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Abstract

What is an optimal multi-resolution source code? This thesis studies the optimization
of multi-resolution source codes. A multi-resolution source code is a data compres-
sion algorithm that generates a bit-stream that can be truncated at any point to re-
construct low-resolution representations of the original data. By progressively refining
the description, these codes allow the receiver to get representations of progressively
increasing quality from a single file.

The optimization methods presented here are based on the minimization of a
Lagrangian performance measure, which is a weighted sum of rates and distortions at
the different resolutions of the multi-resolution code. The Lagrangian coefficients are
the weights that parameterize the priorities assigned to the resolutions. The relative
value of these parameters can be set according to the user’s preferences regarding
which rates are more important, the probability of decoding the file at each possible
rate, or any other prioritization rationale. We present a method for converting design
constraints into the corresponding Lagrangian parameters.

We also use a Lagrangian analysis to investigate optimality properties of multi-
resolution codes. Specifically, we explore the characterization of the theoretically
optimal output density functions of a two-resolution source code for any arbitrary set
of priorities over the resolutions.

Once the priority function has been identified, the goal is to design the multi-
resolution code that yields the best rate-distortion trade-off for those priorities. The
minimization of the multi-resolution Lagrangian is somewhat specific to the frame-
work and type of multi-resolution code. We pursue this goal in several coding frame-
works.

The first framework is the multi-resolution vector quantizer (MRVQ) framework.
Prior work on the topic described optimal MRVQ design for both fixed- and variable-

rate systems but implemented only fixed-rate codes. The earliest portion of this
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thesis began with the implementation of the earlier described algorithm for variable-
rate MRVQ for use as a testbed for understanding the important question of how to
choose the Lagrangian parameters for multi-resolution codes to meet a collection of
desired constraints.

Armed with a new understanding of parameter choice in the MRVQ framework,
we moved next to the more sophisticated coding framework of wavelet-based embed-
ded bit-plane coders. New results in this framework include improvements on the
Set Partitioning in Hierarchical Trees (SPIHT) and the Group Testing for Wavelets
(GTW) algorithms that apply the lessons learned from MRVQ theory in these more
sophisticated wavelet coding frameworks. Experimental results demonstrate the per-

formance benefits associated with this approach.
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Chapter 1 Introduction

In this thesis, we are interested in the theory and practice of multi-resolution coding.
Multi-resolution source codes, also called progressive transmission or embedded codes,
are data compression algorithms that generate a bit-stream that can be truncated at
any point to reconstruct low-resolution representations of the original data. The
higher the number of decoded bits, the better the reconstruction.

Current computer networks and wireless communication systems often present
situations where each user wants to access the same file at a different connection speed
or with different requirements for the minimum acceptable quality of the reconstructed
data. Multi-resolution codes give a scalable solution that allows each receiver to get
representations of progressively increasing quality from a single file. Thus users able
and willing to wait or pay for the best (in some cases lossless) reconstruction of the
original image will decode the whole bit-stream of compressed data. Users that can
afford a representation of the data with more distortion can decode only a fraction
of the bit-stream by stopping at the rate of interest and discarding all following bits.
This feature is useful to the file-owner as well, since only one file is needed regardless
of the number of different users with differing requirements.

Beginning with a theoretical investigation of multi-resolution codes helps to pro-
vide solid ground on which to base practical techniques. It also allows us to better un-
derstand the possible limitations of real multi-resolution systems. While prior results
in multi-resolution coding theory include the solution to the optimal rate-distortion
trade-off, evaluating that solution for specific sources is difficult.

The first major portion of this thesis is an investigation of the rate-distortion
region. In particular, we seek an understanding of the reproduction alphabet size
needed to achieve the optimal rate-distortion trade-off for general sources.

The second portion of this thesis treats parameter choice in practical code design.

The theoretical development relies heavily on the use of a Lagrangian characterization
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of code performance. This characterization is critical because it allows us to combine
a large collection of rates and distortions into a single performance criterion. Critical
to successful application of this approach in practice is an understanding of how
to convert functional design constraints (e.g., bounds on rates and distortions) into
their corresponding Lagrangian parameters. We therefore seek a new algorithm for
Lagrangian parameter choice.

The third main contribution of this thesis is a pair of methods for applying La-
grangian optimization to wavelet-based multi-resolution algorithms. We present these
techniques as well as experimental results.

The thesis organization follows. (Most chapters can be read separately.) Chapter 2
defines notation and describes general background. Chapter 3 presents the Lagrangian
analysis to investigate reproduction alphabet size for optimal multi-resolution source
codes. In particular, we explore the characterization of the theoretically optimal
output density functions of a two-resolution source code for an arbitrary set of prior-
ities over the resolutions. Chapter 4 treats the Multi-Resolution Vector Quantization
(MRVQ) algorithm originally introduced in [19]. The focus of this chapter is the
development of new methods for choosing Lagrangian parameters. This chapter also
describes a new linear complexity MRVQ-TSVQ hybrid algorithm and presents ex-
perimental results for those algorithms with comparisons to other methods. The
material in this chapter also appears in [16, 21].

Chapter 5 introduces several new algorithms using a Lagrangian minimization.
Efficient wavelet-based bit-plane coders, SPIHT and GTW, are optimized in a rate-
distortion sense to achieve performance improvements of up to 1 dB. Work done
here on the optimization of zero-tree codes led to a collaboration with Prof. Hao-Min
Zhou (now at Georgia Tech) and Prof. Tony F. Chan (UCLA) to yield our method
for the joint optimization of the adaptive Essentially Non-Oscillatory (ENO) Wavelet
transform and the GTW algorithm, also described in Chapter 5. The material in this
chapter also appears in part in [17, 18|.

Finally, in Chapter 6 we summarize our contributions.



Chapter 2 Background

Figure 2.1 shows a sequence of four images reconstructed from a multi-resolution code
at different rates and distortions. The rate R is measured in bits per symbol, and it
describes the average number of bits used to describe each source symbol. We measure
distortion D as the mean squared error (MSE) between original source symbols z;,
i=1,...,n, and their corresponding reproduction symbols z;. We calculate MSE as
D=2%" (x;— Z;)*.* In the figure, the first reproduction is at a low rate R; and has
a high average distortion D, with respect to the original source image. By decoding an
additional Ry — R, bits, the total decoded rate increases to Ry, and the reconstructed
image improves to yield a lower distortion Dy < D;. As we continue to increase the
rate (R; < Ry < -+ < Ryqe), the distortion decreases (Dy > Dy > -+ > 0).

In general, multi-resolution source codes cannot simultaneously achieve the best
possible performance at all resolutions.” Figure 2.2 illustrates a rate-distortion func-
tion (dashed line) for a non-successively refinable source, and two possible scenarios
(solid lines) for two-resolution coding of the same source. In one of those scenarios
the encoder sets the coarse description to be identical to the optimal single-resolution
code, forcing the high-resolution performance to deviate from the rate-distortion
bound. In the other case, the high-resolution description is set to be optimal, and
the low-resolution description fails to achieve the rate distortion bound.

Because there exist sources that are not successively refinable [23, 14], the opti-
mization of multi-resolution source codes relies on the use of priority functions. A
priority function is a weighting function describing the relative importance of the

different resolutions to the system designer.

*For images, for example, the average bit-rate is measured in bits per pixel (bpp), and
the distortion is usually expressed in decibels (dB) by the peak signal-to-noise ratio PSNR =
101og, (2552 /MSE) dB. Notice that PSNR increases with increasing image quality, and it assumes
that the original picture is represented with 8 bits per pixel, where pixel values go from 0 to 255.

tThe degradation in performance associated with multi-resolution coding is generally small, as
exemplified in [20] and bounded for general sources in [35, 36, 26, 25].
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Figure 2.1: Multi-resolution source codes. Example of a 4-resolution reproduction
sequence, comparing the original source image with the four quantized images with
decreasing distortions Dy, Do, D3, and Dy, and their associated increasing bit-rates
Ry, Ry, R3, and R,.

A R(D)

AR

AR

D, D,

Figure 2.2: A single-resolution rate-distortion function R(D) (dashed line) for a non-
successively refinable source, and two possible scenarios (solid lines) for two-resolution
coding of the same source. In (1), Ry = R(D,), forcing Ry > R(D;). In (2), R, =
R(Dl), fOI'CiIlg Ry > R(Dg)
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In [19], Effros introduces a multi-resolution optimization criterion based on a
weighted sum of rates and distortions. For any multi-resolution code with perfor-
mance on the lower convex hull of achievable rate-distortion vectors, there exist non-
negative constants (ay, A¢)%_,, later denoted by (%, AL), such that the given code’s

performance minimizes the multi-resolution Lagrangian performance measure

L

J = D+ NRy) (2.1)
=1

over all multi-resolution codes. Here D, and R, denote the code’s expected distortion
and total rate at resolution ¢. We use J as our performance criterion in multi-
resolution code design throughout this thesis. Intuitively, o, describes the priority
on the (-th resolution and D, + \/R, is the familiar rate-distortion Lagrangian for
resolution ¢. Here the vector (o, \l) characterizes the direction of a hyper-plane
tangential to the lower convex hull of the achievable rate-distortion region at a single
point [20, 16].

The relative values of the (a’, \) parameters can be set according to the user’s
relative preference for some resolutions over the others, the probability of utilization
of each resolution, the corresponding cost/benefit trade-off, or any other prioritiza-
tion rationale. Once the priority function has been identified, we design the multi-

resolution code that yields the best rate-distortion trade-off for those priorities.



Chapter 3 Reproduction Alphabet Size

3.1 Introduction

The rate distortion function for a source random variable X is denoted by R(D). It is
a non-increasing continuous convex U function of D, and it represents the minimum
rate necessary to achieve an average distortion not exceeding D. For the squared error
distortion measure, the alphabet for the reproduction that achieves R(D) is purely
discrete if the Shannon lower bound (SLB) and R(D) function do not coincide [47].
The multi-resolution rate-distortion bound for memoryless sources appears in [44].
We are interested in characterizing the alphabet size for the reproduction distribution
that achieves the multi-resolution rate-distortion bound. While [50] generalizes some
of the results of [47] from single- to multi-resolution codes, the techniques used in [47]
to solve the alphabet size problem do not easily generalize to allow solution of the
corresponding alphabet size problem for multi-resolution codes. We use the multi-
resolution Lagrangian to pursue that goal. The investigation begins in Section 3.2
with a sketch of a new derivation of the single-resolution result of [47]. The hope is
that the given technique can be generalized to characterize the optimal reproduction
alphabet for multi-resolution codes. Section 3.3 sketches the proposed method of
attack, giving full details for the parts of that argument that have been solved to
date.

3.2 Single-resolution Case

Let random variable X have probability density function (pdf) p(z) on continuous
alphabet X. Use Y to denote the reproduction random variable with output density
f +P(z) q(y|r) dx on output alphabet ). The goal here is to determine whether
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the output alphabet ) that achieves the rate-distortion function

R(D) = min Y)
Q(y‘w) p(:c)q(y|:c)p( ) <D
= min / / q(y|x) In [ a(y |:r)] dy dx
Wl0): [y [y p(2) a(y|7) pl,y) dy do < D q(y)

is discrete or continuous.
We begin by formulating the above constrained minimization as a Lagrangian.
In particular, the above constrained minimization is equivalent to the uncon-
strained minimization

Jiy 5 = min Jq 5(q)

q(y|z)

for the appropriate choice of Lagrangian parameters o and ,where

Jopla(ylz)] = dloP(X,Y) + 5 1(X,Y)

Y T A A
_ 5// a(yle) 1 [#ﬁy)] dy dz. (3.1)

To identify the optimal conditional distribution ¢(y|x), we employ calculus of varia-

tions. First we apply a perturbation of the distribution ¢(y|x). That is, we replace
q(ylz) with
¢“(ylr) = (1= e) qlyla) + e&(yla), (3.2)

where € > 0, and &(y|x) is an admissible perturbation, here any conditional density
on Y given X for which the integrals exist and such that it is valid to change the
order of integration and differentiation where required. By further replacing ¢(y) =

fx q(y|z") dz’, Equation (3.1) becomes

Jalq y|m]—ﬂ// ) {a(ylz) + e [€(y]z) — q(yl2)]}

[ falylz) + € [E(wl) — alylo)}
S p(@) {alyle’) + e [€yla’) = qlyle)]} dat e 30

dy dzx .
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Setting £ Jo 5 [¢°(y]x)] = 0% allows us to characterize the optimal ¢(y|z). For a fixed
p(x), a necessary condition for the optimality of a given ¢(y|x) is that all admissible
perturbations of ¢(y|z) increase the value of the functional J, g [¢°(y|x)]. The details

follow.

8Jaﬂ [ 6(y|x)] (33)

= [ [ re [ yxoqw):

Define g(z,y) = §(z — y)? +1In [qég(’l‘;)”)_ . Given this definition, we can rewrite (3.3) as

[ a(y|v)
[y p(@) q(yla’) da' - e ~5 ey

dy dx .

Ep@)awie) 9(%, ¥) = Ep@yeyle) 9(, ) (3.4)

for all admissible conditional distribution perturbations £(y|z) and a given p(z). In-
tuitively, any function f(z,y) that has the same expected value for all  and y must
be everywhere constant. Likewise, we expect that any function g(z,y) that has the
same expected value for a fixed density p(x) and all conditional densities £(y|x) can
vary with y only on sets of measure zero with respect to the fixed distribution on X.
Using this intuition, Equation (3.4) suggests that g(z,y) is almost surely a function
only of x. We note that formalizing this intuition into a result would require a proof
that we have not completed to date. The remainder of the argument suggests how to
proceed if the given intuition is correct.

If the conjecture is verified, then there exists a function ¢ (x) such that

almost surely p(z), implying

g(ylo) = v(@) gly) e 7", (3.5)

*Notice that by applying calculus of variations, the first order partial derivative of the Lagrangian
(with respect to the scalar € > 0 of the e-perturbation) should be sufficient to determine the minimum
of the Lagrangian functional, given that the Lagrangian functional itself is a convex function of g.




which is the Gibbs distribution. Here

1
= ()2
Jyaly)e 5 dy

(x) (3.6)

is the normalization factor needed to give a legitimate conditional density. Based on

(3.5),

a(z,y) = p(x) () gly) e T

If we assume that there is an open interval Ij in the support of the output random

variable Y, then
g(zly) = p(x) P(z) e 5O (3.7)

for all y € Iy. In particular we require ¢(y) > 0 as a condition for finding ¢(z|y).
Integrating (3.7) with respect to x and taking the first partial derivative with respect

to the reproduction y, we have

- /Xp(x) () (z—y)e 50 da. (3-8)

Notice that (3.8) is identical to the Euler-Lagrange equation from [47, p. 1942].
The argument that follows is therefore identical to the argument in [47]. We reproduce
it here for the sake of clarity. The right-hand side of (3.8) is zero everywhere in the

interval I, which ensures all derivatives at a given point yy € I, must be zero. Thus

0 = x x)e BV dy
oy Xp( ) ¥() .
y=yo
N / ple) ¥lo) o B | gy (3.9)
v A" y=yo

for all n > 1, where the justification for the exchange in differentiation and integration

order can be found, for example, in [47, p. 1950]. Notice also the possible represen-
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tation of the partial derivatives of the exponential in (3.9) as Hermite polynomials,

which can be written by Rodrigues’ Formula as

o d”

Ho (o — ) = ed@0?
&~ 1) =e dyp

e Bl@w0)”, (3.10)
Then, as in [47], equation (3.9) can be written as
/ p(x) ¥ (x) Hy(z — yo) e 54 du = 0 (3.11)
x

for all n > 1, which implies that p(z) ¢ (z) must be a constant, since it is orthogonal

to all Hermite polynomials for n > 1. That is,

&

N p
p(x) Y(z) = fyq(y) 67%($7y)2dy

= constant. (3.12)

The constant can be determined by integrating (3.12) with respect to = to obtain the

relationship between the input and output density functions

p(z) = \/% /y a(y)e #¢dy. (3.13)

Recall the assumption that support of the output random variable Y contains an
interval Iy. Any ¢(y) not satisfying equation (3.13) would contradict the assumption
of existence of an interval Iy in the support of Y. This contradiction would imply
that the reproduction alphabet is discrete.

For the single resolution case, p(z) and ¢(y) satisfy (3.13) if and only if the Shannon
lower bound is tight (see, e.g., [5]).

As a summary for this section, let us emphasize two points. First, note that our
potential alternative proof for [47] relies on an unproven conjecture. Second, notice
that while the single-resolution result is not new, the above technique may provide

useful insight for deriving a multi-resolution result. We extend the proposed argument

"Hermite polynomials are an orthogonal set in (—o0, 0c0) with respect to the weight function, here
—&z—y?
e s .
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to the two-resolution case, again relying on the conjecture, in the following section.

3.3 Two-resolution Case

Let us consider a two-resolution source code. Denote X as the source random variable
with a probability density function p(z) on a continuous alphabet X', and Y] and Y;
as the reproduction random variables with output alphabets Y and Y, respectively,
and output probability density functions q(y1) = [, p(z) ¢(y1|x) dz and q(y1,y2) =
[vp +P(@) q(y1, y2|z) dav.

The achievable rate-distortion region is the set of vectors (Ry, Ry, D1, Dy) such

that

Ry > I(X;Y))

\

for some conditional density ¢(y;, y2|z). The mutual informations are

IMM%:/A %Mnmﬂﬂ%M (3.14a)
[(X:Y1,Y)) = //y/y o(yr, o) In {M] dys dyy dze (3.14D)

q(y1, y2)

and the expected distortions are

Ep(X,Y)) = / / ay|2) pla, ) dys do (3.150)
R%1

Ep(X,Y3) = /// q(y1, y2|x) p(x, yo) dys dyy du. (3.15b)
V1 J Vs

As in Section 3.2, we find the lower convex hull of this region using a Lagrangian

functional

* o= min J
B~ q(y1,y2|z) aﬂ(Q)
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where the two-resolution Lagrangian is

Ja,5(q /// z) q(y1, y2|T)
V1 J Yo

- {al pr(@,5) + By In [‘J(yl'x)} T a0 po(e,0) + foln {

Q(yl)

q(y1, y2|x)
q(y1, o)

} } dys dyy dx,

(3.16)

where

‘I(yl) = // y1,y2|$)dy2d$
Vo

ke = | atnele) e
dy) = /X p() alyn, ol de

(We here use notation that is slightly different from, but functionally equivalent to,
the notation of Chapter 2. In particular, here 5, = ay A;.)

We again apply calculus of variations to find optimal density ¢(yi,y2|x). Thus,
we replace q(y1, yo|x) with

¢“(y1, y2lz) = (1 =€) qyr, yolw) + €E(yn, y2l2) (3.17)

where € > 0 and &(y1,y2|2) is an admissible perturbation. We then take the first

order partial derivative of the Lagrangian

,ﬁ[ yl,y2|37 /// y17y2|x)
V1 J Yo

d
ln [ S yl,y2|x> v ]
L () g (g, yhla) dyh da
+ B2 ln [ 22 ()2 - (yhy2|$) ” dys dy, dx
e B2 \TTY2 fp(m’) q“(y1, yo|a') da’

with respect to €. Setting 2.Ja,g [¢°(y1,2|2)] = 0 allows us to find properties of the

optimal ¢(y1,y2|z). For a fixed p(z), a necessary condition for the optimality of a
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given ¢(y1,y=|z) is that all admissible perturbations of ¢(y, y2|z) increase the value
of the functional Jo,g[¢°(y1, Y2|2)]. Again, an admissible perturbation &(yi, y|x) is a
conditional distribution for which the integrals exist and such that it is valid to change

the order of integration and differentiation where required. The details follow.

aJa,ﬁ [qf(yl,y2|x)]

0=

=0

= ﬁl/X/yl /3;2 {f(yl,yzlx - Q(yl,yzlx)] {/Q(yl,yélx) dyé] dys dy, dx
- Bl/)(/J;l /3}2 { (Y1, yalz) — q(yl,yzkv)]

-In [e 7 ( / / q(y1, yylz") dys dx’} dys, dy; dx

A s

_ d /
[ a(yr, yhlo) dyb
s / / p(®) alyn, y2l7)
X J Y 2
__1 (z—
(o) ffp yl,yélx’) — q(y1, yola")] dys da’

(e—g1) ] dys dy, dx
ffp q(y1, ysla') dys da’

p(x) {f(yl,yzlﬂf) = Q(yl,yzlﬂf)] In {Q(yl,yzlx)} dys dy dx

1 2

T

S~ o

p(z) [&(yl,yﬂx) = q(yl,yzkv)]

1 2

n |e B Ew)? /p(:r') q(y1, ya|z") d:r'] dy, dy, dx

E(y1, v217) — q(yr, ya|)
p(x) q(y1, y2|z) [ (v al) } dys dy, dx

1 2

p(x) q(y1, y2|x)

2

[e B (@—y2) fp (yl,y2|$') — q(y1, yo|2')] da’
w yz fp yl,y2|1‘1) dl‘l

+ [

T
S~
<<\<<\

1

] dyy dy; dz. (3.18)
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Equivalently,

//yl /3;2 { (y1, 8l) — q(yl,y2|fv)]

,{ﬂlln[ fq yl,yélx)dyé ]

05 11 p(a) gy, ybla) dyb da

+ B In [ = (yl’ym) ]} dys dyy dz = 0. (3.19)
™5 T [ p(ar) gy, o)) da
Defining
g(z,y1,02) = (»’U — y1) + S 1n [q(yﬂx)] + %(ﬁc — y2)2 + By In [M]
o B q(y1) Ba q(y1,y2)
_ 3 ln[ fq yl,yélﬂf) dys ]

% 11 p(a) gy, yhlo")dyyda?

(y1;y2|ff) ]
+ G2 1n (3.20)

: L 5 L)’ fp )q(y1, yo|a")dx

allows us to rewrite (3.19) as

Eu@)atyr o) 9T, Y1, Y2) = Byt gelo) 9(2, Y1, y2) (3.21)

for all admissible reproduction conditional distribution perturbations &(y;, y2|z) and
a given p(z). Based on the same intuition described for the single-resolution case,
Equation (3.21) suggests that ¢(z,y:1,y2) only depends on z, almost surely—p(z).
As in the single-resolution case, we rely on but do not prove this conjecture. The
remainder of the argument suggests how to proceed if the given intuition is correct.

If this conjecture is verified, then

g(xaglang) = g(xaﬁlagj?); v(xagby})a (xJZjb:éZ) S X X yl X y2- (322)
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That is,

LR s R sy

_a e g lae) | as s g a( gl)
= —(@—9)" + 41 [q(gf) 52( h2)? + B 1 [q(ﬁ :)]

which yields

B1
T)| P2 ey )2 02 02
Ao, 1) = () alyr, ) [qu;'l))] e T el (3.23)
where
1
¢(z) = En : (3.24)

T By —S%l(gp— 2 az w
fy1 fy2 q(y17y2) [qé%;g)] Bze 52( ) e P v dy2dy1

Consider an arbitrary y; € Y for which ¢(y;) > 0. Let us assume there is an
open interval I, such that g(y|yh) > 0 for all yo € I,. Our goal is to find an
expression that relates p(z) and the optimal ¢(y1, y2) as p(x) = f(q(y1,y2)). In order
to accomplish that, we will use the fact that ¢(x|y, y») must integrate to one to get
an equation that relates p(z) to ¢(yi|z). And to further solve, we will apply the fact

that q(yi|z) = [, ¢(y1, yolz) dyo.
If we multiply both sides of (3.23) by p(z) and divide by ¢(y1, y2), we get

B1

q(whn,y2)==p(x)¢%x)[ dwlo) ] B (3.25)

q(y1) e—g—(ic y1)?

Integrating with respect to the input X and taking the first partial derivative with

respect to the second-resolution reproduction Y5 gives

_81

:/ p(xw(x)[ - ] (- ) e B gy (3.26)
X (1)

o)

The right-hand side of (3.26) is zero for all yo in the interval Iy,, which ensures
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all derivatives at a given point y» € I, must be zero. Exchanging the order of
differentiation and integration, with equivalent arguments as in (3.9) and [47, p. 1950,

we get

J P o2 232
{/"p<x>¢<x>[ algrfz) 2] o~ R gy
X ‘](?fl

e B g (3.27)

Y2=Yy2

for all n > 1. Asin (3.11), we can write an equivalent expression to (3.27) using the

Hermite polynomials with respect to the function 6_%(:”_‘1&)2, as
-3

~ 2 .

/ p(z) o(z) [ q(yifr(i - )2] H,(x — 1) e” 8@ dp = 0 (3.28)
X q(yAl) e B \TTYL
for all n > 1. Then
=
gz ’ )
p(e) o) | — D= k), (3.20)
() e "

given that the L.H.S. of (3.29) is orthogonal to all Hermite polynomials H,(z — ¥>)
of n > 1. Notice also that it doesn’t vary with 95, as the same result applies for all
Y in the interval Io,.

In order to further analyze the above result from (3.29), we revisit (3.23) to solve

for g(y1|z). Integrating both sides of (3.23) with respect to y, gives

a(pre) = /q@hmumm
%

= [ 000) ) [BEE) oo g,
Vo 1
()]~
a\y1|x 2 0l g2 ey (p e
= q(y) () { Q(Zl/l)} B, (T—91) / q(ysyr) e g, (T—y2) dys,
Vo
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which yields

B1+B2

T B2 ~ Y ()2 —22 (g—yy)?
|:q(y1| ):| — ¢(x) e 52( Y ) / q(y2|y1) e 52( Y ) dy2 . (330)
Q(yl) Vo

Rewriting (3.29) for clarity as

(nlo) [amln)]~5)
q\y1|r q\y1|x 2 — 2L ()2
X X (& B2 = K ,
P ) ) { q(y1) ] 2
and applying (3.30) to it, we get
(y ) ~gewr g, 1T g .
p(z) a(y1) ) q(y2ly1) e P Y2 = K(n), (3.31)
2
and the equivalent
92 y0)2
plaln) = K() [ atualon) 7 (332
Y2
where integrating with respect to x gives
K(n) 1 5 333
yl - o — - . .
fy2 (](y2|y1) fX e—g—;(w—y2)2 dz dy, T

This means that for each and every y; compliant with the assumptions made earlier,
the function K (y;) is actually a constant. Notice that the above discussion again relies
on the unproven result described in Section 3.2. A proof of that result, when combined
with the analysis given here, would give a two-resolution parallel to Rose’s theorem
about the optimal reproduction alphabet size for one-resolution source codes. In
particular, that missing piece would allow us to relate input and output reproduction

densities as
2

a2 72(377?!2)
2 [y aly,ye) e ™ dya
=\ — . 3.34

The conjecture is that when this relationship is not satisfied, then the output alphabet

at the second resolution is discrete. Further, the conjecture suggests that the second
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resolution reproduction is continuous only if the source and its optimal reproductions

are related through an additive Gaussian random variable.

3.4 Conclusions

The conjecture for the two-resolution case reflects a parallel with Rose’s one-resolution
result. For single-resolution source coding, the optimal reproduction alphabet is con-
tinuous if and only if p(z) = | /-5 fy q(y) e~ 79" gy, The conjecture for the two-
resolution case is that the optimal second resolution reproduction alphabet is likewise
. i . ‘ 82 ()2
continuous if and only if ¢(yi|z) p(z) = /% [}, a(y1,y2) ™™ (@=2)" 4y, For the
single-resolution case, the given condition is met if and only if the SLB on R(D) is
tight at the given rate and distortion, which occurs if and only if the source and its
optimal reproduction are related through an additive Gaussian random variable. The

form of the two-resolution conjecture suggests a similar relationship.
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Chapter 4 Practical MRV(Q Design

4.1 Introduction

A multiple stage vector quantizer (MSVQ) [34], also called a residual quantizer |2,
3, 27, 4] is a multi-resolution code in which the first stage uses a small codebook to
output a crude quantization of the input, the second stage quantizes the error between
the original and the output of the first stage, and so on. A tree-structured vector
quantizer (TSVQ) [8, 45| gives an alternative approach to multi-resolution coding
where the encoder describes a source vector by mapping it in a top-down greedy
fashion to a single path through a tree-structured codebook. The progressive vector
quantizer (progressive VQ) of [46] also uses a tree-structured codebook but relies on
an encoder that considers only the highest-level reproduction in choosing its path
through the tree. The pruned TSVQ (PTSVQ) [13] combines the top-down greedy
tree-design algorithm and encoder of TSV(Q) with a pruning algorithm.

More recently, [29, 6, 7] use a design algorithm that minimizes an expected distor-
tion ), peDy with respect to a given distribution {p,} over the available rates {R,}
in a fixed-rate code. Here D, and R, are the expected distortion and total rate, re-
spectively, in the /" reproduction of a given source. In [33, 7], the problem of scalar
quantizer design given a distribution {p,} over the resolutions is considered. For these
scalar quantizers, optimality is defined in terms of minimization of the expected dis-
tortion ), p,D; with respect to a constraint on the expected rate ), p,Ry, giving a
final optimization criterion equal to Ele peDy + A Z({Ld peRy.

Also tree-structured, the multi-resolution vector quantizer (MRVQ)* introduced
in [19] uses rate distortion theory to develop optimality criterion Zle ap(De+ M\ Ry)
for both code design and encoder path choice. This criterion agrees with [33, 7| for

cases with fixed slopes Ay = A, for all Z, but differs otherwise. The optimality criterion

*The same code was called a multi-resolution TSVQ on its introduction in [19].
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of [19] has L — 1 more free parameters than the criterion used in 33, 7]. These L —1
degrees of freedom are crucial for obtaining arbitrary points on the outer convex hull
of the achievable rate-distortion region.

The MRVQ work described in this thesis began with an implementation of variable-
rate MRVQ and the goal of understanding how to choose the Lagrangian parameters
for the optimality criterion introduced in [19]. The remainder of this chapter pro-
vides answers to those questions, discusses the complexity of the MRV(Q algorithm
and proposes a new lower complexity algorithm, and demonstrates the rate-distortion
performance of practical implementations of the algorithm and some new variations
on the MRVQ.

Section 4.2 briefly describes the optimal multi-resolution vector quantizer design
algorithm introduced in [19]. Section 4.3 presents a method for converting design con-
straints into the corresponding Lagrangian parameters for general multi-resolution
source codes. An analysis of MRVQ encoding complexity appears in Section 4.4,
followed by a new linear complexity algorithm. Section 4.5 includes a series of experi-
mental results comparing the performance of optimal multi-resolution vector quantiz-
ers to the theoretical bounds and to other single- and multi-resolution source codes.

A summary and conclusions follow in Section 4.6.

4.2 Background: MRVQ Algorithm

MRVQ code design uses an iterative descent technique analogous to the generalized
Lloyd algorithm for designing optimal fixed-rate vector quantizers [38] and the entropy
constrained vector quantization (ECVQ) design algorithm for optimal variable-rate
code design [12]. The goal of code design is to minimize the Lagrangian 3", c(Dy+
AeRy). Without loss of generality, the optimality criterion applied in [19, 20, 21] and
throughout this chapter uses incremental rates {r,} instead of total rates {R,}. Here
Ry = Zle r; for all j € {1,...,L}. The resulting Lagrangian functional is again
written 25:1 lay Dy + B¢ 1¢] although here g, = Zf:g a; A\; for all £. For any given

Lagrangian parameters o, % > 0 our design objective is to minimize the Lagrangian
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functional over all possible fixed-rate multi-resolution source codes or over all possible
variable-rate multi-resolution source codes.

The algorithm iteratively optimizes quantizer encoder A, quantizer decoder B,
and lossless encoder I" (and its lossless decoder). It is initialized with an arbitrary
L-resolution tree-structured codebook, an arbitrary quantizer decoder B, and arbi-
trary lossless code I'. Each iteration requires three steps that sequentially optimize
the quantizer encoder A for the given quantizer decoder B and lossless code I, the
quantizer decoder B for the given quantizer encoder A and lossless code I, and the
lossless code I for the given quantizer encoder A and quantizer decoder B. The

algorithm is run to convergence. The three steps required in each iteration are
1. nearest neighbor encoding
2. decoding to the centroid
3. optimizing the prefix code.

(See [19, 21| for a detailed description.)

The above MRVQ design algorithm jointly optimizes all resolutions of a multi-
resolution code rather than designing the code one resolution at a time. At each step in
each iteration of the above algorithm, the Lagrangian functional Ele [y Dy + By 1] -
cannot increase. Since the functional is bounded below by 0, the algorithm is guaran-
teed to converge. Since each step in the algorithm produces a global minimum of the
Lagrangian functional relative to the fixed source coding components, the algorithm

is guaranteed to converge to a local optimum.

4.3 Choosing Lagrangian Parameters (o, 3%)

The MRVQ design algorithm must be run separately for each (o, *) value of in-
terest. Since each (a*, 3%) corresponds to a single point on the desired convex hull,
tracing out the entire convex hull requires a repetition of the above procedure at a

variety of values of (a*, 8%).
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The search for the (o, 3Y) vectors of interest is, in some sense, analogous to
the search for the appropriate value for A (the "slope” of the R(D) function [16])
in entropy constrained vector quantizer (ECVQ) design [12]. For ECVQ), instead of
designing the code for all possible slopes, [12] proposes a bisection approach to allow
code design for a particular desired rate (or entropy). The ECV(Q algorithm designs
a vector quantizer for a specific slope A at the middle of a range [Anin, Amaz|- The
design process then shrinks the range to the lower or higher half in the direction that
decreases the gap between the observed and desired rate. The process continues, at
each step cutting the range of slopes in half until reaching the target rate.

Similarly, for a specific set of target rates in a multi-resolution code, it would be
impractical to design a code for each possible (', 3%) vector until hitting the desired
target rates. Searching this space is difficult since these parameters are interdepen-
dent, which makes the challenge of finding the target vector (o, %) an interesting
problem.

Next, we propose a method based on an interval partitioning approach, for con-
verting a collection of functional design constraints into corresponding Lagrangian pa-
rameters (a”, 3%); while the approach is here demonstrated in the context of MRVQ
design, it applies for general multi-resolution codes. An independently derived method
to determine Lagrangian coefficients for navigation of the rate-distortion surface (in
particular to determine the average distortion achievable for a given pair of rates in a
two-resolution code) appears in [50]; that work was published after the work presented

here was completed.

4.3.1 New Method

Let us suppose that a system designer wishes to design the variable-rate code with
(incremental) rate vector (r’)* = (r¥,---,r%) that minimizes 3y, peD; for some
given priority vector p* with p, > 0 forall¢ € {1,..., L} and 25:1 pe = 1. Alternative
problem formulations (e.g., matching distortion constraints given priorities over the

rates) can be handled similarly.
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To incorporate the given priorities in our Lagrangian parameters and maintain
the symmetry between rate and distortion, we set ay = (1 — ¢) py and f; = cq, for
some ¢ € [0,1] and ¢* > 0 with 25:1 ge = 1. There is no loss of generality in this
choice since only the relative values of these parameters is meaningful [20, Lemma 4].

The next argument allows us to further restrict the space of ¢% vectors over which
we must search, by first noting that 5, > --- > [ > 0, as follows.

Lagrangian coefficients must be non-negative [20], which applies both for coef-
ficients associated with incremental rates as well as total rates. Thus a, > 0 and

A¢ >0 forall £ € {1,..., L}, where the corresponding Lagrangian for total rates is

(67 <De + )\g Re)

o7 (Dz + A\ i:n)]
Qy D( + <ZL: (67} Az) Tg] . (41)

Mh

Iy
)

Mh

o~
Il
—

Mh

Iy
)

Thus By = cq = Zf:g a; A\, where a; > 0 and \; > 0 for all ¢, imply that we need
only consider ¢ € Qp, where Q; = {¢" : S0 e =1 A ¢ >--->q; > 0}.

Since the priority vector p! is given, it remains only to choose the value of (¢, ¢¥) €
[0,1] x Q. A wide variety of techniques can be applied to search for an optimal
(¢, (¢¥)*) € [0,1] x Qp. The simple method that follows takes a bisection-style
approach. We set (cy,¢) = (0,1) and choose an initial value (co, ¢f') in some central
location in the allowed region [cy,T] X Q. For example, when L = 3, Q; = {¢* :
SO q=1Aq >q >q >0}, and we choose (co,q3) = (1/2, (11/18,5/18,2/18)).
At each time ¢ > 0, we design a multi-resolution code for Lagrangian parameters
(F, BE) = ((1 — ¢)pt, erql), calculate the resulting performance (rf, D¥), and find
(Cis1» Cit1, Cet15 Gy ) according to the following rules.

At time ¢, define Y = {¢ : ry < rj; —c} and V = {€ : rp, > r; + ¢}, where

g > 0 describes a target margin of error (i.e., we are aiming for r, € [r} — e, +¢]).1

fAsymmetrical error margins (r¢ € [r} — ,7}]) and multiplicative error margins (r, € [rj(1 —
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Codes for which both ¢4 and V are empty use the full available rate and thus do
not have the potential to achieve a lower value of Zle ayDy. In theory it will not
always be possible to find a code with both ¢/ and V empty since we are restricting
our attention to codes whose performance lies on the lower convex hull of achievable
(rf, DT) vectors. Experimentally, the set of points on the lower convex hull seems to
be extremely rich for the sources considered here, and thus this problem has not been
observed in practice. We therefore run the following iterative search procedure until

at least V is empty.
e [f U/ and V are both empty, then the procedure stops.
e Otherwise, if V is empty, then (¢, G41, Ce41, th+1) = (¢ e, (¢, +¢1)/2,q7).
e Otherwise, if U is empty, then (¢, 1, i1, Cri1, q51) = (s T, (01 + 7€) /2, gF).

e Otherwise, we leave ¢, ¢, and ¢ unchanged ((¢, 1, Cit1,¢t41) = (¢, G, ¢)) and
search the space Q, of allowed ¢ vectors using the iterative approach described
below. This procedure outputs a modified vector ¢, # ¢/ such that at least

one of U and V is empty for parameters (¢, 1, Cei1, Cer1, @ler)-

Given a fixed ¢ and some initial ¢© € Q for which sets U and V are both non-
empty, the procedure for searching the space Qp, of allowed ¢ vectors likewise uses
an iterative approach. Since both ¢ and V are nonempty, we rule out the subspace
{¢" € Or : [¢i > qiVi € U] AN[g; < q;Vj € V]}, choose a central point in the
region that remains, test the resulting rates, and continue the iterative procedure
until achieving a point for which at least one of &/ and V is empty. In the procedure
used for the experimental results section, the choice of a tentative value for th+1 given

g/ maintained the ratios ¢i11i/qr1,j = qui/qr; for all (i,7) € (UxU)U(V x V), giving

ags,e for all £ € U
Qiy1,0 = (1 + %) qie forallleV
e for all £ € U N V*,

€),75(1 +¢€)]) can be handled similarly.
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where q(U) = 3.0y Gui» 4(V) = X2 jcy Grj», and a < 1 is the mid-point of the segment
of values for which the resulting g¢;41, falls in the unsearched remaining region of
L

q”. By shrinking the sub-space of values that must be searched at each step, the

algorithm narrows its way to a solution.

4.4 MRVQ Complexity

The MRVQ’s nearest neighbor encoder chooses a complete path through the multi-
resolution source coding tree in one operation rather than making a sequence of choices
on a resolution-by-resolution basis. This has serious consequences with respect to
the code complexity, since the code complexity of the nearest neighbor encoder for
a multi-resolution source code is roughly equivalent to the complexity of a nearest
neighbor single-resolution encoder with a codebook size equal to the number of nodes
in the multi-resolution tree. For example, for a binary tree, the nearest neighbor
encoder has complexity roughly twice that of a nearest neighbor encoder for a vector
quantizer with the same (maximal) rate since the number of nodes in a binary tree is
roughly twice the number of leaves in the tree. The complexity of nearest neighbor
encoders on fixed-rate tree-structured codebooks grows exponentially in the dimension
n for any particular rate vector RL, while the complexity of the TSVQ algorithm
grows only linearly in n. Inspired by this discrepancy, we next present a new linear
complexity variation of the MRVQ algorithm. (Another way to decrease the MRVQ’s
complexity while maintaining its high performance would be to apply the hierarchical
VQ techniques of [51, 9| to perform an approximation to the optimal MRV encoder
entirely through table look-up.) Experimental results for both the linear complexity
code and the MRV(Q algorithm appear in Section 4.5.

The linear complexity MRVQ combines a TSV(Q encoder with an MRVQ decoder
in an attempt to get performance as close as possible to that of the MRV(Q at lower
computational expense. An early version of this technique was first introduced in
[21]. The aim of the approach is to bridge the performance gap between TSVQ and
MRVQ), with a trade-off in complexity. The proposed method uses a multi-path search
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instead of searching for the single best “greedy” path, as in TSV(Q. The multi-path
search is also “greedy” in the same sense as TSVQ, but allows searching for more than
one path in a multi-resolution tree-structured codebook designed using the MRVQ
design algorithm. For example, given a binary tree and a 2-path search, no decision
is necessary at the first layer of the tree since there are only two possible paths. To
choose the best paths at the next layer of the tree — with four nodes — we compare
the weighted rate-distortion performance of the four possible paths, picking the two
with lowest Lagrangian performance measure. At the following layer we choose the
best two paths out of the four paths descending from the paths chosen in the previous
layer, and so on. Finally, upon reaching the leaves at the last layer of the tree, the
encoder chooses the best single path among the paths that remain at that point. The
two extreme cases of multi-path search are one-path search, i.e., TSVQ, and all-path
search, which is the MRV(Q algorithm described above. In the multi-path scenario
we also need to explicitly set the relative priorities at each step between resolutions,

using the Lagrangian parameters (o, 3L).

4.5 Experimental Results

In this section we examine the empirical performance of fixed- and variable-rate
multi-resolution codes designed using the MRV(QQ design algorithm. We compare
the performance of these codes on synthetic data to both the theoretically optimal
performance achievable on that source and the performance of alternative single- and
multi-resolution vector quantizers. We also examine the convergence properties of
the given codes as a function of the vector dimension n. On natural image sources
(for which the optimal performance cannot be calculated) we compare the fixed- and
variable-rate MRVQ performance to the performance of alternative single- and multi-
resolution codes. In both cases, comparisons are restricted to vector quantizers of the

same dimension 7.
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4.5.1 Synthetic Data

The synthetic data set consists of i.i.d. samples drawn according to the distribution
= {(1—p)/2,p,(1 —p)/2} on alphabet {1,2,3} with p = 0.171. This Gerrish
distribution is treated in [22, 23, 20|. We use half of the data samples for training
and report results on the remaining half. The distortion measure considered is the
absolute difference distortion measure, and all codes are optimized relative to this
criterion.

While the theoretical results of |20] demonstrate that the penalty associated with
using a multi-resolution code on the given three-symbol source is very small, those
results treat only the asymptotic case, where the coding dimension n is allowed to
be arbitrarily large. The results of Figure 4.1 give empirical evidence suggesting
that similar statements hold on this source even at very small coding dimensions.
Figure 4.1 shows the performance of (a) fixed-rate and (b) variable-rate MRVQ of
dimension n = 4. In this figure, each MRVQ curve shows the performance of a
collection of MRVQ codes. Each MRVQ in the collection achieves first-resolution
performance that is identical to the performance of the best available single-resolution
code of the same rate. The codes differ from each other only in their second-resolution
rates and distortions, and thus only the second-resolution (total) rates and distortions
of these codes appear in Figure 4.1. In both the fixed- and the variable-rate examples,
the MRVQ achieves second-resolution performance very near to the performance of
the best single-resolution code of the same dimension. In both cases, the MRVQ gives
better performance than a TSV(Q of the same dimension.

The dimension-4 coding performance shown in Figure 4.1, is quite far from the
optimal performance. Figure 4.2 demonstrates the performance improvements asso-
ciated with higher coding dimensions. In both fixed- and variable-rate codes, increas-
ing the coding dimension from 4 to 16 gives significant performance improvement.
Further improvement could be obtained by increasing the dimension even more. The
penalty for this improvement is an increase in computational complexity, as discussed

in Section 4.4.
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Figure 4.1: Comparison of (a) fixed-rate and (b) variable-rate MRVQ performance to
the performance of prior multi-resolution codes (fixed- and variable-rate TSVQ), the
best available single-resolution codes (fixed-rate VQ and ECVQ), and the theoretically
optimal performance. All codes have vector dimension 4. The source is the synthetic
data set. In each case, the MRVQ curve gives the second-resolution performance of
a collection of MRVQs, each with the same first-resolution performance. The first-
resolution MRVQ performance is identical to that of the best rate-0.25 VQ in the
fixed-rate case and the best rate-0.246 ECV(Q in the variable-rate case.



29

09
0.8
\
N
\ AN
0.7 NN
\
Mo
NN
06 NS S Vector Dimensions 1,2 4,8
6 N
N \<\
Two- N NI
< 0.5|-Resolution \ %
£ | Distortion- AN
e Rate bound
Q04 N
© ~—————— Vector Dimension 16
O S
0.3
N S
IS ~
~ ~ N
0.2 S R \\ <
Single-Resolution ____ “p. ~ g -~
Distortion-Rate Bound RN *o
0.1r- DR ~OL
- ~.
0 i I - - \\‘&
0 0.5 1 1.5
Rate [bits per symbol]
(a)
09
0.8+
\
V@
AN
07f =
AN
\ \0
0.6 NS
Two- AN NN
N
. N N———————— i j
05 | Resolution N N N % Vector Dimensions 1,2 4
S | Distortion- N <
S Rate bound NS o
2 N “®——— Vector Dimension 8
004 NN
Q NN
N N
QN X X .
03l = o~ R Vector Dimension 16
S \X N N\
~
N B
L ~ ~
02 SO > Y
Single-Resolution > >
Distortion-Rate Bound > RN
0.1 < >
So N
0 i _
0 0.5 1 1.5

Figure 4.2: Seco

Rate [bits per symbol]
(b)
nd-resolution (a) fixed-rate MRVQ and (b) variable-rate MRVQ) per-

formances for vector dimensions 1, 2, 4, 8, and 16 on the synthetic data set.
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Figure 4.3 characterizes, for several dimensions, the second-resolution rate penalty
associated with multi-resolution coding. In this case, we constrain the first-resolution
performance to be identical to that of the best corresponding single-resolution code
and then measure the (total) rate needed at the second resolution to get a range
of possible second-resolution distortion values. Each (total) second-resolution rate is
then compared to the rate that would be required to get the same distortion with a
single-resolution code of the same dimension. The difference is plotted in Figure 4.3.
These experimental results are analogous to theoretical results given in [20]. The rate
penalty varies both as a function of the first-resolution rate and as a function of the

coding dimension.

4.5.2 Natural Data

The natural data set consists of twenty 256 x 256 medical brain-scan images used for
training, and five 256 x 256 brain-scan images used for testing. The training and test
sets do not overlap. All experiments on the natural data set use the squared error
distortion measure and coding dimension n = 4.

Figure 4.4 shows (a) fixed-rate and (b) variable-rate performance results of the
MRVQ on the natural data set. Here performance is shown by plotting signal to
quantization noise ratio (SQNR) as a function of rate. Each MRVQ curve represents
the performance, at a sequence of resolutions, of a single multi-resolution code. The
performances achieved with a variety of values for (a*,3L) are included to show
a range of performances achievable with the given algorithm. These results were
achieved using the method for choosing (o, 5*) described in Section 4.3. The MRVQ
performance is compared both to the performance of a collection of single-resolution
codes (VQs and ECVQs for the fixed- and variable-rate cases, respectively) and to
the performance of the TSV(Q) algorithm. In both cases, the performance of the
best single-resolution code of a given rate can be obtained exactly using a multi-
resolution code if the priority at the appropriate resolution is made sufficiently high.

The potential expense of this choice, however, is a degradation of the performance
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Figure 4.3: The second-resolution rate penalty for MRVQ on the synthetic data
set, for vector dimensions 8 and 16. For each distortion value, the graphs show
the difference between the rate required to achieve that distortion in the second
resolution of an MRVQ and the rate required to achieve that distortion with a single-
resolution code. In each case, the first-resolution of the MRV(Q is constrained to
achieve performance identical to that of the best corresponding single-resolution code
at rate ~ 0.125 bps. Graph (a) compares fixed-rate MRVQ to fixed-rate VQ. Graph

(b) compares variable-rate MRVQ to ECVQ.
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Figure 4.4: SQNR vs. rate results for (a) fixed-rate MRVQ, a collection of independent
(non-embedded) fixed-rate VQ, and TSVQ and (b) variable-rate MRVQ), a collection
of independent (non-embedded) ECVQs, and TSVQ. All results show performance
on the medical image data set.
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of the code at another resolution. Figure 4.4 includes examples both of cases where
the MRV(Q performance is set equal to the corresponding VQ or ECVQ performance
at a given resolution — giving the best possible performance at the given resolution
but causing performance degradation at other resolutions — and examples where the
MRVQ performance is everywhere near but no where equal to the performance of the
best single-resolution code. As expected, the MRVQ exceeds the performance of the
TSVQ except, occasionally, at the lowest rates where the TSVQ’s “greedy” strategy
can give good performance. Figure 4.5 shows examples of compressed images from

single- and multi-resolution codes.

4.5.3 Linear Complexity MRVQ

Figure 4.6 shows the peak signal-to-noise ratio (PSNR) as a function of rate, where
PSNR = 101log,;((255%/MSE) dB, for a collection of multi-path search MRVQ codes,
with increasing complexity and improving performance, on the natural data set. The
performances of all codes shown in the figure, correspond to fixed rate codes of vector
dimension 4, and all use the same depth-9 initial tree-structured codebook. While
1-path MRVQ is equivalent to TSVQ in encoding complexity, the results given here
are better since the code was not designed using the greedy TSVQ algorithm. In
Figure 4.6, the results for MRVQ and all multi-path MRVQs use identical priorities.

4.6 Summary and Conclusions

This chapter presents a method for converting a collection of functional design con-
straints into Lagrangian parameters. The approach is a bisection search technique
that approximates the values of the Lagrangian parameters (o, 3L) for given tar-
get rates and relative priorities over the resolutions. We also examine the empirical
performance of vector quantizers for multi-resolution source coding and present an
algorithm for m-path optimization, spanning from encoder complexity comparable
to TSVQ, when m = 1, to MRVQ, when m is equal to the number of leaves. The

approach finds the best m paths within a tree-structured multi-resolution codebook,
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Figure 4.5: Images produced by (a) two resolutions of a single fixed-rate MRVQ), (b)
two independent fixed-rate VQs, (c¢) two resolutions of a single variable-rate MRVQ),
and (d) two independent ECVQs. In each case the same image from the test set is
shown.
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dimension 4.
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previously trained with then MRVQ design algorithm. Experimental results on both
synthetic and natural data sets demonstrate significant performance improvements of
MRVQ over prior progressive scalar and vector quantizers. The use of the Lagrangian
performance measure also yields increased flexibility in code design by allowing the

user to design a code that reflects the underlying system priorities.
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Chapter 5 Optimization of Wavelet-based

Multi-resolution codes

5.1 Introduction

The MRVQs described in Chapter 4, provide a framework for multi-resolution source
coding that is theoretically optimal from a rate-distortion perspective. However, in
practice optimal design is hard and theoretically optimal performance is only achieved
asymptotically in the limit of large vector dimension and computational complexity.

Practical multi-resolution codes generally trade off rate-distortion performance
with required complexity.

Recent wavelet-based codes |49, 48, 42, 41, 30, 31| provide computationally effi-
cient multi-resolution algorithms that are not optimal from a rate-distortion perspec-
tive but have very good performances at remarkably low computational complexities.
In particular, bit-plane coders working in the wavelet domain can exploit depen-
dencies between wavelet coefficients |39, 40]. Several popular methods use heuristic
techniques to take advantage of those coefficient dependencies, especially for natural
images, achieving excellent rate-distortion performance at low computational expense.

Here we consider the application of a Lagrangian optimization technique to wavelet-
based progressive transmission algorithms for image compression. The proposed
methods generalize the techniques described in Chapter 4 to wavelet-based codes.
In particular, the new techniques incorporate a user’s relative priorities over the res-
olutions of a multi-resolution code into the code’s optimization procedure. Prior
wavelet-based codes give no way to prioritize over the resolutions. The proposed new
algorithms improve on the Set Partitioning in Hierarchical Trees (SPIHT) algorithm
[48] and the Group Testing for Wavelets (GTW) algorithm [30, 31]. Some of the

results presented here were reported in [17] and [18]. The resulting optimized algo-
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rithms achieve gains over SPIHT and GTW at the resolutions of highest interest. In
[18], the proposed approach incorporates an adaptive wavelet transform in place of

the standard wavelet transform.

5.2 Background

5.2.1 Set Partitioning in Hierarchical Trees Algorithm (SPIHT)

The SPIHT image compression algorithm [48] is a bit-plane coder working in the
wavelet domain. The wavelet coefficients of an image are described one bit plane
at a time in order of decreasing significance. The SPIHT algorithm begins with
an initial partition of the coefficients into sets. At each bit-plane, it describes the
significance or insignificance of the current sets. A set is declared significant at bit-
plane ¢ if it contains one or more coefficients C'(7, j) that are declared significant in
that bit-plane; otherwise the set is declared insignificant. A coefficient is significant
at bit-plane ¢ if the first non-zero bit of its binary description occurs in the fth
most significant position. Each significant set is then partitioned into subsets, and
the significance or insignificance of each subset is likewise described. The process
continues until each significant subset has exactly one coefficient. The algorithm
describes the sign of each newly significant coefficient and then refines the descriptions
for all coefficients declared significant in previous bit-planes; the refinement procedure
involves describing the /-th bit in the binary expansion of each such coefficient. The
above procedure then repeats using the current sets at bit-plane £ — 1.

Figure 5.1 shows the SPITHT zero-tree on the wavelet pyramid and the correspond-
ing partition hierarchy showing the sets and component subsets used in the SPIHT
algorithm. Each leaf node (7, j) of the partition hierarchy represents a single wavelet
coefficient C'(i, 7). Each intermediate node is a set of coefficients used in the partition.
The children of each intermediate node give the subsets into which the given set is
partitioned when the set becomes significant. The intermediate nodes are labeled

according to the convention established by Said and Pearlman [48]. The set D(3, j)
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Figure 5.1: SPIHT’s decision-tree for a 2-level wavelet decomposition of an 8 x 8
image.

corresponds to the set of “all descendants” of node (7, j) (all descendants, including
offspring), while the set L£(i,7) is the set of “all descendants-except-children” of node
(2,7)-

The partition used in the SPTHT algorithm groups together low- and high-frequency
coefficients from the same spatial location in the original image. The algorithm is
most efficient in images where insignificance of low-frequency coefficients is a good
predictor of insignificance in the corresponding coefficients of higher frequency bands.
The algorithm is least efficient when a scattering of significant coefficients in the high-
frequency bands causes the original partition to be broken into many subsets in order

to describe a small number of significant coefficients.

5.2.2 Group Testing for Wavelets Algorithm (GTW)

Like SPIHT, GTW is a bit-plane coder. The encoding requires two consecutive passes
per bit-plane. First, the significance pass codes all coefficients that were not identified
as significant in a prior bit-plane. Second, the refinement pass for a given bit-plane
encodes the next bit in the description of those coefficients that were declared sig-
nificant in prior bit-planes. GTW’s refinement pass is the same as SPIHT’s, but its

significance pass is different.
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In GTW the significance pass involves dividing the bits within each bit-plane into
classes and then performing a group-testing algorithm on groups within each class.
In this case, the groups are not restricted to zero-trees, as in EZW [49] or SPIHT 48],
providing a more general framework where groups can be composed of any subset of
coefficients.

At each bit-plane, the bit of the binary decomposition of every coefficient is sorted
into a class according to three properties: the sub-band level, the pattern type, and
the significant neighbor metric (SNM). The level describes the coefficient’s position
in the wavelet decomposition. The pattern is a function of the coefficient’s location,
with neighboring coefficients given different pattern values. The SNM describes the
number of neighbors that were declared significant at previous bit-planes or in the
same bit-plane but before the given coefficient. The classes are ordered first by SNM,
then by pattern type, and lastly by level, and the algorithm encodes all classes in
order.

The encoding of each class involves sequentially breaking off a group from the
class, describing the contents of that group to the decoder, and using those contents
to determine the size of the next group. The first group in each class contains one
element. The number of elements (i.e., bits) per group doubles with each subsequent
group until the encoder describes a group that has at least one non-zero bit. Subse-
quent, group sizes are based on the empirical probability of a zero in the preceding
bits in the given class. In particular, the size of each subsequent group equals the

unique integer k that satisfies the inequality

¢+t <1< g+ gt (5.1)

where ¢ is the empirical probability of a zero when the group size is chosen |28, 30, 31].

The first bit of any group description describes whether or not the group is sig-
nificant. If the group is not significant, then the group description is complete. If the
group is significant, then it is split into two parts. Each part is subsequently tested

and, if found significant, split again. The process repeats until the first significant
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element is found within that group. Once a significant element is found, the code
updates ¢ and k and defines the next group to be the k elements immediately fol-
lowing that significant bit. The process repeats on the subsequent groups within the
class until every bit in the class has been described or the number of bits remaining
is smaller than the current value of k. Remaining bits join a list of untested items

and the algorithm proceeds with bits from the next class.

5.2.3 Essentially Non-oscillatory (ENO) Wavelets

The adaptive ENO wavelet transform [10, 11] reduces the ringing effects of image edge
discontinuities by modifying the wavelet coefficients. Performing an ENO wavelet
transform involves first performing a standard wavelet transform, then locating the
image discontinuities, and finally modifying the coefficients around the discontinu-
ity. Since ENO’s overhead in computational complexity is low, ENO retains the
advantages of standard wavelets while removing edge artifacts. In particular, ENO
provides a multi-resolution decomposition with good energy compaction and uniform
high-order accuracy with reduced ringing and smearing effects at region boundaries
[10].

For smooth regions of an image, the ENO transform generates the same wavelet
coefficients as the corresponding standard wavelet transform. For edge-regions, ENO
performs independent transforms on the two sides of each marked discontinuity, using
one-sided extrapolation to smoothly extend the data at each side of the edge.” In
order to have the same number of coefficients as in the standard wavelet transform, the
one-sided extension from the left-hand side of a discontinuity is used to calculate the
high-frequency ENO wavelet coefficients, using the extrapolation of coarser-level low-
frequency coefficients. Similarly, from the right-hand side of a discontinuity the low-
frequency coefficients are calculated using the extension of high-frequency coefficients
from a coarser sub-band level.

The result is a reduction in the magnitude of the high-frequency coefficients rela-

*In general, there are several ways to identify an edge. ENO classifies discontinuities by comparing
the magnitudes of high-frequency coefficients.
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tive to those of the standard wavelet transform. This property is quite useful for em-
bedded zero-tree coding algorithms. By concentrating most of the larger coefficients
at the top of the wavelet sub-band pyramid, it allows for a rate-efficient description
of the coefficients.

By adjusting the minimum threshold at which a difference between neighboring
coefficients is recognized as a discontinuity, ENO provides the flexibility to go from
no edge detection (and therefore no adaptation) to maximum edge sensitivity. ENO
indicates each detected edge in a binary map of the same size as the image. This
map is needed to make the transform reversible. Increasing the edge sensitivity in-
creases the number of non-zero values in the ENO map and, in most cases, also the
corresponding description cost. If no ENO decisions are made because no edges are
detected, the mapping is all zeros, and can be described at almost no cost. Figure

5.5 shows an example of an ENO edge map for a two-level ENO wavelet transform.

5.2.4 Multi-resolution Lagrangian and Coefficient Modifica-

tions

The multi-resolution Lagrangian performance measure can be applied in general to
a multi-resolution code with an arbitrary number of resolutions. Here we define the
number of resolutions as the number of significance levels or coefficient bit-planes for
the optimization of wavelet-based bit-plane coders. Using this approach, we define
the incremental rate 7, as the rate used in describing the ¢-th most significant bit-
plane, and D, as the MSE of the reproduction achieved through the description of
the first ¢ bit-planes’. Thus the number of resolutions in our code design equals the
number of bit-planes in our wavelet calculation. However, the number of resolutions
can be expanded, for example, as proposed in [37], increasing the flexibility from the
user’s point of view as well as the coding complexity from the designer’s perspective.

The value of the rate r, spent at resolution ¢ and the value of the distortion D,

achieved after the description of the first ¢ resolutions of a particular image are a

"Equivalently, we can also calculate the multi-resolution Lagrangian as a function of the total
distortion D, and the total rate Ry, defined as the cumulative rate at end of the ¢-th bit-plane.
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direct function of the image coefficients. Let C(i,j) denote the wavelet coefficient
at spatial coordinates (7,7). We calculate a multi-resolution Lagrangian for each
coefficient C'(7, j) at every resolution s € {1,...,L} U {oc} at which C(i,j) might be
declared significant, where the case of s = oo refers to the scenario where C(i,j) is
never declared significant.

While describing significance information accurately is necessary if one intends to
continue the bit-stream decoding to a lossless description of the wavelet coefficients,
the decisions resulting from this desire for high-rate accuracy come at a cost. Our
goal is to find the modification to the wavelet coefficient magnitude that yields the
best rate-distortion trade-off, subject to the Lagrangian constraints that reflect the
priorities over the resolutions. The modifications of wavelet coefficients result in a
decrease or increase in the “wavelet-domain” MSE at each resolution and translate to
an equivalent decrease or increase in the “image-domain.” That is because the Eu-
clidean norm is invariant to unitary hierarchical sub-band transformations, as noted
in [48].

Coeflicient modifications have the purpose of changing the bit-plane at which a
coefficient would be considered significant. These changes cause changes in both ry
and D,. The goal is to find the choices that minimize the Lagrangian functional.
This approach was introduced in [17] and later applied in [37|. Alterations of the sign
or refinement information of a coefficient (once the optimal significance plane was
determined) can only make the reconstruction worse, and therefore are not considered.
However, there are potential performance improvements using more elaborate schemes
for the sign information, as demonstrated, for example, in [15]. Credit is due to [37]
for indicating that in some cases the minimum Lagrangian is obtained by increasing
the magnitude of wavelet coefficients (thus declaring them significant at an “earlier”,
more-significant, bit-plane). That is, the combination of decreasing or mantaining
original values is not always the best approach, as initially proposed in [17].

The resolution s at which we declare C'(7,j) significant can be the true signifi-

cance resolution, a prior resolution, or a later resolution. Finding the Lagrangian
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performance

L
= Dy (i, §) + Be rou(i, 5)] (5.2)
=1

associated with declaring C'(, j) significant at resolution s requires the calculation of
L distortions and rates.

For any ¢ € {1, ..., L}, the distortion D (i, ) equals the squared error between
C'(4, j) and the resolution-¢ reconstruction of the optimal reproduction for coefficient
C(i,7) and significance resolution (or level) s. If the true significance level of coeffi-
cient C(7, ) equals s* and s < s*, (that is, C(, j) is declared to be significant before
it actually becomes significant), then the optimal reproduction is the smallest value
with significance level s. If s > s*, then the optimal reproduction is the largest value
with significance level s. If s = s*, then the optimal reproduction equals C(i, j).

For example, if a wavelet coefficient is C' = 29, its binary decomposition in a 7-bit-
plane scenario would be 0011101. (We here list bits from most to least significant.)
The value C' = 29 becomes significant in the third bit-plane, i.e., s* = 3. In some
cases, though, it might be beneficial from a rate-savings perspective, to declare the
coefficient significant at a later bit-plane, for example at s = 4 > s*, giving a range of
possible values for the “modified” coefficient, from 8 = (0001000), to 15 = (0001111)s.
Since the optimization aims to reduce the weighted sum of rates and distortions, the
best choice is the closest value to the original, making 15 the optimal value. On the
other hand, if we declare the coefficient significant at resolution s = 2 (earlier than
the original) then the optimal choice is the smallest value that becomes significant at

resolution 2, namely (0100000), = 32.

5.3 Optimizing SPIHT (Opt-SPIHT)

Opt-SPIHT optimizes the choice of the resolution at which each set of coefficients is
declared significant. The significance decision on each coefficient or set of coefficients
may affect decisions on other coefficients or sets; thus the optimal decisions must be

found in a global fashion.
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The Opt-SPIHT algorithm uses dynamic programming on the partition tree,
shown in Figure 5.1, to find the collection of significance decisions that globally
minimizes the multi-resolution Lagrangian. The dynamic programming algorithm
is accomplished in two passes — a backward pass from the leaves to the root of the
tree and a forward pass from the root to the leaves. The goal of the backward pass is
to calculate and store an array of Jy-values, one for every resolution at each node of
the tree. The goal of the forward pass is to encode the data using the best significance
decisions, based on the values from the backward pass.

The sequence of decisions of set significance in the optimized algorithm is the
same as the sequence of decisions in SPTHT. That is, at each resolution the algorithm
decides whether or not the sets in its current partition are significant, partitions the
significant sets into subsets, and makes decisions about the significance or insignifi-
cance of those subsets as well — continuing the process until all significant coefficients
are isolated. The difference between the SPIHT algorithm and the approach described
here is that the decisions themselves are based on a different criterion. In SPIHT, a
set becomes significant at resolution ¢ if it contains at least one element with a one
in bit-plane ¢ and no elements have ones in earlier bit-planes. In Opt-SPIHT, a set
becomes significant at resolution ¢ if declaring it significant at that resolution yields
the best possible multi-resolution rate-distortion trade-off.

The two passes are described in greater detail below.

5.3.1 Backward Pass (from the leaves to the root)

At every node, starting at the leaves and working toward the root, calculate a number
of partial Js-values equal to the number of resolutions in the data description. Next,
store the calculated values, one for each resolution at each node, in a table to be used
later in the algorithm.

As shown in Figure 5.1, each node of the tree is either a single coefficient C'(%, j)
(a leaf node) or a set of coefficients D(i, j), L£(i, j), or the tree root (an internal node).

For each leaf node (i, j) and each resolution s, we calculate a partial multi-resolution
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Lagrangian J; (i, j), which requires calculation of L distortions Ds1(i,7),...,Ds 1(i,7)
and L — s+ 1 rates r,4(i,7), 7s.5+1(%, ), ---s 7s,0.(4, j) associated with declaring coeffi-
cient C(i, j) significant at resolution s. Notice that the remaining incremental rates
rs1(2,7), .., 7s.s-1(1, j) associated with coefficient C'(i, j) becoming significant at res-
olution s depend on the resolution at which the parent node (in the tree of Figure
5.1) becomes significant. Because the backward pass goes from leaves toward the
root of the tree, such decision on the parent node has not yet been made. Further-
more, we need to calculate for each coefficient (or group of coefficients) the partial
multi-resolution Lagrangian for every one of the resolutions at which it could become
significant.

Finding the best performance for each internal node and each resolution requires
making optimal decisions on the significance of that node’s children. These optimal
decisions are accomplished through the use of the J-approximations 5.2 previously cal-
culated for those children and the addition of previously omitted rate values. (These
rate values become available once an assumption is made about the resolution at
which the parent node becomes significant.)

In particular for any internal node p and any resolution s, the aggregate J,-value
is the weighted sum of the rate required to declare the given node significant at
resolution s plus a collection of values associated with the node’s children. Namely,

if C is the set of all (internal or leaf) children of internal node p, then

Tp) = 3 minl,(0) + 3 Brra(e)].
ceC l=s

Since the calculation of J,-values begins at the leaves of the tree and works up, layer
by layer, to the root, J,(c) for all n € 1, ..., L and all ¢ € C are available prior to the
calculation of J,(p). Further, the incremental rates 7, 4(c), ..., 75 n_1(c) achieved when
p becomes significant at resolution s and ¢ becomes significant at resolution n are
now known. The resulting minimized values (Jy(p), ..., J5(p)) are stored in the tree,
and the resolutions used at the node’s children to achieve the given minima are also

stored. The process is continued, layer by layer, up to the root of the tree.
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Notice that at the outcome of the above procedure, the L Lagrangian values
stored at the root of the tree are complete rather than partial values since the tree
root has no unknown parent from which to inherit uncertainty. Further, note that
once the J; values for a given layer of the tree have been calculated, the J,-values
from the previous (deeper) level are no longer required. As a result, the data structure
that originally stored .J, values may be written over with resolution choices as the
process works from leaves to root through the tree, allowing a more efficient memory
utilization. Finally, notice that while the minimizations performed at each internal
node rely on partial J-values, the unknown rate values at each calculation are constant

for all terms in the minimization and thus do not affect its outcome.

5.3.2 Forward Pass (from the root to the leaves)

The result of the backward pass is a table with a number of entries equal to the
number of nodes in the tree multiplied by the number of resolutions in the original
SPIHT description. The values Jy(root), ..., Ji(root) given at the root of the tree
describe the optimal Lagrangian performance achievable if the coding process begins
at resolutions 1 through L, respectively. The remainder of the table is filled with the
decisions used in achieving a particular J-value. For example, entries 1 through L
associated with some child ¢ of the root node give the resolutions at which child ¢
should become significant if the root node becomes significant at resolutions 1 through
L, respectively. The forward pass uses these values by first comparing the values
Ji(root), ..., Jp(root) and choosing the value of ¢ = s that gives the best Lagrangian
performance. The corresponding ¢-value, here called s*, describes the first bit-plane
to be used in the data description, effectively setting the total number of bit-planes
to be used by SPIHT.

Starting at the top of the tree, the optimal resolution at which each of the children
should become significant can be directly determined by reading entry s* for each of
the root’s children. Reading the corresponding information for each of those nodes’

children and so on down the tree gives the optimal significance levels for all sets in the
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tree. We then encode the data using the SPIHT algorithm, but replacing SPIHT’s

original decisions about set significance with the optimal collection of decisions.

5.3.3 Complexity of Opt-SPIHT

The flexibility benefits of Opt-SPIHT come at the cost of higher computational com-
plexity and greater memory requirements than those needed for the original SPTHT al-
gorithm. The added computation is associated with the calculation of the Lagrangian
performance functions during the backward pass, plus the subsequent sequence of de-
cisions. The additional memory is required for the storage of the Lagrangian values
(and the resolution choices that are written over them later). Each node of the
tree requires as many Lagrangian calculations as the total number of resolutions (or
bit-planes). Each calculation uses all Lagrangians of the descendants of that node,
making the number of calculations or comparisons for any node proportional to L2,
the square of the total number of resolutions used in coding. Depending on the total
number of wavelet decomposition levels, T, the total number of nodes in the tree is
at most 1.3125 times the image size Z. The derivation of this bound relies on the
structure of the tree shown in Figure 5.1 as described next.

The number of leaf-nodes in the tree is the number of wavelet coefficients, which
is equal to Z, the number of pixels in the input image. All other nodes are internal
nodes of the tree, and correspond to either a D(i, j) set or an L(i,j) set.

In the wavelet coefficient pyramid, only 25% of the coefficients have descendants,
and only nodes with descendants have associated D(i,j) set. Of those, 75% are
leaf-parents, that is, nodes whose descendants in the tree are coefficients. While these
leaf-parent nodes have an associated D(%, j) set (for the direct descendants), they have
no L(i, j) set because they have no grandchildren. Thus, the number of D(leaf-parent)
sets in the decision-tree is 2 x ;7 = £ 7.

All other coefficients, that are neither at the bottom of the wavelet decompo-
sition pyramid nor the parents of those, have associated both a D(i,j) set and an

L(i,7), as long as they have children and grandchildren, respectively. (Notice that
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SPIHT convention implies that some of the coefficients at the top sub-band of the
wavelet pyramid have no descendants, therefore have only leaf-nodes in the decision
tree.) There are [% — (i)T] x Z coefficients with both children and grandchildren in
the wavelet pyramid. Therefore, these coefficients contribute that number of D(i, j)
sets, as well as the same number of L(, j)-set entries to the decomposition tree of
Figure 5.1.

The number of nodes in the tree, and therefore the number of Lagrangian calcula-
tions, increases as the total number of wavelet decomposition levels increases. In the

limit of an infinite number of decomposition levels, the maximum possible number of

nodes in the decision tree is

3 2 21
Number of Nodes =Z + —Z + —Z = —Z =1.31257 . (5.3)
16 16 16

Thus, the total number of Lagrangians for the complete tree is, at most, 1.3125 Z L2.

5.3.4 Experimental Results

Here we present experimental results showing the performance of Opt-SPIHT com-
pared with the standard SPIHT algorithm. For the experiments presented here, in
all cases we use the same 9-7 tap filters used in [1]| for the SPIHT algorithm.

We use an implementation of SPIHT that follows Said and Pearlman’s original
paper [48], without any modifications or additions. No entropy coding is employed.
The detailed description of SPIHT in Said and Pearlman’s patent as well as some
existing SPIHT software use techniques not specifically mentioned in the original
paper. While the performance of both SPIHT and our method could be improved
using those techniques, our results correspond to a version of SPIHT that strictly
follows the cited paper.

Figure 5.2 compares the performance of the algorithm described here to the perfor-
mance of SPIHT on a 512 pixel by 512 pixel, 8 bit per pixel gray-scale image scanned
from a page of the IEEE Spectrum Magazine. The image contains both photographic

material and text.
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Figure 5.2: PSNR versus rate results fro Opt-SPIHT (dashed lines) using three dif-
ferent priority schedules and SPIHT (solid line), for a 512 x 512, 8 bits per pixel
gray-scale image.
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Figure 5.2 shows the PSNR as a function of rate for both the optimized code and
the original SPIHT algorithm. Opt-SPIHT is optimized relative to three different
priority functions to show a spectrum of achievable results. By changing the priorities,
we achieve better performance at the resolutions of highest priority at the expense
of a degradation in performance at low priority resolutions. The advantage of the
new method is the algorithm’s flexibility, which allows the user to explicitly set the
priorities in a manner that reflects the relative importance of the different resolutions.
This contrasts with the SPIHT algorithm’s implicit prioritization over the resolutions,
which places priority on the seldom-used highest rate description. Figure 5.2 shows

gains of up to 0.86 dB for the priority functions tested.

5.4 Improving GTW (Opt-GTW)

GTW modifies the significance pass of SPTHT. It groups coefficients into classes, and
performs group tests on them for significance, where the rules for those groups are
different from descendant-based rules used in SPIHT.

To improve on GTW’s rate-distortion performance, we modify the wavelet co-
efficients, thus the composition of the classes that result is a modification in the
composition of the groups to be tested. Such modifications are those that minimize
an approximated multi-resolution Lagrangian performance measure|[18|.

Opt-SPIHT’s low complexity, globally optimal, dynamic programming solution
to the multi-resolution Lagrangian minimization has no natural analog in the GTW
framework, where a true multi-resolution Lagrangian optimization is computationally
prohibitive.

Roughly, the problem arises from a combination of the class definitions and the
empirical distributions used in GTW. In particular, neither of these items can be
easily calculated without running the algorithm in full, and both can vary enor-
mously with small changes in the coefficients. As a result, we cannot afford to do
global optimization of the multi-resolution Lagrangian over the set of allowed coeffi-

cient modifications. Instead, we estimate the class index and corresponding empirical
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probability used to code each coefficient, and we make the coefficient modifications
that minimize the resulting approximation of the expected value of the Lagrangian.
In calculating these approximations, we trade off performance and complexity. The
resulting algorithm does not guarantee optimal rate-distortion performance within
the GTW framework but does provide a principled method for improving on the ex-
isting performance at reasonable computational expense. Details of the Lagrangian

approximation techniques follow.

5.4.1 Probability and Group-size Estimation

GTW codes symbols in groups of size k, where £ is a function of the current empirical
probability ¢ as described in (5.1). To estimate the expected rate and distortion of
our code, we first estimate the members of each group and the corresponding ¢ and &
values. Since calculating ¢ and k effectively requires running the full GTW algorithm
and since those values can change significantly with coefficient modifications, precise
calculation of the ¢ and k values for every possible combination of coefficient modifi-
cations is impractical. We therefore estimate ¢ and k for each class using a procedure
designed to do well on average across many coefficients.

The significance probability in a given class depends on the proportion of ones and
zeros in that class. Recall that each bit of each coefficient is assigned a class defined
by its level, pattern, and significant neighbor metric (SNM). While the first two
parameters are fixed, the SNM depends on the order in which classes are coded and
the modified values chosen for neighboring coefficients. Thus we begin the estimation
procedure by estimating SNM.

Let C(i,j) denote the wavelet coefficient at spatial coordinates (7,7). We use a
two step procedure to estimate the SNM of C(i, j) at resolution ¢. The first step is a
coarse estimate. If a neighbor of coefficient C'(i, ) is significant at or before resolution
¢, then that neighbor is counted as significant for the SNM of C'(4, j) at resolution ¢.
The second step refines the initial coarse estimate by decreasing the SNM estimate by

the number of C(i, j)’s significant neighbors that are likely to be declared significant
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after the description of C'(i, 7). The procedure for refining the SNM estimates relies
on the order in which the classes are described, which in turn relies on the first-pass
SNM estimate. Only neighbors that have already become significant can be counted
in the SNM during GTW encoding since the encoder’s SNM calculation must be
mirrored at the decoder. While the first SNM estimate for the coefficients can be
done in any order, the second step takes the coefficients one by one in zig-zag order
through each sub-band of the wavelet decomposition. This approach mimics GTW’s
adaptive estimation of the SNM.

Given the SNM estimates, we can estimate the class of every bit in the wavelet
decomposition. Using these estimates, we calculate the insignificance probability ¢ as
the empirical probability of a zero in the estimated class, at a given bit-plane. We use
the Kullback-Liebler distance, D(g||¢*) to compare the original adaptive calculation
of the insignificance probability ¢* (in GTW) and our estimation of the insignificance
probability ¢ using the estimated SNM and estimated class values, where ¢ equals
the empirical probability (the count) of a zero in the estimated class. As in GTW,

the estimated group size k is computed using (5.1).

5.4.2 Lagrangian Calculation for Opt-GTW

The calculation of the multi-resolution Lagrangian requires the estimation of the
associated rates and distortions at each resolution, when declaring coefficient C'(3, j)
significant at resolution s.

The calculation of the distortions, as described in section 5.2, is analogous to
SPIHT, Opt-SPIHT, and GTW. On the other hand, the estimation of the expected
rate for the description of an element within a group is quite different within the
GTW framework. The expected incremental rate ry,,(i, j) is the rate that would
be used in the resolution-m description of the coefficient C(i, j), assuming C(i, j) is
declared significant at resolution s. The value of 7 ,,(,j) depends on the m-th bit

of the chosen reproduction and also on the position of that bit within its group and
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Out Rate cost per item
1 | 1/8]1/8[1/8]1/81/8]1/8]1/8] 18
0o |1/8|1/81/8|1/81/8|1/8|1/8]|1/8
0 - - - - | 1/411/4|1/4| 1/4
0| - | - | - | = =1 -T12]12
[Tov [2/5 | 2/8 | 2/8 [ 2/5 [ 4/5 [ 4/5 [ 5/8 | 8/8]

Table 5.1: Rate costs per item, Uy(a, b, k) and U; (b, k), for a group (Grp) of size k = 8
items with a one at position b = 8, with 7 zeros before a one at positions a = 1,..., 7.
The corresponding output bit-stream is shown in the Out column.

# Zeros | Group items | Expected Length of a ‘1’
0 172727272777 4 bits
1 017727777 2 bits
2 0017?77?77 2 bits
3 00017777 1.25 bits
4 00001777 2.4 bits
5 00000177 1.3 bits
6 00000017 1.619 bits
7 00000001 1 bit

Table 5.2: Expected description lengths of a ‘1’, U (b, k), for groups of size k = 8 and
b—1=0,...,7 zeros before the ‘1’.

within its class. In particular

Rate(‘0’, k,v,q, N) if Cp(i,7) =0

(5.4)

Ts,m(ia j) =

Rate(‘1’, k, v, q) it Cpo(i,7) =1,

where C,(7, ) is the m-th bit in the binary description of coefficient C(7, ). To see
why C/(i, 7) varies with all these parameters, consider the following example.

Table 5.1 shows the expected description lengths, for each item of a group of size
k = 8, where the first 7 elements are all zeros, and the last element is a one. The
tabulated values correspond to the expected rate cost for describing a single ‘1’ at
position b = 8, denoted by U (b, k), as well as the rate cost for describing the a-th

Y

‘0’ when the b-th element (b > a) in a group of size k is a ‘1’, which we denote by
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Uo(a,b, k). The first column of Table 5.1 shows the output sequence. The first bit
of the output bit-stream indicates that at least one element in the group is a one.
The next bit is a zero because the first half of the group (which contains the first 4
items) is insignificant. The following zero specifies that the first half of the remainder
is also insignificant. Finally the last zero establishes that of the two items that still
remain unidentified, the first is insignificant; therefore the other item has to be a
one. The cost of each output bit is amortized over the items that “benefit” from that
expenditure of rate. Therefore, bits that only discriminate between later elements are
not counted in the rate calculation for earlier items of the group. Since early output
bits provide information required for all elements, we split that rate cost across the
full group. The total rate for each member of the original group appears in the last
row of the table. Table 5.2 shows groups of size k = 8, with 0 through 7 zeros before
the ‘1’ at position b. Notice that the expected length of the description of a one,
Uy (b, k), is not monotonic in b. The rate costs per item, Uy(a, b, k) and Uy (b, k), are
pre-calculated for the range of a, b, and k values, and stored for table look-up during
the calculation of the expected description lengths.

We compute the expected description length of a ‘1’ (a significant element) for

any given group as,

Rate(‘1,k,v,q) = ¢" U ((v— D)%k + 1,k)
v—2 k—1 (1 . qu)

where k is the group size, g counts the number of zeros before the ‘1,” v is the position
of the ‘1’ in the whole class that contains the group, ¢ is the probability of a zero,
and p = 1 — ¢ is the probability of a one. The procedures for estimating ¢ and k are
described in the next sub-section. Here M = |(v — 2)/k]| is the largest integer less
than or equal to (v — 2)/k, and % is the integer mod operator.

Similarly, the estimation of the expected rate needed for the description of a ‘0’
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in a class having N total elements is

Rate(‘0’, k,v,q, N) =

T
pY " (v — D)%k + 1, (v — 1)%k + b+ 2, k)

b=0

L F
1023 ¢ U (a%k + 1, a%k + b+ 2, k)

=0 b=0
1— g™ v—kM —1
k—1 kM+k—1
(1 i)
.1
_|_qu+]€ IE, (56)

where 7" = min{k — 2 — (v — D)%k, N —v — 1}, L = min{k — 2,v — 2}, F =
min{k — 2 — a%k, N —v — 1} and Q = [(v — 1)/k]. Here Uy(a,b, k) denotes the
expected rate for describing the a-th ‘0’ when the b-th element (b > a) in a group of
size kis a ‘1.

The above rate and distortion calculations allow us to calculate the Lagrangian
Jy (i,7) for each coeflicient and each value of s. We then choose the coefficient value
that yields the lowest Lagrangian. After all of the modifications for all of the coeffi-
cients are done, we encode the modified coefficients using the standard GTW encoder.

The decoder is identical to the regular GTW decoder.

5.4.3 Including ENO Adaptive Wayvelets in the Optimization

Both SPIHT and GTW normally use a fixed wavelet transform. The experimental
results of Section 5.4.5 use the 9-7 tap filters of [1].

Instead of restricting the algorithms to the standard (STD) wavelet transform, we
explore the optimization of GTW that allows us to choose between standard wavelet
and Essentially Non-Oscillatory (ENO) wavelet coefficients, that yield the best rate-
distortion trade-off. This is motivated by the hypothesis that ENO coefficients, which
reduce the magnitude of high-frequency coefficients in a wavelet decomposition while

preserving the total energy of the image, are often better suited to bit-plane coding
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than standard wavelets, as described in Section 5.2.3.

In this section, we use the multi-resolution Lagrangian (5.2) to determine when
the trade-off between the rate used to describe the ENO map and the rate saved in
the bit-plane description makes using the ENO coefficients worthwhile. In deciding
between ENO and STD wavelet coefficients, we calculate the optimal multi-resolution
Lagrangian for each and choose the representation with the better Lagrangian perfor-
mance. The Lagrangian for the ENO coefficients also includes the cost of describing
the ENO mapping (compressed using a simple entropy coder). For the STD-MR-
Lagrangian, we include the near-negligible cost of indicating that the ENO map is
empty.

The process is repeated for all ENO decisions being considered. Because every
ENO decision affects a collection of coefficients, we sum up the Lagrangians of all
affected coefficients of each single ENO decision. For comparison, we also sum up the
individual multi-resolution Lagrangians of the STD wavelet coeflicients of those same
locations.

To identify the best multi-resolution Lagrangian for a collection of STD or ENO
coefficients, we also consider possible modifications of STD and ENO coefficients,
as described earlier in this chapter for regular wavelet coefficients. By choosing the
lowest Lagrangian, we adopt the corresponding modifications of the coefficients and
indicate the final map of ENO decisions. After all of the modifications for all of the
coefficients are done, we encode the modified coefficients using the standard GTW
encoder. Note that the decoder is the same as the regular GTW decoder except in
its use of the ENO inverse wavelet transform, as indicated in the ENO map. Figure
5.5 shows an example of an ENO edge map for the “Cameraman” image (from Figure

5.3), for a two-level ENO wavelet transform.

5.4.4 Complexity of Opt-GTW

The added computational complexity of Opt-GTW with respect to Hong’s original
GTW [30, 31], is mostly due to the calculation of the multi-resolution Lagrangians.
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For an image with a total number of Z pixels, we calculate a collection of La-
grangians for each possible significance choice among the possible L resolutions.
Therefore, the (maximum) number of Lagrangians needed to decide the best sig-
nificance for all the wavelet coefficients is L? Z

The total number of multiplications and additions for an L-resolution Lagrangian
Jy(i,7) = Zle D o(i,7) + Berse(iy j), is 2L% and (2L — 1)L, respectively. The
distortion Dy (3, 7) = (C(i,j) - as,g(i,j))Z is calculated after the (partial) recon-
struction of every coefficient C'(, j) at each one of the £ = 1,--- | L resolutions. Note
that C, (i, j) is the (partial) reconstruction after the first ¢ bit-planes of the modi-
fied coefficient. We use és(i,j) to denote the approximation to C(3,j) achieved by
declaring this coefficient significant at resolution s. Thus for a given as(i, J, ) for each
possible choice of significance-resolution s, and at every (incremental) resolution /,
the distortion calculation involves one addition and one multiplication.

The incremental rate r,,, (7, j) depends on the bit used to represent és,m(i,j) at

each m =1,--- | L resolution, as described by (5.4).

5.4.5 Experimental Results

The optimization is applied on a 7 level decomposition of STD- as well as ENO
wavelet coefficients. We use the standard gray-scale image “Cameraman” of size
256 x 256 pixel, shown in Figure 5.3. That image and many other de facto standards
are available on the Internet, for example at [32].

The plot of Figure 5.4 compares the PSNR as a function of rate, for both the
optimized code and the original GTW algorithm. The graph shows a performance
improvement of approximately 0.7 dB.

Figures 5.6a and 5.6b show the reconstructed images of the gray-scale “Camera-
man” at R = 0.1 bits per pixel, that is an 80-times compression ratio, using standard
GTW with standard 9-7 Antonini wavelets, and the optimized method Opt-GTW
with 9-7 ENO wavelets, respectively. The optimization using ENO wavelets allows a

perceptual quality improvement that is particularly noticeable at sharp edges in the
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image. The combination of the Lagrangian optimization with the application of the
ENO wavelet transform proposed in this work yields performance improvements both

in PSNR and in visual quality of the reconstructed images.

5.4.6 Acknowledgments

We want to thank Ed Hong and R. E. Ladner for providing us with the code for the

standard GTW, to which we added the implementation of our algorithm.
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Figure 5.3: Original 256 x 256 pixel “Cameraman” gray-scale image.
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Figure 5.4: Comparison of the PSNR as a function of rate for GTW (circles), and
the new optimization method with ENO wavelets. The performance improvement of
the new method is approximately 0.7 dB.
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Figure 5.6: Low-rate reconstructed images of the gray-scale “Cameraman” at R = 0.1
bpp, using (a) standard GTW with standard 9-7 Antonini wavelets, and (b) the
optimized method Opt-GTW with 9-7 ENO wavelets.
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Chapter 6 Summary and Conclusion

This thesis studies the optimization of multi-resolution source codes. The optimiza-
tion methods presented here are based on the minimization of a Lagrangian perfor-
mance measure, where the Lagrangian coefficients are the weights that parameterize
the priorities assigned to the resolutions. The relative value of the Lagrangian param-
eters can be set according to the user’s priorities over the resolutions, e.g., depending
on the probability of utilization of each resolution. The optimal multi-resolution code
is the code that minimizes the weighted performance measure.

In the first part, we have used a Lagrangian to investigate optimality properties
implied by the rate-distortion theoretical bounds. We have studied the characteriza-
tion of the optimal output density functions of a two-resolution source code for any
arbitrary set of priorities over the resolutions. The result is a conjecture about when
the second-resolution reproduction of a two-resolution code is purely singular, for an
iid source.

In the second part, we have presented a new method for converting design con-
straints into the corresponding Lagrangian parameters for general multi-resolution
codes. This technique takes a set of user-defined target rates or target distortions
(or any combination of rates and distortions) and their associated priorities, runs a
bisection-style search and returns the corresponding Lagrangian coefficients.

We have shown here the performance of practical implementations of the code for
several vector dimensions, both for fixed- and variable-rate, comparing the perfor-
mance and features with other existing algorithms.

Motivated by the computational complexity of MRVQ, which grows exponentially
with the number of resolutions, we have proposed a linear complexity MRVQ, that
is a hybrid between TSVQ and MRVQ. The linear complexity variant is a multi-
path search algorithm, where the number of paths being considered can be adjusted

arbitrarily, bridging the gap between the greedy I-path (TSVQ), and the all-path
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(MRVQ) search alternatives.

Also motivated by computational complexity considerations, in the third part of
this thesis we have explored the rate-distortion performance optimization of wavelet-
based codes. We have introduced a new optimized encoder for the SPIHT algorithm.
The new Opt-SPIHT encoder optimizes the code relative to a user-defined priority
function, to yield performance improvements at the resolutions of highest impor-
tance, at the expense of performance degradation at the resolutions of low priority.
The resulting encoded bit-stream is compatible with the standard SPIHT decoder
(the decoder requires no knowledge of the priority function) and obtains benefits rel-
ative to the given priorities. The achieved low complexity, globally optimal solution
uses a dynamic programming approach to adjust the magnitudes of the wavelet co-
efficient, and minimizing a Lagrangian performance measure to optimize the code’s
performance in a rate-distortion sense.

The optimization of more general bit-plane coders is not straightforward. The
GTW algorithm is a generalization of zero-tree codes, like SPIHT, that uses groups
of coefficients other than zero-trees. We have presented a new algorithm, named Opt-
GTW, that first estimates the Lagrangian performance measure and then modifies
the magnitudes of the wavelet coefficients such that the rate-distortion performance
is optimized according to the Lagrangian estimates.

While Opt-SPIHT finds a globally optimal solution, there is no direct analog in
the GTW framework. Nevertheless, Opt-GTW provides a principled technique to
incorporate user-defined priorities into the optimization of the encoded bit-stream,
keeping the decoder identical to the original GTW and, again, not requiring it to
know the priority function. The new approach proposed here is based on an original
a priori estimation of several of GT'W’s adaptive parameters to calculate a Lagrangian
cost function that incorporates the priority schedule as well. We have also presented
a new method for the joint optimization of GTW and the wavelet transform, by
incorporating the adaptive ENO wavelet transform in the optimization procedure.

Through the different algorithms presented here we have demonstrated the practi-

cal application of the Lagrangian performance measure to the optimization of different
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kinds of multi-resolution source codes.

We end this thesis by describing possible areas for future work. One of the ele-
ments that was not explored in this thesis is the joint optimization of rate, distortion,
and complexity, in code design. This problem has been partially studied in the lit-
erature, for example through variable complexity algorithms but mostly oriented to
single-resolution codes, (e.g., |43] for transform codes.) While this work gives exam-
ples of multi-resolution codes with different complexities, it does not suggest a method
for understanding the fundamental underlying trade-offs between Lagrangian perfor-
mance and complexity. Furthermore, it would be interesting to consider the joint
optimization of rate, distortion, complexity, latency (delay), and memory, in practi-

cal multi-resolution code design.
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