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Abstract

During the last decade, significarff@ts have been made toward improving our under-
standing of the topological structures underlying completworks and illuminating some
of the intriguing large-scale properties exhibited by thegstems. The dominant theme of
these &orts has been on studying the graph-theoretic propertiggeaforresponding con-
nectivity structures and on developing universal theam$models that transcend system-

specific details and describe théfdrent systems well in a statistical sense.

However, in this thesis we argue that thefflerts have had limited success and are in
need of substantial correction. Using a highly engineeysties, the Internet, as a case
study we demonstrate that networks are designed for a peirposl ignoring that aspect
or obscuring it with the use of some generic but random meashanan result in models
that misrepresent what matters for system functions. Bg@ating in a minimal manner
for both the functional requirements and structural fezgunherent in the design of an
engineered system, we propose an alternative, optimizéésed modeling approach that
highlights the necessary tradésbetween system performance and the technological and
economic constraints that are crucial when designing tseesy. We show that our pro-
posed approach yields network models that not only matchatiye-scale graph-theoretic
properties of measured router-level topologies well baetaso fully consistent with en-
gineering intuition and networking reality, especiallyfas as their performance aspects
and robustness properties are concerned. In fact, we sladwuhdesign-inspired network
models can be easily distinguished from previously comsuiprobabilistic network mod-
els and éiciently achieve the level of performance for which they weesigned in the

first place.

While this thesis focuses on the Internet, it has much broswplications for com-
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plex networks and graph theory generally. To bettéiedentiate between fierent graphs
that are identical in certain graph statistics, we intredacstructural metric, the-metric,
and demonstrate that it provides insights into the diwergitgraphs constrained by cer-
tain common properties and sheds new light on many clasajhgeconcepts such as the
various notions of self-similarity, likelihood, and assaivity. Our s-metric clarifies much
of the confusion surrounding the sensational qualitati&as in the current graph theory
literature for complex networks andfers a rigorous and quantitative alternative.

Moreover, to examine the space of graphs that satisfy cectanmon properties, we
propose a new approach that is based on establishing a liweée two graphs if and only
if one can be obtained from the other via a local transforomatiExploring the resulting
connected space of graphs by dividing it into countable gatxss provides a much clearer
picture on the whole space. We also show that this space pligtzaas a rich and interesting
structure and that some properties of the latter can beecktatfeatures of the individual
graphs in this space (e.g., degree variability of a ngde the space of graphs and the

s-metric forg).
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Chapter 1

Introduction

1.1 Introduction to Complex Networks

A network is a collection of network components represgntsmfundamental units and
a set of connections characterizing any relationship betviieese components. Networks
are ubiquitous, ranging from biological networks to societworks to technological net-
works. Examples of biological networks include the celuatwork, which is an ensemble
of genes, proteins and other molecules, and their interagtio regulate cell activities; a
biological neural network consisting of functionally redd neurons that perform a spe-
cific physiological function. The famous Erdds numbersactfdescribe a social network
where mathematicians are assigned numbers indicatingctii@boration distance” to a
well-known mathematician Paul Erdds who wrote about 1580eps in his life, mostly
coauthored with others. As an example of a technologicalordt, the Internet, one of the
largest man-made networks, can be defined as a huge call@gtrillions of computers
and routers connected by physical links, or in a more cograig level, can be considered
as consisting of thousands of administrative domains amarich data are transferred. All
these are just a small set of complex networks.

Over the last decade there has been significant interesti@mti@n devoted toward un-
derstanding the infrastructure underlying complex nekspparticularly their topologies
and the large-scale properties that can be derived. Théogypof a complex network is
usually pictured as a graph, where nodes (or vertices) septdasic network components,

and links (or edges) portray their interactions. Studyhmgtbpological structure of com-
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plex networks has been one of the most fundamental stepsta dpasic understanding of
certain aspects of real-world phenomena of many kinds daesimple reason: network
structures alwaysfkect network functions. For example, food webs are investjas
the road-maps through Darwin’s entangled bank [90, 107¢igboetwork topologies can
help to prevent pandemic influenza from spreading whenabailto health care. Study-
ing the topological structure of complex networks also plag important role to evaluate
and design network regulations and protocols that run otdpem. Although the topol-
ogy should not fiect their correctness, it alwayfect their performance. Understanding
topology of complex networks can also protect networks ffainres and attacks, so as to

achieve a better design and evolution of networks.

However, studying topologies of complex networks has pdoebe a challenging
problem. Since a large-scale network is usually a collectibthousands or millions of
nodes, there is no single place from which one can obtain latenpicture of the topol-
ogy. Moreover, networks are dramatically changing and teonly evolving. For exam-
ple a web page on the World Wide Web can be created or removeddaily basis, and
it is impossible to obtain a snapshot of this network. Furtigge, because the network
does not lend itself naturally to direct inspection, th&tak“discovering” topologies has
been left to experimentalists who develop more or less stipated methods to infer this
topology from appropriate network measurements. Becalgeelaborate nature of the
network, there are a multitude of possible measurementsémabe made, each having its
own strengths, weaknesses, and idiosyncrasies, and eadting in a distinct view of the

network topology.

Due to these challenges, the recent use of network modelesiride complex sys-
tems has emphasized the study of graph theoretic propagiasneans to characterize the
similarities and diferences in the structures and the functions of systemssaareariety
of domains [42, 95, 10, 96, 43, 27, 103]. Consideralfilerehas been directed at the em-
pirical analysis of graph theoretic properties of real sgs and at trying to find unifying
properties across many complex networks. Even more aitehtis focus on to develop
generic and universal models to attempt to explain suctyungifproperties, so as to infer

more properties that are not easy to obtain by empiricalyarsal An implicit assumption



3
in many of these works is that graph theoretic propertiesjaately capture key system
features in order to serve as a basis for comparison andasbntr

One of the most celebrated properties discovered acrosg topalogies of complex
networks is the high variability in degree distributionsdahis high variability significantly
deviates from the low variability distribution such as Rois distribution and exponential
distribution in traditional random networks. In particyldese highly variable distributions
follow a power-law relationship in many networks, such athlibe router-level and AS-
level topologies of the Internet [48], the World Wide Web J1the network of citation
between scientific papers [108], metabolic reaction netvis9], and the telephone call
graph [7].

Since traditional graph theory on regular graph or randoaplgrcannot explain the
high variability of degree sequence, the discovery of theggdaw degree distribution has
stimulated a great deal of work in the construction of thealted “scale-free” networks,
aiming to match the power-law distribution and other largele statistical properties, as
well as to provide a universal theory to understand all cexpktworks. The most famous
model was proposed by Barabasi and Albert [20], who desairowing process called
preferential attachment for a complex network in which a nede is added to the network
with probability proportional to the degree of existing esdAs the high degree nodes can
connect to more and more nodes, i.e. rich and richer, thesesngignificantly contribute
to the high variability in the power-law distribution. Sethen, numerous refinements and
modifications to the original Barabasi-Albert constrantihave been proposed and have
resulted in many types of scale-free network models thareproduce power-law degree
distributions with diferent variation, for example the ability to tune the pararseof the
power-law distribution, in order to agree withfidirent complex networks [10].

Despite of these variations, scale-free networks sharg c@nmon features: the most
attractive one is that it has power-law degree distributwbich makes it a plausible model
for many complex networks. In fact, scale-free theory hasidated the current litera-
ture of complex networks and has been considered as thersaiVaw for any large-scale
networks since none of the previous graph theory can exgilaipower-law degree distri-

bution. Moreover, scale-free graphs are claimed to exhilhiost of startling “emergent”
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consequences of universal relevance, including intrigsef-similar and fractal proper-
ties, small-world characteristics [15], and “hublike” esr Perhaps the central claim for
scale-free graphs is that they have highly connected hubshwhold the network to-
gether.” [11] As noted, the structures of such networks &bl vulnerable (i.e., can be
fragmented) to attacks that target these hubs [11]. At theedame, they are resilient to
attacks that knock out nodes at random, since a randomlyeohmsde is unlikely to be
a hub, and thus its removal has minim#éleet on network connectivity. In the context
of the Internet, where scale-free graphs have been pro@ssetbdels of the router-level
topology [125], this has been touted as “the Achilles’ hdethe Internet” [11], a vul-
nerability that has presumably been overlooked by netwgrkingineers. Proponents of
this modeling framework have further suggested that thegame properties of scale-free
graphs contributes to truly universal behaviors in complexvorks [25] and that preferen-
tial attachment as well is a universal mechanism at workeretfolution of these networks
[62, 43].

Notwithstanding the potential pitfalls of reducing a compsystem (e.g., one that may
involve heterogeneous components, layered archite¢tares feedback dynamics) to a
simple graph [44, 116, 71], there exists the practical mwbihat many descriptions based
on aggregate statistics do not uniquely characterize thesyof interest. In fact, there
often exists considerable diversity among graphs thatesaay single statistical feature,

particularly when viewed through the lens of a specific agtion domain.

1.2 Summary of Main Results

In this thesis, we show that the current models and theasiagrfderstanding complex
networks are incomplete and in need for substantial caveeattions, for both functional
and structural reasons.

Using the Internet, a highly engineered network topologgragxample, we illustrate
the role of network functions in modeling network topolagielighly engineered networks
are designed for a purpose, and ignoring that aspect or nhgatwith the help of some

generic but random mechanism can result in models that asmingdess from an engi-



5

neering perspective. By leveraging minimal functionaluiegments and constraints faced
by network engineers when designing the current Interneprepose &leuristic Optimal
Topology(HOT) model which considers the tradé-between performance optimization
and technology and economic constraint. The HOT model captll the important large-
scale graphic properties as previous models, yet has fuaaifunctional and structural
differences. In contrast to the highly connected hubs at thercenscale-free networks,
all the high degree nodes are at the edges to aggregate aenthagers as possible, while
the core consists meshlike low degree nodes to carry as maftih &s possible. The ad-
vantages in performance and robustness of the HOT modelsaental to the Internet
design and consistent with engineering reality, while es¢éede models have a such bad

performance as to lend them no reason to exist in real Iriterne

Our study shows there is enough diversity among graphs @dkim same power-law
node degree distribution that, although indistinguiskakhen viewed by this aggregate
statistic, these graphs can actually be interpreted aso%igs” when viewed from an en-
gineering perspective that incorporates technology caimss and is motivated by through-
put performance. We further introduce a structural methie §metric) to quantitatively
characterize the extend to which a network has highly caedelubs, i.e., a graph is
scale-free. The-metric allows us to dferentiate between all simple and connected graphs
constrained by common macroscopic connectivity, whicH fgaoticular interest when the
graphs satisfy highly variable degree sequence. We shavirtba-metric, and in partic-
ular ansyax graph (a graph with maximatvalue, therefore a perfect scale-free graph), is
relevant for many commonly studied graph properties. Anigh degree nodes in theg .«
graph have higleentrality, and for trees this relationship was shown to be monotoeie (s
[70]). Secondsnax graphs areself-similarunder appropriately defined operations of trim-
ming, coarse graining, network motifs and random rewirtagally, thes,ax graph has the
highest likelihood of being generated by the most populavgrdaw degree-based graph
model. As we aware, themetric is the first metric that is introduced targeting te back-
ground set with all simple connected graphs with common kiagfable degree sequence.
In the process of investigating the relationship betweersthalue and the graph assorta-

tivity, we discover that the assortativity, as a popularnuetirectly borrowed from classic
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graph theory where all the graphs have low variability, s@&xely misleading when it is
applied to high variability case. Therefore we advocateigortance of choosing an ap-
propriate “background set” when evaluating a graph, as agthe importance of making
sure that the comparative analysis of two graphs is condwaté respect to an appropriate
reference. In this regard, not all graph theoretic measwaes an obvious interpretation or

are directly comparable.

We propose performance-related metrics for the Interngerdevel topology to char-
acterize the function of this specific complex network, amel$metric as an orthogonal
view to depict the structural flerences of all the networks with the same high variabil-
ity degree distributions. These macroscopic propertiefardamental to understand the
functions and structures of complex networks, and toggihgect the extremely diverse
space of graphs into a two-dimensional plane. As a compleofestudying the topology
of complex networks, we further explore the space of graptis fa microscopic view,
where all the graphs are connected according to their siaictelationship, defined by
some local transformations from one graph to another. Ténsected space of graphs is
noted as &RAPHof graphs in which each node is a graph and each link repieadrdans-
formation between the corresponding two graphs. AlthobngfGRAPH of graphs is much
more complicated than each individual graph, we can breikgilant space into many
countable subspaces having common properties, and engnadirthe possible graphs in
each subspace. As a result, our work depicts a much mordedetaid cleared picture of
the space of graphs which has never been explored caregfllyeh and lends perspective
on the structural relationship among all the graphs in tihees@omain space. Interestingly
enough, we find that many properties of the GRAPH of graphs lkdaect connections to
the properties of graphs inside it. For example, when the BIRAf graphs represents a
domain space of all the simple and connected graphs withatine stumbers of nodes and
links, the degree of a node in the GRAPH is most relevant taédgeee variability of the
graph that node represents. While further constraineda@thphs with the same degree

sequence, many properties of the GRAPH are related to tipd graetric.



1.3 Thesis Organization

The rest of thesis is organized as follows:

We provides basic background knowledge to study complewar&s in chapter 2.
Specifically, we give a precise definition of power-law disition and its important prop-
erties. Then we overview scale-free networks literatung, the important properties of
scale-free networks.

In chapter 3, we emphasize the functions and constraintotder-level topology in
Internet and propose an optimization-based model whichbawes objectives, constraints
and other drivers of engineering design. We compare our hentk scale-free model
by evaluating their performance related metrics such a$ tiatoughput and robustness to
worst case attack. We also explore several real Internetdges to show their consistence
with our model.

In chapter 4, we propose a structural metric, $hmetric to diferentiate graphs with
the same degree sequence. We investigate the relatioresinpdns-metric and scale-free
network and show thatmetric is in fact a measure of the extend to which a graphakesc
free. We further explore the detailed relationship betwgeametric and some well-known
graph properties like similarity, likelihood and assaxtiay.

We present the GRAPH of graphs and the way to construct itapten 5. We describe
a method to explicitly calculate the probability of graphtiwdifferent degree variabilities,
and provide a much clearer picture of the space of graphstitame numbers of nodes
and links. We discuss properties of the GRAPH and their icapilons to variability of
degree and the-metric of a graph.

In chapter 6, several of my other projects are describedyrl&the topologies of com-
plex networks can be thought as my horizontal research, mticakinterests span several
layers of Internet, including the application layer fadwdetection and identification, trans-
port layer congestion control, cross-layer joint optintiza for TCPIP.

We conclude and point out several related future directatrnise end.






Chapter 2

Background and Related Work

This chapter provides the necessary background for oustigagion of complex net-
works. In particular, we present some basic definitions asdlts regarding the power-law

distribution (also called Scaling distribution) and sefke network models.

We point out the scaling and highly variable behaviors ofpgbeer-law distributions,
and comment on some common mistakes for plotting powerétations in a log-log scale.
We also talk about “more normal than normal,” the reason whwer-law distribution is

ubiquitous in large scale networks from a pure mathemapicat of view.

In the second part, we first describe the basic propertiecks of scale-free net-
works, and then review the existing scale-free networkditege and present some of the
most popular models. This is followed by a brief critiqueltd existing theory of scale-free

networks in general.

2.1 Power-law and Scaling Behavior

A finite sequence ¥ (y1, Y2, ..., Yn) Of real numbers, assumed without loss of gener-
ality always to be ordered such thgt>y, > ... > y,, is said to follow apower-lawor

scaling relationshipf

k = o™, (2.1)
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wherek is (by definition) therank of yy, c is a fixed constant, and is called thescaling
index Since logk = log(c) — a log(yk), the relationship for the rankvs. y appears as a line
of slope—a when plotted on a log-log scale. In this thesis, we refer éaréhationship (2.1)
as thesize-rank(or cumulative form of scaling. While the definition of scaling in (2.1)
is fundamental to the exposition of our work, a more commaagasof power-laws and
scaling occurs in the context of random variables and thsiridutions. That is, assuming
an underlying probability modé? for a nonnegative random variab¥g let F(x) = P[X <
X] for x > 0 denote thgcumulative) distribution function (CDF) of ,Xand IetF_(x) =
1 - F(x) denote theeomplementary CDF (CCDF)

In this stochastic context, a random variaKler its corresponding distribution function

F is said to follow agpower-lawor is scalingwith indexa > 0 if, asx — oo,
P[X > X =1-F(x) ~ cx®, (2.2)

for some constant @ ¢ < o« and atail indexa > 0. Here, we writef (X) ~ g(x) asx — oo
if f(X)/g(x) - 1asx —» c. Forl< a < 2, F has infinite variance but finite mean,
and for O< a < 1, F has not only infinite variance but also infinite mean. In gahell
moments of of orderg > « are infinite. Since relationship (2.2) implies I6§K > X]) ~
log(c) — @log(x), doubly logarithmic plots ok vs. 1— F(x) yield straight lines of slope
—a, at least for largex. In contrastexponential distributioné.e., P[X > x] = ) result

in approximately straight lines on semi-logarithmic plots

If the derivative of the cumulative distribution functiéi{x) exists, thenf(x) = %F(x)
is called theg(probability) density functiomf X and implies that the stochastic cumulative
form of scaling or size-rank relationship (2.2) has an egjentnoncumulativeor size-

frequencycounterpart given by
f(x) ~ cx ), (2.3)

which appears similarly as a line of slop€l+a) on alog-log scale. However, as discussed

in more detail in section 2.1.2 below, the use of this nondative form of scaling has
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been a source of many common mistakes in the analysis angneitation of actual data

and should generally be avoided.

Power-law distributions are called scaling distributidresause the sole response to
conditioning is a change in scale; that is, if the randomalde X satisfies relationship

(2.2) andx > w, then the conditional distribution of given thatX > w is given by

P[X>x]
P[X >w]

—Q

P[X > XX >w] = XY,

where the constart; is independent ok and is given byc; = 1/w*. Thus, at least for
large values ok, P[X > x| X > wj] is identical to the (unconditional) distributid{ X > X],

except for a change in scale. In contrast, the exponenstilalition gives
P(X > XX > w) = W,

that is, the conditional distribution is also identical ke t(lunconditional) distribution, ex-
cept for a change of location rather than scale. Thus we ptieéetermscalingto power-

law, but will use them interchangeably, as is common.

It is important to emphasize again théfdrences between these alternative definitions
of scaling. Relationship (2.1) isonstochasticin the sense that there is no assumption of
an underlying probability space or distribution for the sewgcey, and in what follows we
will always use the ternsequenceo refer to such a nonstochastic objgciand accord-
ingly we will usenonstochastito mean simply the absence of an underlying probability
model. In contrast, the definitions in (2.2) and (2.3)stoezhasti@and require an underlying
probability model. Accordingly, when referring to a randeariableX we will explicitly
mean an ensemble of values or realizations sampled from enocordistribution function
F, as is common usage. We will often use the standard andltmethod of viewing a

nonstochastic model as a stochastic one with a singulaiaigon.

These distinctions between stochastic and nonstochasiielswill be important in
our work. Our approach allows for but does not require ststtb& In contrast, the scale-

free literature almost exclusively assumes some underlgiachastic models, so we will
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focus some attention on stochastic assumptions. Exclésowes on stochastic models is
standard in statistical physics, even to the extent thaptssibility of nonstochastic con-
structions and explanations is largely ignored. This senige the main motivation for
viewing the Internet’s router topology as a member of an e of random networks,
rather than an engineering system driven by economic amshéémgical constraints plus
some randomness, which might otherwise seem more naturdéedl, in current litera-
ture “random” is typically used more narrowly than stociagi mean, depending on the
context, exponentially, Poisson, or uniformly distritaitd hus phrases like “scale-free vs.
random” (the ambiguity in “scale-free” notwithstandingg &loser in meaning to “scaling

vs. exponential,” rather than “nonstochastic vs. stoahast

2.1.1 High Variability

An important feature of sequences that follow the scalitafie@nship (2.1) is that they
exhibit high variability, in the sense that deviations from the average value or (gamp
mean can vary by orders of magnitude, making the averagelyamginformative and not
representative of the bulk of the values. To quantify theamoof variability, we use the
standard measure @¢éample) cogicient of variation which for a given sequenceg =

(Y1, Y, ..., Yn) is defined as

CV(y) = c()/Y. (2.4)

wherey = n"1 Y1 yi is the average size or (sample) meary@ndo(y) = (Xp_;(Yk —
y)?/(n - 1))V? is the (sample) standard deviation, a commonly-used mietrimeasuring
the deviations ofy from its average). The presence of high variability in a sequence of
values often contrasts greatly with the typical experiesfaaany scientists who work with
empirical data exhibitindow variability—that is, observations that tend to concentrate
tightly around the (sample) mean and allow for only small twerate deviations from this

mean value.

A standard ensemble-based measure for quantifying thebibty inherent in a random
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variableX is the(ensemble) cggcient of variation CV(X)efined as

CV(X) = Var(X)/E(X), (2.5)

whereE(X) andVar(X) are the (ensemble) mean and (ensemble) varianeé ofspec-
tively. If X = (Xg, X, ..., X,) IS & realization of an independent and identically disiiol
(iid) sample of sizen taken from the common distributidh of X, it is easy to see that the
guantityCV(x) defined in (2.4) is simply an estimate@¥V(X). In particular, ifX is scaling
with a < 2, thenCV(X) = o0, and estimateSV(x) of CV(X) diverge for large sample sizes.
Thus, random variables having a scaling distribution ateeexe in exhibiting high vari-
ability. However, scaling distributions are only a subsed targer family ofheavy-tailed
distributions(see [123] and references therein) that exhibit high varipblt turns out that
some of the most celebrated claims on complex networks h&neereecessary condition
only the presence of high variability and not necessariligtsscaling per se. The conse-
guences of this observation are far reaching, especialiguse they shift the focus from
scaling relationships, their tail indices, and their gatiag mechanisms to an emphasis on

heavy-tailed distributions and identifying the main s@sof “high variability.”

2.1.2 Cumulative vs. Noncumulative Log-log Plots

While in principle there exists an unambiguous mathembggaivalence between
distribution functions and their densities, as in (2.2) §2@), no such relationship can
be assumed to hold in general when plotting sequences oforeialteger numbers or
measured data cumulatively and noncumulatively. Furtbesmthere are good practi-
cal reasons to avoid noncumulative or size-frequency plibdgether (a sentiment echoed
in [97]), even though they are often used exclusively in saor@munities. To illustrate
the basic problem, we first consider two sequengeandy®, each of length 1000, where
Y= (Y3, - - -, Y000 IS constructed so that its values all fall on a straight Vien plotted on
doubly logarithmic (i.e., log-log) scale, i.g5 is a scaling sequence. Similarly, the values
of the sequency = (Y5, ....¥;q0 are generated to fall on a straight line when plotted on

semi-logarithmic (i.e., log-linear) scale therefgfeis an exponential sequence. The full
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sequences are plotted in figure 2.1. In particular, the ddoblrithmic plotin figure 2.1(a)
shows the cumulative or size-rank relationships assatiaith the sequenceg andy®. In
full agreement with the underlying generation mechanigiwtting on doubly logarithmic
scale the rank-ordered sequence/ofs. rankk results in a straight line; i.ey? is scal-
ing (to within integer tolerances). The same plot for thekrardered sequence gf has
a pronounced concave shape and decreases rapidly for Erge—+strong evidence for
an exponential size-rank relationship. Indeed, as shoigume 2.1(b), plotting on semi-
logarithmic scale the rank-ordered sequencg ok. rankk yields a straight line; i.ey* is
exponential (to within integer tolerances). The same oy shows a pronounced con-
vex shape and decreases very slowly for large rank valueldy-efansistent with a scaling

size-rank relationship.
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Figure 2.1: Plots of exponentigt (black circles) and scalingf (blue squares) sequences.
(a) Doubly logarithmic size-rank plot. (b) Semi-logaritltnsize-rank plot. (c) Doubly
logarithmic size-frequency plot. (d) Semi-logarithmizesifrequency plot.

To highlight the basic problem caused by the use of noncuiaealar size-frequency

relationships, consider Figure 2.1(c) and (d) that show aubty logarithmic scale and
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semi-logarithmic scale, respectively, the noncumulativeize-frequency plots associated
with the sequenceg’® andy®: the largest value o§® is plotted on the x-axis and has fre-
guency 1 (y-axis), the second largest valug/ohas also frequency 1, etc., until the end
where the smallest value gf happens to occur 84 times (to within integer tolerances).
Similarly for y?, the smallest value happens to occur 180 times. It is commaooriclude
incorrectly from plots such as these, for example, that &agience/ is scaling (i.e., plot-
ting on doubly logarithmic scale size vs. frequency resulten approximate straight line)
and the sequencg is exponential (i.e., plotting on semi-logarithmic scaieesvs. fre-
guency results in an approximate straight line)—exacttydpposite of what is correctly
inferred about the sequences using the cumulative or aieplots in figure 2.1(a) and
(b).

In contrast to the size-rank plots of the style in figure 21k that depict the raw
data itself and are unambiguous, the use of size-frequelaty as in figure 2.1(c)-(d),
while straightforward to describe low variability datagates ambiguities and can easily
lead to mistakes when applied to high variability data. tfiier high precision measure-
ments it is possible that each data value appears only onaesample set, making raw
frequency-based data rather uninformative. To overcomseptioblem, a typical approach
is to group individual observations into one of a small nundféinsand then plot for each
bin (x-axis) the relative number of observations in that (giraxis). The problem is that
choosing the size and boundary values for each bin is a poewerally left up to the ex-
perimentalist, and thikinning procesgan dramatically change the nature of the resulting

size-frequency plots as well as their interpretation.

These examples have been artificially constructed spdbyftcadramatize the fects
associated with the use of cumulative or size-rank vs. nomdative or size-frequency
plots for assessing the presence or absence of scalingan ggquence of observed values.
While they may appear contrived, errors such as thoserdtest in figure 2.1 are easy to
make and are widespread in the complex systems literatariact, determining whether
a realization of a sample of sizegenerated from one and the same (unknown) underlying
distribution is consistent with a scaling distribution ahén estimating the corresponding

tail indexa from the corresponding size-frequency plots of the dategs enore unreliable.
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Even under the most idealized circumstances using syo#iigtgenerated pseudorandom
data, size-frequency plots can mislead as shown in thesoitpeasily reproduced numer-
ical experiments (see [70] for details).

The log-log size-frequency plot Figure 2.1(c), howeverlddee used incorrectly to
claim that the data is consistent with a scaling distributeosurprisingly common error in
the scale-free and broader complex systems literatures &hen if one a priori assumes
a probabilistic framework, (cumulative) size-rank plote assential for reliably inferring
and subsequently studying high variability, and they tfogeeare used exclusively in this

thesis.

2.1.3 More “Normal” than Normal

While power-laws in event size statistics in many complégrconnected systems have
recently attracted a great deal of popular attention, sdrntieecaspects of scaling distribu-
tions that are crucial and important for mathematicians emgineers have been largely
ignored in the larger complex systems literature. This satisn will briefly review one
aspect of scaling that is particularly revealing in thisaireband is a summary of results
described in more detail in [80, 123].

Gaussian distributions are universally viewed as “norimakinly due to the well-
known Central Limit Theorem (CLT). In particular, the ubityuof Gaussians is largely
attributed to the fact that they are invariant and attractmder aggregation of summands,
required only to be independent and identically distridufied) and have finite variance
[51]. Another convenient aspect of Gaussians is that theg@ampletely specified by mean
and variance, and the CLT justifies using these statistieneVver their estimates robustly
converge, even when the data could not possibly be GausB@anexample, much data
can only take positive values (e.g., connectivity) or haasgllhupper bounds but can still be
treated as Gaussian. It is understood that this approamatould need refinement if ad-
ditional statistics or tail behaviors are of interest. Exgitial distributions have their own
set of invariance properties (e.g., conditional expeatgtinat make them attractive models

in some cases. The ease by which Gaussian data is generaaedbigty of mechanisms
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means that the ability of any particular model to reproduesisSian data is not counted
as evidence that the model represents or explains otheegses that yield empirically
observed Gaussian phenomena. However, a disconnect aftarsavhen data have high
variability, that is, when variance or ddeient of variation estimates do not converge. In
particular, the above type of reasoning is often misapghetthe explanation of data that

are approximately scaling, for reasons that we will dishedew.

Much of science has focused so exclusively on low variagbdiéta and Gaussian or
exponential models that low variability is not even seenraassumption. Yet much real
world data has extremely high variability as quantified, deample, via the cdgcient
of variation defined in (2.5). When exploring stochastic eledf high variability data,
the most relevant mathematical result is that the CLT hasargéization that relaxes the
finite variance (e.g., finit€V) assumption, allows for high variability data arising from
underlying infinite variance distributions, and yiektable lawsn the limit. There is arich
and extensive theory on stable laws (see for example [1@8f;h we will not attempt to
review, but mention only the most important features. Rebak a random variablel is
said to have atable law (with indeX < a < 2) if for any n > 2, there is a real numbel,
such that

Uy +Up+ -+ Uy 2 YU + dp,

whereU,, U,, ..., U, are independent copies tf, and where2 denotes equality in
distribution. Following [109], the stable laws on the raaklcan be represented as a four-
parameter famil\5, (o, 8, 1), with theindexa, 0 < a < 2; thescale parametes- > 0; the
skewness parametgy —1 < B8 < 1; and thelocation (shift) parameten, —o < u < co.
When 1< a < 2, the shift parameter is the mean, butdok 1, the mean is infinite. There
is an abrupt change in tail behavior of stable laws at the Bayr = 2. While fora < 2,

all stable laws are scaling in the sense that they satisfgiton (2.2) and thus exhibit
infinite variance or high variability; the cagse = 2 is special and represents a familiar,
not scaling distribution—the Gaussian (normal) distiidgi.e.,S,(c, 0, 1) = N(u, 202,
corresponding to the finite variance or low variability ca¥hile with the exception of

Gaussian, Cauchy, and Levy distributions, the distrimgiof stable random variables are
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not known in closed form, they are known to be the only fixedhfmof the renormalization
group transformation and thus arise naturally in the linfipmperly normalized sums
of iid scaling random variables. From an unbiased matheaafiew, the most salient
features of scaling distributions are this and additiot@rgy invariance properties (e.g.,
to marginalization, mixtures, maximization), and the eagh which scaling is generated
by a variety of mechanisms [80, 123]. Combined with the alamh#igh variability in real
world data, these features suggest that scaling distoibsitare in a sense more “normal”
than Gaussians and that they are convenient and parsinsomiodels for high variability

data in as strong a sense as Gaussians or exponentials ke f@riability data.

While the ubiquity of scaling is increasingly recognizedlaven highlighted in the
physics and the popular complexity literature [16, 31, 18], the deeper mathematical
connections and their rich history in other disciplinesénaeen largely ignored, with se-
rious consequences. Models of complexity using graphsceat cellular automata, and
sandpiles preferred in physics and the standard laboratm@le experiments that inspired
these models exhibit scaling only when finely tuned in somg \B& even when accepted
as ubiquitous, scaling is still treated as arcane and exatid “emergence” and “self-
organization” are invoked to explain how this tuning miglpben [14]. But given the
strong invariance properties of scaling distributionsywadl as the multitude of diverse
mechanisms by which scaling can arise in the first place [@Hecomes clear that an
ability to generate scaling distributions “explains”|kttif anything. Once high variability
appears in real data, then scaling relationships becomaieahautcome of the processes

that measure them.

2.1.4 Scaling Degree Sequence and Degree Distribution

Statistical features of graph structures that have redaxtensive treatment include the
size of the largest connected component, link density, Kedeee relationships, the graph
diameter, the characteristic path length, the clusterimgficient, and the betweenness
centrality (for a review of these and other metrics see [8),438]). However, the single

feature that has received the most attention is the distoibof node degree and whether
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or not it follows a power-law.

For a graph witm nodes, led; denote the degree of nodel < i < n, and callD =
{d1,ds, ..., dy} thedegree sequenad the graph, again assumed without loss of generality
always to be ordered; > d, > ... > d,. We will say a graph hascaling degree sequence
D (or Dis scaling if for all 1 < k < ng < n, D satisfies gpower-law size-rank relationship
of the formk df = ¢, wherec > 0 anda > 0 are constants, and whemgdetermines the
range of scaling [80]. Since this definition is simply a grapecific version of (2.1) that
allows for deviations from the power-law relationship fades with low connectivity, we
again recognize that doubly logarithmic plotsdpivs. k yield straight lines of slopea, at
least for largel, values.

This description of scaling degree sequence is generaheirsénse that it applies to
any given graph without regard to how it is generated andowitineference to any under-
lying probability distributions or ensembles. That is, alsty degree sequence is simply
an ordered list of integers representing node connectanty satisfying the scaling rela-
tionship of (2.1). In contrast, the current literature om@bex networks focuses largely on
scaling degree distributigrand thus a given degree sequence has the further intdrpneta
as representing a realization of an iid sample of sigrenerated from a common scaling
distribution of the type (2.2). This in turn is often inducleg some random ensemble of
graphs. This thesis will develop primarily a nonstochatstenry and thus focus on scaling
degree sequences, but will clarify the role of stochastideand distributions as well. In
all cases, we will aim to be explicit about which is assumekidial.

For graphs that are not trees, a first attempt at formally ohefiand relating the con-
cepts of “scaling” or “scale-free” and “self-similar” thugh an appropriately defined no-
tion of “scale invariance” is considered by Aiello Chung dndand described in [8]. In
short, they view the evolution of a graph as a random procegsowing the graph by
adding new nodes and links over time. A model of a given grapkuéon process is then
called “scale-free” if “coarse-graining” in time yieldsaed graphs that have the same
power-law degree distribution as the original graph. He@atse-graining in time” refers
to constructing scaled versions of the original graph bydilng time into intervals, com-

bining all nodes born in the same interval into supernoded,annecting the resulting
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supernodes via a natural mapping of the links in the origygnaph. For a number of graph
growing models, including the Barabasi-Albert constiaet Aiello Chung and Lu show
that the evolution process is “scale-free” in the sense wigo@variant with respect to time
scaling (i.e., the frequency of sampling with respect toghewth rate of the model) and
independent of the parameter of the underlying power-lagerdegree distribution (see [8]
for details). Note that the scale invariance criterion ecdesed in [8] concerns exclusively
the degree distributions of the original graph and its ecagrained or scaled counterparts.
Specifically, the definition of “scale-free” considered bieko et al. is not “structural” in
the sense that it depends on a macroscopic statistic thargisly uninformative as far as

topological properties of the graph are concerned.

2.2 Scale-Free Networks

The development of graphic models for complex network toggican be traced back
to 1959, when Erdos and Renyi [47] proposed random graptele@nd many properties
were discovered in the limit of large graph size. In 1998 a@@9] small-world networks
[120] and scale-free networks [20] were proposed separated started an avalanche of
work on modeling of complex networks by focusing on genaratifferent variations of
topology models to match the large-scale statistical ptase Scale-free networks, in par-
ticular, supposedly replicate empirically observed scafiode degree relationships that are
not easily captured by traditional graph model like regglaphs or Erdds-Renyi random
graphs [20], leading the trend of the pursuit of universapgirties that transcend specific
system details. It is in exactly what these properties and,the theories to explain and

exploit them, where big confusion arises.

We review the existing scale-free literature describingsof the most popular models
and their most appealing features. This is then followed byief a critique of the existing

theory of scale-free networks in general.
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2.2.1 Main Scale-Free Properties

The main properties of scale-free graphs that appear inxiséirgy literature can be

summarized as

¢ scale-free networks have scaling (power-law) degreeiloligion.

e scale-free networks can be generated by certain randonegses, the foremost

among which is preferential attachment.

¢ scale-free networks have highly connected “hubs” whicHdhle network together”

and give the “robust yet fragile” feature of error tolerabce attack vulnerability.

e scale-free networks are generic in the sense of being pextender random degree

preserving rewiring.
e scale-free networks are self-similar.

e scale-free networks are universal in the sense of not dépga domain-specific

details.

This variety of features suggest the potential for a rich exignsive theory. Unfor-
tunately, it is unclear from the literature which propestere necessary afod suficient
to imply the others, and if any implications are strict, anply “likely” for an ensemble.
Many authors apparently define scale-free in terms of justgoperty, typically scaling
degree distribution or random generation, and appear tm ¢kt some or all of the other
properties are then consequences. In this part, we aimrifyataactly what options there

are in defining scale-free graphs and deriving their addtiproperties.

2.2.2 Existing Scale-Free Literature

We briefly review the existing treatment of the above prapsytrelated historical re-
sults, and shortcomings of the current theory.
The ambiguity regarding the definition of “scale-free” anigtes with the original pa-

pers [20, 11], but have continued since. Here scale-frgghgrappear to be defined both as
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graphs with scaling or power-law degree distributions asdeang generated by a stochas-
tic construction mechanism based iocremental growth(i.e., nodes are added one at a
time) andpreferential attachmer{i.e., nodes are more likely to attach to nodes that already
have many connections). Indeed, the apparent equivaldrsxmaling degree distribution
and preferential attachment, and the ability of thus-defifieambiguously so) scale-free
network models to generate node degree statistics thabasestent with the ubiquity of
empirically observed power-laws is the most commonly caéeidence that scale-free net-

work mechanisms and structures are, in some sense, unifersa0, 19, 20, 22].

Models of preferential attachment giving rise to power-lstatistics actually have a
long history and are at least 80 years old. As presented bydMhrot [80], one early ex-
ample of research in this area was the work of Yule [126], wh925 developed power-
law models to explain the observed distribution of speciglsiplant genera. Mandelbrot
[80] also documents the work of Luria and Delbriick, who id3@eveloped a model and
supporting mathematics for the explicit generation of isgatelationships in the number
of mutants in old bacterial populations [77]. A more genarad popular model of prefer-
ential attachment was developed by Simon [112] in 1955 tde@xphe observed presence
of power-laws within a variety of fields, including economi@ncome distributions, city
populations), linguistics (word frequencies), and biglddistribution of mutants in bacte-
rial cultures). Substantial controversy and attentiommurded these models in the 1950s
and 1960s [80]. A recent review of this history can also bentbin [87]. By the 1990s,
though, these models had been largely displaced in the @ogcience literature by mod-
els based on critical phenomena from statistical physi6k fnly to resurface recently in
the scientific literature in this context of “scale-free wetks” [20]. Since then, numer-
ous refinements and modifications to the original Barabétsért construction have been
proposed and have resulted in scale-free network modeisc#mareproduce power-law
degree distributions with any € [1, 2], a feature that agrees empirically with many ob-
served networks [10]. Moreover, the largely empirical apdistic studies of these types
of “scale-free” networks have recently been enhanced lyosous mathematical treatment

that can be found in [26] and involves a precise version oBér@abasi-Albert construction.

The introduction of scale-free network models, combinethwine equally popular
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(though less ambiguous) “small world” network models [12@]invigorated the use of
abstract random graph models and their properties (p&tlginode degree distributions)
to study a diversity of complex network systems. For examiptaogovtsev and Mendes
[43] provide a “standard programme of empirical research cbmplex network,” which
for the case of undirected graphs consist of finding (1) thgreke distribution; (2) the
clustering cofficient; (3) the average shortest-path length. The presomgithat these
features adequately characterize complex networks. Grthe collective forts of many
researchers, this approach has cataloged an impressivé tsal application networks,
including communication networks (the WWW and the Inteynsbcial networks (au-
thor collaborations, movie actors), biological networkeyral networks, metabolic net-
works, protein networks, ecological and food webs), tebeyghcall graphs, mail networks,
power grids and electronic circuits, networks of softwanenponents, and energy land-
scape networks (again, comprehensive reviews of these reaunits are widely available
[10, 19, 96, 43, 105]). While very fferent in detail, these systems share a common fea-
ture in that their degree distributions are all claimed ttofe a power-law, possibly with

different tail indices.

Regardless of the definitional ambiguities, the use of sngpbchastic constructions
that yield scaling degree distributions and other appgadiraph properties represent for
many researchers what is arguably an ideal applicationadisstal physics to explain-
ing and understanding complexity. Since scale-free mdule their roots in statistical
physics, a key assumption is always that any particular ot simply a realization
from a larger ensemble of graphs, with an explicit or impliziderlying stochastic model.
Accordingly, this approach to understanding complex netedas focused on those net-
works that are most likely to occur under an assumed randaphgnodel and has aimed at
identifying or discovering macroscopic features that aepthe “essence” of the structure
underlying those networks. Thus preferential attachmé&st®a general and hence attrac-
tive “microscopic” mechanism by which a growth processdsedn ensemble of graphs
with the “macroscopic” property of power-law node degresribhutions [21]. Second, the
resulting scale-free topologies are “generic.” Not onlanmy specific scale-free graph the

generic or likely element from such an ensemble, but als@n important property of
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scale-free networks is that [degree preserving] randominiegy does not change the scale-
free nature of the network(see Methods Supplement to [59]). Finally, this ensemiblseid
approach has an appealing kind of “universality” in thatitdlves no model-specific do-
main knowledge or specialized “design” requirements agdires only minimal tuning of

the underlying model parameters.

Perhaps most importantly, scale-free graphs are claimedhibit a host of startling
“emergent” consequences of universal relevance, inctpidimiguing self-similar and frac-
tal properties (see below for details), small-world cheeastics [15], and “hublike” cores.
Perhaps the central claim for scale-free graphs is that ltlagg highly connected hubs,
what we term SF hubs, which “hold the network together.” Agedpthe structure of such
networks is highly vulnerable (i.e., can be fragmented)ttacks that target these hubs
[11]. Atthe same time, they are resilient to attacks thatcknaut nodes at random, since
a randomly chosen node is unlikely to be a hub and thus itsyahias minimal &ect on
network connectivity. In the context of the Internet, whetale-free graphs have been pro-
posed as models of the router-level Internet [125], thiskesesn touted “the Achilles’ heel
of the Internet” [11], a vulnerability that has presumabéeh overlooked by networking
engineers. Furthermore, the hublike structure of sc&e-grraphs is such that the epidemic
threshold is zero for contagion phenomena [104, 17, 106}, 166s suggesting that the
natural way to stop epidemics, either for computer virfygesms or biological epidemics
such as AIDS, is to protect these hubs [39, 28]. Proponentisi®imodeling framework
have further suggested that the emergent properties @&-fea graphs contributes to truly
universal behavior in complex networks [25] and that pefiéal attachment as well is a

universal mechanism at work in the evolution of these neite/{62, 43].

The scale-free story has successfully captured the intmedsmagination of researchers
across disciplines, and with good reason, as the proposeeérties are rich and varied. Yet
the existing ambiguity in its mathematical formulation andny of its most essential prop-
erties has created confusion about what it means for a nktiwobe “scale-free.” One
possible and apparently popular interpretation is thdesitae means simply graphs with
scaling degresequencesand that this alone implies all other features listed abadee

will show that this is incorrect, and in fact none of the featufollows from scaling alone.
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Even relaxing this to random graphs with scaling degtestributionsis by itself inade-
guate to imply any further properties. One goal of this thésio clarify the reasons why
these interpretations are incorrect, and propose minitraiges to fix them. The opposite
extreme interpretation is that scale-free graphs are akéadaving all of the above-listed
properties. We will show that this is possible in the sensettie set of such graphs is not
empty, but as a definition this leads to two further probleisathematically, one would
prefer fewer axioms, and we will rectify this with a minimadfthition. We will introduce a
structural metric that provides a view of the extent to whadaraph is scale-free and from
which all the above properties follow, often with necessamyg suficient conditions. The
other problem is that the canonical examples of apparetg-fege networks, the Internet
and biological metabolism, are then very far from scale-frethat they haveoneof the
above properties except perhaps for scaling degree disorts. This is simply an unavoid-
able conflict between these properties and the specificeeagplications, and cannot be

fixed.

As a result, a rigorous theory of scale-free graphs museedlefine scale-free more
narrowly than scaling degree sequences or distributiomsder to have nontrivial emer-
gent properties, and thus lose central claims of applitgbdr instead define scale-free
as merely scaling, but lose all the universal emergent featthat have been claimed to
hold for scale-free networks. We will pursue the former apgh because we believe it is
most representative of the spirit of previous studies asd laécause it is most inclusive of
results in the existing literature. At the most basic lesghply to be a nontrivial and novel
concept, scale-free clearly must mean more than a graphsedting degree sequence or
distribution. It must capture some aspect of the graphfjtaatl not merely a sequence of
integers, stochastic or not, in which case the scale-freature and this thesis wouldfer
nothing new. Other authors may ultimate choodtedent definitions, but in any case, the
results in this thesis clarify for the first time preciselyattthe graph theoretic alternatives
are regarding the implications of any of the possible atttve definitions. Thus the def-
inition of the word “scale-free” is much less important thae mathematical relationship

between their various claimed properties, and the cormesivith real world networks.
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2.3 Summary

In this chapter, we provide background knowledge on thersgdistribution and scale-
free networks, which are essential for the exploration ofiplex networks.

To illustrate some key points about the existing claims maéigg scale-free networks
as adopted in the popular literature and their relationgihtip scaling degree distributions,
we consider an application to the Internet where graphs aantrto model the Internet

connectivity at the router-level in the next chapter.
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Chapter 3

Internet Router-Level Topology

Previous studies on network topologies have focused orpirgng measurements or
on phenomenological descriptions and evaluation of gthpbretic properties of topology
generators. Power-law degree distribution and scalerfese@orks dominate the current
literature.

Arguing against this approach, and taking the Internetencigvel topology as an ex-
ample, we propose a complementary approach by emphasi@ngetwork functionality
together with practical constrains and tradéso We claim that very simple models that
incorporate hard technological constraints on router édhith and connectivity, together
with abstract models of user demand and network performarare successfully depict
and capture the intrinsic fundamentals of the Internet ltwgpo In parallel, we provide
evidence that scale-free networks as constructed by arearesdt random process are in-
herently flawed.

This chapter is organized in the following manner.

We introduce the router-level topology and our work briefiysection 1 and we review
the previous approaches to generating realistic Inteopildgies in section 2. In sec-
tion 3, we provide an alternate approach to understandpagy structure that explicitly
incorporates router technology constraints, various ecoa constraints, and network per-
formance at work in the construction of real networks. Thesdction 4, we explore sev-
eral real Internet topologies and show the consistenceauttapproach. In section 5, we
discuss several performance related metrics for comparigcontrasting networks, par-

ticularly with the popular scale-free networks. We giveregpées and presents our findings



28

in section 6 and summarize our work at the end.

3.1 Introduction

A detailed understanding of the many facets of the Intesrtepological structure is
critical for evaluating the performance of networking @wils, for assessing thé&ective-
ness of proposed techniques to protect the network fronrinafintrusions and attacks,
or for developing improved designs for resource provisigni

Recent attention on the large-scale topological struatfitbe Internet has been heav-
ily focused on theconnectivityof network components, whether they be machines in the
router-level graph [55, 29] or entire subnetworks (Autoloois Systems) in the AS-level
graph [52, 33]. A particular feature of network connectiitat has generated consider-
able discussion is the prevalence of heavy-tailed digiohs in nodedegree(e.g., number
of connections) and whether or not these heavy-tailedibligions conform to power-laws
[48, 85, 34, 87]. This macroscopic statistic has greatlyariced the generation and eval-
uation of network topologies. In the current environmemgyreée distributions and other
large-scale statistics are popular metrics for evaludtimg representative a given topol-
ogy is [56], and scale-free models and theffatient variations become the most popular
models for the Internet topology [30, 63, 84, 125, 10, 9, 100]

Yet, from our viewpoint, this perspective is both incompland in need for corrective
action. For one, there exist manyffédrent graphs having theame distribution of node
degree some of which may be consideregpositesrom the viewpoint of network en-
gineering. Furthermore, there are a variety of distincilfeslent random graph models
that might give rise to a given degree distribution, and safthese models may have
no network-intrinsic meaning whatsoever. Finally, we adhte here an approach that is
primarily concerned with developing a basic understandiiipe observed high variabil-
ity in topology-related measurements and reconciling tketin the reality of engineering
design. From this perspective, reproducing abstract makieal constructs such as power-
law distributions is largely a side issue.

In this chapter, we considerfirst-principles approacko understanding Internet topol-
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ogy at therouter-leve] where nodes represent routers and links indicate one-tiopec-
tivity between routers. More specifically, when referrimgthe following to router-level
connectivity, we always mean Layer 2, especially when tiséirdition between Layer 2
vs. Layer 3 issues is important for the purpose of illumimgtihe nature of the actual
router-level connectivity (i.e., node degree) and its ptaisconstraints. For router-level
topology issues such as performance, reliability, and stoiass to component loss, the
physical connectivity between routers is more importaantthe virtual connectivity as
defined by the higher layers of the protocol stack (e.g., IPLS). Moreover, we use here
the notion of “first-principles approach” to describe areatpt at identifying somenini-
mal functional requirements and physical constraints needelvelop simple models of
the Internet’s router-level topology that are at the same tilustrative, representative, in-
sightful, and consistent with engineering reality. Famnirbeing exhaustive, this attempt
is geared toward accounting for very basic network-speas#jgects, but it can readily be
enhanced if some new or less obvious functional requiresn@nphysical constraints are
found to play a critical role. Also, in the process of devahgpmodels of the Internet
router-level connectivity that are “as simple as possite not simpler,” we focus on sin-
gle ISPs or ASes as the Internet’s fundamental buildingksidleat are designed largely in

isolation and then connected according to both engineamagousiness considerations.

While there are several important factors that contriboite¢ design of an ISP’s router-
level topology (e.g., available technology, economic \igh customer demands, redun-
dancy and geography) and while opinions will vary about Wwhaad how many of these
factors matter, we focus here on a few critical technoldgaoa economic considerations
that we claim provide insight into the types of network taympés that are possible. In
essence, we argue the importance of explicit consideratiaine basic trade{ts that
network designers must face when building real networkspdrallel, we provide evi-
dence that scale-free network models of router-level camng whose construction is
constrained by macroscopic statistics but is otherwisegmd by randomness are inher-
ently flawed. To this end, we introduce the notionsetwork performancas a new means
for discerning important dlierences between generated and real network topologies. In s

doing, we show that incorporating fundamental design Begcrucial to the understand-
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ing and evaluation of Internet topology.

3.2 Previous Work on Internet Topology

Two network topologies that have received significant atb@rfrom these experimental
approaches are th&S graph(representing organizational interconnectivity betwseh-
networks) and theouter-level graphof the Internet. Despite the challenges associated
with the careful collection and interpretation of topoleggfated network measurements,
significant éforts by the networking community are yielding an emergingye of the

large-scale statistical properties of these topologi8s$8, 4, 29, 113, 115].

The development of abstract, yet informed, models for nekwapology evaluation and
generation has followed the work of empiricists. The firgbylar topology generator to be
used for networking simulation was the Waxman model [12Hicl is a variation of the
classical Erdos-Rényi random graph [47]. The use of tlps bf random graph model was
later abandoned in favor of models that explicitly introdumonrandom structure, particu-
larly hierarchy and locality, as part of the network desig,[127]. The argument for this
type of approach was based on the fact that an inspectiorabhegworks shows that they
are clearly not random but do exhibit certain obvious highmal features. This approach
further argued that a topology generator should reflect #sga principles in common
use. For example, in order to achieve desired performangeetoles, the network must
have certain connectivity and redundancy requirementgpegties which are not guaran-
teed in random network topologies. These principles weegnated into the Georgia Tech

Internetwork Topology Models (GT-ITM).

Thesestructural topology generatonsere the standard models in use until power-law
relationships in the connectivity of both the AS-level andter-level graphs of the Inter-
net were reported by Faloutsos et al. [48]. Since then, tletification and explanation
of power-laws has become an increasingly dominant themueeimecent body of network
topology literature [125, 34, 85, 124]. Since the GT-ITM ¢dgmyy generators fail to pro-

duce power-laws in node degree, they have often been abaddofavor of new models
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that explicitly replicate these observed statisti&amples of these generators include the
INET AS-level topology generator [63], BRITE [84], BA [125B [10], GLP [30], PLRG
[9], and the CMU power-law generator [100].

Each of the aforementioned degree-based topology genereges one of the following
three probabilistic generation methods. The firgreferential attachmerj0] which says
(1) the growth of the network is realized by the sequentiditeah of new nodes, and (2)
each newly added node connects to some existing nodesgmiédlly, such that it is more
likely to connect with a node that already has many connestids a consequence, high-
degree nodes are likely to get more and more connectioniingsin a power-law in the
distribution of node degree. For a precisely defined modlitttorporates the key features
of preferential attachment and is amenable to rigorous ema#ttical analysis, we refer to
[26] and references therein. The second generation meghdde to Chung and Lu [35]
who considered general model of random graphs (GRG) with a given expectgdede
sequence The construction proceeds by first assigning each nodexisetted) degree
and then probabilistically inserting edges between thesadcording to a probability that
is proportional to the product of the degree of the two givedmoints. If the assigned
expected node degree sequence follows a power-law, theajedegraph’s node degree
distribution will exhibit the same power-law. The third geation method, thpower-law
Random Graph (PLRGY], also attempts to replicate a given (power-law) degeggisnce.
This construction involves forming a seof nodes containing as many distinct copies of a
given node as the degree of that node, choosing a random inataiithe the elements of
L, and applying a mapping of a given matching into an approg(iaulti)graph?

One of the most important features of networks that have ptave degree distribu-
tions and that are generated according to one of these plisbalmechanisms is that they
all tend to have a few centrally located and highly connetivetbs” through which essen-
tially most trdfic must flow. For the networks generated by preferential lattent, the

central “hubs” tend to be nodes added early in the generatiocess. In the GRG model

1See however a comment by E. Zegura on router-level topologyodeting,
http://www.caida.org/analysis/topology/ router-level-topology.xml.

2ltis believed that the PLRG and GRG models are “basicallyrgsytically equivalent, subject to bound-
ing error estimates” [9].
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as well as in the PLRG model, the nodes with high (expecteghedehave higher proba-
bility to attach to other high degree nodes and these highiyected nodes form a central
cluster. When using these models to represent the Intdimepresence of these highly
connected central nodes in these networks has been tostéakchilles’ heel” because
network connectivity is highly vulnerable to attacks treget the high-degree hub nodes
[11]. It has been similarly argued that these high-degrdeslawe a primary reason for the
epidemic spread of computer worms and viruses [104, 28]. pFasence of highly con-
nected central nodes in a network having a power-law degstghaition is the essence of
the scale-freenetwork models, therefore we do not specificallffetientiate degree-based

models and scale-free models in this chapter.

However, this emphasis on power-laws and the resultifigrte to generate and ex-
plain them with the help of these degree-based methods ldwgone without criticism.
A widely known deficiency is that degree-based methods fooltmgy generation produce
merely descriptive models that are in general not able twigeocorrect physical expla-
nations for the overall network structure [124]. The clasrthat, in the absence of an
understanding of the drivers of network deployment and ¢gmnow is difficult to identify
the causal forcestiecting large-scale network properties and even mdfedit to predict
future trends in network evolution. Nevertheless, in theesice of concrete examples of
such alternate models, degree-based methods have renpapethr representations for

large-scale Internet structure.

This chapter follows the previous arguments of [13] in fasbthe need to explicitly
consider the technical drivers of network deployment amvgin. In spirit, it delivers for
degree-based networks a similar message as [127] did foratidom graph-type mod-
els [121] that were popular with networking researcherdendarly 1990s. While [127]
identified and commented on the inherent limitations of tagous constructs involving
Erdods-Rényi-type random graphs, our work points towardlar shortcomings and unre-

alistic features when working with probabilistic degreseséd graphs.
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3.3 A First-Principles Approach

A key challenge in using large-scale statistical featucesharacterize something as
complex as the topology of an ISP or the Internet as a wholeasit is dificult to un-
derstand the extent to which any particular observed feasutffundamental” to its struc-
ture. Here, we consider a complementary approach for thign&bout network topology, in
which we explore some of the practical constraints and tadf¥eat work in the construc-
tion of real networks. In essence, we are asking the questidimat really matters when it
comes to topology construction?” and argue that minimatky needs to consider the role
of router technology and network economics in the netwosigieprocess of a single ISP.
The hope is that even a preliminary understanding of keyfacivhen combined with a
more subtle use of statistics and graph theory, can provprspective that is more con-
sistent both with observed measurements and the engiggeimciples at work in network
design than with the current, at times conflicting, claimeutlihe real Internet topology.
In particular, given the current emphasis on the presenpeweér-laws in the connectivity
of the router-level Internet, it is important to understavitether such variability is plau-
sible, and if so, where it might be found within the overappotogy. Fortunately, such an
explanation is possible if one considers the importanc@uwfer technology and network

economics in the design process.

3.3.1 Technology Constraints

In considering the physical topology of the Internet, a majonstraint &ecting the
types of topologies available network designers is reladdgte routing equipment used to
control the flow of tréfic on the network, and the underlyinguter technology constraints
are a significant force shaping network connectivity. Basethe technology used in the
cross-connection fabric of the router itself, a router heasmaimum number of packets that
can be processed in any unit of time. This constrains the epuwilink connections (i.e.,
nodedegreg and connection speeds (i.e., bandwidth) at each routés.lifiitation creates
a “feasible region” and correspondingffieient frontier” of possible bandwidth-degree

combinations for each router. That is, a router can have diglvbandwidth connections
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Figure 3.1. Technology constraint for Cisco 12416 Gigalitéh Router(GSR): degree
vs. bandwidth.

or many low bandwidth connections (or some combination imben). In essence, this
means that routers must obey a fornflofv conservatiomn the trdfic that they can handle.
While it is always possible to configure the router so thatlisfbelow the &icient frontier

(thereby underutilizing the router capacity), it is not gibte to exceed this frontier (e.g.,

by having many high bandwidth connections).

Figure 3.1 shows the technology constraint for the Ciscd623SR, which is one of
the most expensive and highest bandwidth routers avaifaine a 2002 Cisco product
catalog [6]. Each point on the plot corresponds to fiedent combination of line cards
and interfaces for the same router. This router has 15 &lailme card slots. When the
router is configured to have less than 15 connections, tiwmutgper degree is limited by
the line-card maximum speed (10 Gbps) and the total bandwidteases with the number
of connections, while bandwidth per degree remains the gdash-dot lines). When the
number of connections is greater than 15, the total routedwalth and bandwidth per
degree decrease as the total number of connections insrsadie lines), up to a maximum
of 120 possible connections for this router (dotted linehede three lines collectively

define the feasible region for configuring this router.

Although engineers are constantly increasing the fromtidr the development of new

routing technologies, each particular router model willdha frontier representing its fea-
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sible region, and network architects are faced with traffletmetween capacity and cost in
selecting a router and then must also decide on the quamiityspeed of connections in
selecting a router configuration. Until new technology tshile frontier, the only way to
create throughput beyond the frontier is to build network®aters?

The current Internet is populated with manyfdrent router models, each using po-
tentially different technologies and each having their own feasible megiowever, these
technologies are still constrained in their overall apitid trade-df total bandwidth and
number of connections. Thus, networking products tend tepeeialized to take advan-
tage of one area of an aggregate feasible region, dependlithgio intended role within the
network hierarchy. Consider an aggregate picture of mafigrént technologies (shown
in figure 3.2), used both in the network core and at the netwdde. In addition to the
Cisco 12000 GSR Series, the constraints on the somewhat@isieo 7000 Series is also
shown. Edge technologies are somewhéiedent in their underlying design, since their
intention is to be able to support large numbers of end usdirsed (DSL, dial-up) or vari-
able (cable) speeds. They can support a much greater nurinb@nrections (upwards of
10,000 for DSL or dial-up) but at significantly lower speet@lke shared access technology
for broadband cable provides service comparable to DSL wheetotal number of users is
about 100, but can only provide service equivalent to dpalhen the number of users is
about 2000. Included also is the Linksys 4-port router, Wisca popular LAN technology
supporting up to 5100 MB Ethernet connections. Observeligdimits of this less expen-
sive technology are well within the interior of the feasildgion for core network routers.
Collectively, these individual constraints form an oveagjgregate constraint on available
topology design.

We are not arguing that limits in technology fundamentahggtude the possibility of
high-degree, high-bandwidth routers, but simply that thedpct dferings recently avail-
able to the marketplace have not supported such configngatihile we expect that com-
panies will continue to innovate and extend the feasiblerefpr router configuration, it

remains to be seen whether or not the economics (includinfigeoation and management)

3Recent product announcements from router manufactureinsssuJuniper Networks, Avici Systems, and
Cisco Systems suggest that the latest trend in technologlajement is to build scaleable multirack routers
that do exactly this.
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Figure 3.2: Aggregate picture of router technology comstsa

for these products will enable their wide deployment wittha Internet.

3.3.2 Economic Considerations

Even more important than the technical consideratidfextng router use are the eco-
nomic considerations of network design and deploymentckvare driven by customer de-
mands and ultimately direct the types of technologies tteatlaveloped for use by network
providers. For example, the cost of installing and opegapinysical links in a network can
dominate the cost of the overall infrastructure, and sihesé costs tend to increase with
link distance, there is tremendous practical incentivedsigh wired networks such that
they can support tfic using the fewest number of links. The ability to share coss
multiplexing is a fundamental driver underlying the des@metworking technologies,
and the availability of these technologies enables a nétwapology in which tr#fic is
aggregated at all levels of network hierarchy, from its pleery all the way to its core.

The development of these technologies has similarly faidwihe demands of cus-
tomers, for whom there is wide variability in the willingreeto pay for network band-
widths (Figure 3.3). For example, nearly half of all usershef Internet in North America
still have dial-up connections (generally 56 kbps), onlg@i?0% have broadband access

(256 kbps-6 Mbps), and there is only a small number of uselts laige (10 Gbps) band-
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width requirements [12]. Again, the codtective handling of such diverse end usefiica
requires that aggregation take place as close to the edgesable and is explicitly sup-
ported by a common feature that these edge technologies mavely a special ability to
support high connectivity in order to aggregate end usdidrbefore sending it towards
the core.

The economic drive to minimize link costs promotes a topyplitgit aggregates titac
as close to the network edge as possible. The use of muitngléx a variety of routing
technologies at the network edge supports this aggregadiawth the wide variability in
the bandwidth demands and geographies of end user cormestiggests that one should
expect wide variability in the measured connectivity of esat the network edge. Since
it is generally accepted that most of the computers in thevordét are at its edge, it is
reasonable to expect that the overall connectivity stesisif the network are dominated by

those at the edge, which lead to the high variability in thelnternet node connectivity.

3.3.3 Service Requirements

In addition to the constraints imposed by economic and rdgatdnology limitations, it
is reasonable to expect that ISPs are driven to satisfyioexg¢avice requirements imposed

by their customers or the industry at large. For example,ti®3s utilize service level
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agreements (SLAS), which serve as business contractsheithmajor customers and their
peers. SLAs typically specify terms such as delivered baditiwvand limits on service
interruptions, and they often include financial penalti@sfailure to comply with their
terms. While SLAs are often negotiated on an individual §asbmpetition among ISPs
often creates industry norms that lead to standard SLA ter@snversely, some ISPs
use special terms in SLAs as a mechanism féliedentiating their services and creating
competitive advantages over rival companies.

From the provider’s perspective, one simple metric for ssisg whether or not a given
network topology is “good” is its ability to handle the bandwh requirements of its edge
routers. We definaetwork performancas the maximum throughput on the network under
heavy trdfic conditions based on a gravity model [128]. That is, we atarsilows on all
source-destination pairs of edge routers, such that theianuod flow X;; between source
i and destinatior) is proportional to the product of the ffw demandx;, x; at end points
I, J, Xij = aXX;, wherea is some constant. We compute the maximum throughput on the

network under the router degree bandwidth constraint,

max Zaxi X; (3.1)
i]

st. RX<B, (3.2)

whereX is a vector obtained by stacking all the floids = axx; andR is the routing
matrix (defined such th&, = {0, 1} depending on whether or not flompasses through
routerk). We use shortest path routing to get the routing matrix,deftheB as the vector
consisting of all router bandwidths according to the dedpaedwidth constraint (Figure
3.2). Due to a lack of publicly available information onftra demand for each end point,
we assume the bandwidth demand at a router is proportioraétaggregated demand of
any end hosts connected to it. In this manner, we allow foddmndwidth utilization of
the higher level routers While other performance metrics may be worth considerirg, w

claim that maximum throughput achieved using the gravitydeh@rovides a reasonable

4We also tried choosing the i demand according to other metric, such as the demand betoeters
is the same, or is as the product of their degrees as in [5d]gaalitatively similar performance values are
obtained but with dferent router utilization.
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measure of the network to providdair allocation of bandwidth.

3.3.4 Heuristically Optimal Networks

Our objective is to develop a simple and minimal, yet plalesibodel for router-level
topology that conforms to the technology constraints oftemy reflects link costs and
high variability in end-user demand, and achieves readgrigbod” performance. We
have argued that the perspective of an ISP in building a maltiscale network topology
is driven by three factors. First, the need to minimize thegldistance link costs means
that it is driven to aggregate fta from its edges to its core. Second, the design of its
topology, particularly in the core, must conform to the teallogy constraints inherent
in routers. Third, the network should have good performanoeasured in terms of its
ability to carry large volumes of tf&c in a fair manner. While these are certainly not the
only factors &ecting design, we claim that these three drivers are a derstdrting point
for understanding the relationship between ISP networkgdesnd resulting router-level
topology.

Collectively, these constraints and functional requiretaesuggest that a “good” de-
sign is one in which individual links at the edge of the netwbave are aggregated in a
manner such that the link capacities increase as one motes t@twork core. In particu-
lar, edge routers may be connected to a large number of loauadth users or a smaller
number of high bandwidth users. In contract, one can expattiie core is constructed as
a loose mesh of high speed, low connectivity routers whictydseavily aggregated tfiaxc
over high bandwidth links. Accordingly, this meshlike casesupported by a hierarchical
treelike structure at the edges whose purpose is to agegréagéic through high connec-
tivity. We will refer to this topology adHeuristically Optimal TopologyHOT) to reflect
its consistency with real design considerations. By “retigally” we have two meanings.
On one side, we only consider the minimal set of functiongurements and constraints
therefore the model reflects the most coarse grain levebappation. On the other side,
our model does not exactly aim for the optimal solution, but ane that can provide a

reasonable good performance. The optimal solution becd@sssmportant since in the
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Figure 3.4: Abilene network. Each node represents a roatef,each link represents a
physical connection between Abilene and another network.

Internet, since much more trad@detween constraints and functions need to take into

considerations and it is often impossible to find the best one

3.4 Evidence from Real Internet

As evidence that this heuristic design shares similar taiale features with the real
Internet, we consider the real router-level connectivityhe Internet as it exists for the

educational networks of Abilene and CENIC as well as a comiaktier-1 network from
AT&T.

3.4.1 The Abilene Network

The Abilene Network (Figure 3.4) is the Internet backbonivoek for higher educa-
tion, and it is part of the Internet2 initiative [1]. It is cgmsed of high-speed connections

between core routers located in 11 U.S. cities and carrigoapnately 1% of all tréfic in
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North America® The Abilene backbone is a sparsely connected mesh, withectimity to
regional and local customers provided by some minimal amofiredundancy. Abilene
is built using Juniper T640 routers, which are configuredaeehanywhere from five con-
nections (in Los Angeles) to twelve connections (in New YoAbilene maintains peering
connections with other higher educational networks (batmeistic and international) but

does not connect directly to the commercial Internet.

3.4.2 The CENIC Network

Focusing in on a regional level, we consider California, keitbe Corporation for Ed-
ucation Network Initiatives in California (CENIC) acts &R for the state’s colleges and
universities [2]. Its backbone is similarly comprised ofpase mesh of routers connected
by high-speed links (Figure 3.5). Here, routing policiegiundant physical links, and the
use of virtual private networks support robust deliveryreffic to edge campus networks.
Similar observations are found when examining (where alig) topology-related infor-
mation of global, national, or regional commercial ISPs.

The CENIC backbone is comprised of two backbone networksiraljel—a high per-
formance (HPR) network supporting the University of Catliia system and other univer-
sities, and the digital California (DC) network supportikgl2 educational initiatives and
local governments. Connectivity within each POP is prodibg layer-2 technologies, and
connectivity to the network edge is not shown. Each routerdmy a few high bandwidth
connections, however each physical connection can sup@my virtual connections that
give the appearance of greater connectivity to higher $ewkethe Internet protocol stack.
ESnet and GEANT are other backbone networks.

In view of recent measurement studies [55, 4, 113], it is irtgrd to recognize that
the use of technologies at layers other than IP wiket what traceroutelike experiments
can measure. For example, the use of shared media at Laygy., Hihernet, FDDI rings)

either at the network edge or at exchange points betweend&@Pgive the appearance of

5Of the approximate 80,000 - 140,000 terabytes per montlafiifictin 2002 [99], Abilene carried approx-
imately 11,000 terabytes of total ffi@ for the year [3]. Here, “carried” tfc refers to tréic that traversed
an Abilene router. Since Abilene does not peer with comra&l8Ps, packets that traverse an Abilene router
are unlikely to have traversed any portion of the commetnigrnet.
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Figure 3.5: CENIC backbone.

high degree nodes. In an entirelyfférent fashion, the use of Multiprotocol Label Switch-
ing (MPLS) at higher levels of the protocol stack can alscedive illusion of one-hop
connectivity at the lower layers when, in fact, there is noA®ilene is an ideal starting
point for understanding heuristically optimal topologilescause within its backbone, there
is no diference between the link layer topology and what is seen by Bntrast, the use
of Ethernet and other link layer switching technologiedwithe CENIC POPs makes the
interpretation and visualization of the physical intraNBE connectivity more dificult,
but inferring the actual link layer connectivity is greatcilitated by knowing the con-
figurations of the individual CENIC routers as shown in figBré. In the time since the
Cisco catalog [6] was published, the introduction of a new lkard (supporting 10x1GE
interfaces) has shifted the feasible region for the modélL02outer. Since this router has
nine available slots, this router can achieve a maximum oG8fs with either nine 10
GE line cards or nine 10x1GE line cards. Although the shapbefeasible region may

continue to change, its presence and corresponding intiplsafor router configuration
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and deployment will remain qualitatively the same.
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Figure 3.6: Configuration of CENIC routers.

3.4.3 ATier-1 ISP Network

One of the overriding concerns of commercial ISPs in shawpglogy data is that it
will reveal information about its customers, thereby mgtthem at risk to competition.
However, in cases where topology information iffisiently anonymized and aggregated,
we have found ISPs more willing to share and publish conviectiata. Here, we present
aggregate router configuration information for AS 7018 (ATl&as it existed during the
second half of 2003. This Tier-1 ISP has hundreds of routenssa the United States and
is a major competitor in the national ISP market.

Figure 3.7 shows aggregate router configuration data fare®cand “access” routers
in the ISP’s network as it existed during the second half d#320Routers are grouped
into three diferent types: high-speed access routers, low-speed aaésss; and core
routers. For each group, we show the convex hull surrountti@gpoints corresponding to
the bandwidth-degree configuration for each router. Alswshis the feasible configura-
tion region for a typical core router (i.e., the Cisco 124183 and a typical access router
(i.e., the Cisco 7600). Here, “core routers” can be undetsts those that provide long-
haul connectivity between individual points of presenceR$®) for the ISP. Conversely,

“access routers” can be understood as those that providegagpn connectivity between
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the ISP and its customers within a PoP. For this ISP, accessreoare further categorized
according to whether they facilitate high-speed or lowespeonnections. Although we are
not able to show the configuration of individual routers tog tSP, we are able to present

the convex hull containing the bandwidth-degree configoingor the routers of each type.
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Figure 3.7: Configuration of a Tier-1 commercial ISP.

This aggregated information obscures individual routerfigurations as well as the
total number of routers in each group, but it provides useformation nonetheless. First,
the maximum number of connections to a core router is 68,enthi2 maximum number
of connections to a low-speed access router is 313. The niaxinumber of connections
to a high-speed access router is less than that for both p@sesand core routers. Also,
the relative position of these convex hulls reinforces tbigam that routers are specialized
according to their role (again, Figure 3.2). The core raerthis AS tend to have higher
overall bandwidth than access routers, and they also tehdwe fewer connections than
many low-speed access routers. The high-speed accesssrtaute to have higher overall
bandwidth but fewer connections than low-speed accessnouAlso shown in figure 3.7
is the feasible region for representative core and accegersS While certainly not all

of the routers deployed in this AS were these specific routatats, it is likely that some

5While the technology represented in the 2002 catalog [6]is putdated, we argue that the product
deployment lifecycle for routers makes it reasonable tdelelthat the production network of our ISP in
2003 is adequately reflected using this older technology.
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of them were. Nonetheless, a striking feature of Figure 8.the way in which the core
routers conform rather tightly to the feasible configunatiegions.
As a result of both educational networks topology and a coramenetwork configura-
tion, we fully expect border routers to again have a few negit high bandwidth physical
connections supporting large amounts of aggregatdiktrén turn, high physical connec-

tivity at the router level is expected to be firmly confinedtie hetwork edge.

3.5 Topology Metrics

3.5.1 Commonly-Used Metrics

Previous metrics to understanding and evaluating netvap&logies have been dom-
inated by graph-theoretic quantities and their statispcaperties, e.g., hode-degree dis-
tribution, expansion, resilience, distortion and hiehgr{30, 56]. However we claim here
that these metrics are inherently inadequate to capturesthential tradefts of explicitly
engineered networks.

Node degree distributionin general, there are many networks having the same node
degree distribution, as evidenced by the procestegfee-preserving rewiringThis par-
ticular rewiring operation rearranges existing connewim such a way that the degrees of
the nodes involved in the rearrangement do not changenigalie resulting overall node
degree distribution invariant. Accordingly, since thewmtk can be rewired step-by-step
so that the high degree nodes appear either at the netwalocat its edges, it is clear that
radically diferent topologies can have one and the same degree diginl{ety., power-
law degree distribution). In this fashion, degree-presgrvewiring is a means for moving
within a general “space of network graphs,” all having thesaverall degree distribution.

Expansion, Resilience, Distortiorintroduced in [56], these metrics are intended to
differentiate important aspects of topolodyxpansions intended to measure the ability
of a node to “reach” other nodes within a given distance (memkby hops)resilienceis
intended to reflect the existence of alternate pathsdestdrtionis a graph theoretic metric

that reflects the manner in which a spanning tree can be eratiedtb the topology. For
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each of these three metrics, a topology is characterizediag bither “Low” (L) or “High”
(H). Yet, the quantitative values of expansion, resilieracel distortion as presented in [56]
are not always easy to interpret when comparing qualitgtisigterent topologies. For
example, the measured values of expansion for the AS-lexelrauter-level topologies
show a relatively big dference (Figure 2(d) in [56]), however both of them are cfassi
as “High,” suggesting that the degree-based generatorpa@nfiavorably with measured
topologies. In contrast, it could be argued that Tiers gatiesrtopologies whose expansion
values match that of the measured router-level graph reagpwell (Figure 2(g) in [56]),
but Tiers is classified to have “Low” expansion. Such proldemmen interpreting these
metrics make it dficult to use them for evaluatingftierences in topologies in a consistent

and coherent manner.

Nonetheless, these metrics have been used in [56] to compeasured topologies at
the autonomous system (AS) level and the router level (Rlitppologies resulting from
several generators, including degree-based methods (PBRGBRITE, BT, JinCJ00)
and structural methods (GT-ITM’s Tiers and Transit-Sta@s)well as several “canonical”
topologies (e.g., random, mesh, tree, complete graph)astabserved that AS, RL, and
degree-based networks were the only considered netwogkssktare values “HHL” for
expansion, resilience, and distortion respectively. kemrnore, of the canonical topologies,
this “HHL” characterization was shared only by the complgteph (all nodes connected
to each other). However, one canonical topology that wasoonsidered was the “star”
topology (i.e., having a single central hub), which acaogdio their metrics would also
be characterized as “HHL,” and which explains why the dedpased graphs (having high
degree central hubs) fit this description. Yet, the fact tudh a complete graph and a star
could have the same characterization illustrates how tloigsgof metrics is incomplete in
evaluating network topology.

Hierarchy. For evaluating hierarchy, [56] considers the distributadrilink values,”
which are intended to mimic the extent to which networkficais aggregated on a few
links (presumably, backbone links). However, the claint tegree-based generators, such
as PLRG, do a better a job of matching the observed hieraicfeatures of measured

topologies is again based on a qualitative assessment byhprevious structural genera-



47
tors (e.g., Tiers in GT-ITM) create hierarchy that is “sfriwhile degree-based generators
result, like measured topologies, in hierarchies that anederate.” This assessment is
based on a model in which end-to-endfiafollows shortest path routes, however it also
ignores any constraints on the ability of the network to dtemeously carry that end-to-end
traffic.

These previous metrics appear to be inadequate for cagtwhat matters for real net-
work topologies. Many of them lack a direct networking ipietation, and they all rely
largely on qualitative criteria, making their applicatisomewhat subjective. In what fol-
lows, we use the experience gained by these previous stiedtes/elop metrics that are
consistent with our first principles perspective. In paiiac, we consider several novel
measures for comparing topologies that we show provide amainyet striking compar-
ison between degree-based probabilistic networks andonkswnspired by engineering

design.

3.5.2 Function-Related Metrics

Recognizing that the primary purpose for building a netwisrko carry dfectively a
projected overall trdic demand, we consider several means for evaluating therpefxce

of the network.

Throughput.We definenetwork performancas the maximum throughput on the net-
work under heavy tiffic conditions based on a gravity model [128]. This has beenelgfi

the same as the service requirement section 3.3.3.

Perf = maxZax,- Xj, suchthaRX< B.
ij

Router Utilization. In computing the maximum throughput of the network, we also
obtain the total triiic flow through each router, which we temouter utilization Since
routers are constrained by the feasible region for bandivadt degree, the topology of the
network and the set of maximum flows will uniquely locate esmiter within the feasible

region. Routers located near the frontier are used mtéicently, and a router on the fron-
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tier is saturated by the tifac passing through it. For real ISPs, the objective is cleaoty
to maximize throughput but to provide some service levelguizes (e.g., reliability), and
modeling typical tréic patterns would require additional considerations (swscheawork
overprovisioning) that are not addressed here. Our intenbt to reproduce real fitec,
but to evaluate the raw carrying capacity of selected tagpekunder reasonable fiia

patterns and technology constraints.

End User Bandwidth Distribution.In addition to the router utilization, each set of
maximum flows also results in a set of bandwidths that areeleld to the end users of the
network. While not a strict measure of performance, we d®rshs a secondary measure

the ability of a network to support “realistic” end user dems.

Robustness to Failurédnother important issue in the design of ISP topologieslated
to their reliability or robustness in the presence of eq@ptrailure. Generally, network
robustness is quantified in terms of the ability of the neknwtormaintain its functionality
after routers are removed and after rerouting offita In the previous literature such as
[11], this functionality is characterized by connectiyityhich means size of largest con-
nected cluster after removing failed nodes and related lfinkm the network. Here we
consider a simple metric more appropriate for Internet asattmount of original tridic
(as measured by our previously defined notion of performitiee can still be served by
the remaining network, possibly after some rerouting, kith the routers’ bandwidth that

remains its original value from feasible region.

3.6 Comparing Topologies

In this section, we compare and contrast the features ofalalifferent network graphs
using the metrics described previously. Our purpose is tovghat networks having the
same (power-law) node degree distribution can (1) havdyddterent features, and (2)

appear deceivingly similar from a view that considers onmbypdp theoretic properties.
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3.6.1 A First Example

Our first comparison is made between five networks resultiom foreferential attach-
ment (PA), the GRG method with given expected node degraesseq, a generic heuristic
optimal design, an Abilene-inspired heuristic design, ameuristic suboptimal design. In
all cases, the networks presenkave the same power-law degree distributid¢hile some
of the methods do not allow for direct construction of a sieléclegree distribution, we are
able to use degree preserving rewiring as fiacéive (if somewhat artificial) method for
obtaining the given topology. In particular, we generateRA network first, then rearrange
routers and links to get heuristically designed networkgekeeping the same degree dis-
tribution. Lastly, we generate an additional topology adew to the GRG method. What
is more important here are the topologies and théietent features, not the process or the

particular algorithm that generated them.

Preferential Attachment (PAT.he PA network is generated by following process: begin
with 3 fully connected nodes, then in successive steps addiew node to the graph, such
that this new node is connected to the existing nodes withgiitity proportional to the
current node degree. Eventually we generate a network @@ hodes and 1000 links.
Notice that this initial structure is essentially a tree. &dgment this tree by successively
adding additional links according to [10]. That s, in eatdgpswe choose a node randomly
and connect it to the other nodes with probability propowico the current node degree.
The resulting PA topology is shown in in figure 3.8(b) and haspproximate power-law

degree distribution shown in figure 3.8(a).

General Random Graph (GRG) methdtle use the degree sequence of the PA network
as the expected degree to generate another topology usirgRIEs method. Notice that
this topology generator is not guaranteed to yield a comaegtaph, so we pick the giant
component of the resulting structure and ignore the selpgoas in [56]. To ensure the
proper degree distribution, we then add degree one edgersouat this giant component.
Since the total number of links in the giant component is gahegreater than the number
of links in an equivalent PA graph having the same number despthe number of the

edge routers we can add is smaller than in the original grdpte resulting topology is
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(d) HOT (e) Abilene-inspired (f) Suboptimal

Figure 3.8: Five networks having the same node degreelistvn as shown in sub-figure

(@)

shown in figure 3.8(c), and whilefiiicult to visualize all network details, a key feature to
observe is the presence of highly connected central nodes.

Heuristically Optimal Topology (HOTMe obtain our HOT graph using a heuristic,
nonrandom, degree-preserving rewiring of the links andensun the PA graph. We choose
50 of the lower-degree nodes at the center to serve as casrspand also choose the other
higher-degree nodes hanging from each core as gatewaysoWe adjust the connections
among gateway routers such that their aggregate bandwidtbdre node is almost equally
distributed. The number of edge routers placed at the edtfeeafetwork follows accord-
ing to the degree of each gateway. The resulting topologlyasa in figure 3.8(d). In this
model, there are three levels of router hierarchy, each aftwlbosely correspond (starting
at the center of the network and moving out toward the edgdsatkbone, regionddcal
gateways, edge routers. Of course, several other “desayegjossible with dierent fea-
tures. For example, we could have rearranged the network soleave a dferent number
of “core routers,” provided that we maintained our heutisgpproach in using low-degree

(and high bandwidth) routers in building the network core.
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Abilene-inspired TopologyWe claim that the backbone design of Abilene is heuristi-
cally optimal. To illustrate this, we construct a simplifieersion of Abilene in which we
replace each of the edge network clouds in figure 3.4 with glesigateway router sup-
porting a number of end hosts. We assign end hosts to gatewégrs in a manner that
yields the same approximate power-law in overall node dedrgtribution. The resulting
topology with this node degree distribution is illustratedigure 3.8(d).

Suboptimal Topologyfor the purposes of comparison, we include a heuristicaly d
signed network that has not been optimized for performahRgpi(e 3.8(f)). This network

has a chainlike core of routers, yet again has the same bdegake distribution.

PerformanceFor each of these networks, we impose the same router texgioal con-
straint on the nonedge routers. In particular, and to accodate these simple networks,
we use a fictitious router based on the Cisco GSR 12410, buifiesbdo that the maxi-
mum number of ports it can handle coincides with the maximegrele generated above

(see the dot-line in figure 3.9(b-f)). Thus, each of thesevaoits has the same number of

User Bandwidth (bps)
Achieved BW (Gbps)

Achieved BW (Gbps)
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Figure 3.9: (a) Distribution of end user bandwidths for b# five diferent networks; (b)-
(f) Router utilization for each network. The colorscale obater on each plot éierentiates
its bandwidth which is consistent with the routers in figur@. 3



52

nonedge nodes and links, as well as the same degree distilauhong nonedge nodes.
Collectively, these assumptions guarantee the same tat™(measured in routers) for
each network. Using the performance index defined in se8tidnwe compute the perfor-
mance of these five networks. Among the heuristically desigretworks, the HOT model
achieves 1130 Gbps and the Abilene-inspired network aeki895 Gbps, while the sub-
optimal network achieves only 18.6 Gbps. For the randomhegsted graphs, the PA and
GRG achieve only 11.9 Gbps and 16.4 Gbps respectively, tpudl® times worse than
the HOT network. The main reason for PA and GRG models to haste terrible perfor-
mance is exactly the presence of the highly connected “htiizd"create low-bandwidth
bottlenecks. The HOT model's meshlike core, like the retdrimet, aggregates ttec and
disperses it across multiple high-bandwidth routers. Weutate the distribution of end
user bandwidths and router utilization when each netwohkeaes its best performance.
Figure 3.9 (a) shows that the HOT network can support usdtsawvide range of band-
width requirements, however the PA and GRG models canngfuré&i3.9(d) shows that
routers achieve high utilization in the HOT network, whereahen the high degree “hubs”
saturate in the PA and GRG networks, all the other router¢efirender-utilized (Figure
3.9(b)(c)). The networks generated by these two degreedoaiobabilistic methods are

essentially the same in terms of their performance.

Robustness to FailureVe use the PA model of Figure 3.8(b) and the HOT model of
Figure 3.8(d) to compare network performance in the presencuccessive router loss.
Although robustness was not an explicit consideration entturistic construction of our
HOT model, it has sficient redundancy to merit this comparison, and the resullus
trative both of the extreme filerences in these two types of models and of the manner in
which our first-principles approach naturally allows foe ihcorporation of additional de-
sign considerations. Figure 3.10 shows the impact of agjetuters in succession from
PA and HOT networks. We delete routers in succession fronfPfhand HOT networks,
always targeting the worst-case router that has not yet deleted. The measure of per-
formance after deletion of a node is the amount of origiradlitrthat can still be carried by
the remaining network. Note that fhi@ can be rerouted, but the original router constraints

remain intact.
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Consistent with scale-free claims [11], the scale-freavost is indeed fragile to the
deletion of worst case nodes (here, worse case means hidggste); after removing
the hubs, the performance drops by more than one order ofitndgn In contrast, the
HOT networks is not only more robust to worst-case deletitiese, worst case are low-
connectivity core nodes), but also shows high tolerancelegtithg other nodes, particularly
high-degree edge routers. In fact, because the scale-éteerk has such poor nominal
performance to start with, it is worse intact than the HOTwaek after the latter has sus-

tained substantial damage.

While a comprehensive study of large-scale network rolasstns well beyond the
scope of this thesis, our example illustrates two appedéatures of the proposed first-
principles approach. First, our detailed study of the tetbgical and economic forces
shaping the router-level topology of a single ISP providasvincing evidence that in to-
day’s Internet, the existence of highly connected routerthée core of the network is a
myth. Size issues not notwithstanding, the real Internebtking like Figure 3.8 (b), butis
gualitatively more like the network shown in figure 3.8(d)cannot possibly have a hub-
like core, and the highly connected nodes, if they exist,trbassituated at the periphery
of the network. Second, when trying to answer the questiohdWeally matters when
it comes to the ability of the Internet to perform in the preseof router or link losses?”
we note that the ability of the network to “see damage and veodund it” requires at
a minimum adding some link redundancy (e.g., multihoming) ancorporating a simple
abstraction of IP routing that accounts for the feedbackhaeisms that react to the loss
or failure of a network component. In particular, our apgfoenakes it clear why the type
of connectivity-only perspective pursued in [11] (i.e.edhat completely ignores the ex-
istence of routing protocols sitting on top of the raw rod&sel connectivity) is bound
to provide an overly simplistic and even misleading view efwork robustness. Indeed,
it is well known that the Internet’s actual fragilities aretrio physical attacks on routers
or links, but to perturbations that were not part of the Inét's original design objectives

[36], particularly misbehaving components or hijacked/sxs.
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Figure 3.10: Robustness of network performance to rouss for the PA and HOT net-
works from Figure 3.8.

3.6.2 A Second Example

Figure 3.8 shows that graphs having the same node degrabuisin can be very dif-
ferent in their structure, particularly when it comes to éimgineering details. What is also
true is that the same core network design can support mdigyeht end-user bandwidth
distributions and that by and large, the variability in erser bandwidth demands deter-
mines the variability of the node degrees in the resultingvaek. To illustrate, consider
the simple example presented in figure 3.11, where the satwenkecore supports dher-
ent types of variability in end user bandwidths at the edgd aus yields dterent overall
node degree distributions). The network in figure 3.11(ayiles uniformly high band-
width to end users; the network in figure 3.11(b) supports eset bandwidth demands
that are highly variable; and the network in figure 3.11(@vmtes uniformly low band-
width to end users. Thus, from an engineering perspectotegmly is there not necessarily
any implied relationship between a network degree distiiobland its core structure, there
is also no implied relationship between a network’s coracttire and its overall degree

distribution.
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bandwidth end users, (c) uniformly low bandwidth end users.

3.7 Summary

The Internet router-level topology discussed in this ceaptovides new insight into
the space of all possible graphs that are of a certain sizewandonstrained by common
macroscopic statistics, such as a given (power-law) nodeededistribution. Scale-free
models provide a relatively easy way to generate the degoer-law degree distribution,
however their highly connected hubs have such bad perfarenas to make it completely
unrealistic that they could reasonably represent a highyireered system like an ISP
network or the Internet as a whole. In contrast, we obserake¥en simple heuristically
designed and optimized models that reconcile the trdf¥ebetween link costs, router con-
straints, and user tfidc demand result in configurations that have high performamck
efficiency.

While the list of key factors of the router-level Internehsadered by ISPs is far from



56
exhaustive in our model, what is striking is even simple diorspecific features shows
how graphs that may be sensible from a connectivity-onlgpeetive are no longer viable
(e.g., nonrealizable or nonsensical) in the real world beea&f constraints that are imposed
by their application domains.
This chapter focuses on the functionality of a complex nétwparticularly for the
Internet router-level topology. We will introduce a stnur@l metric for general complex

networks, and elaborate its relationship to scale-freeordds in the next chapter.
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Chapter 4

The Structural Metric

In the previous chapter we have recognized that the powedémgree distribution and
many aggregate statistics do not uniquely characterizet@ylar complex network. Many
graphs with the same large-scale connectivity may have t=etp different structures and
provide diferent performances. While the definition of functionaliby flifferent complex
networks may vary, we introduce a structural metric, $hmetric, for general networks to
characterize the highly connected hubs in their topolggied show it is both necessary and
useful for explaining the extremefterences among networks that have identical degree
sequence, especially if it is scaling. This metric alsodgaetonsiderable insight into the
features of scale-free graphs. By focusing on a graph’ststral properties and not on how
it is generated, this approach does not depend on an unagergmdom graph model but is

applicable to any graph of interest.

We organize this chapter as follows. In section 4.1, we itigate the definition and
basic properties of themetric. We show how it relates to the “highly connected Hw@nsl
the performance of in the Internet router-level topologye &0 define the,.x and Smin
graphs in both constrained and unconstrained graph spaeé&nslly illustrate the funda-
mental relationship between tlsametric and diversity of degree sequences, stmetric
and the joint degree distribution. In section 4.2 and 4.3yeg®lve the confusion of two
important claims on scale-free networks: self-similaaity highly likely construction, and
give their relationships to themetric. Section 4.4 provides insights into graph ass@rtat
ity, @ metric which directly relates to themetric, however is inappropriate for evaluating

graphs due to the flerent background set in graph space. We conclude at the end.
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4.1 Definitions and Properties

Let g be an undirected, simple, connected graph hamiagV| nodes and = |&| links,
whereV and& are the sets of nodes and links, respectively. As beforeyel@fto be the
degree of node€ VvV, D = {d;,d,, ..., d,} to be the degree sequence fpragain assumed
without loss of generality always to be ordeidd> d, > - - - > d,,.

Within the space of all graphs havingiodes, letz(D) denote the considerably smaller
subset of graphs having particular degree sequBnce

Not all sequences of integelBscorrespond to realizable graphs. One well-known char-
acterization of whether or not a sequelxeorresponds to a simple, connected graph is due
to Erdods and Gallai [46], who observed that a sequence ofiyotegersd;, ds, . . ., d,
with d; > d, > --- > d, is graphicalif and only if 37, d; is even and for each integky

l1<k<n-1,
k

Zd,- <k(k-1)+ i min(k, d;).

=1 j=k+1

The restriction to graphs having a particular degree sempikas been considered pre-
viously in the context of graph generation mechanisms [95, B particular, the Config-
uration Model (CM) [24, 89, 95] often serves as the null hyyasis of networks having a
particular degree sequence, since it yields graphs thabhareémally random (in the sense
of maximum entropy) while conforming to a specified degrepisaceD. In what follows,
we will always restrict attention to graphs with a specifizd

In considering the structural features of a particular grape define, for any grapd

having fixed degree sequenbethe s-metric

s(9) = Z did; :ZZ%diaijdj, (4.1)

@,))e& i€V jev

whereA = [a;] is the node adjacency matrix for the graph such #gat 1 if nodes, j are
connecteda;; = 0, otherwise. Accordingly, we assume without loss of gditgrdnat the
number of nodes and links in the graph are represented-by}’| andl = ||, respectively.
Note that the summation in (4.1) is easily computed for amphrand does not depend on

the process by which it was constructed.
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Implicitly, the metrics(g) measures the extent to which the grggtas a “hublike” core
and is maximized when high-degree nodes are connecteddolutih-degree nodes. This
observation follows from th&earrangement Inequalif$], which states that i&; > a, >
--->ayandb; > by > --- > by, then for any permutatioraf, &, . .., &) of (as, ay, ..., a),

we have

alb]_ + azbz +--- 4+ anbn

\%

aa_b]_ + a’zbz +--- 4+ a;bn (42)

> anbl + an_1b2 + -+ a.lbn. (43)

Since highs(g)-values are achieved only by connecting high-degree ntwleach other,
and low s(g)-values are obtained by connecting high-degree nodes tonlgw-degree
nodes, thes-metric moves beyond simple statements concerning thespcesof “hub”
nodes (as is true for any degree sequdndkat has high variability) and attempts to quan-
tify what role such hubs play in the overall structure of thhapd. In particular, as we
will show below, graphs with relatively hig(g) values have a “hublike core” in the sense
that these hubs play a central role in the overall connégtofithe network. We will also
demonstrate that the metrgfg) provides a view that is not only mathematically conve-
nient and rigorous, but also practically useful as far astuthaeans for a graph to be

“scale-free.”

4.1.1 Performance vs. Structural Metrics

Before proceeding with a discussion of some of the featufréisecs-metric as well as
for graphs having higis(g) values, we revisit the toy models in figure 3.8 of Section13.6
and consider the combined implications for the performasreented metrid®erf(g) and the
structural metrics(g). Figure 4.1 is a projection af in simple and connected graph space
onto a plane oPerf(g) vs. s(g) and will be useful throughout in visualizing the extreme
diversity in the graph space. As structure alwaljsas function, figure 4.1 shows a striking
contrast which is observed by simultaneously plottinggenaince vs. the structural metric
for these models. The HOT network has high performance amddimetric while the PA

and GRG networks have highmetric but low performance. The interpretation of this
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Figure 4.1:. Performance vs. the structural metric for eaglolbgy, plus other networks
having the same node degree distribution obtained by psgrvandom rewiring of links.

(S(9) = (S(9) — Smin) / (Smax — Smin))

picture is that a careful design process explicitly incogbiog technological constraints
can yield high-performance topologies, but these are mhe far away from scale-free
networks. In contrast, equivalent power-law degree digtron networks constructed by
generic degree-based probabilistic constructions resuibre highly connected hubs, but
poor-performing topologies.

This viewpoint is augmented if one considers the procesainiiise random degree-
preserving rewiring (details will be discussed in sectioP.4) as a means to explore the
space of graphs having the same overall degree distribundfigure 4.1, each point rep-
resents a dierent network obtained by random rewiring. Despite the taat all of these
graphs have the same overall degree distribution, we obskat a large number of these
networks have relatively higggmetric and low performance. All of these graphs, including
the PA and GRG networks, are consistent with “scale-freet@min the sense that they
contain highly connected central hubs. The fact that thezevary few high performance
graphs in this space is an indication that it would be “hacdfind a relatively good design
using random rewiring. We also notice that I@wnetric itself does not guarantee a high

performance network, as the network in figure 3.8(f) shoves ithis possible to identify
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small s and poorly performing networks. However, based on curreideaice, it does ap-
pear to be the case that it is impossible using existing w@olgy to construct a network

that is both high performance and high

4.1.2 Joint Degree Distribution

As we see that the-metric provides a good tool tofilerentiate graphs in the space of
graphs with the same degree distribution, it is easy tofjustis role from its relationship
to the graph joint degree distribution (also called degmreetations). Given an appropriate
statistical ensemble of graphs, the expectation of a rangorable or random vectd( is

defined as

(Xy= )" X(Q)P(9). (4.4)

geG
For example, for 1< i < n, let D; be the random variable denoting the degree of node
fora graphg € G and letD = {D4, D,, ..., Dy} be the random vector representing the node
degrees of). Then thedegree distributiorcan be written in terms of an expectation of a

random variable, namely
l n
P(k) = - < iE:l o[Di - k]>,

where
1 if nodei of graphg has degre&
o[Di(9) - Kl = _
0, otherwise.

We follow [43, Section 4.6] and define the joint degree disttion between two adja-

cent nodes having respective degkeendk’ as follows.

Definition 4.1.1. The joint degree distribution between two neighbors hadiegyees k and
k' is defined by

Pk, K) = $<Z o[di — Klayjo[d; — k’]>, (4.5)

i,j=1
where the g are elements of the network node adjacency matrix such that
{ 1 ifnodes | jare connected

ajj =

0 otherwise
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and where the random variablégD; — k] are as above.

As an expectation of indicator-type random variableg, k') can be interpreted as the
probability that a randomly chosen link connects nodes gfreksk and k’, therefore
P(k, k') is also called the “degree-degree distribution” for link3bserve that for a given

graphg having degree sequente

> dd,

(i.)e&

>0 > kold -K ) old; - KIK

s(9)

(i,j)e& keD k'eD
— Z Z Z ks[d; — Klo[d; — KK
(i,)e& keD k'eD
1 n
= 5 0, kK ) old —Kaysld; ~ K.
kkeD i,j=1

Thus, there is an inherent relationship between the stralatuetric s(g) and the joint de-

gree distribution, which we formalize as follows.

Proposition 4.1.1.
n? )
(s) = > g kK P(k, K'). (4.6)

k.k’

Proof. For fixed degree sequenbe

<% Z kK i o[di — Kla;o[d; — k']>

kkeD  ij=1

% Z kK <Z sld - Klay;o[d; — k’]>

kk'eD i,j=1

(s

n? )
> Z KK P(K, K').

kk eD

O

This result shows that for an ensemble of graphs having detjstributionD, the ex-

pectation ofs can be written purely in terms of the aggregation of jointreéeglistribution.
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As graphs being constrained by the same degree distributiunh is the first order statis-
tics of the graph space, joint degree distribution provitiedlexibility on the second order
statistics in the space. Therefore, it is not hard to seetligeg-metric, as the aggregation
of the joint degree distribution, plays the most importanérto diferentiate graphs with

the same degree distribution.

It immediately follows that even for the graphs with the sgouet degree distribution,
the third order degree distribution varies and shaetric cannot tell the dierence. Cer-
tainly, our methodology could enable us to expandsineetric in terms of the aggregation
of third order degree correlation. Here we just gsmetric to argue attention should not
only devote to degree sequences in order to measure théuséret complex networks. It
is clear that such sequences alone arefiitsent to characterize the aggregate structure of
a graph, and the graph space is extremely diverse. One cgmietaat the space of graph
is shrinking when we put constraint on higher order of deglis&ibution. However, the

higher order of degree distribution, the moréidult it is to characterize [78].

4.1.3 The gaxand syin Graphs

In general, the se&(D) will have many elements exhibiting a rangesafalues. Within
this space, we define tlsgxandsy» graphs withing(D) as those having the maximum and

minimum s values, respectively. To facilitate the derivation of #ne@alues, we introduce

the vector
d; elements dy elements dn elements
——— ——
Z= {dl,...,dl,dz,...,dz,...,dn,...,dn}, (47)

%", d elements

which is simply derived from the original degree sequeBceThe s,ax and sy, values
within G(D) can be described in terms dfin the following manner. Sincg(D) only
requires its elements to satisfy the degree sequBn@ad ignores issues such as connect-
edness, multiple links, etc.). According to equation (4i2)s easy to show that within
G(D), one has

1
Snax < 5 zZ7", (4.8)
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with equality achieved in practice only under certain ansiances (e.g., when the ele-
ments ofD are all even or there is an even number of elements having amigylar odd

value). Accordingly, it follows that
1_s1
Smin > E ZZ ) (49)

whereZ is simply the vectoZ with elements in reverse order. However, unlike the case
in (4.8) where equality is achieved in practice only somesmnd the actual value may
deviate considerably from the upper bound, the relatignish(4.9) holds with approximate
equality and typically the,,;, value deviates from the lower bound by only a single pair of
links, if at all.

It is easy to see that ths,, value can be rewritten as
n n
Snac® ) (di/2)- (@) = ) (@)*/2, (4.10)
i=1 i=1

which is achieved inféect by creating primarily self-loops among the nodes in #tevork
and then connecting remaining “stubs” in order of decrepgin(see appendix A.1 for
details). To the best of our knowledge, there does not existngparable analytic formula
(or interpretation) for th&,,, graph inG(D).

Many graphs of practical interest have additional condg&ionposed by functional or
domain constraints, such as a requirement to be connecgestriction against self-loops
or multiple connections. Thus, in our investigation we atsasider the restricted set of
all simple and connected graphaving the same degree sequebBgavhich we denote as
G(D). Note thatG(D) c g(D) and that most randomly generated graphs with particular
D will be neither simple nor connected, so this is an imporgard nontrivial restriction.

From these definitions it follows that

1_- 1
S22 <0 <V <D <0 < 577",

Although bounding values for the min and max elementg@) can be directly obtained

from equations (4.8) and (4.9), obtainisg.x and sy, values within the restricted space
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G(D) is more complicated.

Given a particular degree sequergeit is possible to use a deterministic procedure
in order to construct thg,.« graph inG(D). The details of this construction procedure
are presented in appendix A.2, but the basic idea is to odtieogential links , j) for
all'i, j € ¥ according to theimweight dd; and then add them one at a time in a manner
that results in a simple, connected graph having degreeesegD. While simple enough
in concept, this type of “greedy” heuristic procedure mayehdifficulty achieving the
intended sequend@ due to the global constraints imposed by connectivity negments,
but it works well in practice for most graphs (again, see Adetails). Obtaining th&my,
value is less exact, and it is easy to show thatghggraph is not unique. Whitney and
Alderson [122] have recently used a heuristic approaclyiraily proposed by Maslov
and Sneppen [81], which employs a Metropolislike algorittesed on successive rewiring
to obtainsy, values withinG(D). Unfortunately, this method is ifiscient and does not

- i G(D) - - i 5T ~ 90O o
reliably obtain the actuad\” value. However, in practice one finds tHaZZ" ~ ' ~

min
(D)

min ?

approximate (and more conservative) bounding valuq‘i@).

so in the remainder of this chapter we use i’ value defined in (4.9), as an

4.1.4 Diversity of Degree Sequence

As a measure of graph structure, thmetric provides a simple means for contrasting
the diferences between graphs having the same degree sequenae tiscchapter we
use it exclusively as a means for measuring dheersity within this particular space of
graphs. In particular, the extreme poistsy and sy, serve as meaningful reference points
for individual graphs and the space as a whole, and for a divere diferencesyax — Smin
provides a measure of howftérent the absolute extremes are. Using this perspective, it
is not hard to see that the amount of diversity for graphsritpei particulaD is related
to the amount ofvariability within the sequenc® itself. Following Section 2.1.1, we

characterize variability with the standard measurésample) cogicient of variation (CV)



66

which for a given sequend2 = (dq, do, . . ., dy) is defined as
CV(D) = o(D)/<d), (4.11)

where(d) = n"1 Y1, dy is the average node degree, and we measure deviations df the
from its averagéd) using the sample standard deviatiofiD) = (3p_, (dk—(d))?/(n-1))*/2.

For graphs with regular structure that have low variabilityheir degree sequendg,
there is typically very little diversity in the correspondispace of graphs(D). Consider
as an extreme example, a 1 dimensional lattice (i.ehan) with the degree sequence

Dehain =1{2,2,2,...,2,1,1}. One can easily show that for a chain consisting nbdes,

n1/2(n _ 2)1/2

CVOehain) = S5z —1y72

and thu€CV(D¢hain) — 0 asn — oo. Itis easy to see that there is no diversity among graphs
having degree sequen&®n,in, Since alln-node chains are isomorphic to one another in
G(D) and thussyin = Smax-

For sequence® with increasingCV(D), graph diversity as measured by the range
Snax— Smin @lso increases. Here, we leverage two classes of graphfeeenee points. For
graphs with a degree sequence having an exponential foe¥ ~ c for constantc > 0
(denoted here &3¢y), one observes th&V(Dexy) — « (a constant) as — co. In contrast,
the scale-freegraphs [20] exhibit diverger€@V. It is easy to show that degree sequences
Dscaiing With @ < 2 follow CV(Dscaling — o asn — oo. As we will show below, these
classes of graphs yield degree sequences with measuréielsedt levels of diversity.

Although one might expect that graph diversity simply ires withCV(D), this need
not be the case. Considerstar consisting of a single central node that connects to all

others and having degree sequebgg, = {n—1,1,1,...,1}. One can similarly show that

n'2(n - 2)

CV(Dstar) = 2(n — 1) >

and thusCV(Dgar) — o0 asn — co. However, like the chain, there is no diversity among

graphs having degree sequerzg; (i.e., all stars are isomorphic to one anotheGi{D)
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andsyin = Smax)-

In order to make the previous discussion more concrete, weaomsider a simple
experiment to investigate the role @%(D) in determining the diversity for graphs having
particularD. For purposes of exposition, we begin with a study of acygfi&phs (i.e.,
trees) and then later comment on how our results apply torgegeaphs. Our experiment
uses incremental growth via preferential attachment asritbesl in [21], in which each

newly added node connects to an existing nlodeth probability

(d)”

HO=b5 @y

(4.12)

whered, is again the degree of noigandy is a parameter that tunes the attachment mech-
anism. The resulting graph is simple and connected, thukeameat ofG(D), although the
degree sequend® that is realized will vary from trial to trial. Clearly; = 0 is equivalent

to uniform attachment (resulting iDey,), While y = 1 is equivalent to linear preferential
attachment used in the Barabasi-Albert model [10] (r@syiin Dscaiing). A similar type of
model was also considered in [67]. Note also thayas ~ each newly added node at-
taches to the maximum degree node (resulting essentialyjf), while asy — —co each
newly added node attaches to the minimum degree node {resatisentially irDcnain). IN
what follows, we first restrict attention to the case whiere 1 (i.e., we generate acyclic
graphs) and consider a range of valuesyan order to generate graphs having a variety of

degree sequences.

Figure 4.2 shows the result of an experiment in which for daehwe generate a tree
havingn = 100 nodes using preferential attachment rule given by emjué.12). That
is, each trial results in a tree having its own degree se@irands-value. In generating
these graphs, we use various attachment exponebtg only for the purpose of realizing
graphs with a diversity of degree sequences. In what follm&gocus primarily on the
degree sequend®2 and the constraints it places on the space of graphs, nottdahment
exponenty that led toD. For each degree sequer@ewe then calculat€V(D) as well
as the corresponding,ax and sy, values as described above. The resulting picture in

figure 4.2(a) shows a striking relationship betwé&gvi(D) and the range of possibke
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values. One observes that while thg,x and sy, values increase witV(D) for both
the unconstrained spag¢gD) and the constrained spa@&D), the diferences given by
Smax — Smin fOr each space behavdidirently at the maximal values 6V(D). Specifically,
this difference within the unconstrained sp@&(®) increases witlCV(D), but it is zero at
bothextremes o€ V(D) for the simple, connected graphs®(D) (again, the limiting cases
of a chain and a star). It is also worth noting that the valoesi.) ands’'™ are so close
as to be indistinguishable, further supporting our chaiciedat these values as equivalent.
Figure 4.2(b) presents the same informationggy, and sy, within G(D), but normalizes
the s-values for each graph against its respectByg; value, thus resulting in a feasible
range [Q1] for each graph. Collectively, this suggests that for &gidegree sequence one
needs “enough” variability to enable diversity among simmlonnected graphs but that
“too much” variability actually becomes a constraint witlthe spaceés(D), something
that Maslov et al. [82] have described as essentially a feide dfect.

Although it is now well understood that there can be many lgsdpaving the same
degree sequence and that these graphs may have considtratieral difterences, quan-
tifying these diferences and their implications in terms of real systems ires1the topic
of active research. Taken by itself, this observation isheeigroundbreaking nor surpris-

ing. For some time, there has been a general recognitioreifitdrature that the degree
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sequence of a graph can provide only a simplistic charaeti&on of its properties, and this

has led many researchers to consider more sophisticatedptems of graph structure.

4.2 The s-metric and Self-Similarity

When viewing graphs as multiscale objects, natural transftions that yield simpli-
fied graphs are pruning of nodes at the graph periphery oamsilig of nodes, although
these are only the simplest of many possible “coarse-grgiroperations that can be per-
formed on graphs. These transformations are of particotarest because they are often
inherent in measurement processes that are aimed at dgtéoéi connectivity structure
of actual networks. We will use these transformations toivate that there is a plausible
relationship between high(g) graphs and self-similarity, as defined by these simple-oper
ations. We then consider the transformation of random psérdegree-preserving (link)

rewiring that suggests a more formal definition of the nobba self-similar graph.

4.2.1 Graph Trimming by Link Removal

Here, we consider the propertiessaf.x graphs under the operation of graph trimming,
in which links are removed from the graph one at a time. Rehall by construction, the
links in the syax graph are selected from a list of potential links (denote@,g3 fori, j €
V) that are ordered according to their weigtid;. Denote the (ordered) list of links in the
Snax graph ast = {(i1, j1), (i2, j2), ..., (i1, Ji1)}, and consider a procedure that removes links
in reverse order, starting with (j;). Definedy to be the remaining graph after the removal
of all but the firstk — 1 links, (i.e., after removingi( ji), (i—1, ji-1)s - - - » (ike1, lke1), (i, 1))-
The remaining graph will have a partial degree sequénce {d;,d,,...,d.}, whered, <
dm,m=1,2,...,k, but the original ordering is preserved, i€, > d, > - - - > d.. This last
statement holds because when removing links starting Wwithstallestd;, nodes will
“lose” links in reverse order according to their node degree

Observe for trees that removing a link is equivalent to remgpa node (or subtree), so

we could have equivalently defined this process in terms@fiépruning.” As a result, for
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acyclic syax graphs, it is easy to see the following.

Proposition 4.2.1.Let g be an acyclic s graph satisfying ordered degree sequence D
{di,dp,...,dy}. For1 < k < n, denote bygx the acyclic graph obtained by removing
(“trimming”) in order nodes nn-1,...,k+1from g. Thengy is the $,ax graph for degree

sequenc®y = {d;, d,,...,d}.

The proof of Proposition 4.2.1 follows directly from our pfoof the construction of the
Snax graph for trees (see Appendix A). More generally, for gragkisibiting larges(g)-

values, properly defined graph operations of link trimmipgear to yield simplified graphs
with high s-values, thus suggesting a broader notion ofsadflarity or invariance under

such operations. However, additional work remains to fdiredhis notion.

4.2.2 Coarse Graining by Collapsing Nodes

A kind of coarse grainingof a graph can be obtained for producing simpler graphs
by collapsing existing nodes into aggregate or super noddse@moving any duplicate
links emanating from the new nodes. Consider the case oég traving degree sequence
D = {dy,d,,...,d,} satisfyingd; > d, > --- > d, and connected in a manner such that
s(g) = Ssnax- Then, as long as node aggregation proceeds in order witletlfee sequence
(i.e., aggregate nodes 1 and 2 intptlhen aggregate nodesdnd 3 into 1, and so on), all
intermediate graphg will also haves(d) = snax. TO See this, observe that for trees, when
aggregating nodes 1 and 2, we have an abbreviated degresnsefu = {d;, ds, ..., dy},
Whered'1 = d; + d, — 2. Provided thatl, > 2 then we are guaranteed to hai'{@_ ds, and
the overall ordering oD’ is preserved. Similarly when aggregating nodesnt 3 we have
abbreviated degree sequerie= {d;,ds,...,d,}, whered] = d; + d, + d3 — 4. So as long
asds > 2 thend; > d, and ordering oD” is preserved. And in general, as long as each
new node is aggregated in order and satisfies 2, then we are guaranteed to maintain an

ordered degree sequence. As a result, we have proved tbeifadl proposition.

Proposition 4.2.2. For acyclic ge G(D) with 4g) = Snax COarse graining according to
the above procedure yields smaller graphsds(D’) that are also the ;g.x graphs of this

truncated degree distribution.
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For cyclic graphs, this type of node aggregation operati@mntainss,.x properties
only if the resulting degree sequence remains ordereddi.e> d; > d, after the first
coarse graining operation amlg. > d, > ds after the second coarse graining operation,
etc.. It is relatively easy to generate cases where arpitrade aggregation violates this
condition and the resulting graph is no longer self-simitathe sense of having a large
s(g)-value. However, when this condition is satisfied, the ltesyisimpler graphs seem to
satisfy a broader self-similar property. Specifically,iayh-s(g) graphsy € G(D), properly
defined graph operations of coarse graining appear to yimlplisied graphs inG(D) with
high s-values (i.e., such graphs are self-similar or invariartterrproper coarse graining),
but this has not been proved.

These are, of course, not the only coarse graining, pruingierging processes that
might be of interest, and for which,.x graphs are preserved, but they are perhaps the

simplest to state and prove.

4.2.3 Subgraph-Based Motifs

While graph transformations such as link trimming or nodapse reflect some as-
pects of what it means for a graph to be self-similar, the lytapnsformation of random
pairwise degree-preserving link rewiringfers additional notions of self-similarity which
potentially are even richer and also connected with therciaithe scale-free literature that
scale-free graphs are preserved under such rewirings.

For any graplg € G(D), consider the set of local degree-preserving rewiringBsiinct
pairs of links. There aréz) = I(I — 1)/2 pairs of diferent links on which degree preserving
rewiring can occur. Each pair of links defines its own netwsukgraph, and in the case
whereg is an acyclic graph (i.e., a tree), these form three distyymes of subgraphs, as
shown in figure 4.3. Here rewiring operations that resultansimple graphs (shaded) are
assumed to revert to the original configuration. Thus definediring of motif (i) does
not result in any new graphs, rewiring of motif (ii) resultsane possible new graph, and
rewiring of motif (iii) results in two possible new graphs.

Using the notatiord? = 3 di?, s = s(g) we can enumerate the number of these sub-
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Figure 4.3: Three possible subgraph-based motifs in dgaeserving rewiring in acyclic

graphs.

Table 4.1: The numbers of the three motifs and successiielptamber for each possible
rewiring outcome in figure 4.3.

Outcome from degree-preserving rewiring

g € G(D) g ¢ G(D)
simple simple not simple
connected | not connectefdnot connected
CasgMotif |  Count |g'=9g| g #0 g+9 g+9
. 2
(i) <1 1 0 0 1
(i) s—d?+1 0 1 0 1
d? 12—
(i) |5-s+5| O 1 1 0
12— d? 124] d? d? 12| d?
Totals > 7-' %—7 7_S+T 3—7

graphs as follows:

1. The two links share a common node. There@te (‘;) =

this can occur.

2d? — | possible ways that

2. The links have two nodes that are connected by a third [lilere are}’; jcs(di —

1)(d; - 1) = s— d? + | possible ways that this can occur.
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3. The links have end points that do not share any direct aiams. There ar(a'z) -
> (‘;) — Yapee(di — 1)(dj; - 1) = 2d? - s+ (1 — 2) possible ways that this can

occur.

Collectively, these three basic subgraphs account forcmi;itnle('z) = I(l — 1)/2 pairs of
different links. The subgraphs in cases (i) and (ii) are theraséhees, while the subgraph
in case (iii) is not. We will refer to these three cases forggaphs as “motifs,” in the spirit
of [86], noting that our notion of subgraph-based motifs wtinated by the operation of
random rewiring to be discussed below.

The simplest and most striking feature of the relationslefveen motifs and(g) for
acyclic graphs is that we can derive formulas for the numlbesubgraph-based (local)
motifs (and the outcomes of rewiring) entirely in termsd3f s = s(g), andl. Thus,
for example, we can see that graphs having higlteequivalently higheiCV) values
have fewer of the second motif. If we f®, and thud andd?, for all graphs of interest,
then the only remaining dependence isrand graphs with highes(g)-values contain
fewer disconnected (case iii) motifs. This can be integaets a motif-level connection
betweens(g) and self-similarity, in that graphs with highsefg) contain more motifs that
are themselves trees, and thus more similar to the graph a&slawGraphs having lower
s(g) have more motifs of type (iii) that are disconnected and tfissimilar to the graph as a
whole. Thus highs(g) graphs have this “motif self-similarity,” lové{g) graphs have “motif
self-dissimilarity” and we can precisely define a measuhisfkind of self-similarity and

self-dissimilarity as follows.

Definition 4.2.1. For a graph ge G(D), another measure of the extent to which g is self-
similar is the metric s@) defined as the number of motifs (cases i-ii) that are theraselv
connected graphs. Accordingly, the measure of self-dissity sd(g) is then the number

of motifs (case iii) that are disconnected.

For treessgg) = s— d?/2 andsd(g) = —s+ (I> = | + d?)/2, so this local motif self-
similarity (self-dissimilarity) is essentially equivaeto highs(g) (low-s(g)). As noted

previously, network motifs have already been used as a wayuly self-similarity and
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coarse graining [61, 60]. There, one defines a recursiveegige by which node connec-
tivity patterns become represented as a single node (icktfesent kind of motif), and it
was shown that many important technological and biologietWorks were self-dissimilar,
in the sense coarse-grained counterparts display véigreit motifs at each level of ab-
straction. Our notion of motif self-similarity is much sitep, but consistent, in that the
Internet has extremely low(g) and thus minimally self-similar at the motif level. The
next question is whether higé(g) is connected with “self-similar” in the sense of being

preserved under rewiring.

4.2.4 Degree-Preserving Rewiring

We can also conned(g) in several ways with thefect that local rewiring has on the
global structure of graphs in the $8¢D). Recall the above process by which two network
links are selected at random for degree-preserving regyieind note that when applied to

a graphg € G(D), there are four possible distinguishable outcomes:

1. g = gwithg € G(D): the new graply’ is equalto the original graplg (and therefore

also a simple, connected graphGiiD));

2. g # gwith g € G(D): the new graplg’ is not equal tog, but is still a simple,
connected graph in the 38(D) (note that this can includg’ which are isomorphic

tog);
3. g =gwithg ¢ G(D): the new graply' is still simple, but is not connected;

4. g = gwith g ¢ G(D): the new graply’ is no longer simple (i.e., it either contains

self-loops or parallel links).

There are two possible outcomes from the rewiring of anyi@adr pair of links, as shown
in figure 4.3(a) and this yields a total o@t = I(l — 1) possible outcomes of the rewiring
process. In our discussion here, we ignore isomorphismsaasdme that all nonequal
graphs are dierent.

We are ultimately interested in retaining within our new digions the notion that high

s(g) graphs are somehow preserved under rewiring providedsteigficiently random and
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degrees are preserved. Scaling is of course trivially pveseby any degree-preserving
rewiring, but highs(g) value is not. Again, Figure 4.1 provides a clear examplegesi
successive rewirings can take any of these graphs to any. diteee interesting for high
s(g) graphs is the féect of randomrewiring. Consider again thBerf(g) vs. s(g) plane
from Figure 4.1. In addition to the five networks from Figur&,3ve show thePerf(g)
ands(g) values for other graphs iG(D) obtained by degree-preserving rewiring from the
initial four networks. This is done by selecting uniformigcarandomly from thé(l — 1)
different rewirings of th&l —1)/2 different pairs of links, and restricting rewiring outcomes
to elements o6G(D) by resetting all disconnected or nonsimple neighbors tmedoints
that match the color of one of the four networks are only ongrieg operation away,

while points represented in gray are more than one rewirnpagation away.

The connections of the results in Table 4.1 to motif countsdse transparent how-
ever than to the consequences of successive rewiring. theless, we can use the results
in Table 4.1 to describe related ways in which Isf@) graphs are “destroyed” by ran-
dom rewiring. For any graph, we can enumerate among all possible pairs of links on
which degree preserving rewiring can take place and coutti@e that result in equal or
nonequal graphs. In Figure 4.3, we consider the four casetefyree-preserving rewiring
of acyclic graphs, and we count the number of ways each car.déor motifs (i) and (ii),
it is possible to check locally for outcomes that producesiople graphs and these cases
correspond to the shaded outcomes in figure 4.3. If we a mxatude all such nonsimple
rewirings, then there remain a totall@f— 1) — s+ d?/2 simple similar neighbors of a tree.
We can define a measure of local rewiring self-dissimilaiotytrees as follows. We dis-
tinguish between equal, not equal but connected and simpieonnected but simple, and
not simple graphs that are similar to each graph with thergmetif selected for rewiring.

In Table 4.1, the total number of cases (column sumlis ()/2, while the total number

(row sum) of outcomes is twice that It I.

Definition 4.2.2. For a tree ge G(D), we measure the extent to which g is self-dissimilar
under local rewiring by the metric r¢d) defined as the number of simple similar neighbors

that are disconnected graphs.
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For treesysd(g) = sd(g) = —s+(I>—1+d?)/2, so this local rewiring self-dissimilarity is
identical to motif self-dissimilarity and directly relatéo low s(g) values. This is because

only motif (iii) results in simple but not connected simitzgighbors.

4.3 The s-metric and Likelihood

While the introduction and exploration of tremetric fits naturally within standard
studies of graph theoretic properties, iffdrs from the scale-free literature in that our
structural approach does not depend on a probability mau#tnlying the set of graphs
of interest. The purpose of this section is to compare ourcgmh with the more conven-
tional probabilistic and ensemble-based views. For mamjiegion domains, including
the Internet, there seems to be little motivation to assuetearks are samples from an
ensemble, and our treatment here will be brief while tryiagover this broad subject.
Here again, we show that tts¢g) metric is potentially interesting and useful, as it has a
direct relationship to notions of graph likelihood. Thisgen also highlights the striking
differences in the way that randomness is treated in physipgedsapproaches vs. those

shaped by mathematics and engineering.

4.3.1 Probabilistic Approach

The starting point for most probabilistic approaches tostugly of graphs is through

the definition of an appropriatatistical ensemblésee for example [43, Section 4.1]).
Definition 4.3.1. A statistical ensemble of graphs is defined by

() asetG of graphs g, and

(i) a rule that associates a real number (“probability) < P(g) < 1 with each graph

g € G suchthaf ¢ P(g) = 1.

To describe an ensemble of graphs, one can either assigrnciéicspesight to each

graph or define some process (i.e., a stochastic generatarh wesults in a weight. For
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example, in one basic model of random graphs, th&sxminsists of all graphs with a node
setV ={1,2,...,n} havingl links, and each element (@& is assigned the same probability
1/(}). In an alternative random graph model, theGetonsists of all graphs with node set
V ={1,2,...,n}inwhichthe link are chosen independently and with proligifl < p < 1.
In this case, the probabiliti?(g) depends on the number of links ghand is given by

P(g) = p'(1 - p)™', wherel denotes the number of links gie G.

The use of stochastic construction procedures to assigst&tal weights has so domi-
nated the study of graphs that the assumption of an undgrbrivbability model often be-
comes implicit. For example, consider the four graph casiton procedures listed in [43]
that are claimed to forrfthe basis of network sciencednd include (1) classical random
graphs due to Erdos and Renyi [47]; (2) equilibrium randgaphs with a given degree
distribution such as th&eneralized Random Graph (GRf@gthod [35]; (3) “small-world
networks” due to Watts and Strogatz [120]; and (4) netwonksvgng under the mecha-
nism of preferential linking due to Barabasi and Albert][28d made precise in [26]. All
of these construction mechanisms are inheresttighastiand provide a natural means for
assigning, at least in principle, probabilities to eachraet in the corresponding space of
realizable graphs. While deterministic (i.e., nhonstotbagonstruction procedures have
been considered [23], their study has been restricted twehement of deterministic pref-
erential attachment mechanisms that result in pseudafrgcaph structures. Graphs re-
sulting from other types of deterministic constructions generally ignored in the context
of statistical physics-inspired approaches since withéngpace of all feasible graphs, their

likelihood of occurring is typically viewed as vanishinggnall.

Using the construction procedure associated withgtireeral model of random graphs
with a given expected degree sequenoasidered in [35] (also called th&eneralized
Random Graph (GRG) mod#ir short) we show that the(g) metric allows for a more
familiar ensemble-related interpretation(aslative) likelihoodwith which the grapty is
constructed according to the GRG method. To this end, the @R@el is concerned with
generating graphs with givesxpectediegree sequend2 = {d,, ..., d,} fornodes 1...,n.
The link between nodeasand j is chosen independently with probabilipy, with p;; pro-

portional to the productid; (i.e., pi;; = pdid;, wherep is a suficiently small constant),



78
and this defines a probability measten the space of all simple graphs and thus induces
a probability measure oB(D) by conditioning on having degrd®. The construction is
fairly general and can recover the classic Erdos-Rémnydoan graphs [47] by taking the
expected degree sequence to{pg, pn,..., pn} for constantp. As a result of choosing
each link {, j) € & with a probability that is proportional tdd; in the GRG model, dier-
ent graphs are typically assignedtdrent probabilities undd?. This generation method is
closely related to thpower-law Random Graph (PLR@)ethod [9], which also attempts
to replicate a given (power-law) degree sequence. The PLR@ad involves forming
a setL of nodes containing as many distinct copies of a given nodbesdegree of that
node, choosing a random matching of the elements ahd applying a mapping of a given
matching into an appropriate (multi)graph. It is believkdttthe PLRG and GRG models
are“basically asymptotically equivalent, subject to bourglgrror estimates’[9]. Defin-
ing thelikelihoodof a graphg € G(D) as the logarithm of its probability under the measure
P, we can show that the log likelihood (LLH) of a grapgle G(D), can be computed as

LLH(9) = « + p 0), (4.13)

wherex is a constant.

Note that the probability of any graghunderP is given by [102]

P(g) = l_[ Pij 1—[ (1-pij),
@i,j))e& ()[:2]
and using the fact that under the GRG model, we have: pdid;, whereD = (di,...d,)

is the given degree sequence, we get

P af | [ @-pddy

iev (i,))¢&
i ey (1= pdid;
= Pll_[didirrlm q/((1 pd.dj,).
icy (i.j)es\+ — PUi J)

P(9)
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Taking the log, we obtain

logP(g) = llogp + Z dilogd; + Z log(1 - pdid;)
eV i,jevV
- Z log(1 - pdid;).

(i.))e&

Defining
k=1llogp+ ) dlogdi + > log(1- pdid)),

ey i,jeV
we observe that is constant for fixed degree sequemzeAlso recall that log(k+ a) ~ a

for |a| << 1. Thus, ifp is suficiently small so thap;; = pdidj << 1, we get

LLH(g) = logP(Q) ~ k+ » pdd;.
(i.)es
This shows that the graph likelihoad H(g) can be made proportional 8§g) and thus we
can interpres(g)/ smax asrelative likelihoodof g € G(D), for the shax-graph has the highest
likelihood of all graphs irG(D). Choosingo = 1/ 3. di = 1/2I in the GRG formulation

results in the expectation

n n n
E(d) = Z Pij = Zpdidj = pd; Z dj = d.
=1 j=1 j=1

However, thiso may not havep;; = pdid; << 1 and can even makg; > 1, particularly
in cases when the degree sequence is scaling. d husst often be chosen much smaller
thanp = 1/} di = 1/2] to ensure thap; << 1 for all nodesi, j. In this case, the
“typical” graph resulting from this construction with hagtegree sequence much less than

D, however this sequence will be proportional to the desiegtee sequencg(d;) « d;.

While this GRG construction yields a probability distrilaut onG(D) by conditioning
on having degree sequeridethis is not an #icient, practical method to generate members
of G(D), particularly whenD is scaling and it is necessary to chogse<< 1/2I. The
appeal of the GRG method is that it is easy to analyze andsyldbabilities or5(D)

with clear interpretations. All elements &(D) will have nonzero probability with log
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likelihood proportional tas(g). But even thes,.x graph may be extremely unlikely, and
thus a naive Monte Carlo scheme using this constructionavarkly yield any elements
in G(D). There are many conjectures in the scale-free literahateduggest that a wide
variety of methods, including random degree-preserviagrineg, produce “essentially the
same” ensembles. Thus it may be possible to generate phtiealnn G(D) that can both
be analyzed theoretically and also provide a practical meh generate samples from
the resulting ensemble. While we believe this is plausilbkerigorous resolution is well

beyond the scope of this thesis.

4.3.2 Highly Likely Constructions

The interpretation o§(g) as (relative) graph likelihood provides an explicit coctien
between this structural metric and the extensive liteeatur random graph models. Since
the GRG method is a general means of generating random graghsan in principle
generate random instances of “scale-free” graphs with scplkeed power-law degree se-
guence, by using GRG as described above and then condgionithat degree sequence.
(And more dficient, practical schemes may also be possible). In thetneguydrobability
distribution on the space of grap@¢D), high-s(g) graphs with hublike core structure are
literally “highly likely” to arise at random, while lows(g) graphs with their high-degree
nodes residing at the graphs’ peripheries are “highly @hikto result from such stochas-

tic construction procedures.

While graphs resulting from stochastic preferential dttaent construction may have
a different underlying probability model than GRG-generateglgsaboth result in sim-
ple graphs having approximate scaling relationships iir ttegree distributions. One can
understand the manner in which higfg) graphs are “highly likely” through the use of
a simple Monte Carlo simulation experiment. An alternatprapch to generating ran-
dom graphs having a power-law in their distribution of no@gree is to use the type of
preferential attachment mechanism first outlined in [20] aonsider the structural fea-
tures that are most “likely” among a large number of trialseré] we generate 100,000

graphs each having 1000 nodes and measurgvhkie of each. Itis important to note that
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Figure 4.4: Results from Monte Carlo generation of prefeaéattachment graphs having
1000 nodes. Both the CDF and CCDF are shown.

successive graphs resulting from preferential attachmédhhave different node degree
sequences (one that is undoubtedlfedient from the degree sequence in figure 3.8(a)), so
a raw comparison o$(g) is not appropriate. Instead, we introduce the normalizddes
S(9) = (s(9) — smin)/(Smax — Smin) @nd use it to compare the structure of these graphs. Note
that this means also generating ey Snin graph associated with the particular degree
sequence for the graph resulting from each trial. Fortuydtee construction procedure in
Appendix A makes this straightforward, and so in this marwerobtain the normalized
S-values for 100,000 graphs resulting from the same prefiatesttachment procedure.
Plotting the CDF and CCDF of thg-values for these graphs in figure 4.4, we observe a
striking picture: all of the graphs resulting from prefei@ahattachment had values &f
greater than 0.4, most of the graphs had valugs<(05(g) < 0.9, and a significant number
had valuesS(g) > 0.9. In contrast, the graphs in figure 3.8 had valus&?A) = 0.52,
S(HOT) = 0.05. Again, from the perspective of stochastic constructimtesses, low-
S values typical of HOT constructions are “very unlikely” wdhigh-S values are much
more “likely” to occur at random.

With this additional insight into the-values associated withftirent graphs, the rela-
tionship in thePerf(g) vs. s(g) plot of Figure 4.1 is clearer. Specifically, high-perfomsa
networks resulting from a careful design procassvanishingly rare from a conventional

probabilistic graph point of viewin contrast, the likely outcome of random graph construc-
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tions (even carefully handcrafted ones) are networks tnat extremely poor performance

or lack the desired functionality (e.g., providing conméty) altogether.

4.4 The s-metric and Assortativity

There is now a growing literature on the importance of catreh structure in net-
works [49, 95, 94, 41, 92, 111] and how to generate networksbgaarticular correlation
structure [67, 110, 32, 78]. A simple measure of correlattncture that has appeared
extensively in the literature is the assortativitwhich is used to quantify the average ten-
dency of nodes to connect to others having similar degretirris out that there is an in
inherent relationship between the assortativity andstheetric, and a closer look at this
relationship yields considerable insight into both theedsity within the background set
G(D) as well as the interpretation ofitself. In this regard, the assortativity, also noted as
Pearson Cdécient, is extremely misleading when measuring graphs wgh tariability
degree sequence since it is directly borrowed from clagsiptgtheory where graphs with

low variability graphs dominate.

4.4.1 Assortativity Definition

Recently, Newman [93] introduced the following sampledshmeasure of graph as-

sortativity as defined by

[Z(i,j)ea didj/l] - [Z(i,j)ea (0 + dj)/|]2

r(g) = - - 5 (4.14)
[Z(i,j)ea (d? + df)/'] - [Z(i,j)e& 5(di + dj)/l]
This relationship can be written as
i,j)e d|d - ie ;d|2 ’ I
r(g) = [Zoee 46| - [Ziev 3] / (4.15)

[Zie(v %d?] - [Zie(v %dF]z /l ’

where the first term of the numerator is exact{yg). Although the assortativity is only a

summary statistic for the correlation profile of the graplaaghole, it provides interesting
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information nonetheless and is often cited as a key featstemguishing various classes of

complex networks [93, 94, 96, 98].

4.4.2 Measuring Against Background Sets

Here, we argue thaig) has a natural interpretation as a “centered” and “norradliz
version ofs(g). In particular, observe that the first term of the denonanat (4.15) is
exactly thesyax value within the spacg(D) as defined in (4.10). Accordingly, one can

rewrite the assortativity as
Silax - s(gc)

where we refer t@, as the “center” of the spagg(D).

rQ =

To see whyg. can be viewed as the center of this space of graphs, we corbigle
following thought experimentwhat is the structure of a deterministic graph with degree
sequence D and having zero assortativilgprinciple, a node in such a graph will connect
to any other node in proportion to each nodal degree. Inigscsuch a graph may not
exist for generaD, however one can construct a determinigseudograplj having zero
assortativity in the following manner. Lét = [a;] represent a (directed) node adjacency
matrix of nonnegative real values, representing the “ligkghits” in the pseudograph. That
is, links are not constrained to integer values but can @xisbnnegative fractional form.

The zero assortative pseudograph will have symmetric vieigikien by

d. .
aj = (—J)d| = (L)dj = g;ji.
Zke(v dk Zke(v dk

Thus, the weighé;; for each link emanating out of nodlés in proportion to the degree of
nodej, in a manner that is relative to the sum of all node degreegeneral, the graphs
of interest to us are undirected, however here it is notatiprconvenient to consider the
construction of directed graphs. Using these weights, dked tveight among all links

entering and exiting a particular nodequals

Daj+ ) a=d+d = 2d.

jev ke vV
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Accordingly, the total “link weights” in the pseudograpleaqual to

Z aj = Z dj =2,
i,jevV jev
where again corresponds to the total number of links in a traditionapfreBy extension,

the ssmetric for the pseudograpi fepresented by connectivity matixis calculated as

>3 faa

jeV ieV
_ Lol gla.
) ;V[;V 2 ¢ (Zkgv dk)dll %
(Zje(v djz)( Zie‘v d|2)
2 Zkery )
(Zjeq/ djz)z
il
(Zje’v %djz)z
—| s

S(n)

showing thats(ga) = s(g.). Thus, in terms of its-value,g. is equivalent to the center of

G(D).

In principle, one could imagine a deterministic procedina uses the structural pseu-
dographgy to generate the zero assortativity graph among an “unansti” background
setGg(D). That is, graphs resulting from this procedure could hauétipie links between
any pair of nodes as well as multiple self-loops and wouldrmemtessarily be connected.
The challenge in developing such a procedure is to ensuté¢hthaesulting graph has de-
gree sequence equal By although one can imagine that in the limit of large graphs th
becomes less of an issue. By extension, it is not hard to eanaestochastic process that
uses the structural pseudographtd generate a statistical ensemble of graphs having ex-
pected assortativity equal to zero. In fact, it is not harddge why the GRG method [35] is

very close to such a procedure.

Note that the total weight in the pseudograph between noded j equalsa;; + a; =
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did;/2l. As discussed in [70], the GRG method is based on the choia@uaibabilityp;; =
pdid; of connecting two nodeisand j, and also that in order to ensure tiitl) = d; one
needs = 1/2l, provided that max;.y did; < 2I. Thus, the GRG method can be viewed
as a stochastic procedure that generates real graphs feopséludograpb,, with the one
important diference that the GRG method always results in simple (but ecéssarily
connected) graphs. Thus, the zero assortativity pseupbgiacan be interpreted as the
“deterministic outcome” of a GRGlike construction methadd.fact, it has recently been
shown that the statistical ensemble of graphs resulting filee stochastic GRG method

has zero assortativity [92].

Thus, the assortativity (as a summary statistic of graph ) captures a fundamental fea
ture of graph structure, one that is closely related tosemetric. Notice that both centering
term and normalization term depend onlyDand not on the specific graph, thuseflects
sis obvious from its definition, but the question is whetheloasideration ofs by itself
provides insight. The calculation ofvalues for the graphs in figure 3.8 shows that all val-
ues are in the intervaH0.4815 —0.4283]. In fact, all the simple and connected graphs with
the degree sequence as shown in figure 3.8 (a) haaéue within 0.49,-0.42], which
makes the assortativity matric almost unable tdedentiate any simple connected graph
from their ensembles of the same degree sequence. The lennsahat the existing no-
tion of assortativity for an individual grapiis implicitly measured against a background
set of graphg7(D) that isnot constrained to be either simple or connected. Because
computed relative to an unconstrained background set,nmresmases this normalization
(against the unconstraineg .« graph) and centering (against thg pseudograph) does a
relatively poor job of distinguishing among graphs havingsamedegree sequence, par-
ticularly when that degree sequence exhibits high vaitgb®pecifically, one observes that
although they have nearly the same assortativity as defynegtbeir structural dterences

are highlighted bys and its normalized values/se>) andS(g), defined as

S(g) — Smin

S(g) = P—— (4.17)

In cases where network performance is measured by the maxthmoughput under fixed
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node capacities, these structurdteliences translate to bigftkrences in performance.

4.4.3 Empirical Results

For additional insight into the way in whichftierences irs translate to dierences in
r, we extend the previous computational experiment (in seetil.4) to values af,.x and
I'min Within the constrained background $&tD). Note that these values can be computed
directly from the corresponding values &f.x and syin. In Figure 4.5(b) we show these
values for each of the generated graphs in our experimemteTdre several striking fea-
tures of this plot. The first is that the “normalization” okte-metric in the calculation of
the assortativity dramatically changes the sense of graph diversity amomghgraaving a
particularD. For values of relatively higV(D), r < 0 and seems largely independent of
any diversity as measured by the range in allowable other words, a second important
conclusion is that all networks with higbV(D) haver < 0 and this seems largely a func-
tion of D and not any particular feature of the graph or whether it isealinological” or
“social” network as argued in [98]. This idea has been madeipusly in [103, 82, 92, 32]
and has also been recently argued [122] based largely orrieatmbservations of real
networks having a range ofvalues. A third important takeaway is that for small values
of CV(D) one observes that small diversity as measuredQy— Smin translates to a large
range ofrmax — min.  The last feature we can see is that thedences between the “un-
constrained” spacg(D) and the space of simple, connected gra@(®) may be more
important in determining graph properties than other festuas measured by aggregate
statistics.

It is worth noting that although(g) = 1 is achieved approximately by thsg .« graph
within G(D) for all graphicalD, it is only in very special instances @f where thesgin
graph is obtained. Specifically, whep, = ZZ, then it follows thar(g) = -1 if and only
if z. + z. = z (a constant) for each of tHepairs of elements. In other words, although it is
true thatr,,ax = 1 for arbitraryD, one often observes thati, > —1 simply because of the

degree sequend2 itself.

Based on this analysis, one might reasonably concludehbaadsortativity is not a
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Figure 4.5: Comparison betwesmandr with respect taCV

suitable metric for comparing the correlation structurg@phs from dierent domains.
Indeed, itis well understood that a more accurate appraaortonsider higher order forms
of correlation. Yet the deeper question relates to how oweldhevaluate any observed
correlation structure. Recenfferts by several authors have warned against graph theoretic
analysis of networks in isolation. For example, Maslov ef&l, 82] have argued that a real
assessment of a network’s correlation structure make® smng when compared against
its “randomized” counterpart. In the context of ‘rich-cldydering in complex networks
(i.e., the tendency of high-degree nodes to connect to ooidar), Colizza et al. [37] have
also argued that the presence of high-degree nodes in amggdork is enough to ensure
that high-degree nodes are connected, and they similaglyeafior the need to compare
the features of any subject network to a randomized baselihas, important questions
include: What is the appropriate baseline against which to compasgphs? and How

does this relate to the background set of graphs, as defin€@{Dyor G(D)?

An inherent challenge in the study of graph diversity is thatcombinatorics of even
relatively small networks typically result in a space ofgra that is incredibly large. In
this study, we have focused on graphs havirg100 (which are about the largest that can
be visualized easily) for purposes of exposition, and evare la comprehensive analysis
of the elements iG(D) andG(D) is challenging. In choosing preferential attachment as
our primary means for graph generation, we have tried to keemethods closely tied to

the literature so that they may be easily replicated. Arraédtie approach could have been
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to identify specific degree sequend2gor which graph isomorphism reduces the number
of unique graphs to a small handful and the entire space phgrénot justsyax and Syin)
is easily visualized. Identifying and exploring such ex#spmay represent an important
step in future work.

The overall message of the results here is that one musudgrebnsider the inherent
diversity of graphs sharing a particular statistical measuhen making claims based on
any such statistic. Nonetheless, additional work is rexglio understand fully the way in
which graph diversity fiects such characterizations. While others have arguetiédaré¢ed
to compare against a “randomized” version of the graph, herdave compared against
the entire feasible region, as measured by the rasgg $nad. The examples here seem
to suggest that the distribution of graphs within eitG€D) or G(D) is not uniform, and a
general characterization of these distributions is unkndaeally, one would like to know
more about where the randomized graph sits within the ovagrate (i.e., is it the “center”
of this space?) Moreover, there may be importafiedences between graph properties that
are imposed by structural constraints (e.g., by the deggeencdDd) and those relative to
what has been randomized.

Although this study provides additional insight into theywa which graph diversity
affects one’s ability to use aggregate statistics for charactg complex networks, it has
done so primarily for acyclic graphs (i.e., trees), and nweoek is required to understand
the extent to which these same results hold for more genetalonk structures. How-
ever, we now present preliminary empirical evidence thggssts the story for nontrees is
gualitatively the same.

In Figure 5.4, we show the results of a final experiment in Wwhi@ again generate
trees havingy = 100 nodes according to attachment rule (4.12) for a rangepuireentsp.
However, to each tree having an initla: n — 1 links we then add an additionkl links
by choosing end points probabilistically in corresponaewith (4.12). In this manner, we
generate graphs havimnodes and a degree sequebxeatisfying}’; di = 2(k + 1)(n— 1)
(i.e., the average degree(h ~ 2(k+ 1)). Empirical evidence [96] suggests that, for many
real networks{d) < 10. For each degree sequetzewe then compute the corresponding

Smin» Smax 'min» @Ndrmax Values as was done previously. Figure 5.4 shows these values
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plotted against the variation @f, represented again &/(D) and also now normalized as

CV(D)/C7*{(D) for purposes of comparison.
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Figure 4.6: Graph diversity among nontrees. In this expeninan additionak(n — 1)
links were added to initial trees of sire= 100. (a)k = 1, (d) = 3.96,C[}* = 3.4451. (b)
k=2,(d) =594,CJ* = 27672. (c)k = 4,(d) = 9.9, CJ* = 2.0701. In the bottom
graphs, variation is measured wi@tV(D) while in the top graphs it is represented as the
normalizedCV(D)/C7#{(D).

One observes for graphs with increasing average deglge @, 6, 10 in figure 5.4(a)-
(c) respectively) thaCV(D) decreases overall but the relative shape of the space piigra
within G(D), as defined by the range&,jin, Snax, remains qualitatively consistent with that
of trees. However, the total variation as measured by tharttis betweersfax— Smin)/ Smax
decreases with increasing link density. At the same timegfaphs with increasing link
density and having degree sequence W@{li*(D), the diterencesyax — Smin IS NO longer
zero in general, indicating inherent diversity even at biglevels of variation.!. Graph

assortativity as measured by the rangg,[ rmax iS also qualitatively the same as for trees,

IHowever, when the degree sequelteorresponds to a “multistar” (e.g., double-star, tripi@ss the
overall picture in the upper row of figure 5.4 looks the sanxeept that thesyin/ Snax Values jump abruptly
to 1 atC{}®(D), since all “multistars” are isomorphic to one anotheGiD).
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in that high€V(D) is enough to dictate that< O but that considerable diversity exists for
low values ofCV(D). Although such results are not conclusive, we view themeaeally

supportive of graph diversity as we have discussed it here.

4.5 Summary

This chapter provides enhanced understanding towardoaytbéscale-free networks
by introducing a structural metric, themetric, that defines one possible measure of the
extend to which a graph is scale-free. THmetric is the first one that targets tdiérentiate
between all simple, connected graphs having an identigal Variability degree sequence.
This structural view has rich and interesting connectianthe previously studied graph
properties of scale-free networks, such as various notibsslf-similarity, likelihood and
assortativity. Our approach clarifies much of the confusarrounding the sensational
gualitative claims in the current literature an@lers a rigorous and quantitative alternative.
We also suggest that when making statements about a gragthdwaghese graph properties
one must consider the background set against which thepenies are being evaluated.

The functional metric for the Internet topology in the pmws chapter together with
the structural metric introduced here provide a two-din@m plane to visualize the di-
versity of the graph space. In the next chapter, we will thitwd the GRAPH of graphs, a
connected graph space, which enables a clear understasfdimg whole space of graphs

from a microscopic viewpoint.
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Chapter 5

The GRAPH of graphs

Previously, we project the space of graphs with the samesdeggquence into the func-
tional vs. structure plane and derive important relatigggshmong graphs in this extremely
diverse space. In this chapter, we propose a new way to viewhce of graphs by con-
necting graphs according to a fundamental microscopistoamation. We call this con-
nected space of graphs the GRAPH of graphs, where each ndue @GRAPH represents
a graph and a link indicates a local transformation betwkernwo corresponding graphs.
The GRAPH of graphs provides a much clearer picture for thelevpace of graphs, since
we can break this giant space into many subspaces with the @ammon properties, enu-
merate all of them, and then explicitly count the number afpips in each subspace. The
GRAPH of graphs also lends perspective on the structuiaioelship among all the graphs
in this domain space. Interestingly enough, many propeai¢he GRAPH of graphs have
direct connections to the properties of graphs inside it éample, when the GRAPH
of graphs represents a domain space of all the simple ancctathgraphs with the same
numbers of nodes and links, the degree of a node in the GRARIds$relevant to degree
variability of the graph that the node represents. Whiléhtew constrained to the graphs
with the same degree sequence, many properties of the GRAPHlated to the graph
s-metric.

This chapter is organized as follows. We give motivation amdrview of our work
in section 5.1. In section 5.2, we first provide graph tramsftion standard, and propose
a fundamental graph transformation method, the generalvilipch is proved to that it

satisfies the graph transformation standard. In sectiontbe3GRAPH of graphs by the
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general flip, G1 is discussed in great detail, including rgperties, canonical graphs and
subspaces according to graph variability. Then in sectidn& propose an extension of
the general flip, the degree preserving flip, and the GRAPHraply (G2) defined by it.

We conclude at the end.

5.1 Introduction

The space of graphs is extremely diversity, even when aljtaphs share some com-
mon large-scale properties, like the same numbers of nowklrks, or degree sequences.
Both the functional metric and structural metric introddige the previous chapters can
highlight the diferences among graphs having the same degree sequencet i¥eiot
hard to recognize that any macroscopic statistic propsntypt possible to fully describe a
graph since the space of graphs has very high order statisticcurrent literature, many
graphic metrics are proposed to measure the propertieesé thraphs, however there is
no systematic work to evaluate thffextiveness of these graphic metrics. Some metrics
which are used to investigate the properties of one netwark mot be informative for the
other networks becausefiirent networks exist for ffierent purposes. For example, the
performance defined as the maximum throughput for the latemay not make any sense
for the metabolic network. Many metrics may be misleadirgpeeially when they are
constructed against a certain background set. As pointech @ection 4.4 graph assorta-
tivity r is implicitly measured against a background set of uncairstd graphs, leading
to a substantial bias when used as a metric fi@dintiate constrained graphs with highly
variable degree sequences. For these well evaluated g)etxitaustively enumerating and
calculating their value may not be feasible due to intensbraputational requirements. If
many metrics of two graphs have similar values, should welcole that these graphs are
essentially the same, or we have to explore one more metric?

While more work needs to be done to refine these macroscoppegres in order
to thoroughly evaluate fferent graphs in the graph space, in this chapter, we propose
an alternative approach to study the space of graphs byduntiog a very fundamental

relationship among these graphs according to their miofmscstructural similarities and
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differences. This relationship is called the general flip, a walyansform one graph to
another by changing only one link in the graph. We can eslalaliconnection between any
two graphs if they can be transformed to the other by one staprgl flip. In contrast to
the current literature on studying each individual grapldeldor complex networks where
each graph is an isolated point, our work focus on the enpiees of graphs as a connected
network. As studying the interconnections among networkmonents is an important
step to understand complex networks, building bridges @nbese isolated graphs will
provide deep insight into the space of graphs as well as th@éafmental similarities and
differences of these graphs. When relationships zoom into stiepic structural level, it
gives a clear picture of how each graph can be transformeddthar and how dierent

two graphs are.

The domain space of graphs we focus on is the set of all thelsiarm connected
graphs with the same numbers of nodes and links, where tlo¢ @akgraphs with the same
degree sequence is a subspace. The general flip is the mdaniental transformation in
this domain space and any other transformations in it caredenmed as several steps of
general flips. For example, we later will introduce the degueeserving flip, which is a
special case of two steps of general flip and can maintaindfeee sequence of the graphs.
We will also show that the general flip can reach all the graplise domain space, that is

the general flip satisfies the generality defined by [79].

With the aid of the general flip, the space of graphs is no loaget of isolated graphs,
but agraph of graphs (we call G1) where each node is a graph and eachdprksents a
local general flip between the two corresponding graphs. @itams all the simple and
connected graphs with the same numbers of nodes and linkg aad be much more
complicated than graphs within it since the size of G1 ugweaponentially increases with
the size of graphs. However a careful study of the propedigbe GRAPH of graphs
provides many interesting results relating to the propsitif graphs, such as the variability
of degree sequence and thenetric of the graphs. For example, we prove that the degree
of each node in G1 is proportional to the variability of theresponding graph degree
sequence, therefore graphs with the largest number of berglare those with the highest

variability in their degree sequence. We also propose asteuway to construct a graph
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with the highest variability, which is called the canonigahph, and prove that all graphs
can be transformed to this canonical form, therefore G1mneoted. The canonical form
is also the graph that is most likely to appear when we takadomm walk on G1. All these
indicate in the space of graphs with the same numbers of raoaeknks, variability of the
degree sequence plays an important role to measure thesgraptthermore by breaking
this giant space of graphs into many countable subspaceshandenumerating all the
graphs in each subspace, we can obtain a much clearer patttie graph space which
has never been understood thoroughly. In fact, the graptislewer degree variability
completely dominate the whole space. Even though each leigired variability graph has
higher probability in random walk, it is much more likely taige at low degree variability

ones due to this reason.

As an extension of the general flip, we introduce the degresepving flip, which is
a special case of two step general flips and it can also keegathe degree sequence for
the graph. The connected graph space defined by degreevimgstip is called G2 in
which all the graphs are simple and connected with a fixede#egequence, therefore a
subspace of G1. The important discovery of this space istlieatlegree of each node in
G2 is directly related to thevalue of the graph defined before. Scale-free graphslfigh,
s-value graphs) have more neighbors and are more likely teaappan other graphs when
a random walk is performed on G2. These suggest that wheretireel sequence is fixed,
the ssmetric is crucial to dterentiate these graphs, which is consistent with our pusvio
argument. Unlike G1, G2 can be disconnected, which meanghbalegree-preserving
flip cannot transform one graph to another in some graph sp&t@vever, we prove that

when any of the graph in G2 has a diameter greater than or extrake, G2 is connected.

5.2 The General Flip

Before getting into the details of general flip, we introdsoene basic standards for

graph transformations.
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5.2.1 Transformation Standards

A graph transformation may be arbitrarily defined, howetrezre are some basic prop-
erties or standards that the transformation should satisfigelow (originally defined in
[79]):

e Soundness No transformation maps to graphs which are not in the dorspate.
Here we study the domain space of all the simple and conngcagihs, and restrict
to the graphs with the same numbers of nodes and links foreghergl flip, and we
further constrain the domain to the graphs with the sameegegequence for the

degree-preserving flip.

e Generality: The transformation process does not converge to a specaphg All
graphs can be reached by this transformation and the pildid each graph to be

arrived should be nonzero at limit.

e Feasibility: The transformation can be described by a simple (diseutoutine
changing only a small number of edges of the graph, so thanite easily imple-

mented.

We start by repeating some notations of graph theory as definprevious chapters.
A graph is defined by a finite node s&t = {1,2,3,...,n} of sizen = |'V| and a link set
& :={(uv) : uveV,u=+ v} Letd denote the degree (i.e., number of connections) of
nodei, and callD = {d,,d,, ..., d,} the degree sequence of the graph. Denote the number
of links asl = |&| and}, d; = 2.

5.2.2 The General Flip

The general flip is defined as follows: consider ngdeV and its two neighbors and
w (u,w € V), such thau, w are not connected, change the link\) to (u, w), or change
the link (v, w) to (u, w) (see figure 5.1). Wheu, v, w are fully connected to each other, no
transform happens and the graph remains the same. The depwaia of graphs by this
transformation is all the simple and connected graphs \wglsame numbers of nodes and

links.
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Figure 5.1: The general flip.

Notice that during flipping, among the two links considerexdly one link is changed
and the other link remains the same. This unchanged linkusiarfor maintaining the
connectivity of the whole graph. Although there might be adbways to change one
graph to another while preserving the number of nodes akd Imthe graph, the general
flip we defined makes it easy to preserve the simplicity andheotivity of graphs since
it only requires local information of three nodes. Methodslsas random graph rewiring
[118] have to periodically check the connectivity of thegran order to keep it connected,
which requires the globe information of the graph structaiherefore has much higher
computational complexity. The general flip is also the masidamental transformation
methods for the space of simple and connected graphs hdergame numbers of nodes
and links, and we will prove that any other method can be peréa by general flip within
finite steps in this domain space.

We can prove the general flip satisfies the basic standardgphdransformation de-

fined above.
Lemma 5.2.1. The general flip is sound.

Proof. The domain space of the general flip is all the simple and atiedegraphs with the
same numbers of links and nodes. The general flip does notragenove any node and
link, therefore it remains the same numbers of nodes andg limkhe graph. The general
flip also keeps the connectness of the graph since the newadithéd to the graph makes the
three nodes reconnected to each other, thus the whole gashcennected. Furthermore,

if the original graph is simple, the transformed graph i® asnple since no self-loop or
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duplicated link is introduced. The general flip keeps graphthe same domain space

therefore it is sound. O
Lemma 5.2.2. The general flip is feasible.

Since the flip only requires the local information of threeles and it can be described
by a simple (distributed) routine by changing only 2 coneddinks in the graph, the

general flip maintains the feasibility.
Lemma 5.2.3. The general flip is general.

Proof. We can prove the generality by first introducing a canonicaph in the domain
space and then proposing a series of general flips such titaearaphs in the domain
space can be transformed into this canonical graph. Rethiatethe general flip is re-

versible, therefore all the other graphs can be reachedtiernanonical graph.

Definition 5.2.1. The canonical graph for general flips consists of a set of states and a
set of edge nodes. All the star nodes are fully connectedeaith other, and all star nodes

except for one are connected to all edge nodes. There aretraolieks among edge nodes.

In the canonical graph, assume the number of star nodestlsn there will bex — 1
of nodes having degrees— 1 and one special star node having degreel — y where
0<y<n-1-x Correspondinglyy edge nodes having degrees 1 are only connected
to thex — 1 nonspecial star nodes, and- x — y edge nodes having degreesvhich are
connected to all the star nodes. The canonical graph is ar{epcept for its isomorphic
graphs) which means that when fiximgand|, x andy is unique. For example, when
increasing, i.e., changing some edge nodes to star nodes, there wilbbe timan one star
node that cannot be fully connected to all the other nodesewlecreasing, extra links
has to be put among edge nodes. There is a special case inyhibland any node with
degreex can be either counted either as a star node or as an edge notes graph is the
same, and we count this as an edge node without loss of geyeral

Now we can define a series of general flips from any graph to @herdcal form as
follows. Choose one nodg as the first star node. From any other nade u,, find a

shortest path ta. If the lengthp of the shortest path is greater than one (ug.y are not
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Figure 5.2: A series of general flips to make ned®nnect tay;.

directly connected), without loss of generality, we asstimeepath as\(, vy, v, . . ., Vp, Up).
Since it is the shortest path, all the nodes on the path forhasgcthat is, one node cannot
connect to any other nodes on the path except for its two seasghbors on the path.
Therefore we can perform a series of general flips as: ¥lig), (2, V3) to (v, V), (V2, Va),
then flip , vs), (v3, V4) to (v, V3), (V2, v3), and so on, till flip ¢, V), (Vp, u1) to (v, uy), (Vp, Ur)
(see figure 5.2). For all the other nodes which are not coedeictu;, perform similar
general flips untilu; is connected to all of them. The general flip can be blocked by a
triangle, however, along the shortest path, there is no suatgle that can block the flip
transformation. Otherwise we can find a shorter path by girgugh the shortcut formed
by the third link in the triangle which is not on the shorteatip

For a tree, after a series of transformations, the resuffragh is a star in which the
degree of the star nodens- 1 and all the other nodes have degree 1. A star is the canonical
form of all trees and the process terminates. In nontreescdlse current graph will be
starlike and there is one node connecting to all the otheesigeldge nodes), while edge
nodes will have some extra connections among them. Now piekob the edge nodes as
the second star node, for any other edge nodewith degree greater than one and not
connected tay,, do the following series of flips: flipv{ uy), (ug, uz) to (v, up), (uy, Uy), and
pick any neighbor o¥ other tharu,, denoted as;, flip (v, v1), (v1, Uy) to (v, uy), (v1, Uy) (See
Figure 5.3 for details). Here, exists since the degree ofis greater than one, and is
connected ta; since the flip process always tries to maintain the connesti@tween,
and any other nodes, even if they could be changed in themetliate process. By this
process, we can make all the nodes with degrees greateritiegiial to two to connect to

the second star node.
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Figure 5.3: A series of general flips to make any edge nosligh degrees greater than one
to connect to the second star nage
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Figure 5.4: The balancing process to add limk () and remove link\p, v3)

After these transformations, we obtain a double star, wheeee are two star nodes
connecting all the edge nodes except for some possible @legee edge nodes only con-
necting to the first stau,. In this double star, if there coexist degree one edge nodes
and the edge nodes with degrees greater than two, we caljridgpnot balanced We
introduce a process to balance the double star. Suppaseone of the nodes with de-
grees equal to one, and andvs are nodes with degrees greater than two and there is
a link betweenv, andvs. The balancing process is defined as the following flip pro-
cess: flip ¢o, U), (V1, Uy) Into (v, V1), (V1, Up), flip (Vo, Vv3), (V3, Up) into (o, Ug), (V3, Uy), flip
(v, Vo), (V2, Up) into (v, Up), (V2, Uy) (See figure 5.4). It is easy to show the existence of these
links and that these general flips cannot be blocked. Afisrizalancing process, we get a
double star in which all the edge nodes have degrees eiethan or equal to two, or all
the edge nodes have degrees greater than or equal to twee finsticase, the flip process
terminates and we obtain the canonical form, while for thietaase, we change one edge

node to a star node, and continue.
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In summary, the canonicalization process includes twomobesses, one is called the
centralization processn which we connect the edge nodes to the newly added sta, nod
if the edge nodes have degrees greater thavherex is the number of current star nodes.
The centralization process is followed by tha&lancing processn which we balance the
links among edge nodes so that when the graph contestar nodes, either all the edge
nodes have degrees less than or equat,tor all the edge nodes have degrees greater
than or equal toc. In the former case, the process terminates and we get tlomicah
graph, while in the latter case, we move one edge node to the s&r nodes and continue
with the centralization process. In the final canonical grdpe number of star nodess

uniquely determined by the numbers of nodes and links.

Since any graph can be transformed to the canonical formactdgeneral flip process
is reversible, this means that the canonical form can alschbeged to any other graph,
and as a result all the graphs are reachable. As a resultptiesfationary distribution for
any graph is nonzero according to [45]. We will study theistery distribution of each

graph later. This finishes the proof of the generality of theagyal flip. O

Notice that we can define the canonical graphs arbitranigesany graph can be trans-
formed to others by general flips. However, the canonicgllgymae define here has many
special properties to be discussed later. Also we point loertet are many isomorphic

canonical graphs since we can pick the star node arbitreaity time.

In the domain space of simple and connected graphs with the sambers of links and
nodes, the general flip can be considered as the most fundanramsformation method
in this space. Since any two graphs can be interchanged toather by performing a
series of general flips, any other transformation methotiwithis space can be achieved
by a series of general flips. For example, the degree-prieggitip we will introduce later

is a special case of two step general flips.

In the case when all the edge nodes have degrees equakiocount it as the first case.
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53 G1

The graph transformation defines a connection between amgtaphs, therefore the
space of graphs is now@RAPHof graphs which consists not only nodes representing all
the graphs, but also links describing graph transformatidkée define G1 as the GRAPH
of graphs according to the general flip, such that each no@d irepresents a simple and
connected graph with the same numbers of nodes and linke adhbr graphs in G1, and
two nodes share a link if and only if the underlying graphgespnted by the nodes can
be transformed to each other by one step general flip. Hereewserthe notation in the
previous section and defigeas a simple and connected graph, and we also derexteéhe

node in G1 that represents the graph

5.3.1 Properties of G1

G1 can be quite complicated due to the huge number of graghse space. However,
exploring G1 reveals many interesting properties and pevus a much clearer picture
of the space of graphs. One immediate property can be deisviédit G1 is connected
because general flip is general as shown in the previousgesfioreover, we can roughly
estimate the number of graphs in G1 and the diameter of G1t Mizsestingly, we find
that the degree of each nogen G1 is proportional to the variability of the degree sequeen

of graphg that this node represents.
Lemma 5.3.1. The diameter of G1 is bounded by the order df n

The number of nodes is equal to the total number of all the leilsipd connected graphs
with the same numbers of nodes and links. This number is hodet @an exponentially
increase withn in general. For example, if the graph is acyclic, i.e. the bhanof links
| = n- 1, the total number of trees i¥-? according to [117]. If each graph in G1 has
nodes and links, without considering whether it is connected or nbg total number of
possible graphs in G1 i1!/I!, whereM = (5) is the total number of slots fdrpossible
links. This number is greater thaM~' = ["™-Y/21 and can exponentially increases with

n. Due to the existence of the giant component when the nunfbeks | is big, we can
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expect the number of connected graphs is not significantigllemthan this estimation.
However, the diameter of G1 is polynomialnni.e. the logarithmic of the size of G1. We
can derive this by counting the total number of general flipakies from any graph to the

canonical form.

Proof. Recall that the transformation from any graph to the caraficm includes a set of
centralization processes and a set of balancing procdsdés. first centralization process,
i.e. when picking the first star node, the maximum number p$fior any node to connect
to the star node is the shortest distance from this node tsttrenode, therefore it is
bounded byD, the diameter of the graph, and the first centralization gssavill take less
thanDn flips. After that, each later centralization process takss than & flips since the
diameter of the graph changes to two after the first cenaitadia process. In the balancing
process, each balance step includes three flips and thdifmddbr each balancing process
is less than 8. The total number of star nodes depends on the ratio betwieernuimbers of
links and nodes, which is approximated to the rounded imtefye— Vn2 — 2I. Adding all
these flips together, the total number of flips from any aabytgraph to the canonical form
is aboutDn + 3n+ 5n(n— Vn? — 21) flips, which is bounded by the order of. This means
from any node in G1, we can always find a path to the node whimtesents the canonical
graph within a distance on the ordermf As a result, the diameter of the G1, i.e., the
maximum shortest distance between any two nodes, is les®tlegjual to the twice of the
distance from any node to the canonical node, and therdfizralso bounded by the order

of n2. O

Lemma 5.3.2. The degree of each node g in G1 equgls, d* — 2| — 6A, whereA is the
total number of triangles in the graph g, @nd | represent the degree and number of links

in the graph g.

Proof. The degree of each node in G1 is determined by the number e$tepegeneral
flips that can happen in the graph represented by the nods.ig helated to the number
of 2-motifs in the graph and the number of triangles in thepgsa A 2-motif is defined

in section 4.2 and for any graph with degree sequehce,, ..., d,, the total number of



2-motifs is

n di 1 n
:1(2):§Zd5—|.

i=1

If the 2-motif chosen to perform the general flip also formgiangle, the general flip
cannot happen, therefore we must remove this case whenirmguhe number of total
general flips. Any triangle in the graph is included in threm@tifs, and we denote the
number of triangles in the graphs As If a 2-motifs does not contain a triangle, it in fact
can perform two dferent general flips, which corresponds twfietient neighbors that the

graph can reach in G1. Therefore degree of each node in Glcidaizd as:

n
Z d? - 2| — 6A. (5.1)
i=1

As introduced in section 4.1.4;] , d? is directly related to th€V, a measure of the
variability of a graph degree sequence, when the numbersadésiand links are fixed.
Therefore, the graph with the higher variability degreeusege will have more neighbors
than the graph with lower variability degree sequence. bagly has more triangles, which
corresponds to a higher clustering ffa@ent [120], it has fewer neighbors than those with

lower clustering coficients.

Lemma 5.3.3. When performing a random walk from one node on G1 with equathpr
abilities to all its neighbors, the final stationary distution for staying at that node is

proportional toy, d? — 2 — 6A.

As before,d;, |, A are the parameters of the graph that represented by the Widtaen
we do a random walk on a graph, from any nagl@gump to a uniformly randomly chosen
neighbor, the stationary distribution of any nadeith degreed(u) is equal tad(u)/ ¥, d(u)
according to [45]. Since the degree of a node in G1 is equa] d® — 2| — 6A, the final
stationary distribution of staying at any graph is propmndil toy, d* — 2| — 6A. Therefore,
a graph with higher variability degree sequence is easiapp@ar than a graph with lower

variability degree sequence during the random walk.
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5.3.2 The Canonical Graph in G1

The canonical graph (and its isomorphic graphs) of the gerfilgs was introduced in
the previous section to prove that all the other graphs camamsformed into this form

within finite steps. In fact, the canonical graph is the mpstcgal graph in G1.

Lemma 5.3.4.The canonical graph g is the one with the highest CV, theesforresponds
to the node g with the highest degree and the highest staijafhstribution in G1.

Any optimization problem related to graphs can be NP harddgennectivity and in-
teger constraints. Fortunately, we can prove that a simgri@ton of constructing canoni-
cal graph can achieve the global maximal of @\ Starting from any graph, since the star
nodes can be chosen arbitrarily and the final canonical graphjust isomorphic to each
other, we can always pick the highest degree node amongealéthaining edge nodes as
the new star node and connect it to all the other edge nodelg nvlintaining the degrees
of the previous star nodes. Whenever finishing one conmefitoon any edge node to the
star node, the degree of the star node will increase by 1ftirer# will remain the highest
degree among all the edge nodes. Assume before connectyegnedev to the newly
added star nodg, the star node has degrdge The essence of centralization process for
each edge nodeis to break the connection betweeto any of its edge node neighbor
and connect to the star node. In this process, degree vfemains the same, and degree
of x will be increased by one at the expense of decreasing theeefu by one, while all

the other nodes remain the same degrees. The chai@@)é cdn be calculated as:
(dy + 1)? + (dy — 1) — d2 — d2 = 2(dy — d, + 1).

Since star node has a degree higher than or equal to the defgaee edge nodes, i.e.,
dy > dy, theCV of the graph strictly increases when any edge node is coathéota star
node. Each centralization process for one star node cerdigirocedures connecting all
the edge nodes to the star node, therefore each centm@ahzatbcess strictly increases the
CV.

However, the intermediate balancing process may not alwaygase theCV and
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whether theCV can be increased or not depends on the degree of edge notesxtva

links.

However, we can introduce a small variation of the canoraatibn process where we
do not perform the balancing process immediately after eantralization process, instead
performing it only after the centralization process for xttestar nodeXis the total number
of star nodes in the final canonical graph). With this vaoiatiwe are able to directly prove
the global maximization of th€V for the canonical graph. Notice thaandy (the number
of edge nodes with degree— 1 as defined before) should be precalculated according to
the previous two interleaving processes. From the previmasf, we can see that the
centralization process is strictly increasi@y regardless whether the balancing process is
performed or not, as long as each time the new star node piskied highest degree nodes
among all the edge nodes. Assume akeentralization processes without any balancing
process, the degrees of tkestar nodes ara— 1 - a;,n—1-ay,...,n— 1 - a,, where
a >0,1<i < x The edge nodes are divided into two parts according to tiegree. For
these with degree greater thgrwe assume their degree ke e, X+ e, ..., X+ e (g > 0,
1<i<k 0<k<n-x?),and for those with degree less than or equat,teve assume
their degree b& — 0;,X—0y,...,X—0, (0, > 0, 1<ih, h=n-x-Kk. Inthe former case,
these edge nodes are connected to all the star nodes anadtbe@ne extra links among
the edge nodes, while in the latter case, each edgeined®nnected tx — o; star nodes
and there are no extra links. The essence of the balancitg$sas to rearrange the extra
links among higher degree edge nodes to connect lower dedgogeenodes to star nodes.

TheCV of the graph before rearrangement is

i(n -1-a)*+ i(x +e)’+ i(X— o)’
i=1 i=1 i1

= x(n—1)2—2(n—1)iai +iai2+(n—x)x2+2xia+ie~,2—2xioi+ioi2.
i=1 i=1 i=1 i=1 i=1 i=1

(5.2)

2Whenk = 0, there is no need to do balancing process and each prodetlg BicreaseV.
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After the balancing proces€\V changes to

(X-DN-172+(-1-y)?+y(x—-1)7°+ (n— x—y)X°.

Assumey < h, thereforey of the lower degree edge nodes increase their degnee 19
andh -y of them changes their degreexoThe degree of all the higher degree edge nodes
drops tox, therefore all the links among them are extra links whicH & moved to the
slots between lower degree edge nodes and star nodes. Atseimember of extra links
among higher degree edge nodes td_bandL = % YK . &. After obtaining thesé links,
the lower degree edge nodes will increase degregto- y of them) orx — 1 (y of them),
thereforezih:l o, = L +y. Similarly, all but one star nodes will increase degreatol,
therefore}* ; & = L +y. Plug these into equation (5.2), we can get the change d@the

after balancing processing is

X h K
Yry+2n-1-xL-|Y a2+ o2+ €. (5.3)
=1 i—1 i—1

To check whether this term is always greater than or equatno, zve should look at the
worst case scenario whefE ), a2 + 3, 07 + Y, €) is maximized. The constraint here
areyf @ =2, Y @ =L+y, Y,02=L+y & 26 >0 > 0. Of course, one
implicit constraint is that the graphs before and after heilag process should be simple
and connected, which means we cannot arbitrarily set thedses. In fact, this problem is
equivalent to solving two separated questions. One is diverks, how to put them among
the k nodes with degree, such that the current degree of these nadese maximizes
YK, &. This can be thought as that assume each node have degreen@vato put_ links
among these to maximize tl@&V. The only diference is that we do not require thdse
links fully connect to th&k nodes, since thesenodes connect to the whole graph already.
Maximum Y, & is achieved when one node detonnections and the relstof them get

one connection, therefore

k
maxZ e=L%+L. (5.4)
i=1
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The other problem can be thought in a similar way, but it resgiput thel links between
the star nodes and the lower degree edge nodes. We can attidewaximal ofy, , a2 +
ah, o? when one star node is connected.te- y lower degree edge nodes, or when one

edge node is connectedlto+ y star node. In either case

iq?+io?:(L+y)2+(L+y). (5.5)

i=1 i=1

Equations (5.4) and (5.5) describe the minimum increme@\bby the balancing process,
and plug these into equation (5.3), we can get that this atrmfuchange equals to &

X — L — 2)L which is always greater than or equal to zero since the nuwittetal nodes

n at least containg star nodesl. + 1 higher degree edge nodes and 1 lower degree edge
nodes ifL > 0. This means that the balancing process always incré2gdm the case

whenL = 0, there is no need to do the balancing process).

In summary, if the canonical graph is obtained by perfornxegntralization processes
(wherex is the number of star nodes in the final canonical graph) aradambing process,
we can prove that th€V of the canonical graph achieves the global maximal among all
the simple and connected graphs having the same numbersle$ mmd links, since all
these processes monotonically incre@8eand we achieve a uniqu&V (despite of graph

isomorphism) no matter whatever the initial graph is.

5.3.3 Exploring G1

We have shown that the degree variabifty is an important measure in G1 and the
canonical graph we defined has the higl&gt therefore it has the most number of neigh-
bors and each individual canonical graph has higher prétatm appear than other in-
dividual graph if we take random walk on G1. However, the manadvalk may not more
frequently arrive at the canonical graphs, if the numberasiomical graphs is significantly
smaller than these of the low€&V graphs. In this section, we explore more details of the
space of simple and connected graphs having the same nuailhetss and nodes. More

specifically, we break G1 into many countable subspacesatomd can explicitly derive



108

the total number of graphs according to their degree se@seand draw the relationship
between the final stationary distribution of graphs withpexg to theirCV. Without sur-
prise, lowCV graphs dominate the space of graphs and we can concludegh&Ki
graphs cannot be generated randomly, but from specific mlesig

To get know more details on the spaces of graphs, we can di&idmto many sub-
spaces and further divide each subspace into even smatligpaces till we can explicitly
count the number of graphs in that subspace. The space digamtaining the same
numbers of nodes and links can be partitioned into many suesp each containing all the
graphs with the same unlabelled degree sequence. Two degmeences are considered
having the same unlabelled degree sequence if they are i \8hen they are ordered.
For each subspace of graphs with the same unlabelled degpgaerse, we can divide it
into smaller subspaces each of which has the same labeligdadsequence. For each la-
belled degree sequence, we can exactly calculate the nwhladrelled graphs for acyclic
graphs. Here we use acyclic graphs as an example to illashratrelationship between the
variability of a degree sequence and the total number oflbgraphs with that degree
sequence.

Given the space of graphs withnodes anch — 1 links, all the possible unlabelled
degree sequences can be derived by enumerating all theatiolis. In fact, this problem
is exactly the same as an integer partition problem withouastraint. An unconstrained

integer partition problem for numbaenis stated as follows [57]:

M=X;+Xo+- -+ X, X1 2 X2 -2 Xnm

For example, whem = 4, the unconstrained integer partition problem is stated as

4+0+0+0,

= 3+1+0+0,
2+2+0+0,

= 2+1+1+0,

& ~ A B~ b
Il

= 1+1+1+1
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We obtain all the sequences (40,0),...,(1,1,1, 1) and add two zeros such that the total
length of each sequence is six. If adding 1 to each numberim®sguence, the sequences
we obtain are exactly the same as all the degree sequenceesfwhen the number of

node equals = m+ 2 = 6, that is

(5,1,1,1,1,1)
(4,2,1,1,1,1)
(3,3,1,1,1,1)
(3.2,2,1,1,1)
(2,2,2,2,1,1)

After having the all the subspaces according to the unletdedegree sequence, we
can further divide each subspace into smaller subspacehiohwll the graphs have the
same labelled degree sequence. The number of such subfpaeash unlabelled degree
sequence can be calculated by counting the total possibheupations in that unlabelled
degree sequence. Assume in an unlabelled degree sequereeartan, nodes having de-
greedy, thereforey [, m, = n, wherekK is the total number of degrees which aréetient.
For example, a star withnodes has two tlierent degreesd; = n—1 andd, = 1, therefore
m, = 1 andm, = n— 1. The total number of possible labelled degree sequendbdstar
is (rl‘) = n, that is, any node can be the highest degree node. For a genkxiaelled degree
sequence when the number of nodes having dedyéem, the total number of labelled

degree sequence is

(ml, m; ..,mK) B m (5:6)
Equation (5.6) shows that if an unlabelled degree sequeaseariore distinct degrees, it
contains more labelled degree sequences. Without tredraotisthe unlabelled degree
sequence witih nodes which has the maximum number of labelled degree seqséaould
beh—-1,n-2,n-3,...,2,1,k) wherek would be any number between 1 amd 1. There
is only one repeated degree and the total number of labeligrted sequence ng/2. For

trees, although the degree sequence has to be constrainéd as 2(n — 1), the degree
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sequence with maximum number of labelled degree sequemcbecastimated roughly
as consecutive numbers from 1 kawith repeated degree within [&], wherek can be
estimated from the equatid(k + 1) + (n— k) = 2(n — 1).

For each labelled degree sequence, van Lint and Wilson [ddl¢lilate the number of
labelled tree using the definition of multinomial ¢eient and induction. For a degree
sequencel;, d,, . . ., d,, the number of labelled tree is:

n-2 n-2
(dl—l,...,dn—l):(dl—l)!...(dn—l)!' (5.7)

Equation (5.7) indicates that for a tree withnodes, the maximum number of labelled
trees is obtained when the degree sequence satisfs (2 2, 1, 1), while the minimum
number of labelled trees is derived at the case when deggeesee isf— 1,1,1,...,1).
That is, the chain structure has the maximum number of lathgtaphs {f — 2)!) while
the star structure has the minimum number of labelled gréphly 1 labelled star for a

labelled degree sequence).

The general flip defines the stationary probability of eadiell@d graph while doing
random walks on G1, while the number of labelled graph fortagedegree sequence can
be exactly calculated in the previous section. Combinirty besults, we can derive the re-
lationship between stationary probability of graphs giganh degree variability. Although
each higher variability labelled graph is more likely to eppthan each lower variability
graph, it does not necessarily mean that lower variabiligpgs are less likely because
the likelihood also depends on the total number of graphbk thiat variability. In fact,
we can exactly calculate the probability of a graph given alahelled degree sequence
(dy,do,...,dy) as:

n n_l n
C(; @ _Zl)(dl—l)!---(dn—l)! m!m! ... m! (5.8)

wherec is a constant to normalize the whole item to be a probabilliye second item
is proportional to the probability of each labelled tree Mvldoing random walk, the third

item is the the number of labelled tree for a given labellegree sequence, while the last
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term is the number of labelled degree sequence given anellddlmlegree sequence. For
a given degree sequence, we can calculate the variabiliheadegree sequence, therefore

build relationship between probability of the graphs hgwimat degree variability.
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Figure 5.5: Graph probability vs. degree sequence vaityabil

Figure 5.5 shows probability of graphs havingtelient variability of graph degree se-
quence for a tree with = 50 nodes (here we use , d; for degree sequence variability).
For eachy.l; d;, we can obtain all the degree sequences having that valdeadculate the
probability of graphs of each degree sequence and add thexoagpding to diferent de-
gree variability. In fact, figure 5.5 suggests that the logrde variability graphs are much
more likely to appear than the high degree variability offé® reason is that the third and
last terms in equation (5.8) completely dominate the evalnand these two terms favor
low variability graphs much more than high variability onEsr a tree oh = 50 nodes, us-
ing chain structure as an example of low variability graple, third term for chain is about
(n—2)! = 1.2 x 10°* and the last term ig(n — 1)/2 = 1225, therefore the total number of
labelled chains for 50 nodes is abou  10°4. However, for the highest degree variability
graph, the star structure, the third term is only 1 and thet&as isn. The comparison
results are striking, the total number of labelled chain®fsn3ore that the total number of
labelled star for the graphs with same number of nodes aksl, lyet each labelled star has
stationary probability only 20 times bigger than each Ieaethain. When counting all

the degree sequence witHldrent variability, the lower degree variability graphs amech
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more than the higher one, therefore when taking random wal& b, it is more likely to
arrive at lower degree variability graphs than higher orlgaditional random graph the-
ory focuses on low variability graphs since they are moreljiko be generated randomly.
This also confirms that the high degree variability graphsost complex networks exist
for special purpose, not from generic and random mechaninexample, the Internet

comes from the highly engineered design.

5.4 The Degree Preserving Flip and G2

The general flip can be regarded as the most fundamentafdraregion method for
simple and connected graphs with the same numbers and Amisother transformation
method in this space or in the subspace can be performed lyr @egeral steps of general
flips, since the general flip can change any graph to the otitimwfinite steps in this
graphs space. Here we introduce a two-step of general fhipsgdégree-preserving flip,
which can transform graphs in a subspace of G1 where all tyghgrhave the same labelled
degree sequence. We call this subspace as G2, and withpussuy the properties of G2
are most relevant to the structural metric, ametric, introduced before. This reenforce

the importance of the-metric to study the graphs having the same degree sequence.

5.4.1 The Degree Preserving Flip

The degree-preserving flip is defined in [79], and it has tke property that the trans-
formation keeps the same nodal degree. The transformatjperformed as follows: con-
sider four nodess,v,w, x € V, if they are connected asi,{), (v, w), (w,x) € &, and if
neitheru, w norv, x is connected, flip linksy, v) and (v, x) to (u, w) and {, X) (see figure
5.6). If any one ofu,w or v, x is connected, the graph remains the same. The domain
space under this transformation contains all the simplecandected graphs with the same
degree sequence, and furthermore the degree of each nodeis fi

A well-known transformation to preserve the degree digtrdn of the graph is the

degree preserving rewiring, which exchanges any two linke) @nd (v, x) into (u, w) and



Figure 5.6: The degree-preserving flip.

(v, X) without considering the connectivity betweeiw. Our degree-preserving flip, as a
special case of the degree preserving rewiring, can maitttaisimplicity and connectivity
without checking any global information, thus can save ata@omputation.

The soundness and feasibility of the degree-preservinddtip regular graph where
all the nodes have exactly the same degrees have been proy#].i This can easily be
extended to nonregular graphs with any degree sequencegéitezality of the degree-
preserving flip for regular graphs is also proved in [79], ethinowever is hard to extend to
nonregular graphs. In fact, it has been shown that the degeserving flip for nonregular
graphs may not be general for some degree sequences anderezample named a bow-
tie switch is provided in [50]. In a bow-tie graph, nodey, z t,v form a link set &, y),

(z 1), (X V), (y,Vv), (zV), (t,v), wherev is the center of the bow-tie graph and the other
nodes are edge nodes. The space of all graphs with this deggaence contains only two
graphs (see figure 5.7), however, these two graphs canrat ezeh other by the degree-

preserving flip. The transformation between these two bhewaphs is called the bow-tie

X z X z
v ——
y t y t

Figure 5.7: The bow-tie switch.

switch.

Despite of the existence of bow-tie graphs, we prove thatléggee-preserving flip is
general by adding a small constraint to the graph. In fa¢tag been proved in [50] that
the degree-preserving flip is general when the graph haswetiés greater than 3. We can

further relax this constraint.
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Lemma 5.4.1. The degree-preserving flip is general when any graph in threado space

has a diameter greater than 2.

Feder et al. [50] have shown that if adding bow-tie switcle, degree-preserving flip
can reach any graph. Based on this result, we show that wieetidimeter of any graph
is greater than or equal to 3, any bow-tie switch can be resiaby a sequence of degree-

preserving flips therefore any graph is reachable.

Proof. Assume that a graph contains a subgraph which is a bow-tghgr@ince a bow-
tie structure has a diameter equal to 2, there must existsnade links other than those
in the bow-tie subgraph to make the graph diameter greaderdhequal to 3. The extra
nodes may connect to any of the edge noxleg z t, or the center node, resulting in
two basic scenarios. Case 1 happens when at least one naehah these in bow-tie
graph is connected to one or mode edge nodes, yet is not dedriedhe center node. We
assume that a nodeis connected to any or both of y, but is not connected to any of
z, t, v (otherwise the diameter of the graph may not great than 2) cakeperform three

degree-preserving flips to resolve the bow-tie switch asvaho figure 5.8.

u u u u
X y z X z X z X z
— —_— —_—
y t y t y toy t
Figure 5.8: The degree-preserving flip for bow-tie switchewlextra node is connected to
the edge nodes of bow-tie (case 1).

In the second case when there is no node connected to the edge and all the extra
nodes are connected to the center nad&o ensure the diameter of the graph greater than
or equal to 3, there must exist two extra nodes connected as a chain and one of which
is connected to the center nodsuch that (@, v), (u,w) € & andw does not connect te.
Still, we can perform six steps of degree-preserving fliggetithe bow-tie switch as shown
in figure 5.9.

For any graph which contains a bow-tie with a diameter greatn or equal to three,

we claim these graphs can be transformed to either of the &siw lsases. For example, in
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X v z X v z X v z X z
—_ —_— —_—
y ty t oy ty
u w u w u W u l w
X z X z X z
G -—
y t y t oy t
u w u w u w

Figure 5.9: The degree-preserving flip for bow-tie switcrewlextra nodes are connected
to the center node (case 2).

—

figure 5.4, nodeu can also be connected to nogland this will not d@fect the flip process
at all. If uis also connected ta, we need another node connectingutdo make the
diameter greater than two. In this case we can flip the extkadnd link (i, 2) to release

the connection betweanandz so as to unblock the triangle for a new flip. O

When the graph has a diameter equal to two, no degree-piegédlyp can happen.
When the graph has a diameter great than two, the degreergresflip can not reduce the
diameter to two, since the degree-preserving flip is relgkrsin fact, when the diameter is
greater than two, by definition there must exist two nodewéenh which the shortest path
is greater than two. Along this shortest path, there is nadixik connecting any node on
the path, therefore doing the degree-preserving flip onghie cannot be blocked. The
removal of the existing links will free any triangle that @rmed by these links, and a new

degree-preserving flip can now be performed.

5.4.2 Properties of G2

G2 is defined by the degree-preserving flip, such that each regtesents a simple and
connected graph with the same degree sequence as the @hbsgn G2, and two nodes
share a same link if and only if they can be transformed by @ugek-preserving flip. It
turns out that G2 has some nice properties related ta-thetric. Since thes-metric is a

measure of the extend to which a graph is scale-free, seadegfaphs are special in G2.
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Lemma 5.4.2. The degree of each node in G2 is §; d? + | — 6, wheres is the number

of triangles which will be specially defined later.

The degree of each node in G2 depends on how many degreevimgsi#ips that
can happen for the corresponding graph. This is determigedtidonumber of 3-motifs
in the graph and the number of triangles consisting two liwksch belongs to the 3-
motifs. A 3-motif is a subgraph that contains four nodeg w, x which are connected as

(u,v), (v, w), (w, X) . The total number of 3-motifs is (see Section 4.2 for dsjalil

n n

}S(q—1x¢—4): E:dﬂj—zzdf+lzs—zidf+L
i=1

(i.)es (i,)es i=1

Whenu,w or v, x are connected, the degree-preserving flip cannot happeas.case can
be counted as the triangle in the 3-motif. Denote the totatler of 3-motifs that contain
triangle ass. Notice thisé is different from the previoua which is defined as the total
number of triangles in the graph since a 3-motif may containa2gles which should be
counted as one for this motif. From the total number of 3-fa@nds, we can derive that

the degree of each node in G2 is

n
s— ) d+1-s. (5.9)
i=1
Since all the graphs in G2 have fixed degree sequences, theedegnode in G2 is
determined by the-value, therefore scale-free graphs have more neighbansttie other

graphs.

Lemma 5.4.3. When performing a random walk from any graph on G2 with equalbp
ability to all its neighbors, the final stationary distribah for staying at this graph is

proportionalto s- Y1, d? +1 - 6.

Similar argument as before, the stationary distributioa ofbde in a graph is propor-
tional to its degree. An important result from this lemmahattthe scale-free graphs are
more likely to appear in the space of graphs with the sameeéegjstribution when per-

forming a random walk in the space of graphs.
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5.5 Summary

The space of graphs is fully explored in this section by ieiticing graph transformation
methods among graphs, particularly those with the same atsydé nodes and links, and
those with the same degree sequence. The general flip, aumostrhental transformation
method, defines G1 which contains all the simple and condeptaphs with the same
numbers of nodes and links. G2 is a subspace of G1 containengraphs with the same
degree sequence, and the graph relationship is built frendégree-preserving flip, a two
steps general flip. We characterize the properties of bothr@l1G2, and prove that when
fixing the numbers of nodes and links, G1 has a nice relatipristthe variability of the
degree sequence of each graph in G1, when further constrainiee graphs with the same
degree sequence, many properties of G2 are related torttedric. By exploring the space
of graphs, we obtain a much clearer picture on the numbelapigrhaving dferent degree

sequences, and on the fundamentfiedences and similarities among those graphs.
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Chapter 6

Other Projects

My research spans both horizontally and vertically. Theamty of this thesis elabo-
rates my horizontal interests: the topologies of complexwaeks, where we consider the
role of functions and constraints for the Internet rougsel topology, define a structural
metric to diferentiate graph models with the same degree sequence irageomplex
networks, and study the space of graphs for a clearer pictuggaph relationship and
transformations. My vertical line builds on the top of theéeimet topology and extends
to the protocol stack of the Internet, including the invgstion of joint optimization of
routing and transferring rate at the IP and TCP layers [143heoretical framework for
Internet congestion control for TCP layer [101], and usenepived failure detection using
packet trace at application layer[72]. In this chapterséhihree projects along the vertical

line will be briefly described.

6.1 Cross-Layer Optimization in TCP/IP Networks

Recent studies have shown that any TCP congestion congotitdim can be inter-
preted as carrying out a distributed primal-dual algoritbver the Internet to maximize
aggregate utility, and a user’s utility function is defineg its TCP algorithm, see e.g.
[66, 74, 88, 83, 76, 68, 73] for unicast, [64, 38] for multistaand [75, 65, 114] for recent
surveys and further references. All of these works assuateadlting is given and fixed at
the timescale of interest, and TCP, together with activeigueanagement (AQM), attempt

to maximize aggregate utility over source rates. In thigptéra we study the cross-layer
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utility maximization at the timescale of route changes.

We focus on the situation where a single minimum-cost ragltertest path) is selected
for each source-destination pair. This models IP routinthencurrent Internet within an
Autonomous System using common routing protocols such éFJ$1} or RIP [58].
Routing is typically updated at a much slower timescale th@aRP—AQM. We model this
by assuming that TCP and AQM converge instantly to equuibrafter each route update
to produce source rates and “congestion prices” for thaatgoperiod. These congestion
prices may represent delays or loss probabilities acrossonle links. They determine
the next routing update in the case of dynamic routing, simo the system analyzed in
[53]. Thus TCP-AQMIP form a feedback system where routing interacts with cetigee
control in an iterative process. We are interested in thdibgum and stability properties
of this iterative process. To simplify notation, we will leforth use TCP-AQMP and
TCP/IP interchangeably.

Here are our main results. In the case of pure dynamic routegwhen link costs are
the congestion prices generated by TCP-AQM, it turns outwieacan interpret TCHP
as a distributed primal-dual algorithm to maximize aggteg#ility overbothsource rates
(by TCP-AQM) and routes (by IP) if it TQHP converges. We consider the problem,
and its Lagrangian dual, of maximizing utility over soure¢ess and over routing that use
only asinglepath for each source-destination pair. Unlike the TCP-AQWbfem or the
multi-path routing problem that are convex optimizationghwno duality gap, the single
path TCRIP problem is non-convex and generally has a duality gap.iliBgum of the
TCP/IP system exists if and only if this problem has no duality.gkpthis case, TCHP
equilibrium solves both the primal and the dual problem. &bwer, it incurs no penalty
for not splitting trdtic across multiple paths: optimal single-path routing acddsghe same
aggregate utility as optimal multi-path routing. Multithaouting can achieve a strictly
higher utility only when there is a duality gap between thegk-path primal and dual
problems, but in this case, the T@Piteration does not even have an equilibrium, let alone

solving the utility maximization problem.

1Even though OSPF implements a shortest-path algorithriipivs multiple equal-cost paths to be uti-
lized. Our model ignores this feature.
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Even when the single-path problem has no duality gap angPGRas an equilibrium,
the equilibrium is generally unstable under pure dynamiging. It can be stabilized by
adding a sfficiently large static component to the definition of link coehe existence and
characterization of TGHP equilibrium when the link costs are not pure congestiacesy,
however, are open problems. To proceed, we specialize tmagtwork with a common
destination and demonstrate an inevitable tré&deetween utility maximization and rout-
ing stability. Specifically, we show that the T@P system over the special ring network
is indeed unstable when link costs are pure prices. It candidliged by adding a static
component to the link cost, but at the expense of a reduckty utiequilibrium. The loss
in utility increases with the weight on the static componéfgnce, while stability requires
a small weight on prices, utility maximization favors a langeight. We present numerical
results to validate these qualitative conclusions in a ggmetwork topology. They also
suggest that routing instability can reduce aggregatiyuti less than that achievable by

(the necessarily stable) pure static routing.

Indeed we show that if the link capacities are optimally smned, therpure static
routing is enough to maximize utility even for general natkgo Moreover, it is optimal
within the class of multi-path routing: again, there is nogléy at optimality in not splitting

traffic across multiple paths.

The duality model of TCP-AQM has been useful in understapdive equilibrium
properties, including throughput, packet loss, delay, fairtess, of large-scale networks
under TCP—-AQM control. This work is a first, and preliminaagtempt to apply the same
methodology to understand the cross-layer interactionGRFAQM, minimum-cost rout-
ing and resources allocation. Our model is simplistic —mtiges finite duration flows and
randomness in real networks, and reduces the rich behaui®ito minimum-cost routing.
Even within this highly abstract model, many questions rienopen. First, even though
numerical examples suggest that the trafibetween routing stability and utility maxi-
mization is present in a more general network than the speo@network we studied,
we have not been able to find an analytical proof. One of th@nhfficulties is that, in
a general network, minimum-cost routing cannot be as coanélg represented as in the

ring network. Second, when static component is includedhix dost, it is not known if
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TCP/IP has an equilibrium, whether the equilibrium jointly sedva certain optimization
problem, and under what condition it is stable. Third, it Vebloe interesting to estimate
the duality gap in the single-path problem. Even thoughghoblem is not directly related
to the TCRIP iteration when the duality gap is nonzero, the gap meadihe penalty of

not splitting trafic among multiple paths.

6.2 Methodological Frameworks For Internet Congestion

Control

In this work, we make the theme that optimization based deowsitions of complex
systems into interacting modules facilitates analysisgarability and verifiability of the
desired system properties. The modularity that such deositipns dfer, and which at first
endows the systems with an apparent complexity should lem @ttvantage of. Aiming for
such decompositions is beneficial both for analysis andydesi

We also stress that in any analysis procedure it is impottacdnstruct robust models
for the modules, as this will capture the uncertainty in miiiaigand component parameters
so that it be taken account in the design process. The newttoailwe develop in this work
allow us to analyze such systems even at the nonlinear lawdlexpand the applicability
of this methodology.

Complex systems and large scale networks will dominateuhed societies as tech-
nology advances. Designing such systems is more than a lesintuition. It is widely
appreciated that network congestion control for the Irgers probably the only complex
system for which we have a good understanding of the interacf the various modules
at the TCIPAQM level. The system can be designed by resorting to a sadithadological
framework that provides the desired functionality at eguiim, based on an optimiza-
tion scheme; and the correct dynamics can be chosen for tlmeisanodules to drive the
system to the equilibrium — the right choice of dynamics arg to the scalability of the
verification result.

The success in designing network congestion control sceéon¢he Internet through
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a mathematical formulation which enables understandinitsdtinctionality and the lim-

itations that features such as delays pose, allows us tevieethat similar hierarchical
structures can enable understanding and design of otheylerisystems in the future. We
envision that solid methodological frameworks can be usddrimulate and solve the de-
sign problem this way and the resulting system'’s functibyahln be proven in a structured
way. Apart from the specific analysis results that one canlymwe by hand, the algorith-
mic procedure we propose can be used to analyze more coteplisgstem descriptions
therefore increasing the set of model building blocks tleat be used in the construction

of future mathematical frameworks for complex system agialy

6.3 Detect User Perceived Faults Using Packet Traces

Fault detection in a timely fashion is critical for networlamagement. In this work, we
concentrate on a specific variant - given a packet trace frayrliak in an edge network
(such as a university network or an enterprise networkgadaults that can be perceived
by the end user. Identifying significant faults is an esseffitist-step to localize and fix
the faults, a problem that is often complicated by the faat tuman users rarely report
faults and even when they do, human reports tend to be vaguenaeliable. Our goal is to
build a tool that processes packet traces online, identfigdication level faults that will
be perceived by an end-user (marked slowdown, incorreporese, disconnection etc.)
and raises an alarm to the fault localization system so #ilatré can be detected without
human interference. Though clearly desirable, the wideetyaof applications, protocols
and unavoidable low-level nitty-gritty of real edge netk®makes it challenging to build
such a tool.

A general definition of failure is the condition that “the &ered service deviates from
the specified service [69].” There is much prior work attesrtptdetect faults, but either at
a too-coarse granularity where allffiia is on an Internet path or at a too-fine granularity
which considers the performance of a single TCP flows. Owrdag diterent, we want to
identify faults that matter to real users. In edge netwagksh user transaction may involve

many flows, connections to manyfidirent servers that may traverséelient paths.
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We propose a mechanism to detect the failure perceived bgrtlaiser from packet
traces collected at the end user side. Itis a passive agpmo#te sense that it does not add
any additional packets to the network just for the purposketéction. While active probing
is considered as a more accurate approach, it introducespadkets into the network and
overloads the servers and networks. Furthermdferéint protocol requires fllerent active
probing method therefore it is hard to generalize to oth@liegtion protocols. Passive
monitoring can reduce the network overload and it is easyetoriplemented in the server
side, user side or in the network. Since it is able to collddha packets from a user to
the outside network, it essentially can be used to recoctstine protocols if we are able
to parse into the packet information, therefore it could baegalized to detect fault for

different application protocols.

Detection failure from packet traces has proved to be a@hgilhg problem. Since the
packet trace is a collection of all the packets sent andveddiy the end user, it contains
too much information which does not lend itself naturally ifespection. For example, a
simple click of a website may contain hundreds of packetcwimvolve several dier-
ent application protocols such as DNS, WINS, IPSEC, Kerhddd TP as well as several
different servers (DNS server, WINS server, authenticatioreséNeb server). The devel-
opment of abstract yet informed models from packet tracés/grage failure information
from standard protocol information is crucial. Howevertadbstion of a standard applica-
tion protocol is not obvious since there are numerotigdint application protocols (such
as HTTP, SMTP, SMB, DNS) which may behave quit&eatiently, also there are many
application programs using the same application protdoolexample: internet explorer,
Firefox, Mozilla are all based on HTTP protocols), furthena even for the same appli-
cation programs, dlierent configuration parameters may result in quifeedent pattern of
packets.

Another challenge of fault detection for end user is thaadkk for a good validation
tool. Ideally, we want to compare the results from our dédectcheme with a report from
end users on every failure they encounter. However obfgisuth report is not an easy
task since currently there are no such network programscraautomatically generate

such report. Requiring end users to manually input theresltiakes a lot of work and the
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report itself may not be reliable.

Despite of these diculties, we make consistent progress for fault detecti@uge net-
works. We define failures which accurately reflect actualquarance deviation or degra-
dation experienced by end users, and create a robot that icaic end user behavior of
fetching some web-sites periodically and obtain the retofarmation. The failure of
the return information is in fact the information that an ersgr experiences when/kbe
fetches the same web-site at the same time. Our robot carmdpraveliable validation tool
for HTTP algorithm.

We utilize protocol dependence and group packets accotditigpir 5-tuple flow infor-
mation (source IP, destination IP, source port, destingdart and protocol). We implement
a white-box scheme to detect HTTP failure where we are abpatse into HTTP header
information such as command (get, post), HTTP return cod@ (K, or 502 bad gateway).
Compared with the robot result, the white-box approach shawy low false positive and
false negative rate. Furthermore, robot can only fetch telesite that we tell it to do, yet
our white-box approach essentially can report the failagaening to all the web-sites that
users are browsing, therefore we can remove robot probidgise white-box scheme as a
validation tool for other HTTP detection schemes.

We also generalize the white-box approach for HTTP pro®bglrelaxing the require-
ment of looking at HTTP header information so that it can el the encrypted packets.
We aggregate packets according to a user task and use theenafmtmackets, bytes and
transaction time to detect failure. Small number of bytesnisndication of content error
that HTTP returns such as 401 unauthorized, or 500 inteemaéserror, while the number
of packets together with transaction time will reflect thenwrk performance degradation
such as link congestion.

Furthermore, we consider a completelffeient protocol, RPC protocol used by email
which requires consistent exchanging of information betwesers and servers. We char-
acterize fault by a large number of small packets and we dectaldetect the OUTLOOK
failure such as unable to connect to the server. The faudttens described herein are not
limited to any particular application layer or transpogtdg but may be applied to many

contexts and environments.
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Finally compared with the failure detected from commerfaalt detection products for
edge networks such as Microsoft Operation Managementadurd detection scheme can
detect user perceived faults in an enterprise network in eénrmore reliable and accurate
manner. Traditional fault detection tools do not consiael esers, therefore are inadequate
for localizing performance faults, such as identifyingrngsare dissatisfied with the end-to-

end response time.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The search for unifying properties of complex networks igydar, challenging, and
important. It is certainly appealing that scale-free nekvoodels can avoid all the domain
specific details for dierent complex networks, yet make interesting and testaleléig@
tions. Unfortunately, this fact yields results that colapvhen tested with elaborated anal-
ysis on the functionality of the Internet, as well as strugtanalysis of graphs having the
same high variability degree distributions.

In this thesis, using Internet as a case study, we have sh@tithiere exist technologi-
cal, economic, and graph theoretic reasons why the mosiguogzale-free models cannot
be true when they are used to describe current Internetrriavel topology. We propose
a complementary approach of combining a more subtle usebétsts and graph theory
with a first-principles theory of router-level topology thaflects practical constraints and
trade-dfs. While there is an inevitable tradédetween model complexity and fidelity, a
challenge is to distill from the seemingly endless list ofguially relevant technological
and economic issues the features that are most essentiadiidaunderstanding of the
intrinsic fundamentals of network topology. We can sucttglysaddress this challenge by
providing a Heuristic Optimal Topology (HOT) model thatamporates hard technological
constraints on router bandwidth and link connectivitygibgr with abstract models of user
demand and network performance. In a high performance anddst network, the high

bandwidth core router cannot have high degree due to therrtethnological constraint,
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while end-user demands and economic constraints on lirtk posh all the high variabili-
ties in edge routers. In contrast, scale-free models peavictlatively easy way to generate
the desired power-law degree distribution, however thiginlly connected hubs have such
bad performance as to make it completely unrealistic thet tould reasonably represent

a highly engineered system like an ISP network or the Inteas@ whole.

The space of graphs to describe complex network is extrediedyse even within the
graphs having the same degree distributions. Network pagnce provides an important
metric to measure the functionality of the Internet. Yet,ubtke look at the structures
of scale-free models and the HOT model reveals a fundamdiffatence between these
models and this dierence can be captured by a structural metric,stheetric which we
introduce to diferentiate between all simple, connected graphs havingeaticil degree
sequence, especially when that sequence satisfies a poweelationship. Elaborating
the features of graphs with high or lasmetric provides enhanced understanding towards
a theory of scale-free networks. Tlsemetric, as a measure of the extend to which a
graph has highly connected hubs, together with power-lagvededistribution, provides
a quantitative definition of scale-free networks. We prevevidence that higls-value
graphs, i.e., scale-free graphs actually share a wide rahgmergence features, such as
hublike cores, high likelihood under variety of random gatien mechanisms, and various
kinds of self-similarity. We also suggest that when makitagesnents about a graph based
on these properties one must consider the background sestagdiich these properties

are being evaluated.

While the functional and structural metrics provide tvieetive views of looking at the
highly dimensional space of graphs, we furthermore intoeda new paradigm to under-
stand the space of graphs by building connections betweisblated graphs according to
some local transformations. Exploring this connected spdgraphs gives a cleared pic-
ture of this space and reenforces the important role thatahability of degree sequence
plays in the graphs with the same numbers of nodes and linkisthe role of thes-metric

in the subspace of graphs having the same degree sequence.
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7.2 Future Directions

There are several future works that can directly outgromwftbis thesis.

7.2.1 Internet Topology Generator

“All models are wrong, but some are useful.” — G. P. E. Box.

Any work on Internet topology generation and evaluationsrtime danger of being
viewed as incomplete ayat too preliminary if it does not deliver the “ultimate” prock, a
topology generator. A natural extension of our work is tddaiuseful topology generator
so that protocols can be evaluated before being impleméntheé real network. Our HOT
model opens up a new line of the Internet research in idengfyausal forces that are either
currently at work in shaping large-scale network propsertiecould play a critical role in
determining the lay-out of future networks. Our model i stia toy model stage, so called
because it only leverages the most important aspects ohtBmkt router-level topology,
and therefore provides the most coarse-grained level agyajenerator. More functional
requirements and physical constraints can be added to guoagh, which results in a
higher model fidelity but at a cost of higher model complexity

An ideal topology generator should allow one to incorporifierent level of details
and produce dierent topologies that address these details. For exampér waking net-
work reliability into consideration, many gateway routersedge routers should be mul-
tihomed. That is, instead of the tree structure from coredigeerouters, one edge router
should be connected to two or more higher level routers, soirenthat when one link or
router is broken, it can still connect to the whole networke Becond example is that in the
case when the tfc matrix is given and not consistent with our gravity modes, should
adjust the corresponding connections from the edge rowteich directly carry the tridic
to higher level routers so as to maximally utilize the rowgpacity. A more complete ex-
ample should also consider more possible constraints sucuger geographical location,
router cost when operating atfidirent technological boundaries, link length cost, pditic
reasons, etc., as well as other functional requirement$y asi low latency, link or router

redundancy. While the optimization problem that incorpesaall these constrains and ob-
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jectives is almost impossible to solve theoretically, we take an approach based on our
HOT toy model and do local adjustment or optimization to ioyar or fulfill the function
requirement within the constraints. Despite all thed®edent variations, we expect that
any Internet router-level topology generated accordingptustraints and objectives should
have sharp dierence from scale-free networks, no matter characterigguelformance
metric or thes-metric.

It is widely recognized that performance of the same prdtoaa be quite dierent
under diferent topologies that run on top of it. For example, many T@Rqggols are
stable in the single bottleneck link case while oscillatehia multiple bottleneck links
case. However, how flerent topologies wouldfBect our protocol evaluation is not entirely
understood. A theoretical analysis could be quite commat# not impossible. With the
aids of the topology generator, we can carry out this amaliysan empirical way. That
is, protocols can be evaluated unddi@lient topologies, or similar topologies with subtle
transformations. A topology generator which performs mdififgrent protocol evaluations
can in turn suggest improvements in network design, leadingell protected, reliable and

high performance next generation networks.

7.2.2 Apply the HOT Idea to Other networks

We do not claim that the results obtained for the routerilegology of the Internet
pertain to other complex networks. However, even for thesegletely diferent cases, we
believe that methodologies that explicitly account foewant functionality and constraints,
or other key aspects can provide similar insight into whattens. when understanding,
or evaluating the corresponding topologies. A detail usi@derding of the functions and
constraints of the network is important, since it is exattigse functions and constraints
which drive the underlying structure of networks. For exéammwe would expect that the
AS (autonomous system, which represents an administrdtieain such as a company
or a school) level topology of the Internet would be quit&atent from the router-level
topology, since at AS-level, the major concern is that hoshedomain sends it tfac

to maximize its own profit while minimize its own cost. Herestbonnection between
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each domain is more like business relationship. In this lprabgame theory, or more
specifically, industrial organization will provide a nesasy tool to obtain the heuristic

optimal topology.

7.2.3 Benchmark Graphic Metrics

A rough estimation on the number of existing metrics to exdigraphs easily yields
an order of a hundred. Although in our thesis we claim thatftimetional metric is an
essential consideration when designing the Internet réetel topology, and the structural
metric plays an important role toftierentiate graphs with the same degree distribution, a

systematic way to evaluate thffextiveness graphic metrics requires much more work.

On one side, same metric which is used to measure the prepeftone network many
not be éfective for other networks due to the complications and lyiglhtersity of graphs.
Our investigation of assortativity shows that some metwosild be extremely mislead-
ing without considering the background they apply to. A gooetric should give the
same qualitative answer, invariant inffédrent background set, or explicitly state the re-
lated background set it compares against when it is meanlingsh fact, we conjecture
that many properties which scale-free networks have in comwith real networks are
resulted from the high variability of degrees instead oflikebcore, yet the former does
not necessarily implies the latter. For example, the awesprtest path lengths of HOT
model and scale-free model are both nicely low, due to theegggion at the high degree
nodes. However concluding that the hublike core scale+fredel is representative from

this evidence would be a mistake.

On the other side, many graph metrics may have some commeeinties except for
different scenarios (for example, tlsametric and assortativity). Categorizing all these
metrics according to their fundamental similarities an@ledences will greatly clarify the

current literature and facilitate future studies.



132
7.2.4 the Graph Space: Properties and Dynamics

While the space of graphs is extremely diverse and the coathepace of graphs is
much more complicated than the graph it contains, our woekistight on this highly di-
mensional space by dividing it into countable subspacesbgnelating its node degree,
stationary distribution to the graph properties that easttenrepresents. It would be of
great interests to further explore each subspace of graphbkat more fundamental simi-
larity and diterence between each graphs can be easily characterizec@nvaéso capture
the change of functionality along a series of structurahgfarmations towards a better
understanding of the interactions between function anatgire.

Another important application for this GRAPH of graph is tacacterize the dynamics
of graphs. As flips define a local and gradually changing m®éer graph transformation,
we can evaluate how functionalities and structures chaalpegy this process, especially
when the transformations are along the directions of mano&tly changing the degree
variability, or thes-metric. Furthermore, we can guide dynamics accordingtiaicefunc-

tional requirements and practical constraints to studetimdution of complex networks.
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Appendix A

Constructing an Snax Graph

As defined previously, thg,.x graph is the elememftin some background s&whose

connectivity maximizes the quantis(g) = > js did;, whered; is the degree of node

J)e
i € V, & is the set of links that defing, andD = {d;,d,,...,dy} is the corresponding
degree sequence. Recall that sibces ordered according td, > d, > - - - > dy, there will
usually be many dierent graphs with nodes satisfyibg The purpose of this appendix is
to describe how to construct such an element féiedént background sets, as well as to

discuss the importance of choosing the “right” backgrowstd s

A.1 Among “Unconstrained” Graphs

As a first case, consider the set of graphs having degree rssgDe with only the
requirement thal , d beeven That is, we do not require that these graphs be simple (i.e.,
they can have self-loops or multiple links between nodeshat they even be connected,
and we accordingly call this set of graphs “unconstrain€bhstructing thes, .« element
among these graphs can be achieved trivially, by applyieddthowing two-phase process.
First, for each node if d; is even, then attacth /2 self-loops; ifd; is odd, then attachd(—

1)/2 self-loops, leaving one available “stub.” Second, forathaining nodes with “stubs,”
connect them in pairs according to decreasing valuek. ddbviously, the resulting graph

is not unique as they,a element (indeed, two nodes with the same degree could eeplac
their self-loops with connections among one another). Nwless, this construction does

maximizes(g), and in the case whatis even for all € V, one achieves asax graph with
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s(g) = YiL,(di/2)-d?. As discussed in section 4.4, against this background afnstcained
graphs, thes,o« graph is the perfectly assortative (exdg) = 1) graph. In the case when
somed; are odd, then the&, .« graph will have a value of(g) that is somewhat less and
will depend on the specific degree sequence. Thus, the Ylyéd/2) - d? represents an
idealized upper bound for the value ®f,x among unconstrained graphs, but it can only be

realized in the case when all nodal degrees are even.

A.2 Among Graphs in G(D)

A significantly more complicated situation arises when tatsing elements of the
spaceG(D), that is, simple connected graphs havingodes and a particular degree se-
guenceD. Even so, not all sequenc&swill allow for the connection oh nodes, i.e., the
setG(D) may be empty. In the language of discrete mathematics,aysetbat a sequence
of integers{d,, d,, ..., d,} is graphicalif it satisfies the degree sequence of some simple,
connected graph, that is @(D) is nonempty. One characterization of whether or not a
sequencéd corresponds to a simple, connected graph is due to Erdo&ahai [46] as
discussed in 4.1.

Our approach to constructing ttsg .« element ofG(D) is via a heuristic procedure
that incrementally builds the network in a greedy fashionjterating through the set of
all potential linksO = {(i,]) : i < j;i,j = 1,2,...,n}, which we order according to
decreasing values afd;. In what follows we refer to the valugd; as theweightof link
(i, J). We add links from the ordered list of elementnuntil all nodes have been added
and the corresponding links satisfy the degree sequBbnci facilitate the exposition of
this construction, we introduce the following notationt 4 be the set of nodes that have
been added to the partial gragh, such thatB = V\A is the set of remaining nodes to
be added. At each stage of the construction, we keep tradieaitrent degredor node
i, denotedd;, so that it may be compared with itstended degree;dnote thatd; = 0 for
alli € 8). Definew, = d, — d as the number of remainingubs that is, the number of
connections still to be made to nodeNote that values otﬁi andw; will change during

the construction process, while the intended dedgreemains fixed. For any point during
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the construction, define4 = 3.4 Wi to be the total number of remaining stubs#hand
dg = Yicg i to be the total degree of the unattached nodes. ifhe valuesvz anddg are
critical to ensuring that the final graph is connected and@stended degree sequence.
In particular, our algorithm will make use of several comahs.
Condition A-1: (Disconnected Cluster).If at any point during the incremental construc-
tion the partial graplys haswz = 0 while |8] > 0, then the final graph will be discon-

nected.

Proof. By definitionWg is the number of stubs available in the partial gragph [t there
are additional nodes to be added to the graph but no more isttbs partial graph, then

any incremental growth can occur only by forming an addaipeeparate cluster. O

Condition A.1la: (Disconnected Cluster). If at any point during the construction algo-
rithm the partial graplys haswiz = 2 with |8] > 0, then adding a link between the two

stubs ingx will result in a disconnected graph.

Proof. Adding a link between the two stubs will yield; = 0 with |B| > 0, thus resulting

in condition A.1. O

Condition A.2: (Tree Condition). If at any point during the construction

dg = 2|B| - Wz, (A.1)

then the addition of all remaining nodes and links to the naqust beacyclic(i.e., tree-
like, without loops) in order to achieve a single connectexpb while satisfying the degree

sequence.

Proof. To see this more clearly, suppose that for some intermegaite in the construc-
tion process thatvz = m. That is, there are exactiy remaining stubs in the connected
component to which the remaining nodesBmmust attach. We can prove that, in order to
satisfy the degree sequence while maintaining a singleextiad graph, each of these
stubs must become the root of a tree. First, recall from kgrsiph theory that an acyclic

graph connecting nodes will have exactly= n—1 links. DefineB; c 8for j=1,...,m
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to be the subset of remaining nodes to be added to jstuhereujf”:lB,- = 8. Further
assume for the moment thatl, B8; = 0, that is, each node 8 connects to a subgraph
rooted at one and only one stub. Connecting the nod®s to a subgraph rooted at styb
will require a minimum of3;]| links (i.e.|8;| — 1 links to form a tree among th#\;| nodes
plus one additional link to connect the tree to the stub).sTuorder to connect the nodes
in the setB; as a tree rooted at stub we requirey,.s d« = 2|8;| — 1, and to attach all

nodes inB to them stubs we have

m
dg = . di:Z dy

ieB j=1 keBj
m

= ). (28i-1)
j=1

= 21B|-m

= 2|8| - Wy

Thus, at the point when (A.1) occurs, only trees can be coctstd from the remaining

nodes inB. O

A.2.1 The Algorithm

Here, we introduce the algorithm for our heuristic condinrcand then discuss the

conditions when this construction is guaranteed to resuhe s, graph.

e StEP O (INITIALIZATION):
Initialize the construction by adding node 1 to the partia@pd; that is, begin with
A={1},8={23,...,n},andO = {(1,2),...}. Thus,Wy = d; anddg = Y, d.

e Srep 1 (Link SeLection): Check to see if there are amygmissibleelements in the
ordered lisO.
(@) If|0| = 0, then ErmiNaTE. Return the graply4.

(b) If |O] > 0, select the element(s), denoted herd g3,(having the largest weight

did;, noting that there may be more than one of them. For each sucfi lj),
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checkw; andwj: If eitherw; = 0 or W; = O then removei( j) from O.
(c) If no admissible links remain, return tais 1(a).

(d) Among all remaining links havingothw, > 0 andw; > 0, select the element
(i, j) with the largest valugy;,"(where for eachi(j) W; is thesmallerof W, and

W;), and proceed to1p 2.

e Srep 2 (Link Apprtion): For the link , j) to be added, consider two types of connec-

tions.

— Type l:i € A, ] € B. Here, noda is the highest-degree node.ifi with non-
zero hubs (i.e.di = max.4 di andw;, > 0) andj is the highest-degree node in
B. Add link (i, j) to the partial graplys: remove nodg from 8 and add it to
A, decrementv”andwj, and update boti.4 anddg accordingly. Remove ()

from the ordered lisD.

— Typell:ie A, j € A,i # |. Here,i and | are the largest nodes ifi for which

Wi > 0 andwj; > 0.

« Check theTree Condition
If dg = 2|18| — W4, then Type Il links are not permitted. Remove the link

(i, j) from O without adding it to the partial graph

* Check theDisconnected Cluster Condition
If Wg = 2, then adding this link would result in a disconnected graph

Remove the linki( j) from O without adding it to the partial graph

« Else, add the linki(j) to the partial graph: decremewt &dndw;, and

updatew accordingly. Remove (j) from the ordered lisD.

Note: There is potentially a third case in which B, j € 8,1 # |; however this can
only occur if there are no remaining stubs in the partial Qrgg. This is precluded
by the test for the Disconnection Condition among Type Ik ladditions; however
if the algorithm were modified to allow this, then this thirdse would represent

the situation where graph construction continues with a (@sconnected) cluster.
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Adding link (i, j) to the graph would require moving both nodesd | from B to A,
decrementingyvandwj, updating bothwz anddg accordingly, and removing,(j)

from the ordered lisD.
e Srep 3 (Repear): Return to Sep 1.

Each iteration of the algorithm either adds a link from tret In O or removes it from
consideration. Since there are a finite number of elemem@stine algorithm is guaranteed
to terminate in a finite number of steps. Furthermore, thered nature o) ensures the
following property.

Proposition A.3: At each point during the above construction, for any nadesA and

jEB,diZdj.

Proof. By construction, ifi € A and | € B, then for some previously added ndde A, it

must have been the case thad; > did;. Sincedy > 0, it follows thatd; > d;. O

A less obvious feature of this construction is whether orthetalgorithm returns a
simple connected graph satisfying degree sequénieone exists). While this remains
an open question, we show that if the Tree Condition is e\aatred, then the algorithm is
guaranteed to return a graph satisfying the intended degepgence.

Proposition A.4: (Tree Construction). Given a graphic sequengk if at anypoint during

the above algorithm the Tree Condition is satisfied, then

(a) the Tree Condition will remain satisfied through all mtediate construction, and

(b) the final graph will exactly satisfy the intended degreguence.

Proof. To show part (a), assume thdyt = 2|B| — W4 and observe that as a result only a link
satisfying Type | can be added next by our algorithm. Thuspnigxt link ¢, j) to be added
will havei € A andj € B, and in doing so we will move nodgfrom the working seB

to A. As a result of this update, we will havelg = —d;, A|B| = -1, andAW, = d; — 2.

Thus, we have updated the following values
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d = dg+Adg

dg —d;,

and

2AB| -Wy = 2(8| + AlBI) - (Wa + AWz)
= 2(8/-1)- (Wa +d; - 2)
= 2B/ - W —d,
= dg—d;.

Thus,dj; = 2|8’| - W, and the Tree Condition will continue to hold after the aicait
of each subsequent Type I link {).

To show part (b), observe that aftg#| Type | link additions (each of which results
in A|B| = —1) the setB will be empty, thereby implying also thalz; = 0. Since the
relationshipdg = 2|8| — W4 continues to hold after each Type | link addition, then it mus
be that/8| = 0 anddg = O collectively implywiz = 0. Furthermore, sinceq = Yica Wi

andw = d, - di > O for alli, thenw; = O for all i, and the degree sequence is satisfied.

An important question is under what conditions the Tree @ardis met during the
construction process. Rewriting this conditiondas- [2|B| — W4] = 0, observe that when
the algorithm is initialized in & 0, we havedg = "', d;, W4 = d; and thatB| = n - 1.

This implies that after initialization, we have
n n
dg — [21B| — W] = Zdi — 2B+ dy = Zdi —2(n-1).
i—2 i=1

Note that minimal connectivity amongnodes is achieved by a tree having total degree

>r,d = 2(n - 1), and this corresponds to the case when the Tree Conddiaret at
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initialization. However, if the sequend&is graphical and the Tree Condition is not met at
initialization, thendg — [2|B| — W4] = 22> 0, wherez = (31, di/2) — (n—1) is the number
of “extra” links above what a tree would require. Assuming 0, consider the outcome of

subsequentink Appition operations, as defined im 2:

e As already noted, when a Type | connection is made (thus gdditew nodg to the
graph), we havédg = —d;, AWx = d; — 2, andA|B| = -1, which in turn means that
Type | connections result in (dg — [2|B| — W4]) = 0.

e Accordingly, when a Type Il connection is made between twbstin A, we have
AW4 = -2, and both8| anddg remain unchanged. Thus(dg — [2|B| — W4]) = —2.

So if dg — [2|B] —W4] = 2z > 0, then subsequent link additions will cause this value
to either decrease by 2 or remain unchanged, or in other warditing additional links
can only bring the algorithm closer to the Tree Condition.nkkheless, our algorithm is
not guaranteed to reach the Tree Condition for all graphic ssopsb (i.e., we have not
proved this), although we have not found any counterexasripl@hich the algorithm fails

to achieve the desired degree sequence. If that were to happwever, the algorithm
would terminate withw{ > 0 for some node € A, even thoughB| = 0. Nonetheless, in
the case where the graph resulting from our constructios dagsfy the intended degree

sequenc®, we can prove that it is indeed tlsga, graph.

Proposition A.5: (General Construction). If the graphg resulting from our algorithm is
a connected, simple graph satisfying the intended degrpereeD, then this graph is the
Smax graph ofG(D).

Proof. Observe that, in order to satisfy the degree sequé&ncthe graphg contains a
total of| = /', di/2 links from the ordered lisD. Since elements o are ordered by
decreasing weightd;, it is obvious that, in the absence of constraints that reghe final
graph to be connected or satisfy the sequdigca graph containing the firselements of
O will maximize 3 s didj. However, in order to ensure thgits an element of the space
G(D), when selecting thklinks it is usually necessary to “skip” some element®pfaind

conditions A.1 and A.2 identify two simple situations wheteépping a potential link is
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required. While skipping links under other conditions mayrecessary to guarantee that
the resulting graph satisfi€ (indeed, the current algorithm is not guaranteed to do,this)
our argument is thaf these are the only conditionsider which elements @ have been
skipped during constructicandthe resulting graph does satiddy then the resulting graph

maximizess(g).

To see this more clearly, consider a second grgph § also constructed from the
ordered listD. Let& c O be the (ordered) list of links in the gragh and let€ c O be
the (ordered) list of links in the grapgh Assume that these two listsfi#ir by only a single
element, namelg € &, e ¢ E andé¢ &, & € §, whereS\e = E\&. By definition, bothe and
e are elements af, and there are two possible cases for their relative positithin this

ordered list (here, we use the notaticti to mean “proceeds in order”).

e If e < & thend uses in place o€ a link that occurs “later” in the sequencg

However, since) is ordered by weight, using ¢annot result in a higher value for
S(g)-

e If €< e thenguses in place o a link that occurs “earlier” in the sequen@e—one
that had been “skipped” in the constructiongofHowever, the “skipped” elements
of O will correspond to instances of Conditions A.1 and A.2, asthg them must

necessarily result in a graghg”G(D) because it is either disconnected or because its

degree sequence does not satl3fy

Thus, for any other grapb, it must be the case that eithgld) < s(g) or § ¢ G(D), and

therefore we have shown thaits the syax graph. O

A.2.2 Among Connected, Acyclic Graphs

In the special case when , d; = 2(n— 1), there exists only one type of graph structure
that will connect alln nodes, namely an acyclic graph (i.e., a tree). All conneatsatlic
graphs are necessarily simple. Because acyclic graphs sgecsal case of elements in
G(D), generatingsmax trees is achieved by making the appropriate Type | connestiothe

aforementioned algorithm. Inffect, this construction is essentially a type of determimist
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preferential attachment, one in which we iterate throughades in the ordered lif and

attach each to the highest-degree node with a remaining stub

In the case of trees, the arguments underlyingsthgproof can be made more precise.
Observe that the incremental construction of a tree is etpriv to choosing for each node
in B the single node itA to which it becomes attached. Consider the choices avaifabl
connecting two nodels m e B to nodeq, j € A whered, > dj, di > dy, and observe that
didg + didy, > didy +d;dy,, > d;dg+didy > d;dg +d;dy, Wwhere second inequality follows from
Proposition 3 while the first and last inequalities are byiagstion. There are two cases of
interest. First, ifaf > 1 andwj > 1, then itis clear that it is optimal to connduthnodes
k,m € Bto nodei € A. Second, ifwi = 1 andwj > 1, then it is clear that it is optimal
to conneck € Btoi € Aandme Bto | € A. All other scenarios can be decomposed
into these two cases, thus proving that the algorithm’seimantal construction for a tree

is guaranteed to result in thsg graph.

There are many important propertiessify trees that are discussed in [70].

A.3 Whenrpn,=-1

In order to see when a degree sequebcean achieva(g) = -1, we introduce a
simplified version ofCauchy-Schwarz-Burnyakovskii inequaliyhich states that for any

vector{by, b,, ..., b,}, it must be that

with the equality holding if and only b, = b, = --- = b,.

Applying this inequality to a graph withlinks, it follows that

2
Dld+d)? > Tl[Z(di+d,-)) .

(i.))e& (i.))e&

Expanding the squared term on the LHS and dividing both digles we have from rela-
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tions (4.14-4.15) that

2
D, 2ddy2+ Y (@+d)2 2 %(Z(di+dj)]

>
(i,))es (i,))e& (i,))e&
Q) + 0 > 25g)
$@-sg) . _,
S — (Ge) ’

which is simply another way of showing that) > —1, but it proves that(g) = -1 if and
only if d; + d; = d (a constant) for alli( j) € &.
Recall that withing(D) one hasyin = Z+Z as defined by (4.9), and thus ttsis,, graph

corresponds to = -1 if and only if for each elemerkone has + 7 = z (a constant).
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