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Abstract

A methodology based on the comparison of flame simulations relying on reacting flow models with
experiment is applied to C;—-Cj3 stagnation flames. The work reported targets the assessment and
validation of the modeled reactions and reaction rates relevant to (C;—Cs)-flame propagation in
several detailed combustion kinetic models. A concensus does not, as yet, exist on the modeling of
the reasonably well-understood oxidation of C;-Cq flames, and a better knowledge of Cs hydrocarbon
combustion chemistry is required before attempting to bridge the gap between the oxidation of C;—
Csq hydrocarbons and the more complex chemistry of heavier hydrocarbons in a single kinetic model.

Simultaneous measurements of velocity and CH-radical profiles were performed in atmospheric
propane(CsHg)- and propylene(C3Hg)-air laminar premixed stagnation flames stabilized in a jet-wall
configuration. These nearly-flat flames can be modeled by one-dimensional simulations, providing a
means to validate kinetic models. Experimental data for these Cs flames and similar experimental
data for atmospheric methane(CHy)-, ethane(CoHg)-, and ethylene(CoHy)-air flames are compared
to numerical simulations performed with a one-dimensional hydrodynamic model, a multi-component
transport formulation including thermal diffusion, and different detailed-chemistry models, in order
to assess the adequacy of the models employed. A novel continuation technique between kinetic
models was developed and applied successfully to obtain solutions with the less-robust models.
The 2005/12 and 2005/10 releases of the San Diego mechanism are found to have the best overall
performance in C3Hg & C3Hg flames, and in CHy, CoHg, & CoHy flames, respectively.

Flame position provides a good surrogate for flame speed in stagnation-flow stabilized flames.
The logarithmic sensitivities of the simulated flame locations to variations in the kinetic rates are
calculated via the “brute-force” method for fifteen representative flames covering the five fuels under
study and the very lean, stoichiometric, and very rich burning regimes, in order to identify the most-
important reactions for each flame investigated. The rates of reactions identified in this manner are
compared between the different kinetic models. Several reaction-rate differences are thus identified
that are likely responsible for the variance in flame-position (or flame-speed) predictions in C1—Cs

flames.
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Chapter 1

Introduction

A number of chemical-kinetic mechanisms are available in the literature, each predicting different
flame behavior in various regimes. The imbalance between the hundreds of constants (each with an
associated uncertainty) used in each model and the small number of data sets available to validate
such mechanisms leads to indeterminacies and non-uniqueness in the various models (Frenklach et
al. 1992). Two different paths can be followed in the development of such mechanisms. One involves
the optimization of a base mechanism to multiple data sets of diverse parameters. The GRI-Mech
initiative (Smith et al.) successfully applied such optimization techniques to a dataset of laminar
flame speeds, ignition delay times, and species profiles obtained from laminar flames, shock-tube
experiments, and flow reactors. Thus the current benchmark mechanism for natural gas combustion
was created: GRI-Mech 3.0. However, the resulting improved agreement to a finite set of exper-
iments comes at a price: such a mechanism must be regarded as interpolative and its use is not
recommended outside the domain of its optimization targets. Such a mechanism should therefore
not be used as the basis upon which to build a model for larger hydrocarbon fuels. Mechanisms
such as Leeds (Hughes et al. 2001) or the Battin-Leclerc et al. Co—C3 mechanism (Barbe et al. 1995,
Bauge et al. 1997) follow a different approach: recommended rate data are used wherever possible
with minimum modifications. In order to make progress towards a universal model of flame kinetics
that would not only reconcile diverse experimental data but also be predictive, high-accuracy mea-
surements of multiple quantities (flame speeds, species concentrations and peak positions, ignition
delays and temperatures, extinction strain-rates,...) are needed in different environments (laminar
flames, reactors, shock tubes) under comprehensive conditions (temperature, pressure, fuel, burning
regime,...) for validation. Because of the complexity of these models, consistency checks are essential
to check that the reaction rate coefficients, thermodynamic, and transport data used are consistent
(like in Wang & Frenklach 1997), and to check that the experimental data sets used to build the
mechanism are mutually consistent (Feeley et al. 2004). Comparisons of mechanisms are also needed,
whether via comparisons of their kinetic data (Rolland & Simmie 2004); or based on their different

predictions related to flame propagation, using criteria such as the CH-peak position in premixed
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stagnation flames (Bergthorson et al. 2005a, Bergthorson & Dimotakis 2007, Benezech et al. 2008);
ignition and extinction, using criteria such as ignition and extinction strain rates in non-premixed
flames (Egolfopoulos & Dimotakis 2001); or major/minor species concentrations in flames, e.g., con-
centrations of acetylene, the principal species responsible for soot growth, or polycyclic aromatic
hydrocarbons, PAHs, the presumed soot precursors (Appel et al. 2000).

Stagnation flames stabilized in a jet-wall configuration are studied in the present work. The flow
near the jet axis can be approximated by the one-dimensional model by Kee et al. (1989, 2003),
making detailed simulations achievable in a reasonable amount of time. The axisymmetric two-
dimensional flame simulations performed by Sone (2007) showed that flame speed is sensitive to
even slight flame front curvature as well as to its finite extension in the radial direction. Although
these two-dimensional effects are discernible, they remain small in the nearly-flat flames investigated
in the present work. The boundary conditions needed to simulate the flow can be measured accu-
rately in the stagnation-wall geometry, thus enabling reliable comparison between experiment and
simulation Bergthorson et al. (2005a). The jet-wall configuration was chosen over the conventional
counter-flow apparatus because it allows for the precise specification of the stagnation-plane location
and boundary conditions (temperature, no-species flux), which reduces uncertainty in numerical sim-
ulations. In an opposed-jet configuration, small mismatches or changes in the two jet-exit velocities
can result in a displacement, or movement, of the stagnation plane. Moreover, the stagnation-plane
location cannot be reliably specified in opposed-jet experiments from particle velocimetry measure-
ments because of poor resolution of small velocity values, or particle inertia effects. The jet-wall
geometry is also found to yield more stable flames than the opposed-jet geometry (Egolfopoulos et
al. 1997).

Of the three key parameters that affect kinetics the most, i.e., pressure, fuel, and burning regime,
the dependence of atmospheric-pressure flames on variations of both fuel (methane CHy, ethane
CyHg, ethylene CoHy, propane C3Hg, & propylene C3Hg) and burning regime (from very lean to very
rich, by varying the equivalence ratio @) are explored. Simultaneous measurements of velocity and
CH-radical profiles are performed in C3Hg & C3Hg flames by particle tracking velocimetry (PTV) and
by CH planar laser-induced fluorescence (PLIF), respectively. Comparisons are made between these
measurements in Cs flames, similar measurements in CHy, CoHg, & CoHy flames (Bergthorson &
Dimotakis 2007), and one-dimensional predictions using the CANTERA software package (Goodwin
2003), a multi-component transport formulation including thermal diffusion (Kee et al. 2003), &
various chemical-kinetic models. Relatively few comparisons of stagnation-flame simulations with
experiment, such as a previous investigation of C;—Csy flames (Bergthorson & Dimotakis 2007),
are available. Even fewer comparisons are available for CsHg and C3Hg, which capture more of
the chemical kinetics of heavier hydrocarbons. The present work adds Cs-flame data and detailed

simulations analogous to previous studies on Cz laminar flame speeds (Vagelopoulos et al. 1994,
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Davis et al. 1999, Jomaas et al. 2005). The present work also uses sensitivity analysis to guide a
detailed comparison of the reaction-rate parameters used in fifteen different mechanisms, addressing
CHy, CoHg, and CoHy flames in order to assess the differences in the various mechanisms that
lead to the variation observed in the model predictions of a set of experimental stagnation-flame
data (Bergthorson 2005b, Bergthorson & Dimotakis 2007).

The purpose of the present work is:

e to validate a low-scatter, high-spatio-temporal resolution velocimetry technique that does not
disturb flames (i.e., particle-tracking velocimetry, PTV) in non-reacting impinging jets against the
previous investigations of Bergthorson et al. (2005b).

e to document the performance of the PTV technique in Cs flames.

e to document a practical continuation technique to transition from a solution obtained with a
robust mechanism to a new solution obtained with a less-robust mechanism.

e to present a new experimental data set (velocity and CH-radical profiles) in atmospheric C3Hg
and CsHg premixed stagnation flames, available, upon request, for use as validation or optimization
targets, following the collaborative-data approach (Frenklach et al. 2004).

e to validate four recent detailed kinetic models against these Cs-flame data.

e to validate fifteen detailed kinetic models against CHy-, CoHg-, and CoHy-flame data.

e to identify the reaction rates that likely contribute to the variance in the C;—Cs predictions
from the fifteen mechanisms investigated by coupling sensitivity analysis with a comparison of the

kinetic rates among mechanisms.



Chapter 2

Chemical-kinetic models

2.1 List of chemical-kinetic models

Sixteen recent chemical-kinetic models (also called mechanisms), with their associated thermody-
namic and transport data, are used in the present work.
e G1, G2, and G3

The GRI-Mech mechanism was developed and optimized to model natural-gas combustion, including
NO formation and reburn chemistry in its more recent releases. Three versions are used in the
present work: GRI-Mech 1.2 (Frenklach et al. 1995, Frenklach et al.), hereafter referred to as “G1”
(32 species and 177 reactions); GRI-Mech 2.11 (Bowman et al., Frenklach et al.), hereafter referred
to as “G2” (49 species and 279 reactions); and GRI-Mech 3.0 (Smith et al.), hereafter referred to as
“G3” (53 species and 325 reactions). The GRI-Mech mechanism will be referred to as “GRI”, when
no distinction is made between the releases. The parameters of the reactions present in G1 were not
changed in G2, except for one reaction that is important in prompt NO formation and that does
not alter the C-H-O chemistry of methane (CH4) combustion. G2 expands G1 by including nitrogen
chemistry relevant to natural-gas chemistry and reburning. The better description of NOx formation
and removal in natural gas flames in G2 cost a loss in reliability regarding C-H-O chemistry compared
with G1. G3 differs from G2 in that kinetics and target data have been updated, improved, and
expanded. Cg oxidation products have been added: acetaldehyde (CH3CHO) and vinoxy (CH,CHO)
chemistry are included to better describe ethylene (CoHy) oxidation. New formaldehyde (H2CO)
and NO formation & reburn targets are also included. The two older releases, G1 & G2, and the
CqoHy flame predictions by G3 are included for reference only, as this mechanism is widely relied
upon in the literature. Natural gas contains C3Hg (and some higher hydrocarbons that may be
approximately represented by CsHg), therefore a minimal set of C3Hg kinetics is included to model
this species, as a minor constituent only. As a consequence, G3 simulations of C3Hg flames are also
included for reference only. G3 simulations of C3Hg flames are not included because C3Hg is not

present in the mechanism.



e DLW
The Davis-Law-Wang mechanism (Davis et al. 1999), hereafter referred to as “DLW” | was developed
to describe the combustion of Cs hydrocarbons. It is largely based on GRI-Mech 1.2 (Frenklach et
al. 1995, Frenklach et al.), which was further expanded and validated against ethylene (C2Hy4) and
acetylene (CoHz) flame data in particular, with modifications and additions made concerning Cs
kinetics. It was shown (Davis et al. 1999) that this mechanism could reconcile a significant body of
combustion data for propylene (CsHg), propyne (CsHy or H3C-C=CH, also called methylacetylene),
allene (CsHy or HoC=C=CHy), and propane (C3Hg). DLW relies on 71 species and 469 reactions.

o ABF
The detailed kinetic model for soot formation from Appel-Bockhorn-Frenklach (Appel et al. 2000)
consists of two principal components: gas-phase chemistry and soot-particle dynamics. The gas-
phase submodel is key as the flame structure it predicts is used as an input by the soot-particle
dynamics submodel. Three versions of the gas-phase submodel are available (Appel et al. 2000) for
90 torr, 1bar, and 10 bar pressures, respectively. The 1bar version, hereafter referred to as “ABF”
(relying on 101 species and 544 reactions), is used in the present work on atmospheric-pressure flames.
ABF is an updated version of the Wang-Frenklach mechanism (Wang & Frenklach 1997) that relies on
99 species and 527 reactions. The Wang-Frenklach mechanism can be used to model the oxidation of
CHy, ethane (CoHg), CoHy, and CoHs at flame temperatures. It is based on GRI-Mech 1.2 (Frenklach
et al. 1995, Frenklach et al.) and a consistent set of rate coefficients, thermodynamic data, and
transport data for reactions of aromatics developed by Wang and Frenklach. ABF improves on
the underprediction of two-, three-, and four-ring aromatic species seen in the Wang-Frenklach
mechanism (Wang & Frenklach 1997).

e WL
The Wang-Laskin comprehensive reaction model (Wang & Laskin 1998), hereafter referred to as
“WL”, of CoHy and CyHy combustion was motivated by progress in the fundamental reaction ki-
netics relevant to CoHy and CyH, oxidation, and noticeably in the reaction kinetics of the vinyl
radical (C2Hs). In this model, C;—Csy chemistry is largely based on GRI-Mech 1.2 (Frenklach et
al. 1995; Frenklach et al.). The reaction kinetics of CoHy and CoHy are based on work reported
previously (Sun et al. 1996, Wang & Frenklach 1997, Laskin & Wang 1999). The Cs kinetics were
taken from DLW (Davis et al. 1999). The kinetic model retains a reasonable number of C4 species
to ensure proper simulation under fuel-rich conditions. Thus WL predicts the combustion properties
of both Cy and Cs fuels. WL relies on 75 species and 529 reactions.

e S1, 52, S3, S4, and SH

The San Diego mechanism has been developed to model the combustion of C;—Cj3 hydrocarbons.
In this approach, the numbers of species and reactions are kept to the minimum needed to describe

the systems and phenomena addressed, thereby minimizing as much as possible the uncertainties in
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the rate parameters employed. Five versions are used in the present work: “S1” (2003/08 release
with 39 species and 173 reactions), “S2” (2005/03 release with 39 species and 175 reactions), “S3”
(2005/06 release with 40 species and 175 reactions), “S4” (2005/10 release with 40 species and 180
reactions), and “S5” (2005/12 release with 46 species and 235 reactions). The San Diego mechanism
will be referred to as “SD”, when no distinction is made between releases. As shown below, S4 and
S5 yield very similar results in C;—Cs flames, which is not surprising since the reaction rates were
unchanged from S4 to S5 and only an ethanol reaction set was added.

e MRN
The Marinov mechanism (Marinov 1998), hereafter referred to as “MRN”, for ethanol (CoHs;OH)
combustion was developed through tests against CoHy, CoHsy, and CoHsOH flames. The detailed
chemical-kinetic model was assembled using reaction submechanisms developed previously for hy-
drogen (Hz) (Marinov et al. 1996b), CHy (Marinov et al. 1996a), CoHy (Marinov & Malte 1995,
Castaldi et al. 1996), CoHg (Marinov et al. 1996a), and C3Hg oxidation (Marinov et al. 1997). MRN
relies on 57 species and 383 reactions.

e DAG
The Dagaut et al. full mechanism (Dagaut & Nicolle 2005), hereafter referred to as “DAG” (relying
on 97 species and 732 reactions), is an update to the C;—Cs Tan et al. mechanism (Tan et al. 1994)
that relies on 78 species and 473 reactions, and is a comprehensive mechanism developed to describe
the oxidation of CH4, CoHy, CoHs, CsHg, and CsHg, both individually and as blends. The base
set of DAG is the detailed chemical-kinetic reaction mechanism developed for the modeling of NO
reburning by C;—C4 hydrocarbouns, the oxidation of liquefied petroleum gas (LPG) (Dagaut & Hadj
2003) and of various fuels from methane to kerosene (Dagaut 2002). It includes both low and high
temperature combustion chemistry.

e BLB
A particular effort was made to build the Co—Cs Battin Leclerc-Barbe mechanism (Barbe et al. 1995,
Bauge et al. 1997), hereafter referred to as “BLB”, in a comprehensive way. This mechanism was
generated in a systematic way; it includes all the unimolecular or bimolecular reactions involving
radicals or molecules containing less than three carbon atoms. Thus, BLB constitutes not only a
well-balanced scheme for the oxidation of CHy and CoHg, but also the starting point and the basic
kernel for further development and improvement in the area of combustion processes and oxidation of
higher hydrocarbons. The kinetic data were preferentially those proposed by Baulch et al. (Baulch
et al. 1994) or Tsang et al. (Tsang & Hampson 1986, Tsang 1987), and are consistent with the
thermochemistry. BLB relies on 64 species and 439 reactions.

e BL
The Cs mechanism of Battin-Leclerc et al. (Gueniche et al. 2006), hereafter referred to as “BL”,

models the oxidation of C3—C,4 unsaturated hydrocarbons with an accurate description of the reac-
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tions of allene (HoC=C=CHz), propyne (H3C-C=CH), and propargyl (HC=C-CHy-) radicals. BL
relies on 91 species and 686 reactions.
¢ KON
The C;-C3 Konnov mechanism (Konnov 2000), hereafter referred to as “KON”, is a detailed reac-

tion mechanism for small hydrocarbon combustion. It was tested in a wide range of experimental

conditions for Hy, CO, CHy, C2Hg, and C3Hg flames. KON relies on 127 species and 1207 reactions.

The five mechanisms: G3, DLW, S5, BL, & KON are used in the C3 flames study (see Chapter 5)
and the fifteen mechanisms: G1, G2, G3, DLW, ABF, WL, S1, S2, S3, S4, S5, MRN, DAG, BLB,
& KON are used in the C;—C; flames study (see Chapter 6).

Except for G1 and ABF, the number of species and the number of reactions present in a mecha-
nism follow a linear relation (see Fig. 2.1). A linear fit was performed through all points in Fig. 2.1
except S1, S2, and S3 that are represented by S4. The approximate linear relationship found was:
Number of Reactions~9.7 x Number of Species- 196, and is also plotted in Fig. 2.1. G1 is an old
release, which may explain its different ratio between number of reactions and number of species. As
for ABF, intended for use with a soot particle dynamics model, its relatively larger number of species

is not surprising given that heavier hydrocarbons play an important role in soot formation (Wang

& Frenklach 1997, Appel et al. 2000).

1200 KON
0 i ]
51000 simsss 7
I S
‘ .
L 800 | DAG~ ]
5 i | BL, * ]
—_ ‘ Phd
8 600 | W ]
|
g r : B‘I;B/‘/ ABF 1
Z 400 | MR%\I/ DLW i
* | &3 ]
1462
200" g1+ 4 1

20 40 60 80 100 120
Number of species

Figure 2.1: Comparison of the numbers of species and reactions for the sixteen mechanisms under
study.



8

2.2 Continuation technique between chemical-kinetic models

Simulations would only rarely converge with the mechanisms MRN, DAG, BLB, BL, and KON,
whereas simulations converge with the more-robust mechanisms G1, G2, G3, DLW, ABF, WL, S1,
S2, S3, S4, and S5. Therefore, a continuation technique was developed to transition from a solution
obtained with a robust mechanism to a new solution obtained with a less-robust mechanism, as
recommended by P. Dimotakis (private communication).

To enable a converged simulation with the mechanism where no convergence could occur directly
before, mechno—cv, & hybrid mechanism, mechnybria (A), is used that incorporates the kinetic model
adopted in both mechy,—c, and another mechanism for which the simulation converged, mechcy,
in such a manner that each reaction rate from mechc, is multiplied by (1-A) and each reaction
rate from mechy,—cy is multiplied by A. Thus, a smooth transition is enabled between the kinetic
model present in meche, (mechcy ~ mechnybria (A=0)) and the kinetic model present in mechno—cv
(mechno—cv ~ mechnybria (A=1)), by varying the parameter A from 0 to 1 in increments as small as
necessary for reconvergence.

In practice, the thermodynamic and transport data in mechnyria are chosen to be those in
mechno—cv, and two blocks of reactions (with their associated reaction rates) are used in mechnybria:
firstly, the block of reactions (and associated reaction rates) present in mechey, and secondly, the
block of reactions (and associated reaction rates) present in mechpo—cy. Some modifications are
brought to the first block of reactions: the species names are modified for consistency when necessary,
and reactions involving species not present in mechyo_c, are omitted. An external simulation script
gains access to mechpyhria, and has the ability to multiply the reaction rates in the first block by
(1-A\) and the reaction rates in the second block by A. Thus, the hybrid mechanism, mechnybrid,
needs only be constructed once (one hybrid mechanism for each less-robust mechanism), and can be
used for any flame.

Finally, a converged simulation obtained with mechnyiria (A ~ 1) can be used as initialization for
a simulation that uses mechyo_cy, which, this time, will be successful. A summary of the procedure
follows:

(i) choice of a mechanism mechcy,

(ii) elaboration of mechnybria (requires less time if mechcy is similar to mechno—cv)

(iii) converged simulation, simy—g, of the flame, from scratch, using mechnyria (A=0)

(iv) march towards A\ ~ 1: converged simulations, simy,, initialized with simy where the

n—179

increments between the \,, are as small as necessary to get reconvergence

(v) converged simulation with mechyo—cy, initialized with simy~1.



Chapter 3

Non-reacting impinging jets

Impinging jets were chosen to validate the new velocimetry technique. Particle-tracking velocimetry
(PTV) images were recorded (see sample images shown in Figs. A.4a—f), and the Bernoulli velocity,
Up, was determined concurrently from the static pressure drop, Ap, across the nozzle contraction,

for different Reynolds numbers, Re (Bergthorson et al. 2005b).

_ |_28p/p
Ty

where p=1.2kg/m3 is the density of the jet fluid (air), d =0.99cm is the diameter of the nozzle
exit, and dp =3.81 cm is the plenum diameter. Experiments were conducted at Reynolds numbers,
Re=Uypd/pu=407, 708, 1409, 2524, 5049, and 9120. p=1.84107°kg/(m.s) is the dynamic viscos-
ity of the jet fluid (air). The nozzle-to-plate separation distance (normalized by the nozzle diameter)
is L/d=1.5 so that the free jet regime (where the velocity is constant) is recovered.

For cold impinging jets, an error function represents the profiles (Bergthorson et al. 2005b):

0
7 =etla -3
where Uy, is suggested to be Up, « is a strain-rate free parameter, and x is the distance from the

wall. d/d is a scaled-offset length, which is proportional to the scaled wall boundary-layer thickness,

and can be related to «, such that

1
Re -«

(Re, ) =0.755

Ul >

The error-function fits to the experimental data with the two free parameters Uy, and « represent
well the velocity data for all Reynolds numbers investigated (see Figs. 3.1a—f). Ug is shown on these
figures and is in agreement with U, at all Reynolds numbers except the smallest: Re = 407. This

is because the uncertainty in the offset pressure (see error bar on Ug on Fig. 3.1a) is not negligible
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for such low velocities. From Re =708, the uncertainty in the offset pressure is negligible (< 0.8%
of Ug for Re="708 (see error bar on Ug on Fig. 3.1b), and <0.1% of Ug for Re > 1409).

Table 3.1 shows the fit parameters and resulting scaled rms errors, €;ms/Uso (S 1%). The values
of o seem to be consistent with those previously found in Bergthorson et al. (2005b) (see Table 3.2)
for the low Re range, where only one free parameter had been used in the error-function fit (U
was chosen equal to Ug).

Figures 3.2a and 3.2b show the influence of Re on the fitted velocity profiles. From the
axisymmetric-viscous simulations using the spectral element method (Patera 1984) performed by
K. Sone that give us nozzle-exit velocity profiles (see Fig. 3.3), the jet momentum diameter (Dahm

& Dimotakis 1987),
210

VT poo Jo

can be calculated (see results in Table 3.3), where

d" =

o = 27 po / uo(r) rdr
0

and

Jo=2mpo / ud(r)rdr
0

are the jet mass and momentum fluxes at the jet nozzle, respectively, po is the density of the en-
trained reservoir fluid far from the jet, pg is the nozzle-fluid density (in our experiments poo = po = pair ),
and u is the nozzle-exit axial velocity. The Re =5049 and Re = 9120 simulations were not performed
because of their larger computational cost. These simulations at higher Re require a higher reso-
lution, and therefore also smaller time steps. Small time steps are a source of instability (private
communication with K. Sone) because the right hand side of the pressure Poisson equation (Eq. 2.45b
in Sone 2007) approaches 0/0. Although simulations in the literature that use the spectral element
method are typically investigating flows at Re < 3000, the non-reacting impinging jet Re = 5049
and Re=9120 simulations are probably possible with careful construction and distribution of the
elements.

Even scaled by the jet momentum diameter (see Fig. 3.2b), the Re effect on the axial-velocity
field is still significant. A power fit, @ = s + C / Re™, was used to characterize the dependence of
the strain-rate parameter oo on Re (see Fig. 3.4), using the values in Table 3.1. The values of the
constants were found to be: as, =1.66 (smaller than the value of 1.775 found in Bergthorson et al.
2005b, where data up to Re =1400 only had been used), C' =127, and n = —0.885.

After validating the PTV velocimetry technique in the investigation of non-reacting impinging
jets, the PTV technique was used to measure axial-velocity profiles in the Cj3 stagnation flames

studied in Chapter 5.
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malized by the corresponding jet momentum diameter d*.
(Calculated from simulations performed by Kazuo Sone
at all Re but 5049 and 9120.)

the nozzle diameter, d.

Figure 3.2: Influence of Re on the fitted velocity profiles: Re =407 (long-dashed line), Re =708
(medium-dashed line), Re=1409 (dashed line), Re=2524 (dotted line), Re=>5049 (dash-dotted

line), and Re=9120 (solid line).
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Figure 3.3: Influence of Re on nozzle-exit velocity profile: Re=407 (long-dashed line), Re =708
(medium-dashed line), Re = 1409 (dashed line), and Re = 2524 (dotted line). (Simulations performed
by Kazuo Sone.)
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Re @ Uoo 6rms/Uoo (Uoo - UB)/UOO
407 | 2.28 0.63 0.011 -0.025

708 | 2.05 1.09 0.007 0.003
1409 | 1.85 2.17 0.008 0.004
2524 | 1.79  3.89 0.005 0.008
5049 | 1.74  7.78 0.008 0.007
9120 | 1.69 14.05 0.006 0.009

Table 3.1: Error-function fit parameters and rms error €,,5 of fits to experimental data.

Re QBergthorson 6rms,Bcrgthorson/UB,Bcrgthorson
400 2.21 0.017

700 2.00 0.010
1400 1.88 0.011

Table 3.2: Error-function fit parameter and rms error €.,5 of fits to experimental data. Extracted
from Bergthorson et al. (2005b).

Re d*
407 | 0.9182
708 | 0.9329
1409 | 0.9489
2524 | 0.9598

Table 3.3: Influence of Re on jet momentum diameter d*. (Calculated from simulations by Kazuo
Sone.)

2.4 ‘ ‘ ‘ ‘
\ " exp
-l —fit |
22 |
|
520 |\
1.8
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0 2000 4000 6000 8000 10000

Re

Figure 3.4: Dependence of a on Re.
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Chapter 4

Numerical method

4.1 Stagnation-flame simulations

The axisymmetric premixed flame simulations described in Chapters 5 and 6 below are performed
with the CANTERA reacting-flow software package (Goodwin 2003), using the one-dimensional model
from Kee et al. (1989, 2003) validated against non-reacting impinging-jet experiments and axisym-
metric two-dimensional direct numerical simulations in Bergthorson et al. (2005b). The velocity and
velocity gradient are set to zero at the stagnation wall, z =0 mm (no-penetration and no-slip condi-
tions), and are specified at the inlet: ~ 1 mm upstream of the flame. The results are not found to be
sensitive to this choice (Bergthorson 2005a, Section 3.1.2). The fluid-velocity and velocity-gradient
values specified at the inlet are determined from the experimental particle-velocity profile (Bergth-
orson et al. 2005a), taking into account the lag of the tracer particles (Bergthorson & Dimotakis
2006). The inlet composition, inlet temperature, and stagnation-wall temperature are specified from
measurements of fuel & air volumetric flow rates and from temperature measurements, respectively.
A no-flux (multi-component with thermal diffusion) boundary condition for species is applied at the
wall. The boundary conditions for each experiment are reported in Table D.1.

The simulations use a multi-component transport model that includes thermal diffusion (Kee
et al. 2003) and different chemical-kinetic mechanisms used with their associated thermodynamic
and transport data. The C3Hg and C3Hg flame simulations in Chapter 5 were performed with five
mechanisms: G3, DLW, S5, BL, and KON. G3 simulations of C3Hg flames are shown for reference
only (see Chapter 2), and G3 simulations of C3Hg flames are not included because C3Hg is not present
in the mechanism. The CHy, CoHg, and CoHy flame simulations in Chapter 6 were performed with
fifteen mechanisms: G1, G2, G3, DLW, ABF, WL, S1, S2, S3, S4, S5, MRN, DAG, BLB, and KON.

CyHy-flame simulation results using G1, G2, and G3 are shown for reference only (see Chapter 2).
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4.2 Particle-tracking corrections

Particle-tracking corrections are applied to the simulated velocity (uguiq) profile. First, the simulated
particle-velocity profile is determined by including the effects of particle inertia and thermophore-
sis (Bergthorson & Dimotakis 2006). Secondly, the modeled-particle tracking velocity (umodeled—pT)
profile is calculated that also accounts for the finite temporal resolution of the velocimetry tech-
nique (Bergthorson & Dimotakis 2006), characterized by the finite time interval, At, between two
successive particle positions. At = 1/v. (v, is the PSV chopper wheel frequency employed) or
1/vp (vp is the PTV laser repetition rate employed) when particle-streak velocimetry (PSV) or
particle-tracking velocimetry (PTV) is used, respectively. Thus, the modeled-PT velocity profile is
a prediction of the measured PSV or PTV profile.
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Chapter 5

Premixed laminar CsHg- and
CsHg-air stagnation flames:
experiments and simulations with
detailed kinetic models

5.1 Introduction

Atmospheric-pressure stagnation flames had been studied at variable stoichiometry for C;—Csy fuels:
CHy, CoHg, and CoHy (Bergthorson & Dimotakis 2007). Because of the hierarchical nature of
combustion (Gardiner-Jr. 1999), a next step is the investigation of C3Hg and C3Hg whose oxidation

is more representative of that of heavier hydrocarbons, and for which few data are available.

5.2 Experimental method

A co-flow nozzle system is used to generate a combustible gas mixture (premixed fuel and air) jet
of diameter, d =9.9mm, impinging on a temperature-controlled (water-cooled) stagnation plate.
The inert gas co-flow stabilizes and lifts the flame off the nozzle. Helium is used as the co-flow
inert gas because its density closely matches that of the hot products and enables flatter flames
than with nitrogen. The nozzle-to-plate separation distance is L=8mm. Figure 5.1 (extracted
from Bergthorson 2005a) shows the coflow nozzle apparatus with the water-cooled stagnation plate.
PTV and PLIF are used to measure the velocity and CH relative concentration profiles (Crosley
1989) on the jet axis, respectively.

PTV keeps the low particle-loading advantage of the particle-streak velocimetry (PSV) technique
used in previous work (Bergthorson et al. 2005a), while featuring a 16-times-larger spatio-temporal
resolution than PSV (thus no dilution is needed in the flames involving large velocities), with a

reduced scatter in the measurements compared with PSV (see Table D.5). The PTV illumination
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Figure 5.1: Coflow nozzle apparatus with water-cooled stagnation plate. (courtesy of Bergthorson
2005a)

source is a pulsed Coherent Nd:YLF 527nm laser with repetition rates, v, from 1 to 20kHz.
Images are recorded using a digital-imaging system (PCO.4000) that relies on a low-noise (cooled),
4008 %2672 pixels? CCD. Exposure times of 250 ms result in multiple dotted trajectories of particles
that completely traverse the image during the exposure (see Fig. 5.2). Only dots of diameters 2—
3 pixels are processed excluding larger dots that come from agglomerated particles (like the dots of
the central trajectory in Fig. 5.2, chosen for display purposes). Sample PTV images in Cs flames are
shown in Section A.3. The resulting dot record is processed to determine the locations of each dot.
The particle displacement multiplied by v, provides the velocity estimate, located at the average
position of the particle over the period between pulses. The particles seeded in the flow are 1 ym
diameter alumina particles (p, = 3830kg/m?), and vy, is 5kHz for the leanest & richest flames, for
both fuels under study, and 10 kHz for the other flames. The advantages of the new PTV technology
are discussed further in Appendix A, and more details about the key element in this technique —

the laser — are available in Appendix F.



stagnationj

Figure 5.2: PTV image in a $=1.0 CsHg-air flame (v,=10kHz).
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The CH-PLIF technique relies on the excitation to the B state by a Sirah tunable dye laser
and measures the two-dimensional CH fluorescence from the A-X transition (Carter et al. 1998,
Sutton & Driscoll 2003) in the saturated fluorescence regime, using a lens-coupled intensifier with
a cooled CCD binned to 344x260 pixels?, illuminated only during a 200 ns gate to reject chemilu-
minescence while retaining fluorescence (Bergthorson et al. 2005a, Bergthorson & Dimotakis 2007).
The broadband fluorescence signal from polycyclic aromatic hydrocarbons interfering with the CH
fluorescence (Norton & Smyth 1991) is suppressed by measuring the fluorescence signal both on
& off of the resonance line, and taking the difference of the two (Sutton & Driscoll 2003). Com-
posite (single and averaged images) CH-PLIF images in Cs flames are shown in Appendix B. The
simultaneous use of PTV with CH PLIF was enabled by the use of optical filters. Specifically, a
FF01-510/84 Semrock green bandpass filter is used in front of the PTV camera to reject the UV-laser
light (390 nm) that excites the CH radicals, the fluorescence of the CH radicals (430 nm), and some
of the light coming from the Co Swan bands, thus enabling a better resolution of the velocity profile
within the flame. In front of the CH-PLIF camera, a Schott KV-418 longpass filter is used to reject
the UV-laser light (390 nm), and a NF01-532U Semrock notch filter is used to reject the green light
(527 nm) used by the PTV laser, while not decreasing the CH-fluorescence signal.

The fuel flow rate is set and measured using a flow controller (Omega FMA) and the air flow
rate is set using a sonic metering valve and measured concurrently by a flow meter (Omega FMA).
Both the flow controller and the flow meter are calibrated using a Bios DryCal ML-500 dry-piston
calibrator. The estimated volumetric flow rate uncertainty for each stream is 0.6 %, which results in
a total uncertainty in @ of 0.8 % (not including the C3Hg and CsHg purities > 99.5%). Simultaneous
measurements of fuel and air volumetric fluxes, as well as of inlet-gas temperature and stagnation-
plate temperature, provide accurate boundary conditions for simulations. Further details on the
experimental apparatus and the CH-PLIF methodology are available (Bergthorson 2005a, Appendix
C).

5.3 Results and discussion

Figures 5.3 and 5.4 show a comparison of experimental PTV axial-velocity, u, and CH-PLIF profiles
with numerical predictions, using S5 in C3Hg- & C3Hg-air flames (under very lean, stoichiometric,
& very rich conditions), and using DLW in a stoichiometric CsHg-air flame, respectively. The high
PTV-laser repetition rate, v, results in the simulated particle velocity profile and the modeled-PT
velocity profile being almost identical. Therefore, only the simulated fluid and modeled-PT velocity
profiles are included for clarity. In Figs. 5.3 and 5.4, the central column (jet axis) CH-PLIF profiles,
averaged over 1000 images, are plotted. The experimental CH-peak location, zcH,exp, is determined

from this profile by a cubic fit to its peak portion. The CH-PLIF averaged profiles are not as
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smooth in the leanest and richest flames (see Figs. 5.3a, 5.3¢, 5.3f, and 5.3j) because the smaller CH
concentrations in these flames result in reduced signal-to-noise ratios in single images. CH-profile
asymmetry is noticeable in the richest C3Hg and C3Hg flames (see Figs. 5.3e and 5.3j), as observed
previously (Bergthorson & Dimotakis 2007). With the current experimental setup, stable C3Hg- and
CsHg-air flames were established for equivalence ratios in the range 0.7 @ <1.5 and 0.7 @ < 1.6,
respectively. Figure 5.3 shows that S5 predictions are very close to experiment in C3Hg flames, while
both velocities and CH-peak position are underpredicted in very lean & stoichiometric C3Hg flames
and overpredicted in the very rich C3Hg flame. For certain conditions (given fuel and stoichiometry)
where the chemistry seems adequately modeled by a given mechanism, the modeled-PT profile
accurately captures the shape of the experimental velocity profile (see Fig. 5.4). Particle-inertia
and thermophoretic effects are discernible only within the flame and in the vicinity of the wall, and
accounting for them enables good agreement even in these high-gradient regions that cause slight
deviations of the particle velocity profiles from the gas velocities. Including finite particle-track
interval effects is more important when lower-resolution velocimetry systems are used (Bergthorson
& Dimotakis 2006).

Experimental velocity (see Fig. 5.5a) and relative-CH-concentration (see Fig. 5.5b) profiles are
compared with the predictions from five different mechanisms in order to assess their relative per-
formance, in a very lean ($=0.7) CsHg-air flame. For this flame, DLW underpredicts velocities
and CH-profile location, BL & G3 overpredict velocities and CH-profile location, and S5 & KON
yield predictions closest to experiment. From the detailed information contained in the velocity and
relative-CH-concentration profiles, two specific scalar validation targets can be extracted for use by
kineticists that capture a significant portion of the combustion chemistry: the strained stagnation
flame speed, S, where S, is taken as the velocity-profile minimum upstream of the flame, and the
CH-peak location, zcy. These two scalars, S, and zcy, can be used to assess the adequacy of kinetic
mechanisms.

The relative difference, Egu, between the predicted stagnation flame speed, Sy gim (determined
from the interpolated simulated profile) and the measured stagnation flame speed, Sy exp (determined
from a cubic fit around the minimum of the experimental profile), is shown in Fig. 5.6. Figure 5.6
also shows the scaled difference, ZZ;CH, between the predicted CH-profile peak location, ZcH sim,
and the measured CH-profile peak location, Zcw exp, scaled by the stoichiometric CH-layer thickness
simulated with S5, i.e., dcm,g5,6=1 (Bergthorson 2005a). dcy is determined by taking the full width
at half maximum of the interpolated CH profile. Positive values of (ZcH sim — ZCH,exp)/0CH,S5, d=1
indicate that the simulated CH profile is upstream of the (measured) PLIF profile. A gray-filled band
represents the experimental uncertainties, Yexp, on Zlg’u and E:;CH in Fig. 5.6 (see Appendix E, and
more specifically Eqs. E.6-E.12), obtained by taking into account both the uncertainties on zcw exp

(Suexp) and zcH sim (Susim). The uncertainties on Zou sim and Sy sim Were obtained by propagat-
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Figure 5.3: C3Hg-air (left) and CsHg-air (right) flame profiles

simulated with the S5 mechanism.
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ing the experimental uncertainties on the measurements of the simulation input parameters (pres-
sure: ~ 0.2 %, equivalence ratio: ~ 0.8 %, percentage of oxygen in air: ~ 0.2 %, inlet velocity: ~ 0.6 %,
inlet velocity gradient: <4.7 %, inlet temperature: ~ 0.3 %, and wall temperature: ~ 0.8 %) weighted
by the sensitivity of Zcw sim and Sy sim to each of them. Yy, depends weakly on the mechanism used;
Yexp displayed in Fig. 5.6 is the largest value of Xy, evaluated using DLW, S5, BL, and KON. Un-
certainties associated with the models are not estimated here, but will be addressed in future work.
No correction to Sy exp and zcH exp, such as the first-order correction suggested by Markstein (1951),
using curvature Markstein lengths (Bradley et al. 1996), is attempted to account for the effect of the
small curvature of the experimental flames (Sone 2007). Two-dimensional discernible effects may
slightly alter the conclusions, such as in a ¢ =1.2 CHy-air flame, where Sone (2007) showed that the
stagnation-flame speed predicted by the two-dimensional simulation using G3 was ~ 9 % lower than
experiment whereas the stagnation-flame speed predicted by the one-dimensional simulation using
G3 was almost identical to the experimental value. The curvatures were obtained from parabolic fits
to the central portion (around the jet axis) of the two-dimensional CH-PLIF data (concave towards
the stagnation plate for all flames studied) and are listed in Table D.4.

Figure 5.6 shows that except for the very rich C3Hg flame, where S, and zcy are largely over-
predicted by all mechanisms compared, BL. and KON performances are similar in C3Hg and C3Hg
flames. On the other hand, DLW and S5 predictions exhibit a larger variance from experiment in
CsHg flames. Such increased variance from a fuel with single bonds connecting the carbon atoms to
a fuel with double C=C bonds was noticed in earlier work (Bergthorson & Dimotakis 2007), where
DLW and the 2005/03 release of the San Diego mechanism yielded predictions further from experi-
mental data in CoHy flames than in CoHg flames, especially under very lean and very rich conditions.
S5 and BL are found to be the best mechanisms to simulate the C3Hg and CsHg flames investigated,
respectively. When considering the CsHg and C3Hg flames investigated (each fuel is given the same

weight), S5 was found to have the best overall performance over the range of stoichiometries studied.
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S5 predictions are very close to experiment for C3Hg flames, even in the very rich C3Hg flame
where S, and zcg are overpredicted by all other mechanisms tested. As for the C3Hg flames, close
agreement between simulation with S5 and experiment is also reached at $=1.3, but S5 underpredicts
both Sy & zcm in very lean to stoichiometric flames and overpredicts both of them in the very
rich flame. Experimental data are well captured by DLW in moderately-lean and stoichiometric
CsHg flames, consistent with Davis et al. (1999). In very lean C3Hg & C3Hg flames, S, & zcn
are underpredicted by DLW, despite the good agreement of simulated and experimental laminar
flame speeds shown in Davis et al. (1999), and DLW predictions are lower than those of the other
mechanisms. S, and zcp are also underpredicted by DLW in lean and stoichiometric CsHg flames.
The flame speed underpredictions by DLW in very lean to stoichiometric CsHg flames found in the
present work are in contrast with the overprediction of laminar flame speeds shown in Jomaas et
al. (2005) and the good agreement shown in Davis et al. (1999). Unlike the slight underprediction
of rich C3Hg laminar flame speeds (Vagelopoulos et al. 1994) and the clear underprediction of rich
C3Hg laminar flame speeds, both shown in Davis et al. (1999), flame speeds are overpredicted by
DIW in rich C3Hg and very rich C3Hg flames in the present work, consistent with the rich C3Hg
laminar flame speed clear overpredictions in Jomaas et al. (2005). BL slightly overpredicts S, & acn
in lean to stoichiometric C3Hg flames, and overpredicts them more in rich C3Hg & C3Hg flames.
Nevertheless, BL predicts well very lean to stoichiometric C3Hg flame experimental data. KON
predicts very well the leanest CsHg & C3Hg flame experimental data, but overpredicts S, & xcy in
all other flames, with an increasing disagreement between simulation and experiment as the flame
becomes increasingly rich. Previous comparisons of B, and KON predictions with C3 flame-speed
data were not found in the literature.

In order to identify the most-important reactions for the flames investigated, the logarithmic sen-
sitivities of simulated flame positions (defined as the CH-peak locations, zcn) to changes in the reac-
tion rate values are computed for six representative flames covering the two fuels under study, and the
very lean, stoichiometric, and very rich burning regimes, using the DLW mechanism (see Figs. 5.7a
and 5.7b) because it yields similar results to S5 and has more reactions. The mixture-averaged
transport model, which yields results that are close to the full multi-component model, is used in
the sensitivity analyses to save computing time. To determine the sensitivity of zcg to variations in
kinetic rates, the “brute-force” method is utilized as suggested by Frenklach (1984). Simulations are
performed varying a single kinetic rate at a time, and zcy is compared to its original predicted value
to determine the effect of each reaction rate. The logarithmic sensitivity for the CH-peak location
to each reaction rate, k;, can be calculated using: LS(zcn);=dlogzcu/dlogk;=Azcu/2cn - kj/Ak;=
(zcu (kj+Ak;)—zcu(k;))/zcu(k;) - kj /Ak;. The reactions displayed on Figs. 5.7a and 5.7b were se-
lected by keeping only the reactions with a logarithmic sensitivity (in absolute value) larger than 5%

in at least one of the flames investigated. Figures 5.7a and 5.7b show that flame position is sensitive
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only to a small number of reactions for the two fuels studied, among which a few reactions involving
C3Hg and the allyl radical (aCsHs). The sensitivity variations to equivalence ratio changes are also

very similar between the C3Hg and C3Hg flames investigated.
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Figure 5.7: Logarithmic sensitivity of the CH-peak locations computed with DLW in: (a) C3Hg-air
and (b) CsHg-air flames.

A simple comparison of individual reaction rates between mechanisms may reveal a possible
source of the variance between predictions from different mechanisms. The same reaction rate is
used for CsHg + H = aC3Hs + Hy in DLW, S5, and BL, but a lower reaction rate is used in KON.
In the very rich CsHg flame investigated, CsHg & H or aC3Hs & Hy are simultaneously present at
temperatures between 950 and 1740 K, where the KON reaction rate is 2 to 6 times smaller than the
rate in DLW, S5, and BL. Since C3Hg + H = aC3sHs + Hs has a negative effect on flame position
(and on flame speed), the large overprediction of S, and azcg by KON in the very rich CsHg flame
(see Fig. 5.6b) may be partly attributable to this reaction-rate difference. A sensitivity analysis
was also performed using S5 in order to try to explain the large variance from experiment in CsHg
flames (see Fig. 5.6b). Although the cause of the lower predictions of S, and zcy by S5 in very lean
to stoichiometric C3Hg flames remains unclear, a peculiar feature was noted that may be related
to the overprediction of S, and zcy by S5 in very rich CsHg flames. The logarithmic sensitivity of
flame position to an increase in the S5 reaction rate of CHs + H (+ M) = CHy (+ M) is negative
in all the C3Hg flames investigated, consistent with sensitivity analysis (see Figs. 6.4-6.6) using S5
in CHy, CoHg, and CoHy flames studied in Bergthorson & Dimotakis (2007). However, the same
logarithmic sensitivity in the very rich C3Hg flame is positive: ~+10%, compared to ~ —15% in the
very rich C3Hg flame. The same peculiar feature can be noted with CsHg + H = aC3sHs + Ho, with

a logarithmic sensitivity ~ —5% in very rich C3Hg flames and ~ 47% in very rich C3Hg flames.
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Chapter 6

Validation of chemical-kinetic
models against CH,-, CoHg-, and
CyH,-air stagnation-flame
experiments and comparative
sensitivity analysis

6.1 Validation of C;—Cj3; kinetic mechanisms against CH;y-
, CoHg-, and CyHy-air stagnation-flame experiments at

variable stoichiometry

6.1.1 Flame position: a good surrogate for flame speed in stagnation-

flow-stabilized flames

The present study builds upon the work of Bergthorson & Dimotakis (2007), where detailed axial-
velocity and CH-radical profile measurements in laminar premixed flames stabilized in a jet-wall
stagnation flow are compared with flame simulations in order to validate and compare chemical-
kinetic mechanisms. The simulations rely on the one-dimensional hydrodynamic model from Kee
et al. (1989, 2003), a multi-component transport formulation including thermal diffusion, & several
detailed chemical-kinetic mechanisms, and are performed with CANTERA (Goodwin 2003). More de-
tails about the numerical method were presented in Chapter 4. The experimental velocities measured
using particle-streak velocimetry (PSV) (Bergthorson et al. 2005a) are compared with the simulated
velocities, which are corrected to account for the effects of inertia & thermophoresis on the particle
motion and to account for the finite temporal resolution of the velocimetry technique (Bergthorson

& Dimotakis 2006). In addition, the experimental CH-radical profiles measured using planar laser-
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induced fluorescence (PLIF) can be directly compared to the simulated CH profiles. Figure 6.1 shows
the experimental PSV and simulated axial-velocity, u, profiles, as well as the experimental PLIF
and simulated relative-CH-radical concentrations, in a CHy-air flame of equivalence ratio ¢ =0.7
(only four representative mechanisms are plotted for clarity). Kinetic mechanisms performance can
be assessed from such comparisons: for this lean CHy-air flame, DLW clearly appears to be the only
mechanism that does not overpredict both velocities and CH-profile location.

CH is a short-lived radical with a narrow spatial profile confined to the reaction zone (Crosley
1989). Thus, the CH-peak location, zcy, yields a sharp estimate of flame location that is predicted
by the detailed flow-kinetic models and can be directly compared with experiment. Moreover,
differences between measured and predicted CH-peak location correlate well with differences between
measured and predicted strained stagnation-flame speed, S, (Bergthorson & Dimotakis 2008), where
Sy is defined as the value of the velocity-profile minimum upstream of the flame. The information
contained in the axial velocity and CH-radical profiles can therefore be reduced to a single scalar:

the CH-peak location, zcy.
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Figure 6.1: Comparison of predicted velocity (a) and relative-CH-radical concentration (b) with
experiment for different kinetic mechanisms, in a ¢ =0.7 CHy-air flame.
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6.1.2 Comparison of predicted flame positions with experiment

The experiments in CHy-, CoHg-, and CoHy-air flames cited in the present study are the experi-
ments discussed in Bergthorson & Dimotakis (2007). There was no dilution in the CHy- and CoHg-air
flame experiments, where the percentage of oxygen (O2) in the “air” (composed of Oy and nitro-
gen, Ny) is given by 21 %03/(02+N3) at all values of @. In order to reduce the flame speeds for
near-stoichiometric conditions, Ny dilution was employed for the CoHy-air flames. The resulting com-
positions were: @ =0.6, 21 %02/(02+N3); & =0.8,19.5%05/(02+Ns3); ¢=1.0, 17 %02/(02+N>);
®=1.2, 16.5%02/(02+Nz); &=1.4, 18 %02/(024 Na); #=1.6, 21 %02/(02+N>); and ¢=1.8,
21 %02/(02+4+N3). The compositions of all of these flames are summarized in Table D.1. The mul-
ticomponent flame simulations in the present study include thermal diffusion that is not included
in Bergthorson & Dimotakis (2007). The thermal diffusion effect on flame location is quantified in
Section C.2. Moreover, the kinetic mechanisms: G1, G2, ABF, WL, S3, S4, S5, MRN, DAG, BLB,
and KON are used in the present study, in addition to those considered in Bergthorson & Dimotakis
(2007). Simulations would only rarely converge with the less-robust mechanisms MRN, DAG, BLB,
and KON. Therefore, a continuation technique between mechanisms was elaborated that enables
converged solutions with these less-robust mechanisms. The continuation technique was presented
in detail in Section 2.2. Between 300 and 500 gridpoints are needed for converged solutions (see
Section C.1).

Figures 6.2a—c plot the difference between predicted and measured CH-peak locations, zcy, scaled
by the stoichiometric flame thickness simulated with S4, dc,s4,6=1 (different for each fuel, estimated
as the full width at half maximum of the CH profile), for CHy-, CoHg-, and CoHy-air flames, respec-
tively, at variable stoichiometry. Positive values of (ZcH sim — ZcH,exp)/dcCH,84,6=1 indicate that the
simulated CH profile is upstream of the measured CH profile and that the predicted flame speed is
higher than experiment (z =0 at the wall). The uncertainty in the boundary-condition measurements
corresponds to a total estimated uncertainty in the predicted flame location of ~0.50cy (Bergthor-
son 2005a, Section 2.6).

An error, A,,, is defined that quantifies the difference between the predictions from a given mech-

anism, m, and the experiment for a data set considering flames of different fuels and stoichiometries:

ICH,sim with mechanism m — <ZCH,exp (6 1)

A, = Average over the flame data set of
dcH,84,0=1

The “best” mechanism is then defined as the mechanism for which:
Abcst - minm:l

»»»»» Nmech {Am} ) (62)

where Npecn is the number of mechanisms considered.
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Figure 6.2: Difference between simulated and measured CH-peak locations (left), and comparison of
the average performance (over the equivalence ratios investigated) of the different kinetic mechansims
(right) for: (a) CHy-, (b) CoHg-, and (¢) CoHy-air flames.



31

Another error norm, o,,, can be defined that can be minimized more naturally, that penalizes large

variances:

2
ZCH,sim with mechanism m — ZTCH,ex
2 E : 5 ,€Xp
Om = (1/Nﬁamcs in data sct) : ( ) y (63)
t

) _
flame data se CH,54,&=1

where Names in data set 18 the number of flames in the data set considered. According to this second

error norm, the “best” mechanism is defined as the mechanism for which:

Obest = Mily=1, . Npoen 10m) - (6.4)

Using either criterion, DLW (see Fig. 6.2a), S2 (see Fig. 6.2b), and S5 (see Fig. 6.2¢) are found
to be the “best” mechanism to simulate the CHy, CoHg, and CoHy flames investigated, respectively.
This dependency on fuel of the “best” mechanism is not a good sign for the current state of com-
bustion modeling, since the reactions set needed to model CH4 combustion should be present in a
model for Cy oxidation, and conversely modeling rich CH4 flames requires a robust set of reactions
involving Cq species (Kee et al. 2003, Section 14.3.1.2). When considering all of the CHy, CoHg,
and CoHy flames investigated (each fuel is given the same weight), S4 has the “best” overall perfor-
mance (see Fig. 6.3). Not surprisingly, G3 does poorly simulating CoH,4 flames, for which it was not

optimized and as found previously (Egolfopoulos & Dimotakis 2001).
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Figure 6.3: Ranking (based upon the criteria expressed in Eqgs. 6.2 and 6.4) of the different kinetic
mechanisms, in their ability to predict CHy-, CoHg-, and CoHy-air flame positions, or flame speeds.
(Each fuel is given the same weight.)
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6.2 Comparison of reaction rates among the mechanisms

6.2.1 Comparative sensitivity analysis

The logarithmic sensitivities of the simulated flame positions (defined as the CH-peak locations) to
changes in the reaction-rate values are computed for nine representative flames covering the three
fuels under study, and the very lean, stoichiometric, and very rich burning regimes, using seven
different representative mechanisms. G1 & G2, WL & ABF, and S1, S2, S3, & S4 are represented
by G3, DLW, and S5, respectively, because their reactions & reaction rates are very similar, and
therefore their sensitivities are expected to be very similar as well. To determine the sensitivity
of the CH-peak location to variations in the kinetic rates, the “brute-force” method is utilized as
suggested by Frenklach (1984). Simulations are performed varying a single kinetic rate at a time,
and the CH-peak location is compared to its original predicted value to determine the effect of each
reaction rate. The logarithmic sensitivity coefficient for the CH-peak location, zcy, to each reaction

rate, k;, can be calculated using:

legXCH _ AxCHk_J _ xCH(kj+Al€j)—$CH(kj) i (6 5)
dlogkj TCH AkJ xCH(kj) AkJ ' '

LS(xCH)j =

The reaction rates were increased by a factor 1.5 (Ak;/k; = 1/2), which is sufficient to observe
changes in the CH-peak location, while preventing large changes and corresponding increases in the
computational time required for re-convergence. Reaction-rate increases by a factor smaller than 1.5
(some very close to 1 for DAG and KON) had to be used in order to get re-convergence for several
reactions with MRN, DAG, BLB, and KON. This adds a difficulty to exploiting the information
from the absolute sensitivities for DAG and KON. However this is not an issue as the present
study does not exclusively focus on comparisons of logarithmic sensitivity values, rather sensitivity
analysis indicates which reactions are key, and their reaction rates are compared among the different
mechanisms. The mixture-averaged transport model is used to save computing time. For each flame,
a fixed grid with 300 to 500 points is used in this study, although lower resolution simulations would
have provided very similar sensitivity results. For highly sensitive results (such as the CH-peak
location) in regions of high gradients, one would expect that the sensitivities could themselves be
very sensitive to grid resolution. However, a study of the influence of resolution was performed with
G3, which showed that the rms difference between the logarithmic sensitivity vectors at low resolution
(~ 140 gridpoints) and at high resolution (~ 1000 gridpoints) is smaller than 0.4 % for all the flames
studied. Figures 6.4-6.6 show comparisons of the logarithmic sensitivity of the CH-peak location to
the most important reactions in the different mechanisms for each of the nine flames investigated.
The average (over the different mechanisms) absolute value of the logarithmic sensitivity for each

displayed reaction is large relative to the logarithmic sensitivity to other reactions (present in the
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mechanism and not displayed here) in at least one of the flames investigated. As expected, Figs. 6.4
6.6 show that different mechanisms exhibit similar sensitivities to the same reactions and that flame
position (or flame speed) is sensitive to a relatively small number of reactions only, for the three

fuels studied.

6.2.2 Comparison of reaction rates

Given that there exists a broad consensus regarding the reaction set needed to model CH4 combustion
(there is greater disagreement for higher hydrocarbons), the challenge comes down to determining
the ideal values for the various model parameters. Among these parameters, the variance in the
chosen kinetic-rate constants is the largest source of disagreement between the different model pre-
dictions. Sensitivity analysis identifies reactions that have the largest effect on the flame, thus the
corresponding kinetic rates can be compared between the different mechanisms in order to explain
the discrepancies shown in Fig. 6.2. First, the positive (LS; > 0) or negative (LS; < 0) effect on flame
position of an increase in the kinetic rate of each reaction j identified by the sensitivity analysis is
determined for the flames investigated. The kinetic rates, k;, are then compared between different
mechanisms. The flame position is further assumed to depend only on the kinetic rate, k;. This
allows “a priori” comparisons of flame positions between different mechanisms. This assumption
may often be invalid, because the flame position also depends on the relative importance of reaction
j, which also varies from mechanism to mechanism. This approach focuses on individual reactions
and is therefore not suited for the comparison of branching ratios that are representative of the
relative importance of a subset of reaction rates. Also, sensitivity analysis would provide partial,
and therefore biased, insight only, if key species and reactions were missing in the mechanism, which
may happen when describing heavier hydrocarbons oxidation.

Despite these shortcomings, several reactions are shown to be the likely contributors to some of
the clear differences between the predictions made by the various mechanisms studied (see Fig. 6.2).
The overall variances in the model predictions can be summarized as:

e DLW & WL predict lower flame-position values in lean flames (see Reactions 1, 2, 3, 4, and 5).

e Despite its similarities with DLW, WL yields lower predictions than DLW in lean CH4 flames
(see Reaction 8), in rich CoHg flames, and in moderately rich CoHy flames (see Reactions 9 and 11).
The better performance of WL in CoHy flames is expected since WL has been developed to model
CoH,4 and CoHs flames.

e ABF counsistently overpredicts flame positions (see Reaction 10).

e S1 consistently overpredicts flame positions (see Reactions 8 and 10).

e 5S4 and S5 yield lower predictions than earlier releases of the SD mechanism (see Reac-
tions 1, 3, 6, 7, and 9).

e MRN is the only mechanism that largely underpredicts rich CH4 flame positions (see Reac-



H+02<=>0H+(

CO + OH <=>CO0O2 + H
HCO+M<=>CO+H+M
HCO + H20 <=> CO + H + H2(
CH3+H (+M)<=>CH4 (+ M

H+ 02+ H20 <=>HO2 + H2

H+02+M<=>HO2+MWM

H+ 02+ N2<=>HO2+N
HCO + 02 <=> CO + HO

CH3 + HO2 <=> CH30 + O}

CH3 + OH <=> CH2(S) + H2(
C2H3 + 02 <=> CH2CHO +

HO2 + H <=> 2 OH

HO2 + H <=> H2 + O

H+ OH+ M <=>H20 + M

C2H4 + H (+ M) <=> C2H5 (+ M

HO2 + OH <=> H20 + 02, Duplicatg

HO2 + OH <=> H20 + 02, Duplicatg
C2H3 + H<=>C2H2 + H

2 CH3 <=> C2H5 + H

HCO + OH <=> CO + H2(
C2H4 + OH <=> C2H3 + H2

C2H2 +H (+ M) <=> C2H3 (+ M

CH20H + H <=> CH3 + OH

C2H4 + O <=> CH2CHO + k

CH4 + H <=> CH3 + H%

C2H3 + 02 <=> HCO + CH2

CH4 + OH <=> CH3 + H2(¢

T g O+ T

Y

P OO F

A i

P+ 7 O

VU

il

N KON
| Il BLB
| N DAG |
1| C__—_—_IMRN |-
| IS5 |
| I DLW
| B Gs

-0.1

4
3
-
g
A
1
0 0.1
LS (XCH)

0.2

0.1
LS (xCH)

0.2

-0.2 -01 0
LS (x)

0.1

Figure 6.4: Logarithmic sensitivity of the CHy-air flame CH-peak position with: (a) #=0.7, (b) #=1.0, and (c) &=1.3.

0.2

129



H+02<=>0H+(
CO + OH <=>CO0O2 + H
HCO+M<=>CO+H+M
HCO + H20 <=> CO + H + H2(
CH3+H (+M)<=>CH4 (+ M
H+ 02 + H20 <=> HO2 + H2
H+02+M<=>HO2+M
H+ 02+ N2<=>HO2+N
HCO + 02 <=> CO + HO
CH3 + HO2 <=> CH30 + O}
CH3 + OH <=> CH2(S) + H2(
C2H3 + 02 <=> CH2CHO +
HO2 + H <=> 2 OH
HO2 + H<=>H2 + O2
H+OH+M<=>H20+ M
C2H4 + H (+ M) <=> C2H5 (+ M
HO2 + OH <=> H20 + 02, Duplicatg
HO2 + OH <=> H20 + 02, Duplicatg
C2H3 +H<=>C2H2 + H
2 CH3 <=>C2H5 + H
HCO + OH <=> CO + H2(¢
C2H4 + OH <=> C2H3 + H2
C2H2 + H (+ M) <=> C2H3 (+ M
CH20H + H <=> CH3 + OH
C2H4 + O <=> CH2CHO + H
CH4 + H <=> CH3 + H2
C2H3 + 02 <=> HCO + CH2
CH4 + OH <=> CH3 + H2(

#rl”

= T
L L) R I s N (0 N
CHe 11 73 G
®=10 || ] ®=15 |

T OO+ T

T
PRI Y |

Y

OO
™11

1
T
am
1
1
T
1

‘Ja;l." he

A i

N KON
I B B || )
B DAG |1 [
" IMRN|H |
1 b | ss || |
1L |l || [
' | I G3 :
1 1 1 1 1 1

0 0.1 0 0.1 0.2 -0.1 0 0.1 0.2
LS (XCH) LS (XCH) LS (xCH)

|
T
TrT —rr

P+ 7 O

RN

Figure 6.5: Logarithmic sensitivity of the CoHg-air flame CH-peak position with: (a) ¢ =0.7, (b) #=1.0, and (¢) & =1.5.

qe



H+02<=>0H+(
CO + OH <=>CO0O2 + H
HCO+M<=>CO+H+M
HCO + H20 <=> CO + H + H2(
CH3+H (+M)<=>CH4 (+ M

H+ 02 + H20 <=> HO2 + H2
H+02+M<=>HO2+M

H+ 02+ N2<=>HO2+N

HCO + 02 <=> CO + HO
CH3 + HO2 <=> CH30 + O}
CH3 + OH <=> CH2(S) + H2(

C2H3 + 02 <=> CH2CHO +
HO2 + H <=> 2 OH
HO2 + H <=> H2 + O}
H+OH+M<=>H20+ M
C2H4 + H (+ M) <=> C2H5 (+ M
HO2 + OH <=> H20 + 02, Duplicatg
HO2 + OH <=> H20 + 02, Duplicatg
C2H3 +H<=>C2H2 + H

T OO+ T

T W W STV

A i

2 CH3 <=>C2H5 + H- B
HCO + OH <=> CO + H2® 7 A
C2H4 + OH <=> C2H3 + H20 | B <on ||
C2H2 + H (+ M) <=> C2H3 (+ M} B |
CH20H + H <=> CH3 + Ot I DAG |7
C2H4 + O <=> CH2CHO + [ 1MRN [H
CH4 + H<=> CH3 + H} N S5 |
C2H3 + 02 <=> HCO + CH26 I DLW |

CH4 + OH <=> CH3 + H2¢r | . . .: -

-02 -0.1 0 01 02 0 0.1 0 01 02 03
LS (xCH) LS (XCH) LS (xCH)

Figure 6.6: Logarithmic sensitivity of the CoHy-air flame CH-peak position with: (a) ¢ =0.6, (b) #=1.0, and (c¢) $=1.8.

9¢



37

tions 3, 7, and 11). It also underpredicts all but the leanest CoHy flame positions (see Reaction 11).
Finally, it overpredicts lean CH4 and all CoHg flame positions.

e BLB consistently overpredicts flame positions (see Reactions 1, 9, and 12), except in lean CoHy
flames (see Reactions 2 and 3).

e DAG consistently underpredicts flame positions (see Reaction 13).

e KON consistently underpredicts flame positions by a small amount, except in rich CoHg flames.
It yields similar predictions as DLW and WL in C2Hg flames and it is the only mechanism to yield
a correct prediction for the richest CoHy flame.

Figures 6.7-6.16 show the temperature dependence between 300 K and 3000 K, of the reaction
rates k; (with concentration units mol/cm?®), at atmospheric pressure, for the reactions discussed
later on. Some of the reactions that are discussed in this study involve a third collision partner:
either a particular species, or an “inert”, “bath-gas”, or “third-body” species denoted by M. Curly
brackets are used around the third partner in the reaction names when this reaction is modeled by a
three-body reaction rate in some mechanisms (Arrhenius-type model, independent of pressure) and
by a fall-off reaction rate in other mechanisms (dependent on temperature, but also on pressure).
Traditionally, no brackets are used in the name of the reaction for a three-body reaction rate model,
and simple brackets are used for a fall-off reaction rate model. For some of these reactions, a fall-off
reaction rate model is used, whose value does not only depend on temperature, but also on the total
molar concentration [M]. As explained in Gardiner-Jr. & Troe (1984), in the simplest view, M
would represent collectively all the atoms and molecules of the reacting gas. From the ideal gas law,

the bath-gas concentration [M] in this view is then given by
[M]= P/RT . (6.6)

Eq. 6.6 was used to determine the fall-off reaction rate values in Fig. 6.7, Fig. 6.8, and Fig. 6.12,
with P=1atm and R=1.987cal-K~'-mol~!.

In the legends of Figs. 6.7-6.16, several abbreviations are used to stress the reaction-rate differ-
ences among the mechanisms:

kmechl ,mech2~mech3 11€aNS that kmechl = kmechQ ~ kmechﬂ; and

fi kgzaesccm,mech.@Nmechg means that Emeens (=fi k%55 ,) = kmeenz (=/; kgzaescch,@) ~ kmecns (=fi k}%aescchﬂ)v
where f; is the same in mechl, mech2, and mech3. k or kP®* is omitted when there is no ambiguity.
The exponents “a” (for Arrhenius), “tb” (for three-body), “fo” (for fall-off), “d” (for duplicate),
and “-” (for reverse reaction) appear to stress the differences in modeling among the different mech-
anisms. When they do not appear, it means that all mechanisms use the same model and same

direction of progress for the reaction. Sometimes a mechanism uses the sum of two different reaction

rates to determine a given reaction-rate value; the two identical reactions with different reaction
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rates are called duplicate reactions. In Fig. 6.11, only the resulting summed reaction rate is plot-
ted. When a mechanism, mechl, uses the backward kinetic rate, kP?, of a reaction, the comparison
between the corresponding forward rate, k', with the forward kinetic rate, k2, of this reaction in
another mechanism, mech2, is made possible by calculating the equilibrium constant K.; from the
thermodynamic data used in mechl: k' = K., - kP!,

During the simulations, an effective concentration, [M], is used that is calculated from the con-
centration of each species present in the model, [M;], and from the corresponding collision efficiency
(that may vary among different kinetic models), f;, through the formula: [M] = > f;M;. When
non-default collision efficiencies are not specified in the reaction-rate model, the default value, f; =1,
is used. When focusing on the reaction with the particular third body M;, the “base” reaction

rate, kPase

, of the reaction involving the general third body M must be multiplied by the collision
efficiency, f;, to yield the actual reaction rate, k = f; k2. To illustrate this, let us consider the asso-
ciation reaction A + B + M; = C + M; (the following reasoning applies to dissociation reactions as
well), and its reaction rate, k. In different mechanisms, this reaction may appear under two different
forms: either A + B + M; = C + M, with its associated Arrhenius reaction rate, kmechsa(T), or A
+ B+ M = C + M with either an associated three-body reaction rate, k,, .2 (7) (that depends
only on temperature and that uses collision efficiencies), or with an associated fall-off reaction rate,

Emecngto (T, [M]) (that depends not only on temperature but also on pressure or [M] and that uses

collision efficiencies).

Mechanism | Reaction-rate model type d[C]/dt k = d[C]/dt/ ([A][B][M.])
mechl Arrhenius Emech1 »(T) [A][B][M;] kmecnia(T)
mech? three-body kg;“:cchgtb(T) [A][B](f;[Ms]) fi x kg;“:cchgtb(T)
mech3 fall-off kbase (T, [M]) [A]B](fi[Mi]) | fi x kb2, oo (T, [M))

Table 6.1: Comparison of a three-body reaction (A + B + M; = C + M;) rate, k, despite possible
modeling differences among various mechanisms.

Thanks to the flame-location (shown to be a good surrogate for flame speed in Section 6.1.1)
sensitivity analysis coupled with the comparison of rates among mechanisms, the rate-modeling
differences of the following reactions are shown to be the likely contributors to the variance in the

predictions by the various mechanisms studied:

1. H+ O3 + M = HOy + M (Ls<o0)

Although flame position is rather sensitive to H + Og {4+ N3} = HO2 {4 N3} under lean conditions,
no major differences appear in the modeling of its rate: the same rates are used in G3, DLW, and
WL (using a separate reaction), and no non-default collision efficiency is ever used in the other

mechanisms. On the other hand, many differences appear in the modeling of the rate of the reaction
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with HyO. Flame position is extremely sensitive to the reaction with HoO under lean conditions
(and slightly less sensitive under stoichiometric conditions), whether the reaction is modeled either
by a separate reaction H + Oz {+ H2O} = HOz {+ H20} or by the general reaction H + Oq
{+ M} = HO; {+ M}. For the mechanisms that use a separate reaction with HoO (GRI, DLW,
ABF, WL, and MRN), flame position is not sensitive to H + Oy {+ M} = HOs {+ M} (that uses
a zero collision efficiency for HoO) at any stoichiometry for the three fuels; therefore, the reaction
with H2O is the only crucial reaction. Figure 6.7 shows that the rates for the reaction H 4+ Oq
{+ H,0} = HO, {+ HyO} are such that 1 k53¢ < ka1,go,aBr ~ 16.25 kR%e, ~ kas < kprw,wr
(kpLw,wL ~ 1.5kgs ~ 1.5-18 kprp). This may contribute to the lower predictions of DLW & WL,
and to the larger predictions of BLB, in lean flames with the three fuels (these two conclusions are
tempered by the analysis of the reaction HCO + M = CO + H + M). In the various SD releases,
the changes brought to the fall-off reaction-rate parameters of the reaction with HoO illustrate the
lack of certainty in this important reaction rate. From S1 to S2, the base rate was kept but the
collision efficiency was changed from 12 to 7, and from S2 to S3, the fall-off low-pressure limiting
rate was more than doubled and the collision efficiency was changed from 7 to 16. These changes
are consistent with the lower predictions of the newer SD releases (the rate parameters used in S4

& S5 are the same as in S3) in lean flames.
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Figure 6.7: H + Oy {+ H20} = HO; {+ H20} Figure 6.8: HCO + H,O = CO + H + H»0

kinetic-rate comparison between mechanisms.  kinetic-rate comparison between mechanisms.

2. HCO+ M =CO+H+ M (LsS>0)

Flame position is sensitive to this reaction in all lames studied, with larger sensitivities under lean
conditions. The base reaction rate is approximately the same in all mechanisms except BLB and
KON that use a slightly smaller one (kpr,B~KON ~ 0.5 Kother mechs). However, a strong variance can
be found among the values of the collision efficiency for HoO. A separate reaction: H + Oy + HyO
= HO, + H>O, with its associated rate, is even used in GRI. As a result, the rates of the reaction

with HoO are at variance (see Fig. 6.8). The smaller rate in BLB does not explain its generally
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larger predictions, but could contribute to its lower predictions in lean CoH4 flames. The largest
rate in DLW probably compensates to some extent the effect of the largest rate in DLW for the
reaction H + Oz {+ H20} = HO;y {+ H20}.

3. HCO + O = CO + HOy (s <0)

Other than the exceptionally large sensitivity with MRN in rich CH4 flames, flame position is
sensitive to this reaction under lean conditions only. Also, the sensitivity is larger in CH4 and CyHy
flames than in CoHg flames. For each fuel, HCO is present only above 1000 K in the leanest flame
studied, where Fig. 6.9 shows that: ksi s2.93 < kpac < ks4,85, MRN ~ kG1,G2,DIwW,ABF, WL < kg3 <
kkon < kpLp. Although the rate in DLW and WL is neither small nor large relative to the other
mechanisms, the extremely large sensitivity in lean flames may be a sign that this reaction rate is
involved in the lower predictions of DLW and WL in lean flames. The lower predictions of the latest
SD releases S4 and S5 in lean flames is consistent with the increase in the exponential prefactor of
this Arrhenius reaction rate by ~150% from S3 to S4 (the same rate parameters are used in S1,
S2, & S3, and in S4 & S5, respectively). The large rate in BLB may explain why BLB yields low
predictions in lean CoH,4 flames, given the noticeably large sensitivity to this reaction under these
conditions. As for MRN, the low predictions in CHy flames under rich conditions are likely due to

this reaction.
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4. CoHy + OH = C3H3 + Ho O (s> 0)

It is not surprising that only CoH, flame positions are sensitive to this reaction since this reaction
accounts for CoHy consumption in flames, together with CoHy + H = Products (Warnatz 1984,
Section 6.3). Moreover, CoH, flame positions are more sensitive to this reaction under lean condi-
tions. Figure 6.10 shows that at temperatures between 1000 K and 2000 K (where CoHy and OH are
simultaneously present for the flames investigated): kprw < kMRN ~ kDA ~ KBLB < Kother mechs (it

is explicitly noted in DLW that kprw = 0.5 ka3 in order to lower CoHy flame speeds). The smaller
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rate in DLW may contribute to its lower predictions in lean CoHy flames.
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5. HO3 + OH = H;0 + Oy (LS < 0)

CH,4, CoHg, and CoHy flame positions are sensitive to this reaction under lean conditions only.
Aside from G1 included for reference, Fig. 6.11 shows that similar activation energies were chosen
for the different mechanisms (almost the same slopes). The atypical rates for G3 and MRN are
made possible by summing the Arrhenius rates of two duplicate reactions, thus the reaction rate is
significantly increased at high temperatures (above 1800 K). However, in the lean flames investigated,
the maximal temperature is below 1800 K, and OH is present with HOs only above ~ 1300 K. In this
range of temperatures, the rates can be ordered as follows: kg1 < kvmrn < kg3 < kg2, ABF,BLB ~
ksp ~ kpag ~ kxon < kprw,wr. Furthermore, it is explicitly noted in DLW that kprw ~ 1.5 kg1
in order to lower CoHy flame speeds. This may be another reason why DLW and WL yield lower
predictions in lean flames.

6. CHs + H(+ M) =CHy (+ M) (LS<0)

As expected, flame position is extremely sensitive to this reaction in CHy flames. Flame position
is also extremely sensitive to this reaction under rich conditions, in CHy, C2Hg, and CoHy flames.
S1, S2, S3, DAG, and BLB use default collision efficiencies, while the other mechanisms use non-
default collision efficiencies that have more or less the same values for the third partners: argon
(Ar), CoHg, CHy, CO, CO3, Ha, and H30. Figure 6.12 compares the base reaction rates in the

various mechanisms and shows that below 1200 K: kg?sfszsg < kgals,cC}Q,DLW,ABF,WL ~sass < ke <

base base . L.base base base base base
kpaG~BLB < kKON, and above 1200 K: kgT’y ~ EpAG ~ kEON ~ FRirn < kGl,GQ,DLW,ABF,WL ~ $4,85

~ kga?fc < kg?sfszsg. The reaction studied is the reverse of the CHy thermal decomposition, which
strongly influences the ignition of CH, (Warnatz 1984, Section 5.1). Given that such initiation
reactions are important where the fuel starts to break down to produce H atoms, and given the
enhanced collision efficiencies present in S4 & S5 and absent in S1, S2, & S3, one would be tempted
to conclude that S4 & S5 would yield lower flame speeds than the other SD mechanisms in rich
flames, which is the case. However, in the CHy-air stagnation-flame simulations, half of the initial
amount, of CHy is still present at 960 K, 1060 K, & 1140 K, for & =0.7, 1.0, & 1.3, respectively, and
90 % of the initial amount of CHy is decomposed at 1470K, 1650K, & 1730K, for $=0.7, 1.0, &
1.3, respectively. This tempers the previous conclusion, which assumes that the temperature regime
below 1200 K prevails.
7. CoH3 + H = CyHy + Hy (©s<o0)

Flame position is sensitive to this reaction under rich conditions, in CoHg and CoH,4 flames and
even in CHy flames. This is not surprising since the CHy4 rich oxidation pathway includes the species:
CH; — CH3 — CyHg — CoHy; — CoHy — CoHy — CoHy — HCCO — CO & COs , whereas the
lean CHy4 oxidation pathway includes the species: CHy — CH; — CH;O — HCO — CO — COs.
In all the mechanisms studied, this reaction rate does not depend on temperature, and kBB, xON ~

: : . 13
k51752753 < kGl,GQ,GB‘,WL,DAG < kABF,S4,S5 < kpw < kMrN (thelr values are respectwely. 1.2-10°°,
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1.21-10%3, 3-10'3, 4-10'3, 6-10'3, and 9-10'3). The increase in the rate in the SD mechanism by a
factor 3.3 from S3 to S4 may contribute to the lower predictions of the newer SD releases S4 and
S5 in rich flames (the same rate parameters are used in S1, S2; & S3, and in S4 & S5, respectively).
Although the rate used in MRN is the largest, it is only in the rich CH4 flames that flame position
is extremely sensitive (see Fig. 6.4). The larger rate in MRN would then likely contribute to the
very low predictions of MRN in rich CHy4 flames.

8. HOs + H=2O0H (rs>o0)

Flame position is sensitive to this reaction under lean conditions, in CHy, CoHg, and CoHy flames
(less sensitive for CHy and most sensitive for CoHy). Flame position is less sensitive in stoichiometric
CoH, flames. In the leanest CoHg and CoHy flames studied, HO2, H, and OH are simultaneously
present above ~1350K, where Fig. 6.13 shows that kwr~s2~83~584,55 < kg3 < kc1,G2,DLW,ABF ~
kumrN < kLB ~ ksi~pac~koN (ks1/kwr ~ 1.4 at most). This is one of the rare reactions for which
WL uses a different rate than DLW. Despite the small difference in rate, the smaller rate in WL
may contribute to its lower predictions compared to DLW in lean CH,4 flames. Also, the larger rate

in S1 may contribute to its larger predictions compared to the other SD releases in lean flames.
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9 9O H+OH+ M =HO+ M (Ls<o

Flame position is quite sensitive to this reaction in all the flames studied, except in the richest CoHg
and CoHy flames. All mechanisms use the same temperature exponent and zero activation energy

in their Arrhenius model. The only difference lies in the exponential prefactor value, and k%aﬁa

b b b b
< kGals,cGQ,GB‘,DLW,ABF,WL,Sl,KONNMRN < kptp < kg5*® ~ ksgf§4755 (the values of the prefactors are

respectively: 8.615-1021, 2.2:10%2 ~ 2.21-10?2, 2.4-10%2, and 3.8:10?2 ~ 4-10?2). All SD releases use
the same non-default collision efficiencies, thus a comparison of their base reaction rates is sufficient.
The significant increase in the prefactor value from S1 to S2 (kggys§4ys5 ~ 1.05 kE5%° ~ 1.05- 1.7 k235°)

in order to improve burning-velocity agreement (reported in the log of updates to the SD mechanism,
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see San Diego mechanism reference) may contribute to the larger flame-position (or flame-speed)
predictions of S1 compared to the other SD releases in CH4 flames and in lean & stoichiometric
CoHg & CyHy4 flames. Not all mechanisms use the same non-default collision efficiencies: the value
of the collision efficiency associated with HoO differs significantly among all the mechanisms studied.
For the reaction with HoO, the comparison of the actual rates (collision efficiency multiplied by base
rate) becomes: 1kRYS§ < 3.65 kg% as puw.apr.wL < 6.4 kRiiokon ~ 16.25kpiag < 12k <
12k85%¢ ~ 12 kg§f§4ys5. The smaller rate in BLB probably contributes to the large predictions of
BLB. WL is the only mechanism to have enhanced the collision efficiencies of CoHs and CoHy (both
tripled), therefore the enhanced rate of WL in presence of CoH, may contribute to its expected better
performance compared to DLW in CyHy flames (lower predictions near stoichiometric conditions).

10. CH3 + HO; = CH30 + OH (s >0)

Flame positions are mildly sensitive to this reaction in all the flames studied. In all the mechanisms

investigated, this reaction rate does not depend on temperature, and ks2 g3 54,55, DAc < AMRN <
kprw wr < kLBkoN < kci.g2.aBrsi < kgs (their values are respectively: 0.5-10'3, 0.7-1013,
1.34-1013, 1.8-1013, 2.0-10%3, and 3.78-10'3). The larger rate of this reaction used in old releases like
G1, G2, & S1, and used in ABF, has been revised in S2 (ks2 3,514,855 = kpag = 0.25kg1) in order
to improve agreement with propane autoignition times (reported in the log of updates to the SD
mechanism, see San Diego mechanism reference). The larger rate in ABF and S1 may contribute
to their overall larger predictions compared to DLW & WL and the newer SD releases, respectively.
The smaller rate in DAG is consistent with its low predictions.

11. CoHg + O3 = CH;CHO + O  (1s>0)

The vinoxy radical (CHoCHO) is one of the major intermediates during CoHy oxidation (Wang
& Laskin 1998; it plays an essential role in CoHy ignition, see Egolfopoulos & Dimotakis 1998). It
is therefore not surprising that flame position is sensitive to this reaction in CoHy flames. Given
that the vinyl radical (CoHs) is involved, it is also not surprising that flame position is sensitive
to this reaction under rich conditions. In the CoHy flames and in the rich flames (for the three
fuels) studied: CoHsz, CHoCHO, & O are simultaneously present above 1000 K, and the maximum
temperature encountered is 2000 K. In this range of temperatures, Fig. 6.14 shows that kxon < kpac
< kMrN < ksi1,52,83,94,55 < kaBr ~ ka3 ~ kwr, < kppw. The large sensitivity to this reaction and
the relatively small rate in MRN probably contribute to its low predictions in rich CHy and in CoHy
flames. The large rates in DLW & WL may contribute to the increasing trend in the predictions
from lean to rich conditions, and although the difference between the rates in WL & DLW is small
(10 %), it may explain the lower predictions of WL compared to DLW in CoHy flames.

12. CH,OH + H = CH3 + OH (s> 0)

Flame position is only (mildly) sensitive to this reaction in rich CHy flames, and in lean & stoichio-

metric CHy flames with the BLB mechanism only. In the CHy flames studied, the species involved
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in this reaction are simultaneously present above ~ 1300K. At these temperatures, Fig. 6.15 shows
a larger rate for BLB, which may contribute (given the large sensitivities) to its large predictions in
CH,4 flames.

13. CH; + OH = CHy(S) + HO  (zs>0)

Flame position is more sensitive to this reaction in CHy flames, and is not sensitive to it in rich
CyHg and CoHy flames. Figure 6.16 shows that at high temperatures (where OH is present): kpac

< ks1,82,83 < Kother mechs- Lhe smaller rate in DAG may contribute to its low predictions.
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Figure 6.15: CH,OH + H = CH3 + OH kinetic- Figure 6.16: CHs + OH = CHy(S) + H)O

rate comparison between mechanisms. kinetic-rate comparison between mechanisms.
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Chapter 7

Summary and conclusions

The work presented here includes new experimental results for non-reacting impinging jets at
Reynolds numbers, Re, between 400 & 9000, and for atmospheric-pressure premixed laminar C3Hg-
& CsHg-air flames under very lean to very rich conditions. The Cs-flame data will be submitted to
the PrIMe database (http://www.primekinetics.org/) for use as validation and optimization targets
by model developers.

Flame simulations would only rarely converge with the Marinov mechanism (MRN), the Dagaut
et al. mechanism (DAG), the Battin-Leclerc et al. Co—Cz mechanism (BLB), the Battin-Leclerc
et al. C3 mechanism (BL), and the Konnov mechanism (KON), whereas simulations converge with
the more-robust mechanisms: GRI-Mech 1.2 (G1), GRI-Mech 2.11 (G2), GRI-Mech 3.0 (G3), the
Davis-Law-Wang 1999 mechanism (DLW), the Appel-Bockhorn-Frenklach 2000 mechanism (ABF),
the Wang-Laskin 1998 mechanism (WL), and the five releases of the San Diego mechanism (S1,
S2, S3, S4, and S5). Therefore, a continuation technique was developed to transition from a solu-
tion obtained with a robust mechanism to a new solution obtained with a less-robust mechanism.
Stagnation-flame simulations with mechanisms using a large number of species and reactions are very
rare in the literature, due to the lack of robustness of these mechanisms. The novel continuation
technique documented in the present work has been key. In flames where predictions by small to
reasonable-size mechanisms fail, sensitivity analysis conducted on simulations performed with large
mechanisms (that should in theory contain most of the reactions and associated reaction rates to
model heavy hydrocarbon oxidation) should indicate which species and reactions are missing in the
smaller, more robust mechanisms, and therefore lead to better robust mechanisms.

A particle-tracking velocimetry (PTV) technique based on recent technology was devised and
validated against a previous investigation of non-reacting impinging jets at Reynolds numbers be-
tween 400 and 1400. Measurements up to Re =9000 were performed thanks to the increased PTV
spatio-temporal resolution, and confirm that the scaled axial-velocity profile is well represented by
an error-function fit with one free parameter that is dependent on Re. In the Cs-flame investigation,

accurate, high-resolution velocity profiles were measured using the PTV technique. Under conditions
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where the kinetics are appropriately modeled, the entire experimental profile is matched by the sim-
ulated profile corrected for particle inertia and thermophoresis, whose effects are discernible only in
the high-gradient regions within the flame and close to the wall. Accounting for finite particle-track
interval effects is key when lower-resolution velocimetry systems are used.

In the Cs-flame investigation, CH-radical relative concentration profiles were recorded simulta-
neously by planar laser-induced fluorescence (PLIF). From the information contained in the velocity
and CH-radical profiles, two specific scalar validation targets were extracted that capture a significant
portion of combustion chemistry: the stagnation flame speed, S, (insensitive to the particle-tracking
corrections), and the CH-peak position, zcy. S, and zcy can be used to assess the adequacy of
kinetic models and do not require any particle-tracking corrections. The lower level of uncertainty in
comparisons of measured and simulated zcpy values demonstrates the superiority of this validation
target over comparisons of S,.

An experimental error band, Yeyp, taking into account the uncertainty on Sy exp & TcH,exp and
the uncertainty on Sysim & Zcmsim (Propagating the uncertainties on the measurements of the
simulation input parameters: pressure, equivalence ratio, dilution level, inlet velocity, inlet velocity
gradient, inlet temperature, and wall temperature, thanks to the sensitivity of the solution to each
simulation input parameter) was evaluated to assess the relative comparison of simulations with
experiment. oy ., i larger than oy ., which justifies the extra care spent on the measurements
of the premixed combustible mixture composition (measured by thermal mass-flow meters calibrated
before each experiment), the inlet temperature, and the inlet velocity & velocity-gradient boundary
conditions. More generally, special attention should be paid when comparing flame simulations to
experimental data far from stoichiometric conditions, because the sensitivity of the solution to the
uncertainty on the measurement of the combustible-mixture composition becomes especially large.
An analysis of the uncertainty on the model parameters (the kinetic reaction rates being the most
uncertain) that would lead to a simulation error band on the predictions would allow unarguable
statements about the validity of the different models regarding their C;—Cs flame-speed predictions.

The 2005/12 release of the San Diego mechanism (S5) and BL were found to be the “best”
mechanisms to simulate the C3Hg and C3Hg flames investigated, respectively. When considering all
of the C3Hg and C3Hg flames investigated (each fuel was given the same weight), S5 was found to
have the “best” overall performance over the range of fuels and stoichiometries studied. The term
“best” is quoted because the present work addresses flame speeds only; similar studies focused on
phenomena such as ignition and extinction would bring essential complementary knowledge and may
find that another model gives better agreement with these other data sets.

The sensitivity analyses with DLW and S5 reveal that the few reactions that affect flame positions
(or flame speeds) are very similar for C3Hg and CsHg flames. These reactions include several

reactions with C3Hg and the allyl radical aCsHs. Except for the very rich CsHg flame (for which
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flame speeds are largely overpredicted by all the mechanisms tested), BL and KON predict similar
results in C3Hg and C3Hg flames. Better agreement was found in C3Hg flames for DLW and S5.
Nevertheless, DLW and S5 show larger variation with experiment in C3Hg flames. This suggests
that reaction pathways for the unsaturated fuel CsHg are missing in DLW and S5 that are present
in the larger reaction-number mechanisms BL and KON. Such deficiencies cannot be assessed using
sensitivity analyses performed with DLW and S5.

Further analysis was performed on C;-Cs flames. A comparative study of fifteen available
mechanisms that include C;—Cs kinetics was conducted in stagnation flames, and model predictions
were compared to experiment to assess the relative performance of each mechanism. Atmospheric
CHy-, CoHg-, and CoHy-air flames were simulated at all stoichiometries. The information contained
in each of these stagnation flames can be reduced to one scalar only: the CH-peak position (indicating
flame location), which is a surrogate for flame speed in this geometry. Comparison of the CH-peak
position with experiment provided a broad validation test for each mechanism. Two criteria were
defined, each quantifying the adequacy of a mechanism to predict flames under any burning regime.
DLW, the 2005/03 release of the San Diego mechanism (S2), and the 2005/10 release of the San
Diego mechanism (S4) were found to be the “best” mechanism to simulate the CHy, C3Hg, and
CqoHy flames investigated, respectively. This dependency on fuel of the “best” mechanism is not
a good sign for the current state of combustion modeling. When considering the CHy4, CoHg, and
CyH,y flames investigated (each fuel was given the same weight), S4 was found to have the “best”
overall performance.

Given a reaction set needed to model CH4, CoHg, and CoH4 combustion, the open question is
to find an optimal set of reaction-rate parameters. To this end, a comparison of the hundreds of
constants present in the different kinetic mechanisms was performed, based solely on their influence
on the CH-peak position (surrogate for flame speed). A sensitivity analysis of the CH-peak position
was conducted in CHy, CoHg, and Cy;Hy flames under very lean, stoichiometric, and very rich
conditions, in order to guide a detailed comparison of the most critical reaction rates used in the
different mechanisms. This approach has several limits: sensitivity analysis is not useful if important
species or reactions are not present in the mechanism, and branching ratios cannot be compared in
this manner. However thirteen reactions were thus identified that have leverage on the predictions
under specific conditions, and whose rate differences likely contribute to the discrepancies observed
in flame-location predictions. This knowledge can be used by kineticists to improve the mechanisms’
performance for a targeted set of conditions (to correct a bad flame-speed prediction with a certain
fuel and burning regime for example).

The present work makes new Cj3 flame experimental data available — and shows how such data
can be used to validate different combustion kinetic models. It also shows how comparisons of

simulations with experiment combined with comparisons of models between each other allow a focus
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on a small number of key reactions and reaction rates among the hundreds of reactions present in

the mechanisms, in order to reach a better description of the dominant chemical kinetics.



50

Appendix A

Particle-tracking velocimetry
(PTV)

A.1 Advantages of the new PTV technology

A continuous laser beam was chopped at a maximum frequency, V¢ max = 2.4 kHz, with the previous
particle streak velocimetry (PSV) technology (Bergthorson et al. 2005a). In the new PTV technique,
the pulsed laser maximum repetition rate is v max =20 kHz. Combined with a gain of a factor 4 in
the axial-direction resolution of the imager, the resulting increase in the spatio-temporal resolution
is a factor 16, resulting in smaller particle-tracking corrections and allowing the investigation of
faster-burning flames. Dots of diameters 2-3 pixels are processed, therefore differences of 8 pixels
between the dot centroids can be resolved, which correspond to 20 pm in the Cs flames investigated
(see Chapter 5). PTV is more efficient than PSV because half the light is blocked with PSV (the
chopper wheel shutters the laser beam half the time) and because light is focused in a ~ 0.2 us pulse,
versus a minimum streak duration of 208 us. All the light is used with PTV, whereas only the light
at the edges of the streak is used with PSV. The larger PTV-laser power (enabling pulse energies
of 4.5mJ at 20kHz and 9mJ at 10kHz, compared to 1 mJ before) combined with the large (14-bit)
dynamic range of the PTV imager enables post-processing of the particle dots even within the flame.
Also, the scatter in the data was reduced from the old PSV to the new PTV technique (see €yms
in Table 3.1, Table 3.2, and Table D.5), reducing the uncertainty in the velocity estimates, and
therefore also in the velocity boundary conditions at the inlet (see Table E.1).

Figure A.3 shows the PTV setup that includes a spherical expanding lens, a spherical converging
lens to collimate the laser beam, a photodiode linked to an oscilloscope to measure the actual laser
repetition rate, three prisms to adjust the laser-beam location, a cylindrical converging lens to make
the laser sheet, a spatial filter, and a prism for a 90-degree turn. The bottom-right picture in Fig. A.3
shows how the laser sheet illuminates the flame between the nozzle and the stagnation plate, and

Fig. A.3 shows particle trajectories illuminated by the laser sheet in a stoichiometric CHy-air flame.
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The left part of Fig. A.3 shows the raw intensity surface corresponding to a portion of a dotted
trajectory of a moving particle in a PTV image, superimposed with a thresholding plane for each
dot. Ounly pixels with intensities larger than the thresholding level are kept (as shown on the right
part of Fig. A.3) and used to determine the centroid of each dot, which is the intensity-weighted
barycenter. When the particle goes through the flame, noise coming from the flame is added to
the background noise and makes it difficult to locate the imaged particles. However, as long as the
imager is not saturated, it is possible to alleviate this difficulty by allowing the thresholding value
to vary along the axial (z) direction, choosing the threshold to be the same as the intensity at the
edge of the box bounding the dot, as recommended by J. Bergthorson (private communication), thus
it is possible to substract the noise coming from the flame and resolve velocities within the flame.
Once the location of each dot is determined, the particle displacement, zj;1 — z;—1, multiplied by
v, provides the velocity estimate, located at the average position of the particle over the period

between pulses, z; =0.5 (241 + Zi—1)-

A.2 Non-reacting impinging-jet PTV images

Figure A.4 shows the PTV images of the non-reacting impinging jets at variable Reynolds number,

Re.

A.3 Premixed C3Hg- and C3Hg-air stagnation-flame PTV im-
ages

Figures A.5a—j show sample-PTV images of the C3 stagnation flames investigated. 10-20 such
images are usually needed to determine a full velocity profile from the inlet to the vicinity of the

stagnation plate.
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Figure A.1: PTV setup.

Figure A.2: PTV picture in a stoichiometric CHy-air flame.
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X (pixels)
Y (pixels)

Figure A.3: PTV dots.

(a) Re=407 (vp =2kHz) (b) Re="708 (vp =5kHz)

Figure A.4: Sample non-reacting impinging-jet PTV images.
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(e) Re=2524 (v, =10kHz)

(d) Re=>5049 (vp =20kHz) (f) Re=9120 (v, =20kHz)

Figure A.4: Sample non-reacting impinging-jet PTV images. (cont.)
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(b) C;;Hg, $=0.85 (l/p = lokHZ) (g) C;;H()', $=0.85 (l/p = lokHZ)

Figure A.5: Sample stagnation-flame PTV images.



C;Hg, =1.0 (l/p =10 kHZ (h) C;;H()', $=1.0 (l/p =10 kHZ)
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(d) C;;Hg, $=1.25 (l/p =10 kHZ) (1) C;;H()', $=1.3 (l/p =10 kHZ)

Figure A.5: Sample stagnation-flame PTV images. (cont.)
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(C) C;;Hg, ®=1.5 (l/p = 5kHZ) (J) C;;H()', ®=1.6 (l/p = 5kHZ)

Figure A.5: Sample stagnation-flame PTV images. (cont.)
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Appendix B

Premixed CsHg- and C3Hg-air
stagnation-flame CH-PLIF images

Figures B.1a—j show composite CH-PLIF images of the Cs stagnation flames investigated. For each
flame, the left part of the composite image is a single image that shows the signal-to-noise ratio, and
the right part of the composite image is the averaged image (over 1000 images). The off-resonance
averaged image has been substracted from both the single and averaged images, which explains why
the stagnation plate does not appear. For display purpose, a rescaling factor, N, has been used in
the moderately rich flame images (Figs. B.1d and B.1f, where the CH-PLIF signal is maximum),

and larger rescaling factors were used in the other figures.
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(a) CsHg, =0.7 (intensity X 16 N) (f) C3Hg, ® =0.7 (intensity x 16 N)

A AR et
X D

(b) C3Hg, #=0.85 (intensity x 4N) (g) C3Hg, ® =0.85 (intensity x 4 N)

(c) C3Hg, ¢=1.0 (intensity x 2N) (h) C3Hg, ® =1.0 (intensity x 2 N)

Figure B.1: Stagnation-flame composite CH-PLIF images: single image (left) and averaged image
over 1000 images (right).
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(d) C3Hg, #=1.25 (intensity x N) (i) C3Hg, #=1.3 (intensity x N)

(e) CsHg, ¢=1.5 (intensity X 2N) (j) CsHg, & =1.6 (intensity x 4N)

Figure B.1: Stagnation-flame composite CH-PLIF images: single image (left) and averaged image
over 1000 images (right). (cont.)
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Appendix C

Cantera stagnation-flame
simulations

C.1 Convergence study

A convergence study was conducted for the (adaptive mesh) stagnation-flame simulations performed
in the present work (Benezech et al. 2006). The solution with the maximum number of gridpoints
that converged was compared to simulations with smaller numbers of gridpoints. The relative
difference between the maximum temperature, maximum velocity, & CH-peak position of simulations
with 300-500 gridpoints and those of the simulation with the largest number of gridpoints that had
converged (750) was smaller than 1 %. Thus all simulation results present in this work have between

300 and 500 gridpoints and are fully converged.

C.2 TImpact of Soret effect on flame simulations

Because of a bug in CANTERA, the thermal diffusion (also referred to as “Soret effect”) was not
included in the multicomponent stagnation-flame simulations in Bergthorson & Dimotakis (2007).
In 2007, another bug was found, and the fix suggested, by Anatoli Mokhov in the CANTERA user’s
group interactions (Goodwin): in “StFlow.cpp”, the formula for the gradient of the logarithm of

temperature, gradlogT, was incorrect:

Instead of “gradlogT = 2.0* (T(x,m+ 1) — T(x,m))/(T(x,m+ 1) + T(x,m))”,

it should be “gradlogT = 2.0 * (T(x,m+ 1) — T(x,m))/(T(x,m+ 1) + T(x,m))/(z(m+ 1) — z(m))”

The missing multiplicative factor 1/dz=1/(z(m+ 1) —z(m)) can be very large within the flame,
where a finer mesh is used.

Both bugs were fixed in a modified version of the CANTERA source code, such that all the mul-
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ticomponent simulations in the present work include thermal diffusion. Moreover, multicomponent
simulations that do not include thermal diffusion were also performed in the CHy, CoHg, and CoHy
flames discussed in this study, in order to quantify the impact of thermal diffusion on the results
shown in Bergthorson & Dimotakis (2007). Figures C.la—c show the difference in predicted CH-
peak location, zcH sim, With and without thermal diffusion, scaled by the stoichiometric CH-layer
thickness simulated with S2, i.e., dcm,s2,6=1, in the CHy, CoHg, and CoHy flames investigated, re-
spectively. The S2 mechanism was used because of its superior performance among the mechanisms
used in Bergthorson & Dimotakis (2007) (G3, DLW, S1, and S2), in the CHy, CoHg, and CoHy
flames over the range of stoichiometries investigated. The larger differences shown on Fig. C.1a at
¢ =1.2 and 1.3 are consistent with the larger differences around ¢ ~ 1.2 between CH4 laminar flame
speeds predicted with and without thermal diffusion in Ern & Giovangigli (1999). Except the larger
differences (between 0.5 and 1dcp,s2,6=1) in the $=1.2 and 1.3 CH, flames, the difference in flame
location with and without thermal diffusion remains smaller than 0.5 dcg g2, =1 for all other CHy,

CoHg, and CoHy flames investigated.
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Figure C.1: Comparison of CH-peak locations predicted by S2 mechanism with and without thermal
diffusion included.
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Appendix D

Premixed stagnation-flame data

D.1 Boundary conditions

The boundary conditions, BC, corresponding to each experimental flame are reported in Table D.1.
At the simulation domain inlet, ¢, velocity, ug, spreadrate, V, = % %(6), and temperature, Ty, are

provided. At the stagnation wall, only the temperature, Ty, is provided.

D.2 Particle-tracking-correction parameters

Table D.2 shows the experimental parameters used as inputs in the particle-tracking corrections:
the diameter, dpare, the density, ppart, & the thermal conductivity, K par, of the particles used for
the velocimetry, and the particle-tracking frequency, v, in the experiments where particle-streak
velocimetry (PSV) was used, or v, in the experiments where particle-tracking velocimetry (PTV)
was used. Zeeosphere particles were used in the CHy experiments (Bergthorson & Dimotakis 2007),
and Al,Os particles were used in the CoHg & CoHy experiments (Bergthorson & Dimotakis 2007)
as well as in the C3Hg & CsHs experiments (present work). The Zeeosphere-particle features
are: dpart =3 pm, ppart = 2400kg/m?, & K pare =2.3W/(m.K), and the Al,Oz-particle features are:
dpart = 1 pm, ppart = 3830kg/m?, & K part = Kpart,a1,05(T'), where the values of Kpart, a1,04 (7)) are
shown in Table D.3.
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Inlet Stagnation-
BC plate BC
fuel ¢ %02/(02+N2) | l (mm) Uy (m/s) Vg (1/5) Tg (K) Twall (K)
0.70 21.0 6 0.312 50 295.0 320.1
0.80 21.0 6 0.531 80 295.0 325.8
0.90 21.0 6 0.671 100 295.0 331.7
CH, 1.00 21.0 6 0.764 118 295.0 335.9
1.10 21.0 6 0.769 119 295.0 338.2
1.20 21.0 6 0.660 102 295.0 331.3
1.30 21.0 6 0.339 83 295.0 336.9
0.70 21.0 6 0.440 64 294.3 339.1
0.80 21.0 6 0.636 96 294.3 341.8
0.90 21.0 6 0.809 121 294.3 344.1
1.00 21.0 6 0.913 136 294.3 347.0
CoHg 1.10 21.0 6 0.939 145 294.3 346.4
1.20 21.0 6 0.879 135 294.3 339.4
1.30 21.0 6 0.729 113 294.3 346.0
1.40 21.0 6 0.512 82 294.3 343.8
1.50 21.0 6 0.313 58 294.3 347.7
0.60 21.0 6 0.518 77 294.3 325.5
0.80 19.5 6 0.883 129 294.3 340.8
1.00 17.0 6 0.837 121 294.3 340.0
CoHy 1.20 16.5 6 0.765 118 294.3 339.4
1.40 18.0 6 0.742 118 294.3 338.4
1.60 21.0 6 0.742 126 294.3 341.5
1.80 21.0 6 0.402 76 294.3 334.9
0.70 21.0 6 0.386 65 298.0 314.8
0.85 21.0 6 0.642 115 298.1 333.8
CsHg 1.00 21.0 5.5 0.627 153 298.0 346.0
1.25 21.0 5.75 0.596 125 297.4 336.8
1.50 21.0 6.75 0.286 47 296.7 310.5
0.70 21.0 5.5 0.393 85 298.1 319.7
0.85 21.0 5.75 0.669 133 298.4 338.9
CsHg 1.00 21.0 5.5 0.712 176 298.5 351.7
1.30 21.0 5.75 0.602 135 297.4 339.4
1.60 21.0 7 0.250 37 297.0 306.4

Table D.1: Boundary conditions for flame simulations.
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fuel P | dpare (tm)  ppars (kg/m®)  Kpary (W/(mK)) | v (kHz) v, (kHz)

0.70 3 2400 2.3 1.6 -
0.80 3 2400 2.3 2.0 -
0.90 3 2400 2.3 2.0 -
CH, 1.00 3 2400 2.3 2.0 -
1.10 3 2400 2.3 2.0 -
1.20 3 2400 2.3 2.0 -
1.30 3 2400 2.3 2.0 -
0.70 1 3830 K part A5 (1) 1.6 -
0.80 1 3830 K part. A1,05 (T) 2.4 -
0.90 1 3830 K part. A1,05 (T) 2.4 -
1.00 1 3830 K part. A1,05 (T) 2.4 -
CoHg  1.10 1 3830 K part.A1,05 (T) 2.4 -
1.20 1 3830 K part. 1,05 (T) 2.4 -
1.30 1 3830 K part. 1,05 (T) 2.4 -
1.40 1 3830 K part. A1,05 (T) 2.0 -
1.50 1 3830 K part. A1,05 (T) 1.6 -
0.60 1 3830 K part. A1,05 (1) 1.6 -
0.80 1 3830 K part. A1,05 (T) 2.4 -
1.00 1 3830 K part. A1,05 (T) 2.4 -
CoHy 1.20 1 3830 K part. A1,05 (T) 2.4 -
1.40 1 3830 K part. A1,05 (T) 2.4 -
1.60 1 3830 K part. A1,05 (T) 2.4 -
1.80 1 3830 K part. A1,05 (T) 1.6 -
0.70 1 3830 K part. A1,05 (T) - 5.0
0.85 1 3830 K part. A1,05 (T) - 10.0
CsHs  1.00 1 3830 K part. A1,05 (T) - 10.0
1.25 1 3830 K part. A1,05 (T) - 10.0
1.50 1 3830 K part. A1,05 (T) - 5.0
0.70 1 3830 K part. A1,05 (1) - 5.0
0.85 1 3830 K part. AL,05 (T) - 10.0
CsHg  1.00 1 3830 K part. A1,05 (T) - 10.0
1.30 1 3830 K part. A1,05 (T) - 10.0
1.60 1 3830 K part. A1,05 (T) - 5.0

Table D.2: Experimental parameters used in the particle-tracking corrections.

T

K) 200 400 600 800 1000 1200 1500 2000 2500
) (W/mK)) | 55 264 158 104 785 655 566 6 64

(
Kpart,AIQO;g (T

Table D.3: Al;Os-particle thermal conductivity. (Dewitt & Incropera 1990)
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D.3 Key experimental results

Table D.4 reports the values of the two key scalars: CH-peak location, zcy, and stagnation flame
speed, Sy, in all the experiments considered in this study. The CHy4, CoHg, & CoHy4 flame experi-
ments were performed by Bergthorson & Dimotakis (2007), and the CsHg & C3Hg flame experiments
were performed in the present work.

Sy is determined from a cubic fit performed locally, around the minimum-velocity point. Ta-
ble D.4 also reports the strain rate value, o =|du/dz|max, in each flame. A parabolic fit to the
cold-flow portion (between the inlet and the inflection point located close to the minimum-velocity
point) of the velocity profile is performed, and o is evaluated at the inflection point, and therefore
corresponds to the maximum slope of the velocity profile upstream of the flame.

No correction to the measured values of zcy and Sy, such as the first-order correction sug-
gested by Markstein (Markstein 1951), using curvature Markstein lengths (Bradley et al. 1996), is
attempted to account for the effect of the small curvature of the experimental flames (Sone 2007).
The curvatures, x, were obtained from parabolic fits to the central portion (around the jet axis)
of the two-dimensional CH-PLIF data (concave towards the stagnation plate for all flames studied)
and are listed in Table D.4. z¢y is determined from the same parabolic fit to the two-dimensional
CH-PLIF data. To determine the experimental CH-peak location, firstly, the intensity averaged
value and standard deviation (over the 1000 CH-PLIF images) are calculated for each pixel in the
CH-PLIF image. Next, for every pixel column, pixels with intensities larger than 20 % of the column
maximum intensity are selected, and the pixel of maximum intensity is determined by a an intensity-
weighted barycenter calculation using these selected pixels, to subpixel accuracy. The uncertainty
on the pixel of maximum intensity is derived from the barycenter calculation by using the intensity
standard deviation at the pixels selected to compute the barycenter. In our experimental set-up,
although each flame investigated is nearly flat, their small curvature gives them a camel’s back
shape in most cases, and a simple parabolic shape under very rich conditions. A parabola is fitted
to the pixels (one by column) of maximum intensity, weighted by the inverse squared uncertainties,
in the center portion of the flame (in between the two inflection points between the center part and
each hump of the flame camel’s back shape). Finally, the CH-peak location is determined from the
center (corresponding to the jet axis) value of this parabola, the stagnation plate location, and the

pixel-to-mm conversion factor.
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Flame CH PLIF PSV or PTV Experiments
fuel 9 | k(1/m) zZcHexp (mm) | o (1/8) Syexp (M/5) source
0.70 26.9 4.068 120 0.217 A
0.80 40.1 3.886 203 0.309 A
0.90 474 3.914 258 0.382 A
CHy; 1.00 51.3 3.978 302 0.428 A
1.10 52.0 3.946 295 0.434 A
1.20 36.5 3.906 260 0.389 A
1.30 69.4 4.472 166 0.284 A
0.70 28.2 3.967 159 0.265 A
0.80 45.5 3.974 240 0.356 A
0.90 47.0 3.971 320 0.425 A
1.00 474 3.990 355 0.465 A
CyHg 1.10 50.5 4.006 371 0.497 A
1.20 46.4 3.972 351 0.470 A
1.30 46.7 3.972 281 0.409 A
1.40 35.4 3.923 199 0.312 A
1.50 19.7 3.936 127 0.225 A
0.60 29.8 3.920 188 0.307 A
0.80 50.9 4.069 331 0.479 A
1.00 48.5 4.015 317 0.467 A
CoHy 1.20 45.8 4.082 294 0.442 A
1.40 48.3 4.044 296 0.440 A
1.60 43.9 4.018 306 0.438 A
1.80 35.0 3.999 171 0.281 A
0.70 30.2 4.122 142 0.258 B
0.85 49.8 4.190 250 0.376 B
CsHg 1.00 52.4 4.310 328 0.452 B
1.25 39.7 4.206 264 0.395 B
1.50 29.3 4.117 98 0.189 B
0.70 35.5 4.106 189 0.292 B
0.85 44.5 4.222 270 0.430 B
CsHg 1.00 46.3 4.328 373 0.501 B
1.30 43.8 4.303 303 0.422 B
1.60 14.6 4.005 83 0.165 B

A: Bergthorson & Dimotakis (2007)

Table D.4: Key experimental results.

B: Present work
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D.4 Fits to stagnation-flame experimental velocity and CH-

PLIF profiles

D.4.1 Stagnation-flame velocity profile fits

The CHy, CoHg, and CoHy flame-velocity profiles measured with the PSV technique (Bergthorson &
Dimotakis 2007) were shown to be accurately represented by a 10-parameter fit (Bergthorson 2005a,
Appendix B.2; Bergthorson 2005b). However, the C3Hg and C3Hg flame-velocity measurements
from the present work performed closer to the wall thanks to the PTV technique indicate that
there is an inflection point in the velocity profile in the hot region (between the stagnation plate
and the maximum-velocity point). Therefore, the second-order polynomial, p; (Bergthorson 2005a,
Appendix B.2), chosen by Bergthorson (2005a) to describe the velocity profile in the hot region
is replaced by a third-order polynomial, py, in the present work. The analytic expression of the

resulting 11-parameter velocity-profile fit, ug, is presented in Eq. D.1-D.5.

pu(z) = a1pn (2 — 2opn) + @20 (£ — zopn)?® + asph (£ — Topn)? (D.1)
Pe(z) = a1pc (T — Tope) + 2,pc (T — Tope)? (D.2)

er(z) = 0.5 (l—erf(bcl (:L’—:L’chl))) (D.3)

ex(z) = 0.5 (1+erf(bc2 (:L-—:ro,cz))) (D.4)

uit(z) = pu(z) X e1(z) + pe(z) x ez(z) | (D.5)

where erf(z) = 2/ [ et dt

and o ph, G1,phs @2,ph, G3,phs T0,pes @1,pcs A2.pes L0,els Del, L0,e2, & bez are the 11 fit parameters.
pr represents the hot flow region, p. represents the cold flow region, and the error functions e; & ey
provide a smooth transition between the cold and hot flow regions.

The fits from Bergthorson (2005b) to the velocity profiles for CHy, CoHg, & CoHy flames and the
fits from the present work to the velocity profiles for C3Hg & C3Hg flames are shown in Table D.5,
together with their range of applicability, [Zmin, Zmax|- Table D.5 also shows the rms difference, €,
between the velocity fit and the velocity data, as well as the rms difference scaled by the stagnation
flame speed.

Figures D.1la—j show the velocity-fit and velocity-data profiles in the C3Hg and CsHg flames
investigated. Under moderately rich conditions (see Figs. D.1d and D.1i), there is a region within the
chemiluminescence zone where PTV data was not obtained. In this region, the fit is unconstrained
and should therefore not be used. The 11-parameter fit is able to represent the velocity profiles for

all CH4, CoHg, CoHy, C3Hg, and C3Hg experiments discussed here.



Table D.5: Fits to experimental velocity profiles.

Flame Velocity-profile-fit parameters [Zmin, Tmax] | €rms €rms/Suexp | Fits

fuel @ Zoph  Glph  G2,ph a3,ph Zope  O1,pe a2,pe Zoel ber  ZToe2  be2 (mm) source
0.70 | 0.3387 0.3189 -0.02617 0 3.5870 0.1598 -0.01210 4.2960 2.1160 4.4270 5.0550 [1.2,7.8] ]0.0018 0.83 % A
0.80| 0.2740 0.5818 -0.05780 0 3.3890 0.2536 -0.01830 4.0890 2.8230 4.1430 6.3180 [0.8, 7.8] |0.0034 1.1% A
0.90| 0.2732 0.7895 -0.08128 0 3.4930 0.3403 -0.02647 4.1360 2.1800 4.4960 3.6180 [0.9, 7.7] ]0.0044 1.2% A

CH4 1.00| 0.2977 0.9707 -0.1111 0 3.5540 0.3984 -0.03216 4.1770 2.0140 4.6030 3.6940 [1.0, 7.6] |0.0037 0.86 % A
1.10| 0.2203 0.9202 -0.08778 0 3.564 0.4003 -0.03176 4.1480 1.9640 4.5990 3.9180 [1.0, 7.6] |0.0063 1.5% A
1.20| 0.3466 0.8733 -0.09857 0 3.458 0.3233 -0.02319 4.2070 3.2360 4.3090 7.2530 [1.1, 7.7] ]0.0033 0.85% A
1.30| 0.2799 0.4431 -0.03139 0 4.2540 0.2263 -0.01764 4.8410 2.1700 4.8700 3.9910 [1.1, 7.8] |0.0037 1.3% A
0.70 | 0.3760 0.5154 -0.06108 0 3.3370 0.2021 -0.01372 4.1590 2.8250 4.2030 4.2060 [1.1, 7.7] ]0.0028 1.1% A
0.80| 0.4270 0.8622 -0.12570 0 3.4190 0.3031 -0.02148 4.1550 3.2520 4.2670 6.5400 [1.0, 7.4] ]0.0035 0.98 % A
0.90| 0.2552 0.9578 -0.10680 0 3.4900 0.4033 -0.03151 4.0480 2.9710 4.0010 8.1720 [0.9, 7.5] |0.0077 1.8% A
1.00| 0.3015 1.1820 -0.1450 0 3.3810 0.4282 -0.02985 4.0710 2.5520 4.3320 2.9220 [0.9, 7.4] |0.0057 1.2% A

CoHeg 1.10| 0.2634 1.1870 -0.1327 0 3.4420 0.4472 -0.03068 4.0830 2.4170 4.3430 2.6630 [0.8, 7.3] |0.0069 1.4% A
1.20| 0.2156 1.0830 -0.1054 0 3.5080 0.4414 -0.03454 3.9290 1.4660 4.5530 2.7410 [0.9, 7.3] ]0.0108 2.3% A
1.30| 0.2148 0.8802 -0.07904 0 3.4710 0.3515 -0.02468 3.9660 1.9390 4.0900 1.8220 [0.7, 7.7 ]0.0063 1.5% A
1.40| 0.2336 0.5957 -0.04089 0 3.5450 0.2514 -0.01678 4.2020 2.6010 4.3360 3.7720 [0.7, 7.8] |0.0051 1.6 % A
1.50| 0.1864 0.3303 -0.01296 0 3.7660 0.1643 -0.01064 4.3670 1.9930 4.6140 4.9320 [0.7, 7.6] |0.0034 1.5% A

A: Bergthorson (2005b)

0.



Table D.5: Fits to experimental velocity profiles. (cont.)

Flame Velocity-profile-fit parameters [Zmin, Tmax] | €rms €rms/Suexp | Fits
fuel @ ZToph  G1,ph a2,ph as,ph ZTope  O1,pc a2,pc ZTo,el  bel  To,e2 be2 (mm) source
0.60 | 0.05280 0.4155 -0.01953 0 3.4180 0.2576 -0.02145 4.0720 2.1220 4.3860 3.0050 [0.3, 7.6] |0.0026 0.85% A
0.80| 0.1520 0.9302 -0.08610 0 3.3380 0.4072 -0.02786 4.1440 2.3710 4.4820 3.2730 [0.5, 7.5] |0.0051 1.1% A
1.00| 0.1351 0.8653 -0.07620 0 3.2510 0.3692 -0.02327 4.0690 3.5270 4.0680 18.9700 | [0.4, 7.5] |0.0101 2.2% A
CoHy4 1.20| 0.1736 0.8799 -0.08366 0 3.4730 0.3718 -0.02663 4.2300 2.3310 4.5770 3.3410 [0.5, 7.4] |0.0081 1.8% A
1.40| 0.1666 0.8682 -0.07211 0 3.5620 0.3724 -0.02742 4.3820 4.0540 4.5760 10.3500 | [0.5, 7.4] |0.0047 1.1% A
1.60 | 0.07875 0.8009 -0.02884 0 4.0320 0.4686 -0.04693 4.0830 1.2490 4.8850 3.5930 [0.3, 7.7] |0.0065 1.5% A
1.80 | 0.08362 0.4190 -0.004593 0 4.3400 0.2846 -0.03056 4.2250 1.0100 5.1870 2.5670 [0.5, 7.9] |0.0031 1.1% A
0.70 [-0.05991 0.2513 0.05155 -0.01264 2.9689 0.1274 -6.750-1077 4.3961 3.3389 4.5025 8.9792 [0.4, 6.8] |0.0015 0.58 % B
0.85(-0.05049 0.5071 0.07610 -0.02307 3.3636 0.2666 -0.008942 4.3541 3.7624 4.0365 10.0323 | [0.3, 6.8] |0.0038 1.0% B
CsHsg 1.00 [-0.04365 0.6660 0.08260 -0.02612 3.6564 0.3856 -0.02566 4.4721 4.0651 4.1543 10.2541 | [0.2, 7.2] |0.0057 1.3% B
1.25| 0.1403 0.7861 -0.02781 -0.008328 3.5438 0.2927 -0.009884 4.4793 4.0908 4.5884 10.8494 | [0.5, 6.4] |0.0029 0.73% B
1.50| 0.3415 0.2761 -0.01642 -1.636-107" 3.3824 0.08912 -0.001840 4.6662 1.8778 3.7980 2.9763 [0.7, 6.8] |0.0033 1.7% B
0.70 [-0.05200 0.3094 0.06777 -0.01692 3.3133 0.1920 -0.005153 4.3918 3.9568 4.4618 7.7547 [0.3, 6.5] |0.0048 1.6 % B
0.85| 0.1361 0.8323 -0.03718 -0.009339 3.2428 0.2666 -1.162-10"7 4.3759 3.9483 4.1150 9.7252 [0.6, 6.3] |0.0046 1.1% B
CsHe 1.00 | 0.02080 0.7924 0.1347  -0.04289 3.5431 0.4059 -0.02116 4.5229 4.5858 3.4500 0.8439 [0.5, 7.4] |0.0089 1.8% B
1.30| 0.05501 0.6752 0.1187  -0.03545 3.8663 0.3788 -0.02904 4.6132 3.3806 3.3829 0.7209 [0.9, 7.1] ]0.0019 0.45% B
1.60| -0.6802 0.2175 -0.01427 -1.666-10"" 4.0865 0.1226 -0.01334 4.6985 1.5519 1.9278 0.3726 [0.2, 7.0] |0.0040 2.4% B

A: Bergthorson (2005b)

B: Present work

12



72

2.5§(a) _EETVE 2.5§(f) EETVE

C_H fit rC.H fit

20 3 8 20 36
@ [P=0.7 @ [P=0.7
E15 E15
] ]

E UpTv UpTv
2'55 Use ] Use ]
2.0r

@ [$=0.85
E 15
]

"®=1.25

(d)u

Usi

PTVI]

‘C_H
200 38

p=15

PTVI]

Usi

X (mm)

Uprvj

Usi

od
3.0 e
L u i
25;(]) UI?TV:
rC H fit
20 3 6
rd=1.6
1.5;

X (mm)

Figure D.1: CsHg-air (left) and C3Hg-air (right) flame experimental velocity profiles and fits.
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D.4.2 Stagnation-flame CH-PLIF profile fits

The CH-PLIF profiles are well represented by a “two-sided” Lorentzian 4-parameter fit (Bergthorson
2005a, Appendix C.1; Bergthorson 2005b). A fit is performed for each image to the average profile
over the 50 central columns (around the jet axis, where the flame is flat), and the average value
of each fit parameter over the 1000 PLIF images is retained. The fits from Bergthorson (2005b)
to the CH-PLIF profiles for CHy, CoHg, & CoHy flames and the fits from the present work to the
CH-PLIF profiles for CsHg & CsHg flames are shown in Table D.6. The analytic expression of
the “two-sided” Lorentzian 4-parameter CH-PLIF-profile fit (Bergthorson 2005a, Appendix C.1) is
recalled in Eq. D.6.

2
SCH,max w1

SCH max w22
e - ? D.
(:L’ — IO)Q + ZU12 ( 6)

 Son >0 = G g

SCH (:L’ < :L’O) =

where Scm max 18 the peak intensity, z( is the peak location, and w; & wsy are the widths corre-

sponding to the half-maximum value on either side of z¢ (the full width at half maximum is wi+wz).
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Flame CH-PLIF-profile-fit parameters [Zmin, Tmax) Fits
fuel o SCH,max 20 w1 Wo (mm) source
0.70 6.59 4.10 0.188  0.188 [0, 7.5] A
0.80 7.79 3.93 0.122 0.122 [0, 7.5] A
0.90 13.7 3.96 0.104 0.104 [0, 7.5] A
CH, 1.00 24.3 4.03 0.097  0.097 [0, 7.5] A
1.10 31.5 3.97 0.0994 0.0994 [0, 7.5] A
1.20 34.3 3.97 0.110 0.110 [0, 7.5] A
1.30 27.6 4.53 0.145 0.145 [0, 7.5] A
0.70 1.99 3.99 0.105 0.0096 [0, 7.9] A
0.80 4.3 3.98 0.0977 0.0794 [0, 7.9] A
0.90 8.28 3.97 0.0938 0.0757 [0, 7.9] A
1.00 13 3.99 0.0954 0.0766 [0, 7.9] A
CoHg 1.10 17.7 4.01 0.103 0.0835 [0, 7.9] A
1.20 20.9 3.98 0.119 0.0914 [0, 7.9] A
1.30 20.7 3.99 0.142  0.096 [0, 7.9] A
1.40 15 3.98 0.198  0.106 [0, 7.9] A
1.50 8.71 4.05 0.314 0.132 [0, 7.9] A
0.60 1.56 3.94 0.114 0.0851 [0, 7.7] A
0.80 9.68 4.06 0.0904 0.0692 [0, 7.7] A
1.00 9.07 4.01 0.0976 0.0768 [0, 7.7] A
CoHy 1.20 14.4 4.08 0.112 0.0857 [0, 7.7] A
1.40 15 4.07 0.152 0.0867 [0, 7.7] A
1.60 9.76 4.11  0.248 0.0934 [0, 7.7] A
1.80 2.82 4.16 0.364 0.0836 [0, 7.7] A
0.70 16.7 4.08 0.114 0.160 [0, 11.1] B
0.85 67.5 4.16 0.110 0.141 [0, 11.1] B
CsHg 1.00 150.1 4.29 0.116 0.128 [0, 11.1] B
1.25 223.6 4.20 0.139 0.137 [0, 11.1] B
1.50 93.1 4.21 0.294 0.158 [0, 11.1] B
0.70 16.1 4.05 0.110 0.167 [0, 11.1] B
0.85 58.4 4.20 0.107 0.127 [0, 11.1] B
CsHg 1.00 117.4 4.30 0.110 0.130 [0, 11.1] B
1.30 188.7 4.30 0.145 0.132 [0, 11.1] B
1.60 54.1 4.14 0.354 0.157 [0, 11.1] B

A: Bergthorson (2005b)
B: Present work

Table D.6: Fits to experimental CH-PLIF profiles.
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Appendix E

Uncertainties

E.1 Uncertainty on predicted stagnation-flame speed and CH-
peak location

All the simulation input parameters, v;: pressure p, equivalence ratio @, oxygen percentage in air
%02/(02 + N3), inlet velocity ug, inlet spreading rate Vy (equal to half the inlet velocity gradient),
inlet temperature T, and wall temperature T'way, have an associated uncertainty, o, due to their
respective measurements. Model parameters like the hundreds of kinetic reaction-rate parameters
also have associated uncertainties, but they are not considered in the simulation input parameters, v;.
Assuming that the uncertainties o, are independent, Egs. E.1-E.4 show how these uncertainties can
be propagated using the logarithmic sensitivity of the predicted CH-peak location to each parameter

vj, LS(rcHsim)j, in order to estimate the uncertainty on the predicted CH-peak location, oz qy .-

AT CH.sim |

2 ,sim 2

O3 o = Z(iay_ ) o2 (E.1)
; J

J

Q
1

2 T (fECH,sim(Vj + Av;/2) — zonsim(Vj — AV;‘/2)>2 o2 3 (L:CH@““Y o2
j

. Av;
; j

A . N2 2
0_2 ~ I2 ( xCH,Slm/:ECH,Slm) (Uu7 ) (E 3)
zcH,sim .~ CH,sim E A .
’ - 1Z VA% 1Z]
j ]/ J J

2
Ul/7
Osomem = TCHsim Z(LS(fECH,sim)j)Q ( ) (E.4)

- Vj
j J

The uncertainty on the predicted stagnation flame speed, og is estimated in the same way:

u,sim ?

2
Ou
O Su,sim — Su,sim Z (LS(Su,sim)j)Q ( I/'7> (E5)
- §

J
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Table E.1 reports the relative uncertainties o, /v;, on the simulation input parameters. The uncer-
tainty on p was chosen as the barometric pressure deviation from 1atm during the days when the
Cs-flame experiments were performed. The relative uncertainty on ¢ was deduced by propagating
the 0.6 % relative uncertainty on the volumetric flux of each stream (not including the C3Hg and
CsHg purities >99.5%). One contributor to the uncertainty on %05/(O2 + N3) was evaluated as
the difference between the percentage of oxygen in dry air (20.95%) and the percentage of oxygen
in the “combustion air” (21 % Oz, 79%N2) used in the simulations. It is the only contribution
for the Cs-flame experiments considered here since these flames were not diluted; the oxidizer was
industrial-grade compressed air. The 0.6 % relative uncertainty on the volumetric flux of each stream
must also be taken into account if the oxidizer used in the experiments was a binary mixture (air &
Na, or Oy & Ny, for example) mixed in our lab, which, alone, would correspond to a 0.7 % relative
uncertainty on %0O2/(O2 + N2). From the parabola fitted to the measured velocity profile in the
cold region (upstream of the flame), the 95% confidence interval bounds on the velocity-fit values
are obtained. The uncertainty on w, is the half-width of the confidence interval evaluated at the
inlet, £. As in Bergthorson 2005a, Section 2.6, two parabolas are fit through the max bound at the
start of the fit domain, the fit value at ¢, & the min bound at the end of the fit domain, and through
the min bound at the start of the fit domain, the fit value at £, & the max bound at the end of the
fit domain, respectively. The average difference between the slope of each of these two parabolas
and the slope of the optimal fit at ¢ indicate a maximum uncertainty on the velocity gradient at £.
The relative uncertainty on V is the same as the relative uncertainty on the velocity gradient at ¢.
oy /V is especially large for the richest C3Hg and CsHg flames (see Table E.1) because the inlet was
chosen too close to the edge of the velocity data points in these flames and because of the method
used to estimate the uncertainty in V. The uncertainty on 7', is deduced from the common accu-
racy of 1K for K-type thermocouples and from the (negligible) 0.005 % relative standard deviation
of the measurements during the experiment. The uncertainty on T,y is deduced from the relative
variation of the stagnation-plate temperature between the beginning and the end of the experiment
due to the slight imbalance between heating from the flame and passive water cooling, and from the
common accuracy of 1K for K-type thermocouples.
Figures E.la & E.1b and E.2a & E.2b show the logarithmic sensitivities LS(Sysim); and

LS(zcH sim); of the predicted stagnation flame speed and CH-peak location to each simulation input
parameter v; for all the C3 flames investigated. The logarithmic sensitivities are calculated using

a centered-difference scheme (see Eq. E.2), with logarithmic increases Alogy; = Ayl? equal to 1%
J

for every simulation input parameter except Twau, for which a 10 % logarithmic increase was used,
given the weak influence of Ty, on Sy and zcy. Simulations with a frozen ~ 400 points grid were
used since erratic variations of S, and zcy due to numerical errors were present at lower resolutions

when simulating flames with slightly different values of T'wan, and the mixture-averaged molecular
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Flame Pressure Inlet Stagnation-
fuel @ BC plate BC
v, | P & %0:/(02+N2) | w vV, T, Toval
0.70 | 24| +0.2% |+08%  +0.2%  |+05% £4.0% +03%| +03%
0.85 || 22| +02% |+08%  +02%  |+0.3% +27% £0.3%| +0.9%
CsHg 1.00|| 2% | +0.2% |£0.8%  +0.2%  [£04% +25% +03%| +1.0%
125|| 22 | +0.2% |£0.8%  +0.2%  [£0.6% +35% +03%| +0.7%
150 22| +0.2% |£0.8%  +02%  |+£1.2% £11.3% +0.3%| +0.3%
0.70 | 24| +0.2% |+08%  +0.2%  |+0.6% £3.7% +03%| +04%
0.85(| 24| +0.2% |+08%  +0.2%  |+04% £33% £03%| +1.0%
CsHe 1.00|| 2% | +0.2% |£0.8%  +0.2%  [£04% +2.9% +03%| +21%
130|| 2% | +0.2% |£0.8%  +0.2%  [£05% +25% +03%| +0.9%
160 22| +0.2% |£0.8%  +02%  |£1.5% £10.9% +0.3%| +0.3%

Table E.1: Uncertainties on simulation input parameters.

transport model was used to save computing time. S, and zcg are most sensitive to the composition
of the premixed combustible mixture, especially far from stoichiometric conditions.

Table E.2 shows the resulting uncertainties on the predicted stagnation flame speed, og (see

Eq. E.5), and CH-peak location, 04qy ..., (see Eq. E.4), scaled consistently with the comparisons
shown in Fig. 5.6, for all the C3 flames investigated. For both fuels, 04y i =~ 20-45% dcn,s5,0-1
under moderately lean, stoichiometric, and moderately rich conditions, 04y . =~ 65 % dcn,s5,0=1
under very lean conditions, and 0,y ., ~ 125-145% 0ch,s5,6=1 under very rich conditions. The
larger uncertainties under very lean and very rich conditions are due to the larger sensitivity of the
solution (see Figs. E.2a and E.2b). The larger uncertainty under very rich conditions is also due to
a larger uncertainty on the inlet spreading rate, because there were not enough velocity data points

between the starting point of the cold parabolic fit (used to determine the inlet velocity and velocity

gradient) and the inlet.
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Figure E.1: Sensitivity of predicted stagnation-flame speed to simulation input parameters.
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Figure E.2: Sensitivity of predicted CH-peak location to simulation input parameters.
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Flame 054, sim O CH, sim O Sy, exp O CH, exp O2CH, exp
fuel ) Su,exp d0CH,S5,8=1 Su,exp TCH,exp d0CH,S5,8=1
0.70 | 2.7% 67 % 1.4% 0.16% 6.3%
0.85 | 1.8% 38% 1.6% 0.05% 1.8%
C3Hg 1.00 | 1.0% 21% 1.2% 0.04% 1.5%
1.25 | 1.9% 39% 1.2% 0.03% 1.0%
1.50 4.5% 142 % 2.4% 0.07% 2.7%
0.70 | 2.3% 64 % 2.1% 0.14% 5.9%
085 | 1.7% 44 % 1.3% 0.05% 2.0%
C3Hg 1.00 | 1.1% 27% 2.0% 0.04% 1.7%
1.30 | 1.8% 34% 1.6% 0.04% 1.5%
1.60 3.9% 124 % 2.4% 0.20% 8.0%

Table E.2: Uncertainties on predicted and measured stagnation-flame speed and CH-peak location.

E.2 Uncertainty on measured stagnation-flame speed and
CH-peak location

Table E.2 reports the uncertainties on the stagnation flame speed measured by PTV and on the
CH-peak location measured by CH-PLIF.

The uncertainty on the PTV velocities is taken as the root-mean-squared (rms) difference between
the measured velocity profile and the corresponding fitted profile (see Section D.4.1), and is scaled
by the stagnation flame speed (see Table D.5). The uncertainty on the measured stagnation flame
speed, 03, ..., is determined from the half-width of the 95% confidence interval on the cubic fit
(fitted to the portion of the velocity profile around the minimum-velocity point, upstream of the
flame) value at the minimum-velocity point.

The uncertainty on the measured CH-peak location, o4y ..., is determined from the half-width
of the 95% confidence interval on the value at the center (corresponding to the jet axis) of the
parabola fitted to the two-dimensional CH-PLIF data (see Section D.3). 0gqy .., is larger under
very lean conditions and in the ¢ =1.6 C3Hg flame (richer than the ¢ =1.5 C3Hg flame), where the
signal-to-noise ratio is poor (see Figs. B.1a, B.1f, and B.1j).

The relative uncertainty on zcmexp is one order of magnitude smaller than the relative uncer-
tainty on Syexp. The scaled uncertainty on the measured CH-peak location, oy o, /dcH,s5,8=1

in Table E.2 is clearly smaller than the scaled uncertainty on the predicted CH-peak location in

Table E.2.
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E.3 Total uncertainty on the comparisons of predicted and

measured stagnation-flame speed and CH-peak location

The predicted & measured values of stagnation flame speed and CH-peak location are compared by
plotting Egu =(Susim — Suexp)/ Su,exp and E:;CH = (ZcH,sim — TCH,exp) / 0CH,S5,6=1, respectively
(see Fig. 5.6). It is reasonable to assume that the uncertainties on Sy gim & Su,exp are independent,
as well as the uncertainties on £cH sim & TcH,exp. As a result, the total uncertainties, Yexp, on the

comparison of predicted and measured values due to experimental measurement uncertainties are:

— 2 — 2
Odrcu ddrcu
2 ) _ 2 2
Ecxp,dxmcH (mECh) <8$CH,Sim ) UICH,sim + <8ICH,cxp UICH,cxp (EG)
1
CXPdeiCH(mECh) = 5CH S5 d—1 \/U%CH,sinn + U%CH,CXP (E7)
Y = (mech) =~ - 224 o (Mech) - Zoctsim 2 + o2 (E.8)
exp,drcu - 5CH,S5,<I>:1 CH,sim TCH. sim TOH, oxp .
exp,dvon — MaXmechs DLW,S5,BL, KON (ECXR@CH(mech)) (E.9)
and
9ds, \ 0ds, \’
2 : = u 2 u 2
ECXP,ESU (mECh) <8Su7sim ) Usu,sim + <8Su7cxp ) Usu,cxp (E]‘O)
1 g8, 2 og 2
Ecxp,dNSu(mECh) >~ Su,sim(TTLECh) . Su oxp (Su:::> + (ﬁ) (E.ll)
ECXPES‘U 2~ MaXmechs DLW,S5,BL, KON (Ecxp,isu(mECh)) . (E.12)

The relative uncertainties on Sy gim & Tcmsm only depend (see Eq. E.4) on the uncertainties on
the simulation input parameters that are independent of the mechanism used for the simulation,
and on the sensitivity of the solution to the simulation input parameters, which was evaluated
using a specific mechanism: S5. These sensitivities should be very similar when using different
mechanisms. Therefore, the relative uncertainties on Sy ¢im and zcH sim should be very similar when
mech) and X

using different mechanisms. However, X mech) keep a small dependence

esxp.dzen exp. 5, (

on the mechanism via Sy gm and zcusim that are at variance among the different mechanisms.
Table E.3 shows the values of Yey, for the different mechanisms and flames investigated. The values
of Yexp plotted in Fig. 5.6 are the largest Yoy, among all mechanisms used but G3 (included for
reference only), as shown in Egs. E.9 and E.12.

Finally, it is essential to note that the uncertainties associated with each model are not considered
here. Analyses of the uncertainty on the thermodynamic, molecular transport, and more importantly

kinetic model parameters such as the study conducted by Zador et al. (2005) are needed to close the
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discussion on the uncertainties by adding a specific uncertainty band for each model curve shown in

Fig. 5.6.
Mechanism | G3 DLW SH BL KON
Flame
" fuel @ | Ecxp,dNS'u Ecxp,dNS'u Ecxp,dNS'u Ecxp,dNS'u Ecxp,dNS'u
0.70 4.2% 3.1% 3.5% 3.7% 3.5%
0.85 3.5% 2.8% 2.9% 3.1% 3.1%
CsHg 1.00 2.6% 2.2% 2.1% 2.3% 2.4%
1.25 3.8% 3.2% 2.9% 3.2% 3.2%
1.50 8.2% 6.7% 5.9% 6.6 % 7.2%
0.70 - 3.4% 3.6% 4.4% 4.3%
0.85 - 2.8% 2.8% 3.3% 3.5%
CsHg 1.00 - 5.4% 5.3% 6.1% 6.2%
1.30 - 2.9% 2.8% 3.2% 3.2%
1.60 - 5.3% 5.2% 5.6% 6.3%
Flame
W Ecxp,dNiCH Ecxp,dNiCH Ecxp,dNiCH Ecxp,dNiCH cxp,dNiCH
0.70 76 % 62 % 67 % 1% 69 %
0.85 42% 38% 38% 40 % 40%
CsHg 1.00 23% 21% 21 % 21 % 22 %
1.25 45 % 41% 39% 41% 42%
1.50 183 % 159 % 142 % 155 % 166 %
0.70 - 61% 64 % 72 % 1%
0.85 - 44 % 44 % 47% 48 %
CsHg 1.00 - 27 % 27 % 29 % 29 %
1.30 - 35% 34 % 37 % 36 %
1.60 - 126 % 124 % 130% 143 %

Table E.3: Weak dependence on mechanism of the total uncertainty on comparisons of predicted &
measured stagnation-flame speed and CH-peak location. (C3Hg is not present in G3.)
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Appendix F

High-repetition-rate Nd:YLF
pulsed velocimetry laser

Figure F.1: Coherent Evolution-90 laser.

F.1 Introduction

As explained in Section A.1, the key upgrade in the velocimetry technique that enables investiga-
tions of faster flames and permits overall more accurate measurements is the use of a high-power,

high-repetition-rate, laser: the Coherent laser Evolution-90. The Coherent Evolution-90 is a 97 W,
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527 nm, diode-pumped solid-state, intra-cavity doubled, Q-switched, Nd:YLF pulsed laser able to
operate at repetition rates, v, =1-20kHz, with an energy stability <1 %rms. The lower thermal
birefringence and longer upper-state lifetime (470 us, enabling greater energy storage) of Nd:YLF
make it superior to Nd:YAG when operating at repetition rates of the order of the kHz. Moreover,
diode pumping presents several advantages compared with lamps: higher power efficiency, longer
lifetime (10000 hours versus ~ 500 for lamps), and lower power & cooling requirements. The double
purpose of this appendix is:

e to document the results of our testing of the Coherent Evolution-90 laser used in our lab.

e to provide additional knowledge of essential features of the laser overlooked in the manual, and

subsequent practical advice on how to use the laser safely.

F.2 Laser testing

The laser was tested shortly after arrival in March 2006. A Spiricon Cohu-6400 632 x 480 pixels?
(1 pix=0.0099 mm) camera was used to analyze the laser beam at three different stations, 1, 2, and
3, located at z; very close to the laser-ouput port, 2o =3 4+ 27 inches, and x3 = z; + 46 inches. At
each station, the laser beam was analyzed at repetition rates, v, =1kHz and 10kHz, at low power
(P=10.2W) and at high power (P =97W at 10kHz, but only P=20W at 1kHz because optical
damage is possible above 20 mJ /pulse). Figure F.2 shows the laser-beam images and Fig. F.3 shows
the corresponding raw statistics.

The beam diameter, dpeam, measured value is 5.4-5.5mm (the advertised nominal beam-
diameter value was 4-5mm).

The beam divergence, 0, was calculated as follows:

0 = Average of { 2 Atan ( (dpoam,i — dbeam;)/2 / (z: — 3;) ) } (F.1)
over the three different pairs of stations (7, j) and

over the range of repetition rates and powers tested

R

0.4 £+ 0.2mrad

This measured value is below the advertised specification of 4.5-7.5mrad. Our measurement method
was probably not the best, but the important answer is that the beam does not diverge by a large
amount.

The pointing stability for changes in repetition rate and/or power was estimated to be
~10%dpeam (smaller than the advertised value of ~20 % dpeam), and the pulse-to-pulse pointing
stability over a period of one minute at any given power and repetition rate was estimated to be

~0.01 % dpeam (advertised value of ~10% dpeam Over a period of an hour).
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The pulse separation uncertainty (timing jitter) needs be small given that the velocity
estimate directly depends on the output-pulses repetition rate (see Section A.1l). Its advertised
value was < 50 ns at any given power and repetition rate. The pulse separation uncertainty depends
on the quality of the laser Q-switch triggering. There are two different ways to trigger the Q-
switch: internal triggering (that relies on the laser timing unit) and external triggering. I would
advise using external triggering via a reliable, low timing jitter signal generator such as the Berkeley-
Nucleonics Model-565 that probably has a superior performance than the laser timing unit. The
timing jitter of the Berkeley-Nucleonics Model-565 is ~ 500 ps, which is negligible compared to the
repetition rates and pulse widths involved to trigger the Q-switch: 1-20kHz and ~5 pus. Indeed,
during the laser testing, when the Q-switch was internally triggered, repetition rates were found
systematically 10% smaller than expected, and the cause was found: the Q-switch driver clock was

24.6 MHz instead of 27 MHz. The Q-switch driver was replaced, which fixed this issue.
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(¢) vp=1kHz, P=10.2W, Qz3

(d) vp=1kHz, P=19.6W, Qz; (f) vp=1kHz, P=19.6W, Qz3

(i) vp=10kHz, P=10.2W, Qz3

(j) vp=10kHz, P=94W, Qz; (k) vp=10kHz, P=94W, Qz2 (1) vp=10kHz, P=94W, Qz3

Figure F.2: Comparison of the laser-beam quality at different repetition rates, powers, and stations.



Current Mean Deviati M M Units Current Mean Deviati Mil M Units Current Mean D 1 Units
Samples 128 128 128 128 128 Samples 256 256 256 256 256 Samples 256 256 256 256 256
—Q itative—30/10 Knife Edge Q itative—90/10 Knife Edge —Q i 390/10 Knife Edge
Total 108.510.637 108.780.538 774.401 108.127.434 109.916.454 Total 121.257.063 122.001.420 961.177 121,071,357 123,390,340 Total 177,290,624 175,148,413 1,713,612  173,279.640 177.432.917
% in Aperture  B86.52 6.62 7 86.50 B6.72 % % in Aperture  86.67 86.68 A0 86.50 86.87 % % in Aperture  B86.76 86.65 s 86.50 06.79 %
Peak 9.060e+02 8.067e+02 6.326e+00 B8.700e+02 8.140e+02 Peak 7.540e+02 7.538e+02 3.033e+00 7.390e+02 7.600e+02 Peak 1.011e+03 1.007e+03 3.006e+00 9.890e+02 1.014e+03
Min 1.930e+02 1.924e+02 1.130e+00 1.890e+02 1.950e+02 Min 2.380e+02 2.409e+02 3.258e+00 2.340e+02 2540e+02 Min 2.920e+02 2.913e+02 2.657e+00 2.840e+02 2.960e+02
Peak Loc % 2.490e+02 2.512e+02 2.842e+00 2.420e+02 2.620e+02 PX Peak Loc X 2.590e+02 2611e+02 3.151e+00 2520e+02 2670e+02 PX Peak Loc X 2.670e+02 2646e+02 3.188e+00 2.560e+02 2720e+02 PX
Peak Loc Y 2.390e+02 2.370e+02 5.223e+00 2.270e+02 2.520e+02 PX Peak LocY 2.390e+02 2.379e+02 2.997e+00 2.320e+02 2460e+02 PX Peak Loc Y 2.360e+02 2.342e+02 5502e+00 2270e+02 2780e+02 PX
Centroid X 2.569e+02 2570e+02 6.9872-02 2568e+02 2573e+02 PX Centroid X 2572e+02 2572e+02 1.284e-01 2569e+02 2676e+02 PX Centroid X 2585e+02 2563e+02 2.034e-01 2577e+02 2569e+02 PX
Centroid ¥ 2.371e+02 2387e+02 9616201 2352e+02 2421e+02 PX Centroid ¥ 2.355e+02 2.358e+02 8.944e-01 2.328e+02 2.390e+02 PX Centroid ¥ 2.335e+02 2.334e+02 1.095e+00 2297e+02 2374e+02 PX
Width X 5.608e+02 5605e+02 6.153e-01 5595e+02 5612e+02 PX Width X 6.037e+02 6.036e+02 2520e-01 6.030e+02 6.041e+02 PX Width X 6.080e+02 6.083e+02 1.967e-01 6.079e+02 6.087e+02 PX
Width ¥ 5.248e+02 5.235e+02 1.371e+00 5215e+02 5293e+02 PX Width Y 5.765e+02 b5.764e+02 3.927e-01 5.755e+02 5.77%e+02 PX Width ¥ 5.818e+02 5.820e+02 3.648e-01 5.808e+02 5833e+02 PX
Diametar 5.428e+02 5.420e+02 8.777e-01 5.406e+02 5451e+02 PX Diameter 5901e+02 5900e+02 2762e-01 5893e+02 590%+02 PX Diameter 5.949e+02 5951e+02 2.340e-01 5944e+02 5859e+02 PX

(a) vp=1kHz, P=10.2W, Qz; (b) vp=1kHz, P=10.2W, Qz2 (¢) vp=1kHz, P=10.2W, Qz3

Current Mean Deviati M M Units Current Mean Deviati M M Units Current Mean Deviati Mini Units
Samples 256 256 256 256 256 Samples 256 256 256 256 256 Samples 256 256 256 256 256
—a itative—30/10 Knife Edge —a itative—30/10 Knife Edge —Q i 90/10 Knife Edge
Total 107,861,773 106,859,128 758,409 106,172,423 107.942.428 Total 153,996,645 154,953,906 1.441.745 153,010,600 157,783,116 Total 169.576.431 171.070.400 1.699.710  168.389.161 174.560.372
% in Aperture  86.51 6.58 A 86.50 86.67 % % in Aperture  86.57 86.67 10 86.50 86.85 % % in Aperture  86.56 86.73 15 86.50 B7.04 %
Peak 6.860e+02 6.895e+02 4.101e+00 6.700e+02 6.970e+02 Peak 8.730e+02 B.692e+02 5.564e+00 8.480e+02 8.800e+02 Peak 9.090e+02 9.084e+02 5.886e+00 B8.870e+02 9.250e+02
Min 1.930e+02 1.927e+02 1.202e+00 1.880e+02 1.960e+02 Min 2.820e+02 2.8308e+02 3.755e+00 2.730e+02 2.970e+02 Min 2.850e+02 2.902e+02 3.030e+00 2820e+02 2980e+02
Peak Loc X 2.110e+02 2.226e+02 1.972e+01 1.680e+02 2.490e+02 PX Peak Loc X 4.700e+02 4.700e+02 1.243e-01 4.690e+02 4.700e+02 PX Peak Loc X 4.630e+02 4.639e+02 3562e-01 4.630e+02 4640e+02 PX
Peak LocY 2.240e+02 2.295e+02 3.055e+00 2.230e+02 2.430e+02 PX Peak Loc Y 08.600e+01 8.603e+01 6.883e-01 8.500e+01 B6.600e+01 PX Peak LocY 8.900e+01 §.875e+01 7.289e-01 8.700e+01 9.100e+01 PX
Centroid X 2.600e+02 2.600e+02 1.053e-01 2.597e+02 2.604e+02 PX Centroid X 2.707e+02 2.704e+02 3.699e-01 2.686e+02 2.725e+02 PX Centroid X 2.652e+02 2651e+02 B8.670e-01 2630e+02 2686e+02 PX
Centroid ¥ 2311e+02 2311e+02 6.055e-01 2.290e+02 2.336e+02 PX Centroid ¥ 2206e+02 2201e+02 1.944e+00 2.146e+02 2.280e+02 PX Centroid ¥ 2195e+02 2.208e+02 3.116e+00 2107e+02 2327e+02 PX
Width X 5534e+02 5539e+02 6.930e-01 5.524e+02 5550e+02 PX Width X 6.316e+02 6.319e+02 2.968e-01 6.309e+02 6.330e+02 PX Width X 6.359e+02 6.358e+02 1.705e-01 6.352e+02 6.363e+02 PX
Width ¥ 5.488e+02 5.497e+02 8.456e-01 5.486e+02 5.532e+02 PX Width ¥ 5.823e+02 5823e+02 4519e-01 5810e+02 5840e+02 PX Width Y 5.872e+02 5872e+02 371101 5857e+02 5888e+02 PX
Diameter 5511e+02 5518e+02 6.715e-01 5507e+02 5540e+02 PX Diameter 6.070e+02 6.071e+02 3.190e-01 6.060e+02 6.081e+02 PX Diameter 6.116e+02 6.115e+02 2.189e-01 6.106e+02 6.123e+02 PX

(d) vp=1kHz, P=19.6W, Qz; (e) vp=1kHz, P=19.6W, Qzo (f) vp=1kHz, P=19.6W, Qz3

Figure

F.3: Raw statistics corresponding to the laser-beam images shown in Fig. F.2.
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Current Mean Deviall A Units Current Mean Deviat Mi M Units Current Mean Deviat Mi M Units
Samples 256 256 256 256 256 Samples 256 256 256 256 256 Samples 256 256 256 256 256
—Quantitative—30/10 Knife Edg —Qn itati 9010 Knife Edge —Qn itati 90410 Knife Edge:
Total 102.498,388 102,506,674 48,744 102,374.091 102,603,413 Total 112,112,839 112.097.194 71,342 111,916.092 112,242.571 Total 120.229,412 120.292,029 52.955 120,154,293 120.414.437
% in Aperture  B86.55 66.58 3 86.50 86.72 % % in Aperture  B6.67 72 X} 86.51 86.95 % % in Aperture  86.71 86.83 8 86.50 86.97 %
Peak 8.010e+02 8.025e+02 2.09%e+00 7.960e+02 8.080e+02 Peak 7.130e+02 7.096e+02 2.028e+00 7.050e+02 7.160e+02 Peak 6.600e+02 6.603e+02 1.842e+00 6.560e+02 6.660e+02
Min 1.910e+02 1.926e+02 1.261e+00 1.890e+02 1.850e+02 Min 2.370e+02 2.37%e+02 1.528e+00 2.340e+02 2.420e+02 Min 2.580e+02 2578e+02 1.493e+00 2530e+02 2.620e+02
Peak Loc X 2510e+02 2.6306e+02 6.42%e+00 2.420e+02 2720e+02 PX Peak Loc X 2.670e+02 2.650e+02 2.087e+D0 2.590e+02 2.700e+02 PX Peak Loc X 2.720e+D2 2.716e+02 3.336e+00 2.620e+02 2.820e+02 PX
Peak Loc Y 2.360e+02 2.477e+02 5515e+00 2310e+02 2560e+02 PX Peak Loc Y 2.460e+02 2.434e+02 2.130e+00 2.390e+02 2.480e+02 PX Peak Loc Y 2.540e+02 2.500e+02 4.08%e+00 2.360e+02 2530e+02 PX
Centroid X 2612e+02 2611e+02 1551e-01 2608e+02 2614e+02 PX Centroid X 2.663e+D2 266le+02 2535e-01 2.654e+02 2.668e+02 PX Centroid X 2.677e+D2 2.677e+02 1.704e-01 2672e+02 2.681e+02 PX
Centroid ¥ 2.419e+02 2.420e+02 2.940e-01 2.413e+02 2426e+02 PX Centroid ¥ 2.425e+02 2.418e+02 4.123e-01 2.410e+02 2.428e+02 PX Centroid ¥ 2.431e+02 2.428e+02 4.576e-01 2.418e+02 2.438e+02 PX
Width X 5616e+02 56160402 1526001 5612e+02 56180+02 PX Width X 6.109e+02 6.109e+02 2.257e-02 6.108e+02 6.109e+02 PX Width X 6.174e+02 6.174e+02 1.7182-02 6.173e+02 6.174e+02 PX
Width ¥ 5.400e+02 5.401e+02 3.082e-01 5.394e+02 5.408e+02 PX  WidthY 5.785e+02 5.785e+02 1.88%e-01 5.781e+02 5.78%e+02 PX  WidthY 5.834e+02 5.834e+02 1.734e-01 5.830e+02 65.837e+02 PX
Diameter 5.508a+02 5509e+02 1.900e-01 5504e+02 5513e+02 PX Diameter 5.947e+02 5.947e+02 9.832e-02 5.845e+02 5.949e+02 PX Diameter 6.004e+02 6.004e+02 §.918e-02 6.002e+02 6.005e+02 PX
(g) vp=10kHz, P=10.2W, Qz; (h) vp=10kHz, P=10.2W, Qz2 (i) vp=10kHz, P=10.2W, Qz3
Current Mean Deviati [} Units Current Mean Deviati Mini Units Current Mean Deviati Mini Units
Staticti A %
Samples 256 256 256 256 256 Samples 256 256 256 256 256 Samples 256 256 256 256 256
—Quantitative—30/10 Knife Edge —Q itative—30/10 Knife Edg —Q itative—30/10 Knife Edge
Total 92.212,182 92,352,148 99,129 92,162,832 92,567.071 Total 137.725.070 138,296.645 366.694 137.607.934 138.893.343 Total 110.667.047 110,944,522 131.620 110.652.230 111.264.455
% in Aperture  86.65 86.65 a0 86.50 06.78 % % in Aperture  86.52 6.62 7 86.50 B6.75 % % in Aperture  86.93 6.74 13 86.50 B6.96 %
Peak 9.060e+02 9.126e+02 4.303e+00 9.020e+02 9.240e+02 Peak 9.330e+02 9.3840+02 4.422e+00 9.270e+02 9.490e+02 Peak 5.940e+02 59%8e+02 2.069e+00 5940e+02 6.070e+02
Min 1.920e+02 1.922e+02 1.240e+00 1.890e+02 1.960e+02 Min 2.260e+02 2.288e+02 1.658e+00 2.240e+02 2.330e+02 Min 2.290e+02 2.308e+02 1.366e+00 2.270e+02 2.360e+02
Peak Loc X 2.770e+02 2.795e+02 2.97%e+00 2.700e+02 2870e+02 PX Peak Loc X 3.000e+02 2.921e+02 5.424e+00 2800e+02 3.050e+02 PX Peak Loc X 2.800e+02 2.791e+02 1.111e+01 2540e+02 3.230e+02 PX
Peak Loc Y 2.540e+02 2522e+02 1.547e+00 2480e+02 2560e+02 PX Peak LocY 2.970e+02 2966e+02 2559e+00 2.870e+02 3.040e+02 PX Peak LocY 3.700e+02 3533e+02 2.427e+01 2580e+02 3.760e+02 PX
Centroid X 2.779e+02 2.774e+02 3.342e-01 2.767e+02 2762e+02 PX Centroid X 2.870e+02 2.869e+02 2.365e-01 2.864e+02 2875e+02 PX Centroid X 2.8692+02 2.0680+02 3.809e-01 2.859e+02 2878e+02 PX
Centroid Y 2515e+02 2508e+02 3.810e-01 2498e+02 2516e+02 PX Centroid ¥ 2.708e+02 2.705e+02 3.876e-01 2696e+02 2712e+02 PX Centroid ¥ 2666e+02 2674e+02 4.754e-01 2662e+02 2685e+02 PX
Width X 5.750e+02 5748e+02 2.256e-01 5.744e+02 5754e+02 PX Width X 6.026e+02 6.023e+02 2.092e-01 6.019e+02 6.028e+02 PX Width X 6.188e+02 6.187e+02 6.218e-02 6.186e+02 b6.189e+02 PX
Width ¥ 5.362e+02 5.358e+02 4.399e-01 5.347e+02 5.368e+02 PX Width Y 5.573e+02 5570e+02 3.293e-01 5562e+02 557%e+02 PX Width Y 5.757e+02 5753e+02 2.169e-01 5.747e+02 5758e+02 PX
Diameter 5.556e+02 5553e+02 2.976e-01 5546e+02 5560e+02 PX Diameter 5.799e+02 5797e+02 2.407e-01 5791e+02 5803e+02 PX Diameter 5.972e+02 5970e+02 1.208e-01 5967e+02 5973e+02 PX

(j) vp=10kHz, P=94W, Qz

Figure F.3:

(k) vp=10kHz, P=94W, Qzo

(1) vp=10kHz, P=94W, Qz3

Raw statistics corresponding to the laser-beam images shown in Fig. F.2. (cont.)
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F.3 Laser vital point: the temperature of the frequency-
doubling crystal

The conversion from the fundamental 1053 nm to the second harmonic 527 nm is performed via a
temperature-controlled Lithium Triborate (LBO) nonlinear optical crystal. A vital (for the laser)
point mentioned in the laser manual needs more emphasis: under any given operating conditions
(given by a couple of values for the two parameters repetition rate and power), the temperature of
the LBO crystal must be such that the conversion efficiency is high. The optimum temperatures,
T1o (for which the conversion efficiency is the highest), were therefore mapped for every repetition
rate of interest at variable power, starting at low power and slowly incresing power via the diode
current, Iyea. Tables F.1-F.7 (last updated on 2006/05/19) show the results of this mapping in
single-pulse mode. In these tables, I is the diode-current setpoint adjustable via the laser control
software, QSPW is the Q-switch pulse width used in the external trigger signal, P is the measured
laser power, E is the corresponding pulse energy (E =P xv,), and PW is the measured pulse
width. The range of optimum temperatures, T1,po shortens when power is increased, therefore the
risk of non-optimum conversion is higher while operating at high power, which could result in optical
damage. Operating the laser with confidence requires prior mapping of T1,5o-

The LBO crystal should be constantly maintained at the optimum temperature, T1,5o (between
310°F and 340°F), even when the laser is not in use. If necessary, the temperature of the LBO
crystal can be ramped down (typically no faster than 10°F per minute to prevent cracking of the
LBO crystal antireflection coatings) to room temperature for long-term storage of the laser or before
an anticipated power interruption.

While operating with the LBO-crystal-temperature optimum value, an additional way to increase
the output power by a small amount is to modify slightly the Q-switch trigger pulse width. Gen-
erally, a value of 5 us should be used, but smaller values can lead to increased output power under
certain operating conditions. However decreasing the Q-switch trigger pulse width too much can be
detrimental to the laser-ouput stability.

As can be seen in Tables F.1-F.7, the laser-ouput repetition rate can be unstable at low power.
The actual laser-ouput repetition rate is essential in the determination of the velocity (see Sec-
tion. 5.2). Therefore, a Thorlabs DET10A photodiode was used to monitor the output-pulses actual
repetition rate and stability while mapping Ty,po. Thus, it was discovered that the actual repetition
rate (measured by the photodiode) can differ from the desired repetition rate (set via, and equal to
the Q-switch triggering signal frequency) at low power. For example, setting the Q-switch triggering
signal frequency to 10kHz will generate pulses with an unstable repetition rate jumping between 5
and 10kHz for powers smaler than 6 W (see F.5), whereas the observed repetition rate becomes a

rock-steady 10 kHz for powers 2 11 W. Between 6 W and 11 W, the repetition rate is 10 kHz but there
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are amplitude and width differences between odd and even pulses. For powers 2> 11 W, differences

are not noticeable between odd and even pulses.

Tset | Ireal || QSPW [ Tiso | P E PW Stability
(A) ] ) [[ (ps) || OF) | (W) ](mJ/pulse) | (ns)

11.3[1145]] 5 [[317.0] 7.0 7.0 - -
12.4| 1255 5 || 317.0|10.2| 10.2 - -
13.4|1355| 5 || 317.0|13.3| 133 - -
14.5|14.65| 5 || 316.5|16.7| 16.7 - -
15.5| 15.7 5 [ 3165[196] 196 - -

Table F.1: Optimum temperatures of the frequency-doubling crystal in single-pulse mode at 1kHz.

Tset | Ireal || QSPW [[ TLeo P E PW Stability
A) ] W) [ () [[ OF) | (W) |(mJ/pulse)| (ns)

9.4 95 5 [[3175] 1.3 0.7 980 stable 2kHz
9.8 | 10.0 5 || 3175] 27 1.4 810 stable 2kHz
10.4| 10.6 || 5/4.2 || 317.0 |4.96/4.99| 25  |630/610 stable 2kHz
10.911.05|| 5/3.8 || 316.5 |6.97/7.00| 3.5  |510/500 stable 2kHz
11.3|1145( 5 |[3165] 88 4.4 470 stable 2kHz

Table F.2: Optimum temperatures of the frequency-doubling crystal in single-pulse mode at 2 kHz.

Tset | Ireal || QSPW [ Tiso | P E PW Stability
(A) | (A) [[ (ps) [[ OF) [(W)](mJ/pulse) | (ns)

11.3[1145]] 5 [[316.1[11.6] 3.9 - -
12.4| 1255 5 | 315.7|17.8| 5.9 - -
13.4|1355| 5 || 315.6 |224| 75 - -
14.5|14.65| 5 || 314.8]29.7| 9.9 - -
15.5 | 15.7 5 || 3145|378 126 - -
16.6|16.75| 5 || 314.2|44.4| 148 - -
17.6| 17.8 5 || 313.8|51.6| 17.2 - -
15.5| 15.7 5 || 313.3[58.9] 196 - -

Table F.3: Optimum temperatures of the frequency-doubling crystal in single-pulse mode at 3 kHz.
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Tset | Trear || QSPW || TLBO P E PW Stability
(A) ] A) || (ws) || CF) (W) [(mJ/pulse) | (ns)

94 | 9.5 5 317.0 1.3 0.3 - unstable 2.5 kHz
9.8 | 10.0 || 5/5.7 || 317.0 | 2.53/2.61 0.5 690 /960 stable 5 kHz
10.4| 10.6 || 5/4.5 || 317.0 | 4.91/4.96 1.0 790 /740 stable 5 kHz
10.9|11.05|| 5/4.0 || 316.5 | 7.04 /7.26 1.4 730 /640 stable 5 kHz
11.3|11.45|| 5/3.8 || 316.0 |9.04/9.34| 1.8/1.9 |660 /570 stable 5 kHz
11.9(12.05 5 315.5 12.2 2.4 580 stable 5 kHz
12.4| 12.5 5 315.5 14.8 3.0 550 stable 5 kHz
12.9113.05 5 315.5 17.8 3.6 510 stable 5 kHz
13.4|13.55 5 315.0 20.8 4.2 470 stable 5 kHz
14.0 | 14.15 5 314.7 24.5 4.9 440 stable 5 kHz
14.5|14.65 5 314.5 27.5 5.5 410 stable 5 kHz
15.5| 15.7 5 315.2 34.8 7.0 - stable 5 kHz
16.6 | 16.75 5 314.6 43.0 8.6 - stable 5 kHz
17.6 | 17.8 5 314.3 51.2 10.2 - stable 5 kHz
18.7 | 18.85 5 312.8 62.0 12.4 - stable 5 kHz
19.7| 19.9 5 312.5 69.0 13.8 - stable 5 kHz

Table F.4: Optimum temperatures of the frequency-doubling crystal in single-pulse mode at 5 kHz.

Tset | Irear || QSPW || TLBO P E Pw Stability

A) ] )| () || COF) (W) | (mJ/pulse) | (ns)

9.4 | 9.5 5 317.2 0.9 0.1 - unstable 5kHz

9.8 | 10.0 5 317.2 2.6 0.3 - unstable 5kHz

10.4| 10.6 5 316.6 4.9 0.5 - unstable 5kHz

10.9 | 11.05 5 316.3 6.2 0.6 - stable 10kHz, but differences

between even and odd pulses

11.3|11.45 || 5/4.7 || 315.7 | 7.99 /8.03 0.8 780 /700 | stable 10kHz, but tiny differences
between even and odd pulses

11.9]12.05|| 5/4.2 || 315.5 |10.8 /11.2 1.1 730 /630 stable 10 kHz

12.4| 12,5 || 5/3.9 || 314.8|13.0/13.6| 1.3/14 |710/570 stable 10 kHz

12.9113.05|| 5/3.7 || 314.5 |15.5/16.5| 1.5/1.6 | 680/540 stable 10 kHz

13.4]13.55 5 314.0 18.1 1.8 - stable 10 kHz

14.0 | 14.15 5 314.0 21.5 2.2 - stable 10 kHz

14.5 | 14.65 5 314.0 24.3 2.4 - stable 10 kHz

15.0]15.15 5 313.5 27.5 2.8 - stable 10 kHz

15.5] 15.7 5 313.3 30.5 3.1 - stable 10 kHz

16.0]16.15 5 313.0 33.3 3.3 - stable 10 kHz

16.616.75 5 312.6 37.1 3.7 - stable 10 kHz

17.1]17.25 5 312.3 40.2 4.0 - stable 10 kHz

17.6 | 17.8 5 312.1 43.4 4.3 - stable 10 kHz

18.218.45 5 311.8 474 4.7 - stable 10 kHz

18.7]18.85 5 311.5 50.3 5.0 - stable 10 kHz

19.2] 19.4 5 311.3 53.4 5.3 - stable 10 kHz

19.7] 19.9 5 311.0 56.4 5.6 - stable 10 kHz

20.3| 20.5 5 311.0 59.8 6.0 - stable 10 kHz

20.8| 21.0 5 311.0 62.6 6.3 - stable 10 kHz

23.0| - 5 309.0 97.0 9.7 - stable 10 kHz

Table F.5: Optimum temperatures of the frequency-doubling crystal in single-pulse mode at 10 kHz.
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Tset | Ireal || QSPW || TrBO P E PW Stability
A) ] )| (ws) || COF) (W) | (mJ/pulse) | (ns)
9.4 | 9.5 5 317.2 0.6 0.0 - unstable 7.5 kHz
9.8 | 10.0 5 317.0 1.9 0.1 - unstable 7.5 kHz
10.4| 10.6 5 316.5 4.4 0.3 - unstable 7.5 kHz
10.911.05 5 316.2 6.5 0.4 - unstable 7.5 kHz
11.3]11.45 5 315.9 8.4 0.6 - unstable 7.5 kHz
11.9]12.05 5 315.9 10.1 0.7 - unstable 7.5 kHz
12.4| 12.5 5 314.5 11.9 0.8 - stable 15 kHz, but differences
between even and odd pulses
12.9113.05 5 314.5 14.2 0.9 - stable 15 kHz, but small differences
between even and odd pulses
13.4]13.55 5 314.0 16.6 1.1 - stable 15kHz, but tiny differences
between even and odd pulses
14.014.15|| 5/4.2 || 314.0 | 19.5/20.6| 1.3/1.4 |720/620| stable 15kHz & no pulse differences /
stable 15kHz & tiny pulse differences
14.5|14.65| 5/3.8 || 313.4 |21.7/234| 1.4/1.6 |700/560 | stable 15kHz & no pulse differences /
stable 15kHz & tiny pulse differences
15.0(15.15| 5/3.6 || 313.2 |24.2/26.6| 1.6/1.8 |670/520| stable 15kHz & no pulse differences /

stable 15kHz & tiny pulse differences

Table F.6: Optimum temperatures of the frequency-doubling crystal in single-pulse mode at 15 kHz.
(Note: if QSPW is decreased further, power increases slightly but stability deteriorates quickly.)

Tset | Irear || QSPW || TLBO P E Pw Stability

A) ] )|l () || COF) (W) | (mJ/pulse) | (ns)

9.4 | 9.5 5 317.2 0.3 0.0 - weak and unstable pulses

9.8 | 10.0 5 317.0 1.5 0.1 - unstable 10 kHz

10.4| 10.6 5 317.0 3.8 0.2 - unstable 10 kHz

10.911.05 5 316.0 6.1 0.3 - unstable 10 kHz

11.3]11.45 5 315.8 8.1 0.4 - unstable 10 kHz

11.9]12.05 5 315.2 10.8 0.5 - unstable 10 kHz

12.4] 12.5 5 315.0 12.9 0.6 - unstable 10 kHz

12.9113.05 5 314.5 14.3 0.7 - stable 20kHz, but very large differences
between even and odd pulses

13.4]13.55 5 313.9 15.4 0.8 - stable 20 kHz, but large differences
between even and odd pulses

14.0 | 14.15 5 313.7 17.9 0.9 760 stable 20 kHz, but differences
between even and odd pulses

14.5[14.65| 5/4.6 || 313.4 | 20.1/20.8| 1.0/1.0 |720/700 stable 20kHz, but small differences
between even and odd pulses

15.0|15.15|| 5/4.1 || 312.8 |22.5/23.8| 1.1/1.2 |730/580 stable 20 kHz

15.5| 15.7 || 5/3.9 || 312.8 |24.7/26.9| 1.2/1.3 |710/560 stable 20 kHz

Table F.7: Optimum temperatures of the frequency-doubling crystal in single-pulse mode at 20 kHz.
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F.4 Double-pulse operating (DPO) mode

The double-pulse operating (DPO) mode allows shorter pulse separations than those corresponding
to the sustained repetition rate 1-20kHz by triggering the Q-switch with a signal containing 2
successive pulses at a given frequency. Such a capability is useful in particle image velocimetry
(PIV) type measurements. The advertised pulse separation can be adjusted between 5-150 us,
which corresponds to 6.7 kHz—200kHz. However, in practice, finding the right settings for stable
double-pulse operation (the 2nd pulse only appears above a certain power that depends on the
repetition rate used) can be difficult, especially at low pulse separations. Tables F.8-F.9 show a
few combinations of settings for which stable double-pulse operation was obtained, down to a pulse
separation of 1.28 us (corresponding to 780kHz) with a repetition rate of 10kHz. QSPW; and
QSPWy are the Q-switch-trigger first and second pulse widths, the pulse separation between them
is also set in the Q-switch trigger signal, and the Amplitude & pulse width, PW, of the ouput
pulses are measured with a photodiode. Adjusting QSPW; and QSPW, allows some flexibility in
the energy balance between the two pulses (pulse energy proportional to Amplitude x PW). The
energy balance depends on the total energy in the two pulses. Working with a total energy of 10mJ
should allow the balance to be maintained within 10% over all specified repetition rates (5-10%kHz)
and pulse separations (5-150 us). However, for example with a repetition rate of 5kHz, if the total
energy is 15 mJ, the balance can be < 20% for pulse separations >10 us but the system appears to
be overdriven, and for pulse separations <10 us, the balance can degrade to ~80 % /20 % or worse.

A DPO-Q-switch-trigger box coming with the laser can be used to generate the Q-switch trigger
signal in DPO mode, however, I would advise generating the Q-switch-trigger signal with a flexible
signal generator given that the Coherent DPO-Q-switch-trigger box is limited in the number of
values that can be set for QSPW;, QSPW3, and the pulse separation.

My guess is that the laser could allow a burst of more than 2 pulses, but I would strongly
advise prior discussions with the laser designer before attempting to find the right settings for such

multi-pulse operation mode, which can be dangerous for the laser.

Pulse Amplitude- PW of Energy balance
Tset | Iveal || QSPW; | Separation | QSPWs || Tuso | P 15t / ond pulse between
(A) | (A) || (ps) (1) (ps) || C°F) [(W)]|(mV)-(ns) /(mV)- (ns) 1°t /20 pulse
124]12.5] 255 | 50 | 5.1 [[315.0 [14.0] same-400 /same-400 | 50 % /50 %

Table F.8: Optimum temperatures of the frequency-doubling crystal and energy balance between
1% and 2"¢ pulse in double-pulse mode at 5kHz. (Note: the 2" pulse will not appear below 14 W.)
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Pulse Amplitude- PW of Energy balance
Tset | Trear || QSPWy | Separation| QSPWs || TLuo | P 15t / ond pulse between
A ] ) [ () (ps) (ps) || CF) [ (W) ] (mV)-(ns)/(mV)-(ns) 1° /24 pulse
18.7]18.85 2.55 40.00 2.73 310.0 | 49.0 | ~same- 200 / ~same - 250 ~50% /50 %
18.7118.85 2.22 1.28 5.10 309.1 | - 17.5-190 / 10- 400 45% / 55 %

Table F.9: Optimum temperatures of the frequency-doubling crystal and energy balance between

1%t and 2°¢ pulse in double-pulse mode at 10 kHz.
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