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Abstract

We investigate the Richtmyer-Meshkov instability (RMI) in converging geometries analytically and

computationally. The linear, or small amplitude, regime is first covered as it is the onset to sub-

sequent non-linear stages of the perturbation growth. While the plane interaction of a shock with

a slightly perturbed density interface is classically viewed as a single interface evolving as baro-

clinic vorticity have been initially deposited on it, we propose a simple but more complete model

characterizing the early interaction between the interface and the receding waves produced by the

shock-interface interaction, in the case of a reflected shock. A universal time scale representing the

time needed by the RMI to reach its asymptotic growth rate is found analytically and confirmed

by ideal gas computations for various incident shock Mach numbers MI and Atwood ratios A, and

could be useful especially for experimentalists in non-dimensionalizing their data.

Considering again linear perturbations, we then obtain a general analytical model for the asymp-

totic growth rate reached by the instability during the concentric interaction of an imploding/exploding

cylindrical shock with a cylindrical interface containing three-dimensional orthogonal perturbations,

in the azimuthal and axial directions. Stable perturbations, typical of the converging geometry,

are discovered. Comparisons are made with simulations where the effects of compressibility, wave

reverberations, and flow convergence are isolated. Azimuthal and axial perturbation evolution are

compared with results obtained for the plane RMI at comparable initial wavelengths.

A second interaction occurs when the transmitted shock, produced by the incident converging

shock impacting the interface, converges to the axis and reflects to reshock the initially accelerated

interface. This leads to highly non-linear perturbation growth. To isolate the complex wave interac-

tion process, the interface is considered initially unperturbed so that the flow is radially symmetric.

An accurate visualization procedure is performed to characterize the underlying physics behind the

reshock event. We study extensively the cylindrical and spherical geometry, for various MI and for

the air→ SF6 (A = 0.67) and SF6 →air (A = −0.67) interactions, and draw important differences

with the equivalent plane configuration.

A hybrid, low-numerical dissipation/shock-capturing method, embedded into an adaptive mesh

refinement framework is optimized in order to achieve large-eddy simulations of the self-similar

cylindrical converging shock-driven RMI and the turbulent mixing generated by the reshock. Com-



vi

putations are produced for MI = 1.3 and 2.0, and for air→ SF6 and SF6 →air interfaces. We

develop statistics tools to study extensively the growth of the turbulent mixing zone using cylin-

drical averages as well as various measures such as probability density functions of the mixing and

turbulent power spectra, with the objectives of understanding the turbulent mixing in this particular

geometry.
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vs. a0kt; case kh0 = 0.1, MI = 1.5. For key, see Figure 2.3. . . . . . . . . . . . . . . . 30

2.7 Contour levels of a0kτ in the (A,S) space; for each combination of specific heat ratios

a dashed line drawn for small A represents the boundary of the domain of validity of

τ as discussed in Subsection 2.5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Iso-contours of the difference between the (dimensionless) cylindrical growth rate and

the plane one (1 + κAF (n, κ,A)) −
√
n2 + κ2A, in the wavenumber space (n, κ), with

κ ≡ kR0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Contour levels of the Atwood ratio Ac corresponding to critical perturbations, in the

wavenumber space (n, kR), for a given history R(t). . . . . . . . . . . . . . . . . . . . 39

3.3 Imploding and exploding shock front average radial positions r/R0 vs. (a0/R0)t. Su-

perposition of two-dimensional simulation results of cylindrical shock initialized by

Chisnell’s solution (crosses) and a power-law least-square fit for both imploding and

exploding shocks (solid line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Purely axial perturbations for a cylindrical interface. . . . . . . . . . . . . . . . . . . . 47

3.5 Axial perturbations: Dimensionless amplitude (left) and growth rate (right) vs. a0kt

of the interface perturbation (top), spike front (middle), and bubble front (bottom),

plotted for different axial wavenumbers k; case air→ SF6, h0/R0 = 0.005, MI = 1.2. . 49

3.6 Axial perturbations: Dimensionless amplitude (left) and growth rate (right) vs. a0kt

of the interface perturbation (top), spike front (middle), and bubble front (bottom),

plotted for three different incident Mach numbers MI ; case air→ SF6, h0/R0 = 0.005,

k = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Purely azimuthal perturbations for a cylindrical interface. . . . . . . . . . . . . . . . . 51

3.8 Azimuthal perturbations: Dimensionless amplitude (left) and growth rate (right) vs.

a0(n/R0)t of the interface perturbation (top), spike front (middle), and bubble front

(bottom), plotted for different azimuthal wavenumbers n; case air → SF6, h0/R0 =

0.005, MI = 1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.9 Azimuthal perturbations: Dimensionless amplitude (left) and growth rate (right) vs.

a0(n/R0)t of the interface perturbation (top), spike front (middle), and bubble front

(bottom), plotted for three different incident Mach numbers MI ; case air → SF6,

h0/R0 = 0.005, n = 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



xv

3.10 Dimensionless amplitude (left) and growth rate (right) vs. a0Kt of the interface per-

turbation (top), spike front (middle), and bubble front (bottom), plotted for the az-

imuthal, axial, and plane perturbations; case air → SF6, MI = 1.2, Kh0 = 0.12; for

the azimuthal geometry h0/R0 = 0.005 and K ≡ n/R0 = 3, for the axial geometry

h0/R0 = 0.005 and K ≡ k = 3, for the plane geometry K ≡ k = 3. . . . . . . . . . . . 56

4.1 r − t wave diagram: example of the MI = 3.2 cylindrical shock interaction with an

air→SF6 interface. Density Schlieren levels (log scale) displayed. . . . . . . . . . . . . 63

4.2 Close-up on the first and second reverberations: example of the MI = 3.2 cylindri-

cal shock interaction with an air→SF6 interface. Density Schlieren levels (log scale)

displayed on a wave diagram and superposed to the three different families of charac-

teristics, u− a (top), u (middle), and u+ a (bottom). . . . . . . . . . . . . . . . . . . 64

4.3 Density ρ/ρ0 vs. position r/R0 for the air→ SF6 plane (red solid line), cylindrical

(green long-dashed line), and spherical (blue small-dashed line) shock interactions for

a MI = 1.2 incident shock. Density profiles initially (top), after the first reshock event

(middle), and at a late time (bottom). After the first reshock, a shock will form behind

the expansion tail in the cylindrical and spherical geometries, and another shock will

form ahead of the expansion head in the spherical geometry. The interface is initially

located at r/R0 = 1; at r/R0 ' 0.4 for the plane geometry and r/R0 ' 0.8 for the

cylindrical/spherical cases after the first reshock; at r/R0 ' 0.5 for the plane geometry

and r/R0 ' 0.7 for the cylindrical/spherical cases at late times. . . . . . . . . . . . . . 68

4.4 Density ρ/ρ0 vs. radius r/R0 for the air→ SF6 interactions at MI = 1.2. Close-

up at the center at different times between the first and second reshocks. (a) Plane

case: the reflected expansion produced from the first reshock reflects off the wall as an

expansion. (b) Cylindrical case: a shock forms behind the reflected expansion tail that

was produced from the first reshock interaction, and reflects off the axis. (c) Spherical

case: two shocks form behind the reflected expansion tail and ahead of its head; the

inner shock reflects off the center and interacts with the outer one; the shock-shock

interaction produces a weak shock traveling outwards to reshock the interface a second

time, and a stronger and faster shock traveling inwards, reflecting off the center and

reshocking the interface soon after the second reshock. . . . . . . . . . . . . . . . . . . 69

4.5 Wave diagrams for the air→ SF6 shock interaction for a MI = 1.2 incident shock.

Density Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom)

shock interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



xvi

4.6 Wave diagrams for the air→ SF6 shock interaction for a MI = 1.2 incident shock.

Close-up on the first and second reverberations, with characteristics u−a superposed to

density Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom)

shock interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Density ρ/ρ0 vs. position r/R0 for the air→ SF6 plane (red solid line), cylindrical

(green long-dashed line), and spherical (blue small-dashed line) shock interactions for

a MI = 3.0 incident shock. Density profiles initially (top), after the first reshock event

(middle), and at a late time (bottom). Shocks form behind the reflected expansion

tail (see lower Mach case), and will reflect to reshock the interface a second time.

The interface is initially located at r/R0 = 1; at r/R0 ' 0.1 for the plane geometry,

r/R0 ' 0.3 for the cylindrical case, and r/R0 ' 0.4 for the spherical case after the first

reshock; at r/R0 ' 0.05 for the plane geometry, r/R0 ' 0.1 for the cylindrical case,

and r/R0 ' 0.2 for the spherical case at late times. . . . . . . . . . . . . . . . . . . . . 74

4.8 Wave diagrams for the air→ SF6 shock interaction for a MI = 3.0 incident shock.

Density Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom)

shock interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.9 Wave diagrams for the air→ SF6 shock interaction for a MI = 3.0 incident shock.

Close-up on the first and second reverberations, with characteristics u−a superposed to

density Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom)

shock interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.10 Density ρ/ρ0 vs. position r/R0 for the SF6 →air plane (red solid line), cylindrical

(green long-dashed line), and spherical (blue small-dashed line) shock interactions for

a MI = 1.2 incident shock. Density profiles initially (top), after the first reshock event

(middle), and at a late time (bottom). The interface is initially located at r/R0 = 1; at

r/R0 ' 0.6 for the plane geometry, r/R0 ' 0.7 for the cylindrical case, and r/R0 ' 0.6

for the spherical case after the first reshock; at r/R0 ' 0.6 for the plane geometry,

r/R0 ' 0.7 for the cylindrical case, and r/R0 ' 0.6 for the spherical case at late times. 78

4.11 Wave diagrams for the SF6 →air shock interaction for a MI = 1.2 incident shock.

Density Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom)

shock interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.12 Wave diagrams for the SF6 →air shock interaction for a MI = 1.2 incident shock.

Close-up on the first and second reverberations, with characteristics u−a superposed to

density Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom)

shock interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



xvii

4.13 Density ρ/ρ0 vs. position r/R0 for the SF6 →air plane (red solid line), cylindrical

(green long-dashed line), and spherical (blue small-dashed line) shock interactions for

a MI = 3.0 incident shock. Density profiles initially (top), after the first reshock event

(middle), and at a late time (bottom). A strong shock resulting from the interactions

of the transmitted shocks produced during the successive reshocks traveling outwards

can be seen exiting the physical domain for late times. The interface is initially located

at r/R0 = 1; at r/R0 ' 0.05 after the first reshock and at late times. . . . . . . . . . . 83

4.14 Wave diagrams for the SF6 →air shock interaction for a MI = 3.0 incident shock.

Density Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom)

shock interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.15 Wave diagrams for the SF6 →air shock interaction for a MI = 3.0 incident shock.

Close-up on the first and second reverberations, with characteristics u−a superposed to

density Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom)

shock interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 (a) Initial flow description. Time t = 0 actually corresponds to the incident shock

standing just behind the interface with Mach number MI . (b) Scalar isosurfaces rep-

resenting the initial perturbed interface (data from run 11 and run 12). . . . . . . . . 87

5.2 Converging shock focusing in a wedge. Overlay of experimental results from VTF Phase

0 and two-dimensional simulation data from the WENO-TCD patch solver formulated

on a Cartesian grid (a) and a shock-capturing method formulated on a body-fitted grid

(b). Courtesy of C. L. Bond, D. J. Hill, and G. Matheou. . . . . . . . . . . . . . . . . 94

5.3 Conical shock-tube experiments and two-dimensional axisymmetric simulations. (a)

Radial speed (normalized by initial shock speed) on the centerline vs. distance to

the center; (b) isosurfaces of the three-dimensional magnitude of the density gradient

(Schlieren) colored by the density. Speeds over Mach 18 at last measurement. Courtesy

of D. J. Hill. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Comparison of decay of turbulence kinetic energy in a homogeneous decaying compress-

ible LES computed on a grid of 323 points using standard WENO-5 vs. 5-point TCD

scheme. DNS computed with a 2563 grid and a Padé method, Case D9 of Samtaney et
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Chapter 1

Introduction

The interactions of shock waves with perturbed interfaces separating fluids of different properties

are of crucial importance in compressible turbulence, as they occur in a myriad of applications, both

natural and man-made. This class of problems is generally referred to as the Richtmyer-Meshkov

instability (RMI), after Richtmyer, who first rigorously analyzed the growth rate of a perturbation

at a plane density inhomogeneity following an impulsive acceleration modeling the passage of a

shock parallel to the interface [94], and Meshkov, who confirmed, at least qualitatively, Richtmyer’s

predictions using shock-tube experiments [77]. In [94] Richtmyer also compared his analytical results

with numerical simulations of the linearized compressible Euler equations. The RMI is sometimes

thought of as an impulsive, or shock-induced, version of the Rayleigh-Taylor instability (RTI), where

the density interface is submitted to a finite sustained acceleration (e.g., gravitational field) [107, 92].

The dominant fluid dynamics process responsible for the amplification of the interface pertur-

bation is local vorticity generation by means of baroclinic torque, due to the misalignment of the

pressure gradient across the shock and the local density gradient at the interface during shock pas-

sage. Consider the evolution equation of the vorticity field ω = ∇× u , with u velocity field. In the

absence of dissipation terms,

(
∂

∂t
+ u ·∇

)
ω =

∇ρ×∇p
ρ2

+ (ω ·∇)u − ω∇ · u , (1.1)

where ρ is the density field and p the pressure field. The first term of the right-hand side represents

the production of baroclinic vorticity and constitutes the main mechanism for vorticity generation in

the RMI. The second term, called vortex stretching, only appears in three-dimensional flows where

the vorticity field is a priori not perpendicular to the velocity field. The last term is the vortex

compression and is related to compressibility effects. For moderate incident shocks, this term is

expected to remain small [43]. However, it might not be the case in converging geometries where

the flow can be accelerated to very high velocities. After the shock passage, the distribution of

vorticity deposited during the shock refraction drives the evolution of the instability (other effects
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are discussed in Chapter 2). Samtaney and Zabusky produced a detailed analysis of the circulation

deposition for general incident shock strengths and fluid combinations [99]. As the interface be-

comes more distorted, the heavy fluid penetrates into the light fluid causing the formation of spikes,

while the lighter fluid raises into the heavy fluid causing the formation of bubbles. The instability

exhibits characteristic mushroom-like structures (e.g., see Figure 1.1) due to the rolling up of the

spikes. Additional baroclinic vorticity is produced during the roll-up in a mechanism called vortex-

accelerated-vorticity-deposition [85]. Secondary instabilities such as the shearing Kelvin-Helmholtz

instability develop, and vortex pairing can be observed between the structures already generated

by the RMI, resulting in a wide range of physical scales and ultimately turbulent mixing between

the two fluids. The intensity of the turbulent motions can be further increased when the interface

is processed by additional pressure waves, such as reshocks. During a reshock, baroclinic vorticity

is deposited with opposite sign to the initially deposited vorticity, transforming spikes into bubbles

and vice versa in a process called phase inversion. Note that other types of baroclinic instability,

besides the RMI, include the RTI previously cited and shown in figure 1.2, and the Landau-Darrieus

instability driven by mass transfer across the interface [60].

The RMI arises in the context of various shock-accelerated flows. In combustion systems, the

instability resulting from the interaction of a shock wave with a flame has an important role in the

transition from deflagration to detonation [57]. There has also been considerable interest in exploiting

shock-induced fuel/oxidizer mixing properties of the instability for supersonic and hypersonic air-

breathing combustors (scramjets) [119]. Vapor explosions that result from the intense heat transfer

following contact between a hot liquid and a cold, more volatile one, have been widely studied

as well, as they can occur in severe accidents when the core of a nuclear reactor is molten [5].

Other inhomogeneous reacting flows can involve converging shocks, e.g., concave detonation-driven

flows [45], inertial confinement fusion (ICF), etc. Unlike magnetic fusion designs, which holds fuel

in a magnetic field, ICF relies on isentropic compression of fusion fuel. In an ICF capsule implosion,

a laser drives a shock that compresses deuterium-tritium (D-T) gas causing ignition and fusion. In

such technology, the effect of gravity is negligible but the fluid is accelerated. As a consequence, RTI

forms at the D-T interface, inhibits thermonuclear reactions, and limits final compression required

to achieve fusion [70, 69]. RMI is also important in ICF because it can produce seeds, which are

later amplified by the more violent RTI. The RMI has been used to explain the rapid collapse of gas

bubbles in liquids [86, 32]. Other examples of multi-phase flows involving converging shocks, such as

sonoluminescence [90, 29] and shock-wave lithotripsy [51], have drawn increasing scientific interest.

Aeronautical engineers need accurate prediction of the sonic-boom focusing, called “superboom” [72].

The superboom develops when an aircraft changes its speed, turns, or maneuvers. The ground noise

of superboom is magnified up to 2–3 times the original sonic-boom noise, which could propagate to

the ground and severely harm human ears, as well as structures. The RMI in curved geometries also
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Figure 1.1: Two-dimensional simulations of the converging cylindrical Richtmyer-Meshkov instability
in a 90◦ wedge, using adaptive mesh refinement. A cylindrical converging shock impacts at a Mach
number 3.0 a cylindrical density interface separating air (outside) from sulfur hexafluoride (inside).
Passive scalar contours (upper diagonal) show the distortion of the interface, while transmitted shock
and reflected wave patterns appear on the pressure contours (lower diagonal).

manifests itself in natural phenomena such as supernova (SN) collapse. The RMI has been observed

in remnants of the explosion of SN 1987A [1, 33, 73] and is used to explain the overturn of the

outer portion of collapsing cores of supernovas and the unexpected mixing in the outer regions of

supernovas [103, 105, 56].

These examples have recently raised considerable interest in understanding the physical pro-

cesses behind this instability, and have motivated reviews by Zabusky [121], Berthoud [5], and

Brouillette [10], among others.

1.1 Motivation

This research project was initiated to investigate the RMI in curved geometries, in particular when

driven by converging shocks. The objectives were to: (i) model the linear regime of the converging

RMI, (ii) set up a canonical large-eddy simulation (LES) of the shock-driven turbulent mixing in

a converging geometry, and (iii) identify the differences with the mixing observed in the plane

geometry in [109, 43]. The computations were performed within the adaptive mesh refinement

framework AMROC [21] as part of the Virtual Test Facility (VTF) [22]. A long-term goal is to

compare these large-scale LES against validation experiments of converging shocks in a wedge (VTF

phase 2) currently being conducted by the group of Prof. Dimotakis at GALCIT [24].

The most important accomplishment of the present work has been the comparison, in various
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]x2
, ~3!

applied ony50 whereG(t) is the apparent gravity andg is
interfacial tension. Equation~1! is the continuity equation,
and Eqs.~2! and ~3! are linearized forms of the kinematic
condition and an expression that attributes the pressure dif-
ference across the interface to interfacial tension. A periodic
perturbation to the interface of the form,

h5a~ t !cos~kx!, ~4!

requires that the velocity potentials in the two fluids be given
by

f15b~ t !exp~2ky!cos~kx!,
~5!

f252b~ t !exp~ky!cos~kx!,

which when substituted into the interfacial conditions@Eqs.
~2! and ~3!# yields

ȧ1kb50, ~6!

ḃ1AGa5
gk2

r11r2
a, ~7!

where

A5
r22r1

r21r1
, ~8!

is the Atwood number. Equations~6! and ~7! can then be
combined to yield a single ordinary differential equation for
a(t)

FIG. 6. A sequence of PLIF images showing the development of an immiscible system with A50.336 accelerated at 1.34 g with an initial perturbation
wavelength of 35 mm. The first frame~a! was taken immediately after the test sled was released and there is a 0.033 s increment between each subsequent
image.
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Figure 1.2: Experiments of the Rayleigh-Taylor instability by Waddell et al. [111]. A sequence of
planar laser-induced fluorescence images showing the development of an immiscible system with
Atwood ratio 0.336 accelerated at 1.34 g: linear regime (a),(b); non-linear regime (c)–(g); chaotic
appearance suggesting transition to turbulence (h)–(j).

conditions (e.g., incident shock strength, density ratio), of the plane and converging geometries for

(i) the early stages of the RMI, (ii) the reshock events with a visual study of wave diagrams, and

(iii) the long-term turbulent mixing following the reshocks with new techniques developed to study

statistics of the turbulent flow. Both analytical and numerical approaches have been undertaken.

In particular, this project has motivated improvements of the patch solver and new developments of

the statistics class within AMROC.

1.2 Previous Related Work

1.2.1 Linear Regime in Plane and Curved Geometries

The linear regime of the RMI has been principally studied in the plane geometry and been focused

on modeling the asymptotic growth rate reached by the instability as commonly observed during

the small amplitude perturbation growth [94, 31, 118, 108, 116, 117, 39]. There are two reasons for

possible discrepancies between experiments and analytical models. First, most of these formulations
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work well for weak incident shocks but fail to model the exact asymptotic growth rate when the

incident shock is strong, the density ratio across the interface high, or the difference between specific

heat ratios important [120]. Complex models (e.g., see [116]) are needed to cover the wide range

of initial parameters. Second, early experimental results, obtained in the nonlinear regime because

small amplitude could not be measured accurately (e.g., see [77]), could only confirm qualitatively

the impulsive model predictions. However, better agreement is achieved in recent low [55] and

high [46] Mach-number experiments. Although impulsive models are approximate, they provide

insight and simple estimates of the growth rate.

On the other hand, the approach of Wouchuk (e.g., [116]) has the potential to take into account

all physical phenomena involved (initial vorticity deposition, bulk vorticity deposition by relaxation

of deformed shock fronts, baroclinic generation by reverberation of acoustic waves emitted by the

deformed shock front, etc.). Wouchuk’s analysis contains the following features: (i) The flow between

the perturbed interface and moving deformed reflected and transmitted waves is linearized (wave

equations); (ii) a change of coordinate suggested in [7, 75] is used; (iii) the Laplace transform of

one of the new coordinates is applied; (iv) after considerable algebra a functional equation is found

and approximately solved by iteration in order to determine the quantities Fa and Fb needed in

Equation (3) of [116]. The method works well for different gas combinations and various incident

shock strengths. Although only three iterations are needed to get good agreement with estimates

of the asymptotic growth rate from the reference simulations of Yang for plane linear perturbation

growth [120], this approach is best viewed as semi-analytical. For example, no scaling law can be

deduced from this analysis.

Less analytical work has been achieved in curved geometries. The contributions basically reduce

to Mikaelian’s impulsive model for the spherical geometry [80] and for the cylindrical geometry only

for azimuthal perturbations [81]. Tests of this incompressible model are limited to comparisons

against gelatin-ring computational experiments, and no simulations of highly compressible materials

are performed. However, Mikaelian’s work considers both RMI and RTI for spherical and two-

dimensional cylindrical stratified shells, discusses “freeze-out” phenomenon in plane, cylindrical and

spherical geometries, and provides a model of turbulent mix.

1.2.2 Converging Shocks

There are underlying challenges in studying imploding geometries, analytically, numerically, and

above all, experimentally. No exact solutions exist for converging shocks. However, Guderley pro-

duced asymptotic similarity solutions in the strong-shock limit for converging cylindrical and spheri-

cal shocks whose strength increases as a power-law [40]. Whitham’s shock dynamics theory provides

accurate solutions to the converging shock valid below the strong shock limit [113]. A solution in

the form of a series expansion, whose leading order corresponds to Guderley’s power-law solution, is
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described in [87]. In this problem, the flow admits a general solution where an infinitesimally weak

shock from infinity strengthens as it converges towards the origin. The importance of this type of

self-similar solutions in the study of shock waves compares to that of the Taylor-Sedov solution for

point explosion. Chisnell gave an analytical approximation to the flow behind Guderley’s converging

shocks in [15]. In the present thesis, we use this solution to generate imploding flows.

The first numerical investigation of these solutions was carried out by Payne, who adapted the

so-called Lax scheme to appropriately compute the pressure term in the momentum equations [84]

(see [8] for the explosion problem). The converging shock originates due to the sudden rupture of

a cylindrical diaphragm, separating two uniform regions of gas at rest with a higher pressure in the

outside region. By a suitable choice of initial conditions, Payne obtained a flow with a shock wave,

an expansion wave, but no contact discontinuity that could affect the shock and lead to numerical

inaccuracy in the flow. As the shock converges and becomes stronger, agreement with Guderley’s

power-law can be achieved. Other than the difficulty of initializing numerical simulations properly,

converging shocks simulations raise other questions, such as the treatment of the flow singularity at

the center, or the need of robust methods not only able to capture strong shocks but also to compute

correctly the turbulent mixing dissipation in the area of the fluid inhomogeneities [44].

Experimentalists can face difficulties in focusing shock while keeping reasonably stable axisymme-

try. Imperfect focusing can, for example, reduce the pressure at the center of the converging shock,

and has therefore motivated research on converging shock stability. Experiments of converging shocks

usually generate unstable converging polygonal structures (development of triple points) [112] similar

to those studied in stability theories of axisymmetric converging shocks [113, 101]. These observa-

tions led to investigation of polygonal shock waves (e.g., see [27]), and confirm the importance of

creating converging shocks with minimal imperfections in their symmetry. Hosseini and Takayama

have succeeded in producing converging cylindrical shock waves with minimum disturbances using

an annular coaxial diaphragm-less shock-tube [50]. The shock interacts with a cylindrical soap bub-

ble filled up with various gases and the RMI appears on the bubble front. Dimotakis and Samtaney

have theoretically designed a gas lensing technique (referred to as VTF phase 1) that can smoothly

focus a planar shock into a segment of a circular cylinder in a two-dimensional wedge geometry [24].

1.2.3 Mixing in Accelerated Inhomogeneous Flows

A number of experiments have been carried out with the objective of capturing convergence effects

on the RMI: electron-beam targets [106], cylindrical metal shells [66], laser targets [52, 61], and

gelatin rings [78, 79].

As far as we know, there have been no three-dimensional direct numerical simulations (DNS)

of turbulence in cylindrical or spherical geometries for RTI and RMI-type flows, the reason being

that the Reynolds numbers involved are too high for these accelerating flows, resulting in viscous
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dissipation scales impossible to capture with current computers. LES is probably the best approach,

but only LES for the RTI [18, 12, 11] and the RMI with reshock [43] in plane geometries have been

performed. For the RMI, the difficulty lies on the conception of a numerical method that can capture

shocks of various strengths (shock waves cannot be fully resolved since the shock thickness is of the

order of the mean free path), as well as the turbulent activity in some regions of the flow. A more

detailed discussion on computation of compressible turbulence is provided in Chapter 5.

Two-dimensional simulations of the instability for imploding and exploding cylindrical shocks

using front tracking of the interface and a shock-capturing scheme have also been performed by Saltz

et al. [97] and most importantly by Zhang et al. [123]. Saltz reports numerical solutions obtained

from two different codes, FronTier, a front-tracking method using a directionally split second-order

Godunov scheme, and RAGE, embedding a similar numerical method into a continuous adaptive

mesh refinement framework. Zhang’s work completes a scaling analysis for RMI driven by strong

shocks (e.g., converging shocks) [122]. It considers various reshock configurations. Indeed, the

occurrence of re-acceleration of the material interface caused by the waves reflecting from the origin

is unavoidable in curved geometry. In plane geometry, we only need to distinguish between light-

to-heavy and heavy-to-light interactions, while in curved geometry, we further need to distinguish

exploding and imploding shock interactions. Nevertheless, no study of the resulting long-term

turbulent mixing was done. Note that front tracking is in general not adapted to compute the

complex turbulent mixing occurring in three dimensions.

Elaborate models for the turbulent mixing zone growth, including, e.g., dissipation effects, are

available [91]. We focus on Mikaelian’s minimal model [80, 81], where the evolution of the mixing

thickness in planar, cylindrical, or spherical geometry, has a non-trivial dependence on convergence,

i.e., on R(t)/R0, with R0 initial position of the unperturbed interface (before shock interaction) and

R(t) position of the accelerated unperturbed interface at time t, and is proportional to a constant,

c (e.g., see Equations (32–36) in [81] for the cylindrical case). There is no dependence on initial

conditions other than a simple additive constant h0 representing the initial perturbation amplitude.

The DNS of the RTI in plane geometry of Cook and Dimotakis [19] suggests that c, also noted

cplane in this geometry, may depend on initial perturbation wavelengths and amplitudes. Plane RMI

shock-tube experiments [109, 28] and simulations [43] are consistent with h = cplaneA∆Wt with

cplane ≈ 0.10 − 0.14. In this expression, A is the Atwood ratio and ∆W being the speed of the

accelerated interface) . For the curved RMI, more research is needed to compare with Mikaelian’s

model the results on the mixing obtained in the very few shock-tube experiments in cylindrical [50]

and spherical [59] geometries.
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1.3 Outline of Present Work

Chapter 2 presents a theoretical model describing the early growth of the plane RMI and its valida-

tion against numerical simulations. Chapter 3 summarizes an analytical model for the asymptotic

growth rate of the RMI for three-dimensional cylindrical linear perturbations. The model is combined

with the theory of the previous chapter. Plane, pure axial and pure azimuthal linear perturbations

are compared to each other in various computations. Chapter 4 investigates the reshock phenomenon

occurring after radially symmetric converging waves reflect off the center of the geometry. Wave

diagrams are constructed from highly resolved computations for different geometries (plane, cylin-

drical, and spherical), various gas combinations, and incident shock strengths. The LES performed

to study the post-reshock mixing are described in Chapter 5. All the simulations of the converging

RMI are initialized using self-similar converging shocks. Finally, conclusions and implications of this

research are presented in Chapter 6. Appendices B and C report the detailed statistics employed to

post-process the extensive data from the LES.
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Chapter 2

Startup Process in the
Richtmyer-Meshkov Instability

2.1 Introduction

Here and hereinafter, we consider only the case of a reflected shock corresponding in general to a

light-to-heavy shock-contact refraction.

The RMI generally combines different phenomena such as, but not limited to, shock refraction,

hydrodynamic stability, and both linear and non-linear growth periods. There are two important

contributions to the early-time, or small-amplitude linear growth of the instability, before nonlinear

development of the perturbation appears. First, the baroclinic deposition of vorticity due to the

direct interaction of the incident shock with the interface, where the pressure gradient at the shock

is misaligned with the local density gradient at the interface. If the initial interface is sharp, it

can therefore be viewed as a vortex sheet that leads to its own self-induced distortion. The second

contribution concerns the influence of the transmitted and reflected shocks as they leave density and

vorticity perturbations behind them. Relaxation of these shock fronts both deposits bulk vorticity

and also emits acoustic waves that, by reverberation, modify the vorticity on the interface. In the

weak shock limit, the linear growth reduces essentially to the first contribution, while for strong

incident shocks, the produced transmitted shock takes a longer time to separate from the interface.

Richtmyer first derived the compressible perturbed equations and obtained a simple analytical

expression for the asymptotic linear growth rate [94], assuming that transmitted and reflected shocks

have traveled sufficiently far, compared to the wavelength of the perturbation, that the second contri-

bution is subdominant. Other methods concentrating also on the first contribution have attempted

to correct the impulsive growth rate to better model the behavior for strong incident shocks or high

Atwood ratio without loss of simplicity [108]. At the same time numericists and experimentalists

have addressed the effect of shock proximity by using empirical corrections to the impulsive growth

rate of [46, 53, 36]. More complex, semi-analytical studies have taken into account all relevant
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phenomena [31, 116], and showed good agreement with numerical results obtained by linearizing the

Euler equations between the perturbed interface and transmitted/reflected waves [120], and with

the linear interaction analysis at low Atwood numbers of Griffond [39].

In what follows, by modeling the proximity of the receding transmitted and reflected shocks, the

analysis of Section 2.2 establishes a simple analytical expression for the growth rate that captures

some of the early features of the perturbation evolution before it has reached the asymptotic growth

linear in time. Figure 2.3 best describes how the model compares to the reality. As analyzed in

Section 2.3, the solution addresses the early-time physics of the linear growth, with a characteristic

time τ , while allowing for the determination of the asymptotic, or later-time, growth rate by addi-

tional physics. Section 2.4 compares results to computations obtained from two-dimensional, highly

resolved numerical simulations of the RMI under various initial conditions. Different realistic combi-

nations of Atwood ratio and specific heat ratio are tested, as well as incident shock strength, initial

perturbation amplitude, and wavenumber. A more thorough parametric study of the characteristic

time τ is presented in Section 2.5.

2.2 Analytical Model

2.2.1 General Formulation

At t = 0, in Cartesian axes (x-z), a plane shock traveling to the left (negative z direction) impacts

a plane unperturbed density interface, z = 0, separating two fluids of different density, producing a

transmitted shock and a reflected shock. We work in a frame of reference in which the undisturbed

interface is always at z = 0 and in which the transmitted shock velocity is US1 < 0 and the reflected

shock velocity is US2 > 0. We define more generally Sj(t), j = 1, 2 as the average position of these

shocks at time t. In the laboratory reference frame, the interface is impulsively accelerated to velocity

−∆Wez, ∆W > 0, at t = 0. For given fluids and given incident shock strength, US1 , US2 ,∆W ,

and the post-shock densities and Atwood number A+ can be determined by solution of the one-

dimensional Riemann problem. We will focus on regions directly in contact with the interface and

denote these by the subscript j, where j = 1 for the region to the left, z < 0, of the interface

and j = 2 for the region to the right, z > 0, of the interface. The interface is slightly perturbed

(Figure 2.1), with a perturbation amplitude small compared to its fundamental wavelength. Its

position is

z = ζ(x, t) = h(t)eı kx. (2.1)

The purpose of this analytical work is to determine a simple approximation for the growth h(t) for

small t, within the linear approximation.



11

Figure 2.1: Perturbed system.

The fundamental length scale in this problem is the wavelength of the perturbation 2π/k. We

choose 1/k as our characteristic length scale. The characteristic velocity scale is chosen to be

kh(0)/(2π)A+∆W since Richtmyer’s impulsive model of the asymptotic growth rate for the linear

RMI is kh(0)A+∆W [94], with A+ = (ρ1 − ρ2)/(ρ1 + ρ2) the post-shock Atwood ratio based on

post-shock densities and h(0) amplitude of the perturbation at t = 0. An appropriate time scale

characteristic of the linear growth of the instability is thus 2π/(k2h(0)A+∆W ) (> 0 as long as

A+ > 0). The density scales like the constant post-shock densities ρ1 to the left of the interface, or

ρ2 to the right. Similarly, the pressure scales like ρj(kh(0)/(2π)A+∆W )2, j = (1, 2). The impulsive

acceleration g = ∆WδD(t) of the interface is made dimensionless by the characteristic acceleration

k(kh(0)/(2π)A+∆W )2. Define aj as the post-shock speed of sound to the left or right of the interface.

To summarize, for each region j = (1, 2), original quantities are related to dimensionless quantities,

denoted with a bar, as follows:

x =
1
k

x , t =
1

kεjaj
tj , %j = ρj %j , uj = εjaj uj , pj = ρj(εjaj)2 pj , g = k(εjaj)2 gj , (2.2)

where the following dimensionless parameter is defined:

εj =
kh(0)

2π
A+ ∆W

aj
. (2.3)

The parameter εj defined in (2.3) is in general small since kh(0)/(2π)� 1, A+ ≤ 1, and ∆W/aj

is of the order of unity. This latter ratio can be greater than unity in the heavy region 1 when the

incident shock Mach number MI is very high, but remains less than ten as long as A+ is not too

close to unity and the incident shock is not too strong. For example, in the case of a ‘light air →
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heavy SF6’ shock interaction at MI = 8.0, whose Atwood number A+ ' 0.7 is quite high (1:5 density

ratio), in the heavy region ∆W/a1 ' 4.2.

The Euler equations in the frame of the accelerated interface are now written in terms of dimen-

sionless quantities on each side of the interface:

∂%j
∂tj

+
∂

∂x
(%juj) +

∂

∂z
(%jwj) = 0, (2.4a)

%j

(
∂uj
∂tj

+ uj
∂uj
∂x

+ wj
∂uj
∂z

)
= −

∂pj
∂x

, (2.4b)

%j

(
∂wj
∂tj

+ uj
∂wj
∂x

+ wj
∂wj
∂z

)
= −

∂pj
∂z

+ %jgj(tj), (2.4c)(
∂pj
∂tj

+ uj
∂pj
∂x

+ wj
∂pj
∂z

)
= − 1

ε2
j

%j

(
∂uj
∂x

+
∂wj
∂z

)
, (2.4d)

where it has been assumed that the sound speed is uniform and constant equal to aj . The acceleration

of the frame in which the Euler equations are written is contained in the last term of Equation (2.4c).

2.2.2 Base Flow and Perturbations

The flow is decomposed as a base part uniform in the transverse direction x, and a small perturbation

sinusoidal in x. For any dimensionless flow quantity qj in each region:

qj(x, z, tj) = q
(0)
j (z, tj) + εjq

(1)
j (z, tj)eı x + .... (2.5)

At leading order in εj , an admissible base flow in the regions 1 and 2 is expressed as

%
(0)
j = 1, u

(0)
j = 0, w

(0)
j = 0, p

(0)
j = P 0 + gj(tj)z, (2.6)

where P 0 is an arbitrary background pressure. The base flow is simply the incompressible re-

sponse to an impulse that instantaneously accelerates the flow to the speed ∆W in the negative

z-direction. Expressed in dimensional variables, the base quantities can be determined by solving

the one-dimensional Riemann problem of the shock interaction at t = 0. Linearizing the Euler

equations in each region with small parameter εj in region j , the leading-order perturbed equations
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are

∂%
(1)
j

∂tj
+ ı u

(1)
j +

∂w
(1)
j

∂z
= 0, (2.7a)

∂u
(1)
j

∂tj
= −ı p(1)

j , (2.7b)

∂w
(1)
j

∂tj
= −

∂p
(1)
j

∂z
+
(
ρ2 − ρ1

ρj

)
gj(tj) [H(z)−H(z − kh)] , (2.7c)

ı u
(1)
j +

∂w
(1)
j

∂z
= 0, (2.7d)

where H(z) is the Heaviside function. Equation (2.7c) is obtained by subtracting Equation (2.4c)

to its equivalent equation for the base field, at every location (x, z). The right-hand side source

term of the equation obtained for the perturbation w
(1)
j eıx contains the window function H(z) −

H(z−ζ), which is rewritten as [H(z)−H(z − kh)] eıx. Equation (2.7d) shows that the leading-order

perturbed flow is incompressible and, from Equation (2.7a), the perturbed density is independent

of time. From Equations (2.7b) and (2.7c), the post-shock perturbed flow is irrotational on each

side of the interface except in a small window between z = 0 and the interface z = ζ. Therefore a

perturbed potential φ
(1)

j can be introduced such that u
(1)
j = ∇φ(1)

j . Outside of the forced region, the

perturbed potential is a solution of the Laplace equation and can be written in terms of dimensional

variables as

φ
(1)
j (z, t) = Aj(t) sinh(kz) +Bj(t) cosh(kz), (2.8)

where Aj and Bj are complex coefficients. The assumption of potential incompressible flow on each

side of the interface was initially used by Layzer to describe the single-mode nonlinear growth [65].

Most recently, based on Layzer’s model at an infinite density ratio (A = 1) (see also [42]), Srebro et

al. found a general buoyancy-drag model at every A describing the stages of the RMI and RTI [104].

These models allows to compute the bubble velocities, assuming that the flow is governed by the

behavior near the bubble tips, supposed parabolic in shape.

2.2.3 Boundary Conditions at the Shocks

Boundary conditions at the transmitted and reflected shocks are now investigated. From the shock

refraction process occurring when the incident shock impacts a perturbed interface with wavenum-

ber k, the transmitted and reflected shock waves produced are similarly perturbed with the same

wavenumber but are expected to evolve with a different growth than that of the interface pertur-

bation. The initial shock perturbation hSj (t = 0+) is expected a priori of the same order of the

amplitude of the interface perturbation h(t = 0+). Our simulations (see Section 2.4) confirm the
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well-known results on planar shock stability: small perturbations at the shock front decay, while

interface perturbations grow for t > 0. Landau determined that the stability criterion for small

disturbances traveling in the direction perpendicular to the shock was simply a consequence of the

requirement of the second law of thermodynamics [60]. Considering a corrugation in the transverse

direction, Dýakov’s criterion expresses that, in the case of a perfect gas, a discontinuous shock front

is unconditionally stable [26]. To complete the discussion, we note that Yang found, in the case (not

considered presently) of a reflected rarefaction wave, the trailing edge of the fan is always unstable

(Section C of [120]).

Linearizing the Rankine-Hugoniot jump conditions with respect to small shock perturbation am-

plitude hSj (t), i.e., corresponding to small interface perturbation h(t), the axial velocity perturbation

behind the shock can be related to hSj (t) as

w
(1)
j (Sj(t) + hSj (t)e

ıkx, t) ' w(1)
j (Sj(t), t) ' Cj ḣSj , (2.9)

where Cj is a constant function of the unperturbed densities upstream and downstream of each

shock. As the shock perturbation decays, the growth ḣSj tends to zero. We therefore assume the

following approximate boundary condition: for t > 0, the growth of the shock perturbation is zero

at leading order in εj and, therefore, the perturbed axial velocity must be zero at the shock. This

assumption is consistent with incompressible, irrotational motion for the perturbed flow at leading

order: the shocks then physically behave like moving plane boundaries along which there exists a

uniform distribution of sources of just sufficient strength to produce the post-shock, incompressible

flow. At higher order these ‘walls’ essentially confine the reach of reverberating waves to the flow

regions between the interface and the receding shocks. It is this effect that presently modifies

Richtmyer’s theory [94].

With this ansatz, Equation (2.8) simplifies and we can express the perturbed velocity field in

each region as

u
(1)
j (z, t) = ı kEj(t) cosh(k(z − Sj(t))), (2.10a)

w
(1)
j (z, t) = kEj(t) sinh(k(z − Sj(t))), (2.10b)

where Ej(t) are functions to be determined. This solution allows for shear at the ‘wall-shocks’ where

the perturbed transverse velocity is non zero. From the momentum equation in the x-direction, the

pressure perturbation is

p
(1)
j (z, t) = −ρj

∂

∂t
(Ej(t) cosh(k(z − Sj(t)))) . (2.11)
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2.2.4 Kinematic and Dynamic Conditions at the Interface

At the contact z = ζ(x, t) = h(t)eı kx, the perturbed z-velocity must be continuous, and, after

linearization

w
(1)
1 (0, t) ' w(1)

2 (0, t) ' ḣ. (2.12)

Using the simplified form of w(1)
j (z, t) in each region 1 and 2 found in the previous paragraph at

dominant order, the linearized kinematic condition becomes

−kE1(t) sinh(kS1(t)) = −kE2(t) sinh(kS2(t)) = ḣ. (2.13)

We observe that the coefficients Ej are real. A dynamic boundary condition is obtained by integrat-

ing the perturbed momentum equation (2.7c) in z from z = 0 to z = h(t). The linearized dynamic

condition to order εj requires that at z = h (in dimensional variables)

p
(1)
1 (x, z, t)− ρ1∆WδD(t)z = p

(1)
2 (x, z, t)− ρ2∆WδD(t)z. (2.14)

Using Equation (2.11), the linearized dynamic condition becomes

−ρ2
∂

∂t
(E2(t) cosh(kS2(t))) + ρ1

∂

∂t
(E1(t) cosh(kS1(t))) ' (ρ2 − ρ1)∆WδD(t)h(t). (2.15)

The functions Ej(t) are fully determined (up to the initial condition Ej(0)) by integrating Equa-

tion (2.15) from t = 0 to t. From Equation (2.13), an expression for the growth rate is found

as

ḣ(t) =
2 ḣ∞

(1−A+) coth(kS2(t)) + (1 +A+) coth(k(−S1(t)))
, (2.16a)

ḣ∞ = kh(0)A+∆WH(t) +
k

2
(
(1−A+)E2(0)− (1 +A+)E1(0)

)
, (2.16b)

where H(t) is the Heaviside function. We recovered the asymptotic growth rate predicted by Richt-

myer in the first term of the right-hand side of Equation (2.16b). In this formula, A+ comes from

the use of post-shock densities ρj . Moreover, h(0) is the perturbation amplitude at t = 0 right

when the shock passes the interface and has not been clearly defined at this point. E.g., h(0) could

be modeled as the arithmetic average of the pre-shock and post-shock amplitudes h(0−) ≡ h0 and

h(0+).
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2.3 Startup Period for Richtmyer-Meshkov Instability

2.3.1 Startup Time τ

We observe that, within the linearized approximation, the large t asymptotic growth rate ḣ∞ is not

determined presently. Eliminating the functions Ej from Equation (2.15) by using Equation (2.13),

a second-order ordinary differential equation (ODE) is straightforwardly obtained for h(t). The

ODE has a regular singular point at t = 0, which admits a family of solutions, regular at t = 0, with

a free parameter ḧ(t = 0+) that is equivalent to the free asymptotic growth rate ḣ∞. Once ḣ∞ is

determined, the amplitude of the interface perturbation can be obtained by numerically integrating

Equation (2.16), given h(0). Second, both terms in the denominator of (2.16b) are positive since

−1 < A+ < 1, and S1(t) < 0 and S2(t) > 0. Third, the actual form of S1(t) and S2(t) has not been

used, and the instantaneous growth rate is a function only of the relative locations of the shocks

and the interface, not the history of these locations. Since the leading order perturbed equations

are incompressible this suggests that our results are dependent on the equation of state of the fluids

via the solution of the one-dimensional Riemann problem.

The shock locations can now be modeled with

Sj(t) = USj tH(t). (2.17)

As t→ 0+, the growth rate simplifies to

ḣ = ḣ∞
t

τ
+O(t2), (2.18)

where

τ =
1
2k

(
1−A+

US2

+
1 +A+

(−US1)

)
. (2.19)

The time τ obtained from our new model represents the characteristic time during which the presence

of the shocks influences the growth of the interface and is fully determined by solving the one-

dimensional Riemann problem described as the base flow. For t� τ , the asymptotic growth ḣ∞ is

recovered. Equation (2.18) shows that the growth rate immediately following the shock interaction,

ḣ(0+), is zero. The kinematic condition (2.12) taken at t → 0+ implies that w(1)
j (z = 0, t = 0+)

is zero, which is consistent with the boundary condition assuming zero axial velocity perturbation

at the shocks, the shocks being concentrated at z = 0 as t → 0+. Numerical two-dimensional

simulations shown later, as well as the linear compressible simulations of Yang [120], corroborate

that the growth rate is zero just following the shock interaction. The model gives a non-zero positive

initial acceleration as ḧ(0+) ∼ ḣ∞/τ .
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2.3.2 Asymptotic Growth Rate

The growth rate, initially zero, increases to an asymptotic limit ḣ∞ as the shocks recede. Richt-

myer [94] initially proposed the impulsive model in an unbounded domain that gives the asymptotic

growth as

ḣRich. = kh(0)A+∆W. (2.20)

For any time, the transmitted and reflected waves are already at infinity. It has been shown,

however (Yang [120]), and confirmed by Wouchuk’s semi-analytical model [116] that the impulsive

model generally fails to represent the correct terminal linear growth rate. Solving the linearized

Euler equations numerically, Yang concludes that his linear theory and the impulsive model agree

when the incident shock strength decreases, but that large discrepancies appear for high incident

shock strengths. Indeed, the simple observation that, for strong shocks, both shocked interface and

transmitted shock remain close to each other for small t is sufficient to contradict the assumption

of shocks at infinity during the initial growth phase. Yang also observed that the agreement with

Richtmyer’s model improves as the adiabatic exponents increase while remaining very close. Fig-

ure 16 of [120] (reflected shock case) shows that, for the air→ SF6 case, which we chose to study in

Section 2.4, the disagreement with Richtmyer’s mode grows as the incident shock strength increases.

A heuristic correction to the impulsive model has been proposed by Vandeboomgaerde [108] using

the average of the pre- and post-shock properties. But, as other impulsive formulations, the discrep-

ancy with the exact solution can be very large as the incident shock becomes stronger. The true

asymptotic growth rate will now be written as a correction to Richtmyer’s asymptotic growth under

the following form:

ḣ∞ = F ḣRich.. (2.21)

In the limit of weak incident shock, F is expected to tend to 1. Figure 16 of [120] represents the

quantity 1/FY ang − 1 computed from numerical computations.

2.3.3 Initial Tangential Velocity at Interface

We now discuss a framework for modeling the terminal or long-time linear growth rate. From

Equation (2.16b), the terminal growth rate is determined up to the knowledge of the Ej(0), in other

words the initial transverse velocities. According to Equation (2.10a), in the case of zero initial

transverse velocity on each side of the interface, Richtmyer’s asymptotic solution is recovered. To

improve the asymptotic model, a relationship is required between the asymptotic growth rate ḣ∞

and the initial jump in transverse velocity, or circulation distribution, across the interface. From
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Equation (2.16a) substituted into Equation (2.13) and then Equation (2.10a), it can be shown that

ḣ∞ = − ı

2
(1−A+)US2 − (1 +A+)US1

US2 − US1

∆[u(1)], (2.22a)

∆[u(1)] ≡
(
u

(1)
1 − u

(1)
2

)
t=0

. (2.22b)

∆[u(1)] is the tangential velocity jump across the interface as t → 0+. In our notation it is purely

imaginary, owing to a one-quarter wavelength phase difference between the interface shape pertur-

bation and the tangential velocity jump. Hence finding the long-time linear growth rate is equivalent

to determining the initial circulation-line density, or vortex-sheet strength, across the interface. As

a last remark, it can be shown after some algebra that, within the model presented here, the jump

in transverse velocity u(1)
1 − u

(1)
2 across the interface is not constant with time unless the base flow

is symmetric, that is −US1 = US2 . However, the momentum slip ρ1u
(1)
1 − ρ2u

(1)
2 across the interface

is conserved with time.

If the (constant) circulation related to Richtmyer’s asymptotic model is taken to be the initial

circulation in the present model, Equation (2.22) lead to

ḣ∞ = FRich.Circ.ḣRich. =
(1−A+)US2 − (1 +A+)US1

US2 − US1

ḣRich., (2.23a)

∆[u(1)] = 2ıkh(0)A+∆W. (2.23b)

Using the leading order (small angles of incidence α) Γ′1 of the circulation deposited by the passage

of a shock on a planar interface, given the long expression (2.14) in Samtaney and Zabusky [99],

Equation (2.22) becomes

ḣ∞ = FSamt.Circ.ḣRich. =
(1−A+)US2 − (1 +A+)US1

US2 − US1

Γ′1
2A+∆W

ḣRich., (2.24a)

∆[u(1)] = ıkh(0)Γ′1. (2.24b)

Subsection 4.4 of [99] suggests a scaling analysis for Γ′1 in terms of incident Mach number, density

ratio (and therefore Atwood ratio), and ratio of specific heats.

Referring to the form (2.21), we display in Figure 2.2 (and later on Table 2.1) the correction fac-

tor F determined from Richtmyer’s circulation modeling summarized in (2.23a), noted FRich.Circ.,

and from Samtaney’s circulation analysis expressed in (2.24a), noted FSamt.Circ.. In Figure 2.2,

various common gas are used, such as air, Ar, CO2, He, SF6, and Xe. A discussion is provided in

Subsection 2.4.2. For the comparison against numerical simulations in the following section, the ter-

minal growth rate given by Richtmyer’s asymptotic model ḣRich. and Yang’s correction FY ang ḣRich.

will be used. To determine ḣRich. (Equation (2.20)) we assume that h(0) in Equation (2.20) is the

post-shock perturbation amplitude h(0+) (which is different from the amplitude before the shock
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(a) FRich.Circ. based on Richtmyer’s circulation (b) FSamt.Circ. based on Samtaney’s circulation

Figure 2.2: Correction factor to Richtmyer’s impulsive growth rate for varying incident shock
strengths S (see Equation (2.28)) and various combinations of gases: air→ CO2 (solid line), Ar→ Xe
(dashed-dotted line), air→ SF6 (small dashed line), and He→ air (long dashed line).

interaction).

2.4 Numerical Simulations

2.4.1 Numerical Method

Two-dimensional simulations were conducted within the AMROC framework developed by Deit-

erding [21], based on the structured adaptive mesh refinement (SAMR) algorithm by Berger and

Oliger [4]. The numerical method, applied to each subgrid of the mesh hierarchy, consists of a hybrid

method written for the multi-component Euler equations of gas dynamics assuming calorically per-

fect gas: A weighted, essentially non-oscillatory (WENO) scheme is used to capture discontinuities

(such as shock waves, contact wave, or fine/coarse mesh interfaces) but switches to a low-numerical

dissipation, explicit, tuned center-difference scheme (TCD) in the smooth regions [44, 83].

The density interface is nominally defined by the mixture fraction field ψ(x, z, t). This scalar

field is asymptotic to ψ(x, z, t) = 0 on the very right side, ψ(x, z, t) = 1 on the very left side, and is

initially setup using a tanh profile with intrinsic thickness δC0 (taken as about one fifth of the pre-

shock perturbation amplitude h0). When the shock impacts the smeared interface, it is compressed

down to a thickness δC(t) until the end of the shock refraction where both reflected and transmitted

shock travels away from the interface. It is important to ensure that during the whole simulation,

in particular during the shock interaction, δC is fully resolved. The resolution, controlled by the

number of refinement levels, is chosen such that at least 10 points are used to resolved the interface

thickness.
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At t > 0, we define the centerline of the smeared density interface by

zc(x, t) ≡
∫∞
−∞ z(1− ψ)ψdz∫∞
−∞(1− ψ)ψdz

. (2.25)

At a given time t, for a fixed x, the scalar profile is well approximated by a tanh centered at zc(x, t)

and with thickness δC(t):

ψ(x, z, t) =
1
2

[
1 + tanh

(
2(z − zc(x, t))

δC(t)

)]
. (2.26)

It is easily verified that zc(x, t) is recovered when (2.26) is used in (2.25). The spike and the bubble

positions and the flow velocity at these locations allow a measurement of perturbation amplitude

and growth rate:

h(t) = |
zcspike − zcbubble

2
|, (2.27a)

ḣ(t) = |
w|zcspike − w|zcbubble

2
|. (2.27b)

2.4.2 Parametric Study of the Amplitude and Growth Rate of the Inter-

face Perturbation

The parameters involved are the pre-shock Atwood ratio A, the ratio of specific heats γj for each

specie, the incident shock Mach number MI (or its strength S), the perturbation wavenumber k, and

the pre-shock perturbation amplitude h0. The Atwood ratio is chosen such that the temperature

is continuous across the initial interface (which is consistent with experimental conditions), and as

a result A is a function only of the molecular weights of both species. To a given combination

of parameters corresponds a numerical simulation from which amplitude and growth rate of the

interface are obtained. Simulation data are compared to the theoretical model presented in the

previous section on (2.16).

First recall that the incident shock strength is given by the ratio of the pressures ahead and

behind the incident shock p0 and p0′′ , or in terms of the incident Mach number:

S = 1− p0

p0′′
=

1
1 + γR+1

2γR(M2
I−1)

. (2.28)

In the region on the right of the interface before the shock interaction, the speed of sound

a0 ≡
√
γRp0

ρ0
(2.29)
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(a) h(t)/h0 (b) ḣ/a0

Figure 2.3: Early-time close-up: dimensionless amplitude and growth rate of the interface pertur-
bation h(t)/h0 and ḣ/a0 vs. a0kt; case air → SF6, kh0 = 0.1, MI = 1.5. Numerical simulations
using AMROC are represented by crosses. The thin dashed and thick solid lines correspond to our
model given by Equation (2.16) with two different choices for ḣ∞. The thin dashed line corresponds
to our model using Richtmyer’s asymptotic growth rate ḣ∞ = ḣRich., while the thick solid line uses
Yang’s correction to Richtmyer’s asymptotic growth rate ḣ∞ = FY ang ḣRich.. ḣRich. is given by
Equation (2.20) and FY ang is provided by Yang’s linearized simulations [120]. We also recall that
the model gives an explicit expression for the growth rate from Equation (2.16), but the amplitude
of the interface perturbation is obtained by numerically integrating Equation (2.16)

is the reference velocity scale in the data representation. 1/(a0k) is the reference time scale. Table 2.1

shows different types of shock-contact interaction (at a fixed kh0). For each combination of species,

at a given Mach number, we compute the post-shock Atwood ratio A+, the dimensionless time

a0kτ , the dimensionless impulsive growth rate kh(0+)A+∆W/a0, and the correction factor F to

Richtmyer’s impulsive growth rate using Yang’s numerical computations (see Figure 16 of [120]), or a

model based on Richtmyer’s circulation or Samtaney’s initial circulation deposited during the shock

interaction. Comparing to the reference computations of Yang, the model based on Samtaney’s

circulation appears satisfactory for low Atwood ratios, but overestimates the asymptotic growth

rate for high Atwood ratios. This is because we used Samtaney’s circulation derived for low-density

contrasts (see domain of validity in figure 15 of [99]). The model based on Richtmyer’s circulation

overestimates the growth rate for low Atwood ratios, but performs very well for higher Atwood ratios

and a wide range of Mach numbers as shown in the example of air→ SF6. Some further effort on

modeling could be justified, in particular because the factor ((1−A+)US2−(1+A+)US1)/(US2−US1)

does not tend to unity in the limit of weak incident shocks. We note that the simulations were used

to evaluate h(0+). The post-shock amplitudes proved to be almost independent on k over the chosen

range of k and Table 2.1 presents results obtained with a fixed k.



22

MI S A+ a0kτ kh(0+)A+ ∆W
a0

FY ang FRich.Circ. FSamt.Circ.

air→ CO2 1.2 0.339 0.222 0.735 0.0048 1.07 1.90 0.86
γR = 1.40 γL = 1.29 1.5 0.593 0.237 1.095 0.0092 1.14 1.85 0.72

A = 0.21 2.0 0.778 0.253 1.368 0.0128 1.12 1.79 0.60

Ar→ Xe 1.2 0.355 0.533 1.053 0.0087 1.06 1.61 1.24
γR = 1.67 γL = 1.65 1.5 0.610 0.527 1.393 0.0175 1.11 1.55 1.13

A = 0.53 2.0 0.789 0.507 1.455 0.0251 1.16 1.53 1.03

1.2 0.339 0.700 1.914 0.0114 1.02 1.24 1.41
air→ SF6 1.5 0.593 0.732 3.153 0.0231 0.96 1.07 1.26

γR = 1.40 γL = 1.09 2.0 0.778 0.766 4.492 0.0390 0.85 0.89 1.09
A = 0.67 3.0 0.903 0.801 5.586 0.0669 0.71 0.72 0.92

5.0 0.966 0.825 5.203 0.1144 0.61 0.61 0.83
8.0 0.987 0.835 3.908 0.2103 0.56 0.57 0.78

He→ air 1.2 0.355 0.770 2.024 0.0100 1.01 1.11 1.81
γR = 1.67 γL = 1.40 1.5 0.610 0.779 2.837 0.0222 1.00 1.00 1.67

A = 0.76 2.0 0.789 0.780 3.122 0.0401 0.56 0.57 0.78

Table 2.1: Various shock-contact interactions for different species and varying incident Mach num-
ber, with kh0 = 0.1. For each gas combination and incident Mach number MI , the shock strength
S, post-shock Atwood ratio A+, dimensionless characteristic startup time a0kτ , and dimensionless
Richtmyer’s asymptotic growth rate kh(0+)A+∆W/a0 (see Equation (2.20)) are evaluated by solv-
ing the one-dimensional shock-interface interaction problem. FY ang is given by Yang’s linearized
simulations [120] and represents the exact asymptotic growth rate for the RMI in the linear regime.
The models for FRich.Circ. (given by Equation (2.23a)) and FSamt.Circ. (given by Equation (2.24a))
must be compared to the reference value FY ang.

2.4.2.1 Amplitude and Growth Rate

Figure 2.3 shows the early-time evolution of amplitude and growth rate of the perturbation for a set

of parameters indicated in the caption. The model captures well the time-scale of the growth. In

order to capture the higher-frequency features in details, which are purely compressible effects due

to reverberation of waves between the interface and shocks, a higher-order solution in εj would be

needed as well as higher-order boundary conditions at shocks.

2.4.2.2 Influence of kh0

We now discuss and summarize the influence of the dimensionless parameter kh0 without showing

relevant figures of the growth amplitude and rate vs. time. Consider for example the shock inter-
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action air → SF6, as an incident shock of Mach number MI = 1.2 travels from air to SF6. The

initial dimensionless amplitude of the perturbation kh0 was varied from 0.03 to 0.3 (varying both

k and h0 independently). Additional levels of refinement were used in the simulations such that

sufficient resolution was provided to capture smaller wavelengths as well as smaller amplitudes of

the perturbation. As long as kh(t) remained small compared to 2π, the growth was observed to be

predominantly linear and good comparisons were obtained between theory and simulation. As kh0

increased (typically kh0 ∼ 0.2 in the present case), the linear growth was found to become faster

and to compete earlier with non-linear growth.

2.4.2.3 Influence of MI

We consider further the case of the air → SF6 interaction. The perturbation shape is fixed in

amplitude h0 and wavenumber k, with kh0 = 0.1. The effect of incident shock strength is now

studied (see Table 2.1). Figure 2.4 shows good agreement between the simulated amplitude and that

obtained from the model using Yang’s correction for different shock strengths. We recall that the

combination air→ SF6 is the most critical test for very strong incident shocks where the discrepancy

between the model of Richtmyer significantly overestimates the actual asymptotic growth rate. For

very high incident shock strengths, non-linear slowdown appears earlier and the asymptotic linear

growth at late times tends to overestimate the terminal growth obtained in the simulations. It is

surprising that the model works rather well even in the strong incident shock case where the interface

is accelerated enough that it remains close to the transmitted shock, yet the incompressible model

does not include the direct coupling between interface and shock perturbations.

2.4.2.4 Influence of the Species

An incident shock of moderate Mach number MI = 1.5 impacts a density interface of characteristics

h0 and k fixed such that kh0 = 0.1. The main characteristics of these interactions are reported in

Table 2.1. Perturbation amplitude vs. time is represented on Figure 2.5. As shown in Figure 2.6, the

growth rate of the instability computed from the simulations exhibits a different structure depending

on the combination of species chosen, but the model summarizes well the simulated growth rate, in

particular for low density ratios. Here, the captured growth rate He→ air appears noisier than the

other gas-pair combinations.

2.5 On the Time-Scale τ

In this section we investigate the dependence of τ , given by (2.19), on the flow parameters sufficient

to describe the RMI. The timescale τ represents the characteristic time for the growth rate to attain

the constant asymptotic growth rate predicted by the present linearized model. This asymptotic
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growth generally persists for a further time period, which may be long compared with τ , and is

then followed by the onset of the non-linear regime, when the amplitude of the perturbation has

increased and the growth-rate begins to slow. Non-linear effects are expected for high k, A, or MI

(thus ∆W ), as appearing, for example, in Figure 2.4c.

In the present theory, the dimensionless time a0kτ depends on the post-shock Atwood number

A+ and the reflected shock speeds US1 and US2 . These quantities in turn are functions of the pre-

shock Atwood number A (−1 < A < 1), the incident shock Mach number MI or equivalently its

shock strength S (0 < S < 1), and the specific heat ratios γR (for the fluid on the right of the

interface) and γL (on the left). They can be computed by solving the one-dimensional Riemann

problem at t = 0 for the range of parameters that admit a reflected-shock solution. Presently we

consider a0kτ as a function of (A,S) for given γL, γR. If it is assumed that for t < 0 the interface

is both temperature and pressure matched, then A is determined uniquely by the ratio of molecular

weights of the species separated by the interface: see Table 2.1.

2.5.1 Domain of Validity in the Case of a Reflected Shock

Because we presently restrict attention to the reflected-shock case, it is useful to consider the domain

of validity for this case in terms of the parameters that determine a0kτ . A (p-w)-diagram analysis

enables determination of the reflected wave type produced when a plane shock impacts a plane

interface, depending on the parameters A, S, γR, and γL. Generally, a reflected shock is produced

if the acoustic impedance on the right of the interface ρRaR is less than the left one ρLaL, that is

A >
γR − γL
γR + γL

. (2.30)

If γR = γL, this is simply A > 0; a reflected shock is produced for a light-to-heavy shock-contact

interaction. Anomalous reflection can actually occur in the case γR 6= γL for particular incident shock

strengths. Omitting the detailed analysis of the shock-contact interaction problem, we summarize

the conditions for reflected shock in Table 2.2. The critical incident shock strength S? beyond which

the reflected wave type changes depends on A as

S?(A) = 2
γR − γL − (γR + γL)A

γR − γL − (γR + γL − 2)A
. (2.31)

For real gases, γR and γL are sufficiently close that the change in the structure of the reflected wave

occurs at relatively small Atwood ratios.
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γR = γL : ∀A ∈]0, 1[,

γR < γL : ∀A ∈] γR−γL
γR+γL+2 , 1[,

or ∀A ∈]γR−γLγR+γL
, γR−γL
γR+γL+2 [, S ∈]0, S?(A)[

γR > γL : ∀A ∈]γR−γLγR+γL
, 1[,

or ∀A ∈] γR−γL
γR+γL+2 ,

γR−γL
γR+γL

[, S ∈]S?(A), 1[

Table 2.2: Conditions, in the (A,S) space, for the reflected wave to be a shock wave.

2.5.2 Parametric Study of τ

For the case of a reflected shock, the dimensionless startup time a0kτ was computed numerically as

a function of (A,S) for several sets of γL, γR. Results are shown in Figure 2.7 where it can be seen

that τ reaches its highest values for A close to unity, and for high incident shock strengths S. These

conditions correspond to the situation where the accelerated interface follows closely the transmitted

shock. Pressure waves actively move back and forth between the interface and the shock, and τ , that

was determined from an incompressible analysis, can be understood as the result of an averaging

of these reverberating waves adding or removing baroclinic vorticity at their passage through the

interface, and therefore affecting the growth of the perturbation. This idea is validated by the various

successful comparisons against numerical simulations as shown in the precedent section.

We investigate the weak incident shock limit S → 0+. On performing analysis of the one-

dimensional shock-contact interaction in this limit (omitted presently), it is found that both reflected

and transmitted shocks are weak. The post-shock Atwood ratio A+ tends to the pre-shock Atwood

ratio A, and the shock speeds in the frame of the moving interface tend to the pre-shock sound

speeds on each respective side of the interface. This leads to

a0kτ =
(1−A)3/2 +

√
γR
γL

(1 +A)3/2

2
√

1−A
+ O(S) as S → 0+. (2.32)

The dominant term of τ is independent of S. In particular, in this limit, as A→ 0+ and if γR = γL,

a0kτ → 1. As A→ 1−, τ becomes infinite.

The strong shock limit S → 1− is now analyzed. As the incident shock becomes stronger, the

transmitted shock strength increases accordingly while the Mach number of the reflected shock

converges to a finite number MR∗ . The post-shock Atwood ratio tends to a finite value A+
∗ . Finally
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τ is given by

a0kτ =
1
2

√
γR + 1
γR − 1

 1−A+
∗

MR∗ − 2
γR+1

M2
R∗−1

MR∗

+
1 +A+

∗

(γL − 1)
(

(2γR(γR − 1))−1/2 − 1
γR+1

M2
R∗−1

MR∗

)


×
√

1− S +O((1− S)n) as S → 1−, (2.33)

with n > 1/2 a priori and where A+
∗ is a function of MR∗ of the form

A+
∗ =

1−
(

1−A
1+A

)(
γR+1
γR−1

)(
γL−1
γL+1

)
M2
R∗

(
1 + γR−1

γR+1 (M2
R∗
− 1)

)−1

1 +
(

1−A
1+A

)(
γR+1
γR−1

)(
γL−1
γL+1

)
M2
R∗

(
1 + γR−1

γR+1 (M2
R∗
− 1)

)−1 , (2.34)

and MR∗ is itself a function of (γR, γL, A) obtained from solving the following polynomial equation:

(
1 +

2γR
γR + 1

(M2
R∗ − 1)

)
−
(

1 +A

1−A

)(
γL + 1
γR + 1

)(
1−

√
2γR(γR − 1)
γR + 1

M2
R∗
− 1

MR∗

)2

= 0. (2.35)

Finally, we consider the limiting case A→ 1−, or ρL � ρR (e.g., gas-to-liquid RMI). The shock

interaction compressing the heavy fluid, the post-shock Atwood ratio also tends to 1−. Moreover, the

shock speed naturally becomes smaller and smaller on the heavy side, such that in Equation (2.19),

the second term is dominant, and τ ∼ 1/(k(−US1)). Since −US1 is the following function of the

transmitted shock Mach number MT

−US1 = a0

√
γL
γR

√
1−A
1 +A

(
MT −

2
γL

M2
T − 1
MT

)
, (2.36)

where MT converges to a finite value MT∗∗ as A→ 1− (MT∗∗ is obtained by solving numerically the

one-dimensional Riemann problem for a given shock strength S), we then have

a0kτ =

√
2γRγL

MT∗∗ − 2
γL+1

M2
T∗∗−1

MT∗∗

1√
1−A

+ O
(

1
(1−A)m

)
as A→ 1−, (2.37)

with m < 1/2.

The analysis of τ for small A is more difficult to investigate since the nature of the reflected wave

can change in this region, as discussed earlier.

2.6 Summary

A simple analytical model for the initial growth rate of the planar RMI has been presented for the

case of a reflected shock, which corresponds in general to a light-to-heavy shock interaction. The
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model captures the main features of the interfacial perturbation growth before the regime with linear

growth in time is attained. The analysis provides a characteristic dimensionless time scale a0k τ for

the startup phase of the RMI, where k is the perturbation wavenumber and a0 the pre-shock sound

speed on the ‘light’ side of the interface, and provides an explicit expression for τ as a function of

k, the algebraic transmitted and reflected shock speeds US1 < 0 and US2 > 0 and the post-shock

Atwood number A+:

τ =
1
2k

(
1−A+

US2

+
1 +A+

(−US1)

)
. (2.38)

Results have been compared with computations obtained from two-dimensional, highly resolved nu-

merical simulations of the RMI. The RMI-startup model has been found to perform well over a wide

range of incident shock strength S and pre-shock Atwood ratio A. A degree-of-freedom appearing

in the analysis allows for additional modeling of the baroclinic vorticity deposition produced by the

shock-interface impact physics. Several scenarios for corrections to the asymptotic growth rate of

Richtmyer have been investigated, with emphasis on the case of very strong incident shocks. Ex-

tensions to the present analysis could lead to improved understanding of the linear RMI in more

complex applications, such as imploding waves propagating into a stratified medium (see Chapter 3).
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(a) MI = 1.2 (b) MI = 1.5

(c) MI = 2.0 (d) MI = 3.0

(e) MI = 5.0 (f) MI = 8.0

Figure 2.4: Influence of MI : dimensionless amplitude of the interface perturbation h(t)/h0 vs. a0kt;
case air→ SF6, kh0 = 0.1. For key, see Figure 2.3.



29

(a) air→ CO2 (b) Ar→ Xe

(c) air→ SF6 (d) He→ air

Figure 2.5: Influence of the species: dimensionless amplitude of the interface perturbation h(t)/h0

vs. a0kt; case kh0 = 0.1, MI = 1.5. For key, see Figure 2.3.
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(a) air→ CO2 (b) Ar→ Xe

(c) air→ SF6 (d) He→ air

Figure 2.6: Influence of the species: dimensionless growth rate of the interface perturbation ḣ/a0

vs. a0kt; case kh0 = 0.1, MI = 1.5. For key, see Figure 2.3.
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(a) γR = γL = 1.1 (b) γR = γL = 1.4

(c) γR = 1.1 < γL = 1.4 (d) γR = 1.4 > γL = 1.1

Figure 2.7: Contour levels of a0kτ in the (A,S) space; for each combination of specific heat ratios
a dashed line drawn for small A represents the boundary of the domain of validity of τ as discussed
in Subsection 2.5.1.
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Chapter 3

Linear Perturbations in the
Three-Dimensional Cylindrical
Richtmyer-Meshkov Instability

3.1 Introduction

The research cited previously in Chapter 1 concerns mainly the non-linear and/or multi-mode regime

of the RMI initialized with large interface perturbation amplitudes, as well as the reshock process

and the subsequent turbulent mixing. Recent analytical work has also been reported on the effects

of convergence on the linear, or small-amplitude regime of RMI occurring in spherical [80] and

cylindrical [81] stratified shells. For simplicity, compressible effects often observed in the RMI of

gases (such as shock refraction, shock proximity effects, etc. [116]) were omitted. Moreover, in the

cylindrical case, Mikaelian only considered purely azimuthal perturbations.

Presently we study several features of the three-dimensional cylindrical RMI in the linear regime,

using both simple analysis and numerical, Euler-based simulations. The analysis of Section 3.2 first

extends, to three-dimensional azimuthal and axial perturbations, the results of Mikaelian (in the case

of one shell). An explicit expression for the asymptotic growth rate of the cylindrical linear RMI

is obtained. The effect of proximity of the transmitted and reflected shocks produced by the initial

shock refraction is also modeled following the methodology described in Chapter 2. Section 3.3

compares results from the linearized analysis to numerical simulations of the RMI under various

initial conditions. The effects of azimuthal and axial wavenumbers for different incident shock

strengths and a comparison with the plane RMI are exposed.
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3.2 Incompressible Linear Theory for Three-Dimensional

Cylindrical Perturbations

3.2.1 General Evolution Equations

The interaction of a shock with a perturbed density interface is an atypical hydrodynamics stability

problem. The shock refraction process produces distorted transmitted and reflected waves in the

vicinity of the interface. The related perturbed pressure field induces perturbations in the tangential

component of the velocity field to the interface, producing circulation that can be directly related

to the initial baroclinic vorticity deposited at the interface. In what follows, t = 0 refers to the time

right when the shock impacts the interface, in the zeroth-order, or unperturbed flow. We denote by

the subscript j = 1 the region on the outer side of the interface where the incident shock originates,

and by j = 2, the region on the inner side of the interface. This includes the axis.

The stability of density interfaces in converging geometries was studied by Plesset [86] in the

particular case of spherical bubbles. For imploding flows, a sink-like motion with center r = 0 was

used to produce flow/interface contraction while maintaining constant density. Following Plesset

and Mikaelian [81], we model our base flow as an incompressible impulse sink of strength to be

determined of the form m(t) = µ(t)H(t) with velocity potential

Φ(r, t) = m(t) ln
(

r

R(t)

)
, (3.1)

R(t) being the base radial position of the interface and H(t) the Heaviside function at time t. For

an imploding, accelerated flow, µ(t) < 0 for t ≥ 0. Impulsively accelerated flow requires m(0) < 0.

At this point, µ(t) and R(t) remain to be specified. The base velocity field is given by

U (r, t) =
m(t)
r

er. (3.2)

We consider three-dimensional azimuthal and axial infinitesimal perturbations about the time-

dependent state R(t) of the form

φ′j(r, θ, z, t) = fj(r)gj(t)ei(nθ+kz) (3.3a)

ζ(θ, z, t) = R(t) + h(t)ei(nθ+kz). (3.3b)

The perturbed potential φ′j(r, θ, z, t) for the gas j (j = 1, 2) is assumed to be separable in r and

t, ζ(θ, z, t) is the perturbed position of the interface after it has been impulsively accelerated by

the passage of the shock and n and k are integers representing respectively the azimuthal and axial

wavenumbers and are assumed to not be functions of time.
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When the interface is strictly cylindrical, a kinematic condition that the radial velocity is con-

tinuous at the interface, and equal to an interfacial particle velocity gives that

Ṙ =
(
∂Φ
∂r

)
r=R

, (3.4)

which leads to

µ = RṘ. (3.5)

Full knowledge of the base flow therefore requires specification of the implosion/explosion history

R(t), at least for times such that the perturbation growth remains linear. We insist on the simple

constraint that R is at least piecewise continuous at t = 0, and we define R0 ≡ limt→0R(t). The

interface speed Ṙ and the potential strength µ may be discontinuous at t = 0. The jump in Ṙ around

t = 0 simply represents the impulsive change in the interface velocity ∆W . This presently models

the impulsive acceleration produced by the shock interaction. Defining ∆W > 0 for an implosion

(respectively explosion) the jump in radial velocity is −∆W (respectively ∆W ) since the motion

is inwards (respectively outwards). ∆W can be computed by solving the locally plane interaction

of the incident shock with the unperturbed interface. Requiring that the base pressure field be

continuous at the interface, and using Bernoulli’s theorem shows that

ρ1

[
∂Φ
∂t

+
1
2

(
∂Φ
∂r

)2

− C1(t)

]
= ρ2

[
∂Φ
∂t

+
1
2

(
∂Φ
∂r

)2

− C2(t)

]
r=R

. (3.6)

Consider now the distorted interface. The kinematic condition Dζ/Dt = (u .n)r=ζ , where u

is the velocity field and n is the local normal to the interface, can be linearized and simplified as

follows using the base kinematic condition (3.4)

ḣ+
ṘH

R
h = gjf

′
j(R), for j = 1, 2. (3.7)

Similarly, a dynamic condition is obtained by linearizing the continuity of pressure at the perturbed

interface and, using Equation (3.6) to give

RṘHḣ+ [(Ṙ2 +RR̈)H +RṘδD]h =
R

2

[(
1
A
− 1
)
f1(R)ġ1 −

(
1
A

+ 1
)
f2(R)ġ2

]
. (3.8)

where δD(t) is the Dirac delta function and A = (ρ2 − ρ1)/(ρ2 + ρ1) represents the Atwood number

based on the densities on each side of the interface. To be precise, A should also depend on t in

the radially imploding base flow, but in what follows, for simplicity, A will be assumed constant.

Its value could be identified with the post-shock Atwood number A+ given by the densities of
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the two post-shocked regions found in the plane shock interaction analysis leading to ∆W . The

unknown functions of time (h, g1, g2) can be found by solving numerically the set of three first-

order ODE (3.7,3.8) given the history of the unperturbed interface position R(t) and specific initial

conditions.

3.2.2 Richtmyer’s Approach

Richtmyer first modeled interfacial instability produced by a plane shock impact on a perturbed

density interface using incompressible fluids. This essentially assumes that the transmitted and

reflected waves have already traveled sufficiently far from the interface. He also replaced the constant

gravitational acceleration of Taylor’s [107] linear theory by an impulse that modeled the initial shock

interaction as a brief event; this ignores the compressible effects of the initial shock refraction phase.

Without loss of generality, we consider the case of an imploding shock interaction. Ignoring for now

the transmitted and reflected waves, and assuming also that no re-shock has yet occurred following

shock reflection off the axis, the relevant post-shock regions on each side of the interface to be

considered are ζ < r <∞ for region j = 1, and 0 < r < ζ for region j = 2.

The functions fj(r), j = 1, 2, are fully determined by solving the Laplace equation for the

perturbed potential ∆φ′j = 0 on each side of the interface. The fj(r) are then generally a linear

combination of the modified Bessel functions of the first and second kinds, In(kr) and Kn(kr). For

the fluid j = 1 (region r > ζ), the boundary condition ∇φ′1 → 0 as r → +∞ is prescribed. For the

fluid j = 2 (region 0 < r < ζ), φ′2 should remain non-singular as r → 0. We then obtain

f1(r) =

 Kn(kr) ; k > 0(
R0
r

)n
; k = 0

, (3.9a)

f2(r) =

 In(kr) ; k > 0(
r
R0

)n
; k = 0

. (3.9b)

We require h continuous at t = 0 and h(0) ≡ limt→0 h(t) but for an impulsively accelerated flow

modeling the shock refraction process, the gj as well as ḣ are a priori discontinuous at t = 0. Next,

a set of dimensionless variables is prescribed as

h̃ =
h

h(0)
; r̃ =

r

R0
; t̃ =

t

R0/∆W
; g̃j =

gj
h(0)∆W

. (3.10)

together with an axial wavenumber κ = kR0. Integrating the linearized dynamic condition (3.8)

between t = 0− and 0+ and using Equation (3.7), the growth rate of the three-dimensional pertur-
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bation, as well as the perturbed potential functions gj , at t = 0+ are

˜̇
h(0+) = 1 + κAF (n, κ,A), (3.11a)

g̃1(0+) = A
F (n, κ,A)
K ′n(κ)

, (3.11b)

g̃2(0+) = A
F (n, κ,A)
I ′n(κ)

, (3.11c)

where F (n, κ,A) is given by

F (n, κ,A) = 2
/(

(1 +A)
In(κ)
I ′n(κ)

− (1−A)
Kn(κ)
K ′n(κ)

)−1

. (3.12)

The result obtained for the growth rate assumes that transmitted and reflected waves are at large

distances from the interface at t = 0. In that sense, the time t = 0+ after the passage of the incident

shock could refer to an asymptotic state, and Equation (3.11a) would represent the asymptotic

growth rate of the instability in the sense of Richtmyer. Note that, as the linear growth rate in the

plane RMI, the dimensional initial growth rate is proportional to the amplitude h(0) at t = 0 (see

next section), as well as ∆W , in other terms −Ṙ(0+). The interface initial acceleration R̈(0+) does

not appear in the initial growth rate. The initial growth rates for the plane and curved RMI are

similar in that sense.

In order to compare the growth rate obtained in cylindrical geometry with its plane counterpart

for a given A, we plot in Figure 3.1 the difference between the dimensionless growth rate given

by (3.11a) with Richtmyer’s asymptotic growth rate for a two-dimensional plane perturbation with

equivalent wavenumbers k and n/R0. The plane growth rate is
√
n2 + κ2A.

3.2.2.1 Limit Cases

Several limiting cases in A are of interest. In particular

˜̇
h(0+) ∼ 1 if A→ 0 , i.e., ρ1 ∼ ρ2, (3.13a)˜̇
h(0+) ∼ 1 + κ

I ′n(κ)
In(κ)

if A→ 1 , i.e., ρ1 � ρ2, (3.13b)

˜̇
h(0+) ∼ 1 + κ

K ′n(κ)
Kn(κ)

if A→ −1 , i.e., ρ1 � ρ2. (3.13c)

The growth when A→ 0 is purely kinematic produced by the converging geometry, also observed in

spherical geometries. To verify this consider a fluid element at radius R(t)+h(t) whose base velocity

is µ(t)/(R(t) + h(t)), and a fluid element at radius R(t) with velocity µ(t)/R(t). Growth naturally

appears due to this difference in velocities and produces a dimensionless growth rate equal to unity.
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(a) A = −0.5 (b) A = 0.5

Figure 3.1: Iso-contours of the difference between the (dimensionless) cylindrical growth rate and
the plane one (1 + κAF (n, κ,A))−

√
n2 + κ2A, in the wavenumber space (n, κ), with κ ≡ kR0.

More interesting are the limit cases obtained when varying κ and n

˜̇
h(0+) ∼ 1 + nA if κ� n and n ≥ 1, (3.14a)˜̇
h(0+) ∼ 1 + n

2A
1 +A

if κ� 1 and n� 1, (3.14b)

˜̇
h(0+) ∼ 1 + κA if κ� n and κ� 1. (3.14c)

Equation (3.14a) corresponds to purely azimuthal perturbations [81], the limit κ� n being equiv-

alent to λθ � λz (strictly polar flow). The third limit behavior presented in Equation (3.14c)

corresponds to purely axial perturbations. The effect of the curvature is not seen, except through

the kinematic growth term, and the linear behavior is similar to the plane linear growth with

z-perturbations. In dimensional quantities, the linear growth, excluding the kinematic growth com-

ponent, is kh(0)A∆W , with ∆W = −Ṙ(0+), similar to Richtmyer’s plane linear growth where ∆W

was the constant speed at which the interface is accelerated in the direction of the shock propagation.

3.2.2.2 Critical Perturbations

We discuss here critical perturbations that are stable for any implosion or explosion history. For any

Ṙ(t) or µ(t), then if ḣ(t < 0) = 0, then ḣ(t) = 0, t > 0. These perturbations do not grow and the

perturbation amplitude remains fixed at h0. Re-writing both conditions (3.7, 3.8) at the interface
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for these critical perturbations, and integrating the second condition between t = 0− and t > 0 gives

ṘH
R h0 = gjf

′
j(R), for j = 1, 2 , (3.15a)

2h0

∫ t
0−

[(
Ṙ2

R + R̈
)
H + ṘδD

]
dt =

(
1
A − 1

) ∫ t
0−
f1(R)ġ1dt−

(
1
A + 1

) ∫ t
0−
f2(R)ġ2dt.(3.15b)

Integrating by parts both integrals on the right-hand side of Equation (3.15b) and using Equa-

tion (3.15a) to evaluate the two resulting integrals produced, all integral terms cancel and, using

Equations (3.9a,b) and (3.12), we obtain for any t

(
kRA+

1
F (n, kR,A)

)
Ṙ = 0. (3.16)

We eliminate the trivial case Ṙ = 0 corresponding to a stationary interface. For a given history

R(t), and given n and k, critical perturbations occur only for specific values of Ac ∈ [−1, 1] given

by

1 + kRAF (n, kR,A) = 0. (3.17)

Equation (3.17) is equivalent to determining the particular Atwood ratio Ac ∈ [−1, 1] such that

Ac(n, kR) =
(
Kn(kR)
K ′n(kR)

− In(kR)
I ′n(kR)

)/(Kn(kR)
K ′n(kR)

+
In(kR)
I ′n(kR)

+ 2kR
)−1

. (3.18)

Iso-contours of Ac are plotted in Figure 3.2. It is observed that critical perturbations only appear

for negative A which corresponds in general to a heavy-to-light shock interaction. The absolute

value |Ac| reaches its maximal value unity for a particular combination of small wavenumbers, while

|Ac| → 0 as the wavenumbers n or kR increase. Note also that Equation (3.17) is consistent

with the expression (3.11a) in the limit t → 0, t > 0, since kR → kR0 ≡ κ. We also recall that

this phenomenon does not occur in plane geometry where the condition for critical perturbations

derived from Richtmyer’s impulsive growth rate is trivially kA = 0. In the limit of purely azimuthal

perturbations kR� n with n ≥ 1, the condition 1 +nA = 0 derived by Mikaelian in the case of one

interface separating two cylindrical concentric shells (N = 2 in [81]) is recovered.

3.2.2.3 Assumption of Constant Interface Velocity

We now obtain an explicit expression for the growth amplitude as a function of time. For simplicity

we consider the limit of purely azimuthal perturbations. Eliminating gj from (3.8) using (3.7), a

single second-order ODE for the perturbation amplitude h is obtained. This can be simplified in the

azimuthal limit given (3.9a,b) for k = 0. The result has a form similar to that obtained by Bell [2]
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Figure 3.2: Contour levels of the Atwood ratio Ac corresponding to critical perturbations, in the
wavenumber space (n, kR), for a given history R(t).

for A = ±1 and for general Atwood ratios by Mikaelian (Equation (16) of [81])

d
d
t

(
R2ḣ

)
+ (nA+ 1)[RR̈Hh+RṘ(δDh+ (H − 1)ḣ)] = 0. (3.19)

Our form is a result of defining the problem through the strength m(t). Integrating the previous

equation between t = 0− and t, t being sufficiently small enough that can assume that the imploding

or exploding interface velocity remained almost unchanged), we integrate Equation (3.19) in t and

recover Equation (3b) of [81] obtained assuming that the interface moves at a constant velocity ∆W

related to the constant impulsive acceleration ∆WδD(t). The dimensionless perturbation amplitude

is:

h̃(t̃) = 1− (nA+ 1)

(
1− 1

R̃(t̃)

)
, (3.20)

where R̃ ≡ R/R0 is the dimensionless position of the interface. Since the interface is assumed to

move at a constant speed, R̃(t̃) = 1 − t̃, and Equation (3.20) suggests that in the case t̃ � 1 (i.e.,

for large radii R0 � ∆W t in the linear regime time considered), the dimensional perturbation

amplitude reduces to h(0)(1 + (nA + 1)∆Wt/R0), which corresponds to the plane perturbation

amplitude derived by Richtmyer h(0)(1 + KA∆Wt) if we replace K by n/R0 (initial wavelength

2πR0/n) and ignore the geometrical component of the growth.
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3.2.2.4 Effect of the Interface Acceleration

Unlike the planar case, the present unperturbed, or base flow, has no analytical solution. Further,

we have so far ignored the acceleration of the interface for t > 0 produced by the nonuniform flow

behind the converging shock. A detailed analysis presented in Appendix A utilizes the solution

of Chisnell [15] for the flow behind the shock to approximate the post-shocked interface position

right after the shock interaction (t > 0). We refer to Subsection 3.3.3 for a precise description of

Chisnell’s solution. This takes into account the post-shock acceleration of the interface R̈(0+). In

dimensionless variables, this result can be expressed as

R̃(t̃) = 1− t̃−

(
α2

V02

− 1
)[

(2α2γ2 − γ2 − 1)
α2

V02

− α2(γ2 − 1)
]

2α2

(
2
α2

V02

+ γ2 − 3
)
α2

V02

t̃ 2 +O
(
t̃ 3
)
, (3.21)

where γ2 is the adiabatic exponent in the fluid j = 2. For a given space index s (equal to 2

in cylindrical geometry), Guderley’s exponent α2 and the coefficient α2/V02 (see Equation (3.10)

of [15]) depend only on γ2. For the case of SF6, γ2 = 1.09, R̃ ' 1 − t̃ − 0.011t̃ 2. This model

predicts that, when the interface has traveled half-way to the origin, the trajectory correction due

to the acceleration is of about 0.6%. By comparison, simulations in the same fluids using the same

initialization showed a departure of about 2% for a wide range of incident Mach number. At this time

of the instability growth, the interface has shown substantial radial convergence and the amplitude

grown sufficiently that we can conclude that the interface acceleration effect is small compared with

more important effects such as pure geometrical convergence, non-linearities, or shock proximity, as

discussed in the following paragraph.

3.2.3 Effect of Shock Proximity

Until now the analysis has focused on the growth rate attained by small three-dimensional cylindrical

perturbations assuming that reflected and transmitted waves produced by the shock refraction were

instantaneously at infinity immediately following shock-interface impact. This asymptotic growth

rate, written ḣ(0+) and defined in dimensionless variables by Equation (3.11a), is hereinafter denoted

ḣ∞. To evaluate ḣ∞ , A is now taken as the post-shock Atwood ratio A+ and h(0) the post-shock

amplitude h(0+).

One effect to consider here is well described in Chapter 2 in the case when the reflected wave

is a shock, in general characterizing light-to-heavy-type shock interactions. As both transmitted

and reflected shocks recede, they limit the early small perturbation growth rate, which ultimately

reaches the asymptotic level ḣ∞ in a characteristic time τ (see Equations (2.16, 2.19)). A typical

case for which the model proves useful is large A; in this situation τ becomes very large and shock
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proximity effects cannot be neglected (see for example Equation (2.37). Applying this model with

the present conventions for the regions j = 1 and 2:

ḣ(t) =
2 ḣ∞

(1−A+) coth(KS1(t)) + (1 +A+) coth(K(−S2(t)))
, (3.22)

where S1(t) (respectively S2(t)) is the shock position of the reflected (respectively transmitted)

shock evaluated in the frame of the moving interface and K is the wavenumber of the perturbation.

Derived in plane geometry, the model allows for the choice of the shock positions. For simplicity,

we assume, as in the plane case, that the shocks are moving at a constant speed USj determined

by solving the locally normal one-dimensional Riemann problem of an incident cylindrical shock

impacting a cylindrical density interface. This assumption is justified in the plane case but ignores

the non-uniform nature of the flow behind the traveling shock waves in the converging case. Because

the modeling of the time-dependency of the shock speeds is not a trivial problem, we leave it

for future work. For axial perturbations, K ≡ k. For azimuthal perturbations, the wavelength

λθ(t) = 2πR(t)/n is time-dependent, and the corresponding wavenumber should be taken equal

to n/R(t). For simplicity, K will presently be identified with the initial azimuthal wavenumber

K ≡ n/R0.

3.3 Numerical Simulations of the Converging Cylindrical Lin-

ear RMI

3.3.1 Numerical Method

The simulations, run on the Lawrence Livermore National Laboratory (LLNL) machine unclassified

Purple (uP), were conducted within the AMROC framework of Deiterding [21], based on the SAMR

algorithm by Berger and Oliger [4]. The numerical method, applied to each Cartesian subgrid of

the mesh hierarchy, consists of a hybrid method written for the multi-component Euler equations of

gas dynamics assuming calorically perfect gas. A WENO scheme is used to capture discontinuities

(such as shock waves, contact wave, or fine/coarse mesh interfaces) but switches to a low-numerical

dissipation, explicit, center-difference scheme, TCD, in the smooth regions [44, 83].

Assume first purely azimuthal perturbations (no dependence on the axis coordinate z). The

density interface, is nominally defined by a scalar field ψ(r, θ, t), interpolated from Cartesian data

onto cylindrical coordinates, that asymptotic to ψ(r, θ, t) = 0 on the air side and ψ(r, θ, t) = 1 on

SF6. This is initially setup using a tanh profile with intrinsic thickness δC0 taken as about one fifth

of the pre-shock perturbation amplitude h0. When the shock impacts the smeared interface, it is

compressed down to a thickness δC until the end of the shock refraction where both reflected and
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transmitted shock travel away from the interface. It is important to ensure that during the whole

simulation, in particular during the shock interaction, δC is fully resolved. The resolution, controlled

by the number of refinement levels, is chosen such that at least 10 points are used to resolve the

interface thickness.

At t > 0, we define the centerline of the smeared density interface by

rc(θ, t) ≡
∫∞

0
r(1− ψ)ψdr∫∞

0
(1− ψ)ψdr

. (3.23)

At given t, for a fixed polar orientation θ, the scalar profile is well approximated by a tanh centered

at rc(θ, t) and with thickness δC(t):

ψ(θ, t) =
1
2

[
1 + tanh

(
2(r − rc(θ, t))

δC(t)

)]
. (3.24)

It is easily verified that rc(θ, t) is recovered when (3.24) is used in (3.23). The spike and the bubble

positions and the flow velocity at these locations allow determination of the perturbation amplitude

and growth rate as

h(t) = |
rcspike − rcbubble

2
|, (3.25a)

ḣ(t) = |
ur|rcspike − ur|rcbubble

2
|. (3.25b)

In order to compute the growth amplitude and rate of the spikes and bubbles, a simulation of

the unperturbed system is run independently so that the position of the base interface centerline

rcunpert(t) can be calculated. We then define

hS(t) = |
rcspike − rcunpert

2
|, hB(t) = |

rcbubble − rcunpert
2

|, (3.26a)

ḣS(t) = |
ur|rcspike − ur|rcunpert

2
|, ḣB(t) = |

ur|rcbubble − ur|rcunpert
2

|. (3.26b)

The same process can be followed for purely axial perturbations (no dependence in θ) where, for a

given z and t, the position of the interface centerline rc(z, t) is computed.

We choose 1/(a0K) as the reference time scale for data representation, where a0 is the speed

of sound in the region j = 1 ahead of the incident shock and K is the perturbation wavenumber

(K = k for purely axial modes and K = n/R0 for purely azimuthal modes). The reference scale

for the interface, spike, and bubble amplitudes is the pre-shock amplitude h0, and the asymptotic

growth rate ḣ∞ is the reference scale for the different growth rates represented. Note that the model

for ḣ/ḣ∞ given by Equation (3.22) and plotted as a function of the dimensionless time a0kt depends

only on the incident Mach number through the values of A+ and the shock velocities.
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3.3.2 Parameters

Air → SF6 is the combination of gases chosen. The ratios of specific heats are γ1 ≡ γair = 1.40 and

γ2 ≡ γSF6 = 1.09. The pre-shock Atwood ratio is chosen such that the temperature is continuous

across the initial interface, which is consistent with experimental conditions. Consequently A is

a function only of the molecular weights of both species. For the gas combination chosen, the

Atwood ratio A = 0.67 is large enough that the effects of shock proximity are important. The

pre-shock perturbation amplitude h0 is taken sufficiently small in order to remain in the linear

regime as long as possible. We choose h0/R0 = 0.005. Post-shock amplitude and Atwood ratio

h+
0 and A+ are evaluated from the simulation right after the shock interaction and depend on the

incident shock strength. The varying parameters involved are the incident shock Mach number

MI immediately before impact onto the interface, and the perturbation wavenumbers n and k. To

a given combination of parameters corresponds a numerical simulation from which amplitude and

growth rate of the interface, spikes and bubbles are obtained. For what follows, we will refer to the

plane case as the one commonly described in the literature, presented in Chapter 2 (for air→ SF6)

and eventually in Subsection 3.3.6.

3.3.3 Converging Shock

We consider here ideal gases of different densities through which propagates an imploding shock wave.

In order to describe correctly the converging character of the flow behind a shock front traveling

down to the origin from infinity, the computation is initialized with solution of Chisnell [15]. Chisnell

obtained an explicit approximate analytical solution for the full gas-dynamics flow behind a radially

symmetric, imploding shock. Self-similar solutions are sought in terms of the variable ξ = r/RS(t)

where the distance RS(t) of the shock from the origin at time t is given by

RS(t) = RS0

(
tS − t
tS

)α
, (3.27)

The Mach number MS of the shock at t = 0 when the shock is at r = RS0 is related to the implosion

time tS through

tS =
αRS0

MSa0
. (3.28)

Apart from this particular subsection, the imploding shock is referred to as the incident shock and

its Mach number MS at t = 0 is noted MI , and the implosion tS will be noted tI . A study of the

singular points of the set of the three ODE in ξ obtained for the density, radial velocity and pressure

leads the determination of the similarity exponent α for different values of the specific heat ratio

γ and for cylindrical (s = 2) and spherical (s = 3) geometries. The system of equations may be
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Figure 3.3: Imploding and exploding shock front average radial positions r/R0 vs. (a0/R0)t. Super-
position of two-dimensional simulation results of cylindrical shock initialized by Chisnell’s solution
(crosses) and a power-law least-square fit for both imploding and exploding shocks (solid line).

decoupled to provide a single ODE (Equation (2.11) in [15]) to integrate approximately and two

supplementary equations to solve subsequently from the first one. Non-dimensional forms of the

density ρ, radial velocity ur and pressure p at time t and radial position r behind the shock, when

this is located at RS(t), are obtained as a function of the similarity variable ξ:

ρ

ρS
=

(
α−V(ξ)
α−VS

)η (V(ξ) + q
VS + q

)D

, (3.29a)

ur
uS

=
(

V(ξ)
VS

)1−α(V(ξ) + q
VS + q

)F

, (3.29b)

p

pS
=

(
V(ξ)
VS

)2(1−α)(V(ξ) + q
VS + q

)H

, (3.29c)

where, for each ξ, V(ξ) is found by solving

ξ =
(

VS

V

)α( V + q
VS + q

)F

, (3.30)

and in which (ρS , uS , pS) correspond to the flow just behind the shock (therefore depending on t), and

are determined using Rankine-Hugoniot jump conditions normal to the shock. In Equation (3.29)
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and (3.30), (VS , q, η,D,F,H) only depend on s and γ, directly or through α and α/V0, which are

determined by iteration in Section 3 of [15]. Approximate values for this couple are provided in

Table 1 of [15] for various γ. Explicit expressions for the constants (VS , q, η,D,F,H) are

VS =
2α
γ − 1

, (3.31a)

q = − α

V0

1
1− s(α/V0 − 1)2

, (3.31b)

η =
(

sγα

2(1− α)
− 1
)−1

, (3.31c)

D =
s− 1

1− s(α/V0 − 1)2
−
(

sγα

2(1− α)
− 1
)−1

, (3.31d)

F = α− 1− (α/V0 − 1)2

1− s(α/V0 − 1)2
, (3.31e)

H = γ
s− 1

1− s(α/V0 − 1)2
− 2(1− α). (3.31f)

The advantage of utilizing Chisnell’s converging shock solution to initialize our RMI simulations is

that, besides being easy to implement, it completely avoids spurious waves, such as those that would

be produced using a standard initial Riemann problem-type initialization. It also leaves only the

shock thickness as intrinsic length scale, since the shock has no memory of when it was produced.

As a preliminary test that the structure of the flow behind the converging shock, the shape,

strength, and position of its front are correctly computed, we set up the simulation of a single self-

similar converging shock traveling in air (assuming a constant γ ' 1.40). At t = 0, the shock has

a Mach number MS = 3.0 and stands at RS0 = R0 = 1.0, which represents 300∆x, where the grid

size ∆x is the only length scale in the problem. Since the numerical method is written for Cartesian

meshes, the circularity of the shock needs to be checked as it travels down to the center and reflects

off as an exploding shock. The eccentricity of both imploding and exploding remains less than 0.002

which proves negligible the effects of the grid on the axisymmetry of the numerical solution. The

self-similar structure of the flow behind the shock has also been observed down to very small radial

positions of the shock front. Figure 3.3 shows good agreement between Guderley’s solution and

numerical simulations initialized using Chisnell’s solution for the evolution of the shock front radial

position. Results of a 3-parameter least-square fit of the form RS0(1−t/tS)α for the imploding shock

and RES (t/tS − 1)α
E

for the exploding shock are displayed on Table 3.1. The exact dimensionless

implosion time is given by (a0/R0)tS = α/MS on Equation (3.28). The theoretical value α = 0.83532

for γ = 1.40 can be found from various studies. First, Guderley’s similarity solution assuming strong

shock, the shock radius is given by the time relative to the time at which it reaches the center raised

to some power smaller than unity [40]. Chester [13], Chisnell [14], and Whitham [114, 115] used

geometrical shock dynamics to find approximate solutions, in which their approximate result for
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the spherical case differs from the exact Guderley exponent by less than one percent. Hafner also

found very precise values of the exponent using power series to solve the equations describing the

imploding flow in Lagrangian coordinates [41]. Chisnell’s recent description [15] provides us with

approximate values of the exponent for cylindrical and spherical geometries and various γ, including

the limits γ → 1+ and γ → ∞. Good agreement is found between best fit and simulation data,

and it is interesting to notice that the exploding shock has the same Guderley’s exponent as the

imploding shock, which has been observed in [40, 87].

Imploding shock RS0/R0 (a0/R0)tS α

exact 1.00 0.27844 0.83532

best fit 0.995 0.278 0.8354

Exploding shock RES /R0 (a0/R0)tS αE

exact ... 0.27844 0.83532

best fit 0.533 0.278 0.8355

Table 3.1: 3-parameter least-square fit for imploding and exploding shocks.

3.3.4 Axial Perturbations

This configuration is axisymmetric, as shown in Figure 3.4, since no azimuthal perturbation is

applied. Highly refined two-dimensional simulations are performed in a plane (r, z) with azimuthal

orientation θ. Geometric source terms are added to the right-hand side of the Euler equations to

take into account the axisymmetry of the flow. The influence of the axial wavenumber and the

incident Mach number are investigated. In this configuration, the main effect of the geometry on

the axial perturbations is due to the acceleration of the flow towards the center.

3.3.4.1 Influence of the Axial Wavenumber k

Figure 3.5 shows the amplitude and growth rate of the interface perturbation, spikes (heavy fluid

penetrating into light fluid), and bubbles (light fluid penetrating into heavy fluid), as a function

of time, when a MI = 1.2 incident shock impacts the air→ SF6 contact. Plots of the growth
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Figure 3.4: Purely axial perturbations for a cylindrical interface.

rates suggest that the higher frequency oscillations, a compressible-flow effect produced by the

reverberation of waves traveling between the interface and the shocks, scale like the wavenumber k

of the perturbation (we insist that MI is fixed). The interface growth rate reaches an asymptotic

value well predicted by the theoretical model described in Paragraph 3.2.2 and is well captured

by the model extension using the reflected and transmitted shocks as walls moving at constant

speeds in the frame of an interface moving also at a constant velocity, even though both shocks and

interface accelerate when converging toward the origin. At late times, in particular for the highest

wavenumber for which the asymptotic growth rate is the largest, the growth of the amplitude slows

down, suggesting the appearance of non-linear effects as the amplitude becomes larger. The plots

describing the spike and bubble behavior show that, first, a change of k mostly affects the bubble

growth, and second, the late time slow-down is principally due to the slow-down in the bubble

growth.

3.3.4.2 Influence of the Incident Shock Mach Number MI

As we increase the incident Mach number for a fixed wavenumber, we first observe from Figure 3.6

that the oscillation frequencies do not only scale like the perturbation wavenumber but also on some

unknown function of MI . The interface amplitude and growth rate plots Figure 3.6a,b show that,

for strong shock interaction, as the transmitted shock and interface converge faster toward the axis,

the growth accelerates and fails to reach an asymptotic value as observed in the plane case for a

wide range of MI , or the axial case at low MI . It should be noticed that, as MI increases, the early

linear regime is reduced as the perturbation amplitude does not remain small and, the interface

and the transmitted shock converges faster towards the axis. As a consequence, the results were

reported for a more limited time window. Since we observed earlier (see Paragraph 3.2.2.4) that the
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acceleration of the interface has small effect, and noting that, for strong shocks, the interface tends

to follow closely the transmitted shock, we suggest that the shock proximity is the main effect for

the acceleration of the growth. This is not captured by the moving-wall model because, first, the

transmitted shock speed is not constant (although when not too close to the origin its acceleration is

not that large, as for the interface). Second, accelerating shocks should be used in our moving-wall

model instead of walls moving at constant speed as it is the case in the plane geometry.
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Figure 3.5: Axial perturbations: Dimensionless amplitude (left) and growth rate (right) vs. a0kt
of the interface perturbation (top), spike front (middle), and bubble front (bottom), plotted for
different axial wavenumbers k; case air→ SF6, h0/R0 = 0.005, MI = 1.2.
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 0

 2

 4

 6

 8

 10

 0  10  20  30  40  50

k a0’ t

MI=1.2
MI=2.0
MI=3.0

(c) hS(t)/h0

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 0  10  20  30  40  50

k a0’ t

MI=1.2
MI=2.0
MI=3.0
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Figure 3.6: Axial perturbations: Dimensionless amplitude (left) and growth rate (right) vs. a0kt of
the interface perturbation (top), spike front (middle), and bubble front (bottom), plotted for three
different incident Mach numbers MI ; case air→ SF6, h0/R0 = 0.005, k = 4.
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Figure 3.7: Purely azimuthal perturbations for a cylindrical interface.

3.3.5 Azimuthal Perturbations

We consider zero axial perturbation, as shown in Figure 3.7. Highly refined, two-dimensional sim-

ulations are performed in a polar plane (r, θ) with axial co-ordinate z, and the influence of the

azimuthal wavenumber as well as MI are considered. Two geometrical effects are present in this

case: the acceleration of the flow towards the origin, like in the axial case, and the convergence effect

as the azimuthal wavelength decreases during the implosion (the mode number n being invariant).

3.3.5.1 Influence of the Azimuthal Wavenumber n

As shown in Figures 3.8a,b obtained for MI fixed, the model tends to predict well the characteristic

time scale for the growth to reach a plateau. However, the value of the asymptotic growth rate is not

well predicted for small n. For the highest value, the perturbation seems less sensitive to the effect

of the curvature of the base interface; infinite values would correspond to the plane case. Indeed,

similar to the plane case or the axial case, our best prediction of the asymptotic growth rate occurs

for the case of highest n. Some high frequency oscillations are present for early times but tend to

slowly disappear at later times, which was not the case in the axial or plane case. We conclude

that the geometrical effect produced by converging geometry and predominant for low n is the main

factor affecting the growth of the azimuthal instability, more so than the acceleration of both the

interface and the transmitted shock. From Figures 3.8c–f, the behavior of the bubble structures,

more than the spikes, shows the influence of curvature on the global growth of the interface.

3.3.5.2 Influence of the Incident Shock Mach Number MI

The wavenumber is fixed to a quite high value, n = 36, so that the effect of the curvature discussed

in the last paragraph is more de-correlated from the effects that the variation of MI would produce.
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The early time behavior observed in Figure 3.9b exhibits a plateau after the first initial acceleration

of the growth. The duration of this plateau decreases as MI increases. Ultimately, an acceleration

of the growth is observed, while in the axial case shown in Figure 3.6 the growth acceleration for

high MI immediately follows the initial acceleration (for a dimensionless wavelength kR0 = 32

comparable to n = 36). This is due to the fact that, as the interface is intensely accelerated towards

the center by stronger incident shocks, the azimuthal wavenumber n/R(t) increases accordingly and

so does the growth.

3.3.6 Comparison Between Plane and Cylindrical Geometries

Both axial and azimuthal perturbations are compared to the plane growth, choosing the same

wavelength K = 3 and amplitude Kh0 = 0.12 just before the shock interaction occurs. We choose

MI = 1.2. Our earlier discussion is well summarized in Figure 3.10. It shows that the particularities

in the growth increase as we go from plane to axial to azimuthal geometries, as the acceleration,

shock proximity, and curvature effects impose their influences.

3.4 Summary

We have studied the linear stability of an interface between two compressible fluids following the

passage of an imploding or exploding shock wave. Assuming incompressible flow between the trans-

mitted and reflected shocks following shock impact, we have derived an expression for the asymptotic

growth rate for a three-dimensional combination of single-mode azimuthal and axial perturbations

as a function of the Atwood ratio A, the axial wavenumber k, the azimuthal wavenumber n, the

initial radial position of the interface R0, the perturbation amplitude h(0) during the shock passage

and ∆W the interface velocity right after the shock interaction:

ḣ∞ =
h(0)
R0

∆W

[
1 + 2kR0A

/(
(1 +A)

In(kR0)
I ′n(kR0)

− (1−A)
Kn(kR0)
K ′n(kR0)

)−1
]
. (3.32)

Several different limit cases have been investigated, allowing recovery of Mikaelian’s azimuthal the-

ory [81] and Richtmyer’s plane model [94]. We have discussed the existence of perturbations with

zero growth, typical of curvilinear geometries and obtained for particular Atwood ratios given axial

and azimuthal wavenumbers. The effect of shock proximity on the interface growth rate has been

studied in the case of a reflected shock, which corresponds in general to a light-to-heavy shock in-

teraction. Analytical predictions of the effect of parameters such as the incident shock strength,

A, and both k and n have been compared with results obtained from highly resolved numerical

simulations of cylindrically perturbed interfaces separating two perfect gases and impacted by self-

similar converging shocks. It has been observed that the growth of the instability is mainly affected
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by the incident shock strength and the curvature of the geometry. A parallel is finally made with

simulations of the plane RMI. Future comparisons with the spherical geometry are planned.
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Figure 3.8: Azimuthal perturbations: Dimensionless amplitude (left) and growth rate (right) vs.
a0(n/R0)t of the interface perturbation (top), spike front (middle), and bubble front (bottom),
plotted for different azimuthal wavenumbers n; case air→ SF6, h0/R0 = 0.005, MI = 1.2.
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Figure 3.9: Azimuthal perturbations: Dimensionless amplitude (left) and growth rate (right) vs.
a0(n/R0)t of the interface perturbation (top), spike front (middle), and bubble front (bottom),
plotted for three different incident Mach numbers MI ; case air→ SF6, h0/R0 = 0.005, n = 36.
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Figure 3.10: Dimensionless amplitude (left) and growth rate (right) vs. a0Kt of the interface
perturbation (top), spike front (middle), and bubble front (bottom), plotted for the azimuthal,
axial, and plane perturbations; case air→ SF6, MI = 1.2, Kh0 = 0.12; for the azimuthal geometry
h0/R0 = 0.005 and K ≡ n/R0 = 3, for the axial geometry h0/R0 = 0.005 and K ≡ k = 3, for the
plane geometry K ≡ k = 3.
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Chapter 4

Wave Diagrams for Shock- and
Reshock-Contact Interactions

4.1 Introduction

This work is a part of an on-going computational research on shock-generated mixing in Richtmyer-

Meshkov (RM) flows with reshock in various geometries: plane, converging cylindrical, and con-

verging spherical. An incident shock initially impacts a perturbed interface separating two fluids of

different densities. The transmitted shock produced reflects off a wall/axis/origin and reshocks the

distorted interface, initiating a strong turbulent mixing. In what follows, we use the generic term

of ‘inner boundary’ to refer to the end wall, the axis, and the origin for the plane, cylindrical and

spherical geometries respectively.

4.1.1 Previous Work

The experiments of Vetter and Sturtevant [109] and the simulations of Hill et al. [43] showed, for the

light-air-to-heavy-SF6 plane RMI mixing initiated at relatively low incident shock Mach numbers

MI , the importance of the reshock on the growth of the mixing zone in plane geometry. The stages in

the life of the post-reshock turbulent mixing zone (TMZ) can be seen clearly in the turbulent kinetic

energy of the flow. Figure 11 of [43] shows the total amount of energy deposited by the first reshock

event, at 3.5 ms. Following a steep decay in energy forming the first stage in the post-reshock

mixing zones life, a subsequent interaction with the expansion fan, shown in the wave diagram

(sketch Figure 2 of [43]), deposits a large amount of energy over the duration of approximately 1

ms, peaking near 6 ms. This last deposition of baroclinic vorticity deposition corresponds to the

second period of post-reshock growth. Examination of energy spectrum (Figure 12 of [43]) indicates

that the expansion wave re-accelerating the mixing zone plays a major role, comparable to that of

the reshock, in driving the growth of the mixing layer: an inertial subrange fully develops after the

passage of this expansion wave.
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Reshock in plane geometry occurred in the shock-tube experiments of Collins and Jacobs [17] and

Jacobs and Krivets [54] where a single-mode air(acetone)/SF6 interface is impacted by a MI = 1.21

shock. These experiments serve as a reference for the two-dimensional simulations of Latini et al. [63]

and Schilling et al. [100] using a ninth-order WENO method and investigating local and global mixing

properties. In their simulations, the boundary condition at the end of the computational domain is

changed from reflecting to outflow to allow the reflected expansion wave (following the reshock) to

exit the domain. It is demonstrated that the reflected rarefaction has an important role in breaking

symmetry and achieving late-time statistical isotropy of the velocity field.

Similarly, other experiments in plane geometry describe the reshock effect on the mixing. Figures

9–10 of [28] show the correlation between reshock and mixing growth using x− t wave diagrams, for

experiments of air→air and air→SF6 interaction at MI = 1.25. In his thesis work [9], in addition to

studying light-to-heavy interactions (see, e.g., Figures 5.4 and 5.17 of [9] for air→SF6 interaction at

MI = 1.32), Brouillette showed different growth profile for the heavy-to-light case clearly due to the

different nature of the reshock process (see, e.g., Figures 5.5 and 5.19 of [9] for air→He (A = −0.76)

interaction at MI = 1.30).

Experimental research on the cylindrical geometry essentially reduces to the experiments by

Hosseini and Takayama [50] and the simulations by Zhang and Graham [123]. Hosseini’s experiments

show the imploding RMI with reshock at the center for air→SF6, air→Kr (A = 0.46), and air→He

discontinuous interfaces (bubbles) accelerated by MI = 1.21 shock waves. We recall from previous

chapters that MI is the incident shock Mach number as the shock front arrives at the interface.

Radius-time r−t wave diagrams presented in Figures 10, 11, and 12 of [50] (respectively, for SF6, Kr,

and He bubbles) analyze the first reshock event only, and successful comparisons for the transmitted

shock Mach number evolution are made with Whitham’s ray shock theory based on Chester-Chisnell-

Whitham (CCW) method (p. 263 of [115]) assuming Duong and Milton’s approximation [25] of the

ray tube integral [49] (e.g., see Figure 7 of [50]). However, late-time evolution of the interface

thickness in Figures 17, 18, and 19 of [50] draws attention to the importance of the second reshock

stage, well described in [43] for the plane geometry. In Zhang’s simulations [123], a study of the

reshock using wave diagrams is present but lacks precision on the nature of the successive reshock

events, except for the Class 4, i.e., heavy-to-light imploding interaction, where the simulations were

run for sufficient time. Moreover, turbulent mixing cannot be achieved since the flow is computed

in two dimensions, employs a shock-capturing method, and does not resolve or model the viscous

dissipation scales. Therefore, it is difficult to draw conclusions concerning the precise role of the

reshock on the computed interpenetration of the two fluids.

In spherical geometry, Kumar et al. investigated the effect of convergence on the growth of

light-to-heavy and heavy-to-light interface thickness accelerated in conical geometry for MI ranging

between 1.39 and 1.60 [59]. However, the reshock influence was not studied since the focus was put
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on the imploding phase (see r − t wave diagrams in Figures 13 and 16 of [59], and mixing layer

thickness evolution in Figures 24 and 25 of [59]).

On a general note, the research efforts just presented above do not tackle the effects of strong

incident shocks, probably because of the inherent practical difficulties in studying such flows: the

higher MI , the closer to the wall/axis/center the mixing zone ends up stabilizing, and issues such

as experimental design due to very high pressures at the center, precision of the measurements, or

wall effects need to be solved. Turbulence generated by strong shocks is also a difficult problem to

compute numerically (see Section 5.3).

4.1.2 Description of the Problem

The reshock process contains complex physics that is studied in this chapter by looking at the

‘mean flow’ when the interface is initially unperturbed. By symmetry of the initial unperturbed

problem, the flow remains symmetrical and no RMI will occur. The plane geometry consists of

the following one-dimensional problem: a plane shock interacts with a plane interface parallel to it,

the transmitted shock reflecting off a wall parallel to the initial shock and interface. On the other

hand, the converging geometry is described by the following radially symmetric one-dimensional

problem: a converging, Guderley-type similarity shock defined in [15] (see Subsection 3.3.3) impacts

a interface concentric to it, the transmitted shock converges down to the center and reflects off to

reshock the interface. These problems are useful in elucidating the character of the one-dimensional

shock impact and reshock physics that form the background of the three-dimensional turbulent

mixing events covered in the next chapters.

4.2 On the One-Dimensional Simulations

4.2.1 Governing Equations

Ignoring in this chapter the effects of the viscosity of the fluids involved, the problem is best described

by the Euler equations. The Euler equations are nonlinear hyperbolic equations that can be written

in the following conservative form:

∂q

∂t
+∇ · F = 0, (4.1)

in particular, in Cartesian coordinates,

∂q

∂t
+
∂F k

∂xk
= 0, (4.2)
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where repeated indices denote summation. In Equation (4.2) q = (ρ, ρu1, ρu2, ρu3, E, ρψ)T and the

directional flux vector is given by

F k =



ρuk

ρu1uk + δ1kp

ρu2uk + δ2kp

ρu3uk + δ3kp

(E + p)uk

ρψuk


, (4.3)

where ρ is the density, p the pressure, uk the velocity components, and ψ a scalar field representing

the mixture fraction of air and SF6. The total energy E is related to the internal energy per unit

mass, e, and the velocities by

E = ρe+
1
2
ρ(ukuk). (4.4)

For all the simulations reported, the ideal equation of state p = ρRT/m is assumed, and the internal

energy is given by e = cvT = p/(ρ(γ − 1)).

The one-dimensional problem of the plane shock-contact interaction described in the previous

subsection consists of solving the reduced system:

∂q

∂t
+
∂Fx

∂x
= 0, with q =


ρ

ρux

E

ρψ

 , Fx =


ρux

ρu2
x + p

(E + p)ux

ρψux

 , (4.5)

where x is the direction of the flow. The main advantage of a reduced system is simply that it allows

the use of very high resolution compared to the equivalent three-dimensional computation of the

same one-dimensional flow. On a more general note – this is not the goal of this chapter – even if

the real problems of interest must be studied multi-dimensionally, reduced-order solutions are very

valuable in validating numerical methods. A highly accurate solution to the one-dimensional problem

can be computed on a very fine grid and used to test solutions computed with the multidimensional

method. This is useful in checking that the code gives essentially the correct answer. It also allows

one to determine how the numerical method suffers from grid-orientation effects which lead the flow

to be better resolved in some directions than in others.

For the converging cylindrical and spherical shock-contact interactions, the flow studied is radially

symmetric, the velocity being only radial and the flow depending only on the radial distance to the

axis/origin r and the time t. We can rewrite the system of equations (4.1) in polar or spherical
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coordinates, obtaining a system that reduces to a problem in r and t:

∂ρ

∂t
+

1
rs−1

∂
(
rs−1ρur

)
∂r

= 0, (4.6a)

∂ρur
∂t

+
1

rs−1

∂
(
rs−1ρu2

r

)
∂r

+
∂p

∂r
= 0, (4.6b)

∂E

∂t
+

1
rs−1

∂
(
rs−1(E + p)ur

)
∂r

= 0, (4.6c)

∂ρψ

∂t
+

1
rs−1

∂
(
rs−1ρψur

)
∂r

= 0, (4.6d)

where the velocity vector reduces to the radial component ur, and the space index s is 2 for cylindrical

flow and 3 for spherical flow. This system can be rewritten in a form similar to (4.5) with a geometric

source term:

∂q

∂t
+
∂F r

∂r
= S , with q =


ρ

ρur

E

ρψ

 , F r =


ρur

ρu2
r + p

(E + p)ur

ρψur

 , S = − 1
rs−1


ρur

ρu2
r

(E + p)ur

ρψur

 . (4.7)

4.2.2 Numerical Method

The hybrid scheme WENO-TCD by Hill and Pullin [44] is employed to solve the one-dimensional

Euler equations (4.5) or (4.7): it is shock capturing but reverts to a centered stencil with low

numerical viscosity in regions of smoother flow, which is of first importance for later performing

accurate three-dimensional simulations of the turbulent mixing between the two fluids. A better

description is provided in Section 5.3.

The practical advantage of solving the radially symmetric problem as a purely one-dimensional

problem with a geometric source term is that the existing numerical solver for the Cartesian grid can

be used directly without modification. However there is a drawback to solving (4.7) directly. The

original multidimensional conservation law is not preserved, i.e., the numerical scheme may not be

conservative in the multidimensional sense. Discrete conservation is a very important requirement in

many numerical schemes to produce physical solution, especially for problems involving shock waves.

Lax and Wendroff [64] have proved that the numerical solution of a conservative and consistent

numerical scheme converges to the weak solution if it converges as the mesh is refined. A whole

field of research (e.g., see [67, 96]) addresses this issue since it concerns many applications other

than quasi one-dimensional problems (e.g., reacting flows, flows with external forces such as gravity,

radiative heat transfer, bottom topography in shallow water).

Since it is not our purpose, we just need a preliminary test showing that strength and position

of shocks are correct as the flow converges. We perform a one-dimensional simulation of Chisnell’s
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axisymmetric cylindrical converging shock traveling. The results are very similar to these obtained

for the two-dimensional simulations in Figure 3.3 and Table 3.1, so we do not report them. A

similar test could be done for the case of a single spherical converging shock. The geometric source

terms become large as r tends to zero since they are proportional to 1/rs−1 (with s = 2, 3) and

to increasingly high density, velocity, and pressure as the flow converges. Therefore, a small inner

cylindrical or spherical reflective boundary r = rin has been set to avoid the singularity at r = 0.

For each of the three geometries, the initial plane, cylindrical, or spherical shock impacts the

interface at a position R0 with Mach number MI = 1.2 or 3.0. As mentioned in Chapter 2 and 3,

the temperature is set continuous across the initial interface, so that the Atwood ratio is fixed by

the ratio of molecular weights of the species chosen: we test A = 0.67 for air→SF6 and A = −0.67

for SF6 →air. The resolution is uniform with grid size R0/20000. The interface initial thickness

(tanh) is R0/1000. Zero-gradient outflow boundary conditions are used and the outer boundary is

located at a distance 3R0 from the inner reflective boundary (wall, cylinder, or sphere) located at

rin = R0/1000.

4.2.3 Visualization

The density Schlieren fields vs. position are output at regular and small-time intervals so that

a two-dimensional position-time diagram with the density Schlieren in the third direction can be

constructed. An example for the MI = 3.2 cylindrical shock interaction with an air→SF6 interface

is shown in Figure 4.1. The magnitude of the density gradient field |∇ρ|, or Schlieren, allows us

to locate the interface and the shock across which the gradients are the highest. To locate other

features, such that expansion fans, the Schlieren field is displayed in a log scale, the drawback being

that some very small variations of the density due to the discrete nature of the signal can appear but

have no physical meaning. To eliminate this ‘noise’ from our conclusions and to better understand

the physics of the reshock, the characteristics curves are superposed onto the Schlieren fields, as

displayed in the close-ups on the first and second stages of the reshock history Figure 4.2. The

characteristics tangent to the field u (trajectories) should be parallel (on the wave diagram) to the

interface position, and deflected by both incoming and outgoing (with respect to the inner boundary)

shock waves, as seen on Figure 4.2b. The characteristics u − a (a being the sound speed) should

focus on incoming shocks, expand away from each other as they follow the head and tail trajectories

of expansion fans traveling inwards, and are simply deflected by the interface and outgoing shocks.

In particular, this family helps in determining the nature of the waves reflected from the various

reshock interactions. Finally, the characteristics u+ a focus on outgoing shocks, expand away from

each other as they follow the head and tail trajectories of expansion fans traveling outwards, and

are simply deflected by the interface and incoming shocks. In particular, this family helps determine

the nature of the waves reflecting off the inner boundary. We insist that in the radially symmetric
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geometry the Riemann invariants, i.e., the quantities that remain constant along the characteristic

directions of the flow, are different from the well-known Riemann invariants of the one-dimensional

plane flow (e.g., see [62]).

The MI = 1.2 cases usually show less contrast than MI = 3.0, and weak reflected shocks can be

sometimes hard to distinguish, so density plots vs. position must be viewed at the times of interest.

For each geometry, MI , and A, plots of the density profile vs. position are shown initially just before

the incident shock-contact interaction, in between the first and second reverberation events, and at

late time when the flow has stabilized. Finally, note that position is made dimensionless by R0, time

by R0/a0, and density by ρ0 (see previous chapters and Table 5.5 in Chapter 5).

T
im

e

Distance

������9
interface accelerated from the initial shock-contact interaction

� first reshock interaction

� transmitted converging shock from the initial shock interaction

���
���

����

reflected shock formed after the first reshock interaction

��
����

����

second reshock interaction

Figure 4.1: r − t wave diagram: example of the MI = 3.2 cylindrical shock interaction with an
air→SF6 interface. Density Schlieren levels (log scale) displayed.
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(a) u− a

(b) u

(c) u+ a

Figure 4.2: Close-up on the first and second reverberations: example of the MI = 3.2 cylindrical
shock interaction with an air→SF6 interface. Density Schlieren levels (log scale) displayed on a wave
diagram and superposed to the three different families of characteristics, u − a (top), u (middle),
and u+ a (bottom).
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4.3 Light-to-Heavy Interaction: Air → SF6

In this section, we present comparisons of the one-dimensional wave diagrams for plane, cylindrical,

and spherical geometries for the light-to-heavy interaction air→ SF6 corresponding to A = 0.67.

SF6 is contained in the region rin < r < R0, while air is contained in the region r > R0. For all

cases, we consider two incident Mach numbers MI = 1.2 and MI = 3.0.

4.3.1 Incident Mach Number MI = 1.2

For such a low MI , the Schlieren signal can appear weak on the log scale, thus density profiles at

successive times shown on Figures 4.3 and 4.4 provide support to the analysis of the wave interactions.

4.3.1.1 Plane Geometry

In Figures 4.5a and 4.6a, note first the straight trajectories of the interface, shocks, expansion

tails and heads, typical of the plane interaction (e.g., see Figure 2 of [43]). The transmitted shock

produced from the initial shock-contact interaction and traveling into the heavy fluid reflects off

the wall as a shock and reshocks the material interface at time 3.3. This heavy-to-light interaction

produces an expansion inwards (Figures 4.6a and 4.3b) and gives a big enough increment of outward

velocity to sharply reverse the interface motion outwards. The expansion wave reflects off the wall as

an expansion wave that interacts with the interface at time 5.2 and gives a sufficiently large increment

of inward velocity to smoothly reverse the interface motion inwards. From this expansion-interface

interaction, a reflected expansion wave travels inward, reflects off the wall as an expansion, and

interacts with the interface for a third reverberation. These reverberations alternately change the

trajectory of the interface with weaker and weaker intensity, so that the interface stabilizes at around

time 12, less than 4 times the first reshock time. The compression ratio Cr, defined as the ratio of

the final position of the interface to its initial position and representing the degree of compression of

the inner fluid, is Cr ' 0.48. Comparison made to Figure 5.4 of Brouillette’s shock-tube experiments

of the same gas combination accelerated at MI = 1.32 [9] shows the effect of the wave reverberation

into SF6 as bringing the interface at rest, in less than 3 times the first reshock time.

4.3.1.2 Cylindrical Geometry

Figures 4.5b and 4.6b show curved trajectories owing to acceleration/deceleration effects due to the

convergence of the geometry. The transmitted shock reflects off the center as a shock and reshocks

the interface at time 3.2. A much earlier reshock than in the plane case was expected but the

interface ends up decelerating on its way inwards just before the reshock. This is because ahead

of the interface (in SF6), the flow compressed between the transmitted shock and the interface is

non-uniform. When the first reshock occurs, the interface has almost zero velocity. The reshock,
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locally a plane heavy-to-light shock-contact interaction, produces an expansion propagating radially

inwards (visible in Figure 4.3b), as occurs in the plane geometry. The increment of outward velocity

is sufficiently large to reverse the interface motion. By tracking the density in between the first

and second reverberations as shown on Figure 4.4a, as the expansion head starts reflecting off the

wall, the density, pressure, and velocity fields following the expansion tail steepen to form a shock

traveling inwards and reflecting off the center as a shock. Paragraph 21.7.1 of [68] confirms this

observation by looking at the radial dam-break problem. Indeed, the reshock observed presently can

be seen as a Riemann problem in cylindrical geometry, producing a reflected expansion traveling

inward, a contact, and a transmitted shock outwards, just like the initial conditions of Subsection

21.7.1 of [68]. In this converging geometry, a shock forms (see Figure 21.4 of [68] at t=0.5 and 0.75)

and reflects off the center as a shock (Figure 21.4 of [68] at t=1).

Meanwhile the interface slowly reverts its outward motion, reaches zero velocity at time 4.6, and

starts moving inwards. A second reshock occurs at around 7.2 (see Figure 4.6b) which suddenly

reverses the interface motion outwards. The following reverberations are self-similar reshocks of

decreasing intensity that stabilize the interface at about time 18, less than 5 times the first reshock

time, with Cr ' 0.7. Very similar experiments documented in [50] (cylindrical geometry, same gas

combination, MI = 1.21) show on a similar wave diagram (Figure 10 of [50]) how the interface

decelerates before the first reshock, reverses its motion outwards from the first reshock and starts

reversing it before the second reverberation. Unfortunately data stop right when the expansion wave

traveling inwards into SF6 reflects off the wall. Figure 6b of [123] does not show more than the first

reshock.

4.3.1.3 Spherical Geometry

The wavy aspect of the interface trajectory is even more pronounced in this geometry as shows

Figure 4.5c. The reverberation process is similar to the cylindrical geometry but more complex.

The transmitted shock reflects as a shock and reshocks the interface earlier than in the plane and

cylindrical cases since the transmitted shock converges faster. We would have expected, however,

an even earlier reshock if the interface had not decelerated on its way inwards and started moving

outwards before the first reshock occurs at time 2.75 and radius 0.685 (observe the deflected u− a

characteristics across the shock that reflected from the center, the sharp ‘angular’ change in interface

motion, and how it is accelerated on Figure 4.6c). The reshock produces locally an expansion wave

inwards, as seen in Figure 4.3b. In Figure 4.4b, showing density profiles between the first and second

reverberations, the region following the tail of the expansion steepens to a shock as the flow converges

toward the center. Moreover, the region ahead of the expansion head also steepens to a shock as it

converges (visible in Figure 4.3b), which reflects off the center and interacts with the shock standing

behind the expansion tail. As a result of this shock-shock interaction, a strong shock reflects towards
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the center and a weaker one travels outwards. Meanwhile the interface slowly reverses its motion

(around time 3.7), and moves inwards when it is reshocked at t=5.9 by the first (weak) shock. The

interface inverts its motion again suddenly. There follows a stronger reshock at time 6.2 from the

other shock. Therefore, what appears to be a unique reshock is actually two successive reshocks

close to each other. Self-similar reshocks follow with decreasing intensity. The interface stabilizes at

around time 29, less than 14 times the first reshock time, at Cr ' 0.7.

4.3.2 Summary

Expansion-contact interactions induce a smooth change in the interface motion, shock-contact in-

teractions (or reshocks) have a sharp effect. As the geometries goes from plane to cylindrical to

spherical, the interface oscillates with higher frequency and amplitude, and stabilizes in a longer

time. As shown in Figure 4.3c, since energy needs to be conserved, when going from plane to

spherical, Cr decreases but the final level of inner density increases. The self-similar sequence for

the interface motion to change inwards-outwards-inwards-outwards appears to be: (a) for the plane

interaction a first reshock and two expansion wave interactions, (b) for the cylindrical case a first,

a deceleration and a second reshock, (c) for the spherical case a first reshock, a deceleration and a

second double-reshock.
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Figure 4.3: Density ρ/ρ0 vs. position r/R0 for the air→ SF6 plane (red solid line), cylindrical (green
long-dashed line), and spherical (blue small-dashed line) shock interactions for a MI = 1.2 incident
shock. Density profiles initially (top), after the first reshock event (middle), and at a late time
(bottom). After the first reshock, a shock will form behind the expansion tail in the cylindrical
and spherical geometries, and another shock will form ahead of the expansion head in the spherical
geometry. The interface is initially located at r/R0 = 1; at r/R0 ' 0.4 for the plane geometry and
r/R0 ' 0.8 for the cylindrical/spherical cases after the first reshock; at r/R0 ' 0.5 for the plane
geometry and r/R0 ' 0.7 for the cylindrical/spherical cases at late times.
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Figure 4.4: Density ρ/ρ0 vs. radius r/R0 for the air→ SF6 interactions at MI = 1.2. Close-up at
the center at different times between the first and second reshocks. (a) Plane case: the reflected
expansion produced from the first reshock reflects off the wall as an expansion. (b) Cylindrical case: a
shock forms behind the reflected expansion tail that was produced from the first reshock interaction,
and reflects off the axis. (c) Spherical case: two shocks form behind the reflected expansion tail
and ahead of its head; the inner shock reflects off the center and interacts with the outer one; the
shock-shock interaction produces a weak shock traveling outwards to reshock the interface a second
time, and a stronger and faster shock traveling inwards, reflecting off the center and reshocking the
interface soon after the second reshock.
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Figure 4.5: Wave diagrams for the air→ SF6 shock interaction for a MI = 1.2 incident shock. Density
Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom) shock interactions.
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Figure 4.6: Wave diagrams for the air→ SF6 shock interaction for a MI = 1.2 incident shock. Close-
up on the first and second reverberations, with characteristics u− a superposed to density Schlieren
levels for the plane (top), cylindrical (middle), and spherical (bottom) shock interactions.
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4.3.3 Incident Mach Number MI = 3.0

Similarly to the MI = 1.2 case, various profiles of density shown in Figure 4.7 help support the

observations made from the wave diagrams.

4.3.3.1 Plane Geometry

Note again the straight trajectories typical of the plane interaction in Figure 4.8a. The transmitted

shock reflects off the center and reshocks the interface at time 0.68 (see Figure 4.9a), earlier than in

the lower Mach case because both transmitted shock and interface travel faster (see Chapter 2). A

reflected expansion is produced during the reshock and reverses the interface motion sharply. The

expansion reflects off the wall and interacts with the interface at about time 0.82. The expansion

produced reflects off the wall and reverberates again with the interface at time 0.97, etc., similarly

with weaker intensity. The interface stabilizes at about time 1.5, less than 2 times the first reshock

time, with Cr ' 0.05.

4.3.3.2 Cylindrical (Respectively Spherical) Geometry

Sharper wave reverberations traveling in the heavy fluid indicate sharper reshocks, as seen in Fig-

ure 4.8b (respectively 4.8c). The first reshock occurs at time 0.63 (respectively 0.54). The reshock

is very early compared to the lower Mach case, and equivalent to the plane case at the same Mach

number because the interface accelerated by the initial shock interaction follows closely the trans-

mitted shock. When the first reshock occurs, the interface motion sharply reverses outwards with

almost opposite velocity. As usual, the first reshock produces a reflected expansion fan inwards.

While the expansion travels inwards and reflects off the center, a front steepens right on the tail of

the expansion as for lower Mach case but much faster. The shock is stronger for MI = 3.0 than for

MI = 1.2 and can be clearly seen on Figure 4.9b (respectively 4.9c): the characteristics u−a coming

from outside are deflected by the interface and focus on a single shock facing inwards. In the frame

of the interface, this shock quickly detaches from the interface. The shock is visible in Figure 4.7b

at a radius of 0.15 (respectively 0.31). The shock reverses its motion inwards and reflects off the

center as a shock at time 1.04 (respectively 1.03). It reshocks the interface at time 1.32 (respectively

1.3). Successive reshock events of decreasing strengths follow self-similarly, as shown very distinctly

in the spherical case in Figure 4.9c. The shocks forming from each reshock bifurcation detach faster

and faster from the interface so that the third and following reshock events each appear to be heavy-

to-light shock-contact interactions producing a reflected shock instead of an expansion wave. The

interface finally stabilizes at around time 5 (respectively 7), less than 8 (respectively 13) times the

first reshock time, with Cr ' 0.1 (respectively 0.15).
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4.3.3.3 Summary

Similar observations to the MI = 1.2 can be made, with lower Cr and faster stabilization. The self-

similar sequence for the interface motion to change inwards-outwards-inwards-outwards appears to

be: (a) for the plane interaction a first reshock and two expansion wave interactions, (b) (respectively

(c)) for the cylindrical (respectively spherical) case a first, a deceleration and a second reshock.
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Figure 4.7: Density ρ/ρ0 vs. position r/R0 for the air→ SF6 plane (red solid line), cylindrical (green
long-dashed line), and spherical (blue small-dashed line) shock interactions for a MI = 3.0 incident
shock. Density profiles initially (top), after the first reshock event (middle), and at a late time
(bottom). Shocks form behind the reflected expansion tail (see lower Mach case), and will reflect to
reshock the interface a second time. The interface is initially located at r/R0 = 1; at r/R0 ' 0.1
for the plane geometry, r/R0 ' 0.3 for the cylindrical case, and r/R0 ' 0.4 for the spherical case
after the first reshock; at r/R0 ' 0.05 for the plane geometry, r/R0 ' 0.1 for the cylindrical case,
and r/R0 ' 0.2 for the spherical case at late times.
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Figure 4.8: Wave diagrams for the air→ SF6 shock interaction for a MI = 3.0 incident shock. Density
Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom) shock interactions.
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Figure 4.9: Wave diagrams for the air→ SF6 shock interaction for a MI = 3.0 incident shock. Close-
up on the first and second reverberations, with characteristics u− a superposed to density Schlieren
levels for the plane (top), cylindrical (middle), and spherical (bottom) shock interactions.
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4.4 Heavy-to-Light Interaction: SF6 → Air

The heavy-to-light interaction exhibits quite different behavior to the light-to-heavy interaction and

so is discussed separately. We consider the the combination SF6 →air, that is A = −0.67, at two

different incident shock Mach numbers, MI = 1.2 and 3.0. SF6 is now contained in the region

r > R0, while air is contained in the region rin < r < R0. Note that in the present section, the time

is dimensionalized with the speed of sound of the outer fluid, SF6.

4.4.1 Incident Mach Number MI = 1.2

In the three geometries, after the transmitted shock reflects off the inner boundary, reshock of the

interface occurs at time 0.65 for the plane case, 0.6 for the cylindrical, and 0.65 for the spherical

geometries respectively. These light-to-heavy interactions each produce a reflected wave that travels

inwards, reflects off the inner boundary, and then reshocks the interface a second time. Figures 4.11

and 4.12 show that all the reverberations are shock waves of decreasing intensity with time, such

that the interface never reverses its motion and is gradually slowed down to stabilize in comparable

dimensionless time of 2, which is more than 3 times the first reshock time. It is a relatively fast time

with respect to first reshock time when comparing to the A = 0.67 case. The first reason is that all

waves reflected from the reshock interactions are shocks that travel directly inwards. Second, the

reshock history is also faster because the waves traveling between the boundary and the interface

reverberate in a lighter fluid. We observe that Cr ' 0.6 for the plane, 0.65 for the cylindrical, and

0.6 for the spherical geometries; and the levels of final heavy fluid (outside) are of the same order

(Figure 4.10). The plane case qualitatively agrees with the heavy-to-light air→He experiments at

M=1.30 shown in Figure 5.5 of [9]. The cylindrical geometry compares to the Class 4 solution

of Zhang’s computations [123] (same incident Mach and gas combination): multiple reshocks are

apparent at similar times, and a quick stabilization of the interface occurs at Cr ' 0.68. Similar

features for the first and second reshocks are observed in Figure 12 [50] obtained from cylindrical

air→He experiments at MI = 1.2.
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Figure 4.10: Density ρ/ρ0 vs. position r/R0 for the SF6 →air plane (red solid line), cylindrical
(green long-dashed line), and spherical (blue small-dashed line) shock interactions for a MI = 1.2
incident shock. Density profiles initially (top), after the first reshock event (middle), and at a late
time (bottom). The interface is initially located at r/R0 = 1; at r/R0 ' 0.6 for the plane geometry,
r/R0 ' 0.7 for the cylindrical case, and r/R0 ' 0.6 for the spherical case after the first reshock;
at r/R0 ' 0.6 for the plane geometry, r/R0 ' 0.7 for the cylindrical case, and r/R0 ' 0.6 for the
spherical case at late times.
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Figure 4.11: Wave diagrams for the SF6 →air shock interaction for a MI = 1.2 incident shock.
Density Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom) shock
interactions.
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Figure 4.12: Wave diagrams for the SF6 →air shock interaction for a MI = 1.2 incident shock.
Close-up on the first and second reverberations, with characteristics u − a superposed to density
Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom) shock interactions.
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4.4.2 Incident Mach Number MI = 3.0

Again, the three geometries are very similar. The transmitted shock produced during the initial

interaction reflects off the center and reshocks the interface at time 0.275 for the plane case, 0.27

for the cylindrical one, and 0.265 for the spherical one). This light-to-heavy interaction produces a

reflected wave that travels inwards, reflects off the center and reshocks the interface, etc. As seen

in Figure 4.14 and particularly in Figure 4.15), all the reverberations are shock waves of decreasing

intensity. The interface almost does not reverse its motion and is gradually slowed down to stabilize

in a comparable dimensionless time of 0.6 (more than 2 times the first reshock time). This is

relatively fast in terms of the first reshock time when comparing to the A = 0.67 case for the same

incident shock strength. The MI = 3.0 case differs from the MI = 1.2 case on the transmitted

shock produced from the first reshock interaction and traveling in SF6 away from the interface: for

MI = 1.2, the reshock of relatively low strength is such that the transmitted shock produced from

the reshock travels outwards (in the lab frame) and exits the domain quickly (see Figure 4.12). In

the MI = 3.0 case, the interface is accelerated more rapidly from the initial shock interaction so that,

during the reshock, the transmitted shock actually travels inwards in the frame of the lab as shown

Figure 4.15. This shock is actually strong. The second reshock, being weaker than the first, coupled

with a decelerating interface, produces a new transmitted shock that travels outwards (in the lab

frame) and interacts with the transmitted shock moving inwards from the first reshock interaction.

Successive secondary interactions occur during the following reshock events. As a result, a strong

shock exits the domain at an angle of about 45◦ angle as seen in the wave diagram Figure 4.14.

Figure 4.13c shows its position at a late time. On the heavy side, the quite weak waves produced

from the interactions between the successive transmitted shocks are traveling inwards to impact the

interface, whose effect on average is this slight change in the interface position at (a0/R0)t ' 0.5 for

all geometries. We find Cr ' 0.06 for the plane case, Cr ' 0.05 for the cylindrical, and Cr ' 0.025

for the spherical geometries, respectively. The final levels of heavy fluid density for the spherical

geometry are twice that of the cylindrical geometry which is twice that of the plane geometry.

4.5 Summary

We have considered the one-dimensional shock-interface impact for three different geometries and two

different incident Mach numbers, for both light-to-heavy and heavy-to-light initial configurations.

In the light-to-heavy case, it has been shown that the nature of the wave reverberation (specially

the second wave reverberation) depends on the geometry. As mentioned in [43] for the plane geom-

etry, the influence of the second reverberation on the turbulent mixing is as important as the first

reshock. In the plane case, an expansion wave traveling away from the wall will deposit baroclinic

vorticity over a finite period of time, and this secondary interaction is somewhat like the contin-
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uous acceleration of the RTI. In contrast, in curved geometries, after the interface is accelerated

by the first reshock, a period of deceleration follows, and then a second reshock occurs, operating

an impulsive deposition of vorticity. All three geometries show oscillatory profiles of the interface

unperturbed position resulting from the reverberation process, which, in the perturbed situation,

is expected to influence the growth of spike and bubble structures coexisting within the TMZ. The

heavy-to-light interaction exhibits successive reshocks independently of the geometry. The interface

stabilizes quasi monotonically, without alternative inward/outward velocity increments. Both fea-

tures will certainly influence the turbulent mixing differently than in the light-to-heavy RMI with

reshock. While we described the physics of the flow if the interface were initially unperturbed, when

a perturbation is initially superposed, spike and bubble structures will be differently affected by the

various reverberating waves. It should also be added that the light-to-heavy and heavy-to-light RMI

differ from one another in the sense that the heavy-to-light RMI is Rayleigh-Taylor (RT) unstable

during the implosion (accelerating phase) while the light-to-heavy one is RT unstable during the

explosion (decelerating phase).

Increasing the incident shock strength results in accelerating the time of the first reshock and

focus the base interface closer to the wall/center. This is expected to affect the entrainment of inner

fluid into the mixing region. The entrainment is also influenced by the geometry, since the volume of

fluid trapped between the inner boundary and the TMZ differs as we move from plane to spherical

geometry: it is of the order of CrLyLz for the plane case (with (y, z) transverse to the direction x of

the flow), πCr2Lz for the cylindrical one (with z direction of the cylindrical axis), and 4πCr3/3 for

the spherical one.

Future work will consist of testing different gas combinations, such as air/He (commonly used in

experiments) or even lower Atwood combinations such air/CO2.
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Figure 4.13: Density ρ/ρ0 vs. position r/R0 for the SF6 →air plane (red solid line), cylindrical
(green long-dashed line), and spherical (blue small-dashed line) shock interactions for a MI = 3.0
incident shock. Density profiles initially (top), after the first reshock event (middle), and at a late
time (bottom). A strong shock resulting from the interactions of the transmitted shocks produced
during the successive reshocks traveling outwards can be seen exiting the physical domain for late
times. The interface is initially located at r/R0 = 1; at r/R0 ' 0.05 after the first reshock and at
late times.
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Figure 4.14: Wave diagrams for the SF6 →air shock interaction for a MI = 3.0 incident shock.
Density Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom) shock
interactions.
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Figure 4.15: Wave diagrams for the SF6 →air shock interaction for a MI = 3.0 incident shock.
Close-up on the first and second reverberations, with characteristics u − a superposed to density
Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom) shock interactions.
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Chapter 5

Large-Eddy Simulations of
Shock-Generated Mixing
in a Cylindrical Geometry

5.1 Introduction

5.1.1 Flow Description

A two-dimensional schematic of the initial configuration is presented in Figure 5.1a: a converging

cylindrical shock impacts at a Mach number MI a perturbed, cylindrically shaped density interface

that separates light air from heavy SF6 (see Figure 5.1b), both at rest initially. The physical prop-

erties of these two gases are presented on Table 5.1. As described in Chapter 4, the present initial

shock refraction produces a transmitted shock traveling and a reflected shock traveling inwards and

outwards respectively, apart from the accelerated interface. The transmitted shock converges to-

wards the axis, reflects off the apex, and reshocks the highly distorted interface, initiating strong

turbulent mixing. Multiple reshock events follow self-similar way with decreasing intensity, eventu-

ally concentrating the heavy fluid inside. Strong initial incident shocks trap the heavy fluid closer

to the apex than weaker incident shocks.

5.1.2 Domain Geometry and Boundary Conditions

The present simulation is conducted in a wedge-like geometry. The wedge angle is π/2. The

computational domain, in cylindrical coordinates (r, θ, z) is:

rin < r < βrR0, 0 < θ < π/2, 0 < z < βzπ/2 (5.1)

The inner cylindrical reflecting wall of radius rin and the outer radial distance βrR0, with βr > 1

is theoretically taken proportional to the wedge angle. βz is a rational number that specifies the
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Figure 5.1: (a) Initial flow description. Time t = 0 actually corresponds to the incident shock
standing just behind the interface with Mach number MI . (b) Scalar isosurfaces representing the
initial perturbed interface (data from run 11 and run 12).

extension of the domain in the axial direction. See Tables 5.2, 5.3 and 5.4 for exact values of βr and

βz.

It is assumed that shock-wave/boundary-layer interaction does not play a dominant role in the

growth of the TMZ and slip boundary conditions are applied at the reflected walls θ = 0 and θ = π/2.

In practice, experiments in shock-tubes [9, 109] have shown that the interaction of viscous boundary

layers on the side walls of the test section can cause the formation of wall bubbles and interface

contaminating jets. Brouillette demonstrated the generation of baroclinic vortical structures within

the boundary layer from the interaction of waves reflected from the side walls and the distorted

interface [9]. The strain induced by these vortical wall structures tends to make the TMZ thinner.

Property air SF6

Molecular mass (kg kmol−1) 29.04 146.07
Atwood ratio with air A 0.0 0.67
Ratio of specific heats γ 1.40 1.09
Density (kg m−3) 1.18 5.97
Kinematic viscosity (10−6 m−2s−1) 15.7 2.47
Prandtl number 0.71 0.90
Diffusion coefficient in air (10−6 m−2s−1) 20.4 9.7

Table 5.1: Gas properties of air and SF6 at 25◦C and 1 atm.
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The inner cylindrical reflecting wall of radius rin is used to regularize the apex (see Figure 5.1a), as

it is done in VTF experiments in a wedge. The measured location and extent of the TMZ suggest

that the turbulent region does not reach the inner cylindrical wall as long as the incident shock Mach

number is not too high. On the outer side of the domain, inflow boundary conditions are prescribed

(see next subsection) for time t prior to the exit of the initial reflected shock from the computational

domain. After that event, zero-gradient boundary conditions are prescribed. Periodic boundary

conditions are used in the z-direction of the cylinder axis.

5.1.3 Initial Conditions

There are many ways to generate, in principle, a converging cylindrical shock. Hosseini and

Takayama [50] use a device like a curved annular shock tube. Dimotakis and Samtaney [24] have

proposed a method where a planar shock, incident on a shaped interface positioned at the entrance

of a convergent wedge, produces a transmitted shock that is accurately cylindrical. The interface

shape is tailored precisely so as to avoid Mach reflection at the wedge walls. Using geometrical

shock dynamics, Hornung et al. [48] argue that, once formed, cylindrically (and spherically) sym-

metric converging shocks have an almost universal implosion profile that is essentially independent

of the detailed means of shock generation. This almost universal form is that calculated by Pon-

chaut et al. [87]: it becomes asymptotic to Guderley power-law shock implosion in the strong-shock

approximation.

Presently, the flow behind the cylindrical converging shock is initialized using the post-shock

flow field of Chisnell [15]. We have confirmed the structure of this solution by simulation of a single

converging shock, and the Guderley exponent, characterizing the shock position history, has been

confidently computed before and after apex reflection (see Subsection 3.3.3 for more details). We

recall that this choice of initial conditions completely avoids spurious waves and leaves only the shock

thickness as intrinsic length scale. Simulations have been performed for the incident shock strength

MI = 1.3 and 2.0. The Chisnell solution is presently used both as an initial condition for the flow

behind the shock as far as the outer boundary of the domain, and also to provide inflow boundary

conditions on the outer boundary before the reflected shock exits the computational domain. The

front of the incident converging shock is initially placed just behind the interface at radius r = RS0 .

At this position, the shock Mach number is MI .

The interface is initially located around the mean radial position r = R0 < RS0 . Along any ray of

azimuthal orientation θ and height z, the mixture ratio of air and SF6 is mathematically initialized as

tanh(2(r − rI(θ, z))/δC0 ). In this expression, rI is the centerline position of the perturbed interface

at (θ, z), and δC0 is the initial intrinsic thickness of the interface and is chosen small enough to

be fully resolved, specially during the incident shock refraction where the interface is compressed

to a thickness inferior to δC0 during the shock passage. To model the initial contact discontinuity
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deformation, we choose a centerline surface radial displacement of the interface of the form

rI(θ, z) = R0 − (h0| cos(nθ) cos(kz)|+ h1f(θ, z)) . (5.2)

The first term models the result of pushing the membrane through a wire mesh (find equivalent

definition in the plane geometry in [109, 16, 43]), and represents small modes of amplitude h0, about

5% of R0, and with initial azimuthal wavelength λθ0 = πR0/n and axial wavelength λz = π/k. The

choice of k is a compromise between having a ratio of scale lengths comparable to the previously cited

plane experiments and having adequate numerical resolution. Similar considerations are taken for the

choice of n but for azimuthal wavelengths around the reshock time. At such time in the simulation,

the azimuthal wavelength can be reduced by a factor of 10 for incident shock Mach numbers greater

than 2.0. From the first perturbation term in Equation (5.2), it is expected that angular regions of the

interface where the cosine argument is equal to π/2 will be subjected to strong baroclinic torque.

The second term in Equation (5.2) is a symmetry-breaking perturbation with smaller amplitude

h1, about 10% of h0. f(θ, z) has a random phase but a prescribed power spectrum of the form

K4 exp(−(K/K0)2) with parameter K0 = 1 chosen such that the peak wavelength is π
√

2R0 (long

wavelength symmetry breaking). It represents the distortion of the wire mesh on the scale of the

wedge in the azimuthal and axial directions. We refer to Tables 5.2, 5.3 and 5.4 for more details.

In choosing such clean initial conditions, the goal is to set up a canonical simulation that could be

used as a reference simulation in cylindrical geometry. However, care has to be taken when analyzing

late-time behavior in such unsteady flows. How the initial interface dominant shape (first term of

Equation (5.2)) affects the late growth of the mixing layer is still a current research question. In [109],

it is observed that a change in the disposition of the horizontal and vertical wire meshes can modify

the mixing-layer growth before the reshock by a an order of magnitude. Strong influence of the

initial conditions on the nonlinear stages of the mixing-zone growth has been also demonstrated by

Greenough and Burke [38] who studied computations of the multimode RMI in the plane geometry.

Therefore, flows generated from different initial conditions are not expected to compare well, in

particular prior to the first reshock. To study the sensitivity of the flow to variations in the random

part of the initial interface shape (second term of Equation (5.2)), simulations should be performed

for an ensemble of initial conditions covering the spectrum of realizations of the random nature of

the second term of Equation (5.2). Due to limited resources, we leave the study of the influence of

initial conditions (e.g., interface shape and amplitude) on the flow statistics for future research.

On another note, there is a consensus in the belief that turbulent flows are, in some sense, ergodic.

However, there seems to exist no direct evidence regarding the validity of the ergodicity hypothesis

in turbulent flows, though some mathematical results regarding the ergodicity for the NavierStokes

equations were reported recently (see for example [20]). Ergodicity is usually related to turbulent
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flows being statistically stationary in time and homogeneous in space, which is not the case in the

present flow. In theory, if the ergodic hypothesis were correct, it would not be necessary to perform a

large number of time consuming “brutal force” experiments with different initial conditions in order

to compare the temporal/spatial statistical value of a given observable against the ensemble-averaged

value at a given time/location.

5.2 Governing Equations

5.2.1 Two-Component Favre-Filtered Navier-Stokes Equations

The reshock process produces a large dynamical range of turbulent scales, necessitating the use of

LES. If the overbar denotes the filtering operation

f(x ) = G∆c
∗ f(x ) =

∫
G∆c

(x − x ′)f(x ′)dx ′, (5.3)

with convolution kernel G∆c
with externally specified spatial width ∆c, any Favre-filtered, or density

weighted, quantities is defined by

f̃ = ρf/ρ. (5.4)

The filtering procedure described in Equation (5.3) is purely formal. It corresponds to a low-pass

spatially uniform filter and allows one to locally distinguish flow features with a length-scale larger

than ∆c with length-scale smaller than ∆c. In the LES context, the former are referred as ‘resolved’

while the latter class of flow structures is identified as ‘sub-filter’ or ‘subgrid’. In practice, the filtering

operation can only be performed explicitly from well-resolved fields obtained from experiments or

DNS. However, by Favre-filtering of the Navier-Stokes equations [124], the LES transport equations

of motion in a conservative form are formally obtained for the filtered density ρ, momentum ρũi,

total energy E, and ρψ̃, where ψ̃ is a filtered scalar field representing local mixture composition

(mass fraction) between air (ψ̃ = 0) and SF6 (ψ̃ = 1). In this procedure, the large scales to be

simulated are separated from the small scales to be modeled at the subgrid level:

∂ρ

∂t
+

∂ρũj
∂xj

= 0, (5.5a)

∂ρũi
∂t

+
∂(ρũiũj + pδij)

∂xj
=
∂dij
∂xj

− ∂τij
∂xj

, (5.5b)

∂E

∂t
+

∂(E + p)ũj
∂xj

=
∂

∂xj

(
κ
∂T̃

∂xj

)
+
∂djiũi
∂xj

−
∂qTj
∂xj

, (5.5c)

∂ρψ̃

∂t
+

∂ρψ̃ũj
∂xj

=
∂

∂xj

(
ρD̃

∂ψ̃

∂xj

)
−
∂qψj
∂xj

, (5.5d)
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where the subgrid stress tensor, and the heat and scalar transport fluxes are given by

τij = ρ(ũiuj − ũiũj), (5.6a)

qTj = ρ(c̃pTuj − c̃pT̃ ũj), (5.6b)

qψj = ρ(ψ̃uj − ψ̃ũj), (5.6c)

and where the filtered total energy E, pressure p, and deviatoric Newtonian stress tensor dij of the

mixture are given by

E =
p

γ̃ − 1
+

1
2
ρ(ũkũk) +

1
2
τkk, (5.7a)

p =
ρRT̃
m̃

, (5.7b)

dij = µ

((
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
∂ũk
∂xk

δij

)
. (5.7c)

Note that, whilst Reynolds-averaged Navier-Stokes (RANS) approaches to modeling the Navier-

Stokes equations decompose the velocity into mean and fluctuating components, the typical re-

organization in LES is based upon the filter length scale ∆c, often taken to be equal to the grid size

employed.

In Equation (5.7b), R is the ideal gas constant, and the mean molecular weight m̃ is defined as

a function of the respective molecular weight of air and SF6 by

1
m̃

=
1− ψ̃
mair

+
ψ̃

mSF6

. (5.8)

From m̃, the average specific heat ratio present in Equation (5.7a) and defined as

γ̃ =
c̃p

c̃p − R/m̃
, (5.9)

can be determined since the average specific heat capacity at constant pressure is given by the follow-

ing combination of element heat capacities for air and SF6 (assumed to be temperature-independent)

c̃p = (1− ψ̃)cp,air + ψ̃cp,SF6 . (5.10)

Values of γ̃ for pure air (ψ̃ = 0) and pure SF6 (ψ̃ = 1) are listed in Table 5.1. Temperature-dependent

transport properties of the mixture, i.e., viscosity µ, heat conduction κ, and diffusivity D̃, obey usual

binary mixing rules and pure component mixing properties [93].
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5.2.2 The Stretched-Vortex Subgrid Model

The stretched-vortex subgrid-scale (SGS) model [82] extended to compressible flows [58] and subgrid

scalar transport for a constant-density fluid [88] is based on an explicit structural modeling of small-

scale dynamics. The essential subgrid element is modeled by a distribution of stretching vortices that

are approximate solutions of the Navier-Stokes equations [71]. The closure of Favre-filtered Navier-

Stokes equations is achieved by providing the subgrid stress tensor τij , the turbulent temperature

flux qTi , and the mixture fraction flux qψi , formally defined in Equation (5.6) and modeled as

τij = ρk̃(δij − evi evj ), (5.11a)

qTi = −ρ∆c

2
k̃1/2(δij − evi evj )

∂(c̃pT̃ )
∂xj

, (5.11b)

qψi = −ρ∆c

2
k̃1/2(δij − evi evj )

∂ψ̃

∂xj
. (5.11c)

Note that the SGS temperature flux is treated as a passive scalar. In Equation (5.11), evi are the

direction cosines of the subgrid vortex axis and ∆c the cutoff length scale. The subgrid kinetic

energy, k̃, is given by

k̃ =
∫ ∞
π/∆c

E(k)dk =
∫ ∞
π/∆c

K0ε
2/3k−5/3 exp

(
−2k2µ

3|ã|ρ

)
dk. (5.12)

The energy spectrum of the subgrid motion E(k) is a function of K0, Kolmogorov pre-factor, ε,

the local cell-averaged dissipation, and ã = S̃ije
v
i e
v
j , the axial strain along the subgrid vortex axis

provided by the locally resolved rate-of-strain tensor

S̃ij =
1
2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (5.13)

The implementation of the subgrid vortex model relies on the assumption of the alignment of ev

with extensional eigenvectors of S̃ij and with the resolved-scale vorticity [58]. Moreover, the param-

eter K0ε
2/3 is calculated for each cell using resolved-scale, second-order velocity structure function

matching [110, 88]. For example, when averaging the structure function F2(r) over a spherical

surface of radius ∆ and using the expression of E(k),

K0ε
2/3 =

F2(∆)
∆2/3A

, (5.14)
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where A ≈ 1.90695. Typically, ∆ = ∆c = ∆x, with ∆x the finest grid spacing, and F2 is evaluated

from averaging the local resolved-scale velocity components

F2(4) =
1
6

3∑
j=1

(
δũ+2

1 + δũ+2

2 + δũ+2

3 + δũ−
2

1 + δũ−
2

2 + δũ−
2

3

)
j
, (5.15)

where we defined δũ±i , velocity component difference in the unitary direction ej at the location xo,

by

δũ±i = ũi(xo ± ej∆)− ũi(xo). (5.16)

The stretched-vortex subgrid model has been used to compute the two-fluid mixing driven by

the RTI, as presented [76]. The structural nature of this model has also facilitated the mathematical

development of a multiscale treatment of the activity beyond the resolution cut-off and predictions

of subgrid mixing properties [43]. For what follows, the presently defined Favre-filtered quantities

are identified with resolved-scale quantities computed in the LES, so that overbars and tildes will

be omitted in Section 5.4 and the sections following.

5.3 Computational Approach

5.3.1 AMROC Framework

The resolution requirements imposed by the physics of the flow vary greatly both spatially and

temporally for this simulation. In particular, around discontinuities in the flow (e.g., shock waves)

any high-order scheme drops to first-order accuracy and refining the mesh is an efficient way to

reduce the numerical error around these sharp features. Therefore, the parallel framework AMROC

developed by Deiterding [21], and based on the SAMR of Berger and Oliger [3, 3], proves to be

decisive for the converging RMI, where refinement is needed around the multiple imploding and

exploding shocks and the interface traveling down towards the inner apex, while coarse resolution is

sufficient for the outer region. SAMR method provided large computational savings in the particular

case of the converging RMI but also in other applications listed in [83].

5.3.1.1 On the Use of SAMR Cartesian Grid for Converging Flows

As shown in Figure 5.2, successful comparisons have been made between experiments of focusing

of plane shocks in cylindrical geometry and solvers using Cartesian and body-fitted grids. Another

validation test, similar to VTF Phase 0 experiments in spherical geometry, has shown good agreement

between SAMR simulations on Cartesian grid and the experiments of conical shock-tube by Setchell

et al. [102]. An initial plane shock of Mach 6 travels in Argon into a 10◦ half-angle cone. Conclusive
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results are plotted in Figure 5.3a which shows the successive jumps in shock speed (measured on the

centerline of the tube) corresponding to Mach stem collisions on the axis of symmetry. In the present

work, as in the simulations presented in Figures 5.2a and 5.3, the ghost fluid method (GFM) [30] is

utilized to numerically incorporate the non-Cartesian reflective wall boundary conditions arising at

the small cylinder regularizing the apex (see Subsection 5.1.2).

(a) Cartesian grid (b) Body-fitted grid

Figure 5.2: Converging shock focusing in a wedge. Overlay of experimental results from VTF Phase
0 and two-dimensional simulation data from the WENO-TCD patch solver formulated on a Cartesian
grid (a) and a shock-capturing method formulated on a body-fitted grid (b). Courtesy of C. L. Bond,
D. J. Hill, and G. Matheou.

5.3.2 Hybrid Numerical Method

The numerical method is formulated for uniform Cartesian grids and is effectively applied to each

subgrid of the mesh hierarchy. The overall approach is an extension of the hybrid scheme by Hill and

Pullin [44] to SAMR meshes with non-Cartesian embedded boundaries. We recall that a WENO

scheme is used to capture discontinuities such as shock waves or fine/coarse mesh interfaces, but

switches to a low-numerical dissipation, explicit, center-difference scheme, TCD, in the smooth or

turbulent regions, optimal for the functioning of explicit LES such as the SGS stretched-vortex

method.

Figure 5.4 shows the decay of the turbulent kinetic energy (TKE) obtained from LES of decaying

compressible turbulence using the stretched-vortex SGS model and the 5-point TCD scheme. Good

agreement with a 2563 DNS is achieved. A similar simulation using WENO-5 shows poor results

owing to the excessive numerical dissipation that overwhelms that of the SGS model. The dissipation

in WENO is due to the fact that the method rarely achieves its optimal stencil and therefore exhibits
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(a) Speed on the centerline (b) Density Schlieren isosurfaces

Figure 5.3: Conical shock-tube experiments and two-dimensional axisymmetric simulations. (a)
Radial speed (normalized by initial shock speed) on the centerline vs. distance to the center; (b)
isosurfaces of the three-dimensional magnitude of the density gradient (Schlieren) colored by the
density. Speeds over Mach 18 at last measurement. Courtesy of D. J. Hill.

the updwinding bias of its candidate stencils. Moreover, even recent higher-order implementations

of WENO fail in creating a consistent stencil, since the convex combination of candidate stencils is

based on local smoothness indicators. As a consequence, the dispersion relation is not predictable

for such approaches and makes them not suited for accurate LES calculations. Similar conclusions

can be drawn from other higher-order shock-capturing methods, e.g. using elaborate limiters. These

considerations justify the use of hybrid schemes instead of pure shock-capturing methods or other

implicit LES methods that introduce too much numerical dissipation in the flow and alter the decay

of TKE.

5.3.2.1 TCD Stencil

In one dimension, the derivative of a function f(x) can be discretely approximated on a uniform

grid, at the location x = i∆x, by the following 5-point at least 2nd-order accurate stencil

Dxf =
1
4x

(α(fi+2 − fi−2) + (1/2− 2α)(fi+1 − fi−1)) , (5.17)

where the parameter α = 0 corresponds to the exact 2nd-order explicit stencil and α = −1/12 to

the 4th-order stencil. As a tradeoff against accuracy, this parameter can be chosen to minimize

truncation errors in LES in the sense of Ghosal [34, 35]. The value α = −0.197 has been found

in [44] and forms the TCD stencil.
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viscosity to regularize shocks in non-conservative form [8], and as a penalty based finite-difference method [9]
for shockless flows. Other hybrid methods include [10], where transport property models change depending on
local flow conditions. In general, scheme alternation has often been found to be appropriate when high fidelity
solutions are to be obtained at minimal computational expense.

As front tracking is extremely difficult in three-dimensional flows and shock waves cannot be fully resolved
(the shock thickness is of the order of the mean free path), numerical methods for compressible flows usually
try to capture shock waves and their interactions on an under-resolved mesh. According to the Lax–Wendroff
theorem [11], the convergence of shock-capturing methods toward a weak solution of the Euler equations
requires the discrete conservation of mass, momentum and energy. In SAMR methods, this property is
typically accomplished by using flux-based finite volume discretizations (see for instance [12] for a general
introduction), although non-flux-based formulations are also possible [13]. Flux-based extensions of the Ber-
ger–Colella SAMR method, originally developed for time-explicit finite volume schemes, to time-implicit
problems which include combustion [14] and radiation [15,16], are also available.

Apart from conservation, differing flow features may demand different numerical approaches. For example,
shocks and contact discontinuities are typically smoothed over the available grid points by performing some
form of controlled upwind-biased differentiation of the fluxes (that we will refer to as upwinding from this
point), but flows involving turbulence require a different strategy since the complicated flow structure demands
a more accurate spectral representation. For turbulence in the high Reynolds number regime, large-eddy sim-
ulation (LES) is a practical approach in which only the large scales of the flow are simulated directly and the
small scales are modeled. Turbulent flows are usually of a wavy nature, and upwinding techniques introduce
substantial numerical dissipation that tends to artificially remove energy from the highest resolved wavenum-
bers. In order to avoid interference with the flow physics, transport schemes suitable for LES therefore have to
represent the energy transfer between wavelengths as accurately as possible [17]. Experience in LES with
explicitly modeled subgrid terms has shown that it is best to use numerical methods with minimal numerical
dissipation for the resolved-scale flow. Such schemes can be constructed by the use of centered numerical sten-
cils but care must be taken to avoid non-linear instabilities as there is no intrinsic numerical stabilization. This
can be achieved to some extent by using kinetic energy conserving (skew-symmetric) formulations [18–21].
Fig. 1 demonstrates the efficacy of LES when using an appropriate numerical method. It compares the decay
of turbulence kinetic energy between a direct numerical simulation (DNS) [22]1 and LES with either the
5-point centered-difference scheme outlined in this paper or the standard shock-capturing scheme WENO-
5. Although the WENO scheme has the same stencil width as the centered method, the inherit numerical dis-
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Fig. 1. Comparison of decay of turbulence kinetic energy in a homogeneous decaying compressible LES computed on a grid of 323 points
using WENO vs. centered scheme. DNS computed with a 2563 grid and a padé method.

1 Case D9 with microscale Reynolds number of 175 and turbulent Mach number of 0.488 at 2563 resolution.

2 C. Pantano et al. / Journal of Computational Physics xxx (2006) xxx–xxx
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Figure 5.4: Comparison of decay of turbulence kinetic energy in a homogeneous decaying compress-
ible LES computed on a grid of 323 points using standard WENO-5 vs. 5-point TCD scheme. DNS
computed with a 2563 grid and a Padé method, Case D9 of Samtaney et al. [98] with microscale
Reynolds number of 175 and turbulent Mach number of 0.488.

5.3.2.2 Stable TCD Formulation

LES at very high Reynolds numbers using low-numerical dissipation centered discretizations raise

the issue of numerical stability, since resolved and subgrid viscous dissipation sometimes provide

negligible stabilization. For that reason, the momentum and scalar convective terms must be written

in the following skew-symmetric form adapted to compressible flows [6], as follows:

∂(ρũiũj)
∂xj

7→ 1
2
∂(ρũiũj)
∂xj

+
ρũj
2
∂(ũi)
∂xj

+
ũi
2
∂(ρũj)
∂xj

, (5.18a)

∂(ρψ̃ũj)
∂xj

7→ 1
2
∂(ρψ̃ũj)
∂xj

+
ρũj
2
∂(ψ̃)
∂xj

+
ψ̃

2
∂(ρũj)
∂xj

. (5.18b)

In compressible flows, robustness can be improved by rewriting the convective term in the energy

equation in a skew-symmetric form as well. Honein and Moin [47] found that the most stable

formulation is the one that conserve the variance in total internal energy ẽ = E/ρ− (ũkũk)/2:

∂((E + p)ũj)
∂xj

7→ 1
2
∂(ρẽũj)
∂xj

+
1
2
ρũj

∂ẽ

∂xj
+

1
2
ẽ
∂(ρũj)
∂xj

(5.19a)

+
1
2
ũi
∂(ρũiũj)
∂xj

+
1
2
ρũiũj

∂ũi
∂xj

+ p
∂uj
∂xj

+ ũj
∂p

∂xj
.

5.3.2.3 Flux-Based Formulation

The SAMR approach is based on flux discretizations. While WENO is naturally a flux-based for-

mulation, the TCD scheme must be expressed in a flux form as well. First derivatives approximated

by the difference operator Dx in Equation (5.17) can be written in a divergence-like flux difference
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at the cell center i

Dxf =
Fi+1/2 − Fi−1/2

∆x
, (5.20)

where the flux Fi+1/2 at the right-hand sidewall of the cell i is given by

Fi+1/2 = α (fi+2 + fi+1) + (1/2− α) (fi+1 + fi) . (5.21)

The derivation of the flux corresponding to the derivative of products in a skew-symmetric form is

described in [83]. As a result:

∂(fg)
∂x

' 1
2

(
Dx(fg) + fDxg + gDxf

)
=
F skewi+1/2 − F

skew
i−1/2

∆x
, (5.22)

where

F skewi+1/2 =
1
2

{
α
[
(gi+1 + gi−1)(fi+1 + fi−1) + (gi+2 + gi)(fi+2 + fi)

]
(5.23a)

+ (1/2− 2α)
[
(fi+1 + fi)(gi+1 + gi)

]}
.

In Equation (5.22), the functions f and g correspond to ρũk and ũk for the convective term of the

momentum transport equation given by (5.18a), and to ρũk and ψ̃ for the convective term of the

scalar transport equation given by (5.18b). The energy convective contribution Equation (5.19) is

separated in divergence-like terms whose fluxes are rewritten like Equation (5.21), and product-like

terms whose fluxes are rewritten like Equation (5.23).

5.3.2.4 WENO-TCD Flux-Switching Technique

The WENO-TCD scheme requires an explicit ‘switch’ to change from WENO in regions of extremely

high gradients, such as shocks, to the TCD scheme in smooth flow regions. Around discontinuities,

the WENO scheme computes fluxes at cell walls based on a weighted convex combination of can-

didate stencils that minimizes interpolation across shocks. For the subgrid activity to be correctly

computed, thereby assuring the quality of the LES, the use of WENO is restrained to regions con-

taining shock waves only. The formulation of robust detection criteria of physical discontinuities

problems remains an open research area, and work has essentially concentrated on geometrical crite-

ria based, for instance, on normalized curvature of pressure and/or density (as in [44, 83] and other

hybrid methods cited within). Instead, a new WENO/TCD switching method has been developed to

better extract the physical nature of the compressible flow, therefore optimizing the use of WENO.

To illustrate the technique, consider the local one-dimensional Riemann problem at every cell wall
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of the computation domain. An approximate solution, denoted by a subscript ?, can be computed

using Roe-averaged quantities from the given left state (cell face i, subscript L) and right state (cell

face i+ 1, subscript R). Lax entropy conditions allow for characterizing the type of the waves ũ− a

and ũ+a (shock or rarefaction wave) connecting the right or left state from the central state ?, with

a the filtered sound speed of the mixture. A shock is produced for the wave ũ± a if

ũR ± aR < ũ? ± a? < ũL ± aL. (5.24)

In this set of inequalities, aL,R is computed by evaluating
√
γ̃p/ρ at the left or right cell faces, and

the central state (ũ?, a?) corresponds to the Roe’s averages [95]

ũ? =
√
ρLũL +

√
ρRũR√

ρL +
√
ρR

, (5.25a)

a? =

√
(γ̃? − 1)(H? −

1
2
ũ2
?), (5.25b)

where the Roe-averaged filtered enthalpy H? and specific heat ratio γ̃? are given by

H? =
√
ρLHL +

√
ρRHR√

ρL +
√
ρR

, (5.26a)

γ̃? =
c̃p,?

c̃p,? − r̃m,?
, (5.26b)

c̃p,? =
√
ρLc̃p,L +

√
ρRc̃p,R√

ρL +
√
ρR

, (5.26c)

r̃m,? =
√
ρLr̃m,L +

√
ρRr̃m,R√

ρL +
√
ρR

. (5.26d)

In Equation (5.26), (H, c̃p, r̃m)L,R are computed by evaluating ((p+E)/ρ, c̃p,R/m̃) for the mixture

at the left or right cell faces. The departure of the inequalities (5.24) is evaluated within a threshold

value αLax/a? in order to eliminate weak acoustic waves that could be easily handled by the TCD

scheme. For better efficiency and flexibility, this criterion is combined with a geometrical test based

on the mapping

ϕ(ϑ) =
2ϑ

(1 + ϑ)2
(5.27)

of the normalized pressure gradient ϑi at the cell face i

ϑi =
|pi+1 − pi|
|pi+1 + pi|

(5.28)

inspired from slope-limiting techniques. A threshold for the latter geometrical criterion is defined by

αMap. Algorithm 1 applied to the filtered vector of state qi at the cell wall i summarizes the technique
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for one-dimensional switching. Cell faces are actually marked in a tight area around regions where

WENO is needed according to the criterion

Ci = {(xi−1/2, xi+1/2) ∈ R : qi satisfies Alg. 1}. (5.29)

All cell faces in a neighborhood of size m∆x (m given) of cell faces belonging to Ci are also flagged

and WENO stencils will be constructed over the sets of cell faces Cmi =
⋃
s=−m,m Ci+m.

Algorithm 1 Physical discontinuity detection algorithm.
if qi verifies inequalities Equation (5.24) to some departure αLax then

if ϕ(ϑi) > αMap then

Mark cell wall i

end if

end if

If FWENO
i+1/2 denotes the WENO fluxes and the inviscid fluxes are represented on a skew-symmetric

form as FTCD
i+1/2, the hybrid flux takes the form

Fi+1/2 =

F
WENO
i+1/2 , in Cmi

FTCD
i+1/2, in Cmi ,

(5.30)

where Cmi denotes the complement of Cmi . Equation (5.30) assumes that no smoothness requirements

are needed for the switch from one flux form to the other, while smooth transition should be enforced

if the switch was made on the derivative itself. Moreover, by construction, the dispersion relation is

preserved across schemes [44].

Comparing at different times the results of a one-dimensional simulation of a converging shock

impacting a concentric density interface using either curvature detection or the present switch-

ing technique, it is observed that the curvature criterion cannot capture easily shocks of variable

strengths unless the curvature threshold is set to a too low value, therefore increasing the amount

of WENO in other regions of the computational domain. For example, the curvature criterion fails

at capturing the shock formation described in Subsection 4.3.1, unless the curvature thresholds are

manually changed as the flow evolves. Two- and three-dimensional versions of this new switching

algorithm have been developed to treat complex configurations such as oblique waves, curved shocks,

and more general shock waves not aligned with the computational grid. It is based on the construc-

tion of local Lax criteria( 5.24) not only for the Cartesian velocity components but also for velocity

projections in all diagonal directions x−y, x−z, and y−z. Comparisons with sensors relying on pres-

sure fluctuations alone were performed as verification tests on complex one-dimensional examples
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(a) Density

(b) WENO-TCD Flagging

Figure 5.5: Three-dimensional supersonic shear layer (periodic in the spanwise direction z). (x, y)-
plane cut across the center of the jet of the density (top) and WENO-TCD flagging (bottom).
WENO is turned on in the directions x and y (green) and x, y, and z (red) where shock waves are
present. Courtesy of G. Matheou.

such as plane shock-contact interaction with reshock, radially symmetric cylindrical and spherical

converging shock-contact interaction with reshock, shock-entropy wave interaction, colliding blast

waves, vacuum test, etc.; and multi-dimensional examples as well, such as plane RMI, cylindrical

converging RMI, supersonic shear layer (see Figure 5.5), supersonic inclined jet (see Figure 5.6), etc.

The robustness of this technique is in the universality of the threshold values. The values of αLax

and αMap giving superior results to former criteria are both around 1% (see Tables 5.2, 5.3 and 5.4).

Figure 5.6: Three-dimensional supersonic inclined jet using SAMR (no periodicity in the z direction).
(x, y)-plane cut of the WENO-TCD flagging. WENO is turned on in the directions x and y (green)
and x, y, and z (red) where shock waves are present, in particular around the bow shock forming
ahead of the jet. Courtesy of A. Ferrante.
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5.3.3 Time-Marching Method for SAMR

The use of low-numerical dissipation centered schemes suitable for purely convective problems, as

it is the case for high Reynolds number flows, requires particular temporal stability requirements.

Explicit multi-stage schemes can be easily implemented within SAMR. Lower-order RungeKutta

(RK) methods are not stable, so third or fourth-order RK time-marching methods are considered.

RK substages can also be unstable when using upwinding in WENO: all RK coefficients must be

positive in order to avoid undesirable oscillations around shocks where WENO is used. As a result,

the optimal third-order strong stability preserving (SSP) RK scheme of [37] is chosen. Details are

provided in Subsection 2.1 of [83].

5.3.4 Description of the Large-Eddy Simulations

Seven LES were performed on both the LLNL machine uP and the Center for Advanced Computing

Research (CACR) shared heterogeneous cluster (SHC) at Caltech, and are listed in Tables 5.2, 5.3

and 5.4. The light-to-heavy air→SF6 interaction correspond to runs 12, A1/A1b for a MI = 1.2

incident shock interaction, and run 11 and B1 for MI = 2.0. Runs 12 and 11 are lower resolution

simulations that respectively ran until a time of about four and seven times the first reshock time

with reasonable computational cost. These simulations allowed us to follow the evolution of various

properties of the mixing zone for the very long time. Runs A1 and B1 are twice refined in the three

directions compared to runs 12 and 11 respectively. These simulations also contain more detailed

statistics than the lower resolution runs. Run A1b is a full cylinder version of run A1 that has not

been analyzed yet. It will be used for visualization purposes.

The heavy-to-light SF6 →air shock interaction is studied in the runs A2 and B2 at incident Mach

numbers MI = 1.3 and 2.0 respectively. They have the same resolution as the runs A1/A1b and B1.

The runs are completed but are currently being post-processed.

Results on the air→SF6 interaction are presented in a fashion that puts in parallel the two

incident Mach numbers. When possible, comparisons are made at similar times in the history of the

flow (initial state, first reshock, first deceleration, etc.). We also compare this geometry to the plane

configuration. Details on the post-processing methodology are listed in Appendices B and C.

The grid refinement criterion, based on the local density gradient, allows to refine both regions in

the vicinity of the various shocks and the mixing layer. Owing to the geometry of the flow, at early

times, finest grids are needed in less than 20% of the domain as the mixing layer spatial extension

is still limited. The finest grids still represent a small fraction of the computational domain as the

mixing layer is compressed during the reshock. However, after the first reshock, the finest grids can

represent more than 70% of the domain as the mixing layer radially expands. At late times, the

total number of cells for run A1 or B1 peaks around 220 million, to compare with the almost 300
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million cells required if the grid is uniform and corresponds to the finest resolution. Therefore, for

this particular flow SAMR proves to be useful mainly in the first half of the life of the mixing layer.

At all times the largest portion of the computational cost corresponds to the numerical integration

within the WENO-TCD scheme. While the TCD scheme is computationally very efficient, the

expensive WENO method is in part responsible for that cost even though it is only used in the

vicinity of shock. Since the multistage RK time-marching method requires a spatial synchronization

at every substep, it is more communication-intensive than single-step methods.

Parameters run 12 run 11

Initial

Gas combination air→ SF6 air→ SF6

Conditions

Pre-shock Atwood number A 0.66 0.66
Incident Mach number MI 1.3 2.0
Unshocked outer fluid density ρ0 0.27885 0.27885
Unshocked outer fluid sound speed a0 340 340
Initial shock position RS0 1.05 1.05
Initial interface position R0 1.00 1.00
Main pert. amplitude h0 0.08 0.08
Symmetry-breaking pert. amplitude h1 0.01 0.01
Symmetry-breaking pert. parameter K0 1 1
Azimuthal wavenumber n in | cos(nθ)| 8 8
Axial wavenumber k in | cos(kz)| 24 24

Initial interface thickness δC0 0.01 0.01

Geometry

Topology 1/4 cylinder 1/4 cylinder
Approx. box dimensions (Lx, Ly, Lz) (1.3, 1.3, 0.785) (1.3, 1.3, 0.785)
Exact (βr, βz) (83π/204, 1/2) (83π/204, 1/2)
Base resolution Nx ×Ny ×Nz 83× 83× 51 83× 83× 51
Additional levels of refinement (2, 2) (2, 2)
Equivalent finest resolution 332× 332× 204 332× 332× 204
Finest grid resolution (∆x = ∆y) ∆x = ∆z ' 0.0039 ∆x = ∆z ' 0.0039
Inner cylindrical radius rin 0.04 0.04

Numerics

Ghost cells 3 3
LES cutoff scale ∆c ∆x ∆x
SGS vortex alignment on S&Ω yes yes
SAMR Flagging on scaled |∇ρ| thresh. 0.15 0.15
WENO-TCD thresh. (αLax, αMap) (0.01, 0.01) (0.01, 0.01)

Computations

Simulation time 0.030 0.020
Nodes × CPUs/node 16× 4 (shc) 16× 4 (shc)
CPU hours 49152 48384
Number of cylindrical shells for stats 95 95

Table 5.2: Parameters used in the lower-resolution air→ SF6 three-dimensional simulations of shock-
driven mixing in a converging cylindrical geometry. MKS units. Note that 0.785 ' π/4.
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Parameters run A1 run A1b run B1

Initial

Gas combination air→ SF6 air→ SF6 air→ SF6

Conditions

Pre-shock Atwood number A 0.66 0.66 0.66
Incident Mach number MI 1.3 1.3 2.0
Unshocked outer fluid density ρ0 0.27885 0.27885 0.27885
Unshocked outer fluid sound speed a0 340 340 340
Initial shock position RS0 1.05 1.05 1.05
Initial interface position R0 1.00 1.00 1.00
Main pert. amplitude h0 0.03 0.03 0.03
Symmetry-breaking pert. amplitude h1 0.005 0.005 0.005
Symmetry-breaking pert. parameter K0 1 1 1
Azimuthal wavenumber n in | cos(nθ)| 12 12 12
Axial wavenumber k in | cos(kz)| 22 22 22

Initial interface thickness δC0 0.005 0.005 0.005

Geometry

Topology 1/4 cylinder full cylinder 1/4 cylinder
Approx. box dimensions (Lx, Ly, Lz) (1.48, 1.48, 1.00) (1.48, 1.48, 1.00) (1.48, 1.48, 1.00)
Exact (βr, βz) (665π/1408, 7/11) (665π/1408, 7/11) (665π/1408, 7/11)
Base resolution Nx ×Ny ×Nz 95× 95× 64 95× 95× 64 95× 95× 64
Additional levels of refinement (2, 2, 2) (2, 2, 2) (2, 2, 2)
Equivalent finest resolution 760× 760× 512 760× 760× 512 760× 760× 512
Finest grid resolution (∆x = ∆y) ∆x = ∆z ' 0.0019 ∆x = 2∆z ' 0.0039 ∆x = ∆z ' 0.0019
Inner cylindrical radius rin 0.04 0.04 0.04

Numerics

Ghost cells 3 3 3
LES cutoff scale ∆c ∆x ∆x ∆x
SGS vortex alignment on S&Ω yes yes yes
SAMR Flagging on scaled |∇ρ| thresh. 0.15 0.15 0.15
WENO-TCD thresh. (αLax, αMap) (0.01, 0.05) (0.01, 0.05) (0.01, 0.05)

Computations

Simulation time 0.025 0.025 0.015
Nodes × CPUs/node 32× 4 (shc) 16× 8 (uP) 32× 4 (shc)
CPU hours 89088 107520 99840
Number of cylindrical shells for stats 280 280 280

Table 5.3: Parameters used in the higher-resolution air→ SF6 three-dimensional simulations of
shock-driven mixing in a converging cylindrical geometry. MKS units. Note that 1.000 ' 7π/22.
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Parameters run A2 run B2

Initial

Gas combination SF6 →air SF6 →air

Conditions

Pre-shock Atwood number A -0.66 -0.66
Incident Mach number MI 1.3 2.0
Unshocked outer fluid density ρ0 0.27885 0.27885
Unshocked outer fluid sound speed a0 300 300
Initial shock position RS0 1.05 1.05
Initial interface position R0 1.00 1.00
Main pert. amplitude h0 0.03 0.03
Symmetry-breaking pert. amplitude h1 0.005 0.005
Symmetry-breaking pert. parameter K0 1 1
Azimuthal wavenumber n in | cos(nθ)| 12 12
Axial wavenumber k in | cos(kz)| 22 22

Initial interface thickness δC0 0.005 0.005

Geometry

Topology 1/4 cylinder 1/4 cylinder
Approx. box dimensions (Lx, Ly, Lz) (1.48, 1.48, 1.00) (1.48, 1.48, 1.00)
Exact (βr, βz) (665π/1408, 7/11) (665π/1408, 7/11)
Base resolution Nx ×Ny ×Nz 95× 95× 64 95× 95× 64
Additional levels of refinement (2, 2, 2) (2, 2, 2)
Equivalent finest resolution 760× 760× 512 760× 760× 512
Finest grid resolution (∆x = ∆y) ∆x = ∆z ' 0.0019 ∆x = ∆z ' 0.0019
Inner cylindrical radius rin 0.04 0.04

Numerics

Ghost cells 3 3
LES cutoff scale ∆c ∆x ∆x
SGS vortex alignment on S&Ω yes yes
SAMR Flagging on scaled |∇ρ| thresh. 0.15 0.15
WENO-TCD thresh. (αLax, αMap) (0.01, 0.05) (0.01, 0.05)

Computations

Simulation time running running
Nodes × CPUs/node 16× 8 (uP) 16× 8 (uP)
CPU hours ... ...
Number of cylindrical shells for stats 280 280

Table 5.4: Parameters used in the currently running higher-resolution SF6 →air three-dimensional
simulations of shock-driven mixing in a converging cylindrical geometry. MKS units. Note that
1.000 ' 7π/22.
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5.4 Cylindrical-Shell Statistics: Definitions

The natural symmetry of the problem results in defining as ‘shell’ a two-dimensional cylindrical

surface of radius r extending in both θ and z directions. We define the instantaneous average for an

arbitrary field Q over a shell of radius r at time t as

〈Q〉(r, t) =
1
Ar

∫ ∫
f(r, θ, z, t)rdθdz, (5.31)

where Ar is the surface area of the shell of radius r (Ar = πLzr/2 for a π/2 wedge). The instanta-

neous volume-average of the quantity Q is simply obtained by integrating 〈Q〉 in the radial direction.

Q can then be formally decomposed as

Q(x , t) = 〈Q〉(r, t) +Q′(r, θ, z, t) = Q̃(r, t) +Q′′(r, θ, z, t), (5.32)

where the tilde now represents the instantaneous Favre-like, shell-average

Q̃(r, t) =
〈ρQ〉
〈ρ〉

, (5.33)

Note that a shell-average computation involves first the interpolation of Cartesian fields over the

shell that can possibly cross different SAMR patches being handled by different processors, then

averaging the sampled fields. The sampling in z and θ is performed according to the smallest grid

spacing, so that fields will be sample in both direction every ∆x. Data comprised in wedge-like

volumes 0 < θ < θmin = π/30 close to the horizontal wall, and θmax = (π/2−π/30) < θ < π/2 close

to the vertical wall, are arbitrarily discarded to avoid wall-effects. From Equations (5.32) and (5.33),

we can define the following instantaneous variances:

Var(Q) = 〈Q′2〉 = 〈Q2〉 − 〈Q〉2, (5.34a)

Varρ(Q) = Q̃′′2 = Q̃2 − Q̃2 =
〈ρQ2〉
〈ρ〉

− 〈ρQ〉
2

〈ρ〉2
. (5.34b)

For each MI , shell-averages are used to gain a better understanding of the different stages of the

growth of the mixing layer. In what follows, we investigate for example the evolution of the mixing-

layer center position and width. Shell-averages on both the resolved- and the subgrid-scale flow

quantities can illustrate the importance of the subgrid kinetic energy and dissipation in the mixing.

Various spectra are also computed late in the mixing evolution on cylindrical shells taken across the

center of the mixing zone. The effect of the anisotropy of the flow on the various dynamic scales of

the turbulence is quantified using directionally dependent Taylor and Kolmogorov microscales. The
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Quantity of interest Length Density Speed Time TKE per unit mass turbulent dissipation

Characteristic quantity R0 ρ0 a0 =
√
γair

p0
ρ0

R0
a0

a2
0 ε0 ≡ µ0

a2
0

ρ0R
2
0

Evaluation (MKS units) 1.0 0.27885 340 0.0029 115000 0.5796

Table 5.5: Basic characteristic quantities for dimensionless data representation. The index 0 denotes
the fluid standing initially on the side where the incident shock comes from.

mixing properties are finally analyzed by investigating probability density functions (p.d.f.s) taken

at different shell radii across the width of the layer.

The above shell-averaged quantities are made dimensionless, by a similar choice of parameters

made in Chapters 3 and 4. We summarize these definitions in Table 5.5. The characteristic turbulent

TKE per unit mass and turbulent dissipation are also listed. Note that these definitions depend

only on the nature of the outer unshocked fluid properties (here unshocked air).

5.5 The Different Stages in the Growth of the Mixing Layer

5.5.1 Visualization

Figures 5.7 and 5.8 show the evolution of the mixing layer at different stages of its growth, by looking

at the scalar isosurfaces corresponding to a mass fraction of 50% (center), for 75% air (or spike, the

portion of heavy fluid penetrating into light fluid), and for 75% SF6 (or bubble, the portion of

light fluid penetrating into heavy fluid). The first snapshot corresponds to the interface accelerated

towards the apex as the spikes and bubbles are stretched away from each other. The second picture

shows the compressed state of the mixing layer during the first reshock and the phase inversion. The

late turbulent mixing displays a wide range of dynamic scales as shown on the bottom subfigure, for

each Mach number. Notice the SAMR levels displayed on the background that the mesh is refined

in the region of the mixing zone and around shocks. For example, the reflected shock produced from

the initial shock refraction is seen slowly exiting the domain on Figures 5.8a,b. The transmitted

shock produced from the first reshock interaction exits the domain on Figure 5.8c.

5.5.2 Mixing-Zone Growth

To measure mixing-zone growth, the mixture fraction 〈ψ〉 is shell-averaged in the azimuthal and

axial directions and the width of the mixing region δ at time t is defined according to

δ(t) = 4
∫ rout

rin

(1− 〈ψ〉)〈ψ〉dr. (5.35)
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(a)

(b)

(c)

Figure 5.7: Differently colored iso-surfaces for mass fractions ψ = 73.1%, 50%, and 26.9% visualize
the evolution of the mixing zone: (a) the interface converges towards the axis; (b) the interface is
reshocked a first time; (c) late-time turbulent mixing is observed. The gray levels on the background
planes represent the domains of different mesh refinement. Case air→SF6, M0 = 1.3.
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(a)

(b)

(c)

Figure 5.8: Differently colored iso-surfaces for mass fractions ψ = 73.1%, 50%, and 26.9% visualize
the evolution of the mixing zone: (a) the interface converges towards the axis; (b) the interface is
reshocked a first time; (c) late-time turbulent mixing is observed. The gray levels on the background
planes represent the domains of different mesh refinement. Case air→SF6, M0 = 2.0.
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To understand this definition, one can think of a smooth radial profile 〈ψ〉 of the mixture fraction

from air outside (〈ψ〉 = 0) to SF6 inside (〈ψ〉 = 0) in the form of a tanh function of intrinsic

thickness δ and centered on the mixing-zone center r = rc. In this case it is easy to show that δ

verifies Equation (5.35), providing that the boundaries r = rin and r = rout are sufficiently far from

rc, i.e. δ � rc−rin and δ � rout−rc. Another interpretation is mentioned later in Subsection 5.8.1.

Figure 5.9 shows the evolution of the width δ and its growth ˙delta for both Mach numbers. We also

define the mixing-zone center rc as

rc(t) = 4
∫ rout

rin

r

δ(t)
(1− 〈ψ〉)〈ψ〉dr, (5.36)

which is plotted in Figure 5.10.

To confirm what is observed in figures 5.9 and 5.10, and following the approach of Chapter 4, the

different stages in the acceleration of an air→SF6 interface initially impacted by a shock of incident

Mach number MI = 1.3 or 2.0 are summarized in Table 5.6. All the quantities displayed in this table

are obtained from the simulations and compared to simulations and experiments performed in plane

geometry. In Table 5.6, the different characteristic times describing the evolution of the mixing

layer, the interface velocities and the Atwood ratios agree well with the one-dimensional radially

symmetric simulations described in Chapter 4. The initial shock refraction produces a transmitted

shock that reflects off the axis to reshock the interface. As seen in Chapter 4 for the cylindrical

air→SF6, the reshock interaction is followed by the formation of a shock in the heavy fluid that will

reflect off the apex to reshock the interface a second time but with lower intensity (negative peak in

the growth rate plot Figure 5.9). Meanwhile, the interface, which was accelerated outwards by the

first reshock, decelerates to move radially inwards when it is reshocked a second time. There follows

a late-time slower growth, that stabilizes earlier for MI = 1.3 while the mixing layer keeps growing

and expanding radially from its radial position at the first reshock for MI = 2.0.

Close-ups of the growth around the first and second shock interactions are displayed in Fig-

ures 5.11 and 5.12. The growth observed is strongly non-linear and consists of highly distorted,

non-single-mode initial perturbations. For the first shock interaction, the growth rates are different

from the plane case because they are not defined the same way. In the plane case, the interface

growth rate saturates before the interface is reshocked and the saturation growth rate is the one

reported in the previous table. It is low compared to the cylindrical growth rates because there is

no geometrical effect that forces the perturbations to grow (see Chapter 3 for similar observations

on the linear growth). After the first reshock (second shock interaction), the growth is linear with

time, for both Mach numbers, as observed in the plane case and noticed in Hosseini’s experiments

on cylindrical RMI [50]. Comparisons with Hosseini’s experiments remain difficult as these exper-

iments correspond to different initial conditions and have a visual definition of the mixing-layer
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MI = 1.3 MI = 2.0
(or MI = 1.24 for plane geom.) (or MI = 1.98 for plane geom.)

Time of incident shock interaction 0.20 0.08

Post-shock amplitude h(0+)/R0 0.05 0.0382

Meas. plane h(0+)/Ly,z 0.01 0.005

Post-shock Atwood ratio A+ 0.712 0.766
Shocked interface velocity difference ∆W/a0 0.292 0.829
Meas. plane ∆W/a0 0.212 0.827
Approx. shocked growth rate 0.10 0.354
Meas. plane shocked growth rate 0.006 0.022

Time of first reshock 2.4 1.1
Meas. plane time of first reshock 3.2 0.7

Post-reshock amplitude h(0+)rs/R0 0.120 0.138

Meas. plane h(0+)rs/Ly,z 0.08 0.05

Post-reshock Atwood ratio A+
rs 0.74 0.83

Reshocked interface velocity difference ∆Wrs/a0 85.6 1.26
Approx. reshocked growth rate 0.188 0.293
Meas. plane reshocked growth rate 0.05 0.214

Time of first deceleration 4.0 1.6

Time of second reshock 4.6 2.2

Time of second deceleration 7.3 2.8

Final time achieved for lower resolution runs ' 11 for run 12 ' 8 for run 11
Final time achieved for higher resolution runs ' 9 for run A1 ' 5 for run B1

Table 5.6: Key approximate dimensionless times (a0/R0)t, growth rates (1/a0)dδ/dt, interface ve-
locity differences ∆W/a0 created by the shock acceleration, post-shock perturbation amplitudes
h(0+)/R0 and Atwood ratios A+, characterizing the important stages of a cylindrical air→SF6 in-
terface accelerated by a cylindrical converging shock of incident Mach number MI = 1.3 and 2.0.
Comparisons with Vetter and Sturtevant’s plane experiments at MI = 1.24 and MI = 1.98 [109, 43].
In these experiments, the sound speed is a0 ' 339 m.s−1 for the case MI = 1.24 and a0 ' 347 m.s−1

for MI = 1.98.
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Figure 5.9: Evolution of the mixing-layer width δ (red solid line) and growth rate dδ/dt (blue
small-dashed line). Case MI = 1.3 (left) and 2.0 (right).
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Figure 5.10: Evolution of the mixing-layer center rc. Case MI = 1.3 (left) and 2.0 (right).

width. The post-reshock growth should be compared to the classic experimental observations of the

plane post-reshock growth ' 0.28A+
rs∆Wrst. We display finally the evolution of spike and bubble

shell-averaged radial velocities 〈ur〉s and 〈ur〉b in Figure 5.13 and volume V per unit axial length of

the mixing zone in Figure 5.14.

A scalar function is defined by Y = 2ψ − 1 such that Y ∈ [−1, 1]. As depicted in Figure 5.15,

the scalar profile evolves to shapes different from the initial tanh-like profile, and exhibits irregu-

lar features as a consequence of complex large-scale dynamics. After the initial shock interaction,

organized spikes and bubbles segregate distinctly until the first reshock where the interface is com-

pressed then re-expanded. The post-reshock dynamics induces a more chaotic flow that, on average,

is represented by wider profiles of the scalar shell-averages. For MI = 2.0, the entrainment of inner

heavy fluid captured in between the apex and the mixing zone is illustrated by a slow decrease in

the amount of pure heavy fluid on the very left side of the mixing zone.
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Figure 5.11: Evolution of the mixing-layer width δ following the initial shock interaction. Simula-
tion (red solid line), three-dimensional linear impulsive model ḣ∞/a0 (blue small-dashed line), and
βḣ∞/a0 (pink dotted line), with β = 0.3 for MI = 1.3 and β = 0.45 for MI = 2.0. ḣ∞ given by
Equation (3.32). Case MI = 1.3 (left) and 2.0 (right).
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Figure 5.12: Evolution of the mixing-layer width δ following the first reshock. Simulation (red solid
line) and βrsA

+
rs∆Wrs (blue small-dashed line), with A+

rs and ∆Wrs determined at the reshock
interaction and βrs = 0.75 for MI = 1.3 and βrs = 0.28 for MI = 2.0. Case MI = 1.3 (left) and 2.0
(right).

5.5.3 Turbulence Statistics

5.5.3.1 Shell-Averaged Statistics vs. Radius At Different Stages

Favre-like shell-averaged statistics of the turbulent activity such as resolved-scale TKE 〈K〉, subgrid-

scale TKE 〈k〉 (per unit mass), resolved-scale dissipation 〈εres〉, and subgrid energy transfer 〈εsgs〉
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Figure 5.13: Evolution of the bubble and spike shell-averaged radial velocities 〈ur〉b (blue small-
dashed line) and 〈ur〉s (pink dotted line). Case MI = 1.3 (left) and 2.0 (right).
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Figure 5.14: Evolution of the mixing-layer volume per unit z−length V . Case MI = 1.3 (left) and
2.0 (right).

read as follows:

〈K〉 =
1
2

Varρ(uiui), (5.37a)

〈k〉 =
〈τii〉
2〈ρ〉

, (5.37b)

〈εres〉 =
〈d′ijS′ij〉
〈ρ〉

, (5.37c)

〈εsgs〉 = −
〈τ ′ijS′ij〉
〈ρ〉

. (5.37d)

〈ε〉 − 〈εres〉 ≡ 〈εsgs〉, with 〈ε〉 the total dissipation, represents the transfer of kinetic energy through

the wave mode π/∆c and is provided by the stretched-vortex SGS model using Equation (5.11a). The

total dissipation 〈ε〉 is simply related to the the shell-average of σ′ijS
′
ij where σij = dij−τij represents
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Figure 5.15: Shell-averaged scalar 〈Y 〉 centered on the mixing-layer center rc vs. r, at different
stages of the mixing-layer evolution. Case MI = 1.3 (left) and 2.0 (right).

the total (resolved plus subgrid) stress tensor. Using Equation (5.37), we have the equalities

〈ε〉 = 〈εres〉+ 〈εsgs〉

=
1
〈ρ〉

(〈dijSij〉 − 〈dij〉〈Sij〉)−
1
〈ρ〉

(〈τijSij〉 − 〈τij〉〈Sij〉)

=
1
〈ρ〉

(〈σijSij〉 − 〈σij〉〈Sij〉) . (5.38)

The total TKE is used to define the turbulent intensity

u′ =

√
2(〈K〉+ 〈k〉)

3
, (5.39)

and the turbulent Mach number

Mt =
u′

〈a〉
, (5.40)

where a =
√
γp/ρ is the sound speed.

The following figures confirm the history of the mixing-layer evolution by focusing on the post-

shock flow, the post-reshock flow and the flow at very late time. Figure 5.16 shows the increasing

variance in the scalar field as the turbulent mixing occurs, while Figure 5.17 indicates the highly-

compressible character of the wave interactions with the mixing zone, in particular for MI = 2.0.

The initial density ratio of heavy fluid to light fluid is 5. For both MI = 1.3 and MI = 2.0, the

final density ratio of heavy inner fluid and light outer fluid remains close to 5. To compare, in the

plane RMI with reshock involving the same species, the final ratio is approximately 6.5 (see Figure

6b of [43]). In the future, it will be interesting to compare these ratios with the ratios obtained for

the heavy-to-light interactions (run A2 and B2).
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The stretched vortex subgrid model allows us to estimate directly the local subgrid kinetic energy

and dissipation. Figure 5.18 shows that 〈K〉 is about 10 to 15 times larger than its subgrid coun-

terpart, while Figure 5.19 indicates that the subgrid dissipation is about 20 (respectively 60) times

the resolved dissipation before the reshock for MI = 1.3 (respectively 2.0), and become 50 times the

resolved dissipation (respectively 100) as unresolvable scales, producing dissipation, develop after

reshock. The weakly compressible nature of the flow late after reshock is shown in Figure 5.20 repre-

senting the evolution of the shell-averaged Mach number 〈M〉, with M = |u |/c, and turbulent Mach

number Mt. The turbulent Mach number peaking around the center of the mixing zone at values

ranging from 0.03 to 0.06. This is similarly observed in the plane case and generally in RMI-driven

turbulent mixing. Finally, the strong radial anisotropy of the flow is displayed in shell-averaged

velocity component profiles (see Figure 5.21): the radial component allows us to see the transmitted

shocks from the initial and re-shock interactions. At MI = 1.3, the late-time flow expands radially

outwards while for MI = 2.0 there exists a region of change in the radial velocity direction, around

the center of the mixing zone.

The radial profiles of the scalar and density variances in Figures 5.15, 5.16, and 5.17, and the

shell-averaged Mach number in Figure 5.20 show important differences in the flow structure between

the MI = 1.3 case and the MI = 2.0 case. Before the first reshock, for MI = 2.0, the spikes and

bubbles evolve more distinctly than for MI = 1.3. For MI = 2.0, the reshock occurs closer to the

axis and the post-reshock mixing layer expands radially from a location close to the axis to a radius

of the order of the initial radial position of the mixing layer. For MI = 1.3, the reshock occurring

further away from the axis, the final extent of the mixing layer is reduced.

5.5.3.2 On the Decaying Turbulence

A global measure of turbulence is obtained by looking at the volume-averaged total TKE, TKEvol,

that recalls the various stages and wave interactions in the mixing-zone growth (Figure 5.22). Bumps

indicate the various shock interactions. Ultimately, the reverberations become weaker and the energy

deposited by baroclinic means during the first wave interactions, decays.

From u′ (see Equation (5.40)) and the total turbulent dissipation (see Equation (5.37)), an

integral length scale, or technically the distance after which the self correlation of the velocity

components vanishes, and a turbulent Reynolds number can also be computed as

` =
u′3

〈εres〉+ 〈εsgs〉
, (5.41a)

Re` =
u′`

〈ν〉
, (5.41b)

where the kinematic viscosity is ν = µ/ρ. The late-time decay of TKE is also observed on plots of

the integral length scale and turbulent Reynolds number evaluated at the center of the mixing layer
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Figure 5.16: Shell-averaged scalar 〈Y 〉 (red solid line) and scalar variance Varρ(Y ) (blue small-dashed
line) vs. r, after the incident shock interaction (top), right after the first reshock (middle), and at
late time (bottom). Case MI = 1.3 (left) and 2.0 (right).

and presented in Figures 5.23 and 5.24.
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Figure 5.17: Shell-averaged density 〈ρ〉 (red solid line) and density variance Var(ρ) (blue small-
dashed line) vs. r, after the incident shock interaction (top), right after the first reshock (middle),
and at late time (bottom). Case MI = 1.3 (left) and 2.0 (right).
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Figure 5.18: Shell-averaged resolved scale turbulent kinetic energy 〈K〉 (red solid line) and subgrid
turbulent kinetic energy 〈k〉 (blue small-dashed line) vs. r, after the incident shock interaction
(top), right after the first reshock (middle), and at late time (bottom). Note the order of magnitude
difference in the scale of the plots: 〈K〉 ∼ 10〈k〉 for the case MI = 1.3 and 〈K〉 ∼ 20〈k〉 for the case
MI = 2.0. Case MI = 1.3 (left) and 2.0 (right).
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Figure 5.19: Shell-averaged resolved scale dissipation rate 〈εres〉 (red solid line) and subgrid dissipa-
tion 〈εsgs〉 (blue small-dashed line) vs. r, after the incident shock interaction (top), right after the
first reshock (middle), and at late time (bottom). Note the order of magnitude difference in the scale
of the plots: for the case MI = 1.3 (respectively 2.0) 〈εsgs〉 ∼ 30〈εres〉 (respectively 100) prior to the
first reshock, 〈εsgs〉 ∼ 200〈εres〉 (respectively 1000) after the first reshock, and 〈εsgs〉 ∼ 100〈εres〉
(respectively 100) at late time. Case MI = 1.3 (left) and 2.0 (right).
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Figure 5.20: Shell-averaged Mach number 〈M〉 (red solid line) and turbulent Mach number Mt

(blue small-dashed line) vs. r, after the incident shock interaction (top), right after the first reshock
(middle), and at late time (bottom). Note the order of magnitude difference in the scale of the plots.
Case MI = 1.3 (left) and 2.0 (right).
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Figure 5.21: Shell-averaged radial velocity component 〈ur〉 (red solid line), azimuthal velocity com-
ponent 〈uθ〉 (blue small-dashed line) and axial velocity component 〈uz〉 vs. r, after the incident
shock interaction (top), right after the first reshock (middle), and at late time (bottom). Note the
order of magnitude difference in the scale of the plots. Case MI = 1.3 (left) and 2.0 (right).
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Figure 5.22: Volume-averaged total turbulent kinetic energy TKEvol as a function of time. Case
MI = 1.3 (left) and 2.0 (right).
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as a function of time, during the decay of turbulent kinetic energy. Case MI = 1.3 (left) and 2.0
(right).

2.0⋅105

4.0⋅105

6.0⋅105

8.0⋅105

1.0⋅106

1.2⋅106

1.4⋅106

 4  5  6  7  8  9 10

R
e l

(a0/R0)t

(a) MI = 1.3

5.0⋅105

1.0⋅106

1.5⋅106

2.0⋅106

2.5⋅106

3.0⋅106

1.5 2.0 2.5 3.0 3.5 4.0 4.5

R
e l

(a0/R0)t

(a)’ MI = 2.0

Figure 5.24: Shell-averaged turbulent Reynolds number Re` computed in the center of the mixing
zone r = rc as a function of time, during the decay of turbulent kinetic energy. Case MI = 1.3 (left)
and 2.0 (right).
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5.6 Instantaneous Velocity, Density and Scalar Spectra

5.6.1 Time Evolution

Density, scalar and velocity fields can be sampled over the shell located at the center of the mixing

zone, in the θ and z directions. For a given sampled field f(r, θ, z, t), applying the Fourier transform

of f in the periodic z-direction and averaging the power spectrum coefficients over the θ-direction,

an instantaneous one-dimensional spectrum Ef is defined as a function of the axial wavenumber kz

and evaluated at r = rc as

Ef (kz)(rc, t) =
1

θmax − θmin

∫ θmax

θmin

|F̂ (rc, θ, kz, t)|2dθ, (5.42)

where F̂ is the Fourier transform of f in the z-direction. Figure 5.25 shows radial velocity spectra

at different times: right after the first reshock, right after the second reshock, later after the second

reshock, and at very late time. As time progresses, the peak of each spectrum moves to lower

wavenumber and an inertial range forms, approaching the universal Kolmogorov k
−5/3
z scaling, as

observed by Hill et al. [43] in the plane geometry.

5.6.2 Late-Time Spectra

Figure 5.26 confirms the Kolmogorov-like energy spectrum for the three components of the velocity.

Except for uz, minimal aliasing errors are observed at the highest wavenumbers, and we recall

that no explicit filtering of any kind was performed, and WENO is not active across the mixing

zone. However, the use of bandwidth-optimized centered stencils, such as TCD, combined with

skew-symmetric discretization partly helps minimize the accumulation of energy owing to high-

wavenumber aliasing errors.

We performed various tests for homogeneous decaying turbulence in a three-dimensional box that

confirmed that aliasing is only seen for the any one-dimensional power spectra of the uk velocity

components taken in the kth direction only. Two-dimensional, or radial, spectra will minimize the

aliased aspect of the one-dimensional spectra for high wavenumbers, since aliased one-dimensional

spectrum of a given component uk in the kth direction is combined with non-aliased one-dimensional

spectrum of uk in a jth direction orthogonal to the kth. This leads to the following comment: the

general issue with compressible solvers for Navier-Stokes or LES is that the discretized equations

do not converge to the incompressible equations in the limit of zero Mach number. As a result,

the discrete equations support unphysical modes that make simulations unstable. Spectral methods

are special in the sense that the pressure equation does converge to the incompressible version.

This problem, also well known in the finite element community, is the cause of aliasing errors in

collocated method and is generally referred to as “weak momentum” coupling. Consider for example
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(a) MI = 1.3 (a)’ MI = 2.0

Figure 5.25: kz-power spectra of velocity Eur (kz) computed in the center shell of the mixing zone at
four different times: For MI = 1.3 (left), (a0/R0)t = 2.69 (dashed-dot line), (a0/R0)t = 5.52 (long
dashed-line), (a0/R0)t = 6.44 (small-dashed line), and (a0/R0)t = 8.16 (solid line). For MI = 2.0
(right), (a0/R0)t = 1.21 (dashed-dot line), (a0/R0)t = 2.43 (long-dashed line), (a0/R0)t = 3.09
(small-dashed line), and (a0/R0)t = 5.07 (solid line). All computed wavenumbers shown and kmax =
256.

the momentum in the x-direction at node i, the pressure gradient will be computed from nodes i+ 1

and i − 1, but not from node i. This larger stencil produces a more or less large scale decoupling

of the momentum and mass conservation/energy equations that leads to the generation of waves at

the finest resolution (2∆x mode) that grows. In addition, the first derivative centered operator (see

Equation (5.17)) used to compute resolved or subgrid viscous dissipation terms has, by construction,

no contribution at the highest wave numbers and cannot stabilize the growth of the 2∆x mode. As

expected, the momentum spectrum in the direction of the pressure gradient will show aliasing at high

wavenumbers. In the context of collocated methods, Rhie-Chow-like interpolations partially solve the

problem as they are equivalent to adding numerical viscosity in a significant way. The best approach

is to improve the representation of discrete, second derivatives (involved in the viscous dissipation

terms) at high wavenumbers in order to make them more dissipative at these wavenumbers. For the

resolved part, the operator DxDx has actually been rewritten in a narrow stencil form that can see

the mode 2∆x. In LES however, the resolved viscous dissipation term is negligible and the subgrid

fluxes would have to be decomposed and discretized in a narrow stencil as well. The issue is still to

be resolved.

While they are governed by different equations, density and scalar exhibit spectra that correlate

well as shown in Figure 5.27. Figure 5.28 indicates that the spectrum Eur (kz), corresponding to the

direction of anisotropy, contains more than a third of the total kinetic energy.
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(a) MI = 1.3 (a)’ MI = 2.0

Figure 5.26: kz-power spectra of velocity components Eur (kz) (solid line), Euθ (kz) (small-dashed
line), and Euz (kz) (long-dashed line) computed in the center shell of the mixing zone at late time
(a0/R0)t = 8.16 for MI = 1.3 (left) and (a0/R0)t = 5.07 for MI = 2.0 (right). All computed
wavenumbers shown and kmax = 256.

(a) MI = 1.3 (a)’ MI = 2.0

Figure 5.27: kz-power spectra of density Eρ(kz) (solid line) and Eψ(kz) (dashed line) computed in the
center shell of the mixing zone at late time (a0/R0)t = 8.16 for MI = 1.3 (left) and (a0/R0)t = 5.07
for MI = 2.0 (right). All computed wavenumbers shown and kmax = 256.

5.7 Kolmogorov and Taylor Statistics

The anisotropy of the flow is further investigated in this section by looking at the evolution of various

characteristic scales of the flow at the center of the mixing zone r = rc(t). We are first interested in

the Kolmogorov microscales, the smallest turbulence length scale, associated with viscous dissipation

of kinetic energy. From the classic definition of the Kolmogorov microscale for isotropic turbulence,

we define η at rc

η(t) =
(
〈ν〉3(rc, t)
〈ε〉(rc, t)

)1/4

, (5.43)
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(a) MI = 1.3 (a)’ MI = 2.0

Figure 5.28: Measure of anisotropy displayed on the kz-power spectra Eur (kz)/(Eur (kz)+Euθ (kz)+
Euz (kz)) − 1/3 computed in the center shell of the mixing zone at late time (a0/R0)t = 8.16 for
MI = 1.3 (left) and (a0/R0)t = 5.07 for MI = 2.0 (right). All computed wavenumbers shown and
kmax = 256.

where 〈ε〉 is given by Equation (5.38). In the runs A1 (respectively B1), we observe in Figure 5.29a

(respectively 5.29a’) that η ' ∆x/70 (respectively ∆x/100) at late times, which justifies the use of

subgrid modeling to model the viscous dissipation produced at scales smaller than the finest grid

spacing ∆x. To study the isotropy of the viscous dissipation scales, Kolmogorov microscales in the

r-, θ-, and z-direction can be defined by

ηr(t) =
(
〈ν〉3(rc, t)
〈εr〉(rc, t)

)1/4

, (5.44a)

ηθ(t) =
(
〈ν〉3(rc, t)
〈εθ〉(rc, t)

)1/4

, (5.44b)

ηz(t) =
(
〈ν〉3(rc, t)
〈εz〉(rc, t)

)1/4

, (5.44c)

where the total dissipation rates in the r-, θ-, and z-direction are given by

〈εr〉 =
1
〈ρ〉2

(〈ρσrrSrr〉 − 〈σrr〉〈ρSrr〉) , (5.45a)

〈εθ〉 =
1
〈ρ〉2

(〈ρσθθSθθ〉 − 〈σθθ〉〈ρSθθ〉) , (5.45b)

〈εz〉 =
1
〈ρ〉2

(〈ρσzzSzz〉 − 〈σzz〉〈ρSzz〉) . (5.45c)

In Appendix C, the above diagonal components of the stress tensor σ and the strain-rate tensor S in

the cylindrical basis are given as a function of their respective components in Cartesian coordinates

(see definitions in Equations (5.7c), (5.11a) and (5.13). It is observed (not shown) that after the

first reshock, ηθ and ηz are almost the same at the center of the mixing layer. Because of such shell
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Figure 5.29: Shell-averaged Kolmogorov microscales η (red solid line), ηr (blue small-dashed line),
and ηθz (pink dotted line) computed in the center of the mixing r = rc zone as a function of time.
Case MI = 1.3 (left) and 2.0 (right).

isotropy, it is convenient to combine θ and z components, namely,

ηθz =
1
2

(ηθ + ηz), (5.46)

and to compare this to ηr defined in the direction of inhomogeneity of the mean flow. Figure 5.29

confirms that the first reshock is responsible for the creation of a wide range of scales, in partic-

ular smaller and smaller scales at which the dissipation occurs. Following the reshock, the radial

expansion of the mixing zone is associated with increase of Kolmogorov scales in the radial direc-

tion. These results also indicate late-time isotropy in the radial and transverse scales. For isotropic

turbulence, we would also expect similar dissipation rates in any direction of the flow, and therefore

same Kolmogorov microscales.

We are also interested in the Taylor microscales, the ‘smallest large scale’ in the turbulent flow,

i.e. the scale for which viscous dissipation begins to affect the eddies. It marks the transition from

the inertial subrange to the dissipation range. The isotropic Taylor microscale λT at rc is classically

given by

λT (t) =

√
15〈ν〉(rc, t)
〈ε〉(rc, t)

u′(rc, t). (5.47)
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Similarly, Taylor microscales in the r-, θ- and z-direction can be defined by

λr(t) =

√
Varρ(ur)(rc, t)
Varρ(Srr)(rc, t)

, (5.48a)

λθ(t) =

√
Varρ(uθ)(rc, t)
Varρ(Sθθ)(rc, t)

, (5.48b)

λz(t) =

√
Varρ(uz)(rc, t)
Varρ(Szz)(rc, t)

. (5.48c)

Note that if the mean flow had zero velocity and constant density (e.g. in RT flow starting with two

fluids at rest), and considering for simplicity Cartesian coordinates, i being 1, 2 or 3, Varρ(ui) = 〈u2
i 〉

and Varρ(Sii) = 〈(∂ui/∂xi)2〉 (no sum on i). As for the Kolmogorov microscales, it is observed (not

shown) that after the first reshock, λθ and λz are almost the same at the center of the mixing layer.

Because of such isotropy transversally to the radial flow, it is again convenient to combine θ and z

components, namely,

λθz =
1
2

(λθ + λz), (5.49)

and to compare this to λr defined in the direction of inhomogeneity of the mean flow. Figure 5.30

indicates again reshock, post-reshock events, and late-time evolution. The final Taylor microscales

are about ten times the finest grid spacing. Anisotropy between radial and transverse directions

remains strong until late time when λr and λθz approach each other for MI = 2.0, and even converge

for MI = 1.3. This can be compared to the plane RTI (e.g., see [19]) where an isotropic driving term

(the gravity) sustains the anisotropy at the microscale level at late times. In our case, the driving

terms, in other words the traveling waves, act impulsively or over a short period of time, confirming

the late-time rather isotropic character of the microscales. For isotropic turbulence, we would expect

similar Taylor microscales. Figure 5.31 depicts the temporal evolution of various Taylor Reynolds

numbers in the center of the mixing layer r = rc(t). These are defined as

ReλT (t) =
u′(rc, t)λT (t)
〈ν〉(rc, t)

, (5.50a)

Reλr (t) =

√
Varρ(ur)(rc, t)λr(t)
〈ν〉(rc, t)

, (5.50b)

Reλθ (t) =

√
Varρ(uθ)(rc, t)λθ(t)
〈ν〉(rc, t)

, (5.50c)

Reλz (t) =

√
Varρ(uz)(rc, t)λz(t)
〈ν〉(rc, t)

, (5.50d)

Reλθz (t) =
1
2

(Reλθ (t) +Reλz (t)). (5.50e)

The isotropy in the flow is also manifest in the Taylor Reynolds numbers evolution.
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Figure 5.30: Shell-averaged Taylor microscales λT (red solid line), λr (blue small-dashed line), and
λθz (pink dotted line) computed in the center of the mixing zone r = rc as a function of time. Note
the order of magnitude difference in the scale of the plots. Case MI = 1.3 (left) and 2.0 (right).

Profiles of the shell-averaged mixture fraction have shown that the mixing displays inhomo-

geneities (e.g., spike and bubbles), even at late times, associated with the anisotropic direction r. It

is therefore of interest to investigate Taylor-like microscales related to variances in the scalar field

λYr (t) =

√
Varρ(Y )(rc, t)
Varρ(∂Y∂r )(rc, t)

, (5.51a)

λYθ (t) =

√
Varρ(Y )(rc, t)

Varρ( 1
r
∂Y
∂θ )(rc, t)

, (5.51b)

λYz (t) =

√
Varρ(Y )(rc, t)
Varρ(∂Y∂z )(rc, t)

, (5.51c)

λYθz (t) =
1
2

(λYθ (t) + λYz (t)). (5.51d)

As for the Taylor microscale, isotropy is found in directions of extension of the shell crossing the

mixing-zone center as λYθ and λYz are almost the same after the reshock (not shown). Late-time,

near-perfect isotropy of the scalar Taylor microscales is observed for both incident Mach numbers

as seen in Figure 5.32

5.8 Mixing Statistics

LES subgrid ‘mixing’ models generally consider only resolved-scale transport, and do not attempt

to capture the small-scale mixing process between the two fluids. The present simulations model

the subgrid flux of a passive scalar (see Equation (5.11c), but do not explicitly model the scalar

mixing that occurs within the subgrid, at scales below the cutoff. In other words, the overall subgrid
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Figure 5.31: Shell-averaged Taylor Reynolds numbers ReλT (red solid line), Reλr (blue small-dashed
line), and Reλθz (pink dotted line) computed in the center of the mixing zone r = rc as a function
of time. Note the order of magnitude difference in the scale of the plots. Case MI = 1.3 (left) and
2.0 (right).

model does not use or model information concerning the real diffusivity of the fluids involved. We

note that this is not true of the subgrid momentum flux, which incorporates direct knowledge of the

viscosity µ within the exponential cutoff for the SGS energy spectrum. This then appears, in turn,

in the SGS momentum flux terms. Hill et al. [43] actually use an extension of the stretched-vortex

model to predict the contribution of certain mixing statistics below the cutoff scale. This work is

also described by the term ‘subgrid continuation’. In particular, Pullin and Lundgren’s model of the

mixing of a passive scalar inside a stretched-spiral vortex [89] has been used to study the effect of

the Schmidt number on continued scalar spectra and p.d.f.s (see [74]). The present LES does not

focus on subgrid continuation and therefore is only computing the ‘stirring’ of the scalar at the level

of the resolved scales, even though, somewhat inaccurately, we use the term ‘mixing’ to qualify the

turbulent evolution of the scalar field after the reshock. As a final remark, this work does not look

into the mixing transition [23] and this subject is left for possible future investigations.

5.8.1 Local-Composition Evolution

The width of the mixing region δ defined in Equation (5.35) can be rewritten

δ(t) =
∫ rout

rin

ψm(〈ψ〉)dr, (5.52)

with

ψm(ψ) = 4ψ(1− ψ). (5.53)
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Figure 5.32: Shell-averaged scalar Taylor microscales λYr (blue small-dashed line) and λYθz (pink
dotted line) computed in the center of the mixing zone r = rc as a function of time. Case MI = 1.3
(left) and 2.0 (right).

ψm has a very similar profile to the fraction of mixed fluid defined in [19] by the amount of product

produced by a fast-kinetic chemical reaction between the light and heavy fluid

ψm(ψ) =

ψ/ψs, if ψ ≤ ψs

(1− ψ)/(1− ψs), if ψ > ψs,

(5.54)

where ψs is the mixture fraction for a stoichiometric mixture. ψs = 1/2 would indicate that the

product of the mixing is equally composed of each reactant. The chemical product is of course

limited by the amount of lean reactant. If all fluid on a particular cylindrical surface were mixed, its

composition would be ψ(r, θ, z) = 〈ψ〉(r). Therefore, δ can be interpreted as the thickness of mixed

fluid that would result if the entrained volumes of pure fluids were entering the turbulent mixing

layer to become perfectly homogenized in the directions θ and z of extension of each cylindrical shell

across the mixing zone. For that reason, δ can be also called an “entrainment length” or “maximum

chemical product thickness”, and is referred to as Pm. On the other hand, we define the “total

chemical product thickness” or “mixing length” as

Pt(t) =
∫ rout

rin

〈ψm(ψ)〉dr = 4
∫ rout

rin

〈ψ(1− ψ)〉dr. (5.55)

To quantify the state of the mixing within the layer, a mixing parameter is defined as the ratio of

the two product thicknesses

Ξ =
Pt
Pm

=
(∫ rout

rin

(〈ψ〉 − 〈ψ2〉)dr
)/(∫ rout

rin

(〈ψ〉 − 〈ψ〉2)dr
)
, (5.56)
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Figure 5.33: Evolution of the entrainment length Pm (red solid line) and the mixing length Pt (blue
small-dashed line). Case MI = 1.3 (left) and 2.0 (right).
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Figure 5.34: Evolution of the mixing parameter Ξ. Case MI = 1.3 (left) and 2.0 (right).

and measures the total product formed relative to the product that would be created if all entrained

fluid were perfectly mixed within each shell. In general Ξ < 1. The time evolution of the global

quantities Pm and Pt, and Ξ are shown in Figure 5.33 and Figure 5.34 respectively. During reshock,

the mixing layer is compressed, as shown by the profile of Pm. Following the reshock, Pt increases

rapidly, indicating significantly increased mixing. This is also indicated by the sharply peaked values

of Ξ. Well-mixed fluid observed after the reshock is achieved faster for MI = 2.0 than for MI = 1.3,

right after the reshock, suggesting that the strength of the reshock immediately affects the mixing.

5.8.2 Joint Density-Mixture Fraction Probability Density Functions

In order to study the inhomogeneity of the turbulent mixing due to the different structures (spikes

and bubbles), that act differently on either side of the mixing zone, we sample the mixture fraction

and density fields interpolated over cylindrical shells of given radius to create the Reynolds joint
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density-mixture fraction p.d.f. as follows:

P̃(ψ;x , t) ≡ 1
〈ρ〉

∫
ρP(ρ, ψ;x , t)dρ. (5.57)

The shells of interest are those crossing the mixing zone in its center (〈ψ〉 = 0.50, r = rc), the

one corresponding to the region dominated by spike structures (〈ψ〉 = 0.25, r = rs), and the one

corresponding to the region dominated by bubble structures (〈ψ〉 = 0.75, r = rb). Before reshock,

the two fluids are mostly unmixed, and the p.d.f. shows two peaks for values of the mixture fraction

of 0 and 1. After the first reshock, the p.d.f. at the shell cutting through the mixing-zone center

rc exhibits a strong central mode, while for the shells rb and rs, the two peaks have moved towards

the mixing-zone center, away from the pure fluid values 0 and 1, indicating mixing progress. It is

observed that the strength of these two regions of the mixing zone with high density gradients is

sustained by the successive wave reverberation carrying pressure gradients in the radial direction.

For both incident Mach numbers, the bimodal nature of the mixing at the center of the mixing zone

is apparent at later times, as indicated in Figure 5.35. For MI = 2.0, the mixing zone contains larger

amount of SF6 than for MI = 1.3, as the p.d.f. is shifted towards ψ = 1. This is explained by the

fact that at higher Mach numbers, the compression ratio is low enough and the density of inner fluid

(here SF6) sufficiently high that the entrainment of heavy fluid into the mixing layer is more efficient

than for lower incident Mach numbers. Comparisons can be made with the plane geometry at late

times when the mixing-layer growth started to stabilize (figure 15d of [43]): the bimodal nature of

the p.d.f. is more pronounced and the p.d.f. at the center of the mixing layer is spread over a wider

range of mixture fractions.

5.9 Summary

This work has presented on-going research on LES of shock-generated mixing in RM flow in a

canonical cylindrical converging geometries. A hybrid numerical method has been used on each

subgrid of the mesh hierarchy within the AMROC framework: it is a shock capturing method but

reverts to a centered scheme with low numerical viscosity in regions of smoother flow. The stretched-

vortex SGS model has allowed for the capturing of the small-scale mixing process between the a

light fluid, outside, and a heavy fluid, inside, and vice-versa. Results have focused on the evolution

of the mixing layer and its internal statistics including various spectra and p.d.f.s of mixed mass

fractions. A detailed quantitative analysis has also been conducted including space-time histories

of instantaneous cylindrical shell-averages of diverse quantities, taken concentrically to the main

shocks. We have run simulations for the converging cylindrical air→SF6 and SF6→air, but the

latter case is subject to current post-processing. Comparisons have been made with the plane RMI
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(a) MI = 1.3 (a)’ MI = 2.0

Figure 5.35: Probability density function P̃(ψ) of the mixture fraction at different times calculated
from the resolved scales, across three shells of the mixing zone: rb ≡ rc − δ/4 (small-dashed line),
rc (solid line), and rs ≡ rc + δ/4 (dashed line), at late time (a0/R0)t = 8.16 for MI = 1.3 (left) and
(a0/R0)t = 5.07 for MI = 2.0 (right).

with reshock for an air→SF6 interface studied by Vetter and Sturtevant [109] and Hill et al. [43].

The successive reverberation waves prove to be responsible for the intense growth of the mixing

zone. After the second reshock event, a long decay of the turbulent energy is observed. At later

times, the growth stabilizes and the TMZ remains weakly compressible. Various late-time energy

spectra taken at the center of the mixing zone show an inertial subrange approaching the universal

k
−5/3
z scaling. The long-term mixing in the converging geometry exhibits a similar but somewhat

less pronounced bimodal aspect than in the planar case. The local isotropic nature of the flow has

been scrutinized through diverse statistics over cylindrical shells penetrating through the mixing

layer.
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Chapter 6

Conclusion

6.1 Summary

The interaction of a shock wave with a contact surface separating two fluids of different densities

has been studied theoretically and computationally in converging geometries. The investigation

was motivated by a desire to understand the effects of wave interactions on the RMI in plane and

converging geometries. Chapter 2 focused on the early linear regime when reflected and transmitted

waves created during the shock refraction at an initially slightly perturbed interface affect the reach

of the terminal growth rate predicted by Richtmyer. A characteristic time scale was found to model

this effect. The analysis considers receding shock waves as effective walls within the context of an

incompressible flow. Simulations at various incident Mach numbers and gas combinations confirmed

this model, in particular at high Mach numbers when the accelerated interface follows closely the

transmitted shock. We also attempted to model in a simple manner the asymptotic growth rate,

with promising results.

Chapter 3 presented first an incompressible model of the asymptotic growth rate for three-

dimensional cylindrical perturbations. It explained in particular the existence of critical pertur-

bations specific to curved geometries. In a second part, with the help of simulations of the Euler

equations for ideal gas, it was showed that, in the cylindrical geometry, linear azimuthal perturba-

tions grow to a higher final growth rate level than axial perturbations and plane perturbations of

equivalent initial wavenumbers, due to geometric convergence, flow acceleration and shock proxim-

ity. Our simulations covered various Mach numbers and wavenumbers (for a fixed gas combination).

Our compressible simulations differ from Mikaelian’s incompressible computations of linear RMI for

two-dimensional cylindrical perturbations [81] that aimed to simulate gelatin-ring experiments.

Chapter 4 focused on shock and reshock interactions in plane, cylindrical and spherical geome-

tries, for various Mach numbers and in the light-to-heavy and heavy-to-light combinations. We

considered and unperturbed interface and built wave diagrams to analyze the reverberation pro-

cess when the interface is processed by waves reflecting from the wall/axis/center after it has been
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accelerated initially. We first noticed important differences between the light-to-heavy and heavy-

to-light case. In the light-to-heavy interaction, the reshock process shows complex shock formation

in curved geometries while expansion wave interactions follow the first reshock interaction in the

plane geometry. As a result, the interface mean position is alternately accelerated and decelerated to

finally reach a stable equilibrium. For high incident Mach numbers, the final position is much closer

to the wall/axis/center than the initial position. The light-to-heavy interaction is characterized by

successive reshocks of decreasing strengths. In all geometries, the interface monotonically reaches a

final stable position.

In Chapter 5, we presented large-eddy simulations of the light-to-heavy cylindrical RMI and

the turbulent mixing driven by the wave reverberation observed in the previous chapters. We

confirmed differences from the plane geometry. In particular, the growth of the mixing layer lasts

longer than the plane geometry (more than three times the first reshock time, depending on the

incident Mach number). As in the plane case, a decay of turbulent kinetic energy was observed

after the first reshock, approaching the k−5/3 universal Kolmogorov scaling. During the late time

mixing, the turbulence is weakly compressible, independent of the incident Mach number. Isotropy

is found for the Kolmogorov directional microscales, and Taylor directional microscales converge at

late time, which differs from the RTI-driven mixing [19]. Anisotropy was noticed for the velocity

power spectra, suggesting the effect of the radial expansion on the dynamics of the turbulence. The

mixing efficiency was found greater for the high incident Mach number case. Probability density

functions of the mixture fraction across the mixing layer showed a somewhat less bimodal character

than the plane case, suggesting in particular a different entrainment process of the inner heavy fluid

into the mixing zone.

6.2 Future Work

The work presented here invites many possible directions for continued research.

Asymptotic Growth in the Plane Linear RMI

An attempt to model the asymptotic growth rate has been conducted with promising results and a

simpler expression than Wouchuk’s analysis. More effort is needed to complete this model.

Linear Perturbations in the Imploding Spherical RMI

To complete the work on the effects of the geometry on the linear regime of the RMI, the stability of

spherical slightly perturbed contact surfaces could be studied as well. The difficulties lies in the fact

that the problem cannot be reduced to two-dimensional simulations, therefore making highly refined
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computations difficult to achieve. The only work achieved in this context is the linear incompressible

model of Mikaelian exposed in [80].

Effect of the Atwood Ratio on the Linear Growth

In the heavy-to-light interaction, a reflected expansion fan is produced and, as shown in the literature

for the plane case, is responsible for a different growth evolution than the light-to-heavy case (e.g.,

phase inversion). For imploding cylindrical and spherical linear perturbations, the interface is also

RT unstable.

Effect of the Atwood Ratio on the Shock-Generated Mixing

Simulations of the mixing in the heavy-to-light cylindrical converging RMI are being post-processed

and will be compared to the light-to-heavy simulations. Because the reverberation process is different

and the stability of perturbations are reversed with the light-to-heavy case (RT unstable for the

imploding phase, stable for the exploding one), a different turbulent mixing is expected.

Effect of the Initial Perturbation Shape on the Shock-Generated Mixing

In the three-dimensional simulations, a single mode-like perturbed surface was considered with a

smaller symmetry-breaking perturbation superposed. However, in real flows the interface is random

and contains perturbations of many modes. The interaction between different modes could lead to

a complicated process of bubble merger in which the large bubbles are generated from the small

bubbles. Therefore, geometric effects could play a more important role for multi-mode interface.

Validation Against VTF Phase 2 Experiments

These experiments aim to focus a plane shock on a cylindrical shock traveling down a wedge and

interacting with a perturbed interface.

Shock-Generated Mixing in a Converging Spherical Geometry

Similarly to the cylindrical geometry, the mixing can be studied in the spherical geometry where

the convergence is more pronounced. Azimuthal and polar modes should interact differently than

orthogonal modes in the plane geometry or azimuthal and axial modes in the cylindrical case.
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Appendix A

Interface Acceleration for
Self-Similar Converging
Shock-Contact Interactions

Chisnell [15] considers the collapse of cylindrical and spherical shock waves moving through an ideal

gas with constant ratio of specific heats. Chisnell sought self-similar solutions of the Euler equations

behind the shock with radial symmetry in terms of the variables r/RI where the distance RI(t) of

the incident converging shock from the origin at time t < 0 needs to be of the form

RI(t) = R0

(
tI − t
tI

)α1

, (A.1)

where t = 0 would be the time of the shock-interface interaction if there was an interface, tI > 0 the

implosion time, and α1 the similarity exponent corresponding to the shock propagating in region

j = 1, sometimes called Guderley’s exponent, characterizing the shock position history during the

implosion. The Mach number MI of the incident shock at t = 0 is related to tI through

tI =
α1R0

MIa0
. (A.2)

At a given time t, the flow behind the shock (r > RI) is fully determined by the knowledge of the

flow just ahead of the shock front, the Mach number of the shock at t, and the adiabatic exponent

γ1. The similarity exponent found by Chisnell is in excellent agreement with exact values obtained

in the literature.

Consider now the normal interaction of a converging shock with an unperturbed density interface.

We assume that the transmitted shock produced behaves like the incident converging shock, except

that it travels in region j = 2 with adiabatic exponent γ2. First, the shock front position is assumed
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to follow the self-similar implosion

RT (t) = R0

(
tT − t
tT

)α2

(A.3)

where tT is the implosion time. This is related to the transmitted shock Mach number MT at t = 0

(obtained from the one-dimensional problem of the shock interaction) by

tT =
α2R0

MTa0

√
γ1

γ2

1 +A

1−A
. (A.4)

Second, we consider that the flow behind the transmitted shock and ahead of the accelerated inter-

face, i.e., for RT (t) ≤ r ≤ R(t), has the self-similar properties described by Chisnell. Indeed, the

only way that the self-similar nature of the flow can be disturbed is by the characteristics coming

from the reflected waves produced during the shock interaction. The interface is treated passively,

that is, it is the path of a particle that is at r = R0 at t = 0 and has the position r = R(t) at t > 0.

Its speed Ṙ(t) is given by the self-similar radial velocity field ur(R(t), t) given by Chisnell’s solution

u(r, t) applied behind the transmitted shock at r = R(t).

We apply the following change of variables:

ξ =
r

RT (t)
, (A.5a)

t′ = t. (A.5b)

Partial derivatives in these two sets of variables are related by

∂

∂r
=

1
RT

∂

∂ξ
, (A.6a)

∂

∂t
=

∂

∂t′
− ξ ṘT

RT

∂

∂ξ
. (A.6b)

In that set of variables, the velocity field given by Equation (2.14b) of [15] becomes:

ur(ξ, t′) =
ṘT (t′)
α2

ξV(ξ), (A.7)

where V(ξ) is given by Equation (4.4b) of [15]. To obtain the interface acceleration R̈(t) given by

dur/dt evaluated at r = R(t), we compute

Dur
Dt

=
∂ur
∂t

+ ur
∂ur
∂r

=
∂ur
∂t′

+

(
ur
RT
− ξ ṘT

RT

∂ur
∂ξ

)
. (A.8)
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For simplicity, t′ → t. Using Equation (A.7) and differentiating Equation (4.4b) of [15],

dξ
ξ

=
(

F2

V + q2
− α2

V

)
dV, (A.9)

with F2 given by Equation (4.2c) using Equation (3.6) and q2 given by Equation (3.9c) in [15],

Equation (A.8) becomes

Dur
Dt

= −ξRT
t2T

(
1− t

tT

)−2

V2 (F2 − α2 + 1)V + q2(1− α2)− F2

(F2 − α2)V − q2α2
. (A.10)

Taking successively the limit ξ → R/RT (i.e., r → R) and t→ 0+ of Equation (A.10), and observing

that in that limit V → V(1) ≡ VS given by Equation (2.15c) of [15] applied in region j = 2, the

interface acceleration right after the shock interaction is

R̈(0+) = −R0

t2T
V2
S

(F2 − α2 + 1)VS + q2(1− α2)− F2

(F2 − α2)VS − q2α2
. (A.11)

Since VS = 2α2/(γ2 + 1) and from the expressions of F2 and q2 written in [15], Equation (A.11)

becomes:

R̈(0+) = −R0

t2T

4α2

(
α2

V02

− 1
)[

(2α2γ2 − γ2 − 1)
α2

V02

− α2(γ2 − 1)
]

(1 + γ2)2

(
2
α2

V02

+ γ2 − 3
)
α2

V02

. (A.12)

In the strong shock limit, which is that used by Chisnell, it can be easily shown, from the one-

dimensional Riemann problem of the shock interaction that

∆W ' 2
γ2 + 1

|ṘT (0+)|. (A.13)

Using Equation (A.3), we obtain an estimate for the implosion time tT

tT '
2α2

γ2 + 1
R0

∆W
, (A.14)

and Equation (A.12) becomes

R̈(0+) = −∆W 2

R0

(
α2

V02

− 1
)[

(2α2γ2 − γ2 − 1)
α2

V02

− α2(γ2 − 1)
]

α2

(
2
α2

V02

+ γ2 − 3
)
α2

V02

, (A.15)

which we plug into the dimensionless Taylor development of the interface radius to obtain Equa-
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tion (3.21)

R̃(t̃) = 1 +
(

1
∆W

Ṙ(0+)
)
t̃+

1
2

(
R0

∆W 2
R̈(0+)

)
t̃ 2 +O

(
t̃ 3
)
. (A.16)
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Appendix B

Shell-Averaged Equations

B.1 Introduction

This appendix is an introduction to on-going research that aim to investigate the effect of uncer-

tainties in the shape of the interface between the two fluids on the transition to turbulence and

on profiles of turbulent transport properties within the mixing layer. Diagnostics will include de-

tailed space-time histories of shell averages, parallel (in the plane geometry) or concentrically (in

cylindrical geometry) to the shock, of base quantities, and of terms in the turbulent kinetic energy,

the turbulent mass flux and the density self-correlation equations. The basic statistics are listed in

Appendix C.

B.2 Plane Richtmyer-Meshkov Instability

The basic configuration will be air-SF6 in a light-to-heavy configuration, with a planar incident

shock at MI = 1.5, 2.0, and 3.0. The simulation geometry will consist of a square tube configuration

with periodic boundary conditions in two directions.

B.2.1 Basic Quantities

Using a bar to denote a plane-average in a (y − z)-plane (parallel to the incident shock) at position

x, and at time t, define for quantity X(x, y, z, t)

X(x, y, z, t) ≡ X(x, t) +X ′(x, y, z, t), (B.1a)

X(x, y, z, t) ≡ X̃(x, t) +X ′′(x, y, z, t), (B.1b)

X̃(x, t) ≡ ρX

ρ
, (B.1c)
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where ρ is the total gas density. The base quantities will consist of

ρ, ui, p, T , ũi, ρ′ u′i, ρ′ u′i u
′
j , u′i u

′
j , ρ′ ν′, (B.2)

where ui is velocity, p is pressure, T temperature, and ν = 1/ρ. Also

Rij ≡ ρ u′′i u′′j , K ≡ Rnn
2ρ

. (B.3)

will be calculated. For what follows, x ≡ 1, y ≡ 2, and z ≡ 3.

B.2.2 Un-Modeled Equations

In addition, the terms appearing in three important un-modeled equations will be calculated. These

are terms comprising the turbulent kinetic energy, the turbulent mass flux, and the density self-

correlation equations. These are, respectively

∂(ρK)
∂t

+
∂(ρK ũx)

∂x
= ax

∂p

∂x
−Rix

∂ũi
∂x
− ai

∂σxi
∂x
− 1

2
∂(ρ u′′i u

′′
i u
′′
x)

∂x
− ∂(u′x p′)

∂x

+
∂u′i σ

′
xi

∂x
+ p′

∂u′i
∂xi
− σ′ji

∂u′i
∂xj

, (B.4a)

∂(ρ ax)
∂t

+
∂(ρ ax ũx)

∂x
= b

(
∂p

∂x
− ∂σxx

∂x

)
+ ρ

(
ν′
∂p′

∂x
− ν′

∂σ′jx
∂xj

)

− ρ ax
∂(ũx − ax)

∂x
+

(
ρ′ u′x

2 −Rxx
ρ

)
∂ρ

∂x
+ ρ

∂(a2
x)

∂x

−

(
∂(ρ′ u′x2)

∂x
+ ρ u′x

∂u′j
∂xj

)
, (B.4b)

∂b

∂t
+ ux

∂b

∂x
= − (1 + b)

ρ

∂(ρ ax)
∂x

− ρ ∂(ν′ u′x)
∂x

+ 2 ρ ν′
∂u′i
∂xi

. (B.4c)

Note that:

Rij = ρ u′i u
′
j − ρ ai aj (B.5)

where ai = ρ′ u′i/ρ is the turbulent mass flux and b = −ρ′ ν′ is the density self-correlation. We note

that all of the base quantities and the various terms appearing in the above equations are functions

of x and t through the evolution of the simulation. Some terms of these equations (for example,

averages of products of deviatoric stresses and velocity gradients) may have substantial subgrid

contributions. Equations for ay and az (in the plane of the mixing zone) should be statistically zero,

so only the ax equation has been written.
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B.3 Cylindrical Richtmyer-Meshkov Instability

B.4 Basic Quantities

Using brackets to denote a shell-average in a (θ, z)-surface at position r, and at time t, define for

quantity Q(r, θ, z, t)

Q(r, θ, z, t) ≡ 〈Q〉(r, t) +Q′(r, θ, z, t), (B.6a)

Q(r, θ, z, t) ≡ Q̃(r, t) +Q′′(r, θ, z, t), (B.6b)

Q̃(r, t) ≡ 〈ρQ〉
〈ρ〉

, (B.6c)

where ρ is the total gas density. Define

νρ ≡
1
ρ
, Rpq ≡ 〈ρ u′′p u′′q 〉, 〈K〉 ≡ Rnn

2〈ρ〉
. (B.7)

For what follows, (i, j) =1, 2, or 3 stands for x, y, or z. Cylindrical coordinates are (r, θ, z).
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B.5 Un-Modeled Equations

In addition, the terms appearing in three important un-modeled equations will be calculated. These

are terms comprising the turbulent kinetic energy, the turbulent mass flux, and the density self-

correlation equations. These are, respectively

∂(〈ρ〉 〈K〉)
∂t

+
1
r

∂(r〈ρ〉 〈K〉 ũr)
∂r

= ar
∂〈p〉
∂r
−
[
Rrr

∂ũr
∂r

+Rθθ
ũr
r

+Rrθ

(
∂ũθ
∂r
− ũθ

r

)
+Rrz

∂ũz
∂r

]

− 1
r

[
ar

(
∂(r〈σrr〉)

∂r
− 〈σθθ〉

)
+ aθ

(
∂(r〈σrθ〉)

∂r
+ 〈σrθ〉

)
+ az

∂(r〈σrz〉)
∂r

]

− 1
2r
∂(r〈ρ |u ′′|2u′′r 〉)

∂r
− 1
r

∂(r〈u′r p′〉)
∂r

+
1
r

∂ [r(〈σ′rr u′r〉+ 〈σ′rθ u′θ〉+ 〈σ′rz u′z〉)]
∂r

+ 〈p′∇ · u ′〉 − 〈σ′ : ∇u ′〉, (B.8a)

∂(〈ρ〉 ar)
∂t

+
1
r

∂(r〈ρ〉 ar ũr)
∂r

− 〈ρ〉aθũθ
r

= b

[
∂〈p〉
∂r
− 1
r

(
∂(r〈σrr〉)

∂r
− 〈σθθ〉

)]
+ 〈ρ〉 〈ν′ρ

∂p′

∂r
〉

− 〈ρ〉
[

1
r
〈ν′ρ

∂(rσ′rr)
∂r

〉+
1
r
〈ν′ρ

∂σ′rθ
∂θ
〉+ 〈ν′ρ

∂σ′rz
∂z
〉 −
〈ν′ρσ′θθ〉

r

]

− 〈ρ〉
(
ar
∂(ũr − ar)

∂r
− aθ(ũθ − aθ)

r

)
+
(
〈ρ′ u′r2〉 −Rrr

〈ρ〉

)
∂〈ρ〉
∂r

+
〈ρ〉
r

(
∂(ra2

r)
∂r

− a2
θ

)

− 1
r

(
∂(r〈ρ′u′r2〉)

∂r
− 〈ρ′u′θ2〉

)
− 〈ρ〉〈u′r∇ · u ′〉, (B.8b)

∂b

∂t
+ 〈ur〉

∂b

∂r
= − (1 + b)

r〈ρ〉
∂(r〈ρ〉 ar)

∂r
− 〈ρ〉

r

∂(r〈ν′ρ u′r〉)
∂r

+ 2 〈ρ〉 〈ν′ρ∇ · u ′〉, (B.8c)

where aq = 〈ρ′ u′q〉/〈ρ〉 (q = r, θ or z) is the turbulent mass flux and b = −〈ρ′ ν′ρ〉 is the density

self-correlation. We note that all of the base quantities and the various terms appearing in the above

equations are functions of r and t through the evolution of the simulation.
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Appendix C

Shell-Averaged Statistics:
Methodology

The following procedure has been applied to a combination of air and SF6 but could be directly

applied to any two-fluid combination.

C.1 The Statistics Class Within AMROC

A statistics class WENOStatistics, present in the directory vtf/amroc/weno/, allows to interpolate

keys (e.g., the density) at any location of the computational domain as well as to take averages over

one-dimensional streaks or two-dimensional surfaces (probes). The class is associated to a parser

in vtf/amroc/weno/StatParser/ that allows the user to define his keys and probes in his local

application directory through an input file Stats.def. The file produced is Stats?.dat where ?

corresponds to the time steps at which the statistics are evaluated.

Since the interpolation was intended for the GFM method that currently is first-order by def-

inition, the interpolation class available was only first-order. Even if one would construct a cor-

rect cut-cell method, a first-order interpolation should be sufficient to lead to an overall second-

order scheme, since the results are used in the numerical flux approximation only. Also for con-

structing fluid-structure coupling values, first-order is more than enough, since our time splitting

approach is first-order only, too. However, for statistics purposes, a second-order interpolation

vtf/amroc/clawpack/src/?d/interpolation/intpol?_quad.f (where ? stands for the dimensions

1, 2, or 3) was developed.

The original class allowed only keys (or basic mathematical functions of these keys) directly

derived from the vector of state (ρ, ρu1, ρu2, ρu3, E, ρY, T, dcflag, sgske). Therefore, any addi-

tional quantity, e.g., the subgrid stress components, had to be carried in an auxiliary output ar-

ray in the vector of state, slowing down the computation significantly since the vector of state

is manipulated every time step while the statistics are effectively used only at the desired time
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steps. In order to enable the definition of customized output, the file Output.f90, which originally

contains routines used to produce HDF data files for visualization purposes, handles the requests

for new output. With this new generic interface, all auxiliary internal states of the LES module

are computed as needed. Moreover, the user can now install in their local application directory

vtf/amroc/weno/applications/... hooks inside the Output.f90 with whatever they want. Since

we had to initialize the patch array boundaries to do this interaction with the patch solver, we had

to define a new class F77FileOutput and overload the parent function Transpose to first initialize

the patch variables before the user could have access to the internal state of the solver.

C.2 Output of Basic Quantities

The couple (nc,qo(i,j,k)) coded in Output.f90 and Output hook.f90 (qout(nc) in Stats.def)

is listed. It concerns basic resolved and subgrid quantities.

1) ρ

2) u1 (or u or ux)

3) u2 (or v or uy)

4) u3 (or w or uz)

5) E

6) T

7) p

8) γ

9) Y , mass fraction (+1 for SF6, -1 for Air)

10) dcflag

11) τkk
2ρ , subgrid kinetic energy (where τij is the subgrid stress given by Pullin’s stretched-vortex

subgrid model)

12) τ11

13) τ22

14) τ33

15) τ12
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16) τ13

17) τ23

18) −τijSij , subgrid dissipation (where Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
is the resolved strain tensor)

19) σ2
Y , subgrid scalar variance, without k−1 correction to the scalar spectrum (use qout(54)

instead)

20) fstruc, structure function

21) sstruc1, scalar structure function

22) µ , viscosity coefficient

23) ∂u1
∂x1

24) ∂u1
∂x2

25) ∂u1
∂x3

26) ∂u2
∂x1

27) ∂u2
∂x2

28) ∂u2
∂x3

29) ∂u3
∂x1

30) ∂u3
∂x2

31) ∂u3
∂x3

32) dijSij , resolved dissipation (where dij = 2µ
(
Sij − 1

3Skkδij
)

is the resolved stress tensor)

33) ∂Y
∂x1

34) ∂Y
∂x2

35) ∂Y
∂x3

36) ∂p
∂x1

37) ∂p
∂x2

38) ∂p
∂x3

39) ∂σ1i
∂xi

, where σij = dij − τij is the total stress

40) ∂σ2i
∂xi
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41) fY1 = − q
Y
1
ρ , where qYi is the subgrid scalar flux defined in Equation (3.11c) of [43]

42) fY2

43) fY3

44) ãS , axial strain along the subgrid vortex axis using alignment with the resolved scale strain

tensor Sij

45) e3x , first resolved strain eigenvector component

46) e3y , second component

47) e3z , third component

48) ãω , the axial strain along the subgrid vortex axis using alignment with the resolved scale

vorticity ω

49) ox , first resolved vorticity component

50) oy , second component

51) oz , third component

52) λ , vorticity alignment weight (0 ≤ λ ≤ 1); the strain alignment weight is 1− λ

53) K0ε
2/3 , group prefactor for the subgrid energy spectrum

54) KY , group prefactor for the subgrid scalar spectrum (including k−1 contribution to the scalar

spectrum)

55) σ2
Y , subgrid scalar variance (including k−1 contribution to the scalar spectrum).
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C.3 One-Dimensional Statistics

This section concerns quantities interpolated over shells of radii r (at given time t). We are therefore

interested in the variation of these quantities when varying r, at time t.

C.3.1 Basic Shell-Averaged Quantities

From the previous basic output quantities can be computed basic shell-averaged quantities over

cylindrical shells of given radii. The basic shell-averages and a listing of the cylindrical shells are

enumerated in the local file Stats.def. The statistics class produces data files Stats?.dat at the

desired time ? step.

1) 〈r〉 , radius r =
√
x2 + y2

2) 〈ρ〉

3) 〈ρ2〉

4) 〈ur〉

5) 〈u2
r〉

6) 〈ρur〉

7) 〈ρu2
r〉

8) 〈uθ〉

9) 〈u2
θ〉

10) 〈ρuθ〉

11) 〈ρu2
θ〉

12) 〈uz〉

13) 〈u2
z〉

14) 〈ρuz〉

15) 〈ρu2
z〉

16) 〈 12τii〉 , subgrid turbulent kinetic energy

17) 〈p〉

18) 〈p2〉
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19) 〈T 〉

20) 〈T 2〉

21) 〈c〉 , speed of sound c =
√

γp
ρ

22) 〈c2〉

23) 〈M〉 , Mach number M = |u|
c =

√
ρuiui
γp

24) 〈M2〉

25) 〈Y 〉 , passive scalar. Y = 1 for SF6 and -1 for Air, define also ψ = 1
2 (1 + Y ) representing the

percentage of SF6 (heavy-fluid mass fraction), therefore 〈ψ〉 = 1
2 (1 + 〈Y 〉)

26) 〈Y 2〉 , and 〈ψ2〉 = 1
4 (1 + 2〈Y 〉+ 〈Y 2〉)

27) 〈ρY 〉

28) 〈ρY 2〉

29) 〈X〉 = 〈 1−α+(1+α)Y
1+α+(1−α)Y 〉 , mol fraction, where α = MSF6

MAir
. X = 1 for SF6 and -1 for Air. MAir =

26.8288 g.mol−1 and MSF6 = 146.05 g.mol−1

30) 〈X2〉

31) 〈ρX〉

32) 〈ρX2〉

33) 〈τ11〉

34) 〈τ22〉

35) 〈τ33〉

36) 〈τ12〉

37) 〈τ13〉

38) 〈τ23〉

39) 〈−τijSij〉

40) 〈ν〉 , ν = µ
ρ kinematic viscosity

41) 〈S11〉

42) 〈S22〉
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43) 〈S33〉

44) 〈S12〉

45) 〈S13〉

46) 〈S23〉

47) 〈d11〉

48) 〈d22〉

49) 〈d33〉

50) 〈d12〉

51) 〈d13〉

52) 〈d23〉

53) 〈dijSij〉

54) 〈 ∂Y∂x1
〉

55) 〈 ∂Y∂x2
〉

56) 〈 ∂Y∂x3
〉

57) 〈 ∂Y∂xj
∂Y
∂xj
〉

58) 〈fY1 〉

59) 〈fY2 〉

60) 〈fY3 〉

61) 〈fYi ∂Y
∂xi
〉

62) 〈νρ〉 , where νρ = 1/ρ

63) 〈νρur〉

64) 〈νρSii〉

65) 〈uruθ〉

66) 〈uruz〉

67) 〈uθuz〉
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68) 〈ρuruθ〉

69) 〈ρuruz〉

70) 〈ρuiuiur〉

71) 〈pSii〉

72) 〈pur〉

73) 〈σrr〉 = 〈cos(θ)2σ11 + sin(θ)2σ22 + sin(2θ)σ12〉 , where recall σij = dij − τij

74) 〈σrθ〉 = 〈 12 sin(2θ)(σ22 − σ11) + cos(2θ)σ12〉

75) 〈σrz〉 = 〈cos(θ)σ13 + sin(θ)σ23〉

76) 〈urσrr〉 = 〈ur
(
cos(θ)2σ11 + sin(θ)2σ22 + sin(2θ)σ12

)
〉

77) 〈uθσrθ〉 = 〈uθ
(

1
2 sin(2θ)(σ22 − σ11) + cos(2θ)σ12

)
〉

78) 〈uzσrz〉 = 〈uz (cos(θ)σ13 + sin(θ)σ23)〉

79) 〈νρ ∂p∂r 〉 = 〈νρ
(

cos(θ) ∂p∂x1
+ sin(θ) ∂p∂x2

)
〉

80) 〈urSii〉

81) 〈νρ
(

cos(θ)∂σ1i
∂xi

+ sin(θ)∂σ2i
∂xi

)
〉

82) 〈ρSrr〉 = 〈ρ∂ur∂r 〉 = 〈ρ
(
cos(θ)2S11 + sin(θ)2S22 + sin(2θ)S12

)
〉

83) 〈ρS2
rr〉

84) 〈ρSθθ〉 = 〈ρr
(
∂uθ
∂θ + ur

)
〉 = 〈ρ

(
sin(θ)2S11 + cos(θ)2S22 − sin(2θ)S12

)
〉

85) 〈ρS2
θθ〉

86) 〈ρSzz〉 = 〈ρ∂uz∂z 〉

87) 〈ρS2
zz〉

88) 〈ρσrrSrr〉 = 〈ρ(cos(θ)2σ11 + sin(θ)2σ22 + sin(2θ)σ12)(cos(θ)2S11 + sin(θ)2S22 + sin(2θ)S12)〉

89) 〈ρσθθSθθ〉 = 〈ρ(sin(θ)2σ11 + cos(θ)2σ22 − sin(2θ)σ12)(sin(θ)2S11 + cos(θ)2S22 − sin(2θ)S12)〉

90) 〈ρσzzSzz〉

91) 〈ρ∂Y∂r 〉 = 〈ρ
(

cos(θ) ∂Y∂x1
+ sin(θ) ∂Y∂x2

)
〉

92) 〈ρ
(
∂Y
∂r

)2〉 = 〈ρ
[
cos(θ)2

(
∂Y
∂x1

)2

+ sin(θ)2
(
∂Y
∂x2

)2

+ sin(2θ) ∂Y∂x1

∂Y
∂x2

]
〉
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93) 〈ρr
∂Y
∂θ 〉 = 〈ρ

(
− sin(θ) ∂Y∂x1

+ cos(θ) ∂Y∂x2

)
〉

94) 〈ρ
(

1
r
∂Y
∂θ

)2〉 = 〈ρ
[
sin(θ)2

(
∂Y
∂x1

)2

+ cos(θ)2
(
∂Y
∂x2

)2

− sin(2θ) ∂Y∂x1

∂Y
∂x2

]
〉

95) 〈ρ∂Y∂z 〉

96) 〈ρ
(
∂Y
∂z

)2〉.
C.3.2 Derived Quantities

C.3.2.1 Quantities Depending on (r, t)

From the basic shell-averaged derived previously contained in Stats?.dat at a time t corresponding

to the iteration ?, other interesting averages can be derived for each shell of radius r. The post-

processing is achieved through the file parseStats.cpp In particular, two variances can be defined:

Var(Q) ≡ 〈Q′2〉 = 〈Q2〉 − 〈Q〉2, (C.1a)

Varρ(Q) ≡ Q̃′′2 = Q̃2 − Q̃2 =
〈ρQ2〉
〈ρ〉

− 〈ρQ〉
2

〈ρ〉2
. (C.1b)

97) Var(ρ)

98) Var(ur)

99) Varρ(ur)

100) Var(uθ)

101) Varρ(uθ)

102) Var(uz)

103) Varρ(uz)

104) Var(M)

105) Var(p)

106) Var(T )

107) Var(c)

108) Var(Y ) , note that Var(ψ) = 1
4Var(Y )

109) Varρ(Y ) , similarly Varρ(ψ) = 1
4Varρ(Y )

110) 1− 〈Y 〉2 , integrate over r to compute entrainment length
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111) 1− 〈Y 2〉 , integrate over r to compute mixing length

112) Var(X)

113) Varρ(X)

114) 1− 〈X〉2 , integrate over r to compute entrainment length

115) 1− 〈X2〉 , integrate over r to compute mixing length

116) KE ≡ 1
2

(
〈ρu2

r〉+ 〈ρu2
θ〉+ 〈ρu2

z〉
)

117) 〈K〉 ≡ 1
2 (Varρ(ur) + Varρ(uθ) + Varρ(uz)) , resolved turbulent kinetic energy

118) 〈k〉 ≡ 〈τii〉2〈ρ〉 , subgrid turbulent kinetic energy (per unit mass)

119) K ≡ 〈K〉+ 〈k〉 , total turbulent kinetic energy

120) u′ =
√

2K
3 , turbulent intensity

121) Mt = u′

〈c〉

122) 〈εres〉 ≡ 1
〈ρ〉 (〈dijSij〉 − 〈dij〉〈Sij〉) , resolved turbulent dissipation

123) 〈εsgs〉 ≡ − 1
〈ρ〉 (〈τijSij〉 − 〈τij〉〈Sij〉) , subgrid energy transfer

124) 〈ε〉 ≡ 〈εres〉+ 〈εsgs〉 , turbulent dissipation

125) ` = u′3

〈ε〉 , turbulence integral scale

126) Re` = u′`
〈ν〉 , turbulent Reynolds number

127) t` = `
u′

128) λr =
√

Varρ(ur)
Varρ(Srr) , Taylor microscale in the r-direction

129) Reλr =
√

Varρ(ur)λr
〈ν〉 , Taylor-scale Reynolds number in the r-direction

130) λθ =
√

Varρ(uθ)
Varρ(Sθθ) , Taylor microscale in the θ-direction

131) Reλθ =
√

Varρ(uθ)λθ
〈ν〉 , Taylor-scale Reynolds number in the θ-direction

132) λz =
√

Varρ(uz)
Varρ(Szz) , Taylor microscale in the z-direction

133) Reλz =
√

Varρ(uz)λz
〈ν〉 , Taylor-scale Reynolds number in the z-direction

134) λθz = λθ+λz
2

135) Reλθz = Reλθ+Reλz
2
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136) λT =
√

15〈ν〉
〈ε〉 u

′ , Taylor microscale

137) ReλT = u′λT
〈ν〉 , Taylor-scale Reynolds number

138) 〈εYres〉 = 〈D〉
(
〈 ∂Y∂xj

∂Y
∂xj
〉 − 〈 ∂Y∂xj 〉〈

∂Y
∂xj
〉
)

, resolved scalar dissipation, where D = ν/Sc

139) 〈εYsgs〉 = 〈fYi ∂Y
∂xi
〉 − 〈fYi 〉〈 ∂Y∂xi 〉 , subgrid scalar dissipation

140) 〈εY 〉 ≡ 〈εYres〉+ 〈εYsgs〉 , total turbulent scalar dissipation

141) λYr =
√

Varρ(Y )

Varρ( ∂Y∂r )
, scalar Taylor microscale in the r-direction

142) λYθ =
√

Varρ(Y )

Varρ( 1
r
∂Y
∂θ )

, scalar Taylor microscale in the θ-direction

143) λYz =
√

Varρ(Y )

Varρ( ∂Y∂z )
, scalar Taylor microscale in the z-direction

144) ηr =
(
〈ν〉3
∠εr〉

)1/4

, Kolmogorov scale in the r-direction, where ∠εr〉 = 1
〈ρ〉2 (〈ρσrrSrr〉 − 〈σrr〉〈ρSrr〉)

is the (resolved+sgs) turbulent r-dissipation

145) ηθ =
(
〈ν〉3
∠εθ〉

)1/4

, Kolmogorov scale in the θ-direction, where ∠εθ〉 = 1
〈ρ〉2 (〈ρσθθSθθ〉 − 〈σθθ〉〈ρSθθ〉)

is the (resolved+sgs) turbulent θ-dissipation

146) ηz =
(
〈ν〉3
∠εz〉

)1/4

, Kolmogorov scale in the z-direction, where ∠εz〉 = 1
〈ρ〉2 (〈ρσzzSzz〉 − 〈σzz〉〈ρSzz〉)

is the (resolved+sgs) turbulent z-dissipation

147) ηθz = ηθ+ηz
2

148) η =
(
〈ν〉3
〈ε〉

)1/4

, Kolmogorov scale

149) b = −〈ρ′ν′ρ〉 = −1 + 〈ρ〉〈νρ〉 , density self-correlation

150) ũr

151) ũθ

152) ũz

153) ar = 〈ρ′u′r〉
〈ρ〉 = ũr − 〈ur〉 , turbulent mass flux

154) aθ = 〈ρ′u′θ〉
〈ρ〉 = ũθ − 〈uθ〉

155) az = 〈ρ′u′z〉
〈ρ〉 = ũz − 〈uz〉

156) Rrr = 〈ρ〉Varρ(ur)

157) Rθθ = 〈ρ〉Varρ(uθ)

158) Rrθ = 〈ρuruθ〉 − 〈ρur〉〈ρuθ〉〈ρ〉
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159) Rrz = 〈ρuruz〉 − 〈ρur〉〈ρuz〉〈ρ〉

160) 〈ρ |u ′′|2u′′r 〉 = 〈ρuiuiur〉+ 〈ρ〉ũiũiũr − 2〈urui〉ũi − 2〈K〉〈ρ〉ũr

161) 〈ν′ρu′r〉 = 〈νρur〉 − 〈νρ〉〈ur〉

162) 〈ν′ρ∇ · u ′〉 = 〈νρSii〉 − 〈νρ〉〈Sii〉

163) 〈p′u′r〉 = 〈pur〉 − 〈p〉〈ur〉

164) 〈p′∇ · u ′〉 = 〈pSii〉 − 〈p〉〈Sii〉

165) 〈σ′ : ∇u ′〉 = 〈ρ〉〈ε〉

166) 〈σ′rru′r〉 = 〈σrrur〉 − 〈σrr〉〈ur〉

167) 〈σ′rθu′θ〉 = 〈σrθuθ〉 − 〈σrθ〉〈uθ〉

168) 〈σ′rzu′z〉 = 〈σrzuz〉 − 〈σrz〉〈uz〉

169) 〈σθθ〉 = 〈σ11〉+ 〈σ22〉 − 〈σrr〉

170) 〈∇ · u〉 = 〈Sii〉

171) 〈ν′ρ
∂p′

∂r 〉 = 〈νρ ∂p∂r 〉 − 〈νρ〉
∂〈p〉
∂r

172) 〈u′r∇ · u ′〉 = 〈urSii〉 − 〈ur〉〈Sii〉.

C.3.2.2 Quantities Depending on t Only and Based on the Mass Fraction Y

Quantities depending only on t and based on the mass fraction Y are computed:

1) t , time

2) TKEvol(t) = 1
rd−rdi

∫ rd
rdi

Kdr , volume-averaged total turbulent kinetic energy (actually this is

not based on the mass fraction analysis but it was coded together with the following quantities)

3) δ(t) ≡ Pm(t) =
∫ rd
rdi

(1− 〈Y 〉2)dr , mixing zone width (entrainment length)

4) Pt(t) =
∫ rd
rdi

(1− 〈Y 2〉)dr , mixing length

5) Ξ(t) = Pt
Pm

, mixing parameter (relative amount of molecularly mixed fluid within the TMZ)

6) rc(t) = 1
δmz

∫ rd
rdi

r(1− 〈Y 〉2)dr , average radius of the center of the mixing zone

7) rb(t) = rc − 1
4δ , bubble average position (∼ 73.1% SF6 in mass)

8) rs(t) = rc + 1
4δ , spike average position (∼ 73.1% Air in mass)

9) V (t) = αδrc , volume of the mixing zone (per unit z-length), where α is the angle of the wedge
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10) E(t) = r2
c−r

2
b

r2
s−r2

c
, entrainment ratio

11) YE(t) = E
1+E , mean composition if all entrained fluid was homogeneously mixed

12) `(t) = `(rc(t), t)

13) Re`(t) = Re`(rc(t), t)

14) λr(t) = λr(rc(t), t)

15) Reλr (t) = Reλr (rc(t), t)

16) λθ(t) = λθ(rc(t), t)

17) Reλθ (t) = Reλθ (rc(t), t)

18) λz(t) = λz(rc(t), t)

19) Reλz (t) = Reλz (rc(t), t)

20) λθz(t) = λθz(rc(t), t)

21) Reλθz (t) = Reλθz (rc(t), t)

22) λT (t) = λT (rc(t), t)

23) ReλT (t) = ReλT (rc(t), t)

24) λYr (t) = λYr (rc(t), t)

25) λYθ (t) = λYθ (rc(t), t)

26) λYz (t) = λYz (rc(t), t)

27) ηr(t) = ηr(rc(t), t)

28) ηθ(t) = ηθ(rc(t), t)

29) ηz(t) = ηz(rc(t), t)

30) ηθz(t) = ηθz(rc(t), t)

31) η(t) = η(rc(t), t)

32) δ̇(t) = 2(〈ur〉(rs(t), t)− 〈ur〉(rb(t), t)) growth rate (depends on the definition of rb and rs)

33) Reδ(t) = δδ̇
νc

, outer-scale Reynolds number, where νc = 〈ν〉(rc, t) is the shell-averaged viscosity

at the center of the mixing zone

34) r%
c (t) = 1

2 (r%
b + r%

s ) , average radius of the center of the mixing zone
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35) r%
b (t) = {r|〈Y 〉(r, t) = 1− ε} , bubble average position ((1− ε)% SF6 in mass)

36) r%
s (t) = {r|〈Y 〉(r, t) = ε} , spike average position ((1− ε)% Air in mass)

37) δ%(t) = r%
s − r%

b , mixing zone width

38) V %(t) = αδ%r%
c , volume of the mixing zone (per unit z-length), where α is the angle of the

wedge

39) E%(t) = r%2
c −r

%2
b

r%2
s −r%2

c

, entrainment ratio

40) Y %
E (t) = E%

1+E% , mean composition if all entrained fluid was homogeneously mixed

41) δ̇%(t) = 〈ur〉(r%
s (t), t)− 〈ur〉(r%

b (t), t) growth rate (depends on the definition of r%
b and r%

s )

42) Reδ%(t) = δ%δ̇%

ν%
c

, outer-scale Reynolds number, where ν%
c = 〈ν〉(r%

c , t) is the shell-averaged

viscosity at the center of the mixing zone.

C.3.2.3 Quantities Depending on t Only and Based on the Mol Fraction X

A similar list of quantities based on the mol fraction X is:

1) t , time

2) TKEvol(t) = 1
rd−rdi

∫ rd
rdi

Kdr , volume-averaged total turbulent kinetic energy

3) δ(t) ≡ Pm(t) =
∫ rd
rdi

(1− 〈X〉2)dr , mixing zone width (entrainment length)

4) Pt(t) =
∫ rd
rdi

(1− 〈X2〉)dr , mixing length

5) Ξ(t) = Pt
Pm

, mixing parameter (relative amount of molecularly mixed fluid within the TMZ)

6) rc(t) = 1
δmz

∫ rd
rdi

r(1− 〈X〉2)dr , average radius of the center of the mixing zone

7) rb(t) = rc − 1
4δ , bubble average position (∼ 73.1% SF6 in mol)

8) rs(t) = rc + 1
4δ , spike average position (∼ 73.1% Air in mol)

9) V (t) = αδrc , volume of the mixing zone (per unit z-length), where α is the angle of the wedge

10) E(t) = r2
c−r

2
b

r2
s−r2

c
, entrainment ratio

11) XE(t) = E
1+E , mean composition if all entrained fluid was homogeneously mixed

12) `(t) = `(rc(t), t)

13) Re`(t) = Re`(rc(t), t)

14) λr(t) = λr(rc(t), t)
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15) Reλr (t) = Reλr (rc(t), t)

16) λθ(t) = λθ(rc(t), t)

17) Reλθ (t) = Reλθ (rc(t), t)

18) λz(t) = λz(rc(t), t)

19) Reλz (t) = Reλz (rc(t), t)

20) λθz(t) = λθz(rc(t), t)

21) Reλθz (t) = Reλθz (rc(t), t)

22) λT (t) = λT (rc(t), t)

23) ReλT (t) = ReλT (rc(t), t)

24) λYr (t) = λYr (rc(t), t)

25) λYθ (t) = λYθ (rc(t), t)

26) λYz (t) = λYz (rc(t), t)

27) ηr(t) = ηr(rc(t), t)

28) ηθ(t) = ηθ(rc(t), t)

29) ηz(t) = ηz(rc(t), t)

30) ηθz(t) = ηθz(rc(t), t)

31) η(t) = η(rc(t), t)

32) δ̇(t) = 2(〈ur〉(rs(t), t)− 〈ur〉(rb(t), t)) growth rate (depends on the definition of rb and rs)

33) Reδ(t) = δδ̇
νc

, outer-scale Reynolds number, where νc = 〈ν〉(rc, t) is the shell-averaged viscosity

at the center of the mixing zone

34) r%
c (t) = 1

2 (r%
b + r%

s ) , average radius of the center of the mixing zone

35) r%
b (t) = {r|〈X〉(r, t) = 1− ε} , bubble average position ((1− ε)% SF6 in mol)

36) r%
s (t) = {r|〈X〉(r, t) = ε} , spike average position ((1− ε)% Air in mol)

37) δ%(t) = r%
s − r%

b , mixing zone width

38) V %(t) = αδ%r%
c , volume of the mixing zone (per unit z-length), where α is the angle of the

wedge
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39) E%(t) = r%2
c −r

%2
b

r%2
s −r%2

c

, entrainment ratio

40) X%
E (t) = E%

1+E% , mean composition if all entrained fluid was homogeneously mixed

41) δ̇%(t) = 〈ur〉(r%
s (t), t)− 〈ur〉(r%

b (t), t) growth rate (depends on the definition of r%
b and r%

s )

42) Reδ%(t) = δ%δ̇%

ν%
c

, outer-scale Reynolds number, where ν%
c = 〈ν〉(r%

c , t) is the shell-averaged

viscosity at the center of the mixing zone.

C.4 Two-Dimensional Statistics For Spectrum, P.d.f., Sub-

grid Continuation...

This section concerns quantities interpolated (without averaging) over particular shells of radii r, at

time t, therefore depending on (θ, z) only. The post-processing is done in the file parseSpectrum.cpp.

1) ρ

2) ur

3) uθ

4) uz

5) Y (or ψ)

6) ν
|ãS |

7) e3x

8) e3y

9) e3z

10) ν
|ãω|

11) ox

12) oy

13) oz

14) λ

15) K0ε
2/3

16) KY
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17) σ2
Y

18) ω · ω , enstrophy.

We deduce from these (θ, z) two-dimensional data obtained on shell of given radius r:

1) Spectra at the center of the TMZ and at the spike and bubble average radii

2) P.d.f. of the joint-density mass fraction Y at the center of the TMZ and at the spike and

bubble average radii

3) P.d.f. of the joint-density mol fraction X at the center of the TMZ and at the spike and bubble

average radii

4) YM (t) =
∫ rd
rdi

Ympmdr∫ rd
rdi

pmdr
, mixed-fluid composition averaged over the entire mixing zone, where

Ym(r, t) =
∫ 1−2ε
−1+2ε Y pY dY

pm
is the mixed-fluid composition on the shell r, pm(r, t) =

∫ 1−2ε

−1+2ε
pY dY

probability of finding mixed fluid on the shell r, pY (Y ; r, t) p.d.f. of Y over the shell r. The

threshold ψ = ε corresponds to ε percent SF6 (in mass)

5) XM (t) =
∫ rd
rdi

Xmpmdr∫ rd
rdi

pmdr
, mixed-fluid composition averaged over the entire mixing zone, where

Xm(r, t) =
∫ 1−2ε
−1+2εXpXdX

pm
is the mixed-fluid composition on the shell r, pm(r, t) =

∫ 1−2ε

−1+2ε
pXdX

probability of finding mixed fluid on the shell r, pX(X; r, t) p.d.f. of X over the shell r. Same

definition of ε but in mol

6) P.d.f. of alignment angles at the center of the TMZ and at the spike and bubble average radius.
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