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Chapter 2

Probing the Interiors of Very Hot
Jupiters Using Transit Light
Curves

This chapter will be published in its entirety under the same title by authors D. Ragozzine and

A. S. Wolf in the Astrophysical Journal, 2009. Reproduced by permission of the American Astro-

nomical Society.
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Abstract

Accurately understanding the interior structure of extra-solar planets is critical for inferring their

formation and evolution. The internal density distribution of a planet has a direct effect on the

star-planet orbit through the gravitational quadrupole field created by the rotational and tidal

bulges. These quadrupoles induce apsidal precession that is proportional to the planetary Love

number (k2p, twice the apsidal motion constant), a bulk physical characteristic of the planet that

depends on the internal density distribution, including the presence or absence of a massive solid

core. We find that the quadrupole of the planetary tidal bulge is the dominant source of apsidal

precession for very hot Jupiters (a . 0.025 AU), exceeding the effects of general relativity and

the stellar quadrupole by more than an order of magnitude. For the shortest-period planets, the

planetary interior induces precession of a few degrees per year. By investigating the full photometric

signal of apsidal precession, we find that changes in transit shapes are much more important than

transit timing variations. With its long baseline of ultra-precise photometry, the space-based Kepler

mission can realistically detect apsidal precession with the accuracy necessary to infer the presence

or absence of a massive core in very hot Jupiters with orbital eccentricities as low as e ' 0.003. The

signal due to k2p creates unique transit light curve variations that are generally not degenerate with

other parameters or phenomena. We discuss the plausibility of measuring k2p in an effort to directly

constrain the interior properties of extra-solar planets.
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2.1 Introduction

Whether studying planets within our solar system or planets orbiting other stars, understanding

planetary interiors represents our best strategy for determining their bulk composition, internal

dynamics, and formation histories. For our closest neighbors, we have had the luxury of sending

spacecraft to accurately measure the higher-order gravity fields of these objects, yielding invaluable

constraints on their interior density distributions. Using these observations, we have been able,

for instance, to infer the presence of large cores, providing support for the core-accretion theory

of planet formation (Guillot, 2005). Study of planets outside our solar system, however, has ne-

cessitated the development and usage of more indirect techniques. Nevertheless, as the number

of well-characterized extra-solar planets grows, we gain more clues that help us answer the most

fundamental questions about how planets form and evolve.

Guided by our current understanding of planetary physics, we have begun to study the interiors

of extra-solar planets. This endeavor has been dominated by a model-based approach, in which the

mass and radius of a planet are measured using radial velocity and transit photometry observations,

and the interior properties are inferred by finding the model most consistent with those two ob-

servations. This strategy clearly requires a set of assumptions, not the least of which is that the

physical processes at work in extra-solar planets are just like those that we understand for our own

giant planets. While it does seem that this approach is adequate for explaining most of the known

transiting planets, there does exist a group of planets for which the usual set of assumptions are

not capable of reproducing the observations (e.g., Guillot et al., 2006; Burrows et al., 2007). These

are the planets with so-called positive “radius anomalies”, including the first-discovered transiting

planet HD 209458b (Charbonneau et al., 2000). Though most of these planets can be explained

by adjusting different pieces of the interior physics in the models (including opacities, equations of

state, and heat deposition), it is currently impossible to discern which combination of these possible

explanations is actually responsible for their observed sizes (Guillot et al., 2006).

Additional uncertainties also exist for planets at the other end of the size spectrum. For the

group of under-sized extra-solar planets, such as HD 149026b, the canonical approach is to give the

planet a massive highly condensed core of heavy elements in order to match the observed radius.

This approach also provides a first order estimate of the planet’s bulk composition, in terms of

its fraction of heavy elements. There is also the added complication of how the assumed state of

differentiation affects the inferred composition and predicted structure (Baraffe et al., 2008).

Currently, the most promising approach to modeling the distinctive features of extra-solar planet

interiors is to study the known transiting planets as an ensemble. The group can be used to develop

either a single consistent model that reproduces all the observations (e.g., Guillot et al., 2006) or

to showcase the possible diversity in model parameters (e.g., opacities, as in Burrows et al., 2007).
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Surely, a model-independent measure of interior structure would be valuable in order to begin

disentangling otherwise unconstrained physics.

The idea of obtaining direct structural measurements for distant objects is by no means a new

one. For decades, the interiors of eclipsing binary stars have been measured by observing “apsidal

motion,” i.e., precession of the orbit due to the non-point-mass component of the gravitational

field (Russell, 1928; Cowling, 1938; Sterne, 1939a,b). The signal of the changing orbit is encoded

in the light curves of these systems by altering the timing of the primary and secondary eclipses.

From these eclipse times, it is straightforward to determine the so-called apsidal motion constant

which then constrains the allowed interior density distributions. Interior measurements inferred from

apsidal precession were among the first indications that stars were highly centrally condensed. While

it seems non-intuitive, we show in this paper that we can use a similar technique to measure the

interior properties of very hot Jupiters. Most surprisingly, the interior structure signal for very hot

Jupiters actually dominates over the signal from the star, yielding an unambiguous determination

of planetary interior properties.

Our theoretical analysis is also extended to full simulated photometry in order to explore the

observability of apsidal precession. We show that this precession is observable by measuring the

subtle variations in transit light curves. The photometric analysis is focused on the data expected

from NASA’s Kepler mission, which successfully launched on March 6, 2009 (Borucki et al., 2003;

Koch et al., 2006). Kepler will obtain exquisite photometry on ∼100,000 stars, of which about 30

are expected to host hot Jupiters with periods less than 3 days (Beatty & Gaudi, 2008). Kepler has

the potential to measure the gravitational quadrupoles of very hot Jupiters though the technique

described below. If successful, this will constitute a major step towards an understanding of the

diversity of planetary interiors.

In Section 2, we describe the background theory that connects interior structure and orbital dy-

namics and explore which effects are most important. Section 3 applies this theory to the observable

changes in the transit photometry, including full Kepler simulated light curves. We show in Section

4 that the signal due to the planetary interior has a unique signature. Other methods for inferring

planetary interior properties are discussed in Section 5. The final section discusses the important

conclusions of our work.

2.2 Background Theory

2.2.1 Coordinate System and Notation

The internal structure of very hot Jupiters can be determined by observing changes in the planet’s

orbit. These changes can be described in terms of two general types of precession. Apsidal precession

refers to rotation of the orbital ellipse within the plane of the orbit. It is characterized by circulation
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of the line of apsides, which lies along the major axis of the orbit. Nodal precession, on the other

hand, occurs out of the plane of the orbit and refers to the orbit normal precessing about the total

angular momentum vector of the system. For typical very hot Jupiter systems with no other planets,

apsidal precession has a much stronger observable signal than nodal precession (see Section 2.4.1),

so we focus our discussion on the simpler case of a fixed orbital plane.

As is typical for non-Keplerian orbits, the star-planet orbit is described using osculating orbital

elements that change in time. We identify the plane of the sky as the reference plane and orient the

coordinate axes in the usual way such that the sky lies in the x-z plane with the y-axis pointing at

Earth. The intersection of the orbital plane and the reference plane is called the line of nodes, but

without directly resolving the system, there is no way to determine the orientation of the line of

nodes with respect to astronomical North; thus, the longitude of the ascending node, Ω, cannot be

determined. Given this degeneracy, we simplify the description by orienting the z-axis to lie within

the plane spanned by the orbit normal and the line-of-sight. The angle between the line of sight and

the orbit normal is i, the inclination. The x-axis is in the plane of the sky and is the reference line

from which the argument of periapse (ω) is measured (in the standard counter-clockwise sense). For

this choice of coordinates, the argument of periapse and longitude of periapse ($) are equivalent.

Given this coordinate system, transit centers occur when the planet crosses the y-z plane; this point

lies 90◦ past the reference x-axis, and thus primary transits occur when the true anomaly, f , satisfies

ftr + ωtr ≡ 90◦, where the subscript tr indicates the value at transit center.1

Throughout this paper, we refer to parameters of the star (mass, radius, etc.) with subscripts of

“∗” and parameters of the planet with subscripts of “p”. For evaluation of various equations, we will

take as fiducial values the mass ratio Mp/M∗ = 10−3, the radius ratio Rp/R∗ = 0.1 (though some

low density planets have radius ratios greater than 1/6), and the semi-major axis in stellar radii

a/R∗ = 6, typical for very hot Jupiters, which we define as planets with semi-major axes a . 0.025

AU (see Table 1).2 In this definition, we deviate from Beatty & Gaudi (2008), who define very

hot Jupiters as planets with periods less than 3 days. These authors estimate that Kepler will find

∼30 such planets, of which ∼16 will be brighter than V=14 (T. Beatty, pers. comm.). Since our

definition is more stringent, our technique will be applicable to fewer Kepler planets.

2.2.2 Rotational and Tidal Potentials

It is well known from classical mechanics, that if stars and planets are considered to be purely

spherical masses, then they will obey a simple r−2 force law and hence execute closed elliptical orbits.

Non-spherical mass effects are caused by the application of external potential(s): the centrifugal

potential of spinning bodies causes rotational flattening and the tidal potential of a nearby mass
1In elliptical orbits, if the inclination is not 90◦, the photometric minima do not exactly coincide with the planetary

conjunctions. See Kopal (1959), p. 388 and section 2.3.3 below.
2Throughout this work, we do not distinguish between Mtot and M∗, since Mp �M∗.
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raises tidal bulges. Rotational and tidal bulges create gravitational quadrupole fields (r−3) that lead

to orbital precession.

The complex subject of how planets3 respond to applied potentials is encapsulated in the so-called

theory of figures (Zharkov & Trubitsyn, 1978). As long as the distortions are small, we can simplify

the problem by ignoring the small interaction terms between the tidal and rotational potentials; in

this paper, we thus restrict ourselves to the first order theory, where the two planetary responses

simply add. Even in the linear case, the way the fluid planet responds depends on the full radial

density structure of the planet. The planetary response is conveniently captured in a single variable

k2p, using the definition

V ind
2 (Rp) ≡ k2pV

app
2 (Rp) (2.1)

where k2p is the Love number of the planet, which is just a constant of proportionality between the

applied second degree potential field V app
2 and the resulting field that it induces V ind

2 at the surface

of the planet. Due to the orthogonality of the Legendre polynomials used to express the gravity

field, if the planet is responding to a second degree harmonic field, then only the second degree

harmonic of the planet’s gravity field is altered, to first-order. Thus, k2p is a measure of how the

redistribution of mass caused by the applied potential actually affects the external gravity field of

the planet. In the stellar literature, the symbol k2 is used for the apsidal motion constant, which is

half of the secular/fluid Love number that we use throughout this paper (Sterne, 1939a).

The Love number k2 is an extremely useful parameterization, as it hides the complex interactions

of a planet and an applied potential in just a single number. The process of calculating k2 of a fluid

object (like stars and gas giants), from the interior density distribution is fairly straightforward and

outlined in several places (e.g., Sterne, 1939a; Kopal, 1959). Objects with most of their mass near

their cores, like stars, have very low k2 values (∼0.03 for main sequence solar-like stars, Claret,

1995) since the distorted outer envelope has little mass and therefore little effect on the gravity

field. Planets have much flatter density distributions, and thus distortions of their relatively more

massive outer envelopes greatly affect the gravity field. At the upper extreme lies a uniform density

sphere, which has k2 = 3/2. In this way, k2 can be thought of as a measure of the level of central

condensation of an object, with stronger central condensation corresponding to smaller k2.

By examining the variations in k2 for giant planets within our own Solar System, we can gain

a feel for its expected values and how sensitive it is to internal structure. The n = 1 polytrope is

commonly used to approximate the density structure of (cold) gas giant planets; it has k2 ≈ 0.52

(Kopal, 1959). This can be compared to the value determined from the gravity measurements of

Jupiter, where k2J ' 0.49. Even though Jupiter may have a 10 Earth mass core, it is small in

comparison to Jupiter’s total mass, and thus it has minor effect on the value of k2. Saturn, on the
3For clarity, in these sections we focus on the planetary shape, though the derivations are also valid for stars.
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other hand has a roughly 20 Earth mass core and is less than 1/3 of Jupiter’s mass. As a result,

the presence of Saturn’s core is easily seen in the value of its Love number k2S ≈ 0.32. From this,

we can see that planets with and without significant cores differ in k2p by about ∼ 0.1. This can

also be inferred from Barnes & Fortney (2003) by using the Darwin-Radau relation to convert the

moment of inertia factor to k2. Furthermore, Bodenheimer et al. (2001) list the moment of inertia

factors of various planet models of HD 209458 b and τ Bootis b, which correspond to a range of k2p

values from ∼0.1 to ∼0.6.

Current methods for inferring the internal structures of extra-solar planets combine measure-

ments of the mass and radius with a model to obtain estimates of the planet’s implied composition

and core size. Unfortunately, these models require one to make assumptions about the degree of

differentiation, among other things (Baraffe et al., 2008). A good measurement of k2p, however,

reveals important independent structure information, which can break the degeneracies between

bulk composition and the state of differentiation. Given such a wide range of potential k2p val-

ues, even an imprecise measurement of k2p will be extremely valuable for understanding extra-solar

planets. By measuring the k2p values for extra-solar planets, we can also uncover constraints on

the density structure that are independent of the measurement of the planetary radius. This new

information may allow us to probe the unknown physics responsible for the currently unexplained

radius anomalies.

2.2.2.1 Induced External Gravity Field

The internal structures of planets in our own solar system are most readily characterized by the

zonal harmonics of the planet’s gravity field, i.e., J2, J4, etc. It is these high-order harmonics

that are directly measured by spacecraft flybys. To better understand the connection between

the two, we can relate the k2 formulation to J2 by writing out the expression for the induced

potential at the surface of the planet in Equation 2.1 in terms of the definition of J2, yielding:

k2pV
app
2 (Rp) = −J2

GMp

Rp
P2(cos θ), where P2 is the usual Legendre polynomial and θ is the planetary

co-latitude (Murray & Dermott, 1999). We can use this equation to obtain expressions for the J2

field induced by both rotation and tides (discussed in more detail below). The relation relies on

dimensionless constants which compare the strength of the acceleration due to gravity with that of

the rotational and tidal potentials:

qr =
ν2
pR

3
p

GMp
and qt = −3

(
Rp
r

)3(
M∗
Mp

)
(2.2)
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where νp is the angular spin frequency of the planet. For the case where the spin axis and tidal bulge

axis are perpendicular (i.e., zero obliquity), the relationship between J2 and k2 is, to first order:

J2 =
k2

3

(
qr −

qt
2

)
(2.3)

Note that qt is a function of the instantaneous orbital separation, r, and is thus constantly changing

in an eccentric orbit in response to the changing tidal potential. Hence J2 for eccentric extra-solar

planets is a complex function of time. This is why it is more sensible to analyze the orbital precession

in terms of k2, which is a fixed intrinsic property of the planet, rather than J2.

As very hot Jupiters are expected to be synchronously locked (denoted by s) with small eccen-

tricities, it can easily be shown that qst ≈ −3qr, which simplifies equation 2.3 yielding:

Js2p '
5
6
k2pqr '

5
6
k2p

(
M∗
Mp

)(
Rp
a

)3

(2.4)

Using a moderate value of k2p = 0.3, the J2 of very hot Jupiters reaches as high as 5 ×10−3, about

half of the measured J2 of Jupiter and Saturn.

2.2.3 Apsidal Precession

The quadrupole field created by rotational and tidal potentials discussed above induces precession

of the star-planet orbit. Both Jupiter and Saturn have rather significant quadrupoles, dominated

entirely by their sizeable rotational bulges resulting from rapid rotation periods of less than 10

hours. In contrast, very hot Jupiters are expected to be synchronously rotating, and thus their spin

periods are longer by a factor of a few. Since the rotational bulge size goes as the square of the spin

frequency, very hot Jupiters should have rotational bulges that are at least an order of magnitude

smaller than Jupiter and Saturn, inducing only tiny quadrupole fields. These extra-solar planets are

extremely close to their parent stars, however, with semi-major axes of only ∼ 6 stellar radii. Very

hot Jupiters are thus expected to have large tidal bulges which are shown below to dominate the

quadrupole field and resulting apsidal precession.

2.2.3.1 Precession Induced by Tidal Bulges

The orbital effect of tidal bulges is complicated by their continuously changing size. While tidal

bulges always point directly4 at the tide-raising object, their size is a function of orbital distance.

Since the height of the tidal bulge depends on the actual separation between the objects, the second-

order gravitational potential is time-varying in eccentric orbits. Accounting for this dependence

(which cannot be captured by using a fixed J2) is critical, as illustrated by Sterne (1939a). The

4We can ignore the lag due to dissipation, which has an angle of only Q−1
p . 10−5 for giant planets (Goldreich &

Soter, 1966; Murray & Dermott, 1999).
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dominant tidal perturbation to the external gravity field of the planet, evaluated at the position of

the star, is a second-order potential:

Vtid(r) =
1
2
k2GM∗R

5
pr
−6 (2.5)

The apsidal precession due to the tidal bulge, including the effect of both the star and the planet

is (Sterne, 1939a; Eggleton & Kiseleva-Eggleton, 2001):

ω̇tidal = ω̇tidal,∗ + ω̇tidal,p

=
15
2
k2∗

(
R∗
a

)5
Mp

M∗
f2(e)n

+
15
2
k2p

(
Rp
a

)5
M∗
Mp

f2(e)n (2.6)

where n is the mean motion and f2(e) is an eccentricity function:

f2(e) = (1− e2)−5(1 +
3
2
e2 +

1
8
e4)

≈ 1 +
13
2
e2 +

181
8
e4 + ... (2.7)

Note that the factor of 15 does not appear for stationary rotational bulges, as detailed below, and

comes through Lagrange’s Planetary Equations from the higher dependence on radial separation

(r−6) in the tidal potential. For this reason, tidal bulges are much more important in producing

apsidal precession.

Furthermore, the main factor of importance to extra-solar planets is the mass ratio, which comes

in because the height of the tide is proportional to the mass of the tide-raising body. Consider the

ratio of the planetary and stellar effects:

ω̇tidal,p

ω̇tidal,∗
=
k2p

k2∗

(
Rp
R∗

)5(
M∗
Mp

)2

' 100 (2.8)

For tidal bulges, the apsidal motion due to the planet clearly dominates over the contribution of

the star. Even though the planet’s radius is smaller than the star’s by a factor of ten, the star is so

much more massive than the planet that it raises a huge tidal bulge, which consequently alters the

star-planet orbit. The benefit provided by the inverse square of the small mass ratio is compounded

by the order of magnitude increase in k2 of the planet over the star.
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2.2.3.2 Precession Induced by Rotational Bulges

The quadrupolar gravitational field due to the planetary rotational bulge, evaluated at the star’s

position is:

Vrot(r) =
1
3
k2ν

2
pR

5
pr
−3P2(cosαp) (2.9)

where αp is the planetary obliquity, the angle between the orbit normal and the planetary spin axis.

Sterne (1939a) assumes zero obliquity and calculates the secular effect of this perturbation on the

osculating Keplerian elements. This final result, including the effect of both the star and the planet

is5:

ω̇rot = ω̇rot,∗ + ω̇rot,p

=
k2∗

2

(
R∗
a

)5
ν2
∗a

3

GM∗
g2(e)n

+
k2p

2

(
Rp
a

)5 ν2
pa

3

GMp
g2(e)n (2.10)

where g2(e) is another eccentricity function:

g2(e) = (1− e2)−2 ≈ 1 + 2e2 + 3e4 + ... (2.11)

Evaluating the importance of this effect requires an understanding of the spin states of very

hot Jupiters and their stars. The rotation and spin pole orientation of very hot Jupiters should be

tidally damped on timescales . 1 MYr (e.g., Dobbs-Dixon et al., 2004; Ferraz-Mello et al., 2008). We

therefore assume that all planets have reached the psuedosynchronous rotation rate derived by Hut

(1981). The rotation rate of the star is usually much slower since the tidal stellar spin-up timescale

is much longer than ∼1 GYr (Fabrycky et al., 2007).

If both the star and the planet were spinning synchronously, the stellar and planetary rotational

bulges would have comparable contributions to apsidal precession. However, since the tidal bulge of

the planet is a much more important effect, we find that even fast-spinning stars have a very weak

contribution to apsidal precession.

2.2.3.3 Total Apsidal Precession

The other major contributor to the apsidal precession in extra-solar planetary systems is general

relativity. The anomalous apsidal advance of Mercury’s orbit due to its motion near the massive

Sun was one of the first confirmations of general relativity. This same apsidal advance is prevalent

in very hot Jupiter systems and has been shown to be possibly detectable through long-term transit
5The full equation, including arbitrary obliquities, is given in Kopal (1978), Equation V.3.18 (see also Sterne,

1939a; Eggleton & Kiseleva-Eggleton, 2001). Also recall that, unlike these authors, we use the symbol k2 to represent
the Love number which is twice the apsidal motion constant called k2 in eclipsing binary literature.
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timing (Miralda-Escudé, 2002; Heyl & Gladman, 2007; Pál & Kocsis, 2008; Jordan & Bakos, 2008).

The relativistic advance is given (to lowest order) by:

ω̇GR =
3GM∗n

ac2(1− e2)
(2.12)

One additional effect for non-synchronous planets is due to thermal tides (Arras & Socrates,

2009), which create a bulge on the planet due to temperature-dependent expansion of an unevenly-

radiated upper atmosphere. The thermal tidal bulge is very small in mass and is not expected

to provide a significant contribution to apsidal precession (P. Arras, pers. comm.) and is thus

neglected.

Since we are considering only the lowest-order effects, all the apsidal precession rates (rota-

tional/tidal for the star/planet and general relativity) simply add to give the total apsidal precession

(roughly in order of importance for very hot Jupiters):

ω̇tot = ω̇tid,p + ω̇GR + ω̇rot,p + ω̇rot,∗ + ω̇tid,∗ (2.13)

We are ignoring the small cross-terms (geodetic precession, quadrupole-quadrupole coupling, Lense-

Thirring effect, nutation, etc.) for the purposes of this paper as higher-order corrections.

Calculating each of these contributions to the precession shows that for very hot Jupiters, the

dominant term in the total apsidal precession is due to the planetary tidal bulge. For the known

transiting planets, the fraction of apsidal precession due to the planet is calculated and illustrated

in Figure 1. The precession due to the interiors of very hot Jupiters towers over the other effects.

General relativity, the next largest effect is ∼10 times slower than the precession caused by the

planetary tidal bulge.

The apsidal precession rate of very hot Jupiters due solely to the interior structure of the planet

is:

ω̇p ≈ 3.26× 10−10 rad/sec ×
(
k2p

0.3

)(
M∗
M�

)3/2

×(
Mp

MJ

)−1(
Rp
RJ

)5 ( a

0.025 AU

)−13/2

(2.14)

which explains why low density very close-in Jupiters are the prime targets for measuring apsidal

precession. For these planets, the precession rate can reach a few degrees per year.

The precession due to the planet has generally been neglected in extra-solar planet transit timing

work to date (Miralda-Escudé, 2002; Heyl & Gladman, 2007), which has considered stellar oblateness

or general relativity to be the dominant effects (in the absence of other planets) though Jordan &

Bakos (2008) have also pointed out that ω̇tidal,p can be an important source of apsidal precession. We
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find that the planetary quadrupole is usually 1-2 orders of magnitude more important than effects

previously considered for single very hot Jupiters. Hence, measuring apsidal precession essentially

gives ω̇tid,p which is directly proportional to k2p, implying that transit light curve variations due to

apsidal precession can directly probe the interiors of extra-solar planets.
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Figure 2.1
Fraction of Apsidal Precession Due to the Planetary Quadrupole. The points
show the planetary fraction of the total apsidal precession calculated for the known transiting
extra-solar planets with properties taken from J. Schneider’s Extra-Solar Planet Encyclopedia
(http://www.exoplanet.eu), assuming the planet has a typical Love number of k2p = 0.3 (e.g.
Saturn-like). The apsidal precession induced by the tidal and rotational bulges of the planet over-
come precession due to general relativity and the star, especially for short period planets. The ”error
bars” show the range of planetary contributions for a 5% variation in stellar masses (and hence ω̇GR)
and the comparatively smaller effect of varying the stellar Love number and rotation rate over all
reasonable values. The five cases where the planetary contribution to apsidal precession is most im-
portant (boxed) also have the shortest precession periods: WASP-12b, CoRoT-1b, OGLE-TR-56b,
WASP-4b, and TrES-3b would fully precess in about 18, 71, 116, 120, and 171 years, respectively.
The planet in the lower left is CoRoT-7, a super-Earth planet whose planetary contribution to pre-
cession is small because of its small radius. Transiting planets with periods longer than 6 days all
had planetary contributions less than 0.15. In all cases, the dominant signal in apsidal precession of
very hot Jupiters is k2p, which is determined by their internal density distribution and is a powerful
probe into their interior structure.



33

2.2.4 Modification of the Mean Motion

Non-Keplerian potentials also modify the mean-motion, n, and cause a small deviation from Kepler’s

Third Law. Including the effects described above, the non-Keplerian mean motion, n′, is (dropping

second-order corrections):

n′ = n

(
1 + ε− 3GM∗

2ac2

)
(2.15)

where ε is defined as

ε =
k2∗

2
qr,∗

(
R∗
a

)2

+
k2p

2
qr,p

(
Rp
a

)2

+ 3k2∗
Mp

Mtot

(
R∗
a

)5

+ 3k2p
M∗
Mp

(
Rp
a

)5

(2.16)

and n2 ≡ GMtot

a3 . The general relativistic correction to the mean motion is from Soffel (1989).

(Throughout this paper, except where noted, the difference between n′ and n is ignored as a higher-

order correction.)

As with apsidal precession, the planetary quadrupole is more important than the stellar quadrupole

by about 2 orders of magnitude. At the largest, the correction to the mean motion is a few times

10−5. Iorio (2006) used the fact that quadrupole moments cause deviations to Kepler’s Third Law

to attempt to derive the J2 of the star HD 209458 (the quadrupole of the planet was incorrectly

ignored).

However, as Iorio (2006) found, this method is only feasible if you know the masses and semi-

major axes of the orbit a priori or independently from Kepler’s Law. Since the error in stellar

masses (from radial velocities and evolutionary codes) is usually 3-10 % (e.g., Torres et al., 2008),

the propagated error on k2p would be a few times greater than the highest k2p expected, making this

method impractical. It has been proposed that the stellar mass and semi-major axis can be precisely

and independently measured via the light-travel time effect described by Loeb (2005). In practice,

however, the light-travel time effect is highly degenerate with the unknown transit epoch and/or the

orbital eccentricity. We find that a precise independent measurement of M∗ from light-travel time

is impractical even with the excellent photometry of Kepler.6

2.2.5 Expectations for Planetary Eccentricities

Thus far, we have quantified how planetary interiors affect the orbit through precession. The photo-

metric observability of this apsidal precession is highly dependent on the current orbital eccentricity

(e). Small eccentricities are the largest limitation to using transit light curves to probe extra-solar

6We do note that detailed observations of multiple-planet systems can yield mass estimates of each of the bodies
independently. Kepler asteroseismology can also provide independent information about stellar mass and other
properties (Kjeldsen et al., 2008).
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planet interiors. Indeed, if eccentricities are very low, measuring apsidal precession from transit light

curves may not be possible for any of the Kepler planets.

Nearly all hot Jupiters have eccentricities consistent with zero, though the radial velocity tech-

nique has difficulty putting 3-σ upper limits on eccentricities smaller than 0.05 (Laughlin et al.,

2005). So far, the strongest constraints are placed by comparing the deviation of the secondary

transit time from half the orbital period, which are related by (e.g., Charbonneau et al., 2005):

e cosω ' π

2Porb
(tsec − tprim −

Porb

2
) (2.17)

Similarly, by measuring the primary and secondary transit durations (ΘI and ΘII), an addi-

tional constraint can be placed on e sinω. The equation commonly quoted in the extra-solar planet

literature (Kallrath et al., 1999; Charbonneau, 2003; Winn et al., 2006) has a sign error; the correct

equation is derived by Kopal (1959), p. 391 :

e sinω =
ΘII −ΘI

ΘII + ΘI

α2 − cos2 i

α2 − 2 cos2 i
(2.18)

where α ≡ R∗+Rp
a
√

1−e2 . The accuracy of this measurement is typically smaller than for e cosω, but we

include this equation to note that there is information about both the eccentricity and its orientation

in the full transit light curve (see also Bakos et al., 2009).

Combining secondary transit timing information with radial velocity and Rossiter-McLaughlin

measurements to help constrain ω, Winn et al. (2005) found the best-fit eccentricity for HD 209458

was ∼0.015. Though Winn et al. (2005) argue that the actual eccentricity is probably less than

0.01, it is not necessarily 0 (Mardling, 2007). Recently, Joshi et al. (2008) revealed WASP-14b, a

young massive hot Jupiter with an eccentricity of 0.1; WASP-10b and WASP-12b also appear to be

eccentric (Christian et al., 2008; Hebb et al., 2009), though these eccentricities may be spurious or

overestimated.

The most accurate eccentricity constraint is a detection by Knutson et al. (2007a) for the very hot

Jupiter HD189733b. They observed continuously and at high cadence (0.4 seconds) with the Spitzer

space telescope and measured a secondary timing offset corresponding to e cosω = 0.001± 0.0002, a

5-σ result that they could not explain by any other means. (Preliminary analysis of additional data

for this planet by Agol et al. (2009) indicates e cosω = 0.0002 ± 0.0001.) The constraint on e sinω

is much weaker. A non-zero eccentricity of e ' 0.003 for hot Jupiters is therefore consistent with

every measurement available in the literature, though the actual values of eccentricities at the 10−3

level are essentially unconstrained.

In the absence of excitation, the current eccentricities of these planets depend on the initial

eccentricity and the rate of eccentricity decay. Extrapolating from planets in our solar system
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(Goldreich & Soter, 1966) implies short circularization timescales of ' 10 MYr, though recent studies

have shown that using a fixed eccentricity damping timescale is an inappropriate simplification of

the full tidal evolution (e.g., Jackson et al., 2008; Levrard et al., 2009; Rodriguez & Ferraz-Mello,

2009). Even an analysis using the full tidal evolution equations cannot give a compelling case for

the present-day eccentricities of these planets, since there are essentially no direct constraints on the

tidal dissipation parameter for the planet, Qp. Various estimates show that Qp for exoplanets is not

known and may be quite large (e.g., Matsumura et al., 2008), implying that non-zero eccentricities

are not impossible. Even so, we stress that the best candidates for observing apsidal precession

are also those planets that have the fastest eccentricity damping, since the damping timescale and

apsidal precession rates are both proportional to Mp

M∗

(
a
Rp

)5

. Hence, those planets which have the

fastest precession rates will also have the lowest eccentricities. The first step in determining if this

trade-off allows for apsidal precession to be measured by Kepler data is to apply the techniques

described in this paper to the data themselves. Furthermore, with the discovery and long-term

characterization of more planets using ground and space-based observations, the detectability of

apsidal precession will increase dramatically.

We should note that there are several mechanisms that can excite eccentricities and compete with

or overwhelm tidal dissipation. The most prevalent is assumed to be eccentricity pumping by an

additional companion (Peale et al., 1979; Bodenheimer et al., 2001; Adams & Laughlin, 2006). Even

very small (Earth-mass or less) companions in certain orbits can provide significant eccentricity ex-

citation (Mardling, 2007). (In this case, however, our single-planet method for estimating k2p would

need to be modified considerably.) Tidal dissipation in rapidly rotating stars tends to increase the

eccentricity, potentially prolonging circularization in some systems (Ferraz-Mello et al., 2008). Very

distant inclined companions (e.g., a planet orbiting a star in a misaligned binary star system) can

induce Kozai oscillations that impart very large eccentricities on secular timescales (e.g., Fabrycky

& Tremaine, 2007). Arras & Socrates (2009) proposed that thermal tides can significantly affect

the orbital and rotational properties of extra-solar planets, though their conclusions appear to be

overestimated (Goodman, 2009; Gu & Ogilvie, 2009). Finally, recent (not necessarily primordial)

dynamical instabilities in the planetary system can also be responsible for generating eccentricity

which simply hasn’t damped away yet (Ford et al., 2005; Gomes et al., 2005; Chatterjee et al., 2007;

Thommes et al., 2008). We, therefore, continue our analysis under the possibility that some very

hot Jupiters may have non-zero eccentricities.

2.3 Transit Light Curves of Apsidal Precession

Previous studies of transit light curve variability due to non-Keplerian perturbations have focused

almost exclusively on transit timing. In contrast, we model the full photometric light curve in order
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to estimate the detectability of k2p. This will automatically include the effect of changing transit

durations, which are very useful for detecting apsidal precession (Pál & Kocsis, 2008; Jordan &

Bakos, 2008). In addition, using full photometry can provide a more direct and realistic estimate

of the detectability of k2p. Of course, the drawback is additional computational cost, though we

found this to be manageable, requiring less than 20 seconds to generate the ∼ 2 million photometric

measurements expected from Kepler ’s 1-minute cadence over 3.5 years.

2.3.1 Our Transit Light Curve Model

Determining the photometric light curve of a transiting system requires knowing the relative positions

of the star and the planet at all times. These can be calculated by describing the motion of the

planet with time-varying osculating orbital elements. When describing the motion of the planet using

instantaneous orbital elements, it is usually customary to ignore the periodic terms by averaging,

as in Sterne (1939a), and calculate only the secular terms. These small periodic terms describe how

the orbital elements change within a single orbit as a function of the true anomaly, f , due to the

non-Keplerian potential. In precessing systems, the value of the true anomaly at central transit,

ftr ≡ 90◦−ωtr, changes subtly from one transit to the next, inducing slow variations in the osculating

orbital elements at transit. Therefore, we include in our model the dominant periodic changes in

orbital elements as a function of orbital phase, using Mtr ≈ ftr as an appropriate approximation for

low eccentricities. Using a direct integration (described in Section 2.4.1), we verified that ignoring

these periodic variations can cause non-negligible systematic errors in determining transit times. The

periodic changes are derived from the same disturbing potentials used above. We follow the method

of Kozai (1959) for calculating osculating elements from mean elements, and assume zero obliquity.

The correction is similar to the correction to the mean motion, which is also applied in our model.

The correction to the semi-major axis, eccentricity, longitude of periapse, and mean anomaly are

aosc = amean + 2ae
1−e2 ε cosM ≈ 2aeε cosM , eosc = emean + ε(1− cosM), ωosc = ωmean + ε

e sinM , and

Mosc = Mmean− ε
e sinM where ε is defined in Equation 2.16. General relativistic periodic corrections

are also added; these are taken from Soffel (1989), page 92 (with α = 0, β = γ = 1). Using our

direct integrator (described below), we verified that these corrections reproduced the actual orbit to

sufficient accuracy for this analysis as long as e � ε ∼ 10−5. Other corrections are higher order in

small parameters and are ignored.

Our model uses these corrected elements to generate astrocentric Cartesian coordinates for a

specific system inclination and, for completeness, also includes the effect of light-travel time (Loeb,

2005) though we concur with Jordan & Bakos (2008) and Pál & Kocsis (2008) that the light-travel

time change due to ω̇ is unimportant. The positions are then translated to photometric light curves

using the quadratic limb-darkening code7 described in Mandel & Agol (2002). Kepler data will have

7Available at http://www.astro.washington.edu/ agol/transit.tar.gz
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enough signal-to-noise to justify using non-linear limb darkening laws (Knutson et al., 2007b), but

we do not expect that this simplification will significantly alter our conclusions.

In addition, we include the photometry of the secondary eclipse. As suggested by López-Morales

& Seager (2007), very hot Jupiters can reach temperatures exceeding 2000 K, where their blackbody

emission at optical wavelengths is detectable by Kepler. This thermal emission is added to the

reflected light of the planet, which appears to be small based on the low upper limit of the albedo of

HD 209458b and TrES-3 measured by Rowe et al. (2007) and Winn et al. (2008), respectively. We find

that in Kepler ’s observing bandpass of 430-890 nm (Koch et al., 2006), thermal emission of very hot

Jupiters can dominate over the weak reflected light. We estimate the depth of the secondary eclipse

(dsec) in our simulated Kepler data by assuming that 1% of the light is reflected and the other 99%

absorbed and reemitted as processed thermal blackbody emission from the entire planetary surface

(day and night sides). To be conservative and to account for unmodeled non-blackbody effects, we

divide the resulting planet/star flux ratio by 2 (Hood et al., 2008); the resulting depth of around

2× 10−4 is consistent with the lower values of Burrows et al. (2008), the tentative measurement of

the thermal emission from CoRoT-2b (Alonso et al., 2009), and the detection of secondary eclipse

emission from OGLE-TR-56b (Sing & López-Morales, 2009). We note that the best candidates for

detecting k2p are those with small semi-major axes and large radii; these same planets have relatively

large dsec values (Table 1). Secondary eclipses are very useful for determining e and ω. We will also

find that they can be important for observing apsidal precession.

Our model generates accurate photometry for an extra-solar planet undergoing apsidal precession.

Several other small photometric effects have been discussed in the literature, which we do not include.

Most of these effects are periodic (e.g., the reflected light curve) and therefore will not affect the

long-term trend of precession. Care will need to be taken to ensure that slow changes due to

parallax and proper motion, which should be quite small for relatively distant stars observed by

Kepler (Rafikov, 2008; Scharf, 2007) or changes in the stellar photosphere (Loeb, 2008) are not

significant. Non-Gaussian astrophysical noise of the star and other systematic noise should degrade

the accuracy with which k2p can be measured compared to our ideal photometry. The long-term

variability of the star can be interpolated away or modeled (Lanza et al., 2009), though it is not

clear how short-term variability will affect transit light curves at Kepler ’s level of precision. On the

other hand, complimentary observations (e.g., warm Spitzer, HST, radial velocities, JWST, etc.)

should only enhance our understanding of the systems studied.

2.3.2 Accuracy of k2p Measurement

With an accurate photometric model of apsidal precession, one could estimate the measurement

accuracy of k2p from Kepler data by carrying out a full Monte Carlo study of the inversion problem,

going from realistic synthetic photometric data sets to a determination of all system parameters. In
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this work, instead, we carry out a much simpler calculation which cannot provide strict one-sigma

error estimates like the Monte Carlo analysis, but does give an indication of how well k2p can be

resolved given a large dataset.

We obtain this accuracy estimate by comparing a realistic precessing photometric model with

k2p 6= 0 to a base model with k2p = 0. The base model is still undergoing very slow apsidal precession,

induced by general relativity and k2∗. We calculate the effect of a non-zero k2p value by subtracting

the precessing model from the base model. (See Figures 2.2 and 2.4.) Then, by calculating the

root-sum-square of the residual signal and comparing it to the photometric error on a single data

point, we obtain a numerical measure of the relative signal induced by k2p. The “signal-to-noise”

ratio for the data set is therefore given by:

S
N
∼
√∑

i(yi − y0
i )2

σ
(2.19)

where yi and y0
i are the photometry model values for the k2p test model and the base model,

respectively, and σ is the photometric error. We use σ = 1000 parts per million (ppm) flux per

1-minute integration, corresponding to the expected noise of Kepler on a faint V = 14 star (Koch

et al., 2006). Of the 30 planets with periods less than 3 days, 16 are expected to be brighter than

V ' 14 (T. Beatty, pers. comm.) and we can reasonably expect some fraction of these to have

orbits comparable to the planets modeled here.

Since our residual signal changes as a function of time, this is not a true signal-to-noise calculation;

the distribution of values in time matters for a proper interpretation, but any distribution would

yield the same effective S
N , and thus this construction is not capturing all of the details. Even so,

it does provide a useful and reasonable rough estimate for detectability. In order to identify the

resolution on the k2p measurement, we search for the value of k2p which yields a signal-to-noise of
S
N = 1. This is reasonable since it represents the threshold value of k2p, below which planetary

induced precession cannot be distinguished in the data with the given errors. The threshold k2p

value can also be loosely thought of as an estimate of the 1-σ expected errors.

This is a realistic estimate only insofar as the residual signal (yi − y0
i ) is due only to k2p and

cannot be absorbed by any other parameters. Hence we seek to choose other parameters so as to

minimize the residuals without changing k2p. For most system parameters, this is accomplished by

referencing the time to the center of the data set, and thus the difference between the signals grows

similarly forward and backward in time as seen in Figures 2.2 - 2.5. The transit shapes in both

models are equivalent at the center of the dataset as would be expected in an analysis of actual

data.

Additionally, a major effect from changing the precession period is to alter the observed average

period. When analyzing actual data, this would just be absorbed into a small adjustment to the
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Figure 2.2 Photometric Difference Signal from k2p. As described in the text, we use the
difference between two theoretical light curves in the transit photometry to assess the observability
of apsidal precession by Kepler. For WASP-4b at ω = 0◦, e = 0.003, and a central impact parameter,
the difference between a model with k2p = 0 and k2p = 0.146 would yield an effective “signal-to-
noise” of 1 on a moderately bright star (V = 14). Shown is this difference signal; the root sum of
squares of the signal is equal to 1000 ppm, the expected photometric accuracy of Kepler for a 1
minute observation (Koch et al., 2006). The trends seen in the figure are illustrated in Figure 2.3
by considering excepts of single primary transits from the regions labeled 1-5.

(unknown) stellar mass, thereby adjusting the period to absorb much of the k2p signal. It is therefore

important to correct for the average period change to avoid significantly overestimating the signal

due to k2p. Additionally, there is a similar, though less severe, effect for the epoch of the first transit,

which is also adjusted to best absorb signal. This is achieved by using an analytic expression for

the transit times (see Equation 2.22 below) which match the transit times of the photometric model

to very high accuracy. By fitting a line to these times, we can determine the average period and

epoch that absorb the degenerate portions of the k2p signal, leaving behind the residual due only to

k2p. We have not explicitly accounted for degeneracies between the signal from k2p and the other

parameters, like the radius, limb darkening, and system inclination, but since k2p induces a time

varying signal while these other parameters are generally constant, there is little expected signal

absorption from these parameters.

The only major drawback of this approach is that it does not allow the eccentricity state of

the system to change. With real data, the eccentricity and precession phase are not known in

advance, and thus must be found by inversion. As detailed in Section 2.2.5, eccentricity and orbital

orientation are primarily constrained by comparing primary and secondary transit pairs, and thus

proper inversion is greatly aided by accurate observations in wavelengths more favorable to secondary

transit observations, obtained by Spitzer, HST, or from the ground (e.g., Knutson et al., 2007a;



40

5

4

3

2

1

Time from Primary Transit Center (hours)

R
el

at
iv

e 
F

lu
x 

D
if

fe
re

nc
e 

(p
pm

)

−1.5 −1 −0.5 0 0.5 1 1.5
−10

0

10

20

30

40

50

60

70

80

90

Figure 2.3 Excerpts of Photometric Difference Signal. Examining excerpts of the residual
signal shown fully in Figure 2.2, the effects of transit timing and “transit shaping” can both be
seen. The five excerpts are offset for clarity. Transit timing has an asymmetric signal (dotted lines),
obtained when subtracting two transit curves slightly offset in time. Transit shaping, which is mostly
due to changing transit duration, creates a symmetric signal (dashed lines). The total difference
signal (solid lines) is dominated by the effect of transit shaping, which has ∼30 times more signal
than transit timing alone. (See explanation in text.) Both effects are maximized at the beginning
(1) and end (5), as expected for a signal that increases with longer baseline. The maximal signal
occurs during ingress and egress, when the light curve changes the fastest. The transit shapes are
equivalent at the center (3) by construction. The transit timing anomaly of precession is quadratic,
which, when fitted with a best-fit straight line corresponding to a non-precessing signal, yields two
intersections when transit timing is minimized (2,4). The transit timing offset at the beginning and
end is only 0.085 seconds, while the center is offset by -0.042 seconds.
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Figure 2.4 Photometric Difference Signal from k2p. Similar to Figure 2.2, but for ω = 90◦.
This figure is dominated by the photometric difference between secondary transits slightly offset in
time. At ω = 90◦ the changes in the primary transits due to precession are small, except far away
from the central time. At this orientation, the primary-secondary timing offset (Equation 2.17) is
maximized. This “secondary transit timing” signal is weaker than the signal from primary transit
as the secondary transit depth is much shallower. Therefore, an unreasonably high k2p of 0.925 is
required to detect the apsidal precession. Excerpts of single secondary transits taken from regions
labeled 1-5 are shown in Figure 2.5.

Swain et al., 2008; Gillon et al., 2008). We also find that binned and folded Kepler data has

comparable sensitivity to a single Spitzer observation for characterizing the secondary eclipses of

very hot Jupiters. In any case, our assessment of the threshold k2p assumes that the eccentricity of

the system is very well known, which will likely require additional supporting observations.

2.3.3 Comparison to Expected Signal

The residual light curves calculated for each planet, Figures 2.2 - 2.5, match the theoretical expecta-

tions of the apsidal precession signal (Miralda-Escudé, 2002; Heyl & Gladman, 2007; Pál & Kocsis,

2008; Jordan & Bakos, 2008). To interpret the results of our analysis, it will be useful to briefly

review the major components of the apsidal precession signal: changes in the times of primary tran-

sits, changes in the shape of primary transits, and changes in the primary-secondary offset times

(Miralda-Escudé, 2002; Heyl & Gladman, 2007; Pál & Kocsis, 2008; Jordan & Bakos, 2008).

The primary transit times, TN , due to apsidal precession are well described by a sinusoid for

very low eccentricities (e� 0.1):

TN = T0 +NPobs +
ePobs

π
(cosωtr,N − cosωtr,0)] (2.20)
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Figure 2.5 Excerpts of Photometric Difference Signal. Similar to Figure 2.3, but for ω = 90◦.
Single secondary transit differences are excised from the full difference signal shown in Figure 2.4.
The shape of the curves is due to the subtraction of two secondary transits slightly offset in time.
Since the secondary transits are complete occultations, they are flat-bottomed and lack the additional
structure due to limb-darkening seen in Figure 2.3. By construction, the offset grows in time away
from the center (3) of the signal and attains a maximum at the beginning (1) and end (5). Curves
2 and 4 are shown for comparison to Figure 2.3.
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where T0 is the epoch of the first transit, ωtr,N ≡ ω̇(TN − T0) + ωtr,0 is the argument of periapse for

the N th transit, and Pobs is the observed period between successive transits, which deviates from the

actual orbital period since the orbit has precessed a small amount between transits (Batten, 1973).

For small eccentricities, the amplitude of the transit timing variations due to k2p is:

ePobs

π
' 119 sec×

( e

0.003

)( a

0.025 AU

)3/2
(
M∗
M�

)−1/2

(2.21)

Given that individual transit times can be measured with accuracies of only a few seconds, even tiny

eccentricities e . 10−5 can induce detectable transit timing variations on precessional timescales

(∼ ω̇−1).

For our analysis, we extended Equation 2.20 to fifth order in eccentricity allowing accurate de-

termination of transit times for eccentricities up to of order 0.1. We also require a correction for

the effect of a non-central impact parameter (i < 90◦, e > 0). For an inclined eccentric orbit,

the apparent path of the planet across the stellar disk is curved. At orientations where the line

of sight is not along the major axis of the ellipse, the curved path is also asymmetric. There-

fore, the times of photometric minima, TN , do not correspond exactly to the times of conjunction

(when the planet crosses the y − z plane and ftr ≡ 90◦ − ωtr). We follow the correction from

Equation VI.9-21 of Kopal (1959), who find that at photometric minimum, ftr = 90◦ − ω′tr, where

ω′tr ≡ ωtr + e cosωtr cot2(i)(1− e sinωtr csc2(i)); in this corrective term, it is only required to keep

terms up to second order in eccentricity. Assuming that i and ω̇ are constant, it can be shown that

TN = T0 +NPobs

+
Pobs

π

[
e(cosω′tr,N − cosω′tr,0)

+
3
8
e2(sin 2ω′tr,N − sin 2ω′tr,0)

+
1
6
e3(cos 3ω′tr,N − cos 3ω′tr,0)

+ e4
( 1

16
(sin 2ω′tr,N − sin 2ω′tr,0)

− 5
64

(sin 4ω′tr,N − sin 4ω′tr,0)
)

+ e5
( 1

16
(cos 3ω′tr,N − cos 3ω′tr,0)

− 3
80

(cos 5ω′tr,N − cos 5ω′tr,0)
)]

(2.22)

This transcendental equation is solved iteratively for (TN − T0) to obtain the transit times and has

been tested thoroughly against the empirical determination of transit times calculated by our light
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curve model described above.

The expected apsidal precession periods (including small contributions from GR and the star)

for WASP-12b, CoRoT-1b, OGLE-TR-56b, WASP-4b, and TrES-3b are around 18, 71, 116, 120,

and 171 years, respectively. In other words, they have precession rates induced by the planetary

tidal bulge of a few degrees per year, compared to a few degrees per century as the fastest general

relativistic precession (Jordan & Bakos, 2008). We caution that if Rpa for WASP-12b is overestimated

due to imprecise data (e.g., Winn et al., 2007), then the precession period would increase accordingly.

Even with such fast precession rates, the duration of observations will generally be much shorter

than the precession period. In addition, as discussed above, the linear timing anomalies will be

absorbed into the effective period as a small change in the unknown stellar mass (Heyl & Gladman,

2007; Pál & Kocsis, 2008; Jordan & Bakos, 2008). Therefore, detection of apsidal precession from

primary transit times alone will require a significant detection of the curvature over a small portion

of a long-period sinusoid. Since the curvature in Equation 2.20 is maximal at ω ≈ 0, 180◦, these

orientations have the best primary transit timing signal. Even at these orientations, detecting

k2p from primary transit times alone is difficult, since it can be shown that the signal strength is

proportional to eω̇2, due to the need to detect curvature (Heyl & Gladman, 2007).

When the observational baseline is much shorter than the decades-long precession period, utilizing

the changing shape of the transits can significantly improve detectability of apsidal precession (Pál

& Kocsis, 2008; Jordan & Bakos, 2008). Transit shapes are primarily determined by the orbital

speed at transit ḟtr and impact parameter b, both of which depend on the precession phase ωtr. For

small eccentricities, the orbital angular speed at transit is given simply by ḟtr ' n(1 + 2e cosωtr).

Changes in the impact parameter are somewhat more subtle, since b is given by rtr cos i/R∗, where

rtr ' a(1− e2)/(1 + e sinωtr) is the star-planet separation. Hence, the apparent impact parameter

of the planet can change for non-central transits, even when the orbital plane remains fixed. The

evolving transit shape of precessing orbits is determined by variations in both orbital speed and

impact parameter. Simplifying the effect of transit shape by considering only the variations in

transit duration as a function of ωtr, Pál & Kocsis (2008) and Jordan & Bakos (2008) find that

these two effects are of comparable magnitude. These authors also show analytically that the two

effects exactly cancel when b = 1/
√

2. At this impact parameter, the transit duration stays constant

throughout apsidal precession. The full photometric transit shape, however, still changes detectably

in a precessing orbit, though the magnitude of signal is reduced (Figure 2.7).

The expected effect of changing transit shapes is fully consistent with the photometric difference

signals calculated by our model (Figures 2.2 and 2.3). Indeed, our model shows that transit shaping

dominates the signal by a factor of &30 (Figure 2.3). We can also see that changes in the transit

shape are maximized at orientations near ω ≈ 0, 180◦ (as expected from Equation 2.18).

For small eccentricities, the transit shaping signal strength is given by S
N ∝ eω̇ ∝ ek2p. Therefore,
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when transit shaping dominates the observable signal, we should find that searching for the threshold

k2p value that yields S
N = 1 results in a power law relationship between threshold k2p and e, such

that k2p ∝ e−1. By solving for threshold k2p for eccentricities from 0.001 to 0.1, we find, as expected,

that threshold k2p very closely follows a power law in eccentricity with a slope of -1 for all planets.

This power law relationship can be written as ek2p = C, where C is a constant calculated from our

model that depends on the planetary, orbital, and stellar parameters of the system.

At ω ≈ 90, 270◦, transit timing and transit shaping effects are much weaker and are rather

ineffective at constraining apsidal precession. At these orientations (when the Earth’s line of sight is

nearly aligned with the major axis of the orbit), another photometric signal emerges: variations in

the difference between the times of primary and secondary transits. The changing orientation of the

orbital ellipse causes a variation in the offset between primary and secondary transit times following

Equation 2.17 above (Heyl & Gladman, 2007; Jordan & Bakos, 2008). These authors show that the

strength of this signal is also proportional to eω̇ and we find that the variation in threshold k2p then

also follows k2p ∝ e−1.

The photometric difference signal at ω = 90◦ is shown in Figures 2.4 and 2.5. Using the method

described in Section 2.3.2 to remove degeneracies almost eliminates the primary transit signal en-

tirely, as expected, and the secondary transit offset becomes the more powerful signal. For WASP-

12b, with an expected Kepler secondary transit depth of ∼1830 ppm, the threshold k2p is actually

lower at ω = 90◦ (Figure 2.6). For the other planets, the secondaries are not as important.

Our estimates of threshold k2p at ω = 90◦ are based on the unknown secondary transit depth

(dsec) in the Kepler bandpass (though our estimates of dsec are consistent with all the measurements

in the literature to date). Furthermore, we find that S
N ∝ dsec, so that deeper secondary transits

improve the accuracy with which k2p can be measured. It is important to note that combining

Kepler primary transit times with precise secondary transit times measured in the near-infrared

(e.g., by warm Spitzer, HST, or JWST) is a very powerful way to constrain apsidal precession (Heyl

& Gladman, 2007) for any orientation. Even a few high-precision secondary eclipse observations are

enough to lower the value of threshold k2p from our predictions, especially when ω ≈ 90, 270◦.

By construction, threshold k2p values vary linearly with the assumed photometric error σ =

0.001 × 100.2(V−14). In addition, re-performing our analysis using a 6-year long Kepler mission

improved threshold k2p values by a common factor of ∼2.2.

2.3.4 Results for Specific Planets

Using the method described above, we have determined the threshold k2p for the most favorable

known transiting planets as analogs for the very hot Jupiters to be discovered by Kepler. The

threshold k2p for each planet was computed at a range of eccentricities from 0.001 to 0.1 and for

ω = 0◦ and ω = 90◦. Using the relationship discussed above (k2p ∝ e−1) we interpolated (and
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Figure 2.6 Eccentricities Needed to Detect Interior Properties from Apsidal Precession.
The best-known planets for detecting k2p precession are analogs to the hot Jupiters WASP-12b,
WASP-4b, CoRoT-1b, OGLE-TR-56b, TrES-3b, HAT-P-7b, TrES-2b, and WASP-14b. Assuming
that analogs to these planets exist in the Kepler field around a V=14 magnitude star, the above
graph shows the eccentricities required to detect k2p. Black symbols correspond to calculations
with ω = 0◦ and gray symbols correspond to ω = 90◦; in both cases, b = 0. Apsidal precession is
much easier to detect for larger eccentricities so increasing e decreases the detectable k2p. Using
our transit light curve model, we found that threshold k2p values followed a power law k2p ∝ e−1

(for low eccentricities), which is consistent with the analytical estimates that S
N ∝ eω̇ ∝ ek2p (see

Section 2.3.2). Interpolating (and sometimes extrapolating) on this power law relationship, the
graph identified the eccentricities required of these analog planets to detect precession due to a
“typical” planetary interior of k2p = 0.3 (triangles). For example, when e = 0.00026 and ω = 0◦,
the apsidal precession due to an analog of WASP-12b should be just detectable by Kepler. A higher
eccentricity (shown in Table 1) would be needed to measure k2p with sufficient accuracy (0.1) to
distinguish between a massive core and a core-less model (circles). Systematic errors are expected to
become important once the measurement error on k2p reaches as low as 0.01 (squares). If any of the
very hot Jupiters discovered by Kepler have comparable eccentricities, the long-term high-precision
photometry would allow for a powerful probe into their interior structure. HAT-P-7b and TrES-2b
are known to lie in the Kepler observing field, but the values above are not corrected for improved
photometric accuracy obtainable on these bright stars. Note that the eccentricities shown above and
in Table 1 are computed for S

N = 1; 3-σ measurements require eccentricities 3 times as high.
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Figure 2.7 Effect of Impact Parameter on Precession Signal. The detectability of apsidal
precession depends on the impact parameter (b) of the orbital track across the star. For ω = 0◦

(solid), the signal of primary transits are most important, with transit shaping playing the largest
role. (See Figure 2.3.) However, the strength of transit shaping is a function of impact parameter
with the minimum effect analytically estimated by Jordan & Bakos (2008) and Pál & Kocsis (2008)
to be b = 1/

√
2 (vertical solid line). Using a full photometric model, we see the expected decrease

in the shaping signal (i.e., requiring a larger k2p to reach S
N = 1). Note that the signal is nearly

maximal, with small threshold k2p values, for a large range of impact parameters. When ω = 90◦

(dotted), the effect of primary transits are minimal and the offset in secondary transits become the
determining factor. (See Figure 2.4.) At high impact parameters secondary eclipses are grazing,
reducing the observable signal. We also show the threshold k2p for an orientation of ω = 45◦, which
lies, as expected, between the two extremes. The values of threshold k2p shown are for an V=14
CoRoT-1b analog in the Kepler field with an eccentricity of 0.003.
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Table 2.1. Extra-Solar System Parameters and Results

Planet Analog M∗ R∗ Mp Rp a dsecb ω̇tot e (Threshold k2p=0.1)c Threshold Thresh. Ref

M� R� MJ RJ
a AU ppm ◦/yr ω = 0◦ ω = 90◦ Ṗdms/yr Q∗d

WASP-12b 1.35 1.57 1.41 1.79 0.0229 1830 19.9 0.0008 0.0004 0.95 92700 1
CoRoT-1b 0.95 1.11 1.03 1.55 0.0245 314 4.96 0.0028 0.0085 0.93 12500 2,3
WASP-4b 0.92 0.91 1.24 1.36 0.0234 109 2.91 0.0047 0.0394 0.68 9900 4
TrES-3b 0.93 0.83 1.91 1.34 0.0228 106 2.04 0.0062 0.0614 0.53 13700 5
OGLE-TR-56b 1.17 1.32 1.29 1.30 0.0236 451 3.00 0.0077 0.0096 1.36 24700 6
HAT-P-7 b 1.47 1.84 1.77 1.36 0.0377 176 0.25 0.2085 0.3146 6.73 2800 7
TrES-2 b 0.98 1.00 1.19 1.22 0.0367 18 0.13 0.2102 · · · e 2.94 350 8
WASP-14b 1.21 1.31 7.34 1.28 0.0360 144 0.09 0.8352e · · · e 3.92 5400 9
XO-3 b 1.21 1.37 11.8 1.22 0.0454 46 0.04 · · · e · · · e 8.00 1700 10
HAT-P-11b 0.81 0.75 0.081 0.42 0.0530 0.2 0.01 · · · e · · · e 29.2 0.1 11
CoRoT-7b 0.91 1.02 0.028 0.16 0.0170 8 0.29 · · · e · · · e 16.8 80 12

References. — (1) Hebb et al. (2009) (2) Bean (2009) (3) Barge et al. (2008) (4) Winn et al. (2009a) (5) Sozzetti et al. (2009)
(6) Pont et al. (2007b) (7) Pál et al. (2009) (8) Holman et al. (2007) (9) Joshi et al. (2009) (10) Johns-Krull et al. (2008) (11)

Bakos et al. (2009) (12) www.exoplanet.euf

Note. — These system parameters were used to estimate the detectability of apsidal precession for these very hot Jupiter systems. The
derivation of the values in the remaining columns is described in the text and in the footnotes below. For all systems, k2∗ = 0.03 and
quadratic limb darkening parameters u1 = 0.35 and u2 = 0.4 (appropriate for Kepler’s bandpass) were used (Mandel & Agol, 2002). For
reference, the measured eccentricity of WASP-12b, WASP-14b, HAT-P-11b, and XO-3b are 0.049 ± 0.015, 0.091 ± 0.003, 0.198 ± 0.046,
and 0.2884 ± 0.0035 respectively. Other planets have unmeasured eccentricities or eccentricity upper limits of .0.05. A discussion of
these results is provided in Section 2.3.4.

aWe use RJ ≡ 71492 km, the equatorial radius at 1 bar.

bThe estimated depth of the secondary transit in Kepler’s bandpass (see Section 2.3.1).

cThe eccentricity required (at two different values of ω) so that a k2p difference of 0.1 has an effective signal-to-noise of 1 in all of
Kepler data for a V=14 star, corresponding to a photometric accuracy of 1000 ppm/min. If analogs to these planets were found by Kepler
with the given eccentricities, the internal density distribution would be measured well enough to detect the presence of a large core (see
Section 2.3.2). These values correspond to the circles in Figure 2.6. These results are for central transits (for b > 0, see Figure 2.7).

dThe value of the change in period, Ṗ , that can be detected with a signal-to-noise of 1 in all of Kepler data for a V=14 star (see Section
2.4.2). The value of threshold Q∗ is an estimate of the maximum value of the stellar tidal dissipation parameter, Q∗, assuming that
the period decay is due entirely to tidal evolution of the planet. Lower values of Q∗ are detectable by Kepler. Stars are thought to have
time-averaged Q∗ values around 10000, though this value is highly uncertain and could be much higher for individual stars.

eEven with the precision of Kepler, apsidal precession for these planets is undetectable. The extrapolation used to compute eccentric-
ities at specific values of threshold k2p assumes the inverse relationship discussed in the text k2p ∝ e−1, which is only true for low
eccentricities.

fThis ultra-short period low-mass planet was recently announced by the CoRoT team, but has not been published in a peer-reviewed
journal. We take the parameters from J. Schneider’s Extra-solar Planets Encyclopedia and use the mass-radius relation for terrestrial
super-Earths of Sotin et al. (2007) to estimate the mass as ∼9 Earth masses (rather than using the quoted upper limit of 17 Earth masses).
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sometimes extrapolated) our calculations to determine the eccentricity required to reach threshold

k2p values of 0.3, 0.1, and 0.01. These results are summarized in Figure 2.6 and Table 1.

WASP-12b is the best candidate for observing apsidal precession. With an eccentricity of e '

0.00026 and k2p=0.3, the apsidal precession would have an effective signal-to-noise of ∼1 for all

of Kepler data. If e is ∼0.001, then k2p can be well characterized and not just detected. As the

difference in k2 between Jupiter and Saturn of ∼ 0.15 is primarily due to the presence of a massive

core, a resolution in k2p of 0.1 is enough to detect whether or not the planet has a core, at the

∼1-sigma level.

Although WASP-12b does not lie in the Kepler field, it clearly stands out as an excellent candidate

for observing apsidal precession. Though the putative eccentricity of 0.049 (Hebb et al., 2009) is

probably an overestimate (Laughlin et al., 2005), if it were real, it would cause sinusoidal transit

timing deviations with an amplitude of ∼25 minutes (using Equation 2.20) and a period of ∼18

years. Such a large deviation would be readily observed from the ground in either transit times or

transit shapes. If apsidal precession is not observed, tight upper limits on the eccentricity can be

established.

Analogs to the very hot Jupiters WASP-4b, TrES-3b, CoRoT-1b, and OGLE-TR-56b are good

candidates for observing apsidal precession if the eccentricities are above ∼0.003. (Note that CoRoT-

1b has only ∼30 days of observations from the CoRoT satellite (Barge et al., 2008), which is

insufficient to observe any of the effects discussed in this paper.) These planets have precession

periods of around 100 years so that the argument of periapse of these planets changes by ∼10◦

during the course of Kepler observations. Though none of these planets lie in the Kepler field, they

are all good candidates for observing apsidal precession though precision photometry.

WASP-14b is more massive and has a larger semi-major axis (0.035 instead of 0.025) which is

enough to significantly reduce the detectability of apsidal precession which only proceeds at 0.1◦

per year. Unlike the previously mentioned planets, WASP-14b has a known non-zero eccentricity of

0.091 ± 0.003 (Joshi et al., 2009). Thus, the amplitude of transit timing variations is known to be

very large (∼97 minutes), but with a ∼3400 year precession period.

CoRoT-7b is a very hot super-Earth and has the shortest known orbital period (excepting the

ultra-short period planets of Sahu et al. 2006). We included this planet in our analysis to get a feel

for the plausibility of detecting the interior structure of terrestrial extra-solar planets. The small

radius reduces the planetary contribution to apsidal precession (Figure 1) and significantly reduces

the photometric signal. We note here that in bodies where material strength (rigidity) is more

important than self-gravity, k2p is no longer directly related to internal density distribution. The

correction factor is typically small for bodies larger than the Earth (Murray & Dermott, 1999).

XO-3b is a super-massive eccentric planet that is not in the Kepler field. Even so, it is interesting

to note that, using the known eccentricity e = 0.2884± 0.0035 (Winn et al., 2009b) and accounting
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for the brightness of the host star (V=9.8), the Kepler threshold k2p is reduced to only 0.54. As

pointed out by Jordan & Bakos (2008) and Pál & Kocsis (2008), XO-3b is a good candidate for

observing apsidal precession within the next decade or so. Furthermore, as discussed below, the

non-zero obliquity of the stellar spin axis (Winn et al., 2009b) may also result in an observable

signal due to nodal precession.

HAT-P-7b and HAT-P-11b are orbiting bright stars in the Kepler field. The latter is an eccen-

tric hot Neptune with a relatively large semi-major axis resulting in no eminently detectable apsidal

precession. HAT-P-7b, on the other hand, is a good candidate for detecting apsidal precession. It is

probably one of the brightest hot Jupiters in the Kepler field, orbiting a V=10.5 star. The system

brightness improves the expected photometric accuracy from 1000 ppm/min to 200 ppm/min, imply-

ing that an eccentricity of only 0.014 is needed to detect apsidal precession (threshold k2p=0.3). Pál

et al. (2009) report a best-fit eccentricity of 0.003 ± 0.012, indicating that the necessary eccentricity

cannot be ruled out. Furthermore, this planet has transiting data extending back to 2004 and was

observed by NASA’s EPOXI Mission in 2008 (Christiansen et al., 2009; D. Deming, pers. comm.).

This additional baseline, though sparsely sampled, may provide the additional leverage needed to

detect apsidal precession if the eccentricity is non-zero. Note, however, that detecting changes in

transit shapes is more difficult when the observations are made with a variety of telescopes because

transit shapes depend on the observing filter used, due to wavelength-dependent limb darkening.

TrES-2b is similar to HAT-P-7b in that it also lies in the Kepler field, has observations dating

to 2005, and was observed by NASA’s EPOXI Mission. TrES-2b is somewhat fainter than HAT-

P-7b (V=11.4), and, correcting for the system brightness, an eccentricity of 0.021 would result in

detectable apsidal precession (threshold k2p=0.3). Observations of the secondary eclipse show no

detectable deviations of the orbit from circularity (O’Donovan et al., 2009). Even so, the light curve

of this planet is quite sensitive to perturbations as it has a quite high impact parameter b = 0.854.

Accounting for this impact parameter does not significantly change the required eccentricity.

We conclude that Kepler may detect the cores of very hot Jupiters and probe their interior

structure though their evolving transit light curve if eccentricities are above ∼0.003. As future

observations provide longer baselines for these observations, the sensitivity to interior structure

measurements will increase dramatically, significantly lowering the eccentricity needed to observe

apsidal precession.

In cases where apsidal precession is not observed, the data can set strong upper limits on planetary

eccentricities. An upper limit on the eccentricity can be inferred by assuming that the planet has the

minimal physically-plausible value of k2p ≈ 0.1. Null detections of apsidal motion should therefore

provide upper limits on eccentricity comparable to the values shown in Table 1 (also shown by circles

in Figure 2.6). Such strong eccentricity constraints are valuable for improving our understanding of

these close-in planets.
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2.4 Potential Confusion of the Apsidal Precession Signal

In the above, we have assumed that measuring ω̇ is tantamount to measuring k2p. This is justified

by noting that the conversion ω̇ to k2p involves only factors that are very well characterized. In

Section 2 and Figure 1, we showed that k2p is usually the dominant source of apsidal precession.

The effects of k2∗ and general relativity are well-understood and can typically be subtracted away

without introducing serious uncertainty, even when they dominate the apsidal precession rate. From

Equation 2.6, converting the remaining ω̇p to k2p requires only knowing Mp

M∗
, e, Rp

a , and n. The

latter two are very accurately measured with even a few transit light curves (e.g., Torres et al.,

2008; Southworth, 2008). The eccentricity only enters the equation through the f2(e) and g2(e)

eccentricity functions (Equations 2.7 and 2.11), and Kepler observations of secondary eclipse are

sufficiently accurate to remove any systematic error due to these terms unless the eccentricity is

large (e & 0.3). Determining the mass ratio requires well-sampled radial velocity observations. The

systems detected by Kepler are bright enough to get good mass measurements, especially since very

hot Jupiters have large radial velocity amplitudes (K ∼ 200 m/s).8 The anticipated error in the

mass ratio is a few percent (Torres et al., 2008). In all, we estimate that, converting from ω̇ to k2p

leads to a typical systematic error on k2p of around ∼.01. This is a relatively small systematic effect

in comparison to the potential range (∼0.5) of k2p values. For reference, the eccentricity required

to reach a threshold k2p of 0.01 is shown in Figure 2.6 by squares.

Another way to introduce systematic errors on the measurement of k2p is to misinterpret similar

transit light curve variations. To ensure that the method outlined in this paper truly probes the

interiors of extra-solar planets, we consider in this section whether the transit light curve resulting

from apsidal precession can be confused with any other common circumstances. Although a very

specific combination of parameters is required for any particular phenomenon to successfully mimic

a signal due to k2p, the below effects should be reconsidered when actual data is available.

2.4.1 Testing the Effect of Obliquity

If either the star or planet has a non-zero obliquity, the orbital plane will no longer be fixed as

a result of nodal precession. The obliquities of very hot Jupiters rapidly (. 1 MYr) decay to a

Cassini state, and recent work has shown that these planets are likely in Cassini state 1 (Winn &

Holman, 2005; Levrard et al., 2007; Fabrycky et al., 2007). Using a model based on the equations

of Eggleton & Kiseleva-Eggleton (2001), we found that Cassini obliquities of very hot Jupiters are

indeed negligible (αp < 0.01◦). Though tidal damping of the stellar obliquity occurs on far longer

timescales, several measurements of the projected stellar obliquity through the Rossiter-McLaughlin
8Other than determining the mass ratio and constraining the eccentricity, radial velocity information is thought to

have a negligible contribution in constraining apsidal precession unless a serious observational campaign can measure
the radial velocity period (independently of transits) to sub-second accuracies. (Heyl & Gladman, 2007; Jordan &
Bakos, 2008).
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effect indicates that planet-hosting stars generally have low obliquities . 10◦ like the Sun (Fabrycky

& Winn, 2009). Hence, the general expectation is that both the star and planet will have rather

low, but potentially non-zero obliquities.

Understanding the specific orbital evolution resulting from non-zero obliquities is more compli-

cated than the simple prescription for apsidal precession. To correctly account for non-Keplerian

effects, we wrote a direct integrator, following Mardling & Lin (2002), that calculates the Cartesian

trajectory (and the direction of the spin axes) of a star-planet system including general relativity

and the effects of quadrupolar distortion. This integrator reproduces the orbit-averaged analytic

equations of Mardling & Lin (2002), which are the same as those in Eggleton & Kiseleva-Eggleton

(2001), Sterne (1939a), and elsewhere.9 We did not include the effects of tidal forces or additional

planets which are not relevant to our problem.

Using this direct integrator, we investigated the effect of non-zero obliquities on the transit times,

durations, and impact parameters. Integration of several cases with varying stellar and planetary

obliquities showed that the largest effect on the photometry was due to changes in the impact

parameter, as expected for an orbit with changing orientation (Miralda-Escudé, 2002). However,

even for large stellar obliquities (∼ 45◦) the transit light curve variations due to obliquity are

generally small relative to the effects of purely apsidal precession, even with low eccentricities. One

reason for this is that the tidal bulge, which does not contribute to nodal precession, is & 15 times

more important than the rotational bulge. As with apsidal precession, the planetary contribution to

orbital variations is much stronger than the stellar contribution (for equal obliquities). Unless the

planetary obliquity is unexpectedly large (& 0.5◦), the obliquity-induced nodal precession should

have only a minor effect on the transit light curve.

2.4.2 Transit Timing due to Orbital Decay

Orbital decay generates a small secular trend in transit times. Sasselov (2003) proposed the de-

tectability of the expected ∼1 ms/yr period change due to semi-major axis decay of OGLE-TR-56b.

The transit timing anomaly due solely to orbital decay (or growth) is the result of constantly accu-

mulating changes in the period:

TN ' T0 +NPobs +
1
2
N2δP (2.23)

where δP ≡ ṖP is the change in the period during one orbit and N is the number of transits

after the initial transit. Equation 2.23 can be derived by noting that the transit times are basically

the integral of the instantaneous period. As before, the transit timing anomaly is composed of the
9This involved minor modifications to the ”direct integrator” equations 3 and 5 in Mardling & Lin (2002). In

Equation 3, the coefficient 12 should be a 6 (R. Mardling, pers. comm.) and Equation 5 was replaced with the nearly
equivalent equation from Soffel (1989).
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quadratic deviation of TN from a straight line. The change in period can be due to magnetic stellar

breaking (e.g., Lee et al., 2009; Barker & Ogilvie, 2009a), the Yarkovsky effect applied to planets

(Fabrycky, 2008a), and/or other effects.

For planets orbiting an asynchronously rotating star, a major source of orbital decay is tidal

evolution, which results in a slow change in semi-major axis, according to the formula (Murray &

Dermott, 1999):

ȧ = sign(ν∗ − n)
3k2∗

Q∗

Mp

M∗

(
R∗
a

)5

na (2.24)

where sign(x) returns the sign of x or 0 if x = 0 and where Q∗ is the tidal quality parameter of the

star, typically around 104 (Dobbs-Dixon et al., 2004). Though δP due to tidal dissipation is only of

order 3 micro-seconds, N grows by ∼ 300 each year, reaching ∼1000 during the duration of Kepler

for very hot Jupiters. This implies a transit timing signal of about a few seconds.

Calculating the total “signal-to-noise” of tidal evolution, as was done for k2p, we find that

reasonable values of Q∗ can be measured even for faint stars (V = 14; 1000 ppm/min noise). For

a circular orbit with the parameters of OGLE-TR-56b, the effective S
N reaches 1 when Ṗ is 1.36

ms/yr (see Table 1), corresponding to Q∗ ≈ 25000. This implies the detectability of most of the

empirically-motivated estimates of Sasselov (2003) for the tidal decay of OGLE-TR-56b, which are

estimated to be within an order of magnitude of 1 ms/yr. On the other hand, Barker & Ogilvie

(2009b) estimate that the tidal damping in F-stars like OGLE-TR-56 and WASP-12 may be very

low, which may explain the survival of these short period planets.

The estimates of the threshold values of Ṗ , shown in Table 1, include removing degeneracies in

other parameters, except apsidal precession of eccentric orbits, and assume that everything but Ṗ is

known. Note that the transit light curve signal due to orbital decay is due entirely to transit timing;

the change in a is far too small to observe in transit shaping. As the signal due to apsidal precession

includes significant changes to the shapes of the transits, the signal due to k2p is qualitatively

different than that of Q∗. The shifting of secondary transits from precession also help in this regard,

as outlined above. However, the primary transit timing signals can be similar: quadratic transit

timing anomalies with amplitudes of ∼1 second.

Kepler analogs of very hot Jupiters WASP-12b, OGLE-TR-56b, CoRoT-1b, WASP-4b, and

TrES-3b could have detectable transit timing anomalies due to tidal decay, implying a direct mea-

surement of the current value of Q∗ for specific stars (Table 1). This is an exciting possibility,

providing the first direct measurements (or constraints) of the currently unknown details of tidal

dissipation in a variety of individual stars.10 We also note that interesting orbital decay of eclipsing

binary systems seen by Kepler could also be detectable.

10The vanishingly small effect of eccentricity decay is ∼ 1
Qp

smaller than apsidal precession, so that direct mea-

surements of Qp from eccentricity decay are not feasible.
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2.4.3 Confusion Due to Other Planets

Could the signal due to k2p be confused with additional planets? In considering this issue, it should

be noted that all known hot Jupiters (with a . 0.05 AU and Mp & 0.5MJup) have no currently

known additional companions. The apparent single nature of these systems could very well be due

to observational biases (Fabrycky, 2008b). However, even for stars that have been observed for many

years with radial velocity (e.g., 51 Peg, HD 209458), there appears to be a strong tendency towards

hot Jupiters as the only close-in massive planets.

Previous studies of transit timing variations focus on the effects of additional planetary perturbers

(e.g., Holman & Murray, 2005; Agol et al., 2005; Ford & Holman, 2007; Nesvorný & Morbidelli, 2008).

These authors find that nearby massive planets or even low-mass planets in mean-motion resonances

would cause strong transit timing variations that are easily distinguishable from the comparatively

long-period timing anomalies due to k2p. Relatively distant companions or non-resonant low-mass

planets, however, can induce a linear apsidal precession signal just like k2p (Miralda-Escudé, 2002;

Heyl & Gladman, 2007; Jordan & Bakos, 2008). The precession rate induced by a perturbing body is

a function of its mass and semi-major axis. The interior structure of very hot Jupiters causes apsidal

precession as fast as a few degrees per year. To match this precession rate would require, for example,

another Jupiter-mass planet at . 0.1AU or a solar-mass star at ∼1 AU. Even perturbers an order of

magnitude smaller than these would be readily detectable using radial velocity observations and/or

high-frequency transit time variations. When restricted to planets that are undetectable by other

means, adding the precession due to the unknown perturbing planet would lead to an insignificant

overestimate of k2p for very hot Jupiters.11 When observing transiting planets with larger semi-

major axes (a & 0.05 AU), the strength of planetary induced apsidal precession is reduced to a level

comparable to apsidal precession from a low-mass perturbing planet (Jordan & Bakos, 2008) and

confusion may be possible in these cases.

Since the transit timing signal for apsidal precession is similar to a sinusoid, another potential

source of confusion would be light-travel time offsets due to a distant orbiting companion (e.g., Deeg

et al., 2008). The transit timing signal due to stellar motion about the barycenter can be distin-

guished from k2p precession12 by considering the changes in transit shapes and primary-secondary

transit time offsets, which are not affected by distant companions.

We conclude that transit timing effects from other planets can be readily distinguished from the

effects of apsidal precession. To address the issue of the transit shaping signal due to additional

planets, we wrote a simple three-body integrator (similar to the integrator mentioned above) to

investigate the kinds of transit light curve signals created by additional planets. For the vast majority
11Conversely, as a consequence of the fast precession of very hot Jupiters due to their (unknown) interiors, it will be

very difficult to detect the presence of additional perturbing planets in these systems from apsidal precession alone.
12Transit time anomalies due to Q∗ (Section 2.4.2), however, can be confused with barycenter light-travel time

shifts due to a distant planet that may be undetectable in radial velocities.
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of additional planet parameters, the transit timing deviations always carry far more signal than the

minor deviations due to changes in the angular velocity13 (ḟtr) or impact parameter (b), which

together determine the transit shape as described in Section 2.3.3 above. Generally, it is much

easier to delay a transit by 5 seconds than it is to shift the apparent transit plane by an appreciable

amount.

However, when the perturbing planet is on a plane highly-inclined to the transiting planet,

changes in the transit shape can become detectable, even while the transit timing variations are

negligible. For example, a perturbing planet of mass 10−5M∗ at 0.1 AU with a mutual inclination of

45◦ caused very hot Jupiter transit durations to change by ∼1 second/year. This kind of signal is the

result of nodal precession induced by the perturbing planet, as originally pointed out by Miralda-

Escudé (2002). In our investigation, we found that the three-body nodal precession alters the

impact parameter (b) but does not significantly affect the orbital angular velocity (ḟtr). Conversely,

the transit shaping signal due to k2p is generally produced by changes in both b and ḟtr, but at

near-central transits, the effect of changing orbital velocity is dominant (see Section 2.3.3). In

high-precision transit light curves, both the angular velocity and the impact parameter can be

independently measured and hence the signals of apsidal and nodal precession are usually distinct

for all but the most grazing transits.

Given the uniqueness of the apsidal precession signal induced by the planet’s interior, it appears

that if additional planets are not detectable in radial velocities, transit timing variations, or nodal

precession, then they will not contribute to a misinterpretation of an inferred value of k2p for very hot

Jupiters. Nevertheless, future measurements of k2p should check that these issues are unimportant

within the context of the specific system being studied.

Finally, we estimate that moons or rings with enough mass to bias an inferred k2p would cause

other readily detectable photometric anomalies (e.g., planet-moon barycentric motion Sartoretti &

Schneider, 1999). In addition, extra-solar moons with any significant mass are tidally unstable,

especially around very hot Jupiters (Barnes & O’Brien, 2002).

2.5 Other Methods for Determining k2p

2.5.1 Secular Evolution of a Two Planet System

Measuring k2 for an extra-solar planet was suggested by Wu & Goldreich (2002) for the inner

planet of HD 83443. Unfortunately, later analyses have indicated that the supposed second planet

in this system was actually an artefact of the sparse radial velocity data (Mayor et al., 2004).

Nevertheless, this technique could be applied to other eccentric planetary systems with similar
13The angular velocity is directly related to the star-planet separation through conservation of angular momentum:

rḟ2.
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conditions (Mardling, 2007). Wu & Goldreich (2002) showed that in a regime of significant tidal

circularization and excitation from an additional planet, the ratio of eccentricities depends on the

precession rate which is dominated by k2p as shown above (see also Adams & Laughlin 2006, who

do not include precession due to the planetary quadrupole). In theory, the current orbital state of

such multi-planet systems gives an indirect measurement of the apsidal precession rate.

2.5.2 Direct Detection of Planetary Asphericity

Another method for determining interior properties of transiting planets would be to directly measure

the asphericity due to the rotational or tidal bulge in primary transit photometry. The height of the

rotational and tidal bulges are qrh2Rp and qth2Rp, respectively, where qr and qt are the dimensionless

small parameters defined in Equation 2.2 and h2 is another Love number which, for fluid bodies,

is simply k2 + 1 (Sterne, 1939a). These bulges cause the disk of the planet to be slightly elliptical,

subtly modifying the photometric signal, as discussed for rotational bulges by Seager & Hui (2002)

and Barnes & Fortney (2003). However, as discussed by Barnes & Fortney (2003), in real systems

with actual observations, the size of the rotational bulge is very difficult to determine as it is highly

correlated with stellar and orbital parameters that are not known a priori, e.g., limb darkening

coefficients.

The tidal bulge, whose height is also set by k2p, does not suffer from some of the difficulties

involved with measuring the rotational bulge. It has a known orientation (pointing towards the star)

so there is no degeneracy from an unknown obliquity (Barnes & Fortney, 2003). (Note, however,

that for hot Jupiters, the obliquities must be tidally evolved to nearly zero, so this isn’t really a

problem with the rotational bulge.) In addition, the signal due to oblateness is only significant near

ingress/egress, but the tidal bulge is continuously changing orientation throughout the entire transit.

Though the tidal bulge is typically three times larger than the rotational bulge (Equation 2), the

projection of the tidal bulge that is seen during a transit is small, proportional to sin θ where θ is

the angle between the planet position and the Earth’s line of sight. For very hot Jupiters that have

semi-major axes of only .6 stellar radii, sin θ during transit ingress/egress reaches & 1
6 so that the

projected tidal bulge is about half as large as the rotational bulge. The extra dimming due to the

tidal bulges (and rotational bulges) is as high as 2 × 10−4 for some planets that are expected to

have tides over 2000 km high (e.g., WASP-12b, WASP-4b, Corot-1b, OGLE-TR-56b); this compares

very favorably with the photometric accuracy of binned Kepler data at about 10 ppm per minute.

However, we expect that, as with the rotational bulge alone, the combined signal from the rotational

and tidal bulge will be highly degenerate with the unknown limb-darkening coefficients, as the size

of the projection of the tidal bulge also varies as the distance to the center of the star.

We note that using multi-color photometry should significantly improve the prospects of detecting

non-spherical planetary transits since it breaks most of these degeneracies. For example, Knutson
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et al. (2007b) use HST to observe transits of HD 209458b in 10 wavelength bands and measure the

planetary radius with a relative accuracy (between bands) of 0.003RJ , of the same level as the change

in shape due to oblateness and the tidal bulge. Pont et al. (2007a) made a similar measurement for

HD 189733b and reached even higher relative accuracy. Combining such measurements with other

data (e.g., primary transits in the infrared, where limb-darkening is much smaller) and a stellar

photosphere model (to correctly correlate limb darkening parameters as in Agol & Steffen 2007)

could yield detections of planetary asphericity, especially in very hot Jupiters which have the largest

bulges.

One possible source of confusion in interpreting planetary asphericity is the thermally-induced

pressure effects of an unevenly radiated surface. In non-synchronous planets, the thermal tidal bulge

(Arras & Socrates, 2009) can shift the level of the photosphere by approximately an atmospheric scale

height, about 10−2 or 10−3 planetary radii (P. Arras, pers. comm.). The orientation of the thermal

bulge is significantly different from the tidal or rotational bulges and should be distinguishable.

Furthermore, very hot Jupiters should orbit synchronously, reducing the importance of this effect.

Nevertheless, the effect of atmospheric phenomena on measurements of planetary asphericity should

be considered.

Though difficult to disentangle from other small photometric effects, high-precision multi-color

photometry may be another viable method for measuring k2p. This technique is complimentary to

detecting k2p from apsidal precession since it does not require that the planet is eccentric, nor does

it require a long time baseline. On some planets, the two methods could be used together as mutual

confirmation of the planetary interior structure.

2.6 Conclusions

The planetary mass and radius are the only bulk physical characteristics measured for extra-solar

planets to date. In this paper, we find that the planetary Love number (k2p, equivalent to J2)

can also have an observationally detectable signal (quadrupole-induced apsidal precession) which

can provide a new and unique probe into the interiors of very hot Jupiters. In particular, k2p is

influenced by the size of a solid core and other internal properties. Core sizes can be used to infer the

formation and evolution of individual extra-solar planets (e.g., Dodson-Robinson & Bodenheimer,

2009; Helled & Schubert, 2009).

The presence of a nearby massive star creates a large tidal potential on these planets, raising

significant tidal bulges which then induce non-Keplerian effects on the star-planet orbit itself. The

resulting apsidal precession accounts for ∼95% of the total apsidal precession in the best cases

(Figure 2.1). Hence, we find that the internal density distribution, characterized by k2p, has a

large and clear signal, not to be confused with any other parameters or phenomena. We urge those
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modeling the interior structures of extra-solar planets to tabulate the values of k2p for their various

models.

Encouraged by this result, we calculated full photometric light-curves like those expected from

the Kepler mission to determine the realistic observability of the interior signal. We estimate that

Kepler should be able to distinguish between interiors with and without massive cores (∆k2p ' 0.1)

for very hot Jupiters with eccentricities around e ∼ 0.003 (Figure 2.6). Eccentricities this high

may occur for some of the very hot Jupiters expected to be found by Kepler, though these planets

usually have highly damped eccentricities. Much stronger constraints on apsidal precession can be

obtained by combining Kepler photometry with precise secondary transits observed in the infrared.

In cases where apsidal precession is not observed, the data can set strong upper limits on planetary

eccentricities.

In analyzing Kepler ’s photometric signal of apsidal precession, we find that transit timing vari-

ations are an almost negligible source of signal, though transit timing has been the focus of many

observational and theoretical papers to date. The effect of “transit shaping” has ∼30 times the

photometric signal of transit timing for apsidal precession (see Figure 2.3, Pál & Kocsis, 2008; Jor-

dan & Bakos, 2008)). At orientations where transit timing and shaping are weakest, the changing

offset between primary and secondary transit times can be used to measure k2p (Figure 2.4). It may

also be possible to measure k2p from high-precision multi-color photometry by directly detecting the

planetary asphericity in transit. Such a measurement does not require a long baseline or an eccentric

orbit.

Very hot Jupiters are also excellent candidates for detecting tidal semi-major axis decay, where

we find that relatively small period changes of Ṗ ' 1 ms/yr should be detectable. This could

constitute the first measurements (or constraints) on tidal Q∗ for a variety of individual stars. We

note that Kepler measurements of transit timing and shaping for eclipsing binaries should also

provide powerful constraints on stellar interiors through apsidal motion and binary orbital decay

(due to tides, if the components are asynchronous).

Accurately measuring the interior structure of distant extra-solar planets seems too good to be

true. Nevertheless, the exquisite precision, constant monitoring, and 3.5-year baseline of the Kepler

mission combined with the high sensitivity of transit light curves to small changes in the star-planet

orbit make this measurement plausible.

Our focus on Kepler data should not be interpreted to mean that other observations will be

incapable of measuring k2p. In fact, the opposite is true since the size of the apsidal precession

signal increases dramatically with a longer baseline. Combining Kepler measurements with future

ground and space based observations can create a powerful tool for measuring k2p. In the far future,

many planets will have measured apsidal precession rates (like eclipsing binary systems have now)

and inferred k2p values. Incorporating these measurements into interior models holds promise for
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greater understanding of all extra-solar planets.
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López-Morales, M., & Seager, S. 2007, Astrophysical Journal, Letters, 667, L191, arXiv:0708.0822

Mandel, K., & Agol, E. 2002, Astrophysical Journal, Letters, 580, L171, arXiv:astro-ph/0210099

Mardling, R. A. 2007, Monthly Notices of the RAS, 382, 1768, arXiv:0706.0224

Mardling, R. A., & Lin, D. N. C. 2002, Astrophysical Journal, 573, 829

Matsumura, S., Takeda, G., & Rasio, F. A. 2008, Astrophysical Journal, Letters, 686, L29, 0808.3724

Mayor, M., Udry, S., Naef, D., Pepe, F., Queloz, D., Santos, N. C., & Burnet, M. 2004, Astronomy

and Astrophysics, 415, 391, arXiv:astro-ph/0310316
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Sing, D. K., & López-Morales, M. 2009, Astronomy and Astrophysics, 493, L31, 0901.1876

Soffel, M. H. 1989, Relativity in Astrometry, Celestial Mechanics and Geodesy (Relativity in Astrom-

etry, Celestial Mechanics and Geodesy, XIV, 208 pp. 32 figs.. Springer-Verlag Berlin Heidelberg

New York. Also Astronomy and Astrophysics Library)

Sotin, C., Grasset, O., & Mocquet, A. 2007, Icarus, 191, 337

Southworth, J. 2008, 0802.3764

Sozzetti, A. et al. 2009, Astrophysical Journal, 691, 1145, 0809.4589

Sterne, T. E. 1939a, Monthly Notices of the RAS, 99, 451



64

——. 1939b, Monthly Notices of the RAS, 99, 662

Swain, M. R., Vasisht, G., & Tinetti, G. 2008, Nature, 452, 329

Thommes, E. W., Bryden, G., Wu, Y., & Rasio, F. A. 2008, Astrophysical Journal, 675, 1538,

arXiv:0706.1235

Torres, G., Winn, J. N., & Holman, M. J. 2008, 0801.1841

Winn, J. N., & Holman, M. J. 2005, Astrophysical Journal, Letters, 628, L159, arXiv:astro-

ph/0506468

Winn, J. N. et al. 2007, Astronomical Journal, 134, 1707, arXiv:0707.1908

Winn, J. N., Holman, M. J., Carter, J. A., Torres, G., Osip, D. J., & Beatty, T. 2009a, Astronomical

Journal, 137, 3826, 0901.4346

Winn, J. N., Holman, M. J., Shporer, A., Fernández, J., Mazeh, T., Latham, D. W., Charbonneau,

D., & Everett, M. E. 2008, Astronomical Journal, 136, 267, arXiv:0804.2479

Winn, J. N. et al. 2009b, ArXiv e-prints, 0902.3461

——. 2006, Astrophysical Journal, Letters, 653, L69, arXiv:astro-ph/0609506

——. 2005, Astrophysical Journal, 631, 1215, arXiv:astro-ph/0504555

Wu, Y., & Goldreich, P. 2002, Astrophysical Journal, 564, 1024, arXiv:astro-ph/0108499

Zharkov, V. N., & Trubitsyn, V. P. 1978, Physics of planetary interiors (Astronomy and Astrophysics

Series, Tucson: Pachart, 1978)


