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Chapter 2

Probing the Interiors of Very Hot
Jupiters Using Transit Light
Curves

This chapter will be published in its entirety under the same title by authors D. Ragozzine and
A. S. Wolf in the Astrophysical Journal, 2009. Reproduced by permission of the American Astro-

nomical Society.
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Abstract

Accurately understanding the interior structure of extra-solar planets is critical for inferring their
formation and evolution. The internal density distribution of a planet has a direct effect on the
star-planet orbit through the gravitational quadrupole field created by the rotational and tidal
bulges. These quadrupoles induce apsidal precession that is proportional to the planetary Love
number (kg,, twice the apsidal motion constant), a bulk physical characteristic of the planet that
depends on the internal density distribution, including the presence or absence of a massive solid
core. We find that the quadrupole of the planetary tidal bulge is the dominant source of apsidal
precession for very hot Jupiters (a < 0.025 AU), exceeding the effects of general relativity and
the stellar quadrupole by more than an order of magnitude. For the shortest-period planets, the
planetary interior induces precession of a few degrees per year. By investigating the full photometric
signal of apsidal precession, we find that changes in transit shapes are much more important than
transit timing variations. With its long baseline of ultra-precise photometry, the space-based Kepler
mission can realistically detect apsidal precession with the accuracy necessary to infer the presence
or absence of a massive core in very hot Jupiters with orbital eccentricities as low as e ~ 0.003. The
signal due to kg, creates unique transit light curve variations that are generally not degenerate with
other parameters or phenomena. We discuss the plausibility of measuring ks, in an effort to directly

constrain the interior properties of extra-solar planets.
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2.1 Introduction

Whether studying planets within our solar system or planets orbiting other stars, understanding
planetary interiors represents our best strategy for determining their bulk composition, internal
dynamics, and formation histories. For our closest neighbors, we have had the luxury of sending
spacecraft to accurately measure the higher-order gravity fields of these objects, yielding invaluable
constraints on their interior density distributions. Using these observations, we have been able,
for instance, to infer the presence of large cores, providing support for the core-accretion theory
of planet formation (Guillot, 2005). Study of planets outside our solar system, however, has ne-
cessitated the development and usage of more indirect techniques. Nevertheless, as the number
of well-characterized extra-solar planets grows, we gain more clues that help us answer the most
fundamental questions about how planets form and evolve.

Guided by our current understanding of planetary physics, we have begun to study the interiors
of extra-solar planets. This endeavor has been dominated by a model-based approach, in which the
mass and radius of a planet are measured using radial velocity and transit photometry observations,
and the interior properties are inferred by finding the model most consistent with those two ob-
servations. This strategy clearly requires a set of assumptions, not the least of which is that the
physical processes at work in extra-solar planets are just like those that we understand for our own
giant planets. While it does seem that this approach is adequate for explaining most of the known
transiting planets, there does exist a group of planets for which the usual set of assumptions are
not capable of reproducing the observations (e.g., Guillot et al., 2006; Burrows et al., 2007). These
are the planets with so-called positive “radius anomalies”, including the first-discovered transiting
planet HD 209458b (Charbonneau et al., 2000). Though most of these planets can be explained
by adjusting different pieces of the interior physics in the models (including opacities, equations of
state, and heat deposition), it is currently impossible to discern which combination of these possible
explanations is actually responsible for their observed sizes (Guillot et al., 2006).

Additional uncertainties also exist for planets at the other end of the size spectrum. For the
group of under-sized extra-solar planets, such as HD 149026b, the canonical approach is to give the
planet a massive highly condensed core of heavy elements in order to match the observed radius.
This approach also provides a first order estimate of the planet’s bulk composition, in terms of
its fraction of heavy elements. There is also the added complication of how the assumed state of
differentiation affects the inferred composition and predicted structure (Baraffe et al., 2008).

Currently, the most promising approach to modeling the distinctive features of extra-solar planet
interiors is to study the known transiting planets as an ensemble. The group can be used to develop
either a single consistent model that reproduces all the observations (e.g., Guillot et al., 2006) or

to showcase the possible diversity in model parameters (e.g., opacities, as in Burrows et al., 2007).
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Surely, a model-independent measure of interior structure would be valuable in order to begin
disentangling otherwise unconstrained physics.

The idea of obtaining direct structural measurements for distant objects is by no means a new
one. For decades, the interiors of eclipsing binary stars have been measured by observing “apsidal
motion,” i.e., precession of the orbit due to the non-point-mass component of the gravitational
field (Russell, 1928; Cowling, 1938; Sterne, 1939a,b). The signal of the changing orbit is encoded
in the light curves of these systems by altering the timing of the primary and secondary eclipses.
From these eclipse times, it is straightforward to determine the so-called apsidal motion constant
which then constrains the allowed interior density distributions. Interior measurements inferred from
apsidal precession were among the first indications that stars were highly centrally condensed. While
it seems non-intuitive, we show in this paper that we can use a similar technique to measure the
interior properties of very hot Jupiters. Most surprisingly, the interior structure signal for very hot
Jupiters actually dominates over the signal from the star, yielding an unambiguous determination
of planetary interior properties.

Our theoretical analysis is also extended to full simulated photometry in order to explore the
observability of apsidal precession. We show that this precession is observable by measuring the
subtle variations in transit light curves. The photometric analysis is focused on the data expected
from NASA’s Kepler mission, which successfully launched on March 6, 2009 (Borucki et al., 2003;
Koch et al., 2006). Kepler will obtain exquisite photometry on ~100,000 stars, of which about 30
are expected to host hot Jupiters with periods less than 3 days (Beatty & Gaudi, 2008). Kepler has
the potential to measure the gravitational quadrupoles of very hot Jupiters though the technique
described below. If successful, this will constitute a major step towards an understanding of the
diversity of planetary interiors.

In Section 2, we describe the background theory that connects interior structure and orbital dy-
namics and explore which effects are most important. Section 3 applies this theory to the observable
changes in the transit photometry, including full Kepler simulated light curves. We show in Section
4 that the signal due to the planetary interior has a unique signature. Other methods for inferring
planetary interior properties are discussed in Section 5. The final section discusses the important

conclusions of our work.

2.2 Background Theory

2.2.1 Coordinate System and Notation

The internal structure of very hot Jupiters can be determined by observing changes in the planet’s
orbit. These changes can be described in terms of two general types of precession. Apsidal precession

refers to rotation of the orbital ellipse within the plane of the orbit. It is characterized by circulation



24

of the line of apsides, which lies along the major axis of the orbit. Nodal precession, on the other
hand, occurs out of the plane of the orbit and refers to the orbit normal precessing about the total
angular momentum vector of the system. For typical very hot Jupiter systems with no other planets,
apsidal precession has a much stronger observable signal than nodal precession (see Section 2.4.1),
so we focus our discussion on the simpler case of a fixed orbital plane.

As is typical for non-Keplerian orbits, the star-planet orbit is described using osculating orbital
elements that change in time. We identify the plane of the sky as the reference plane and orient the
coordinate axes in the usual way such that the sky lies in the x-z plane with the y-axis pointing at
Earth. The intersection of the orbital plane and the reference plane is called the line of nodes, but
without directly resolving the system, there is no way to determine the orientation of the line of
nodes with respect to astronomical North; thus, the longitude of the ascending node, €2, cannot be
determined. Given this degeneracy, we simplify the description by orienting the z-axis to lie within
the plane spanned by the orbit normal and the line-of-sight. The angle between the line of sight and
the orbit normal is 4, the inclination. The x-axis is in the plane of the sky and is the reference line
from which the argument of periapse (w) is measured (in the standard counter-clockwise sense). For
this choice of coordinates, the argument of periapse and longitude of periapse (w) are equivalent.
Given this coordinate system, transit centers occur when the planet crosses the y-z plane; this point
lies 90° past the reference x-axis, and thus primary transits occur when the true anomaly, f, satisfies
fir + wer = 90°, where the subscript ¢r indicates the value at transit center.!

Throughout this paper, we refer to parameters of the star (mass, radius, etc.) with subscripts of
“x” and parameters of the planet with subscripts of “p”. For evaluation of various equations, we will
take as fiducial values the mass ratio M,/M, = 1073, the radius ratio R,/R. = 0.1 (though some
low density planets have radius ratios greater than 1/6), and the semi-major axis in stellar radii
a/R. = 6, typical for very hot Jupiters, which we define as planets with semi-major axes a < 0.025
AU (see Table 1).2 In this definition, we deviate from Beatty & Gaudi (2008), who define very
hot Jupiters as planets with periods less than 3 days. These authors estimate that Kepler will find
~30 such planets, of which ~16 will be brighter than V=14 (T. Beatty, pers. comm.). Since our

definition is more stringent, our technique will be applicable to fewer Kepler planets.

2.2.2 Rotational and Tidal Potentials

It is well known from classical mechanics, that if stars and planets are considered to be purely
spherical masses, then they will obey a simple 2 force law and hence execute closed elliptical orbits.
Non-spherical mass effects are caused by the application of external potential(s): the centrifugal

potential of spinning bodies causes rotational flattening and the tidal potential of a nearby mass

1In elliptical orbits, if the inclination is not 90°, the photometric minima do not exactly coincide with the planetary
conjunctions. See Kopal (1959), p. 388 and section 2.3.3 below.
2Throughout this work, we do not distinguish between M;o: and My, since My < M.
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raises tidal bulges. Rotational and tidal bulges create gravitational quadrupole fields (r—2) that lead
to orbital precession.

The complex subject of how planets? respond to applied potentials is encapsulated in the so-called
theory of figures (Zharkov & Trubitsyn, 1978). As long as the distortions are small, we can simplify
the problem by ignoring the small interaction terms between the tidal and rotational potentials; in
this paper, we thus restrict ourselves to the first order theory, where the two planetary responses
simply add. Even in the linear case, the way the fluid planet responds depends on the full radial
density structure of the planet. The planetary response is conveniently captured in a single variable
kop, using the definition

VZin(RP) = kop Vo PP (R)) (2.1)

where kg, is the Love number of the planet, which is just a constant of proportionality between the
applied second degree potential field V3PP and the resulting field that it induces Vind at the surface
of the planet. Due to the orthogonality of the Legendre polynomials used to express the gravity
field, if the planet is responding to a second degree harmonic field, then only the second degree
harmonic of the planet’s gravity field is altered, to first-order. Thus, kg, is a measure of how the
redistribution of mass caused by the applied potential actually affects the external gravity field of
the planet. In the stellar literature, the symbol ks is used for the apsidal motion constant, which is
half of the secular/fluid Love number that we use throughout this paper (Sterne, 1939a).

The Love number k5 is an extremely useful parameterization, as it hides the complex interactions
of a planet and an applied potential in just a single number. The process of calculating ks of a fluid
object (like stars and gas giants), from the interior density distribution is fairly straightforward and
outlined in several places (e.g., Sterne, 1939a; Kopal, 1959). Objects with most of their mass near
their cores, like stars, have very low ks values (~0.03 for main sequence solar-like stars, Claret,
1995) since the distorted outer envelope has little mass and therefore little effect on the gravity
field. Planets have much flatter density distributions, and thus distortions of their relatively more
massive outer envelopes greatly affect the gravity field. At the upper extreme lies a uniform density
sphere, which has ko = 3/2. In this way, ko can be thought of as a measure of the level of central
condensation of an object, with stronger central condensation corresponding to smaller k.

By examining the variations in ko for giant planets within our own Solar System, we can gain
a feel for its expected values and how sensitive it is to internal structure. The n = 1 polytrope is
commonly used to approximate the density structure of (cold) gas giant planets; it has ks ~ 0.52
(Kopal, 1959). This can be compared to the value determined from the gravity measurements of
Jupiter, where ko; ~ 0.49. Even though Jupiter may have a 10 Earth mass core, it is small in

comparison to Jupiter’s total mass, and thus it has minor effect on the value of ks. Saturn, on the

3For clarity, in these sections we focus on the planetary shape, though the derivations are also valid for stars.
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other hand has a roughly 20 Earth mass core and is less than 1/3 of Jupiter’s mass. As a result,
the presence of Saturn’s core is easily seen in the value of its Love number kog &~ 0.32. From this,
we can see that planets with and without significant cores differ in ks, by about ~ 0.1. This can
also be inferred from Barnes & Fortney (2003) by using the Darwin-Radau relation to convert the
moment of inertia factor to ko. Furthermore, Bodenheimer et al. (2001) list the moment of inertia
factors of various planet models of HD 209458 b and 7 Bootis b, which correspond to a range of ks,
values from ~0.1 to ~0.6.

Current methods for inferring the internal structures of extra-solar planets combine measure-
ments of the mass and radius with a model to obtain estimates of the planet’s implied composition
and core size. Unfortunately, these models require one to make assumptions about the degree of
differentiation, among other things (Baraffe et al., 2008). A good measurement of kg,, however,
reveals important independent structure information, which can break the degeneracies between
bulk composition and the state of differentiation. Given such a wide range of potential kg, val-
ues, even an imprecise measurement of kg, will be extremely valuable for understanding extra-solar
planets. By measuring the kg, values for extra-solar planets, we can also uncover constraints on
the density structure that are independent of the measurement of the planetary radius. This new
information may allow us to probe the unknown physics responsible for the currently unexplained

radius anomalies.

2.2.2.1 Induced External Gravity Field

The internal structures of planets in our own solar system are most readily characterized by the
zonal harmonics of the planet’s gravity field, i.e., Jo, Jy, etc. It is these high-order harmonics
that are directly measured by spacecraft flybys. To better understand the connection between
the two, we can relate the ks formulation to Jy by writing out the expression for the induced
potential at the surface of the planet in Equation 2.1 in terms of the definition of Js, yielding:

kopVoPP(Ry,) = —J2 ngp Py (cos 0), where P, is the usual Legendre polynomial and 6 is the planetary

P

co-latitude (Murray & Dermott, 1999). We can use this equation to obtain expressions for the Jo
field induced by both rotation and tides (discussed in more detail below). The relation relies on
dimensionless constants which compare the strength of the acceleration due to gravity with that of

the rotational and tidal potentials:

V2R3 R\? (M
= 2L d =-3(-2 — 2.2
=i e (2) (37) 2




27

where v, is the angular spin frequency of the planet. For the case where the spin axis and tidal bulge
axis are perpendicular (i.e., zero obliquity), the relationship between Jy and ks is, to first order:

=2 (g - 1) (23)

Note that ¢ is a function of the instantaneous orbital separation, r, and is thus constantly changing
in an eccentric orbit in response to the changing tidal potential. Hence Js for eccentric extra-solar
planets is a complex function of time. This is why it is more sensible to analyze the orbital precession
in terms of ko, which is a fixed intrinsic property of the planet, rather than Js.

As very hot Jupiters are expected to be synchronously locked (denoted by s) with small eccen-

tricities, it can easily be shown that ¢; ~ —3¢,, which simplifies equation 2.3 yielding:

. 5 5 M.\ [(R,\®
J2p ~ ngPqT ~ 6k2p (M) <ap) (24)

p

Using a moderate value of ko, = 0.3, the J> of very hot Jupiters reaches as high as 5 x1073, about

half of the measured Jo of Jupiter and Saturn.

2.2.3 Apsidal Precession

The quadrupole field created by rotational and tidal potentials discussed above induces precession
of the star-planet orbit. Both Jupiter and Saturn have rather significant quadrupoles, dominated
entirely by their sizeable rotational bulges resulting from rapid rotation periods of less than 10
hours. In contrast, very hot Jupiters are expected to be synchronously rotating, and thus their spin
periods are longer by a factor of a few. Since the rotational bulge size goes as the square of the spin
frequency, very hot Jupiters should have rotational bulges that are at least an order of magnitude
smaller than Jupiter and Saturn, inducing only tiny quadrupole fields. These extra-solar planets are
extremely close to their parent stars, however, with semi-major axes of only ~ 6 stellar radii. Very
hot Jupiters are thus expected to have large tidal bulges which are shown below to dominate the

quadrupole field and resulting apsidal precession.

2.2.3.1 Precession Induced by Tidal Bulges

The orbital effect of tidal bulges is complicated by their continuously changing size. While tidal
bulges always point directly? at the tide-raising object, their size is a function of orbital distance.
Since the height of the tidal bulge depends on the actual separation between the objects, the second-
order gravitational potential is time-varying in eccentric orbits. Accounting for this dependence

(which cannot be captured by using a fixed Jy) is critical, as illustrated by Sterne (1939a). The

4We can ignore the lag due to dissipation, which has an angle of only Q;l <1072 for giant planets (Goldreich &
Soter, 1966; Murray & Dermott, 1999).



28

dominant tidal perturbation to the external gravity field of the planet, evaluated at the position of

the star, is a second-order potential:
V tid(7 ) 2 2 * p7 ( . )

The apsidal precession due to the tidal bulge, including the effect of both the star and the planet
is (Sterne, 1939a; Eggleton & Kiseleva-Eggleton, 2001):

Wiidal = Whidal,« + Wtidal,p
15 RN\’ M
= ko | = p

9 2 ( a ) a7, 2

5
+ ?kgp (}Zp> %;fg(e)n (26)

where n is the mean motion and fy(e) is an eccentricity function:

3 1
Ble) = (1=e)7 1+ + ze)
13 181
=~ 1+?e2+?e4+... (2.7)

Note that the factor of 15 does not appear for stationary rotational bulges, as detailed below, and
comes through Lagrange’s Planetary Equations from the higher dependence on radial separation
(r=%) in the tidal potential. For this reason, tidal bulges are much more important in producing
apsidal precession.

Furthermore, the main factor of importance to extra-solar planets is the mass ratio, which comes
in because the height of the tide is proportional to the mass of the tide-raising body. Consider the

ratio of the planetary and stellar effects:

: 5 2

Weidalp _ Kk2p (Rp> <M*>

o T \R ~ 100 2.8
Wrtidal,* k2* R* Mp ( )

For tidal bulges, the apsidal motion due to the planet clearly dominates over the contribution of

the star. Even though the planet’s radius is smaller than the star’s by a factor of ten, the star is so
much more massive than the planet that it raises a huge tidal bulge, which consequently alters the
star-planet orbit. The benefit provided by the inverse square of the small mass ratio is compounded

by the order of magnitude increase in ko of the planet over the star.
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2.2.3.2 Precession Induced by Rotational Bulges

The quadrupolar gravitational field due to the planetary rotational bulge, evaluated at the star’s
position is:

1
Viot(r) = gkguiRZr_?’Pg(cos ap) (2.9)

where «y, is the planetary obliquity, the angle between the orbit normal and the planetary spin axis.
Sterne (1939a) assumes zero obliquity and calculates the secular effect of this perturbation on the
osculating Keplerian elements. This final result, including the effect of both the star and the planet

isb:

Wrot =  Wrot,x + Wrot,p

kox ( R. 5Vfa3
= S5 \% ) am g2(e)n

5 .2 3
+ k;”(i”) e a(e)n (2.10)

where go(e) is another eccentricity function:
gale) = (1 —e*) 2~ 1+2e% +3e* + .. (2.11)

Evaluating the importance of this effect requires an understanding of the spin states of very
hot Jupiters and their stars. The rotation and spin pole orientation of very hot Jupiters should be
tidally damped on timescales < 1 MYt (e.g., Dobbs-Dixon et al., 2004; Ferraz-Mello et al., 2008). We
therefore assume that all planets have reached the psuedosynchronous rotation rate derived by Hut
(1981). The rotation rate of the star is usually much slower since the tidal stellar spin-up timescale
is much longer than ~1 GYr (Fabrycky et al., 2007).

If both the star and the planet were spinning synchronously, the stellar and planetary rotational
bulges would have comparable contributions to apsidal precession. However, since the tidal bulge of
the planet is a much more important effect, we find that even fast-spinning stars have a very weak

contribution to apsidal precession.

2.2.3.3 Total Apsidal Precession

The other major contributor to the apsidal precession in extra-solar planetary systems is general
relativity. The anomalous apsidal advance of Mercury’s orbit due to its motion near the massive
Sun was one of the first confirmations of general relativity. This same apsidal advance is prevalent

in very hot Jupiter systems and has been shown to be possibly detectable through long-term transit

5The full equation, including arbitrary obliquities, is given in Kopal (1978), Equation V.3.18 (see also Sterne,
1939a; Eggleton & Kiseleva-Eggleton, 2001). Also recall that, unlike these authors, we use the symbol k2 to represent
the Love number which is twice the apsidal motion constant called k2 in eclipsing binary literature.
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timing (Miralda-Escudé, 2002; Heyl & Gladman, 2007; P4l & Kocsis, 2008; Jordan & Bakos, 2008).

The relativistic advance is given (to lowest order) by:

3GM.n

i) (2.12)

WGR =
One additional effect for non-synchronous planets is due to thermal tides (Arras & Socrates,
2009), which create a bulge on the planet due to temperature-dependent expansion of an unevenly-
radiated upper atmosphere. The thermal tidal bulge is very small in mass and is not expected
to provide a significant contribution to apsidal precession (P. Arras, pers. comm.) and is thus
neglected.
Since we are considering only the lowest-order effects, all the apsidal precession rates (rota-
tional/tidal for the star/planet and general relativity) simply add to give the total apsidal precession

(roughly in order of importance for very hot Jupiters):
wtot = wtid,p + wGR + wrot,p + ‘:‘Jrot,* + ‘:‘Jtid,* (213)

We are ignoring the small cross-terms (geodetic precession, quadrupole-quadrupole coupling, Lense-
Thirring effect, nutation, etc.) for the purposes of this paper as higher-order corrections.

Calculating each of these contributions to the precession shows that for very hot Jupiters, the
dominant term in the total apsidal precession is due to the planetary tidal bulge. For the known
transiting planets, the fraction of apsidal precession due to the planet is calculated and illustrated
in Figure 1. The precession due to the interiors of very hot Jupiters towers over the other effects.
General relativity, the next largest effect is ~10 times slower than the precession caused by the
planetary tidal bulge.

The apsidal precession rate of very hot Jupiters due solely to the interior structure of the planet

is:

k M, 3/2
Gy A~ 3.26 x 10710 rad/sec X (02;) (M®> x

M, - R, b a ~13/2
(MJ> (RJ> (M) (2.14)

which explains why low density very close-in Jupiters are the prime targets for measuring apsidal
precession. For these planets, the precession rate can reach a few degrees per year.

The precession due to the planet has generally been neglected in extra-solar planet transit timing
work to date (Miralda-Escudé, 2002; Heyl & Gladman, 2007), which has considered stellar oblateness
or general relativity to be the dominant effects (in the absence of other planets) though Jordan &

Bakos (2008) have also pointed out that wyigal,p can be an important source of apsidal precession. We
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find that the planetary quadrupole is usually 1-2 orders of magnitude more important than effects
previously considered for single very hot Jupiters. Hence, measuring apsidal precession essentially
gives wiiq,p Which is directly proportional to ks, implying that transit light curve variations due to

apsidal precession can directly probe the interiors of extra-solar planets.
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Figure 2.1

Fraction of Apsidal Precession Due to the Planetary Quadrupole. The points
show the planetary fraction of the total apsidal precession calculated for the known transiting
extra-solar planets with properties taken from J. Schneider’s Extra-Solar Planet Encyclopedia
(http://wuw.exoplanet.eu), assuming the planet has a typical Love number of ky, = 0.3 (e.g.
Saturn-like). The apsidal precession induced by the tidal and rotational bulges of the planet over-
come precession due to general relativity and the star, especially for short period planets. The ”error
bars” show the range of planetary contributions for a 5% variation in stellar masses (and hence wgr)
and the comparatively smaller effect of varying the stellar Love number and rotation rate over all
reasonable values. The five cases where the planetary contribution to apsidal precession is most im-
portant (boxed) also have the shortest precession periods: WASP-12b, CoRoT-1b, OGLE-TR-56b,
WASP-4b, and TrES-3b would fully precess in about 18, 71, 116, 120, and 171 years, respectively.
The planet in the lower left is CoRoT-7, a super-Earth planet whose planetary contribution to pre-
cession is small because of its small radius. Transiting planets with periods longer than 6 days all
had planetary contributions less than 0.15. In all cases, the dominant signal in apsidal precession of
very hot Jupiters is ksp, which is determined by their internal density distribution and is a powerful
probe into their interior structure.
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2.2.4 Modification of the Mean Motion
Non-Keplerian potentials also modify the mean-motion, n, and cause a small deviation from Kepler’s

Third Law. Including the effects described above, the non-Keplerian mean motion, n’, is (dropping

second-order corrections):

3G M,
n =n <1 +e— 502 ) (2.15)
where € is defined as
Ko RA\? ks R,\?
= e () e (2
M, [R.\° M, (R,\°

ko —2 | = 3k (=2 2.16
+ 2Mt0t<a)+ szp(a> ( )

%. The general relativistic correction to the mean motion is from Soffel (1989).

and n? =
(Throughout this paper, except where noted, the difference between n’ and n is ignored as a higher-
order correction.)

As with apsidal precession, the planetary quadrupole is more important than the stellar quadrupole
by about 2 orders of magnitude. At the largest, the correction to the mean motion is a few times
10~°. Torio (2006) used the fact that quadrupole moments cause deviations to Kepler’s Third Law
to attempt to derive the Jo of the star HD 209458 (the quadrupole of the planet was incorrectly
ignored).

However, as ITorio (2006) found, this method is only feasible if you know the masses and semi-
major axes of the orbit a priori or independently from Kepler's Law. Since the error in stellar
masses (from radial velocities and evolutionary codes) is usually 3-10 % (e.g., Torres et al., 2008),
the propagated error on ks, would be a few times greater than the highest ks, expected, making this
method impractical. It has been proposed that the stellar mass and semi-major axis can be precisely
and independently measured via the light-travel time effect described by Loeb (2005). In practice,
however, the light-travel time effect is highly degenerate with the unknown transit epoch and/or the
orbital eccentricity. We find that a precise independent measurement of M, from light-travel time

is impractical even with the excellent photometry of Kepler.

2.2.5 Expectations for Planetary Eccentricities

Thus far, we have quantified how planetary interiors affect the orbit through precession. The photo-
metric observability of this apsidal precession is highly dependent on the current orbital eccentricity

(e). Small eccentricities are the largest limitation to using transit light curves to probe extra-solar

6We do note that detailed observations of multiple-planet systems can yield mass estimates of each of the bodies
independently. Kepler asteroseismology can also provide independent information about stellar mass and other
properties (Kjeldsen et al., 2008).
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planet interiors. Indeed, if eccentricities are very low, measuring apsidal precession from transit light
curves may not be possible for any of the Kepler planets.

Nearly all hot Jupiters have eccentricities consistent with zero, though the radial velocity tech-
nique has difficulty putting 3-0 upper limits on eccentricities smaller than 0.05 (Laughlin et al.,
2005). So far, the strongest constraints are placed by comparing the deviation of the secondary
transit time from half the orbital period, which are related by (e.g., Charbonneau et al., 2005):

T P

€cosw ~ ﬁ(tsec — tprim — 5

) (2.17)

Similarly, by measuring the primary and secondary transit durations (©; and ©;;), an addi-
tional constraint can be placed on esinw. The equation commonly quoted in the extra-solar planet
literature (Kallrath et al., 1999; Charbonneau, 2003; Winn et al., 2006) has a sign error; the correct
equation is derived by Kopal (1959), p. 391 :

O;1 — 07 a® —cos?i

i = 2.18
esme O +07 02 —2co0s24 ( )

R.+R,
av/1—e?’
include this equation to note that there is information about both the eccentricity and its orientation

where o = The accuracy of this measurement is typically smaller than for e cosw, but we
in the full transit light curve (see also Bakos et al., 2009).

Combining secondary transit timing information with radial velocity and Rossiter-McLaughlin
measurements to help constrain w, Winn et al. (2005) found the best-fit eccentricity for HD 209458
was ~0.015. Though Winn et al. (2005) argue that the actual eccentricity is probably less than
0.01, it is not necessarily 0 (Mardling, 2007). Recently, Joshi et al. (2008) revealed WASP-14b, a
young massive hot Jupiter with an eccentricity of 0.1; WASP-10b and WASP-12b also appear to be
eccentric (Christian et al., 2008; Hebb et al., 2009), though these eccentricities may be spurious or
overestimated.

The most accurate eccentricity constraint is a detection by Knutson et al. (2007a) for the very hot
Jupiter HD189733b. They observed continuously and at high cadence (0.4 seconds) with the Spitzer
space telescope and measured a secondary timing offset corresponding to e cosw = 0.001 £0.0002, a
5-0 result that they could not explain by any other means. (Preliminary analysis of additional data
for this planet by Agol et al. (2009) indicates e cosw = 0.0002 £ 0.0001.) The constraint on esinw
is much weaker. A non-zero eccentricity of e ~ 0.003 for hot Jupiters is therefore consistent with
every measurement available in the literature, though the actual values of eccentricities at the 1073
level are essentially unconstrained.

In the absence of excitation, the current eccentricities of these planets depend on the initial

eccentricity and the rate of eccentricity decay. Extrapolating from planets in our solar system
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(Goldreich & Soter, 1966) implies short circularization timescales of ~ 10 MYr, though recent studies
have shown that using a fixed eccentricity damping timescale is an inappropriate simplification of
the full tidal evolution (e.g., Jackson et al., 2008; Levrard et al., 2009; Rodriguez & Ferraz-Mello,
2009). Even an analysis using the full tidal evolution equations cannot give a compelling case for
the present-day eccentricities of these planets, since there are essentially no direct constraints on the
tidal dissipation parameter for the planet, @,. Various estimates show that @), for exoplanets is not
known and may be quite large (e.g., Matsumura et al., 2008), implying that non-zero eccentricities
are not impossible. Even so, we stress that the best candidates for observing apsidal precession
are also those planets that have the fastest eccentricity damping, since the damping timescale and
apsidal precession rates are both proportional to % (Rip)s). Hence, those planets which have the
fastest precession rates will also have the lowest eccentricities. The first step in determining if this
trade-off allows for apsidal precession to be measured by Kepler data is to apply the techniques
described in this paper to the data themselves. Furthermore, with the discovery and long-term
characterization of more planets using ground and space-based observations, the detectability of
apsidal precession will increase dramatically.

We should note that there are several mechanisms that can excite eccentricities and compete with
or overwhelm tidal dissipation. The most prevalent is assumed to be eccentricity pumping by an
additional companion (Peale et al., 1979; Bodenheimer et al., 2001; Adams & Laughlin, 2006). Even
very small (Earth-mass or less) companions in certain orbits can provide significant eccentricity ex-
citation (Mardling, 2007). (In this case, however, our single-planet method for estimating ks, would
need to be modified considerably.) Tidal dissipation in rapidly rotating stars tends to increase the
eccentricity, potentially prolonging circularization in some systems (Ferraz-Mello et al., 2008). Very
distant inclined companions (e.g., a planet orbiting a star in a misaligned binary star system) can
induce Kozai oscillations that impart very large eccentricities on secular timescales (e.g., Fabrycky
& Tremaine, 2007). Arras & Socrates (2009) proposed that thermal tides can significantly affect
the orbital and rotational properties of extra-solar planets, though their conclusions appear to be
overestimated (Goodman, 2009; Gu & Ogilvie, 2009). Finally, recent (not necessarily primordial)
dynamical instabilities in the planetary system can also be responsible for generating eccentricity
which simply hasn’t damped away yet (Ford et al., 2005; Gomes et al., 2005; Chatterjee et al., 2007;
Thommes et al., 2008). We, therefore, continue our analysis under the possibility that some very

hot Jupiters may have non-zero eccentricities.

2.3 Transit Light Curves of Apsidal Precession

Previous studies of transit light curve variability due to non-Keplerian perturbations have focused

almost exclusively on transit timing. In contrast, we model the full photometric light curve in order
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to estimate the detectability of ksp,. This will automatically include the effect of changing transit
durations, which are very useful for detecting apsidal precession (P&l & Kocsis, 2008; Jordan &
Bakos, 2008). In addition, using full photometry can provide a more direct and realistic estimate
of the detectability of ks,. Of course, the drawback is additional computational cost, though we
found this to be manageable, requiring less than 20 seconds to generate the ~ 2 million photometric

measurements expected from Kepler’s 1-minute cadence over 3.5 years.

2.3.1 Our Transit Light Curve Model

Determining the photometric light curve of a transiting system requires knowing the relative positions
of the star and the planet at all times. These can be calculated by describing the motion of the
planet with time-varying osculating orbital elements. When describing the motion of the planet using
instantaneous orbital elements, it is usually customary to ignore the periodic terms by averaging,
as in Sterne (1939a), and calculate only the secular terms. These small periodic terms describe how
the orbital elements change within a single orbit as a function of the true anomaly, f, due to the
non-Keplerian potential. In precessing systems, the value of the true anomaly at central transit,
fir = 90° —wy,., changes subtly from one transit to the next, inducing slow variations in the osculating
orbital elements at transit. Therefore, we include in our model the dominant periodic changes in
orbital elements as a function of orbital phase, using My, = f;. as an appropriate approximation for
low eccentricities. Using a direct integration (described in Section 2.4.1), we verified that ignoring
these periodic variations can cause non-negligible systematic errors in determining transit times. The
periodic changes are derived from the same disturbing potentials used above. We follow the method
of Kozai (1959) for calculating osculating elements from mean elements, and assume zero obliquity.
The correction is similar to the correction to the mean motion, which is also applied in our model.
The correction to the semi-major axis, eccentricity, longitude of periapse, and mean anomaly are
Gose = Omoan + 12_%6 cos M = 2aee cos M, eosc = €mean + €(1 — cos M), Wose = Wmean + < sin M, and
Mose = Minean — g sin M where € is defined in Equation 2.16. General relativistic periodic corrections
are also added; these are taken from Soffel (1989), page 92 (with o = 0, 8 = v = 1). Using our
direct integrator (described below), we verified that these corrections reproduced the actual orbit to
sufficient accuracy for this analysis as long as e 3> € ~ 107°. Other corrections are higher order in
small parameters and are ignored.

Our model uses these corrected elements to generate astrocentric Cartesian coordinates for a
specific system inclination and, for completeness, also includes the effect of light-travel time (Loeb,
2005) though we concur with Jordan & Bakos (2008) and Pal & Kocsis (2008) that the light-travel
time change due to w is unimportant. The positions are then translated to photometric light curves

using the quadratic limb-darkening code” described in Mandel & Agol (2002). Kepler data will have

7 Available at http://www.astro.washington.edu/ agol/transit.tar.gz
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enough signal-to-noise to justify using non-linear limb darkening laws (Knutson et al., 2007b), but
we do not expect that this simplification will significantly alter our conclusions.

In addition, we include the photometry of the secondary eclipse. As suggested by Lopez-Morales
& Seager (2007), very hot Jupiters can reach temperatures exceeding 2000 K, where their blackbody
emission at optical wavelengths is detectable by Kepler. This thermal emission is added to the
reflected light of the planet, which appears to be small based on the low upper limit of the albedo of
HD 209458b and TrES-3 measured by Rowe et al. (2007) and Winn et al. (2008), respectively. We find
that in Kepler’s observing bandpass of 430-890 nm (Koch et al., 2006), thermal emission of very hot
Jupiters can dominate over the weak reflected light. We estimate the depth of the secondary eclipse
(dsec) in our simulated Kepler data by assuming that 1% of the light is reflected and the other 99%
absorbed and reemitted as processed thermal blackbody emission from the entire planetary surface
(day and night sides). To be conservative and to account for unmodeled non-blackbody effects, we
divide the resulting planet/star flux ratio by 2 (Hood et al., 2008); the resulting depth of around
2 x 107 is consistent with the lower values of Burrows et al. (2008), the tentative measurement of
the thermal emission from CoRoT-2b (Alonso et al., 2009), and the detection of secondary eclipse
emission from OGLE-TR-56b (Sing & Lépez-Morales, 2009). We note that the best candidates for
detecting kg, are those with small semi-major axes and large radii; these same planets have relatively
large dge. values (Table 1). Secondary eclipses are very useful for determining e and w. We will also
find that they can be important for observing apsidal precession.

Our model generates accurate photometry for an extra-solar planet undergoing apsidal precession.
Several other small photometric effects have been discussed in the literature, which we do not include.
Most of these effects are periodic (e.g., the reflected light curve) and therefore will not affect the
long-term trend of precession. Care will need to be taken to ensure that slow changes due to
parallax and proper motion, which should be quite small for relatively distant stars observed by
Kepler (Rafikov, 2008; Scharf, 2007) or changes in the stellar photosphere (Loeb, 2008) are not
significant. Non-Gaussian astrophysical noise of the star and other systematic noise should degrade
the accuracy with which ky, can be measured compared to our ideal photometry. The long-term
variability of the star can be interpolated away or modeled (Lanza et al., 2009), though it is not
clear how short-term variability will affect transit light curves at Kepler’s level of precision. On the
other hand, complimentary observations (e.g., warm Spitzer, HST, radial velocities, JWST, etc.)

should only enhance our understanding of the systems studied.

2.3.2 Accuracy of k;, Measurement

With an accurate photometric model of apsidal precession, one could estimate the measurement
accuracy of ky, from Kepler data by carrying out a full Monte Carlo study of the inversion problem,

going from realistic synthetic photometric data sets to a determination of all system parameters. In
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this work, instead, we carry out a much simpler calculation which cannot provide strict one-sigma
error estimates like the Monte Carlo analysis, but does give an indication of how well kg, can be
resolved given a large dataset.

We obtain this accuracy estimate by comparing a realistic precessing photometric model with
kap # 0 to a base model with kg, = 0. The base model is still undergoing very slow apsidal precession,
induced by general relativity and ka.. We calculate the effect of a non-zero ks, value by subtracting
the precessing model from the base model. (See Figures 2.2 and 2.4.) Then, by calculating the
root-sum-square of the residual signal and comparing it to the photometric error on a single data
point, we obtain a numerical measure of the relative signal induced by ks,. The “signal-to-noise”

ratio for the data set is therefore given by:
~ i TJil (2.19)

where y; and y) are the photometry model values for the ks, test model and the base model,
respectively, and o is the photometric error. We use o = 1000 parts per million (ppm) flux per
1-minute integration, corresponding to the expected noise of Kepler on a faint V = 14 star (Koch
et al., 2006). Of the 30 planets with periods less than 3 days, 16 are expected to be brighter than
V ~ 14 (T. Beatty, pers. comm.) and we can reasonably expect some fraction of these to have
orbits comparable to the planets modeled here.

Since our residual signal changes as a function of time, this is not a true signal-to-noise calculation;
the distribution of values in time matters for a proper interpretation, but any distribution would
yield the same effective %7 and thus this construction is not capturing all of the details. Even so,
it does provide a useful and reasonable rough estimate for detectability. In order to identify the
resolution on the ky, measurement, we search for the value of ks, which yields a signal-to-noise of
% = 1. This is reasonable since it represents the threshold value of kg, below which planetary
induced precession cannot be distinguished in the data with the given errors. The threshold ks,
value can also be loosely thought of as an estimate of the 1-o expected errors.

This is a realistic estimate only insofar as the residual signal (y; — y?) is due only to kg, and
cannot be absorbed by any other parameters. Hence we seek to choose other parameters so as to
minimize the residuals without changing ks,. For most system parameters, this is accomplished by
referencing the time to the center of the data set, and thus the difference between the signals grows
similarly forward and backward in time as seen in Figures 2.2 - 2.5. The transit shapes in both
models are equivalent at the center of the dataset as would be expected in an analysis of actual
data.

Additionally, a major effect from changing the precession period is to alter the observed average

period. When analyzing actual data, this would just be absorbed into a small adjustment to the
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Figure 2.2 Photometric Difference Signal from k;,. As described in the text, we use the
difference between two theoretical light curves in the transit photometry to assess the observability
of apsidal precession by Kepler. For WASP-4b at w = 0°, e = 0.003, and a central impact parameter,
the difference between a model with ko, = 0 and ks, = 0.146 would yield an effective “signal-to-
noise” of 1 on a moderately bright star (V' = 14). Shown is this difference signal; the root sum of
squares of the signal is equal to 1000 ppm, the expected photometric accuracy of Kepler for a 1
minute observation (Koch et al., 2006). The trends seen in the figure are illustrated in Figure 2.3
by considering excepts of single primary transits from the regions labeled 1-5.

(unknown) stellar mass, thereby adjusting the period to absorb much of the ks, signal. It is therefore
important to correct for the average period change to avoid significantly overestimating the signal
due to kyp. Additionally, there is a similar, though less severe, effect for the epoch of the first transit,
which is also adjusted to best absorb signal. This is achieved by using an analytic expression for
the transit times (see Equation 2.22 below) which match the transit times of the photometric model
to very high accuracy. By fitting a line to these times, we can determine the average period and
epoch that absorb the degenerate portions of the ks, signal, leaving behind the residual due only to
kop. We have not explicitly accounted for degeneracies between the signal from kg, and the other
parameters, like the radius, limb darkening, and system inclination, but since ks, induces a time
varying signal while these other parameters are generally constant, there is little expected signal
absorption from these parameters.

The only major drawback of this approach is that it does not allow the eccentricity state of
the system to change. With real data, the eccentricity and precession phase are not known in
advance, and thus must be found by inversion. As detailed in Section 2.2.5, eccentricity and orbital
orientation are primarily constrained by comparing primary and secondary transit pairs, and thus
proper inversion is greatly aided by accurate observations in wavelengths more favorable to secondary

transit observations, obtained by Spitzer, HST, or from the ground (e.g., Knutson et al., 2007a;
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Figure 2.3 Excerpts of Photometric Difference Signal. Examining excerpts of the residual
signal shown fully in Figure 2.2, the effects of transit timing and “transit shaping” can both be
seen. The five excerpts are offset for clarity. Transit timing has an asymmetric signal (dotted lines),
obtained when subtracting two transit curves slightly offset in time. Transit shaping, which is mostly
due to changing transit duration, creates a symmetric signal (dashed lines). The total difference
signal (solid lines) is dominated by the effect of transit shaping, which has ~30 times more signal
than transit timing alone. (See explanation in text.) Both effects are maximized at the beginning
(1) and end (5), as expected for a signal that increases with longer baseline. The maximal signal
occurs during ingress and egress, when the light curve changes the fastest. The transit shapes are
equivalent at the center (3) by construction. The transit timing anomaly of precession is quadratic,
which, when fitted with a best-fit straight line corresponding to a non-precessing signal, yields two
intersections when transit timing is minimized (2,4). The transit timing offset at the beginning and
end is only 0.085 seconds, while the center is offset by -0.042 seconds.
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Figure 2.4 Photometric Difference Signal from kj,. Similar to Figure 2.2, but for w = 90°.
This figure is dominated by the photometric difference between secondary transits slightly offset in
time. At w = 90° the changes in the primary transits due to precession are small, except far away
from the central time. At this orientation, the primary-secondary timing offset (Equation 2.17) is
maximized. This “secondary transit timing” signal is weaker than the signal from primary transit
as the secondary transit depth is much shallower. Therefore, an unreasonably high kg, of 0.925 is
required to detect the apsidal precession. Excerpts of single secondary transits taken from regions
labeled 1-5 are shown in Figure 2.5.

Swain et al., 2008; Gillon et al., 2008). We also find that binned and folded Kepler data has
comparable sensitivity to a single Spitzer observation for characterizing the secondary eclipses of
very hot Jupiters. In any case, our assessment of the threshold ks, assumes that the eccentricity of

the system is very well known, which will likely require additional supporting observations.

2.3.3 Comparison to Expected Signal

The residual light curves calculated for each planet, Figures 2.2 - 2.5, match the theoretical expecta-
tions of the apsidal precession signal (Miralda-Escudé, 2002; Heyl & Gladman, 2007; Pal & Kocsis,
2008; Jordan & Bakos, 2008). To interpret the results of our analysis, it will be useful to briefly
review the major components of the apsidal precession signal: changes in the times of primary tran-
sits, changes in the shape of primary transits, and changes in the primary-secondary offset times
(Miralda-Escudé, 2002; Heyl & Gladman, 2007; Pal & Kocsis, 2008; Jordan & Bakos, 2008).

The primary transit times, T, due to apsidal precession are well described by a sinusoid for

very low eccentricities (e < 0.1):

el
Ty = To 4 NPops + —22

(coswir, N — COS Wiy )] (2.20)
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Figure 2.5 Excerpts of Photometric Difference Signal. Similar to Figure 2.3, but for w = 90°.
Single secondary transit differences are excised from the full difference signal shown in Figure 2.4.
The shape of the curves is due to the subtraction of two secondary transits slightly offset in time.
Since the secondary transits are complete occultations, they are flat-bottomed and lack the additional
structure due to limb-darkening seen in Figure 2.3. By construction, the offset grows in time away
from the center (3) of the signal and attains a maximum at the beginning (1) and end (5). Curves
2 and 4 are shown for comparison to Figure 2.3.
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where Tj is the epoch of the first transit, wy, v = w(Ty — To) + wiro is the argument of periapse for
the N transit, and P,y is the observed period between successive transits, which deviates from the
actual orbital period since the orbit has precessed a small amount between transits (Batten, 1973).

For small eccentricities, the amplitude of the transit timing variations due to ks, is:

ePpps e a 3/2 [ M, -1/2
“lobs o 119 2.21
™ see x (0.003) (0.025 AU> (MQ) (221)

Given that individual transit times can be measured with accuracies of only a few seconds, even tiny

eccentricities ¢ < 1075 can induce detectable transit timing variations on precessional timescales
(v b).

For our analysis, we extended Equation 2.20 to fifth order in eccentricity allowing accurate de-
termination of transit times for eccentricities up to of order 0.1. We also require a correction for
the effect of a non-central impact parameter (i < 90°, e > 0). For an inclined eccentric orbit,
the apparent path of the planet across the stellar disk is curved. At orientations where the line
of sight is not along the major axis of the ellipse, the curved path is also asymmetric. There-
fore, the times of photometric minima, T, do not correspond exactly to the times of conjunction
(when the planet crosses the y — z plane and fi,. = 90° — wy,.). We follow the correction from
Equation VI.9-21 of Kopal (1959), who find that at photometric minimum, f;. = 90° — wj,., where
Wy, = wyy + e coswy, cot?(i)(1 — esinwy, csc?(i)); in this corrective term, it is only required to keep

terms up to second order in eccentricity. Assuming that ¢ and w are constant, it can be shown that

Ty = To+ NPobs

P

+ :l_bs [e(cos wér’N — cos wgr’o)
3 2/ ! : l

+ 3¢ (sin 2wy, ;y — sin 2wy, o)
1.

+ 663 (cos 3wy, y — cos 3w}, o)
4 1 ! : /

+ e —6 sin 2wy, y — sin 2wy, )
5 o

-~ (sin 4wy,  — sin 4wtr,0))

/ /
(cos 3wy, x — €08 3wy, )
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- % (cos 5w, N — COS 5W£r70))]

(2.22)

This transcendental equation is solved iteratively for (T — Tp) to obtain the transit times and has

been tested thoroughly against the empirical determination of transit times calculated by our light
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curve model described above.

The expected apsidal precession periods (including small contributions from GR and the star)
for WASP-12b, CoRoT-1b, OGLE-TR-56b, WASP-4b, and TrES-3b are around 18, 71, 116, 120,
and 171 years, respectively. In other words, they have precession rates induced by the planetary
tidal bulge of a few degrees per year, compared to a few degrees per century as the fastest general
relativistic precession (Jordan & Bakos, 2008). We caution that if % for WASP-12b is overestimated
due to imprecise data (e.g., Winn et al., 2007), then the precession period would increase accordingly.

Even with such fast precession rates, the duration of observations will generally be much shorter
than the precession period. In addition, as discussed above, the linear timing anomalies will be
absorbed into the effective period as a small change in the unknown stellar mass (Heyl & Gladman,
2007; Pal & Kocsis, 2008; Jordan & Bakos, 2008). Therefore, detection of apsidal precession from
primary transit times alone will require a significant detection of the curvature over a small portion
of a long-period sinusoid. Since the curvature in Equation 2.20 is maximal at w ~ 0,180°, these
orientations have the best primary transit timing signal. Even at these orientations, detecting
kop from primary transit times alone is difficult, since it can be shown that the signal strength is
proportional to ew?, due to the need to detect curvature (Heyl & Gladman, 2007).

When the observational baseline is much shorter than the decades-long precession period, utilizing
the changing shape of the transits can significantly improve detectability of apsidal precession (P&l
& Kocsis, 2008; Jordan & Bakos, 2008). Transit shapes are primarily determined by the orbital
speed at transit ft,a and impact parameter b, both of which depend on the precession phase wy,.. For
small eccentricities, the orbital angular speed at transit is given simply by ftr ~ n(l + 2ecoswy,).
Changes in the impact parameter are somewhat more subtle, since b is given by r¢, cosi/R., where
rir =~ a(l — €2)/(1 + esinwy,.) is the star-planet separation. Hence, the apparent impact parameter
of the planet can change for non-central transits, even when the orbital plane remains fixed. The
evolving transit shape of precessing orbits is determined by variations in both orbital speed and
impact parameter. Simplifying the effect of transit shape by considering only the variations in
transit duration as a function of wy,., P4l & Kocsis (2008) and Jordan & Bakos (2008) find that
these two effects are of comparable magnitude. These authors also show analytically that the two
effects exactly cancel when b =1/ V/2. At this impact parameter, the transit duration stays constant
throughout apsidal precession. The full photometric transit shape, however, still changes detectably
in a precessing orbit, though the magnitude of signal is reduced (Figure 2.7).

The expected effect of changing transit shapes is fully consistent with the photometric difference
signals calculated by our model (Figures 2.2 and 2.3). Indeed, our model shows that transit shaping
dominates the signal by a factor of 230 (Figure 2.3). We can also see that changes in the transit
shape are maximized at orientations near w =~ 0, 180° (as expected from Equation 2.18).

For small eccentricities, the transit shaping signal strength is given by % x ew x ekgp,. Therefore,
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when transit shaping dominates the observable signal, we should find that searching for the threshold
kop value that yields % = 1 results in a power law relationship between threshold ks, and e, such
that ko, o e 1. By solving for threshold ks, for eccentricities from 0.001 to 0.1, we find, as expected,
that threshold k3, very closely follows a power law in eccentricity with a slope of -1 for all planets.
This power law relationship can be written as eks, = C, where C' is a constant calculated from our
model that depends on the planetary, orbital, and stellar parameters of the system.

At w ~ 90,270°, transit timing and transit shaping effects are much weaker and are rather
ineffective at constraining apsidal precession. At these orientations (when the Earth’s line of sight is
nearly aligned with the major axis of the orbit), another photometric signal emerges: variations in
the difference between the times of primary and secondary transits. The changing orientation of the
orbital ellipse causes a variation in the offset between primary and secondary transit times following
Equation 2.17 above (Heyl & Gladman, 2007; Jordan & Bakos, 2008). These authors show that the
strength of this signal is also proportional to ew and we find that the variation in threshold kg, then
also follows kg, o e L.

The photometric difference signal at w = 90° is shown in Figures 2.4 and 2.5. Using the method
described in Section 2.3.2 to remove degeneracies almost eliminates the primary transit signal en-
tirely, as expected, and the secondary transit offset becomes the more powerful signal. For WASP-
12b, with an expected Kepler secondary transit depth of ~1830 ppm, the threshold ks, is actually
lower at w = 90° (Figure 2.6). For the other planets, the secondaries are not as important.

Our estimates of threshold ks, at w = 90° are based on the unknown secondary transit depth
(dsec) in the Kepler bandpass (though our estimates of dse. are consistent with all the measurements
in the literature to date). Furthermore, we find that % X dsec, SO that deeper secondary transits
improve the accuracy with which £z, can be measured. It is important to note that combining
Kepler primary transit times with precise secondary transit times measured in the near-infrared
(e.g., by warm Spitzer, HST, or JWST) is a very powerful way to constrain apsidal precession (Heyl
& Gladman, 2007) for any orientation. Even a few high-precision secondary eclipse observations are
enough to lower the value of threshold kg, from our predictions, especially when w ~ 90,270°.

By construction, threshold ky, values vary linearly with the assumed photometric error o =
0.001 x 10%2(V=19  Tn addition, re-performing our analysis using a 6-year long Kepler mission

improved threshold kg, values by a common factor of ~2.2.

2.3.4 Results for Specific Planets

Using the method described above, we have determined the threshold kg, for the most favorable
known transiting planets as analogs for the very hot Jupiters to be discovered by Kepler. The
threshold kg, for each planet was computed at a range of eccentricities from 0.001 to 0.1 and for

w = 0° and w = 90°. Using the relationship discussed above (kg, oc e~!) we interpolated (and
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Figure 2.6 Eccentricities Needed to Detect Interior Properties from Apsidal Precession.
The best-known planets for detecting ko, precession are analogs to the hot Jupiters WASP-12b,
WASP-4b, CoRoT-1b, OGLE-TR-56b, TrES-3b, HAT-P-7b, TrES-2b, and WASP-14b. Assuming
that analogs to these planets exist in the Kepler field around a V=14 magnitude star, the above
graph shows the eccentricities required to detect ky,. Black symbols correspond to calculations
with w = 0° and gray symbols correspond to w = 90°; in both cases, b = 0. Apsidal precession is
much easier to detect for larger eccentricities so increasing e decreases the detectable kaj,. Using
our transit light curve model, we found that threshold &y, values followed a power law ko, o e~ !
(for low eccentricities), which is consistent with the analytical estimates that % x ew o ekyy, (see
Section 2.3.2). Interpolating (and sometimes extrapolating) on this power law relationship, the
graph identified the eccentricities required of these analog planets to detect precession due to a
“typical” planetary interior of ks, = 0.3 (triangles). For example, when e = 0.00026 and w = 0°,
the apsidal precession due to an analog of WASP-12b should be just detectable by Kepler. A higher
eccentricity (shown in Table 1) would be needed to measure kg, with sufficient accuracy (0.1) to
distinguish between a massive core and a core-less model (circles). Systematic errors are expected to
become important once the measurement error on ks, reaches as low as 0.01 (squares). If any of the
very hot Jupiters discovered by Kepler have comparable eccentricities, the long-term high-precision
photometry would allow for a powerful probe into their interior structure. HAT-P-7b and TrES-2b
are known to lie in the Kepler observing field, but the values above are not corrected for improved
photometric accuracy obtainable on these bright stars. Note that the eccentricities shown above and

in Table 1 are computed for % = 1; 3-0 measurements require eccentricities 3 times as high.
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Figure 2.7 Effect of Impact Parameter on Precession Signal. The detectability of apsidal
precession depends on the impact parameter (b) of the orbital track across the star. For w = 0°
(solid), the signal of primary transits are most important, with transit shaping playing the largest
role. (See Figure 2.3.) However, the strength of transit shaping is a function of impact parameter
with the minimum effect analytically estimated by Jordan & Bakos (2008) and P4l & Kocsis (2008)
to be b = 1/1/2 (vertical solid line). Using a full photometric model, we see the expected decrease
in the shaping signal (i.e., requiring a larger kg, to reach % = 1). Note that the signal is nearly
maximal, with small threshold k3, values, for a large range of impact parameters. When w = 90°
(dotted), the effect of primary transits are minimal and the offset in secondary transits become the
determining factor. (See Figure 2.4.) At high impact parameters secondary eclipses are grazing,
reducing the observable signal. We also show the threshold ks, for an orientation of w = 45°, which
lies, as expected, between the two extremes. The values of threshold ks, shown are for an V=14
CoRoT-1b analog in the Kepler field with an eccentricity of 0.003.
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Table 2.1. Extra-Solar System Parameters and Results

Planet Analog My R My Rp a dsec® @it e (Threshold kgp=0.1)¢ Threshold  Thresh. Ref
M, R My Rj® AU ppm  °/yr  w =0° w = 90° Pns/yr Qx4
WASP-12b 1.35 1.57 1.41 1.79 0.0229 1830 19.9 0.0008 0.0004 0.95 92700 1
CoRoT-1b 0.95 1.11 1.03 1.55 0.0245 314 4.96 0.0028 0.0085 0.93 12500 2,3
WASP-4b 0.92 0.91 1.24 1.36 0.0234 109 2.91 0.0047 0.0394 0.68 9900 4
TrES-3b 0.93 0.83 1.91 1.34 0.0228 106 2.04 0.0062 0.0614 0.53 13700 5
OGLE-TR-56b 1.17 1.32 1.29 1.30 0.0236 451 3.00 0.0077 0.0096 1.36 24700 6
HAT-P-7 b 1.47 1.84 1.77 1.36 0.0377 176 0.25 0.2085 0.3146 6.73 2800 7
TrES-2 b 0.98 1.00 1.19 1.22 0.0367 18 0.13 0.2102 Se. € 2.94 350 8
WASP-14b 1.21 1.31 7.34 1.28 0.0360 144 0.09 0.8352°¢ € 3.92 5400 9
XO-3 b 1.21 1.37 11.8 1.22 0.0454 46 0.04 L. © € 8.00 1700 10
HAT-P-11b 0.81 0.75 0.081 0.42 0.0530 0.2 0.01 L. © € 29.2 0.1 11
CoRoT-7b 0.91 1.02 0.028 0.16 0.0170 8 0.29 L. € € 16.8 80 12
References. — (1) Hebb et al. (2009) (2) Bean (2009) (3) Barge et al. (2008) (4) Winn et al. (2009a) (5) Sozzetti et al. (2009)

(6) Pont et al. (2007b) (7) Pal et al. (2009) (8) Holman et al. (2007) (9) Joshi et al. (2009) (10) Johns-Krull et al. (2008) (11)
Bakos et al. (2009)  (12) wuw.exoplanet.eul

Note. — These system parameters were used to estimate the detectability of apsidal precession for these very hot Jupiter systems. The
derivation of the values in the remaining columns is described in the text and in the footnotes below. For all systems, ko, = 0.03 and
quadratic limb darkening parameters uj = 0.35 and ug = 0.4 (appropriate for Kepler’s bandpass) were used (Mandel & Agol, 2002). For
reference, the measured eccentricity of WASP-12b, WASP-14b, HAT-P-11b, and XO-3b are 0.049 + 0.015, 0.091 + 0.003, 0.198 + 0.046,
and 0.2884 + 0.0035 respectively. Other planets have unmeasured eccentricities or eccentricity upper limits of <0.05. A discussion of
these results is provided in Section 2.3.4.

#We use Rj = 71492 km, the equatorial radius at 1 bar.

PThe estimated depth of the secondary transit in Kepler’s bandpass (see Section 2.3.1).

©The eccentricity required (at two different values of w) so that a 7‘72p difference of 0.1 has an effective signal-to-noise of 1 in all of
Kepler data for a V=14 star, corresponding to a photometric accuracy of 1000 ppm/min. If analogs to these planets were found by Kepler
with the given eccentricities, the internal density distribution would be measured well enough to detect the presence of a large core (see
Section 2.3.2). These values correspond to the circles in Figure 2.6. These results are for central transits (for b > 0, see Figure 2.7).

dThe value of the change in period, P, that can be detected with a signal-to-noise of 1 in all of Kepler data for a V=14 star (see Section
2.4.2). The value of threshold Q4 is an estimate of the maximum value of the stellar tidal dissipation parameter, Qx, assuming that
the period decay is due entirely to tidal evolution of the planet. Lower values of Q4 are detectable by Kepler. Stars are thought to have
time-averaged Qs values around 10000, though this value is highly uncertain and could be much higher for individual stars.

©Even with the precision of Kepler, apsidal precession for these planets is undetectable. The extrapolation used to compute eccentric-

1

ities at specific values of threshold kg; assumes the inverse relationship discussed in the text kg, o e” *, which is only true for low

eccentricities.

fThis ultra-short period low-mass planet was recently announced by the CoRoT team, but has not been published in a peer-reviewed
journal. We take the parameters from J. Schneider’s Extra-solar Planets Encyclopedia and use the mass-radius relation for terrestrial
super-Earths of Sotin et al. (2007) to estimate the mass as ~9 Earth masses (rather than using the quoted upper limit of 17 Earth masses).
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sometimes extrapolated) our calculations to determine the eccentricity required to reach threshold
kop values of 0.3, 0.1, and 0.01. These results are summarized in Figure 2.6 and Table 1.

WASP-12b is the best candidate for observing apsidal precession. With an eccentricity of e ~
0.00026 and k2,=0.3, the apsidal precession would have an effective signal-to-noise of ~1 for all
of Kepler data. If e is ~0.001, then ks, can be well characterized and not just detected. As the
difference in ko between Jupiter and Saturn of ~ 0.15 is primarily due to the presence of a massive
core, a resolution in ks, of 0.1 is enough to detect whether or not the planet has a core, at the
~1-sigma level.

Although WASP-12b does not lie in the Kepler field, it clearly stands out as an excellent candidate
for observing apsidal precession. Though the putative eccentricity of 0.049 (Hebb et al., 2009) is
probably an overestimate (Laughlin et al., 2005), if it were real, it would cause sinusoidal transit
timing deviations with an amplitude of ~25 minutes (using Equation 2.20) and a period of ~18
years. Such a large deviation would be readily observed from the ground in either transit times or
transit shapes. If apsidal precession is not observed, tight upper limits on the eccentricity can be
established.

Analogs to the very hot Jupiters WASP-4b, TrES-3b, CoRoT-1b, and OGLE-TR-56b are good
candidates for observing apsidal precession if the eccentricities are above ~0.003. (Note that CoRoT-
1b has only ~30 days of observations from the CoRoT satellite (Barge et al., 2008), which is
insufficient to observe any of the effects discussed in this paper.) These planets have precession
periods of around 100 years so that the argument of periapse of these planets changes by ~10°
during the course of Kepler observations. Though none of these planets lie in the Kepler field, they
are all good candidates for observing apsidal precession though precision photometry.

WASP-14b is more massive and has a larger semi-major axis (0.035 instead of 0.025) which is
enough to significantly reduce the detectability of apsidal precession which only proceeds at 0.1°
per year. Unlike the previously mentioned planets, WASP-14b has a known non-zero eccentricity of
0.091 £ 0.003 (Joshi et al., 2009). Thus, the amplitude of transit timing variations is known to be
very large (~97 minutes), but with a ~3400 year precession period.

CoRoT-7b is a very hot super-Earth and has the shortest known orbital period (excepting the
ultra-short period planets of Sahu et al. 2006). We included this planet in our analysis to get a feel
for the plausibility of detecting the interior structure of terrestrial extra-solar planets. The small
radius reduces the planetary contribution to apsidal precession (Figure 1) and significantly reduces
the photometric signal. We note here that in bodies where material strength (rigidity) is more
important than self-gravity, kg, is no longer directly related to internal density distribution. The
correction factor is typically small for bodies larger than the Earth (Murray & Dermott, 1999).

X0-3b is a super-massive eccentric planet that is not in the Kepler field. Even so, it is interesting

to note that, using the known eccentricity e = 0.2884 + 0.0035 (Winn et al., 2009b) and accounting
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for the brightness of the host star (V=9.8), the Kepler threshold ks, is reduced to only 0.54. As
pointed out by Jordan & Bakos (2008) and P&l & Kocsis (2008), XO-3b is a good candidate for
observing apsidal precession within the next decade or so. Furthermore, as discussed below, the
non-zero obliquity of the stellar spin axis (Winn et al., 2009b) may also result in an observable
signal due to nodal precession.

HAT-P-7b and HAT-P-11b are orbiting bright stars in the Kepler field. The latter is an eccen-
tric hot Neptune with a relatively large semi-major axis resulting in no eminently detectable apsidal
precession. HAT-P-7b, on the other hand, is a good candidate for detecting apsidal precession. It is
probably one of the brightest hot Jupiters in the Kepler field, orbiting a V=10.5 star. The system
brightness improves the expected photometric accuracy from 1000 ppm/min to 200 ppm/min, imply-
ing that an eccentricity of only 0.014 is needed to detect apsidal precession (threshold k2,=0.3). Pal
et al. (2009) report a best-fit eccentricity of 0.003 4 0.012, indicating that the necessary eccentricity
cannot be ruled out. Furthermore, this planet has transiting data extending back to 2004 and was
observed by NASA’s EPOXI Mission in 2008 (Christiansen et al., 2009; D. Deming, pers. comm.).
This additional baseline, though sparsely sampled, may provide the additional leverage needed to
detect apsidal precession if the eccentricity is non-zero. Note, however, that detecting changes in
transit shapes is more difficult when the observations are made with a variety of telescopes because
transit shapes depend on the observing filter used, due to wavelength-dependent limb darkening.

TrES-2b is similar to HAT-P-7b in that it also lies in the Kepler field, has observations dating
to 2005, and was observed by NASA’s FPOXI Mission. TrES-2b is somewhat fainter than HAT-
P-7b (V=11.4), and, correcting for the system brightness, an eccentricity of 0.021 would result in
detectable apsidal precession (threshold k2,=0.3). Observations of the secondary eclipse show no
detectable deviations of the orbit from circularity (O’Donovan et al., 2009). Even so, the light curve
of this planet is quite sensitive to perturbations as it has a quite high impact parameter b = 0.854.
Accounting for this impact parameter does not significantly change the required eccentricity.

We conclude that Kepler may detect the cores of very hot Jupiters and probe their interior
structure though their evolving transit light curve if eccentricities are above ~0.003. As future
observations provide longer baselines for these observations, the sensitivity to interior structure
measurements will increase dramatically, significantly lowering the eccentricity needed to observe
apsidal precession.

In cases where apsidal precession is not observed, the data can set strong upper limits on planetary
eccentricities. An upper limit on the eccentricity can be inferred by assuming that the planet has the
minimal physically-plausible value of ks, ~ 0.1. Null detections of apsidal motion should therefore
provide upper limits on eccentricity comparable to the values shown in Table 1 (also shown by circles
in Figure 2.6). Such strong eccentricity constraints are valuable for improving our understanding of

these close-in planets.
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2.4 Potential Confusion of the Apsidal Precession Signal

In the above, we have assumed that measuring w is tantamount to measuring kg,. This is justified
by noting that the conversion w to kg, involves only factors that are very well characterized. In
Section 2 and Figure 1, we showed that ks, is usually the dominant source of apsidal precession.
The effects of ko, and general relativity are well-understood and can typically be subtracted away
without introducing serious uncertainty, even when they dominate the apsidal precession rate. From
Equation 2.6, converting the remaining w;, to kg, requires only knowing %, e, %, and n. The
latter two are very accurately measured with even a few transit light curves (e.g., Torres et al.,
2008; Southworth, 2008). The eccentricity only enters the equation through the fo(e) and go(e)
eccentricity functions (Equations 2.7 and 2.11), and Kepler observations of secondary eclipse are
sufficiently accurate to remove any systematic error due to these terms unless the eccentricity is
large (e 2 0.3). Determining the mass ratio requires well-sampled radial velocity observations. The
systems detected by Kepler are bright enough to get good mass measurements, especially since very

hot Jupiters have large radial velocity amplitudes (K ~ 200 m/s).®

The anticipated error in the
mass ratio is a few percent (Torres et al., 2008). In all, we estimate that, converting from w to kgp
leads to a typical systematic error on kg, of around ~.01. This is a relatively small systematic effect
in comparison to the potential range (~0.5) of kg, values. For reference, the eccentricity required
to reach a threshold kg, of 0.01 is shown in Figure 2.6 by squares.

Another way to introduce systematic errors on the measurement of kg, is to misinterpret similar
transit light curve variations. To ensure that the method outlined in this paper truly probes the
interiors of extra-solar planets, we consider in this section whether the transit light curve resulting
from apsidal precession can be confused with any other common circumstances. Although a very

specific combination of parameters is required for any particular phenomenon to successfully mimic

a signal due to ks, the below effects should be reconsidered when actual data is available.

2.4.1 Testing the Effect of Obliquity

If either the star or planet has a non-zero obliquity, the orbital plane will no longer be fixed as
a result of nodal precession. The obliquities of very hot Jupiters rapidly (< 1 MYr) decay to a
Cassini state, and recent work has shown that these planets are likely in Cassini state 1 (Winn &
Holman, 2005; Levrard et al., 2007; Fabrycky et al., 2007). Using a model based on the equations
of Eggleton & Kiseleva-Eggleton (2001), we found that Cassini obliquities of very hot Jupiters are
indeed negligible (o, < 0.01°). Though tidal damping of the stellar obliquity occurs on far longer

timescales, several measurements of the projected stellar obliquity through the Rossiter-McLaughlin

80ther than determining the mass ratio and constraining the eccentricity, radial velocity information is thought to
have a negligible contribution in constraining apsidal precession unless a serious observational campaign can measure
the radial velocity period (independently of transits) to sub-second accuracies. (Heyl & Gladman, 2007; Jordan &
Bakos, 2008).
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effect indicates that planet-hosting stars generally have low obliquities < 10° like the Sun (Fabrycky
& Winn, 2009). Hence, the general expectation is that both the star and planet will have rather
low, but potentially non-zero obliquities.

Understanding the specific orbital evolution resulting from non-zero obliquities is more compli-
cated than the simple prescription for apsidal precession. To correctly account for non-Keplerian
effects, we wrote a direct integrator, following Mardling & Lin (2002), that calculates the Cartesian
trajectory (and the direction of the spin axes) of a star-planet system including general relativity
and the effects of quadrupolar distortion. This integrator reproduces the orbit-averaged analytic
equations of Mardling & Lin (2002), which are the same as those in Eggleton & Kiseleva-Eggleton
(2001), Sterne (1939a), and elsewhere.® We did not include the effects of tidal forces or additional
planets which are not relevant to our problem.

Using this direct integrator, we investigated the effect of non-zero obliquities on the transit times,
durations, and impact parameters. Integration of several cases with varying stellar and planetary
obliquities showed that the largest effect on the photometry was due to changes in the impact
parameter, as expected for an orbit with changing orientation (Miralda-Escudé, 2002). However,
even for large stellar obliquities (~ 45°) the transit light curve variations due to obliquity are
generally small relative to the effects of purely apsidal precession, even with low eccentricities. One
reason for this is that the tidal bulge, which does not contribute to nodal precession, is = 15 times
more important than the rotational bulge. As with apsidal precession, the planetary contribution to
orbital variations is much stronger than the stellar contribution (for equal obliquities). Unless the
planetary obliquity is unexpectedly large (2 0.5°), the obliquity-induced nodal precession should

have only a minor effect on the transit light curve.

2.4.2 Transit Timing due to Orbital Decay

Orbital decay generates a small secular trend in transit times. Sasselov (2003) proposed the de-
tectability of the expected ~1 ms/yr period change due to semi-major axis decay of OGLE-TR-56b.
The transit timing anomaly due solely to orbital decay (or growth) is the result of constantly accu-

mulating changes in the period:
L2
Tn =Ty + NPops + §N oP (2.23)

where 6P = PP is the change in the period during one orbit and N is the number of transits
after the initial transit. Equation 2.23 can be derived by noting that the transit times are basically

the integral of the instantaneous period. As before, the transit timing anomaly is composed of the

9This involved minor modifications to the ”direct integrator” equations 3 and 5 in Mardling & Lin (2002). In
Equation 3, the coefficient 12 should be a 6 (R. Mardling, pers. comm.) and Equation 5 was replaced with the nearly
equivalent equation from Soffel (1989).
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quadratic deviation of Tl from a straight line. The change in period can be due to magnetic stellar
breaking (e.g., Lee et al., 2009; Barker & Ogilvie, 2009a), the Yarkovsky effect applied to planets
(Fabrycky, 2008a), and/or other effects.

For planets orbiting an asynchronously rotating star, a major source of orbital decay is tidal
evolution, which results in a slow change in semi-major axis, according to the formula (Murray &

Dermott, 1999):

My (R.\°
a = sign(v, —n) 352 Mp (Z ) na (2.24)

where sign(x) returns the sign of x or 0 if = 0 and where Q. is the tidal quality parameter of the
star, typically around 10* (Dobbs-Dixon et al., 2004). Though 6P due to tidal dissipation is only of
order 3 micro-seconds, N grows by ~ 300 each year, reaching ~1000 during the duration of Kepler
for very hot Jupiters. This implies a transit timing signal of about a few seconds.

Calculating the total “signal-to-noise” of tidal evolution, as was done for ky,, we find that
reasonable values of @, can be measured even for faint stars (V = 14; 1000 ppm/min noise). For
a circular orbit with the parameters of OGLE-TR-56b, the effective % reaches 1 when P is 1.36
ms/yr (see Table 1), corresponding to Q. ~ 25000. This implies the detectability of most of the
empirically-motivated estimates of Sasselov (2003) for the tidal decay of OGLE-TR-56b, which are
estimated to be within an order of magnitude of 1 ms/yr. On the other hand, Barker & Ogilvie
(2009b) estimate that the tidal damping in F-stars like OGLE-TR-56 and WASP-12 may be very
low, which may explain the survival of these short period planets.

The estimates of the threshold values of P, shown in Table 1, include removing degeneracies in
other parameters, except apsidal precession of eccentric orbits, and assume that everything but Pis
known. Note that the transit light curve signal due to orbital decay is due entirely to transit timing;
the change in a is far too small to observe in transit shaping. As the signal due to apsidal precession
includes significant changes to the shapes of the transits, the signal due to ky, is qualitatively
different than that of Q.. The shifting of secondary transits from precession also help in this regard,
as outlined above. However, the primary transit timing signals can be similar: quadratic transit
timing anomalies with amplitudes of ~1 second.

Kepler analogs of very hot Jupiters WASP-12b, OGLE-TR-56b, CoRoT-1b, WASP-4b, and
TrES-3b could have detectable transit timing anomalies due to tidal decay, implying a direct mea-
surement of the current value of @, for specific stars (Table 1). This is an exciting possibility,
providing the first direct measurements (or constraints) of the currently unknown details of tidal
dissipation in a variety of individual stars.!® We also note that interesting orbital decay of eclipsing

binary systems seen by Kepler could also be detectable.

10The vanishingly small effect of eccentricity decay is ~ Qi smaller than apsidal precession, so that direct mea-
P

surements of Qp from eccentricity decay are not feasible.
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2.4.3 Confusion Due to Other Planets

Could the signal due to kg, be confused with additional planets? In considering this issue, it should
be noted that all known hot Jupiters (with ¢ < 0.05 AU and M, 2 0.5Mj,;,) have no currently
known additional companions. The apparent single nature of these systems could very well be due
to observational biases (Fabrycky, 2008b). However, even for stars that have been observed for many
years with radial velocity (e.g., 51 Peg, HD 209458), there appears to be a strong tendency towards
hot Jupiters as the only close-in massive planets.

Previous studies of transit timing variations focus on the effects of additional planetary perturbers
(e.g., Holman & Murray, 2005; Agol et al., 2005; Ford & Holman, 2007; Nesvorny & Morbidelli, 2008).
These authors find that nearby massive planets or even low-mass planets in mean-motion resonances
would cause strong transit timing variations that are easily distinguishable from the comparatively
long-period timing anomalies due to kg,. Relatively distant companions or non-resonant low-mass
planets, however, can induce a linear apsidal precession signal just like ko, (Miralda-Escudé, 2002;
Heyl & Gladman, 2007; Jordan & Bakos, 2008). The precession rate induced by a perturbing body is
a function of its mass and semi-major axis. The interior structure of very hot Jupiters causes apsidal
precession as fast as a few degrees per year. To match this precession rate would require, for example,
another Jupiter-mass planet at < 0.1AU or a solar-mass star at ~1 AU. Even perturbers an order of
magnitude smaller than these would be readily detectable using radial velocity observations and/or
high-frequency transit time variations. When restricted to planets that are undetectable by other
means, adding the precession due to the unknown perturbing planet would lead to an insignificant

11 When observing transiting planets with larger semi-

overestimate of kg, for very hot Jupiters.
major axes (a 2 0.05 AU), the strength of planetary induced apsidal precession is reduced to a level
comparable to apsidal precession from a low-mass perturbing planet (Jordan & Bakos, 2008) and
confusion may be possible in these cases.

Since the transit timing signal for apsidal precession is similar to a sinusoid, another potential
source of confusion would be light-travel time offsets due to a distant orbiting companion (e.g., Deeg
et al., 2008). The transit timing signal due to stellar motion about the barycenter can be distin-
guished from kg, precession!? by considering the changes in transit shapes and primary-secondary
transit time offsets, which are not affected by distant companions.

We conclude that transit timing effects from other planets can be readily distinguished from the
effects of apsidal precession. To address the issue of the transit shaping signal due to additional

planets, we wrote a simple three-body integrator (similar to the integrator mentioned above) to

investigate the kinds of transit light curve signals created by additional planets. For the vast majority

H Conversely, as a consequence of the fast precession of very hot Jupiters due to their (unknown) interiors, it will be
very difficult to detect the presence of additional perturbing planets in these systems from apsidal precession alone.

2 Transit time anomalies due to Q. (Section 2.4.2), however, can be confused with barycenter light-travel time
shifts due to a distant planet that may be undetectable in radial velocities.
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of additional planet parameters, the transit timing deviations always carry far more signal than the
minor deviations due to changes in the angular velocity'® (f;.) or impact parameter (b), which
together determine the transit shape as described in Section 2.3.3 above. Generally, it is much
easier to delay a transit by 5 seconds than it is to shift the apparent transit plane by an appreciable
amount.

However, when the perturbing planet is on a plane highly-inclined to the transiting planet,
changes in the transit shape can become detectable, even while the transit timing variations are
negligible. For example, a perturbing planet of mass 107°M, at 0.1 AU with a mutual inclination of
45° caused very hot Jupiter transit durations to change by ~1 second/year. This kind of signal is the
result of nodal precession induced by the perturbing planet, as originally pointed out by Miralda-
Escudé (2002). In our investigation, we found that the three-body nodal precession alters the
impact parameter (b) but does not significantly affect the orbital angular velocity (f;,.). Conversely,
the transit shaping signal due to kg, is generally produced by changes in both b and ftr, but at
near-central transits, the effect of changing orbital velocity is dominant (see Section 2.3.3). In
high-precision transit light curves, both the angular velocity and the impact parameter can be
independently measured and hence the signals of apsidal and nodal precession are usually distinct
for all but the most grazing transits.

Given the uniqueness of the apsidal precession signal induced by the planet’s interior, it appears
that if additional planets are not detectable in radial velocities, transit timing variations, or nodal
precession, then they will not contribute to a misinterpretation of an inferred value of kg, for very hot
Jupiters. Nevertheless, future measurements of ks, should check that these issues are unimportant
within the context of the specific system being studied.

Finally, we estimate that moons or rings with enough mass to bias an inferred ks, would cause
other readily detectable photometric anomalies (e.g., planet-moon barycentric motion Sartoretti &
Schneider, 1999). In addition, extra-solar moons with any significant mass are tidally unstable,

especially around very hot Jupiters (Barnes & O’Brien, 2002).

2.5 Other Methods for Determining £y,

2.5.1 Secular Evolution of a Two Planet System

Measuring ko for an extra-solar planet was suggested by Wu & Goldreich (2002) for the inner
planet of HD 83443. Unfortunately, later analyses have indicated that the supposed second planet
in this system was actually an artefact of the sparse radial velocity data (Mayor et al., 2004).

Nevertheless, this technique could be applied to other eccentric planetary systems with similar

13The angular velocity is directly related to the star-planet separation through conservation of angular momentum:

rf2.
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conditions (Mardling, 2007). Wu & Goldreich (2002) showed that in a regime of significant tidal
circularization and excitation from an additional planet, the ratio of eccentricities depends on the
precession rate which is dominated by ks, as shown above (see also Adams & Laughlin 2006, who
do not include precession due to the planetary quadrupole). In theory, the current orbital state of

such multi-planet systems gives an indirect measurement of the apsidal precession rate.

2.5.2 Direct Detection of Planetary Asphericity

Another method for determining interior properties of transiting planets would be to directly measure
the asphericity due to the rotational or tidal bulge in primary transit photometry. The height of the
rotational and tidal bulges are g, ho R, and g.hs R, respectively, where g, and g; are the dimensionless
small parameters defined in Equation 2.2 and hy is another Love number which, for fluid bodies,
is simply ko + 1 (Sterne, 1939a). These bulges cause the disk of the planet to be slightly elliptical,
subtly modifying the photometric signal, as discussed for rotational bulges by Seager & Hui (2002)
and Barnes & Fortney (2003). However, as discussed by Barnes & Fortney (2003), in real systems
with actual observations, the size of the rotational bulge is very difficult to determine as it is highly
correlated with stellar and orbital parameters that are not known a priori, e.g., limb darkening
coefficients.

The tidal bulge, whose height is also set by ksp,, does not suffer from some of the difficulties
involved with measuring the rotational bulge. It has a known orientation (pointing towards the star)
so there is no degeneracy from an unknown obliquity (Barnes & Fortney, 2003). (Note, however,
that for hot Jupiters, the obliquities must be tidally evolved to nearly zero, so this isn’t really a
problem with the rotational bulge.) In addition, the signal due to oblateness is only significant near
ingress/egress, but the tidal bulge is continuously changing orientation throughout the entire transit.
Though the tidal bulge is typically three times larger than the rotational bulge (Equation 2), the
projection of the tidal bulge that is seen during a transit is small, proportional to sinf where 6 is
the angle between the planet position and the Earth’s line of sight. For very hot Jupiters that have
semi-major axes of only <6 stellar radii, sin @ during transit ingress/egress reaches 2 % so that the
projected tidal bulge is about half as large as the rotational bulge. The extra dimming due to the
tidal bulges (and rotational bulges) is as high as 2 x 10~* for some planets that are expected to
have tides over 2000 km high (e.g., WASP-12b, WASP-4b, Corot-1b, OGLE-TR-56b); this compares
very favorably with the photometric accuracy of binned Kepler data at about 10 ppm per minute.
However, we expect that, as with the rotational bulge alone, the combined signal from the rotational
and tidal bulge will be highly degenerate with the unknown limb-darkening coefficients, as the size
of the projection of the tidal bulge also varies as the distance to the center of the star.

We note that using multi-color photometry should significantly improve the prospects of detecting

non-spherical planetary transits since it breaks most of these degeneracies. For example, Knutson
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et al. (2007b) use HST to observe transits of HD 209458b in 10 wavelength bands and measure the
planetary radius with a relative accuracy (between bands) of 0.003R s, of the same level as the change
in shape due to oblateness and the tidal bulge. Pont et al. (2007a) made a similar measurement for
HD 189733b and reached even higher relative accuracy. Combining such measurements with other
data (e.g., primary transits in the infrared, where limb-darkening is much smaller) and a stellar
photosphere model (to correctly correlate limb darkening parameters as in Agol & Steffen 2007)
could yield detections of planetary asphericity, especially in very hot Jupiters which have the largest
bulges.

One possible source of confusion in interpreting planetary asphericity is the thermally-induced
pressure effects of an unevenly radiated surface. In non-synchronous planets, the thermal tidal bulge
(Arras & Socrates, 2009) can shift the level of the photosphere by approximately an atmospheric scale
height, about 1072 or 103 planetary radii (P. Arras, pers. comm.). The orientation of the thermal
bulge is significantly different from the tidal or rotational bulges and should be distinguishable.
Furthermore, very hot Jupiters should orbit synchronously, reducing the importance of this effect.
Nevertheless, the effect of atmospheric phenomena on measurements of planetary asphericity should
be considered.

Though difficult to disentangle from other small photometric effects, high-precision multi-color
photometry may be another viable method for measuring ks,. This technique is complimentary to
detecting kg, from apsidal precession since it does not require that the planet is eccentric, nor does
it require a long time baseline. On some planets, the two methods could be used together as mutual

confirmation of the planetary interior structure.

2.6 Conclusions

The planetary mass and radius are the only bulk physical characteristics measured for extra-solar
planets to date. In this paper, we find that the planetary Love number (kop, equivalent to Jz)
can also have an observationally detectable signal (quadrupole-induced apsidal precession) which
can provide a new and unique probe into the interiors of very hot Jupiters. In particular, ks, is
influenced by the size of a solid core and other internal properties. Core sizes can be used to infer the
formation and evolution of individual extra-solar planets (e.g., Dodson-Robinson & Bodenheimer,
2009; Helled & Schubert, 2009).

The presence of a nearby massive star creates a large tidal potential on these planets, raising
significant tidal bulges which then induce non-Keplerian effects on the star-planet orbit itself. The
resulting apsidal precession accounts for ~95% of the total apsidal precession in the best cases
(Figure 2.1). Hence, we find that the internal density distribution, characterized by ksp, has a

large and clear signal, not to be confused with any other parameters or phenomena. We urge those
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modeling the interior structures of extra-solar planets to tabulate the values of ks, for their various
models.

Encouraged by this result, we calculated full photometric light-curves like those expected from
the Kepler mission to determine the realistic observability of the interior signal. We estimate that
Kepler should be able to distinguish between interiors with and without massive cores (Akg, >~ 0.1)
for very hot Jupiters with eccentricities around e ~ 0.003 (Figure 2.6). Eccentricities this high
may occur for some of the very hot Jupiters expected to be found by Kepler, though these planets
usually have highly damped eccentricities. Much stronger constraints on apsidal precession can be
obtained by combining Kepler photometry with precise secondary transits observed in the infrared.
In cases where apsidal precession is not observed, the data can set strong upper limits on planetary
eccentricities.

In analyzing Kepler’s photometric signal of apsidal precession, we find that transit timing vari-
ations are an almost negligible source of signal, though transit timing has been the focus of many
observational and theoretical papers to date. The effect of “transit shaping” has ~30 times the
photometric signal of transit timing for apsidal precession (see Figure 2.3, P4l & Kocsis, 2008; Jor-
dan & Bakos, 2008)). At orientations where transit timing and shaping are weakest, the changing
offset between primary and secondary transit times can be used to measure ko, (Figure 2.4). It may
also be possible to measure k3, from high-precision multi-color photometry by directly detecting the
planetary asphericity in transit. Such a measurement does not require a long baseline or an eccentric
orbit.

Very hot Jupiters are also excellent candidates for detecting tidal semi-major axis decay, where
we find that relatively small period changes of P~1 ms/yr should be detectable. This could
constitute the first measurements (or constraints) on tidal @, for a variety of individual stars. We
note that Kepler measurements of transit timing and shaping for eclipsing binaries should also
provide powerful constraints on stellar interiors through apsidal motion and binary orbital decay
(due to tides, if the components are asynchronous).

Accurately measuring the interior structure of distant extra-solar planets seems too good to be
true. Nevertheless, the exquisite precision, constant monitoring, and 3.5-year baseline of the Kepler
mission combined with the high sensitivity of transit light curves to small changes in the star-planet
orbit make this measurement plausible.

Our focus on Kepler data should not be interpreted to mean that other observations will be
incapable of measuring ka,. In fact, the opposite is true since the size of the apsidal precession
signal increases dramatically with a longer baseline. Combining Kepler measurements with future
ground and space based observations can create a powerful tool for measuring kg,. In the far future,
many planets will have measured apsidal precession rates (like eclipsing binary systems have now)

and inferred kg, values. Incorporating these measurements into interior models holds promise for
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greater understanding of all extra-solar planets.
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