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Abstract 

 The metallation of FeX2 (X = Cl, Br, I) salts with the strong-field [PhBP3] 

([PhBP3] = PhB(CH2PPh2)3
-) ligand is presented. The resulting four-coordinate, 14-

electron species, [PhBP3]FeX, have been thoroughly characterized and feature high-spin 

(S = 2) electronic ground-states. X-ray diffraction analysis of [PhBP3]FeCl establishes a 

monomeric structure in the solid state.  

The one electron reduction of [PhBP3]FeCl in the presence of a 

triphenylphosphine cap affords a rare example of four-coordinate iron(I). This species, 

[PhBP3]Fe(PPh3), serves as a synthetic surrogate to a low-valent “[PhBP3]Fe(I)” subunit 

that is readily oxidized in the presence of organic azides. The resulting S = ½ iron(III) 

imides of general formula [PhBP3]Fe≡NR may be subsequently reduced by one electron 

to yield the anionic S = 0 derivatives. Exposure of the former to an atmosphere of CO 

results in cleavage of the Fe≡NR linkage to yield [PhBP3]Fe(CO)2 and free isocyanate 

(O=C=N-R). Dicarbonyl [PhBP3]Fe(CO)2 is itself an imide precursor and is gradually 

converted back to [PhBP3]Fe≡NR upon exposure to excess organic azide. 

 Tolyl imide [PhBP3]Fe≡N-p-tolyl readily reacts with H2 under mild conditions to 

undergo a step-wise Fe-Nx bond scission process to ultimately release free p-toluidine. 

Initially formed is the S = 2 iron(II) anilide, [PhBP3]Fe(N(H)-p-tolyl), which has been 

independently prepared and shown to release p-toluidine in the presence of H2. In 

benzene solvent the final iron containing product of the hydrogenation process is 

diamagnetic [PhBP3]Fe(η5-cyclohexadienyl), which is presumably formed from benzene 

insertion into a low-valent iron-hydride intermediate. 
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 Reduction of the ferromagnetically coupled dimer, {[PhBP3]Fe(N3)}2, yields the 

bridging nitride species, [{[PhBP3]Fe}2(µ-N)][Na(THF)5]. This compound features two 

high-spin iron(II) metal centers that are so strongly antiferromagnetically coupled that a 

diamagnetic S = 0 ground-state is exclusively populated at room temperature. X-ray 

diffraction analysis reveals a bent Fe-N-Fe linkage that quantitatively releases ammonia 

in the presence of excess protons. Reactivity with CO and H2 is also presented, and for 

the latter, complete rupture of the Fe-N-Fe manifold is not observed as the presence of an 

additional metal center (when compared with the iron(III) imides) favors the formation of 

the diamagnetic bridging imide-hydride species, [{[PhBP3]Fe}2(µ-NH)(µ-H)][Na(THF)5].  
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