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Abstract 

  This thesis presents results demonstrating the use of particulate composition 

measurements to determine the mechanisms of aerosol formation in both chamber and 

field studies.  Aerosol composition measurements are also used to theoretically estimate 

the water-uptake behavior and ability to nucleate cloud droplets of atmospheric aerosol; 

these estimates are compared with in-situ airborne measurements.  Common to all studies 

presented is the use of online aerosol mass spectrometry, a technique with high time 

resolution and minimal artifacts. 

 Chemical mechanisms involved in particle formation from the photooxidation of 

isoprene were explored in chamber studies using both online and offline mass 

spectrometry.  The yield of aerosol and the nature of oliogmers formed was found to 

depend on the NOx concentration.  Peroxides were found to be important under low-NOx 

conditions while under high-NOx conditions the majority of the particulate mass was 

found to derive from reaction products of methacrolein. 

 Particle formation from photooxidation of aliphatic amines was shown to be a 

feasible route of secondary organic aerosol formation in the atmosphere.  Chamber 

studies at low relative humidity demonstrated that particle formation is primarily the 

result of acid-base reactions between amines and nitric or sulfuric acid, though diverse 

oxidized organic compounds are also formed.  Thermodynamic calculations show that 

certain amines can compete with ammonia to form aminium salts at atmospherically 

relevant concentrations.  An airborne field study near a major bovine source in the San 

Joaquin Valley, CA, gave evidence of particulate amine formation in the atmosphere. 



 ix

 The composition of particulate emissions from ships was studied during a joint 

shipboard and airborne field project in the Eastern Pacific.  Particulate emissions were 

found to contain significantly higher levels of organic material than accounted for in 

current inventories.  Observed hydrophobic organic material is concentrated in smaller 

particles and acts to suppress hygroscopic growth and activity of ship-exhaust particles as 

cloud condensation nuclei.   

 Ongoing research involves quantifying the impact of reactions within cloud 

droplets on the organic composition of aerosols.  A recently completed field campaign 

investigated the role of particle chemistry in determining if aerosols can act as ice crystal 

nuclei. 
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