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Abstract

The deployment of large-scale, low-cost, low-power, multifunctional sensory networks

brings forward numerous and diverse research challenges. Critical to the design of

systems that must operate under extreme resource constraints, the understanding

of the fundamental performance limits of sensory networks is a research topic of

particular importance. This thesis examines, in this respect, an essential function of

sensory networks, viz., data collection, that is, the aggregation at the user location

of information gathered by sensor nodes.

In the first part of this dissertation we study, via simple discrete mathematical

models, the time performance of the data collection and data distribution tasks in

sensory networks. Specifically, we derive the minimum delay in collecting sensor data

for networks of various topologies such as line, multi-line, tree and give corresponding

optimal scheduling strategies assuming that the amount of data observed at each

node is finite and known at the beginning of the data collection phase. Furthermore,

we bound the data collection time on general graph networks.

In the second part of this dissertation we take the view that the amount of

data collected at a node is random and study the statistics of the data collection

time. Specifically, we analyze the average minimum delay in collecting randomly lo-

cated/distributed sensor data for networks of various topologies when the number of

nodes becomes large. Furthermore, we analyze the impact of various parameters such

as lack of synchronization, size of packet, transmission range, and channel packet

erasure probability on the optimal time performance. Our analysis applies to direc-

tional antenna systems as well as omnidirectional ones. We conclude our study with

a simple comparative analysis showing the respective advantages of the two systems.
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Chapter 1 Introduction

In this chapter we give a brief overview of sensory networks main characteristics,

applications, and research issues. The emphasis is put on the research topics relevant

to the contents of this thesis. We summarize the main contributions of our work and

conclude by an outline of this dissertation.

1.1 Sensory Networks: A Brief Overview

Recent technological advances in the Very Large Scale Integration (VLSI) field have

contributed much to the development of microsensor systems. These combine vari-

ous sensors, signal processing capabilities, data storage capabilities, wireless (radio,

infrared or optical) communication capabilities, and energy sources on a single chip

[1, 2, 43]. Such computational devices are referred to as sensor nodes and a collection

of sensor nodes, possibly distributed over a wide area, connected through the wireless

medium, form a sensory network. Fig. 1.1 illustrates the architecture of a sensor node

while Fig. 1.2 illustrates a sensory network in a sensor field.

Memory

Processor TransceiverADC

Power

Sensors

Figure 1.1: Sensor node architecture.

In the future sensor networks promise to revolutionize our lives. Pervasive wireless

integrated networks will provide access to information anytime, anywhere and will be

able to instantaneously respond to our actions, in a way creating smart environments



2

[53, 20, 21]. Potential applications for such networks are numerous and can be broadly

divided into military and civilian categories. Military applications include space ex-

ploration [41], battlefield surveillance and enemy tracking [54]. Civilian applications

include habitat monitoring [46, 10], environmental observation and forecast [68, 45],

as well as various health applications [61].

Sensor field

Sink/ end−user

Sensor node

data transmission

Figure 1.2: Sensor nodes scattered in field.

Sensor networks are wireless networks with unique characteristics which distin-

guishes them from traditional wireless networks [69]. They are designed for unat-

tended operation, must accommodate a traffic of statistical nature, support very low

data rates to the order of 1-100 kb/s, and are characterized by a predominantly unidi-

rectional flow of data from sensor nodes to sink. Sensory networks are members of the

wireless ad hoc network family, that is, they are infrastructure-less networks unlike

cellular networks. But they also distinguish themselves from MANETs1, designed to

provide good throughput/delay characteristics under high mobility conditions, with-

out much regard for energy consumption. Indeed, operation under severe constraints

(lack of accessibility, limited energy resources and capabilities of nodes, absence of

1Mobile Ad Hoc Networks
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infrastructure), not existent in more traditional networks, imposes aggressive en-

ergy management [58]. Accordingly, in many sensor network applications, energy (or

equivalently lifetime) is traded against throughput/delay. Finally, it should be noted

that in a sensory network, while each node may be mobile, it is typically the case that

once the target site of the particular sensing application is reached a semi-permanent

stationary configuration is adopted for the purpose of gathering information. Accord-

ingly the deployment of sensory networks brings forward numerous research problems

[4, 70, 52].

In the field of general ad hoc networks and particularly sensory networks, research

efforts focusing on design issues of the network communication architecture have been

widespread [40]. The protocol stack typically used by sensor nodes is composed of a

physical layer, data link layer, network layer, transport and application layers, as well

as a power plane, mobility plane, and task management plane [4] as schematically

illustrated in Fig. 1.3. The physical layer is responsible for frequency selection, car-

rier frequency generation, signal detection, modulation and data encryption [65, 11].

The data link layer is responsible for the multiplexing of data streams, data frame

detection, medium access (MAC) and error control. The MAC protocol ensures the

creation of the network infrastructure and efficient communication resource allocation

between the sensor nodes [67, 72, 42, 7, 56, 72]. The network layer provides rout-

ing capabilities [59, 64] to the transport layer and is responsible for internetworking

with external networks. Finally, the transport layer is responsible for maintaining

the flow of data when and if required by the application layer. The three planes

are responsible for task allocations between nodes and monitoring/managing energy

consumption, mobility. An investigation of current protocol and algorithm proposals

in these layers is presented in [4]. Technical issues and application requirements to

be dealt with by these protocols are multiple and often specific to the class of sensory

networks as mentioned earlier. Among those, efficient management of energy budget

is of paramount importance to the lifetime of the networks [36, 66]. Important issues

under investigation include node localization [15], clock synchronization [38, 37], fault

tolerance, connectivity and coverage issues [31, 8, 48, 39], security [51], analysis of
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network fundamental performance limits, and hardware design [57, 11, 49, 71].

Application layer

Transport layer

Network layer

Physical layer

Data link layer

Pow
er m

anagem
ent plane

M
obility m

anagem
ent plane

T
ask m

anagem
ent plane

Figure 1.3: Sensory network protocol stack.

1.2 Contributions

The extreme resource constraints under which wireless sensor networks must oper-

ate, strongly motivate an understanding of the fundamental performance limits of

these systems, for example in order to figure out in what areas improvements over

state-of-art protocol and hardware design are possible and efforts should be directed.

The main performance measure considered in the literature are capacity or through-

put, power consumption and network lifetime. Results on capacity may be found

in [34, 32, 5, 50, 17, 18, 47, 3]. Upper bounds on the lifetime of a sensor network

are derived in [6]. Energy expenditure is considered in [13, 30, 16, 14]. Distributed

compression is studied in [62, 60, 63, 55]. In most applications, sensor networks are

expected to autonomously extract information about their surroundings, perform ba-

sic collective processing and transmit the collected data to the end-user for further

processing and analysis. In this dissertation we study the problem in sensory net-

works of collecting sensor data at the network processing center. Although many

protocols based on resource-efficient heuristics have been proposed for data collection

in sensory networks [35], few analyses of the process have appeared. In this thesis we

derive new performance (with respect to time and to a lesser extent energy) results on
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data-gathering sensory networks. Specifically, we derive, via simple discrete mathe-

matical models, lower bounds on data collection time (delay) in data gathering sensory

networks and exhibit algorithms that achieve those bounds [22, 23, 24, 25, 26, 27].

Most relevant to our research is the so-called packet routing problem which consists

in moving packets of data from one location to another as quickly as possible in a

network and has been studied in [44, 28, 29, 12, 9] with respect to wireline networks

and general purpose wireless networks.

1.3 Thesis Outline

This dissertation is organized as follows: This chapter reviews briefly research issues

in sensory networks and summarizes our contribution to the field. In Chapter 2, we

describe optimal strategies to perform data collection under various assumptions and

derive corresponding time performances with respect to a simple discrete mathemat-

ical model for a sensor network. In this model the amount of data accumulated at

each sensor node (characterized by a number of unit data packets) after some given

observation period is assumed finite and determined. In typical scenarios however the

exact amount of data accumulated at each sensor node is unknown which motivates

the more complex model of the following chapter.

In Chapter 3, we model the number of data packets as a random variable and

analyze the delay (which is now a random variable) in collecting sensor data at the

base station. More specifically, we derive the distribution and the expected value

of the delay for a line network using the optimal scheduling. Furthermore, we look

into the effect of various parameters including size of packet, transmission range, and

channel erasure probability on delay. We also propose a simple distributed scheduling

strategy and analyze its delay performance showing that it is asymptotically optimal.

Finally we extend our result to more general topologies such as multi-line networks

and trees.

Chapter 4 contains our concluding remarks as well as open problems.
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Chapter 2 Deterministic Sensory

Networks

In this chapter we study, with respect to a simple discrete mathematical model, the

data collection problem in sensory networks. In this model, the amount of data accu-

mulated at each sensor node (characterized by a number of unit data packets), after

some given observation period, is assumed finite and determined. We refer to this net-

work model as deterministic sensory network. More specifically, we describe optimal

strategies to perform data collection and derive corresponding time performances.

This chapter is organized as follows: In section 2.1 we describe our sensor network

model. We present results in deterministic sensory networks equipped with direc-

tional antenna elements in section 2.2. In section 2.3, we propose a generalization

to omnidirectional systems. We present a comparison analysis of the two systems

in section 2.4. Finally, we conclude in section 2.5. Miscellaneous derivations for the

chapter and Pseudo-code of presented algorithms are grouped in the appendices.

2.1 Model and Problem Statement

In this section, we describe the sensor network model on which the subsequent analysis

is based and formulate our problem within the framework of this model. As noted

in the introduction, in most sensing applications sensor nodes adopt a stationary

configuration while information is being gathered. Correspondingly, our models will

be static.

In stationary state, after the nodes have organized themselves into a network, we

assume two distinct phases of operation. In the first phase or observation phase, area

monitoring results in an accumulation of data at each sensor node. In the second

phase or data transfer, the collected data is transmitted to some processing center
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located within the sensor network (we refer to this node as the base station (BS) of

the sensor network). In this chapter, we investigate the efficiency limits with respect

to time of such data transfers.

We define a sensor network as a collection of n identical nodes {N1, ..., Nn}. Each

node Ni is associated with an integer νi that represents the number of data packets

collected by this node during the observation phase. N0 denotes the BS which is

located within the network. Nodes (BS included) have limited wireless communica-

tions capabilities and cannot receive and transmit at the same time. All the nodes

including the base station have a common transmission range r and interference range

r′ (to be defined shortly). Fig. 2.1 illustrates sensor nodes, together with gathered

data, scattered in a sensor field.

BS

0

1
0 1

0

0 1

1
0

20

1

01 0

1 0

0
1

3

0

0

0

0

2

2

0

0
2

1

0 0

1

r’

r

Sensor node

Sensor field

Figure 2.1: Sensor nodes, gathered data, and sensor field.

The interference model as defined in [34] for omnidirectional antenna systems is

adopted here. That is, a transmission from node Ni to node Nj where i, j ≥ 0 is

successful, if for every other node Nk, k ≥ 0 simultaneously transmitting

|Ni −Nj| ≤ r, |Nk −Nj| ≥ (1 + δ)r, δ > 0 (2.1)
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The second inequality specifies that node Nj must be outside the interference range

of node Nk and defines the interference region of node Nk as the disc of radius r(1+δ)

centered at Nk. In directional antenna systems, on the other hand, the interference

region of node Nk is only a portion of that disc, the sector formed by some angle θ.

Fig. 2.2 illustrates the characteristic parameters of the model: sensor nodes N1, ..., N6,

the transmission range r and the interference range r′ = r(1 + δ). In directional

antenna systems a transmission from N1 to N2 creates interference at node N6 (inside

the sector formed by θ). However the same transmission creates interference at nodes

N6, N3 and is received by node N4 (which is interference from the point of view of N4)

in omnidirectional antenna systems. Fig. 2.3 illustrates the sensory network formed

by the nodes of Fig. 2.1. Nodes within transmission range are connected through a

solid line while nodes within interference range are connected through a solid line or

dotted line.

N1

N3

N4

N5

N2

r

r’

N6

θ

Figure 2.2: Interference model parameters.

We assume in our model that time is slotted and a one-hop transmission consumes

one time slot (TS). The network is further assumed to be synchronous. A node can

only transmit/receive one data packet per time slot. Multiple transmissions may

occur within the network in one TS under this interference model by virtue of spatial

separation. Such a network may be represented by a weighted rooted graph {V, E, νn}
where V = {N0, ..., Nn}, E denotes the set of links and νn = (ν1, ..., νn). In this graph

model the root represents the BS (N0) and an edge represents an existing wireless
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Figure 2.3: Sensory network.

connection between two sensor nodes, or a sensor node and the BS. The data collection

problem in a given sensory network is defined as the problem of routing all the data

collected by the sensor nodes to the BS as efficiently as possible with respect to time

and energy. The data distribution problem, on the other hand, is the problem of

routing data to sensor nodes in a timely and energy efficient manner. In the following

work we shall focus on the time efficiency alone of the data collection and distribution

tasks.

2.2 Directional Antenna Systems

In the following section, we focus our attention on directional antenna systems. We

first study the data collection process in networks with linear topology (half-line, line,

multi-line), then move to the study of networks with tree topology and conclude with

a study of networks with general topology.



10

2.2.1 Line Networks

In this subsection, we consider a line network (an example of which is given in

Fig. 2.4). A BS is placed at one end of the network. We assume sensor nodes

are regularly placed along the network. We denote by d the distance between any

2 nodes. Assume each node is equipped with directional antennas allowing trans-

missions over a distance r where d < r < 2d. Further assume that δ is such that

(1 + δ)r < 2d. In this scenario there are two nodes (one on the left, one on the

right) within transmission/interference range of any given node in the line (except

for the end nodes). It is possible to extend this model to a more realistic scenario

where nodes are randomly placed along a line and where different values of r, δ are

considered (as long as end-to-end connectivity of the network is ensured). However,

we find that simple case to be most insightful. In the following section, we consider

more general scenarios. Let Ni be the node at distance i from the BS. We denote by

i → i + 1 a transmission from node i to node i + 1. Our goal is to determine the

minimal duration of the collection phase and an associated optimal communication

strategy.

For purpose of solving this problem we look initially at the following converse problem

(which we shall refer to as the distribution problem); instead of nodes sending packets

to the BS, assume the BS is to transmit packets to nodes. The data transfer efficiency

remains our concern. This problem is of separate interest in sensor networks.

We propose the following simple algorithm for solving the distribution problem. We

shall prove subsequently it is optimal. The BS is to send first data packets destined

for the furthest node, then data packets for the second furthest one and so on, as fast

as possible, while respecting the channel reuse constraints. Nodes between the BS

and its destinations are required to forward packets as soon as they arrive (that is in

the TS following their arrival). We include, in Appendix B, Algorithm 1 running at

the BS.

The procedure is illustrated on an example, where V = {0, 1, 2, 3, 4, 5, 6, 7}, E =

{(i, i + 1), 0 ≤ i ≤ 6}, ν = (2, 0, 0, 0, 3, 0, 1), d < r < 2d, (1 + δ)r < 2d, in Fig. 2.4.
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The schedule of transmissions, as determined by Algorithm 1, is drawn below the

network for the distribution and collection problems respectively. Either way it is

performed in 11 TS.

2 3 1

1
3
5
7
9

1
3
5
7
9
11

11

Time Slot

Time Slot

BS

Figure 2.4: Optimal distribution and collection schedules in 8-node line network.

Next we determine the performance of our algorithm in general. Denote by Ti the

last busy TS at node i in the execution of our distribution algorithm (In the previous

example, we have T1 = 10, T2 = 9, T3 = 10, T4 = 11, T5 = 11, T6 = 7, T7 = 7). Clearly

then our algorithm runs in max
1≤i≤n

{T i}. Ti is a function of the distance to the BS, the

number of packets destined for node i as well as the number of packets forwarded by

node i. Assuming νi = 0 for i > n, node i’s last busy TS when running Algorithm 1

is

Ti =







i− 1 + 2
∑

j≥i+1 νj if νi = 0

ν1 + 2
∑

j≥2 νj if i = 1 and ν1 ≥ 1

i− 2 + 2
∑

j≥i νj if i ≥ 2 and νi ≥ 1

(2.2)

Proof. ∀i ≥ 1, node i is idle the first i − 1 TS. It forwards
∑

j≥i+1 νj data packets

to further nodes and receives νi data packets that are destined for itself. Forwarding
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a data packet consists in receiving that data packet and transmitting it right away

and therefore a node involved in forwarding one data packet will remain busy two

consecutive TS. Receiving a data packet on the other hand consumes only one TS

but in our scheme forces node i ≥ 2 to remain silent in the following TS. Therefore,

ν1 ≥ 1⇒ T1 = 2
∑

j≥2

νj + ν1

νi ≥ 1, i > 1⇒ Ti = (i− 1) + 2
∑

j≥i+1

νj + 2(νi − 1) + 1

νi = 0⇒ Ti = (i− 1) + 2
∑

j≥i+1

νj

We define, for a given sensor network, Tu(ν) the minimum length of a time schedule

over all time schedules that perform the distribution job.

Theorem 2.2.1. Assuming νi = 0 for i > n, the minimal data collection time in the

directional line network ν of length n1 is

Tu(ν) = max
1≤i≤n−1

(i− 1 + νi + 2
n∑

j≥i+1

νj) (2.3)

Proof. Clearly the maximum of Ti is obtained over the set {i ≥ 1 | νi 6= 0}. Thus we

have the following upper bound on Tu(ν)

Tu(ν) ≤ max
{i≥1 | νi 6=0}

Ti

A lower bound on Tu(ν) is as follows. Assuming νi = 0 for i > n, we have

Tu(ν) ≥ max
1≤i≤n−1

(i− 1 + νi + 2

n∑

j≥i+1

νj)

Indeed node i has to forward
∑n

j≥i+1 νi data packets to further nodes. Forwarding

one data packet consists in receiving and transmitting that data packet and therefore

1Implicitly we assume that the distance to the BS of the furthest node carrying a packet is n.
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results in a two TS consumption (per forwarded packet). Besides, it is itself the

destination of νi data packets. Each received data packet costs at least one TS.

Furthermore, node i can’t be active before it receives a data packet, which takes at

least i− 1 TS. Therefore, Si , 2
∑

j≥i+1 νj + νi +(i− 1) is a lower bound on any time

schedule for all i. Hence, max
1≤i≤n−1

Si is a lower bound on Tu(ν).

Finally, we prove that lower and upper bounds on Tu(ν) are equal and therefore

the proposed schedule is optimal: Clearly S1 = T1 and ∀i ≥ 2, Si = Ti if νi ≤ 1. On

the other hand, if νi > 1 then Ti > Si but then either νi−1 = 0 and then Si−1 = Ti or

νi−1 ≥ 1 and then Si−1 > Ti.

Corollary 2.2.2. In the particular case where no two consecutive components of

vector ν equal zero, Eq. (2.3) reduces to:

Tu(ν) = ν1 + 2
∑

i≥2

νi (2.4)

We now return to the data collection problem. The construction of a schedule here

is based on the symmetry of the operations of distribution and collection. A time

schedule that is symmetric to the distribution problem’s schedule with respect to a

fictive horizontal axis (see example in Fig. 2.4) provides us with an optimal solution,

the time to transmit data packets from nodes to the BS being the same as the time

to carry out the converse operation (and being therefore minimal). In particular a

transmission i→ i+1 occurring at TS j in the distribution problem is a transmission

i + 1→ i occurring at TS Tu(ν) + 1− j in the collection problem. Since the solution

to one problem gives us the solution to the other, we only consider the distribution

problem in the sequel. Note that an additional issue is raised in the data collection

case; indeed the described algorithms don’t require the network to be synchronous

in the distribution case (so the algorithms may be run in a distributed way) whereas

they do in the data collection case.
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2.2.2 Toward More General Scenarios

The general line case is shown in Fig. 2.5. It consists of n randomly located sen-

sor nodes N1, . . . , Nn along a line and a BS N0 at the left end of that line. It is

assumed that each node’s transceiver has a common transmission range r such that

r ≥ max
0≤i≤n−1

d(Ni, Ni+1) where d(Ni, Ni+1) denotes the distance between nodes Ni and

Ni+1 (which ensures end to end connectivity of the network) and interference range

r′ = (1+ δ)r. Under these assumptions any given node will have in general more that

one neighbor to the right (resp. left), those numbers varying from one node to the

other. Particular cases of this scenario are solved in the remaining of this section. We

first study the case where the transmission range is fixed and equal to one hop and

the interference range is variable. We then study the case of variable transmission

range.

r r

r’

N1 N2 N3 N4 N5 N6 7N NnN0

r’

Figure 2.5: (n + 1)-node line network where r′ = 2r.

This analysis constitutes a generalization of the line network analysis in the previ-

ous section which allows us to study the respective impact of the transmission range

and the interference range on the data collection process. We assume, for simplicity,

that the number of left and right neighbors is the same (one in this case) for all nodes.

Furthermore, it is convenient to imagine a line network with regularly spaced sensor

nodes.

First case: variable interference range

We fix the transmission range to 1 hop and the interference range to m hops (that is

r = 1 and δ = m − 1). Note that in the previous section, m was taken to be 1. In

practice m is often between 2 and 3.

The distribution strategy for the BS is to transmit νn data packets to node Nn first,

then νn−1 packets to Nn−1, and so on, as fast as possible while respecting the channel
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reuse/transceiver constraints. This strategy’s time performance is max
i

Ti where

T1 =







∑m−1
1≤j jνj + m

∑

j≥m νj if ν1 ≥ 1

2 + m(
∑

j≥m νj − 1) if ∃k ≥ m such that: ν1 = . . . = νk−1 = 0, νk ≥ 1

2 + k(νk − 1) +
∑m−1

k+1≤j jνj + m
∑

j≥m νj if

∃k 2 ≤ k < m, ν1 = . . . = νk−1 = 0, νk ≥ 1

T2 =







∑

2≤j≤m−1 jνj + m
∑

j≥m νj if ν2 ≥ 1

3 + m(
∑

j≥m νj − 1) if ∃k ≥ m such that: ν2 = . . . = νk−1 = 0, νk ≥ 1

3 + k(νk − 1) +
∑m−1

j≥k+1 jνj + m
∑

j≥m νj if

∃k 2 ≤ k < m, ν2 = . . . = νk−1 = 0, νk ≥ 1

Ti =
∑

i≤j≤m−1

jνj + m
∑

j≥m

νj if 2 < i < m

Tm+k =







k + m
∑

j≥m+k νj if νm+k ≥ 1

k + 1 + m
∑

j≥m+k νj if νm+k = 0

if k ≥ 0

The proof follows a similar argument as the one used to prove Eq. (2.2) and is

omitted. The following theorem gives a closed form expression for the minimum data

collection delay. This generalizes Theorem 2.2.1.

Theorem 2.2.3. The minimum data collection time T m
u (ν) on directional line net-

work ν, when the transmission range is 1 hop, and the interference range is m hops,

is

T m
u (ν) =







max
i

(i− 1 +
∑i+m−2

j≥i (j − i + 1)νj + m
∑

j≥i+m−1 νj, ∀m ≥ 2

max
i

(i− 1 + νi + 2
∑

j≥i+1 νj) if m = 1

(2.5)

Proof. We have T m
u (ν) ≤ max

i
Ti. A lower bound on the minimum time performance
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can be derived as well.

∀i ≥ 1, T m
u (ν) ≥ i− 1 +

∑

j≥i

νj +
∑

j≥i+1

νj + . . . +
∑

j≥i+m−1

νj (2.6)

Indeed transmissions i− 1→ i, i→ i + 1, . . . , i + m− 2→ i + m− 1 may not occur

concurrently due to channel reuse constraints. Inequality (2.6) may be rewritten

∀m ≥ 2, T m
u (ν) ≥ max

i
(Si) (2.7)

where

Si , (i− 1 +
∑

i≤j≤i+m−2

(j − i + 1)νj + m
∑

j≥i+m−1

νj) (2.8)

The case m = 1 may be derived from the above formula by choosing m = 2.

Assume there exists j0, 1 ≤ j0 ≤ n such that ∀i 6= j0, Tj0 ≥ Ti Tj0+1 < Tj0

• if j0 = 1 then ν1 ≥ 1⇒ S1 = T1

• if j0 = 2 then ν2 ≥ 1, ν1 = 0⇒ T2 − S2 =
∑

2≤j≤m νj − 1 ≥ 0

ν1 = 0⇒ T1 = T2 ⇒ S1 ≥ T2. Indeed S1 ≥ T1 since

ν1 ≥ 1⇒ S1 = T1

and ν1 = 0⇒ S1 − T1 =







∑

1≤j≤m−1 jνj + m− 2 ≥ 0 (m ≥ 2) or

∑

1≤j≤k−1 jνj + k − 2 ≥ 0 (k ≥ 2)

• if 2 < j0 < m⇒ νi ≥ 1, ν1 = . . . = νi−1 = 0⇒ Tj0 − S1 = −
∑

1≤j≤i−1 jνj = 0

• if j0 = m + k k ≥ 0 ⇒ νm+k ≥ 1 νk = . . . = νk+m−1 = 0 ⇒ Tm+k − Sk+1 =

−
∑k+m−1

j≥k+1 (j − k)νj = 0

Therefore max
i

Ti = max
i

Si and Theorem 2.2.3 follows.
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Second case: variable transmission range

In this section, we consider the problem of scheduling when each node is allowed to use

up to h hops. Of course, a longer transmission range leads to faster data collection.

This is quantified in the following theorem where the minimum data collection time

Tmin(h, νn) is expressed as a function of the transmission range h (hops).

Theorem 2.2.4. For a one-sided line network of length n in which the ith node has

νi packets and is equipped with directional antennas, the minimum collection time of

the packets at the BS as a function of the transmission range h in hops is

Tmin(h, νn) = max(S ′, S1, S2, . . . , Sn−h) (2.9)

where

Si =

n∑

j>i+h

νj +

⌊∑n
j>i+h νj − 1 + (i mod h)

h

⌋

+

⌊
i

h

⌋

+ 1, 0 ≤ i ≤ n− h

S ′ = S0 + max

(
l∑

j=1

νj − 1, 0

)

+

h∑

j=l+1

νj (2.10)

where l is the unique solution to l + n0 = 0 mod h such that 0 ≤ l ≤ h− 1.

Remark: Note that when h = 1, Eq. (2.9) reduces to the familiar Eq. (2.3).

Proof. The proof is similar to the proof of the case h = 1. Here we only outline the

generalization. The proof has two parts. Firstly, we need to show that the right-hand

side of (2.9) is a lower bound for the collection time. Secondly, we prove it is an upper

bound as well by exhibiting a schedule with this time performance.

In order to show that the right-hand side is a lower bound, we first consider the

h nodes i, 1 ≤ i ≤ h closest to the BS. They need to forward nh =
∑

j>h νj packets.

If nh ≤ h, this can be done in nh + 1 TS or more. This takes exactly nh + 1 TS

if all packets to be distributed are located at node h + 1 and more otherwise. If

h + 1 ≤ nh ≤ 2h, this can be done in nh + 2 TS or more. So in general it takes at

least nh + bnh−1
h
c+ 1 TS. More generally if ni,h denotes the number of packets to be
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forwarded by the h nodes j, i + 1 ≤ j ≤ i + h, it can be shown that it takes at least

ni,h+bni,h+(ni,h mod h)−1

h
c+b i

h
c+1 TS to do so. Therefore the maximum of the previous

expression over i gives a lower bound for the data collection time performance. We are

not done though. Indeed this lower bound is not achievable when there are packets

to be distributed at distance i where i, 1 ≤ i ≤ h. An additional lower bound may be

derived to handle this case by reconsidering the first h nodes. They must not only

forward
∑

j>h νj packets, but also receive
∑

j≤h νj packets. The lower bound S0 may

be adjusted (to S ′) to take this fact into account.

A possible (optimal) schedule for the distribution problem is as follows. It consists

of transmitting data packets first to the furthest node, then to the second furthest

node and so on as fast as possible until all packets at distance greater than h have

been served. Packets at distance i, 1 ≤ i ≤ h are served in the reversed order, i.e,

from closest to the BS to furthest. To prove this is indeed optimal, we compute

the algorithm’s time performance and show it achieves the lower bound previously

exhibited. This is similar to what was done in the case h = 1 and is left out here for

the sake of brevity.

In order to get a better insight into the result of Theorem 2.2.4, we give a simple

illustrative example.

Example: We consider a line network of length n, where each node carries exactly

one data packet and has a transmission range of h ≤ n hops. Direct application of

Theorem 2.2.4 gives the minimum collection time as

T = n + bn
h
c − 1 (2.11)

Fig. 2.6 shows an instance of this network: n = 10 and h = 3. Hence the data

collection time is 12TS. The associated distribution schedule accompanies the figure.
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Figure 2.6: Minimum length data distribution schedule in 10-node line network with
maximum transmission range of 3 hops.

2.2.3 Synchronization Problem

Up to now we have assumed that all sensor nodes and BS were synchronized. In this

section, we study the impact on the data collection time of lack of synchronization in

the network. In our communication model we have assumed that the transmission of

a data packet consumed one TS. Let us be more precise. The transmission of a data

packet is made up of a transmission phase (at the transmitting node), a propagation

phase (from the transmitting node to the receiving node) and a reception phase (at

the receiving node). Assuming sensor nodes are about one meter apart, that the size

of a data packet is about 20 bytes and data rates are of the order of 10 kbps, we can

get an idea of the duration of each phase. We find ∆TX = ∆RX = 1.6 ∗ 10−2 s

which is very large compared to the propagation time 0.33 ∗ 10−8 s. The latter may

therefore be ignored for the purpose of this analysis. Then, the first half of the TS

is used for transmission of the data packet at the transmitting node while the second

half is used for reception of the data packet, by the receiving node. Fig. 2.7 illustrates

the distribution schedule for a particular network assuming perfect synchronization

(left figure, delay is 6 TS) and multiple unsynchronized cases. In the middle figure

all sensor nodes are synchronized but out-of-synch with the BS and the delay is 8.5

TS. In the right figure the sensor node at distance one from the BS is out of synch

with other nodes and the delay is 9 TS. We have the following theorem.

Theorem 2.2.5. The worst-case time performance in an unsynchronized directional
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line network is

Tus(ν) = max
1≤i≤n−1

(2i− 3 + νi + 2

n∑

j≥i+1

νj) (2.12)

Proof. The proof follows a similar argument as the one used to prove Theorem 2.2.1.

The worst-case performance for the previous example is illustrated in Fig. 2.8.

Delay becomes 11 TS. In conclusion the data collection time is quite sensitive to

variation in clock synchronization. Our analysis shows indeed worst-case performance

degradation in the order of 50 %.

BS 2 11 BS 1 2 1 BS 1 12

1

2

0

3

4

5

6

7

8

9

10

Figure 2.7: Distribution schedules in synchronized and unsynchronized linenetwork.

2.2.4 2-line Networks

Consider now a line network and place the BS anywhere on that line. This may be

seen as a 2-line network (µ, ν). We denote by Tu(µ, ν, ) the optimal performance

achievable on a 2-line network. The scheduling procedure, a particular case of the



21

BS 2 11

1

2

0

3

4

5

6

7

8

9

10

11

Figure 2.8: Worst-case out-of-sync distribution schedule in line network.

multi-line algorithm described in the next section, is illustrated in the example of

Fig. 2.9.

122 31

Time Slot
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11
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1

1

Figure 2.9: Optimal distribution schedule in 2-line sensor network.

Theorem 2.2.6. The minimum collection time on a directional 2-line network (µ, ν)
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is

Tu(µ, ν) =







max(Tu(ν) + 1,
∑

i≥1 µi + νi) if Tu(µ) = Tu(ν)

max(Tu(ν),
∑

i≥1 µi + νi) if Tu(ν) > Tu(µ)

(2.13)

Proof.

Tu(µ) = Tu(ν)⇒ Tu(µ, ν) ≥ max(Tu(µ) + 1,
∑

i≥1

µi + νi))

Tu(µ) > Tu(ν)⇒ Tu(µ, ν) ≥ max(Tu(µ),
∑

i≥1

µi + νi))

It is easy to see why the above described algorithm achieves this lower bound. Con-

sider for example the case Tu(µ) = Tu(ν). Either the algorithm takes T (µ) + 1 TS

to perform the job or it takes T ′
−1 (resp. T ′

1) defined as the last busy TS at dis-

tance 1 to the left (resp. to the right) from the BS. If it so T ′
−1 (resp. T ′

1) equals
∑

i≥1 µi + νi).

2.2.5 Multi-line Networks

In this section we consider multi-line networks, by which we mean multiple line of

sensors meeting in one single point, the BS. Fig. 2.10 and Fig. 2.9 are examples of

such networks. We describe an algorithm for distributing data in these networks.

The algorithm (listed as Algorithm 2 in Appendix B), running at the BS, determines

at each TS toward which line to transmit, if transmission is possible at all. The

direction of transmission is greedily decided, based on estimates (one per line) of the

completion time of the data transfer. Initial estimate for a given line is determined

by Eq. (2.3). The legal direction associated with the biggest estimate is chosen (a

legal transmission is one that respects the channel reuse constraints, so, for example,

it is not legal for our algorithm to transmit in two successive TS toward a given node

located at distance greater than 1 from the BS), ties being broken randomly. When no

legal direction exists the BS remains idle. After a decision has been made (transmit

toward a particular direction or stay idle) the estimates at each line are updated
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according to the following rule. If a legal direction was not chosen, its new estimate

becomes its old estimate plus one. Illegal direction estimates remain unchanged. The

idea is to minimize at each TS the overall estimate of the transmission time.

We illustrate the procedure on an example in Fig. 2.10. In the accompanying table,

we list data transfer completion time estimates at each TS and the corresponding

decision made by the BS. As previously stated the initial completion time estimates

are computed using Eq. (2.3). The table reads as follows. TS 1: All 4 transmission

directions are legal. The BS chooses to transmit toward line A. At TS 2, transmitting

toward A is not a legal move, the legal transmission direction associated with the

biggest estimate is B, etc. Along a given line, the packets destined for furthest nodes

are sent first by the BS. As for the other nodes they merely forward the data packets

of which they are not recipients (a packet is transmitted in the following TS that it

was received). In this example the algorithm performance is 10 TS.

3

(A)

(B)
2

1

1

1       9    7    5    3     A
TS    A   B   C   D    BS

2       9    8    6    4     B
3       9    8    7    5     A
4       9    8    8    6     B
5       9    8    9    7     A
6             8   10   8     C
7             9          9     B
8                        10    D

(D)
1

(C)

Figure 2.10: Optimal distribution schedule for BS in 4-line sensor network.

Theorem 2.2.7. Algorithm 2 is optimal.

Proof. We note that equivalently this algorithm picks at each TS the legal direction

Bi that maximizes T (ν i) (that quantity being updated at each TS to take into ac-

count the packets delivered).

We first introduce a few notations and definitions: Let N denote the considered net-

work for which one wishes to derive an optimal schedule. Let Ne denote the “equiv-

alent” network to N (see following definition). Let P denote the considered problem
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of scheduling data transfers to the nodes. Let P ′ denote the same problem under a

relaxed set of conditions, namely that simultaneous transmission and reception (of

different data packets) are allowed in a single TS at any given node. This problem is

independently studied in Appendix A. Let S(P, N) denote a schedule for problem P

and network N . Let S|BS(P, N) denote the schedule of the BS derived from S(P, N).

Let Sopt(P, N) denote an optimal schedule for (P, N).

In the “equivalent” network Ne of Network N the data packets along a particular

line are redistributed along the corresponding line in Ne in the manner illustrated in

Fig. 2.11.

2 1 1 1 1

BS 2 3 1

N
e

N

Figure 2.11: “Equivalent” network construction. Distribution schedules in network
N (solid arrows) and corresponding equivalent network Ne (solid arrows + dashed
arrows).

Although packets in N and Ne are distributed differently over the network, we

shall see that the data collection is the same for both networks. It is in that sense

that they are “equivalent.” Formally the construction is as follows. To each line of

N , say Bk, if νk
i denotes the number of data packets at distance i from the BS along

Bk, T (νk) denotes the length of an optimal schedule for that particular line, and T k
i

is the last busy TS at node i in the execution of Algorithm 1 for that line, associate

a line in Ne, say B′
k such that, if ν ′k

i denotes the number of data packets at distance
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i from the BS along B′
k, then

i = 1 ν ′k
1 = νk

1

i ≥ 2 ν ′k
T (νk)−T k

i +2j+i = 1 for 0 ≤ j ≤ l − 1 if νk
i = l ≥ 1 (2.14)

ν ′k
i = 0 otherwise

By construction, Ne has the following characteristics:

• Same total number of data packets as N , same number of data packets per line,

same number of lines.

• Each line carries the same workload as its corresponding line in N (i.e., ∀k ,

T (ν ′k) = T (νk)).

• Node i > 1 carries 0 or 1 data packet.

• Two nodes with data packets are separated by at least one node with no data

packet.

Example: Consider the following 2-line network N : B1 : ν
1 = (0, 4), B2 : ν

2 =

(2, 0). Its equivalent network Ne is a 2-line network such that:

B′
1 : ν

′1 = (0, 1, 0, 1, 0, 1, 0, 1), B ′
2 : ν

′2 = (2, 0) = ν
2

Lemma 2.2.8. There exists an optimal schedule for problem P ′ and network Ne.

Proof. A construction of such a schedule is given in Appendix A.

Lemma 2.2.9. Let Sopt(P ′, Ne) denote the optimal schedule constructed in Appendix

A for problem P ′ and network Ne. It is possible to construct a schedule S(P, Ne)

for problem P and network Ne from Sopt(P ′, Ne) by judiciously reordering the BS

transmissions such that the two schedules have the same length.

Proof. With the convention that furthest nodes should be served first along a given

line, a schedule S(P/P ′, Ne) is entirely defined by its restriction to the BS schedule

S|BS(P/P ′, Ne). The BS schedule being a sequence of directions Bi corresponding to
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the lines toward which transmit at each TS as well as possible silences (correspond-

ing to BS being idle). S|BS(P ′, Ne) = (B′
1, B

′
1, B

′
1, B

′
1, B

′
2, B

′
2,−,−) is an instance of

an optimal schedule for problem P ′ and the network described in previous example

where “-” denotes a silence.

We construct S(P, Ne) from Sopt(P ′, Ne) by iteratively applying the following opera-

tion on S: insert(i, j)(S) for j > i ≥ 1 which returns a schedule S ′ where element j

in schedule S was inserted between element i and i+1 in S. In the previous example

insert(1, 5)(S|BS(P ′, Ne)) = (B′
1, B

′
2, B

′
1, B

′
1, B

′
1, B

′
2,−,−).

This operation doesn’t change the length of S, that is Length(S ′) = Length(S) as

long as it is not applied more than once for any i. This is a direct consequence of the

fourth characteristic of an equivalent network. Next we describe the construction.

If S is a valid schedule (i.e., satisfying constraint P ) we are done. Otherwise assume

the first conflict occurs in position i0 of schedule S (that is constraint P does not

allow for transmission toward element i0 followed by transmission toward element

i0 + 1). In the instance above, there are conflicts in i0 = 1, 2, 3, 5. Further assume

the first direction distinct from the one in position i0 and that follows it is element

i1 of S. If there is no such direction then denote i1 the position of the first silence

following (it always exists by definition of Ne). Then apply insert(i0, i1)(S). Clearly

the procedure produces a new schedule S of same length. Thus the portion of the

schedule S comprised between element 1 and i0 + 1 satisfies P . Repeat until the

schedule S satisfies constraint P . Since the number of initial conflicts is finite, this

procedure ends in a finite number of steps. In the previous example these operations

are in order: insert(1, 5), insert(3, 6) and insert(5, 7). They lead to the schedule:

S|BS(P, Ne)) = (B′
1, B

′
2, B

′
1, B

′
2, B

′
1,−, B′

1,−)

By lemma 2.2.9, the lengths of S(P, Ne) and Sopt(P ′, Ne) are the same. Thus

S(P, Ne) is optimal. Denote it Sopt(P, Ne). One may construct a schedule S(P, N)

from Sopt(P, Ne) such that the lengths of the two schedules are the same and S|BS(P, N)

= S|BS(P, Ne). If S(P, N) is not optimal then there exists a schedule S ′(P, N) such

that the length of S ′(P, N) is less than the length of S(P, N). But from S ′(P, N) one
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may construct a schedule S ′(P, Ne) such that the two schedules have the same length

and S ′
|BS(P, Ne) = S ′

|BS(P, N) so the length of S ′(P, Ne) is less than the length of

Sopt(P, Ne), a contradiction. Thus S(P, N) is optimal, which concludes the proof of

Theorem 2.2.7.

2.2.6 Tree Networks, Case Where Base Station Degree Is 1

Throughout this paragraph we assume that the degree of the root of the consid-

ered graphs is one. We define the equivalent linear network (Gl, El, νl) of a network

(G, E, ν): If G = {N0, N1, . . . , Nn} and ν = (ν1, . . . , νn) then Gl = {0, 1, . . . , m}, El =

{(i − 1, i), 1 ≤ i ≤ m} and νl = (νl1, . . . , νlm) where m = max
i

(d(N0, Ni)) and

νlj =
∑

i | d(N0,Ni)=j νi We illustrate a tree network in Fig. 2.12 (n = 14, m = 7); its

equivalent linear network is shown in Fig. 2.4.
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Figure 2.12: A 15-node tree network with degree of BS=1, the equivalent linear
network is drawn in Fig. 2.4. Transmission time steps are written next to the edges.

The equivalent linear network’s schedule may serve as a schedule for the initial

tree network. Next we explain how transmission time slots for (Gl, El, νl) (deter-

mined by running algorithm 1) may be mapped onto (G, E, ν). Consider an element

in E, say (Ni0 , Nj0), such that d(N0, Ni0) = α (hops). Based on the number of data

packets Nj0 has to forward, say fj0, we shall allocate transmission time slots to edge

(Ni0 , Nj0). Define Eα = {(Ni, Nj) ∈ E | d(N0, Ni) = α}. Each packet P follows a

path path(P ) from the BS to its destination node where path(P ) denotes the finite

sequence of edges (e1, ..., ek) traversed in that order by P . For convenience we shall

write path(P ) as the sequence of vertices (vertices(e1), ..., vertices(ek)). We define
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Pα = {P | ∃e ∈Eα ∩ path(P )}. We define Tα = {TS used by (α, α + 1) ∈ El}. We

have |Pα| =
∑

(Ni,Nj)∈Eα

(νj + fj) =
∑

k>α

νlk =|Tα|. Thus one may define a one-to-one

correspondence g between Pα and Tα that associates the packet P with the longest

path in Pα, with the TS with the smallest index in Tα; the packet P with sec-

ond longest path, with the TS with second smallest index and so on. We finally

define P
(Ni0

,Nj0
)

α ={P | (Ni0, Nj0) ∈ path(P )}⊆ Pα. (Ni0 , Nj0) is associated with

time slots g(P
(Ni0

,Nj0
)

α ). In the example of Fig. 2.12, we have {P} = {P1,P2,. . . ,P6}
where the first packet is characterized by path(P1) = (N0,N1,N2,N3,N7,N8,N9,N10),

the second one by path(P2) = (N0,N1,N2,N3,N4,N5), the third one by path(P3) =

(N0,N1,N6,N13,N12,N11), the fourth one by path(P4) = (N0,N1,N2,N3,N7,N14), and

finally the fifth and sixth ones by path(P5) = path(P6) =(N0,N1). We also have E1 =

{(N1,N2),(N1,N6)}, P1 = {P1,P2,P3,P4}, T1 = {2,4,6,8}, and P
(N1 ,N2)
1 = {P1,P2,P4}.

Thus edge (N1,N2) is associated with time slots g(P
(N1,N2)
1 ) ={2,4,6}. Thus Algo-

rithm 1 run on the equivalent linear network provides a BS transmission schedule.

Intermediate nodes simply forward data packets to further nodes as they arrive (in

the TS following their arrival). This requires a routing table at junction nodes. In

a centralized version of this algorithm nodes may be informed of their transmission

slots. Fig. 2.12 shows such a mapping for the considered example.

Although an equivalent linear network has a reduced set of possible concurrent

transmissions, this procedure produces an optimal transmission schedule. This follows

from the following lemma.

Lemma 2.2.10. Given any connected graph G such that degree of BS is one, if t2(G)

denotes the time performance of a given data distribution algorithm, and νj denotes

the number of data packets at distance j from the BS, then

t2(G) ≥ max
i

(i− 1 + νi + 2
∑

j>i

νj) (2.15)

Proof.
∑

j≥1 νj data packets must be delivered to nodes at distance greater than

1. Therefore link (0,1) is activated
∑

j≥1 νj times and links (1,2) (all edges from a

node at distance 1 from the BS to a node at distance 2) are activated
∑

j≥2 νj times
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but link (0,1) can not be activated at the same time as a link (1,2), thus we have

t2(G) ≥
∑

j≥1 νj +
∑

j≥2 νj.
∑

j≥i νj data packets must be delivered to nodes at distance greater than i > 1.

Therefore edge (0,1) is activated at least
∑

j≥i νj times and edges (1,2)
∑

j>i νj times

but link (0,1) can not be activated at the same time as a link (1,2), moreover after
∑

j≥i νj +
∑

j>i νj TS the last data packet sent by the BS is at distance 0 or 1 from

the BS if νi > 0 and at distance 0, 1 or 2 from the BS if νi = 0. Indeed it takes a

minimum of 2
∑

j≥i νj TS to get all the data packets out of the positions 0,1,2. Thus

after
∑

j≥i νj +
∑

j>i νj TS whether νi > 0 or νi = 0 one data packet is at least i− 1

hops away from its destination, therefore: t2(G) ≥∑j≥i νj +
∑

j>i νj + i− 1. Hence

the stated result.

2.2.7 Tree Sensor Networks, General Case

The results in the previous sections suggest the following algorithm for dealing with

general tree networks.

1. Linearize the subtrees attached to the BS (with BS degree equal to 1) according

to the procedure described in section 2.2.6.

2. Apply multi-line algorithm described in section 2.2.5 to the resulting multi-line

system.

This procedure produces an optimal schedule. This results from Theorem 2.2.7 and

Lemma 2.2.10.

Theorem 2.2.11. If T is a tree network and νk
j denotes the number of data packets

at distance j from the BS along branch k, then the minimum data collection time over

T is

Tu(T ) = max
1≤i≤n

(i− 1 +

n∑

j≥i

ν ′
j) (2.16)

where ν ′
j =

∑

k ν ′k
j and ν ′k

j is obtained from νk
j by equation (2.14).

Proof. This follows directly from Lemma 2.2.11.
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2.2.8 Networks with Cycles

We propose a data distribution/collection strategy on general graphs. However that

strategy is not optimal in general. In this section we prove that our algorithm performs

within a factor of 2 of an optimal strategy. The proposed strategy consists of two

subprocedures:

1. Extract a shortest path spanning tree TSP .

2. Apply previously described distribution strategy on trees to TSP .

Note: one can show that shortest path spanning trees always exist by using Dijkstra

algorithm. The following theorem provides a motivation for choosing a shortest path

spanning tree. The proof follows from Theorem 2.2.11.

Theorem 2.2.12. For any (connected) graph G, for any spanning tree T of G and

for any shortest path spanning tree TSP of G, the minimum data collection time over

network T , Tu(T ) satisfies

Tu(TSP ) ≤ Tu(T ) (2.17)

Theorem 2.2.13. For any (connected) graph G, and any shortest path spanning tree

TSP we have
Tu(TSP )

2
≤ Tu(G) ≤ Tu(TSP ) (2.18)

Proof. The second inequality is clear. For a proof of the first inequality we define:

t1(G) the minimum distribution time when transmission and reception are simulta-

neously allowed in a TS at any given node. Clearly t1(G) ≤ Tu(G). By corollary

A.0.4 we also have t1(G) = t1(TSP ). Besides for any connected graph A the following

inequality holds: Tu(A) ≤ 2t1(A). Choose A = TSP , the inequality follows.

These bounds are tight. The upper bound is achieved when G = TSP . As for

the lower bound consider the following network G where n data packets are stored at

distance k hops from the BS in node x. Further assume there are two distinct paths

of length k from the BS to x.
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TSP is the line network ν = (

k−1
︷ ︸︸ ︷

0, 0, ..., 0, n). We have Tu(G) = n + k − 1 (for k ≥ 1)

and Tu(TSP ) = 2n + k− 2 (for k ≥ 2), thus Tu(G) converges toward Tu(TSP )/2 when

n goes to infinity (for k ≥ 2).

Bounds on Tu(G) can also be written in the following more explicit way.

Theorem 2.2.14. The minimum data collection time over a graph G satisfies

max
i

(i− 1 +
∑

j≥i

νj) ≤ Tu(G) ≤ max
i

(i− 1 + νi + 2
∑

j≥i+1

νj) (2.19)

Proof. We have from corollary A.0.4 t1(G) = max
i

(i− 1 +
∑

j≥i νj)

Both bounds on Tu(G) are achievable. The lower bound for instance is achieved

in the previously considered example where max
i

(i− 1 +
∑

j≥i νj) = n + k − 1.

2.3 Omnidirectional Antenna Systems

Results on directional antenna systems may be to some extent adapted to omnidirec-

tional antenna systems. This is the purpose of this section.

2.3.1 Line Networks

Our results readily extend to omnidirectional antenna systems. The procedure is

illustrated in the example of Fig. 2.13 where V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, E = {(i, i+
1), 0 ≤ i ≤ 8}, ν = (2, 1, 0, 0, 0, 0, 0, 1, 1), d < r < 2d, (1 + δ)r < 2d.

The schedule of transmissions, as determined by Algorithm 3 in appendix B, is drawn

below the network (upper schedule) for the distribution problem. It is performed in

11 TS.

Next we determine the performance of our algorithm in general. Denote Ti the last

busy time slot at node i, 1 ≤ i ≤ n in the execution of our distribution algorithm (In

the previous example, we have T1 = 10, T2 = 8, T3 = 7, T4 = 8, T5 = 9, T6 = 10, T7 =

11, T8 = 11, T9 = 9). Clearly then our algorithm runs in max
1≤i≤n

{T i}. Ti is a function
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Figure 2.13: Optimal distribution and collection schedules in 10-node line network
equipped with omnidirectional antennas.

of the distance to the BS, the number of data packets destined for node i (that is νi)

and the number of data packets forwarded by node i.

Assuming νi = 0 for i > n, we have

T1 =







3
∑

j≥3 νj − 1 if ν1 = 0, ν2 = 0 and
∑

j≥3 νj ≥ 1

ν1 + 2ν2 + 3
∑

j≥3 νj otherwise

T2 = 2ν2 + 3
∑

j≥3

νj

∀i ≥ 3

Ti =







i− 2 + 3
∑

j>i νj if νi = 0 and
∑

j>i νj ≥ 1

i + 3
∑

j>i νj if νi = 1

i− 3 + 3
∑

j≥i νj if νi ≥ 2

(2.20)

Proof. Denote by fi the number of data packets forwarded by node i.



33

If i = 1,

ν1 = 0, ν2 = 0, fi ≥ 1⇒ Ti = 3(fi − 1) + 2 + (i− 1)

otherwise, Ti = ν1 + 2ν2 + 3(fi − ν2)

If i = 2,

Ti = 2ν2 + 3(fi − ν2)

∀i ≥ 3,

νi = 0, fi ≥ 1⇒ Ti = 3(fi − 1) + 2 + (i− 1)

ν1 ≥ 1⇒ Ti = 3fi + 1 + (i− 1)

νi ≥ 2⇒ Ti = 3fi + 3(νi − 1) + 1 + (i− 1)

but,

fi =
∑

j>i

νj

hence the stated result.

Clearly the maximum of Ti is obtained over the set {i ≥ 1 | νi 6= 0}. We define, for

a given sensor network, To(ν) the minimum length of a time schedule over all time

schedules that perform the distribution job. Thus we have the following result.

To(ν) ≤ max
{i≥1 | νi 6=0}

Ti (2.21)

Let’s now derive a lower bound on To(ν). Assuming νi = 0 for i > n, we have

To(ν) ≥ max
1≤i≤n

(i− 1 + νi + 2νi+1 + 3
∑

j≥i+2

νj) (2.22)

Proof. Consider node i ≥ 1, assume there exists k ≥ i such that νk ≥ 1. Then

• edge (i− 1, i) is activated
∑

j≥i νj TS.

• edge (i, i + 1)-if it exists- is activated
∑

j≥i+1 νj TS.

• edge (i + 1, i + 2)-if it exists- is activated
∑

j≥i+2 νj TS.
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Clearly transmissions i − 1 → i, i → i + 1, i + 1 → i + 2, ∀i ≥ 1 may not occur

concurrently (channel reuse constraints). Besides from our initial assumptions we

know that idle time of nodes ∈ {i, i + 1, i + 2} ≥ i− 1. Therefore,

To(ν) ≥
∑

j≥i

νj +
∑

j≥i+1

νj +
∑

j≥i+2

νj + (i− 1) , Si

We have ∀i, To(ν) ≥ Si, thus To(ν) ≥ max
i

Si.

Next we prove that the lower bounds and upper bounds previously derived on

To(p) are in fact equal and hence that the proposed schedule is optimal.

Theorem 2.3.1. Assuming νi = 0 for i > n, we have that the minimum data collec-

tion time, in the line network ν of length n2 equipped with omnidirectional antennas,

is

To(ν) = max
1≤i≤n

(i− 1 + νi + 2νi+1 + 3
∑

j≥i+2

νj) (2.23)

Proof. Assume there exists j such that ∀i 6= j, Tj ≥ Ti , Tj+1 < Tj

• if j = 1⇒ S1 ≥ T1 ⇒ T1 = S1

• if j = 2⇒ ν2 ≥ 1, ν1 = 0 ⇒ T2 − S2 = ν2 + ν3 − 1 ≥ 0⇒ T2 ≥ S2

ν1 = 0⇒ T1 = T2 ⇒ S1 ≥ T1

• if j ≥ 3⇒ νj−2 = 0, νj−1 = 0, νj ≥ 1

Sj−2 = j − 3 + 3
∑

i≥j νi

νj = 1⇒ Tj = Sj−2

νj ≥ 2⇒ Tj = Sj−2

Corollary 2.3.2. In the particular case where no three consecutive components of

vector ν equal zero, Eq. (2.23) reduces to

To(ν) = ν1 + 2ν2 + 3
∑

i≥3

νi (2.24)

2Implicitly we assume that the distance to the BS of the furthest node carrying a packet is n.
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Again the construction of a schedule for the data collection problem is based on

the symmetry of the operations of distribution and collection.

Theorem 2.3.3. The minimum data collection time over an omnidirectional line

network ν, assuming the transmission range is 1 hop and the interference range is m

hops, is

∀m ≥ 1, T m
o (ν) = max

i
(i− 1 +

∑

i≤j≤i+m

(j − i + 1)νj + (m + 2)
∑

j≥i+m+1

νj) (2.25)

Proof. The proof follows a similar argument as the one used to prove Theorem 2.2.3.

1

2 1

1

1

2

2

(A)

(B)

(D)

1

TS    A    B    C    D    BS
1       3     4     9     9     C
2       4     5     9    10    D
3       5     6     9    10    B
4       6     6     9    10    C
5       7     6     9    10    D
6       8     6     9    10    A
7              7     9    10    D
8              8    10   10    B
9                    11   10    C
10                         11    D
11                         12    D

(C)

Figure 2.14: Optimal distribution schedule for BS in 4-line sensor network.

2.3.2 Multi-line Networks

Next we illustrate the procedure to distribute data on a multi-line network on an ex-

ample (Fig. 2.14). In the accompanying table, we list data transfer completion time

estimates at each TS and the corresponding decision made by the BS (as to which

direction to choose). As previously stated the initial completion time estimates are
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computed using Eq. (2.23). The table reads as follows. TS 1: All 4 transmission di-

rections are legal. The BS chooses to transmit toward branch C (it could have chosen

D as well, as ties are broken randomly). At TS 2, transmitting toward C is not a

legal move, the legal transmission direction associated with the biggest estimate is D

(notice that transmitting toward A or B makes the overall completion time estimate

be 11 TS, whereas transmitting toward D leaves the completion time estimate un-

changed (10 TS), so D is also the legal move that minimizes the estimated completion

time), etc. The packets destined for furthest nodes are sent first by the BS. As for

the other nodes they merely forward the data packets of which they are not recipients

(a packet is transmitted in the following TS that it was received). In this example

the algorithm performs in 12 TS (an obvious lower bound on the time performance

is 11 TS corresponding to 11 data packets). The previously described algorithm is

optimal when the number of data packets at distance 0 and 1 from the BS is zero.

If it is not the case, the algorithm needs to be refined, in particular estimates ties

should not be broken randomly in general. In this proof we assumed that relay sensor

nodes can only perform simple receive and forward type operations in which a data

packet is to be forwarded in the TS following its arrival at a relay node. Note that

time performance may be further improved, if we assume that nodes have the ability

to perform store and forward type operations (that is store data to be relayed). This

was not the case for directional antenna systems. This is illustrated in Fig. 2.15. If

the simplest relay nodes are being used the completion time is 10 TS, whereas it is as

low as 9 TS when the smarter nodes are used. However, in the directional antenna

case the time performance is 9 TS either way.

2.3.3 Tree Networks, Case Where Base Station Degree Is 1

Throughout this paragraph we assume that the degree of the root of the consid-

ered graphs is one. We define the equivalent linear network (Gl, El, νl) of a network

(G, E, ν). If G = {N0, N1, . . . , Nn} and ν = (ν1, . . . , νn) then Gl = {0, 1, . . . , m ≤
n}, El = {(i − 1, i), 1 ≤ i ≤ m} and νl = (νl1, . . . , nulm) where νlj =

∑

i | d(N0,Ni)=j νi



37

43

1

3

5

7

1

3

5

7

9
10

Figure 2.15: Optimal distribution schedules for BS in 2-line sensor network. Simple
receive and forward sensor nodes on the right versus store and forward nodes on the
left.

This definition is illustrated in Fig. 2.16 (n = 15, m = 9) and Fig. 2.13 (equivalent

line network).
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Figure 2.16: A 16-node tree network whose BS degree is 1, the equivalent linear
network is drawn in Fig. 2.13. Transmission time steps are written next to the edges.

The equivalent linear network’s schedule may serve as a schedule for the initial

tree network. Next we explain how transmission time slots for (Gl, El, νl) (deter-

mined by running Algorithm 1) may be mapped onto (G, E, ν). Consider an element

in E, say (Ni0 , Nj0), such that d(N0, Ni0) = α (hops). Based on the number of data

packets Nj0 has to forward, say fj0, we shall allocate transmission time slots to edge

(Ni0 , Nj0). Define Eα = {(Ni, Nj) ∈ E | d(N0, Ni) = α}. Each packet P follows a

path path(P ) from the BS to its destination node where path(P ) denotes the finite

sequence of edges (e1, ..., ek) traversed in that order by P . For convenience we shall

write path(P ) as the sequence of vertices (vertices(e1), ..., vertices(ek)). We define

Pα = {P | ∃e ∈Eα ∩ path(P )}. We define Tα = {TS used by (α, α + 1) ∈ El}. We

have |Pα| =
∑

(Ni,Nj)∈Eα

(νj + fj) =
∑

k>α

νlk =|Tα|. Thus one may define a one to one
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correspondence g between Pα and Tα that associates the packet P with the longest

path in Pα, with the TS with the smallest index in Tα; the packet P with second

longest path, with the TS with second smallest index and so on. We finally define

P
(Ni0

,Nj0
)

α ={P | (Ni0, Nj0) ∈ path(P )}⊆ Pα. (Ni0 , Nj0) is associated with time slots

g(P
(Ni0

,Nj0
)

α ). In the example of Fig. 2.16, we have {P} = {P1,P2,. . . ,P5} where the

first packet is characterized by path(P1) = (N0,N1,N2,N3,N10,N11,N12,N13,N14,N15),

the second one by path(P2) = (N0,N1,N2,N3,N4,N5,N6,N7,N8), the third one by

path(P3) = (N0,N1,N9), and finally the fourth and fifth ones by path(P4) = path(P5) =

(N0,N1). We also have E1 = {(N1,N2),(N1,N9)}, P1 = {P1,P2,P3}, T1 = {2,5,8}, and

P
(N1,N2)
1 = {P1,P2}. Thus edge (N1,N2) is associated with time slots g(P

(N1,N2)
1 ) =

{2,5}. Thus Algorithm 1 run on the equivalent linear network provides a BS trans-

mission schedule. Intermediate nodes simply forward data packets to further nodes

as they arrive (in the TS following their arrival). This requires a routing table at

junction nodes.

Although an equivalent linear network has a reduced set of possible concurrent

transmissions, this procedure produces an optimal transmission schedule. The fol-

lowing proof is based on the fact that transmissions that can occur in one case and

not in the other are not helpful in routing data faster. This is essentially due to the

fact that any route from the BS to a leaf necessarily includes link (0, 1), i.e., from the

BS to the unique node at distance one from the BS which constitutes a bottleneck.

Lemma 2.3.4. Given any tree T such that degree of BS is one, if t3(T ) denotes the

time performance of a given data distribution algorithm, and νj denotes the number

of data packets at distance j from the BS, then

t3(T ) ≥ max
i

(i− 1 + νi + 2νi+1 + 3
∑

j>i+1

νj) (2.26)

Proof. Edges at distance i from the BS are activated
∑

j≥i νj times, edges at distance

i + 1 from the BS are activated
∑

j≥i+1 νj times and edges at distance i + 2 from the

BS are activated
∑

j≥i+2 νj times. In a given TS, the distance (to the BS) difference

of any two data packets in transit is at least 3 hops. This implies in particular that
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no two edges whose distance difference to the BS is less than or equal to 2 hops may

be activated simultaneously.

In this proof we assumed that relay sensor nodes can only perform simple receive

and forward type operations in which a data packet is to be forwarded in the TS

following its arrival at a relay node. Note that time performance may be further

improved, if we assume that nodes have the ability to perform store and forward

type operations (that is store data to be relayed). This, again, was not the case in

directional antenna systems. This is illustrated in the following example (Fig. 2.17).

If the simplest relay nodes are being used, t3(T ) = 6 TS, whereas t3(T ) = 5 TS may

be obtained with the schedule: TS 1: N0 → N1, TS 2: N1 → N2, TS 3: N0 → N1,

TS 4: N1 → N3, TS 5: N1 → N2, N3 → N4. However, in the directional antenna

case t2(T ) = 5 TS either way.

0

2N N

N

1

N4N3

1

1

Figure 2.17: 5-node sensor network.

2.3.4 Tree Networks

The procedures described in the previous sections may be combined into a strategy

for data distribution/collection on tree networks as follows.

1. Linearize the subtrees attached to the BS (with BS degree equal to 1) according

to the procedure described in section 2.3.3

2. Apply multi-line distribution algorithm to the resulting multi-line system as

described in section 2.3.2

One can show from previous results that this procedure is optimal on general tree

networks in the same way this was proven in the directional antenna case. In the
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following theorem we give without proof a closed form expression for its time perfor-

mance.

Time performance on tree networks:

For purpose of deriving the time performance of our strategy on tree networks, we

start by defining the equivalent network Ne of a multi-line network N in the following

manner: To each line Bk of N and associated data vector ν
k corresponds a line B′

k

in Ne and associated data vector ν
′k such that

i = 1 ν ′k
1 = νk

1

i = 2 ν ′k
To(νk)−T k

i +2j+i = 1 for 0 ≤ j ≤ l − 1 if νk
i = l ≥ 1

i ≥ 3 ν ′k
To(νk)−T k

i +3j+i = 1 for 0 ≤ j ≤ l − 1 if νk
i = l ≥ 1 (2.27)

ν ′k
i = 0 otherwise

Theorem 2.3.5. If T is a tree and νk
j denotes the number of data packets at distance

j from the BS along branch k, then, if ν0 = ν1 = 0,

t3(T ) = max
i

(i− 1 +
∑

j≥i

ν ′
j) (2.28)

where ν ′
j =

∑

k ν ′k
j and ν ′k

j is obtained from νk
j by equation (2.27).

Proof. This follows from results in Appendix A and the proof of optimality of the

strategy on multi-line networks, which is similar to the one in the directional antenna

case.

2.3.5 General Connected Sensor Networks

For purpose of analyzing the time performance of data distribution algorithms on

general sensor networks we denote by TSP (G) a shortest path spanning tree of the

underlying network graph G. Note that one can show that shortest path spanning

trees always exist by using Dijkstra algorithm. Such a tree may not be unique. The

following theorem provides a motivation for choosing a shortest path spanning tree.
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Theorem 2.3.6. ∀T , a spanning tree of G

To(TSP ) ≤ To(T ) (2.29)

The presence of cycles in a network G will affect the optimal time performance of

distributions algorithms as compared with the optimal time performance over TSP (G).

Subsequently we attempt to quantify this phenomenon as well as giving some simple

procedures to distribute data over G.

First we note that cycles may help or hurt the time performance of the optimal

scheduling strategy in omnidirectional systems (in contrast with directional systems).

That is To(G) may be larger or smaller than To(TSP) as shown in the examples of

Figs. 2.18 and 2.19.

Theorem 2.3.7. For any (connected) graph G, and any shortest path spanning tree

TSP

To(TSP )

3
≤ To(G) (2.30)

Proof. Define: t1(G) the minimum distribution time when transmission and reception

are simultaneously allowed in a TS at any given node. Clearly t1(G) ≤ To(G). By

corollary A.0.4 we also have: t1(G) = t1(TSP ). Besides for any connected graph A

the following inequality holds: To(A) ≤ 3t1(A). Choose A = TSP , the inequality

follows.

Let us next give an example where the lower bound is achieved. Consider a

network G where n data packets are stored at distance k hops from the BS in node x.

Further assume there are three distinct paths of length k from x to BS (see Fig. 2.18

where n = 5, k = 6).

For all practical purposes, TSP is the line network ν = (

k−1
︷ ︸︸ ︷

0, 0, ..., 0, n). We have

To(G) = n + k − 1 (for k ≥ 1) and To(TSP ) = 3n + k − 3 (for k ≥ 3), thus To(G)

converges toward To(TSP )/3 when n goes to infinity (for k ≥ 3).
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5

Figure 2.18: Network with cycles. To(G) = 10 TS, To(TSP ) = 18 TS.

1 1

Figure 2.19: Network with cycles. To(G) = 3 TS, To(TSP ) = 2 TS.

Strategy and Time performance:

A mere generalization of the strategy proposed for directional antenna systems, based

on extracting a shortest path spanning tree of the sensor network, is not envisageable

here, as such as an operation is not physically possible when nodes are equipped with

omnidirectional antennas. We propose to transmit each data packet to its destination

along any shortest path between the BS and its destination. An intermediate node

will forward a data packet in the TS following its arrival along that path. Furthest

nodes being served first. This is slightly different from Algorithm 1. A in the fact

that the BS is not to transmit as fast as possible but according to the rule: If previous

destination node is at distance greater or equal 3, stay idle 2 TS before sending next

packet. If previous destination node is at distance 2 from the BS, stay idle 1 TS

before sending new packet. If previous packet is at distance 1, send next packet. The

time performance of that strategy is clearly max
i

(i − 1 + νi + 2νi+1 + 3
∑

j≥i+2 νj).

However a proof that this strategy may be implemented is required at this point.

Proof. All that is needed is a proof that given any network G equipped with omnidi-

rectional antenna nodes, transmissions originating at any node N1, at distance i from

the BS and at any node N2, at distance i + 3 from the BS may occur concurrently.

Note that if node N1 can reach node N ′
1 and d(N1) = i then d(N ′

1) ≤ d(N1) + 1

and d(N1) ≤ d(N ′
1) + 1, therefore d(N ′

1) ∈ {i − 1, i, i + 1}. Assume N1 attempts
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to communicate with some node N ′
1 while N2 attempts to communicate with node

N ′
2. One of the attempted communications fails if either there is an edge connect-

ing N ′
1 and N2 or there is an edge connecting N1 and N ′

2. If (N ′
1, N2) ∈ EG then

d(N2) = d(N ′
1) + 1 ∈ {i, i + 1, i + 2} < i + 3 which contradicts our hypothesis. If

(N1, N
′
2) ∈ EG then d(N2) = d(N ′

2) + 1 ∈ {i, i + 1, i + 2} < i + 3 which contradicts

our hypothesis.

Corollary 2.3.8. If νj denotes the total number of data packets at distance j from

the BS,

max
i

(i − 1 +
∑

j≥i

νj) ≤ To(G) ≤ max
i

(i − 1 + νi + 2νi+1 + 3
∑

j≥i+2

νj) (2.31)

The lower bound on To(G) is achievable. Indeed in the previously considered

example max
i

(i−1+
∑

j≥i νj) = n+k−1. The figure below shows an example where

the upper bound is achieved.

5

Figure 2.20: Network with cycles. To(G) = To(TSP ) = 18 TS.

In general the upper bound is achieved when any node at distance i from the BS

is connected to all the nodes at distance j ∈ {i− 1, i, i + 1}.

2.4 Omnidirectional/Directional Antenna Systems

Comparison

The following result compares the performance of omnidirectional and directional

antenna systems over a single line network.

Theorem 2.4.1. For any line network ν the ratio of minimum data collection times
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over a line network, assuming interference range is m times the transmission range

satisfies

1 ≤ T m
o (ν)

T m
u (ν)

<







1.5 m = 1

1 + 2
m

m ≥ 2

Proof. In the case m ≥ 2, assume there exists j0, 1 ≤ j0 ≤ n such that for all i,

i 6= j0 Tj0 ≥ Ti and Tj0+1 < Tj0. From Theorems 2.2.3 and 2.3.3,

• case: j0 = m + 2 + k ⇒ T o
j0

= Sk+1, T u
j0

= Sk+3

⇒ T m
o (ν)

T m
u (ν)

=
k+

Pk+1+m
j=k+1

(j−k)νj+(m+2)
P

j≥k+m+2
νj

k+2+
Pk−1+m

j=k+3
(j−k−2)νj+m

P

j≥k+m+2
νj

j0 = m+2+k ⇒ νk+1 = . . . = νk+1+m = 0⇒ T m
o (ν)

T m
u (ν)

=
k+(m+2)

P

j≥k+m+2
νj

k+2+m
P

j≥k+m+2
νj

< m+2
m

• case: j0 = m + 1⇒ T o
j0 = S1, T u

j0 = S2 ⇒ T m
o (ν)

T m
u (ν)

=
Pm+1

j=1
jνj+(m+2)

P

j≥m+2
νj

1+
Pm

j=2
(j−1)νj+m

P

j≥m+1
νj

j0 = m + 1⇒ ν1 = . . . = νm = 0⇒ T m
o (ν)

T m
u (ν)

=
(m+1)νm+1+(m+2)

P

j≥m+2
νj

1+mνm+1+m
P

j≥m+2
νj

< m+2
m

• case: 1 ≤ j0 < m⇒ T o
j0

= S1, T u
j0

= S1

⇒ T m
o (ν)

T m
u (ν)

=
Pm+1

j=1
jνj+(m+2)

P

j≥m+2
νj

Pm−1

j=1
jνj+m

P

j≥m νj
< m+2

m

The case m = 1 follows from a similar argument.

Note: Bounds in Theorem 2.4.1 are tight. This is clear in the case of the lower

bound. As for the upper bound, consider ν = 1n (case m = 2), then we have

T m
o (ν)

T m
u (ν)

=
(
Pm+1

1
j+(m+2)

Pn
m+2 1

Pm−1

1
j+m

Pn
m 1

= (m+2)(m+1)/2+(m+2)(n−m−1)
m(m−1)/2+m(n−m+1)

−→
n

m+2
m

2.5 Conclusion

This work is concerned with analyzing the delay in collecting at the BS, data from

sensory networks. The minimum data collection time on tree networks was derived

and corresponding optimal scheduling strategies were described. We first focused our

analysis on systems equipped with directional antennas and showed that more realistic

hypotheses could be incorporated in our model (at the expense of the simplicity of the

analysis). The study of omnidirectional antenna systems then follows under the same

lines and performances of the two systems were compared on a simple line scenario.
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Finally, graphs with cycles were considered and the performance of our algorithms

on such graphs was compared to the optimal achievable performance. This lead to

bounds on the minimum time performance of optimal data collection strategies for

general graphs.
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Chapter 3 Random Sensory Networks

In the previous chapter we studied the data collection problem in sensory networks,

assuming the amount of data accumulated at each sensor node (characterized by

a number of unit data packets) after some given observation period was finite and

determined. In typical scenarios, however, the exact amount of data accumulated at

each sensor node is unknown. In this chapter, we model the number of data packets as

a random variable, referring to the corresponding network model as random sensory

network, and analyze the delay (which is now a random variable) in collecting sensor

data at the base station.

This chapter is organized as follows: We present results relative to line networks

in section 3.1. In section 3.2, we present results regarding multi-line networks. In

section 3.3, we compare the performance of directional and omnidirectional antenna

systems. In section 3.4, we give a scaling condition on the rate at which data can be

gathered by sensor nodes, for sustainable data collection. We conclude this chapter

in section 3.5.

3.1 Random Line Networks

In this section, we characterize the delay in collecting random amount of data spread

over a sensor network after the observation phase. More specifically, for a one-sided

line network, we first derive a recursion to compute the probability distribution func-

tion of Tmin(νn) and asymptotically analyze the average of Tmin(νn) when n is suffi-

ciently large.

We further look into the delay when each node is allowed to transmit over h > 1

hops and also the effect of packet splitting on the delay in sections 3.3 and 3.4. In

section 3.5, we propose a simple scheme that does not use the knowledge of the

number of packets at other nodes and achieves the same scaling law for the average
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delay. Finally, in the last section, we consider the effect of error in the channel on the

delay.

3.1.1 The Distribution of the Delay

In this section we derive, by means of a recursion, the cumulative distribution function

(CDF) of T (νn) for a line network. Let’s assume that νi corresponds to the number

of packets at node i for i = 1, . . . , n and also νi’s are i.i.d. random variables chosen

from the set Sm = {0, 1, . . . , m− 1}.

Theorem 3.1.1. Let Fn(t) be the CDF of the minimum delay Tmin(νn), i.e. Fn(t) =

Pr{Tmin(νn) ≤ t}. Then Fn(t) satisfies the following recursion

Fn(t) =
m−1∑

i=0

Pr(νn = i)Fn−1(t− 2i)1t≥n+2(i−1) + Pr(νn = 0)Fn−1(t) for n ≥ 2 (3.1)

where 1t≥t0 =







1 if t ≥ t0

0 otherwise.

and F1(t) =







∑t
i=0 Pr(ν1 = i) if t < m− 1

1 otherwise

Proof. We may write Fn(t) by conditioning on νn = i for i = 0, . . . , m− 1 as

Fn(t) =

m−1∑

i=0

Pr{Tmin(νn) ≤ t|νn = i}Pr(νn = i) (3.2)

To compute the conditional probability in (3.2), we use (2.3) and the fact that for all

k = 1, . . . , n− 1, and i ≥ 1, Tmin(νn) ≥ k− 1+ νk +2
∑n

j=k+1 νj. Therefore replacing

k = n− 1 and assuming νn = i, we get

Tmin(νn) ≥ n− 2 + νn−1 + 2νn ≥ n + 2(i− 1) (3.3)

Thus if t < n + 2(i − 1), then Pr{Tmin(νn) ≤ t|νn = i} = 0. Using the definition of

the function 1t≥t0 , for any i ≥ 1 we may then write the conditional probability as

Pr{Tmin(νn) ≤ t|νn = i} = Pr{Tmin(νn−1) ≤ t− 2i}1t≥n+2(i−1) (3.4)
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Replacing (3.4) in (3.2), we get

Fn(t) = Fn−1(t) Pr(νn = 0) +
m−1∑

i≥1

Pr{Tmin(νn−1) ≤ t− 2i)}1t≥n+2(i−1) Pr(νn = i)

which leads to (3.1).

We can use the result of Theorem 3.1.1 to compute the CDF of Tmin(νn). This

is illustrated in Fig. 3.1 and Fig. 3.2. Fig. 3.1 shows the distribution of the delay

Tmin(νn) for 40-sensor node line networks in which each node carries either 0 or 1

packet with probability 1/2. Fig. 3.2 shows the distribution of the delay Tmin(νn)

for 40-sensor node line networks in which each node carries either 0 or 1 packet with

probability 0.8 and 0.2 respectively.

It is also worth noting that the result of Theorem 3.1.1 holds for any distribution of

the data packets. In particular the νi’s need not be i.i.d., however, in this chapter we

deal with the case where νi’s are independent and identically distributed.
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Figure 3.1: Distribution of data collection time in 40-sensor node line network. Each
sensor node carries 0 or 1 data packet with probability 1/2.
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Figure 3.2: Distribution of data collection time in 40-sensor node line network. Each
node in the considered network carries 0 or 1 data packet with probability 0.8 and
0.2 respectively.

Interestingly, if we plot the expected value of Tmin as in Fig. 3.4, we observe that

the average delay scales linearly with the number of nodes n and the linear factor

depends on the average number of packets per node µ. In the next section, we analyze

the average delay and prove this observation rigorously.

3.1.2 Asymptotic Analysis of the Average Delay

In this subsection, we study the asymptotic behavior of the minimum average delay

in collecting data from a line network as the number of nodes becomes large.

Theorem 3.1.2. Let νi’s be i.i.d. random variables νi ∈ Sm with mean µ, variance

σ2 where µ, σ2, m are all constants independent of n. We have

lim
n→∞

E{Tu}
n

=







2µ if µ ≥ 1/2

1 if µ ≤ 1/2

(3.5)
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Proof. We consider the case µ ≥ 1/2 first: Let’s define ν ′
i = νi − µ. Using (2.3), we

get

E{T (νn)} = 2µn + E

{

max
1≤i≤n−1

(

i(1− 2µ) + ν ′
i + 2

n∑

i+1

ν ′
j

)}

≤ 2µn + 2µ− 1 + 2E

{

max
1≤i≤n

n∑

j≥i

ν ′
j

}

= 2µn + 2µ− 1 + 2E

{

max
1≤i≤n

n+1−i∑

j=1

ν ′
n−j+1

}

(3.6)

where the inequality follows from the fact that ν ′
i satisfies ν ′

i +µ ≥ 0, 1 ≤ i ≤ n−1. In

order to find a bound for E(max
1≤i≤n

∑n
j≥i ν

′
j), we first state the following lemma which

is based on a result by Erdös and Kac [19] on the convergence of distribution of the

maximum of partial sums.

Lemma 3.1.3. For any λ and a > 1,

Pr

{

max
1≤i≤n

≥ λσ
√

n

}

≤ a− 1

a
Pr

{
n∑

j=1

ν
′

j ≥ (λ−
√

a)σ
√

n

}

(3.7)

where ν ′
i = νi − µ and νi is as defined in Theorem 3.1.2.

Proof. We first define Si =
∑

j≥i ν
′

j and the events Ei as,

Ei =

{

max
0≤j<i

Sj ≤ λσ
√

n ≤ Si

}

i = 1, . . . , n. (3.8)

which is inspired by [19]. We can then state the following inequality by the union

bound,

Pr

{

max
1≤i≤n

Si ≥ λσ
√

n

}

≤ Pr
{
Sn > (λ−

√
a)σ
√

n
}

+

n∑

i=1

Pr
{
Ei ∩

(
Sn ≤ (λ−

√
a)σ
√

n
)}

(3.9)

To evaluate the second term in the right-hand side of (3.9), we note that Si ≥ λσ
√

n
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and Sn ≤ (λ−√a)σ
√

n imply Si − Sn ≥
√

aσ
√

n. Then using the fact that Si − Sn

is independent of Sj for j ≤ i, we may write

n∑

i=1

Pr
{
Ei ∩

(
Sn ≤ (λ−

√
a)σ
√

n
)}
≤

n∑

i=1

Pr(Ei)Pr
(
Si − Sn ≥

√
aσ
√

n
)

≤
n∑

i=1

Pr(Ei)
E {(Si − Sn)

2}
aσ2n

=

n∑

i=1

Pr(Ei)
(n− i)σ2

aσ2n

≤ 1

a

n∑

i=1

Pr(Ei)

≤ 1

a
Pr

(

max
1≤i≤n

Si ≥ λσ
√

n

)

(3.10)

where the second inequality follows from Chebychev’s inequality and the last inequal-

ity follows from the definition of the events Ei and noting that

n∑

i=1

Pr(Ei) = Pr (∪n
i=1Ei) = Pr

(

max
1≤i≤n

Si ≥ λσ
√

n

)

since the events Ei are disjoint events. Therefore, Lemma 3.1.3 follows from (3.10)

and (3.9).

Now we can use Chebychev’s inequality to evaluate the right-hand side of Lemma

3.1.3 as follows

Pr

{

Sn =
n∑

i=1

ν
′

i ≥ (λ−
√

a)σ
√

n

}

≤ nσ2

(λ−√a)2σ2n
≤ 1

(λ−√a)2

Therefore, substituting λ = log n, we get

Pr

(

max
1≤i≤n

n∑

j=i

ν
′

j ≥ σ log n
√

n

)

= O

(
1

log2 n

)

(3.11)

Eq. (3.11) implies that, with high probability max
1≤i≤n

∑

j≥i ν
′
j is less than σ log n

√
n.
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Therefore, we may write

E

{

max
1≤i≤n−1

n∑

j=i

ν ′
j

}

≤ σ log n
√

n Pr

{

max
1≤i≤n−1

n∑

j=i

ν ′
j < σ log n

√
n

}

+

(m− 1− µ)n Pr

{

max
1≤i≤n−1

n∑

j≥i

ν ′
j > σ log n

√
n

}

= σ log n
√

n + O

(
n

log2 n

)

(3.12)

which follows from the fact that ν ′
i ≤ m− 1− µ.

We now derive a lower bound on E(Tmin(νn)): From Eq. (2.3), we get Tmin(νn) ≥
ν1 + 2

∑n
j≥2 νj. Taking the expectation of both sides, we get

E(Tmin(νn)) ≥ 2µn− µ (3.13)

Considering (3.13) and the upper bound derived in (3.12), we deduce that

2µn− µ ≤ E(T (νn)) ≤ 2µn + 2µ− 1 + 2σ log n
√

n + O

(
n

log2 n

)

which leads to (3.5) for µ ≥ 1/2.

Next, we consider the case µ ≤ 1/2: Let’s define ν ′
i = νi − 1/2. Using (2.3), we get

Tmin(νn) = max
1≤i≤n−1

(

n− 1

2
+ ν ′

i + 2

n∑

i+1

ν ′
j

)

≤ n− 1

2
+ 2 max

1≤i≤n−1

n∑

i

ν ′
j

Taking the expectation of both sides and using inequality (3.12) we get

E(Tmin(νn)) ≤ n + 2σ log n
√

n + O

(
n

log2 n

)

(3.14)

On the other hand, it is clear that if there is any packet at distance r, it takes at

least r TS to be collected. Furthermore the probability that there are no packets in

the last log n nodes of the line network is 1− (Pr(νi = 0))log n. Therefore, noting that
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Pr(νi = 0) is a fixed number, we may write

E(Tmin(νn)) ≥ (n− log n)(1− (Pr(νi = 0))log n) = n− O(log n) (3.15)

which leads to (3.5) for µ ≤ 1/2.

Remark: Theorem 3.1.2 can be easily generalized to the case that νi’s are inde-

pendent and have mean µi ≥ 1
2

and variance σ2
i and νi ≤ m−1 where m is a constant.

In fact we can assume m is also going to infinity as well. Considering Eq. (3.12), the

theorem goes through as long as m = o(n).

Fig. 3.3 shows the ratio of the average delay to the number of sensor nodes, i.e.

E(Tmin(νn))/n, for a line network where each sensor node carries 0 or 1 data packet

with probabilities 1 − µ and µ respectively as a function of the number of sensor

nodes n in the network and the average number of packets per node µ. Fig. 3.4

shows the ratio of the average delay to the number of sensor nodes in a line network

(where again each node carries either 0 or 1 packet with probabilities 1 − µ and µ

respectively) for a fixed number of sensor nodes (500) as a function of the average

number of packets per node µ.

3.1.3 Collected Data Distribution

In this section we attempt to measure the rate at which data is being retrieved by

the BS. For general distributions on the number of data packets this is a difficult

problem. However, in the particular case where νi ∈ S1 we are able to do so. Let Vi

denote the number of data packets collected by the BS up to time i, then we have the

following theorem, if νi ∈ {0, 1} and Pr{νi = 0} = 1/2, 0 ≤ Vi ≤ di/2e and Algorithm

1 is used.
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Figure 3.3: Average collection time as a function of average number of packets per
node and number of nodes in line network. Nodes carry 0 or 1 data packet with
probability 1− µ and µ respectively.

Theorem 3.1.4. Consider a line network consisting of N0 sensor nodes carrying 0

or 1 data packet with probability 1/2. Let Pr{Vi = j} denote the probability that the

BS has collected j data packets by time i, then we have Pr(V0 = 0) = 1, ∀i ∈ N, i >

2N0, ∀j ∈ N, Pr(Vi = j) =
(

N0

j

)
/2N0 and ∀i ∈ N, 1 ≤ i ≤ 2N0 and ∀j ∈ N, 0 ≤ j ≤

di/2e

Pr(Vi = j) =
1

2
(Pr(Vi−1 = j − 1) + Pr(Vi−1 = j)) if i is







even

odd and j < d i
2
e

(3.16)

Pr(Vi = d i
2
e) = Pr(Vi−1 = d i− 1

2
e) + 0.5 Pr(Vi−1 = d i− 2

2
e) if i is odd and j = d i

2
e

Proof. By induction.

For illustration purposes we include the example of a 7-sensor node line network
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Figure 3.4: Average collection time as a function of average number of packets per
node in 500-node line network. Nodes carry 0 or 1 data packet with probability 1−µ
and µ respectively.

in Table 3.1.

3.1.4 Multihop Case

In order to get a better insight into the result of Theorem 2.2.4, we obtain the asymp-

totic behavior of the expected minimum delay as n approaches infinity in the next

theorem. Theorem 3.1.5, in fact, quantifies the dependency between the minimum

collection time and the transmission range.

Theorem 3.1.5. Let h be the transmission range, let νi’s be i.i.d. random variables

νi ∈ {0, 1, ..., m − 1} with mean µ and variance σ2 where h, m, µ, σ2 are constants



56

Pr(Vi = j) j=0 1 2 3 4 5 6 7
i=0 1 0 0 0 0 0 0 0

1 0.5 0.5 0 0 0 0 0 0
2 0.25 0.75 0 0 0 0 0 0
3 0.125 0.5 0.375 0 0 0 0 0
4 0.0625 0.3125 0.6250 0 0 0 0 0
5 0.0156 0.1094 0.3281 0.5469 0 0 0 0
6 0.0078 0.0625 0.2188 0.4375 0.2734 0 0 0
7 0.0039 0.0352 0.1406 0.3281 0.4922 0 0 0
8 0.0020 0.0195 0.0879 0.2344 0.4102 0.2461 0 0
9 0.0010 0.0107 0.0537 0.1611 0.3223 0.4512 0 0

10 0.0005 0.0059 0.0322 0.1074 0.2417 0.3867 0.2256 0
11 0.0002 0.0032 0.0190 0.0698 0.1746 0.3142 0.4189 0
12 0.0001 0.0017 0.0111 0.0444 0.1222 0.2444 0.3666 0.2095
13 0.0001 0.0009 0.0064 0.0278 0.0833 0.1833 0.3055 0.3928

Table 3.1: Probability to have collected j packets by TS i in 7-node line network.

independent of n.

lim
n→∞

E{Tmin(h, νn)}
n

=







(1 + 1
h
)µ if µ ≥ 1

h+1

1 if µ ≤ 1
h+1

(3.17)

Proof. The Theorem follows by using the same machinery as in the proof of Theorem

2 and we omit the proof for the sake of brevity.

We can now evaluate the gain in increasing the transmission range of a sensor node.

Theorem 3.1.5 shows that a maximum gain of 2 on the collection time may be obtained

by increasing the transmission range (in the limit when h approaches infinity) from

h = 1. One should note however that this gain necessitates a significant amount of

energy, in fact in the order of O(
∑

i i
2νi) = O(n3) (worst-case) if the energy expanded

is taken to be proportional to the square of the distance traveled by a packet, whereas

the minimum energy expanded (case h = 1) is of the order O(
∑

i iνi) = O(n2).
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3.1.5 Packet Splitting to Improve the Average Delay

As Eq. (3.5) implies, if the network is under-loaded (i.e., µ ≤ 1
2
), the ratio of the

expected collection time to the expected number of packets in the network is 1
µ

and is

rather high. One approach to decrease this ratio for small µ is to artificially increase

the expected number of packets at each node by splitting each packet into k packets

with length 1
k

times of the original one. Clearly, this increases µ by a factor of k, and

therefore, can potentially decrease the delay. It is also worth noting that the time

needed to send the smaller size packets is 1
k

of the time to send the original packets.

In this section we examine the potential gain obtained by splitting data packets

into sub-packets. As a first step, we prove that the delay is a decreasing function of

k in the next theorem.

Theorem 3.1.6. Given a line network νn there is a gain k ≥ G(νn, k) ≥ 1 in

splitting the data packets into k sub-packets. Furthermore G(νn, k) is a non-decreasing

function of k and the maximum achievable gain is:

Gmax(νn) = lim
k

G(νn, k) =
max

1≤i≤n−1
(i− 1 + νi + 2

∑n
j≥i+1 νj)

ν1 + 2
∑n

j>1 νj
(3.18)

Proof. In general if each item is split into k sub-items, the gain G(νn, k) satisfies:

G(νn, k) =
k max

1≤i≤n
(i− 1 + νi + 2

∑n
j>i νj)

max
1≤i≤n

(i− 1 + kνi + 2k
∑n

j≥i+1 νj)
=

max
1≤i≤n

(k(i− 1) + kνi + 2k
∑n

j>i νj)

max
1≤i≤n

(i− 1 + kνi + 2k
∑n

j≥i+1 νj)

(3.19)

It is easy to check that 1 ≤ G(νn, k) ≤ k. Furthermore G(νn, k) is a non-decreasing

function of k. Indeed, if k1 ≥ k2, we can write,

max
1≤i≤n

(k1(i− 1) + k1k2νi + 2k1k2

n∑

j>i

νj) ≥ max
1≤i≤n

(k2(i− 1) + k1k2νi + 2k1k2

n∑

j>i

νj)

which implies that G(νn, k1) ≥ G(νn, k2). The limit in (3.18) can be also easily shown

using (3.19).

Next, we derive the average collection time in random sensor network in the limit
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when n goes to infinity and when packets have been split into k sub-packets.

Theorem 3.1.7. Let νi’s be i.i.d. random variables νi ∈ Sm with mean µ, variance

σ2 where µ, σ2, m are all constants independent of n. If each packet is split into k

sub-packets we have:

lim
n→∞

E{Tmin}
n

=







2µ if µ ≥ 1/2k

1/k if µ ≤ 1/2k

(3.20)

Proof. The proof falls along the same line as the proof of Theorem 3.1.2 substituting

νi with kνi, for all i, 1 ≤ i ≤ n and noting that the smaller size packets are transmitted

k times faster.

The limit in Eq. (3.20) should be compared to the data collection in the case where

packets are not split as shown in Eq. (3.5). We conclude that in the asymptotic case,

data splitting results in gain in the collection time for networks with low data load,

i.e., µ ≤ 1
2
. It is also worth noting that Eqs. (3.20) and (3.5) imply that if k ≥ 1

2µ

there is no gain in further increasing k; the expected delay remains the same as k

further increases. For example, if µ = 1
5
, the expected delay behaves like n, 1

2
n, and

2
5
n for k = 1, k = 2, and k ≥ 3, respectively. In other words, increasing k beyond 1

2µ

does not lead to any improvement on the scaling law of the average delay.

3.1.6 A Simple Distributed Suboptimal Strategy

It is important to note that the minimum collection time in (2.3) is achieved under the

assumption that each sensor node has a perfect knowledge of the network topology and

data packets locations. A more practical strategy, that does not require knowledge of

the packets locations and therefore can be run in a distributed fashion, is as follows.

Nodes at odd (resp. even) distance from the BS transmit to their closest neighbors

toward the BS at odd (resp. even) TS. It is illustrated in Fig. 3.5.

The following theorem compares the performance of this strategy to the minimal

collection time derived in (2.3).
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Figure 3.5: Suboptimal distributed data collection strategy.

Theorem 3.1.8. For a one-sided line network of length n in which the i’th node has

νi packets and is equipped with directional antennas, the collection time of the packets

at the BS under this distributed scheduling strategy, denoted by T (νn), is:

T (νn) = max
1≤i≤n

(i− 2 + 2
n∑

j≥i−1

νj) (3.21)

This further assumes that the closest, third closest, etc... edges to the BS are activated

at TS 1, 3,... whereas the second closest, fourth closest,... edges are activated at TS

2, 4,... . In the opposite case the data collection time is:

T (νn) = max
1≤i≤n

(i− 1 + 2

n∑

j≥i

νj) (3.22)

Proof. In the rest of this chapter we refer to the closest edge to the BS as edge 1,

second closest as edge 2 and so on. Assume TS 1, 3, 5,... are respectively allotted to

edges 1,2,3,.... That is nodes 1, 3, 5... can only transmit at TS 1, 3, 5,... and receive

at TS 2, 4, 6.... The BS may receive at most 1 packet/TS at TS 1, 3, 5,.... Either it

is busy at all TS≥ 1, or it is busy at all those TS≥ 3, or at all TS≥ 5, etc. In general

if the BS is busy at all TS ≥ i and the packet received at TS i comes from node i or

i− 1 the data collection time is i− 2 + 2
∑n

j≥i−1 νj TS. This completes the proof for

(3.21). Eq. (3.22) follows similarly.

The aforementioned absence of knowledge (packets location) translates into a

delay cost T (νn)− Tmin(νn) ≥ 0. More generally we have the following relationship
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between T (νn) and Tmin(νn), which follows from (2.3) and (3.22):

Tmin(νn) ≤ T (νn) ≤ 2Tmin(νn)− 1 (3.23)

The worst performance of this simple strategy relative to the optimal strategy occurs

when n packets are located at distance 1 from the BS (Indeed Tmin = n and T = 2n−1

then). However, on average, achieving the upper bound in (3.23) is unlikely and we

have the following asymptotic comparative result, according to which the simple

scheduling strategy is asymptotically optimal with respect to time:

Theorem 3.1.9. Let νi’s be i.i.d. random variables νi ∈ {0, 1, ..., m− 1} with mean

µ and variance σ2 where µ, σ2, m are constants independent of n.

lim
n→∞

E{T (νn)}
n

=







2µ if µ ≥ 1/2

1 if µ ≤ 1/2

(3.24)

That is lim
n→∞

E{T (νn)−Tmin(νn)}
n

= 0.

Proof. This proof is similar to the proof of Theorem 3.1.2.

3.1.7 Noisy Channel

In this final section we introduce noise in the channel. Specifically we model the

channel as an erasure channel with erasure probability p and measure the time per-

formance degradation as a function of p. We assume that a node is instantaneously

informed that a packet has not reached its (intermediate) destination and immedi-

ately retransmits the erased packet at the next available TS (that is 2 TS later). For

reasons discussed in section 3 we focus on the simple scheduling strategy introduced

in subsection 3.1.6. Fig. 3.6 illustrates the process. This is the same network as shown

in Fig. 3.5 but it is now affected by three erasures (each shown by a crossed arrow).

The new transmission time is 15 TS, an increase of 2 TS.
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Figure 3.6: Data collection in line network under the assumption of an erasure chan-
nel. An erased packet is marked with a cross.

Theorem 3.1.10. Given a probability p of packet erasure, the data collection time

T (p, νn) on a line network νn when the simple scheduling strategy is used is

T (p, νn) = (1− p)
Pn

i=1
iνi

∑

k≥0

pk
∑

P

i eiχ(νi>0)=k

n∏

i≥1

(
iνi + ei − 1

iνi − 1

)

T (νn + ei) (3.25)

Proof. The collection time may be expressed as an average of collection times. The

probability that the entire collection process is not affected by any error is (1 −
p)

Pn
i=1

iνi. In that case the collection time is T (νn). The probability that the collection

process is affected by exactly k errors is (1−p)
Pn

i=1
iνipk. Notice that a packet erasure

along a specific edge increases the collection time from T (νn) to T (νn + ei) where ei

is the vector of length n whose ith component is 1 and other components are 0 and

where i is the source node for the packet. For a given source node there are
(

iνi+ei−1
iνi−1

)

choices of ei erasures. One needs to consider all the possible schedules with exactly

k erasures. This can be done by solving the equation
∑

i eiχ(νi > 0) = k.

In order to see the impact of the erasure probability on the data collection time

the ratio T (p)/T (0) is plotted for increasing values of p for a specific line network

ν = (0, 2, 0, 0, 0, 0, 0, 1, 1, 1) in Fig. 3.7. It shows a degradation of 50 % for an erasure

probability p = 0.1. Our model shows that multihopping can have disastrous effects

on the collection time in presence of noise. Note however that in networks with

more general topology this needs not be, since in that case a node may choose to
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forward data to the neighbors with the best channels [57]. Theorem 3.1.10 allows

for an exact computation of the delay incurred by a specific network, given a packet

erasure probability, however, the overall insight provided by it, is limited. In the

following Theorem, instead of considering the expected delay for a specific network,

we consider a random line network and obtain an upper bound for the expected delay

as a function of the packet erasure probability:

Theorem 3.1.11. Let νi’s be i.i.d. random variables νi ∈ {0, 1, ..., m− 1} with mean

µ and variance σ2 where µ, σ2, m are constants independent of n then:

1 ≤ E(T (p, νn))

E(T (0, νn))
≤ 1 + O(np) (3.26)

Proof. In order to find an upper bound for the expected delay, we may use any strat-

egy in scheduling. Here, we assume that whenever an erasure occurs, the transmitting

node retransmits the packet until it gets through and all the other nodes remain silent

at that period. Denoting by αi for i = 1, . . . ,
∑

iνi the number of extra time slots

needed to transmit the packet at the i’th transmission, we may write

T (p, νn) ≤
Pn

i=1
ipi∑

j=1

αj + T (0, νn) (3.27)

where αi has geometric distribution, i.e.,

Pr(αi) = pi−1(1− p)⇒ E(αi) =
p

1− p
(3.28)

Taking expectation of both sides of (3.27), we obtain,

E(T (p))

E(T (0))
≤ p

∑n
i=1 ipi

(1− p)E(T (0))
+ 1 (3.29)

which completes the proof of our theorem.

In particular Theorem 3.1.11 implies that for networks of large size, a probability

of erasure p of order o( 1
n
) does not significantly affect the time performance of the
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data collection process.
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Figure 3.7: Ratio T (p)
T (0)

as a function of p in line network.

3.2 Random Multi-line Networks

In this section, we consider a more general network, i.e., a network consisting of

L ≥ 2 lines. For simplicity we assume each line has n0 nodes. This is illustrated in

Fig. 3.8. Furthermore each node carries ν ∈ Sm packets with probability distribution

(p0, p1, . . . , pm−1). We will later argue that the results for the more general case follows

along the same line of this simple case.

It is quite easy to state a lower bound for the average delay. Assuming νi’s are

i.i.d., and denoting T L,n0

min as the minimum data collection time for a multi-line network

with L ≥ 2 lines of length n0, we have

E(T L,n0

min ) ≥ n0LE(νi) (3.30)

which follows by taking the expectation of both sides of the inequality T L,n0

min ≥ (num-
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Figure 3.8: Multi-line Network.

ber of packets in network). In what follows, we shall prove that as L increases, the

expected collection time converges toward this lower bound.

To prove our asymptotic result, we describe a suboptimal procedure to collect the

data at the BS. We may divide the network into two subnetworks S1 consisting of

odd lines and S2 consisting of even lines. For l ∈ S2, nodes at even distance from the

BS transmit toward the BS at even time slots and nodes at odd distance from the BS

transmit toward the BS at odd time slots. If l ∈ S1 the opposite happens, i.e., nodes

at even distance transmit toward the BS at odd time slots and vice versa. However,

if at a given TS multiple nodes at distance 1 from the BS carry data packets, only

one packet (randomly chosen from all available packets) gets transmitted to the BS

(since this BS can only receive one packet at a time). Remaining packets are stored

for later transmission. This strategy is followed until all packets in the network have

reached the BS or a node at distance one from the BS. At this point, packets at

distance one from the BS are simply transmitted to the BS in turn, so that the BS

does not become idle until all packets have been collected.

With this scheduling and assuming each node carries at most m − 1 data packets

it is clear that after (m − 1)(2n0 − 3) TS (assuming that νi ∈ S2), all the packets

are within distance one of the BS (since it is true in the worst case where each node

carries exactly m − 1 packets). Therefore, we may think of data collection as two

separate phases. First, collect all the packets to the nodes within distance one of the
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BS which at most takes (m − 1)(2n0 − 3) TS, and second, send the packets of the

nodes at distance one from the BS to BS.

Theorem 3.2.1. Consider a multi-line network with L ≥ 2 lines of length n0, and

νi’s are i.i.d. chosen from {0, 1, ..., m−1} with an arbitrary distribution. Let ∀k, 0 ≤
k ≤ m− 1, Pr(νi = k) = pk where pm−1 6= 0. Further assume that E(νi) = µ Then

n0Lµ ≤ E(T L,n0

min ) ≤ n0Lµ + O

(
1

L

)

+ (m− 1)(2n0 − 3)(1− pm−1)
L/2. (3.31)

In particular,

i) if L > (2 + O(1)) logα no, lim
no→∞

E(T L,n0

min )− noLµ = 0 (3.32)

ii) if 2 logα no > L and lim
no→∞

L = +∞, lim
no→∞

E(T L,n0

min )

noLµ
= 1 (3.33)

iii) if L = cte, noLµ ≤ E(T L,n0

min ) ≤ noLµ(1 + ε) (3.34)

where α = 1
1−pm−1

and ε is a constant independent of no when L is fixed.

Proof. The lower bound follows from Eq. (3.30) and noting that E(νi) = µ. To prove

the upper bound, we use the suboptimal scheduling described before to collect the

data packets. We also define the random variable ei ∈ {0, 1}, for i = 1, . . . , (m −
1)(2n0 − 3), such that ei = 0 if the BS is busy at TS i, and ei = 1 if it is not.

Considering the steps in collecting packets in the network with our scheduling, if the

total number of packets is greater than (m−1)(2n0−3), then the time needed to collect

the data packets is equal to the total number of packets in the network (denoted by

η) plus the number of times that the BS was not busy during 1 ≤ t ≤ (m−1)(2n0−3)

which is equal to
∑(m−1)(2n0−3)

i=1 ei. Therefore, we can write the following upper bound

for the delay.

T L,n0

min ≤ max {η, (m− 1)(2n0 − 3)}+

(m−1)(2n0−3)
∑

i=1

ei (3.35)

To find an upper bound for the expected delay, we have to find Pr(ei = 1) and
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Pr(η ≤ (m − 1)(2n0 − 3)). To find an upper bound for the expected delay, we find

Pr(ei = 1) and Pr(η ≤ (m− 1)(2n0 − 3). It is clear that

Pr(e2k = 0) ≥ Pr(having at least m− 1 packets at distance k)

≥ Pr(at least one node at distance k has m− 1 packets)

= 1− (1− pm−1)
L/2 (3.36)

A similar expression can be written for Pr(e2k+1 = 0). Furthermore, using Cheby-

chev’s inequality and noting that η is the total number of packets in the network, i.e.

η =
∑n0L

i=1 νi, we may write

Pr ((m− 1)(2n0 − 3) ≤ η) ≥ 1−O

(
1

n0L

)

(3.37)

which implies that Pr(η ≤ (m − 1)(2n0 − 3)) ≤ O
(

1
n0L

)

. Now we can take the

expectation from both sides of (3.35) to get

E(T L,n0

min ) ≤ E(η) + (m− 1)(2n0 − 3) Pr(η ≤ (m− 1)(2n0 − 3)) +

(m−1)(2n0−3)
∑

i=1

Pr(ei = 1)

≤ n0Lµ + O

(
1

L

)

+ (m− 1)(2n0 − 3)(1− pm−1)
L/2 (3.38)

that completes the first part proof.

Theorem 3.2.1 shows that either i) the difference of the expected delay and the

average number of packets is converging to zero as L→∞ and n0 grows slower than

22L (that is, equivalently, L grows faster than O(log n)) or at least that ii) the ratio

of the expected delay to the average number of packets converges toward 1 as long as

L goes to infinity. It is a reasonable hypothesis in general. Indeed as the number of

sensor nodes per unit of observation area increases, noting that L is the number of

sensors within reach of the BS, it can be shown that L scales like log n + c(n) where

c(n) −→ ∞ [33]. Therefore, fixing the area of the network, having n goes to infinity,

and noting that n0 = n/L, the aforementioned condition is satisfied. We will come
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back to that in the next section which deals with more general topologies.

In the more general case where the number of sensors per line is nl
0 for l = 1, . . . , L

(instead of n0 for all l’s) the lower bounds on the expected delay becomes E(T L,n0

min ) ≥
µ
∑L

l=1 nl
0. We can further find an upper bound by replacing n0 by max nl

0 in (3.35)

and noting that E(η) is equal to the lower bound. The result follows in a similar

fashion. Therefore as long as (max nl
0)m = o

(
1

1−pm−1

)L

and L grows to infinity,

the expected delay converges to E{η}. In Fig. 3.9 the difference between average

collection time and average packet number in the network for multi-line networks is

plotted as the function of the number of lines for various average number of packets per

node (and a fixed number of nodes per line, n0 = 25) using Monte Carlo simulation.

Each instance of a random network has L lines of n0 nodes. Each node carries either

0 or 1 packet with probability 1 − µ and µ respectively. The exact collection time

for a particular instance is known and given by Eq. (3.11) and this is averaged over

multiple instances (20000) to yield Fig. 3.9.
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Figure 3.9: Difference between expected delay and average number of packets in
network as a function of average number of packets per node and number of lines in
multi-line network (25 nodes per line). Nodes carry 0 or 1 data packet with probability
1− µ and µ respectively.
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3.2.1 Delay Analysis for More General Topologies

Insightful results about the delay in collecting data from sensory networks forming

more general topologies may be inferred from results on multi-line networks. In this

section we discuss the implications of previous results for networks of more general

topologies.

Clearly for a sensor network of any topology, the expected minimum collection delay

satisfies: E(T ) ≥ nE(νi) where n is the number of sensor nodes in the network. How-

ever in the particular case where only a single path exists from the sensors to the BS

(i.e., the degree of the BS is one) this lower bound is not tight and may be improved

to: 2nE(νi) using Theorem 3.1.2.

If the degree of the BS is 1, It is shown in the previous chapter that the network may

be thought of as a line network -for analysis purposes- by combining nodes at the

same distance from the BS without impeding the time performance of optimal data

collection strategy. In the resulting “linearized” network the number of data packets

at a given distance from the BS is the sum of the packets at that distance in the

original network. Consequently results in section 3.1 may be applied to this type of

networks to derive the exact delay distribution. Furthermore, the delay is 2nE(νi)

asymptotically in the first order.

If the degree of the BS is greater than 1, it is straightforward to extend the previous

results on multi-line networks to tree topologies (indeed given what what said before,

a tree may be thought of as a multi-line network).

Finally the previous results give some intuition about the asymptotic average mini-

mum collection time in a random sensory network. Consider a disk of radius 1 and a

network of n sensors randomly located on that disk. Assume the BS is placed at the

center of that disk. We know from [33] that the minimum transmission range r(n)

must satisfy πr2(n) = log(n)+c(n)
n

where c(n) −→∞ to insure network connectivity as n

goes to infinity. We can then argue that the average collection delay converges toward

the average number of packets in the network when the number of sensors is large.

Indeed, a shortest path spanning tree of the considered network rooted at the BS
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may be extracted. From what was said before this network behaves like a multi-line

network as far as delay is concerned and noticing that the maximum distance of a

sensor to the BS (the distance being the length in number of hops of a shortest path

to the BS) grows like 1
r(n)

= O(
√

n
log(n)

) and L is the number of packets within reach

of the BS, that is, πr2(n)n = O(log(n)) and either condition i) or condition ii) of

Theorem 3.2.1 applies.

3.3 Comparison of Omnidirectional and Directional

Systems

The previous analysis of directional antenna systems may be extended to omnidirec-

tional systems. In these systems, nodes are equipped with omnidirectional antennas

generating interference for all surrounding nodes. In particular in a line network this

implies that a packet transmission to the left (or right) neighbor creates interference

at both the left and right neighbors. This in turns increases the length of the op-

timum data collection schedule (when compared to directional systems). In fact we

know from Theorem 2.3.1 that the minimum data collection time To(νn) over a line

network of length n equipped with omnidirectional antennas in which the ith node

has νi packets becomes:

To(νn) = max
1≤i≤n−2

(i− 1 + νi + 2νi+1 + 3
n∑

j≥i+2

νj) (3.39)

where νn = (ν1, . . . , νn). We know from Theorem 2.4.1 that this represents a maxi-

mum increases of 50 % over the data collection time achieved by a directional antenna

system for the same considered line network. In the example of Fig. 2.4 the minimum

data collection time becomes 14 TS, a 40 % increase.

In the following sections, we present results for the delay analysis in networks

equipped with omnidirectional antennas. Results are analogous to the results stated

in section 3.2 and we omit proofs for the sake of brevity.
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3.3.1 Delay Distribution

In this section we derive, by means of a recursion, the cumulative distribution function

(CDF) of To(νn) for a line network. Let’s assume that νi’s are i.i.d. random variables

chosen from the set Sm = {0, 1, . . . , m− 1}.

Theorem 3.3.1. Let Fn(t) be the CDF of the minimum delay To(νn), i.e. Fn(t) =

Pr{To(νn) ≤ t}. Then Fn(t) satisfies the following recursion

Fn(t) =
m−1∑

i=1

Pr(νn = i)Fn−1(t− 3i)1t≥n+3(i−1) + Pr(νn = 0)Fn−1(t) ∀n ≥ 3 (3.40)

where

1t≥t0 =







1 if t ≥ t0

0 otherwise

and,

F1(t) =







∑t
i=0 Pr(ν1 = i) if t < m− 1

1 otherwise

F2(t) =

m−1∑

i=1

Pr(ν2 = i)F1(t− 2i)1t≥2i + Pr(ν2 = 0)F1(t)

Proof. We may write Fn(t) by conditioning on νn = i for i = 0, . . . , m− 1 as

Fn(t) =
m−1∑

i=0

Pr{T (νn) ≤ t|νn = i}Pr(νn = i) (3.41)

To compute the conditional probability in (3.41), we use (3.39) and the fact that for

all k = 1, . . . , n− 1, T (νn) ≥ k − 1 + νk + 2νk+1 + 3
∑n

j=k+2 νj. Therefore replacing

k = n− 2 and assuming νn = i, we get

T (νn) ≥ n− 3 + νn−2 + 2νn−1 + 3νn ≥ n + 3(i− 1) (3.42)
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Thus if t < n + 3(i− 1), then Pr{T (νn) ≤ t|νn = i} = 0. Using the definition of the

function 1t≥t0 , for any i we may then write the conditional probability as

Pr{T (νn) ≤ t|νn = i} = Pr{T (νn−1) ≤ t− 3i}1t≥n+3(i−1) (3.43)

Replacing (3.43) in (3.41), we get

Fn(t) = Fn−1(t) Pr(νn = 0)+

m−1∑

i≥1

Pr{T (νn−1) ≤ t− 3i)}1t≥n+3(i−1) Pr(νn = i)

which leads to (3.40).

We can use the result of Theorem 3.3.1 to compute the CDF of To(νn). This is

illustrated in Fig. 3.10 which shows the distribution of the delay To(νn) in 40-sensor

node line networks in which each node carries either 0 or 1 packet with probability

0.7 and 0.3 respectively. It is also worth noting that the result of Theorem 3.3.1

holds for any distribution of the data packets. In particular the νi’s need not be

i.i.d., however, in this chapter we deal with the case that νi’s are independent and

identically distributed. Interestingly, if we plot the expected value of To as in Fig. 3.12,

we observe that the average delay scales linearly with the number of nodes n and the

linear factor depends on the average number of packets per node µ. In the next

section, we analyze the average delay and prove the observation rigorously.

3.3.2 Asymptotic Analysis of the Average Delay

In this subsection, we study the asymptotic behavior of the minimum average delay

in collecting data from a line network as the number of nodes becomes large.

Theorem 3.3.2. Let νi’s be i.i.d. random variables νi ∈ Sm with mean µ, variance
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Figure 3.10: Distribution of data collection time in 40-sensor node line network.
Nodes carry 0 or 1 data packet with probability 0.7 and 0.3 respectively.

σ2 where µ, σ2, m are all constants independent of n. We have

lim
n→∞

E{To}
n

=







3µ if µ ≥ 1/3

1 if µ ≤ 1/3

(3.44)

Proof. We consider the case µ ≥ 1/3 first: Let’s define ν ′
i = νi − µ. Using (3.39), we

get

E{T (νn)} = 3µn+

E

{

max
1≤i≤n−2

(

i(1− 3µ) + ν ′
i + 2ν ′

i+1 + 3

n∑

i+2

ν ′
j

)}

≤ 3µn + 3µ− 1 + 3E

{

max
1≤i≤n

n∑

j≥i

ν ′
j

}

= 3µn + 3µ− 1 + 3E

{

max
1≤i≤n

n+1−i∑

j=1

ν ′
n−j+1

}

(3.45)
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where the inequality follows from the fact that ν ′
i satisfies ν ′

i + µ ≥ 0, 1 ≤ i ≤
n − 1. In order to find a bound for E(max

1≤i≤n

∑n
j≥i ν

′
j), we first state the following

lemma which is proved based on Erdös and Kac [19] where a convergence theorem

for the distribution of the maximum of partial sums was proven. It is worth noting

convergence in distribution does not imply convergence in the mean and so we cannot

directly use the result of Erdös and Kac1. To simplify the notation, let’s first define

Si =
∑n−i+1

j=1 xj =
∑n

j≥i ν
′
j where xi = ν

′

n−j+1.

Lemma 3.3.3. For any λ,

Pr

{

max
1≤i≤n

Si ≥ λσ
√

n

}

≤ 2Pr
{

Sn ≥ (λ−
√

2)σ
√

n
}

. (3.46)

Proof. We first define the events Ei as

Ei =

{

max
0≤j<i

Sj ≤ λσ
√

n ≤ Si

}

i = 1, . . . , n. (3.47)

which is inspired by [19]. We can then state the following inequality by the union

bound.

Pr

{

max
1≤i≤n

Si ≥ λσ
√

n

}

≤ Pr
{

Sn > (λ−
√

2)σ
√

n
}

+

n∑

i=1

Pr
{

Ei ∩
(

Sn ≤ (λ−
√

2)σ
√

n
)}

(3.48)

To evaluate the second term in the right hand side of (3.48), we note that Si ≥ λσ
√

n

and Sn ≤ (λ−
√

2)σ
√

n imply Si − Sn ≥
√

2σ
√

n. Then using the fact that Si − Sn

1It is quite easy to come up with an example that the distribution of a random variable converges
to f(x) but its mean does not converge to

∫
xf(x)dx
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is independent of Sj for j ≤ i, we may write

n∑

i=1

Pr
{

Ei ∩
(

Sn ≤ (λ−
√

2)σ
√

n
)}

≤
n∑

i=1

Pr(Ei)Pr
(

Si − Sn ≥
√

2σ
√

n
)

≤
n∑

i=1

Pr(Ei)
E {(Si − Sn)2}

2σ2n

=

n∑

i=1

Pr(Ei)
(n− i)σ2

2σ2n

≤ 1

2

n∑

i=1

Pr(Ei)

≤ 1

2
Pr

(

max
1≤i≤n

Si ≥ λσ
√

n

)

(3.49)

where the second inequality follows from Chebychev’s inequality and the last inequal-

ity follows form the definition of the events Ei and noting that

n∑

i=1

Pr(Ei) = Pr

(

max
1≤i≤n

Si ≥ λσ
√

n

)

.

Therefore Lemma 3.3.3 follows from (3.49) and (3.48).

Now we can use Chebychev’s inequality to evaluate the right-hand side of Lemma

3.3.3 as follows.

Pr

{

Sn =

n∑

i=1

ν
′

i ≥ (λ−
√

2)σ
√

n

}

≤ nσ2

(λ−
√

2)2σ2n

≤ 1

(λ−
√

2)2
(3.50)

Therefore, substituting λ = log n we get

Pr

(

max
1≤i≤n

n∑

j=i

ν
′

i ≥ σ log n
√

n

)

= O

(
1

log2 n

)

(3.51)
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Eq. (3.51) implies that, with high probability, max
1≤i≤n

∑

j≥i ν
′
j is less than σ log n

√
n.

Therefore, we may write

E

{

max
1≤i≤n−1

n∑

j=i

ν ′
j

}

≤ σ log n
√

n Pr

{

max
1≤i≤n−1

n∑

j=i

ν ′
j < σ log n

√
n

}

+

(m− 1− µ)n Pr

{

max
1≤i≤n−1

n∑

j≥i

ν ′
j > σ log n

√
n

}

= σ log n
√

n + O

(
n

log2 n

)

(3.52)

which follows from the fact that ν ′
i ≤ m − 1 − µ. We now derive a lower bound

on E(To(νn)). Using Eq. (3.39), we get To(νn) ≥ ν1 + 2ν2 + 3
∑n

j≥3 νj. Taking the

expectation of both sides, we get

E(T (νn)) ≥ 3µn− µ (3.53)

Considering (3.53) and the upper bound derived in (3.52), we deduce that

3µn− µ ≤ E(T (νn)) ≤ 3µn + 3µ− 1 + 3σ log n
√

n + O

(
n

log2 n

)

which leads to (3.44) for µ ≥ 1/3.

The case µ ≤ 1/3 follows along the same line and it can be shown that

n− 1− µ ≤ E(T (νn)) ≤ n + 3σ log n
√

n + O

(
n

log2 n

)

(3.54)

which leads to (3.44) for µ ≤ 1/3.

Remark: Theorem 3.3.2 can be easily generalized to the case that νi’s are inde-

pendent and have mean µi ≥ 1
3

and variance σ2
i and νi ≤ m−1 where m is a constant.

In fact we can assume m is also going to infinity as well. The theorem goes through
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as long as m = o(n).

Figs. 3.11 and 3.12 illustrate the behavior of the (minimum) average collection time

on a line network equipped with omnidirectional antennas. It is assumed that a given

sensor node has collected 0 or 1 data packet with probability µ and 1−µ respectively

(equivalently that the average number of packets per node is µ). Figs. 3.11 and 3.12

were obtained through the application of Theorem 3.3.1, which means that they are

an exact computation of the CDF. They both confirm the asymptotic result proven

in Theorem 3.3.2.
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Figure 3.11: Average collection time as a function of average number of packets per
node and number of nodes in line network equipped with omnidirectional antennas.
Nodes carry 0 or 1 packet with probability 1− µ and µ respectively.

In omnidirectional antenna systems, data transmissions generate interference at

all surrounding nodes. In a line network, in particular, this implies that a packet

transmission to the left (or right) neighbor creates interference at both the left and

right neighbors. This in turns increases the length of the optimum data collection

schedule (when compared to directional systems). So time efficiency may be improved

by using directional antenna systems. In order to get a better intuition on how the
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Figure 3.12: Average collection time as a function of average number of packets per
node in 1500-node line network equipped with omnidirectional antennas. Nodes carry
0 or 1 packet with probability 1− µ and µ respectively.

two systems perform relative to each other, we give the following comparative result

for a line network.

Theorem 3.3.4. Let νi’s be i.i.d. random variables νi ∈ Sm with mean µ, variance σ2

where µ, σ2, m are all constants independent of n. We have, if To (resp. Tu) denotes

the minimum collection time on a line network equipped with omnidirectional (resp.

directional) antennas

lim
n→∞

E{To}
E{Tu}

=







1 if µ ≥ 1/3

3µ if 1/3 ≤ µ ≤ 0.5

3/2 if µ ≥ 0.5

(3.55)
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3.3.3 Multi-line/Omnidirectional Case

Theorem 3.3.5. Consider a multi-line network with L lines of length n0, and νi’s

are i.i.d. chosen from Sm such that ∀k, 0 ≤ k ≤ m − 1, Pr(νi = k) = pk where

pm−1 6= 0. Further assume that E(νi) = µ Then

n0Lµ ≤ E(To) ≤ n0Lµ + O

(
1

L

)

+ (3n0(m− 1)− 2) (1− pm−1)
L/3 (3.56)

In particular,

i) if L > (3 + O(1)) logα no, lim
no→∞

E(To)− noLµ = 0 (3.57)

ii) if 3 logα no > L and lim
no→∞

L = +∞, lim
no→∞

E(To)

noLµ
= 1 (3.58)

iii) if L = cte, noLµ ≤ E(To) ≤ noLµ(1 + ε) (3.59)

where, α = 1
1−pm−1

and ε is a constant independent of no when L is fixed.

Proof. This follows by taking the expectation from both sides of the inequality T ≥
(number of packets in network).

In what follows, we prove that as L increases, the expected collection time con-

verges toward this lower bound.

To prove our asymptotic result, we use a suboptimal procedure to collect the data at

the BS: we divide the network into three subnetworks S1, S2, and S3. Line l ∈ S1

if l ≡ 0 (mod 3), l ∈ S2 if l ≡ 1 (mod 3), l ∈ S3 if l ≡ 2 (mod 3). For l ∈ S1,

nodes at distance d ≡ 1 (mod 3) from the BS transmit toward the BS at time slots

t ≡ 1 (mod 3), nodes at distance d ≡ 2 (mod 3) transmit at times t ≡ 0 (mod 3),

nodes at distance d ≡ 2 (mod 3) transmit at times t ≡ 2 (mod 3). For l ∈ S2, nodes

at distance d ≡ 1 (mod 3) from the BS transmit toward the BS at time slots t ≡ 2

(mod 3), nodes at distance d ≡ 2 (mod 3) transmit at times t ≡ 1 (mod 3), nodes

at distance d ≡ 0 (mod 3) transmit at times t ≡ 0 (mod 3). And so on. In a given

subnetwork multiple nodes at distance 1 from the BS may carry packets. Since the BS

can only receive one packet at a time, we assume the presence of some mechanism that
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ensures that only one packet is transmitted to the BS and other available packets are

stored for later transmission. This strategy is followed until all packets have reached

a node at distance 1 from the BS. At this point packets are simply transmitted to the

BS in turn so that the BS doesn’t become idle until all packets have been collected.

Furthermore we require that a given packet leaves its source node at the same TS it

would have if all nodes were carrying m − 1 packets (worst case scenario) and not

sooner. With this scheduling and assuming each node has at most m− 1 packets, it

is clear that after 3n0(m− 1)− 2 TS, all the packets are within distance one from the

BS.

Proof. The lower bound follows from Theorem 3.30. For the purpose of deriving an

upper bound, we define the random variable ei ∈ {0, 1}, for i = 1, . . . , 3n0(m−1)−2,

such that ei = 0 if the BS is busy at TS i, and ei = 1 if it is not.

Considering the steps in collecting packets in the network with the previously de-

scribed scheduling strategy, if the total number of packets is greater than 3n0(m −
1) − 2, the time needed to collect the data packets is equal to the total number of

packets in the network (denoted by η) plus the number of times that the BS was not

busy during 1 ≤ t ≤ 3n0(m− 1)− 2 which is equal to
∑3n0(m−1)−2

i=1 ei. Therefore, we

have the following upper bound for the delay

T ≤ max {η, 3n0(m− 1)− 2}+

3n0(m−1)−2
∑

i=1

ei (3.60)

To find an upper bound for the expected delay, we find Pr(ei = 1) and Pr(η ≤
3n0(m− 1)− 2). It is clear that

Pr(e3k = 0) ≥ Pr(having at least m− 1 packets at distance k)

≥ Pr(at least 1 node at distance k has m− 1 pckts)

= 1− (1− pm−1)
L/3 (3.61)

A similar expression can be written for Pr(e3k+1/2 = 0). Furthermore, using Cheby-
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chev’s inequality and noting that η is the total number of packets in the network, i.e.

η =
∑n0L

i=1 νi, we may write

Pr (3n0(m− 1)− 2 ≤ η) ≥ 1−O

(
1

n0L

)

which implies that Pr(η ≤ 3n0(m − 1) − 2) ≤ O
(

1
n0L

)

. Now we can take the

expectation from both sides of (3.60) to get

E(T ) ≤ E(η) + (3n0(m− 1)− 2) Pr(η ≤ 3n0(m− 1)− 2)+

3n0(m−1)−2
∑

i=1

Pr(ei = 1)

≤ n0Lµ + O

(
1

L

)

+ (3n0(m− 1)− 2)(1− pm−1)
L/3

that completes the proof for (3.56).

In the more general case where the number of sensors per line is nl
0 for l = 1, . . . , L

(instead of n0 for all l’s) the lower bounds on the expected delay becomes E(T ) ≥
µ
∑L

l=1 nl
0. We can further find an upper bound by replacing n0 by max nl

0 in (3.60)

and noting that E(η) is equal to the lower bound. The result follows in a similar

fashion. Therefore as long as (max nl
0)m = o

(
1

1−pm−1

)L

and L grows to infinity, the

expected delay converges to E{η}. Fig. 3.13 shows the average (minimum) collection

time in a multi-line network equipped with omnidirectional antennas. In our scenario

each line has at most 25 sensor nodes. The average number of packets per node is µ

as well with a maximum of 1 packet per node. Those results were obtained through

Monte Carlo simulations with 40000 iterations and confirm the convergence shown in

Theorem 3.3.5.
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Figure 3.13: Omnidirectional Line Network, ν ∈ {0, 1}, E(T )−n0Lµ as a function of
L and µ.

3.4 Dynamic Data Collection in Linear Sensor Net-

works

In stationary state, after nodes have organized themselves into a network, the opera-

tion of a sensor network can be broken down into two main phases. In the first phase

or observation phase, area monitoring results in an accumulation of data at each sen-

sor node. In the second phase or data transfer, the collected data is transmitted to

some processing center (BS) located within the sensor network.

we assume that while data is being collected by the BS from sensor nodes, those sen-

sor nodes keep gathering new data to be transmitted at a later time. We specifically

assume that each sensor node collects data according to a Poisson distribution with

mean λ.

Let ν
0 denote the initial data vector. Then T (ν0) denotes the corresponding data

collection time and can be calculated according to Eq. (2.3). During that period new

data is collected at sensor nodes and by the end of that period we have a new data
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vector ν
1. The corresponding data collection time is T (ν1). And so on. The data

collected during a given transfer phase was collected by the sensor nodes during the

previous transfer phase. We would like to find the maximum rate at which data may

be gathered such that the system is stable. In a stable system the collection time

remains bounded or equivalently the sensor node buffer size is bounded.

Theorem 3.4.1. Data collection on a linear network consisting of n sensor nodes

gathering data packets according to a Poisson distribution with rate λ is sustainable

with high probability over the long term for large n iff λ = o(1/n). In particular we

have

λ = o(1/n)⇒ ∃K > 0 K <∞ such that lim
n

Pr{νk
i ≤ K} = 1 ∀i 1 ≤ i ≤ n (3.62)

Proof. The distribution of the packets at the end of observation phase k − 1 is

Pr{νk
i = j} = exp(−λT (νk−1))

(λT (νk−1))j

j!
(3.63)

Therefore,

Pr{νk
i ≤ K} =

K∑

j=0

exp(−µ)
µj

j!
(3.64)

where µ = λT (νk−1).

⇒ Pr{max
i

νk
i ≤ K} = exp(−µn)

(
K∑

j=0

µj

j!

)n

(3.65)

= exp(−µn)

(

exp(µ)− µk+1

(k + 1)!
exp(θµ)

)n

, 0 ≤ θ ≤ 1 (3.66)

=

(

1− µk+1

(k + 1)!
exp((θ − 1)µ)

)n

(3.67)

≥
(

1− µk+1

(k + 1)!

)n

(3.68)
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Choose

µk+1

(k + 1)!
=

1

n log n
(3.69)

⇒ K = − log(n log n)

log µ
(3.70)

But we know from Eq. (2.3) that

T (ν) = O(n) (3.71)

therefore choose

λ =
1

n1+ε
(3.72)

⇒ K = 1/ε (3.73)

Therefore if λ < 1/n, Pr{maxi ν
k
i ≤ K} converges to 1 when the number of nodes

becomes large for some finite K. On the other it is easy to see that if λ = 1/n,

Pr{maxi ν
k
i ≤ K} converges to 0 for any positive, finite K from Eq. (3.67). The

theorem follows.

3.5 Conclusion

This work is concerned with characterizing the delay in collecting data from sensory

networks at the BS. Under the assumption that the number of data packets accumu-

lated by a sensor node is a random variable, we give lower and upper bounds for the

average delay and derive the asymptotic behavior of this quantity as the number of

nodes becomes large. Note that if the number of packets at each node is deterministic,

the exact delay can be derived for tree topologies as demonstrated in the previous

chapter. However, using probabilistic approach, we showed that asymptotically the

average delay converges to the expected number of packets in the network for a tree

with multiple connections to the BS. We further argued that this holds for sensory
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networks of randomly located nodes in a disk as well. Furthermore, we derive exact

relationships between data collection time and transmission range, data packet size

and channel noise in the simple line scenario. To develop intuition these relationships

are studied in the asymptotic case where the number of sensor nodes becomes large.

Remarkably we show that multihopping does not lead to significant deterioration of

the time efficiency of the data collection process. Indeed the latter deteriorates by a

maximum factor of 2 when compared to direct transmission. This seems like a rela-

tively low cost to pay in comparison to the energy saving realized by multihopping,

which is of the order of the number of sensor nodes in the network. On the other hand

our model shows that multihopping can have disastrous effects on the collection time

in presence of noise. Note, however, that in networks with more general topology this

needs not be, since in that case a node may choose to forward data to the neighbors

with the best channels.
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Chapter 4 Conclusions and Future

Directions

Data collection in an important communication primitive in sensory networks. In this

dissertation we studied the data collection process and its fundamental performance

limits. Specifically,

• In the deterministic case, we exhibited optimal scheduling strategies to collect

data on trees and derived corresponding minimal data collection times. Fur-

thermore we bounded time collection on networks with cycles.

• In the random case, we derived the expected value of the minimum collection

time in trees.

• We studied the impact of hop length, packet splitting, packet erasure, and lack

of synchronization in line networks. Furthermore we found scaling conditions

on the rate at which data may be gathered by sensor nodes for sustainable data

collection over time.

Future directions for our research include:

• Consider the presence of multiple base stations in the network, and quantify

the corresponding gains in data collection time.

• We studied the impact of noise in the channel on our data collection strategies.

Those strategies are optimal in the absence of noise. Are those strategies still

optimal in the presence of noise? Can we come up with strategies that are less

sensitive to noise?

• Similarly we studied the impact of partial lack of synchronization among the

sensor nodes. Are the strategies presented in this thesis still optimal in the

absence of clock synchronization?
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• Define energy expended as energy(h) =
∑

Ni
l(Ni)

α, where α is a positive con-

stant greater than 2, h is the maximal node transmission range, and l(Ni)
α

denotes the energy expended by node Ni (l(Ni) is taken to be the length in

hops of a transmission initiated by node Ni). In this thesis, we derived the min-

imum collection time at the point of minimum energy (one hop transmissions).

We further studied minimum collection time as a function of transmission range.

An interesting follow-up would be to derive optimal schedules with respect to

time and energy for a given transmission range (larger than 1) and subsequently

the trade-off between minimum delay and energy expended in data collection.

This is illustrated in the next two figures where h = 3 and a line network is

considered. Fig. 4.1 shows an optimal data collection schedule with respect to

time, while Fig. 4.2 shows a schedule optimal with respect to time and energy.

Ifα = 2, the energy expended in the first schedule is 5*9+2*4+2=55 energy

units while it is only 2*9+2*4+11=37 in the second schedule.

1

3

5

7

BS 1 1 1 1 1 1

Time Slot

Figure 4.1: Optimal distribution schedule with respect to time that is suboptimal
with respect to energy.

1

3

5

7

Time Slot

Figure 4.2: Optimal schedule with respect to time and energy.
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Appendix A A Preliminary Result

In the following section we assume that a network equipped with directional nodes

may receive and transmit a data packet during any given TS (whereas so far we had

assumed that it was only possible to receive or transmit a data packet in a given TS).

Although such networks may seem artificial and not practical for the time being, the

results that follow allow us to gain some insight into more complex systems.

The purpose of this section is the construction of an optimal strategy for collecting

data as well as deriving a closed form expression for time performance. We obtain

both for any general connected graphs. To that end, we first go through a series of

successive building steps.

Lower Bound on the Time Performance of Data Dis-

tribution Algorithms

Lemma A.0.1. Given any connected graph G, if t1(G) denotes the time performance

of a given data distribution algorithm, and νj denotes the number of data packets at

distance j from the BS, then

t1(G) ≥ max
i

(i− 1 +
∑

j≥i

νj) (A.1)

Proof.
∑

j≥1 νj data packets must be delivered to nodes at distance greater than 1.

Since the BS can only transmit one data packet at a time, we have: t1(G) ≥
∑

j≥1 νj.
∑

j≥i νj data packets must be delivered to nodes at distance greater than i > 1.

After
∑

j≥i νj TS the last data packet sent by the BS is at distance one from the BS

and therefore at least i− 1 extra TS are required for it to reach its destination, thus:

t1(G) ≥
∑

j≥i νj + i− 1. Hence the stated result.
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Achievability of Lower Bound

1) Line Network :

The purpose of this section is to prove that the lower bound derived in the previous

section is achievable on a line network. We shall show in the next section achievability

on general connected graphs based on this result.

The algorithm:

The BS is to send first data packets destined for the furthest node, then data packets

for the second furthest one and so on, as fast as possible while respecting the channel

reuse constraints. Nodes between the BS and its destinations are required to forward

packets as soon as they arrive (that is, in the TS following their arrival). This

algorithm is illustrated by an example in Fig. A.1.

2 3 1

1

3

5

7

9

Time Slot

Figure A.1: Optimal distribution schedule for BS in line network equipped with direc-
tional antennas and ability to receive and transmit in the same TS. The completion
time is 8 TS.

Proof of optimality and time performance:

Denote Ti the last busy time slot at node i in the execution of our algorithm. Clearly

then our algorithm runs in max
1≤i≤n

{T i}. Ti is a function of the distance to the BS, the

number of data packets destined for node i and the number of data packets forwarded

by node i.

Lemma A.0.2.

Ti =







i +
∑

j>i νj if νi ≤ 1

i− 1 +
∑

j≥i νj if νi ≥ 1

(A.2)
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Proof.

νi ≤ 1⇒ Ti = (fi + 1) + (i− 1)

νi > 1⇒ Ti = (fi + 1) + νi − 1) + (i− 1)

fi = number of packets forwarded by i =
∑

j>i

νj

Lemma A.0.3. Define: Si =
∑

j≥i νj + i− 1, then max
i

Si = max
i

Ti

Proof. Indeed Si is a lower bound for all i. So max
i

Si ≤ max
i

Ti, but Si = Ti if νi ≥ 1.

Since clearly max
i

Ti occurs in i such that νi ≥ 1, we have max
i

Si = max
i

Ti, i.e., the

algorithm is optimal.

2) General Connected Graphs:

By using the shortest routes (from the BS) to the sensor nodes, the algorithm pre-

viously described on line networks may be used on general (connected) graphs. The

performance time of that algorithm is then max
i

Ti where Ti is defined in Lemma A.0.2

and νj is the number of data packets at distance j from the BS. The next corollary

follows from Lemma A.0.3.

Corollary A.0.4. The minimum data collection time t1(G) on any connected graph

G is

t1(G) = max
1≤i≤n

(i− 1 +
∑

j≥i

νj) (A.3)

The following corollary follows from Corollary A.0.4.

Corollary A.0.5.

∀T a spanning tree of G, t1(TSP ) ≤ t1(T ) (A.4)



90

Appendix B Algorithms

Algorithm 1 (for directional antenna systems) and Algorithm 3 (for omnidirectional

ones), running at the BS, optimally distribute data in a line network. Given a line

network Network = ν, they dictate the BS actions at each TS: Remain idle (action =

0) or transmit (action = 1). The result is stored in the vector action. When an action

is chosen the right packet is to be handed over to the BS for transmission. One might

assume that there is a stack of data packets correctly ordered with respect to the

distance to the BS and that that stack is being updated after each BS action so that

a packet is popped off the stack as it is transmitted. Algorithm 2 (for directional

antenna systems) and Algorithm 4 (for omnidirectional ones), running at the BS,

optimally distribute data in a multiline network. The input to Algorithms 2 and 3

is a n by m matrix Network where n is the number of lines and m is the maximum

number of nodes per line. It is further assumed that the vector Est trans time of

size n is initialized with the respective T (ν) of each line.

Algorithm 1 Determines BS actions in line networks

input: Network
output: action
1: step ← 1, legal← 1, packts left ← ∑

iNetwork(i)
2: while packts left 6= 0 do

3: if legal then

4: action(step) ← 1
5: packts left ← packts left-1
6: legal ← 0
7: else

8: action(step) ← 0
9: legal ← 1

10: end if

11: if packts left < Network(1) then

12: legal ← 1
13: end if

14: step ← step+1
15: end while
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Algorithm 2 Determines BS actions in multi-line networks

input: Network
output: action
1: step ← 1, prev legal ← ones(1,n), legal ← ones(1,n), packts left ←

∑

i,jNetwork(i,j)
2: ∀i packts left for branch(i)← ∑

jNetwork(i,j)
3: while packts left 6= 0 do

4: (y,ind)=max(Est trans time.*legal)
5: if y=0 then

6:

7: for i=1 to nb of branches do

8:

9: if packts left for branch(i) 6= 0 then

10: ind=i
11: end if

12: end for

13: action(step) ← 0
14: else

15: action(step) ← ind
16: packts left ← packts left-1
17: packts left for branch(ind) ← packts left for branch(ind)-1
18: end if

19: legal← ones(1,nb of branches)
20: for i=1 to nb of branches do

21:

22: if packts left for branch(i)=0 then

23: legal(i) ← 0
24: end if

25: end for

26: tabtest ← sum(Network(ind,1:nb of nodes))-Network(ind,1)
27: if (tabtest > 0 & action(step) 6= 0) then

28:

29: if packts left for branch(ind) ≥ Network(ind,1) then

30: legal(ind)← 0
31: end if

32: end if

33: for i=1 to nb of branches do

34: if (prev legal(i)=1 & i 6= ind) then

35: Est trans time(i) ← Est trans time(i)+1
36: end if

37: end for

38: prev legal ← legal
39: step ← step+1
40: end while
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Algorithm 3 Determines BS actions

input: Network
output: action
1: step ← 1, packts left1 ← Network(1), packts left2 ← Network(2), packts left3 ←
∑

i≥3Network(i), packts left ←∑

iNetwork(i)
2: while packts left 6= 0 do

3: while packts left3 6= 0 do

4: action(step) ← 1
5: action(step+1) ← 0
6: action(step+2) ← 0
7: step=step+3
8: packts left3=packts left3-1
9: end while

10: while packts left2 6= 0 do

11: action(step) ← 1
12: action(step+1) ← 0
13: step=step+2
14: packts left2=packts left2-1
15: end while

16: while packts left1 6= 0 do

17: action(step) ← 1
18: step=step+1
19: packts left1=packts left1-1
20: end while

21: packts left ← packts left-1
22: end while
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Algorithm 4 determines BS actions in multi-line network

input: Network
output: action
1: step ← 1, prev legal ← ones(1,n), legal ← ones(1,n)
2: packts left ← ∑

i,jNetwork(i,j)
3: ∀i packts left for branch(i)← ∑

jNetwork(i,j)
4: while packts left 6= 0 do

5: (y,ind)=max(Est trans time.*legal)
6: if y=0 then

7:

8: for i=1 to nb of branches do

9:

10: if packts left for branch(i) 6= 0 then

11: ind=i
12: end if

13: end for

14: action(step) ← 0
15: else

16: action(step) ← ind
17: packts left ← packts left-1
18: packts left for branch(ind) ← packts left for branch(ind)-1
19: end if

20: legal← ones(1,nb of branches)
21: for i=1 to nb of branches do

22:

23: if packts left for branch(i)=0 then

24: legal(i) ← 0
25: end if

26: end for

27: tabtest ← sum(Network(ind,1:nb of nodes))-Network(ind,1)
28: if (tabtest > 0 & action(step) 6= 0) then

29:

30: if packts left for branch(ind) ≥ Network(ind,1) then

31: legal(ind)← 0
32: end if

33: end if

34: for i=1 to nb of branches do

35: if (prev legal(i)=1 & i 6= ind) then

36: Est trans time(i) ← Est trans time(i)+1
37: end if

38: end for

39: prev legal ← legal
40: step ← step+1
41: end while
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