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Abstract

This thesis presents results demonstrating the use of particulate composition
measurements to determine the mechanisms of aerosol formation in both chamber and
field studies. Aerosol composition measurements are also used to theoretically estimate
the water-uptake behavior and ability to nucleate cloud droplets of atmospheric aerosol;
these estimates are compared with in-situ airborne measurements. Common to all studies
presented is the use of online aerosol mass spectrometry, a technique with high time
resolution and minimal artifacts.

Chemical mechanisms involved in particle formation from the photooxidation of
isoprene were explored in chamber studies using both online and offline mass
spectrometry. The yield of aerosol and the nature of oliogmers formed was found to
depend on the NOy concentration. Peroxides were found to be important under low-NOx
conditions while under high-NOy conditions the majority of the particulate mass was
found to derive from reaction products of methacrolein.

Particle formation from photooxidation of aliphatic amines was shown to be a
feasible route of secondary organic aerosol formation in the atmosphere. Chamber
studies at low relative humidity demonstrated that particle formation is primarily the
result of acid-base reactions between amines and nitric or sulfuric acid, though diverse
oxidized organic compounds are also formed. Thermodynamic calculations show that
certain amines can compete with ammonia to form aminium salts at atmospherically
relevant concentrations. An airborne field study near a major bovine source in the San

Joaquin Valley, CA, gave evidence of particulate amine formation in the atmosphere.
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The composition of particulate emissions from ships was studied during a joint
shipboard and airborne field project in the Eastern Pacific. Particulate emissions were
found to contain significantly higher levels of organic material than accounted for in
current inventories. Observed hydrophobic organic material is concentrated in smaller
particles and acts to suppress hygroscopic growth and activity of ship-exhaust particles as
cloud condensation nuclei.

Ongoing research involves quantifying the impact of reactions within cloud
droplets on the organic composition of aerosols. A recently completed field campaign
investigated the role of particle chemistry in determining if aerosols can act as ice crystal

nuclei.
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