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Abstract

We investigate the Richtmyer-Meshkov instability (RMI) in converging geometries analytically and
computationally. The linear, or small amplitude, regime is first covered as it is the onset to sub-
sequent non-linear stages of the perturbation growth. While the plane interaction of a shock with
a slightly perturbed density interface is classically viewed as a single interface evolving as baro-
clinic vorticity have been initially deposited on it, we propose a simple but more complete model
characterizing the early interaction between the interface and the receding waves produced by the
shock-interface interaction, in the case of a reflected shock. A universal time scale representing the
time needed by the RMI to reach its asymptotic growth rate is found analytically and confirmed
by ideal gas computations for various incident shock Mach numbers M; and Atwood ratios A, and

could be useful especially for experimentalists in non-dimensionalizing their data.

Considering again linear perturbations, we then obtain a general analytical model for the asymp-
totic growth rate reached by the instability during the concentric interaction of an imploding/exploding
cylindrical shock with a cylindrical interface containing three-dimensional orthogonal perturbations,
in the azimuthal and axial directions. Stable perturbations, typical of the converging geometry,
are discovered. Comparisons are made with simulations where the effects of compressibility, wave
reverberations, and flow convergence are isolated. Azimuthal and axial perturbation evolution are

compared with results obtained for the plane RMI at comparable initial wavelengths.

A second interaction occurs when the transmitted shock, produced by the incident converging
shock impacting the interface, converges to the axis and reflects to reshock the initially accelerated
interface. This leads to highly non-linear perturbation growth. To isolate the complex wave interac-
tion process, the interface is considered initially unperturbed so that the flow is radially symmetric.
An accurate visualization procedure is performed to characterize the underlying physics behind the
reshock event. We study extensively the cylindrical and spherical geometry, for various M; and for
the air— SFg (A = 0.67) and SFg —air (A = —0.67) interactions, and draw important differences
with the equivalent plane configuration.

A hybrid, low-numerical dissipation/shock-capturing method, embedded into an adaptive mesh
refinement framework is optimized in order to achieve large-eddy simulations of the self-similar

cylindrical converging shock-driven RMI and the turbulent mixing generated by the reshock. Com-



vi
putations are produced for M; = 1.3 and 2.0, and for air— SFg and SFg —air interfaces. We
develop statistics tools to study extensively the growth of the turbulent mixing zone using cylin-
drical averages as well as various measures such as probability density functions of the mixing and
turbulent power spectra, with the objectives of understanding the turbulent mixing in this particular

geometry.
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directions z and y (green) and z, y, and z (red) where shock waves are present, in

particular around the bow shock forming ahead of the jet. Courtesy of A. Ferrante.

Differently colored iso-surfaces for mass fractions ¢ = 73.1%, 50%, and 26.9% visualize
the evolution of the mixing zone: (a) the interface converges towards the axis; (b) the
interface is reshocked a first time; (c) late-time turbulent mixing is observed. The gray
levels on the background planes represent the domains of different mesh refinement.

Case air—SFg, My =1.3. . . . . . . e

Differently colored iso-surfaces for mass fractions v = 73.1%, 50%, and 26.9% visualize
the evolution of the mixing zone: (a) the interface converges towards the axis; (b) the
interface is reshocked a first time; (c) late-time turbulent mixing is observed. The gray
levels on the background planes represent the domains of different mesh refinement.

Case air—SFg, My =2.0. . . . . . . . . e e

Evolution of the mixing-layer width J§ (red solid line) and growth rate dé/dt (blue
small-dashed line). Case My = 1.3 (left) and 2.0 (right). . . . . . .. .. .. ... ...

Evolution of the mixing-layer center r.. Case My = 1.3 (left) and 2.0 (right). . . . . .
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line), and ﬂhm/ao (pink dotted line), with 8 = 0.3 for M; = 1.3 and 8 = 0.45 for
M; = 2.0. hy given by Equation (3.32). Case M; = 1.3 (left) and 2.0 (right). . . . . .

Evolution of the mixing-layer width ¢ following the first reshock. Simulation (red solid
line) and 3,5 A, AW, (blue small-dashed line), with A}, and AW, determined at the
reshock interaction and (3, = 0.75 for M; = 1.3 and 3, = 0.28 for M; = 2.0. Case
M; =13 (left) and 2.0 (right). . . . . . . . ..

Evolution of the bubble and spike shell-averaged radial velocities (u,), (blue small-

dashed line) and (u,)s (pink dotted line). Case M; = 1.3 (left) and 2.0 (right). . . . .

Evolution of the mixing-layer volume per unit z—length V. Case M = 1.3 (left) and
2.0 (right). . . . ..

Shell-averaged scalar (Y) centered on the mixing-layer center r. vs. 7, at different

stages of the mixing-layer evolution. Case M; = 1.3 (left) and 2.0 (right). . . . . . ..

Shell-averaged scalar (Y') (red solid line) and scalar variance Var,(Y") (blue small-
dashed line) vs. r, after the incident shock interaction (top), right after the first
reshock (middle), and at late time (bottom). Case My = 1.3 (left) and 2.0 (right). . .
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Shell-averaged density (p) (red solid line) and density variance Var(p) (blue small-

dashed line) vs. r, after the incident shock interaction (top), right after the first
reshock (middle), and at late time (bottom). Case M; = 1.3 (left) and 2.0 (right). . .

Shell-averaged resolved scale turbulent kinetic energy (K) (red solid line) and subgrid
turbulent kinetic energy (k) (blue small-dashed line) vs. r, after the incident shock
interaction (top), right after the first reshock (middle), and at late time (bottom).
Note the order of magnitude difference in the scale of the plots: (K) ~ 10(k) for the
case My = 1.3 and (K) ~ 20(k) for the case My = 2.0. Case M; = 1.3 (left) and 2.0
(right). . . o

Shell-averaged resolved scale dissipation rate (e,.s) (red solid line) and subgrid dissi-
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right after the first reshock (middle), and at late time (bottom). Note the order of
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small-dashed line) vs. r, after the incident shock interaction (top), right after the first
reshock (middle), and at late time (bottom). Note the order of magnitude difference

in the scale of the plots. Case My = 1.3 (left) and 2.0 (right). . . . . . ... ... ...

Shell-averaged radial velocity component (u,) (red solid line), azimuthal velocity com-
ponent (ug) (blue small-dashed line) and axial velocity component (u.) vs. r, after
the incident shock interaction (top), right after the first reshock (middle), and at late
time (bottom). Note the order of magnitude difference in the scale of the plots. Case

Mr =13 (left) and 2.0 (right). . . . . . .. ... L

Volume-averaged total turbulent kinetic energy TKE,, as a function of time. Case

M =13 (left) and 2.0 (right). . . . . . . . .

Shell-averaged integral length scale ¢ computed in the center of the mixing zone r = r,
as a function of time, during the decay of turbulent kinetic energy. Case M; = 1.3

(left) and 2.0 (right). . . . . . . . . .

Shell-averaged turbulent Reynolds number Re, computed in the center of the mixing
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k.-power spectra of velocity F, (k) computed in the center shell of the mixing zone at
four different times: For M; = 1.3 (left), (ag/Ro)t = 2.69 (dashed-dot line), (ag/Ro)t =
5.52 (long dashed-line), (ag/Ro)t = 6.44 (small-dashed line), and (ag/Ro)t = 8.16 (solid
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Chapter 1

Introduction

The interactions of shock waves with perturbed interfaces separating fluids of different properties
are of crucial importance in compressible turbulence, as they occur in a myriad of applications, both
natural and man-made. This class of problems is generally referred to as the Richtmyer-Meshkov
instability (RMI), after Richtmyer, who first rigorously analyzed the growth rate of a perturbation
at a plane density inhomogeneity following an impulsive acceleration modeling the passage of a
shock parallel to the interface [94], and Meshkov, who confirmed, at least qualitatively, Richtmyer’s
predictions using shock-tube experiments [77]. In [94] Richtmyer also compared his analytical results
with numerical simulations of the linearized compressible Euler equations. The RMI is sometimes
thought of as an impulsive, or shock-induced, version of the Rayleigh-Taylor instability (RTT), where

the density interface is submitted to a finite sustained acceleration (e.g., gravitational field) [107, 92].

The dominant fluid dynamics process responsible for the amplification of the interface pertur-
bation is local vorticity generation by means of baroclinic torque, due to the misalignment of the
pressure gradient across the shock and the local density gradient at the interface during shock pas-
sage. Consider the evolution equation of the vorticity field w = V x u, with u velocity field. In the

absence of dissipation terms,

(aatwLu-V)w—vP;;anL(w-V)qu-m (1.1)
where p is the density field and p the pressure field. The first term of the right-hand side represents
the production of baroclinic vorticity and constitutes the main mechanism for vorticity generation in
the RMI. The second term, called vortex stretching, only appears in three-dimensional flows where
the vorticity field is a priori not perpendicular to the velocity field. The last term is the vortex
compression and is related to compressibility effects. For moderate incident shocks, this term is
expected to remain small [43]. However, it might not be the case in converging geometries where
the flow can be accelerated to very high velocities. After the shock passage, the distribution of

vorticity deposited during the shock refraction drives the evolution of the instability (other effects



2

are discussed in Chapter 2). Samtaney and Zabusky produced a detailed analysis of the circulation
deposition for general incident shock strengths and fluid combinations [99]. As the interface be-
comes more distorted, the heavy fluid penetrates into the light fluid causing the formation of spikes,
while the lighter fluid raises into the heavy fluid causing the formation of bubbles. The instability
exhibits characteristic mushroom-like structures (e.g., see Figure 1.1) due to the rolling up of the
spikes. Additional baroclinic vorticity is produced during the roll-up in a mechanism called vortex-
accelerated-vorticity-deposition [85]. Secondary instabilities such as the shearing Kelvin-Helmholtz
instability develop, and vortex pairing can be observed between the structures already generated
by the RMI, resulting in a wide range of physical scales and ultimately turbulent mixing between
the two fluids. The intensity of the turbulent motions can be further increased when the interface
is processed by additional pressure waves, such as reshocks. During a reshock, baroclinic vorticity
is deposited with opposite sign to the initially deposited vorticity, transforming spikes into bubbles
and vice versa in a process called phase inversion. Note that other types of baroclinic instability,
besides the RMI, include the RTT previously cited and shown in figure 1.2, and the Landau-Darrieus

instability driven by mass transfer across the interface [60].

The RMI arises in the context of various shock-accelerated flows. In combustion systems, the
instability resulting from the interaction of a shock wave with a flame has an important role in the
transition from deflagration to detonation [57]. There has also been considerable interest in exploiting
shock-induced fuel/oxidizer mixing properties of the instability for supersonic and hypersonic air-
breathing combustors (scramjets) [119]. Vapor explosions that result from the intense heat transfer
following contact between a hot liquid and a cold, more volatile one, have been widely studied
as well, as they can occur in severe accidents when the core of a nuclear reactor is molten [5].
Other inhomogeneous reacting flows can involve converging shocks, e.g., concave detonation-driven
flows [45], inertial confinement fusion (ICF), etc. Unlike magnetic fusion designs, which holds fuel
in a magnetic field, ICF relies on isentropic compression of fusion fuel. In an ICF capsule implosion,
a laser drives a shock that compresses deuterium-tritium (D-T) gas causing ignition and fusion. In
such technology, the effect of gravity is negligible but the fluid is accelerated. As a consequence, RTT
forms at the D-T interface, inhibits thermonuclear reactions, and limits final compression required
to achieve fusion [70, 69]. RMI is also important in ICF because it can produce seeds, which are
later amplified by the more violent RTI. The RMI has been used to explain the rapid collapse of gas
bubbles in liquids [86, 32]. Other examples of multi-phase flows involving converging shocks, such as
sonoluminescence [90, 29] and shock-wave lithotripsy [51], have drawn increasing scientific interest.
Aeronautical engineers need accurate prediction of the sonic-boom focusing, called “superboom” [72].
The superboom develops when an aircraft changes its speed, turns, or maneuvers. The ground noise
of superboom is magnified up to 2-3 times the original sonic-boom noise, which could propagate to

the ground and severely harm human ears, as well as structures. The RMI in curved geometries also



Figure 1.1: Two-dimensional simulations of the converging cylindrical Richtmyer-Meshkov instability
in a 90° wedge, using adaptive mesh refinement. A cylindrical converging shock impacts at a Mach
number 3.0 a cylindrical density interface separating air (outside) from sulfur hexafluoride (inside).
Passive scalar contours (upper diagonal) show the distortion of the interface, while transmitted shock
and reflected wave patterns appear on the pressure contours (lower diagonal).

manifests itself in natural phenomena such as supernova (SN) collapse. The RMI has been observed
in remnants of the explosion of SN 1987A [1, 33, 73] and is used to explain the overturn of the
outer portion of collapsing cores of supernovas and the unexpected mixing in the outer regions of
supernovas [103, 105, 56].

These examples have recently raised considerable interest in understanding the physical pro-
cesses behind this instability, and have motivated reviews by Zabusky [121], Berthoud [5], and
Brouillette [10], among others.

1.1 Motivation

This research project was initiated to investigate the RMI in curved geometries, in particular when
driven by converging shocks. The objectives were to: (i) model the linear regime of the converging
RMI, (ii) set up a canonical large-eddy simulation (LES) of the shock-driven turbulent mixing in
a converging geometry, and (iii) identify the differences with the mixing observed in the plane
geometry in [109, 43]. The computations were performed within the adaptive mesh refinement
framework AMROC [21] as part of the Virtual Test Facility (VTF) [22]. A long-term goal is to
compare these large-scale LES against validation experiments of converging shocks in a wedge (VTF
phase 2) currently being conducted by the group of Prof. Dimotakis at GALCIT [24].

The most important accomplishment of the present work has been the comparison, in various



Figure 1.2: Experiments of the Rayleigh-Taylor instability by Waddell et al. [111]. A sequence of
planar laser-induced fluorescence images showing the development of an immiscible system with
Atwood ratio 0.336 accelerated at 1.34 g: linear regime (a),(b); non-linear regime (c)—(g); chaotic
appearance suggesting transition to turbulence (h)-(j).

conditions (e.g., incident shock strength, density ratio), of the plane and converging geometries for
(i) the early stages of the RMI, (ii) the reshock events with a visual study of wave diagrams, and
(iii) the long-term turbulent mixing following the reshocks with new techniques developed to study
statistics of the turbulent flow. Both analytical and numerical approaches have been undertaken.
In particular, this project has motivated improvements of the patch solver and new developments of

the statistics class within AMROC.

1.2 Previous Related Work

1.2.1 Linear Regime in Plane and Curved Geometries

The linear regime of the RMI has been principally studied in the plane geometry and been focused
on modeling the asymptotic growth rate reached by the instability as commonly observed during
the small amplitude perturbation growth [94, 31, 118, 108, 116, 117, 39]. There are two reasons for

possible discrepancies between experiments and analytical models. First, most of these formulations
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work well for weak incident shocks but fail to model the exact asymptotic growth rate when the
incident shock is strong, the density ratio across the interface high, or the difference between specific
heat ratios important [120]. Complex models (e.g., see [116]) are needed to cover the wide range
of initial parameters. Second, early experimental results, obtained in the nonlinear regime because
small amplitude could not be measured accurately (e.g., see [77]), could only confirm qualitatively
the impulsive model predictions. However, better agreement is achieved in recent low [55] and
high [46] Mach-number experiments. Although impulsive models are approximate, they provide
insight and simple estimates of the growth rate.

On the other hand, the approach of Wouchuk (e.g., [116]) has the potential to take into account
all physical phenomena involved (initial vorticity deposition, bulk vorticity deposition by relaxation
of deformed shock fronts, baroclinic generation by reverberation of acoustic waves emitted by the
deformed shock front, etc.). Wouchuk’s analysis contains the following features: (i) The flow between
the perturbed interface and moving deformed reflected and transmitted waves is linearized (wave
equations); (ii) a change of coordinate suggested in [7, 75] is used; (iii) the Laplace transform of
one of the new coordinates is applied; (iv) after considerable algebra a functional equation is found
and approximately solved by iteration in order to determine the quantities F, and Fj needed in
Equation (3) of [116]. The method works well for different gas combinations and various incident
shock strengths. Although only three iterations are needed to get good agreement with estimates
of the asymptotic growth rate from the reference simulations of Yang for plane linear perturbation
growth [120], this approach is best viewed as semi-analytical. For example, no scaling law can be
deduced from this analysis.

Less analytical work has been achieved in curved geometries. The contributions basically reduce
to Mikaelian’s impulsive model for the spherical geometry [80] and for the cylindrical geometry only
for azimuthal perturbations [81]. Tests of this incompressible model are limited to comparisons
against gelatin-ring computational experiments, and no simulations of highly compressible materials
are performed. However, Mikaelian’s work considers both RMI and RTT for spherical and two-
dimensional cylindrical stratified shells, discusses “freeze-out” phenomenon in plane, cylindrical and

spherical geometries, and provides a model of turbulent mix.

1.2.2 Converging Shocks

There are underlying challenges in studying imploding geometries, analytically, numerically, and
above all, experimentally. No exact solutions exist for converging shocks. However, Guderley pro-
duced asymptotic similarity solutions in the strong-shock limit for converging cylindrical and spheri-
cal shocks whose strength increases as a power-law [40]. Whitham’s shock dynamics theory provides
accurate solutions to the converging shock valid below the strong shock limit [113]. A solution in

the form of a series expansion, whose leading order corresponds to Guderley’s power-law solution, is
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described in [87]. In this problem, the flow admits a general solution where an infinitesimally weak
shock from infinity strengthens as it converges towards the origin. The importance of this type of
self-similar solutions in the study of shock waves compares to that of the Taylor-Sedov solution for
point explosion. Chisnell gave an analytical approximation to the flow behind Guderley’s converging
shocks in [15]. In the present thesis, we use this solution to generate imploding flows.

The first numerical investigation of these solutions was carried out by Payne, who adapted the
so-called Lax scheme to appropriately compute the pressure term in the momentum equations [84]
(see [8] for the explosion problem). The converging shock originates due to the sudden rupture of
a cylindrical diaphragm, separating two uniform regions of gas at rest with a higher pressure in the
outside region. By a suitable choice of initial conditions, Payne obtained a flow with a shock wave,
an expansion wave, but no contact discontinuity that could affect the shock and lead to numerical
inaccuracy in the flow. As the shock converges and becomes stronger, agreement with Guderley’s
power-law can be achieved. Other than the difficulty of initializing numerical simulations properly,
converging shocks simulations raise other questions, such as the treatment of the flow singularity at
the center, or the need of robust methods not only able to capture strong shocks but also to compute
correctly the turbulent mixing dissipation in the area of the fluid inhomogeneities [44].

Experimentalists can face difficulties in focusing shock while keeping reasonably stable axisymme-
try. Imperfect focusing can, for example, reduce the pressure at the center of the converging shock,
and has therefore motivated research on converging shock stability. Experiments of converging shocks
usually generate unstable converging polygonal structures (development of triple points) [112] similar
to those studied in stability theories of axisymmetric converging shocks [113, 101]. These observa-
tions led to investigation of polygonal shock waves (e.g., see [27]), and confirm the importance of
creating converging shocks with minimal imperfections in their symmetry. Hosseini and Takayama
have succeeded in producing converging cylindrical shock waves with minimum disturbances using
an annular coaxial diaphragm-less shock-tube [50]. The shock interacts with a cylindrical soap bub-
ble filled up with various gases and the RMI appears on the bubble front. Dimotakis and Samtaney
have theoretically designed a gas lensing technique (referred to as VTF phase 1) that can smoothly

focus a planar shock into a segment of a circular cylinder in a two-dimensional wedge geometry [24].

1.2.3 Mixing in Accelerated Inhomogeneous Flows

A number of experiments have been carried out with the objective of capturing convergence effects
on the RMI: electron-beam targets [106], cylindrical metal shells [66], laser targets [52, 61], and
gelatin rings [78, 79].

As far as we know, there have been no three-dimensional direct numerical simulations (DNS)
of turbulence in cylindrical or spherical geometries for RTT and RMI-type flows, the reason being

that the Reynolds numbers involved are too high for these accelerating flows, resulting in viscous
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dissipation scales impossible to capture with current computers. LES is probably the best approach,
but only LES for the RTI [18, 12, 11] and the RMI with reshock [43] in plane geometries have been
performed. For the RMI, the difficulty lies on the conception of a numerical method that can capture
shocks of various strengths (shock waves cannot be fully resolved since the shock thickness is of the
order of the mean free path), as well as the turbulent activity in some regions of the flow. A more

detailed discussion on computation of compressible turbulence is provided in Chapter 5.

Two-dimensional simulations of the instability for imploding and exploding cylindrical shocks
using front tracking of the interface and a shock-capturing scheme have also been performed by Saltz
et al. [97] and most importantly by Zhang et al. [123]. Saltz reports numerical solutions obtained
from two different codes, FronTier, a front-tracking method using a directionally split second-order
Godunov scheme, and RAGE, embedding a similar numerical method into a continuous adaptive
mesh refinement framework. Zhang’s work completes a scaling analysis for RMI driven by strong
shocks (e.g., converging shocks) [122]. It considers various reshock configurations. Indeed, the
occurrence of re-acceleration of the material interface caused by the waves reflecting from the origin
is unavoidable in curved geometry. In plane geometry, we only need to distinguish between light-
to-heavy and heavy-to-light interactions, while in curved geometry, we further need to distinguish
exploding and imploding shock interactions. Nevertheless, no study of the resulting long-term
turbulent mixing was done. Note that front tracking is in general not adapted to compute the

complex turbulent mixing occurring in three dimensions.

Elaborate models for the turbulent mixing zone growth, including, e.g., dissipation effects, are
available [91]. We focus on Mikaelian’s minimal model [80, 81], where the evolution of the mixing
thickness in planar, cylindrical, or spherical geometry, has a non-trivial dependence on convergence,
i.e., on R(t)/Ry, with Ry initial position of the unperturbed interface (before shock interaction) and
R(t) position of the accelerated unperturbed interface at time ¢, and is proportional to a constant,
¢ (e.g., see Equations (32-36) in [81] for the cylindrical case). There is no dependence on initial
conditions other than a simple additive constant hg representing the initial perturbation amplitude.
The DNS of the RTT in plane geometry of Cook and Dimotakis [19] suggests that ¢, also noted
Cplane N this geometry, may depend on initial perturbation wavelengths and amplitudes. Plane RMI
shock-tube experiments [109, 28] and simulations [43] are consistent with h = cplane AAW?T with
Cplane = 0.10 — 0.14. In this expression, A is the Atwood ratio and AW being the speed of the
accelerated interface) . For the curved RMI, more research is needed to compare with Mikaelian’s
model the results on the mixing obtained in the very few shock-tube experiments in cylindrical [50]

and spherical [59] geometries.



1.3 Outline of Present Work

Chapter 2 presents a theoretical model describing the early growth of the plane RMI and its valida-
tion against numerical simulations. Chapter 3 summarizes an analytical model for the asymptotic
growth rate of the RMI for three-dimensional cylindrical linear perturbations. The model is combined
with the theory of the previous chapter. Plane, pure axial and pure azimuthal linear perturbations
are compared to each other in various computations. Chapter 4 investigates the reshock phenomenon
occurring after radially symmetric converging waves reflect off the center of the geometry. Wave
diagrams are constructed from highly resolved computations for different geometries (plane, cylin-
drical, and spherical), various gas combinations, and incident shock strengths. The LES performed
to study the post-reshock mixing are described in Chapter 5. All the simulations of the converging
RMI are initialized using self-similar converging shocks. Finally, conclusions and implications of this
research are presented in Chapter 6. Appendices B and C report the detailed statistics employed to

post-process the extensive data from the LES.



Chapter 2

Startup Process in the
Richtmyer-Meshkov Instability

2.1 Introduction

Here and hereinafter, we consider only the case of a reflected shock corresponding in general to a
light-to-heavy shock-contact refraction.

The RMI generally combines different phenomena such as, but not limited to, shock refraction,
hydrodynamic stability, and both linear and non-linear growth periods. There are two important
contributions to the early-time, or small-amplitude linear growth of the instability, before nonlinear
development of the perturbation appears. First, the baroclinic deposition of vorticity due to the
direct interaction of the incident shock with the interface, where the pressure gradient at the shock
is misaligned with the local density gradient at the interface. If the initial interface is sharp, it
can therefore be viewed as a vortex sheet that leads to its own self-induced distortion. The second
contribution concerns the influence of the transmitted and reflected shocks as they leave density and
vorticity perturbations behind them. Relaxation of these shock fronts both deposits bulk vorticity
and also emits acoustic waves that, by reverberation, modify the vorticity on the interface. In the
weak shock limit, the linear growth reduces essentially to the first contribution, while for strong
incident shocks, the produced transmitted shock takes a longer time to separate from the interface.

Richtmyer first derived the compressible perturbed equations and obtained a simple analytical
expression for the asymptotic linear growth rate [94], assuming that transmitted and reflected shocks
have traveled sufficiently far, compared to the wavelength of the perturbation, that the second contri-
bution is subdominant. Other methods concentrating also on the first contribution have attempted
to correct the impulsive growth rate to better model the behavior for strong incident shocks or high
Atwood ratio without loss of simplicity [108]. At the same time numericists and experimentalists
have addressed the effect of shock proximity by using empirical corrections to the impulsive growth

rate of [46, 53, 36]. More complex, semi-analytical studies have taken into account all relevant
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phenomena [31, 116], and showed good agreement with numerical results obtained by linearizing the
Euler equations between the perturbed interface and transmitted/reflected waves [120], and with
the linear interaction analysis at low Atwood numbers of Griffond [39].

In what follows, by modeling the proximity of the receding transmitted and reflected shocks, the
analysis of Section 2.2 establishes a simple analytical expression for the growth rate that captures
some of the early features of the perturbation evolution before it has reached the asymptotic growth
linear in time. Figure 2.3 best describes how the model compares to the reality. As analyzed in
Section 2.3, the solution addresses the early-time physics of the linear growth, with a characteristic
time 7, while allowing for the determination of the asymptotic, or later-time, growth rate by addi-
tional physics. Section 2.4 compares results to computations obtained from two-dimensional, highly
resolved numerical simulations of the RMI under various initial conditions. Different realistic combi-
nations of Atwood ratio and specific heat ratio are tested, as well as incident shock strength, initial
perturbation amplitude, and wavenumber. A more thorough parametric study of the characteristic

time 7 is presented in Section 2.5.

2.2 Analytical Model

2.2.1 General Formulation

At t = 0, in Cartesian axes (z-z), a plane shock traveling to the left (negative z direction) impacts
a plane unperturbed density interface, z = 0, separating two fluids of different density, producing a
transmitted shock and a reflected shock. We work in a frame of reference in which the undisturbed
interface is always at z = 0 and in which the transmitted shock velocity is Ug, < 0 and the reflected
shock velocity is Ug, > 0. We define more generally S;(t), j = 1,2 as the average position of these
shocks at time ¢. In the laboratory reference frame, the interface is impulsively accelerated to velocity
—AWe,, AW > 0, at t = 0. For given fluids and given incident shock strength, Us,,Us,, AW,
and the post-shock densities and Atwood number A1 can be determined by solution of the one-
dimensional Riemann problem. We will focus on regions directly in contact with the interface and
denote these by the subscript j, where j = 1 for the region to the left, z < 0, of the interface
and j = 2 for the region to the right, z > 0, of the interface. The interface is slightly perturbed
(Figure 2.1), with a perturbation amplitude small compared to its fundamental wavelength. Its

position is
2z =((z,t) = h(t)e'"®. (2.1)

The purpose of this analytical work is to determine a simple approximation for the growth h(t) for

small ¢, within the linear approximation.
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Figure 2.1: Perturbed system.

The fundamental length scale in this problem is the wavelength of the perturbation 27w /k. We
choose 1/k as our characteristic length scale. The characteristic velocity scale is chosen to be
kh(0)/(2m) AT AW since Richtmyer’s impulsive model of the asymptotic growth rate for the linear
RMI is kh(0)ATAW [94], with AT = (p1 — p2)/(p1 + p2) the post-shock Atwood ratio based on
post-shock densities and h(0) amplitude of the perturbation at ¢ = 0. An appropriate time scale
characteristic of the linear growth of the instability is thus 27/(k?h(0)ATAW) (> 0 as long as
AT > 0). The density scales like the constant post-shock densities p; to the left of the interface, or
p2 to the right. Similarly, the pressure scales like p;(kh(0)/(2m)ATAW)?, j = (1,2). The impulsive
acceleration g = AWJp(t) of the interface is made dimensionless by the characteristic acceleration
k(kh(0)/(2m) AT AW)2. Define a; as the post-shock speed of sound to the left or right of the interface.
To summarize, for each region j = (1,2), original quantities are related to dimensionless quantities,

denoted with a bar, as follows:

1

T, t=——
kejaj

tj, 0j = p;j 0j, Wj =€ja; Wy, pj = Pj(ﬁjaj)2l7j, g= k(Eja'j)nga (2.2)

where the following dimensionless parameter is defined:

kh(0 AW
oy = HO) 44 AW (2.3)
2w Qj
The parameter ¢; defined in (2.3) is in general small since kh(0)/(2m) < 1, AT <1, and AW/a,
is of the order of unity. This latter ratio can be greater than unity in the heavy region 1 when the

incident shock Mach number My is very high, but remains less than ten as long as A" is not too

close to unity and the incident shock is not too strong. For example, in the case of a ‘light air —
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heavy SFg’ shock interaction at M; = 8.0, whose Atwood number AT ~ (.7 is quite high (1:5 density
ratio), in the heavy region AW /a; ~ 4.2.

The Euler equations in the frame of the accelerated interface are now written in terms of dimen-

sionless quantities on each side of the interface:

2 (g";u f);g a, 36“) - -7 (2.40)
2, (f;;+ 7 2 58“11) = - ra9,0), (2:4¢)
(FeoBend) - (B H).  ew

where it has been assumed that the sound speed is uniform and constant equal to a;. The acceleration

of the frame in which the Euler equations are written is contained in the last term of Equation (2.4c).

2.2.2 Base Flow and Perturbations

The flow is decomposed as a base part uniform in the transverse direction x, and a small perturbation

sinusoidal in x. For any dimensionless flow quantity g; in each region:
= (7 = % —(0) —(1) 1T 2.5
0,;(7.2,1;) =q; (Z,15) + £;q; (Z,85)e"" + ... (2.5)

At leading order in €, an admissible base flow in the regions 1 and 2 is expressed as

S0 _

o) =1, @ =0, o =0, B =Py +7,()z (2.6)

where Py is an arbitrary background pressure. The base flow is simply the incompressible re-
sponse to an impulse that instantaneously accelerates the flow to the speed AW in the negative
z-direction. Expressed in dimensional variables, the base quantities can be determined by solving
the one-dimensional Riemann problem of the shock interaction at ¢ = 0. Linearizing the Euler

equations in each region with small parameter €; in region j , the leading-order perturbed equations
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are
ooV o'V
Wj.ﬂﬂf”i@; = 0 (2.7a)
J
oul"
;] = —’Lﬁ(l), (27b)
ot i
ow'Y op _
J J P2 —P1\_ = - -
= = - (t;) [H(Z) — H(z — kh 2.7
7 2 ()@ He - HE- ) (2
ow'"

where H(z) is the Heaviside function. Equation (2.7¢) is obtained by subtracting Equation (2.4c)
to its equivalent equation for the base field, at every location (z,z). The right-hand side source
term of the equation obtained for the perturbation E§-1)eﬁ contains the window function H(Z) —
H(z—(), which is rewritten as [H (Z) — H(Z — kh)] "*. Equation (2.7d) shows that the leading-order
perturbed flow is incompressible and, from Equation (2.7a), the perturbed density is independent
of time. From Equations (2.7b) and (2.7¢), the post-shock perturbed flow is irrotational on each
side of the interface except in a small window between z = 0 and the interface z = (. Therefore a
perturbed potential 5;1) can be introduced such that ﬂﬁl) = %;1). Outside of the forced region, the

perturbed potential is a solution of the Laplace equation and can be written in terms of dimensional

variables as
(;5§-1)(z7 t) = A;(t)sinh(kz) + Bj(t) cosh(kz), (2.8)

where A; and B; are complex coefficients. The assumption of potential incompressible flow on each
side of the interface was initially used by Layzer to describe the single-mode nonlinear growth [65].
Most recently, based on Layzer’s model at an infinite density ratio (A = 1) (see also [42]), Srebro et
al. found a general buoyancy-drag model at every A describing the stages of the RMI and RTI [104].
These models allows to compute the bubble velocities, assuming that the flow is governed by the

behavior near the bubble tips, supposed parabolic in shape.

2.2.3 Boundary Conditions at the Shocks

Boundary conditions at the transmitted and reflected shocks are now investigated. From the shock
refraction process occurring when the incident shock impacts a perturbed interface with wavenum-
ber k, the transmitted and reflected shock waves produced are similarly perturbed with the same
wavenumber but are expected to evolve with a different growth than that of the interface pertur-
bation. The initial shock perturbation hg,(t = 07) is expected a priori of the same order of the

amplitude of the interface perturbation A(t = 07). Our simulations (see Section 2.4) confirm the
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well-known results on planar shock stability: small perturbations at the shock front decay, while
interface perturbations grow for ¢ > 0. Landau determined that the stability criterion for small
disturbances traveling in the direction perpendicular to the shock was simply a consequence of the
requirement of the second law of thermodynamics [60]. Considering a corrugation in the transverse
direction, Dyakov’s criterion expresses that, in the case of a perfect gas, a discontinuous shock front
is unconditionally stable [26]. To complete the discussion, we note that Yang found, in the case (not
considered presently) of a reflected rarefaction wave, the trailing edge of the fan is always unstable

(Section C of [120]).

Linearizing the Rankine-Hugoniot jump conditions with respect to small shock perturbation am-
plitude hg, (t), i.e., corresponding to small interface perturbation h(t), the axial velocity perturbation

behind the shock can be related to hg, () as
(D (S5(t) + hs, (e, 1) = w(V (8;(t), 1) = Cjh 2.9
w] ( J(t)+ Sj(t)e 7t)_w] ( J(t)ﬂt)— J Sj; ( . )

where C is a constant function of the unperturbed densities upstream and downstream of each
shock. As the shock perturbation decays, the growth hsj tends to zero. We therefore assume the
following approximate boundary condition: for ¢ > 0, the growth of the shock perturbation is zero
at leading order in €; and, therefore, the perturbed axial velocity must be zero at the shock. This
assumption is consistent with incompressible, irrotational motion for the perturbed flow at leading
order: the shocks then physically behave like moving plane boundaries along which there exists a
uniform distribution of sources of just sufficient strength to produce the post-shock, incompressible
flow. At higher order these ‘walls’ essentially confine the reach of reverberating waves to the flow
regions between the interface and the receding shocks. It is this effect that presently modifies

Richtmyer’s theory [94].

With this ansatz, Equation (2.8) simplifies and we can express the perturbed velocity field in

each region as

ugl)(z,t) = 1kE;(t) cosh(k(z — S;(t))), (2.10a)

wi(z,t) = kE;(t)sinh(k(z — S;(t))), (2.10b)

where E;(t) are functions to be determined. This solution allows for shear at the ‘wall-shocks’ where
the perturbed transverse velocity is non zero. From the momentum equation in the x-direction, the

pressure perturbation is

WD) = o (B (D) cosh(k(z — S,(1))). 2.11)
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2.2.4 Kinematic and Dynamic Conditions at the Interface

At the contact z = ((x,t) = h(t)e**®, the perturbed z-velocity must be continuous, and, after

linearization

wiM(0,) ~ wi (0,¢) ~ h. (2.12)

(€0)

Using the simplified form of w; (z,t) in each region 1 and 2 found in the previous paragraph at

dominant order, the linearized kinematic condition becomes
—kEy (t)sinh(kS (1)) = —kEs(t) sinh(kSa(t)) = h. (2.13)

We observe that the coeflicients E; are real. A dynamic boundary condition is obtained by integrat-
ing the perturbed momentum equation (2.7¢) in z from z = 0 to z = h(t). The linearized dynamic

condition to order €; requires that at z = h (in dimensional variables)
pgl)(l‘, z,t) — ;AW p(t)z = pél)(x, z,t) — poAWp(t)z. (2.14)
Using Equation (2.11), the linearized dynamic condition becomes

—pg% (E5(t) cosh(kSa(t))) + pl% (E1(t) cosh(kS1(t))) =~ (p2 — p1) AW p(t)h(t). (2.15)

The functions F;(t) are fully determined (up to the initial condition E;(0)) by integrating Equa-
tion (2.15) from ¢ = 0 to ¢. From Equation (2.13), an expression for the growth rate is found

as

, 2 hoo
MO = A AT ot (k8 {0) £ (1 + A7) coth(h(—5: (1)) (2.162)
hoo = kh(0)ATAWH(t) + g (1= AT)E3(0) — (14 AT)E(0)), (2.16b)

where H(t) is the Heaviside function. We recovered the asymptotic growth rate predicted by Richt-
myer in the first term of the right-hand side of Equation (2.16b). In this formula, AT comes from
the use of post-shock densities p;. Moreover, h(0) is the perturbation amplitude at ¢ = 0 right
when the shock passes the interface and has not been clearly defined at this point. E.g., h(0) could
be modeled as the arithmetic average of the pre-shock and post-shock amplitudes h(0~) = hy and
h(0T).
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2.3 Startup Period for Richtmyer-Meshkov Instability

2.3.1 Startup Time 7

We observe that, within the linearized approximation, the large ¢ asymptotic growth rate hoo is noOt
determined presently. Eliminating the functions E; from Equation (2.15) by using Equation (2.13),
a second-order ordinary differential equation (ODE) is straightforwardly obtained for h(t). The
ODE has a regular singular point at t = 0, which admits a family of solutions, regular at t = 0, with
a free parameter h(t = 07") that is equivalent to the free asymptotic growth rate hoo. Once hoo is
determined, the amplitude of the interface perturbation can be obtained by numerically integrating
Equation (2.16), given h(0). Second, both terms in the denominator of (2.16b) are positive since
-1 < At < 1,and Si(t) < 0 and Sa(t) > 0. Third, the actual form of S;(¢) and S3(t) has not been
used, and the instantaneous growth rate is a function only of the relative locations of the shocks
and the interface, not the history of these locations. Since the leading order perturbed equations
are incompressible this suggests that our results are dependent on the equation of state of the fluids
via the solution of the one-dimensional Riemann problem.

The shock locations can now be modeled with
S;(t) = Us,tH(t). (2.17)
Ast — 07T, the growth rate simplifies to
. .t )
b= hoo— + O(t?), (2.18)
T

where

T

1 (1—A+ 1+A+). (2.19)

T2k \ Us, +(*U51)

The time 7 obtained from our new model represents the characteristic time during which the presence
of the shocks influences the growth of the interface and is fully determined by solving the one-
dimensional Riemann problem described as the base flow. For ¢t > 7, the asymptotic growth heo is
recovered. Equation (2.18) shows that the growth rate immediately following the shock interaction,
h(0F), is zero. The kinematic condition (2.12) taken at ¢ — 07 implies that w§-1)(z =0,t =0")
is zero, which is consistent with the boundary condition assuming zero axial velocity perturbation
at the shocks, the shocks being concentrated at z = 0 as ¢ — 0. Numerical two-dimensional
simulations shown later, as well as the linear compressible simulations of Yang [120], corroborate
that the growth rate is zero just following the shock interaction. The model gives a non-zero positive

initial acceleration as h(0T) ~ Ay /7.
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2.3.2 Asymptotic Growth Rate

The growth rate, initially zero, increases to an asymptotic limit hoo as the shocks recede. Richt-
myer [94] initially proposed the impulsive model in an unbounded domain that gives the asymptotic

growth as
hrich. = kh(0)ATAW. (2.20)

For any time, the transmitted and reflected waves are already at infinity. It has been shown,
however (Yang [120]), and confirmed by Wouchuk’s semi-analytical model [116] that the impulsive
model generally fails to represent the correct terminal linear growth rate. Solving the linearized
Euler equations numerically, Yang concludes that his linear theory and the impulsive model agree
when the incident shock strength decreases, but that large discrepancies appear for high incident
shock strengths. Indeed, the simple observation that, for strong shocks, both shocked interface and
transmitted shock remain close to each other for small ¢ is sufficient to contradict the assumption
of shocks at infinity during the initial growth phase. Yang also observed that the agreement with
Richtmyer’s model improves as the adiabatic exponents increase while remaining very close. Fig-
ure 16 of [120] (reflected shock case) shows that, for the air — SFg case, which we chose to study in
Section 2.4, the disagreement with Richtmyer’s mode grows as the incident shock strength increases.
A heuristic correction to the impulsive model has been proposed by Vandeboomgaerde [108] using
the average of the pre- and post-shock properties. But, as other impulsive formulations, the discrep-
ancy with the exact solution can be very large as the incident shock becomes stronger. The true
asymptotic growth rate will now be written as a correction to Richtmyer’s asymptotic growth under

the following form:
hoo = & hrich.- (2.21)

In the limit of weak incident shock, § is expected to tend to 1. Figure 16 of [120] represents the

quantity 1/Fyang — 1 computed from numerical computations.

2.3.3 Initial Tangential Velocity at Interface

We now discuss a framework for modeling the terminal or long-time linear growth rate. From
Equation (2.16b), the terminal growth rate is determined up to the knowledge of the E;(0), in other
words the initial transverse velocities. According to Equation (2.10a), in the case of zero initial
transverse velocity on each side of the interface, Richtmyer’s asymptotic solution is recovered. To
improve the asymptotic model, a relationship is required between the asymptotic growth rate hoo

and the initial jump in transverse velocity, or circulation distribution, across the interface. From
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Equation (2.16a) substituted into Equation (2.13) and then Equation (2.10a), it can be shown that

. ) (1—A+)US —(1—|—A+)US
hoo = — = 2 L A 2.22
2 US2 _ U51 [u ]7 ( a’)
1) — @ _ @)
AlutY] = (U1 Us )t:O. (2.22b)

A[u(l)] is the tangential velocity jump across the interface as ¢ — 0F. In our notation it is purely
imaginary, owing to a one-quarter wavelength phase difference between the interface shape pertur-
bation and the tangential velocity jump. Hence finding the long-time linear growth rate is equivalent
to determining the initial circulation-line density, or vortex-sheet strength, across the interface. As
a last remark, it can be shown after some algebra that, within the model presented here, the jump

in transverse velocity ugl) - ugl) across the interface is not constant with time unless the base flow

is symmetric, that is —Ug, = Ug,. However, the momentum slip plu(ll) — pzuél) across the interface

is conserved with time.

If the (constant) circulation related to Richtmyer’s asymptotic model is taken to be the initial

circulation in the present model, Equation (2.22) lead to

(1— AN Ug, — (1+ A™)
Us, — Us,
2kh(0)ATAW. (2.23b)

Ue .
5 hmich. (2.23a)

SRich.Circ.MRich. =

:-
8
|

A[u(l)]

Using the leading order (small angles of incidence «) I} of the circulation deposited by the passage
of a shock on a planar interface, given the long expression (2.14) in Samtaney and Zabusky [99],

Equation (2.22) becomes

(1—A+)U52 - (1+A+)U51 F/l h .
Us, — Us, 2AFAW
Au®M] = kh(0)T}. (2.24b)

hoo = SSamt.Circ.hRich. = (2243)

Subsection 4.4 of [99] suggests a scaling analysis for I} in terms of incident Mach number, density

ratio (and therefore Atwood ratio), and ratio of specific heats.

Referring to the form (2.21), we display in Figure 2.2 (and later on Table 2.1) the correction fac-
tor § determined from Richtmyer’s circulation modeling summarized in (2.23a), noted Frich.circ.
and from Samtaney’s circulation analysis expressed in (2.24a), noted Fsame.cire.. In Figure 2.2,
various common gas are used, such as air, Ar, COs, He, SFg, and Xe. A discussion is provided in
Subsection 2.4.2. For the comparison against numerical simulations in the following section, the ter-
minal growth rate given by Richtmyer’s asymptotic model h Rich. and Yang’s correction §yang h Rich.
will be used. To determine hgien. (Equation (2.20)) we assume that 2(0) in Equation (2.20) is the

post-shock perturbation amplitude h(0") (which is different from the amplitude before the shock
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(a) BRich.cire. based on Richtmyer’s circulation (b) Fsamt.cire. based on Samtaney’s circulation

Figure 2.2: Correction factor to Richtmyer’s impulsive growth rate for varying incident shock
strengths S (see Equation (2.28)) and various combinations of gases: air — COs (solid line), Ar — Xe
(dashed-dotted line), air — SFg (small dashed line), and He — air (long dashed line).

interaction).

2.4 Numerical Simulations

2.4.1 Numerical Method

Two-dimensional simulations were conducted within the AMROC framework developed by Deit-
erding [21], based on the structured adaptive mesh refinement (SAMR) algorithm by Berger and
Oliger [4]. The numerical method, applied to each subgrid of the mesh hierarchy, consists of a hybrid
method written for the multi-component Euler equations of gas dynamics assuming calorically per-
fect gas: A weighted, essentially non-oscillatory (WENQ) scheme is used to capture discontinuities
(such as shock waves, contact wave, or fine/coarse mesh interfaces) but switches to a low-numerical

dissipation, explicit, tuned center-difference scheme (TCD) in the smooth regions [44, 83].

The density interface is nominally defined by the mixture fraction field ¥ (x, z,¢). This scalar
field is asymptotic to ¢ (z, z,t) = 0 on the very right side, ¥(x, z,t) = 1 on the very left side, and is
initially setup using a tanh profile with intrinsic thickness 6§ (taken as about one fifth of the pre-
shock perturbation amplitude k). When the shock impacts the smeared interface, it is compressed
down to a thickness 6 (¢) until the end of the shock refraction where both reflected and transmitted
shock travels away from the interface. It is important to ensure that during the whole simulation,
in particular during the shock interaction, ¢ is fully resolved. The resolution, controlled by the
number of refinement levels, is chosen such that at least 10 points are used to resolved the interface

thickness.
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At t > 0, we define the centerline of the smeared density interface by

7 (1= )ydz
ze(z,t) = ffooo(l —oeds (2.25)

At a given time ¢, for a fixed z, the scalar profile is well approximated by a tanh centered at z.(x, t)

and with thickness 6 (t):

bz, 2,t) = % [1 + tanh (W)] . (2.26)

It is easily verified that z.(z,t) is recovered when (2.26) is used in (2.25). The spike and the bubble
positions and the flow velocity at these locations allow a measurement of perturbation amplitude

and growth rate:

h(t) o |chpike — ZChubble |

5 , (2.27a)

h(t) _ |w|ZCspike—2w|Zcbubble

(2.27D)

2.4.2 Parametric Study of the Amplitude and Growth Rate of the Inter-

face Perturbation

The parameters involved are the pre-shock Atwood ratio A, the ratio of specific heats v; for each
specie, the incident shock Mach number M; (or its strength S), the perturbation wavenumber &, and
the pre-shock perturbation amplitude hg. The Atwood ratio is chosen such that the temperature
is continuous across the initial interface (which is consistent with experimental conditions), and as
a result A is a function only of the molecular weights of both species. To a given combination
of parameters corresponds a numerical simulation from which amplitude and growth rate of the
interface are obtained. Simulation data are compared to the theoretical model presented in the
previous section on (2.16).

First recall that the incident shock strength is given by the ratio of the pressures ahead and

behind the incident shock pg and pg-, or in terms of the incident Mach number:

Po 1
S=1- = (2.28)
" R+l
Po Lt e

In the region on the right of the interface before the shock interaction, the speed of sound

ao = [ 1B (2.29)
Po
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Figure 2.3: Early-time close-up: dimensionless amplitude and growth rate of the interface pertur-
bation A(t)/ho and h/ao vs. agkt; case air — SFg, khg = 0.1, M7 = 1.5. Numerical simulations
using AMROC are represented by crosses. The thin dashed and thick solid lines correspond to our
model given by Equation (2.16) with two different choices for h.. The thin dashed line corresponds
to our model using Richtmyer’s asymptotic growth rate ho, = hprjcn., while the thick solid line uses
Yang’s correction to Richtmyer’s asymptotic growth rate hoo = Zvang f.LRl-Ch,. hRich. is given by
Equation (2.20) and §yang is provided by Yang’s linearized simulations [120]. We also recall that
the model gives an explicit expression for the growth rate from Equation (2.16), but the amplitude
of the interface perturbation is obtained by numerically integrating Equation (2.16)

is the reference velocity scale in the data representation. 1/(agk) is the reference time scale. Table 2.1
shows different types of shock-contact interaction (at a fixed khg). For each combination of species,
at a given Mach number, we compute the post-shock Atwood ratio AT, the dimensionless time
agkT, the dimensionless impulsive growth rate kh(0T)ATAW/ag, and the correction factor § to
Richtmyer’s impulsive growth rate using Yang’s numerical computations (see Figure 16 of [120]), or a
model based on Richtmyer’s circulation or Samtaney’s initial circulation deposited during the shock
interaction. Comparing to the reference computations of Yang, the model based on Samtaney’s
circulation appears satisfactory for low Atwood ratios, but overestimates the asymptotic growth
rate for high Atwood ratios. This is because we used Samtaney’s circulation derived for low-density
contrasts (see domain of validity in figure 15 of [99]). The model based on Richtmyer’s circulation
overestimates the growth rate for low Atwood ratios, but performs very well for higher Atwood ratios
and a wide range of Mach numbers as shown in the example of air— SFg. Some further effort on
modeling could be justified, in particular because the factor ((1—A™)Ug, —(1+AT)Us,)/(Us, —Us,)
does not tend to unity in the limit of weak incident shocks. We note that the simulations were used
to evaluate h(0"). The post-shock amplitudes proved to be almost independent on k over the chosen

range of k and Table 2.1 presents results obtained with a fixed k.
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My S At aokT kh(O*)AJr% SYang | SRich.Cire. | SSamt.Cire.
air — COq 1.2 || 0.339 | 0.222 | 0.735 0.0048 1.07 1.90 0.86
Yr =140 ~p =1.29 1.5 0.593 | 0.237 | 1.095 0.0092 1.14 1.85 0.72
A=0.21 2.0 0.778 | 0.253 | 1.368 0.0128 1.12 1.79 0.60
Ar — Xe 1.2 0.355 | 0.533 | 1.053 0.0087 1.06 1.61 1.24
Yr = 1.67 ~L =1.65 1.5 0.610 | 0.527 | 1.393 0.0175 1.11 1.55 1.13
A=0.53 2.0 || 0.789 | 0.507 | 1.455 0.0251 1.16 1.53 1.03
1.2 0.339 | 0.700 | 1.914 0.0114 1.02 1.24 1.41
air — SFg 1.5 || 0.593 | 0.732 | 3.153 0.0231 0.96 1.07 1.26
yr =1.40 ~p = 1.09 2.0 || 0.778 | 0.766 | 4.492 0.0390 0.85 0.89 1.09
A=0.67 3.0 0.903 | 0.801 | 5.586 0.0669 0.71 0.72 0.92
5.0 0.966 | 0.825 | 5.203 0.1144 0.61 0.61 0.83
8.0 || 0.987 | 0.835 | 3.908 0.2103 0.56 0.57 0.78
He — air 1.2 0.355 | 0.770 | 2.024 0.0100 1.01 1.11 1.81
vr =1.67 ~L =1.40 1.5 || 0.610 | 0.779 | 2.837 0.0222 1.00 1.00 1.67
A=0.76 2.0 || 0.789 | 0.780 | 3.122 0.0401 0.56 0.57 0.78

Table 2.1: Various shock-contact interactions for different species and varying incident Mach num-
ber, with khg = 0.1. For each gas combination and incident Mach number M;, the shock strength
S, post-shock Atwood ratio A1, dimensionless characteristic startup time agk7, and dimensionless
Richtmyer’s asymptotic growth rate kh(07)ATAW/ag (see Equation (2.20)) are evaluated by solv-
ing the one-dimensional shock-interface interaction problem. Fygqng is given by Yang’s linearized
simulations [120] and represents the exact asymptotic growth rate for the RMI in the linear regime.
The models for Frich.cire. (given by Equation (2.23a)) and §samt.cire. (given by Equation (2.24a))
must be compared to the reference value Fyang-

2.4.2.1 Amplitude and Growth Rate

Figure 2.3 shows the early-time evolution of amplitude and growth rate of the perturbation for a set
of parameters indicated in the caption. The model captures well the time-scale of the growth. In
order to capture the higher-frequency features in details, which are purely compressible effects due
to reverberation of waves between the interface and shocks, a higher-order solution in ¢; would be

needed as well as higher-order boundary conditions at shocks.

2.4.2.2 Influence of khg

We now discuss and summarize the influence of the dimensionless parameter khy without showing

relevant figures of the growth amplitude and rate vs. time. Consider for example the shock inter-
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action air — SFg, as an incident shock of Mach number M; = 1.2 travels from air to SFg. The
initial dimensionless amplitude of the perturbation khy was varied from 0.03 to 0.3 (varying both
k and hg independently). Additional levels of refinement were used in the simulations such that
sufficient resolution was provided to capture smaller wavelengths as well as smaller amplitudes of
the perturbation. As long as kh(t) remained small compared to 2w, the growth was observed to be
predominantly linear and good comparisons were obtained between theory and simulation. As khg
increased (typically khg ~ 0.2 in the present case), the linear growth was found to become faster

and to compete earlier with non-linear growth.

2.4.2.3 Influence of M;

We consider further the case of the air — SFg¢ interaction. The perturbation shape is fixed in
amplitude hy and wavenumber k, with khy = 0.1. The effect of incident shock strength is now
studied (see Table 2.1). Figure 2.4 shows good agreement between the simulated amplitude and that
obtained from the model using Yang’s correction for different shock strengths. We recall that the
combination air — SFg is the most critical test for very strong incident shocks where the discrepancy
between the model of Richtmyer significantly overestimates the actual asymptotic growth rate. For
very high incident shock strengths, non-linear slowdown appears earlier and the asymptotic linear
growth at late times tends to overestimate the terminal growth obtained in the simulations. It is
surprising that the model works rather well even in the strong incident shock case where the interface
is accelerated enough that it remains close to the transmitted shock, yet the incompressible model

does not include the direct coupling between interface and shock perturbations.

2.4.2.4 Influence of the Species

An incident shock of moderate Mach number M; = 1.5 impacts a density interface of characteristics
ho and k fixed such that khg = 0.1. The main characteristics of these interactions are reported in
Table 2.1. Perturbation amplitude vs. time is represented on Figure 2.5. As shown in Figure 2.6, the
growth rate of the instability computed from the simulations exhibits a different structure depending
on the combination of species chosen, but the model summarizes well the simulated growth rate, in
particular for low density ratios. Here, the captured growth rate He — air appears noisier than the

other gas-pair combinations.

2.5 On the Time-Scale 7

In this section we investigate the dependence of 7, given by (2.19), on the flow parameters sufficient
to describe the RMI. The timescale 7 represents the characteristic time for the growth rate to attain

the constant asymptotic growth rate predicted by the present linearized model. This asymptotic
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growth generally persists for a further time period, which may be long compared with 7, and is
then followed by the onset of the non-linear regime, when the amplitude of the perturbation has
increased and the growth-rate begins to slow. Non-linear effects are expected for high k, A, or M;

(thus AW), as appearing, for example, in Figure 2.4c.

In the present theory, the dimensionless time agk7T depends on the post-shock Atwood number
AT and the reflected shock speeds Us, and Ug,. These quantities in turn are functions of the pre-
shock Atwood number A (—1 < A < 1), the incident shock Mach number M; or equivalently its
shock strength S (0 < S < 1), and the specific heat ratios yr (for the fluid on the right of the
interface) and ~y;, (on the left). They can be computed by solving the one-dimensional Riemann
problem at ¢ = 0 for the range of parameters that admit a reflected-shock solution. Presently we
consider agkT as a function of (A, S) for given 7y, yr. If it is assumed that for ¢ < 0 the interface
is both temperature and pressure matched, then A is determined uniquely by the ratio of molecular

weights of the species separated by the interface: see Table 2.1.

2.5.1 Domain of Validity in the Case of a Reflected Shock

Because we presently restrict attention to the reflected-shock case, it is useful to consider the domain
of validity for this case in terms of the parameters that determine agk7. A (p-w)-diagram analysis
enables determination of the reflected wave type produced when a plane shock impacts a plane
interface, depending on the parameters A, S, ygr, and 5. Generally, a reflected shock is produced

if the acoustic impedance on the right of the interface prap is less than the left one ppay, that is

A> RZIL (2.30)
YR + YL

If yg = 7z, this is simply A > 0; a reflected shock is produced for a light-to-heavy shock-contact
interaction. Anomalous reflection can actually occur in the case vg # g, for particular incident shock
strengths. Omitting the detailed analysis of the shock-contact interaction problem, we summarize
the conditions for reflected shock in Table 2.2. The critical incident shock strength S* beyond which

the reflected wave type changes depends on A as

x YR =L~ (r+7L)A
S*(A) =2 . 2.31
) YR =L — (YR +7L —2)A (231)

For real gases, vr and ~p, are sufficiently close that the change in the structure of the reflected wave

occurs at relatively small Atwood ratios.
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YR =L : VA €]0,1],
YR <L VA ]85 1],

o vA el el 5 e, s ()]

YR > VL : VA 6]7:;%_7_:;%, 1[,’Y .
R—IL R—YL *
or VA E]m, YRFAL [, S G]S (A)71[

Table 2.2: Conditions, in the (A, S) space, for the reflected wave to be a shock wave.

2.5.2 Parametric Study of 7

For the case of a reflected shock, the dimensionless startup time agk7 was computed numerically as
a function of (A, S) for several sets of v, vr. Results are shown in Figure 2.7 where it can be seen
that 7 reaches its highest values for A close to unity, and for high incident shock strengths S. These
conditions correspond to the situation where the accelerated interface follows closely the transmitted
shock. Pressure waves actively move back and forth between the interface and the shock, and 7, that
was determined from an incompressible analysis, can be understood as the result of an averaging
of these reverberating waves adding or removing baroclinic vorticity at their passage through the
interface, and therefore affecting the growth of the perturbation. This idea is validated by the various

successful comparisons against numerical simulations as shown in the precedent section.

We investigate the weak incident shock limit S — 07. On performing analysis of the one-
dimensional shock-contact interaction in this limit (omitted presently), it is found that both reflected
and transmitted shocks are weak. The post-shock Atwood ratio AT tends to the pre-shock Atwood
ratio A, and the shock speeds in the frame of the moving interface tend to the pre-shock sound

speeds on each respective side of the interface. This leads to

(1= AP 4 JI2(1+ A2

oS S —ot. 2.32
N + O(8) as (2.32)

apkT =

The dominant term of 7 is independent of S. In particular, in this limit, as A — 0% and if vz = 77,

agkT — 1. As A — 17, 7 becomes infinite.

The strong shock limit S — 17 is now analyzed. As the incident shock becomes stronger, the
transmitted shock strength increases accordingly while the Mach number of the reflected shock

converges to a finite number My, . The post-shock Atwood ratio tends to a finite value A} . Finally
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T is given by

1 [yr+1 1— AF 1+ Af
agkt = 5 1 M2 1 + ~1/2 M2 —1
M My, - 22558 (= 1) (@vetir - )T - i )

Re = Sp+1" Mg, Yr+1 Mg,

xVI—S+0(1-8)") as S—17, (2.33)

with n > 1/2 a priori and where A is a function of Mg, of the form

-1
1-A +1 —1 —1
+ 1 - (m) (”271) (ziﬂ) M122 (1 + ’WYI;H(MI?% - 1))

* T -1
1—-A +1 —1 , — 1
1 () (225 (251) Mz (14 2503, - 1)

(2.34)

and Mp, is itself a function of (yg, 1, A) obtained from solving the following polynomial equation:

(s ) - (2) (20) (0 ) o

Yr+1 Mg

*

Finally, we consider the limiting case A — 17, or pr, > pg (e.g., gas-to-liquid RMI). The shock
interaction compressing the heavy fluid, the post-shock Atwood ratio also tends to 1~. Moreover, the
shock speed naturally becomes smaller and smaller on the heavy side, such that in Equation (2.19),
the second term is dominant, and 7 ~ 1/(k(—=Us,)). Since —Ug, is the following function of the

transmitted shock Mach number Mz

TR 2 M%—l)
—Us, = apy | 2y ]2 ( My — = : 2.36
ST YR 1+A< yo My (2:36)

where M converges to a finite value Mr,, as A — 1~ (Mry,, is obtained by solving numerically the

one-dimensional Riemann problem for a given shock strength .S), we then have

V2 1 1
L

—_— A—1" 2.
2 =4 + O((l—A)m) as A— 17, (2.37)
Tox = 5L+1 My,

aok’T =

with m < 1/2.
The analysis of 7 for small A is more difficult to investigate since the nature of the reflected wave

can change in this region, as discussed earlier.

2.6 Summary

A simple analytical model for the initial growth rate of the planar RMI has been presented for the

case of a reflected shock, which corresponds in general to a light-to-heavy shock interaction. The
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model captures the main features of the interfacial perturbation growth before the regime with linear
growth in time is attained. The analysis provides a characteristic dimensionless time scale agk 7 for
the startup phase of the RMI, where k is the perturbation wavenumber and ag the pre-shock sound
speed on the ‘light’ side of the interface, and provides an explicit expression for 7 as a function of
k, the algebraic transmitted and reflected shock speeds Us, < 0 and Ug, > 0 and the post-shock

Atwood number At:

(2.38)

1 17A++1+A+
2k Us, (-Us,) )~

Results have been compared with computations obtained from two-dimensional, highly resolved nu-
merical simulations of the RMI. The RMI-startup model has been found to perform well over a wide
range of incident shock strength S and pre-shock Atwood ratio A. A degree-of-freedom appearing
in the analysis allows for additional modeling of the baroclinic vorticity deposition produced by the
shock-interface impact physics. Several scenarios for corrections to the asymptotic growth rate of
Richtmyer have been investigated, with emphasis on the case of very strong incident shocks. Ex-
tensions to the present analysis could lead to improved understanding of the linear RMI in more

complex applications, such as imploding waves propagating into a stratified medium (see Chapter 3).
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Chapter 3

Linear Perturbations in the
Three-Dimensional Cylindrical
Richtmyer-Meshkov Instability

3.1 Introduction

The research cited previously in Chapter 1 concerns mainly the non-linear and/or multi-mode regime
of the RMI initialized with large interface perturbation amplitudes, as well as the reshock process
and the subsequent turbulent mixing. Recent analytical work has also been reported on the effects
of convergence on the linear, or small-amplitude regime of RMI occurring in spherical [80] and
cylindrical [81] stratified shells. For simplicity, compressible effects often observed in the RMI of
gases (such as shock refraction, shock proximity effects, etc. [116]) were omitted. Moreover, in the

cylindrical case, Mikaelian only considered purely azimuthal perturbations.

Presently we study several features of the three-dimensional cylindrical RMI in the linear regime,
using both simple analysis and numerical, Euler-based simulations. The analysis of Section 3.2 first
extends, to three-dimensional azimuthal and axial perturbations, the results of Mikaelian (in the case
of one shell). An explicit expression for the asymptotic growth rate of the cylindrical linear RMI
is obtained. The effect of proximity of the transmitted and reflected shocks produced by the initial
shock refraction is also modeled following the methodology described in Chapter 2. Section 3.3
compares results from the linearized analysis to numerical simulations of the RMI under various
initial conditions. The effects of azimuthal and axial wavenumbers for different incident shock

strengths and a comparison with the plane RMI are exposed.



33
3.2 Incompressible Linear Theory for Three-Dimensional

Cylindrical Perturbations

3.2.1 General Evolution Equations

The interaction of a shock with a perturbed density interface is an atypical hydrodynamics stability
problem. The shock refraction process produces distorted transmitted and reflected waves in the
vicinity of the interface. The related perturbed pressure field induces perturbations in the tangential
component of the velocity field to the interface, producing circulation that can be directly related
to the initial baroclinic vorticity deposited at the interface. In what follows, t = 0 refers to the time
right when the shock impacts the interface, in the zeroth-order, or unperturbed flow. We denote by
the subscript 7 = 1 the region on the outer side of the interface where the incident shock originates,

and by j = 2, the region on the inner side of the interface. This includes the axis.

The stability of density interfaces in converging geometries was studied by Plesset [86] in the
particular case of spherical bubbles. For imploding flows, a sink-like motion with center r = 0 was
used to produce flow/interface contraction while maintaining constant density. Following Plesset
and Mikaelian [81], we model our base flow as an incompressible impulse sink of strength to be

determined of the form m(t) = u(t)H (t) with velocity potential

O(r,t) = m(t) In (th) , (3.1)

R(t) being the base radial position of the interface and H(t) the Heaviside function at time ¢. For
an imploding, accelerated flow, u(t) < 0 for ¢ > 0. Impulsively accelerated flow requires m(0) < 0.

At this point, u(t) and R(t) remain to be specified. The base velocity field is given by

Ulr,t) = mﬁt) e. (3.2)

We consider three-dimensional azimuthal and axial infinitesimal perturbations about the time-

dependent state R(t) of the form

qﬁ; (7’7 97 2, t) = fJ (T)gj (t)ei(n9+k2) (333’)

C(0,2,t) = R(t)+ h(t)e!™0HF2), (3.3b)

The perturbed potential ¢(r,0,z2,t) for the gas j (j = 1,2) is assumed to be separable in r and
t, €(0,z,t) is the perturbed position of the interface after it has been impulsively accelerated by
the passage of the shock and n and k are integers representing respectively the azimuthal and axial

wavenumbers and are assumed to not be functions of time.
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When the interface is strictly cylindrical, a kinematic condition that the radial velocity is con-

tinuous at the interface, and equal to an interfacial particle velocity gives that

f= (gcf) r—R 4

which leads to
1= RR. (3.5)

Full knowledge of the base flow therefore requires specification of the implosion/explosion history
R(t), at least for times such that the perturbation growth remains linear. We insist on the simple
constraint that R is at least piecewise continuous at ¢ = 0, and we define Ry = lim;—,o R(¢). The
interface speed R and the potential strength y may be discontinuous at ¢ = 0. The jump in R around
t = 0 simply represents the impulsive change in the interface velocity AW. This presently models
the impulsive acceleration produced by the shock interaction. Defining AW > 0 for an implosion
(respectively explosion) the jump in radial velocity is —AW (respectively AW) since the motion
is inwards (respectively outwards). AW can be computed by solving the locally plane interaction
of the incident shock with the unperturbed interface. Requiring that the base pressure field be

continuous at the interface, and using Bernoulli’s theorem shows that

2 2
35 - cl(w} |5 +5 (%) - @(t)] . (3.6)

r=R

P1

Consider now the distorted interface. The kinematic condition D{/Dt = (u.n),—¢, where u
is the velocity field and mn is the local normal to the interface, can be linearized and simplified as
follows using the base kinematic condition (3.4)

RH

h+ = h= gifi(R), forj=1,2. (3.7)

Similarly, a dynamic condition is obtained by linearizing the continuity of pressure at the perturbed
interface and, using Equation (3.6) to give

REHI + [(B2 + REVH + RESp]h = g K; _ 1) AR — Cl + 1) fQ(R)gg} L 38)

where dp(t) is the Dirac delta function and A = (p2 — p1)/(p2 + p1) represents the Atwood number
based on the densities on each side of the interface. To be precise, A should also depend on ¢ in
the radially imploding base flow, but in what follows, for simplicity, A will be assumed constant.

Its value could be identified with the post-shock Atwood number A1 given by the densities of
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the two post-shocked regions found in the plane shock interaction analysis leading to AW. The
unknown functions of time (h,g1,¢92) can be found by solving numerically the set of three first-
order ODE (3.7,3.8) given the history of the unperturbed interface position R(t) and specific initial

conditions.

3.2.2 Richtmyer’s Approach

Richtmyer first modeled interfacial instability produced by a plane shock impact on a perturbed
density interface using incompressible fluids. This essentially assumes that the transmitted and
reflected waves have already traveled sufficiently far from the interface. He also replaced the constant
gravitational acceleration of Taylor’s [107] linear theory by an impulse that modeled the initial shock
interaction as a brief event; this ignores the compressible effects of the initial shock refraction phase.
Without loss of generality, we consider the case of an imploding shock interaction. Ignoring for now
the transmitted and reflected waves, and assuming also that no re-shock has yet occurred following
shock reflection off the axis, the relevant post-shock regions on each side of the interface to be

considered are { < r < oo for region j =1, and 0 < r < ¢ for region j = 2.

The functions f;(r), 7 = 1,2, are fully determined by solving the Laplace equation for the
perturbed potential A¢’ = 0 on each side of the interface. The f;(r) are then generally a linear
combination of the modified Bessel functions of the first and second kinds, I, (kr) and K, (kr). For
the fluid j = 1 (region r > ), the boundary condition V¢} — 0 as r — +oo is prescribed. For the

fluid j = 2 (region 0 < r < (), ¢ should remain non-singular as » — 0. We then obtain
filr) = , (3.9a)

fa(r) = (7) :k:O (3.9b)

We require h continuous at ¢ = 0 and h(0) = lim;—, h(¢) but for an impulsively accelerated flow
modeling the shock refraction process, the g; as well as h are a priori discontinuous at t = 0. Next,

a set of dimensionless variables is prescribed as

PR SN L S RS
Th0) " T Ry T Re/AW YT R0y AW

(3.10)

together with an axial wavenumber k = kRy. Integrating the linearized dynamic condition (3.8)

between ¢ = 0~ and 0% and using Equation (3.7), the growth rate of the three-dimensional pertur-
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bation, as well as the perturbed potential functions g;, at t = 0" are

0T) = 1+kAF(n,k, A), (3.11a)
q1(0%) = AW, (3.11b)
30" = W (3.11¢)

where F(n, x, A) is given by

-1
F(n,k, A) = 2/ ((1 + A) ‘ZEZ; (1 A) ZE:D . (3.12)

The result obtained for the growth rate assumes that transmitted and reflected waves are at large
distances from the interface at ¢ = 0. In that sense, the time ¢t = 0 after the passage of the incident
shock could refer to an asymptotic state, and Equation (3.11a) would represent the asymptotic
growth rate of the instability in the sense of Richtmyer. Note that, as the linear growth rate in the
plane RMI, the dimensional initial growth rate is proportional to the amplitude h(0) at ¢t = 0 (see
next section), as well as AW, in other terms —R(0T). The interface initial acceleration R(07) does
not appear in the initial growth rate. The initial growth rates for the plane and curved RMI are

similar in that sense.

In order to compare the growth rate obtained in cylindrical geometry with its plane counterpart
for a given A, we plot in Figure 3.1 the difference between the dimensionless growth rate given
by (3.11a) with Richtmyer’s asymptotic growth rate for a two-dimensional plane perturbation with

equivalent wavenumbers k and n/Ry. The plane growth rate is vn? 4+ k2 A.

3.2.2.1 Limit Cases

Several limiting cases in A are of interest. In particular

h(0+) ~ 1if A— 0 7i'e', P1 ~ P2, (313&)
7o+ Ih(k) . :

h(0T) ~ 1+ Ky ") if A—1 ,ie, p1 < pa, (3.13b)
> K’

R(0T) ~ 1+ szZEg if A——1 ,ie., p1 > pa. (3.13c)

The growth when A — 0 is purely kinematic produced by the converging geometry, also observed in
spherical geometries. To verify this consider a fluid element at radius R(t)+ h(t) whose base velocity
is w(t)/(R(t) + h(t)), and a fluid element at radius R(¢) with velocity u(t)/R(t). Growth naturally

appears due to this difference in velocities and produces a dimensionless growth rate equal to unity.
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Figure 3.1: Iso-contours of the difference between the (dimensionless) cylindrical growth rate and
the plane one (1 4+ kAF(n,k, A)) — vVn? + k%A, in the wavenumber space (n, k), with K = kRy.

More interesting are the limit cases obtained when varying x and n

R(0T) ~ 14nA if k<n and n>1, (3.14a)
T 2A

+ ~ ; 1
h(0T) 1+n1+A if k<1 and n<K1, (3.14b)
R(0T) ~ 1+4+kA if K> n and K> 1. (3.14¢)

Equation (3.14a) corresponds to purely azimuthal perturbations [81], the limit k < n being equiv-
alent to g < A, (strictly polar flow). The third limit behavior presented in Equation (3.14c)
corresponds to purely axial perturbations. The effect of the curvature is not seen, except through
the kinematic growth term, and the linear behavior is similar to the plane linear growth with
z-perturbations. In dimensional quantities, the linear growth, excluding the kinematic growth com-
ponent, is kh(0)AAW, with AW = —R(0T), similar to Richtmyer’s plane linear growth where AW

was the constant speed at which the interface is accelerated in the direction of the shock propagation.

3.2.2.2 Critical Perturbations

We discuss here critical perturbations that are stable for any implosion or explosion history. For any
R(t) or pu(t), then if A(t < 0) = 0, then A(t) = 0, > 0. These perturbations do not grow and the

perturbation amplitude remains fixed at hg. Re-writing both conditions (3.7, 3.8) at the interface
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for these critical perturbations, and integrating the second condition between t = 0~ and ¢ > 0 gives

Bihy = gifj(R), forj=1,2, (3.15a)
2ho [y [(Rff + fé) H+ 350} dt = (-1 [ fi(R)gdt — (% +1) fi fo(R)godt(3.15b)
Integrating by parts both integrals on the right-hand side of Equation (3.15b) and using Equa-

tion (3.15a) to evaluate the two resulting integrals produced, all integral terms cancel and, using

Equations (3.9a,b) and (3.12), we obtain for any ¢

We eliminate the trivial case R = 0 corresponding to a stationary interface. For a given history
R(t), and given n and k, critical perturbations occur only for specific values of A. € [—1,1] given

by
14+ kRAF(n,kR,A) = 0. (3.17)

Equation (3.17) is equivalent to determining the particular Atwood ratio A. € [—1,1] such that

K, (kR) In(kR)) /<Kn(kR) I,(kR)

Ac(n,kR) = < - K (kR) * I (kR)

K!(kR) I, (kR) +2kR) : (3.18)

Iso-contours of A, are plotted in Figure 3.2. It is observed that critical perturbations only appear
for negative A which corresponds in general to a heavy-to-light shock interaction. The absolute
value | A.| reaches its maximal value unity for a particular combination of small wavenumbers, while
|Ac] — 0 as the wavenumbers n or kR increase. Note also that Equation (3.17) is consistent
with the expression (3.11a) in the limit ¢ — 0,¢ > 0, since kR — kRy = k. We also recall that
this phenomenon does not occur in plane geometry where the condition for critical perturbations
derived from Richtmyer’s impulsive growth rate is trivially kA = 0. In the limit of purely azimuthal
perturbations kR < n with n > 1, the condition 1+ nA = 0 derived by Mikaelian in the case of one

interface separating two cylindrical concentric shells (N = 2 in [81]) is recovered.

3.2.2.3 Assumption of Constant Interface Velocity

We now obtain an explicit expression for the growth amplitude as a function of time. For simplicity
we consider the limit of purely azimuthal perturbations. Eliminating g; from (3.8) using (3.7), a
single second-order ODE for the perturbation amplitude h is obtained. This can be simplified in the
azimuthal limit given (3.9a,b) for £ = 0. The result has a form similar to that obtained by Bell [2]



39

10
-0.08
8
-0.10

6
x
-~

-0.14
4
-0.20
4 6 8 10

Figure 3.2: Contour levels of the Atwood ratio A. corresponding to critical perturbations, in the
wavenumber space (n, kR), for a given history R(t).

for A = £1 and for general Atwood ratios by Mikaelian (Equation (16) of [81])

(th) + (nA + 1)[RRHA + RR(6ph + (H — 1)i)] = 0. (3.19)

~la] e

Our form is a result of defining the problem through the strength m(t). Integrating the previous
equation between ¢t = 0~ and t, ¢ being sufficiently small enough that can assume that the imploding
or exploding interface velocity remained almost unchanged), we integrate Equation (3.19) in ¢ and
recover Equation (3b) of [81] obtained assuming that the interface moves at a constant velocity AW
related to the constant impulsive acceleration AWdp(t). The dimensionless perturbation amplitude

is:

~ ~ 1
hE) =1—(nA+1) (1 - %> : (3.20)
where R = R/Ry is the dimensionless position of the interface. Since the interface is assumed to
move at a constant speed, R(f) = 1 — 7, and Equation (3.20) suggests that in the case < 1 (i.e.,
for large radii Ry > AWt in the linear regime time considered), the dimensional perturbation
amplitude reduces to h(0)(1 + (nA + 1)AWt/Ry), which corresponds to the plane perturbation
amplitude derived by Richtmyer h(0)(1 + KAAW?) if we replace K by n/Ry (initial wavelength

2w Ro/n) and ignore the geometrical component of the growth.
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3.2.2.4 Effect of the Interface Acceleration

Unlike the planar case, the present unperturbed, or base flow, has no analytical solution. Further,
we have so far ignored the acceleration of the interface for ¢ > 0 produced by the nonuniform flow
behind the converging shock. A detailed analysis presented in Appendix A utilizes the solution
of Chisnell [15] for the flow behind the shock to approximate the post-shocked interface position
right after the shock interaction (¢ > 0). We refer to Subsection 3.3.3 for a precise description of
Chisnell’s solution. This takes into account the post-shock acceleration of the interface R(O*) In

dimensionless variables, this result can be expressed as

R (‘Z - 1) [(2@272 —72—1) % — (2 — 1)}

R#)=1-1— & t2+0 (8%, (3.21)
209 (2 + 99 — 3) =2
02 ‘/02
where v is the adiabatic exponent in the fluid j = 2. For a given space index s (equal to 2

in cylindrical geometry), Guderley’s exponent «y and the coefficient as/Vp, (see Equation (3.10)
of [15]) depend only on 2. For the case of SFg, 72 = 1.09, R ~1—17—0.011£2. This model
predicts that, when the interface has traveled half-way to the origin, the trajectory correction due
to the acceleration is of about 0.6%. By comparison, simulations in the same fluids using the same
initialization showed a departure of about 2% for a wide range of incident Mach number. At this time
of the instability growth, the interface has shown substantial radial convergence and the amplitude
grown sufficiently that we can conclude that the interface acceleration effect is small compared with
more important effects such as pure geometrical convergence, non-linearities, or shock proximity, as

discussed in the following paragraph.

3.2.3 Effect of Shock Proximity

Until now the analysis has focused on the growth rate attained by small three-dimensional cylindrical
perturbations assuming that reflected and transmitted waves produced by the shock refraction were
instantaneously at infinity immediately following shock-interface impact. This asymptotic growth
rate, written h(0+) and defined in dimensionless variables by Equation (3.11a), is hereinafter denoted
hoo. To evaluate hoo , A is now taken as the post-shock Atwood ratio AT and h(0) the post-shock
amplitude h(0T).

One effect to consider here is well described in Chapter 2 in the case when the reflected wave
is a shock, in general characterizing light-to-heavy-type shock interactions. As both transmitted
and reflected shocks recede, they limit the early small perturbation growth rate, which ultimately
reaches the asymptotic level ho in a characteristic time 7 (see Equations (2.16, 2.19)). A typical

case for which the model proves useful is large A; in this situation 7 becomes very large and shock
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proximity effects cannot be neglected (see for example Equation (2.37). Applying this model with
the present conventions for the regions j =1 and 2:
2 hoo

ht) = (1 — At)coth(KS:1(t)) + (1 + At) coth(K(—S2(¢)))’ (3:22)

where S;(t) (respectively Sa(t)) is the shock position of the reflected (respectively transmitted)
shock evaluated in the frame of the moving interface and K is the wavenumber of the perturbation.
Derived in plane geometry, the model allows for the choice of the shock positions. For simplicity,
we assume, as in the plane case, that the shocks are moving at a constant speed Ug, determined
by solving the locally normal one-dimensional Riemann problem of an incident cylindrical shock
impacting a cylindrical density interface. This assumption is justified in the plane case but ignores
the non-uniform nature of the flow behind the traveling shock waves in the converging case. Because
the modeling of the time-dependency of the shock speeds is not a trivial problem, we leave it
for future work. For axial perturbations, K = k. For azimuthal perturbations, the wavelength
Ao(t) = 2mR(t)/n is time-dependent, and the corresponding wavenumber should be taken equal
to n/R(t). For simplicity, K will presently be identified with the initial azimuthal wavenumber
K =n/Ry.

3.3 Numerical Simulations of the Converging Cylindrical Lin-

ear RMI1

3.3.1 Numerical Method

The simulations, run on the Lawrence Livermore National Laboratory (LLNL) machine unclassified
Purple (uP), were conducted within the AMROC framework of Deiterding [21], based on the SAMR
algorithm by Berger and Oliger [4]. The numerical method, applied to each Cartesian subgrid of
the mesh hierarchy, consists of a hybrid method written for the multi-component Euler equations of
gas dynamics assuming calorically perfect gas. A WENO scheme is used to capture discontinuities
(such as shock waves, contact wave, or fine/coarse mesh interfaces) but switches to a low-numerical
dissipation, explicit, center-difference scheme, TCD, in the smooth regions [44, 83].

Assume first purely azimuthal perturbations (no dependence on the axis coordinate z). The
density interface, is nominally defined by a scalar field ¢ (r,0,t), interpolated from Cartesian data
onto cylindrical coordinates, that asymptotic to ¢ (r,0,t) = 0 on the air side and ¥(r,0,t) = 1 on
SFg. This is initially setup using a tanh profile with intrinsic thickness J§ taken as about one fifth
of the pre-shock perturbation amplitude hg. When the shock impacts the smeared interface, it is

compressed down to a thickness 6 until the end of the shock refraction where both reflected and
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transmitted shock travel away from the interface. It is important to ensure that during the whole
simulation, in particular during the shock interaction, §¢ is fully resolved. The resolution, controlled
by the number of refinement levels, is chosen such that at least 10 points are used to resolve the

interface thickness.

At t > 0, we define the centerline of the smeared density interface by

_ fooo r(1 — )pdr

re(0,t) = =0 g (3.23)

At given t, for a fixed polar orientation 6, the scalar profile is well approximated by a tanh centered

at r.(0,t) and with thickness §¢ (¢):

W(0,t) = % {1 + tanh (W)] . (3.24)

It is easily verified that r.(6,t) is recovered when (3.24) is used in (3.23). The spike and the bubble
positions and the flow velocity at these locations allow determination of the perturbation amplitude

and growth rate as

h(t) o |Tcspik‘e ;chubble |’ (3.253)
. Uplr,
W) = |t

— ),
T epubble |

2

(3.25b)

In order to compute the growth amplitude and rate of the spikes and bubbles, a simulation of
the unperturbed system is run independently so that the position of the base interface centerline

Teunpere (t) can be calculated. We then define

Teopine — T r -7
hs(t) = \Wh hp(t) = |—ubble . Cunpert |

Uy |
T Tcunpert |

(3.26a)

. Uplp,
b (t) = | e

Uy | -
| T1Tehubble

Ur ‘Tcu,nperf, 3.96b

; hp(t) =

2

The same process can be followed for purely axial perturbations (no dependence in ) where, for a

given z and ¢, the position of the interface centerline r.(z,t) is computed.

We choose 1/(apK) as the reference time scale for data representation, where ag is the speed
of sound in the region 57 = 1 ahead of the incident shock and K is the perturbation wavenumber
(K = k for purely axial modes and K = n/R for purely azimuthal modes). The reference scale
for the interface, spike, and bubble amplitudes is the pre-shock amplitude hg, and the asymptotic
growth rate heo is the reference scale for the different growth rates represented. Note that the model
for ii/hso given by Equation (3.22) and plotted as a function of the dimensionless time agkt depends

only on the incident Mach number through the values of AT and the shock velocities.
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3.3.2 Parameters

Air — SFg is the combination of gases chosen. The ratios of specific heats are 71 = v, = 1.40 and
Yo = vsr, = 1.09. The pre-shock Atwood ratio is chosen such that the temperature is continuous
across the initial interface, which is consistent with experimental conditions. Consequently A is
a function only of the molecular weights of both species. For the gas combination chosen, the
Atwood ratio A = 0.67 is large enough that the effects of shock proximity are important. The
pre-shock perturbation amplitude hg is taken sufficiently small in order to remain in the linear
regime as long as possible. We choose hg/Ry = 0.005. Post-shock amplitude and Atwood ratio
ha' and AT are evaluated from the simulation right after the shock interaction and depend on the
incident shock strength. The varying parameters involved are the incident shock Mach number
M; immediately before impact onto the interface, and the perturbation wavenumbers n and k. To
a given combination of parameters corresponds a numerical simulation from which amplitude and
growth rate of the interface, spikes and bubbles are obtained. For what follows, we will refer to the
plane case as the one commonly described in the literature, presented in Chapter 2 (for air— SFg)

and eventually in Subsection 3.3.6.

3.3.3 Converging Shock

We consider here ideal gases of different densities through which propagates an imploding shock wave.
In order to describe correctly the converging character of the flow behind a shock front traveling
down to the origin from infinity, the computation is initialized with solution of Chisnell [15]. Chisnell
obtained an explicit approximate analytical solution for the full gas-dynamics flow behind a radially
symmetric, imploding shock. Self-similar solutions are sought in terms of the variable £ = r/Rg(t)

where the distance Rg(t) of the shock from the origin at time ¢ is given by

Rs(t) = Rs, (tst; t) ° (3.27)

The Mach number Mg of the shock at ¢ = 0 when the shock is at » = Rg, is related to the implosion

time tg through

aR
tg = — 30

= 20 2
Meaq (3.28)

Apart from this particular subsection, the imploding shock is referred to as the incident shock and
its Mach number Mg at t = 0 is noted M, and the implosion tg will be noted ¢;. A study of the
singular points of the set of the three ODE in £ obtained for the density, radial velocity and pressure
leads the determination of the similarity exponent « for different values of the specific heat ratio

~ and for cylindrical (s = 2) and spherical (s = 3) geometries. The system of equations may be
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Figure 3.3: Imploding and exploding shock front average radial positions r/Rg vs. (ag/Rg)t. Super-
position of two-dimensional simulation results of cylindrical shock initialized by Chisnell’s solution
(crosses) and a power-law least-square fit for both imploding and exploding shocks (solid line).

decoupled to provide a single ODE (Equation (2.11) in [15]) to integrate approximately and two
supplementary equations to solve subsequently from the first one. Non-dimensional forms of the
density p, radial velocity u, and pressure p at time ¢ and radial position r behind the shock, when

this is located at Rg(t), are obtained as a function of the similarity variable &:

2 - () (3.200)

;GG

where, for each £, V(£) is found by solving

() ()

and in which (pg, ug, ps) correspond to the flow just behind the shock (therefore depending on t), and

are determined using Rankine-Hugoniot jump conditions normal to the shock. In Equation (3.29)
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and (3.30), (Vs,q,n7,D,F,H) only depend on s and -, directly or through o and «/Vj, which are
determined by iteration in Section 3 of [15]. Approximate values for this couple are provided in

Table 1 of [15] for various 7. Explicit expressions for the constants (Vg,q,n,D,F, H) are

VS — - 17 (331&)
« 1

_ 31b

a Vol—s(a/Vyp—1)2’ (3.31b)

no = <2(f7_aa)1)1, (3.31c)

D = s 1 ( e = 1) 71, (3.31d)

1—s(a/Vo—12 \2(1—a
o 1-— (Oé/Vo - 1)2
F o= a- oy (3.31e)
H o= 4 51 2(1 - a). (3.31f)

1—s(a/Vy—1)2

The advantage of utilizing Chisnell’s converging shock solution to initialize our RMI simulations is
that, besides being easy to implement, it completely avoids spurious waves, such as those that would
be produced using a standard initial Riemann problem-type initialization. It also leaves only the

shock thickness as intrinsic length scale, since the shock has no memory of when it was produced.

As a preliminary test that the structure of the flow behind the converging shock, the shape,
strength, and position of its front are correctly computed, we set up the simulation of a single self-
similar converging shock traveling in air (assuming a constant v ~ 1.40). At ¢t = 0, the shock has
a Mach number Mg = 3.0 and stands at Rg, = Ry = 1.0, which represents 300Az, where the grid
size Az is the only length scale in the problem. Since the numerical method is written for Cartesian
meshes, the circularity of the shock needs to be checked as it travels down to the center and reflects
off as an exploding shock. The eccentricity of both imploding and exploding remains less than 0.002
which proves negligible the effects of the grid on the axisymmetry of the numerical solution. The
self-similar structure of the flow behind the shock has also been observed down to very small radial
positions of the shock front. Figure 3.3 shows good agreement between Guderley’s solution and
numerical simulations initialized using Chisnell’s solution for the evolution of the shock front radial
position. Results of a 3-parameter least-square fit of the form Rg,(1—¢/tg)® for the imploding shock
and RE(t/ts — I)QE for the exploding shock are displayed on Table 3.1. The exact dimensionless
implosion time is given by (ag/Ro)ts = a/Mg on Equation (3.28). The theoretical value ac = 0.83532
for 47 = 1.40 can be found from various studies. First, Guderley’s similarity solution assuming strong
shock, the shock radius is given by the time relative to the time at which it reaches the center raised
to some power smaller than unity [40]. Chester [13], Chisnell [14], and Whitham [114, 115] used

geometrical shock dynamics to find approximate solutions, in which their approximate result for
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the spherical case differs from the exact Guderley exponent by less than one percent. Hafner also
found very precise values of the exponent using power series to solve the equations describing the
imploding flow in Lagrangian coordinates [41]. Chisnell’s recent description [15] provides us with
approximate values of the exponent for cylindrical and spherical geometries and various -y, including
the limits ¥ — 17 and v — oco. Good agreement is found between best fit and simulation data,
and it is interesting to notice that the exploding shock has the same Guderley’s exponent as the

imploding shock, which has been observed in [40, 87].

Imploding shock || Rs,/Ro | (ao/Ro)ts !

exact 1.00 0.27844 | 0.83532
best fit 0.995 0.278 0.8354

Exploding shock || RE/Ro | (ao/Ro)ts ¥

exact 0.27844 0.83532
best fit 0.533 0.278 0.8355

Table 3.1: 3-parameter least-square fit for imploding and exploding shocks.

3.3.4 Axial Perturbations

This configuration is axisymmetric, as shown in Figure 3.4, since no azimuthal perturbation is
applied. Highly refined two-dimensional simulations are performed in a plane (r, z) with azimuthal
orientation 6. Geometric source terms are added to the right-hand side of the Euler equations to
take into account the axisymmetry of the flow. The influence of the axial wavenumber and the
incident Mach number are investigated. In this configuration, the main effect of the geometry on

the axial perturbations is due to the acceleration of the flow towards the center.

3.3.4.1 Influence of the Axial Wavenumber &

Figure 3.5 shows the amplitude and growth rate of the interface perturbation, spikes (heavy fluid
penetrating into light fluid), and bubbles (light fluid penetrating into heavy fluid), as a function

of time, when a M; = 1.2 incident shock impacts the air— SFg contact. Plots of the growth



Figure 3.4: Purely axial perturbations for a cylindrical interface.

rates suggest that the higher frequency oscillations, a compressible-flow effect produced by the
reverberation of waves traveling between the interface and the shocks, scale like the wavenumber k
of the perturbation (we insist that M; is fixed). The interface growth rate reaches an asymptotic
value well predicted by the theoretical model described in Paragraph 3.2.2 and is well captured
by the model extension using the reflected and transmitted shocks as walls moving at constant
speeds in the frame of an interface moving also at a constant velocity, even though both shocks and
interface accelerate when converging toward the origin. At late times, in particular for the highest
wavenumber for which the asymptotic growth rate is the largest, the growth of the amplitude slows
down, suggesting the appearance of non-linear effects as the amplitude becomes larger. The plots
describing the spike and bubble behavior show that, first, a change of k£ mostly affects the bubble
growth, and second, the late time slow-down is principally due to the slow-down in the bubble

growth.

3.3.4.2 Influence of the Incident Shock Mach Number M;

As we increase the incident Mach number for a fixed wavenumber, we first observe from Figure 3.6
that the oscillation frequencies do not only scale like the perturbation wavenumber but also on some
unknown function of M;. The interface amplitude and growth rate plots Figure 3.6a,b show that,
for strong shock interaction, as the transmitted shock and interface converge faster toward the axis,
the growth accelerates and fails to reach an asymptotic value as observed in the plane case for a
wide range of My, or the axial case at low M. It should be noticed that, as M; increases, the early
linear regime is reduced as the perturbation amplitude does not remain small and, the interface
and the transmitted shock converges faster towards the axis. As a consequence, the results were

reported for a more limited time window. Since we observed earlier (see Paragraph 3.2.2.4) that the
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acceleration of the interface has small effect, and noting that, for strong shocks, the interface tends
to follow closely the transmitted shock, we suggest that the shock proximity is the main effect for
the acceleration of the growth. This is not captured by the moving-wall model because, first, the
transmitted shock speed is not constant (although when not too close to the origin its acceleration is
not that large, as for the interface). Second, accelerating shocks should be used in our moving-wall

model instead of walls moving at constant speed as it is the case in the plane geometry.
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Figure 3.5: Axial perturbations: Dimensionless amplitude (left) and growth rate (right) vs. agkt
of the interface perturbation (top), spike front (middle), and bubble front (bottom), plotted for
different axial wavenumbers k; case air — SFg, ho/Ry = 0.005, M; = 1.2.
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Figure 3.7: Purely azimuthal perturbations for a cylindrical interface.

3.3.5 Azimuthal Perturbations

We consider zero axial perturbation, as shown in Figure 3.7. Highly refined, two-dimensional sim-
ulations are performed in a polar plane (r,6) with axial co-ordinate z, and the influence of the
azimuthal wavenumber as well as M are considered. Two geometrical effects are present in this
case: the acceleration of the flow towards the origin, like in the axial case, and the convergence effect

as the azimuthal wavelength decreases during the implosion (the mode number n being invariant).

3.3.5.1 Influence of the Azimuthal Wavenumber n

As shown in Figures 3.8a,b obtained for M fixed, the model tends to predict well the characteristic
time scale for the growth to reach a plateau. However, the value of the asymptotic growth rate is not
well predicted for small n. For the highest value, the perturbation seems less sensitive to the effect
of the curvature of the base interface; infinite values would correspond to the plane case. Indeed,
similar to the plane case or the axial case, our best prediction of the asymptotic growth rate occurs
for the case of highest n. Some high frequency oscillations are present for early times but tend to
slowly disappear at later times, which was not the case in the axial or plane case. We conclude
that the geometrical effect produced by converging geometry and predominant for low n is the main
factor affecting the growth of the azimuthal instability, more so than the acceleration of both the
interface and the transmitted shock. From Figures 3.8c—f, the behavior of the bubble structures,

more than the spikes, shows the influence of curvature on the global growth of the interface.

3.3.5.2 Influence of the Incident Shock Mach Number M;

The wavenumber is fixed to a quite high value, n = 36, so that the effect of the curvature discussed

in the last paragraph is more de-correlated from the effects that the variation of M; would produce.



52

The early time behavior observed in Figure 3.9b exhibits a plateau after the first initial acceleration
of the growth. The duration of this plateau decreases as M7 increases. Ultimately, an acceleration
of the growth is observed, while in the axial case shown in Figure 3.6 the growth acceleration for
high M; immediately follows the initial acceleration (for a dimensionless wavelength kRy = 32
comparable to n = 36). This is due to the fact that, as the interface is intensely accelerated towards
the center by stronger incident shocks, the azimuthal wavenumber n/R(t) increases accordingly and

so does the growth.

3.3.6 Comparison Between Plane and Cylindrical Geometries

Both axial and azimuthal perturbations are compared to the plane growth, choosing the same
wavelength K = 3 and amplitude Khg = 0.12 just before the shock interaction occurs. We choose
M7 = 1.2. Our earlier discussion is well summarized in Figure 3.10. It shows that the particularities
in the growth increase as we go from plane to axial to azimuthal geometries, as the acceleration,

shock proximity, and curvature effects impose their influences.

3.4 Summary

We have studied the linear stability of an interface between two compressible fluids following the
passage of an imploding or exploding shock wave. Assuming incompressible flow between the trans-
mitted and reflected shocks following shock impact, we have derived an expression for the asymptotic
growth rate for a three-dimensional combination of single-mode azimuthal and axial perturbations
as a function of the Atwood ratio A, the axial wavenumber k, the azimuthal wavenumber n, the
initial radial position of the interface Ry, the perturbation amplitude h(0) during the shock passage
and AW the interface velocity right after the shock interaction:

h(0)

heo = ——=A
AW

) 1 (kRo)

1+2kR0A/ <(1+A)§7(kR°) - (1A)K”(kR°)>1] . (3.32)

Several different limit cases have been investigated, allowing recovery of Mikaelian’s azimuthal the-
ory [81] and Richtmyer’s plane model [94]. We have discussed the existence of perturbations with
zero growth, typical of curvilinear geometries and obtained for particular Atwood ratios given axial
and azimuthal wavenumbers. The effect of shock proximity on the interface growth rate has been
studied in the case of a reflected shock, which corresponds in general to a light-to-heavy shock in-
teraction. Analytical predictions of the effect of parameters such as the incident shock strength,
A, and both k and n have been compared with results obtained from highly resolved numerical
simulations of cylindrically perturbed interfaces separating two perfect gases and impacted by self-

similar converging shocks. It has been observed that the growth of the instability is mainly affected
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by the incident shock strength and the curvature of the geometry. A parallel is finally made with

simulations of the plane RMI. Future comparisons with the spherical geometry are planned.
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Figure 3.8: Azimuthal perturbations: Dimensionless amplitude (left) and growth rate (right) vs.
ap(n/Ro)t of the interface perturbation (top), spike front (middle), and bubble front (bottom),
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Chapter 4

Wave Diagrams for Shock- and
Reshock-Contact Interactions

4.1 Introduction

This work is a part of an on-going computational research on shock-generated mixing in Richtmyer-
Meshkov (RM) flows with reshock in various geometries: plane, converging cylindrical, and con-
verging spherical. An incident shock initially impacts a perturbed interface separating two fluids of
different densities. The transmitted shock produced reflects off a wall/axis/origin and reshocks the
distorted interface, initiating a strong turbulent mixing. In what follows, we use the generic term
of ‘inner boundary’ to refer to the end wall, the axis, and the origin for the plane, cylindrical and

spherical geometries respectively.

4.1.1 Previous Work

The experiments of Vetter and Sturtevant [109] and the simulations of Hill et al. [43] showed, for the
light-air-to-heavy-SFg plane RMI mixing initiated at relatively low incident shock Mach numbers
M, the importance of the reshock on the growth of the mixing zone in plane geometry. The stages in
the life of the post-reshock turbulent mixing zone (TMZ) can be seen clearly in the turbulent kinetic
energy of the flow. Figure 11 of [43] shows the total amount of energy deposited by the first reshock
event, at 3.5 ms. Following a steep decay in energy forming the first stage in the post-reshock
mixing zones life, a subsequent interaction with the expansion fan, shown in the wave diagram
(sketch Figure 2 of [43]), deposits a large amount of energy over the duration of approximately 1
ms, peaking near 6 ms. This last deposition of baroclinic vorticity deposition corresponds to the
second period of post-reshock growth. Examination of energy spectrum (Figure 12 of [43]) indicates
that the expansion wave re-accelerating the mixing zone plays a major role, comparable to that of
the reshock, in driving the growth of the mixing layer: an inertial subrange fully develops after the

passage of this expansion wave.



o8

Reshock in plane geometry occurred in the shock-tube experiments of Collins and Jacobs [17] and
Jacobs and Krivets [54] where a single-mode air(acetone)/SFg interface is impacted by a My = 1.21
shock. These experiments serve as a reference for the two-dimensional simulations of Latini et al. [63]
and Schilling et al. [100] using a ninth-order WENO method and investigating local and global mixing
properties. In their simulations, the boundary condition at the end of the computational domain is
changed from reflecting to outflow to allow the reflected expansion wave (following the reshock) to
exit the domain. It is demonstrated that the reflected rarefaction has an important role in breaking

symmetry and achieving late-time statistical isotropy of the velocity field.

Similarly, other experiments in plane geometry describe the reshock effect on the mixing. Figures
9-10 of [28] show the correlation between reshock and mixing growth using « — ¢t wave diagrams, for
experiments of air—air and air—SF¢ interaction at M; = 1.25. In his thesis work [9], in addition to
studying light-to-heavy interactions (see, e.g., Figures 5.4 and 5.17 of [9] for air—SFg interaction at
M = 1.32), Brouillette showed different growth profile for the heavy-to-light case clearly due to the
different nature of the reshock process (see, e.g., Figures 5.5 and 5.19 of [9] for air—He (A = —0.76)
interaction at My = 1.30).

Experimental research on the cylindrical geometry essentially reduces to the experiments by
Hosseini and Takayama [50] and the simulations by Zhang and Graham [123]. Hosseini’s experiments
show the imploding RMI with reshock at the center for air—SFg, air—Kr (A = 0.46), and air—He
discontinuous interfaces (bubbles) accelerated by M; = 1.21 shock waves. We recall from previous
chapters that M7 is the incident shock Mach number as the shock front arrives at the interface.
Radius-time r —t wave diagrams presented in Figures 10, 11, and 12 of [50] (respectively, for SFg, Kr,
and He bubbles) analyze the first reshock event only, and successful comparisons for the transmitted
shock Mach number evolution are made with Whitham’s ray shock theory based on Chester-Chisnell-
Whitham (CCW) method (p. 263 of [115]) assuming Duong and Milton’s approximation [25] of the
ray tube integral [49] (e.g., see Figure 7 of [50]). However, late-time evolution of the interface
thickness in Figures 17, 18, and 19 of [50] draws attention to the importance of the second reshock
stage, well described in [43] for the plane geometry. In Zhang’s simulations [123], a study of the
reshock using wave diagrams is present but lacks precision on the nature of the successive reshock
events, except for the Class 4, i.e., heavy-to-light imploding interaction, where the simulations were
run for sufficient time. Moreover, turbulent mixing cannot be achieved since the flow is computed
in two dimensions, employs a shock-capturing method, and does not resolve or model the viscous
dissipation scales. Therefore, it is difficult to draw conclusions concerning the precise role of the
reshock on the computed interpenetration of the two fluids.

In spherical geometry, Kumar et al. investigated the effect of convergence on the growth of
light-to-heavy and heavy-to-light interface thickness accelerated in conical geometry for M ranging

between 1.39 and 1.60 [59]. However, the reshock influence was not studied since the focus was put
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on the imploding phase (see r — t wave diagrams in Figures 13 and 16 of [59], and mixing layer
thickness evolution in Figures 24 and 25 of [59]).

On a general note, the research efforts just presented above do not tackle the effects of strong
incident shocks, probably because of the inherent practical difficulties in studying such flows: the
higher M, the closer to the wall/axis/center the mixing zone ends up stabilizing, and issues such
as experimental design due to very high pressures at the center, precision of the measurements, or
wall effects need to be solved. Turbulence generated by strong shocks is also a difficult problem to

compute numerically (see Section 5.3).

4.1.2 Description of the Problem

The reshock process contains complex physics that is studied in this chapter by looking at the
‘mean flow” when the interface is initially unperturbed. By symmetry of the initial unperturbed
problem, the flow remains symmetrical and no RMI will occur. The plane geometry consists of
the following one-dimensional problem: a plane shock interacts with a plane interface parallel to it,
the transmitted shock reflecting off a wall parallel to the initial shock and interface. On the other
hand, the converging geometry is described by the following radially symmetric one-dimensional
problem: a converging, Guderley-type similarity shock defined in [15] (see Subsection 3.3.3) impacts
a interface concentric to it, the transmitted shock converges down to the center and reflects off to
reshock the interface. These problems are useful in elucidating the character of the one-dimensional
shock impact and reshock physics that form the background of the three-dimensional turbulent

mixing events covered in the next chapters.

4.2 On the One-Dimensional Simulations

4.2.1 Governing Equations

Ignoring in this chapter the effects of the viscosity of the fluids involved, the problem is best described
by the Euler equations. The Euler equations are nonlinear hyperbolic equations that can be written

in the following conservative form:

dq

2 41V.F=0 4.1

ot + ’ (41)
in particular, in Cartesian coordinates,

8(] 8Fk

OFy _ 49
ot T oz, 0 (4.2)
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where repeated indices denote summation. In Equation (4.2) q = (p, pu1, pus, pus, E, ptp)T and the

directional flux vector is given by

puk
puiUy + 1P
puUy + O2kp
puzug + 03xp
(E + p)uy

pYug

where p is the density, p the pressure, uy the velocity components, and ¢ a scalar field representing
the mixture fraction of air and SFg. The total energy E is related to the internal energy per unit

mass, e, and the velocities by
1
E = pe+ ip(ukuk) (4.4)

For all the simulations reported, the ideal equation of state p = pRT/m is assumed, and the internal
energy is given by e = ¢, T = p/(p(y — 1)).
The one-dimensional problem of the plane shock-contact interaction described in the previous

subsection consists of solving the reduced system:

p Pl
dq OF, Uy u? +
90 O o with g=| 7|, Po=| PP (4.5)
ot ox E (E +p)um
p1/1 /ﬂ/)uz

where z is the direction of the flow. The main advantage of a reduced system is simply that it allows
the use of very high resolution compared to the equivalent three-dimensional computation of the
same one-dimensional flow. On a more general note — this is not the goal of this chapter — even if
the real problems of interest must be studied multi-dimensionally, reduced-order solutions are very
valuable in validating numerical methods. A highly accurate solution to the one-dimensional problem
can be computed on a very fine grid and used to test solutions computed with the multidimensional
method. This is useful in checking that the code gives essentially the correct answer. It also allows
one to determine how the numerical method suffers from grid-orientation effects which lead the flow
to be better resolved in some directions than in others.

For the converging cylindrical and spherical shock-contact interactions, the flow studied is radially
symmetric, the velocity being only radial and the flow depending only on the radial distance to the

axis/origin r and the time t. We can rewrite the system of equations (4.1) in polar or spherical
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coordinates, obtaining a system that reduces to a problem in r and ¢:

p 1 9(r 'pu,)

ot + rs—1 or =0 (4.62)
Opuy 1 o(rtpu?) ap B
ot prs—1 or 5 =0, (46b)
OF 1 o(r Y E+pu)
E + ’I”871 a’f‘ - 07 (46C)
1 a s—1 ,
orv ) _, (4.64)

ot rs—1 or

where the velocity vector reduces to the radial component u,., and the space index s is 2 for cylindrical
flow and 3 for spherical flow. This system can be rewritten in a form similar to (4.5) with a geometric

source term:

p pur pUr
dq OF, U, u? + 1 u?
cd — S, withg=| " |, m = TP | s=— | (47)
o o E (E +p)u, r (B + puy

pY Py Py

4.2.2 Numerical Method

The hybrid scheme WENO-TCD by Hill and Pullin [44] is employed to solve the one-dimensional
Euler equations (4.5) or (4.7): it is shock capturing but reverts to a centered stencil with low
numerical viscosity in regions of smoother flow, which is of first importance for later performing
accurate three-dimensional simulations of the turbulent mixing between the two fluids. A better

description is provided in Section 5.3.

The practical advantage of solving the radially symmetric problem as a purely one-dimensional
problem with a geometric source term is that the existing numerical solver for the Cartesian grid can
be used directly without modification. However there is a drawback to solving (4.7) directly. The
original multidimensional conservation law is not preserved, i.e., the numerical scheme may not be
conservative in the multidimensional sense. Discrete conservation is a very important requirement in
many numerical schemes to produce physical solution, especially for problems involving shock waves.
Lax and Wendroff [64] have proved that the numerical solution of a conservative and consistent
numerical scheme converges to the weak solution if it converges as the mesh is refined. A whole
field of research (e.g., see [67, 96]) addresses this issue since it concerns many applications other
than quasi one-dimensional problems (e.g., reacting flows, flows with external forces such as gravity,
radiative heat transfer, bottom topography in shallow water).

Since it is not our purpose, we just need a preliminary test showing that strength and position

of shocks are correct as the flow converges. We perform a one-dimensional simulation of Chisnell’s
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axisymmetric cylindrical converging shock traveling. The results are very similar to these obtained
for the two-dimensional simulations in Figure 3.3 and Table 3.1, so we do not report them. A
similar test could be done for the case of a single spherical converging shock. The geometric source
terms become large as r tends to zero since they are proportional to 1/r*~! (with s = 2,3) and
to increasingly high density, velocity, and pressure as the flow converges. Therefore, a small inner
cylindrical or spherical reflective boundary r = r;,, has been set to avoid the singularity at r = 0.
For each of the three geometries, the initial plane, cylindrical, or spherical shock impacts the
interface at a position Ry with Mach number M; = 1.2 or 3.0. As mentioned in Chapter 2 and 3,
the temperature is set continuous across the initial interface, so that the Atwood ratio is fixed by
the ratio of molecular weights of the species chosen: we test A = 0.67 for air—SFg and A = —0.67
for SFg —air. The resolution is uniform with grid size Ry/20000. The interface initial thickness
(tanh) is Ry/1000. Zero-gradient outflow boundary conditions are used and the outer boundary is
located at a distance 3R( from the inner reflective boundary (wall, cylinder, or sphere) located at

Tin — R0/1000.

4.2.3 Visualization

The density Schlieren fields vs. position are output at regular and small-time intervals so that
a two-dimensional position-time diagram with the density Schlieren in the third direction can be
constructed. An example for the M = 3.2 cylindrical shock interaction with an air—SFg interface
is shown in Figure 4.1. The magnitude of the density gradient field |Vp|, or Schlieren, allows us
to locate the interface and the shock across which the gradients are the highest. To locate other
features, such that expansion fans, the Schlieren field is displayed in a log scale, the drawback being
that some very small variations of the density due to the discrete nature of the signal can appear but
have no physical meaning. To eliminate this ‘noise’ from our conclusions and to better understand
the physics of the reshock, the characteristics curves are superposed onto the Schlieren fields, as
displayed in the close-ups on the first and second stages of the reshock history Figure 4.2. The
characteristics tangent to the field u (trajectories) should be parallel (on the wave diagram) to the
interface position, and deflected by both incoming and outgoing (with respect to the inner boundary)
shock waves, as seen on Figure 4.2b. The characteristics u — a (a being the sound speed) should
focus on incoming shocks, expand away from each other as they follow the head and tail trajectories
of expansion fans traveling inwards, and are simply deflected by the interface and outgoing shocks.
In particular, this family helps in determining the nature of the waves reflected from the various
reshock interactions. Finally, the characteristics u 4+ a focus on outgoing shocks, expand away from
each other as they follow the head and tail trajectories of expansion fans traveling outwards, and
are simply deflected by the interface and incoming shocks. In particular, this family helps determine

the nature of the waves reflecting off the inner boundary. We insist that in the radially symmetric
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geometry the Riemann invariants, i.e., the quantities that remain constant along the characteristic

directions of the flow, are different from the well-known Riemann invariants of the one-dimensional

plane flow (e.g., see [62]).

The M; = 1.2 cases usually show less contrast than M; = 3.0, and weak reflected shocks can be

sometimes hard to distinguish, so density plots vs. position must be viewed at the times of interest.

For each geometry, My, and A, plots of the density profile vs. position are shown initially just before

the incident shock-contact interaction, in between the first and second reverberation events, and at

late time when the flow has stabilized. Finally, note that position is made dimensionless by Ry, time

by Ro/ag, and density by po (see previous chapters and Table 5.5 in Chapter 5).

second reshock interaction

reflected shock formed after the first reshock interaction

Time

interface accelerated from the initial shock-contact interaction

first reshock interaction

transmitted converging shock from the initial shock interaction

Distance

Figure 4.1: r — t wave diagram: example of the M; = 3.2 cylindrical shock interaction with an

air—SFg interface. Density Schlieren levels (log scale) displayed.
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Figure 4.2: Close-up on the first and second reverberations: example of the M; = 3.2 cylindrical
shock interaction with an air—SFg interface. Density Schlieren levels (log scale) displayed on a wave
diagram and superposed to the three different families of characteristics, v — a (top), w (middle),
and u + a (bottom).
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4.3 Light-to-Heavy Interaction: Air — SF;

In this section, we present comparisons of the one-dimensional wave diagrams for plane, cylindrical,
and spherical geometries for the light-to-heavy interaction air— SFg corresponding to A = 0.67.
SFg is contained in the region r;, < r < Ry, while air is contained in the region r > Ry. For all

cases, we consider two incident Mach numbers M; = 1.2 and M7 = 3.0.

4.3.1 Incident Mach Number M; = 1.2

For such a low My, the Schlieren signal can appear weak on the log scale, thus density profiles at

successive times shown on Figures 4.3 and 4.4 provide support to the analysis of the wave interactions.

4.3.1.1 Plane Geometry

In Figures 4.5a and 4.6a, note first the straight trajectories of the interface, shocks, expansion
tails and heads, typical of the plane interaction (e.g., see Figure 2 of [43]). The transmitted shock
produced from the initial shock-contact interaction and traveling into the heavy fluid reflects off
the wall as a shock and reshocks the material interface at time 3.3. This heavy-to-light interaction
produces an expansion inwards (Figures 4.6a and 4.3b) and gives a big enough increment of outward
velocity to sharply reverse the interface motion outwards. The expansion wave reflects off the wall as
an expansion wave that interacts with the interface at time 5.2 and gives a sufficiently large increment
of inward velocity to smoothly reverse the interface motion inwards. From this expansion-interface
interaction, a reflected expansion wave travels inward, reflects off the wall as an expansion, and
interacts with the interface for a third reverberation. These reverberations alternately change the
trajectory of the interface with weaker and weaker intensity, so that the interface stabilizes at around
time 12, less than 4 times the first reshock time. The compression ratio €t, defined as the ratio of
the final position of the interface to its initial position and representing the degree of compression of
the inner fluid, is €t ~ 0.48. Comparison made to Figure 5.4 of Brouillette’s shock-tube experiments
of the same gas combination accelerated at M; = 1.32 [9] shows the effect of the wave reverberation

into SF¢ as bringing the interface at rest, in less than 3 times the first reshock time.

4.3.1.2 Cylindrical Geometry

Figures 4.5b and 4.6b show curved trajectories owing to acceleration/deceleration effects due to the
convergence of the geometry. The transmitted shock reflects off the center as a shock and reshocks
the interface at time 3.2. A much earlier reshock than in the plane case was expected but the
interface ends up decelerating on its way inwards just before the reshock. This is because ahead
of the interface (in SFg), the flow compressed between the transmitted shock and the interface is

non-uniform. When the first reshock occurs, the interface has almost zero velocity. The reshock,
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locally a plane heavy-to-light shock-contact interaction, produces an expansion propagating radially
inwards (visible in Figure 4.3b), as occurs in the plane geometry. The increment of outward velocity
is sufficiently large to reverse the interface motion. By tracking the density in between the first
and second reverberations as shown on Figure 4.4a, as the expansion head starts reflecting off the
wall, the density, pressure, and velocity fields following the expansion tail steepen to form a shock
traveling inwards and reflecting off the center as a shock. Paragraph 21.7.1 of [68] confirms this
observation by looking at the radial dam-break problem. Indeed, the reshock observed presently can
be seen as a Riemann problem in cylindrical geometry, producing a reflected expansion traveling
inward, a contact, and a transmitted shock outwards, just like the initial conditions of Subsection
21.7.1 of [68]. In this converging geometry, a shock forms (see Figure 21.4 of [68] at t=0.5 and 0.75)
and reflects off the center as a shock (Figure 21.4 of [68] at t=1).

Meanwhile the interface slowly reverts its outward motion, reaches zero velocity at time 4.6, and
starts moving inwards. A second reshock occurs at around 7.2 (see Figure 4.6b) which suddenly
reverses the interface motion outwards. The following reverberations are self-similar reshocks of
decreasing intensity that stabilize the interface at about time 18, less than 5 times the first reshock
time, with €r ~ 0.7. Very similar experiments documented in [50] (cylindrical geometry, same gas
combination, M; = 1.21) show on a similar wave diagram (Figure 10 of [50]) how the interface
decelerates before the first reshock, reverses its motion outwards from the first reshock and starts
reversing it before the second reverberation. Unfortunately data stop right when the expansion wave
traveling inwards into SFg reflects off the wall. Figure 6b of [123] does not show more than the first

reshock.

4.3.1.3 Spherical Geometry

The wavy aspect of the interface trajectory is even more pronounced in this geometry as shows
Figure 4.5¢c. The reverberation process is similar to the cylindrical geometry but more complex.
The transmitted shock reflects as a shock and reshocks the interface earlier than in the plane and
cylindrical cases since the transmitted shock converges faster. We would have expected, however,
an even earlier reshock if the interface had not decelerated on its way inwards and started moving
outwards before the first reshock occurs at time 2.75 and radius 0.685 (observe the deflected v — a
characteristics across the shock that reflected from the center, the sharp ‘angular’ change in interface
motion, and how it is accelerated on Figure 4.6¢). The reshock produces locally an expansion wave
inwards, as seen in Figure 4.3b. In Figure 4.4b, showing density profiles between the first and second
reverberations, the region following the tail of the expansion steepens to a shock as the flow converges
toward the center. Moreover, the region ahead of the expansion head also steepens to a shock as it
converges (visible in Figure 4.3b), which reflects off the center and interacts with the shock standing

behind the expansion tail. As a result of this shock-shock interaction, a strong shock reflects towards
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the center and a weaker one travels outwards. Meanwhile the interface slowly reverses its motion
(around time 3.7), and moves inwards when it is reshocked at t=5.9 by the first (weak) shock. The
interface inverts its motion again suddenly. There follows a stronger reshock at time 6.2 from the
other shock. Therefore, what appears to be a unique reshock is actually two successive reshocks
close to each other. Self-similar reshocks follow with decreasing intensity. The interface stabilizes at

around time 29, less than 14 times the first reshock time, at €t ~ 0.7.

4.3.2 Summary

Expansion-contact interactions induce a smooth change in the interface motion, shock-contact in-
teractions (or reshocks) have a sharp effect. As the geometries goes from plane to cylindrical to
spherical, the interface oscillates with higher frequency and amplitude, and stabilizes in a longer
time. As shown in Figure 4.3c, since energy needs to be conserved, when going from plane to
spherical, €t decreases but the final level of inner density increases. The self-similar sequence for
the interface motion to change inwards-outwards-inwards-outwards appears to be: (a) for the plane
interaction a first reshock and two expansion wave interactions, (b) for the cylindrical case a first,
a deceleration and a second reshock, (c) for the spherical case a first reshock, a deceleration and a

second double-reshock.
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Figure 4.3: Density p/pg vs. position /Ry for the air— SFg plane (red solid line), cylindrical (green
long-dashed line), and spherical (blue small-dashed line) shock interactions for a M; = 1.2 incident
shock. Density profiles initially (top), after the first reshock event (middle), and at a late time
(bottom). After the first reshock, a shock will form behind the expansion tail in the cylindrical
and spherical geometries, and another shock will form ahead of the expansion head in the spherical
geometry. The interface is initially located at r/Ry = 1; at /Ry ~ 0.4 for the plane geometry and
r/Ry ~ 0.8 for the cylindrical/spherical cases after the first reshock; at /Ry ~ 0.5 for the plane
geometry and r/Rg ~ 0.7 for the cylindrical/spherical cases at late times.
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Figure 4.4: Density p/pg vs. radius r/Ry for the air— SFg interactions at M; = 1.2. Close-up at
the center at different times between the first and second reshocks. (a) Plane case: the reflected
expansion produced from the first reshock reflects off the wall as an expansion. (b) Cylindrical case: a
shock forms behind the reflected expansion tail that was produced from the first reshock interaction,
and reflects off the axis. (c) Spherical case: two shocks form behind the reflected expansion tail
and ahead of its head; the inner shock reflects off the center and interacts with the outer one; the
shock-shock interaction produces a weak shock traveling outwards to reshock the interface a second
time, and a stronger and faster shock traveling inwards, reflecting off the center and reshocking the
interface soon after the second reshock.
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Figure 4.5: Wave diagrams for the air— SFg shock interaction for a M} = 1.2 incident shock. Density
Schlieren levels for the plane (top), cylindrical (middle), and spherical (bottom) shock interactions.
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4.3.3 Incident Mach Number M; = 3.0

Similarly to the M; = 1.2 case, various profiles of density shown in Figure 4.7 help support the

observations made from the wave diagrams.

4.3.3.1 Plane Geometry

Note again the straight trajectories typical of the plane interaction in Figure 4.8a. The transmitted
shock reflects off the center and reshocks the interface at time 0.68 (see Figure 4.9a), earlier than in
the lower Mach case because both transmitted shock and interface travel faster (see Chapter 2). A
reflected expansion is produced during the reshock and reverses the interface motion sharply. The
expansion reflects off the wall and interacts with the interface at about time 0.82. The expansion
produced reflects off the wall and reverberates again with the interface at time 0.97, etc., similarly
with weaker intensity. The interface stabilizes at about time 1.5, less than 2 times the first reshock

time, with €r ~ 0.05.

4.3.3.2 Cylindrical (Respectively Spherical) Geometry

Sharper wave reverberations traveling in the heavy fluid indicate sharper reshocks, as seen in Fig-
ure 4.8b (respectively 4.8c). The first reshock occurs at time 0.63 (respectively 0.54). The reshock
is very early compared to the lower Mach case, and equivalent to the plane case at the same Mach
number because the interface accelerated by the initial shock interaction follows closely the trans-
mitted shock. When the first reshock occurs, the interface motion sharply reverses outwards with
almost opposite velocity. As usual, the first reshock produces a reflected expansion fan inwards.
While the expansion travels inwards and reflects off the center, a front steepens right on the tail of
the expansion as for lower Mach case but much faster. The shock is stronger for M; = 3.0 than for
M; = 1.2 and can be clearly seen on Figure 4.9b (respectively 4.9¢): the characteristics u —a coming
from outside are deflected by the interface and focus on a single shock facing inwards. In the frame
of the interface, this shock quickly detaches from the interface. The shock is visible in Figure 4.7b
at a radius of 0.15 (respectively 0.31). The shock reverses its motion inwards and reflects off the
center as a shock at time 1.04 (respectively 1.03). It reshocks the interface at time 1.32 (respectively
1.3). Successive reshock events of decreasing strengths follow self-similarly, as shown very distinctly
in the spherical case in Figure 4.9c. The shocks forming from each reshock bifurcation detach faster
and faster from the interface so that the third and following reshock events each appear to be heavy-
to-light shock-contact interactions producing a reflected shock instead of an expansion wave. The
interface finally stabilizes at around time 5 (respectively 7), less than 8 (respectively 13) times the

first reshock time, with € ~ 0.1 (respectively 0.15).
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4.3.3.3 Summary

Similar observations to the M; = 1.2 can be made, with lower €t and faster stabilization. The self-
similar sequence for the interface motion to change inwards-outwards-inwards-outwards appears to
be: (a) for the plane interaction a first reshock and two expansion wave interactions, (b) (respectively

(c)) for the cylindrical (respectively spherical) case a first, a deceleration and a second reshock.
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Figure 4.7: Density p/po vs. position /Ry for the air— SFg plane (red solid line), cylindrical (green
long-dashed line), and spherical (blue small-dashed line) shock interactions for a M; = 3.0 incident
shock. Density profiles initially (top), after the first reshock event (middle), and at a late time
(bottom). Shocks form behind the reflected expansion tail (see lower Mach case), and will reflect to
reshock the interface a second time. The interface is initially located at r/Ry = 1; at /Ry ~ 0.1
for the plane geometry, /Ry ~ 0.3 for the cylindrical case, and r/Ry ~ 0.4 for the spherical case
after the first reshock; at r/Rg ~ 0.05 for the plane geometry, /Ry ~ 0.1 for the cylindrical case,
and r/Ry ~ 0.2 for the spherical case at late times.
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4.4 Heavy-to-Light Interaction: SF; — Air

The heavy-to-light interaction exhibits quite different behavior to the light-to-heavy interaction and
so is discussed separately. We consider the the combination SFg —air, that is A = —0.67, at two
different incident shock Mach numbers, M; = 1.2 and 3.0. SFg is now contained in the region
r > Ry, while air is contained in the region r;, < r < Ry. Note that in the present section, the time

is dimensionalized with the speed of sound of the outer fluid, SFg.

4.4.1 Incident Mach Number M; = 1.2

In the three geometries, after the transmitted shock reflects off the inner boundary, reshock of the
interface occurs at time 0.65 for the plane case, 0.6 for the cylindrical, and 0.65 for the spherical
geometries respectively. These light-to-heavy interactions each produce a reflected wave that travels
inwards, reflects off the inner boundary, and then reshocks the interface a second time. Figures 4.11
and 4.12 show that all the reverberations are shock waves of decreasing intensity with time, such
that the interface never reverses its motion and is gradually slowed down to stabilize in comparable
dimensionless time of 2, which is more than 3 times the first reshock time. It is a relatively fast time
with respect to first reshock time when comparing to the A = 0.67 case. The first reason is that all
waves reflected from the reshock interactions are shocks that travel directly inwards. Second, the
reshock history is also faster because the waves traveling between the boundary and the interface
reverberate in a lighter fluid. We observe that €t ~ 0.6 for the plane, 0.65 for the cylindrical, and
0.6 for the spherical geometries; and the levels of final heavy fluid (outside) are of the same order
(Figure 4.10). The plane case qualitatively agrees with the heavy-to-light air—He experiments at
M=1.30 shown in Figure 5.5 of [9]. The cylindrical geometry compares to the Class 4 solution
of Zhang’s computations [123] (same incident Mach and gas combination): multiple reshocks are
apparent at similar times, and a quick stabilization of the interface occurs at €r ~ 0.68. Similar
features for the first and second reshocks are observed in Figure 12 [50] obtained from cylindrical

air—He experiments at M; = 1.2.
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Figure 4.10: Density p/po vs. position r/Ry for the SFg —air plane (red solid line), cylindrical
(green long-dashed line), and spherical (blue small-dashed line) shock interactions for a M; = 1.2
incident shock. Density profiles initially (top), after the first reshock event (middle), and at a late
time (bottom). The interface is initially located at r/Ry = 1; at r/Rp ~ 0.6 for the plane geometry,
r/Ry ~ 0.7 for the cylindrical case, and /Ry ~ 0.6 for the spherical case after the first reshock;
at r/Ro ~ 0.6 for the plane geometry, /Ry ~ 0.7 for the cylindrical case, and /Ry ~ 0.6 for the

spherical case at late times.
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4.4.2 Incident Mach Number M; = 3.0

Again, the three geometries are very similar. The transmitted shock produced during the initial
interaction reflects off the center and reshocks the interface at time 0.275 for the plane case, 0.27
for the cylindrical one, and 0.265 for the spherical one). This light-to-heavy interaction produces a
reflected wave that travels inwards, reflects off the center and reshocks the interface, etc. As seen
in Figure 4.14 and particularly in Figure 4.15), all the reverberations are shock waves of decreasing
intensity. The interface almost does not reverse its motion and is gradually slowed down to stabilize
in a comparable dimensionless time of 0.6 (more than 2 times the first reshock time). This is
relatively fast in terms of the first reshock time when comparing to the A = 0.67 case for the same
incident shock strength. The M; = 3.0 case differs from the M; = 1.2 case on the transmitted
shock produced from the first reshock interaction and traveling in SFg away from the interface: for
My = 1.2, the reshock of relatively low strength is such that the transmitted shock produced from
the reshock travels outwards (in the lab frame) and exits the domain quickly (see Figure 4.12). In
the M; = 3.0 case, the interface is accelerated more rapidly from the initial shock interaction so that,
during the reshock, the transmitted shock actually travels inwards in the frame of the lab as shown
Figure 4.15. This shock is actually strong. The second reshock, being weaker than the first, coupled
with a decelerating interface, produces a new transmitted shock that travels outwards (in the lab
frame) and interacts with the transmitted shock moving inwards from the first reshock interaction.
Successive secondary interactions occur during the following reshock events. As a result, a strong
shock exits the domain at an angle of about 45° angle as seen in the wave diagram Figure 4.14.
Figure 4.13c shows its position at a late time. On the heavy side, the quite weak waves produced
from the interactions between the successive transmitted shocks are traveling inwards to impact the
interface, whose effect on average is this slight change in the interface position at (ag/Ro)t ~ 0.5 for
all geometries. We find €t ~ 0.06 for the plane case, €t ~ 0.05 for the cylindrical, and €r ~ 0.025
for the spherical geometries, respectively. The final levels of heavy fluid density for the spherical

geometry are twice that of the cylindrical geometry which is twice that of the plane geometry.

4.5 Summary

We have considered the one-dimensional shock-interface impact for three different geometries and two
different incident Mach numbers, for both light-to-heavy and heavy-to-light initial configurations.
In the light-to-heavy case, it has been shown that the nature of the wave reverberation (specially
the second wave reverberation) depends on the geometry. As mentioned in [43] for the plane geom-
etry, the influence of the second reverberation on the turbulent mixing is as important as the first
reshock. In the plane case, an expansion wave traveling away from the wall will deposit baroclinic

vorticity over a finite period of time, and this secondary interaction is somewhat like the contin-
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uous acceleration of the RTI. In contrast, in curved geometries, after the interface is accelerated
by the first reshock, a period of deceleration follows, and then a second reshock occurs, operating
an impulsive deposition of vorticity. All three geometries show oscillatory profiles of the interface
unperturbed position resulting from the reverberation process, which, in the perturbed situation,
is expected to influence the growth of spike and bubble structures coexisting within the TMZ. The
heavy-to-light interaction exhibits successive reshocks independently of the geometry. The interface
stabilizes quasi monotonically, without alternative inward/outward velocity increments. Both fea-
tures will certainly influence the turbulent mixing differently than in the light-to-heavy RMI with
reshock. While we described the physics of the flow if the interface were initially unperturbed, when
a perturbation is initially superposed, spike and bubble structures will be differently affected by the
various reverberating waves. It should also be added that the light-to-heavy and heavy-to-light RMI
differ from one another in the sense that the heavy-to-light RMI is Rayleigh-Taylor (RT) unstable
during the implosion (accelerating phase) while the light-to-heavy one is RT unstable during the
explosion (decelerating phase).

Increasing the incident shock strength results in accelerating the time of the first reshock and
focus the base interface closer to the wall/center. This is expected to affect the entrainment of inner
fluid into the mixing region. The entrainment is also influenced by the geometry, since the volume of
fluid trapped between the inner boundary and the TMZ differs as we move from plane to spherical
geometry: it is of the order of €tL,L, for the plane case (with (y, z) transverse to the direction x of
the flow), 7€t?L. for the cylindrical one (with z direction of the cylindrical axis), and 47¢t®/3 for
the spherical one.

Future work will consist of testing different gas combinations, such as air/He (commonly used in

experiments) or even lower Atwood combinations such air/COs.
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late times.
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Chapter 5

Large-Eddy Simulations of
Shock-Generated Mixing
in a Cylindrical Geometry

5.1 Introduction

5.1.1 Flow Description

A two-dimensional schematic of the initial configuration is presented in Figure 5.la: a converging
cylindrical shock impacts at a Mach number M; a perturbed, cylindrically shaped density interface
that separates light air from heavy SFg (see Figure 5.1b), both at rest initially. The physical prop-
erties of these two gases are presented on Table 5.1. As described in Chapter 4, the present initial
shock refraction produces a transmitted shock traveling and a reflected shock traveling inwards and
outwards respectively, apart from the accelerated interface. The transmitted shock converges to-
wards the axis, reflects off the apex, and reshocks the highly distorted interface, initiating strong
turbulent mixing. Multiple reshock events follow self-similar way with decreasing intensity, eventu-
ally concentrating the heavy fluid inside. Strong initial incident shocks trap the heavy fluid closer

to the apex than weaker incident shocks.

5.1.2 Domain Geometry and Boundary Conditions

The present simulation is conducted in a wedge-like geometry. The wedge angle is 7/2. The

computational domain, in cylindrical coordinates (r, 6, z) is:
Tin <1 < BrRo, 0<0<7/2, 0<2z<f,7/2 (5.1)

The inner cylindrical reflecting wall of radius r;;, and the outer radial distance (,.Ry, with G, > 1

is theoretically taken proportional to the wedge angle. (3, is a rational number that specifies the
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Unshocked air Shocked air

(Chisnell, 1998)

Unshocked SF6

Reflecting walls

(a) (b)

Figure 5.1: (a) Initial flow description. Time t = 0 actually corresponds to the incident shock
standing just behind the interface with Mach number M;. (b) Scalar isosurfaces representing the
initial perturbed interface (data from run 11 and run 12).

extension of the domain in the axial direction. See Tables 5.2, 5.3 and 5.4 for exact values of (3, and
B

Tt is assumed that shock-wave/boundary-layer interaction does not play a dominant role in the
growth of the TMZ and slip boundary conditions are applied at the reflected walls § = 0 and 6 = 7/2.
In practice, experiments in shock-tubes [9, 109] have shown that the interaction of viscous boundary
layers on the side walls of the test section can cause the formation of wall bubbles and interface
contaminating jets. Brouillette demonstrated the generation of baroclinic vortical structures within
the boundary layer from the interaction of waves reflected from the side walls and the distorted

interface [9]. The strain induced by these vortical wall structures tends to make the TMZ thinner.

Property air SF¢

Molecular mass (kg kmol 1) 29.04 146.07
Atwood ratio with air A 0.0 0.67
Ratio of specific heats ~ 1.40 1.09
Density (kg m~3) 1.18 5.97
Kinematic viscosity (107% m=2s~1) 15.7 2.47
Prandtl number 0.71 0.90
Diffusion coefficient in air (107 m=2s7!)  20.4 9.7

Table 5.1: Gas properties of air and SFg at 25°C and 1 atm.
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The inner cylindrical reflecting wall of radius r;, is used to regularize the apex (see Figure 5.1a), as
it is done in VTF experiments in a wedge. The measured location and extent of the TMZ suggest
that the turbulent region does not reach the inner cylindrical wall as long as the incident shock Mach
number is not too high. On the outer side of the domain, inflow boundary conditions are prescribed
(see next subsection) for time ¢ prior to the exit of the initial reflected shock from the computational
domain. After that event, zero-gradient boundary conditions are prescribed. Periodic boundary

conditions are used in the z-direction of the cylinder axis.

5.1.3 Initial Conditions

There are many ways to generate, in principle, a converging cylindrical shock. Hosseini and
Takayama [50] use a device like a curved annular shock tube. Dimotakis and Samtaney [24] have
proposed a method where a planar shock, incident on a shaped interface positioned at the entrance
of a convergent wedge, produces a transmitted shock that is accurately cylindrical. The interface
shape is tailored precisely so as to avoid Mach reflection at the wedge walls. Using geometrical
shock dynamics, Hornung et al. [48] argue that, once formed, cylindrically (and spherically) sym-
metric converging shocks have an almost universal implosion profile that is essentially independent
of the detailed means of shock generation. This almost universal form is that calculated by Pon-
chaut et al. [87]: it becomes asymptotic to Guderley power-law shock implosion in the strong-shock
approximation.

Presently, the flow behind the cylindrical converging shock is initialized using the post-shock
flow field of Chisnell [15]. We have confirmed the structure of this solution by simulation of a single
converging shock, and the Guderley exponent, characterizing the shock position history, has been
confidently computed before and after apex reflection (see Subsection 3.3.3 for more details). We
recall that this choice of initial conditions completely avoids spurious waves and leaves only the shock
thickness as intrinsic length scale. Simulations have been performed for the incident shock strength
My = 1.3 and 2.0. The Chisnell solution is presently used both as an initial condition for the flow
behind the shock as far as the outer boundary of the domain, and also to provide inflow boundary
conditions on the outer boundary before the reflected shock exits the computational domain. The
front of the incident converging shock is initially placed just behind the interface at radius » = Rg,.
At this position, the shock Mach number is Mj.

The interface is initially located around the mean radial position r = Ry < Rg,. Along any ray of
azimuthal orientation 6 and height z, the mixture ratio of air and SF¢ is mathematically initialized as
tanh(2(r — r7(6,2))/65). In this expression, r; is the centerline position of the perturbed interface
at (6,z), and 65 is the initial intrinsic thickness of the interface and is chosen small enough to
be fully resolved, specially during the incident shock refraction where the interface is compressed

to a thickness inferior to 5(? during the shock passage. To model the initial contact discontinuity
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deformation, we choose a centerline surface radial displacement of the interface of the form
r7(6,z) = Ry — (ho| cos(nf) cos(kz)| + h1 f(0,2)) . (5.2)

The first term models the result of pushing the membrane through a wire mesh (find equivalent
definition in the plane geometry in [109, 16, 43]), and represents small modes of amplitude hg, about
5% of Ry, and with initial azimuthal wavelength \g, = TR /n and axial wavelength A\, = w/k. The
choice of k is a compromise between having a ratio of scale lengths comparable to the previously cited
plane experiments and having adequate numerical resolution. Similar considerations are taken for the
choice of n but for azimuthal wavelengths around the reshock time. At such time in the simulation,
the azimuthal wavelength can be reduced by a factor of 10 for incident shock Mach numbers greater
than 2.0. From the first perturbation term in Equation (5.2), it is expected that angular regions of the
interface where the cosine argument is equal to 7/2 will be subjected to strong baroclinic torque.
The second term in Equation (5.2) is a symmetry-breaking perturbation with smaller amplitude
hi, about 10% of hg. f(0,z) has a random phase but a prescribed power spectrum of the form
K* exp(—(K/Kg)?) with parameter Ko = 1 chosen such that the peak wavelength is 7v/2Ry (long
wavelength symmetry breaking). It represents the distortion of the wire mesh on the scale of the

wedge in the azimuthal and axial directions. We refer to Tables 5.2, 5.3 and 5.4 for more details.

In choosing such clean initial conditions, the goal is to set up a canonical simulation that could be
used as a reference simulation in cylindrical geometry. However, care has to be taken when analyzing
late-time behavior in such unsteady flows. How the initial interface dominant shape (first term of
Equation (5.2)) affects the late growth of the mixing layer is still a current research question. In [109],
it is observed that a change in the disposition of the horizontal and vertical wire meshes can modify
the mixing-layer growth before the reshock by a an order of magnitude. Strong influence of the
initial conditions on the nonlinear stages of the mixing-zone growth has been also demonstrated by
Greenough and Burke [38] who studied computations of the multimode RMI in the plane geometry.
Therefore, flows generated from different initial conditions are not expected to compare well, in
particular prior to the first reshock. To study the sensitivity of the flow to variations in the random
part of the initial interface shape (second term of Equation (5.2)), simulations should be performed
for an ensemble of initial conditions covering the spectrum of realizations of the random nature of
the second term of Equation (5.2). Due to limited resources, we leave the study of the influence of

initial conditions (e.g., interface shape and amplitude) on the flow statistics for future research.

On another note, there is a consensus in the belief that turbulent flows are, in some sense, ergodic.
However, there seems to exist no direct evidence regarding the validity of the ergodicity hypothesis
in turbulent flows, though some mathematical results regarding the ergodicity for the NavierStokes

equations were reported recently (see for example [20]). Ergodicity is usually related to turbulent
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flows being statistically stationary in time and homogeneous in space, which is not the case in the
present flow. In theory, if the ergodic hypothesis were correct, it would not be necessary to perform a
large number of time consuming “brutal force” experiments with different initial conditions in order
to compare the temporal /spatial statistical value of a given observable against the ensemble-averaged

value at a given time/location.

5.2 Governing Equations

5.2.1 Two-Component Favre-Filtered Navier-Stokes Equations

The reshock process produces a large dynamical range of turbulent scales, necessitating the use of

LES. If the overbar denotes the filtering operation

F(2) = Ga, * f() = / Ga.(z — 2') f(x')d’ (5.3)

with convolution kernel Ga, with externally specified spatial width A., any Favre-filtered, or density

weighted, quantities is defined by

f=0f/p (5.4)

The filtering procedure described in Equation (5.3) is purely formal. It corresponds to a low-pass
spatially uniform filter and allows one to locally distinguish flow features with a length-scale larger
than A, with length-scale smaller than A.. In the LES context, the former are referred as ‘resolved’
while the latter class of flow structures is identified as ‘sub-filter’ or ‘subgrid’. In practice, the filtering
operation can only be performed explicitly from well-resolved fields obtained from experiments or
DNS. However, by Favre-filtering of the Navier-Stokes equations [124], the LES transport equations
of motion in a conservative form are formally obtained for the filtered density p, momentum pu;,
total energy F, and ﬁzz, where ’(Z is a filtered scalar field representing local mixture composition

(mass fraction) between air (¢ = 0) and SFg (¢) = 1). In this procedure, the large scales to be

simulated are separated from the small scales to be modeled at the subgrid level:

o0p opu;

21 + oz, 0, (5.5a)
o oz,  0z; Oz, (5.5b)
_ = o ~ o~ 9T

B Eipn o (0T ot 0 -
ot 8xj a.ifj 8a:j 8$j 8a:j

(5.5d)
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where the subgrid stress tensor, and the heat and scalar transport fluxes are given by

Tij = pluiuy — Uity), (5.6a)
qu = p(cyTuj — éTij), (5.6b)
¢ = plu; — i), (5.6¢)

and where the filtered total energy FE, pressure p, and deviatoric Newtonian stress tensor Eij of the

mixture are given by

— P 1_.. 1
E - 5 a .
= 5 P(URTR) + 5Tk (5.7a)
p o= 2L (5.7h)
m
_ _(fem 0w\ 20u
i = (5o 52) - 3om)- (570

Note that, whilst Reynolds-averaged Navier-Stokes (RANS) approaches to modeling the Navier-
Stokes equations decompose the velocity into mean and fluctuating components, the typical re-
organization in LES is based upon the filter length scale A., often taken to be equal to the grid size

employed.

In Equation (5.7b), R is the ideal gas constant, and the mean molecular weight m is defined as

a function of the respective molecular weight of air and SFg by

1 1-9¢ ¢
m Maijr MgsFg
From m, the average specific heat ratio present in Equation (5.7a) and defined as
~ Cp
_ = = =< 59
S TR (5.9)

can be determined since the average specific heat capacity at constant pressure is given by the follow-

ing combination of element heat capacities for air and SFg (assumed to be temperature-independent)

gp = (1 - J)Cp,air + ’(Zcp,SFg- (510)

Values of 7 for pure air (¢ = 0) and pure SF¢ (1) = 1) are listed in Table 5.1. Temperature-dependent
transport properties of the mixture, i.e., viscosity f, heat conduction %, and diffusivity l~), obey usual

binary mixing rules and pure component mixing properties [93].
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5.2.2 The Stretched-Vortex Subgrid Model

The stretched-vortex subgrid-scale (SGS) model [82] extended to compressible flows [58] and subgrid
scalar transport for a constant-density fluid [88] is based on an explicit structural modeling of small-
scale dynamics. The essential subgrid element is modeled by a distribution of stretching vortices that
are approximate solutions of the Navier-Stokes equations [71]. The closure of Favre-filtered Navier-
Stokes equations is achieved by providing the subgrid stress tensor 7;;, the turbulent temperature

flux ¢!, and the mixture fraction flux q;/’, formally defined in Equation (5.6) and modeled as

Tij = pl;'((;w — 6;}6}}), (511&)
A d(,T)
T o c71/2 v v
4 = —pok [2(8iy — efel) 8; ; (5.11b)
A, - o
¢ _ == 1/2 L pULU 1
q; Py E=(8i; — e e])—axj. (5.11¢)

Note that the SGS temperature flux is treated as a passive scalar. In Equation (5.11), e} are the

direction cosines of the subgrid vortex axis and A, the cutoff length scale. The subgrid kinetic

energy, k, is given by

I

> > 2/37.-5/3 2k 1
= E(k)dk = Koe*°k exp | ——=—= | dk. (5.12)
/A /A 3|a|p

The energy spectrum of the subgrid motion F(k) is a function of Ky, Kolmogorov pre-factor, &,

PN

the local cell-averaged dissipation, and a = Sijei e}, the axial strain along the subgrid vortex axis

provided by the locally resolved rate-of-strain tensor

- 1 (0w  ou

The implementation of the subgrid vortex model relies on the assumption of the alignment of e¥
with extensional eigenvectors of S’ij and with the resolved-scale vorticity [58]. Moreover, the param-
eter Kge?/3 is calculated for each cell using resolved-scale, second-order velocity structure function
matching [110, 88]. For example, when averaging the structure function Fa(7) over a spherical

surface of radius A and using the expression of E(k),

(5.14)
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where A =~ 1.90695. Typically, A = A, = Az, with Ax the finest grid spacing, and F, is evaluated

from averaging the local resolved-scale velocity components

(D) = (5@?2 oud +oui +ouy + 0, + 5&;2) , (5.15)

J

=

3

j=1

where we defined 611?[, velocity component difference in the unitary direction e; at the location x,,

by
S = (o + €;A) — i (). (5.16)

The stretched-vortex subgrid model has been used to compute the two-fluid mixing driven by
the RTI, as presented [76]. The structural nature of this model has also facilitated the mathematical
development of a multiscale treatment of the activity beyond the resolution cut-off and predictions
of subgrid mixing properties [43]. For what follows, the presently defined Favre-filtered quantities
are identified with resolved-scale quantities computed in the LES, so that overbars and tildes will

be omitted in Section 5.4 and the sections following.

5.3 Computational Approach

5.3.1 AMROC Framework

The resolution requirements imposed by the physics of the flow vary greatly both spatially and
temporally for this simulation. In particular, around discontinuities in the flow (e.g., shock waves)
any high-order scheme drops to first-order accuracy and refining the mesh is an efficient way to
reduce the numerical error around these sharp features. Therefore, the parallel framework AMROC
developed by Deiterding [21], and based on the SAMR of Berger and Oliger [3, 3], proves to be
decisive for the converging RMI, where refinement is needed around the multiple imploding and
exploding shocks and the interface traveling down towards the inner apex, while coarse resolution is
sufficient for the outer region. SAMR method provided large computational savings in the particular

case of the converging RMI but also in other applications listed in [83].

5.3.1.1 On the Use of SAMR Cartesian Grid for Converging Flows

As shown in Figure 5.2, successful comparisons have been made between experiments of focusing
of plane shocks in cylindrical geometry and solvers using Cartesian and body-fitted grids. Another
validation test, similar to VTF Phase 0 experiments in spherical geometry, has shown good agreement
between SAMR simulations on Cartesian grid and the experiments of conical shock-tube by Setchell

et al. [102]. An initial plane shock of Mach 6 travels in Argon into a 10° half-angle cone. Conclusive
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results are plotted in Figure 5.3a which shows the successive jumps in shock speed (measured on the
centerline of the tube) corresponding to Mach stem collisions on the axis of symmetry. In the present
work, as in the simulations presented in Figures 5.2a and 5.3, the ghost fluid method (GFM) [30] is
utilized to numerically incorporate the non-Cartesian reflective wall boundary conditions arising at

the small cylinder regularizing the apex (see Subsection 5.1.2).

(a) Cartesian grid (b) Body-fitted grid

Figure 5.2: Converging shock focusing in a wedge. Overlay of experimental results from VTF Phase
0 and two-dimensional simulation data from the WENO-TCD patch solver formulated on a Cartesian
grid (a) and a shock-capturing method formulated on a body-fitted grid (b). Courtesy of C. L. Bond,
D. J. Hill, and G. Matheou.

5.3.2 Hybrid Numerical Method

The numerical method is formulated for uniform Cartesian grids and is effectively applied to each
subgrid of the mesh hierarchy. The overall approach is an extension of the hybrid scheme by Hill and
Pullin [44] to SAMR meshes with non-Cartesian embedded boundaries. We recall that a WENO
scheme is used to capture discontinuities such as shock waves or fine/coarse mesh interfaces, but
switches to a low-numerical dissipation, explicit, center-difference scheme, TCD, in the smooth or
turbulent regions, optimal for the functioning of explicit LES such as the SGS stretched-vortex
method.

Figure 5.4 shows the decay of the turbulent kinetic energy (TKE) obtained from LES of decaying
compressible turbulence using the stretched-vortex SGS model and the 5-point TCD scheme. Good
agreement with a 2563 DNS is achieved. A similar simulation using WENO-5 shows poor results
owing to the excessive numerical dissipation that overwhelms that of the SGS model. The dissipation

in WENO is due to the fact that the method rarely achieves its optimal stencil and therefore exhibits
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Figure 5.3: Conical shock-tube experiments and two-dimensional axisymmetric simulations. (a)
Radial speed (normalized by initial shock speed) on the centerline vs. distance to the center; (b)
isosurfaces of the three-dimensional magnitude of the density gradient (Schlieren) colored by the
density. Speeds over Mach 18 at last measurement. Courtesy of D. J. Hill.

the updwinding bias of its candidate stencils. Moreover, even recent higher-order implementations
of WENO fail in creating a consistent stencil, since the convex combination of candidate stencils is
based on local smoothness indicators. As a consequence, the dispersion relation is not predictable
for such approaches and makes them not suited for accurate LES calculations. Similar conclusions
can be drawn from other higher-order shock-capturing methods, e.g. using elaborate limiters. These
considerations justify the use of hybrid schemes instead of pure shock-capturing methods or other
implicit LES methods that introduce too much numerical dissipation in the flow and alter the decay

of TKE.

5.3.2.1 TCD Stencil

In one dimension, the derivative of a function f(z) can be discretely approximated on a uniform

grid, at the location z = iAx, by the following 5-point at least 2nd-order accurate stencil

1
Dof = S (alfive = fi2) + (1/2 = 20)(fir1 — fi-1)), (5.17)
where the parameter o = 0 corresponds to the exact 2nd-order explicit stencil and @ = —1/12 to

the 4th-order stencil. As a tradeoff against accuracy, this parameter can be chosen to minimize
truncation errors in LES in the sense of Ghosal [34, 35]. The value o = —0.197 has been found

in [44] and forms the TCD stencil.
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Figure 5.4: Comparison of decay of turbulence kinetic energy in a homogeneous decaying compress-
ible LES computed on a grid of 323 points using standard WENO-5 vs. 5-point TCD scheme. DNS
computed with a 256% grid and a Padé method, Case D9 of Samtaney et al. [98] with microscale
Reynolds number of 175 and turbulent Mach number of 0.488.

5.3.2.2 Stable TCD Formulation

LES at very high Reynolds numbers using low-numerical dissipation centered discretizations raise
the issue of numerical stability, since resolved and subgrid viscous dissipation sometimes provide
negligible stabilization. For that reason, the momentum and scalar convective terms must be written

in the following skew-symmetric form adapted to compressible flows [6], as follows:

Npusty) - 10(pidy) | P, 0i) | i 0(pi)

61‘j 5 8$j 78$] 5 8$j ’ (5183)
Apviy)  19(pvay) | pi; 09) | v O(piy) (5.18)
oz, 2 O, 2 Ox; 2 Ox; .

In compressible flows, robustness can be improved by rewriting the convective term in the energy
equation in a skew-symmetric form as well. Honein and Moin [47] found that the most stable

formulation is the one that conserve the variance in total internal energy é = E/p — (U0, /2:

O(E+p)u;)  10(peiy) 9e  1_0(puy)

1
—pu;— + =€ 5.19
aa:j 2 8xj 2pu] 8.’Bj 26 5'xj ( a)
1._ a(ﬁﬂ,ﬂlj) 1__ . 0y 78uj N 8]7
§UZ 8xj + ipuqu 8xj + 8xj + 7 8Ij '

5.3.2.3 Flux-Based Formulation

The SAMR approach is based on flux discretizations. While WENO is naturally a flux-based for-
mulation, the TCD scheme must be expressed in a flux form as well. First derivatives approximated

by the difference operator D, in Equation (5.17) can be written in a divergence-like flux difference
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at the cell center i

D, f = , 5.20
where the flux Fj i/, at the right-hand sidewall of the cell i is given by
Fipi2=a(fira + fiy1) +(1/2 =) (fir1 + fi) - (5.21)

The derivation of the flux corresponding to the derivative of products in a skew-symmetric form is

described in [83]. As a result:

a(fg) 1 B S — FEN
5 = 3\ Pa(f9) + fDog+gDaf | = Az ; (5.22)
where
1
fff% = 2{04 [(gi—i-l + gi—1)(fixr + fic1) + (gig2 + 9i) (fig2 + fz)} (5.23a)

+  (1/2=20) [(fis1 + fi)(git1 + 95)] }

In Equation (5.22), the functions f and g correspond to puy and 4y for the convective term of the
momentum transport equation given by (5.18a), and to piy and 1[) for the convective term of the
scalar transport equation given by (5.18b). The energy convective contribution Equation (5.19) is
separated in divergence-like terms whose fluxes are rewritten like Equation (5.21), and product-like

terms whose fluxes are rewritten like Equation (5.23).

5.3.2.4 WENO-TCD Flux-Switching Technique

The WENO-TCD scheme requires an explicit ‘switch’ to change from WENO in regions of extremely
high gradients, such as shocks, to the TCD scheme in smooth flow regions. Around discontinuities,
the WENO scheme computes fluxes at cell walls based on a weighted convex combination of can-
didate stencils that minimizes interpolation across shocks. For the subgrid activity to be correctly
computed, thereby assuring the quality of the LES, the use of WENO is restrained to regions con-
taining shock waves only. The formulation of robust detection criteria of physical discontinuities
problems remains an open research area, and work has essentially concentrated on geometrical crite-
ria based, for instance, on normalized curvature of pressure and/or density (as in [44, 83] and other
hybrid methods cited within). Instead, a new WENO/TCD switching method has been developed to
better extract the physical nature of the compressible flow, therefore optimizing the use of WENO.

To illustrate the technique, consider the local one-dimensional Riemann problem at every cell wall
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of the computation domain. An approximate solution, denoted by a subscript x, can be computed
using Roe-averaged quantities from the given left state (cell face ¢, subscript L) and right state (cell
face i + 1, subscript R). Lax entropy conditions allow for characterizing the type of the waves u —a
and u+a (shock or rarefaction wave) connecting the right or left state from the central state x, with

a the filtered sound speed of the mixture. A shock is produced for the wave u £ @ if
up +ar < uy, +a, <urp tar. (524)

In this set of inequalities, @y, g is computed by evaluating /4p/p at the left or right cell faces, and

the central state (U, @) corresponds to the Roe’s averages [95]

~ _ \/PLurL ++/PRUR (5.25a)

Y/ PEa
7, - \/(%—1)(1{*—;@3), (5.25D)

where the Roe-averaged filtered enthalpy H, and specific heat ratio 7, are given by

_ VoL Hr ++opH
o, — YPLiLtVPRER (5.26a)
VoLt VPR
¥ = —2r (5.26b)
Cpx — Tm %

Cpx = PLop.L i PRO.R, (5.26¢)
VPL + VPR

P VALTmL + VPR mR (5.26d)
VPL t VPR

In Equation (5.26), (H, ¢y, m) L. r are computed by evaluating ((p+ FE)/p, ¢y, R/m) for the mixture
at the left or right cell faces. The departure of the inequalities (5.24) is evaluated within a threshold
value arax/ay in order to eliminate weak acoustic waves that could be easily handled by the TCD
scheme. For better efficiency and flexibility, this criterion is combined with a geometrical test based

on the mapping

219
V) = — 5.27
of the normalized pressure gradient ©; at the cell face ¢
= ‘ijl - €z| (5.28)
i1 + Bl

inspired from slope-limiting techniques. A threshold for the latter geometrical criterion is defined by

aMap- Algorithm 1 applied to the filtered vector of state g; at the cell wall ¢ summarizes the technique
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for one-dimensional switching. Cell faces are actually marked in a tight area around regions where

WENO is needed according to the criterion
Ci = {(zi—1/2,Tiy1/2) € R: g satisfies Alg. 1}. (5.29)

All cell faces in a neighborhood of size mAxz (m given) of cell faces belonging to C; are also flagged

and WENO stencils will be constructed over the sets of cell faces C]* = US:_mm Citm-

Algorithm 1 Physical discontinuity detection algorithm.

if ¢; verifies inequalities Equation (5.24) to some departure ar.x then
if ©(¥;) > amap then
Mark cell wall ¢
end if
end if

1t FE

form as FES]/Dz» the hybrid flux takes the form

denotes the WENO fluxes and the inviscid fluxes are represented on a skew-symmetric

WENO m
Fi+1/2 , in C]

TCD : m
Fi+1/2a in C7",

Fit12 = (5.30)

where @ denotes the complement of CI". Equation (5.30) assumes that no smoothness requirements
are needed for the switch from one flux form to the other, while smooth transition should be enforced
if the switch was made on the derivative itself. Moreover, by construction, the dispersion relation is

preserved across schemes [44].

Comparing at different times the results of a one-dimensional simulation of a converging shock
impacting a concentric density interface using either curvature detection or the present switch-
ing technique, it is observed that the curvature criterion cannot capture easily shocks of variable
strengths unless the curvature threshold is set to a too low value, therefore increasing the amount
of WENO in other regions of the computational domain. For example, the curvature criterion fails
at capturing the shock formation described in Subsection 4.3.1, unless the curvature thresholds are
manually changed as the flow evolves. Two- and three-dimensional versions of this new switching
algorithm have been developed to treat complex configurations such as oblique waves, curved shocks,
and more general shock waves not aligned with the computational grid. It is based on the construc-
tion of local Lax criteria( 5.24) not only for the Cartesian velocity components but also for velocity
projections in all diagonal directions x —y, z—z, and y—z. Comparisons with sensors relying on pres-

sure fluctuations alone were performed as verification tests on complex one-dimensional examples
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Figure 5.5: Three-dimensional supersonic shear layer (periodic in the spanwise direction z). (z,y)-
plane cut across the center of the jet of the density (top) and WENO-TCD flagging (bottom).
WENO is turned on in the directions = and y (green) and z, y, and z (red) where shock waves are
present. Courtesy of G. Matheou.

such as plane shock-contact interaction with reshock, radially symmetric cylindrical and spherical
converging shock-contact interaction with reshock, shock-entropy wave interaction, colliding blast
waves, vacuum test, etc.; and multi-dimensional examples as well, such as plane RMI, cylindrical
converging RMI, supersonic shear layer (see Figure 5.5), supersonic inclined jet (see Figure 5.6), etc.
The robustness of this technique is in the universality of the threshold values. The values of ar,ax

and anap giving superior results to former criteria are both around 1% (see Tables 5.2, 5.3 and 5.4).

Figure 5.6: Three-dimensional supersonic inclined jet using SAMR, (no periodicity in the z direction).
(z,y)-plane cut of the WENO-TCD flagging. WENO is turned on in the directions z and y (green)
and z, y, and z (red) where shock waves are present, in particular around the bow shock forming
ahead of the jet. Courtesy of A. Ferrante.
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5.3.3 Time-Marching Method for SAMR

The use of low-numerical dissipation centered schemes suitable for purely convective problems, as
it is the case for high Reynolds number flows, requires particular temporal stability requirements.
Explicit multi-stage schemes can be easily implemented within SAMR. Lower-order RungeKutta
(RK) methods are not stable, so third or fourth-order RK time-marching methods are considered.
RK substages can also be unstable when using upwinding in WENO: all RK coefficients must be
positive in order to avoid undesirable oscillations around shocks where WENO is used. As a result,
the optimal third-order strong stability preserving (SSP) RK scheme of [37] is chosen. Details are
provided in Subsection 2.1 of [83].

5.3.4 Description of the Large-Eddy Simulations

Seven LES were performed on both the LLNL machine uP and the Center for Advanced Computing
Research (CACR) shared heterogeneous cluster (SHC) at Caltech, and are listed in Tables 5.2, 5.3
and 5.4. The light-to-heavy air—SFg interaction correspond to runs 12, A1/A1b for a M; = 1.2
incident shock interaction, and run 11 and B1 for M; = 2.0. Runs 12 and 11 are lower resolution
simulations that respectively ran until a time of about four and seven times the first reshock time
with reasonable computational cost. These simulations allowed us to follow the evolution of various
properties of the mixing zone for the very long time. Runs A1l and B1 are twice refined in the three
directions compared to runs 12 and 11 respectively. These simulations also contain more detailed
statistics than the lower resolution runs. Run Alb is a full cylinder version of run Al that has not
been analyzed yet. It will be used for visualization purposes.

The heavy-to-light SFg —air shock interaction is studied in the runs A2 and B2 at incident Mach
numbers M; = 1.3 and 2.0 respectively. They have the same resolution as the runs A1/A1b and BI.
The runs are completed but are currently being post-processed.

Results on the air—SFg interaction are presented in a fashion that puts in parallel the two
incident Mach numbers. When possible, comparisons are made at similar times in the history of the
flow (initial state, first reshock, first deceleration, etc.). We also compare this geometry to the plane
configuration. Details on the post-processing methodology are listed in Appendices B and C.

The grid refinement criterion, based on the local density gradient, allows to refine both regions in
the vicinity of the various shocks and the mixing layer. Owing to the geometry of the flow, at early
times, finest grids are needed in less than 20% of the domain as the mixing layer spatial extension
is still limited. The finest grids still represent a small fraction of the computational domain as the
mixing layer is compressed during the reshock. However, after the first reshock, the finest grids can
represent more than 70% of the domain as the mixing layer radially expands. At late times, the

total number of cells for run A1l or Bl peaks around 220 million, to compare with the almost 300
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million cells required if the grid is uniform and corresponds to the finest resolution. Therefore, for
this particular low SAMR proves to be useful mainly in the first half of the life of the mixing layer.
At all times the largest portion of the computational cost corresponds to the numerical integration
within the WENO-TCD scheme.

expensive WENO method is in part responsible for that cost even though it is only used in the

While the TCD scheme is computationally very efficient, the

vicinity of shock. Since the multistage RK time-marching method requires a spatial synchronization

at every substep, it is more communication-intensive than single-step methods.

Parameters run 12 run 11
Gas combination air— SFg air— SFg
Pre-shock Atwood number A 0.66 0.66
Incident Mach number M 1.3 2.0
Unshocked outer fluid density po 0.27885 0.27885
Unshocked outer fluid sound speed ag 340 340
Initial Initial shock position Rg, 1.05 1.05
Conditions Initial interface position Rgo 1.00 1.00
Main pert. amplitude hg 0.08 0.08
Symmetry-breaking pert. amplitude hi 0.01 0.01
Symmetry-breaking pert. parameter Ko 1 1
Azimuthal wavenumber n in | cos(nf)| 8 8
Axial wavenumber k in | cos(kz)| 24 24
Initial interface thickness 6(? 0.01 0.01
Topology 1/4 cylinder 1/4 cylinder
Approx. box dimensions (L, Ly, L) (1.3,1.3,0.785) (1.3,1.3,0.785)
Exact (B, 8:) (837/204,1/2) (837/204,1/2)
Geometry Base resolution N; X N, X N, 83 x 83 x 51 83 x 83 x 51
Additional levels of refinement (2,2) (2,2)
Equivalent finest resolution 332 x 332 x 204 332 x 332 x 204
Finest grid resolution (Az = Ay) Az = Az ~ 0.0039 | Az = Az ~ 0.0039
Inner cylindrical radius 7y, 0.04 0.04
Ghost cells 3 3
LES cutoff scale A, Az Az
Numerics SGS vortex alignment on S&Q yes yes
SAMR Flagging on scaled |Vp| thresh. 0.15 0.15
WENO-TCD thresh. (apax, @Map) (0.01,0.01) (0.01,0.01)
Simulation time 0.030 0.020
Computations Nodes x CPUs/node 16 x 4 (shc) 16 x 4 (shc)
© CPU hours 49152 48384
Number of cylindrical shells for stats 95 95

Table 5.2: Parameters used in the lower-resolution air— SFg three-dimensional simulations of shock-
driven mixing in a converging cylindrical geometry. MKS units. Note that 0.785 ~ 7 /4.
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Parameters

run Al

run Alb

run Bl

Gas combination

air— SFg

air— SFg

air— SFg

Pre-shock Atwood number A 0.66 0.66 0.66
Incident Mach number M 1.3 1.3 2.0
Unshocked outer fluid density po 0.27885 0.27885 0.27885
Unshocked outer fluid sound speed ag 340 340 340
Initial Initial shock position Rg, 1.05 1.05 1.05
Conditions Initial interface position R 1.00 1.00 1.00
Main pert. amplitude hg 0.03 0.03 0.03
Symmetry-breaking pert. amplitude hi 0.005 0.005 0.005
Symmetry-breaking pert. parameter Ko 1 1 1
Azimuthal wavenumber n in | cos(nf)| 12 12 12
Axial wavenumber k in | cos(kz)| 22 22 22
Initial interface thickness 5(? 0.005 0.005 0.005
Topology 1/4 cylinder full cylinder 1/4 cylinder
Approx. box dimensions (L, Ly, L) (1.48,1.48,1.00) (1.48,1.48,1.00) (1.48,1.48,1.00)
Exact (Br, 82) (6657/1408,7/11) (6657/1408,7/11) (6657/1408,7/11)
Geometry Base resolution Ny X N, X N, 95 x 95 X 64 95 x 95 X 64 95 x 95 X 64
Additional levels of refinement (2,2,2) (2,2,2) (2,2,2)
Equivalent finest resolution 760 x 760 x 512 760 x 760 x 512 760 x 760 x 512
Finest grid resolution (Axz = Ay) Axr = Az ~0.0019 | Axr =2Az>~0.0039 | Az = Az~ 0.0019
Inner cylindrical radius 7y, 0.04 0.04 0.04
Ghost cells 3 3 3
LES cutoff scale A, Ax Az Az
Numerics SGS vortex alignment on S&<2 yes yes yes
SAMR Flagging on scaled |Vp| thresh. 0.15 0.15 0.15
WENO-TCD thresh. (apax, ®Map) (0.01, 0.05) (0.01, 0.05) (0.01, 0.05)
Simulation time 0.025 0.025 0.015
Computations Nodes x CPUs/node 32 x 4 (she) 16 x 8 (uP) 32 x 4 (she)
CPU hours 89088 107520 99840
Number of cylindrical shells for stats 280 280 280

Table 5.3: Parameters used in the higher-resolution air— SFg three-dimensional simulations of
shock-driven mixing in a converging cylindrical geometry. MKS units. Note that 1.000 ~ 77 /22.




104

Parameters run A2 run B2
Gas combination SFg —air SFg —air
Pre-shock Atwood number A -0.66 -0.66
Incident Mach number M 1.3 2.0
Unshocked outer fluid density po 0.27885 0.27885
Unshocked outer fluid sound speed ag 300 300
Initial Initial shock position Rg, 1.05 1.05
Conditions Initial interface position Rg 1.00 1.00
Main pert. amplitude hg 0.03 0.03
Symmetry-breaking pert. amplitude h; 0.005 0.005
Symmetry-breaking pert. parameter Ko 1 1
Azimuthal wavenumber n in | cos(nf)| 12 12
Axial wavenumber k in | cos(kz)| 22 22
Initial interface thickness 6OC 0.005 0.005
Topology 1/4 cylinder 1/4 cylinder
Approx. box dimensions (L, Ly, L) (1.48,1.48,1.00) (1.48,1.48,1.00)
Exact (Br, 82) (6657/1408,7/11) (6657/1408,7/11)
Geometry Base resolution N, x N, x N_ 95 x 95 X 64 95 X 95 x 64
Additional levels of refinement (2,2,2) (2,2,2)
Equivalent finest resolution 760 x 760 x 512 760 x 760 x 512
Finest grid resolution (Az = Ay) Az = Az~ 0.0019 | Az = Az ~ 0.0019
Inner cylindrical radius 7y, 0.04 0.04
Ghost cells 3 3
LES cutoff scale A, Ax Ax
Numerics SGS vortex alignment on S&Q yes yes
SAMR Flagging on scaled |Vp| thresh. 0.15 0.15
WENO-TCD thresh. (apax, ®Map) (0.01, 0.05) (0.01, 0.05)
Simulation time running running
Computations Nodes x CPUs/node 16 x 8 (uP) 16 x 8 (uP)
CPU hours
Number of cylindrical shells for stats 280 280

Table 5.4: Parameters used in the currently running higher-resolution SFg —air three-dimensional
simulations of shock-driven mixing in a converging cylindrical geometry. MKS units. Note that
1.000 ~ 77 /22.
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5.4 Cylindrical-Shell Statistics: Definitions

The natural symmetry of the problem results in defining as ‘shell’ a two-dimensional cylindrical
surface of radius r extending in both 6 and z directions. We define the instantaneous average for an

arbitrary field @ over a shell of radius r at time t as

(@Q)(r,t) = ALT//f(r,G,z,t)rdez, (5.31)

where A, is the surface area of the shell of radius r (A, = wL,r/2 for a 7/2 wedge). The instanta-
neous volume-average of the quantity @) is simply obtained by integrating (@) in the radial direction.

@ can then be formally decomposed as

Q(z,t) = (Q)(r,t) + Q'(r,0,2,t) = Q(r,t) + Q"(r,0, 2,1), (5.32)

where the tilde now represents the instantaneous Favre-like, shell-average

Q(r,t) = <?§>2>, (5.33)

Note that a shell-average computation involves first the interpolation of Cartesian fields over the
shell that can possibly cross different SAMR, patches being handled by different processors, then
averaging the sampled fields. The sampling in z and 6 is performed according to the smallest grid
spacing, so that fields will be sample in both direction every Az. Data comprised in wedge-like
volumes 0 < 0 < 0,5, = 7/30 close to the horizontal wall, and 0,4, = (7/2—7/30) < 6 < 7/2 close
to the vertical wall, are arbitrarily discarded to avoid wall-effects. From Equations (5.32) and (5.33),

we can define the following instantaneous variances:

Var@ - Q) - (@) - Q)
ar :7:N7~2:@7<PQ>2
V(@) = Q=@ =T

(5.34a)

(5.34D)

For each M, shell-averages are used to gain a better understanding of the different stages of the
growth of the mixing layer. In what follows, we investigate for example the evolution of the mixing-
layer center position and width. Shell-averages on both the resolved- and the subgrid-scale flow
quantities can illustrate the importance of the subgrid kinetic energy and dissipation in the mixing.
Various spectra are also computed late in the mixing evolution on cylindrical shells taken across the
center of the mixing zone. The effect of the anisotropy of the flow on the various dynamic scales of

the turbulence is quantified using directionally dependent Taylor and Kolmogorov microscales. The
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Quantity of interest Length Density Speed Time TKE per unit mass turbulent dissipation
2
. . R
Characteristic quantity Ry 0 ag = \/'ya;r% (TOQ ag g0 = “(’il%
Evaluation (MKS units) 1.0 0.27885 340 0.0029 115000 0.5796

Table 5.5: Basic characteristic quantities for dimensionless data representation. The index 0 denotes
the fluid standing initially on the side where the incident shock comes from.

mixing properties are finally analyzed by investigating probability density functions (p.d.f.s) taken
at different shell radii across the width of the layer.

The above shell-averaged quantities are made dimensionless, by a similar choice of parameters
made in Chapters 3 and 4. We summarize these definitions in Table 5.5. The characteristic turbulent
TKE per unit mass and turbulent dissipation are also listed. Note that these definitions depend

only on the nature of the outer unshocked fluid properties (here unshocked air).

5.5 The Different Stages in the Growth of the Mixing Layer

5.5.1 Visualization

Figures 5.7 and 5.8 show the evolution of the mixing layer at different stages of its growth, by looking
at the scalar isosurfaces corresponding to a mass fraction of 50% (center), for 75% air (or spike, the
portion of heavy fluid penetrating into light fluid), and for 75% SFg (or bubble, the portion of
light fluid penetrating into heavy fluid). The first snapshot corresponds to the interface accelerated
towards the apex as the spikes and bubbles are stretched away from each other. The second picture
shows the compressed state of the mixing layer during the first reshock and the phase inversion. The
late turbulent mixing displays a wide range of dynamic scales as shown on the bottom subfigure, for
each Mach number. Notice the SAMR levels displayed on the background that the mesh is refined
in the region of the mixing zone and around shocks. For example, the reflected shock produced from
the initial shock refraction is seen slowly exiting the domain on Figures 5.8a,b. The transmitted

shock produced from the first reshock interaction exits the domain on Figure 5.8c.

5.5.2 Mixing-Zone Growth

To measure mixing-zone growth, the mixture fraction (¢) is shell-averaged in the azimuthal and

axial directions and the width of the mixing region ¢ at time ¢ is defined according to

s =4[ " a- whwar (5.35)

in
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Figure 5.7: Differently colored iso-surfaces for mass fractions ¢ = 73.1%, 50%, and 26.9% visualize
the evolution of the mixing zone: (a) the interface converges towards the axis; (b) the interface is
reshocked a first time; (c) late-time turbulent mixing is observed. The gray levels on the background
planes represent the domains of different mesh refinement. Case air—SFg, My = 1.3.
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Figure 5.8: Differently colored iso-surfaces for mass fractions ¢ = 73.1%, 50%, and 26.9% visualize
the evolution of the mixing zone: (a) the interface converges towards the axis; (b) the interface is
reshocked a first time; (c) late-time turbulent mixing is observed. The gray levels on the background
planes represent the domains of different mesh refinement. Case air—SFg, My = 2.0.
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To understand this definition, one can think of a smooth radial profile (¢) of the mixture fraction
from air outside ({(¢)) = 0) to SFg inside ({¢)) = 0) in the form of a tanh function of intrinsic
thickness § and centered on the mixing-zone center r = r.. In this case it is easy to show that §
verifies Equation (5.35), providing that the boundaries r = r;;, and r = r,,; are sufficiently far from
Te, l.e. 0 K re—7rip and § K 7o — . Another interpretation is mentioned later in Subsection 5.8.1.
Figure 5.9 shows the evolution of the width ¢ and its growth delta for both Mach numbers. We also

define the mixing-zone center 7. as

rl) =4 [ S - hwarn, (5.36)

which is plotted in Figure 5.10.

To confirm what is observed in figures 5.9 and 5.10, and following the approach of Chapter 4, the
different stages in the acceleration of an air—SFg interface initially impacted by a shock of incident
Mach number M; = 1.3 or 2.0 are summarized in Table 5.6. All the quantities displayed in this table
are obtained from the simulations and compared to simulations and experiments performed in plane
geometry. In Table 5.6, the different characteristic times describing the evolution of the mixing
layer, the interface velocities and the Atwood ratios agree well with the one-dimensional radially
symmetric simulations described in Chapter 4. The initial shock refraction produces a transmitted
shock that reflects off the axis to reshock the interface. As seen in Chapter 4 for the cylindrical
air—SFg, the reshock interaction is followed by the formation of a shock in the heavy fluid that will
reflect off the apex to reshock the interface a second time but with lower intensity (negative peak in
the growth rate plot Figure 5.9). Meanwhile, the interface, which was accelerated outwards by the
first reshock, decelerates to move radially inwards when it is reshocked a second time. There follows
a late-time slower growth, that stabilizes earlier for M; = 1.3 while the mixing layer keeps growing

and expanding radially from its radial position at the first reshock for M; = 2.0.

Close-ups of the growth around the first and second shock interactions are displayed in Fig-
ures 5.11 and 5.12. The growth observed is strongly non-linear and consists of highly distorted,
non-single-mode initial perturbations. For the first shock interaction, the growth rates are different
from the plane case because they are not defined the same way. In the plane case, the interface
growth rate saturates before the interface is reshocked and the saturation growth rate is the one
reported in the previous table. It is low compared to the cylindrical growth rates because there is
no geometrical effect that forces the perturbations to grow (see Chapter 3 for similar observations
on the linear growth). After the first reshock (second shock interaction), the growth is linear with
time, for both Mach numbers, as observed in the plane case and noticed in Hosseini’s experiments
on cylindrical RMI [50]. Comparisons with Hosseini’s experiments remain difficult as these exper-

iments correspond to different initial conditions and have a visual definition of the mixing-layer
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M; =13
(or M; = 1.24 for plane geom.)

M; = 2.0
(or My = 1.98 for plane geom.)

Time of incident shock interaction
Post-shock amplitude h(07)/Ro

Meas. plane h(0T)/L, .

Post-shock Atwood ratio AT

Shocked interface velocity difference AW/ag
Meas. plane AW /aq

Approx. shocked growth rate

Meas. plane shocked growth rate

Time of first reshock

Meas. plane time of first reshock

Post-reshock amplitude h(0),.c/Ro

Meas. plane h(01),.s/L, .

Post-reshock Atwood ratio Ajs

Reshocked interface velocity difference AW, /ag
Approx. reshocked growth rate

Meas. plane reshocked growth rate

Time of first deceleration
Time of second reshock
Time of second deceleration

Final time achieved for lower resolution runs
Final time achieved for higher resolution runs

0.20
0.05

4.6

7.3

~ 11 for run 12
~ 9 for run Al

0.08
0.0382
0.005
0.766
0.829
0.827
0.354
0.022

1.1
0.7
0.138
0.05
0.83
1.26
0.293
0.214

1.6
2.2
2.8

8 for run 11
5 for run B1

~
~

Table 5.6: Key approximate dimensionless times (ag/Rp)t, growth rates (1/ag)dd/dt, interface ve-
locity differences AW/ag created by the shock acceleration, post-shock perturbation amplitudes
h(0T)/Ro and Atwood ratios AT, characterizing the important stages of a cylindrical air—SFg in-
terface accelerated by a cylindrical converging shock of incident Mach number M; = 1.3 and 2.0.
Comparisons with Vetter and Sturtevant’s plane experiments at M; = 1.24 and M; = 1.98 [109, 43].

In these experiments, the sound speed is ag =~ 339 m.s~! for the case M; = 1.24 and ag ~ 347 m.s~!

for My = 1.98.
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Figure 5.9: Evolution of the mixing-layer width ¢ (red solid line) and growth rate dd/dt (blue
small-dashed line). Case My = 1.3 (left) and 2.0 (right).
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Figure 5.10: Evolution of the mixing-layer center r.. Case My = 1.3 (left) and 2.0 (right).

width. The post-reshock growth should be compared to the classic experimental observations of the
plane post-reshock growth ~ 0.28A4,, AW, t. We display finally the evolution of spike and bubble
shell-averaged radial velocities (u,)s and (u, ) in Figure 5.13 and volume V per unit axial length of

the mixing zone in Figure 5.14.

A scalar function is defined by Y = 2¢) — 1 such that Y € [—1,1]. As depicted in Figure 5.15,
the scalar profile evolves to shapes different from the initial tanh-like profile, and exhibits irregu-
lar features as a consequence of complex large-scale dynamics. After the initial shock interaction,
organized spikes and bubbles segregate distinctly until the first reshock where the interface is com-
pressed then re-expanded. The post-reshock dynamics induces a more chaotic flow that, on average,
is represented by wider profiles of the scalar shell-averages. For M; = 2.0, the entrainment of inner
heavy fluid captured in between the apex and the mixing zone is illustrated by a slow decrease in

the amount of pure heavy fluid on the very left side of the mixing zone.
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Figure 5.11: Evolution of the mixing-layer width § following the initial shock interaction. Simula-
tion (red solid line), three-dimensional linear impulsive model Ao /ag (blue small-dashed line), and
ﬂﬁm/ao (pink dotted line), with 8 = 0.3 for M; = 1.3 and § = 0.45 for M; = 2.0. heo given by
Equation (3.32). Case My = 1.3 (left) and 2.0 (right).
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Figure 5.12: Evolution of the mixing-layer width ¢ following the first reshock. Simulation (red solid
line) and B3 A7, AW,s (blue small-dashed line), with A}, and AW, s determined at the reshock
interaction and ;s = 0.75 for M; = 1.3 and (3,5 = 0.28 for M} = 2.0. Case M; = 1.3 (left) and 2.0
(right).

5.5.3 Turbulence Statistics

5.5.3.1 Shell-Averaged Statistics vs. Radius At Different Stages

Favre-like shell-averaged statistics of the turbulent activity such as resolved-scale TKE (K), subgrid-

scale TKE (k) (per unit mass), resolved-scale dissipation (g;.s), and subgrid energy transfer (g54s)
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Figure 5.13: Evolution of the bubble and spike shell-averaged radial velocities (u,), (blue small-
dashed line) and (u,)s (pink dotted line). Case M; = 1.3 (left) and 2.0 (right).

Figure 5.14: Evolution of the mixing-layer volume per unit z—length V. Case M; = 1.3 (left) and
2.0 (right).

read as follows:

(K) = %Varp(uiui), (5.37a)

(k) = ;pi (5.37b)

(Eres) = M (5.37¢)
{p)

(sgs) = _$miSy), (5.37d)

(p)

(€) — (€res) = (€sgs), With (¢) the total dissipation, represents the transfer of kinetic energy through
the wave mode 7/A. and is provided by the stretched-vortex SGS model using Equation (5.11a). The

total dissipation (e) is simply related to the the shell-average of agj SZ’»J» where 0;; = d;; —7;; represents
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Figure 5.15: Shell-averaged scalar (Y') centered on the mixing-layer center r. vs. r, at different
stages of the mixing-layer evolution. Case M; = 1.3 (left) and 2.0 (right).

the total (resolved plus subgrid) stress tensor. Using Equation (5.37), we have the equalities

<€> = <57’es> + <€sgs>
1 1
= ((dijSiz) — (dij)(Si;)) — W (r23Ss7) — (T30 (Si3))
= L ((0118) — (ou)(Sia) a9

(p)

The total TKE is used to define the turbulent intensity
w o=y (5.39)
and the turbulent Mach number

M, = — (5.40)

where a = \/vp/p is the sound speed.

The following figures confirm the history of the mixing-layer evolution by focusing on the post-
shock flow, the post-reshock flow and the flow at very late time. Figure 5.16 shows the increasing
variance in the scalar field as the turbulent mixing occurs, while Figure 5.17 indicates the highly-
compressible character of the wave interactions with the mixing zone, in particular for M; = 2.0.
The initial density ratio of heavy fluid to light fluid is 5. For both M; = 1.3 and M; = 2.0, the
final density ratio of heavy inner fluid and light outer fluid remains close to 5. To compare, in the
plane RMI with reshock involving the same species, the final ratio is approximately 6.5 (see Figure
6b of [43]). In the future, it will be interesting to compare these ratios with the ratios obtained for

the heavy-to-light interactions (run A2 and B2).
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The stretched vortex subgrid model allows us to estimate directly the local subgrid kinetic energy
and dissipation. Figure 5.18 shows that (K) is about 10 to 15 times larger than its subgrid coun-
terpart, while Figure 5.19 indicates that the subgrid dissipation is about 20 (respectively 60) times
the resolved dissipation before the reshock for M; = 1.3 (respectively 2.0), and become 50 times the
resolved dissipation (respectively 100) as unresolvable scales, producing dissipation, develop after
reshock. The weakly compressible nature of the flow late after reshock is shown in Figure 5.20 repre-
senting the evolution of the shell-averaged Mach number (M), with M = |u|/c, and turbulent Mach
number M;. The turbulent Mach number peaking around the center of the mixing zone at values
ranging from 0.03 to 0.06. This is similarly observed in the plane case and generally in RMI-driven
turbulent mixing. Finally, the strong radial anisotropy of the flow is displayed in shell-averaged
velocity component profiles (see Figure 5.21): the radial component allows us to see the transmitted
shocks from the initial and re-shock interactions. At M; = 1.3, the late-time flow expands radially
outwards while for M; = 2.0 there exists a region of change in the radial velocity direction, around
the center of the mixing zone.

The radial profiles of the scalar and density variances in Figures 5.15, 5.16, and 5.17, and the
shell-averaged Mach number in Figure 5.20 show important differences in the flow structure between
the M; = 1.3 case and the M; = 2.0 case. Before the first reshock, for M; = 2.0, the spikes and
bubbles evolve more distinctly than for M; = 1.3. For M; = 2.0, the reshock occurs closer to the
axis and the post-reshock mixing layer expands radially from a location close to the axis to a radius
of the order of the initial radial position of the mixing layer. For M; = 1.3, the reshock occurring

further away from the axis, the final extent of the mixing layer is reduced.

5.5.3.2 On the Decaying Turbulence

A global measure of turbulence is obtained by looking at the volume-averaged total TKE, TKE,,;,
that recalls the various stages and wave interactions in the mixing-zone growth (Figure 5.22). Bumps
indicate the various shock interactions. Ultimately, the reverberations become weaker and the energy
deposited by baroclinic means during the first wave interactions, decays.

From u' (see Equation (5.40)) and the total turbulent dissipation (see Equation (5.37)), an
integral length scale, or technically the distance after which the self correlation of the velocity

components vanishes, and a turbulent Reynolds number can also be computed as

6= — (5.41a)

Rey = — (5.41b)

where the kinematic viscosity is v = u/p. The late-time decay of TKE is also observed on plots of

the integral length scale and turbulent Reynolds number evaluated at the center of the mixing layer
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and presented in Figures 5.23 and 5.24.



24

i) AN L

0.25

(a)

0.50 0.75 1.00
1Ry

(ag/Ro)t = 0.87

125

(b)

/Ry
(ao/Ro)t = 2.69

15

14
12
10

g 8

N

Q

\Y 6
4k
2L
0
0.00

g

o)

\
15
12 +
9

g

4

\ 6l
3t
0
0.00

Figure 5.17: Shell-averaged density (p) (red solid line) and density variance Var(p)

0.25

()

0.50
'Ry

(ao/Ro)t = 8.16

117

Var(o)/p,?

Var(p)/py?

Var(p)/pg’

<p>Ip,

<p>Ipy

35 T T T T 175
30 f 1 150
25 1 125
20 1 100
15 1 75
10 1 50
5F 1 25
0 - . L 0
0.00 0.25 0.50 0.75 1.00 1.25
1Ry
(a)’ (ao/Ro)t =0.36
140 1400
120 1 1200
100 | 1 1000
80 | 1 800
60 | 1 600
40 1 400
20 3 1 200
0 . . . : 0
0.00 0.25 0.50 0.75 1.00 1.25
/Ry
(b)’ (ao/Ro)t =1.21
25 T T T T 25
204t {20
15 1 15
10 {1 10
5t {5
0 . . . T 0
0.00 0.25 0.50 0.75 1.00 1.25
1Ry

(¢)’ (ao/Ro)t = 5.07

Var(p)lpy”

Var(p)lpy”

Var(p)lpy”

(blue small-

dashed line) vs. r, after the incident shock interaction (top), right after the first reshock (middle),
and at late time (bottom). Case M; = 1.3 (left) and 2.0 (right).



118

0.00025 . . . . 0.000025 0.005 . . . . 0.0005
0.00020 | 1 0.000020 0.004 | 1 0.0004
~_ 000015 | { 0000015  « 0.003 | {00003
£ & & £
& FOR L
vV 000010 } i {o0000010 vV Vv 0.002 | {00002 Vv
0.00005 | 1 0.000005 0.001 } ,: i {00001
0.00000 T & 0.000000 0.000 . i k o 0.0000
000 025 050 075 100 125 000 025 050 075 100 125
/Ry /Ry
(a) (ao/Ro)t =0.87 (a)’ (ao/Ro)t = 0.36
0.008 . . . 0.0008 0.030 . . . 0.0030
0025 | 1 0.0025
0.006 | 1{ 0.0006
0.020 | 1 0.0020
@ e € @
A 0.004 | 100004 7 A 0015 | o005 3
X X X
\ v Y \Y
0.010 | 1 0.0010
0.002 | 1{ 0.0002
0.005 | 1 0.0005
0.000 S S S 0.0000 0.000 A ' 0.0000
000 025 050 075 100 125 000 025 050 075 100 125
1Ry IRy
(b) (ao/Ro)t = 2.69 (b)’ (ao/Ro)t = 1.21
0.0010 . . , . 0.00010 0.0016 . . , . 0.00016
0.0008 | 0.00008
0.0012 | 1 0.00012
~ 0.0006 | 000006 « N
< & & &
A X A 00008 | { 000008 3
X x X X
v 00004 | 000004 vV V M
0.0004 | 1{ 0.00004
0.0002 | 0.00002
0.0000 Lo : : : 0.00000 0.0000 : : : : 0.00000
000 025 050 075 100 125 000 025 050 075 100 125
/R, /Ry
(¢) (ao/Ro)t =8.16 (¢)’ (ao/Ro)t =5.07
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Figure 5.20: Shell-averaged Mach number (M) (red solid line) and turbulent Mach number M;
(blue small-dashed line) vs. r, after the incident shock interaction (top), right after the first reshock
(middle), and at late time (bottom). Note the order of magnitude difference in the scale of the plots.
Case My = 1.3 (left) and 2.0 (right).
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Figure 5.21: Shell-averaged radial velocity component (u,) (red solid line), azimuthal velocity com-
ponent (ug) (blue small-dashed line) and axial velocity component (u,) vs. r, after the incident
shock interaction (top), right after the first reshock (middle), and at late time (bottom). Note the
order of magnitude difference in the scale of the plots. Case M; = 1.3 (left) and 2.0 (right).
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Figure 5.22: Volume-averaged total turbulent kinetic energy TK FE,,; as a function of time. Case
M = 1.3 (left) and 2.0 (right).
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Figure 5.23: Shell-averaged integral length scale £ computed in the center of the mixing zone r = r,
as a function of time, during the decay of turbulent kinetic energy. Case M; = 1.3 (left) and 2.0
(right).
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Figure 5.24: Shell-averaged turbulent Reynolds number Rey, computed in the center of the mixing
zone 7 = 1, as a function of time, during the decay of turbulent kinetic energy. Case M; = 1.3 (left)
and 2.0 (right).



123

5.6 Instantaneous Velocity, Density and Scalar Spectra

5.6.1 Time Evolution

Density, scalar and velocity fields can be sampled over the shell located at the center of the mixing
zone, in the 6 and z directions. For a given sampled field f(r, 0, z,t), applying the Fourier transform
of f in the periodic z-direction and averaging the power spectrum coefficients over the #-direction,
an instantaneous one-dimensional spectrum E is defined as a function of the axial wavenumber k.

and evaluated at r = r. as

Omaz
By (k) (re,t) = ﬁ/ B (re, 0, k.. )20, (5.42)
maz — Umin Jo,.;,
where F' is the Fourier transform of f in the z-direction. Figure 5.25 shows radial velocity spectra
at different times: right after the first reshock, right after the second reshock, later after the second
reshock, and at very late time. As time progresses, the peak of each spectrum moves to lower
wavenumber and an inertial range forms, approaching the universal Kolmogorov k, 5/3 scaling, as

observed by Hill et al. [43] in the plane geometry.

5.6.2 Late-Time Spectra

Figure 5.26 confirms the Kolmogorov-like energy spectrum for the three components of the velocity.
Except for u,, minimal aliasing errors are observed at the highest wavenumbers, and we recall
that no explicit filtering of any kind was performed, and WENO is not active across the mixing
zone. However, the use of bandwidth-optimized centered stencils, such as TCD, combined with
skew-symmetric discretization partly helps minimize the accumulation of energy owing to high-
wavenumber aliasing errors.

We performed various tests for homogeneous decaying turbulence in a three-dimensional box that
confirmed that aliasing is only seen for the any one-dimensional power spectra of the uy velocity
components taken in the kth direction only. Two-dimensional, or radial, spectra will minimize the
aliased aspect of the one-dimensional spectra for high wavenumbers, since aliased one-dimensional
spectrum of a given component wuy in the kth direction is combined with non-aliased one-dimensional
spectrum of uy in a jth direction orthogonal to the kth. This leads to the following comment: the
general issue with compressible solvers for Navier-Stokes or LES is that the discretized equations
do not converge to the incompressible equations in the limit of zero Mach number. As a result,
the discrete equations support unphysical modes that make simulations unstable. Spectral methods
are special in the sense that the pressure equation does converge to the incompressible version.
This problem, also well known in the finite element community, is the cause of aliasing errors in

collocated method and is generally referred to as “weak momentum” coupling. Consider for example
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Figure 5.25: k.-power spectra of velocity E,,, (k.) computed in the center shell of the mixing zone at
four different times: For My = 1.3 (left), (ag/Ro)t = 2.69 (dashed-dot line), (ag/Ro)t = 5.52 (long
dashed-line), (ag/Ro)t = 6.44 (small-dashed line), and (ag/Ro)t = 8.16 (solid line). For M; = 2.0
(right), (ag/Ro)t = 1.21 (dashed-dot line), (ag/Rp)t = 2.43 (long-dashed line), (ag/Ro)t = 3.09
(small-dashed line), and (ag/Rp)t = 5.07 (solid line). All computed wavenumbers shown and K,q. =
256.

the momentum in the z-direction at node i, the pressure gradient will be computed from nodes i+ 1
and ¢ — 1, but not from node i. This larger stencil produces a more or less large scale decoupling
of the momentum and mass conservation/energy equations that leads to the generation of waves at
the finest resolution (2Az mode) that grows. In addition, the first derivative centered operator (see
Equation (5.17)) used to compute resolved or subgrid viscous dissipation terms has, by construction,
no contribution at the highest wave numbers and cannot stabilize the growth of the 2Ax mode. As
expected, the momentum spectrum in the direction of the pressure gradient will show aliasing at high
wavenumbers. In the context of collocated methods, Rhie-Chow-like interpolations partially solve the
problem as they are equivalent to adding numerical viscosity in a significant way. The best approach
is to improve the representation of discrete, second derivatives (involved in the viscous dissipation
terms) at high wavenumbers in order to make them more dissipative at these wavenumbers. For the
resolved part, the operator D, D, has actually been rewritten in a narrow stencil form that can see
the mode 2Az. In LES however, the resolved viscous dissipation term is negligible and the subgrid
fluxes would have to be decomposed and discretized in a narrow stencil as well. The issue is still to

be resolved.

While they are governed by different equations, density and scalar exhibit spectra that correlate
well as shown in Figure 5.27. Figure 5.28 indicates that the spectrum E, (k,), corresponding to the

direction of anisotropy, contains more than a third of the total kinetic energy.
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Figure 5.26: k,-power spectra of velocity components F, (k) (solid line), E,, (k,) (small-dashed
line), and E,_(k.) (long-dashed line) computed in the center shell of the mixing zone at late time
(ag/Ro)t = 8.16 for My = 1.3 (left) and (ag/Ro)t = 5.07 for M; = 2.0 (right). All computed
wavenumbers shown and k.. = 256.
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Figure 5.27: k,-power spectra of density E,(k,) (solid line) and E;(k,) (dashed line) computed in the
center shell of the mixing zone at late time (ag/Ro)t = 8.16 for M; = 1.3 (left) and (ao/Ro)t = 5.07
for My = 2.0 (right). All computed wavenumbers shown and k,q. = 256.

5.7 Kolmogorov and Taylor Statistics

The anisotropy of the flow is further investigated in this section by looking at the evolution of various
characteristic scales of the flow at the center of the mixing zone r = r.(¢). We are first interested in
the Kolmogorov microscales, the smallest turbulence length scale, associated with viscous dissipation

of kinetic energy. From the classic definition of the Kolmogorov microscale for isotropic turbulence,

(et
n(t)_<<€>(m,t)> ’ (543)

we define n at r,
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Figure 5.28: Measure of anisotropy displayed on the k.-power spectra E,, (k.)/(Eu, (k.)+ Ey, (k) +
E..(k.)) —1/3 computed in the center shell of the mixing zone at late time (ag/Ro)t = 8.16 for

M; = 1.3 (left) and (ag/Ro)t = 5.07 for My = 2.0 (right). All computed wavenumbers shown and
kmaz = 256.

where () is given by Equation (5.38). In the runs A1 (respectively B1), we observe in Figure 5.29a
(respectively 5.29a’) that n ~ Ax/70 (respectively Az/100) at late times, which justifies the use of
subgrid modeling to model the viscous dissipation produced at scales smaller than the finest grid

spacing Ax. To study the isotropy of the viscous dissipation scales, Kolmogorov microscales in the

r-, 6-, and z-direction can be defined by

(WP e\
n(t) = << N )> : (5.44a)
<<V>3(cht)>
, (5.44D)
(e0)(Te,t)
<€03< A
n:(t) = << T )> : (5.44¢)

where the total dissipation rates in the r-, -, and z-direction are given by

no(t)

T
~
33
(e} o
H— ~+

<5'r’> = ﬁ (<p0'rr5r'r’> - <U7'r><pSrr>) y (5.45a)
(eg) = % ({(poeeSee) — (c00)(pSee)) , (5.45b)
<€Z> = ﬁ (<pazzSzz> - <0zz><pszz>) . (545(3)

In Appendix C, the above diagonal components of the stress tensor o and the strain-rate tensor S in
the cylindrical basis are given as a function of their respective components in Cartesian coordinates
(see definitions in Equations (5.7¢), (5.11a) and (5.13). It is observed (not shown) that after the

first reshock, 1y and 7, are almost the same at the center of the mixing layer. Because of such shell
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Figure 5.29: Shell-averaged Kolmogorov microscales n (red solid line), 7, (blue small-dashed line),
and 7y, (pink dotted line) computed in the center of the mixing r = r. zone as a function of time.
Case My = 1.3 (left) and 2.0 (right).

isotropy, it is convenient to combine # and z components, namely,

1
No> = 5(779 + 1), (5.46)

and to compare this to 7, defined in the direction of inhomogeneity of the mean flow. Figure 5.29
confirms that the first reshock is responsible for the creation of a wide range of scales, in partic-
ular smaller and smaller scales at which the dissipation occurs. Following the reshock, the radial
expansion of the mixing zone is associated with increase of Kolmogorov scales in the radial direc-
tion. These results also indicate late-time isotropy in the radial and transverse scales. For isotropic
turbulence, we would also expect similar dissipation rates in any direction of the flow, and therefore

same Kolmogorov microscales.

We are also interested in the Taylor microscales, the ‘smallest large scale’ in the turbulent flow,
i.e. the scale for which viscous dissipation begins to affect the eddies. It marks the transition from

the inertial subrange to the dissipation range. The isotropic Taylor microscale A\p at r. is classically

Ar(t) = WU’(%, t). (5.47)

given by
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Similarly, Taylor microscales in the r-, - and z-direction can be defined by

A(t) = W (5.48a)

No(t) = \W (5.48b)

Var,(u,)(re, t
) = ), a0
Note that if the mean flow had zero velocity and constant density (e.g. in RT flow starting with two
fluids at rest), and considering for simplicity Cartesian coordinates, i being 1, 2 or 3, Var,(u;) = (u?)
and Var,(S;;) = ((Ou;/0x;)?) (no sum on 7). As for the Kolmogorov microscales, it is observed (not
shown) that after the first reshock, A\g and A\, are almost the same at the center of the mixing layer.
Because of such isotropy transversally to the radial flow, it is again convenient to combine 6 and z

components, namely,

1
Aoz = 5()\9 + Az), (5.49)

and to compare this to A, defined in the direction of inhomogeneity of the mean flow. Figure 5.30
indicates again reshock, post-reshock events, and late-time evolution. The final Taylor microscales
are about ten times the finest grid spacing. Anisotropy between radial and transverse directions
remains strong until late time when A, and Ay, approach each other for M; = 2.0, and even converge
for M7 = 1.3. This can be compared to the plane RTT (e.g., see [19]) where an isotropic driving term
(the gravity) sustains the anisotropy at the microscale level at late times. In our case, the driving
terms, in other words the traveling waves, act impulsively or over a short period of time, confirming
the late-time rather isotropic character of the microscales. For isotropic turbulence, we would expect
similar Taylor microscales. Figure 5.31 depicts the temporal evolution of various Taylor Reynolds

numbers in the center of the mixing layer r = r.(t). These are defined as

Ry = Wm0 o
Var, (u,) (e, t) Ar(t)

V)(re,t) 7
Rey, (t) = Var, <(1jl>9()7"(:ct’)t)>\0(t)’ (5.50c)

Res (t) = VVarp<(lf>z(1irct’)t)AZ(t), (5.50d)

Rey,.(t) = %(ReAg(t)+Re>\z(t)). (5.50€)

Re,, (1) (5.50b)

The isotropy in the flow is also manifest in the Taylor Reynolds numbers evolution.
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Figure 5.30: Shell-averaged Taylor microscales Ar (red solid line), A, (blue small-dashed line), and
Ag- (pink dotted line) computed in the center of the mixing zone r = r. as a function of time. Note
the order of magnitude difference in the scale of the plots. Case M7 = 1.3 (left) and 2.0 (right).

Profiles of the shell-averaged mixture fraction have shown that the mixing displays inhomo-
geneities (e.g., spike and bubbles), even at late times, associated with the anisotropic direction r. It
is therefore of interest to investigate Taylor-like microscales related to variances in the scalar field

e = femBel,
(

(
Varp(a—)
B Var,(Y)(re,
Ay, (1) = \/Varp(}_%)(rc,t)’ (5.51b)

0
Aot) = /\W (5.51¢)

M) = 500+ A () (5514)

(5.51a)

/—\

As for the Taylor microscale, isotropy is found in directions of extension of the shell crossing the
mixing-zone center as Ay, and Ay, are almost the same after the reshock (not shown). Late-time,
near-perfect isotropy of the scalar Taylor microscales is observed for both incident Mach numbers

as seen in Figure 5.32

5.8 Mixing Statistics

LES subgrid ‘mixing’ models generally consider only resolved-scale transport, and do not attempt
to capture the small-scale mixing process between the two fluids. The present simulations model
the subgrid flux of a passive scalar (see Equation (5.11c), but do not explicitly model the scalar

mixing that occurs within the subgrid, at scales below the cutoff. In other words, the overall subgrid
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Figure 5.31: Shell-averaged Taylor Reynolds numbers Rey,. (red solid line), Rey, (blue small-dashed
line), and Rey,. (pink dotted line) computed in the center of the mixing zone r = r. as a function
of time. Note the order of magnitude difference in the scale of the plots. Case M; = 1.3 (left) and
2.0 (right).

model does not use or model information concerning the real diffusivity of the fluids involved. We
note that this is not true of the subgrid momentum flux, which incorporates direct knowledge of the
viscosity p within the exponential cutoff for the SGS energy spectrum. This then appears, in turn,
in the SGS momentum flux terms. Hill et al. [43] actually use an extension of the stretched-vortex
model to predict the contribution of certain mixing statistics below the cutoff scale. This work is
also described by the term ‘subgrid continuation’. In particular, Pullin and Lundgren’s model of the
mixing of a passive scalar inside a stretched-spiral vortex [89] has been used to study the effect of
the Schmidt number on continued scalar spectra and p.d.f.s (see [74]). The present LES does not
focus on subgrid continuation and therefore is only computing the ‘stirring’ of the scalar at the level
of the resolved scales, even though, somewhat inaccurately, we use the term ‘mixing’ to qualify the
turbulent evolution of the scalar field after the reshock. As a final remark, this work does not look

into the mixing transition [23] and this subject is left for possible future investigations.

5.8.1 Local-Composition Evolution

The width of the mixing region ¢ defined in Equation (5.35) can be rewritten

Tout

6(t) = Y ((1))dr, (5.52)

Tin

with
Ym(P) = 4(1 — 7). (5.53)
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Figure 5.32: Shell-averaged scalar Taylor microscales Ay, (blue small-dashed line) and Ay, (pink
dotted line) computed in the center of the mixing zone r = r. as a function of time. Case M; = 1.3
(left) and 2.0 (right).

¥m has a very similar profile to the fraction of mixed fluid defined in [19] by the amount of product

produced by a fast-kinetic chemical reaction between the light and heavy fluid

/s, if Y <
(@) = 1 (5.54)

(1 - 7/1)/(1 - 'ws)v if 7/] > 'll)sa

where 1), is the mixture fraction for a stoichiometric mixture. s = 1/2 would indicate that the
product of the mixing is equally composed of each reactant. The chemical product is of course
limited by the amount of lean reactant. If all fluid on a particular cylindrical surface were mixed, its
composition would be 9 (r, 8, z) = (¢)(r). Therefore, § can be interpreted as the thickness of mixed
fluid that would result if the entrained volumes of pure fluids were entering the turbulent mixing
layer to become perfectly homogenized in the directions 6 and z of extension of each cylindrical shell
across the mixing zone. For that reason, § can be also called an “entrainment length” or “maximum
chemical product thickness”, and is referred to as P,,. On the other hand, we define the “total

chemical product thickness” or “mixing length” as
Pt = [ o =1 [ - w)ar (5.55)

To quantify the state of the mixing within the layer, a mixing parameter is defined as the ratio of

the two product thicknesses

— = ([ = wnar) /([ - ), (5.50

in Tin

(1]
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Figure 5.33: Evolution of the entrainment length P, (red solid line) and the mixing length P; (blue
small-dashed line). Case My = 1.3 (left) and 2.0 (right).
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Figure 5.34: Evolution of the mixing parameter =. Case M; = 1.3 (left) and 2.0 (right).

and measures the total product formed relative to the product that would be created if all entrained
fluid were perfectly mixed within each shell. In general = < 1. The time evolution of the global
quantities P, and P;, and = are shown in Figure 5.33 and Figure 5.34 respectively. During reshock,
the mixing layer is compressed, as shown by the profile of P,,. Following the reshock, P; increases
rapidly, indicating significantly increased mixing. This is also indicated by the sharply peaked values
of Z. Well-mixed fluid observed after the reshock is achieved faster for M; = 2.0 than for M; = 1.3,

right after the reshock, suggesting that the strength of the reshock immediately affects the mixing.

5.8.2 Joint Density-Mixture Fraction Probability Density Functions

In order to study the inhomogeneity of the turbulent mixing due to the different structures (spikes
and bubbles), that act differently on either side of the mixing zone, we sample the mixture fraction

and density fields interpolated over cylindrical shells of given radius to create the Reynolds joint
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density-mixture fraction p.d.f. as follows:

P(pia,t) = %/pf’(p,w;w,t)dp- (5.57)

The shells of interest are those crossing the mixing zone in its center ({(¢) = 0.50, r = r.), the
one corresponding to the region dominated by spike structures ((¢)) = 0.25, r = ry), and the one
corresponding to the region dominated by bubble structures ({(¢) = 0.75, r = r). Before reshock,
the two fluids are mostly unmixed, and the p.d.f. shows two peaks for values of the mixture fraction
of 0 and 1. After the first reshock, the p.d.f. at the shell cutting through the mixing-zone center
r. exhibits a strong central mode, while for the shells r, and 75, the two peaks have moved towards
the mixing-zone center, away from the pure fluid values 0 and 1, indicating mixing progress. It is
observed that the strength of these two regions of the mixing zone with high density gradients is
sustained by the successive wave reverberation carrying pressure gradients in the radial direction.
For both incident Mach numbers, the bimodal nature of the mixing at the center of the mixing zone
is apparent at later times, as indicated in Figure 5.35. For M; = 2.0, the mixing zone contains larger
amount of SFg than for M; = 1.3, as the p.d.f. is shifted towards ¢ = 1. This is explained by the
fact that at higher Mach numbers, the compression ratio is low enough and the density of inner fluid
(here SFg) sufficiently high that the entrainment of heavy fluid into the mixing layer is more efficient
than for lower incident Mach numbers. Comparisons can be made with the plane geometry at late
times when the mixing-layer growth started to stabilize (figure 15d of [43]): the bimodal nature of
the p.d.f. is more pronounced and the p.d.f. at the center of the mixing layer is spread over a wider

range of mixture fractions.

5.9 Summary

This work has presented on-going research on LES of shock-generated mixing in RM flow in a
canonical cylindrical converging geometries. A hybrid numerical method has been used on each
subgrid of the mesh hierarchy within the AMROC framework: it is a shock capturing method but
reverts to a centered scheme with low numerical viscosity in regions of smoother flow. The stretched-
vortex SGS model has allowed for the capturing of the small-scale mixing process between the a
light fluid, outside, and a heavy fluid, inside, and vice-versa. Results have focused on the evolution
of the mixing layer and its internal statistics including various spectra and p.d.f.s of mixed mass
fractions. A detailed quantitative analysis has also been conducted including space-time histories
of instantaneous cylindrical shell-averages of diverse quantities, taken concentrically to the main
shocks. We have run simulations for the converging cylindrical air—SFg and SFg—air, but the

latter case is subject to current post-processing. Comparisons have been made with the plane RMI
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Figure 5.35: Probability density function f’(w) of the mixture fraction at different times calculated
from the resolved scales, across three shells of the mixing zone: r, = 7. — 6/4 (small-dashed line),

r. (solid line), and ry = r. + §/4 (dashed line), at late time (ag/Rp)t = 8.16 for M; = 1.3 (left) and
(ao/Ro)t = 5.07 for My = 2.0 (right).

with reshock for an air—SFg interface studied by Vetter and Sturtevant [109] and Hill et al. [43].
The successive reverberation waves prove to be responsible for the intense growth of the mixing
zone. After the second reshock event, a long decay of the turbulent energy is observed. At later
times, the growth stabilizes and the TMZ remains weakly compressible. Various late-time energy
spectra taken at the center of the mixing zone show an inertial subrange approaching the universal
ol scaling. The long-term mixing in the converging geometry exhibits a similar but somewhat
less pronounced bimodal aspect than in the planar case. The local isotropic nature of the flow has

been scrutinized through diverse statistics over cylindrical shells penetrating through the mixing
layer.
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Chapter 6

Conclusion

6.1 Summary

The interaction of a shock wave with a contact surface separating two fluids of different densities
has been studied theoretically and computationally in converging geometries. The investigation
was motivated by a desire to understand the effects of wave interactions on the RMI in plane and
converging geometries. Chapter 2 focused on the early linear regime when reflected and transmitted
waves created during the shock refraction at an initially slightly perturbed interface affect the reach
of the terminal growth rate predicted by Richtmyer. A characteristic time scale was found to model
this effect. The analysis considers receding shock waves as effective walls within the context of an
incompressible flow. Simulations at various incident Mach numbers and gas combinations confirmed
this model, in particular at high Mach numbers when the accelerated interface follows closely the
transmitted shock. We also attempted to model in a simple manner the asymptotic growth rate,
with promising results.

Chapter 3 presented first an incompressible model of the asymptotic growth rate for three-
dimensional cylindrical perturbations. It explained in particular the existence of critical pertur-
bations specific to curved geometries. In a second part, with the help of simulations of the Euler
equations for ideal gas, it was showed that, in the cylindrical geometry, linear azimuthal perturba-
tions grow to a higher final growth rate level than axial perturbations and plane perturbations of
equivalent initial wavenumbers, due to geometric convergence, flow acceleration and shock proxim-
ity. Our simulations covered various Mach numbers and wavenumbers (for a fixed gas combination).
Our compressible simulations differ from Mikaelian’s incompressible computations of linear RMI for
two-dimensional cylindrical perturbations [81] that aimed to simulate gelatin-ring experiments.

Chapter 4 focused on shock and reshock interactions in plane, cylindrical and spherical geome-
tries, for various Mach numbers and in the light-to-heavy and heavy-to-light combinations. We
considered and unperturbed interface and built wave diagrams to analyze the reverberation pro-

cess when the interface is processed by waves reflecting from the wall/axis/center after it has been
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accelerated initially. We first noticed important differences between the light-to-heavy and heavy-
to-light case. In the light-to-heavy interaction, the reshock process shows complex shock formation
in curved geometries while expansion wave interactions follow the first reshock interaction in the
plane geometry. As a result, the interface mean position is alternately accelerated and decelerated to
finally reach a stable equilibrium. For high incident Mach numbers, the final position is much closer
to the wall/axis/center than the initial position. The light-to-heavy interaction is characterized by
successive reshocks of decreasing strengths. In all geometries, the interface monotonically reaches a
final stable position.

In Chapter 5, we presented large-eddy simulations of the light-to-heavy cylindrical RMI and
the turbulent mixing driven by the wave reverberation observed in the previous chapters. We
confirmed differences from the plane geometry. In particular, the growth of the mixing layer lasts
longer than the plane geometry (more than three times the first reshock time, depending on the
incident Mach number). As in the plane case, a decay of turbulent kinetic energy was observed
after the first reshock, approaching the k~°/3 universal Kolmogorov scaling. During the late time
mixing, the turbulence is weakly compressible, independent of the incident Mach number. Isotropy
is found for the Kolmogorov directional microscales, and Taylor directional microscales converge at
late time, which differs from the RTI-driven mixing [19]. Anisotropy was noticed for the velocity
power spectra, suggesting the effect of the radial expansion on the dynamics of the turbulence. The
mixing efficiency was found greater for the high incident Mach number case. Probability density
functions of the mixture fraction across the mixing layer showed a somewhat less bimodal character
than the plane case, suggesting in particular a different entrainment process of the inner heavy fluid

into the mixing zone.

6.2 Future Work

The work presented here invites many possible directions for continued research.

Asymptotic Growth in the Plane Linear RMI

An attempt to model the asymptotic growth rate has been conducted with promising results and a

simpler expression than Wouchuk’s analysis. More effort is needed to complete this model.

Linear Perturbations in the Imploding Spherical RMI

To complete the work on the effects of the geometry on the linear regime of the RMI, the stability of
spherical slightly perturbed contact surfaces could be studied as well. The difficulties lies in the fact

that the problem cannot be reduced to two-dimensional simulations, therefore making highly refined
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computations difficult to achieve. The only work achieved in this context is the linear incompressible

model of Mikaelian exposed in [80].

Effect of the Atwood Ratio on the Linear Growth

In the heavy-to-light interaction, a reflected expansion fan is produced and, as shown in the literature
for the plane case, is responsible for a different growth evolution than the light-to-heavy case (e.g.,
phase inversion). For imploding cylindrical and spherical linear perturbations, the interface is also

RT unstable.

Effect of the Atwood Ratio on the Shock-Generated Mixing

Simulations of the mixing in the heavy-to-light cylindrical converging RMI are being post-processed
and will be compared to the light-to-heavy simulations. Because the reverberation process is different
and the stability of perturbations are reversed with the light-to-heavy case (RT unstable for the

imploding phase, stable for the exploding one), a different turbulent mixing is expected.

Effect of the Initial Perturbation Shape on the Shock-Generated Mixing

In the three-dimensional simulations, a single mode-like perturbed surface was considered with a
smaller symmetry-breaking perturbation superposed. However, in real flows the interface is random
and contains perturbations of many modes. The interaction between different modes could lead to
a complicated process of bubble merger in which the large bubbles are generated from the small

bubbles. Therefore, geometric effects could play a more important role for multi-mode interface.

Validation Against VTF Phase 2 Experiments

These experiments aim to focus a plane shock on a cylindrical shock traveling down a wedge and

interacting with a perturbed interface.

Shock-Generated Mixing in a Converging Spherical Geometry

Similarly to the cylindrical geometry, the mixing can be studied in the spherical geometry where
the convergence is more pronounced. Azimuthal and polar modes should interact differently than

orthogonal modes in the plane geometry or azimuthal and axial modes in the cylindrical case.
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Appendix A

Interface Acceleration for
Self-Similar Converging
Shock-Contact Interactions

Chisnell [15] considers the collapse of cylindrical and spherical shock waves moving through an ideal
gas with constant ratio of specific heats. Chisnell sought self-similar solutions of the Euler equations
behind the shock with radial symmetry in terms of the variables r/R; where the distance Ry(t) of

the incident converging shock from the origin at time ¢ < 0 needs to be of the form

Ri(t) = Ry (“_t>al, (A.1)

where ¢t = 0 would be the time of the shock-interface interaction if there was an interface, t; > 0 the
implosion time, and «a; the similarity exponent corresponding to the shock propagating in region
7 = 1, sometimes called Guderley’s exponent, characterizing the shock position history during the

implosion. The Mach number M; of the incident shock at ¢ = 0 is related to t; through

a1 R
¢, = fio

= e (A.2)

At a given time ¢, the flow behind the shock (r > Ry) is fully determined by the knowledge of the
flow just ahead of the shock front, the Mach number of the shock at ¢, and the adiabatic exponent
~1. The similarity exponent found by Chisnell is in excellent agreement with exact values obtained

in the literature.

Consider now the normal interaction of a converging shock with an unperturbed density interface.
We assume that the transmitted shock produced behaves like the incident converging shock, except

that it travels in region j = 2 with adiabatic exponent 5. First, the shock front position is assumed
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to follow the self-similar implosion

tr

Rr(t) = Ry (tT — t)% (A.3)

where t7 is the implosion time. This is related to the transmitted shock Mach number M at ¢t =0

(obtained from the one-dimensional problem of the shock interaction) by

asRy 11+ A
tr =

= — . A4
MT(IO Y2 1— A ( )

Second, we consider that the flow behind the transmitted shock and ahead of the accelerated inter-
face, i.e., for Rp(t) < r < R(t), has the self-similar properties described by Chisnell. Indeed, the
only way that the self-similar nature of the flow can be disturbed is by the characteristics coming
from the reflected waves produced during the shock interaction. The interface is treated passively,
that is, it is the path of a particle that is at r = Rg at t = 0 and has the position r = R(¢) at ¢ > 0.
Its speed R(t) is given by the self-similar radial velocity field u,.(R(t),t) given by Chisnell’s solution
u(r,t) applied behind the transmitted shock at r = R(¢).

We apply the following change of variables:

£ = (A.5a)

= t (A.5Db)

Partial derivatives in these two sets of variables are related by

0 1 0
g - -2 A.
or Ry 0€° (A.6a)
) o _Rro
- = — —§f{——. A.6b
ot ot Ry 0¢ ( )
In that set of variables, the velocity field given by Equation (2.14b) of [15] becomes:
Ry(t'
un(€,) = %)gwg), (A7)

where V(€) is given by Equation (4.4b) of [15]. To obtain the interface acceleration R(t) given by
du, /dt evaluated at r = R(t), we compute

Dt ot "ar T o

e R B (A8)

Du,  Ou, Ou,  Ou, ( Uy Ry 8ur>



140

For simplicity, ' — t. Using Equation (A.7) and differentiating Equation (4.4b) of [15],

Fg (6%)
—_— = _ — d s .
de ( ) v (A.9)

13 V+qq A%

with Fy given by Equation (4.2¢) using Equation (3.6) and g2 given by Equation (3.9¢) in [15],
Equation (A.8) becomes

Du, _ &Ry ( t )_2v2 (Fa— a2+ )V + (1 — o) = Fy

= 11— — A.10
Dt t5 (F2 —a2)V — quao ( )

ir
Taking successively the limit ¢ — R/Rr (i.e., 7 — R) and t — 07 of Equation (A.10), and observing
that in that limit V. — V(1) = Vg given by Equation (2.15¢) of [15] applied in region j = 2, the
interface acceleration right after the shock interaction is

; Ry

R(0T) = —— V%

_ (F2 —as +1)Vs +qo(1 —az) — F2
t7 '

(F2 — o)V — qaao

(A.11)

Since Vg = 2aa /(2 + 1) and from the expressions of Fo and g2 written in [15], Equation (A.11)

becomes:

In the strong shock limit, which is that used by Chisnell, it can be easily shown, from the one-

dimensional Riemann problem of the shock interaction that

2

AW ~
Y2 +1

R (0*)]. (A.13)

Using Equation (A.3), we obtain an estimate for the implosion time ¢7

20(2 Ro
tr ~ —_— A14
T 72_*_ 1AW7 ( )
and Equation (A.12) becomes
(%)
—1) 2oz =12 —1) 7= —ax(r2— 1)
oo ()]
R(0T) = - Yo, Yo, : (A.15)
o as (252 4y —3) 2
2\, T T

which we plug into the dimensionless Taylor development of the interface radius to obtain Equa-
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tion (3.21)

R(t) =1+ (AI/I/R(O+)> t+ % (A};O/QR(W)) i2+0 (). (A.16)
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Appendix B

Shell-Averaged Equations

B.1 Introduction

This appendix is an introduction to on-going research that aim to investigate the effect of uncer-
tainties in the shape of the interface between the two fluids on the transition to turbulence and
on profiles of turbulent transport properties within the mixing layer. Diagnostics will include de-
tailed space-time histories of shell averages, parallel (in the plane geometry) or concentrically (in
cylindrical geometry) to the shock, of base quantities, and of terms in the turbulent kinetic energy,
the turbulent mass flux and the density self-correlation equations. The basic statistics are listed in

Appendix C.

B.2 Plane Richtmyer-Meshkov Instability

The basic configuration will be air-SFg in a light-to-heavy configuration, with a planar incident
shock at M; = 1.5, 2.0, and 3.0. The simulation geometry will consist of a square tube configuration

with periodic boundary conditions in two directions.

B.2.1 Basic Quantities

Using a bar to denote a plane-average in a (y — z)-plane (parallel to the incident shock) at position

x, and at time ¢, define for quantity X (z,y, z,t)

X($7y7 Z, t) E (x7 t) + X/('r’ y7 Z’ t)7 (B.la)
X(z,y,2,t) = )?(x,t) + X" (z,y,2,t), (B.1b)
~ 0 X
X(z,t) = %, (B.1c)
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where p is the total gas density. The base quantities will consist of

- 7 B ol g W Yy Y
P, Uiy, P, T7 Uy, P Uy, [ uj7 Uy uj)

where u; is velocity, p is pressure, T' temperature, and v = 1/p. Also

7 T Rnn
Rij=puiui, K 2

will be calculated. For what follows, x =1, y = 2, and z = 3.

B.2.2 Un-Modeled Equations

In addition, the terms appearing in three important un-modeled equations will be calculated. These

are terms comprising the turbulent kinetic energy, the turbulent mass flux, and the density self-

correlation equations. These are, respectively

0pK)  OpK@) _ b O Gow 0(ualul) 0gp)
ot Ox * 0w oz ' Ox 2 Ox Ox
+ aué Tos ’gg — 0} g;tgv (B.4a)
a2 ) (-0 (v B v )
~ o, AT (pu Rm> P, agf)
- (8%5/ D) f;-j) : (B.4b)
Note that:
Rij = pujuj —pa;a; (B.5)
where a; = M/ﬁ is the turbulent mass flux and b = —p’ /' is the density self-correlation. We note

that all of the base quantities and the various terms appearing in the above equations are functions

of z and ¢ through the evolution of the simulation. Some terms of these equations (for example,

averages of products of deviatoric stresses and velocity gradients) may have substantial subgrid

contributions. Equations for a, and a, (in the plane of the mixing zone) should be statistically zero,

so only the a, equation has been written.
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B.3 Cylindrical Richtmyer-Meshkov Instability

B.4 Basic Quantities

Using brackets to denote a shell-average in a (6, z)-surface at position 7, and at time ¢, define for

quantity Q(r, 0, z,t)

Q(r,0,2,t) = (Q)(r,t) +Q'(r,0,z,1t), (B.6a)
Q(r,0,z,t) = Qr,t)+Q"(r,0,z1), (B.6b)
T (0] .
Qrt) = R (B.6¢)

where p is the total gas density. Define

=

L Ryg = (puul). (K) =

For what follows, (i,7) =1, 2, or 3 stands for z, y, or z. Cylindrical coordinates are (r, 6, z).
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B.5 Un-Modeled Equations

In addition, the terms appearing in three important un-modeled equations will be calculated. These
are terms comprising the turbulent kinetic energy, the turbulent mass flux, and the density self-

correlation equations. These are, respectively

A, 12GIKIT) 20 [ O gy g, (%2 4 g, 2]
— % {ar (6(r((9<7rm,>) - <099>> + ag (8(1"59?9» + <0'7"9>) + aza(rf;m»]
L O(r{plu"Puy)  10(r(urp))
2r or r or
L 100r(op,un) + (070 up) + (07, )]
r or
+ (P'V-u)— (o' :Vu'), (B.8a)

9((p) ar) 10(r{p)aruy) _ (p)agus _, [3<p> 1 (3(T<0n->) _ <099>)] + o) 3p’>

ot r or r or r or

/ a(rai‘r) + 1<l/l 60';9 / 807/"2> o <1/fl70-t/99>:|

W or ) rf 8¢9>+<V" 0z r

_p <a7. O — ) _ o0l a9)> . <<p’ uz; - Rw) 24

- (D ) - -, (B.3b)
r{p) a, (r{v, u,. / /
% ©w) % _ (1T<+p>b) a( g)z ) _ @% +2(p) (V) V - ), (B.8c)

where a, = (p’ uy)/(p) (¢ = 7,0 or z) is the turbulent mass flux and b = —(p'v}) is the density
self-correlation. We note that all of the base quantities and the various terms appearing in the above

equations are functions of r and ¢ through the evolution of the simulation.
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Appendix C

Shell-Averaged Statistics:
Methodology

The following procedure has been applied to a combination of air and SFg but could be directly

applied to any two-fluid combination.

C.1 The Statistics Class Within AMROC

A statistics class WENOStatistics, present in the directory vtf/amroc/weno/, allows to interpolate
keys (e.g., the density) at any location of the computational domain as well as to take averages over
one-dimensional streaks or two-dimensional surfaces (probes). The class is associated to a parser
in vtf/amroc/weno/StatParser/ that allows the user to define his keys and probes in his local
application directory through an input file Stats.def. The file produced is Stats?.dat where ?
corresponds to the time steps at which the statistics are evaluated.

Since the interpolation was intended for the GFM method that currently is first-order by def-
inition, the interpolation class available was only first-order. Even if one would construct a cor-
rect cut-cell method, a first-order interpolation should be sufficient to lead to an overall second-
order scheme, since the results are used in the numerical flux approximation only. Also for con-
structing fluid-structure coupling values, first-order is more than enough, since our time splitting
approach is first-order only, too. However, for statistics purposes, a second-order interpolation
vtf/amroc/clawpack/src/?d/interpolation/intpol?_quad.f (where ? stands for the dimensions
1, 2, or 3) was developed.

The original class allowed only keys (or basic mathematical functions of these keys) directly
derived from the vector of state (p, pu1, pus, pus, F, pY,T,dcflag, sgske). Therefore, any addi-
tional quantity, e.g., the subgrid stress components, had to be carried in an auxiliary output ar-
ray in the vector of state, slowing down the computation significantly since the vector of state

is manipulated every time step while the statistics are effectively used only at the desired time
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steps. In order to enable the definition of customized output, the file Output.£90, which originally
contains routines used to produce HDF data files for visualization purposes, handles the requests
for new output. With this new generic interface, all auxiliary internal states of the LES module
are computed as needed. Moreover, the user can now install in their local application directory
vtf/amroc/weno/applications/. .. hooks inside the Output.£90 with whatever they want. Since
we had to initialize the patch array boundaries to do this interaction with the patch solver, we had
to define a new class F77FileOutput and overload the parent function Transpose to first initialize

the patch variables before the user could have access to the internal state of the solver.

C.2 Output of Basic Quantities

The couple (nc,qo(i,j,k)) coded in Output.f90 and Output_hook.£90 (qout(nc) in Stats.def)

is listed. It concerns basic resolved and subgrid quantities.
1) p
2) up (or uw or uy)
3) ug (or v or uy)

4) uz (or w or u,)

8) v
9) Y , mass fraction (41 for SFg, -1 for Air)
10) dcflag

11) Tz’“—; , subgrid kinetic energy (where 7;; is the subgrid stress given by Pullin’s stretched-vortex

subgrid model)
12) 1
13) Ta2
14) 733

15) T12



16)
17)
18)

19)

20)
21)
22)

23)

713

T23

—17;;5:j , subgrid dissipation (where S;; = 5

032/ , subgrid scalar variance, without k! correction to the scalar spectrum (use qout (54)
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1

instead)

fstruc, structure function

sstrucl, scalar structure function

1, viscosity coefficient

24) 2u

95) u

26) Quz

27) Qu2

28)
29)
30)
31)
32)
33)
34)
35)
36)
37)
38)

39)

40) 9o

aug
6301

aug
0302

aug
3:173

d;;S;; , resolved dissipation (where d;; = 2 (Sij —

oY
Oxq

oY
Oxo

Tl where 0;; = d;; — 7;; is the total stress

: ) is the resolved strain tensor)

%Skkéij) is the resolved stress tensor)



A1)
42)
43)

44)

45)
46)
47)

48)

49)
50)
51)
52)
53)

54)

55)
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= 4 , where ¢} is the subgrid scalar flux defined in Equation (3.11c) of [43]

o
i
5
as , axial strain along the subgrid vortex axis using alignment with the resolved scale strain

tensor S

€3, , first resolved strain eigenvector component
e3, , second component

€3, , third component

a, , the axial strain along the subgrid vortex axis using alignment with the resolved scale

vorticity w

0, , first resolved vorticity component

0y , second component

0, , third component

A, vorticity alignment weight (0 < A < 1); the strain alignment weight is 1 — A
Koe?/3 | group prefactor for the subgrid energy spectrum

Ky , group prefactor for the subgrid scalar spectrum (including k= contribution to the scalar

spectrum)

02, subgrid scalar variance (including k=1 contribution to the scalar spectrum).
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C.3 One-Dimensional Statistics

This section concerns quantities interpolated over shells of radii  (at given time t). We are therefore

interested in the variation of these quantities when varying r, at time t.

C.3.1 Basic Shell-Averaged Quantities

From the previous basic output quantities can be computed basic shell-averaged quantities over
cylindrical shells of given radii. The basic shell-averages and a listing of the cylindrical shells are
enumerated in the local file Stats.def. The statistics class produces data files Stats?.dat at the

desired time 7 step.

1) (r), radius r = /a2 + y?2

12) (u.)

14) (pu.)

15) (puz)

16) (47;) , subgrid turbulent kinetic energy
17) (p)

18) (p?)
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19) (T)

20) <T2>

21) {(c) , speed of sound ¢ = 713

22) (c?)

23) (M) , Mach number M = LZ' =/
24) (M?)

25) (Y) , passive scalar. Y = 1 for SFg and -1 for Air, define also ¢ = 1(1+Y") representing the
percentage of SFg (heavy-fluid mass fraction), therefore (¢) = (14 (Y))

26) (Y?) ,and (¢%) = 1(1+2(Y) + (Y?))
27) (pY)

28) (pY?)

29) (X) = (%} , mol fraction, where o = I;\/I/ISAF_G. X =1 for SFg and -1 for Air. Ma;, =

26.8288 g.mol ! and Mgp, = 146.05 g.mol !

30) (X?)

39) (=i Sij)
40) (v) , v = £ kinematic viscosity
41) (S11)

42) (Sa2)
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57) (2 2Y)

58) (7))

59) ()

60) ()

61) (£ 2X)

62) (v,) , where v, =1/p
63) (vpu,)

64) (v,S:)

65) (urug)

66) (u,ruz)

67) (ugu,)
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68) (purue)

69) (puru:)

70) (puiusuy)

71) (pSii)

72) (pur)

73) (o) = (cos(0)201y + sin(0)202s + sin(20)015) , where recall o7; = dij — 73
74) (0,9) = (1 sin(26) (022 — 011) + c0s(260) 1)

75) (072) = (cos(8)013 + sin(6)oas)

76) (uro,r) = (u, (cos(0)?co11 + sin(0)2092 + sin(26)012))
T7) (ugore) = (ug (& sin(20) (093 — o11) + cos(20) 1))
78) (uz0rz) = (us (cos(0)o13 + sin(f)o23))

79) (1,2) = (v, (cos(e)% + sin(&)%)}

81) (v (COS(G) a@‘;l; + sin(f) %‘;2>>

82) (pSyr) = (p%r) = (p (cos(0)2S11 + sin(0)?Saz + sin(260)S12))

83) (pS7)

84) (pSpe) = (2 (2% +u,)) = (p (sin(0)2S11 + cos(0)2Sas — sin(26)S12))

85) (pSjy)

86) (pS..) = (p%=)

87) (pSZ.)

88) (po,rSrr) = (p(cos(0)2a11 + sin(0)2022 + sin(20)012)(cos(0)2511 + sin(0)%Saa + sin(260)S12))
89) (paesSes) = (p(sin()?011 + cos(0)?0aa — sin(26)o12)(sin(0)?S11 + cos(0)? Sz — sin(26)S12))
90) (po..S:2)

91) (p%5) = (p (cos(6) 2% +sin(6) 22 ))

92) (p (22)*) = (p [cos(e)2 (g—Y)z +sin(6)? (gl)2 + sin(20) 22X |
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(p (— sin(G)g’—;f1 + COS(Q)%)>

91 (o (495)%) = (o sin(0)” (£

2 2
) + cos()? (%) —sin(29)g—;g—z2 )

C.3.2 Derived Quantities

C.3.2.1 Quantities Depending on (r,t)

From the basic shell-averaged derived previously contained in Stats?.dat at a time ¢ corresponding

to the iteration 7, other interesting averages can be derived for each shell of radius . The post-

processing is achieved through the file parseStats.cpp In particular, two variances can be defined:

97) Var(p)

98) Var(u,)
99) Var,(u,)
100) Var(ug)
101) Var,(up)
102) Var(u.)
103) Var,(u)
104) Var(M)
105) Var(p)

106) Var(T)

107) Var(c)

Var(Q)
Var,(Q)

108) Var(Y) , note that Var(y)) =

= Q%) =(@) (@7 (C.1a)
_ am_r A2 Q%) (pQ)?

= QP=Q*-Q = T (C.1b)
%Var(Y)

109) Var,(Y) , similarly Var,(¢) = +Var,(Y)

110) 1 — (Y)? | integrate over r to compute entrainment length
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111) 1 — (Y2) | integrate over 7 to compute mixing length

112) Var(X)

113) Var,(X)

114) 1 — (X)? | integrate over 7 to compute entrainment length
115) 1 — (X?) | integrate over r to compute mixing length

116) KE

3 ((pu2) + (pu) + (pu2))

117) (K) = 3 (Var,(u,) + Var,(ug) + Var,(u.)) , resolved turbulent kinetic energy

118) (k) = <27<p>> , subgrid turbulent kinetic energy (per unit mass)

119) K = (K) + (k) , total turbulent kinetic energy

120) ' = /25 | turbulent intensity

121) M, = 4.

—~]
o
~>

122) (gres) = 75 ((dijSij) — (di;)(Sij)) , resolved turbulent dissipation

123) (esgs) 7<—;;> ({13 S:5) — (7i5)(Si;)) , subgrid energy transfer
124) (€) = (eres) + (€sgs) , turbulent dissipation

u/B

125) ¢ = O turbulence integral scale

—~

126) Rey = 7{;5 , turbulent Reynolds number

127) ty =5
128) A, = \\,?;pi((;;)) , Taylor microscale in the r-direction
129) Rey, = W , Taylor-scale Reynolds number in the r-direction

130) A = ,/% , Taylor microscale in the #-direction

131) Rey, = 7W , Taylor-scale Reynolds number in the #-direction

132) A, = \\,frrpi((g% , Taylor microscale in the z-direction
133) Rey, = 7%%2))\2 , Taylor-scale Reynolds number in the z-direction

134) Ng, = dedA=

135) Rey,, = —etfior:
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136) A\r = 1‘2’;;0 u’ , Taylor microscale

137) Rey, = % , Taylor-scale Reynolds number

138) (er..) = (D) ((g%g%) - <g—:>(g—;€)) , resolved scalar dissipation, where D = v/Sec
139) (eX,,) = ( ngY> - (ff)(g%) , subgrid scalar dissipation

140) (e¥) = (eX.,) + (Y ), total turbulent scalar dissipation

res sgs
- Var,(Y) . . . .
141) Ay, = Var, (207 ° scalar Taylor microscale in the r-direction
P\ Or
_ Var, (Y) . . . .
142) Ay, = Vo (T > scalar Taylor microscale in the #-direction
ar, (+ Sy
_ Var, (Y) . . . .
143) Av. =\/var (avy scalar Taylor microscale in the z-direction
P\ Dz

3

1/4
144) n, = (Zb) , Kolmogorov scale in the r-direction, where Z&,.) = = ((p0-Spr) — (07} (pSrr))

RN

is the (resolved+sgs) turbulent r-dissipation

3\ 1/4
145) ng = (22:)) , Kolmogorov scale in the #-direction, where Zey) = <p1>2 ({poeaSea) — (c00){pSes))

is the (resolved+sgs) turbulent -dissipation

3N 1/4
146) 7, = (i?:)) , Kolmogorov scale in the z-direction, where Ze,) = <pl>2 ((p022522) — (022)(pS:2))

is the (resolved+sgs) turbulent z-dissipation

147) No» = ne-;-nz

148) n = <<é’e>>3)1/4 , Kolmogorov scale
149) b= —(p'v,) = =1+ (p)(v,) , density self-correlation
150) %,
151) g

152) .

153) a, = <p<’5>;> = U, — (u,) , turbulent mass flux

154) ag = (p(s;,) = Ug — <U9>

155) a. = L% =@, — (u.)

156) Ryr = (p)Var,(u,)
157) Rgo = (p)Var,(ug)

158) R.g = <pu7_u9> — %
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159) R,. = (puyu.) — {pur) (pus)

(p)

160) (p|u”[*u)) = (puiuiur) + (p)ithitly — 2{uru;)ti; — 2(K)(p)ty

161) (v u,) = (Vour) — (vp)(ur)

162) (v, V- u') = (v,8i) — (v,)(Sii)

163) (p'u;.) = (pur) — (p)(ur)

164) (p'V - u') = (pSii) — (p)(Sii)

165) (o : Vu') = (p)(e)

166) (ol ul) = (orrur) — (opr)(uy)

167) (ol puy) = (oreug) — (ora)(ug)

168) (o, ul) = (or2uz) — (0r2)(uz)

169) (0g0) = (o11) + (022) — (o4r)

170)
171)

172)

(V-u) =(Si)
Wh2Y) = (v, 22) — (v,) 252

(up V- ') = (urSii) — (ur)(Sii)-

C.3.2.2 Quantities Depending on ¢ Only and Based on the Mass Fraction Y

Quantities depending only on ¢ and based on the mass fraction Y are computed:

1)

2)

7)
8)

9)

t , time

TKE,.u(t) = ﬁ f:di Kdr , volume-averaged total turbulent kinetic energy (actually this is

not based on the mass fraction analysis but it was coded together with the following quantities)
0(t) = Pn(t) = f;{i(l — (Y)2)dr , mixing zone width (entrainment length)

Pi(t) = f:ji(l —(Y?))dr , mixing length

E(t) = £+ , mixing parameter (relative amount of molecularly mixed fluid within the TMZ)

re(t) = 6712 f:;i r(1 — (Y)?)dr , average radius of the center of the mixing zone
ry(t) =re — 16 , bubble average position (~ 73.1% SFg in mass)

rs(t) =rc+ 16, spike average position (~ 73.1% Air in mass)

V(t) = adr. , volume of the mixing zone (per unit z-length), where « is the angle of the wedge
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2
10) E(t) = s—% , entrainment ratio

11) Yg(t) = +£- , mean composition if all entrained fluid was homogeneously mixed

13) Reo(t) = Rey(re(t),t)
14) Ap(t) = Ar(re(t), t)

15) Res, (t) = Rex, (rc(t),t)

16) Ao (t) = Ag(re(t),t)

17) Rex, (t) = Rex, (re(t), 1)

18) A (t) = Ax(re(t), 1)

19) Rex (t) = Rex_(rc(t), 1)

20) Ao:(t) = Aoz (re(t), 1)

21) Rey,. (1) = Rex,. (re(t),1)

22) Ar(t) = Ar(re(t),t)

23) Rex,(t) = Rexy (re(t), 1)

24) Ay, (t) = Ay, (re(t), 1)

25) Ay, (t) = Ay, (re(t), )

26) Ay, (t) = Ay, (re(t), t)

27) np(t) = me(re(t), 1)

28) no(t) = no(re(t), t)

29) n(t) = nz(re(t), 1)

30) o= (t) = no=(re(t), t)

31) n(t) = n(re(t),t)

32) 0(t) = 2((u,)(rs(t), t) — (u,)(r3(t), 1)) growth rate (depends on the definition of r, and )

33) Res(t) = i—‘j , outer-scale Reynolds number, where v, = (v)(r., t) is the shell-averaged viscosity

at the center of the mixing zone

34) r(t) = %(r? + %) , average radius of the center of the mixing zone



35)
36)
37)

38)

39)
40)
41)

42)
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r*(t) = {r|(Y)(r,t) = 1 — €} , bubble average position ((1 — €)% SF¢ in mass)

r7%(t) = {r|(Y)(r,t) = €} , spike average position ((1 — €)% Air in mass)
§%(t) = r% — rl | mixing zone width
V%(t) = ad%r” | volume of the mixing zone (per unit z-length), where « is the angle of the
wedge
7’%2 77‘%2 . .
E% (t) = T%’z _T%Og , entrainment ratio
Yg’ (t) = % , mean composition if all entrained fluid was homogeneously mixed
6%(t) = (u)(r%(t), 1) — (u,)(r®(t),t) growth rate (depends on the definition of r;® and r%)
Resn (t) = 50,/;);1% , outer-scale Reynolds number, where v/ = (v)(r%,t) is the shell-averaged

viscosity at the center of the mixing zone.

C.3.2.3 Quantities Depending on ¢t Only and Based on the Mol Fraction X

A similar list of quantities based on the mol fraction X is:

)

13)

t , time

TKE,,(t) = ﬁ f:ddl. Kdr , volume-averaged total turbulent kinetic energy

3(t) = Pn(t) = f:ji(l — (X)?)dr , mixing zone width (entrainment length)

Py(t) = f;:i(l — (X?))dr , mixing length

=) = % , mixing parameter (relative amount of molecularly mixed fluid within the TMZ)
re(t) = &L f:ji r(1 — (X)?)dr , average radius of the center of the mixing zone

ry(t) =re — 16 , bubble average position (~ 73.1% SFg in mol)

rs(t) = 7.+ 15, spike average position (~ 73.1% Air in mol)

V(t) = adr. , volume of the mixing zone (per unit z-length), where « is the angle of the wedge
Tz—r2 . .

E(t) = -5—3% , entrainment ratio

Xg(t) = H_LE , mean composition if all entrained fluid was homogeneously mixed

L(t) = L(re(t),t)

Reg(t) = Re[(rc(t)’ t)

)\r(t) - >\r (rc(t)v t)
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15) Rey, (t) = Rex, (re(t),t)
16) Ap(t) = Ao(re(t),t)

17) Rey,(t) = Rey, (re(t),t)
18) Ax(t) = Ax(re(t), 1)

19) Rex, (t) = Rey, (rc(t),t)
20) Ap=(t) = Ag=(re(t), 1)

21) Rex,.(t) = Rex,. (re(t),1)
22) Ar(t) = Ar(re(t),t)

23) Rex,(t) = Rexp (ro(t), t)
24) Ay, (t) = Ay, (re(t), 1)

25) Ay, (t) = Ay, (re(t), 1)

26) Ay, (t) = Ay, (re(t), 1)

27) e (t) = ne(re(t), 1)

28) mo(t) = no(re(t), t)

29) 1z(t) = 2 (re(t), t)

30) 0= (t) = mo=(re(t), 1)

31) n(t) = n(re(t), 1)

32) §(t) = 2((u) (rs(t),£) — (u,)(rp(t),t)) growth rate (depends on the definition of 7, and ry)

33) Res(t) = i—f , outer-scale Reynolds number, where v, = (v)(r., t) is the shell-averaged viscosity

at the center of the mixing zone
34) rZ(t) = 1(rf +r}) , average radius of the center of the mixing zone
35) r{°(t) = {r[(X)(r,t) = 1 — €} , bubble average position ((1 — €)% SFg in mol)
36) r%(t) = {r[(X)(r,t) = €} , spike average position ((1 — €)% Air in mol)
37) 6%(t) = r — rl’ , mixing zone width

38) V%(t) = ad”r” | volume of the mixing zone (per unit z-length), where a is the angle of the

wedge
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%2 _ %2

39) E*(t) = :5/02 ::b/g , entrainment ratio

40) Xg’(t) = % , mean composition if all entrained fluid was homogeneously mixed

41) §%(t) = (u, ) (r(t),t) — (u,)(r{®(t),t) growth rate (depends on the definition of 7;® and r?%)

S

42) Regu (t) = % , outer-scale Reynolds number, where v = (v)(r%,t) is the shell-averaged

viscosity at the center of the mixing zone.
C.4 Two-Dimensional Statistics For Spectrum, P.d.f., Sub-
grid Continuation...

This section concerns quantities interpolated (without averaging) over particular shells of radii r, at

time ¢, therefore depending on (6, z) only. The post-processing is done in the file parseSpectrum. cpp.

1) p
2) u,

3) ug

7) e3,

9) €3,

15) Koe?/3

16) Ky



17)

18)
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oy

w + w , enstrophy.

We deduce from these (6, z) two-dimensional data obtained on shell of given radius 7:

1)

2)

6)

Spectra at the center of the TMZ and at the spike and bubble average radii

P.d.f. of the joint-density mass fraction Y at the center of the TMZ and at the spike and

bubble average radii

P.d.f. of the joint-density mol fraction X at the center of the TMZ and at the spike and bubble

average radii

rd

Yu(t) = %%f, mixed-fluid composition averaged over the entire mixing zone, where
rdi Fm
s YpydY -

Yoo (r t) = Ll“;ipy is the mixed-fluid composition on the shell 7, p,,(r,t) = —1142-26 pydY

probability of finding mixed fluid on the shell r, py (Y;r,t) p.d.f. of Y over the shell r. The

threshold ¥ = € corresponds to € percent SFg (in mass)

~rd
 Xnpmdr . . -, . ..
Xum(t) = %77”1):’ mixed-fluid composition averaged over the entire mixing zone, where
Jpa; PmaAr

A XpxdX

X (r,t) = s the mixed-fluid composition on the shell r, p,, (r,t) = f_lfQE

142 PxdX

probability of finding mixed fluid on the shell , px (X;r,t) p.d.f. of X over the shell r. Same

definition of € but in mol

P.d.f. of alignment angles at the center of the TMZ and at the spike and bubble average radius.
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