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Abstract

Membrane proteins mediate intercellular communication through a wide variety
of modes, resulting in changes in the membrane and within the cell itself. One
superfamily of integral membrane proteins, G-protein coupled receptors (GPCRs),
are responsible for a vast diversity of processes including three of the five senses:
sight, smell, and taste. GPCRs comprise 4% of the human genome but are dispro-
portionately represented as pharmaceutical targets: over 50% of the best selling
drugs target some member of this superfamily, mitigating the effects of diseases
ranging from hypertension to schizophrenia. These receptors exist in equilibrium
between their active and inactive states, and either of these states may be stabilized
by the binding of an extracellular stimulus that may be either a small molecule or
a peptide. The active state of the receptor triggers a response from the associ-
ated G-protein, which then controls the release of a second messenger within the
cell that initiates other downstream processes. The ubiquity of GPCRs in key bio-
logical processes makes them both an attractive target for drug development and
a challenge for selective drug design. Their conformational flexibility and mem-
brane environment pose challenges for direct structural characterization, and to

date only five of the more than 1,000 known GPCRs have been characterized by
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high-resolution crystallography.

The nine adrenergic GPCRs mediate the stress response throughout the body,
and are implicated in diseases including hypertension and asthma. While they
are among the best studied subtypes of GPCRs, much remains to be learned about
selectivity and activation. The first section of this work describes the ab initio struc-
ture prediction of the turkey (31 receptor and validation using a series of stabiliz-
ing mutations. This work preceded the currently available turkey 31 structure, but
shows good agreement, especially in the binding site. It validates the latest meth-
ods developed for GPCR structure prediction, emphasizes the role of a neutral
charge scheme in energy determination, and explores a structure validation strat-
egy based on stabilizing mutations rather than ligand docking. The next section
uses the experimental crystal structure as a starting point for nanosecond timescale
molecular dynamics, exploring the roles of ligand binding in helix movement that
contribute to the transition to an active state. These simulations reveal the early
steps in receptor activation, beginning with tilting motions of transmembrane he-
lices 5 and 6 and movement of transmembrane helix 1 closer into the protein core.
The last section also uses newly available crystal structures as a starting point, and
builds homology models of the human adrenergic receptors for which there are
not yet crystal structures. The receptors most closely related to the target struc-
tures show the best results, while the less related ones will require further refine-
ment. The best structures provide insight into the binding site of subtype selective

antagonists, and can serve as the foundation for future studies.
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The central idea of this thesis is that theory and experiment can and must work
in concert, with the findings from one propelling advances in the other in the mu-
tual pursuit of knowledge. The methods developed in the course of this work are
applied to systems with a great deal of experimental knowledge, but may be ap-
plied to those that have been less thoroughly characterized. Over the course of
these explorations, new subtleties in adrenergic structure have been illuminated,
and may drive further exploration into selective binding and the activation mech-

anism of these and other receptors.
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