

Adrenergic Receptors: Model Systems for Investigation of GPCR Structure and Function

Thesis by

Heather L. Wiencko

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2009

(Defended May 18, 2009)

© 2009

Heather L. Wiencko

All Rights Reserved

Acknowledgements

“I may not have gone where I intended to go, but I think I have ended up where I needed to be.”

– *Douglas Adams*

I started my Caltech journey with catalysis, but ended up doing computational chemistry with biochemistry applications. I was fortunate to make this massive leap into Bill Goddard’s group, where Bill supported, taught, and challenged me for five years. I am grateful for the chance to make the switch, and for all I’ve learned from Bill over the years. He defies the stereotype of the highly specialized academic, and demonstrates that breadth as well as depth of knowledge is both possible and desirable. Along the way I was lucky to work with the Biogroup, from Nagarajan Vaidehi who started working with me as soon as I arrived in the group, to Ravinder Abrol who continued to observe, discuss, critique, and explain patiently. My colleagues in the Biogroup Pete, Caglar, Bartosz, Soo-Kyung, Jenelle, Adam, and our second years Andrea and Caitlin all contributed in some way to the work described in this thesis, and I’ve enjoyed working with all of them. The rest of the Goddard group also deserves thanks, especially John Keith, who pointed out over coffee one afternoon that I should really consider looking into the GPCR

work being done in the group.

I would be remiss if I didn't thank my undergraduate adviser, Tim Warren, without whom I would not have made it to Caltech, much less all the way to a PhD. Even though I'm not currently using all the inorganic chemistry he taught me, his ideas about science and teaching, as well as his unflagging encouragement remain the foundation of much of my work and ambitions.

The greater Caltech community gave me a reason to step out of the lab for reasons other than sleep and lunch. Desiree LaVertu and the Caltech Glee Club were a constant source of music, friendship, fun, and solace from my very first term here to the very last. It's hard to imagine what my Caltech experience would have been like without music, and on the days when giving up grad school and joining the circus seemed like a good idea the thing that kept me tethered here was knowing I had rehearsal that I needed to get to. The Caltech knitters drew me out of the BI sub-basement once a week to stitch and converse and think about things other than science, however briefly. The Chemistry department staff provided support and assistance, and a student couldn't ask for a better department to belong to.

Few people can boast an international network of friends and family, and I have enjoyed the best of many possible worlds and timezones. Through the most difficult times out here, Billy Healy served as the belt with which I held up my sanity. All the friends I made here are too numerous to name, but the entire Fellowship of the Flat and their d20 hangers-on made my Pasadena exile enjoyable. Katie Brenner, Heidi Privett, Michelle Robbins, Ariele Hanek, Mike Adams, Greg Ver Steeg,

and all the rest of them are great friends and offered invaluable support. Katie Saliba, Warren Stramiello, and Chris Borths allowed me to indulge my gaming habit every week, and I cherish the many evenings we spent over a table of dice and books. Farther afield, Riz Kassim dragged me out into LA and made me enjoy a city that struck me as weird and foreign when I first arrived. It's still weird and foreign, but my friends helped it seem like home.

My sister Christy let me show up in her house with almost no notice to write my proposals, and was the first person over the course of my PhD to figure out that I really didn't want to talk about when I would be finished. The Nortons and Laceys became my home away from home, and the entire gang back in Dublin have assured me over the years that I'd be able to go back and still have a life. I am astonishingly lucky to have the support of so many people here and abroad, and although I can't name everyone I am certainly grateful.

Finally, I must thank my husband, Ger. Perhaps the most important lesson I learned in the past seven years came from him, that together two people can indeed be greater than the sum of their parts.

Abstract

Membrane proteins mediate intercellular communication through a wide variety of modes, resulting in changes in the membrane and within the cell itself. One superfamily of integral membrane proteins, G-protein coupled receptors (GPCRs), are responsible for a vast diversity of processes including three of the five senses: sight, smell, and taste. GPCRs comprise 4% of the human genome but are disproportionately represented as pharmaceutical targets: over 50% of the best selling drugs target some member of this superfamily, mitigating the effects of diseases ranging from hypertension to schizophrenia. These receptors exist in equilibrium between their active and inactive states, and either of these states may be stabilized by the binding of an extracellular stimulus that may be either a small molecule or a peptide. The active state of the receptor triggers a response from the associated G-protein, which then controls the release of a second messenger within the cell that initiates other downstream processes. The ubiquity of GPCRs in key biological processes makes them both an attractive target for drug development and a challenge for selective drug design. Their conformational flexibility and membrane environment pose challenges for direct structural characterization, and to date only five of the more than 1,000 known GPCRs have been characterized by

high-resolution crystallography.

The nine adrenergic GPCRs mediate the stress response throughout the body, and are implicated in diseases including hypertension and asthma. While they are among the best studied subtypes of GPCRs, much remains to be learned about selectivity and activation. The first section of this work describes the *ab initio* structure prediction of the turkey $\beta 1$ receptor and validation using a series of stabilizing mutations. This work preceded the currently available turkey $\beta 1$ structure, but shows good agreement, especially in the binding site. It validates the latest methods developed for GPCR structure prediction, emphasizes the role of a neutral charge scheme in energy determination, and explores a structure validation strategy based on stabilizing mutations rather than ligand docking. The next section uses the experimental crystal structure as a starting point for nanosecond timescale molecular dynamics, exploring the roles of ligand binding in helix movement that contribute to the transition to an active state. These simulations reveal the early steps in receptor activation, beginning with tilting motions of transmembrane helices 5 and 6 and movement of transmembrane helix 1 closer into the protein core. The last section also uses newly available crystal structures as a starting point, and builds homology models of the human adrenergic receptors for which there are not yet crystal structures. The receptors most closely related to the target structures show the best results, while the less related ones will require further refinement. The best structures provide insight into the binding site of subtype selective antagonists, and can serve as the foundation for future studies.

The central idea of this thesis is that theory and experiment can and must work in concert, with the findings from one propelling advances in the other in the mutual pursuit of knowledge. The methods developed in the course of this work are applied to systems with a great deal of experimental knowledge, but may be applied to those that have been less thoroughly characterized. Over the course of these explorations, new subtleties in adrenergic structure have been illuminated, and may drive further exploration into selective binding and the activation mechanism of these and other receptors.

Contents

Acknowledgements	iii
Abstract	vi
1 Introduction	1
1.1 Adrenergic Receptors	5
1.2 Computational Advances in GPCR Research	8
1.2.1 Homology Modeling	8
1.2.2 <i>Ab initio</i> Structure Prediction	9
1.2.3 Molecular Dynamics	10
1.3 Subject of this Thesis	11
2 β1 Structure Prediction and Validation	13
2.1 Overview	13
2.2 Methods	16
2.2.1 Structure Prediction of the Turkey β 1 Adrenergic Receptor . .	16
2.2.2 Structure Mutation Calculations	19
2.3 Results and Discussion	19
2.4 Conclusion	30

3 Molecular Dynamics Simulations of Unbound, Agonist-Bound, and Inverse-Agonist-Bound Turkey $\beta 1$	32
3.1 Overview	32
3.2 Methods	36
3.3 Results and Discussion	39
3.4 Conclusion	48
4 Homology Models of Human Adrenergic Receptors	58
4.1 Overview	59
4.2 Methods	62
4.2.1 Building the Homology Models	62
4.2.2 Validation With Docking	64
4.3 Results and Discussion	66
4.3.1 Validation with Docking and Mutation Studies	70
4.4 Conclusion	83

List of Tables

2.1	TM predictions for turkey $\beta 1$	22
2.2	Best 25 bundles for turkey $\beta 1$ ranked by interhelical energies.	23
2.3	Stabilizing mutations for turkey $\beta 1$ structure validation.	26
4.1	Identities of adrenergic receptors to available crystal structures.	60
4.2	Comparison of η , ϕ , and θ angles in available GPCR crystal structures.	61
4.3	Determination of TM helices using secondary structure prediction.	64
4.4	Final η rotations for adrenergic homology models.	67
4.5	Cavity analysis for $\alpha 1a$ - $\beta 1$ docked with WB-4101 and prazosin.	76
4.6	Cavity analysis for $\alpha 1d$ - $\beta 2$ docked with WB-4101 and prazosin.	78
4.7	Cavity analysis for $\alpha 2a$ - $\beta 1$ docked with yohimbine.	81
4.8	Cavity analysis for $\alpha 2c$ - $\beta 1$ docked with yohimbine.	83

List of Figures

1.1	Endogenous adrenergic agonists epinephrine and norepinephrine.	6
2.1	Hydrophobicity plot for $\beta 1$ turkey.	20
2.2	Predicted structure for turkey $\beta 1$	25
2.3	Correlation between $\beta 1$ mutation data and calculated mutation set 2. .	28
2.4	Correlation between $\beta 1$ mutation data and calculated mutation set 1. .	29
3.1	Total energy for MD simulations over first 10 ps.	38
3.2	Total RMSD for $\beta 1$ dynamics simulation.	40
3.3	Disruption of the ionic lock by IC3 in apo MD.	41
3.4	Stability of the ionic lock during 10 ns MD.	41
3.5	Movement of Trp303 ^{6,48} during 10 ns MD.	42
3.6	RMSD of TMs 3, 5, and 6 during 10 ns MD.	44
3.7	Changes in distances between key helices during 10 ns MD.	45
3.8	η and θ Rotations for TMs 5 and 6 during 10 ns MD.	46
3.9	Schematic of helix rotational modes.	47
3.10	Some crystal waters remain stable during MD.	48
3.11	TM helix 1 rotation changes during 10 ns MD.	50
3.12	TM helix 2 rotation changes during 10 ns MD.	51

3.13	TM helix 3 rotation changes during 10 ns MD.	52
3.14	TM helix 4 rotation changes during 10 ns MD.	53
3.15	TM helix 5 rotation changes during 10 ns MD.	54
3.16	TM helix 6 rotation changes during 10 ns MD.	55
3.17	TM helix 7 rotation changes during 10 ns MD.	56
3.18	Individual TM RMSD over 10 ns MD.	57
4.1	Significance of counterclockwise rotation of TM4.	68
4.2	Structure of β antagonist (-)RO-363.	70
4.3	RO-363 docked structure for $\beta 1$ - $\beta 2$ homology model.	72
4.4	RO-363 docked structure for $\beta 3$ - $\beta 2$ homology model.	73
4.5	Structure of $\alpha 1$ antagonist WB4101.	73
4.6	Structure of $\alpha 1$ antagonist prazosin.	74
4.7	WB4101 docked structure for $\alpha 1a$ - $\beta 1$ model.	75
4.8	Structure of $\alpha 2$ antagonist yohimbine.	79
4.9	Yohimbine docked structure for $\alpha 2a$ - $\beta 1$ model.	81