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Abstract 
 

In silico design of protein has generated enormous interest with the rapid advances in 

computational power.  Biological systems are known for their complexity, and we have 

made a series of computational developments that allow us to perform computational 

protein design.  In this work we present a methodology for the design and prediction of 

protein active sites. 

We begin by presenting SCREAM, a program developed to accurately position sidechains 

in proteins.  We show how using an improved scoring function and placement algorithm 

allow us to achieve better accuracy in the placement and prediction of sidechains in 

proteins compared to other methods. 

We then describe the development of an accurate treatment for describing hydrogen 

bonding.  This is done by refining the hydrogen bond term in the force field DREIDING.  

We also need to properly describe electrostatics effects in proteins, and to this end, we 

introduce neutralized residues for proteins.  We found that this improves the variance in our 

predictions dramatically. 

Finally, having established the components described above, we describe a protein design 

methodology encompassing the above methods and tools.  We show predictions we made 

and those having been verified by experiments. 
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1 Computational Protein Design: Overview 
 

Protein design is becoming a practical option for solving problems in protein engineering.  

The growth in this field has been greatly facilitated by the rapid increase in computational 

prowess and algorithmic advances made in the past two decades, and investigations today 

address a wide variety of problems.  Progress is not only limited to academic researchers, 

but also to the industry, as computational methods are gradually being accepted as part of 

the drug discovery process.  The permeation of computational methodologies is certain to 

continue as pharmaceutical companies face growing pressure to reduce development costs 

of new drugs, estimated at over $800 million1 as of 2006.   

Computational protein design is the process of introducing mutations in the original 

sequence of a target protein in order to introduce desired properties through computational 

means.  Examples include improving stability between protein-protein interactions2 and 

mutation of an active site of a protein to incorporate a non-cognate ligand3.  There are two 

major difficulties with regards to introducing mutations.  The first is how to predict 

computationally the positioning of other sidechains or atoms after the mutations, a problem 

known as the conformation search problem.  The second is how to accurately assess the 

favorability of the mutations introduced, known as the energy function problem.   

1.1 Protein Sidechain Conformation Search 
The protein design problem can be thought of as an inverse version of the protein folding 

problem.  In protein folding, the only input is the amino acid sequence, the output being the 

structure of the protein in all its three-dimensional glory.  As of today, there are no known 

general methods that can reliably produce such an output.  In protein design, typically we 

wish to introduce a special functionality for the protein, and we achieve this by altering the 

sequence of the protein.  The location of the protein backbone often is included as part of 
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the input, either from the crystal structure of the protein, from homology modeling, or from 

other ab initio methods. 

The assumption of a known protein backbone simplifies the search problem considerably, 

but the search space is still huge.  There are 20 possible amino acids for each residue, and 

each amino acid sidechain have multiple conformations.  The sheer number of 

combinations is huge.  Consider the following.  If each amino acid sidechain can take on 5 

possible conformations, each amino acid can have 5 possible mutations, and there are 100 

possible sites on the protein, then there are a total of 5100·5100 ≈10280 possibilities!  This 

number is greater than the number of atoms in the universe and certainly not tractable by 

any computational means.  Fortunately, many of these possibilities can be eliminated 

quickly and it is possible to arrive at reliable conformations by using various methods, 

procedures and algorithms4-9 that have been developed in the past two decades. 

1.1.1 Rotamers 

Instead of working in the continuous conformational search space when placing amino acid 

sidechains on the protein backbone, Ponders and Richards10 introduced using discrete 

sidechains configurations that occur frequently in protein structures.  These low-energy 

conformations are called “rotamers” (see Figure 1-1 for two rotamers of the glutamine 

sidechain), short for rotational isomers. 

  OO

2 rotamers of 2 rotamers of 
glutamineglutamine

OO

2 rotamers of 2 rotamers of 
glutamineglutamine

 

Figure 1-1 Illustration of 2 rotamers of the amino acid glutamine.
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Each amino acid sidechain needs to be represented by a number of these rotamers.  For 

amino acids such as arginine and lysine that have more torsional freedoms, more rotamers 

are needed to cover the conformation space.  Conversely, simpler amino acids such as 

serine only need a small number of rotamers.  A collection of rotamers that represent the 

amino acids is called a rotamer library5,11.  The structures of the rotamers can be taken from 

crystal structures in proteins or be constructed according to chemical principles, such as 

energy minima of torsional angles.  Clearly, the more rotamers we use, the more complete 

the rotational search space we are sampling and more accurate the results, but at an 

increased performance cost.  Therefore, there is a trade-off between the accuracy (more 

rotamers) and speed (fewer rotamers) in our search problem.  In Chapter 2, we explore 

methods to reduce the cost of the trade-off. 

1.1.2 Placement of Sidechains 

After we place the rotamers onto the protein backbone, we need to decide which 

configurations are better than others.  This is done by using a scoring function8, which can 

be energy-based, statistics-based, or some combination of the two.  After deciding on a 

scoring function, there is also the global optimization problem of finding the combination 

of rotamers that yield the best score given the scoring function.  Because of the 

combinatorial nature of the problem, a brute-force search will not be successful in finding a 

good solution to this problem.  Many approaches have been developed12. 

In Chapter 2, we go into more details on energy-based scoring functions and a mean-field 

approach to the placement of sidechains.  

1.2 Energy Expressions 
Ab initio quantum chemistry methods are very accurate in calculating molecular structures 

and properties.  Based on fundamental axioms in quantum mechanics, it is also the most 

expensive in terms of time needed to perform calculations.  For many applications, 
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including simulation of large biomolecules, the level of information obtained from 

quantum mechanics is unnecessary.   

Molecular mechanical force fields13,14 have been developed to perform accurate 

calculations in a more reasonable amount of time.  These force fields use simpler energy 

expressions to describe interactions between molecules, and are parameterized against 

experimental or quantum mechanical calculations.  Popular force fields in the study of 

biological systems include CHARMM13, AMBER15 and DREIDING14.  The accuracy of 

these force fields allows the study of such complex problems in molecular biology such as 

protein folding16,17, molecular docking18, and ab initio structure prediction19,20.  Indeed, 

many commercial software, such as Accelrys’ Quanta and Cerius2, include these biological 

force fields in the distribution. 

We briefly review components of a biological force field.  The total overall energy of a 

system is divided into valence terms and non-valence terms: 

E = Eval + Enon   

In the following section, we describe the functional forms that are used in DREIDING.  

Similar functions are used for other force fields. 

1.2.1 Covalent Terms 

DREIDING divides the valence terms into four components: 

Eval = Eb + Ea + Et + Ei 

where Eb is the bond stretch energy between two atoms, Ea the bond angle energy between 

three atoms, Et the torsional angle energy between four atoms, and Ei the inversion term 

between four atoms.  For Eb, Ea and Et, a harmonic expression is often employed to capture 

the fact that there structures tend to reside in a local neighborhood around equilibrium 

values.  Periodicity is included for the angle term and the torsion term.  The equilibrium 
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values, for these terms are parameterized.  Ei, the inversion term, is a special term in 

DREIDING that ensures the molecules stay planar (as in benzene) or maintain the correct 

chirality during simulations.  A harmonic expression can also be used here. 

Valence bonds are never broken in DREIDING and most other biological force fields. 

1.2.2 Non-covalent Terms 

Many interesting phenomena in bio-molecules involve non-covalent interaction between 

molecules, such as a ligand binding to a receptor.  Thus, the accurate description between 

non-bonded atoms is crucial to the accurate prediction of inter-molecular properties such as 

binding energies.  In DREIDING, non-valence terms include: 

Enon = EVDW + EQ + EHB 

where EVDW is the two-body van der Waals (VDW) energy (also known as dispersion), EQ 

the two-body Coulombic or electrostatic interaction, and EHB a special three-body hydrogen 

bond term. 

Historically, the Lennard-Jones 12-6 potential is often used as the expression for the VDW 

term: 

])/(2)/[()( 612 RRRRDRE VDWVDWVDWVDW −=  

where DVDW is the equilibrium VDW well-depth of a pair of atoms, RVDW the equilibrium 

radial distance, and R the current distance between the two atoms.  While this potential is 

considered to be too repulsive at short distance, it became popular back in the days when 

computers were not as powerful because it is simpler to compute than other alternative 

energy expressions.  The Lennard-Jones 12-6 potential is still the dominant form of VDW 

today although other VDW expressions, such as Morse, Exponential-6 and softer Lennard-

Jones potentials such as 9-6 are also employed.  All VDW expressions satisfy a 1/r6 
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asymptotic behavior at large distances, reflecting the fact that its origin lies in the 

instantaneous but fluctuating dipole moments of neutral atoms.   

Typically, the equilibrium radial distance between two atoms is the sum of the atomic radii 

of the two interacting atoms.  There are instances when we do not want this, and we will 

show an example in Chapter 3. 

The classic Coulomb interaction form is used for the electrostatic term: 

ijjiQ RQQE ε/)0637.322(=  

where the energy is expressed in kcal/mol and Rij is expressed in Ǻ.  Qi, Qj are point 

charges assigned to center of atoms.  The dielectric constant is usually taken to be ε=1.0, 

but values greater than 1.0 have been used to account for the effect of polarization.  We go 

into more detail on this issue in Chapter 3. 

DREIDING uses a 3-body hydrogen bond term that is not common in many other force 

fields: 

)(cos])/(6)/(5[ 41012
DHADAhbDAhbhbhb RRRRDE θ−=  

where Dhb stands for the well-depth of the hydrogen bond potential, Rhb the equilibrium 

distance and θDHA the angle between the hydrogen bond donor atom, hydrogen and the 

acceptor atom.  This expression was inherited from the early days of molecular mechanical 

force fields 30 years ago when there was no reliable method of assigning atomic charges.  

The situation is different today, with charges from quantum mechanics readily available.  

Despite readily available quantum mechanics charges, it is difficult to obtain accurate 

interaction energies between a pair of hydrogen-bonding molecules because of constraints 

set forth by VDW and charges.  Considering that polar interactions are such an important 
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component of bio-molecular recognition, we explore different hydrogen bond functions in 

Chapter 3 in an effort to improve the accuracy. 

1.3 Summary 
Protein design has two main components: a search component and a scoring function 

component.  The search component arises from the combinatorial nature of mutation 

selection and sidechain placement.  A force field is often used as the scoring function.  In 

subsequent chapters, we will provide more in-depth explorations of these issues.  We will 

also present a few examples of protein design using all these new developments in the final 

chapter.



 

 

21

 

2 SCREAM 
2.1 Introduction 
In developing general predictive approaches for structures of membrane proteins21-23, we 

found that current available sidechain placement methods, e.g. SCWRL, did not provide 

sufficiently accurate results to determine the helix-helix relative orientations within the 

membrane.  Consequently, we developed the SCREAM (SideChain Rotamer Energy 

Analysis Methodology) approach reported here, which we have found to lead to 

dramatically improved protein structures.  Here, we present validation of SCREAM against 

standard libraries of crystal structures. 

As briefly mentioned in Chapter 1, sidechain placement methods play a major role in recent 

applications in the field of computational molecular biology; from protein design24-26, 

flexible ligand docking27, loop-building28, to prediction of protein structures29.  Much 

attention has been paid to this important problem, which is difficult because it is in a 

category of problems known as NP-hard30, for which no efficient algorithm is known to 

exist.  Since the groundbreaking work by Ponder and Richards10, many approaches have 

been developed, including mean-field approximation6,31, Monte Carlo algorithms7,32, and 

Dead-End Elimination (DEE)4,33-35.  In practice, however, studies have also concluded that 

the combinatorial issue may not be as severe as originally thought36,37.   Compared to the 

placement methods and rotamer libraries, scoring functions have not been studied as 

extensively8,38,39.  Here, we focus on the scoring function. 

Our scoring function is based on the all-atom forcefield DREIDING14 which includes an 

explicit hydrogen bond term.  The use of a rotamer library is widely used in sidechain 

prediction methods, and many authors have introduced quality rotamer libraries11,37,40 since 

the Ponder library.  To account for the discreteness of rotamer libraries, several approaches 

have been introduced, such as reducing van der Waals radii41,42, capping of repulsion 
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energy43, rotamer minimization7,44 and the use of subrotamer ensembles for each dominant 

rotamer45.  We introduce a flat-bottom region for the van der Waals (VDW) 12-6 potential 

and the DREIDING hydrogen bond term (12-10 with a cosine angle term).  The width of 

the flat-bottom depends on the specific atom of each sidechain, as well as the coarseness of 

the underlying rotamer library used. 

We show in this study that accuracy can be improved substantially by introducing the flat-

bottom potential, and in a systematic way.  In addition to showing that placement accuracy 

is dependent upon the number of rotamers used in a library, we find that it is possible for 

suitably chosen energy functions to compensate the use of coarser rotamer libraries.  We 

demonstrate a high overall accuracy in sidechain placement, and make comparison to the 

popular sidechain placement program SCWRL46. 

 

2.2 Materials and Methods 
2.2.1 Preparation of Rotamer Libraries  

Rotamer libraries of various diversities are derived from the complete coordinate rotamer 

library of Xiang37.  We added hydrogens to the rotamers, and considered both δ and ε 

versions in the case for histidines.  CHARMM charges are used throughout13.  Since the 

Xiang library was based on crystal structure data, we minimized each of the conformations 

so that the internal energies will be consistent with subsequent energy evaluations of the 

proteins.  To do this we placed each sidechain on a template backbone (Ala-X-Ala in the 

extended conformation) and did 10 steps conjugate gradient minimization using the 

DREIDING forcefield. 
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We generated rotamer libraries of varying coarseness by a clustering procedure, using the 

heavy atom RMSD between minimized rotamers as the metric.  Starting with the closest 

rotamers, we eliminated those within the specific threshold RMSD value choosing always 

the rotamer with the lowest minimized DREIDING energy.  This threshold RMSD value is 

defined as the diversity of the resulting library.  To ensure that rotamers can make proper 

hydrogen bonds, each sidechain conformation for serine, threonine, and tyrosine was 

repeated with each possible polar hydrogen position.  Thus, for serine and threonine, the 

three sp3 position hydrogens were added to the hydroxyl oxygen, while for tyrosine, we add 

the out-of-place OH bonds 90 degrees from the phenyl ring in addition to two sp2 positions 

in the plane.  The final number of rotamers for libraries of different diversities is shown in 

Table 2-1.  

Diversity Starting 0.2Ǻ 0.6Ǻ 1.0Ǻ 1.4Ǻ 1.8Ǻ 2.2Ǻ 3.0Ǻ 5.0Ǻ 
All-

Torsion 

Rotamer 
Count 35828 14755 3195 1014 378 214 136 84 44 382 

In addition, we constructed the “All-Torsion” rotamer library in which one rotamer for each 

major torsional angle (120 degrees for sp3 anchor atoms, 180 degrees for sp2 anchor atoms) 

was included.  The angles were obtained from the backbone independent rotamer library 

from Dunbrack5 and built using the same procedure as described above. 

All our rotamer libraries are backbone independent. 

 

2.2.2 Preparation of Structures for Validation of SCREAM 

We considered three sets of protein for validating and training SCREAM. 

Xiang: Xiang37 considered 33 proteins for testing their method for developing libraries of 

side chain conformations : 1aac, 1aho, 1b9o, 1c5e, 1c9o, 1cbn, 1cc7, 1cex, 1cku, 1ctj, 1cz9, 

1czp, 1d4t, 1eca, 1igd, 1ixh, 1mfm, 1plc, 1qj4, 1ql0, 1qlw, 1qnj, 1qq4, 1qtn, 1qtw, 1qu9, 

Table 2-1  Number of rotamers in libraries of various diversities.
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1rcf, 1vfy, 2pth, 3lzt, 5p21, 5pti and 7rsa.  We have tested SCREAM for exactly these 

cases. 

Liang: Liang38,47 considered 15 proteins for testing their method for scoring functions for 

choosing side chain conformations. Of these, the 10 that were not in the Xiang set are 

denoted as the Liang set: 1bpi, 1isu, 1ptx, 1xnb, 256b, 2erl, 2hbg, 2ihl, 5rxn and 9rnt.  The 

proteins that overlap with the Xiang set are not included. 

Other: In addition we included 10 proteins with resolution not worse than 1.8Å from the 

SCWRL dataset: 1a8d, 1bfd, 1bgf, 1c3d, 1ctf, 1ctj, 1moq, 1rzl, 1svy and 1yge.  Here we 

ignored structures with ligands or missing residues or which had a sequence identity of 

more than 50% with the Xiang or Liang sets.  As will be described in later sections, this set 

is used only for deriving the σ-values and sidechain placement parameters. 

For each of these 53 proteins, the raw atom coordinates were downloaded from the PDB 

database.  Hydrogens were added using WHATIF48 and ligands were typed using 

PRODRUG49.  Manual typing of ligands were carried out in cases where they cannot be 

typed by PRODRUG (~10 cases).  Waters, solvents, and metals were kept when present. 

These structures were then minimized (100 conjugate gradient steps) using the DREIDING 

forcefield.  In all cases, the minimized structures differed by less than 0.3Ǻ total RMSD 

compared to the original crystal structures.  All metals, prolines, cysteines in disulfide 

bonds and sidechains in coordination with metals were kept fixed throughout sidechain 

placement calculations. 
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2.2.3 Surface Area Calculations 

Which residues were considered as buried or exposed was determined from the Solvent 

Accessible Surface Area (SASA), using a probe of radius 1.4Å.  The reference for fully 

exposed surface area for each sidechain type is a fully extended tri-peptide in the form of 

Ala-X-Ala.  A sidechain with >20% SASA compared with the reference SASA was 

considered exposed.  This percentage is smaller than the typical 50% level in the 

literature—around 25% for the Xiang set and 39% for the Liang set because we include 

solvent molecules as part of the structure. 

 

2.2.4 Positioning of Sidechains 

Placement of the rotamers on the backbone is decided by the coordinates of the C, Cα, N 

backbone atoms plus the Cβ atom.  To specify the position of the Cβ atom we use the 

coordinates with respect to C, Cα, and N based on the statistics gathered from the HBPLUS 

protein set (see above).  This involves three parameters:  

1. The angle of the Cα-Cβ bond from the bisector of the C-Cα-N angle: 1.81∘(from the 

HBPLUS protein set) 

2. The angle of the Cα-Cβ bond with the C-Cα-N plane: 51.1∘(from the HBPLUS protein 

set)  

3. The Cα-Cβ bond length: 1.55Å (average value from the Other protein set).   

Thus the Cβ atom will generally have a different position from the crystal Cβ position.  As is 

common practice in the literature, we did not include this Cβ deviation in the RMSD 

calculations. 

 

2.2.5 Combinatorial Placement Algorithm 

The SCREAM combinatorial placement algorithm consists of three stages: self energy 

calculation for rotamers, clash elimination, and further optimization of sidechains. 
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2.2.5.1  Stage 1: Rotamer Self Energy Calculation 

The all atom forcefield DREIDING14 was used to calculate the interactions between atoms, 

with a modification to be described in the scoring function section.  The internal energy 

contributions Einternal (bond, angle and torsion terms and non-bonds that involve only the 

sidechain atoms) were pre-calculated and stored in the rotamer library.  For each residue to 

be replaced, the interaction energy (Esc-fixed) was calculated for each rotamer interacting 

with just the protein backbone and fixed residues (all fixed atoms).  The sum of these two 

terms is the empty lattice energy (EEL) of a rotamer in the absence of all other sidechains to 

be replaced 

fixedscinternalEL EEE −+=  

We use the term ground state to refer to the rotamer with the lowest EEL energy.  All other 

rotamer states are termed excited states.  Excited states with an energy 50 kcal/mol above 

the ground state were discarded from the rotamer list for the remaining calculations. 

2.2.5.2 Stage 2: Clash Elimination 

Eisenmenger et al.36 showed that the sidechain-backbone interaction accounts for the 

geometries of 74% of all core sidechains and 53% of all sidechains.  Thus, the ground state 

of each sidechain was taken as the starting structure.  Of course, this structure might have 

severe VDW clashes between sidechains since no interaction between sidechains has been 

included.  Elimination of these clashes was done as follows.  A list of clashes of all ground 

state pairs, above a default threshold of 25kcal/mol was sorted by their clashing energies.  

The pair (A, B) with the worst clash was then subjected to rotamer optimization by 

considering all pairs of rotamers, and selecting the lowest energy to form a super-rotamer 

with a new energy: 

)(),()()(),( . ABEBAEBEAEBAE selfIntselfselftot ≡++=  
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where EInt indicates the interaction energy between rotamer A and rotamer B, which was 

the only energy calculation done at this step since the EEL terms were calculated in Stage 1.  

The ground state for this super rotamer now replaced the rotamer pair in the original 

structure.  Since large sidechains such as ARG and LYS may have as many as 700 

rotamers for the 1.0A library, we limited the number of pairs to be calculated explicitly to 

1,000, which we selected based upon the sum of the empty lattice energies.  Of these 

interaction pairs we kept the ones with interaction energies below 100 kcal/mol. 

After resolving a clash, we considered the lowest rotamer pairs from the above calculation 

as a super residue. Thus, subsequent clash resolution, say between residue C and residue A, 

will consider interactions of all sidechains of C with the (A,B) rotamer pairs.  Now the 

spectrum of interaction energies treats (A,B) as a super rotamer so that the (C, (A,B)) 

energy spectrum is treated the same as for a simple rotamer pair with the spectrum: 

+++= )()()(),,( CEBEAECBAE selfselfselftot ),(),(),( CBECAEBAE IntIntInt ++

),(),()()( CBECAECEABE IntIntselfself +++=  

),()()( CABECEABE Intselfself ++≡  

This process continued by generating a new list of clashing residue pairs including the new 

(A,B,C), resolving the next worst clash as above.  The procedure was repeated until no 

further clashes were identified between two rotamers or super-rotamers. 

2.2.5.3  Stage 3: Final Doublet Optimization 

It is possible for some clashes to remain after Stage 2, since the number of rotamers pair 

evaluations is capped (at 1,000) and also the numbers of rotamers in a super-rotamer (20).  

To solve this problem, the structure from the end of stage 2 was further optimized.  

Sidechain pairs (termed doublets) were now ordered in decreasing energies in the presence 

of all other sidechains, and one iteration round of local optimization on those residue pairs 

was performed in that order.  Any residue that had already been examined in this stage as 
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part of a doublet was eliminated from further doublet examination.  Always, the doublet 

with the lowest overall energy was kept. 

2.2.5.4 Stage 4: Final Singlet Optimizations 

The structure would undergo one final round of optimization, where all residues were 

examined one at a time, again in order of decreasing energies for the rotamer currently 

placed in the structure.  Again, the rotamer with the best overall energy was retained for the 

final structure.  More iterations rounds on the final result improved the overall RMSD 

(unpublished results), but we did not pursue this path50 for the purposes of this presentation. 

We illustrate the effects of the doublet and singlet optimization stages by giving a specific 

example—1aac, using the 1.0Ǻ rotamer library and optimal parameters (to be described in 

a later section).  After the clash elimination stage, the RMSD between the predicted 

structure and the crystal structure was 0.733Ǻ.  The pair clashes remaining in this case 

included the pairs F57 and L67, V37 and F82, and V43 and W45.  Doublets optimization 

brought the RMSD down to 0.703Ǻ.  The final singlet optimization stage brought the 

RMSD value further down to 0.622Ǻ. 

For this case, doublet optimization took 3 seconds, while singlet optimization took 13 

seconds.  For comparison, clash elimination took 30 seconds to complete, while the 

rotamer self energy calculation took 8 seconds. 

 

2.2.6 The Flat-Bottom Scoring Function 

Since our library is discrete, the best position for a sidechain may lead to some contacts 

slightly too short.  Since the VDW interactions becomes very repulsive very quickly for 

distances shorter than Re, a distance too short by even 0.1A may cause a very repulsive 

VDW energy.  This might lead to selecting an incorrect rotamer.  In order to avoid this 

problem, we use a flat-bottom potential in which the attractive region is exactly the same 

down to Re but the repulsive region is displaced by some amount Δ so that contacts that are 
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slightly too short by Δ will not cause a false repulsive energy.  The form of this potential is 

shown in Figure 2-1. 

 
 

We allow a different Δ for each atom of each residue of each diversity.  The way this is 

done is by writing Δ as: 

Δ = s·σ 

Where s is a scaling factor and the σ values are compiled as follows. 

 

2.2.6.1 Compilation of σ values 

For each rotamer library we considered the 10 query protein structures in the HBPLUS set 

(see Materials and Methods).  For each sidechain in each query structure, we picked the 

closest matching rotamer (in RMSD) from the library and record the distance deviation for 

each atom of the sidechain of that residue.  Thus, the atoms at the tip of the longer 

Figure 2-1 The flat-bottom potential.  The inner wall is shifted by an amount Δ. 
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sidechains such as arginine and lysine would have greater distance deviations than Cβ 

atoms.  The mean distance deviation (δ) for every atom of each amino-acid type over all 10 

query proteins is then calculated.  As an example, the δ values for arginine and lysine 

rotamers in the rotamer library of 1.0A diversity (rotamer libraries were described in 2.2.1) 

are listed in Table 2-2 and Table 2-3. 

Dist. Deviation (Ǻ) Mean (δ) Corrected Error (σ) 

Cβ 0.090 0.059 

Cγ 0.245 0.153 

Cδ 0.439 0.275 

Nε 0.502 0.315 

Cζ 0.588 0.369 

Nη1, Nη2 0.858, 0.839 0.538, 0.526 

 

Dist. Deviation (Ǻ) Mean (δ) Corrected Error (σ)

Cβ 0.089 0.056 

Cγ 0.259 0.162 

Cδ 0.406 0.254 

Cε 0.596 0.373 

Nζ 0.803 0.503 

Table 2-2  δ and σ values for each atom on the Arginine side-chain, listed in order of 

distance away from the mainchain.  Nη1 and Nη2 are equivalent atoms; the average value 

is used in actual calculations.  These numbers were obtained from the rotamer library of 

diversity 1.0Ǻ. 

Table 2-3  δ and σ values for each atom on the Lysine side-chain, listed in order of 

distance away from the mainchain.  These numbers were obtained from the rotamer 

library of diversity 1.0Ǻ 
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We assume that the error in positioning of any one atom of the sidechain will have a 

Gaussian distribution of the form: 

( ) 2

2

2σ⋅
−

∝
r

erf  

Where r is radial distance and σ represents the standard deviation.  Thus, 

( ) )(4 2 rfrr πρ ∝  

is the probability of finding an atom at position r from the crystal position (which is 

weighted by a factor of 4πr2 from the x, y and z distributions).  The uncertainty δ in the 

Cartesian distance along the line between two atoms is related to σ by the form: 

π
σδ

222 ⋅
⋅=  

where δ is the value described above.  This σ is listed for arginine and lysine in Table 2-2 

and Table 2-3. 

2.2.6.2 Scaling factor s 

The Δ values for each sidechain atom type will depend on their σ values: 

Δ = s·σ 

The deviations for σ above provide a measure of relative uncertainties in the ability of a 

library to describe the correct position of the sidechain atoms.  However, to obtain the 

absolute value of the flat-bottomness we allow an overall scaling factor for the flat-bottom 

portion of the potential for all atoms. 
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The value of s was optimized for the Xiang set of 33 proteins for libraries of diversities 

ranging from 0.2A to 5.0A as discussed in section 3. 

 

2.2.6.3 Flat-bottom potential on Hydrogen bond terms 

We use a flat-bottom for the VDW interactions and not for the Coulomb interactions 

because the VDW inner wall potential becomes repulsive very quickly with distance (e.g. 

1/r12).  Such scaling is not important for Coulomb since it scales as 1/r.  Most force fields 

use a modified VDW interaction between hydrogen bonded atoms.  Current version of 

AMBER and CHARMM do this between donor hydrogen and the acceptor heavy atom, 

treating the interaction as a standard 12-6 Lennard-Jones with modified parameters.  The 

flat-bottom for the other van der Waals interactions should apply equally well for these 

hydrogen bond terms.  However, DREIDING uses an explicit 12-10 hydrogen bond term 

between the heavy atoms combined with a factor depending upon the linearity of the 

donor-hydrogen-acceptor triad: 

)(cos])/(6)/(5[ 41012
DHADAhbDAhbhbhb RRRRDE θ−=  

where Dhb stands for the well-depth of the hydrogen bond potential, Rhb the equilibrium 

distance and θDHA the angle between the hydrogen bond donor atom, hydrogen and the 

acceptor atom.  We use a flat bottom potential for this DREIDING hydrogen bond term.  

However, we now allow both the inner and outer walls to shift by an amount Δ from the 

equilibrium point.  The objective here is to also let the potential to capture the polar 

contacts that would otherwise be missed, both when a donor-acceptor pair is too close or 

too far away from each other. 
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2.2.6.4 Charges 

We use the CHARMM13 charges for the protein and water, since these are standard and 

well-tested values.  For ligands and other solvents, we use QEq51 charges, which provide 

values similar to those from quantum mechanics.   

The Coulomb interaction between atoms 1 and 2 is written as: 

12

210

r
qqc

ECoulomb ε
=  

where q1 and q2 are charges in electron units, r12 in Ǻ, ε the dielectric constant and 

c0=332.0637 converts to energies in kcal/mol.  After optimization on a Xiang set of 

proteins using the 1.0Ǻ diversity rotamer library and a scaling factor s=1.0, we chose the 

dielectric ε=6.0 (see Figure 2-2).  Our calculation of electrostatics used a cubic spline 

cutoff beginning at 8Å and ending at 10Å.  

 
 

Figure 2-2 Effects on dielectric value on RMSD.  The optimum value for the constant 

dielectric, ε=6.0 shown here, was obtained by fitting results for the Xiang set with a 

diversity of 1.0Å and a scaling factor s of 1.0. 
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2.2.6.5 Total rotamer energies 

The valence energies (bonds, angles, torsions and inversion) plus the internal HB, Coulomb 

and VDW energies of the rotamers were calculated beforehand and stored in the rotamer 

library.   

The final form of the scoring function is thus: 

∑ ∑
<

+=
i ji

PairELTotal EEE  

where EEL is the sum over internal energies and the backbone interaction energies as 

described in 2.1 and 

CoulombHBVDWPair EEEE ++=  

is the total non-bond energy between all pairs of atoms between a pair of residues. 

For any particular atoms i and j, the total flat-bottom correction Δi,j for the VDW and HB 

terms is obtained from the individual Δ values of Δi and Δj using the relation: 

22
, jiji Δ+Δ=Δ  

This value corresponds to the standard deviation from the convolution of two normal 

distributions with standard deviations Δi and Δj. 

 

2.3 Results and Discussion 
2.3.1 Single Placement of Side-chains 

To explore the effect on placement accuracy of using flat-bottom potentials, we increased 

the scaling factor s from 0.0 (no scaling) to 2.0 in 0.1 increments.  To isolate the effects of 

the scaling, we placed sidechains one at a time onto the protein, in the presence of all other 

sidechains in their crystal positions.  The values here represent the best possible results 

given a scoring function and a rotamer library8.  The Xiang set of proteins described in 

Materials and Methods are used here. 
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Figure 2-3 shows that the best scaling factor is s ~ 1 for all rotamer libraries. Note that s=1 

for the 1.0A library leads to an accuracy of 0.665A which is much better than the accuracy 

of 0.71 Å obtained using s=0 (no scaling) for the much bigger 0.6A library. 

 

 

 

Taking the all-torsion rotamer library as an example, the RMSD improves from 0.94Å for s 

= 0 (no flat bottom) to 0.80Å for s = 0.9.  This library with 378 rotamers leads to an 

accuracy of 0.80Å, which compares with the accuracy of 0.75Å obtained using the 1.4Å 

library, which has 382 rotamers.   

Figure 2-3 Single sidechain placement accuracy for various rotamer libraries at different s 

values.  Shown are the libraries of 0.2Å diversity (14755 rotamers), 0.6Å diversity (3195 

rotamers), 1.0Å diversity (1014 rotamers), 1.4Å diversity (378 rotamers), 1.8Å diversity 

(218) and all-torsion (382 rotamers).  The coarser the rotamer library is, the more 

pronounced the effect of s becomes. 
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We optimized the scaling factors for rotamer libraries of diversities ranging from just 5.0 Å 

(44 rotamers) to 0.2 Å (13,000 rotamers).  Table 2-4 and Table 2-5 lists the optimum 

scaling factors and accuracies of these rotamer libraries, which lead to accuracies ranging 

from 0.47 Å (0.2 Å diversity) to 1.86 Å (5.0 Å diversity).  We consider that the 1.0 Å 

library with an accuracy of 0.665 Å using 1014 total rotamers as a good compromise of 

efficiency and accuracy.  These tables also list the results for the unscaled potential. 

 

Library Number of Rotamers Unmodified Potential

(RMSD, Å) 

Best s value Best RMSD(Å)

0.2Å 14755 0.536 1.3 0.468 

0.6Å 3195 0.710 1.1 0.564 

1.0Å 1014 0.857 1.2 0.665 

1.4Å 378 0.958 1.1 0.753 

1.8Å 214 1.064 0.9 0.885 

2.2Å 136 1.343 0.8 1.175 

3.0Å 84 1.624 0.7 1.487 

5.0Å 44 1.890 0.7 1.860 

AllTorsion 382 0.937 0.9 0.800 

 

 

 

 

 

Table 2-4  Optimized s value for rotamer libraries of size ranging from 0.2Å to 5.0Å, plus 

the all torsion rotamer library.  The s values that give the best RMSD value are listed 
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Library Number of 

Rotamers 

χ1/χ1+2 accuracy (from 

unmodified scoring 

function) 

Best 

scaling 

factor s 

χ1/χ1+2 accuracy 

using best s value 

0.2Å 14755 95.0% / 91.8% 1.3 96.3% / 93.4% 

0.6Å 3195 92.6% / 87.7% 1.1 95.6% / 92.1% 

1.0Å 1014 90.0% / 83.4% 1.2 95.3% / 90.4% 

1.4Å 378 87.8% / 80.0% 1.2 94.7% / 88.9% 

1.8Å 214 84.3% / 75.6% 1.2 91.5% / 83.8% 

2.2Å 136 71.9% / 61.0% 0.8 79.1% / 68.0% 

3.0Å 84 63.4% / 54.1% 0.7 68.4% / 58.9% 

5.0Å 44 53.2% / 44.9% 0.7 54.9% / 45.8% 

AllTorsion 382 89.6% / 81.3% 1.1 93.3% / 86.8% 

 

 

2.3.2 Effects of Buried vs. Exposed Residues 

The percentage of exposed residues considered in Section 2.3.1 is only 25% because 

crystallographic waters and solvents were included in the calculation.  We consider this as 

the best test of the scoring function.  However, in practical applications, such water and 

solvent molecules will not be present.  This creates additional uncertainties for the surface 

residues whose positions should be affected by the solvent and water.  Without such 

solvent molecules, the energy functions will tend to distort the sidechains to interact with 

other residues of the protein.  Surface residues have more flexibility and it would be better 

to have smaller scaling factors for these sidechains.  Thus, we optimized separate scaling 

factors for surface residues versus bulk.  To do this, we calculated the SASA for the Xiang 

Table 2-5  Effect of s values on χ1/χ1+2 accuracy.  Rotamer libraries of diversity ranging 

from 0.2Å to 5.0Å, plus the all torsion rotamer library are used.  The best χ1+2 accuracy 

is used to determine the most effective scaling factor s.  A χ angle is considered correct if 

within 40∘of the corresponding χ angle in the crystal sidechain conformation. 
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set and assigned all residues > 20% exposed as surface.  The resulting optimized scaling 

factors are in Table 2-6.  In Figure 2-4, we see that the accuracy for the 1.4 Å library 

increases from 0.809 (bulk) and 1.409 (surface) to 0.515 Å (bulk) and 1.107 Å (surface). 

The current SCREAM software does not distinguish between surface and bulk residues.  In 

order to predict the surface residues prior to assigning the sidechains, we recommend using 

the alanized protein and rolling a ball of 2.9 Å instead of the standard 1.4 Å (supplementary 

material). 

 

 

 

 

Figure 2-4  The effects of varying the scaling factor s on placement accuracies for the 

exposed and core residues.  Shown are results from the 1.4Å diversity rotamer library 

results.  Exposed residues account for approximately 25% of all residues. 
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Rotamer 

Library 

Optimal Scaling 

Factor s for core 

residues 

Optimal Scaling 

Factor s for surface 

residues 

Core residue 

RMSD (Å) 

for optimal s 

Surface residue 

RMSD (Å) for 

optimal s 

0.2Å 1.4 0.6 0.309 0.939 

0.6Å 1.2 0.8 0.414 1.010 

1.0Å 1.2 0.9 0.515 1.107 

1.4Å 1.3 0.8 0.605 1.171 

1.8Å 1.2 0.7 0.742 1.227 

2.2Å 0.8 0.6 1.105 1.371 

3.0Å 0.7 0.6 1.439 1.625 

5.0Å 0.7 0.7 1.835 1.935 

All-

Torsion 

0.9 0.8 0.656 1.224 

 

 

 

 

2.3.3 Placement of All Sidechains on Proteins, Comparison with SCWRL 

The effectiveness of the flat-bottom potential in the single-placement setting extends to 

multiple sidechain placements.  Based on the same Xiang test set of 33 proteins, we report 

the placement accuracy shown in Figure 2-5.  The optimal s values were similar to the 

values from single placement tests.  For example, the 1.0 Å library had an optimum scaling 

factor s=1.0 leading to an accuracy of 0.747Ǻ (compared to 0.665 Å for single placement).  

Overall, the accuracy discrepancy in multiple placement and single placement setting 

comes to a 0.09Å RMSD.  Using the χ1/χ2 criterion leads to similar conclusions, as seen in 

Table 2-8. 

Table 2-6  Accuracy comparison in single sidechain placements for buried and exposed 

residues for the Xiang test set. 
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The overall improvement in RMSD of the optimal s values over the exact Lennard-Jones 

potential, however, is more dramatic than in the single placement tests.  For instance, by 

introducing the optimal s value for the float-bottom potential, in the single sidechain 

placement case, the accuracy improved from 0.834Å to 0.663Å, an improvement of 0.17Å; 

in the all-sidechain placement case, the improvements went from 1.024Å to 0.755Å, an 

improvement of 0.27Å.   

To compare our results with SCWRL, we applied SCWRL3.0 on the Xiang set of proteins.  

We found an accuracy of 0.85Å for SCWRL.  A direct comparison between SCREAM and 

SCWRL is difficult since SCWRL uses a backbone dependent rotamer library and a more 

sophisticated multiple sidechain placement algorithm.  However, we note that the 1.8Å 

SCREAM library, with just 214 rotamers, achieved an accuracy of 0.86Å RMSD which is 

Figure 2-5  Accuracy for simultaneously replacing all sidechains for various rotamer 

libraries at different s values.  Shown are the libraries of 0.6Å diversity (3195 rotamers), 

1.0Å diversity (1014 rotamers), 1.4Å diversity (378 rotamers), 1.8Å diversity (218) and 

all-torsion (382 rotamers). 
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comparable to the 0.85 Å for SCWRL, which has a rotamer for each major torsion angle, 

coming to ~370 rotamers.  Of course, SCWRL uses a backbone dependent rotamer library, 

so the specific torsion angles of those rotamers depend on the backbone φ-ψ angles. 

 

Library Number of 

Rotamers 

Unmodified 

Potential 

(RMSD, Å) 

Best Scale Factor s 

value 

Best RMSD 

(Å) 

0.2Å 14755 0.689 1.2 0.571 

0.6Å 3195 0.830 1.2 0.657 

1.0Å 1014 1.036 1.1 0.747 

1.4Å 378 1.171 1.1 0.860 

1.8Å 214 1.303 1.0 0.985 

2.2Å 136 1.545 0.9 1.278 

3.0Å 84 1.756 0.8 1.565 

5.0Å 44 1.987 0.6 1.909 

AllTorsion 382 1.118 1.0 0.916 

SCWRL 0.951Å 

 

 

 

 

Table 2-7 Optimized s value for rotamer libraries of size ranging from 0.2Å to 5.0Å, plus 

the all torsion rotamer library.  The scaling factor s that gives the best RMSD value is 

included.  For comparison, SCWRL gives a RMSD of 0.95Å for the same residues and 

proteins tested in this set. 
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Library Number of 

Rotamers 

χ1/χ1+2 accuracy 

from unmodified 

scoring function 

Optimal s 

value 

χ1/χ1+2 

accuracy using 

optimal s 

0.2Å 14755 91.4% / 86.6% 1.3 94.1% / 89.9% 

0.6Å 3195 89.7% / 83.0% 1.1 93.8% / 88.5% 

1.0Å 1014 84.5% / 75.6% 1.1 92.9% / 86.7% 

1.4Å 378 81.7% / 71.4% 1.3 92.1% / 84.3% 

1.8Å 214 77.4% / 67.3% 1.2 88.6% / 80.0% 

2.2Å 136 66.8% / 55.0% 1.1 75.7% / 64.6% 

3.0Å 84 60.6% / 50.5% 0.8 66.2% / 56.7% 

5.0Å 44 52.1% / 43.9% 0.6 54.3% / 45.7% 

AllTorsion 382 85.0% / 73.4% 1.0 89.7% / 81.5% 

SCWRL 86.4% / 79.7% 

 

2.3.4 Analysis of Impact of Flat-Bottom on Individual Amino Acids during 

Combinatorial Placement 

We analyzed the impact of flat-bottom on accuracies for each individual amino acid.  We 

have also optimized individual scaling factors for each amino acid based on the Xiang set 

for each library.  This approach is not included in the current SCREAM software but the 

optimum scaling factors are included in Appendix A. 

2.3.5 Effects of Minimization on Structures from Different Scaling Factors 

For efficiency in predicting the optimum combination of sidechain conformations, we use 

the discrete rotamers from the library with no minimization.  Because of this, the closest (in 

Table 2-8  Effect of s values on χ1/χ1+2 accuracy.  Rotamer libraries of diversity ranging 

from 0.2Å to 5.0Å, plus the all torsion rotamer library are used.  The best value for χ1+2 

correctness is used to determine the most effective s value.  A χ angle is considered 

correct if within 40° of the corresponding χ angle in the crystal sidechain conformation.  

The χ1/χ1+2 correctness for SCWRL is 86.4% / 79.7%. 
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terms of RMSD) rotamer in the library to the correct conformation may have short 

contacts.  That is why we use the flat-bottom potential.  Of course, after assigning the 

sidechains we need to optimize the structures in preparation for docking and other 

applications.  To assess how well this optimization improves the accuracy we have 

minimized the sidechains for each structure for 100 steps (using DREIDING in vacuum) 

with the results in Table 2-9. 

We see that the initial configurations often have very high energies but after minimization 

these energies become fairly similar for different scaling factors with the same diversity.  

As expected, the best energies (in bold face) generally come from a scaling factor of 1.0 or 

1.1.  We note also that as the diversity of the library decreased, the energy of the final 

optimized configurations also decreased, indicating increased accuracy. 

As expected, the RMSD also decreases as we minimize the structures.  These results are 

shown in Table 2-10.  For example, for the 1.0A library, accuracy improved from 0.747A 

to 0.625A. 
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0.6Å Library 1.0Å Library 1.4Å Library All-Torsion Library s 

value Starting 

Energy 

Minimized 

Energy 

Starting 

Energy 

Minimized 

Energy 

Starting 

Energy 

Minimized 

Energy 

Starting 

Energy 

Minimized 

Energy 

0 -1234.3  -3163.1  546.8  -2839.2  6957.0  -2544.8  1558154.0 -2317.1  

0.2 -2237.0  -3225.5  530.7  -2969.3  2804.0  -2675.2  1260675.0 -2515.2  

0.4 -2195.1  -3271.3  417.6  -3053.8  2610.3  -2790.4  34774.5  -2767.6  

0.6 -2364.8  -3312.2  -624.4  -3102.8  3454.9  -2871.2  34628.7  -2826.2  

0.8 -2227.6  -3328.1  -419.9  -3168.6  4970.1  -2929.7  41225.3  -2849.5  

0.9 -2130.1  -3325.0  -166.4  -3165.1  10013.7  -2941.8  166369.5  -2836.7  

1.0 -2041.5  -3331.6  143.2  -3166.3  132017.6 -2952.7  173157.0  -2854.6 

1.1 -1952.9  -3341.3  1431.4  -3177.5  136424.5 -2945.5  53846.7  -2845.  

1.2 -1764.6  -3338.9  1885.2  -3171.0  146372.5 -2938.1  62057.7  -27949  

1.3 -545.0  -3327.5  3278.3  -3161.9  161903.0 -2919.4  101904.8  -278.0  

 

Table 2-9 Average energy values for the 33 proteins over varying s values.  All energy 

values include valence and non-valence terms, and the units are presented in kcal/mol.  

The energies do not include interaction terms between atoms that are not involved in the 

sidechain placement calculations.  Numbers in bold are the minimum values for each 

category. 
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0.6Å Library 1.0Å Library 1.4Å Library All-Torsion Library Scaling 

Factor Starting 

RMSD 

Minimized 

RMSD 

Starting 

RMSD 

Minimized 

RMSD 

Starting 

RMSD 

Minimized 

RMSD 

Starting 

RMSD 

Minimized 

RMSD 

0 0.830 0.737 1.036 0.930 1.171 1.061 1.112 1.003 

0.2 0.784 0.694 0.954 0.848 1.071 0.962 1.035 0.916 

0.4 0.746 0.658 0.884 0.773 1.003 0.887 0.975 0.848 

0.6 0.706 0.615 0.827 0.718 0.930 0.814 0.954 0.823 

0.8 0.681 0.591 0.784 0.668 0.888 0.767 0.920 0.787 

0.9 0.682 0.591 0.766 0.651 0.877 0.752 0.917 0.786 

1.0 0.672 0.581 0.764 0.647 0.863 0.736 0.916 0.780 

1.1 0.662 0.569 0.747 0.625 0.860 0.729 0.923 0.786 

1.2 0.657 0.562 0.752 0.629 0.861 0.727 0.937 0.799 

1.3 0.662 0.568 0.758 0.632 0.860 0.724 0.946 0.803 

 

2.3.6 Program Execution Performance 

All tests have been run on Intel Xeon 2.33 GHz CPU single processors.  The tradeoff in 

time vs. rotamer library size is detailed in Table 2-11.  Obviously, the size of rotamer 

libraries affects the time spent on sidechain placement.  Compared to SCWRL, the time 

required by SCREAM is relatively slow.  However, SCWRL does not explicitly include 

hydrogen atoms, and use of united atom should reduce the computational time by 

SCREAM by a factor of about three47.   

It might appear that the increased accuracy of using SCREAM compared to SCWRL might 

not justify the increased expense.  However, these test cases are all systems for which exact 

Table 2-10  Average RMSD values (in Å) for the Xiang set of 33 proteins, before and 

after minimization.  Entries in bold correspond to those with the lowest DREIDING 

energies before and after minimization, see Table 2-9 for details. 



 

 

46

structures are available.  We have found in applications involving predictions of new 

structures that the SCREAM procedure works better than SCWRL, in particular for 

predicting GPCRs, as will be presented elsewhere52. 

 

Χ1 (%) χ1+2 (%) RMSD (Å) Library 
Diversity 

Number 

of 

Rotamers 

Time 

per 

protein 

Buried All Buried All Buried All 

0.2Å 14755 554 s 96.7 93.8 93.7 89.7 0.43 0.58 

0.6Å 3195 291 s 96.1 93.5 91.6 88.0 0.53 0.67 

1.0Å 1014 146 s 95.5 92.4 89.8 85.9 0.62 0.76 

1.4Å 378 110 s 94.4 91.6 87.0 83.8 0.73 0.86 

1.8Å 214 1 s 90.9 87.8 83.4 80.0 0.85 0.99 

All-Torsion 382 147 s 92.4 89.7 85.2 81.5 0.78 0.92 

SCWRL n/a 3 s 90.3 86.4 84.4 79.7 0.79 0.95 

 

2.3.7 Tests on the Liang Set Using the Optimized Scaling Factor 

In the previous sections, we optimized the scaling factors for the Xiang set and discussed 

the accuracy for the Xiang set.  As to better indicate how well SCREAM works for new 

systems we tested the predictions for the Liang set using the scaling factors optimized for 

the Xiang set. 

Rotamer libraries of practical use, including those of diversities 0.6 Å, 1.0Å, 1.4Å, 1.8Å 

and the all-torsion rotamer library were used for this test.  Results are shown in Table 2-12.  

For example, using the 1.4A library, we found an accuracy of 0.96Ǻ for all residues and 

0.74Ǻ for the buried residues, which compares to 0.86Ǻ for all residues and 0.73Ǻ for the 

Table 2-11  Performance measure of SCREAM, with rotamer libraries of various 

diversities.  The timing statistics were taken from the runs that gave the best energy 

values. 
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buried residues for the Xiang set.  The reason for the decreased accuracy is that 40% of 

sidechains in the Liang set are solvent exposed compared to 25% for the Xiang set.  The 

prediction of core residues is approximately at the same level of accuracy as reported in 

previous sections. 

χ1 (%) χ1+2 (%) RMSD (Å) Library 

Diversity 

Number 

of 

Rotamers 

Run 

time 

per 

protein 

Buried All Buried All Buried All 

0.6Å / s = 1.2 3195 78.9 s 96.4 90.8 92.6 84.3 0.52 0.80 

1.0Å / s = 1.1 1014 41.0 s 93.6 89.1 87.1 80.7 0.69 0.93 

1.4Å / s = 1.1 378 29.9 s 94.5 89.4 86.2 79.9 0.74 0.96 

1.8Å / s = 1.0 214 27.6 s 90.3 85.2 83.5 77.0 0.84 1.05 

All-Torsion / 

s = 1.0 

382 32.5 s 93.4 87.6 87.3 79.4 0.77 0.99 

SCWRL n/a 2 s 90.5 83.7 84.3 75.5 0.82 1.10 

 

2.3.8 Parameters for Other Lennard Jones Potentials 

While the Lennard-Jones 12-6 potential is the most commonly used, it has been 

demonstrated that softer potentials improve placement accuracy53.  Thus, we tested out 

Lennard-Jones potentials of the 7-6, 8-6, 9-6, 10-6 and 11-6 types on the 1.0Ǻ rotamer 

library for the Xiang protein set.  As expected, the softer potentials performed better, but 

the results can be improved further by including a flat-bottom region in the potential.  

Results are shown in Table 2-13.  The optimal value of the scaling factor s decreases with 

Table 2-12  SCREAM predictions on the Liang test set using optimized scaling factor for 

rotamer libraries of various diversities.  The percentage of buried residues in this test set 

is about 40%, greater than the 25% figure from the previous test set.  We include crystal 

structure solvents in the predictions, and the increase in exposed residues is due to the 

fewer resolved solvents in those structures. 
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softer Lennard-Jones potentials, which was expected and was consistent with the flat-

bottom potential approach.  It is interesting to note that the 11-6 potential with optimized 

scaling factor s achieved the best overall RMSD value for this test, though the differences 

across the different Lennard-Jones potentials were small. 

 

LJ Type Unmodified 

Potential  

(RMSD, Ǻ) 

Best Scale Factor s 

value 

Best Scale Factor 

RMSD (Å) 

7-6 0.831 0.4 0.767 

8-6 0.845 0.6 0.752 

9-6 0.855 0.7 0.752 

10-6 0.911 0.8 0.749 

11-6 0.963 1.0 0.741 

12-6 1.036 1.1 0.747 

  

2.3.9 Comparison with VDW Radii Scaling 

We also test out using reduced VDW radii values on the 1.0Ǻ rotamer library for the Xiang 

protein set.  The results are shown in Table 2-14.  The improvement from using reduced 

VDW radii is not as pronounced as the improvement from using softer Lennard-Jones 

potential forms, described in the previous section. 

Table 2-13  Effect of different Lennard-Jones potentials and their optimal scaling factor s.  

Tests were done on the Xiang protein set using the 1.0Ǻ rotamer library. 
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VDW Radii Scaling RMSD (Ǻ) 

75% 0.959 

80% 0.884 

85% 0.866 

90% 0.896 

95% 0.956 

100% 1.036 

 

2.3.10  Extension beyond the Natural Amino Acids 

The σ values were calculated for the natural amino acids.  To extend the flat-bottom 

potential approach for ligands and non-natural amino acids, a value for Δ or σ needs to be 

determined.  These values clearly depend on how conformations were generated, but we 

recommend a simple scheme such as using Δ=0.4Ǻ for all atoms. 

 

2.4 Conclusion 
We show that sidechain placement using a flat bottom potential leads to excellent sidechain 

placement results with a simple combinatorial sidechain placement algorithm.  We present 

a straightforward method for deriving these parameters and applied this to rotamer libraries 

with a wide range of diversities (0.2Ǻ to 5.0Ǻ).  The potential is a simple modification of a 

Lennard-Jones potential, making it easy to incorporable into existing software.  In a later 

chapter, we present the protein design of Trptophanyl-tRNA synthetase active site to 

incorporate non-natural amino acids, extensively using SCREAM in that application.

Table 2-14  Effects of VDW scaling.  Tests were done on the Xiang protein set using the 

1.0Ǻ rotamer library. 
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3 DREIDING for Polar Interactions  
3.1 Introduction 
Molecular mechanics force fields, such as CHARMM13, AMBER15, GROMACS54, 

OPLS55 and DREIDING14 have played an essential role in the successful 

applications in many computational protein studies in the past few decades26,56.  

Thanks to extensive parameterization, these force fields can reproduce accurate 

molecular structures.  This is especially true for the valence terms such as bonds, 

angles, and torsions, since high level ab initio quantum mechanics calculations are 

available for parameter fitting. 

Intermolecular interactions are more difficult to parameterize.  Factors such as 

charge transfer, polarization and hydrogen bonding make it difficult for standard 

force fields to accurately describe polar interactions in particular.  There is in 

general a lack of agreement on how to assign partial charges on atoms, and charges 

alone sometimes do not contribute to the accuracy of structures.  Polarizable force 

fields present a plausible solution to this problem, but their development is still in 

their infancy54,57,58.  In addition, hydrogen bonds are highly directional and it is 

difficult to reproduce quantum mechanical energies given the constraints set forth 

by electrostatics and van der Waals.   

Because of the importance of polar interactions in protein systems, DREIDING, 

unlike many other force fields in common usage, explicitly includes a hydrogen 

bond.  The original expression of the DREIDING hydrogen bond expression, which 

was formulated over 30 years ago, has no physical basis and we have updated this 

hydrogen bond expression based on quantum mechanical calculations on water 

dimer.  Based on this new DREIDING hydrogen bond term, we introduce a 

consistent approach in describing polar interactions in proteins by performing our 
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parameterization based on quantum mechanical calculations on model compounds.  

We achieve excellent results with this approach. 

In addition, we recommend neutralizing charged protein residues during 

calculations to reduce unwanted noise arising from electrostatics.  The procedure 

and justification for this strategy is presented. 

3.2 Polar Interactions 
3.2.1 Neutralizing Amino Acids 

The following amino acids have a net charge at physiological pH:   Aspartate (Asp, 

pKa = 4.0) and Glutamate (Glu, pKa = 4.0) have a net charge of -1, Arginine (Arg, 

pKa 12.5) and Lysine (Lys, pKa = 10.5) have a net charge of +1 (Figure 3-1).  These 

residues are typically modeled as charged in force fields such as CHARMM and 

AMBER.  Since proteins might not necessarily have an equal number of positively 

and negatively charged residues, counter-ions such as Na+ and Cl- are added to a 

simulation system to ensure net neutrality in the system when doing molecular 

simulations. 

 

 Figure 3-1  The four charged amino acids at physiological pH.
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Despite the use of counter-ions, it is recognized that they bring about large 

fluctuations in electrostatic energies59.  As mentioned in Chapter 1, electrostatic 

interaction in force fields is described like the following: 

ijjiQ RQQE ε/)0637.322(=  

where the energy is expressed in kcal/mol and Rij is expressed in Ǻ.  According to 

this relation, if we take ε=1.0, two oppositely charged ions even at 30Ǻ apart would 

have an interaction energy close to 10kcal/mol, which is comparable to the 5-

10kcal/mol stability of a typical protein.  This level of sensitivity to changes far 

away from a region of interest such as a ligand binding site leads to unreliable 

calculations.  As a result, researchers have used various schemes to reduce the 

effect of electrostatics, such as increasing the value of the dielectric constant and 

using a distance dependent dielectric60-62.  This is despite the fact that the use of 

dielectric constants other than 1.0 or a modified Coulombic interaction is justified 

only on empirical grounds.   

Interaction Type QM Energies 

(kcal/mol) 

Force Field Energies 

(kcal/mol) 

Guanadinium—

Carboxylate  

120.9  85.5 

Amine–Carboxylate 145.1 94.5 

 

Table 3-1  Interaction energies of model charged compounds (see Figure 3-7) 

representing charged amino acids.  Quantum mechanics energies were obtained 

by constraining the hydrogen-heavy atom distance.  
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With the considerations mentioned above in mind, we neutralize the net charges on 

the normally charged amino acid residues.  It has been demonstrated empirically 

and statistically that solvent exposed charged sidechains and exposed salt bridges 

contribute less than 2 kcal/mol to the self-energy of a protein63,64, due to the solvent 

screening effect.  For buried salt-bridges, fully charged models leads to an 

interaction energy of about 90kcal/mol (Table 3-1), which is an unrealistic figure 

for binding energy calculation purposes.  Instead, we perform a proton transfer 

between the salt bridges.  To obtain the correct interaction, parameterization of this 

salt bridge pair is done by fitting to QM results.  Our approach not only reduces the 

source of error that arises from the use of counter-ions, but also reduces the effect 

due to random fluctuation of charged residues far away from a region of interest. 

3.2.2 Assignment of Protons from Neutralization of Charged Residues 

Care is needed when hydrogens are added or removed from charged residues, as the 

original hydrogen bond network must remain undisrupted.  The addition and 

deletion of protons are needs to satisfy the following rules:  

1. Protons are to be transferred from positively charged residues (or functional 

groups) to negatively charged residues (or functional groups). 

2. If a positively charged residue is not directly involved in a salt bridge with a 

negatively charged residue but belong to the same hydrogen bond, protons are 

allows to be transferred via bridging groups, such as water or histidine. 

3. If charged residues are isolated even considering its hydrogen bond network, 

protons are added or deleted so as to maximize the number of hydrogen bonds. 

4. If ambiguity arises, such as when a charged residue is involved in two salt 

bridges, proton assignment is performed by maximizing the total number of 

hydrogen bonds.  See Figure 3-2 for an illustration.   



 

 

54

With the rules established above, the problem of proton assignment becomes 

equivalent to a maximum flow problem, a problem well-studied in computer 

science.  The entire description of the algorithm is in Appendix B.  

 

 

Figure 3-2  Schematic illustrating the movement and assignment of protons.  

Arrows denote possible polar hydrogen  “+ Groups”: functional groups that are 

positively charged, i.e. those with extra protons.  “- Groups”: functional groups 

that are negatively charged, i.e. those that can accept protons.  “Bridge Groups”: 

groups such as H20 or Histidine that can form hydrogen bonds between + 

Groups and – Groups. 
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The overall charge of each residue after removing or addition of proton thus 

becomes zero.  As a result of this neutralization procedure, the protein also has a net 

charge of zero.  Calculations of binding energies or effects of mutations are then 

carried out using a dielectric of 1.0.  Clearly, with the elimination of net charges on 

functional groups, systems like salt bridges are not as stable as prior to the 

neutralization procedure.  Therefore, we have created new atom subtypes for these 

special neutralized residues (See Table 3-2).  We discuss these types in more detail 

in a subsequent section. 

Residue Type Affected Atoms Previous Atom 

Type 

Neutralized Atom 

Type 

ASP Oδ1, Oδ2 O_2 O_2M, O_3M 

GLU Oε1, Oε2 O_2 O_2M, O_3M 

LYS Nζ N_3 N_3P 

ARG Nη1, Nη2 N_R N_RP 

3.3 DREIDING Hydrogen Bond Term 
3.3.1 Introduction 

Hydrogen bonds play an important role in biological molecules, as they are largely 

responsible for the formations of organized three-dimensional structures.  In 

proteins, alpha helices and beta sheets formation are due to backbone hydrogen 

Table 3-2  New atom subtypes for atoms on previously charged residues.  The 

suffixes “M” and “P” at the end of a neutralized atom type stand for “Minus” 

and “Plus”, mnemonics for remembering the original net charge of the residue 

the atom belongs to.  For ASP and GLU, the atom type O_3M is used on the 

oxygen with a proton added onto it.  
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bond formation.  Many protein-ligand recognitions are due to specific hydrogen 

bonds. 

Because of the importance of hydrogen bonds, an accurate description of hydrogen 

bond is necessary for biomolecular computations.  Some force fields, including 

CHARMM13 and AMBER15, balance VDW and electrostatic interactions to 

reproduce hydrogen bond interactions.  However, with the current force fields using 

point charges on atomic centers and charges being non-polarizable, it is difficult to 

produce energies to high accuracy.  Thus, in DREIDING14, a specialized hydrogen 

bond term is used: 

)(cos])/(6)/(5[ 41012
DHADAhbDAhbhbhb RRRRDE θ−=  

where Dhb stands for the well-depth of the hydrogen bond potential, Rhb the 

equilibrium distance and θDHA the angle between the hydrogen bond donor atom, 

hydrogen and the acceptor atom.   

This hydrogen bond term consists of a 12-10 Lennard-Jones radial term and a cos4 

angular term, with each term independent of the other.  We investigate whether this 

12-10 Lennard-Jones distance term and the cos4 angular term accurately describe 

the behavior for a hydrogen bond interaction.  The water dimer is chosen as our 

model system.  

3.3.2 Updating the DREIDING Hydrogen Bond Term 

3.3.2.1 Equilibrium Water Dimer Structure 

We perform high-level quantum mechanics (X3LYP/aug-cc-pvtz) calculations on 

water-dimer.  The minimized structure is shown in Figure 3-3.  A binding energy of 

5.0 kcal/mol is obtained for the optimized structure, with the binding energy (Ebind) 

being calculated as: 
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teracceptorWadonorWaterdimerbind EEEE −−=  

where Edimer is the energy of the water dimer, EdonorWater the energy of the hydrogen 

bond donating water monomer and EacceptorWater the energy of the hydrogen bond 

accepting water monomer.  The counterpoise correction for basis set superposition 

error is not included because the basis sets used is of the Dunning65 type.   

 

3.3.2.2 Assignment of Charges 

A consistent charge assignment scheme is necessary to ensure transferability of 

parameters.  We choose to use Mulliken atomic charges from quantum mechanics.  

While we used the Dunning type of basis-set for minimization, those basis sets are 

too diffuse and instead we use the Pople type basis sets for obtaining the atomic 

Mulliken charges. 

Figure 3-3 Water dimer structure optimized at the X3LYP/aug-cc-pvtz level. 
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Basis Set Mulliken Charge on 

Oxygen (e) 

Dipole Moment with 

Mulliken Charges 

(Debye) 

6-311G** -0.48 1.35 

6-31G** -0.61 1.72 

Aug-cc-pvtz-f -0.67 1.91 

6-31G/HF -0.87 2.43 

Experiment n/a 1.8 

As shown in Table 3-3, the basis set employed in a calculation has a large effect on 

the charge assignment.  The 6-31G/HF calculation is included for comparison 

purposes, since the charges used in CHARMM is based on these calculations.  We 

have chosen the 6-31G** basis set for all subsequent Mulliken charge assignments 

in this work.  While this basis set underestimates the experimental dipole moment 

for water (also in general for other polar molecules as well, data not shown), we can 

easily capture and correct for any missing interaction energies by proper 

parameterization of the hydrogen bond term in DREIDING. 

3.3.2.3 Water Dimer Radial Dependence 

We examined what functional form best reproduces the radial dependence of water 

dimer binding by varying the O-O heavy atom distance at 0.01Ǻ increments and 

performing quantum mechanics at the X3LYP/cc-pvtz(f++) level.  To reduce 

uncertainty and also because the angular dependence of the DREIDING hydrogen 

bond has a minimum at 180°, we fix the O-H…O angle to 180.0° (i.e. not at the 

equilibrium 170.5°) in quantum mechanics calculations.  The comparison with 

Table 3-3 Mulliken charges for water, when using different basis sets.  Except 

for the 6-31G basis set, where the Hartree-Fock method is used, all other 

calculations are done using the X3LYP method.  The dipole moment is 

calculated by placing the charges on water molecule atoms. 
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force field one-point energies is done using DREIDING parameters for water 

(Table 3-4).   

Atom Type D0 (kcal/mol) R0 (Ǻ) Charges (e-) 

H___A 0.0335 2.9267 +0.3066 

O_3W 0.9570 3.4046 -0.6132 

O_3W – H___A 

(off-diagonal term) 

0.0001 3.1566 n/a 

DREIDING previously only includes an O_3 atom type, one that represents sp3 

oxygen.  We feel that the water oxygen demands its own atom type, and have used 

O_3W for the water oxygen, where the “W” stands for water.  Except for the 

properties described in Table 3-4, all other parameters of this O_3W atom type 

including the valence terms, are kept the same as parameters used for the O_3 atom 

type. 

We tested various common VDW potentials including the 12-6, 11-6, 10-6, 9-6, 8-

6, 7-6 Lennard-Jones forms, Morse potential and exponential-6 potential.  From 

these potentials, we chose the Morse potential to describe the radial portion of the 

hydrogen bond, discarding the 12-10 potential previously.  The family of Lennard 

Jones potentials proved to have too great of an inner repulsion wall to compared to 

quantum mechanics data.  An extremely soft Lennard-Jones 6-4 potential does a 

good job of fitting, but the 1/r4 long term behavior will overwhelm the 12-6 

Lennard Jones in VDW calculations.  The exponential-6 potential was discarded 

because of complexities involving an inflection point at small distances.  A fit using 

Table 3-4 DREIDING atom types for oxygen (O_3W) and hydrogen (H___A) in 

water. Mulliken charges for the water monomer are based on calculations at the 

X3LYP/aug-cc-pvtz(-f) level.  The R0 off-diagonal O_3 – H___A term is the 

geometric mean of the two R0 values for H___A and O_3. 
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the Morse potential against quantum mechanics calculations done on the water 

dimer is shown in Figure 3-4. 

Water Dimer Binding 
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We chose the Morse potential for two reasons.  The γ value in the Morse potential 

allows one to adjust the steepness of the inner repulsive region of a two-body 

interaction.  In addition, the Morse potential has the desirable asymptotic property 

that it goes to zero more rapidly than any functional form containing a term with a 

power of R.  In practice, this asymptotic property would be irrelevant because of 

cutoffs, but we do not wish for cutoffs to determine such a fundamental issue.  The 

Morse potential has the following form: 

]2[)( 2 χχ −= HBMorse DRE   

Figure 3-4  Water dimer binding, QM vs. DREIDING using fitted parameters 

with a Morse hydrogen bond potential with γ=9.70, R0=3.10 and D0=1.75. 
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where 
⎥
⎥
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Here, DHB, RHB and γ are parameters, with DHB being the well-depth of the 

potential, RHB the equilibrium distance between the hydrogen bond acceptor and 

donor heavy atoms, and γ a scaling parameter.  Using the VDW and electrostatics 

terms above, γ=9.70 leads to the overall DREIDING water dimer binding energy to 

be zero at the same radial distance as in quantum mechanics.  This γ value will be 

used for all other pairs of hydrogen bond donor-acceptor pairs. 

As noted previously, the H___A – O_3W off-diagonal term (or “cross” term) is 

specified to have parameters of R0=3.1566 and D0=0.0001.  The R0 value is based 

on the geometric mean of H___A and O_3 R0 parameters.  The small D0 value is 

chosen out of necessity.  With the default geometric mean combination rule, D0 

between H___A and O_3W would have VDW repulsion energy too great at small 

distances (around 1.5Ǻ).  This adjustment in the off diagonal term is made so that 

the DREIDING water dimer binding curve can reproduce QM results (Figure 3-4). 

3.3.2.4 Angular Dependence 

Next, we determine the optimal functional form for the hydrogen bond angular 

dependence f(θAHD).  We generated 360 water dimer structures by rotating the 

hydrogen bond donating water around the oxygen at 1 degree increments.  The 

starting position for the hydrogen donating to the acceptor water is such that the O-

H…O angle (θ angle, Figure 3-3) is 180°, while fixing all the other atom 

coordinates of the QM-optimized structure.  Single point energy calculation at the 

X3LYP/aug-cc-pvtz(-f) is done and binding energy of the water dimer is calculated 

as before.  The well depth for the hydrogen bond term used in the fitting is based on 

the binding energy of the equilibrium water dimer structure in QM.  The results are 

shown in Figure 3-5. 
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From the plot, it is evident that electrostatic interactions alone cannot reproduce the 

QM binding curve, even in the important valley where hydrogen bonds are being 

formed. cos4(θAHD) has too steep of a drop-off when θ deviates from the equilibrium 

180° neighborhood.  We consider the fact that cos3(θAHD) and cos(θAHD) have 

derivatives that do not vanish at 90° to be a serious shortcoming.  As a result, we 

recommend using cos2(θAHD) functional form in the angular portion of the hydrogen 

bond expression. 

 

3.3.2.5 Summary  

The new functional form we have chosen for the hydrogen bond is the product of a 

radial and an angular component.  The Morse potential is used for the radial term to 

allow for a softer interaction potential between the two heavy atoms.  cos2(θAHD) is 

used for the angular term.  The off-diagonal interaction between the hydrogen bond 

acceptor atom and donor atom has been modified to allow the hydrogen and the 

Figure 3-5 Angle dependence of water dimer binding. Note that the angle shown 

here is the O…O-H angle, not the O-H…O angle in θAHD. 



 

 

63

acceptor oxygen to approach each other at closer distances.  The new DREIDING 

hydrogen bond is thus: 

)(cos]2[ 22
DHAhbhb DE θχχ −=  

with 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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⎞
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R

e
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χ . 

 

3.3.2.6 Comparison with Other Water Models 

We note that in some three-point water models such as F3C and TIP3P, there is no 

explicit hydrogen terms; instead, the VDW terms and electrostatics are 

parameterized to reproduce relevant water properties.  The equilibrium binding 

energy values are listed in Table 3-5. 

Model Charge on 

Hydrogen (e) 

Equilibrium O-O 

Distance (Ǻ) 

Binding Energy 

(kcal/mol) 

F3C 0.4100 3.00 7.7 

TIP3P 0.4170 2.95 8.3 

DREIDING 0.3066 2.91 5.0 

QM n/a 2.91 5.0 

Most water models are developed to reproduce of bulk water properties, which 

would explain the differences as seen in Table 3-5.  This approach may not be 

appropriate for calculating single-point ligand-protein binding energies, where all 

the atoms are in fixed positions and have undergone energy minimization.  Given 

Table 3-5  Comparison of binding energies of water dimers in various water 

models.  Final minimized values are reported.  



 

 

64

our focus on ligand binding energy calculations, we derive all subsequent 

parameters based on quantum mechanics energies of various interacting polar 

dimers. 

 

3.4 Optimization of Hydrogen Bond Parameters  
3.4.1 Atom Types for Hydrogen Bond Donors and Acceptors 

The assignment of atom types to atoms of the same element but in different 

chemical environments is crucial to the success of a force field.  The more atom 

types introduced, the more accurate a force field becomes due to the sheer amount 

of additional parameterization that can be performed.  We have intentionally kept 

the number of atom types to a minimum, in keeping with the philosophy of 

DREIDING—simplicity and flexibility14. 

In DREIDING, each atom type is uniquely identified as a five-character label.  The 

first two characters denote the element (an underscore “_” is used when the 

element’s chemical symbol is composed of just one character).  The third character 

denotes the hybridization and geometry of the underlying atom: “1” = linear (sp1), 

“2” = trigonal (sp2) and “3” = tetrahedral (sp3), “R” = resonance.  The 4th and 5th 

characters are used for additional properties.  The hydrogen involved in hydrogen 

bond is given the special type “H___A”.  

In original DREIDING, there are three types of oxygens (O_2, O_3, O_R) and two 

types of nitrogens (N_R and N_3) that are present in proteins.  For the purpose of 

hydrogen bond parameterization, we have introduced several additional subtypes 

(Table 3-6), O_3W for the oxygen in water (“W” for water, subtype for O_3), 

O_2M and O_3M for the oxygens in protonated Aspartate and Glutamate (“M” for 

minus, subtype for O_2 and O_3 respectively), N_A for the nitrogen in Trptophan 

and Histidine (“A” for aromatic, subtype of N_R), N_RP for the nitrogens in 
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deprotonated Arginine (“P” for positive, subtype of N_RP) and N_3P (subtype of 

N_3) for the nitrogen in deprotonated Lysine.  In this presentation, we cover only 

the atom types that occur in proteins, but our parameterization strategy can be 

extended to the treatment of other systems such as nucleotides and organic 

molecules.   

Each atom subtype has the exact same internal (bond length, angle, torsion) and 

VDW parameters as the atom type it was derived from.  Only hydrogen bond 

parameters will be modified. 

Description Atom 

Type 

Charge 

State 

Donor/Acceptor? Model 

Compound 

Protein 

Examples 

Water 

oxygen 

O_3W 0 Both H2O waters 

sp3 oxygen O_3 0 Both CH3OH Ser, Thr 

O_2 0 Acceptor CH3CONH2 

(methyl-amide) 
(1) 

Asn, Gln, 

backbone 

sp2 oxygen 

O_2M - Acceptor CH3COO- Asp, Glu 

Resonance 

oxygen 

O_R 0 Both C6H5OH Tyr 

Aromatic 

nitrogen 

N_A 0 Both CH3C3H4N2 

(methyl-

Imidazole) 

His, Trp 

N_R 0 Donor CH3CONH2 Asn, Gln, 

backbone 

Resonance 

nitrogen 

N_RP + Both CH3NHC(NH2)2
+ Arg 

sp3 

nitrogen 

N_3 0 Both CH3NH2 Neutral 

Lys 
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N_3P + Donor CH3NH3
+ Lys 

sp3 sulfur S_3 0 Both CH3SH Cys, Met 

3.4.2 VDW Parameters 

Unlike other force fields15,66, we do not adjust the VDW radii of individual atoms 

involved in hydrogen bond.  As mentioned above, we only modify the hydrogen 

bonding parameters and keep the same VDW parameters for those atom subtypes. 

Atom Type 1 Atom Type 2 D0 R0 

O_3, O_3W, 
O_3M, O_2, 
O_2M 

0.0001 kcal/mol 3.1566Ǻ 

N_R, N_RP, 
N_A, N_3, 
N_3P 

0.0001 kcal/mol 3.2738Ǻ 

S_3 

H__A 

0.0001 kcal/mol 3.4343Ǻ 

As mentioned in Section 3.3.2.3 during the discussion of the water dimer, however, 

the off-diagonal VDW interaction between hydrogen bond acceptor oxygen and the 

polar hydrogen is reduced in order for the two atoms to better approach each other.  

The same reduced off-diagonal approach is done for each pair of hydrogen bond 

acceptor heavy atom and polar hydrogen.  The off-diagonal well depth, D0, is set to 

0.0001 kcal/mol.  The off-diagonal R0 is obtained by using the usual geometric 

mean combination rule.  These values are listed in Table 3-7. 

Table 3-6 DREIDING atoms types that are used in proteins.  (1): Amide was 

picked because ethers do not naturally occur in proteins.  

Table 3-7 Off-diagonal VDW terms for hydrogen bond acceptors and the 

hydrogen bonding hydrogen (H___A).  R0 values are derived from geometric 

mean of heavy atom VDW radii and H___A VDW radii. 
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3.4.3 Hydrogen Bond Parameterization Methodology 

Model compounds of atom types to be parameterized are shown in Figure 3-6 and 

Figure 3-7.  For each hydrogen bond acceptor-donor pair interaction, a 

corresponding pair of model compounds is constructed.  The positioning of the pair 

of model compounds is such that a hydrogen bond is clearly formed between them 

(much like the hydrogen bonding structure of the water dimer, see Figure 3-3).  

These structures are optimized at the X3LYP/aug-cc-pvtz(-f) level.  Because of 

polarization, Mulliken charges are assigned each molecule individually, at the 

X3LYP/6-31G** level.  For a discussion of charge assignment, see Section 3.3.2.2. 

O HH H
O

O
H

N
H

H

O N
NH

S
H

Imidazole

Water Methanol

Phenol

Amide

Thiol

O_3W

O_2

O_R

S_3

N_A

O_3

N_R N_A

O HH H
O

O
H

N
H

H

O N
NH

S
H

Imidazole

Water Methanol

Phenol

Amide

Thiol

O_3W

O_2

O_R

S_3

N_A

O_3

N_R N_A

 

Figure 3-6  Samll molecule model compounds used in parameterization of 

hydrogen bonds common in proteins. 



 

 

68

N

N
N

H
H

H
H

N
H

H

O

O
H

Guanadinium Methyl-Amine Carboxylate

N_RP

N_3P

O_2M

O_3M
N

N
N

H
H

H
H

N
H

H

O

O
H

Guanadinium Methyl-Amine Carboxylate

N_RP

N_3P

O_2M

O_3M

 

We use two pieces of data resulting from these quantum mechanics calculations for 

parameterization purposes.  The first piece of data is the QM binding energy for the 

optimized structures.  In our force field, the binding energy only involves non-

valence terms and we have the following relation: 

HBCoulombvdwFF

Fitting

QM BEBEBEBEBE ++=≈  

where BEFF is the binding energy as calculated from the force field (i.e. 

DREIDING), BEvdw the binding energy component of VDW interactions, BECoulomb 

the binding energy component of electrostatic interactions, and BEHB the binding 

energy component of the DREIDING hydrogen bond term.  

The second piece of data we use is the QM donor-acceptor heavy atom distance 

(RQM).  For water dimer, this value is 2.91Ǻ.  The force field donor-acceptor heavy 

atom distance is denoted RFF. 

Since we do not vary the parameters in VDW terms and 6-31G** Mulliken charges 

are used for charge assignment, only the parameters from the BEHB term can be 

adjusted.  Given our hydrogen bond expression (see Section 3.3.2.5) and the 

Figure 3-7  Small molecule model compounds for neutralized form of charged 

amino acids.   
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decision to fix the γ parameter at 9.70, the only terms we can modify are the DHB 

and RHB terms.  Modifying these terms will result in different force-field-optimized 

configurations, with different BEFF and RFF values. 

Our fitting target is to achieve BEFF ≈ BEQM and RFF ≈ RQM, where BEFF and RFF 

are values from the force field after structure optimization in that force field.  

Conveniently, we have two adjustable parameters DHB and RHB to fit to the two 

constraints.  An exact fit can be therefore obtained, although because of the 

constraints imposed by not varying VDW and electrostatics the fit will on occasion 

not be exact.  Outside of these exceptional cases, fitting is performed to within 

0.1kcal/mol and 0.1Ǻ of quantum mechanics values. 

3.4.4 Parameterization of Neutral Hydrogen Bond Atom Types 

From our set of possible protein atom types, there are 30 possible pairs of donor-

acceptor hydrogen bond terms.  Presented in Table 3-8 are the quantum RQM, BEQM 

values and the fitted RHB and DHB parameters. 

Donor Atom 

Type 

Acceptor Atom Model 

Compounds 

(Donor-

Acceptor) 

BEQM 

(kcal/mol) / 

RQM (Ǻ) 

DHB 

(kcal/mol)  / 

RHB (Ǻ) 

O_3W H2O – H2O 5.00 / 2.91 1.3 / 2.95 

O_3 H2O – CH3OH 5.38 / 2.88 0.6 / 2.85 

O_2 H2O - Amide 7.11 / 2.81 1.7 / 2.675 

O_R H2O – C6H5OH 3.63 / 2.94 0.45 / 2.91 

N_A H2O – Me-Im 6.98 / 2.87 2.80 / 2.77 

O_3W 

S_3 H2O – CH3SH 3.81 / 3.34 2.45 / 3.29 

O_3 O_3W CH3OH - H2O 4.77 / 2.93 1.5 / 2.925 

 O_3 CH3OH - 5.16 / 2.90 0.8 / 2.85 
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CH3OH 

 O_2 CH3OH – 

Amide 

6.35 / 2.83 1.3 / 2.75 

 O_R CH3OH – 

C6H5OH 

3.434 / 3.00 0.40 / 3.09 

 N_A CH3OH – Me-

Im 

6.33 / 2.89 2.70 / 2.79 

 S_3 CH3OH – 

CH3SH 

3.79 / 3.40 2.50 / 3.25 

O_3W C6H5OH – H2O 6.21 / 2.86 2.10 / 2.85 

O_3 C6H5OH – 

CH3OH 

6.68 / 2.85 1.40 / 2.81 

O_2 C6H5OH – 

Amide 

9.40 / 2.67 3.05 / 2.59 

O_R C6H5OH – 

C6H5OH 

4.54 / 2.92 0.0 / 0.0  

N_A C6H5OH – Me-

Im 

8.82 / 2.80  3.90 / 2.70 

O_R 

S_3 C6H5OH – 

CH3SH 

3.79 / 3.47 2.15 / 3.53 

O_3W Me-Im – H2O 4.78 / 3.06 1.90 / 3.05 

O_3 Me-Im – 

CH3OH 

4.97 / 3.11 1.40 / 3.13 

O_2 Me-Im – 

Amide 

6.54 / 3.04 2.60 / 3.08 

O_R Me-Im – 

C6H5OH 

2.99 / 3.22 0.0 / 0.0 (2) 

N_A 

N_A Me-Im – Me- 6.97 / 3.08 3.10 / 3.00 
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Im 

S_3 Me-Im – 

CH3SH 

2.06 / 3.92 0.80 / 3.93 

O_3W Amide – H2O 4.64 / 3.07 1.5 / 3.1 

O_3 Amide – 

CH3OH 

5.61 / 2.95 1.1 / 2.825 

O_2 Amide – 

Amide 

13.85 / 2.87(1) 2.75 / 2.77 

O_R Amide – 

C6H5OH 

4.07 / 3.10 0.60 / 3.15 

N_A Amide – Me-

Im 

8.52 / 3.02 6.30 / 3.00 

N_R 

S_3 Amide – 

CH3SH 

2.54 / 3.79 1.40 / 3.84 

O_3W CH3SH – H2O 1.86 / 3.76 1.20 / 3.82 

O_3 CH3SH – 

CH3OH 

1.98 / 3.70 0.70 / 3.79 

O_2 CH3SH – 

Amide 

2.48 / 3.57 1.35 /  3.67 

O_R CH3SH – 

C6H5OH 

0.96 / 3.60 0.0 / 0.0(2) 

N_A CH3SH – Me-

Im 

1.98 / 3.58 0.55 / 3.60 

S_3 

S_3 CH3SH – 

CH3SH 

1.1 / 4.32 0.0 / 0.0(2) 
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Exact fit was achieved for all but 3 of these cases.  In all of these 3 cases, 

electrostatic forces over-accounts for the actual QM interaction between the 

molecules and therefore no additional hydrogen bond term is needed.  The error for 

two of these three cases, a imidazole-phenol hydrogen bond and thiol-thiol 

hydrogen bond, had the energy overestimated by less than 0.2 kcal/mol and donor-

acceptor distance underestimates the bond distance by 0.2Ǻ, which are very good 

agreements with QM nonetheless.  The thiol-phenol interaction was overestimated 

by about 1.0 kcal/mol and the donor-bond distance underestimated by 0.3Ǻ.  This is 

largely due to the VDW parameters for sulfur being not large enough and difficult 

charge assignment for the sulfur atom67.  Despite this, we accept a < 1kcal/mol 

error. 

3.4.5 Parameterization for Neutralized Form of Charged Residues 

A separate set of parameterization was carried out for the salt bridges.  Our 

treatment allows the movement of a proton from the positively charged species to 

the negatively charged species, with the resulting interaction being stronger than a 

typical neutral-neutral polar interaction.  As mentioned earlier, new atom types are 

introduced for certain atoms on ASP, GLU, ARG and LYS (See Figure 3-7.)   

Table 3-8  (continued)  Fitting parameters for all atom types that are present in 

neutral residues in proteins.  The accuracy fitting is within 0.1kcal/mol  in 

overall binding energies and 0.1Ǻ in the equilibrium distance between hydrogen 

bond donor and acceptor atoms.  Me-Im: Methyl Imidazole at the delta position, 

CH3C3H4N2.  Amide: Methyl-Amide, CH3CONH2.  (1) Involves two hydrogen 

bonds. (2)No hydrogen bond term necessary, since electrostatics is sufficient to 

account for the polar interaction. 
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Donor 

Atom 

Type 

Acceptor 

Atom 

Model 

Compounds 

(Donor-

Acceptor) 

QM 

Binding 

Energy 

(kcal/mol) 

/QM 

donor-

acceptor 

distance 

(Ǻ) 

Fitted 

Parameters: 

DHB 

(kcal/mol)  

/ RHB (Ǻ) 

N_RP O_2M 2.84  4.60 / 2.80 

O_3M N_RP 

CH3NHCN2H3 

– CH3COOH 

18.65 

2.68 7.40 / 2.60 

N_3P O_2M 3.02 3.40 / 2.90 

O_3M N_3P 

CH3NH3 – 

CH3COOH 

11.08 

2.71 6.20 / 2.65 

Parameters are reported in Table 3-9.  There are two hydrogen bond parameters that 

need to be derived in these systems and we obtain the parameters by an iteration 

procedure.  We start with an arbitrary value for one of the two hydrogen bonds 

DHB/RHB pair and optimize the parameters for the other DHB/RHB pair.  We then fix 

the one set of optimized parameters and modify the original DHB/RHB pair.  This 

procedure is repeated until we obtain a fit of within 0.1 kcal/mol in binding energy 

and 0.1Ǻ for both hydrogen bond donor-acceptor distances.  We use the parameters 

reported in Section 3.4.4 for interaction between these atom types and the usual 

neutral atom types.   

3.4.6 Validation  

The performance of DREIDING with our updated hydrogen bond is illustrated here 

with a number of test cases.  The hydrogen bond pairs are made up of model 

compounds illustrated in Figure 3-8, including model compounds for the amino 

acid tryptophan (1), the amide protein backbone (2), ε-protonated histidine (3) (the 

Table 3-9  Fitted parameters for interaction between salt bridges, allowing for 

proton transfer. 
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model compound for δ-protonated histidine was used in parameterization), 

methionine (4), and nucleotides (11-14).  A few common organics (5-10) are also 

included in the set.  The assignment of atom types in these molecules follow the 

rules described Section 3.4.1.  20 pairs of hydrogen bond forming entities are 

constructed from this test set and the set from Figure 3-6, with at least one molecule 

always from this test set.  The total number of total hydrogen bonds vary from a 

single hydrogen bond up to a maximum of three (interaction between guanine and 

cytosine).   

We follow the same procedure for all quantum mechanical calculations and 

Mulliken charge assignments as previously (X3LYP/aug-cc-pvtz(-f) level for 

optimization and binding energy, X3LYP/6-31G** for charge assignment).  

Minimization in force field is done on the structures before comparisons are made.   
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  Figure 3-8  The 14 small molecules chosen in our test set. 
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Test set of 20 hydrogen forming pairs Average Error (vs. QM) 

Binding Energy 0.86 ± 0.59 kcal/mol 

Donor/Acceptor Distance 0.08 ± 0.06 Ǻ 

Results are reported in Table 3-10.  A source of outlier error originates from the 

guanine-cytosine interaction, where the QM binding energy is 28.2 kcal/mol 

whereas we predicted 30.56 kcal/mol, for an absolute difference of 2.3 kcal/mol, 

even if the actual percentage difference for this interaction is small. 

The results are very encouraging, especially after taking into the fact that the 

number of atom types we used here is only 7, in comparison to 16 in AMBER67 and 

19 in CHARMM13.  Clearly, results can be improved upon simply by introducing 

more atom types for special chemical groups. 

3.5 Applications  
3.5.1 Protein Structure Preparation 

In protein design, the starting structure used to perform mutations is usually 

prepared from a crystal structure.  The preparation process involves minimization 

of the crystal structure in any given force field to remove bad contacts.  Here, we 

demonstrate the benefits of minimization using our updated DREIDING force field 

with a neutralized system.  We make comparisons to performing minimization with 

all charged residues. 

Table 3-10  Average error in force field binding energies and donor/acceptor 

distances compared to quantum mechanics for the test set of 20 hydrogen bond 

forming pairs. 
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3.5.1.1 Methods and Material 

A test set of high resolution crystal structures 38 (1bpi, 1isu, 1ptx, 1xnb, 2erl, 2hbf, 

2ihl, 256b, 5rxn, 9rnt, all with resolution better than 1.7Ǻ) is obtained from the 

PDB database.  Water and solvents, if present, are removed from the crystal 

structures.  WHATIF48 is used to check for the protein health of PDB files and 

correct for mistakes when present.  The assignment of DREIDING atom types are 

carried out according to the atom typing rules in Table 3-6.  For minimization done 

with all residues neutralized, the procedure is carried out as described in Section 

3.2.2.  For minimization with charges, counter-ions are added by placing Na+ or Cl- 

next to exposed charged without salt bridging partners.  The resulting system has a 

net charge of zero.  The DREIDING force field parameters (including the modified 

VDW and hydrogen bond terms) reported in this presentation are used.  CHARMM 

charges are assigned on the protein sidechains and backbone. 

Conjugate gradient minimization of both neutralized proteins and charged proteins 

in the molecular mechanics code CMDF68 to within 0.2 kcal/mol/Ǻ force root mean 

square. 

3.5.1.2  Comparison of RMSD  

The purpose of minimizing a crystal complex is to merely remove bad clashes for 

proper calculations in a subsequent step.  Thus, we do not wish to perturb the 

structure too much.  Reported in Table 3-11 are the heavy atom coordinate root 

mean square deviation (RMSD) values for the minimized structures compared to 

crystal values over the test set of proteins after structural alignment.  The RMSD 

difference for neutralized and charged protein minimizations are both within 0.5Ǻ 

of the original crystal structure.  The neutralized system has a statistically 

significant (to one standard deviation) smaller RMSD, indicating that the 

minimized structure is less perturbed than the one described using charged residues.   
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 Heavy Atom RMSD from 

Crystal Structure (Ǻ)  

Charged 0.493 ± 0.048 

Neutralized 0.440 ± 0.033  

We note that the salt bridges in the minimization using neutral residues are 

preserved because the missing Coulombic interaction has been compensated by our 

parameterized hydrogen bonds.  On the other hand, we illustrate in Figure 3-9 one 

example in which the charged formulation creates an artificial salt bridge upon 

minimization.  The protein is 1isu, where and an aspartate and a lysine in the 

charged protein minimization forms a salt bridge when there previously was none.  

In the crystal structure, the two closest atoms, Oδ1 on Asp56 and Nη on Lys17 were 

5.97Ǻ apart and were not forming a salt bridge.  In the minimized charged 

structure, Asp56 rotated towards Lys17 and those two atoms minimized to 2.81Ǻ of 

one another, forming a salt bridge.  This artificial salt bridge formation is due 

entirely to the strong Coulombic interaction between these two residues in the 

charged formulation of our force field. 

In the minimized neutral formulation, the two residues remained far apart as in the 

crystal structure.  The fundamental change brought forth by minimization violates 

the premise that minimization was done merely to alleviate short contacts, i.e. 

“cleaning up” structures, and not to add properties that were not present in the 

crystal structure.   

Combined with RMSD data, we conclude that structure preparation using the 

neutral formulation preserve crystal structure integrity better than using the charged 

Table 3-11  RMSD comparison of minimization of charged and neutralized 

proteins to original crystal coordinates. 
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formulation.  In particular, we have shown a danger in using charged system during 

minimization. 

 

LYS 17

ASP 56
Crystal: Licorice
Charged: Ball and Stick
Neutral: Transparent Licorice

LYS 17

ASP 56
Crystal: Licorice
Charged: Ball and Stick
Neutral: Transparent Licorice

 

3.5.2 Effect on Molecular Dynamics: An Example 

Next, we show that molecular dynamics simulation is stable after neutralization of 

all charged residues and that salt bridges are well-preserved.  Such a simulation also 

has the property of being able to reach equilibrium in shorter simulation time. 

Figure 3-9  A salt bridge pair that was minimized into existence using charged 

residues.  The protein shown is 1isu.  Shown are the final minimized structure of 

the charged protein, neutralized protein, and the initial crystal structure of the 

residues Lysine 17 and Aspartate 56. 
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3.5.2.1 Materials and Method 

The crystal structure of protein human Interferon-beta (IFN-β) with pdb ascension 

code 1au1 is obtained from the PDB database.  WHATIF48 is used to check for 

protein health and correct for mistake if present.  Atom typing, structure preparation 

and minimization are carried out as described in 3.5.1.1.  Two structures were 

prepared: one with charged residues, the other with neutral residues 

The molecular simulation code NAMD69 is used to carry out the NPT simulation at 

300K.  Waters are added to both the neutral protein and the charged protein, 

counter-ions were added to only the charged system.  Including hydrogens, the two 

systems both roughly have 20,000 atoms.  500 ps of simulation were carried out at 

1 fs time step. 

3.5.2.2 RMSD Comparison of Neutral and Charged System from Initial 

Structure 

Without the presence of counter-ions, the neutral system should exhibit less 

fluctuation and take less time to equilibrate.  Figure 3-10 shows the global RMSD 

values for the neutral system compared to initial structure vs. the charged system 

compared to initial structure.  The neutral system took about 50 ps to equilibrate, 

whereas the charged system took about 200 ps.  The equilibrated structure also has 

a smaller RMSD value from the initial structure for the neutral system, at about 

1.3Ǻ, than the charged system, at about 1.6Ǻ.   These observations agree with our 

assertion. 
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We next examine the difference in dynamics of salt bridges in the neutral system 

compared to the charged system.  Because of the difference in interaction energies 

between the charged description of a salt bridge and the neutral description, we 

expect major differences.  Two salt bridges have been identified in the system: the 

Arg 27—Glu 29 pair (Figure 3-11) and the Arg 152—Glu 149 pair (Figure 3-13).  

The evolution of the distance between two atoms on the salt bridge is plotted in 

Figure 3-12 and Figure 3-14. 

Figure 3-10  RMSD of protein heavy atoms for a charged and a neutral system, 

compared to initial simulation structure.  500 ps of simulation is shown. 
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Figure 3-11  Residue 

R27 and E29 in IFN-β.  

The two residues are 

3.7Ǻ apart in the initial 

structure. 

Figure 3-12   Evolution of distance between Cδ atom of E29 and Cζ atom on 

R27. 
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Figure 3-13  Residue 

R152 and E149 in 

IFN-β.  The two 

residues are 4.3Ǻ 

apart in the initial 

structure.    

Figure 3-14  Evolution of distance between Cδ atom of E149 and Cζ atom on 

R152. 
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Both salt bridges experience bound and unbound states, with the unbound state 

typically caused by a mediating water molecule (visual inspection).  In the R27-E29 

case, the charged pair is essentially completely intact over the course of simulation, 

only becoming unbound essentially at around 370 ps and quickly returning to a 

bound state.  The neutral pair experiences more fluctuation and is close to being in 

an unbound state on several occasions, but the salt bridge is never truly broken.  In 

the R152-E149 salt bridge case, it is interesting to note that during the earlier 

portion of the simulation it is the neutral case that is bound, while the charged salt 

bridge is unbound.  The situation reverses after about 200 ps, and the neutral salt 

bridge case is broken until it rematerializes closer to the end of the calculation.  We 

note that surface exposed salt bridges are not stable species63 and our simulation 

reflects this fact. 

We are encouraged by the fact that the neutral protein maintains its stability and 

exhibits less fluctuation during simulation.  In our examination of salt bridge 

formation and disruption we feel that using neutral system during MD can provide 

meaningful results. 

3.5.3 Bovine Rhodopsin Helical bundle 

3.5.3.1 Introduction 

G-protein-coupled receptors (GPCRs) are membrane proteins that are involved in 

cell communication processes and mediate senses such as smell, taste and pain.  

Few 3D structures are present because of the difficulty of crystallization and 

therefore we have previously done work in the prediction of 3D structures of 

GPCRs by using MembStruk21,70,71.  During the MembStruk procedure a difficulty 

is in the prediction of rotation angles of the 7 helices in a GPCR21 (Figure 3-15).   
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Rotation around 
a helical axis

GPCR 
(vertical view)

Rotation around 
a helical axis

GPCR 
(vertical view)

 

A test for the neutralized protein and updated DREIDING force field would be to 

see whether it is capable of picking out the crystal structure from a set of decoys.  

Decoys are constructed by rotating each helix in the crystal structure individually at 

5° increments.   

3.5.3.2 Materials and Methods 

The bovine rhodopsin structure (1u19, resolution 2.2Ǻ) is taken from the PDB 

database and minimized using procedure described above.  The centers and axis of 

rotation of the seven helices are defined according to the Membstruk21 procedure.  

Inter-helical loops are removed. 

Figure 3-15  Top-down view of a GPCR with its 7 helixes.  Each rotational axis 

of a helix is defined according to the MembStruk protocol. 
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A total of 7 x 72 = 504 structures are generated by 5° rotations of each individual 

helix, while keeping all other helices intact.  Protein side chains are discarded and 

replaced by predictions from SCREAM with the rotamer library of 1.0Ǻ diversity 

with an s value of 0.4, as described in Chapter 2.  Both charged and neutral forms 

of systems are constructed based on the output from SCREAM and the resulting 

structures are then subject to 50 steps of conjugate gradient minimization to relieve 

short contacts.  This final energy output is used to rank helix-angle-rotation 

structures. 

3.5.3.3 Results and Discussion 

We report results from using the neutralized system (Table 3-12) and using the 

charged system (Table 3-13).  Only the top scoring structures are included.  Both 

approaches achieved good results, with the desired selection in the top ranks.  This 

is to be expected because large rotations away from the original structure would 

cause large VDW contacts, resulting in poor energies.  We remark, however, that 

the system with no rotation scored the best among all 504 structures in the 

neutralized treatment, whereas it only ranked 5th in the charged system.  We reason 

that electrostatics, because of its large variance, makes the prediction for the 

charged cases not as reliable as the neutral cases.  For the top 100 results out of 504, 

the standard deviation in the electrostatic component of total energy is 7.9 kcal/mol 

for the neutral cases, 22.6 kcal/mol for the charged cases.  Visual inspection of the 

electrostatic energies in Table 3-12 and Table 3-13 affirms the standard deviation 

statistic.  A large standard deviation indicates a greater source of random errors, and 

this could be the cause of the zero rotation case in the charged formulation not 

having the best overall energy. 
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Rotation Structure  Overall Energy (kcal/mol) Electrostatic (kcal/mol) 

No Rotation 50.0  -161.9 

H6_5 57.2 -156.8 

H4_5 57.4 -167.7 

H4_355 60.5 -158.0 

H2_355 61.2 -154.8 

H2_5 61.4 -148.6 

Rotation Structure Overall Energy (kcal/mol) Electrostatics 
(kcal/mol) 

H1_5 144.5 -234.6 

H5_355 145.3 -211.3 

H6_355 148.2 -201.9 

H2_355 149.4 -213.1 

No Rotation 151.8 -213.4 

H2_5 153.3 -200.9 

H5_5 157.6 -234.3 

Table 3-12  Top ranking structures using energies from neutralized system.  The 

helix rotated is indicated in the second character, and the degree of rotation is 

indicated by the final 3 characters.  Overall energy includes all valence terms 

and non-valence terms. 

Table 3-13  Top Ranking structures using energies from the charged system.   
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3.6 Conclusion 
We have presented two related approaches to performing molecular mechanics 

simulation for proteins.  First, we propose neutralizing all charged residues in order 

to obtain more reliable energy calculations, achieved through the reduction of 

electrostatic noise in calculations.  Second, we modified the hydrogen bond in 

DREIDING and parameterized atom types commonly seen in proteins.  Validation 

is carried out using our parameters on a test set of molecules involved in hydrogen 

bonding. 

We believe that the neutralized approach along with the modified DREIDING force 

field gives us a solid first step in making predictions.  Encouraging results were 

achieved from the test cases and applications we have performed.  Further 

applications of our approach will be performed on other systems, including some 

protein design examples, as presented in Chapter 4. 
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4 Protein Design  
In Chapter 2 and Chapter 3 we described two components of protein design: 

placement of sidechains and energy calculation.  We present here examples of 

protein designs using those tools. 

4.1 Introduction 
The objective in computation protein design is to introduce new functionalities into 

currently existing protein by way of mutations.  With the development of tools such 

as those we presented above, protein design is at a stage where computational 

predictions and results are emerging as a practical option in solving real-life 

problems2,72.   

We present two examples of protein design.  The first case, design on the protein 

human interferon-β (IFN-β), involves mutation introduced at specific positions in a 

therapeutic protein, due to constraints in the manufacturing process.  The second 

case involves trptophanyl-tRNA synthetase, an enzyme that we are interested in 

mutating residues of the active site so as to incorporate ligands with novel 

functional groups. 

4.1.1 Methods and Material 

Here, we outline procedures that are common to our examples presented in 

subsequent sections.  Starting structures are crystal structures taken from PDB 

database.  WHATIF48 is used to check protein health of the structure and 

asparagines, glutamines and histidines are flipped when deemed appropriate by the 

program.  Hydrogens are added by WHATIF, which optimizes the hydrogen bond 

network by using a genetic algorithm.  CHARMM13 charges are assigned to the 

atoms.  When ligands are involved, Mulliken charges derived from quantum 
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mechanics at the 6-31G**/X3LYP level are used.  Atom typing is performed using 

the procedure described in Section 3.4.1.  Geometry optimization using conjugate 

gradient of the structure is then performed using MPSim73 for 100 steps.  Typically, 

the coordinate root mean square deviation (RMSD, in Ǻ) between the optimized 

structure and the original crystal structure is less than 0.5Ǻ. 

4.1.2 The Design Protocol—Energy Excitation 

Care and insight is necessary to identify pitfalls and opportunities in protein design.  

For instance, in active site redesign, a new ligand is introduced in place of an old 

one and it is necessary to generate a new geometry for the new ligand.  Mutation of 

residues will proceed using the newly generated structure.  Limiting mutations to 

certain type of amino acids (such as hydrophobic) would also be sensible in some 

cases.  With that backdrop, we summarize our general protein design approach.  We 

use a strategy called “Energy Excitation” to avoid combinatorial explosion of 

possible mutants, to be explained in detail as follows. 

4.1.2.1 Identify Candidate Residues for Mutations 

Identifying mutation candidates is an important step in protein design and is often 

driven by the problem at hand.  In the IFN-β design case, methionines are to be 

mutated away for drug manufacturing reasons.  In the TrpRS design case, the sites 

that are tagged for mutations are those that are in clashes with the newly introduced 

ligand.  Mutations can be introduced to achieve a specific purpose, such as 

removing a potential hydrogen bond from forming.  Visual inspection is also 

employed to ensure that residues that are selected to be mutation candidates are 

sensible. 

 



 

 

90

Identify Candidate Residues for Mutation

Single Mutations for 
Each Position

Empty Out Pocket by Introducing 
Glycine Mutations

Solvation Penalty-Corrected Energy 
Calculation for Single Mutations

Identify Top Candidates for 
Combinatorial Mutations

Combinatorial 
Mutations

Solvation Penalty-Corrected Energy 
Calculation 

Final Energies 
(Binding Enerngies)

Identify Candidate Residues for Mutation

Single Mutations for 
Each Position

Empty Out Pocket by Introducing 
Glycine Mutations

Solvation Penalty-Corrected Energy 
Calculation for Single Mutations

Identify Top Candidates for 
Combinatorial Mutations

Combinatorial 
Mutations

Solvation Penalty-Corrected Energy 
Calculation 

Final Energies 
(Binding Enerngies)

 

4.1.2.2 Clearing Out Current Residues—Mutation to Glycine 

After selecting the mutation sites, we remove the sidechains by introducing glycine 

mutations.  This is done to completely eliminate any influence the previously 

existing sidechains may have on sidechains that are being mutated on.   

Figure 4-1  Flowchart for introducing mutations by using the “Singles 

Excitation” strategy.   
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In our design of TrpRS, ligands other than the one included in the crystal structure 

needs to be modeled into the binding site when performing mutations.  In such 

cases, we perform a superposition of non-crystal ligand atoms with atoms on the 

crystal ligand.  If the non-crystal ligand can take on multiple configurations (also 

termed rotamers), those configurations would need to be considered. 

4.1.2.3 Single Mutations 

SCREAM, as described in Chapter 2, is used for all sidechain placement purposes.  

“Single Mutation” refers to our method that mutations at each residue position are 

carried out individually at this stage.  Since all other sidechains have been mutated 

into glycine at this stage, sidechains of each individual mutations only interact with 

the protein backbone, ligand, and other fixed sidechains.  The list of potential 

mutations can include all 20 amino acids or a subset such as only hydrophobic 

residues. 

4.1.2.4  Energy Calculation for Single Mutations 

The overall energy of a mutation is calculated as below: 

EMutation = Eraw – EInternalReferencee + ESolvationPenalty    

Where EMutation is the overall stability due to the mutation, Eraw is the force field 

interaction energy of the mutated sidechain with the rest of the protein after 

optimization, EIntenalReference is the reference energy for the internal energy terms, and 

ESolvationPenalty is the solvation penalty for this sidechain.  These terms are explained 

in the following sections.  

4.1.2.4.1 Structure Optimization for Single Mutations 

Minimization of the sidechains of mutations is performed to relieve clashes after 

charged residues are neutralized as described in Chapter 3 to obtain more accurate 

electrostatics.  Only atoms belonging to this sidechain are moveable during this 

minimization procedure.  The final energy of atoms on the sidechain (from Cβ on 
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out) and the rest of the protein is calculated from the optimized structure.  This 

energy is the raw energy, Eraw, which includes the interaction energy between the 

sidechain and the rest of protein, and the internal energy of the sidechain. 

4.1.2.4.2 Internal Energies of Sidechains 

A reference point is needed in order to make the raw force field energy 

comparisons meaningful since different amino acid sidechains have different 

number of atoms.  Internal energies of each sidechain include the valence terms 

(bond, angle, torsion, inversion) and non-valence terms (1-4 VDW and 1-4 

electrostatic terms), and needs to be excluded by subtracting the reference internal 

energy for each of the 20 amino acids.  This reference internal energy is pre-

compiled as follows.  The lowest energy rotamer of each amino acid side chain is 

placed in an extended Ala-X-Ala tri-peptide.  This structure is then minimized (in 

vacuum) to 0.1 force RMSD.  The force field energy of this structure involving just 

the amino acid sidechain atoms (starting from the Cβ atom) is then calculated, and 

taken as the reference energy for this amino acid (Table 4-1). 

Amino Acid Reference Internal 

Energy (kcal/mol) 

Solvation 

Energy74 

(kcal/mol)  

Surface Area 

(Ǻ2) 

Alanine 3.33212 1.94 74.4 

Arginine -92.2519 -19.92 253.94 

Asparagine -24.3287 -9.68 142.12 

Aspartate -23.4140 -10.95 123.41 

Cysteine 5.2260 -1.24 108.41 

Glutamine -13.3623 -9.38 178.16 

Glutamate -10.0202 -10.20 160.09 

Glycine 0.0000 2.39 n/a 

Histidine 15.1799 -10.27 163.48 
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Isoleucine 12.6791 2.15 172.97 

Leucine 3.4640 2.28 171.03 

Lysine 6.2283 -9.52 186.43 

Methionine 5.0126 -1.48 183.81 

Phenylalanine 11.3280 -0.76 184.17 

Serine 5.7298 -5.06 96.66 

Threonine -0.9482 -4.88 123.05 

Trptophan 30.6985 -5.88 230.83 

Tyrosine 6.6055 -6.11 208.74 

Valine 7.6409 1.99 130.80 

 

4.1.2.4.3 Solvation Penalty 

Solvation is an important consideration in determining whether a mutation is 

favorable in its environment.  Hydrophilic residues such as serine would be 

penalized for being buried inside a protein due to loss of solvation in water.  

Therefore, a good hydrogen bond network would be essential for hydrophilic 

residues to form with other sidechains and the protein backbone.  A solvation 

penalty is assigned to buried sidechains according to experimental solvation 

energies74 for the amino acids are listed in Table 4-1. 

We take into account the degree of exposure of a sidechain.  Solvation penalty for 

this mutation is scaled according to the following equation:  

ESolvationPenalty= 
reaedSurfaceAFullyExpos

faceAreaExposedSur   ESolvationEnergy 

Table 4-1 Internal energies, experimental solvation energies and surface area for 

each of the 20 amino acids. 
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Solvent accessible surface area is calculated by rolling a 1.4Ǻ ball on the surface of 

a protein, with the radius of the atoms as defined as DREIDING.  The fully exposed 

surface area is defined as the surface area of an amino acid sidechain in a fully 

extended tri-peptide Ala-X-Ala.  The solvation penalty is then scaled by the ratio 

between the exposed surface area and the fully exposed surface area.   

4.1.2.5 Determine Top Candidates for Combinatorial Mutations 

Each mutation at a certain residue position has an energy calculated according to 

the previous section.  To avoid combinatorial explosion, multiple mutations 

(Energy Excitation) are performed the following way: 

1. Add up the individual energies for each mutation across all residues that had 

mutation introduced: 

∑=
k

i
iktotal AAEAAAAAAE )(),...,,( 21  

where i stands for the residue that was mutated, AA an amino acid 

mutation, Ei(AA) the energy for mutation AA at position i obtained from 

section 4.1.2.4.   

2. Sort Etotal(AA1,AA2,…,AAk) in ascending order.  Perform these mutations. 

When the total number of combinatorial possibilities is less than 200, we perform 

all possible mutations.  Otherwise the total number of mutations we perform are 

capped at 200.  

4.1.2.6 Multiple Mutations 

Since the orientation of a side chain can be influenced by the placement of another, 

mutation sidechains are placed simultaneously at this stage.  SCREAM as discussed 

in Chapter 1 is used for this purpose. 
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4.1.2.7 Energy Calculation for Multiple Mutations 

Minimization is performed for all residues with atoms within a 5.0Ǻ radius of 

atoms that belong to sidechains that have been introduced through mutations.  

Backbone atoms of these residues and ligand atoms are also minimized at this 

stage. 

The correction for solvation penalty and internal energies are carried out in the 

manner as in Section 4.1.2.4.2 

4.1.2.8 Binding Energies 

The binding energy of a ligand bound to protein is calculated as: 

ligandproteincomplexbinding EEEE Δ−Δ−Δ=ΔΔ  

where ΔEcomplex is the energy of the protein-ligand complex, ΔEprotein the free energy 

of the protein without the ligand, and ΔEligand the free energy of the ligand by itself 

(vacuum).  Implicit solvation energy is included in the above calculations using the 

Poisson-Boltzmann solver DelPhi75. 

The above procedure selects for maximal stability from a set of mutations.  

Specificity is important in some cases and the differential binding energy is 

calculated as follows: 

 2,1, bindingbindingaldifferenti EEE ΔΔ−ΔΔ=ΔΔ  

Where ΔΔEbinding,1 and ΔΔEbinding,2 are binding energies for ligand 1 and ligand 2 in 

the same protein environment. 
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4.2 Design of Human Inteferon-β 
4.2.1 Introduction 

Interferons (IFNs) are proteins produced by the body’s immune system as defense 

against foreign agents such as viruses, parasites and tumor cells.  In particular, 

because of its effect in slowing progression of disability in multiple sclerosis, it has 

attracted attention in pharmaceutical companies.  IFN-β based drugs already on the 

market include Avonex, Rebif and CinnoVex. 

We are interested in mutating the methionines away in human IFN-β, because of a 

constraint in a manufacturing process.  Our objective is to introduce mutations at 

Methionine positions while maintain the stability of the original protein.  In human 

IFN-β, there are three methionines, Met 36, Met 62, and Met 117 (Figure 4-2), not 

including the methionine residue at the amino terminus of the protein.  Since hese 

residues are far apart, we will treat them as independent mutations and carry out 

calculations as such.  The crystal structure with pdb ascension code 1au1 is used for 

structure preparation as described in 4.1.1 after solvents and waters are removed. 

4.2.2  Single Mutations 

4.2.2.1 Met 36 and Met 117  

We first perform single mutation of Met36 and Met117.  These are both surface 

exposed positions, and therefore, we consider single mutations only for these two 

residues.  The results of our calculations are shown in Table 4-2 and Table 4-3.  

Energies are shown using the wildtype methionine as a reference energy. 

 

 

 

 



 

 

97

Mutation at Position 36 Energy (kcal/mol) 

M 0.0 

T -2.96 

V 0.102 

Y 0.338 

I 0.504 

F 1.165 

 

 

Table 4-2  Energies for top mutations introduced at position 36 of human IFN-β.  

Energy values are relative to the wildtype Methionine energy. 

Figure 4-2 Human IFN-β (pdb code: 1au1).  

Methionines are shown in ball and stick 

format.  Met 36 is the one on the bottom 

left hand corner, Met 117 top left hand 

corner, Met 62 the one positioned in the 

middle.  Distances between the 

methionines are indicated on the picture. 
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Mutation at Position 117 Energy (kcal/mol) 

M 0.0 

L -2.57 

T -1.55 

S -0.93 

G 0.65 

I 1.20 

These energy differences were small compared to the wildtype Met, and therefore 

we do not expect that the structure would become unstable because of them.  Our 

experimental collaborators did mutations on some of the amino acids.  At position 

36, Thr, Ile and Ala mutations experiments were done, and all mutations proved 

fully active.  At position 117, Thr, Tyr, Ser and Gly mutations weredone.  Again, all 

mutations led to active IFN-β.  In fact, Thr and Tyr mutations led to mutants that 

were actually more active than the wildtype IFN-β.  Our predictions are essentially 

consistent with the experimental results, even if it is just one mutation on the 

surface of the protein. 

4.2.2.2 Met 62 

Met62 is completely buried.  We first performed single point mutations at this 

position, with the top mutation candidates shown in Table 4-4.  The best mutation 

candidate is Thr for this position, but it is still 6.8 kcal/mol less favorable than the 

wildtype methionine.  This is a large difference in stability to overcome and indeed, 

experimentally, no mutants at this position led to a stable protein. 

 

Table 4-3  Energies for top mutations introduced at position 117 of human IFN-

β.  Energy values are relative to the wildtype Methionine energy. 
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Mutations at Position 62 Reference Energy (kcal/mol) 

M 0.0 

T 6.8 

L 8.6 

A 9.9 

Therefore, we turn our attention to multiple mutations around the Met 62 

neighborhood. 

4.2.3 Combinatorial Mutations of Residues around Met 62 

Since we were unable to find a mutation that worked well for Met 62, we proceeded 

to try out mutations around the Met 62 neighborhood to improve the packing.  We 

observed (Figure 4-3) that Ile40 and Ile44 are also primary residues in determining 

the stability of the Met62 neighborhood.  Therefore, we proceeded to mutate these 

residues in this neighborhood.  Seeing that the residues are deeply buried in the 

protein and are hydrophobic, we picked only hydrophobic mutations for residue 

positions 40, 44 and 62.  Results are shown in Table 4-5. 

Energy (kcal/mol) 62 40 44 

0.0 M I I 

0.103 I F L 

5.624 F I V 

6.972 T L I 

11.944 I I I 

13.296 L I L 

17.125 L L I 

Table 4-4  Top mutation candidates introduced at position 62 of human IFN-β.   

Table 4-5 Energies for various mutations in the hydrophobic pocket around Met 

62.  The wildtype energy is used as reference for other mutations.  
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The stability of the triple mutant I62, F40, L44 was very close to the wild type 

sequence according to our calculations, being only 0.1 kcal/mol apart.  It is evident 

from Figure 4-3 that the three mutations lead to a very tight packing.  

Experimentally, this triple mutant proved to be a fully active IFN-β. 

 

 

Figure 4-3  Residues near position 62 in human IFN-β.  Ile40 and Ile44 are 

identified as residues that are in direct contact with Met62 and needs to be 

mutated when changes to Met62 is made. 
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4.3 Active Site Design of TrpRS 
4.3.1 Introduction 

4.3.1.1 Amino-acyl tRNA Synthetases 

Naturally occurring proteins are made up of twenty common amino acids.  To 

expand the functionalities and properties of proteins, bioengineers have 

incorporated non-natural amino acids into proteins76-78.  One strategy for such 

incorporation is accomplished by tweaking the protein translational machinery—

specifically, by introducing mutations to a class of proteins called amino-acyl tRNA 

synthetases (aaRS). 

aaRSs are enzymes responsible for the transfer of amino acids onto transfer RNAs 

(tRNA) during the protein translation step79,80.  In the translation process (Figure 

4-4), the identity of each amino acid is determined by a codon in the messenger 

RNA (mRNA).  Each codon is recognized by the anti-codon on a specific tRNA for 

that amino acid.  Each tRNA, in turn, needs to have the accurate amino acid 

charged onto it by way of the corresponding aaRS.  As a result, there are 20 aaRSs 

in the vast majority of organisms, one for each amino acid.  Mistakes in the 

translation process could involve either the codon-anticodon interaction or the 

charging of amino acids on tRNAs by the aaRSs.   

Mistakes can be turned into opportunities for protein engineers.  Since each codon 

is represented by 3 nucleotides, there are a total of 4*4*4 = 64 possible distinct 

codons.  There are only 20 natural occurring amino acids plus the start and stop 

codons, so there is redundancy in the genetic code.  One common strategy to take 

advantage of this situation would be to introduce a tRNA with the proper anti-

codon to interact with a redundant codon.  An amber (UAG) stop codon is often 

used as the target for this purpose.  This extra tRNA can be amino-acylated with a 

desired non-natural amino acid analogue, which would then be incorporated in the 

protein via the cell’s protein manufacturing machinery.  Indeed, this strategy has 

been used by protein engineers as opportunities for exploring novel chemistry81,82.   
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In this presentation, we focus on the role played by aaRSs.  We mentioned that we 

could incorporate an amino-acid analogue via the amino-acylation of a tRNA that 

has an anti-codon paired with the UAG stop codon.  There remains the problem of 

modifying the aaRS so that it would actually function as desired. 

There is intense evolutionary pressure on aaRSs to achieve high fidelity in the 

amino-acylation of a tRNA to its proper amino acid.  This is because charging an 

incorrect amino acid onto a tRNA would result in an incorrect protein sequence, 

which would very likely lead to inactive proteins and wasted resources.  Thus, 

aaRSs are very efficient in its recognition of the cognate amino acid.  Indeed, the 

error rate is approximately 1 in 3,00079.  By introducing mutations in the active site 

and disrupting the recognition of the cognate amino acid, we can induce the enzyme 

to charge non-natural amino acid analogues3,83,84 onto a tRNA.   

PheRS (phenylalanine tRNA synthetase) and TyrRS (tyrosyl tRNA synthetase) 

have been used to incorporate unnatural amino acid analogues81.  However, many 

interesting amino acid analogues are a bigger size than what the binding pockets of 

PheRS and TryRS can accommodate.  Trptophan is the largest of the 20 common 

amino acids, and its corresponding tryptophanyl-tRNA synthetase (TrpRS), as a 

Figure 4-4 Cartoon depicting the role played by an amino-acyl tRNA synthetase.  

The amino acid tryptophan is being charged in this example.  (Adapted from 

Ibba. et al79). 
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result, has the potential to accommodate the biggest ligands.  As a result, we carry 

out in silico redesigns of Bacillus Stearothermophilus TrpRS and human TrpRS to 

recognize non-natural amino acid analogues. 

4.3.1.2 Click Chemistry 

Click chemistry85,86 refers to a type of reactions with simple reaction conditions, 

high yield, and modular building blocks.  Of specific interest is the azide-alkyne 

Huisgen cycloaddition87, in which an azide reacts with an alkyne to form a triazole. 

This reaction is highly exothermic.  We performed quantum mechanics at the 6-

31G**/X3LYP level and found that the reaction is exothermic by 71 kcal/mol when 

R1=trp ring and R2 = methyl.  The activation barrier of this reaction is 13 kcal/mol 

in the presence of a copper (Cu2+) catalyst.   

We are interested in incorporating an amino acid analogue that contains an alkyne 

or an azido functional group for the purpose of performing click chemistry 

involving proteins.  For example, by using an amino acid analogue with an ethynyl 

group in place of a natural protein, we can covalently link the protein to another 

molecule which has an azido group by performing click chemistry.  This molecule 

can be a florescent tag or a protective chain to facilitate drug delivery.  

N N
+

N
R2

R1

N
N N R2

R1

azide

alkyne

triazole product
N N

+
N

R2

R1

N
N N R2

R1

azide

alkyne

triazole product

 

Figure 4-5  Illustration of an uncatalzyed azide-alkyne 1,3-cycloaddition. 
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We show a list of non-natural amino acid analogues that we are interested in 

incorporating in Figure 4-6.  With the exception of the Indene amino acid analogue, 

all these molecule can participate in click chemistry.  The indene analog is chosen 

as a model compound for design purposes, to be explained below. 

Figure 4-6  Non-natural amino acid analogs of Trptophan with functional groups 

that are relevant to click chemistry. 
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4.3.1.3 Preparation of Non-natural Amino Acid Structures 

We have no preferences regarding the position of the ethynyl or azido functional 

groups with respect to the trp-ring.  All non-natural amino acids are built and then 

optimized at the X3LYP/6-31G** level.  Mulliken charges are also assigned at the 

X3LYP/6-31G** level.  An atom-for-atom alignment with the cognate Trp ligand 

is used for the placement of non-natural analogue into a TrpRS active site. 

 

4.3.2 Bacillus Stearothermophilus TrpRS Active Site Design 

4.3.2.1 Introduction 

B. Stearothermophilus TrpRS crystal, 1mb288, is obtained from the PDB database.  

Out of the two chains that are involved in the crystal packing, we keep only chain A 

from the crystal structure.  Structure preparation of the structure is then done as 

described in Section 4.1.1.  The ligand in the structure is the cognate tryptophan 

amino acid.  The active site of the optimized structure is shown in Figure 4-7. 

The binding pocket of TrpRS contains mainly hydrophobic residues.  Phe5, Ile133, 

Val141 and Val143 line up the active site that recognizes the tryptophan ring, with 

all of those residues at about 4Ǻ away from the cognate ligand.  Clearly, mutations 

of these residues will be crucial if non-natural tryptophan analogs as those in Figure 

4-6 were to be incorporated by TrpRS.  In addition, the HN group on tryptophan 

forms a hydrogen bond with Asp132, a critical residue in the activity of this TrpRS 

as shown by mutagenesis studies88. 
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4.3.2.2 Design for Ethynyl-Trp 

Ethynyl-Trp is shown in Figure 4-6.  To determine which of the 4-, 5-, 6- and 7- 

position of Ethynyl-Trp would best be accommodated in the active site, we built all 

four ligands and placed the ligands into the crystal structure.  The ethynyl group of 

4-, 6- and 7- ethynyl-Trp would clash with the protein backbone and are therefore 

eliminated from further consideration.  As a result, 5-ethynyl-Trp is the only 

configuration used in our design effort.  

V143 is the position we identified as a target for mutation.  We follow the protein 

design protocol as described in Section 4.1.2.  Since the ligand is highly 

hydrophobic, we allow only hydrophobic mutations at position 143.   The results 

are shown in Table 4-6.  Only an alanine or glycine mutation worked favorably in 

the presence of 5-Ethynyl-Trp. 

Figure 4-7 The active site of

B. Stearothermophilus 

TrpRS with cognate Trp 

ligand.  The ligand is shown 

in licorice representation, 

whereas the residues 

interacting with the ligand is 

shown in ball-and-stick 

format. 
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Mutation at Position 143 Energy (kcal/mol) 

G 0.00 

A 3.61 

M 8.45 

L 9.43 

V 17.93 

I 19.95 

F 94.21 

Figure 4-8  The active site of B. 

Stearothermophilus TrpRS with 

5-ethynyl-Trp ligand.  The ligand 

is shown in licorice 

representation.  V141 and V143, 

two residues potentially 

interacting with the ligand, are 

shown in ball-and-stick format. 

Table 4-6 Interaction energies for single mutations at position 143 in the 

presence of 5-Ethynyl Trp in place of cognate Trp ligand.  The energy of the 

best mutation is used as a reference energy. 
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Any mutation that introduces an amino acid larger than Alanine would not fit in the 

binding pocket.  Subsequently, we calculate the differential binding energy of 5-

Ethynyl-Trp and cognate ligand for the Alanine and Glycine mutations at position 

143: 

Interaction Energy V143A V143G 

Cognate Trp -42.4 kcal/mol -42.3 kcal/mol 

5-Ethynyl-Trp -47.2 kcal/mol -45.7 kcal/mol 

Differential Binding 4.8 kcal/mol 3.4 kcal/mol 

Differential binding energies of 4.8 kcal/mol for the V143A mutation and 3.4 

kcal/mol for the V143G mutation were calculated.  Thus, we predict that the 

mutations should be sufficient to distinguish cognate Trp from the non-natural 5-

Ethynyl-Trp amino acid.  Experimental results (private correspondence) for these 

two mutations show that 5-Ethynyl-Trp is indeed incorporated by introducing those 

mutations, but not incorporated when no mutations are included.  However, the 

cognate ligand was also incorporated for those mutations, at a level equivalent to 

the target ligand. 

While our predictions on the incorporation was correct, the differential binding 

energy was not sufficient for the target ligand to be selected over the cognate 

ligand.  In the subsequent section, we describe introducing further mutations to 

improve the differential binding of non-natural amino acid over cognate ligand. 

4.3.2.3 Mutating Away Asp132 to Reduce Cognate Trptophan Recognition 

The B. Stearothermophilus TrpRS  D132 residue recognizes the Trptophan via the 

amide group at the 3- position of the Trp ring.  This residue is conserved across all 

Bacteria and Archaea organisms, and its importance in recognizing Trp can be seen 

Table 4-7 Binding energies and differential binding of V143A and V143G 

mutations of 5-Ethynyl-Trp compared to the cognate Trp ligand. 
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in Figure 4-7.  It is clear that if we can mutate away D132, the recognition of the 

cognate Trp would decrease by the strength of a hydrogen bond.  The amide is not a 

necessity for our purposes since we desire only the functionality of an ethynyl 

group.  Therefore, in order to achieve higher differential binding between the 

cognate ligand Trp and other non-natural amino acid analogs, we pursue the 

strategy of mutating away D132.   

The model amino acid analog with indene group (having a CH2 instead of HN at 

the 3- position, see Figure 4-9) is used as the model ligand, which is isosteric to 

trptophan.  Functional groups such as ethynyl or azido can be branched from indene 

at the 4-, 5-, 6- or 7- position in the same manner as trptophan analogs.  We treat 

the Asp132 mutation independent of mutations among residues that line the 

hydrophobic pocket. 

Our first effort is to mutate D132 alone, following the procedures outlined in 4.1.2.  

The top scoring candidates are presented in Table 4-8. 

Mutation at Position 132 Energy (kcal/mol) 

N -13.25 

S 1.88 

C 2.14 

A 8.20 

G 10.86 

T 12.36 

V 17.82 

Table 4-8 Mutation at position 132 of B. Stearothermophilus TrpRS.  The indole 

ring of the cognate Trp ligand has been replaced by an indene ring. 
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There is extensive hydrogen bonding between D132 and its neighboring residues.  

There is experimental evidence that it is rare for hydrogen bond donors not to be 

satisfied in protein structures, and thus it would be prudent to also consider 

mutations only to hydrophobic residues.  This means we need to introduce more 

than just one mutation so that we can create a hydrophobic pocket in place of the 

hydrogen bond network. Thus, we decide to include a neighboring hydrogen bond 

partner, N80, in our mutation search.  H43 and H86, while also forming part of the 

hydrogen bond network with D132, are kept as is because the histidines can act as 

both donor and acceptors depending on the δ- or ε- states, lending flexibility to the 

hydrogen network that they make. 

Figure 4-9 Residues around D132 in B. Stearothermophilus TrpRS.  One of the 

oxygens of D132 serves as the hydrogen bond acceptor of the HN group of Trp. 
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The results for double mutations at position D132 and N80 are presented in Table 

4-9.  A Methionine mutation at position 80 fits snugly in the pocket, as it occupies 

the space left empty by the missing atoms from the Aspartate on position 132, 

which have been mutated to small residues, Alanine and Glycine. 

Position 132 Position 80 Interaction Energy 

(kcal/mol) 

G M -9.538 

A M -8.596 

M G -5.641 

G G -4.780 

A G -4.005 

G A -3.014 

M A -2.668 

A A -2.257 

G L 2.478 

The mutation of a charged amino acid in an active site to a non-charged amino acid 

brings about a concern regarding whether the mutated protein will fold.  Whether a 

protein folds after mutations have been introduced is not something calculations can 

reliably predict at this stage.   

4.3.3 Human TrpRS Active Site Design 

4.3.3.1 Introduction 

In preparing for the possibility that the protein may not fold, we performed 

sequence alignment of various TrpRS to determine if there are any species whose 

TrpRS sequence does not have an Aspartic acid at the HN recognition site.  We 

Table 4-9 Double mutations at position 132 and 80 of  B. Stearothermophilus 

TrpRS. 
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identified the human TrpRS as such a candidate, with an asparagine (N194) in place 

of the aspartate (D132) at the equivalent position (Figure 4-10).  This structure has 

also been crystallized, with pdb code 2dr2.  Our hope is that, experimentally, 

introducing mutations at this residue would not lead to inactive proteins. 

Our strategy is to reduce the complexity of the design problem by proceeding along 

two tracks.  One task is to introduce mutations around N194 to remove recognition 

of the HN group on the cognate tryptophan ring.  The other task would be to 

introduce mutations for residues that line the hydrophobic pocket.  Figure 4-10 

shows that the two groups of residues are independent of each other.  Try159, 

Gln284 recognize the HN group of the cognate Trp ligand, whereas Ile307 and 

Cys309 are residues that independently recognize the Trp ring.   

Again, the position (4-, 5-, 6- or 7-) of the functional group with regard to the Trp 

ring is of no significant consequence.  The ligand structures are prepared and 

charges on the ligands are assigned according to Mulliken charges at X3LYP/6-

31G**.   

Crystal structure of human TrpRS (pdb ascension code 2dr2) is used for structure 

preparation, following the steps outlined in Section 4.1.1.   
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4.3.3.2 Mutating Away the Recognition of HN Group 

An indene analog (Figure 4-6) is used in place of the crystal Trp ligand.  In addition 

to Y159 and N194, we decided to also mutate away D237, even though it is a 

charged amino acid.  It is, however, further away from the active site so its 

mutations should not play a role in the activation of enzyme. 

Since we are trying to mutate away the recognition of the HN group, we allow only 

hydrophobic groups as mutation candidates at positions 159, 194 and 237.  

Following the procedures in Section 4.1.2, we report candidates for good mutations 

in Table 4-10.  The picture of the active site with the top candidates is shown in 

Figure 4-11. 

Figure 4-10  Binding site of human TrpRS (pdb code 2dr2).  Cys309 and Ile307 

can be mutated to accommodate larger ligand in the binding pocket. 
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Position 159 Position 194 Position 237 Overall Energy (kcal/mol) 

L L G 0.0 

L G G 0.61 

L G M 4.82 

G L G 6.64 

L G A 6.68 

L L A 7.42 

L A G 9.58 

 

Table 4-10  Top mutation candidates for positions 159, 194 and 237 when the 

ligand in place is an indene amino acid analog. 

Figure 4-11  Binding site of 2dr2 with indene amino acid analog and top 

mutation candidates at positions 159, 194 and 237. 
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Differential binding energy between the indene analog and the cognate Trp ligand 

in the presence of the top L159-L194-G237 mutation is reported in Table 4-11.  

The final differential energy of 3.05 kcal/mol is close to the energy of a hydrogen 

bond, fulfilling the purpose of performing the mutation as described. 

Ligand Binding Energy (kcal/mol)

Cognate Trp 20.88 

Indene-Analog 23.93 

Differential Binding 3.05  

In the following sections we introduce mutations at the hydrophobic lining pocket 

that stabilize various amino acid analogs. 

4.3.3.3 Ethynyl-Trp 

Ethynyl-Trp is the minimal non-natural amino acid analog to have a basic 

tryptophan structure and an ethynyl functional group for Click chemistry.  The 

ligand has no degrees of freedom on the ethynyl group, however, and unlike in the 

B. Stearothermophilus TrpRS case, there is some backbone clash involving the 

ethynyl atoms on the ligand.  Therefore, we choose not to proceed with designs 

involving this non-natural amino acid. 

4.3.3.4 Oxyethynyl-Trp 

Oxyethynyl-Trp is slightly bigger than ethynyl-Trp, with an ether oxygen inserted 

between the main tryptophan ring and the ethynyl functional group.  The presence 

of this ether oxygen gives the ethynyl group some rotational freedom.  This 

freedom is restricted to just two local minima, however, because the ether oxygen is 

weakly in resonance with the tryptophan ring, lending it sp2 character.  The O_R 

Table 4-11  Binding energy of cognate ligand and indene analog with top 

mutation candidate at positions 159, 194, 237.  
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atom type is assigned to this oxygen.  The two local minima place the ethynyl on 

the same plane as the tryptophan group.   

Ligand (Ethynyl-Trp)

I307

P308

configuration clashes 
with backbone of P308

Alternate configuration

Ligand (Ethynyl-Trp)

I307

P308

configuration clashes 
with backbone of P308

Alternate configuration

 

 

In addition to Ile307, Cys309 is also included as a position to introduce mutations.  

Following the procedure in Section 4.1.2, we report top mutation candidates as in 

Table 4-12. 

 

Figure 4-12  Two possible configurations for the oxyethynyl groups. 
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Position 307 Position 309 Energy (kcal/mol) 

G G 0.0 

G A 1.17 

A G 7.11 

A A 7.38 

C A 9.02 

The top two mutations essentially allows room for the ether oxygen to reside in the 

binding pocket.  Serines and threonines were also mutated at position 309, but no 

configuration could form a hydrogen bond with the oxygen on the ligand.  

4.3.3.5 Propargyloxy-Trp 

Again, like the previous cases, only the 5- position propargyloxy-Trp can be added 

to the human TrpRS binding site.  This ligand adds another degree of rotational 

freedom onto the ligand, with an ether oxygen and a sp3 carbon inserted between 

the trp ring and the ethynyl group.  We manually generated 2 ·3 = 6 configurations 

for this ligand: 3 positions for the ethynyl group for each of the 2 positions of sp3 

carbon.  We found that one of these configurations have a good potential as being 

the binding mode after we mutate away the clashing residues I307, F317, L334 and 

C309.  Following procedures outlined in Section 4.1.2, we report the top mutation 

candidates in Table 4-13. 

 

Table 4-12  Top mutation candidates for Oxyethynyl-Trp for human TrpRS 

incorporation.   
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C309

L334

F317

I307

Ligand 
(propargyloxy-Trp)

C309

L334

F317

I307

Ligand 
(propargyloxy-Trp)

 

 

Position 317 Position 334 Position 307 Position 309 Energy 
(kcal/mol) 

V A G G 0.0 

V L G G 2.934 

V C G G 4.840 

L A G G 5.601 

I A G G 6.407 

 

Figure 4-13  Starting 

configuration for the 

unnatural amino acid 

analog propargyloxy-

Trp.  The ethynyl group 

is off the Trp ring plane 

by 60°. 

Table 4-13  Top mutation candidates for propargyloxy-Trp as ligand in human 

TrpRS. 
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V317

A334

G309

G307

Ligand 
(propargyloxy-Trp)

V317

A334

G309

G307

Ligand 
(propargyloxy-Trp)

 

Shown in Figure 4-14 is the top mutation candidate V317-A334-G307-G309 for the 

non-natural amino acid propargyloxy-Trp.  The glycine mutation at position 309 is 

necessary since the Cβ atom would otherwise clash with the ether oxygen on the 

ligand.  The case is similar at position 307 where the Cβ atom would otherwise clash 

with the sp3 carbon of the ligand.  There are more design opportunities at positions 

317 and 334, with two bulky residue, a phenylalanine and a leucine respectively, in 

the crystal structure.  The mutation to an alanine and a valine allows space for the 

ethynyl functional group to reside.  As can be seen from Table 4-13, many other 

hydrophobic mutations could also work out in this region. 

Figure 4-14  Top mutation 

candidate for propargyloxy-

Trp as ligand in human 

TrpRS. 
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4.3.3.6 Homoazido-Trp 

The unnatural amino-acid analog homoazido-Trp has a similar rotational freedom 

profile as propargyloxy-Trp, but the sp3 carbon between the azido group and the trp 

ring allows more freedom for positioning the azido group.  We manually generated 

6 rotamers for this ligand and found that the rotamer shown in Figure 4-15 is the 

only rotamer that does not have bad contacts with the protein backbone.  This 

ligand configuration is used for the purpose of this calculation. 

Using the same procedure as before, we found that the only good mutation for this 

ligand is a double glycine mutation at both position 307 and 309. 

Ligand (homoazido-Trp)

I307

C309

Ligand (homoazido-Trp)

I307

C309

 

Figure 4-15  Homoazido-Trp as ligand.  Clashes with C309 and I307 are shown. 
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4.3.3.7 Benzo-cyclo-octyne Analog 

The benzo-cyclo-octyne amino acid analogue can react with an azido group without 

the need of a catalyst, with an activation barrier of just 7.6 kcal/mol.  This is due to 

the tremendous strain in the cyclo-octyne ring.   

The cyclo-octyne group can be fused with the benzyl ring at two different positions, 

as shown in Figure 4-16.  In addition, the ethyne group will be out-of-plane with the 

benzyl ring, leading to two distinct configurations.  Thus, we have a total of 4 

possible configurations to consider for this amino acid analogue. 

NH2

O

OH
NH2

O

OH

NH2

O

OH
NH2

O

OH

1

43

2

NH2

O

OH
NH2

O

OH

NH2

O

OH
NH2

O

OH

1

43

2

 

We constructed all 4 configurations and placed them into the human TrpRS crystal 

structure by a superposition with the cognate tryptophan.  As shown in Figure 4-17, 

there is only one configuration that does not clash with either a protein backbone or 

Figure 4-16  Possible configurations of benzo-cyclo-octyne amion acid analog.   
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a crucial amino acid.  Asn 313 is involved in the recognition of the backbone of the 

amino acid.  Since TrpRS catalyzes the acylation of amino acids to the tRNA, 

mutation of this Asn 313 will likely lead to a loss of this function and is therefore 

not considered a mutation candidate. 

backbone

ASN 313

Ligand

backbone

ASN 313

Ligand

 

Following the procedure from Section 4.1.2, we identified six residues to be 

mutated from the active site.  These six residues are divided into two groups.  The 

first is the Y159-N194-D239 group which in the crystal structure forms a hydrogen 

bond network and recognizes the HN on the cognate trptophan ligand.  The second 

group comprises of F317-I309-C307, which lines the hydrophobic pocket.  These 

residues are shown in ball-and-stick representation in Figure 4-18. 

Figure 4-17  Three out of four possible configurations of benzo-cyclo-octyne 

amino acid analogue are shown in the human TrpRS crystal structure active site. 
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Position 237 Position 159 Position 194 Energy (kcal/mol) 

A L M 0.0 

A L L 6.0 

C L M 7.8 

A M M 9.0 

C L L 9.6 

A L C 10.0 

 

Figure 4-18  Mutation candidates for TrpRS for incorporation of benzo-cyclo-

octyne amino acid analogue. 

Table 4-14  Top mutation candidates for positions 237, 159 and 194 in human 

TrpRS in the presence of benzo-cyclo-octyne amino acid analog. 
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Position 317 Position 307 Position 309 Energy (kcal/mol) 

L L A 0.0 

A L A 2.0 

L V M 2.7 

C L A 4.1 

M L C 5.7 

L V L 6.0 

Reported in Table 4-14 and Table 4-15 are the top mutation candidates as predicted 

using the procedure outlined in 4.1.2. 

4.3.3.8 Conclusions 

In this section, we have applied our methods on a few protein design cases.  We 

have succeeded in predicting mutants that contribute to the stability of IFN-β.  

Predictions have also been made for ligands that participate in click chemistry for 

TrpRS incorporation.  We have submitted our predictions to our collaborators, and 

would be interested to find out the performance of our prediction.

Table 4-15  Top mutation candidates for positions 317, 307 and 309 in human 

TrpRS in the presence of benzo-cyclo-octyne amino acid analog. 
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Appendix A  SCREAM Supplementary 

Material 
 

A.1 Prediction of Surface Residues Prior to Sidechain Assignment 
 

SCREAM does not currently distinguish between surface and bulk residues in its 

calculation.  In order to predict the surface residues prior to assigning the 

sidechains, we recommend using the alanized protein and calculating the solvent 

exposed surface area (SASA) by rolling a ball of 2.9 Å instead of the standard 1.4 

Å, as shown in Figure A.  A “miss” is defined when the algorithm does not find an 

exposed residue as in the original crystal structure.  A “false positive” is defined 

when the algorithm assigns a residue as exposed but is in fact buried in the original 

crystal structure.  The usual 20% exposed surface area criterion is used for 

determining whether a residue or its alanized is exposed or buried.  Based on the 

results, using a probe ball radius of 2.9 Ǻ minimizes the sum of false positive and 

misses.  The Xiang set of proteins is used for testing.   
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The previous figure shows the accuracy of predicting surface residues using the 

method described.  The percentage is calculated based on the number of exposed 

residues in the crystal structure (after removing waters and solvents).  

A.2 Impact of Scaling Factor s in Combinatorial Placement:  
Here we include plots for all 17 sidechains.  RMSD is plotted against the Scale 

factor s.  The Xiang set of proteins are used for testing. 
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 Effects of Scale Factor on ILE Accuracy
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Effects of Scale Factor on ARG Accuracy
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Effects of Scale Factor on VAL Accuracy
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Appendix B  Algorithms Used in Protein 

Neutralization 
 

B.1  Flow Network 
Neutralizing charged residues means adding or removing protons from the residue.  

Because of this procedure, in order to maximize the total number of hydrogen bonds in the 

system, sometimes the hydrogen positions of other polar groups need to be modified as 

well.  Histidine with two possible spots for the polar hydrogen, and water with multiple 

locations for its two polar hydrogens provide such examples. 

Graph theory algorithms are used to ensure that the maximum number of hydrogen bonds 

is retained after the neutralization procedure.  Since hydrogens must always be removed 

from positively charged groups and always be added to negatively charged groups, the 

movement of protons can be modeled as a flow network.  The basic idea is that maximizing 

the number of hydrogen bonds in the protein would correspond to maximizing the flow in 

the network, a well-studied problem in computer science known as Maximum-Flow. 

Using nonmenclature from Cormen89, a flow network G=(V,E) is a directed graph in which 

each edge (u,v) ∈E has a nonnegative capacity c(u,v) ≥ 0.  Two vertices are special: a 

source s and a sink t.  A flow, formally, is a function ℜ→×VVf :  that satisfies: 

Capacity constraint: Vvuvucvuf ∈∀≤ ,),(),(  

Skew symmetry: Vvuvufvuf ∈∀−= ,),(),(  
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Flow conservation: { }tsVuvuf
Vv

,0),( −∈∀=∑ ∈
 

 

The correspondence of these terms to our hydrogen network is as follows: 

Flow Network Terms Hydrogen Bond Network 

Vertex Residue/group (or virtual group) 

Directed Edge Hydrogen bond, and the donor/acceptor pair 

Capacity Maximum number of hydrogen bonds from donor to 

acceptors 

Sink/source Positively charged residues/negatively charged residues 

Flow Transfer of protons 

 

For charged groups, only one vertex is needed.  For non-charged groups, special treatment 

is necessary, since we need to account for the fact that they can “bridge” only a limited 

number of oppositely charged groups.  For instance, Histidine can only accommodate the 

protein transfer between one pair of oppositely charged groups.  To do this, these bridging 

groups are turned into two virtual groups, and we assign the capacity of the edge between 

these two virtual groups to be the maximum number of proton transfers it can handle.  For 

Histidine, this number would be one.  The first virtual group handles just the accepting of 

protons, whereas the second virtual group handles just the donating of protons.  See the 

remark later in this Appendix for a proof of the correctness of this procedure. 

Since there can be multiple positively residues (source vertices) and negatively charged 

residues (sink vertices), we add a supersource and a supersink.  These special nodes 

connect to regular sink and sources, respectively, by constructing directed edges.  The 

capacity of these edges is infinite, so as to push the maximum amount of flow through the 
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network, which corresponds to maximizing the number of hydrogen bonds made due to the 

reassignment of protons. 

The problem is now formally reduced to finding the maximum flow of this graph we have 

constructed, i.e. between the supersource and the supersink vertices.  The Ford-Fulkerson 

method is used to find the maximum flow.  The number of hydrogen bonds each 

residue/group can accept or donor is typically a small integer (not greater than two), so 

efficiency is not an issue.  A potential hydrogen bond is defined as any two acceptor/donor 

pair that comes within 3.5Ǻ.   This is a value that can be adjusted.  For groups/vertices that 

are not solved in this flow network (they are typically solvent exposed and do not interact 

with the rest of the protein), the hydrogen adding and removal rules below are used: 

1. If there are multiple hydrogens that can be removed (e.g. NH3
+), pick any one that does 

not remove existing hydrogen bond with other atoms. 

2. If there are multiple positions the hydrogen can be added on (e.g. either oxygen on CO2
-

), pick any one that makes a hydrogen bond with other atoms. 

If Rule 1 and Rule 2 do not apply, creation or removal of hydrogen is arbitrary. 

The above rules are also applied to decide tie-breaks on the flow network algorithm. 

B.2  Remark on Correctness 
A proof is provided for ensuring that the introduction of bridging vertices does not affect 

change the number of protons that can be transferred. 

The introduction of bridging vertices does indeed constrain the capacity of the network to 

the capacity of the bridging groups. 

 Proof:  Apply the Max-flow min-cut theorem.  Cut the graph in two, separating the first of 

all the virtual bridging vertices and the second of all virtual bridging vertices.  This cut then 
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has value less than or equal to the sum of the capacity of all the bridging groups (since it 

might not be possible to find a cut that achieves equality).  However, by max-flow min-cut 

theorem, the value of any flow in a flow network is bounded from above by the capacity of 

any cut.  Thus, the introduction of the bridging vertices has the intended effect. 
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