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Abstract

Optical whispering-gallery devices, like the microtoroid or microdisk, confine light at resonant fre-

quencies and in ultra-small volumes for long periods of time. Such ultra-low loss resonators have

been applied in diverse areas of scientific research, including low-threshold lasers on-chip, biological

sensing, and quantum computing. In this thesis, novel ultra-low loss microstructures are studied

for their unique characteristics and utility. The author investigates the interaction between micro-

cavities and various environments in order to quantify the results and lay the foundation for future

applications.

The first optical cavity studied is the microtoroid, which possesses ultra-high quality factor

(Q) on account of its nearly atomic smooth surface, produced by surface-tension induced laser

reflow. Ytterbium-doped silica microtoroids are fabricated by a sol-gel technique. The ytterbium

microtoroid laser achieves record-low laser threshold (2 µW) in air, and produces the first laser

output for a solid-state laser in water. This laser in water can be developed as an ultra-sensitive

biological sensor, with potentially record sensitivity enabled by gain-narrowed linewidth. Also, a

novel CO2 laser reflow and microtoroid testing vacuum system is demonstrated. Fabrication and

testing of microtoroids is performed in a vacuum chamber to study the effect of atmospheric water

and upper limit of Q in microtoroids.

The selective reflow of microtoroids presents difficulties for integration of on-chip optical waveg-

uides. As an alternative, dimension-preserving low-loss optical structures are researched for their

unique applications. A gold-coated silica microdisk is fabricated, and demonstrates record and

nearly-ideal quality factor (1,376) as a surface-plasmon polariton resonator. The hybrid optical-

plasmonic mode structure is studied in simulation and experiment. The plasmonic resonator has

ultra-low mode volume and high field confinement, making it suitable for short-range optical com-

munication or sensing. Finally, a novel whispering-gallery optical delay line in a spiral geometry is

designed and experimentally demonstrated. The center transition region of the spiral is optimized

for low transmission loss by beam propagation simulation. A 1.4 m long spiral waveguide within a

1 cm2 area is presented. The spiral waveguide structure is being developed as a real-time optical

delay line with fiber-like loss, important for optical communication and signal processing.
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