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Abstract

The deployment of large-scale, low-cost, low-power, multifunctional sensory networks
brings forward numerous and diverse research challenges. Critical to the design of
systems that must operate under extreme resource constraints, the understanding
of the fundamental performance limits of sensory networks is a research topic of
particular importance. This thesis examines, in this respect, an essential function of
sensory networks, viz., data collection, that is, the aggregation at the user location
of information gathered by sensor nodes.

In the first part of this dissertation we study, via simple discrete mathematical
models, the time performance of the data collection and data distribution tasks in
sensory networks. Specifically, we derive the minimum delay in collecting sensor data
for networks of various topologies such as line, multi-line, tree and give corresponding
optimal scheduling strategies assuming that the amount of data observed at each
node is finite and known at the beginning of the data collection phase. Furthermore,
we bound the data collection time on general graph networks.

In the second part of this dissertation we take the view that the amount of
data collected at a node is random and study the statistics of the data collection
time. Specifically, we analyze the average minimum delay in collecting randomly lo-
cated /distributed sensor data for networks of various topologies when the number of
nodes becomes large. Furthermore, we analyze the impact of various parameters such
as lack of synchronization, size of packet, transmission range, and channel packet
erasure probability on the optimal time performance. Our analysis applies to direc-
tional antenna systems as well as omnidirectional ones. We conclude our study with

a simple comparative analysis showing the respective advantages of the two systems.
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Chapter 1 Introduction

In this chapter we give a brief overview of sensory networks main characteristics,
applications, and research issues. The emphasis is put on the research topics relevant
to the contents of this thesis. We summarize the main contributions of our work and

conclude by an outline of this dissertation.

1.1 Sensory Networks: A Brief Overview

Recent technological advances in the Very Large Scale Integration (VLSI) field have
contributed much to the development of microsensor systems. These combine vari-
ous sensors, signal processing capabilities, data storage capabilities, wireless (radio,
infrared or optical) communication capabilities, and energy sources on a single chip
[1, 2, 43]. Such computational devices are referred to as sensor nodes and a collection
of sensor nodes, possibly distributed over a wide area, connected through the wireless
medium, form a sensory network. Fig. 1.1 illustrates the architecture of a sensor node

while Fig. 1.2 illustrates a sensory network in a sensor field.

Memory

Sensors ADC ! N Processor A Transceiver

Power

Figure 1.1: Sensor node architecture.

In the future sensor networks promise to revolutionize our lives. Pervasive wireless
integrated networks will provide access to information anytime, anywhere and will be

able to instantaneously respond to our actions, in a way creating smart environments
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[53, 20, 21]. Potential applications for such networks are numerous and can be broadly
divided into military and civilian categories. Military applications include space ex-
ploration [41], battlefield surveillance and enemy tracking [54]. Civilian applications
include habitat monitoring [46, 10], environmental observation and forecast [68, 45],

as well as various health applications [61].

Sensor node

Sensor field

Figure 1.2: Sensor nodes scattered in field.

Sensor networks are wireless networks with unique characteristics which distin-
guishes them from traditional wireless networks [69]. They are designed for unat-
tended operation, must accommodate a traffic of statistical nature, support very low
data rates to the order of 1-100 kb/s, and are characterized by a predominantly unidi-
rectional flow of data from sensor nodes to sink. Sensory networks are members of the
wireless ad hoc network family, that is, they are infrastructure-less networks unlike
cellular networks. But they also distinguish themselves from MANETSs!, designed to
provide good throughput/delay characteristics under high mobility conditions, with-
out much regard for energy consumption. Indeed, operation under severe constraints

(lack of accessibility, limited energy resources and capabilities of nodes, absence of

IMobile Ad Hoc Networks
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infrastructure), not existent in more traditional networks, imposes aggressive en-
ergy management [58]. Accordingly, in many sensor network applications, energy (or
equivalently lifetime) is traded against throughput/delay. Finally, it should be noted
that in a sensory network, while each node may be mobile, it is typically the case that
once the target site of the particular sensing application is reached a semi-permanent
stationary configuration is adopted for the purpose of gathering information. Accord-
ingly the deployment of sensory networks brings forward numerous research problems
[4, 70, 52].

In the field of general ad hoc networks and particularly sensory networks, research
efforts focusing on design issues of the network communication architecture have been
widespread [40]. The protocol stack typically used by sensor nodes is composed of a
physical layer, data link layer, network layer, transport and application layers, as well
as a power plane, mobility plane, and task management plane [4] as schematically
illustrated in Fig. 1.3. The physical layer is responsible for frequency selection, car-
rier frequency generation, signal detection, modulation and data encryption [65, 11].
The data link layer is responsible for the multiplexing of data streams, data frame
detection, medium access (MAC) and error control. The MAC protocol ensures the
creation of the network infrastructure and efficient communication resource allocation
between the sensor nodes [67, 72, 42, 7, 56, 72]. The network layer provides rout-
ing capabilities [59, 64] to the transport layer and is responsible for internetworking
with external networks. Finally, the transport layer is responsible for maintaining
the flow of data when and if required by the application layer. The three planes
are responsible for task allocations between nodes and monitoring/managing energy
consumption, mobility. An investigation of current protocol and algorithm proposals
in these layers is presented in [4]. Technical issues and application requirements to
be dealt with by these protocols are multiple and often specific to the class of sensory
networks as mentioned earlier. Among those, efficient management of energy budget
is of paramount importance to the lifetime of the networks [36, 66]. Important issues
under investigation include node localization [15], clock synchronization [38, 37], fault

tolerance, connectivity and coverage issues [31, 8, 48, 39|, security [51], analysis of
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network fundamental performance limits, and hardware design [57, 11, 49, 71].

-
- =z ﬁ_
Application layer % 3
Transport layer ] 3 g
3 2
IR IR
o
Network layer g S, %
3 -
Datalink layer ?gl 3
@
Physical layer

Figure 1.3: Sensory network protocol stack.

1.2 Contributions

The extreme resource constraints under which wireless sensor networks must oper-
ate, strongly motivate an understanding of the fundamental performance limits of
these systems, for example in order to figure out in what areas improvements over
state-of-art protocol and hardware design are possible and efforts should be directed.
The main performance measure considered in the literature are capacity or through-
put, power consumption and network lifetime. Results on capacity may be found
in [34, 32, 5, 50, 17, 18, 47, 3]. Upper bounds on the lifetime of a sensor network
are derived in [6]. Energy expenditure is considered in [13, 30, 16, 14]. Distributed
compression is studied in [62, 60, 63, 55]. In most applications, sensor networks are
expected to autonomously extract information about their surroundings, perform ba-
sic collective processing and transmit the collected data to the end-user for further
processing and analysis. In this dissertation we study the problem in sensory net-
works of collecting sensor data at the network processing center. Although many
protocols based on resource-efficient heuristics have been proposed for data collection
in sensory networks [35], few analyses of the process have appeared. In this thesis we

derive new performance (with respect to time and to a lesser extent energy) results on
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data-gathering sensory networks. Specifically, we derive, via simple discrete mathe-
matical models, lower bounds on data collection time (delay) in data gathering sensory
networks and exhibit algorithms that achieve those bounds [22, 23, 24, 25, 26, 27].
Most relevant to our research is the so-called packet routing problem which consists
in moving packets of data from one location to another as quickly as possible in a
network and has been studied in [44, 28, 29, 12, 9] with respect to wireline networks

and general purpose wireless networks.

1.3 Thesis Outline

This dissertation is organized as follows: This chapter reviews briefly research issues
in sensory networks and summarizes our contribution to the field. In Chapter 2, we
describe optimal strategies to perform data collection under various assumptions and
derive corresponding time performances with respect to a simple discrete mathemat-
ical model for a sensor network. In this model the amount of data accumulated at
each sensor node (characterized by a number of unit data packets) after some given
observation period is assumed finite and determined. In typical scenarios however the
exact amount of data accumulated at each sensor node is unknown which motivates
the more complex model of the following chapter.

In Chapter 3, we model the number of data packets as a random variable and
analyze the delay (which is now a random variable) in collecting sensor data at the
base station. More specifically, we derive the distribution and the expected value
of the delay for a line network using the optimal scheduling. Furthermore, we look
into the effect of various parameters including size of packet, transmission range, and
channel erasure probability on delay. We also propose a simple distributed scheduling
strategy and analyze its delay performance showing that it is asymptotically optimal.
Finally we extend our result to more general topologies such as multi-line networks
and trees.

Chapter 4 contains our concluding remarks as well as open problems.



Chapter 2 Deterministic Sensory

Networks

In this chapter we study, with respect to a simple discrete mathematical model, the
data collection problem in sensory networks. In this model, the amount of data accu-
mulated at each sensor node (characterized by a number of unit data packets), after
some given observation period, is assumed finite and determined. We refer to this net-
work model as deterministic sensory network. More specifically, we describe optimal
strategies to perform data collection and derive corresponding time performances.
This chapter is organized as follows: In section 2.1 we describe our sensor network
model. We present results in deterministic sensory networks equipped with direc-
tional antenna elements in section 2.2. In section 2.3, we propose a generalization
to omnidirectional systems. We present a comparison analysis of the two systems
in section 2.4. Finally, we conclude in section 2.5. Miscellaneous derivations for the

chapter and Pseudo-code of presented algorithms are grouped in the appendices.

2.1 Model and Problem Statement

In this section, we describe the sensor network model on which the subsequent analysis
is based and formulate our problem within the framework of this model. As noted
in the introduction, in most sensing applications sensor nodes adopt a stationary
configuration while information is being gathered. Correspondingly, our models will
be static.

In stationary state, after the nodes have organized themselves into a network, we
assume two distinct phases of operation. In the first phase or observation phase, area
monitoring results in an accumulation of data at each sensor node. In the second

phase or data transfer, the collected data is transmitted to some processing center
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located within the sensor network (we refer to this node as the base station (BS) of
the sensor network). In this chapter, we investigate the efficiency limits with respect
to time of such data transfers.

We define a sensor network as a collection of n identical nodes { Ny, ..., N,,}. Each
node N; is associated with an integer 1; that represents the number of data packets
collected by this node during the observation phase. Ny denotes the BS which is
located within the network. Nodes (BS included) have limited wireless communica-
tions capabilities and cannot receive and transmit at the same time. All the nodes
including the base station have a common transmission range r and interference range
r" (to be defined shortly). Fig. 2.1 illustrates sensor nodes, together with gathered

data, scattered in a sensor field.

Sensor field

Figure 2.1: Sensor nodes, gathered data, and sensor field.

The interference model as defined in [34] for omnidirectional antenna systems is
adopted here. That is, a transmission from node N; to node N; where 4,5 > 0 is

successful, if for every other node Ni, £ > 0 simultaneously transmitting
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The second inequality specifies that node N; must be outside the interference range
of node N}, and defines the interference region of node Ny, as the disc of radius r(1496)
centered at Ni. In directional antenna systems, on the other hand, the interference
region of node N}, is only a portion of that disc, the sector formed by some angle 6.
Fig. 2.2 illustrates the characteristic parameters of the model: sensor nodes Ny, ..., Ng,
the transmission range r and the interference range ' = r(1 + ¢). In directional
antenna systems a transmission from Nj to Ny creates interference at node Nj (inside
the sector formed by 6). However the same transmission creates interference at nodes
Ng, N3 and is received by node N, (which is interference from the point of view of N,)
in omnidirectional antenna systems. Fig. 2.3 illustrates the sensory network formed
by the nodes of Fig. 2.1. Nodes within transmission range are connected through a
solid line while nodes within interference range are connected through a solid line or

dotted line.

Figure 2.2: Interference model parameters.

We assume in our model that time is slotted and a one-hop transmission consumes
one time slot (TS). The network is further assumed to be synchronous. A node can
only transmit/receive one data packet per time slot. Multiple transmissions may
occur within the network in one TS under this interference model by virtue of spatial
separation. Such a network may be represented by a weighted rooted graph {V, E, v, }
where V = {Ny, ..., N, }, FE denotes the set of links and v,, = (v, ..., ;). In this graph

model the root represents the BS (Ny) and an edge represents an existing wireless



Figure 2.3: Sensory network.

connection between two sensor nodes, or a sensor node and the BS. The data collection
problem in a given sensory network is defined as the problem of routing all the data
collected by the sensor nodes to the BS as efficiently as possible with respect to time
and energy. The data distribution problem, on the other hand, is the problem of
routing data to sensor nodes in a timely and energy efficient manner. In the following
work we shall focus on the time efficiency alone of the data collection and distribution

tasks.

2.2 Directional Antenna Systems

In the following section, we focus our attention on directional antenna systems. We
first study the data collection process in networks with linear topology (half-line, line,
multi-line), then move to the study of networks with tree topology and conclude with

a study of networks with general topology.
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2.2.1 Line Networks

In this subsection, we consider a line network (an example of which is given in
Fig. 2.4). A BS is placed at one end of the network. We assume sensor nodes
are regularly placed along the network. We denote by d the distance between any
2 nodes. Assume each node is equipped with directional antennas allowing trans-
missions over a distance r where d < r < 2d. Further assume that 0 is such that
(1 +9d)r < 2d. In this scenario there are two nodes (one on the left, one on the
right) within transmission/interference range of any given node in the line (except
for the end nodes). It is possible to extend this model to a more realistic scenario
where nodes are randomly placed along a line and where different values of r, ¢ are
considered (as long as end-to-end connectivity of the network is ensured). However,
we find that simple case to be most insightful. In the following section, we consider
more general scenarios. Let N; be the node at distance ¢ from the BS. We denote by
it — ¢+ 1 a transmission from node ¢ to node ¢ + 1. Our goal is to determine the
minimal duration of the collection phase and an associated optimal communication
strategy.
For purpose of solving this problem we look initially at the following converse problem
(which we shall refer to as the distribution problem); instead of nodes sending packets
to the BS, assume the BS is to transmit packets to nodes. The data transfer efficiency
remains our concern. This problem is of separate interest in sensor networks.
We propose the following simple algorithm for solving the distribution problem. We
shall prove subsequently it is optimal. The BS is to send first data packets destined
for the furthest node, then data packets for the second furthest one and so on, as fast
as possible, while respecting the channel reuse constraints. Nodes between the BS
and its destinations are required to forward packets as soon as they arrive (that is in
the TS following their arrival). We include, in Appendix B, Algorithm 1 running at
the BS.

The procedure is illustrated on an example, where V' = {0,1,2,3,4,5,6,7}, F =
{(4,i+1),0 <i <6}, v=(2,0,0,0,3,0,1),d <r <2d, (1+9)r < 2d, in Fig. 24.
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The schedule of transmissions, as determined by Algorithm 1, is drawn below the
network for the distribution and collection problems respectively. FEither way it is

performed in 11 TS.

BS 2 3 1
@ e e e o o o o
T .

3 —_—

5 s —_— —_—

7 F

9 F - -

1r .

Time Slot

1 _ -

3 F -

5 L - -

7 F

9 7* - -

110 =

Time Slot

Figure 2.4: Optimal distribution and collection schedules in 8-node line network.

Next we determine the performance of our algorithm in general. Denote by T; the
last busy TS at node i in the execution of our distribution algorithm (In the previous
example, we have 77 = 10,7, = 9,73 = 10,7, = 11,75 = 11,7 = 7,T; = 7). Clearly
then our algorithm runs in max {Ti}. T; is a function of the distance to the BS, the
number of packets destined for node 7 as well as the number of packets forwarded by
node i. Assuming v; = 0 for ¢ > n, node i’s last busy TS when running Algorithm 1
is )

i_1+22j2i+1yj lfVZ:O

Ti=qui+2% 0,0 if i=1andy >1 (2.2)

i_2+22j>iyj 1f122andu221
L 2

Proof. ¥Yi > 1, node i is idle the first ¢ — 1 TS. It forwards EjZi—i-l v; data packets

to further nodes and receives v; data packets that are destined for itself. Forwarding
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a data packet consists in receiving that data packet and transmitting it right away
and therefore a node involved in forwarding one data packet will remain busy two
consecutive TS. Receiving a data packet on the other hand consumes only one TS

but in our scheme forces node i > 2 to remain silent in the following TS. Therefore,

V121:>T1:2ZVJ'+I/1

Jj=2

vi>li>1=T=(-1)+2 ) y+2u-1)+1

j>i+l

vi=0=T=(i—-1)+2 Y v

§>it1
O

We define, for a given sensor network, 7, (v) the minimum length of a time schedule

over all time schedules that perform the distribution job.

Theorem 2.2.1. Assuming v; =0 for i > n, the minimal data collection time in the

directional line network v of length n' is

T.v)= max (i—1+4v;+2 z": v;) (2.3)

1<i<n—1
§>i+1

Proof. Clearly the maximum of T} is obtained over the set {i > 1|; # 0}. Thus we

have the following upper bound on T, (v)

T.,(v) < max T,
(i1 v40}

A lower bound on T, (v) is as follows. Assuming v; = 0 for i > n, we have

T.(v) > max (i—14v;+2 Z v;)

T 1<i<n—1
j>i+l

Indeed node 7 has to forward » 7., v; data packets to further nodes. Forwarding

one data packet consists in receiving and transmitting that data packet and therefore

L Implicitly we assume that the distance to the BS of the furthest node carrying a packet is n.
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results in a two TS consumption (per forwarded packet). Besides, it is itself the
destination of v; data packets. Each received data packet costs at least one TS.
Furthermore, node i can’t be active before it receives a data packet, which takes at
least i — 1 TS. Therefore, S; £ 2 > jsis1 Vi tvi+(i—1) is alower bound on any time

schedule for all 7. Hence, | hax 1SZ- is a lower bound on T, (v).

Finally, we prove that lower and upper bounds on 7T, (v) are equal and therefore
the proposed schedule is optimal: Clearly S; =77 and Vi > 2, S; =T; if ; < 1. On
the other hand, if v; > 1 then T; > S; but then either v;,_; = 0 and then S;_; = T; or
v;_1 > 1 and then S;,_{ > T;. O

Corollary 2.2.2. In the particular case where no two consecutive components of

vector v equal zero, Eq. (2.8) reduces to:

T.w)=n+2> vy (2.4)

1>2

We now return to the data collection problem. The construction of a schedule here
is based on the symmetry of the operations of distribution and collection. A time
schedule that is symmetric to the distribution problem’s schedule with respect to a
fictive horizontal axis (see example in Fig. 2.4) provides us with an optimal solution,
the time to transmit data packets from nodes to the BS being the same as the time
to carry out the converse operation (and being therefore minimal). In particular a
transmission ¢ — ¢+ 1 occurring at T'S j in the distribution problem is a transmission
i+ 1 — i occurring at TS T,,(v) + 1 — j in the collection problem. Since the solution
to one problem gives us the solution to the other, we only consider the distribution
problem in the sequel. Note that an additional issue is raised in the data collection
case; indeed the described algorithms don’t require the network to be synchronous
in the distribution case (so the algorithms may be run in a distributed way) whereas

they do in the data collection case.
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2.2.2 Toward More General Scenarios

The general line case is shown in Fig. 2.5. It consists of n randomly located sen-
sor nodes Ny,..., N, along a line and a BS N, at the left end of that line. It is
assumed that each node’s transceiver has a common transmission range r such that
r > JJnax d(Nj, Niy1) where d(N;, N;y1) denotes the distance between nodes N; and
Niy1 (which ensures end to end connectivity of the network) and interference range
7" = (146)r. Under these assumptions any given node will have in general more that
one neighbor to the right (resp. left), those numbers varying from one node to the
other. Particular cases of this scenario are solved in the remaining of this section. We
first study the case where the transmission range is fixed and equal to one hop and

the interference range is variable. We then study the case of variable transmission

range.

Figure 2.5: (n + 1)-node line network where " = 2r-.

This analysis constitutes a generalization of the line network analysis in the previ-
ous section which allows us to study the respective impact of the transmission range
and the interference range on the data collection process. We assume, for simplicity,
that the number of left and right neighbors is the same (one in this case) for all nodes.
Furthermore, it is convenient to imagine a line network with regularly spaced sensor

nodes.
First case: variable interference range

We fix the transmission range to 1 hop and the interference range to m hops (that is
r=1and § = m — 1). Note that in the previous section, m was taken to be 1. In
practice m is often between 2 and 3.

The distribution strategy for the BS is to transmit v,, data packets to node N, first,

then v, packets to N,,_1, and so on, as fast as possible while respecting the channel



15

reuse/transceiver constraints. This strategy’s time performance is max T; where
(2

Z1<] Jvi+my s, v if v > 1
- 2—|—m(zj>muj—1) if 3k > m such that: vy = ... =11 =0,1, > 1
1= a
2+ k(v k—1>+zk+1<]jVJ+ijZmVj if
\ E|]{Z2§k<m,V1:...Il/k_1:O,Vk21
(
Z2§j§m—1jyj+m2j2m v if vy >1
- 3—|—m(2j>muj—1) if 3k > m such that: v, = ... =141 =0,1, > 1
2 = B
dk2<k<m,in=...=1_1=0,1p, >1

Z jl/j—l—mZVjif2<i<m

i<j<m—1 j>m

k+m> o v if vpyr > 1
Thir = jEmebk TS if k>0

k+1+m2j2m+kljj if Uy =0

The proof follows a similar argument as the one used to prove Eq. (2.2) and is
omitted. The following theorem gives a closed form expression for the minimum data

collection delay. This generalizes Theorem 2.2.1.

Theorem 2.2.3. The minimum data collection time T."(v) on directional line net-
work v, when the transmission range is 1 hop, and the interference range is m hops,
18

() maX(i—lJrZ;iT 2(.]_Z+1>Vj+m2]>z+m 1 Vi, Ym > 2
mV — 7

u

(2.5)
max(i —14+v;+2 o, v) if m=1

Proof. We have T!"(v) < maxT;. A lower bound on the minimum time performance
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can be derived as well.
Vi>LIrW) >i—1+Y v+ > vit...+ Yy (2.6)
Jj=i Jj=i+1 j2it+m—1
Indeed transmissions ¢t —1 — 7,2 — i+ 1,...,1+m — 2 — i +m — 1 may not occur
concurrently due to channel reuse constraints. Inequality (2.6) may be rewritten
Ym > 2, T"(v) > max(S;) (2.7)
where
SiE(-1+ ) (G-i+ly+m > 1) (2.8)
i<j<itm—2 j>itm—1

The case m = 1 may be derived from the above formula by choosing m = 2.

Assume there exists jo, 1 < jo < n such that Vi # jo, T, > T; Tjy+1 < Tj,

oifjozlthenV121:>51:T1
0iijIchel’lVgZ1,1/1:OjTg—ngzzngmVj—l>0
n=0=1T =T,= S5, >T,. Indeed S; > T; since

1/121:>51:T1
Zlgjgm_ljl/j+m—220 (m >2) or
Sicjena v H k=220 (k>2)

and vy, =0= 5, -1, =

° if2<j0<m:>1/2->1,1/1:...:1/2-_1:O:>Tj0—51:—Zlgjgi_ljl/jzo

Oifj0:m+l€ k20:>Vm+k21 Vk:---:Vk-l—m—l:0:>Tm+k_5k+1—

k4+m—1/ .
- Zj;k-f—ll(] - k)’/j =0

Therefore max 7; = max S; and Theorem 2.2.3 follows.
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Second case: variable transmission range

In this section, we consider the problem of scheduling when each node is allowed to use
up to h hops. Of course, a longer transmission range leads to faster data collection.
This is quantified in the following theorem where the minimum data collection time

Tonin(h, vy) is expressed as a function of the transmission range h (hops).

Theorem 2.2.4. For a one-sided line network of length n in which the ith node has
v; packets and is equipped with directional antennas, the minimum collection time of

the packets at the BS as a function of the transmission range h in hops is
Tmzn(hu l/n) = max(S', Sl, Sg, ey Sn—h) (29)

where

< > isitn Vi — 1+ (i mod h) i .
S, = Zyj—i—{ 24t . —i—{ﬁJ—i-l,OSzgn—h

j>i+h

l h
S" = Sy + max (Z vj — 1,0) + Z v, (2.10)

j=1 j=l+1

where | is the unique solution to | +ng =0 mod h such that 0 <1 < h—1.
Remark: Note that when h = 1, Eq. (2.9) reduces to the familiar Eq. (2.3).

Proof. The proof is similar to the proof of the case h = 1. Here we only outline the
generalization. The proof has two parts. Firstly, we need to show that the right-hand
side of (2.9) is a lower bound for the collection time. Secondly, we prove it is an upper
bound as well by exhibiting a schedule with this time performance.

In order to show that the right-hand side is a lower bound, we first consider the
h nodes i,1 < i < h closest to the BS. They need to forward n, = Zj>h vj packets.
If n, < h, this can be done in n; + 1 TS or more. This takes exactly n, +1 TS
if all packets to be distributed are located at node h + 1 and more otherwise. If
h+1 < ny < 2h, this can be done in nj, + 2 TS or more. So in general it takes at

least ny, + |22~ | + 1 TS. More generally if n,;, denotes the number of packets to be
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forwarded by the h nodes 7,7+ 1 < j < i+ h, it can be shown that it takes at least

n;p+ Lni’”(ni’hh mod h)_lj +| £ ]+1 TS to do so. Therefore the maximum of the previous

expression over ¢ gives a lower bound for the data collection time performance. We are
not done though. Indeed this lower bound is not achievable when there are packets
to be distributed at distance ¢ where 7,1 < ¢ < h. An additional lower bound may be
derived to handle this case by reconsidering the first A nodes. They must not only
forward >
be adjusted (to S’) to take this fact into account.

ishVi packets, but also receive > i<n Vi packets. The lower bound Sy may

A possible (optimal) schedule for the distribution problem is as follows. It consists
of transmitting data packets first to the furthest node, then to the second furthest
node and so on as fast as possible until all packets at distance greater than h have
been served. Packets at distance ¢,1 < i < h are served in the reversed order, i.e,
from closest to the BS to furthest. To prove this is indeed optimal, we compute
the algorithm’s time performance and show it achieves the lower bound previously
exhibited. This is similar to what was done in the case h = 1 and is left out here for

the sake of brevity. O

In order to get a better insight into the result of Theorem 2.2.4, we give a simple
illustrative example.
Example: We consider a line network of length n, where each node carries exactly
one data packet and has a transmission range of h < n hops. Direct application of

Theorem 2.2.4 gives the minimum collection time as

T=n+ L%J —1 (2.11)

Fig. 2.6 shows an instance of this network: n» = 10 and h = 3. Hence the data

collection time is 12TS. The associated distribution schedule accompanies the figure.
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Figure 2.6: Minimum length data distribution schedule in 10-node line network with
maximum transmission range of 3 hops.

2.2.3 Synchronization Problem

Up to now we have assumed that all sensor nodes and BS were synchronized. In this
section, we study the impact on the data collection time of lack of synchronization in
the network. In our communication model we have assumed that the transmission of
a data packet consumed one TS. Let us be more precise. The transmission of a data
packet is made up of a transmission phase (at the transmitting node), a propagation
phase (from the transmitting node to the receiving node) and a reception phase (at
the receiving node). Assuming sensor nodes are about one meter apart, that the size
of a data packet is about 20 bytes and data rates are of the order of 10 kbps, we can
get an idea of the duration of each phase. We find ATX = ARX = 16 107% s
which is very large compared to the propagation time 0.33 * 1078 s. The latter may
therefore be ignored for the purpose of this analysis. Then, the first half of the TS
is used for transmission of the data packet at the transmitting node while the second
half is used for reception of the data packet, by the receiving node. Fig. 2.7 illustrates
the distribution schedule for a particular network assuming perfect synchronization
(left figure, delay is 6 T'S) and multiple unsynchronized cases. In the middle figure
all sensor nodes are synchronized but out-of-synch with the BS and the delay is 8.5
TS. In the right figure the sensor node at distance one from the BS is out of synch
with other nodes and the delay is 9 TS. We have the following theorem.

Theorem 2.2.5. The worst-case time performance in an unsynchronized directional
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line network is

Tu(v)= max (2i—3+1;,+2 Y 1) (2.12)

1<i<n—1
j>i+1

Proof. The proof follows a similar argument as the one used to prove Theorem 2.2.1.

O

The worst-case performance for the previous example is illustrated in Fig. 2.8.
Delay becomes 11 TS. In conclusion the data collection time is quite sensitive to
variation in clock synchronization. Our analysis shows indeed worst-case performance

degradation in the order of 50 %.

104 + +

Figure 2.7: Distribution schedules in synchronized and unsynchronized linenetwork.

2.2.4 2-line Networks

Consider now a line network and place the BS anywhere on that line. This may be
seen as a 2-line network (p,rv). We denote by T, (s, v, ) the optimal performance

achievable on a 2-line network. The scheduling procedure, a particular case of the
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Figure 2.8: Worst-case out-of-sync distribution schedule in line network.

multi-line algorithm described in the next section, is illustrated in the example of

Fig. 2.9.

2 1 1 3 2 1
< 1 L
3
5
7
—_ —_ o) E— — =
ub—"
Time Slot

Figure 2.9: Optimal distribution schedule in 2-line sensor network.

Theorem 2.2.6. The minimum collection time on a directional 2-line network (w, V)
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max(Ty(v) + 1, Yoy i +11)  if Tulp) = Tu(v)

max(T,(v), S i+ vi) i Tuw) > Tulh)

(2.13)

Tu(p) = Tu(v) = Tu(p,v) = max(T,(p) + 1. s + 13))

i>1
Tu(n) > Tulw) = Tulpn,v) 2 max(T, ), 3 e+ 1)
i>1
It is easy to see why the above described algorithm achieves this lower bound. Con-
sider for example the case T,(n) = T,,(v). Either the algorithm takes T'(u) + 1 TS
to perform the job or it takes T, (resp. T7) defined as the last busy TS at dis-
tance 1 to the left (resp. to the right) from the BS. If it so 77, (resp. T7) equals

2221 Wi + v;). O

2.2.5 Multi-line Networks

In this section we consider multi-line networks, by which we mean multiple line of
sensors meeting in one single point, the BS. Fig. 2.10 and Fig. 2.9 are examples of
such networks. We describe an algorithm for distributing data in these networks.
The algorithm (listed as Algorithm 2 in Appendix B), running at the BS, determines
at each TS toward which line to transmit, if transmission is possible at all. The
direction of transmission is greedily decided, based on estimates (one per line) of the
completion time of the data transfer. Initial estimate for a given line is determined
by Eq. (2.3). The legal direction associated with the biggest estimate is chosen (a
legal transmission is one that respects the channel reuse constraints, so, for example,
it is not legal for our algorithm to transmit in two successive T'S toward a given node
located at distance greater than 1 from the BS), ties being broken randomly. When no
legal direction exists the BS remains idle. After a decision has been made (transmit

toward a particular direction or stay idle) the estimates at each line are updated
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according to the following rule. If a legal direction was not chosen, its new estimate
becomes its old estimate plus one. Illegal direction estimates remain unchanged. The
idea is to minimize at each TS the overall estimate of the transmission time.

We illustrate the procedure on an example in Fig. 2.10. In the accompanying table,
we list data transfer completion time estimates at each TS and the corresponding
decision made by the BS. As previously stated the initial completion time estimates
are computed using Eq. (2.3). The table reads as follows. TS 1: All 4 transmission
directions are legal. The BS chooses to transmit toward line A. At TS 2, transmitting
toward A is not a legal move, the legal transmission direction associated with the
biggest estimate is B, etc. Along a given line, the packets destined for furthest nodes
are sent first by the BS. As for the other nodes they merely forward the data packets
of which they are not recipients (a packet is transmitted in the following TS that it

was received). In this example the algorithm performance is 10 T'S.

l oo o
3 (D) 1
o— o o o o 6 o o o o o
(A) ©
1 ¢ TS ABCD BS
1 9 75 3 A
2 9 8 6 4 B
[} 3 9 8 75 A
4 9 8 8 6 B
° 5 989 7 A
6 8 10 8 C
7 9 9 B
° 8 0 D
B
,e B

Figure 2.10: Optimal distribution schedule for BS in 4-line sensor network.

Theorem 2.2.7. Algorithm 2 is optimal.

Proof. We note that equivalently this algorithm picks at each TS the legal direction
B; that maximizes T'(v") (that quantity being updated at each TS to take into ac-
count the packets delivered).

We first introduce a few notations and definitions: Let N denote the considered net-
work for which one wishes to derive an optimal schedule. Let N, denote the “equiv-

alent” network to N (see following definition). Let P denote the considered problem
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of scheduling data transfers to the nodes. Let P’ denote the same problem under a
relaxed set of conditions, namely that simultaneous transmission and reception (of
different data packets) are allowed in a single TS at any given node. This problem is
independently studied in Appendix A. Let S(P, N) denote a schedule for problem P
and network N. Let S|pg(P, N) denote the schedule of the BS derived from S(P, N).
Let S°P'(P, N) denote an optimal schedule for (P, N).

In the “equivalent” network N, of Network N the data packets along a particular

line are redistributed along the corresponding line in /N, in the manner illustrated in

Fig. 2.11.

@ —9—9o—0o 0o oo —o—o—o N,

Figure 2.11: “Equivalent” network construction. Distribution schedules in network
N (solid arrows) and corresponding equivalent network N, (solid arrows + dashed
ArTows).

Although packets in N and N, are distributed differently over the network, we
shall see that the data collection is the same for both networks. It is in that sense
that they are “equivalent.” Formally the construction is as follows. To each line of
N, say By, if ¥ denotes the number of data packets at distance i from the BS along
By, T(v*) denotes the length of an optimal schedule for that particular line, and T}
is the last busy TS at node 7 in the execution of Algorithm 1 for that line, associate

a line in N, say B}, such that, if /¥ denotes the number of data packets at distance
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i from the BS along Bj, then

N L
=1 v =1

122 Vigey gryg =1 for 0<j<i-1 ifvf=1>1 (2.14)

vE =0 otherwise

By construction, N, has the following characteristics:

e Same total number of data packets as N, same number of data packets per line,

same number of lines.

e Each line carries the same workload as its corresponding line in N (i.e., Vk,

TW*) =TW")).
e Node 7 > 1 carries 0 or 1 data packet.

e Two nodes with data packets are separated by at least one node with no data

packet.

Example: Consider the following 2-line network N: By : v! = (0,4), By : v? =
(2,0). Its equivalent network N, is a 2-line network such that:

B, : v =(0,1,0,1,0,1,0,1), B, : v = (2,0) = 12
Lemma 2.2.8. There exists an optimal schedule for problem P’ and network N,.

Proof. A construction of such a schedule is given in Appendix A. O

Lemma 2.2.9. Let S°?'(P', N,) denote the optimal schedule constructed in Appendiz
A for problem P’ and network N.. It is possible to construct a schedule S(P, N,)
for problem P and network N, from S°P'(P',N.) by judiciously reordering the BS

transmissions such that the two schedules have the same length.

Proof. With the convention that furthest nodes should be served first along a given
line, a schedule S(P/P’, N,) is entirely defined by its restriction to the BS schedule
Sips(P/P', N.). The BS schedule being a sequence of directions B; corresponding to
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the lines toward which transmit at each TS as well as possible silences (correspond-
ing to BS being idle). S|ps(FP’, N.) = (By, B}, By, B}, B;, By, —, —) is an instance of
an optimal schedule for problem P’ and the network described in previous example
where “-” denotes a silence.
We construct S(P, N,) from S?*(P’, N,) by iteratively applying the following opera-
tion on S: insert(i,j)(S) for j > i > 1 which returns a schedule S" where element j
in schedule S was inserted between element ¢ and i+ 1 in .S. In the previous example
insert(1,5)(Sips(P', N.)) = (B, By, Bl, Bl B, By, —, —).
This operation doesn’t change the length of S, that is Length(S’) = Length(S) as
long as it is not applied more than once for any 7. This is a direct consequence of the
fourth characteristic of an equivalent network. Next we describe the construction.
If S is a valid schedule (i.e., satisfying constraint P) we are done. Otherwise assume
the first conflict occurs in position iy of schedule S (that is constraint P does not
allow for transmission toward element i followed by transmission toward element
ip + 1). In the instance above, there are conflicts in ig = 1,2,3,5. Further assume
the first direction distinct from the one in position g and that follows it is element
11 of S. If there is no such direction then denote i; the position of the first silence
following (it always exists by definition of NV,). Then apply insert(ig,i1)(S). Clearly
the procedure produces a new schedule S of same length. Thus the portion of the
schedule S comprised between element 1 and iy + 1 satisfies P. Repeat until the
schedule S satisfies constraint P. Since the number of initial conflicts is finite, this
procedure ends in a finite number of steps. In the previous example these operations
are in order: insert(1,5), insert(3,6) and insert(5,7). They lead to the schedule:
Siss(P.N.)) = (Bl By, B, By, B, —, B, -) O

By lemma 2.2.9, the lengths of S(P, N,) and S°*(P’, N,) are the same. Thus
S(P,N,) is optimal. Denote it S°?(P, N.). One may construct a schedule S(P, N)
from S°*(P, N.) such that the lengths of the two schedules are the same and S|ps(P, N)
= Sips(P, N). If S(P,N) is not optimal then there exists a schedule S’(P, N) such
that the length of S’(P, N) is less than the length of S(P, N). But from S’(P, N) one



27
may construct a schedule S'(P, N.) such that the two schedules have the same length
and S/pg(P, Ne) = S{pg(P, N) so the length of S’(P, N,) is less than the length of
S°Pt(P, N,), a contradiction. Thus S(P, N) is optimal, which concludes the proof of
Theorem 2.2.7. O

2.2.6 Tree Networks, Case Where Base Station Degree Is 1

Throughout this paragraph we assume that the degree of the root of the consid-
ered graphs is one. We define the equivalent linear network (G, E;, 1) of a network
(G,E,v): If G = {Ny, Ny,...,N,yandv = (1q,...,v,) then G, ={0,1,...,m}, E; =
{(i —1,9),1 < i < m}and vy = (v,...,Vm) Where m = m?X(d(No,Ni)) and
Vij = D i)d(No,Ny)=; Vi We illustrate a tree network in Fig. 2.12 (n = 14, m = 7); its

equivalent linear network is shown in Fig. 2.4.

Z 0T'6'L'SIE'T

Figure 2.12: A 15-node tree network with degree of BS=1, the equivalent linear
network is drawn in Fig. 2.4. Transmission time steps are written next to the edges.

The equivalent linear network’s schedule may serve as a schedule for the initial
tree network. Next we explain how transmission time slots for (G, Ej,v;) (deter-
mined by running algorithm 1) may be mapped onto (G, E,v). Consider an element
in £, say (Ny,, Nj,), such that d(No, N;,) = o (hops). Based on the number of data
packets IN;, has to forward, say f;,, we shall allocate transmission time slots to edge
(Niy, Nj,). Define E, = {(N;,N;) € E|d(Ny,N;) = a}. Each packet P follows a
path path(P) from the BS to its destination node where path(P) denotes the finite
sequence of edges (ey, ..., e) traversed in that order by P. For convenience we shall

write path(P) as the sequence of vertices (vertices(ey), ..., vertices(ex)). We define
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PBo = {P|3e €E, Npath(P)}. We define T, = {TS used by (a,a + 1) € E;}. We
have |Bo| = >  (v; + f;) => v =|%a]- Thus one may define a one-to-one
(Ni,Nj)EEa k>a
correspondence g between P, and ¥, that associates the packet P with the longest

path in PB,, with the TS with the smallest index in ¥,; the packet P with sec-

ond longest path, with the TS with second smallest index and so on. We finally

define ﬁgNiO’Njo) ={P| (N, Nj,) € path(P)}C B,. (N, Nj,) is associated with
time slots g(‘B&NiO’NjO)). In the example of Fig. 2.12, we have {P} = {P,Ps,...,Fs}

where the first packet is characterized by path(P;) = (No,N1,N2,N3,N7,Ng,Ng,N1),
the second one by path(P,) = (Ny,N1,N2,N3,N4,N5), the third one by path(Ps) =
(No,N1,Ng,N13,N12,N11), the fourth one by path(P;) = (Ng,N1,No,N3,N7,N14), and
finally the fifth and sixth ones by path(Ps) = path(Ps) =(No,N1). We also have E; =
{(N1,N2),(N1,Ne)}, PB1 = {P1, Py, Ps, Py}, Ty = {2,4,6,8}, and P = (P, P, P}
Thus edge (N7,Ns) is associated with time slots g(B""™) ={2.4,6}. Thus Algo-
rithm 1 run on the equivalent linear network provides a BS transmission schedule.
Intermediate nodes simply forward data packets to further nodes as they arrive (in
the TS following their arrival). This requires a routing table at junction nodes. In
a centralized version of this algorithm nodes may be informed of their transmission
slots. Fig. 2.12 shows such a mapping for the considered example.

Although an equivalent linear network has a reduced set of possible concurrent
transmissions, this procedure produces an optimal transmission schedule. This follows

from the following lemma.

Lemma 2.2.10. Given any connected graph G such that degree of BS is one, if to(G)
denotes the time performance of a given data distribution algorithm, and v; denotes

the number of data packets at distance j from the BS, then

t2(G) > max(i — 1 +v; +2) ) (2.15)

j>i
Proof. > i>1Yj data packets must be delivered to nodes at distance greater than
1. Therefore link (0,1) is activated )., v; times and links (1,2) (all edges from a

node at distance 1 from the BS to a node at distance 2) are activated » .., v; times
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but link (0,1) can not be activated at the same time as a link (1,2), thus we have
ta2(G) > ijl vj+ ijz Vj.

> ;>i vj data packets must be delivered to nodes at distance greater than ¢ > 1.
Therefore edge (0,1) is activated at least >, v; times and edges (1,2) >_,., v; times
but link (0,1) can not be activated at the same time as a link (1,2), moreover after
> j>iVi T 2_;5iv; TS the last data packet sent by the BS is at distance 0 or 1 from
the BS if v; > 0 and at distance 0, 1 or 2 from the BS if v; = 0. Indeed it takes a
minimum of 2 iji v; TS to get all the data packets out of the positions 0,1,2. Thus
after >, v; + .o, v; TS whether v; > 0 or v; = 0 one data packet is at least i — 1
hops away from its destination, therefore: t5(G) > >, v; + >, ;v; +i— 1. Hence

the stated result. O

2.2.7 'Tree Sensor Networks, General Case

The results in the previous sections suggest the following algorithm for dealing with

general tree networks.

1. Linearize the subtrees attached to the BS (with BS degree equal to 1) according

to the procedure described in section 2.2.6.

2. Apply multi-line algorithm described in section 2.2.5 to the resulting multi-line

system.

This procedure produces an optimal schedule. This results from Theorem 2.2.7 and

Lemma 2.2.10.

Theorem 2.2.11. If 7 is a tree network and y]’? denotes the number of data packets

at distance 7 from the BS along branch k, then the minimum data collection time over

T is

T,(T) = max(i—1+ > v (2.16)
jzi
where v = 37, V¥ and V¥ is obtained from V¥ by equation (2.14).

Proof. This follows directly from Lemma 2.2.11. O
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2.2.8 Networks with Cycles

We propose a data distribution/collection strategy on general graphs. However that
strategy is not optimal in general. In this section we prove that our algorithm performs
within a factor of 2 of an optimal strategy. The proposed strategy consists of two

subprocedures:
1. Extract a shortest path spanning tree 7g5p.
2. Apply previously described distribution strategy on trees to Zgp.

Note: one can show that shortest path spanning trees always exist by using Dijkstra
algorithm. The following theorem provides a motivation for choosing a shortest path

spanning tree. The proof follows from Theorem 2.2.11.

Theorem 2.2.12. For any (connected) graph G, for any spanning tree T of G and
for any shortest path spanning tree Tsp of G, the minimum data collection time over
network T, T,,(T) satisfies

Tu(Tsp) < Tu(T) (2.17)

Theorem 2.2.13. For any (connected) graph G, and any shortest path spanning tree

Tsp we have

Llfse) < 1,(6) < 1u(Tp) (2.18)

Proof. The second inequality is clear. For a proof of the first inequality we define:
t1(G) the minimum distribution time when transmission and reception are simulta-
neously allowed in a TS at any given node. Clearly ¢;(G) < T,(G). By corollary
A.0.4 we also have t1(G) = t,(Zsp). Besides for any connected graph A the following
inequality holds: T,(A) < 2t;(A). Choose A = Tgp, the inequality follows. O

These bounds are tight. The upper bound is achieved when G = Tgp. As for
the lower bound consider the following network G where n data packets are stored at
distance k hops from the BS in node z. Further assume there are two distinct paths

of length k from the BS to z.
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k-1
Tsp is the line network v = (0,0,...,0,n). We have T,,(G) =n+k —1 (for k > 1)

and T,,(Zsp) = 2n+ k — 2 (for k > 2), thus 7,,(G) converges toward T, (Zsp)/2 when
n goes to infinity (for k > 2).

Bounds on T,,(G) can also be written in the following more explicit way.

Theorem 2.2.14. The minimum data collection time over a graph G satisfies

max (i — 1+ Y 1) < T,(G) <max(i—L+1;+2 ) 1) (2.19)
Z j>i ' jitl
Proof. We have from corollary A.0.4 ¢,(G) = max (i — 1+ >, ;) O

Both bounds on 7),(G) are achievable. The lower bound for instance is achieved

in the previously considered example where max (i — 1+, v;) =n+k— 1.

2.3 Omnidirectional Antenna Systems

Results on directional antenna systems may be to some extent adapted to omnidirec-

tional antenna systems. This is the purpose of this section.

2.3.1 Line Networks

Our results readily extend to omnidirectional antenna systems. The procedure is
illustrated in the example of Fig. 2.13 where V' = {0,1,2,3,4,5,6,7,8,9}, E = {(i,i+
1),0<i<8},v=1(2,1,0,0,0,0,0,1,1),d <r < 2d, (1 +9)r < 2d.

The schedule of transmissions, as determined by Algorithm 3 in appendix B, is drawn
below the network (upper schedule) for the distribution problem. It is performed in
11 TS.

Next we determine the performance of our algorithm in general. Denote T; the last
busy time slot at node i, 1 < i < n in the execution of our distribution algorithm (In
the previous example, we have Ty} = 10,7, = 8,13 = 7,7y = 8,15 = 9,1 = 10,17 =

11,7y = 11,7y = 9). Clearly then our algorithm runs in max {Ti}. T; is a function
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Time Slot

Figure 2.13: Optimal distribution and collection schedules in 10-node line network
equipped with omnidirectional antennas.

of the distance to the BS, the number of data packets destined for node i (that is ;)
and the number of data packets forwarded by node 1.

Assuming v; = 0 for ¢ > n, we have

- 32].231@-—1 if 1y =0, V2:Oandzj231/j21
L v+ 215 +3 ijg v; otherwise
Ty =20y + 3ZV]~
Jj=3
Vi >3 )
i—2+3) v fyi=0and ;v >1
L-{ivsy, .y, itne (2.20)

L =

Proof. Denote by f; the number of data packets forwarded by node 1.
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Ifi=1,
n=0,=0F>1=T=3(fi—-1)+2+(—1)
otherwise, T; = vy + 215 + 3(fi — 1)
If 1 =2,
ﬂ :2V2—|—3(fi—V2)
Vi > 3,
nm>1=T,=3fi+1+(G—1)
v >2=T,=3fi+3wv;i—1)+1+(i—1)
but,
fi=2 v
j>i
hence the stated result. OJ

Clearly the maximum of 7} is obtained over the set {i > 1|v; # 0}. We define, for
a given sensor network, 7T,(v) the minimum length of a time schedule over all time

schedules that perform the distribution job. Thus we have the following result.

T,(v) < max T; 2.21
( ) {i>1]v;#0} ( )

Let’s now derive a lower bound on 7,(v). Assuming v; = 0 for i > n, we have

T,(v) > max (i — 1+ v +2vi0+3 Y 1)) (2.22)

1<i<n
§>i+42

Proof. Consider node ¢ > 1, assume there exists £ > ¢ such that v, > 1. Then
e edge (i — 1,4) is activated )., v; TS.

e edge (7,7 + 1)-if it exists- is activated ) v; TS.

j>i+1

e edge (i + 1,7+ 2)-if it exists- is activated > v; TS.

j>i+2
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Clearly transmissions ¢ — 1 — ¢,1 — ¢+ 1,7+ 1 — i+ 2, Vi > 1 may not occur
concurrently (channel reuse constraints). Besides from our initial assumptions we

know that idle time of nodes € {i,i+ 1,7 + 2} > — 1. Therefore,

TO(V)ZZI/]'—I— Z v + Z vi+(i—1)2 5,

Jj=i Jj=zi+l Jj=i+2

We have Vi, T,(v)>S;, thus T,(v) > max ;. O

Next we prove that the lower bounds and upper bounds previously derived on

T,(p) are in fact equal and hence that the proposed schedule is optimal.

Theorem 2.3.1. Assuming v; = 0 for i > n, we have that the minimum data collec-
tion time, in the line network v of length n* equipped with omnidirectional antennas,
18

Tp(v) = max (i — 1+ v+ 2041 +3 Y 1) (2.23)

1<i<n
j>i+2

Proof. Assume there exists j such that Vi # 7, T, > T; , T, < T}
° lfj:1:>512T1:>T1251

.ifj:2:>y221,V1:O:>T2_52:V2+V3_1ZO:>T2252
n=0="T=T,=5 >1T

o ifj>3=v,9=0,v_,=0,1v;,>1
Vj:1:>7}:Sj_2

vj22=1T;=255-
I

Corollary 2.3.2. In the particular case where no three consecutive components of

vector v equal zero, Eq. (2.23) reduces to

T,(v) =1 +2+3) v (2.24)

1>3

2 Implicitly we assume that the distance to the BS of the furthest node carrying a packet is n.
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Again the construction of a schedule for the data collection problem is based on

the symmetry of the operations of distribution and collection.

Theorem 2.3.3. The minimum data collection time over an omnidirectional line
network v, assuming the transmission range is 1 hop and the interference range is m

hops, is

Vm>1, T;"(v)=max(i—1+ Y G-i+y+(m+2) Y ) (2.25)

i<j<it+m j>itm+1

Proof. The proof follows a similar argument as the one used to prove Theorem 2.2.3.

O
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Figure 2.14: Optimal distribution schedule for BS in 4-line sensor network.

2.3.2 Multi-line Networks

Next we illustrate the procedure to distribute data on a multi-line network on an ex-
ample (Fig. 2.14). In the accompanying table, we list data transfer completion time
estimates at each TS and the corresponding decision made by the BS (as to which

direction to choose). As previously stated the initial completion time estimates are



36
computed using Eq. (2.23). The table reads as follows. TS 1: All 4 transmission di-
rections are legal. The BS chooses to transmit toward branch C' (it could have chosen
D as well, as ties are broken randomly). At TS 2, transmitting toward C' is not a
legal move, the legal transmission direction associated with the biggest estimate is D
(notice that transmitting toward A or B makes the overall completion time estimate
be 11 TS, whereas transmitting toward D leaves the completion time estimate un-
changed (10 TS), so D is also the legal move that minimizes the estimated completion
time), etc. The packets destined for furthest nodes are sent first by the BS. As for
the other nodes they merely forward the data packets of which they are not recipients
(a packet is transmitted in the following T'S that it was received). In this example
the algorithm performs in 12 TS (an obvious lower bound on the time performance
is 11 TS corresponding to 11 data packets). The previously described algorithm is
optimal when the number of data packets at distance 0 and 1 from the BS is zero.
If it is not the case, the algorithm needs to be refined, in particular estimates ties
should not be broken randomly in general. In this proof we assumed that relay sensor
nodes can only perform simple receive and forward type operations in which a data
packet is to be forwarded in the TS following its arrival at a relay node. Note that
time performance may be further improved, if we assume that nodes have the ability
to perform store and forward type operations (that is store data to be relayed). This
was not the case for directional antenna systems. This is illustrated in Fig. 2.15. If
the simplest relay nodes are being used the completion time is 10 TS, whereas it is as
low as 9 TS when the smarter nodes are used. However, in the directional antenna

case the time performance is 9 TS either way.

2.3.3 Tree Networks, Case Where Base Station Degree Is 1

Throughout this paragraph we assume that the degree of the root of the consid-
ered graphs is one. We define the equivalent linear network (G, E;, 1) of a network
(G,E,v). If G = {Nog, Ny,...,N,} and v = (11,...,1,) then G; = {0,1,...,m <

nt, By ={(1—1,i),1 <i <m} and vy = (v, ..., nwy,) where vi; =37 4v, Niy=; Vi



Figure 2.15: Optimal distribution schedules for BS in 2-line sensor network. Simple
receive and forward sensor nodes on the right versus store and forward nodes on the
left.

This definition is illustrated in Fig. 2.16 (n = 15, m = 9) and Fig. 2.13 (equivalent

line network).
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Figure 2.16: A 16-node tree network whose BS degree is 1, the equivalent linear
network is drawn in Fig. 2.13. Transmission time steps are written next to the edges.

The equivalent linear network’s schedule may serve as a schedule for the initial
tree network. Next we explain how transmission time slots for (G, Ej,v;) (deter-
mined by running Algorithm 1) may be mapped onto (G, E,v). Consider an element
in £, say (Ny,, Nj,), such that d(No, N;,) = o (hops). Based on the number of data
packets Nj, has to forward, say f;,, we shall allocate transmission time slots to edge
(Niy, Nj,). Define E, = {(N;,N;) € E|d(Ny, N;) = a}. Each packet P follows a
path path(P) from the BS to its destination node where path(P) denotes the finite

09

sequence of edges (ey, ..., e) traversed in that order by P. For convenience we shall
write path(P) as the sequence of vertices (vertices(ey),...,vertices(ex)). We define
B = {P|Je €E, Npath(P)}. We define T, = {TS used by (a,a+ 1) € E;}. We

have |Bo| = Y. (vj + fj) =>_ v =|%a|- Thus one may define a one to one
(Ni,Nj)EEa k>a
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correspondence g between P, and ¥, that associates the packet P with the longest
path in PB,, with the TS with the smallest index in %,; the packet P with second
longest path, with the TS with second smallest index and so on. We finally define
Vo Nso) ={P| (N, Nj,) € path(P)}C B,. (N, Nj,) is associated with time slots
g(QgNiO’NjO)). In the example of Fig. 2.16, we have {P} = {Py,P»,...,P5} where the
first packet is characterized by path(P;) = (Ng,N1,N2,N3,N10,N11,N12,N13,N14,N15),
the second one by path(P;) = (Ny,N1,No,N3,Ny4,N5,Ng,N7,Ns), the third one by
path(P3) = (No,N1,Ny), and finally the fourth and fifth ones by path(P,) = path(Ps) =
(No,N1). We also have Ey; = {(N1,Ns),(N1,No)}, B1 = {P1,P,P3}, T3 = {2,5,8}, and
i}ﬁ?gNl’Nz) = {P,P»}. Thus edge (Ny,N,) is associated with time slots g( §N1’N2)) =
{2,5}. Thus Algorithm 1 run on the equivalent linear network provides a BS trans-
mission schedule. Intermediate nodes simply forward data packets to further nodes
as they arrive (in the TS following their arrival). This requires a routing table at
junction nodes.

Although an equivalent linear network has a reduced set of possible concurrent
transmissions, this procedure produces an optimal transmission schedule. The fol-
lowing proof is based on the fact that transmissions that can occur in one case and
not in the other are not helpful in routing data faster. This is essentially due to the
fact that any route from the BS to a leaf necessarily includes link (0, 1), i.e., from the

BS to the unique node at distance one from the BS which constitutes a bottleneck.

Lemma 2.3.4. Given any tree T such that degree of BS is one, if t3(7T) denotes the
time performance of a given data distribution algorithm, and v; denotes the number

of data packets at distance j from the BS, then
t3(T) > max(i — 1+ v, + 2w +3 > 1)) (2.26)
j>i+1

Proof. Edges at distance i from the BS are activated » j>; Vj times, edges at distance
i+ 1 from the BS are activated )
BS are activated )

j>ip1 vj times and edges at distance ¢ + 2 from the

isitoVj times. In a given TS, the distance (to the BS) difference

of any two data packets in transit is at least 3 hops. This implies in particular that
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no two edges whose distance difference to the BS is less than or equal to 2 hops may

be activated simultaneously. O

In this proof we assumed that relay sensor nodes can only perform simple receive
and forward type operations in which a data packet is to be forwarded in the TS
following its arrival at a relay node. Note that time performance may be further
improved, if we assume that nodes have the ability to perform store and forward
type operations (that is store data to be relayed). This, again, was not the case in
directional antenna systems. This is illustrated in the following example (Fig. 2.17).
If the simplest relay nodes are being used, t3(7) = 6 TS, whereas t3(7) = 5 TS may
be obtained with the schedule: TS 1: Ny — Ny, TS 2: Ny — Ny, TS 3: Ny — Ny,
TS 4: Ny — N3, TS 5: Ny — Ny, N3 — N,. However, in the directional antenna
case t3(7) =5 TS either way.

Figure 2.17: 5-node sensor network.

2.3.4 Tree Networks

The procedures described in the previous sections may be combined into a strategy

for data distribution/collection on tree networks as follows.

1. Linearize the subtrees attached to the BS (with BS degree equal to 1) according

to the procedure described in section 2.3.3

2. Apply multi-line distribution algorithm to the resulting multi-line system as

described in section 2.3.2

One can show from previous results that this procedure is optimal on general tree

networks in the same way this was proven in the directional antenna case. In the
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following theorem we give without proof a closed form expression for its time perfor-
mance.
Time performance on tree networks:
For purpose of deriving the time performance of our strategy on tree networks, we
start by defining the equivalent network N, of a multi-line network N in the following

k

manner: To each line By, of N and associated data vector v”* corresponds a line By,

in N, and associated data vector v’* such that

1=1 I/ikIVf
0=2 Ve qragy = 1or 0<5<i=1 if vf=1>1

023 VP iy = Lfor 0< <11 if vf=1>1 (2.27)

vk =0 otherwise

Theorem 2.3.5. IfT is a tree and 1/]’?C denotes the number of data packets at distance

J from the BS along branch k, then, if vy =11 =0,

t3(7) =max(i—1+ Y v}) (2.28)
' izi
where v; =), V;»k and V;»k is obtained from Vj’? by equation (2.27).

Proof. This follows from results in Appendix A and the proof of optimality of the
strategy on multi-line networks, which is similar to the one in the directional antenna

case. ]

2.3.5 General Connected Sensor Networks

For purpose of analyzing the time performance of data distribution algorithms on
general sensor networks we denote by 7gp(G) a shortest path spanning tree of the
underlying network graph G. Note that one can show that shortest path spanning
trees always exist by using Dijkstra algorithm. Such a tree may not be unique. The

following theorem provides a motivation for choosing a shortest path spanning tree.
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Theorem 2.3.6. V7, a spanning tree of G

To(Tsp) < To(T) (2.29)

The presence of cycles in a network G will affect the optimal time performance of
distributions algorithms as compared with the optimal time performance over Zgp(G).
Subsequently we attempt to quantify this phenomenon as well as giving some simple
procedures to distribute data over G.

First we note that cycles may help or hurt the time performance of the optimal
scheduling strategy in omnidirectional systems (in contrast with directional systems).
That is T,(G) may be larger or smaller than T,(7sp) as shown in the examples of

Figs. 2.18 and 2.19.

Theorem 2.3.7. For any (connected) graph G, and any shortest path spanning tree
Tsp

TO(IZTS‘P)
3

< T,(G) (2.30)

Proof. Define: t1(G) the minimum distribution time when transmission and reception
are simultaneously allowed in a TS at any given node. Clearly t;(G) < T,(G). By
corollary A.0.4 we also have: t;(G) = t1(Zsp). Besides for any connected graph A
the following inequality holds: T,(A) < 3t;(A). Choose A = Tgp, the inequality
follows. O

Let us next give an example where the lower bound is achieved. Consider a
network G where n data packets are stored at distance k£ hops from the BS in node .
Further assume there are three distinct paths of length & from z to BS (see Fig. 2.18

where n =5, k = 6).
k—1

For all practical purposes, Tsp is the line network v = (0,0, ...,0,n). We have
T,(G) =n+k—1 (for k > 1) and T,(Zsp) = 3n + k — 3 (for k > 3), thus T,(G)
converges toward T,(7sp)/3 when n goes to infinity (for k& > 3).
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Figure 2.18: Network with cycles. T,(G) = 10 TS, T,(Zsp) = 18 TS.

Ce

1 1

Figure 2.19: Network with cycles. T,(G) =3 TS, T,(7sp) = 2 TS.

Strategy and Time performance:

A mere generalization of the strategy proposed for directional antenna systems, based
on extracting a shortest path spanning tree of the sensor network, is not envisageable
here, as such as an operation is not physically possible when nodes are equipped with
omnidirectional antennas. We propose to transmit each data packet to its destination
along any shortest path between the BS and its destination. An intermediate node
will forward a data packet in the TS following its arrival along that path. Furthest
nodes being served first. This is slightly different from Algorithm 1. A in the fact
that the BS is not to transmit as fast as possible but according to the rule: If previous
destination node is at distance greater or equal 3, stay idle 2 TS before sending next
packet. If previous destination node is at distance 2 from the BS, stay idle 1 TS
before sending new packet. If previous packet is at distance 1, send next packet. The
time performance of that strategy is clearly max (0 =1+ v +2v1 + 33 550 V5)-

However a proof that this strategy may be implemented is required at this point.

Proof. All that is needed is a proof that given any network G equipped with omnidi-
rectional antenna nodes, transmissions originating at any node Ny, at distance ¢ from
the BS and at any node N,, at distance ¢+ + 3 from the BS may occur concurrently.
Note that if node N; can reach node N and d(N;) = i then d(N]) < d(N;) + 1
and d(Ny) < d(Nj) + 1, therefore d(Ny) € {i — 1,4,i + 1}. Assume N; attempts
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to communicate with some node N while N, attempts to communicate with node
N}. One of the attempted communications fails if either there is an edge connect-
ing V] and N, or there is an edge connecting Ny and Nj. If (N, Ny) € Eg then
d(Ng) = d(Ny) +1 € {i,i+ 1,14+ 2} < i+ 3 which contradicts our hypothesis. If
(N1, N3) € Eg then d(No) = d(Nj) + 1 € {i,i+ 1,7+ 2} < i+ 3 which contradicts
our hypothesis. O

Corollary 2.3.8. If v; denotes the total number of data packets at distance j from
the BS,

max (i — 1 + Zuj) < T,(G) < max(i — 1 + v; + 20441 + 3 Z vj) (2.31)

’ > ’ j>it2
The lower bound on T,(G) is achievable. Indeed in the previously considered
example max (1 — 1+ j>i Vi) = n+k—1. The figure below shows an example where

the upper bound is achieved.

Figure 2.20: Network with cycles. T,(G) = T,(7sp) = 18 TS.

In general the upper bound is achieved when any node at distance ¢ from the BS

is connected to all the nodes at distance j € {i —1,4,7+ 1}.

2.4 Omnidirectional /Directional Antenna Systems
Comparison

The following result compares the performance of omnidirectional and directional

antenna systems over a single line network.

Theorem 2.4.1. For any line network v the ratio of minimum data collection times
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over a line network, assuming interference range is m times the transmission range

satisfies

Proof. In the case m > 2, assume there exists jo, 1 < jo < n such that for all 4,

i # 30 T, >T; and Tj 41 < T},. From Theorems 2.2.3 and 2.3.3,

e case: jo=m+2+k=T, =Sk, Tj} = Sgi3
" (v) k+2§iéi’1”(j—k)uj+(m+2) 2 j>kimi2Vi

Tm(v) k+2+2§;;i;§n(]—k—2)’/j+mZj2k+m+2 vj

. T (v) E4(m42) 3 s pymay2 Vi m+2
=m+2+k=>1v1=...=V =0= 2 = 12 <

7o +2+ k+1 k+14m T (v) kE+24m 30 s p o Vi m

=

+1 2

. 7" (v) S v (mA2) 3 s e Y

e case: jo=m+1=T =57, T =85y = 72+ = =L - =
Jo + Jo b “jo 2 T (v) L2 o (=D +m Y s i1 Vi

() _ (mADvmy1+(m42) 35 40V < mt2

T (v) Imump1+m s 0 Vs m

Jo=m+1l=1rn=...=v,=0=

® case: 1§j0<m:>j}%25177%251

1 .
" (v) Z;n:l JUiH(m42) 3o s 0 v < m+2
T (v) T MY s v m

=
The case m = 1 follows from a similar argument. O

Note: Bounds in Theorem 2.4.1 are tight. This is clear in the case of the lower

bound. As for the upper bound, consider v = 1, (case m = 2), then we have
W) (7T HmA2) S8 1 (mt2)(m1) /24 (m+2) (n—m—1) _, m+2
m(v) Sl iam a1 o m(m—1)/2+m(n—m+1) nm

2.5 Conclusion

This work is concerned with analyzing the delay in collecting at the BS, data from
sensory networks. The minimum data collection time on tree networks was derived
and corresponding optimal scheduling strategies were described. We first focused our
analysis on systems equipped with directional antennas and showed that more realistic
hypotheses could be incorporated in our model (at the expense of the simplicity of the
analysis). The study of omnidirectional antenna systems then follows under the same

lines and performances of the two systems were compared on a simple line scenario.
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Finally, graphs with cycles were considered and the performance of our algorithms
on such graphs was compared to the optimal achievable performance. This lead to
bounds on the minimum time performance of optimal data collection strategies for

general graphs.
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Chapter 3 Random Sensory Networks

In the previous chapter we studied the data collection problem in sensory networks,
assuming the amount of data accumulated at each sensor node (characterized by
a number of unit data packets) after some given observation period was finite and
determined. In typical scenarios, however, the exact amount of data accumulated at
each sensor node is unknown. In this chapter, we model the number of data packets as
a random variable, referring to the corresponding network model as random sensory
network, and analyze the delay (which is now a random variable) in collecting sensor
data at the base station.

This chapter is organized as follows: We present results relative to line networks
in section 3.1. In section 3.2, we present results regarding multi-line networks. In
section 3.3, we compare the performance of directional and omnidirectional antenna
systems. In section 3.4, we give a scaling condition on the rate at which data can be
gathered by sensor nodes, for sustainable data collection. We conclude this chapter

in section 3.5.

3.1 Random Line Networks

In this section, we characterize the delay in collecting random amount of data spread
over a sensor network after the observation phase. More specifically, for a one-sided
line network, we first derive a recursion to compute the probability distribution func-
tion of Ty, (V) and asymptotically analyze the average of T, (V) when n is suffi-
ciently large.

We further look into the delay when each node is allowed to transmit over h > 1
hops and also the effect of packet splitting on the delay in sections 3.3 and 3.4. In
section 3.5, we propose a simple scheme that does not use the knowledge of the

number of packets at other nodes and achieves the same scaling law for the average
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delay. Finally, in the last section, we consider the effect of error in the channel on the

delay.

3.1.1 The Distribution of the Delay

In this section we derive, by means of a recursion, the cumulative distribution function
(CDF) of T'(vy,) for a line network. Let’s assume that v; corresponds to the number
of packets at node 7 for = 1,...,n and also v;’s are i.i.d. random variables chosen

from the set S,, = {0,1,...,m — 1}.

Theorem 3.1.1. Let F,(t) be the CDF of the minimum delay Ty (Vn), i.e. Fo(t) =
Pr{Tin(vyn) < t}. Then F,(t) satisfies the following recursion

m—1
Fo(t) =Y Pr(vy = i)F,i(t — 2)Lispiai-1) + Pr(v, = 0)F, () forn>2 (3.1)
i=0
1 if t>t St Pr(v =i) ift<m—1
where 1i>y, = and Fi(t) = °
0 otherwise. 1 otherwise
Proof. We may write F),(t) by conditioning on v, =i fori =0,...,m —1 as
m—1
Fo(t) =Y Pr{Tin(vn) < tlvy = i} Pr(v, = i) (3.2)
i=0

To compute the conditional probability in (3.2), we use (2.3) and the fact that for all
k=1,...,n—1and i > 1, Tpin(vn) > k—14+vp+237_, . v;. Therefore replacing

k =n — 1 and assuming v, = i, we get
Tonin(Wn) >n—2+ v, 1+ 20, >n+2(i— 1) (3.3)

Thus if t <n+2(i — 1), then Pr{T,,,(vn) < tlv,, = i} = 0. Using the definition of

the function 1;>,,, for any « > 1 we may then write the conditional probability as

Pr{Tin (V) < t|vm = i} = Pr{Tin(Wn—1) < t — 20} s i1 (3.4)
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Replacing (3.4) in (3.2), we get

m—1
Fo(t) = Fuca () Pr(vn = 0) + > Pr{Tpnim(Vn—1) < t = 20)} Lz psa-1) Pr(vn = )
i>1
which leads to (3.1). O

We can use the result of Theorem 3.1.1 to compute the CDF of T},;,(vy,). This
is illustrated in Fig. 3.1 and Fig. 3.2. Fig. 3.1 shows the distribution of the delay
Tonin(Vn) for 40-sensor node line networks in which each node carries either 0 or 1
packet with probability 1/2. Fig. 3.2 shows the distribution of the delay T, (vy)
for 40-sensor node line networks in which each node carries either 0 or 1 packet with
probability 0.8 and 0.2 respectively.

It is also worth noting that the result of Theorem 3.1.1 holds for any distribution of
the data packets. In particular the v;’s need not be i.i.d., however, in this chapter we

deal with the case where v;’s are independent and identically distributed.

0.12

{0,1
01l v oL : , 4
40 sensor nodes
pu=0.5

0.08 : [o0] . -

0.06 |- : . -

probability distribution

0.04 - -

LAl

0 10 20 30 40 50 60 70 80

collection time

Figure 3.1: Distribution of data collection time in 40-sensor node line network. Each
sensor node carries 0 or 1 data packet with probability 1/2.
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Figure 3.2: Distribution of data collection time in 40-sensor node line network. Each
node in the considered network carries 0 or 1 data packet with probability 0.8 and
0.2 respectively.

Interestingly, if we plot the expected value of T},;, as in Fig. 3.4, we observe that
the average delay scales linearly with the number of nodes n and the linear factor
depends on the average number of packets per node p. In the next section, we analyze

the average delay and prove this observation rigorously.

3.1.2 Asymptotic Analysis of the Average Delay

In this subsection, we study the asymptotic behavior of the minimum average delay

in collecting data from a line network as the number of nodes becomes large.

Theorem 3.1.2. Let v;’s be i.i.d. random variables v; € S,, with mean p, variance

o where ., 0%, m are all constants independent of n. We have

2 ifp=>1/2
lim L{TU} = /
L ifp<1)2

n—oo n
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Proof. We consider the case p > 1/2 first: Let’s define v, = v; — p. Using (2.3), we

get

E{T(vn)} = 2un+E {131<anx_1 (z(l —2u) + v, + QZH: V;) }

i+1

§2,un—|—2u—1+2E{max I/}

1<i<n J
Jj>u
n+1—1i
=2un+2u—1+2E {1H<1?<}; 1/,’1_]-“} (3.6)
Sisn <

where the inequality follows from the fact that v} satisfies v/+p >0, 1 <7 <n—1. In

order to find a bound for E(max Y7, 1)), we first state the following lemma which
1<i<n <927

is based on a result by Erdos and Kac [19] on the convergence of distribution of the

maximum of partial sums.

Lemma 3.1.3. For any A and a > 1,

Pr{lrgag; > )\a\/ﬁ} < a4 ; 1Pr {Z 1/;- > (N — \/5)0\/5} (3.7)

where V] = v; — p and v; is as defined in Theorem 5.1.2.

Proof. We first define S; = > i v; and the events E; as,

J

Ei:{maXSjg)\a\/ESSi} i=1,...,n. (3.8)

0<y<1

which is inspired by [19]. We can then state the following inequality by the union
bound,

Pr {1121?2252 > Aa\/ﬁ} <Pr{S,>(\—+Va)oyn}+
Z Pr{E;N (S, < (A= Va)oyn)} (3.9)

To evaluate the second term in the right-hand side of (3.9), we note that S; > Ao/n
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and S, < (A —+v/a)o/n imply S; — S, > /ac\/n. Then using the fact that S; — S,

is independent of S; for j < ¢, we may write

Z Pr {EZ N (Sn < (A= \/a)ax/ﬁ)} < Z Pr(E;)Pr (SZ- -5, > \/aa\/ﬁ)

i=1

VAN

S iy 24— 52°)

, ao?n
i=1

— ZPI'(EZ')M

: ao?n
i=1

IA
|
]
E
=

AN

| =
.
-

(maXS > Aaf) (3.10)

1<i<n

where the second inequality follows from Chebychev’s inequality and the last inequal-

ity follows from the definition of the events E; and noting that

1<i<n

ZPr =Pr (UL, FE;) =Pr (maXS >)x0f)

since the events F; are disjoint events. Therefore, Lemma 3.1.3 follows from (3.10)

and (3.9). O

Now we can use Chebychev’s inequality to evaluate the right-hand side of Lemma

3.1.3 as follows

o? 1
{S ~Yiz0- ﬂ“f} = Ve < T

Therefore, substituting A = logn, we get

1
(112%;121/ > alognf) (loan) (3.11)

Eq. (3.11) implies that, with high probability max > j>iV is less than o logny/n.
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Therefore, we may write

< 4
E{l%?ganx—y Vj}_alogn\/ﬁPr{lgr?San{IZVj<alogn\/ﬁ}—|—
j=i

Jj=t

1<i<n—14—
Jjzi

(m—1 —p,)nPr{ max ZV; > Ulogn\/ﬁ}

:o—logn\/ﬁ+0( - ) (3.12)

logn

which follows from the fact that v, <m — 1 — pu.
We now derive a lower bound on E(7T,,;,(v,)): From Eq. (2.3), we get Thuin(vn) >
v+ 2 2?22 vj. Taking the expectation of both sides, we get

Considering (3.13) and the upper bound derived in (3.12), we deduce that

2,un—u§E(T(yn))§2un+2u—1+2010gn\/ﬁ+0(1 n2 )
og n

which leads to (3.5) for u > 1/2.
Next, we consider the case u < 1/2: Let’s define v/ = v; — 1/2. Using (2.3), we get

1 n
Trnin(Vn) =  Inax (n -5+ v+ 2 E uj’>
== i+1
< 1 3 !
<n-— 5 + 2 max v;

1<i<n—1 4=
(2

Taking the expectation of both sides and using inequality (3.12) we get

log”n

On the other hand, it is clear that if there is any packet at distance r, it takes at
least » TS to be collected. Furthermore the probability that there are no packets in
the last logn nodes of the line network is 1 — (Pr(; = 0))16™. Therefore, noting that
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Pr(y; = 0) is a fixed number, we may write
E(Tpnin(Vn)) > (n —logn)(1 — (Pr(v; = 0))"6™) = n — O(logn) (3.15)

which leads to (3.5) for u < 1/2. O

Remark: Theorem 3.1.2 can be easily generalized to the case that v;’s are inde-
pendent and have mean p; > % and variance 022 and v; < m—1 where m is a constant.
In fact we can assume m is also going to infinity as well. Considering Eq. (3.12), the
theorem goes through as long as m = o(n).

Fig. 3.3 shows the ratio of the average delay to the number of sensor nodes, i.e.
E(Tnin(vn))/n, for a line network where each sensor node carries 0 or 1 data packet
with probabilities 1 — p and p respectively as a function of the number of sensor
nodes n in the network and the average number of packets per node p. Fig. 3.4
shows the ratio of the average delay to the number of sensor nodes in a line network
(where again each node carries either 0 or 1 packet with probabilities 1 — p and p
respectively) for a fixed number of sensor nodes (500) as a function of the average

number of packets per node p.

3.1.3 Collected Data Distribution

In this section we attempt to measure the rate at which data is being retrieved by
the BS. For general distributions on the number of data packets this is a difficult
problem. However, in the particular case where v; € S; we are able to do so. Let V;
denote the number of data packets collected by the BS up to time 4, then we have the
following theorem, if v; € {0,1} and Pr{y; =0} = 1/2,0 < V; < [i/2] and Algorithm

1 is used.
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Figure 3.3: Average collection time as a function of average number of packets per
node and number of nodes in line network. Nodes carry 0 or 1 data packet with
probability 1 — p and p respectively.

Theorem 3.1.4. Consider a line network consisting of Ny sensor nodes carrying 0
or 1 data packet with probability 1/2. Let Pr{V; = j} denote the probability that the
BS has collected j data packets by time i, then we have Pr(Vo =0) =1, Vi € N, i >
2Ny, Vj €N, Pr(V; = j) = (@0)/2% and Vi €N, 1 < i< 2Ny andVj €N, 0<j <
[i/2]

1 even

Pr(Vi=4)==Pr(Viey =45 —1)+Pr(Vi.y = j)) ifi is

2 : i
odd and j < [5]

(3.16)

21) if i is odd and j = [%1

Proof. By induction. O

For illustration purposes we include the example of a 7-sensor node line network
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Figure 3.4: Average collection time as a function of average number of packets per
node in 500-node line network. Nodes carry 0 or 1 data packet with probability 1 — u
and pu respectively.

in Table 3.1.

3.1.4 Multihop Case

In order to get a better insight into the result of Theorem 2.2.4, we obtain the asymp-
totic behavior of the expected minimum delay as n approaches infinity in the next
theorem. Theorem 3.1.5, in fact, quantifies the dependency between the minimum

collection time and the transmission range.

Theorem 3.1.5. Let h be the transmission range, let v;’s be i.1.d. random variables

v; € {0,1,....m — 1} with mean p and variance o where h,m, u,o* are constants
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Pr(Vi=j) | Jj=0 1 2 3 4 5 6 7
i=0 1 0 0 0 0 0 0 0
1] 05| 05 0 0 0 0 0 0
2] 025] 0.75 0 0 0 0 0 0
3] 0.125| 05 0.375 0 0 0 0 0
4710.0625 | 0.3125 | 0.6250 0 0 0 0 0
5] 0.0156 | 0.1094 | 0.3281 | 0.5469 0 0 0 0
6 [ 0.0078 | 0.0625 | 0.2188 | 0.4375 | 0.2734 0 0 0
7 10.0039 | 0.0352 | 0.1406 | 0.3281 | 0.4922 0 0 0
8 10.0020 | 0.0195 | 0.0879 | 0.2344 | 0.4102 | 0.2461 0 0
9 [0.0010 | 0.0107 | 0.0537 | 0.1611 | 0.3223 | 0.4512 0 0
10 | 0.0005 | 0.0059 | 0.0322 | 0.1074 | 0.2417 | 0.3867 | 0.2256 0
11| 0.0002 | 0.0032 | 0.0190 | 0.0698 | 0.1746 | 0.3142 | 0.4189 0
127 0.0001 | 0.0017 | 0.0111 | 0.0444 | 0.1222 | 0.2444 | 0.3666 | 0.2095
13 0.0001 | 0.0009 | 0.0064 | 0.0278 | 0.0833 | 0.1833 | 0.3055 | 0.3928

Table 3.1: Probability to have collected j packets by TS 7 in 7-node line network.

independent of n.

lim

n—oo

E{Tmm(h7 V’rl)} o

(1+

T if,uZh—H

- 1
ZfMSh—H

(3.17)

Proof. The Theorem follows by using the same machinery as in the proof of Theorem

2 and we omit the proof for the sake of brevity.

O

We can now evaluate the gain in increasing the transmission range of a sensor node.

Theorem 3.1.5 shows that a maximum gain of 2 on the collection time may be obtained

by increasing the transmission range (in the limit when h approaches infinity) from

h = 1. One should note however that this gain necessitates a significant amount of

energy, in fact in the order of O(}", #%1;) = O(n?) (worst-case) if the energy expanded

is taken to be proportional to the square of the distance traveled by a packet, whereas

the minimum energy expanded (case h = 1) is of the order O(}_;iv;) = O(n?).



o7
3.1.5 Packet Splitting to Improve the Average Delay

As Eq. (3.5) implies, if the network is under-loaded (i.e., u < 3), the ratio of the
expected collection time to the expected number of packets in the network is i and is
rather high. One approach to decrease this ratio for small y is to artificially increase
the expected number of packets at each node by splitting each packet into k£ packets
with length % times of the original one. Clearly, this increases p by a factor of k, and
therefore, can potentially decrease the delay. It is also worth noting that the time
needed to send the smaller size packets is % of the time to send the original packets.

In this section we examine the potential gain obtained by splitting data packets

into sub-packets. As a first step, we prove that the delay is a decreasing function of

k in the next theorem.

Theorem 3.1.6. Given a line network vy, there is a gain k > G(vp, k) > 1 in
splitting the data packets into k sub-packets. Furthermore G(vy, k) is a non-decreasing

function of k and the mazimum achievable gain is:

max (i—1+v;+2>77 ., 1)

1<i<n—1
n
v+ 2 Zj>1 v

Gmaz(Vn) = liin GWn, k) = (3.18)

Proof. In general if each item is split into k sub-items, the gain G (v, k) satisfies:

Gl l{;1n<1;a<>;(z—1+ul+22]>l v;) lrglgl)il(k(z—l)+kuz+2kzj>z v;)
Vn’ = =
1H<1?<>7<1(Z—1+/€Vz+2/€2]>2+1 v;) f?iﬁ(z_1+kyl+2k2y>z+1 v;)
(3.19)

It is easy to check that 1 < G(v,, k) < k. Furthermore G(v,, k) is a non-decreasing

function of k. Indeed, if k1 > ko, we can write,

%1%)1{1(]{?1(@ — 1) + kll{?QVi —+ 2/{31]{32 Z I/j) Z 112%);(]{?2(@ — 1) + /{31]{321/2‘ + 2/{31]{32 Z I/j)
7> >

which implies that G(vy,, k1) > G(vp, k2). The limit in (3.18) can be also easily shown
using (3.19). O

Next, we derive the average collection time in random sensor network in the limit
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when n goes to infinity and when packets have been split into k sub-packets.

Theorem 3.1.7. Let v;’s be i.i.d. random variables v; € S,, with mean p, variance
o% where p, 0, m are all constants independent of n. If each packet is split into k

sub-packets we have:

E{T in 2 ifp=1/2k
lim 7{ ; = /

n—0o00 n

(3.20)
1k if p<1/2k

Proof. The proof falls along the same line as the proof of Theorem 3.1.2 substituting
v; with ky;, for all 4, 1 <4 < n and noting that the smaller size packets are transmitted

k times faster. O

The limit in Eq. (3.20) should be compared to the data collection in the case where
packets are not split as shown in Eq. (3.5). We conclude that in the asymptotic case,
data splitting results in gain in the collection time for networks with low data load,
e, u < % It is also worth noting that Egs. (3.20) and (3.5) imply that if k& > ﬁ
there is no gain in further increasing k; the expected delay remains the same as k
further increases. For example, if u = %, the expected delay behaves like n, %n, and
%n for k=1, k=2, and k£ > 3, respectively. In other words, increasing k£ beyond i

does not lead to any improvement on the scaling law of the average delay.

3.1.6 A Simple Distributed Suboptimal Strategy

It is important to note that the minimum collection time in (2.3) is achieved under the
assumption that each sensor node has a perfect knowledge of the network topology and
data packets locations. A more practical strategy, that does not require knowledge of
the packets locations and therefore can be run in a distributed fashion, is as follows.
Nodes at odd (resp. even) distance from the BS transmit to their closest neighbors
toward the BS at odd (resp. even) TS. It is illustrated in Fig. 3.5.

The following theorem compares the performance of this strategy to the minimal

collection time derived in (2.3).
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Figure 3.5: Suboptimal distributed data collection strategy.

Theorem 3.1.8. For a one-sided line network of length n in which the i ’th node has
v; packets and is equipped with directional antennas, the collection time of the packets

at the BS under this distributed scheduling strategy, denoted by T'(vy,), is:
Imm)zgﬁau—2+22:f@ (3.21)
jzi-

This further assumes that the closest, third closest, etc... edges to the BS are activated

at TS 1, 3,... whereas the second closest, fourth closest,... edges are activated at T'S

2, 4,... . In the opposite case the data collection time is:
Im%):g%§@—1+22;%) (3.22)
J=t

Proof. In the rest of this chapter we refer to the closest edge to the BS as edge 1,
second closest as edge 2 and so on. Assume TS 1, 3, 5,... are respectively allotted to
edges 1,2,3,.... That is nodes 1, 3, 5... can only transmit at TS 1, 3, 5,... and receive
at TS 2, 4, 6.... The BS may receive at most 1 packet/TS at TS 1, 3, 5,.... Either it
is busy at all TS> 1, or it is busy at all those TS> 3, or at all TS> 5, etc. In general
if the BS is busy at all TS > ¢ and the packet received at TS ¢ comes from node 7 or
1 — 1 the data collection time is ¢ — 2 + 2 Z?zi—l v; TS. This completes the proof for
(3.21). Eq. (3.22) follows similarly. O

The aforementioned absence of knowledge (packets location) translates into a

delay cost T'(vy,) — Thnin(Vn) > 0. More generally we have the following relationship
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between T'(vy,) and Ty (Vy), which follows from (2.3) and (3.22):

Tonin(Wn) < T(vp) < 2T (vp) — 1 (3.23)

The worst performance of this simple strategy relative to the optimal strategy occurs
when n packets are located at distance 1 from the BS (Indeed T}, = nand T = 2n—1
then). However, on average, achieving the upper bound in (3.23) is unlikely and we
have the following asymptotic comparative result, according to which the simple

scheduling strategy is asymptotically optimal with respect to time:

Theorem 3.1.9. Let v;’s be i.i.d. random variables v; € {0,1,...,m — 1} with mean

i and variance o where p,0?, m are constants independent of n.

E{T(v,)} 2 if p>1/2

lim — 2 (3.24)
e 1 ifp<1/2

That is lim @) Tnmnll _ o

Proof. This proof is similar to the proof of Theorem 3.1.2. O

3.1.7 Noisy Channel

In this final section we introduce noise in the channel. Specifically we model the
channel as an erasure channel with erasure probability p and measure the time per-
formance degradation as a function of p. We assume that a node is instantaneously
informed that a packet has not reached its (intermediate) destination and immedi-
ately retransmits the erased packet at the next available TS (that is 2 TS later). For
reasons discussed in section 3 we focus on the simple scheduling strategy introduced
in subsection 3.1.6. Fig. 3.6 illustrates the process. This is the same network as shown
in Fig. 3.5 but it is now affected by three erasures (each shown by a crossed arrow).

The new transmission time is 15 TS, an increase of 2 T'S.



Figure 3.6: Data collection in line network under the assumption of an erasure chan-
nel. An erased packet is marked with a cross.

Theorem 3.1.10. Given a probability p of packet erasure, the data collection time

T(p,vn) on a line network v, when the simple scheduling strategy is used is

)= (1= )T X w; +e; — ) . i .

T(p,vn) = (1 —p) kzzop - ZX%O) k]}( i1 T(vn +e;) (3.25)
Proof. The collection time may be expressed as an average of collection times. The
probability that the entire collection process is not affected by any error is (1 —
p)>i=1 i In that case the collection time is T'(vy,). The probability that the collection
process is affected by exactly k errors is (1 — p)Z?:l wipk  Notice that a packet erasure
along a specific edge increases the collection time from 7'(vy,) to T'(v,, + e;) where €;
is the vector of length n whose 7th component is 1 and other components are 0 and
where 7 is the source node for the packet. For a given source node there are (“’;:?1_ 1)

choices of e; erasures. One needs to consider all the possible schedules with exactly

k erasures. This can be done by solving the equation ) . e;x(v; > 0) = k. O

In order to see the impact of the erasure probability on the data collection time
the ratio T'(p)/T(0) is plotted for increasing values of p for a specific line network
v =1(0,2,0,0,0,0,0,1,1,1) in Fig. 3.7. It shows a degradation of 50 % for an erasure
probability p = 0.1. Our model shows that multihopping can have disastrous effects
on the collection time in presence of noise. Note however that in networks with

more general topology this needs not be, since in that case a node may choose to
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forward data to the neighbors with the best channels [57]. Theorem 3.1.10 allows
for an exact computation of the delay incurred by a specific network, given a packet
erasure probability, however, the overall insight provided by it, is limited. In the
following Theorem, instead of considering the expected delay for a specific network,
we consider a random line network and obtain an upper bound for the expected delay

as a function of the packet erasure probability:

Theorem 3.1.11. Let v;’s be i.i.d. random variables v; € {0,1,...,m — 1} with mean

i and variance o where u, 0, m are constants independent of n then:

| < ET(p,vn)

= B(T(0, o)) <14 O(np) (3.26)

Proof. In order to find an upper bound for the expected delay, we may use any strat-
egy in scheduling. Here, we assume that whenever an erasure occurs, the transmitting
node retransmits the packet until it gets through and all the other nodes remain silent
at that period. Denoting by «a; for i = 1,...,> ir; the number of extra time slots
needed to transmit the packet at the ¢’th transmission, we may write

> i
T(pvm) < Y o +T(0,vy) (3.27)

J=1

where «; has geometric distribution, i.e.,

Taking expectation of both sides of (3.27), we obtain,
E(T'(p)) _ PYia iy (3.20)
E(T(0)) = (1 —p)E(T(0))

which completes the proof of our theorem. O

In particular Theorem 3.1.11 implies that for networks of large size, a probability

of erasure p of order o(%) does not significantly affect the time performance of the

n
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data collection process.
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Figure 3.7: Ratio % as a function of p in line network.

3.2 Random Multi-line Networks

In this section, we consider a more general network, i.e., a network consisting of
L > 2 lines. For simplicity we assume each line has ng nodes. This is illustrated in
Fig. 3.8. Furthermore each node carries v € .S,, packets with probability distribution
(o, D1, - - -, Pm—1). We will later argue that the results for the more general case follows
along the same line of this simple case.

It is quite easy to state a lower bound for the average delay. Assuming v;’s are
i.i.d., and denoting 7" as the minimum data collection time for a multi-line network
with L > 2 lines of length ng, we have

E(T5") > ngLE(v;) (3.30)

min

which follows by taking the expectation of both sides of the inequality Thmo > (num-

min
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Figure 3.8: Multi-line Network.

ber of packets in network). In what follows, we shall prove that as L increases, the
expected collection time converges toward this lower bound.

To prove our asymptotic result, we describe a suboptimal procedure to collect the
data at the BS. We may divide the network into two subnetworks S; consisting of
odd lines and S, consisting of even lines. For [ € S, nodes at even distance from the
BS transmit toward the BS at even time slots and nodes at odd distance from the BS
transmit toward the BS at odd time slots. If [ € §; the opposite happens, i.e., nodes
at even distance transmit toward the BS at odd time slots and vice versa. However,
if at a given TS multiple nodes at distance 1 from the BS carry data packets, only
one packet (randomly chosen from all available packets) gets transmitted to the BS
(since this BS can only receive one packet at a time). Remaining packets are stored
for later transmission. This strategy is followed until all packets in the network have
reached the BS or a node at distance one from the BS. At this point, packets at
distance one from the BS are simply transmitted to the BS in turn, so that the BS
does not become idle until all packets have been collected.

With this scheduling and assuming each node carries at most m — 1 data packets
it is clear that after (m — 1)(2no — 3) TS (assuming that v; € Sy), all the packets
are within distance one of the BS (since it is true in the worst case where each node
carries exactly m — 1 packets). Therefore, we may think of data collection as two

separate phases. First, collect all the packets to the nodes within distance one of the
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BS which at most takes (m — 1)(2no — 3) TS, and second, send the packets of the

nodes at distance one from the BS to BS.

Theorem 3.2.1. Consider a multi-line network with L > 2 lines of length ng, and
v;’s are i.i.d. chosen from {0, 1,...,m— 1} with an arbitrary distribution. Let Vk, 0 <

k<m—1, Pr(y; = k) = px where p,,_1 # 0. Further assume that E(v;) = u Then

1
noLp < B(TE™) < ngLp+ O (z) + (m —1)(2n9 — 3)(1 = pp_1)™>. (3.31)

In particular,

i) if L>(2+0(1))log, ne, lim E(TE") —n,Ly =0 (3.32)
E(TL"

it) if 2log,ne > L and lim L = +o0, lim E(Tnin’) =1 (3.33)
No—00 No— 00 ’)’LOLM

ii) if L= cte,n,Lp < B(TE") < n,Lu(l+ ) (3.34)

1
1-pm-1

where a = and € is a constant independent of n, when L is fized.

Proof. The lower bound follows from Eq. (3.30) and noting that E(v;) = u. To prove
the upper bound, we use the suboptimal scheduling described before to collect the
data packets. We also define the random variable e¢; € {0,1}, for i = 1,...,(m —
1)(2ng — 3), such that e; = 0 if the BS is busy at TS 4, and e; = 1 if it is not.

Considering the steps in collecting packets in the network with our scheduling, if the
total number of packets is greater than (m—1)(2ny—3), then the time needed to collect
the data packets is equal to the total number of packets in the network (denoted by

n) plus the number of times that the BS was not busy during 1 <t < (m—1)(2n¢—3)
(m—1)(2no—3)

which is equal to Y. e;. Therefore, we can write the following upper bound

for the delay.

(m—1)(2no—3)
TE" < max {n, (m —1)(2ny —3)} + Z e; (3.35)
i=1

min

To find an upper bound for the expected delay, we have to find Pr(e; = 1) and
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Pr(n < (m —1)(2no — 3)). To find an upper bound for the expected delay, we find
Pr(e; = 1) and Pr(n < (m — 1)(2ng — 3). It is clear that

Pr(esr = 0) > Pr(having at least m — 1 packets at distance k)
> Pr(at least one node at distance k has m — 1 packets)

=1~ (1= pp-1)*? (3.36)

A similar expression can be written for Pr(eg,,; = 0). Furthermore, using Cheby-
chev’s inequality and noting that n is the total number of packets in the network, i.e.

L .
n =% v;, we may write

Pr((m—1)2ny—3)<n)>1-0 (TLOLL) (3.37)

noL

which implies that Pr(n < (m — 1)(2ny — 3)) < O <L) Now we can take the
expectation from both sides of (3.35) to get

(m—1)(2no—3)

E(Tyn) < E(n)+ (m—1)(2no — 3) Pr(n < (m —1)(2ne — 3)) + Pr(e; = 1)
i=1
1
< noLp+0O (Z) + (m —1)(2n0 — 3)(1 — pp_1)*"? (3.38)
that completes the first part proof. O

Theorem 3.2.1 shows that either ¢) the difference of the expected delay and the
average number of packets is converging to zero as L — oo and ng grows slower than
22L (that is, equivalently, L grows faster than O(logn)) or at least that 4i) the ratio
of the expected delay to the average number of packets converges toward 1 as long as
L goes to infinity. It is a reasonable hypothesis in general. Indeed as the number of
sensor nodes per unit of observation area increases, noting that L is the number of
sensors within reach of the BS, it can be shown that L scales like logn + ¢(n) where
¢(n) — oo [33]. Therefore, fixing the area of the network, having n goes to infinity,

and noting that ny = n/L, the aforementioned condition is satisfied. We will come
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back to that in the next section which deals with more general topologies.
In the more general case where the number of sensors per line is n}, for [ = 1,..., L

(instead of ng for all I’s) the lower bounds on the expected delay becomes E(T=m0) >

1 ZzL:1 nY. We can further find an upper bound by replacing ng by max n} in (3.35)

and noting that E(n) is equal to the lower bound. The result follows in a similar

l

fashion. Therefore as long as (max ng)m = 0( 1

1-pm-1

)L and L grows to infinity,
the expected delay converges to E{n}. In Fig. 3.9 the difference between average
collection time and average packet number in the network for multi-line networks is
plotted as the function of the number of lines for various average number of packets per
node (and a fixed number of nodes per line, ng = 25) using Monte Carlo simulation.
Each instance of a random network has L lines of ng nodes. Each node carries either
0 or 1 packet with probability 1 — p and p respectively. The exact collection time
for a particular instance is known and given by Eq. (3.11) and this is averaged over

multiple instances (20000) to yield Fig. 3.9.

20

- p=0.4
— - p=0.6
— p=0.8
Number of sensor nodes per line=25
15+ -
=1
-
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I 1or —
=
|
51 -
0 i S I =
0 5 10 15

Number of lines

Figure 3.9: Difference between expected delay and average number of packets in
network as a function of average number of packets per node and number of lines in
multi-line network (25 nodes per line). Nodes carry 0 or 1 data packet with probability
1 — p and p respectively.
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3.2.1 Delay Analysis for More General Topologies

Insightful results about the delay in collecting data from sensory networks forming
more general topologies may be inferred from results on multi-line networks. In this
section we discuss the implications of previous results for networks of more general
topologies.

Clearly for a sensor network of any topology, the expected minimum collection delay
satisfies: E(T) > nE(r;) where n is the number of sensor nodes in the network. How-
ever in the particular case where only a single path exists from the sensors to the BS
(i.e., the degree of the BS is one) this lower bound is not tight and may be improved
to: 2nE(y;) using Theorem 3.1.2.

If the degree of the BS is 1, It is shown in the previous chapter that the network may
be thought of as a line network -for analysis purposes- by combining nodes at the
same distance from the BS without impeding the time performance of optimal data
collection strategy. In the resulting “linearized” network the number of data packets
at a given distance from the BS is the sum of the packets at that distance in the
original network. Consequently results in section 3.1 may be applied to this type of
networks to derive the exact delay distribution. Furthermore, the delay is 2nE(v;)
asymptotically in the first order.

If the degree of the BS is greater than 1, it is straightforward to extend the previous
results on multi-line networks to tree topologies (indeed given what what said before,
a tree may be thought of as a multi-line network).

Finally the previous results give some intuition about the asymptotic average mini-
mum collection time in a random sensory network. Consider a disk of radius 1 and a
network of n sensors randomly located on that disk. Assume the BS is placed at the
center of that disk. We know from [33] that the minimum transmission range r(n)

1 : -
= M where ¢(n) — oo to insure network connectivity as n

must satisfy 77?(n)
goes to infinity. We can then argue that the average collection delay converges toward
the average number of packets in the network when the number of sensors is large.

Indeed, a shortest path spanning tree of the considered network rooted at the BS
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may be extracted. From what was said before this network behaves like a multi-line
network as far as delay is concerned and noticing that the maximum distance of a
sensor to the BS (the distance being the length in number of hops of a shortest path
to the BS) grows like oy = O( @) and L is the number of packets within reach

1
r(n) —
of the BS, that is, mr%(n)n = O(log(n)) and either condition 4) or condition ii) of

Theorem 3.2.1 applies.

3.3 Comparison of Omnidirectional and Directional
Systems

The previous analysis of directional antenna systems may be extended to omnidirec-
tional systems. In these systems, nodes are equipped with omnidirectional antennas
generating interference for all surrounding nodes. In particular in a line network this
implies that a packet transmission to the left (or right) neighbor creates interference
at both the left and right neighbors. This in turns increases the length of the op-
timum data collection schedule (when compared to directional systems). In fact we
know from Theorem 2.3.1 that the minimum data collection time T,(vy,) over a line
network of length n equipped with omnidirectional antennas in which the 7th node

has v; packets becomes:

T,(vn) = 15?3532(2' —14+v;+2v1+3 Z vj) (3.39)
j>i+2
where v,, = (11,...,V,). We know from Theorem 2.4.1 that this represents a maxi-

mum increases of 50 % over the data collection time achieved by a directional antenna
system for the same considered line network. In the example of Fig. 2.4 the minimum
data collection time becomes 14 TS, a 40 % increase.

In the following sections, we present results for the delay analysis in networks
equipped with omnidirectional antennas. Results are analogous to the results stated

in section 3.2 and we omit proofs for the sake of brevity.
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3.3.1 Delay Distribution

In this section we derive, by means of a recursion, the cumulative distribution function
(CDF) of T,(vy,) for a line network. Let’s assume that v;’s are i.i.d. random variables

chosen from the set S,, ={0,1,...,m — 1}.

Theorem 3.3.1. Let F,,(t) be the CDF of the minimum delay T,(vy,), i.e. Fn(t) =
Pr{T,(v,) < t}. Then F,(t) satisfies the following recursion

Fu(t) =Y Pr(vy = i)F,1(t — 3i)Lisnpsi) + Pr(vy = 0)F,_1(t) Yn >3 (3.40)

where
1 if t>+1
]-tzto =
0 otherwise
and,
S Pr(vy=4) ift<m—1
otherwise
m—1
Z Pl" Vg =1 F1 t — 22)1t>2@ + PI‘(VQ = O)Fl( )
=1
Proof. We may write F,(t) by conditioning on v, =i for i =0,...,m — 1 as
m—1
Fo(t) =) Pr{T(vy) < tlvn =i} Pr(v, = i) (3.41)
i=0

To compute the conditional probability in (3.41), we use (3.39) and the fact that for
alk=1,....n =1, T(vp) > k =1+ vp + 2011 + 337, V. Therefore replacing

k =n — 2 and assuming v, = i, we get

T(vn) >n—3+ Vyoo+ 201 + 30, > n+3(i — 1) (3.42)
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Thus if ¢ < n+ 3(i — 1), then Pr{T'(v,,) < t|v,, = i} = 0. Using the definition of the

function 1;>4,, for any 7« we may then write the conditional probability as
Pr{T(v,) < tlv, =i} = Pr{T(vp_1) <t —3i}1i>ni36-1) (3.43)
Replacing (3.43) in (3.41), we get

F.(t) = F,_1(t) Pr(v, = 0)+

> Pr{T(vn-1) <t = 3i)}Liznia) Pr(ve = i)

i>1
which leads to (3.40). O

We can use the result of Theorem 3.3.1 to compute the CDF of T,(v,,). This is
illustrated in Fig. 3.10 which shows the distribution of the delay T,(v,,) in 40-sensor
node line networks in which each node carries either 0 or 1 packet with probability
0.7 and 0.3 respectively. It is also worth noting that the result of Theorem 3.3.1
holds for any distribution of the data packets. In particular the r;’s need not be
i.i.d., however, in this chapter we deal with the case that v;’s are independent and
identically distributed. Interestingly, if we plot the expected value of T, as in Fig. 3.12,
we observe that the average delay scales linearly with the number of nodes n and the
linear factor depends on the average number of packets per node p. In the next

section, we analyze the average delay and prove the observation rigorously.

3.3.2 Asymptotic Analysis of the Average Delay

In this subsection, we study the asymptotic behavior of the minimum average delay

in collecting data from a line network as the number of nodes becomes large.

Theorem 3.3.2. Let v;’s be i.i.d. random variables v; € S,, with mean p, variance
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Figure 3.10: Distribution of data collection time in 40-sensor node line network.
Nodes carry 0 or 1 data packet with probability 0.7 and 0.3 respectively.

a? where p, 0%, m are all constants independent of n. We have

E{T, 3 ifp=>1/3
lim {O}: /

n—00 n

(3.44)
1 ifu<1/3

Proof. We consider the case p > 1/3 first: Let’s define v/ = v; — p. Using (3.39), we
get

E{T(vn)} = 3un+

. / / /
E{lglnglx_Q <2(1—3,u)+ui—|—21/2-+1+32:yj>}

i+2
< _ /
< 3un + 3u 1+3E{112%};Z>:1/]}
J=1

1<i<n
J=1

n+1—1
=3un+3u—1+3E { max V;L_j_,’_l} (3.45)
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where the inequality follows from the fact that v} satisfies v/ +p > 0,1 < i <
n — 1. In order to find a bound for E(max > i Vj), we first state the following
lemma which is proved based on Erdos and Kac [19] where a convergence theorem
for the distribution of the maximum of partial sums was proven. It is worth noting

convergence in distribution does not imply convergence in the mean and so we cannot

directly use the result of Erdos and Kac!. To simplify the notation, let’s first define
Si=>0, s = Y% V) where ;= v, .

Lemma 3.3.3. For any A,

Pr {maxS >>\a\/_} <2Pr{5 > (A — f)af} (3.46)

1<i<n

Proof. We first define the events F; as

E;, = {maxS <>\a\/_<S} i=1,...,n. (3.47)

0<5<1

which is inspired by [19]. We can then state the following inequality by the union
bound.

Pr {1121?3;5 >Aaf}<Pr{S > (A — f)gf}
iPY{Em (Sn < (A~ ﬁ)aﬁ)} (3.48)

To evaluate the second term in the right hand side of (3.48), we note that S; > Ao/n
and S, < (A — v2)o/n imply S; — S, > v20+/n. Then using the fact that S; — S,

Tt is quite easy to come up with an example that the distribution of a random variable converges
to f(x) but its mean does not converge to [z f(z)dx
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is independent of S; for j < i, we may write

S Pr (£ (5, < - VEovi) )

1<i<n

< %Pr <max S; > )\a\/ﬁ) (3.49)

where the second inequality follows from Chebychev’s inequality and the last inequal-

ity follows form the definition of the events E; and noting that

1<i<

ZPr(E,-) =Pr (m'a<x S; > )\0\/5) .
i=1

Therefore Lemma 3.3.3 follows from (3.49) and (3.48). O

Now we can use Chebychev’s inequality to evaluate the right-hand side of Lemma

3.3.3 as follows.

2

Pr{Sn :;yi > (A—\/i)a\/ﬁ} < N Va)on
1 (3.50)
v

Therefore, substituting A = logn we get

~ 1
Pr (flgl{ag};z v; > olog nﬁ) =0 < ) (3.51)

2
o log”n
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Eq. (3.51) implies that, with high probability, max > j>i Vi is less than ologny/n.
Therefore, we may write -

n
/
E<{ max v,
1<i<n—14— J
j=i

/
< ologny/nPr {1%?5%1}512 v; < alogn\/ﬁ} +
j=i

1<i<n—1
Jj=>u

(m—1 —,u)nPr{ max ZV; > alogn\/ﬁ}

= glogny/n+ O (LZ) (3.52)

log”n

which follows from the fact that v; < m —1 — u. We now derive a lower bound
on E(T,(vn)). Using Eq. (3.39), we get To(v) > v1 + 200 + 374 v;. Taking the

expectation of both sides, we get
E(T(vn)) = 3un — (3.53)

Considering (3.53) and the upper bound derived in (3.52), we deduce that

B;Ln—ugE(T(yn))§3un+3u—1+3alogn\/ﬁ—l—0(ln2 )
og“n

which leads to (3.44) for > 1/3.
The case p < 1/3 follows along the same line and it can be shown that

n—1—pu<E(T(v,) <n+3clognyn+ O (ILQ) (3.54)
g n

which leads to (3.44) for u < 1/3.
U

Remark: Theorem 3.3.2 can be easily generalized to the case that v;’s are inde-
pendent and have mean p; > % and variance 022 and v; < m—1 where m is a constant.

In fact we can assume m is also going to infinity as well. The theorem goes through
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as long as m = o(n).

Figs. 3.11 and 3.12 illustrate the behavior of the (minimum) average collection time
on a line network equipped with omnidirectional antennas. It is assumed that a given
sensor node has collected 0 or 1 data packet with probability 1 and 1 — p respectively
(equivalently that the average number of packets per node is p). Figs. 3.11 and 3.12
were obtained through the application of Theorem 3.3.1, which means that they are
an exact computation of the CDF. They both confirm the asymptotic result proven

in Theorem 3.3.2.

p=0.1
p=0.2
p=0.3
— p=0.4 n
— p=0.5
— p=0.6
pu=0.7
pu=0.8
— p=0.9
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E(M)

v {0,1}
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Figure 3.11: Average collection time as a function of average number of packets per
node and number of nodes in line network equipped with omnidirectional antennas.
Nodes carry 0 or 1 packet with probability 1 — p and p respectively.

In omnidirectional antenna systems, data transmissions generate interference at
all surrounding nodes. In a line network, in particular, this implies that a packet
transmission to the left (or right) neighbor creates interference at both the left and
right neighbors. This in turns increases the length of the optimum data collection
schedule (when compared to directional systems). So time efficiency may be improved

by using directional antenna systems. In order to get a better intuition on how the
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Figure 3.12: Average collection time as a function of average number of packets per
node in 1500-node line network equipped with omnidirectional antennas. Nodes carry
0 or 1 packet with probability 1 — p and p respectively.

two systems perform relative to each other, we give the following comparative result

for a line network.

Theorem 3.3.4. Let v;’s be i.i.d. random variables v; € S,, with mean u, variance o>
where w, 0%, m are all constants independent of n. We have, if T, (resp. T,) denotes
the minimum collection time on a line network equipped with omnidirectional (resp.

directional) antennas

1 ifp>1/3
E{T,
nmEiqu =93n  if1/3<u<05 (3.55)

3/2  ifu>05

\
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3.3.3 Multi-line/Omnidirectional Case

Theorem 3.3.5. Consider a multi-line network with L lines of length ng, and v;’s
are i.i.d. chosen from S,, such that Vk, 0 < k < m — 1, Pr(y; = k) = py where

Pm—1 # 0. Further assume that B(v;) = p Then

noL,u S ]E(To) S noL,u + O (%) + (3n0(m — 1) — 2) (1 — pm_l)L/3 (356)

In particular,

i) if L>(3+0(1)log,ny lim E(T,) —ngLy =0 (3.57)
E(T,

ii) if 3log,my > L and lim L = +o0, lim (L) =1 (3.58)
No—00 No—00 nOL,u

in) if L = cte,n,Lp < E(T,) < n,Lu(l+e€) (3.59)

1
1-pm-1

where, a = and € is a constant independent of n, when L is fixed.

Proof. This follows by taking the expectation from both sides of the inequality T" >

(number of packets in network). O

In what follows, we prove that as L increases, the expected collection time con-
verges toward this lower bound.
To prove our asymptotic result, we use a suboptimal procedure to collect the data at
the BS: we divide the network into three subnetworks S, S, and S3. Line [ € S
if /=0 (mod3),l € Sifl =1 (mod3),[ € S3ifl =2 (mod3). Forl € &,
nodes at distance d = 1 (mod 3) from the BS transmit toward the BS at time slots
t =1 (mod 3), nodes at distance d = 2 (mod 3) transmit at times ¢ = 0 (mod 3),
nodes at distance d = 2 (mod 3) transmit at times ¢ = 2 (mod 3). For | € Sy, nodes
at distance d = 1 (mod 3) from the BS transmit toward the BS at time slots t = 2
(mod 3), nodes at distance d = 2 (mod 3) transmit at times ¢ = 1 (mod 3), nodes
at distance d = 0 (mod 3) transmit at times ¢ = 0 (mod 3). And so on. In a given
subnetwork multiple nodes at distance 1 from the BS may carry packets. Since the BS

can only receive one packet at a time, we assume the presence of some mechanism that
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ensures that only one packet is transmitted to the BS and other available packets are
stored for later transmission. This strategy is followed until all packets have reached
a node at distance 1 from the BS. At this point packets are simply transmitted to the
BS in turn so that the BS doesn’t become idle until all packets have been collected.
Furthermore we require that a given packet leaves its source node at the same TS it
would have if all nodes were carrying m — 1 packets (worst case scenario) and not
sooner. With this scheduling and assuming each node has at most m — 1 packets, it

is clear that after 3ng(m —1) —2 TS, all the packets are within distance one from the

BS.

Proof. The lower bound follows from Theorem 3.30. For the purpose of deriving an
upper bound, we define the random variable e; € {0, 1}, fori =1,...,3ng(m—1)—2,
such that e; = 0 if the BS is busy at TS 4, and e; = 1 if it is not.
Considering the steps in collecting packets in the network with the previously de-
scribed scheduling strategy, if the total number of packets is greater than 3ng(m —
1) — 2, the time needed to collect the data packets is equal to the total number of
packets in the network (denoted by 1) plus the number of times that the BS was not
busy during 1 < ¢ < 3ng(m — 1) — 2 which is equal to 323"V~ ¢, Therefore, we
have the following upper bound for the delay
3no(m—1)—2
T <max{n, 3ng(m—1) -2} + Z e; (3.60)
i=1

To find an upper bound for the expected delay, we find Pr(e; = 1) and Pr(n <
3ng(m — 1) — 2). It is clear that

Pr(es;, = 0) > Pr(having at least m — 1 packets at distance k)
> Pr(at least 1 node at distance k has m — 1 pckts)

— 1= (1= pp_y)™? (3.61)

A similar expression can be written for Pr(eg;11/2 = 0). Furthermore, using Cheby-
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chev’s inequality and noting that n is the total number of packets in the network, i.e.

nolL .
n=) ,— Vi, we may write

Pf(3”o(m—1)—2§n)21—0<no%)

which implies that Pr(n < 3ng(m — 1) —2) < O (ﬁ) Now we can take the

expectation from both sides of (3.60) to get

E(T) < E(n) 4+ (3ng(m — 1) — 2) Pr(n < 3ng(m — 1) — 2)+

3ng(m—1)—2

Z Pr(e; = 1)

i=1

<noLp+0O <l> + (3ng(m — 1) = 2)(1 — pp_1)*/3

L
that completes the proof for (3.56). O
In the more general case where the number of sensors per line is n!, for il = 1,..., L
(instead of ng for all I’s) the lower bounds on the expected delay becomes E(T") >

1 Zle nY. We can further find an upper bound by replacing ny by max n!, in (3.60)

and noting that E(n) is equal to the lower bound. The result follows in a similar

fashion. Therefore as long as (max n!y)m = o (1_p1ml>L and L grows to infinity, the
expected delay converges to E{n}. Fig. 3.13 shows the average (minimum) collection
time in a multi-line network equipped with omnidirectional antennas. In our scenario
each line has at most 25 sensor nodes. The average number of packets per node is p
as well with a maximum of 1 packet per node. Those results were obtained through

Monte Carlo simulations with 40000 iterations and confirm the convergence shown in

Theorem 3.3.5.
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Figure 3.13: Omnidirectional Line Network, v € {0,1}, E(T") — noLp as a function of
L and pu.

3.4 Dynamic Data Collection in Linear Sensor Net-
works

In stationary state, after nodes have organized themselves into a network, the opera-
tion of a sensor network can be broken down into two main phases. In the first phase
or observation phase, area monitoring results in an accumulation of data at each sen-
sor node. In the second phase or data transfer, the collected data is transmitted to
some processing center (BS) located within the sensor network.

we assume that while data is being collected by the BS from sensor nodes, those sen-
sor nodes keep gathering new data to be transmitted at a later time. We specifically
assume that each sensor node collects data according to a Poisson distribution with
mean .

Let ©° denote the initial data vector. Then T'(v°) denotes the corresponding data
collection time and can be calculated according to Eq. (2.3). During that period new

data is collected at sensor nodes and by the end of that period we have a new data
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1. The corresponding data collection time is T'(v!). And so on. The data

vector v
collected during a given transfer phase was collected by the sensor nodes during the
previous transfer phase. We would like to find the maximum rate at which data may
be gathered such that the system is stable. In a stable system the collection time

remains bounded or equivalently the sensor node buffer size is bounded.

Theorem 3.4.1. Data collection on a linear network consisting of n sensor nodes
gathering data packets according to a Poisson distribution with rate X is sustainable
with high probability over the long term for large n iff X = o(1/n). In particular we

have
A=o0(1/n) = 3K > 0K < oo such that limPr{vf < K} =1Vil<i<n (3.62)

Proof. The distribution of the packets at the end of observation phase k — 1 is

AT h)

Pr{vf = j} = exp(-A\T (V")) i (3.63)
Therefore,
K j
Privf <K} = exp(—p)ts (3.64)
— J!
=
where = \T(v*71).
K \"
= Pr{max v} < K} = exp(—pun) (Z ,u_'> (3.65)
1 0 7]
=

k+1

(k+1)!

_ exp(—pm) (exp(u) - expwm) 0<0<1 (360

k41 "
= (1 - (k“+ o exp((0 — 1)@) (3.67)

> (1 - %)n (3.68)
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Choose
k+1
W 1
— 3.69
(k+1)! nlogn (3.69)
1 1
N og(nlogn) (3.70)
log pu
But we know from Eq. (2.3) that
T(v) =0(n) (3.71)
therefore choose
1
\ = — (3.72)
= K =1/ (3.73)

Therefore if A < 1/n, Pr{max; f < K} converges to 1 when the number of nodes
becomes large for some finite K. On the other it is easy to see that if A = 1/n,
Pr{max; v¥ < K} converges to 0 for any positive, finite K from Eq. (3.67). The

theorem follows. O

3.5 Conclusion

This work is concerned with characterizing the delay in collecting data from sensory
networks at the BS. Under the assumption that the number of data packets accumu-
lated by a sensor node is a random variable, we give lower and upper bounds for the
average delay and derive the asymptotic behavior of this quantity as the number of
nodes becomes large. Note that if the number of packets at each node is deterministic,
the exact delay can be derived for tree topologies as demonstrated in the previous
chapter. However, using probabilistic approach, we showed that asymptotically the
average delay converges to the expected number of packets in the network for a tree

with multiple connections to the BS. We further argued that this holds for sensory
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networks of randomly located nodes in a disk as well. Furthermore, we derive exact
relationships between data collection time and transmission range, data packet size
and channel noise in the simple line scenario. To develop intuition these relationships
are studied in the asymptotic case where the number of sensor nodes becomes large.
Remarkably we show that multihopping does not lead to significant deterioration of
the time efficiency of the data collection process. Indeed the latter deteriorates by a
maximum factor of 2 when compared to direct transmission. This seems like a rela-
tively low cost to pay in comparison to the energy saving realized by multihopping,
which is of the order of the number of sensor nodes in the network. On the other hand
our model shows that multihopping can have disastrous effects on the collection time
in presence of noise. Note, however, that in networks with more general topology this
needs not be, since in that case a node may choose to forward data to the neighbors

with the best channels.
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Chapter 4 Conclusions and Future

Directions

Data collection in an important communication primitive in sensory networks. In this
dissertation we studied the data collection process and its fundamental performance

limits. Specifically,

e In the deterministic case, we exhibited optimal scheduling strategies to collect
data on trees and derived corresponding minimal data collection times. Fur-

thermore we bounded time collection on networks with cycles.

e In the random case, we derived the expected value of the minimum collection

time in trees.

e We studied the impact of hop length, packet splitting, packet erasure, and lack
of synchronization in line networks. Furthermore we found scaling conditions
on the rate at which data may be gathered by sensor nodes for sustainable data

collection over time.
Future directions for our research include:

e Consider the presence of multiple base stations in the network, and quantify

the corresponding gains in data collection time.

e We studied the impact of noise in the channel on our data collection strategies.
Those strategies are optimal in the absence of noise. Are those strategies still
optimal in the presence of noise? Can we come up with strategies that are less

sensitive to noise?

e Similarly we studied the impact of partial lack of synchronization among the
sensor nodes. Are the strategies presented in this thesis still optimal in the

absence of clock synchronization?
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e Define energy expended as energy(h) = >, [(N;)¥, where a is a positive con-
stant greater than 2, h is the maximal node transmission range, and [(V;)*
denotes the energy expended by node N; (I(NN;) is taken to be the length in
hops of a transmission initiated by node N;). In this thesis, we derived the min-
imum collection time at the point of minimum energy (one hop transmissions).
We further studied minimum collection time as a function of transmission range.
An interesting follow-up would be to derive optimal schedules with respect to
time and energy for a given transmission range (larger than 1) and subsequently
the trade-off between minimum delay and energy expended in data collection.
This is illustrated in the next two figures where h = 3 and a line network is
considered. Fig. 4.1 shows an optimal data collection schedule with respect to
time, while Fig. 4.2 shows a schedule optimal with respect to time and energy.
Ifoe = 2, the energy expended in the first schedule is 5%9+4-2*%4+2=55 energy
units while it is only 2*9+2*4411=37 in the second schedule.

~N g W e

Time Slot

Figure 4.1: Optimal distribution schedule with respect to time that is suboptimal
with respect to energy.

_ =

~N g W e

B =e

Time Slot

Figure 4.2: Optimal schedule with respect to time and energy.
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Appendix A A Preliminary Result

In the following section we assume that a network equipped with directional nodes
may receive and transmit a data packet during any given TS (whereas so far we had
assumed that it was only possible to receive or transmit a data packet in a given TS).
Although such networks may seem artificial and not practical for the time being, the
results that follow allow us to gain some insight into more complex systems.

The purpose of this section is the construction of an optimal strategy for collecting
data as well as deriving a closed form expression for time performance. We obtain
both for any general connected graphs. To that end, we first go through a series of

successive building steps.

Lower Bound on the Time Performance of Data Dis-
tribution Algorithms

Lemma A.0.1. Given any connected graph G, if t1(G) denotes the time performance
of a giwen data distribution algorithm, and v; denotes the number of data packets at

distance j from the BS, then

t(G) > mlax(i—l—l—ZI/j) (A1)

Jj=i

Proof. > j>1vj data packets must be delivered to nodes at distance greater than 1.
Since the BS can only transmit one data packet at a time, we have: ¢,(G) > > .-, v;.

> ;j>i Vj data packets must be delivered to nodes at distance greater than ¢ > 1.
After ) .., v; TS the last data packet sent by the BS is at distance one from the BS
and therefore at least ¢ — 1 extra TS are required for it to reach its destination, thus:

ti1(G) > 3,5, vj +i— 1. Hence the stated result. 0O
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Achievability of Lower Bound

1) Line Network:

The purpose of this section is to prove that the lower bound derived in the previous
section is achievable on a line network. We shall show in the next section achievability
on general connected graphs based on this result.

The algorithm:

The BS is to send first data packets destined for the furthest node, then data packets
for the second furthest one and so on, as fast as possible while respecting the channel
reuse constraints. Nodes between the BS and its destinations are required to forward
packets as soon as they arrive (that is, in the TS following their arrival). This

algorithm is illustrated by an example in Fig. A.1.

© N 0O W

Time Slot

Figure A.1: Optimal distribution schedule for BS in line network equipped with direc-
tional antennas and ability to receive and transmit in the same TS. The completion
time is 8 T'S.

Proof of optimality and time performance:

Denote T; the last busy time slot at node ¢ in the execution of our algorithm. Clearly
then our algorithm runs in max {Ti}. T; is a function of the distance to the BS, the
number of data packets destined for node 4 and the number of data packets forwarded

by node 1.

Lemma A.0.2.
i+2j>i1/j Zfl/zgl
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Proof.

fi = number of packets forwarded by ¢ = Z vj
j>i

Lemma A.0.3. Define: S; = iji vj+i—1, then max S; = maxT;

Proof. Indeed 5; is a lower bound for all 7. So max S; < maxT;, but S; =T; if v; > 1.
Since clearly max T} occurs in ¢ such that v; > 1, we have max S; = max 7T}, i.e., the

algorithm is optimal. O

2) General Connected Graphs:
By using the shortest routes (from the BS) to the sensor nodes, the algorithm pre-
viously described on line networks may be used on general (connected) graphs. The
performance time of that algorithm is then max T; where T; is defined in Lemma A.0.2
and v; is the number of data packets at distance j from the BS. The next corollary

follows from Lemma A.0.3.

Corollary A.0.4. The minimum data collection time t1(G) on any connected graph
G is
t1(G) = max (i — 1+ > ) (A.3)
T Jj>u

The following corollary follows from Corollary A.0.4.

Corollary A.0.5.

VT a spanning tree of G, t1(Zsp) < t1(7T) (A.4)
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Appendix B Algorithms

Algorithm 1 (for directional antenna systems) and Algorithm 3 (for omnidirectional
ones), running at the BS, optimally distribute data in a line network. Given a line
network Network = v, they dictate the BS actions at each TS: Remain idle (action =
0) or transmit (action = 1). The result is stored in the vector action. When an action
is chosen the right packet is to be handed over to the BS for transmission. One might
assume that there is a stack of data packets correctly ordered with respect to the
distance to the BS and that that stack is being updated after each BS action so that
a packet is popped off the stack as it is transmitted. Algorithm 2 (for directional
antenna systems) and Algorithm 4 (for omnidirectional ones), running at the BS,
optimally distribute data in a multiline network. The input to Algorithms 2 and 3
is a n by m matrix Network where n is the number of lines and m is the maximum
number of nodes per line. It is further assumed that the vector Est_trans_time of

size n is initialized with the respective T'(v) of each line.

Algorithm 1 Determines BS actions in line networks

input: Network

output: action
1: step < 1, legal— 1, packts_left < 3 Network(i)
2: while packts_left # 0 do
3:  if legal then

4: action(step) « 1

5: packts_left < packts_left-1

6: legal +— 0

7. else

8: action(step) < 0

9: legal «— 1

10:  end if

11:  if packts_left < Network(1) then
12: legal «— 1

13:  end if

14:  step « step+1
15: end while
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Algorithm 2 Determines BS actions in multi-line networks

input: Network

output: action
1: step < 1, prev_legal < ones(1,n), legal <+ ones(1,n), packts_left «— szetwork(i,j)
2: Vi packts_left_for_branch(i)« > ;Network(i,j)
3: while packts_left # 0 do

4:  (y,ind)=max(Est_trans_time.*legal)

5. if y=0 then

6:

7 for i=1 to nb_of branches do

8:

9: if packts_left_for_branch(i) # 0 then
10: ind=i
11: end if
12: end for
13: action(step) « 0
14:  else
15: action(step) « ind
16: packts_left < packts_left-1
17: packts_left_for_branch(ind) <« packts_left_for_branch(ind)-1
18:  end if

19:  legal« ones(1,nb_of_branches)
20:  for i=1 to nb_of _branches do

21:

22: if packts_left_for_branch(i)=0 then
23: legal(i) < 0

24: end if

25:  end for

26:  tabtest < sum(Network(ind,1:nb_of_nodes))-Network(ind,1)
27:  if (tabtest > 0 & action(step) # 0) then

28:

29: if packts_left_for_branch(ind) > Network(ind,1) then
30: legal(ind)«— 0

31: end if

32:  end if

33:  for i=1 to nb_of_branches do

34: if (prev_legal(i)=1 & i # ind) then

35: Est_trans_time(i) < Est_trans_time(i)+1

36: end if

37:  end for

38:  prev_legal « legal
39:  step « step+1
40: end while
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Algorithm 3 Determines BS actions

input: Network
output: action
1: step < 1, packts_leftl < Network(1l), packtsleft2 « Network(2), packtsleft3 «—
> i>sNetwork(i), packts_left «— 3 Network(i)
2: while packts_left # 0 do
3:  while packts_left3 # 0 do
4 action(step) « 1
5: action(step+1) < 0
6: action(step+2) < 0
7 step=step+3
8 packts_left3=packts_left3-1
9

: end while
10:  while packts_left2 # 0 do
11: action(step) « 1
12: action(step+1) < 0
13: step=step+2
14: packts_left2=packts_left2-1

15:  end while
16:  while packts_leftl # 0 do

17 action(step) < 1
18: step=step+1
19: packts_left1=packts_left1-1

20: end while
21:  packts_left « packts_left-1
22: end while
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Algorithm 4 determines BS actions in multi-line network

input: Network
output: action

1:

I R O R I R O I R R R R I R N R e e e

40:
41:

—_ =
= O

step < 1, prev_legal < ones(1,n), legal < ones(1,n)
packts_left « >, Network(i,j)
Vi packts_left_for_branch(i)« _ Network(i,j)
while packts_left # 0 do
(y,ind)=max(Est_trans_time.*legal)
if y=0 then

for i=1 to nb_of_branches do

if packts_left_for_branch(i) # 0 then
ind=i
end if
end for
action(step) < 0
else
action(step) « ind
packts_left « packts_left-1

packts_left_for_branch(ind) < packts_left_for_branch(ind)-1

end if
legal«— ones(1,nb_of_branches)
for i=1 to nb_of_branches do

if packts_left_for_branch(i)=0 then
legal(i) < 0
end if
end for

tabtest «— sum(Network(ind,1:nb_of nodes))-Network(ind,1)

if (tabtest > 0 & action(step) # 0) then

if packts_left_for_branch(ind) > Network(ind,1) then
legal(ind)«— 0
end if
end if
for i=1 to nb_of_branches do
if (prev_legal(i)=1 & i # ind) then
Est_trans_time(i) « Est_trans_time(i)+1
end if
end for
prev_legal « legal
step < step+1
end while
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