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Abstract

The metallation of FeX, (X = Cl, Br, I) salts with the strong-field [PhBP;]
([PhBP3;] = PhB(CH,PPh,);") ligand is presented. The resulting four-coordinate, 14-
electron species, [PhBP;]FeX, have been thoroughly characterized and feature high-spin
(S = 2) electronic ground-states. X-ray diffraction analysis of [PhBP;]FeCl establishes a
monomeric structure in the solid state.

The one electron reduction of [PhBP;]FeCl in the presence of a
triphenylphosphine cap affords a rare example of four-coordinate iron(I). This species,
[PhBP;]Fe(PPhs), serves as a synthetic surrogate to a low-valent “[PhBP;]Fe(I)” subunit
that is readily oxidized in the presence of organic azides. The resulting S = ' iron(IlI)
imides of general formula [PhBP;]Fe=NR may be subsequently reduced by one electron
to yield the anionic S = 0 derivatives. Exposure of the former to an atmosphere of CO
results in cleavage of the Fe=NR linkage to yield [PhBP;]Fe(CO), and free isocyanate
(O=C=N-R). Dicarbonyl [PhBP;]Fe(CO), is itself an imide precursor and is gradually
converted back to [PhBP;]Fe=NR upon exposure to excess organic azide.

Tolyl imide [PhBP3;]Fe=N-p-tolyl readily reacts with H, under mild conditions to
undergo a step-wise Fe-Ny bond scission process to ultimately release free p-toluidine.
Initially formed is the S = 2 iron(Il) anilide, [PhBP;]Fe(N(H)-p-tolyl), which has been
independently prepared and shown to release p-toluidine in the presence of H,. In
benzene solvent the final iron containing product of the hydrogenation process is
diamagnetic [PhBP;]Fe(n’-cyclohexadienyl), which is presumably formed from benzene

insertion into a low-valent iron-hydride intermediate.
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Reduction of the ferromagnetically coupled dimer, {[PhBP;]Fe(N3)}», yields the

bridging nitride species, [{[PhBP;]Fe},(u-N)][Na(THF)s]. This compound features two
high-spin iron(Il) metal centers that are so strongly antiferromagnetically coupled that a
diamagnetic S = 0 ground-state is exclusively populated at room temperature. X-ray
diffraction analysis reveals a bent Fe-N-Fe linkage that quantitatively releases ammonia
in the presence of excess protons. Reactivity with CO and Hj; is also presented, and for
the latter, complete rupture of the Fe-N-Fe manifold is not observed as the presence of an
additional metal center (when compared with the iron(IIl) imides) favors the formation of

the diamagnetic bridging imide-hydride species, [ {[PhBPs]Fe},(u-NH)(u-H)][Na(THF)s].
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