i=1 d2
i is directly related to theCV, a measure of the

variability of a graph degree sequence, when the numbers of nodes and links are fixed.

Therefore, the graph with the higher variability degree sequence will have more neighbors

than the graph with lower variability degree sequence. If a graph has more triangles, which

corresponds to a higher clustering coefficient [120], it has fewer neighbors than those with

lower clustering coefficients.

Lemma 5.3.3. When performing a random walk from one node on G1 with equal prob-

abilities to all its neighbors, the final stationary distribution for staying at that node is

proportional to
∑

d2
i − 2l − 6∆.

As before,di, l,∆ are the parameters of the graph that represented by the node.When

we do a random walk on a graph, from any nodeu, jump to a uniformly randomly chosen

neighbor, the stationary distribution of any nodeu with degreed(u) is equal tod(u)/
∑

u d(u)

according to [45]. Since the degree of a node in G1 is equal to
∑

d2
i − 2l − 6∆, the final

stationary distribution of staying at any graph is proportional to
∑

d2
i − 2l − 6∆. Therefore,

a graph with higher variability degree sequence is easier toappear than a graph with lower

variability degree sequence during the random walk.
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5.3.2 The Canonical Graph in G1

The canonical graph (and its isomorphic graphs) of the general flip was introduced in

the previous section to prove that all the other graphs can betransformed into this form

within finite steps. In fact, the canonical graph is the most special graph in G1.

Lemma 5.3.4.The canonical graph g is the one with the highest CV, therefore corresponds

to the node g with the highest degree and the highest stationary distribution in G1.

Any optimization problem related to graphs can be NP hard dueto connectivity and in-

teger constraints. Fortunately, we can prove that a simple variation of constructing canoni-

cal graph can achieve the global maximal of theCV. Starting from any graph, since the star

nodes can be chosen arbitrarily and the final canonical graphs are just isomorphic to each

other, we can always pick the highest degree node among all the remaining edge nodes as

the new star node and connect it to all the other edge nodes, while maintaining the degrees

of the previous star nodes. Whenever finishing one connection from any edge node to the

star node, the degree of the star node will increase by 1 therefore it will remain the highest

degree among all the edge nodes. Assume before connecting edge nodev to the newly

added star nodex, the star node has degreedx. The essence of centralization process for

each edge nodev is to break the connection betweenv to any of its edge node neighboru

and connectv to the star nodex. In this process, degree ofv remains the same, and degree

of x will be increased by one at the expense of decreasing the degree ofu by one, while all

the other nodes remain the same degrees. The change ofCV can be calculated as:

(dx + 1)2 + (du − 1)2 − d2
x − d2

u = 2(dx − du + 1).

Since star node has a degree higher than or equal to the degreeof any edge nodes, i.e.,

dx ≥ du, theCV of the graph strictly increases when any edge node is connected to a star

node. Each centralization process for one star node consists of procedures connecting all

the edge nodes to the star node, therefore each centralization process strictly increases the

CV.

However, the intermediate balancing process may not alwaysincrease theCV and
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whether theCV can be increased or not depends on the degree of edge nodes with extra

links.

However, we can introduce a small variation of the canonicalization process where we

do not perform the balancing process immediately after eachcentralization process, instead

performing it only after the centralization process for thexth star node (x is the total number

of star nodes in the final canonical graph). With this variation, we are able to directly prove

the global maximization of theCV for the canonical graph. Notice thatx andy (the number

of edge nodes with degreex − 1 as defined before) should be precalculated according to

the previous two interleaving processes. From the previousproof, we can see that the

centralization process is strictly increasingCV regardless whether the balancing process is

performed or not, as long as each time the new star node pickedis the highest degree nodes

among all the edge nodes. Assume afterx centralization processes without any balancing

process, the degrees of thex star nodes aren − 1 − a1, n − 1 − a2, . . . , n − 1 − ax, where

ai ≥ 0, 1≤ i ≤ x. The edge nodes are divided into two parts according to theirdegree. For

these with degree greater thanx, we assume their degree bex+e1, x+e2, . . . , x+ek (ei > 0,

1 ≤ i ≤ k, 0 < k < n − x 2), and for those with degree less than or equal tox, we assume

their degree bex− o1, x− o2, . . . , x− oh (oi ≥ 0, 1≤ i h, h = n− x− k. In the former case,

these edge nodes are connected to all the star nodes and thereare some extra links among

the edge nodes, while in the latter case, each edge nodei is connected tox− oi star nodes

and there are no extra links. The essence of the balancing process is to rearrange the extra

links among higher degree edge nodes to connect lower degreeedge nodes to star nodes.

TheCV of the graph before rearrangement is

x∑

i=1

(n− 1− ai)
2 +

k∑

i=1

(x+ ei)
2 +

h∑

i=1

(x− oi)
2

= x(n− 1)2 − 2(n− 1)
x∑

i=1

ai +

x∑

i=1

a2
i + (n− x)x2 + 2x

k∑

i=1

ei +

k∑

i=1

e2
i − 2x

h∑

i=1

oi +

h∑

i=1

o2
i .

(5.2)

2Whenk = 0, there is no need to do balancing process and each process strictly increasesCV.
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After the balancing process,CV changes to

(x− 1)(n− 1)2 + (n− 1− y)2 + y(x− 1)2 + (n− x− y)x2.

Assumey < h, thereforey of the lower degree edge nodes increase their degree tox−1,

andh− y of them changes their degree tox. The degree of all the higher degree edge nodes

drops tox, therefore all the links among them are extra links which will be moved to the

slots between lower degree edge nodes and star nodes. Assumethe number of extra links

among higher degree edge nodes to beL, andL = 1
2

∑k
i=1 ei. After obtaining theseL links,

the lower degree edge nodes will increase degree tox (h− y of them) orx− 1 (y of them),

therefore
∑h

i=1 oi = L + y. Similarly, all but one star nodes will increase degree ton − 1,

therefore
∑x

i=1 ai = L + y. Plug these into equation (5.2), we can get the change of theCV

after balancing processing is

y2 + y+ 2(n− 1− x)L −




x∑

i=1

a2
i +

h∑

i=1

o2
i +

k∑

i=1

e2
i



 . (5.3)

To check whether this term is always greater than or equal to zero, we should look at the

worst case scenario where
(∑x

i=1 a2
i +

∑h
i=1 o2

i +
∑k

i=1 e2
i

)

is maximized. The constraint here

are
∑k

i=1 e2
i = 2L,

∑x
i=1 a2

i = L + y,
∑h

i=1 o2
i = L + y, ai ≥, ei ≥, oi ≥ 0. Of course, one

implicit constraint is that the graphs before and after balancing process should be simple

and connected, which means we cannot arbitrarily set these values. In fact, this problem is

equivalent to solving two separated questions. One is givenL links, how to put them among

the k nodes with degreex, such that the current degree of these nodesx + ei maximizes
∑k

i=1 ei. This can be thought as that assume each node have degree 0, and how to putL links

among these to maximize theCV. The only difference is that we do not require theseL

links fully connect to thek nodes, since thesek nodes connect to the whole graph already.

Maximum
∑k

i=1 ei is achieved when one node getL connections and the restL of them get

one connection, therefore

max
k∑

i=1

ei = L2 + L. (5.4)
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The other problem can be thought in a similar way, but it requires put theL links between

the star nodes and the lower degree edge nodes. We can achievethe maximal of
∑x

i=1 a2
i +

∑h
i=1 o2

i when one star node is connected toL + y lower degree edge nodes, or when one

edge node is connected toL + y star node. In either case

x∑

i=1

a2
i +

h∑

i=1

o2
i = (L + y)2 + (L + y). (5.5)

Equations (5.4) and (5.5) describe the minimum increment ofCV by the balancing process,

and plug these into equation (5.3), we can get that this amount of change equals to 2(n −

x − L − 2)L which is always greater than or equal to zero since the numberof total nodes

n at least containsx star nodes,L + 1 higher degree edge nodes and 1 lower degree edge

nodes ifL > 0. This means that the balancing process always increasesCV (in the case

whenL = 0, there is no need to do the balancing process).

In summary, if the canonical graph is obtained by performingx centralization processes

(wherex is the number of star nodes in the final canonical graph) and a balancing process,

we can prove that theCV of the canonical graph achieves the global maximal among all

the simple and connected graphs having the same numbers of nodes and links, since all

these processes monotonically increaseCV and we achieve a uniqueCV (despite of graph

isomorphism) no matter whatever the initial graph is.

5.3.3 Exploring G1

We have shown that the degree variabilityCV is an important measure in G1 and the

canonical graph we defined has the highestCV, therefore it has the most number of neigh-

bors and each individual canonical graph has higher probability to appear than other in-

dividual graph if we take random walk on G1. However, the random walk may not more

frequently arrive at the canonical graphs, if the number of canonical graphs is significantly

smaller than these of the lowerCV graphs. In this section, we explore more details of the

space of simple and connected graphs having the same numbersof links and nodes. More

specifically, we break G1 into many countable subspaces so that we can explicitly derive
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the total number of graphs according to their degree sequences, and draw the relationship

between the final stationary distribution of graphs with respect to theirCV. Without sur-

prise, lowCV graphs dominate the space of graphs and we can conclude the high CV

graphs cannot be generated randomly, but from specific design.

To get know more details on the spaces of graphs, we can divideG1 into many sub-

spaces and further divide each subspace into even smaller subspaces till we can explicitly

count the number of graphs in that subspace. The space of graphs containing the same

numbers of nodes and links can be partitioned into many subspaces, each containing all the

graphs with the same unlabelled degree sequence. Two degreesequences are considered

having the same unlabelled degree sequence if they are the same when they are ordered.

For each subspace of graphs with the same unlabelled degree sequence, we can divide it

into smaller subspaces each of which has the same labelled degree sequence. For each la-

belled degree sequence, we can exactly calculate the numberof labelled graphs for acyclic

graphs. Here we use acyclic graphs as an example to illustrate the relationship between the

variability of a degree sequence and the total number of labelled graphs with that degree

sequence.

Given the space of graphs withn nodes andn − 1 links, all the possible unlabelled

degree sequences can be derived by enumerating all the combinations. In fact, this problem

is exactly the same as an integer partition problem without constraint. An unconstrained

integer partition problem for numberm is stated as follows [57]:

m= x1 + x2 + · · · + xm, x1 ≥ x2 ≥ · · · ≥ xm

For example, whenm= 4, the unconstrained integer partition problem is stated as:

4 = 4+ 0+ 0+ 0,

4 = 3+ 1+ 0+ 0,

4 = 2+ 2+ 0+ 0,

4 = 2+ 1+ 1+ 0,

4 = 1+ 1+ 1+ 1
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We obtain all the sequences (4, 0, 0, 0), . . . , (1, 1, 1, 1) and add two zeros such that the total

length of each sequence is six. If adding 1 to each number in each sequence, the sequences

we obtain are exactly the same as all the degree sequences of trees when the number of

node equalsn = m+ 2 = 6, that is

(5, 1, 1, 1, 1, 1)

(4, 2, 1, 1, 1, 1)

(3, 3, 1, 1, 1, 1)

(3, 2, 2, 1, 1, 1)

(2, 2, 2, 2, 1, 1)

After having the all the subspaces according to the unlabelled degree sequence, we

can further divide each subspace into smaller subspaces in which all the graphs have the

same labelled degree sequence. The number of such subspacesfor each unlabelled degree

sequence can be calculated by counting the total possible permutations in that unlabelled

degree sequence. Assume in an unlabelled degree sequence, there aremk nodes having de-

greedk, therefore
∑K

k=1 mk = n, whereK is the total number of degrees which are different.

For example, a star withn nodes has two different degrees:d1 = n−1 andd2 = 1, therefore

m1 = 1 andm2 = n− 1. The total number of possible labelled degree sequence forthe star

is
(
n
1

)

= n, that is, any node can be the highest degree node. For a general unlabelled degree

sequence when the number of nodes having degreedk is mk, the total number of labelled

degree sequence is
(

n
m1,m2, . . . ,mK

)

=
n

m1!m2! . . .mk!
. (5.6)

Equation (5.6) shows that if an unlabelled degree sequence has more distinct degrees, it

contains more labelled degree sequences. Without tree constraint, the unlabelled degree

sequence withn nodes which has the maximum number of labelled degree sequence should

be (n−1, n−2, n−3, . . . , 2, 1, k) wherek would be any number between 1 andn−1. There

is only one repeated degree and the total number of labelled degree sequence isn!/2. For

trees, although the degree sequence has to be constrained as
∑

di = 2(n − 1), the degree
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sequence with maximum number of labelled degree sequence can be estimated roughly

as consecutive numbers from 1 tok with repeated degree within [1, k], wherek can be

estimated from the equationk(k+ 1)+ (n− k) = 2(n− 1).

For each labelled degree sequence, van Lint and Wilson [117]calculate the number of

labelled tree using the definition of multinomial coefficient and induction. For a degree

sequenced1, d2, . . . , dn, the number of labelled tree is:

(

n− 2
d1 − 1, . . . , dn − 1

)

=
n− 2

(d1 − 1)! . . . (dn − 1)!
. (5.7)

Equation (5.7) indicates that for a tree withn nodes, the maximum number of labelled

trees is obtained when the degree sequence satisfies (2, 2, . . . , 2, 1, 1), while the minimum

number of labelled trees is derived at the case when degree sequence is (n− 1, 1, 1, . . . , 1).

That is, the chain structure has the maximum number of labelled graphs ((n − 2)!) while

the star structure has the minimum number of labelled graphs(only 1 labelled star for a

labelled degree sequence).

The general flip defines the stationary probability of each labelled graph while doing

random walks on G1, while the number of labelled graph for a certain degree sequence can

be exactly calculated in the previous section. Combining both results, we can derive the re-

lationship between stationary probability of graphs giveneach degree variability. Although

each higher variability labelled graph is more likely to appear than each lower variability

graph, it does not necessarily mean that lower variability graphs are less likely because

the likelihood also depends on the total number of graphs with that variability. In fact,

we can exactly calculate the probability of a graph given an unlabelled degree sequence

(d1, d2, . . . , dn) as:

c





n∑

i=1

di − 2l





n− 1
(d1 − 1)! . . . (dn − 1)!

n
m1!m2! . . .mk!

(5.8)

wherec is a constant to normalize the whole item to be a probability.The second item

is proportional to the probability of each labelled tree while doing random walk, the third

item is the the number of labelled tree for a given labelled degree sequence, while the last
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term is the number of labelled degree sequence given an unlabelled degree sequence. For

a given degree sequence, we can calculate the variability ofthe degree sequence, therefore

build relationship between probability of the graphs having that degree variability.
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Figure 5.5: Graph probability vs. degree sequence variability.

Figure 5.5 shows probability of graphs having different variability of graph degree se-

quence for a tree withn = 50 nodes (here we use
∑n

i=1 di for degree sequence variability).

For each
∑n

i=1 di, we can obtain all the degree sequences having that value, and calculate the

probability of graphs of each degree sequence and add them upaccording to different de-

gree variability. In fact, figure 5.5 suggests that the low degree variability graphs are much

more likely to appear than the high degree variability ones.The reason is that the third and

last terms in equation (5.8) completely dominate the evaluation and these two terms favor

low variability graphs much more than high variability ones. For a tree ofn = 50 nodes, us-

ing chain structure as an example of low variability graph, the third term for chain is about

(n− 2)! = 1.2× 1061 and the last term isn(n− 1)/2 = 1225, therefore the total number of

labelled chains for 50 nodes is about 1.5×1064. However, for the highest degree variability

graph, the star structure, the third term is only 1 and the last term isn. The comparison

results are striking, the total number of labelled chain is 362 more that the total number of

labelled star for the graphs with same number of nodes and links, yet each labelled star has

stationary probability only 20 times bigger than each labelled chain. When counting all

the degree sequence with different variability, the lower degree variability graphs aremuch
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more than the higher one, therefore when taking random walk on G1, it is more likely to

arrive at lower degree variability graphs than higher ones.Traditional random graph the-

ory focuses on low variability graphs since they are more likely to be generated randomly.

This also confirms that the high degree variability graphs inmost complex networks exist

for special purpose, not from generic and random mechanism.For example, the Internet

comes from the highly engineered design.

5.4 The Degree Preserving Flip and G2

The general flip can be regarded as the most fundamental transformation method for

simple and connected graphs with the same numbers and links.Any other transformation

method in this space or in the subspace can be performed by oneor several steps of general

flips, since the general flip can change any graph to the other within finite steps in this

graphs space. Here we introduce a two-step of general flips, the degree-preserving flip,

which can transform graphs in a subspace of G1 where all the graphs have the same labelled

degree sequence. We call this subspace as G2, and without surprising the properties of G2

are most relevant to the structural metric, thes-metric, introduced before. This reenforce

the importance of thes-metric to study the graphs having the same degree sequence.

5.4.1 The Degree Preserving Flip

The degree-preserving flip is defined in [79], and it has the nice property that the trans-

formation keeps the same nodal degree. The transformation is performed as follows: con-

sider four nodesu, v,w, x ∈ V, if they are connected as (u, v), (v,w), (w, x) ∈ E, and if

neitheru,w nor v, x is connected, flip links (u, v) and (w, x) to (u,w) and (v, x) (see figure

5.6). If any one ofu,w or v, x is connected, the graph remains the same. The domain

space under this transformation contains all the simple andconnected graphs with the same

degree sequence, and furthermore the degree of each node is fixed.

A well-known transformation to preserve the degree distribution of the graph is the

degree preserving rewiring, which exchanges any two links (u, v) and (w, x) into (u,w) and
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Figure 5.6: The degree-preserving flip.

(v, x) without considering the connectivity betweenv,w. Our degree-preserving flip, as a

special case of the degree preserving rewiring, can maintain the simplicity and connectivity

without checking any global information, thus can save a lotof computation.

The soundness and feasibility of the degree-preserving flipfor a regular graph where

all the nodes have exactly the same degrees have been proven in [79]. This can easily be

extended to nonregular graphs with any degree sequence. Thegenerality of the degree-

preserving flip for regular graphs is also proved in [79], which however is hard to extend to

nonregular graphs. In fact, it has been shown that the degree-preserving flip for nonregular

graphs may not be general for some degree sequences and a counterexample named a bow-

tie switch is provided in [50]. In a bow-tie graph, nodesx, y, z, t, v form a link set (x, y),

(z, t), (x, v), (y, v), (z, v), (t, v), wherev is the center of the bow-tie graph and the other

nodes are edge nodes. The space of all graphs with this degreesequence contains only two

graphs (see figure 5.7), however, these two graphs cannot reach each other by the degree-

preserving flip. The transformation between these two bow-tie graphs is called the bow-tie

switch.

y

x z

t

v

y

x z

t

v

Figure 5.7: The bow-tie switch.

Despite of the existence of bow-tie graphs, we prove that thedegree-preserving flip is

general by adding a small constraint to the graph. In fact, ithas been proved in [50] that

the degree-preserving flip is general when the graph has a diameter greater than 3. We can

further relax this constraint.
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Lemma 5.4.1.The degree-preserving flip is general when any graph in the domain space

has a diameter greater than 2.

Feder et al. [50] have shown that if adding bow-tie switch, the degree-preserving flip

can reach any graph. Based on this result, we show that when the diameter of any graph

is greater than or equal to 3, any bow-tie switch can be resolved by a sequence of degree-

preserving flips therefore any graph is reachable.

Proof. Assume that a graph contains a subgraph which is a bow-tie graph. Since a bow-

tie structure has a diameter equal to 2, there must exist nodes and links other than those

in the bow-tie subgraph to make the graph diameter greater than or equal to 3. The extra

nodes may connect to any of the edge nodesx, y, z, t, or the center nodev, resulting in

two basic scenarios. Case 1 happens when at least one node other than these in bow-tie

graph is connected to one or mode edge nodes, yet is not connected to the center node. We

assume that a nodeu is connected to any or both ofx, y, but is not connected to any of

z, t, v (otherwise the diameter of the graph may not great than 2). Wecan perform three

degree-preserving flips to resolve the bow-tie switch as shown in figure 5.8.
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Figure 5.8: The degree-preserving flip for bow-tie switch when extra node is connected to
the edge nodes of bow-tie (case 1).

In the second case when there is no node connected to the edge nodes and all the extra

nodes are connected to the center nodev. To ensure the diameter of the graph greater than

or equal to 3, there must exist two extra nodesu,w connected as a chain and one of which

is connected to the center nodev such that (u, v), (u,w) ∈ E andw does not connect tov.

Still, we can perform six steps of degree-preserving flips toget the bow-tie switch as shown

in figure 5.9.

For any graph which contains a bow-tie with a diameter greater than or equal to three,

we claim these graphs can be transformed to either of the two basic cases. For example, in
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Figure 5.9: The degree-preserving flip for bow-tie switch when extra nodes are connected
to the center node (case 2).

figure 5.4, nodeu can also be connected to nodey and this will not affect the flip process

at all. If u is also connected toz, we need another node connecting tou to make the

diameter greater than two. In this case we can flip the extra link and link (u, z) to release

the connection betweenu andz so as to unblock the triangle for a new flip. �

When the graph has a diameter equal to two, no degree-preserving flip can happen.

When the graph has a diameter great than two, the degree-preserving flip can not reduce the

diameter to two, since the degree-preserving flip is reversible. In fact, when the diameter is

greater than two, by definition there must exist two nodes between which the shortest path

is greater than two. Along this shortest path, there is no extra link connecting any node on

the path, therefore doing the degree-preserving flip on thispath cannot be blocked. The

removal of the existing links will free any triangle that is formed by these links, and a new

degree-preserving flip can now be performed.

5.4.2 Properties of G2

G2 is defined by the degree-preserving flip, such that each node represents a simple and

connected graph with the same degree sequence as the other graphs in G2, and two nodes

share a same link if and only if they can be transformed by one degree-preserving flip. It

turns out that G2 has some nice properties related to thes-metric. Since thes-metric is a

measure of the extend to which a graph is scale-free, scale-free graphs are special in G2.
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Lemma 5.4.2.The degree of each node in G2 is s−∑n
i=1 d2

i + l − δ, whereδ is the number

of triangles which will be specially defined later.

The degree of each node in G2 depends on how many degree-preserving flips that

can happen for the corresponding graph. This is determined by the number of 3-motifs

in the graph and the number of triangles consisting two linkswhich belongs to the 3-

motifs. A 3-motif is a subgraph that contains four nodesu, v,w, x which are connected as

(u, v), (v,w), (w, x) . The total number of 3-motifs is (see Section 4.2 for details)

∑

(i, j)∈E
(di − 1)(d j − 1) =

∑

(i, j)∈E
did j −

n∑

i=1

d2
i + l = s−

n∑

i=1

d2
i + l.

Whenu,w or v, x are connected, the degree-preserving flip cannot happen. This case can

be counted as the triangle in the 3-motif. Denote the total number of 3-motifs that contain

triangle asδ. Notice thisδ is different from the previous∆ which is defined as the total

number of triangles in the graph since a 3-motif may contain 2triangles which should be

counted as one for this motif. From the total number of 3-motifs andδ, we can derive that

the degree of each node in G2 is

s−
n∑

i=1

d2
i + l − δ. (5.9)

Since all the graphs in G2 have fixed degree sequences, the degree of node in G2 is

determined by thes-value, therefore scale-free graphs have more neighbors than the other

graphs.

Lemma 5.4.3.When performing a random walk from any graph on G2 with equal prob-

ability to all its neighbors, the final stationary distribution for staying at this graph is

proportional to s−∑n
i=1 d2

i + l − δ.

Similar argument as before, the stationary distribution ofa node in a graph is propor-

tional to its degree. An important result from this lemma is that the scale-free graphs are

more likely to appear in the space of graphs with the same degree distribution when per-

forming a random walk in the space of graphs.
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5.5 Summary

The space of graphs is fully explored in this section by introducing graph transformation

methods among graphs, particularly those with the same numbers of nodes and links, and

those with the same degree sequence. The general flip, a most fundamental transformation

method, defines G1 which contains all the simple and connected graphs with the same

numbers of nodes and links. G2 is a subspace of G1 containing the graphs with the same

degree sequence, and the graph relationship is built from the degree-preserving flip, a two

steps general flip. We characterize the properties of both G1and G2, and prove that when

fixing the numbers of nodes and links, G1 has a nice relationship to the variability of the

degree sequence of each graph in G1, when further constrained to the graphs with the same

degree sequence, many properties of G2 are related to thes-metric. By exploring the space

of graphs, we obtain a much clearer picture on the number of graphs having different degree

sequences, and on the fundamental differences and similarities among those graphs.
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Chapter 6

Other Projects

My research spans both horizontally and vertically. The majority of this thesis elabo-

rates my horizontal interests: the topologies of complex networks, where we consider the

role of functions and constraints for the Internet router-level topology, define a structural

metric to differentiate graph models with the same degree sequence in general complex

networks, and study the space of graphs for a clearer pictureof graph relationship and

transformations. My vertical line builds on the top of the Internet topology and extends

to the protocol stack of the Internet, including the investigation of joint optimization of

routing and transferring rate at the IP and TCP layers [119],a theoretical framework for

Internet congestion control for TCP layer [101], and user-perceived failure detection using

packet trace at application layer[72]. In this chapter, these three projects along the vertical

line will be briefly described.

6.1 Cross-Layer Optimization in TCP/IP Networks

Recent studies have shown that any TCP congestion control algorithm can be inter-

preted as carrying out a distributed primal-dual algorithmover the Internet to maximize

aggregate utility, and a user’s utility function is defined by its TCP algorithm, see e.g.

[66, 74, 88, 83, 76, 68, 73] for unicast, [64, 38] for multi-cast, and [75, 65, 114] for recent

surveys and further references. All of these works assume that routing is given and fixed at

the timescale of interest, and TCP, together with active queue management (AQM), attempt

to maximize aggregate utility over source rates. In this chapter, we study the cross-layer
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utility maximization at the timescale of route changes.

We focus on the situation where a single minimum-cost route (shortest path) is selected

for each source-destination pair. This models IP routing inthe current Internet within an

Autonomous System using common routing protocols such as OSPF [91]1 or RIP [58].

Routing is typically updated at a much slower timescale thanTCP–AQM. We model this

by assuming that TCP and AQM converge instantly to equilibrium after each route update

to produce source rates and “congestion prices” for that update period. These congestion

prices may represent delays or loss probabilities across network links. They determine

the next routing update in the case of dynamic routing, similar to the system analyzed in

[53]. Thus TCP–AQM/IP form a feedback system where routing interacts with congestion

control in an iterative process. We are interested in the equilibrium and stability properties

of this iterative process. To simplify notation, we will henceforth use TCP–AQM/IP and

TCP/IP interchangeably.

Here are our main results. In the case of pure dynamic routing, i.e., when link costs are

the congestion prices generated by TCP–AQM, it turns out that we can interpret TCP/IP

as a distributed primal-dual algorithm to maximize aggregate utility overbothsource rates

(by TCP–AQM) and routes (by IP) if it TCP/IP converges. We consider the problem,

and its Lagrangian dual, of maximizing utility over source rates and over routing that use

only asinglepath for each source-destination pair. Unlike the TCP-AQM problem or the

multi-path routing problem that are convex optimizations with no duality gap, the single

path TCP/IP problem is non-convex and generally has a duality gap. Equilibrium of the

TCP/IP system exists if and only if this problem has no duality gap. In this case, TCP/IP

equilibrium solves both the primal and the dual problem. Moreover, it incurs no penalty

for not splitting traffic across multiple paths: optimal single-path routing achieves the same

aggregate utility as optimal multi-path routing. Multi-path routing can achieve a strictly

higher utility only when there is a duality gap between the single-path primal and dual

problems, but in this case, the TCP/IP iteration does not even have an equilibrium, let alone

solving the utility maximization problem.

1Even though OSPF implements a shortest-path algorithm, it allows multiple equal-cost paths to be uti-
lized. Our model ignores this feature.
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Even when the single-path problem has no duality gap and TCP/IP has an equilibrium,

the equilibrium is generally unstable under pure dynamic routing. It can be stabilized by

adding a sufficiently large static component to the definition of link cost. The existence and

characterization of TCP/IP equilibrium when the link costs are not pure congestion prices,

however, are open problems. To proceed, we specialize to a ring network with a common

destination and demonstrate an inevitable tradeoff between utility maximization and rout-

ing stability. Specifically, we show that the TCP/IP system over the special ring network

is indeed unstable when link costs are pure prices. It can be stabilized by adding a static

component to the link cost, but at the expense of a reduced utility in equilibrium. The loss

in utility increases with the weight on the static component. Hence, while stability requires

a small weight on prices, utility maximization favors a large weight. We present numerical

results to validate these qualitative conclusions in a general network topology. They also

suggest that routing instability can reduce aggregate utility to less than that achievable by

(the necessarily stable) pure static routing.

Indeed we show that if the link capacities are optimally provisioned, thenpure static

routing is enough to maximize utility even for general networks. Moreover, it is optimal

within the class of multi-path routing: again, there is no penalty at optimality in not splitting

traffic across multiple paths.

The duality model of TCP–AQM has been useful in understanding the equilibrium

properties, including throughput, packet loss, delay, andfairness, of large-scale networks

under TCP–AQM control. This work is a first, and preliminary,attempt to apply the same

methodology to understand the cross-layer interaction of TCP–AQM, minimum-cost rout-

ing and resources allocation. Our model is simplistic – it ignores finite duration flows and

randomness in real networks, and reduces the rich behavior of IP to minimum-cost routing.

Even within this highly abstract model, many questions remain open. First, even though

numerical examples suggest that the tradeoff between routing stability and utility maxi-

mization is present in a more general network than the special ring network we studied,

we have not been able to find an analytical proof. One of the major difficulties is that, in

a general network, minimum-cost routing cannot be as conveniently represented as in the

ring network. Second, when static component is included in link cost, it is not known if
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TCP/IP has an equilibrium, whether the equilibrium jointly solves a certain optimization

problem, and under what condition it is stable. Third, it would be interesting to estimate

the duality gap in the single-path problem. Even though thisproblem is not directly related

to the TCP/IP iteration when the duality gap is nonzero, the gap measures the penalty of

not splitting traffic among multiple paths.

6.2 Methodological Frameworks For Internet Congestion

Control

In this work, we make the theme that optimization based decompositions of complex

systems into interacting modules facilitates analysis, comparability and verifiability of the

desired system properties. The modularity that such decompositions offer, and which at first

endows the systems with an apparent complexity should be taken advantage of. Aiming for

such decompositions is beneficial both for analysis and design.

We also stress that in any analysis procedure it is importantto construct robust models

for the modules, as this will capture the uncertainty in modelling and component parameters

so that it be taken account in the design process. The new tools that we develop in this work

allow us to analyze such systems even at the nonlinear level,and expand the applicability

of this methodology.

Complex systems and large scale networks will dominate the future societies as tech-

nology advances. Designing such systems is more than art based on intuition. It is widely

appreciated that network congestion control for the Internet is probably the only complex

system for which we have a good understanding of the interaction of the various modules

at the TCP/AQM level. The system can be designed by resorting to a solid methodological

framework that provides the desired functionality at equilibrium, based on an optimiza-

tion scheme; and the correct dynamics can be chosen for the various modules to drive the

system to the equilibrium – the right choice of dynamics are key to the scalability of the

verification result.

The success in designing network congestion control schemes for the Internet through
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a mathematical formulation which enables understanding ofits functionality and the lim-

itations that features such as delays pose, allows us to believe that similar hierarchical

structures can enable understanding and design of other complex systems in the future. We

envision that solid methodological frameworks can be used to formulate and solve the de-

sign problem this way and the resulting system’s functionality can be proven in a structured

way. Apart from the specific analysis results that one can produce by hand, the algorith-

mic procedure we propose can be used to analyze more complicated system descriptions

therefore increasing the set of model building blocks that can be used in the construction

of future mathematical frameworks for complex system analysis.

6.3 Detect User Perceived Faults Using Packet Traces

Fault detection in a timely fashion is critical for network management. In this work, we

concentrate on a specific variant - given a packet trace from any link in an edge network

(such as a university network or an enterprise network), detect faults that can be perceived

by the end user. Identifying significant faults is an essential first-step to localize and fix

the faults, a problem that is often complicated by the fact that human users rarely report

faults and even when they do, human reports tend to be vague and unreliable. Our goal is to

build a tool that processes packet traces online, identifiesapplication level faults that will

be perceived by an end-user (marked slowdown, incorrect response, disconnection etc.)

and raises an alarm to the fault localization system so that failure can be detected without

human interference. Though clearly desirable, the wide variety of applications, protocols

and unavoidable low-level nitty-gritty of real edge networks makes it challenging to build

such a tool.

A general definition of failure is the condition that “the delivered service deviates from

the specified service [69].” There is much prior work attempts to detect faults, but either at

a too-coarse granularity where all traffic is on an Internet path or at a too-fine granularity

which considers the performance of a single TCP flows. Our focus is different, we want to

identify faults that matter to real users. In edge networks,each user transaction may involve

many flows, connections to many different servers that may traverse different paths.
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We propose a mechanism to detect the failure perceived by theend user from packet

traces collected at the end user side. It is a passive approach in the sense that it does not add

any additional packets to the network just for the purpose ofdetection. While active probing

is considered as a more accurate approach, it introduces extra packets into the network and

overloads the servers and networks. Furthermore different protocol requires different active

probing method therefore it is hard to generalize to other application protocols. Passive

monitoring can reduce the network overload and it is easy to be implemented in the server

side, user side or in the network. Since it is able to collect all the packets from a user to

the outside network, it essentially can be used to reconstruct the protocols if we are able

to parse into the packet information, therefore it could be generalized to detect fault for

different application protocols.

Detection failure from packet traces has proved to be a challenging problem. Since the

packet trace is a collection of all the packets sent and received by the end user, it contains

too much information which does not lend itself naturally for inspection. For example, a

simple click of a website may contain hundreds of packets which involve several differ-

ent application protocols such as DNS, WINS, IPSEC, Kerberos, HTTP as well as several

different servers (DNS server, WINS server, authentication server, Web server). The devel-

opment of abstract yet informed models from packet traces toleverage failure information

from standard protocol information is crucial. However abstraction of a standard applica-

tion protocol is not obvious since there are numerous different application protocols (such

as HTTP, SMTP, SMB, DNS) which may behave quite differently, also there are many

application programs using the same application protocol (for example: internet explorer,

Firefox, Mozilla are all based on HTTP protocols), furthermore even for the same appli-

cation programs, different configuration parameters may result in quite different pattern of

packets.

Another challenge of fault detection for end user is that it lacks for a good validation

tool. Ideally, we want to compare the results from our detection scheme with a report from

end users on every failure they encounter. However obtaining such report is not an easy

task since currently there are no such network programs thatcan automatically generate

such report. Requiring end users to manually input the failures takes a lot of work and the
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report itself may not be reliable.

Despite of these difficulties, we make consistent progress for fault detection inedge net-

works. We define failures which accurately reflect actual performance deviation or degra-

dation experienced by end users, and create a robot that can mimic end user behavior of

fetching some web-sites periodically and obtain the returninformation. The failure of

the return information is in fact the information that an enduser experiences when he/she

fetches the same web-site at the same time. Our robot can provide a reliable validation tool

for HTTP algorithm.

We utilize protocol dependence and group packets accordingto their 5-tuple flow infor-

mation (source IP, destination IP, source port, destination port and protocol). We implement

a white-box scheme to detect HTTP failure where we are able toparse into HTTP header

information such as command (get, post), HTTP return code (200 OK, or 502 bad gateway).

Compared with the robot result, the white-box approach shows very low false positive and

false negative rate. Furthermore, robot can only fetch the website that we tell it to do, yet

our white-box approach essentially can report the failure happening to all the web-sites that

users are browsing, therefore we can remove robot probing and use white-box scheme as a

validation tool for other HTTP detection schemes.

We also generalize the white-box approach for HTTP protocols by relaxing the require-

ment of looking at HTTP header information so that it can dealwith the encrypted packets.

We aggregate packets according to a user task and use the number of packets, bytes and

transaction time to detect failure. Small number of bytes isan indication of content error

that HTTP returns such as 401 unauthorized, or 500 internal server error, while the number

of packets together with transaction time will reflect the network performance degradation

such as link congestion.

Furthermore, we consider a completely different protocol, RPC protocol used by email

which requires consistent exchanging of information between users and servers. We char-

acterize fault by a large number of small packets and we are able to detect the OUTLOOK

failure such as unable to connect to the server. The fault detections described herein are not

limited to any particular application layer or transport layer, but may be applied to many

contexts and environments.
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Finally compared with the failure detected from commercialfault detection products for

edge networks such as Microsoft Operation Management, our failure detection scheme can

detect user perceived faults in an enterprise network in a much more reliable and accurate

manner. Traditional fault detection tools do not consider end users, therefore are inadequate

for localizing performance faults, such as identifying users are dissatisfied with the end-to-

end response time.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The search for unifying properties of complex networks is popular, challenging, and

important. It is certainly appealing that scale-free network models can avoid all the domain

specific details for different complex networks, yet make interesting and testable predic-

tions. Unfortunately, this fact yields results that collapse when tested with elaborated anal-

ysis on the functionality of the Internet, as well as structural analysis of graphs having the

same high variability degree distributions.

In this thesis, using Internet as a case study, we have shown that there exist technologi-

cal, economic, and graph theoretic reasons why the most popular scale-free models cannot

be true when they are used to describe current Internet router-level topology. We propose

a complementary approach of combining a more subtle use of statistics and graph theory

with a first-principles theory of router-level topology that reflects practical constraints and

trade-offs. While there is an inevitable trade-off between model complexity and fidelity, a

challenge is to distill from the seemingly endless list of potentially relevant technological

and economic issues the features that are most essential to asolid understanding of the

intrinsic fundamentals of network topology. We can successfully address this challenge by

providing a Heuristic Optimal Topology (HOT) model that incorporates hard technological

constraints on router bandwidth and link connectivity, together with abstract models of user

demand and network performance. In a high performance and low cost network, the high

bandwidth core router cannot have high degree due to the router technological constraint,
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while end-user demands and economic constraints on link costs push all the high variabili-

ties in edge routers. In contrast, scale-free models provide a relatively easy way to generate

the desired power-law degree distribution, however their highly connected hubs have such

bad performance as to make it completely unrealistic that they could reasonably represent

a highly engineered system like an ISP network or the Internet as a whole.

The space of graphs to describe complex network is extremelydiverse even within the

graphs having the same degree distributions. Network performance provides an important

metric to measure the functionality of the Internet. Yet, a subtle look at the structures

of scale-free models and the HOT model reveals a fundamentaldifference between these

models and this difference can be captured by a structural metric, thes-metric which we

introduce to differentiate between all simple, connected graphs having an identical degree

sequence, especially when that sequence satisfies a power-law relationship. Elaborating

the features of graphs with high or lows-metric provides enhanced understanding towards

a theory of scale-free networks. Thes-metric, as a measure of the extend to which a

graph has highly connected hubs, together with power-law degree distribution, provides

a quantitative definition of scale-free networks. We provide evidence that highs-value

graphs, i.e., scale-free graphs actually share a wide rangeof emergence features, such as

hublike cores, high likelihood under variety of random generation mechanisms, and various

kinds of self-similarity. We also suggest that when making statements about a graph based

on these properties one must consider the background set against which these properties

are being evaluated.

While the functional and structural metrics provide two effective views of looking at the

highly dimensional space of graphs, we furthermore introduce a new paradigm to under-

stand the space of graphs by building connections between two isolated graphs according to

some local transformations. Exploring this connected space of graphs gives a cleared pic-

ture of this space and reenforces the important role that thevariability of degree sequence

plays in the graphs with the same numbers of nodes and links, and the role of thes-metric

in the subspace of graphs having the same degree sequence.



129

7.2 Future Directions

There are several future works that can directly outgrow from this thesis.

7.2.1 Internet Topology Generator

“All models are wrong, but some are useful.” — G. P. E. Box.

Any work on Internet topology generation and evaluation runs the danger of being

viewed as incomplete and/or too preliminary if it does not deliver the “ultimate” product, a

topology generator. A natural extension of our work is to build a useful topology generator

so that protocols can be evaluated before being implementedto the real network. Our HOT

model opens up a new line of the Internet research in identifying causal forces that are either

currently at work in shaping large-scale network properties or could play a critical role in

determining the lay-out of future networks. Our model is still in a toy model stage, so called

because it only leverages the most important aspects of the Internet router-level topology,

and therefore provides the most coarse-grained level topology generator. More functional

requirements and physical constraints can be added to our approach, which results in a

higher model fidelity but at a cost of higher model complexity.

An ideal topology generator should allow one to incorporatedifferent level of details

and produce different topologies that address these details. For example, when taking net-

work reliability into consideration, many gateway routersor edge routers should be mul-

tihomed. That is, instead of the tree structure from core to edge routers, one edge router

should be connected to two or more higher level routers, to ensure that when one link or

router is broken, it can still connect to the whole network. The second example is that in the

case when the traffic matrix is given and not consistent with our gravity model, we should

adjust the corresponding connections from the edge routerswhich directly carry the traffic

to higher level routers so as to maximally utilize the routercapacity. A more complete ex-

ample should also consider more possible constraints such as router geographical location,

router cost when operating at different technological boundaries, link length cost, political

reasons, etc., as well as other functional requirements, such as low latency, link or router

redundancy. While the optimization problem that incorporates all these constrains and ob-
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jectives is almost impossible to solve theoretically, we can take an approach based on our

HOT toy model and do local adjustment or optimization to improve or fulfill the function

requirement within the constraints. Despite all these different variations, we expect that

any Internet router-level topology generated according toconstraints and objectives should

have sharp difference from scale-free networks, no matter characterized by performance

metric or thes-metric.

It is widely recognized that performance of the same protocol can be quite different

under different topologies that run on top of it. For example, many TCP protocols are

stable in the single bottleneck link case while oscillate inthe multiple bottleneck links

case. However, how different topologies would affect our protocol evaluation is not entirely

understood. A theoretical analysis could be quite complicated if not impossible. With the

aids of the topology generator, we can carry out this analysis in an empirical way. That

is, protocols can be evaluated under different topologies, or similar topologies with subtle

transformations. A topology generator which performs manydifferent protocol evaluations

can in turn suggest improvements in network design, leadingto well protected, reliable and

high performance next generation networks.

7.2.2 Apply the HOT Idea to Other networks

We do not claim that the results obtained for the router-level topology of the Internet

pertain to other complex networks. However, even for these completely different cases, we

believe that methodologies that explicitly account for relevant functionality and constraints,

or other key aspects can provide similar insight into what matters when understanding,

or evaluating the corresponding topologies. A detail understanding of the functions and

constraints of the network is important, since it is exactlythese functions and constraints

which drive the underlying structure of networks. For example, we would expect that the

AS (autonomous system, which represents an administrativedomain such as a company

or a school) level topology of the Internet would be quite different from the router-level

topology, since at AS-level, the major concern is that how each domain sends it traffic

to maximize its own profit while minimize its own cost. Here the connection between
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each domain is more like business relationship. In this problem, game theory, or more

specifically, industrial organization will provide a necessary tool to obtain the heuristic

optimal topology.

7.2.3 Benchmark Graphic Metrics

A rough estimation on the number of existing metrics to evaluate graphs easily yields

an order of a hundred. Although in our thesis we claim that thefunctional metric is an

essential consideration when designing the Internet router-level topology, and the structural

metric plays an important role to differentiate graphs with the same degree distribution, a

systematic way to evaluate the effectiveness graphic metrics requires much more work.

On one side, same metric which is used to measure the properties of one network many

not be effective for other networks due to the complications and highly diversity of graphs.

Our investigation of assortativity shows that some metricswould be extremely mislead-

ing without considering the background they apply to. A goodmetric should give the

same qualitative answer, invariant in different background set, or explicitly state the re-

lated background set it compares against when it is meaningful. In fact, we conjecture

that many properties which scale-free networks have in common with real networks are

resulted from the high variability of degrees instead of hublike core, yet the former does

not necessarily implies the latter. For example, the average shortest path lengths of HOT

model and scale-free model are both nicely low, due to the aggregation at the high degree

nodes. However concluding that the hublike core scale-freemodel is representative from

this evidence would be a mistake.

On the other side, many graph metrics may have some common properties except for

different scenarios (for example, thes-metric and assortativity). Categorizing all these

metrics according to their fundamental similarities and differences will greatly clarify the

current literature and facilitate future studies.
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7.2.4 the Graph Space: Properties and Dynamics

While the space of graphs is extremely diverse and the connected space of graphs is

much more complicated than the graph it contains, our work sheds light on this highly di-

mensional space by dividing it into countable subspaces andby relating its node degree,

stationary distribution to the graph properties that each node represents. It would be of

great interests to further explore each subspace of graphs,so that more fundamental simi-

larity and difference between each graphs can be easily characterized. We can also capture

the change of functionality along a series of structural transformations towards a better

understanding of the interactions between function and structure.

Another important application for this GRAPH of graph is to characterize the dynamics

of graphs. As flips define a local and gradually changing process for graph transformation,

we can evaluate how functionalities and structures changesalong this process, especially

when the transformations are along the directions of monotonically changing the degree

variability, or thes-metric. Furthermore, we can guide dynamics according to certain func-

tional requirements and practical constraints to study theevolution of complex networks.
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Appendix A

Constructing an smax Graph

As defined previously, thesmax graph is the elementg in some background setG whose

connectivity maximizes the quantitys(g) =
∑

(i, j)∈E did j, wheredi is the degree of node

i ∈ V, E is the set of links that defineg, andD = {d1, d2, . . . , dn} is the corresponding

degree sequence. Recall that sinceD is ordered according tod1 ≥ d2 ≥ · · · ≥ dn, there will

usually be many different graphs with nodes satisfyingD. The purpose of this appendix is

to describe how to construct such an element for different background sets, as well as to

discuss the importance of choosing the “right” background set.

A.1 Among “Unconstrained” Graphs

As a first case, consider the set of graphs having degree sequence D, with only the

requirement that
∑n

i=1 di beeven. That is, we do not require that these graphs be simple (i.e.,

they can have self-loops or multiple links between nodes) orthat they even be connected,

and we accordingly call this set of graphs “unconstrained.”Constructing thesmax element

among these graphs can be achieved trivially, by applying the following two-phase process.

First, for each nodei: if di is even, then attachdi/2 self-loops; ifdi is odd, then attach (di −

1)/2 self-loops, leaving one available “stub.” Second, for allremaining nodes with “stubs,”

connect them in pairs according to decreasing values ofdi. Obviously, the resulting graph

is not unique as thesmax element (indeed, two nodes with the same degree could replace

their self-loops with connections among one another). Nonetheless, this construction does

maximizes(g), and in the case whendi is even for alli ∈ V, one achieves ansmax graph with
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s(g) =
∑n

i=1(di/2)·d2
i . As discussed in section 4.4, against this background of unconstrained

graphs, thesmax graph is the perfectly assortative (e.g.,r(g) = 1) graph. In the case when

somedi are odd, then thesmax graph will have a value ofs(g) that is somewhat less and

will depend on the specific degree sequence. Thus, the value
∑n

i=1(di/2) · d2
i represents an

idealized upper bound for the value ofsmax among unconstrained graphs, but it can only be

realized in the case when all nodal degrees are even.

A.2 Among Graphs inG(D)

A significantly more complicated situation arises when constructing elements of the

spaceG(D), that is, simple connected graphs havingn nodes and a particular degree se-

quenceD. Even so, not all sequencesD will allow for the connection ofn nodes, i.e., the

setG(D) may be empty. In the language of discrete mathematics, one says that a sequence

of integers{d1, d2, . . . , dn} is graphical if it satisfies the degree sequence of some simple,

connected graph, that is ifG(D) is nonempty. One characterization of whether or not a

sequenceD corresponds to a simple, connected graph is due to Erdös andGallai [46] as

discussed in 4.1.

Our approach to constructing thesmax element ofG(D) is via a heuristic procedure

that incrementally builds the network in a greedy fashion, by iterating through the set of

all potential linksO = {(i, j) : i < j; i, j = 1, 2, . . . , n}, which we order according to

decreasing values ofdid j. In what follows we refer to the valuedid j as theweightof link

(i, j). We add links from the ordered list of elements inO until all nodes have been added

and the corresponding links satisfy the degree sequenceD. To facilitate the exposition of

this construction, we introduce the following notation. Let A be the set of nodes that have

been added to the partial graph ˜gA, such thatB = V\A is the set of remaining nodes to

be added. At each stage of the construction, we keep track of thecurrent degreefor node

i, denotedd̃i, so that it may be compared with itsintended degree di (note thatd̃i = 0 for

all i ∈ B). Definew̃i = di − d̃i as the number of remainingstubs, that is, the number of

connections still to be made to nodei. Note that values of̃di and w̃i will change during

the construction process, while the intended degreedi remains fixed. For any point during
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the construction, define ˜wA =
∑

i∈A w̃i to be the total number of remaining stubs inA and

dB =
∑

i∈B di to be the total degree of the unattached nodes inB. The values ˜wA anddB are

critical to ensuring that the final graph is connected and hasthe intended degree sequence.

In particular, our algorithm will make use of several conditions.

Condition A-1: (Disconnected Cluster).If at any point during the incremental construc-

tion the partial graph ˜gA hasw̃A = 0 while |B| > 0, then the final graph will be discon-

nected.

Proof. By definition w̃A is the number of stubs available in the partial graph ˜gA. If there

are additional nodes to be added to the graph but no more stubsin the partial graph, then

any incremental growth can occur only by forming an additional, separate cluster. �

Condition A.1a: (Disconnected Cluster). If at any point during the construction algo-

rithm the partial graph ˜gA hasw̃A = 2 with |B| > 0, then adding a link between the two

stubs ing̃A will result in a disconnected graph.

Proof. Adding a link between the two stubs will yield ˜wA = 0 with |B| > 0, thus resulting

in condition A.1. �

Condition A.2: (Tree Condition). If at any point during the construction

dB = 2|B| − w̃A, (A.1)

then the addition of all remaining nodes and links to the graph must beacyclic (i.e., tree-

like, without loops) in order to achieve a single connected graph while satisfying the degree

sequence.

Proof. To see this more clearly, suppose that for some intermediatepoint in the construc-

tion process that ˜wA = m. That is, there are exactlym remaining stubs in the connected

component to which the remaining nodes inB must attach. We can prove that, in order to

satisfy the degree sequence while maintaining a single connected graph, each of thesem

stubs must become the root of a tree. First, recall from basicgraph theory that an acyclic

graph connectingn nodes will have exactlyl = n− 1 links. DefineB j ⊂ B for j = 1, . . . ,m
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to be the subset of remaining nodes to be added to stubj, where
⋃m

j=1B j = B. Further

assume for the moment that
⋂m

j=1B j = ∅, that is, each node inB connects to a subgraph

rooted at one and only one stub. Connecting the nodes inB j to a subgraph rooted at stubj

will require a minimum of|B j | links (i.e. |B j | − 1 links to form a tree among the|B j | nodes

plus one additional link to connect the tree to the stub). Thus, in order to connect the nodes

in the setB j as a tree rooted at stubj, we require
∑

k∈B j
dk = 2|B j | − 1, and to attach all

nodes inB to them stubs we have

dB =
∑

i∈B
di =

m∑

j=1

∑

k∈B j

dk

=

m∑

j=1

(

2|B j | − 1
)

= 2|B| −m

= 2|B| − w̃A.

Thus, at the point when (A.1) occurs, only trees can be constructed from the remaining

nodes inB. �

A.2.1 The Algorithm

Here, we introduce the algorithm for our heuristic construction and then discuss the

conditions when this construction is guaranteed to result in thesmax graph.

• S 0 (I):

Initialize the construction by adding node 1 to the partial graph; that is, begin with

A = {1},B = {2, 3, . . . , n}, andO = {(1, 2), . . . }. Thus,w̃A = d1 anddB =
∑n

i=2 di.

• S 1 (L S): Check to see if there are anyadmissibleelements in the

ordered listO.

(a) If |O| = 0, then T. Return the graph ˜gA.

(b) If |O| > 0, select the element(s), denoted here as (i, j), having the largest weight

did j, noting that there may be more than one of them. For each such link (i, j),
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checkw̃i andw̃j: If either w̃i = 0 or w̃j = 0 then remove (i, j) fromO.

(c) If no admissible links remain, return to S 1(a).

(d) Among all remaining links havingbothw̃i > 0 andw̃j > 0, select the element

(i, j) with the largest value ˜wi (where for each (i, j) w̃i is thesmallerof w̃i and

w̃j), and proceed to S 2.

• S 2 (L A): For the link (i, j) to be added, consider two types of connec-

tions.

– Type I: i ∈ A, j ∈ B. Here, nodei is the highest-degree node inA with non-

zero hubs (i.e.,di = maxk∈A dk andw̃i > 0) and j is the highest-degree node in

B. Add link (i, j) to the partial graph ˜gA: remove nodej from B and add it to

A, decrement ˜wi andw̃j, and update both ˜wA anddB accordingly. Remove (i, j)

from the ordered listO.

– Type II: i ∈ A, j ∈ A, i , j. Here,i and j are the largest nodes inA for which

w̃i > 0 andw̃j > 0.

∗ Check theTree Condition:

If dB = 2|B| − w̃A, then Type II links are not permitted. Remove the link

(i, j) fromO without adding it to the partial graph.

∗ Check theDisconnected Cluster Condition:

If w̃A = 2, then adding this link would result in a disconnected graph.

Remove the link (i, j) fromO without adding it to the partial graph.

∗ Else, add the link (i, j) to the partial graph: decrement ˜wi and w̃j, and

updatew̃A accordingly. Remove (i, j) from the ordered listO.

Note: There is potentially a third case in whichi ∈ B, j ∈ B, i , j; however this can

only occur if there are no remaining stubs in the partial graph g̃A. This is precluded

by the test for the Disconnection Condition among Type II link additions; however

if the algorithm were modified to allow this, then this third case would represent

the situation where graph construction continues with a new(disconnected) cluster.
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Adding link (i, j) to the graph would require moving both nodesi and j fromB toA,

decrementing ˜wi andw̃j, updating both ˜wA anddB accordingly, and removing (i, j)

from the ordered listO.

• S 3 (R): Return to S 1.

Each iteration of the algorithm either adds a link from the list in O or removes it from

consideration. Since there are a finite number of elements inO, the algorithm is guaranteed

to terminate in a finite number of steps. Furthermore, the ordered nature ofO ensures the

following property.

Proposition A.3: At each point during the above construction, for any nodesi ∈ A and

j ∈ B, di ≥ d j.

Proof. By construction, ifi ∈ A and j ∈ B, then for some previously added nodek ∈ A, it

must have been the case thatdkdi ≥ dkd j. Sincedk > 0, it follows thatdi ≥ d j. �

A less obvious feature of this construction is whether or notthe algorithm returns a

simple connected graph satisfying degree sequenceD (if one exists). While this remains

an open question, we show that if the Tree Condition is ever reached, then the algorithm is

guaranteed to return a graph satisfying the intended degreesequence.

Proposition A.4: (Tree Construction). Given a graphic sequenceD, if at anypoint during

the above algorithm the Tree Condition is satisfied, then

(a) the Tree Condition will remain satisfied through all intermediate construction, and

(b) the final graph will exactly satisfy the intended degree sequence.

Proof. To show part (a), assume thatdB = 2|B|− w̃A and observe that as a result only a link

satisfying Type I can be added next by our algorithm. Thus, the next link (i, j) to be added

will have i ∈ A and j ∈ B, and in doing so we will move nodej from the working setB

toA. As a result of this update, we will have∆dB = −d j, ∆|B| = −1, and∆w̃A = d j − 2.

Thus, we have updated the following values
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d′B ≡ dB + ∆dB

= dB − d j ,

and

2|B′| − w̃′A ≡ 2(|B| + ∆|B|) − (w̃A + ∆w̃A)

= 2(|B| − 1)− (w̃A + d j − 2)

= 2|B| − w̃A − d j

= dB − d j.

Thus,d′B = 2|B′| − w̃′A, and the Tree Condition will continue to hold after the addition

of each subsequent Type I link (i, j).

To show part (b), observe that after|B| Type I link additions (each of which results

in ∆|B| = −1) the setB will be empty, thereby implying also thatdB = 0. Since the

relationshipdB = 2|B| − w̃A continues to hold after each Type I link addition, then it must

be that|B| = 0 anddB = 0 collectively implyw̃A = 0. Furthermore, since ˜wA =
∑

i∈A w̃i

andw̃i = di − d̃i ≥ 0 for all i, thenw̃i = 0 for all i, and the degree sequence is satisfied.�

An important question is under what conditions the Tree Condition is met during the

construction process. Rewriting this condition asdB − [2|B| − w̃A] = 0, observe that when

the algorithm is initialized in S 0, we havedB =
∑n

i=2 di, w̃A = d1 and that|B| = n− 1.

This implies that after initialization, we have

dB − [2|B| − w̃A] =
n∑

i=2

di − 2|B| + d1 =

n∑

i=1

di − 2(n− 1).

Note that minimal connectivity amongn nodes is achieved by a tree having total degree
∑n

i=1 di = 2(n − 1), and this corresponds to the case when the Tree Condition is met at
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initialization. However, if the sequenceD is graphical and the Tree Condition is not met at

initialization, thendB − [2|B| − w̃A] = 2z> 0, wherez=
(∑n

i=1 di/2
)− (n−1) is the number

of “extra” links above what a tree would require. Assumingz> 0, consider the outcome of

subsequent L A operations, as defined in S 2:

• As already noted, when a Type I connection is made (thus adding a new nodej to the

graph), we have∆dB = −d j, ∆w̃A = d j − 2, and∆|B| = −1, which in turn means that

Type I connections result in∆ (dB − [2|B| − w̃A]) = 0.

• Accordingly, when a Type II connection is made between two stubs inA, we have

∆w̃A = −2, and both|B| anddB remain unchanged. Thus,∆ (dB − [2|B| − w̃A]) = −2.

So if dB − [2|B| − w̃A] = 2z > 0, then subsequent link additions will cause this value

to either decrease by 2 or remain unchanged, or in other words, adding additional links

can only bring the algorithm closer to the Tree Condition. Nonetheless, our algorithm is

not guaranteed to reach the Tree Condition for all graphic sequencesD (i.e., we have not

proved this), although we have not found any counterexamples in which the algorithm fails

to achieve the desired degree sequence. If that were to happen, however, the algorithm

would terminate with ˜wi > 0 for some nodei ∈ A, even though|B| = 0. Nonetheless, in

the case where the graph resulting from our construction does satisfy the intended degree

sequenceD, we can prove that it is indeed thesmax graph.

Proposition A.5: (General Construction). If the graphg resulting from our algorithm is

a connected, simple graph satisfying the intended degree sequenceD, then this graph is the

smax graph ofG(D).

Proof. Observe that, in order to satisfy the degree sequenceD, the graphg contains a

total of l =
∑n

i=1 di/2 links from the ordered listO. Since elements ofO are ordered by

decreasing weightdid j, it is obvious that, in the absence of constraints that require the final

graph to be connected or satisfy the sequenceD, a graph containing the firstl elements of

O will maximize
∑

(i, j)∈E did j. However, in order to ensure thatg is an element of the space

G(D), when selecting thel links it is usually necessary to “skip” some elements ofO, and

conditions A.1 and A.2 identify two simple situations whereskipping a potential link is



141

required. While skipping links under other conditions may be necessary to guarantee that

the resulting graph satisfiesD (indeed, the current algorithm is not guaranteed to do this),

our argument is thatif these are the only conditionsunder which elements ofO have been

skipped during constructionandthe resulting graph does satisfyD, then the resulting graph

maximizess(g).

To see this more clearly, consider a second graph ˜g , g also constructed from the

ordered listO. Let E ⊂ O be the (ordered) list of links in the graphg, and letẼ ⊂ O be

the (ordered) list of links in the graph ˜g. Assume that these two lists differ by only a single

element, namelye ∈ E, e < Ẽ andẽ < E, ẽ ∈ Ẽ, whereE\e= Ẽ\ẽ. By definition, botheand

ẽ are elements ofO, and there are two possible cases for their relative position within this

ordered list (here, we use the notation “≺” to mean “proceeds in order”).

• If e ≺ ẽ, then g̃ uses in place ofe a link that occurs “later” in the sequenceO.

However, sinceO is ordered by weight, using ˜e cannot result in a higher value for

s(g̃).

• If ẽ≺ e, theng̃ uses in place ofea link that occurs “earlier” in the sequenceO—one

that had been “skipped” in the construction ofg. However, the “skipped” elements

of O will correspond to instances of Conditions A.1 and A.2, and using them must

necessarily result in a graph ˜g < G(D) because it is either disconnected or because its

degree sequence does not satisfyD.

Thus, for any other graph ˜g, it must be the case that eithers(g̃) ≤ s(g) or g̃ < G(D), and

therefore we have shown thatg is thesmax graph. �

A.2.2 Among Connected, Acyclic Graphs

In the special case when
∑n

i=1 di = 2(n−1), there exists only one type of graph structure

that will connect alln nodes, namely an acyclic graph (i.e., a tree). All connectedacyclic

graphs are necessarily simple. Because acyclic graphs are aspecial case of elements in

G(D), generatingsmax trees is achieved by making the appropriate Type I connections in the

aforementioned algorithm. In effect, this construction is essentially a type of deterministic
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preferential attachment, one in which we iterate through all nodes in the ordered listD and

attach each to the highest-degree node with a remaining stub.

In the case of trees, the arguments underlying thesmax proof can be made more precise.

Observe that the incremental construction of a tree is equivalent to choosing for each node

in B the single node inA to which it becomes attached. Consider the choices available for

connecting two nodesk,m ∈ B to nodesi, j ∈ A wheredi ≥ d j, dk ≥ dm, and observe that

didk+didm ≥ didk+d jdm ≥ d jdk+didm ≥ d jdk+d jdm,where second inequality follows from

Proposition 3 while the first and last inequalities are by assumption. There are two cases of

interest. First, ifw̃i > 1 andw̃j ≥ 1, then it is clear that it is optimal to connectbothnodes

k,m ∈ B to nodei ∈ A. Second, ifw̃i = 1 andw̃j ≥ 1, then it is clear that it is optimal

to connectk ∈ B to i ∈ A andm ∈ B to j ∈ A. All other scenarios can be decomposed

into these two cases, thus proving that the algorithm’s incremental construction for a tree

is guaranteed to result in thesmax graph.

There are many important properties ofsmax trees that are discussed in [70].

A.3 When rmin = −1

In order to see when a degree sequenceD can achiever(g) = −1, we introduce a

simplified version ofCauchy-Schwarz-Burnyakovskii inequality, which states that for any

vector{b1, b2, . . . , bn}, it must be that

n∑

i=1

b2
i ≥

1
n





n∑

i=1

bi





2

,

with the equality holding if and only ifb1 = b2 = · · · = bn.

Applying this inequality to a graph withl links, it follows that

∑

(i, j)∈E
(di + d j)

2 ≥ 1
l





∑

(i, j)∈E
(di + d j)





2

.

Expanding the squared term on the LHS and dividing both sidesby 2, we have from rela-
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tions (4.14-4.15) that

∑

(i, j)∈E
2did j/2+

∑

(i, j)∈E
(d2

i + d2
j )/2 ≥ 1

2l





∑

(i, j)∈E
(di + d j)





2

s(g) + sG(D)
max ≥ 2 s(gc)

s(g) − s(gc)

sG(D)
max − s(gc)

≥ −1,

which is simply another way of showing thatr(g) ≥ −1, but it proves thatr(g) = −1 if and

only if di + d j = d (a constant) for all (i, j) ∈ E.

Recall that withinG(D) one hassmin = Z+Ẑ as defined by (4.9), and thus thissmin graph

corresponds tor = −1 if and only if for each elementk one haszk + ẑk = z (a constant).
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