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Abstract

The lower mantle plays an important role in the thermal and chemical evolution of the
earth. Although recent advanced seismological imaging displays the heterogeneous nature
of the lower mantle, most results are constrained to large scale and longer wavelength
structures. This thesis involved waveform modeling studies of the detailed structures of the
lower mantle, especially the African Superdome and D" layer.

A simple uniform 3% shear velocity reduction model can explain the observed
seismological anomalies for the African Superdome (also refer as Africa Large Low Shear
Velocity Province or Africa Superplume), but it lacks small scale complexity inside. In
parallel with the seismic model, a composition-dependent compressibility model with a
high bulk modulus is developed to explain the African Superdome. To validate this
dynamic model, we map the modeled chemistry and temperature into P and S velocity
models. Synthetic seismogram sections generated for this 2D model are then compared
directly with the corresponding seismic observations. These results explain the anti-
correlation between the bulk velocity and shear velocity, as well as the sharpness of the
edge.

A lower mantle S-wave triplication with a S¢q branch occurring between S and ScS has
been recognized for many years and has been interpreted in a variety of ways. The
triplication is particularly strong when sampling regions beneath the circum-Pacific lower
mantle fast velocity belt seen in global tomographic models, where it has been modeled
with a 2-3% jump in S-velocity. The D" discontinuity may arise from a phase change for
Perovskite to Post-Perovskite. We model the phase boundary height by mapping S-wave
tomography into temperature. A few adjustable parameters involving reference phase
boundary height and velocity jump are determined from comparing synthetic seismogram
predictions with densely sampled observations. Adding 3D propagational effects caused by
these structures through Perovskite to Post-Perovskite velocity jump predicted from
mineral physics appears to generate compatible results with S¢q waveform observations.

In the last chapter, we develop a new tool based on a decomposition referred to as a

multi-path detector which can be used to distinguish between horizontal structure (in-plane



vii
multi-pathing) vs. vertical (out-of-plane multi-pathing) directly from processing array

waveforms. A lateral gradient coefficient based on this detector provides a direct constraint
on the sharpness of the boundaries and material properties. We demonstrate the usefulness
of this approach by processing samples of both P and S data from the Kaapvaal array in
Southern Africa. The results further validate the case for distinct chemistry inside the
African Superdome. We also present evidence of a narrow plume-like feature coming off
the top of the large African low-velocity structure in the lower mantle. The plume’s
diameter is less than 150 km and consistent with an iso-chemical, low-viscosity plume

conduit.
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Chapter 1

Introduction

In the last decade, global seismic tomography has produced consistent images of the
large-scale structure of the Earth’s lower mantle, with a belt of high velocity anomalies
along the circum-Pacific and low-velocity anomalies beneath the Pacific Ocean and South
Africa. Details of smaller-scale structure, i.e., slabs and plumes, are less well resolved and
differ between studies. However, resolution of these structures proves crucial to the
understanding of the driving mechanisms of plate-tectonics and mantle convection. Do
slabs penetrate into the lower mantle and pile up on the core-mantle-boundary (CMB) [e.g.,
Grand, 2002]? Do plumes rise from the CMB to the surface [Montelli et al., 2006]? These
issues remain hotly contested [Anderson, 2005]. This thesis presents seismological views of
lower mantle structures and tries to answer some parts of those questions.

Synthetic seismograms generated from tomography models generally look like those
calculated from the 1D reference model and lack the complexity commonly observed in
many seismic sections. Such features require sharp jumps in velocity, ie. steep velocity
gradients, which are apparently smoothed out in tomographic imaging because of model
parameterization and uncertain source information about location and origin time. While
waveform modeling can be useful for resolving strong velocity gradients, there remain
many challenges in imaging complete 3D structures because of the lack of data coverage
[Helmberger et al., 2005]. The two methods complement each other, and comparing
observed waveforms with synthetic seismograms generated for models based on
tomographic images can be used as a starting point for sharpening features required to fit
the waveform data. We view this process in terms of tomography by providing the large-
scale geographic framework for the detailed “gedynamic features” sensed by waveform
modeling. We apply waveform modeling to the two major structures in the lower mantle:

Large Low Velocity Provinces (Chapter 2 and 4) and the D" layer (Chapter 3).
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The African Superdome has been modeled as a ~1500 km high structure with

sharp edges and uniform 3% shear velocity drop inside [Ni and Helmberger, 2003a,b,c]. To
explain the seismological observations, thermo-chemical dynamic convection models are
generated [McNamara and Zhong, 2004; Tan and Gurnis, 2005]. Tan and Gurnis [2005]
develop a high bulk modulus model starting with a heavy basal layer with distinct
chemistry. Its bulk tabular shape remains relatively stable while its interior undergoes
significant stirring with low-velocity conduits along its edges and down-welling near the
middle. Given our present limitations in source-station geometry, we will rely more on
dynamic modeling in designing seismic experiments to better resolve the small-scale
structures inside (Chapter 2). We perform a mapping of chemistry and temperature into P
and S velocity variations and replace a seismically derived structure with this hybrid model.
Synthetic seismogram sections generated for this high bulk modulus model suggest that
this model could be a candidate explanation for the African Superdome.

In a typical tomography model, the D" discontinuity is not included [Sidorin et al.,
1999]. To model the lower mantle triplication [Lay and Helmberger, 1983], a positive
velocity jump across the D" discontinuity needs to be added in the tomography models.
Based on the phase change boundary explanation for the D" discontinuity, a global phase
boundary height map was generated [Sidorin et al., 1999]. This phase boundary is
confirmed by both experimental and theoretical results for the the Perovskite to Post-
Perovskite phase change [Hirose, 2006]. In Chapter 3, we extend this mapping method to
explain the complexities of the Scd phase. By allowing phase boundary mapping with
localized parameters derived from tomography image, we can produce the rapid lateral
change of the D discontinuity.

The main advantage of the waveform modeling is to capture structures with sharp
edges [Helmberger et al., 2005]. Previous studies concentrated on the 2D in-plane
structure. Numerous examples indicate that the structures vary more in azimuth than in
distance and that the structure is oriented more vertically than radially [Ni et al., 2005].
Helmberger and Ni [2005a] developed a hybrid method to calculate 3D synthetics
especially for structures with sharp walls. It is a challenge to distinguish in-plane and out-

plane multi-pathing, especially for the large amount of existing array data. In Chapter 4, we
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introduce a Multi-Path Detector (MPD) that exploits the complexity and resolves sharp

structures directly by decomposing the waveform. The array of observations is then
replaced by a footprint of timing shifts between interfering arrivals, which indicate where
the sharp edges are. In particular, we apply MPD for the array in South Africa to resolve
the sharp edge of the African Superdome and provide the evidence of a narrow mid-mantle

plume-like feature emitting from the top of the large African Superdome.



Chapter 2

Seismological support for the metastable
superdome model, sharp features, and phase-

changes within the lower mantle*

2.1 Abstract

Recently, a metastable thermal-chemical convection model was proposed to explain the
African Superdome. Its bulk tabular shape remains relatively stable while its interior
undergoes significant stirring with low-velocity conduits along its edges and down-welling
near the middle. Here, we perform a mapping of chemistry and temperature into P and S
velocity variations and replace a seismically derived structure with this hybrid model.
Synthetic seismogram sections generated for this 2D model are then compared directly
with corresponding seismic observations of P (P, PcP, PKP) and S (S, ScS, SKS) phases.
These results explain the anti-correlation between the bulk velocity and shear velocity as
well as the sharpness and level of SKS travel time delays. In addition, we present evidence
for the existence of a D" triplication (a putative phase-change) beneath the down-welling

structure.

*This chapter appears as Seismological support for the metastable Superdome model,
sharp features, and phase-changes within the lower mantle, Daoyuan Sun, Eh Tan, Don
Helmberger, and Michael Gurnis, Proceedings of the National Academy of Sciences
(2007), 104(22), 9151-9155. doi:10.1073/pnas. 0608160104.




2.2 Introduction

The large-scale structure of the lower mantle has been well resolved by global
tomography, with a belt of high seismic velocity along the circum-Pacific and two large
low shear velocity provinces (LLSVPs) beneath South Africa and the mid-Pacific. The
fastest regions appear to contain a sharp positive velocity jump associated with a phase-
change from perovskite (PV) to post-perovskite (PPV) [Helmberger et al., 2005], while the
slowest regions contain 6Vs/6Vp ratio > 2.5 and an anti-correlated bulk sound velocity Vy
and shear velocity Vg [Masters G, 2000; Su WJ, 1997]. Although both LLSVPs show these
properties, their interior structures appear to differ, with the Pacific anomaly showing more
complexity compared to the apparently monolithic African anomaly [Helmberger and Ni,
2005b; Wang and Wen, 2007]. Tomographic studies of the African structure reveal a large-
scale feature which extends throughout the lower mantle. Predicted SKS delay patterns up
to 3s for some of these tomographic models fit the observations at the South African
seismic array well except for magnitude and sharpness, Figure 2.1, where the data require
over 6s offsets [Helmberger and Ni, 2005b; Ni and Helmberger, 2003a]. Note that the SKS
ray paths cross the CMB interface at relatively steep angles and their abrupt change in
delays require nearly vertical walls to separate the normal Preliminary Reference Earth
Model (PREM) from the anomalous structure denoted by the heavy green lines in Figure
2.1b, review by [Helmberger and Ni, 2005b]. Such a structure with its sharp sides is

suggestive of thermo-chemical convection containing a density increase [Ni et al., 2002].

2.3 Metastable Superdome

The fate of a dense chemical basal layer in a convecting mantle has a well-developed
history [Christensen, 1984; McNamara and Zhong, 2004]. Their results, involving dense
piles, look similar to the LLSVPs in tomographic locations and appear compatible with the
history of subduction. Stabilized by an intrinsically larger density (Ap.), the pile will
remain at the CMB until exceeded by a thermal density with opposite sign (Aps). However,
if there is a difference in compressibility between the materials within the plume compared

to ambient mantle, then metastable conditions are possible. Tan and Gurnis, 2005 have
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generated a sequence of models with differences in zero pressure density (Ap,),

adiabatic bulk modulus (Ks) and initial layer thickness. They show that if Ap,is 2 to 3%
and Ks from 4 to 8% larger than the ambient mantle, which are expected for material from
subducted slabs (pyroxenite) [Lee et al., 2005], then metastable superdomes can form. The
result that best matches the seismic data for the African Superdome, labeled HBMS (High
Bulk Modulus Structure), is used in our subsequent analysis (Figure 2.2).

At the base of the mantle, the anomalous material heats, becomes more buoyant than
the background, and moves upward. However during ascent, its buoyancy gradually
decreases, due to an increasing adiabatic density difference, and rises to a level where it is
neutrally buoyant, height of neutral buoyancy (HNB). Above the HNB, the anomalous
material becomes denser than the background and sinks. The structure stands high above
the CMB (Figure 2.2) and remains metastable depending upon the equation of state and
depth-dependence of the coefficient of thermal expansion [Tan and Gurnis, 2005].

The existing seismic model of the African Low Velocity Structure (ALVS, Figure 2.1)
is similar in shape to the dynamic models but lacks smaller scale complexity and low
seismic velocities near the edges. Such features are in some of the seismic models
presented by [Wen, 2001]. The earlier idealized seismic structure (Figure 2.1b) has a
uniform 3% Vs reduction with walls and a flat roof, so that the general character of the
anomaly might be imaged more clearly with waveform data available, transforming the
blurry tomographic model into this distinct structure [Ni and Helmberger, 2003c].

We convert the temperature, composition, and density anomalies in HBMS model to
seismic velocity anomalies in favoring the bulk properties of the seismic African
Superdome model. The thermo-elastic parameters of the chemical anomalous material are
chosen to be similar to those of MgSiOs perovskite. In the HBMS model, the conversion
from temperature (T) and composition (C) to seismic velocities is based on the following
parameters:

(0K, /0C), =6%
(BInu/0C), =1.5%

(0K, /0T),. =-6%
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Figure 2.1: A map of events and stations (triangles) used in the construction of a 2D
model along a corridor through the African Superdome. We use data from two arrays,
South African, and the new Ethiopia/Kenya array [Langston et al., 2002] of events
arriving along a great circle in this study. SKS and SKKS exist points at the CMB are
given in colored triangles, with blue indicating no delay and red over 5s. To produce the
sharp jumps require a monolithic structure denoted in heavy green lines as the African
Low Velocity Structure (ALVS), where the S velocity inside the box is reduced by 3%
relative to PREM [Ni and Helmberger, 2003a]. We have included some example ray
paths S, SKS, and Sc¢S. The background tomographic model is most recently updated
Grand’s model [Grand, 2002].
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with predicted Vp and Vg velocities [Tan and Gurnis, 2005]. Only the bottom 1200 km of
the model is shown. Within the anomaly, the material has a larger bulk modulus (6%
larger than ambient) and higher zero pressure density (2.25%). The layer forms a single
dynamic structure with the average density near neutral. Note the plumes along the edges
and the down-welling near the middle. a. Non-dimensional temperature, b. density
anomaly, c. Vp anomaly and d. Vg anomaly.
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Here, Ks is the bulk modulus, and g is the shear modulus. The value of (Jln Ks/oC)r is
dictated by the dynamic model. The value of (J/n 1/6C)r is a free parameter and is chosen
to fit the seismic observation. When scaled, the dimensional values of (J/n Ks/JT)c and
(Oln 1/ET)¢ used in the conversion are -3.33x10” K™ and -8.33x10” K™, respectively.
More information about the conversion is described by Tan and Gurnis [2007]. For
reference, the dimensional values of (J/n Ks/OT)c and (61/0T) ¢ for MgSiOs perovskite are
calculated to be -3.29x10° K™ and -8.62x10° K™, respectively [Oganov et al., 2001].

2.4 Predicting Seismograms

Here, synthetic seismograms generated from dynamically derived Vs and Vp models
are tested against observed seismic phases and travel times. These synthetics were
generated with the WKM technique introduced in [NVi et al., 2000]. The method is basically
analytical, which satisfies the wave equation assuming tomographic-type models. The
original idea of WKM was proposed by Wiggins and Madrid [1974] based on the
comparison of 1D synthetic seismograms generated by complete methods against simple
geometric approximations. The first step is to generate the ray paths for the 1D reference
model, as in seismic tomography. We compute the ray paths reflecting-off every interface
sampling the depth sensitivity of the seismic phase. The ray parameter (p;) and the travel

time (t;) are used to form a numerical derivative

d,
P s () (10 @

In most tomography, the value of p; is held fixed along each ray segments and the t; can
vary by adding velocity changes to blocks in various layers. Thus, the ray paths do not
change as the velocity is perturbed. We go beyond this approximation by allowing the p; to
satisfy Snell’s law again in the perturbed heterogeneous model and compute corresponding

changes made in the ray segments. Note that the paths will shift to avoid slow regions (see
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Ni et al. [2003]) for a validation study against numerical methods). In general, thin

layers increase the accuracy.

To test the HBMS model, we replace the box-like structure (Figure 2.1b) with the
HBMS structure (Figure 2.3a), while assuming the same geometry for events and stations
and then generate 2D synthetics. Then we compare the predicted synthetic seismograms
with the observed seismic data. Specifically, (i) does HBMS display the sudden jump in
SKS at the edges and remain relatively flat over extended distances while generating
complex SKS waveform when sampling the edges; (ii) does HBMS satisfy the travel time
data of diffracted S wave (Sq4) and diffracted P wave (Py), where Sq is delayed much more
than Pg; and (iii) does it predict the much larger delayed ScS—S than PcP—P. We find that
HBMS predicts the bulk characteristics about as well as the idealized seismic model
(Figure 2.1b) but also predicts small-scale features near the edges and middle which can be
seen in the observed waveform data.

Although the early waveform studies of the African Superdome revealed sharp features
based on differential phase relationships (SKS-S and S-ScS) [Ni and Helmberger, 2003a;
b; Ritsema et al., 1998], the dense regional array data provided the most definitive evidence

[Wen, 2001]. Thus, we will concentrate on array data and 2D synthetics generated from

Figure 2.3: This figure presents seismic waveforms predicted by inserting the HBMS
model into the earth beneath Africa, essentially replacing Figure 2.1b by Figure 2.2d, and
comparing results against seismic observations. We have included the ALVS (Figure
2.1b) results for comparison. Figure 2.3a displays the geometry and geometric ray paths
along a 2D cross-section (East Pacific Rise to the South Africa Array) sampling the
anomalous structure, SKS (red) and S4 (light blue). Figure 2.3b displays the differential
timing derived by cross-correlating the observed waveforms [Helmberger and Ni,
2005b], with synthetics relative to predictions from the 1D reference earth PREM. Since
the structure is roughly symmetric, we included predictions with events occurs at the left
side (heavy line) and the right side (light line) of this model. A comparison of travel time
predictions generated from HBMS synthetics against those observed at the South Africa
Array [James et al., 2001] are displayed in Figure 2.3c for diffracted S (Sq, solid
triangles) and P (Pg4, open triangles). Since the diffracted waves sample the top-edge of
the structure first, the anomalous travel times have a gradual onset as predicted by the
solid curves, heavy from the left, light from the right. Both the data and synthetic
predictions display considerable scatter indicative of possible embedded fine-structure
which is likely to be time-dependent. However, the magnitude of the anomalous S delays
relative to P is well matched.
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Figure 2.4: The figure presents SKS waveforms predicted for the HBMS model. The
predictions with rays from both sides show a rapid delay of SKS and waveform
complexity when sampling the boundary zone (shaded zone). The SKS ray paths are
shown in Figure 2.3a.
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(dot line) predicted by the HBMS and ALVS models. The modeled PcP-P differential
time is shifted up by 1s, considering the possible base-line shift for origin time correction.
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events along the great circle paths displayed in Figure 2.1a. Synthetic waveforms for the

HBMS model are processed using the same procedure as used in deriving Figure 2.1b, with
results displayed in Figure 2.3. We also included reversed paths or flipping the HBMS
model since the detailed velocity field is not unique, i.e., changes with time, etc. The
HBMS results fit as well as ALVS although a few seconds of scatter remain. The synthetics
are displayed in the Figure 2.4 where complexities develop near the boundary as can be
observed [Ni et al., 2002], but these features remain difficult to quantify.

Long-period P-wave diffraction (Pg4) that passes through the African anomaly is less
delayed than Sy from conventional tomography. This is most easily measured by
comparing synthetic seismograms (PREM) against data [Ni and Helmberger, 2003a; b]. To
avoid source location uncertainties, we compare Pd and Sd from the same event, Figure 2.
3c. The geometry is presented in [Ni and Helmberger, 2003b], where the phases cross the
boundary nearly at right angles to the structure. The observations display considerable
scatter since the array is broad and the ray paths apparently encounter 3D variation, i.e.
samples from the right side are about 1.5s smaller than those from the left. In short, the
dynamic model captures some of this level of observed variation indicative of a convecting
region.

There are many advantages in sampling an unknown structure with paths following the
same great circle as described earlier (Figure 2.1a). Here we display ScS-S and PcP-P for a
Sandwich Island event (Figure 2.5). The P and S direct rays encounter gentle mantle
structures as explored with various tomographic maps [Ni and Helmberger, 2003b]. Thus,
the differential times remove the timing errors associated with origin time and location and
provide an accurate differential measure between the P and S velocities inside the
anomalous structures. Note that the SKS delays fix the position of the wall, simplifying the
interpretation of the ScS-S delays and their increase with distance. The data scatter relative

to the model similar to the Sq suggesting complexity in the upper boundary.

2.5 Possible phase boundary

While Sandwich Island events produce excellent PcP and S¢S recording on the South

African Array, they also produce samples of the CMB directly below South Africa (Figure
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Figure 2.6: Modeling a D" triplication from the Ethiopia/Kenya array from a deep
Sandwich Island event; (a) The recording geometry with green circles indicating the ScS
sampling points at the CMB. (b) We assume the ALVS inside the Green Box in Figure
2.1b is 1D and replace the velocities near the bottom with our preferred structure (b). We
have included a model with a sharp 4% jump (CM) and a hybrid model. (c) displays
geometric ray paths with arrival times given as lines on the data-synthetic record
sections; (d) displays the comparison with observed waveforms against predictions from
the HBMS model and (e) those from the Hybrid model and (f) CM model containing
structure (b).
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2.6) as recorded by the recently released Ethiopia/Kenya array data [Langston et al.,

2002]. Since this dataset is rather unique, we will display the record section and predictions
from both the ALVS and HBMS models and suggested model changes involving a possible
PV to PPV phase change. The geometry is shown in Figure 2.6a where SKS piercing points
are denoted at the edges of the Superdome. The boundaries as discussed earlier are given as
heavy dashed green lines. The ScS bounce points are near the center of the structure where
the down-welling developed in Figure 2.2d. Record sections display the waveforms
containing the various seismic arrivals with SKS arriving first followed by S and ending
with ScS. The cross-over from S to SKS occurs about 2° early relative to PREM because of
the delayed S, which is common for the African anomaly.

Because of some small station timing offsets, record sections relative to predicted
PREM times have small misalignments, which can be avoided by aligning directly on the
peak of the S pulse as displayed in the record sections Figure 2.6d)—f). Synthetic prediction
for HBMS reproduces observed arrivals reasonably well, except that the differential time
between S and SKS is small at smaller ranges and S¢S is late and complicated.

Both the HBMS model and Ni’s model (Box I) (Figure 2.7) can not produce the large
separation between S and SKS at small distances (82 ~ 84°) (Figure 2.8a, b). Adding the
extra Box II in Figure 2.7, with the 2% velocity reduction, slows the arrival time of S and
has no effect on the SKS phase, and produces the observed differential time between S and
SKS in Figure 2.8c.

In addition, there is a small arrival between S and S¢S having the timing expected for
the Scd phase. This extra arrival is produced by a small triplication near the CMB which
appears between S and S¢S at ranges 80° to 90° [Helmberger et al., 2005]. Because HBMS
does not have such a phase boundary, we experimented with the original ALVS structure,
Figure 1b. A significant feature in the HBMS model is the down-welling region near the
center, which will cause a diffuse increase in seismic velocity. Then we added a linear
gradient to mimic the down-welling followed by a small velocity jump (1.7%), a strategy
used earlier by [Sidorin et al., 1998]. We conducted a grid search to derive the Hybrid
model (Figure 2.6b) and synthetics displayed in Figure 2.6e. The small pulse with a phase
velocity slightly higher than S labeled Scd is associated with this sharp boundary. We also
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Figure 2.7: The cross sections from South Sandwich Island to the Ethiopia/Kenya array
for a) Hybrid model and b) HBMS model with background Grand’s tomography model.
In the Hybrid model, the S velocity anomaly inside the Box I is -3% and -2% inside Box
II. The second Box II was added to fix the relative SKS and S timing issue by slowing S
as can be seen in the ray path sampling. This is not unique and any extra S delays along
these particular paths will satisfy the data.
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test a model with an abrupt shear velocity jump across the boundary. By grid search,

we derive a model (CM model) with 4% jump located 100 km above the CMB, Figure
2.6b. The synthetics for this model are shown in Figure 2.6f. Both models provide a
reasonable fit to the data. The small velocity jump in the Hybrid model supports the
possible PV to PPV transition across the boundary seen globally. Since the down-welling
in the HBMS model raises the possibility of the occurrence of phase transition in this area,
we prefer the hybrid interpretation.

The overall fattening of S at ranges 83° to 87° is caused by the high velocity gradient
which is also present in the HBMS model. Unfortunately, it proves difficult to sample D"
beneath the Superdomes because of the strong constraints of station geometry. Thus, we do
not know if the structure presented is related to the down-welling, or perhaps PPV to PV.
Note that Tsuchiya and Tsuchiya [2006] suggest that the PV to PPV transition for Fe-rich
chemistry is likely to be accompanied by a negative Vs jump [Tsuchiya and Tsuchiya,
2006]. This implies that a positive Vs jump then becomes a PPV to PV transition. The
position and the magnitude of the negative velocity jump beneath the boundary is not well
constrained, although adjustments can be made to correct the travel time of ScS. Because a
velocity reduction is more difficult to detect than a velocity increase [Flores and Lay, 2005;
Sun et al., 2006], there is no constraint on the exact velocity structure below the boundary
of the positive velocity jump in both models. However, considerable support for a positive
velocity jump comes from studies near the Pacific Superdome edge [He et al., 2006; Lay et
al., 2006], along with very strong lateral variations in S-velocity structure, Figure 2.9.

Strong variation in P-velocities has also been found near this same edge [Luo et al., 2001].

2.6 Edge Effects on P-waves

The P-wave velocity structures in HBMS are not anomalous on average as pointed out
earlier with respect to P4. Moreover, the phases with nearly vertical ray paths in the mantle
have the best chance of detecting the abrupt lateral changes near the edges, in particular the
differential branches of PKP phases. Although the Vp anomalies are small for the LLSVPs
on average, the existence of sharp Vp features occurring near their edges is poorly imaged

seismically because of the lack of differential phases. PcP-P is not available for distances
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Figure 2.9: Map of the northern edge of the Pacific Superdome displaying where
anomalous seismic data has been studied relative to Grand’s tomographic model (after
Luo et al, 2001). The piercing points of PKPab three Fiji-Tonga events, red, green, and
blue, are indicated relative to a dotted line where the dotted PKP arrivals are 2s earlier
than those to the north. The symbols indicted by asterisk or triangles are locations where
PKPab display complexities (multi-pathed). The white trapezoid region shows rapid
lateral variation of D" [He et al., 2006].
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Figure 2.10: Display of ray paths for PKP, PKPdf in cyan, and PKPab in magenta, for
geometrics sampling the edge structures relative to PREM along with synthetic
predictions. Solid traces correspond to the edge structure with dotted traces relative to
PREM. Note the nearly 2s offset caused by sampling the edge structure.
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beyond 70° where the reflection coefficient (PcP) becomes very small. Differential

times, Otx, between PKPab and PKPdf has proven useful in studying D" with some success
[Song and Helmberger, 1993]. Since the AB and DF paths only separate in the lower
mantle, see Figure 2.10, their oty becomes a useful measure of lateral variation. Due to the
limited samples for African Superdome, we examine the PKP sample beneath Central
Pacific. Some sharp jumps in ot have been observed with no obvious explanation (Figure
2.9). Figure 2.9 displays the CMB piercing points for the phase PKP(AB) for events
beneath the Tonga-Fiji Islands as recorded in Spain [Luo et al., 2001]. The dotted line in
Figure 2.9 separates normal arrival times from late arrivals (2s). It appears that these jumps
in oty can be explained by the anomalous edge structure along the HBMS. Moreover, many
observations north of the dotted line in Figure 2.9 display waveform complexities which
can be modeled by including ultralow velocity zone (ULVZ’s) [Luo et al., 2001]. The most
probable cause of the ULVZ is partial melting at the base of the mantle [Garnero et al.,
1998]. Although the HBMS model did not include the melting process, the edges of the
HBMS are substantially hotter than elsewhere, which become candidate locations for such

Zzones.

2.7 Summary

In conclusion, we have tested a dynamic model HBMS by mapping excess T and
density into Vp and Vg and comparing data against predicted synthetics. Not only did the
dynamic model predict accurate results generated from the model, it suggests additional
features that appear to be observable, such as plumes along the edges and a fast lens near
the CMB, D". An observed record section sampling beneath the Superdome can be
modeled by assuming a velocity gradient (fast lens) and a 1.7% jump in S velocity situated
90 km above the CMB. However, since the above mapping is strongly dependent on
assumed perturbations of the shear modulus to changes in T and composition, we have a
self-compatible model which lacks uniqueness. The next step is to add the mineral physics
constraints and retest all the appropriate datasets. We will then be in position to better

understand the dynamics behind some of the largest coherent structures in the mantle.
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Chapter 3

Lower Mantle Tomography and Phase-change

Mapping *

3.1 Abstract

A lower mantle S-wave triplication (Scd) has been recognized for many years and appears
to be explained by the recently discovered Perovskite (PV) to Post-Perovskite (PPV) phase-
change. Seismic observations of Scd display (1) rapid changes in strength and timing
relative to S and ScS, and (2) early arrivals beneath fast lower mantle regions. While the
latter feature can be explained by a Clapeyron slope (y) of 6 MPa/K and a velocity jump of
1.5% when corrected by tomographic prediction [Sidorin et al., 1999], it does not explain
(1). Here, we expand on Sidorin’s mapping approach by attempting a new parameterization
that requires a sample of D" near the ScS bounce point where the phase height (/4,,) and
velocity jump (f) are functions of shear velocity perturbation (6Vs). These parameters are
determined by modeling dense record sections collected from USArray and PASSCAL
data where Grand’s tomographic model is the most detailed in D" structure beneath Central
America. We also address the range of y to generate new global models of the phase

boundary and associated temperature variation. We conclude that a y near 9 MPa/K is most

* This chapter appears as

Complexity of D” in the presence of slab-debris and phase changes, Daoyuan Sun, Teh-
Ru Alex Song, and Don Helmberger, Geophysical Research Letters (2006), 33, L12S07,
do0i:10.1029/2005GL025384.

Lower mantle tomography and phase change mapping, Daoyuan Sun and Don Helmberger,
Jounral of Geophysical Research (2008), 113, B10305, doi:10.1029/2007JB005289.
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satisfactory but requires f to be non-uniform with a range from about 1.0 to 4.0% with

some slow region samples requiring the largest values. Moreover, the edges of the
supposed buckled slabs deliminated by both P and S-waves display very rapid changes in
phase-boundary heights producing Scd multipathing. These features can explain the
unstable nature of the Scd phase. The fine structure at the base of the mantle beneath these
edges contains particularly strong reflections indicative of local ultralow velocity zones,

which are predicted in some dynamic models.

3.2 Introduction

Large-scale structures in the lower mantle derived from numerous tomographic
imaging consistently show a belt of high velocity anomalies along the circum-Pacific
(Figure 3.1a). Low velocity anomalies beneath the mid-Pacific and Africa are also well
established although with smaller-scale plume-like features which remain controversial
[Anderson, 2005]. Relatively sharp features have been reported at mid-mantle depths
beneath North America which appear to be slabs [Grand et al., 1997], and many
researchers interpret the high velocity ring (Figure 3.1a) as slab debris, e.g., review by
Garnero, [2004] and van der Hilst, [2004]. The deep earthquakes occurring in the down-
going slabs produce simple isolated body wave phases (P and S) which can be used to
study the smaller-scale features. In particular, secondary arrivals can be seen between S and
ScS forming a small triplication, roughly 75° to 85° (Figure 3.2). These arrivals can be
commonly observed on recording stations (continental paths) sampling the fast Pacific
Ring as first pointed out by Lay and Helmberger [1983]. The position of the triplication
relative to S and ScS appears to vary regionally with the earliest occurring beneath eastern
Asia [Wysession et al., 1998]. This depth-dependence of Scd triplications was used to
attempt a phase-change interpretation by [Sidorin et al., 1998] in terms of a positive

Clapeyron slope. He imposed a velocity jump defined by

V'(h,0,4)=V(h0,é ){1 + % /3{1 + mn/{L - H} (3.1)

th
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where V(h) is the original tomographic velocity at the elevation h above the CMB,

V' is the new velocity, f is the amplitude of the velocity jump, @1is the latitude, and ¢ is the
longitude. The width of the phase transition is wy,, which was assumed to be 5 km in
Sidorin’s efforts based on upper mantle studies. This sharpness produces a clear Scd in
synthetics as displayed in Figure 3.2¢ and d, while a broad transition produces a gradual
long-period onset (Figure 3.2b). A simple break in the velocity gradient (Figure 3.2a)
produces only a long-period diffraction not easily seen at typical periods used in these

studies. The ry, in Equation (3.1) is defined by

T (h.0.0)=h,, —h(0,4)~

/4 AT(h,0, 32
p(h,0,9)g(h) (h.6.4) (-2

where g is the gravitational acceleration in the mantle. p is the density, which is assumed to
be same at different locations with the same depth of 4 here. AT is the non-adiabatic
temperature perturbation.

AV (h,6,¢)

A(h)V gy (R)(I7—1)
AV is the velocity perturbation in tomographic model. a(h) is the depth- dependent

AT(h,0,¢) =2

(3.3)

coefficient of thermal expansion. I' characterizes the temperature dependence of the shear
modulus in the mantle. We concentrated on changes in B and h assuming I = 6. The phase
elevation above CMB for the reference 1D model is defined by 4,, where the velocity jump
occurs. Thus, only three parameters were needed to perform the mapping (Figure 3.1b),
namely, B, hy, and y. Sidorin et al [1999] calibrated this model to the Scd triplication data
by matching the differential times (Scd — S) for various regions around the circum-Pacific.
A 2D synthetic for each source-station pair was used to determine the /,, and y for each
region following a least-square modeling procedure. The velocity jump S = 1.5% was
assumed as the smallest possible jump to explain Scd in fast regions and thus help to
explain the few values reported beneath warm regions [Wysession et al., 1998]. To preserve
the ScS-S differential times used in deriving Grand’s model, Sidorin et al [1999] inserted a
low velocity zone just above the CMB as part of the mapping procedure.

Two major advances have occurred since this interpretation of the Scd phase data; one

in mineral physics and the other in the advance of broadband seismic arrays. The obvious
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Figure 3.1: Display of tomographic results from Grand [2002] along with possible
mapping into thickness of a proposed post-perovskite layer at the CMB. a) contains the
bottom 240 km layer variation in shear wave velocity. b) displays a map of a possible
phase boundary discontinuity constructed from a) assuming that temperature can be
deduced from these shear velocity variations (3Vs) and uniform global chemistry with y =
6 MPa/K [Sidorin et al., 1999].
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Figure 3.2: The synthetics for possible 1D models of D". a) is the PREM model and the
synthetics do not have the Scd phase. b) includes a linear velocity gradient and produces
the extra Scd phase between S and ScS. ¢) has a sharp velocity jump plus a gradient, and
d) has two sharp velocity jumps in the model, simulating a complex transition zone.
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major breakthrough was the direct experimental evidence for a post-perovskite

phase transition under conditions close to those at the D" region [Murakami et al., 2004].
Highlights of this discovery have been given by several authors [Duffy, 2004; Garnero,
2004]. Numerous studies, both theoretical and experimental, indicates that a phase
transition with a positive y should occur near D" with a velocity jump between 1.5 to 3%
but perhaps over a 150 km zone depending on chemistry, e.g., review by Hirose [2006].
Although the details about this phase boundary (velocity jump, phase transition thickness,
etc) are extremely important in interpreting Scd data as evident in Figure 3.2, they remain
largely unknown.

The second issue of modern arrays and their impact on D" is rapidly becoming apparent
as discussed in Lay and Garnero [2007]. While Sidorin et al. [1999] averaged over regions
treating variations as noise to obtain smoothly varying structure, recent studies by Hutko et
al. [2006], Sun et al. [2006] and Kito et al. [2007] suggest rapid jumps in the phase
boundary height occurring laterally over short-scale lengths of 50 km to 100 km. Are such
features caused by buckled slabs since they occur near the edges of sharp structures or are
they caused by phase boundary shifts induced by chemical changes or perhaps a
combination? The greatly improved station coverage has also allowed better sampling and
resolution of P-velocity structure. Since the predicted phase-change properties for P-waves
are nearly negligible, such data becomes useful in defining slab-debris in D". In particular,
the recent study of differential PKP phases (PKP,, — PKPy¢) strongly supports the detailed
tomographic images beneath Central America [Sun et al., 2007b]. Accurate differential
times come from measuring the waveform correlation between PKPy¢ and PKP,y,, which is
sensitive to the bottom 500 km of the mantle. PKP,, paths from deep South America
earthquakes cross the Core-Mantle-Boundary (CMB) beneath Central America, as
indicated by the circles and crosses in Figure 3.3a. These differential times can be predicted
amazingly well from the P model (Figure 3.3a) scaled from Grand’s shear velocity
tomographic model. Note the slow-to-fast structure beneath the Cocos Plate with a
transition zone less than 300 km wide occurring just off the coast line. There is also a sharp
drop in cross correlation coefficient between PKP4r and PKP,;, by over 30% along this same

boundary indicative of ultralow velocity zones with small sharp features [Luo et al., 2001].
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Figure 3.3: a) Observations of (PKPab-PKPdf) residuals sampling beneath Central
America along with proposed D" P-wave model in the background [Sun et al., 2007b]. b)
contains a detailed map of Grand’s tomographic image of Central America. The four
subregions, P, A, C, and M are studied in detail where ScS bounce points are indicated in
diamonds, triangles, inverted triangles, and squares, respectively. c¢) Display of a map of
events (stars) along with path geometry to various arrays (open triangles) superimposed
on the tomographic results [Grand, 2002]. L1 [Lay et al., 2006], H1 [He et al., 2006], and
S1 [Sun et al., 2007b] paths were used to quantify the D” structure beneath the slow
velocity regions.
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Combining the S and P wave results yields R = dinV/dinV, of about 1.9 which is too

low to be produced by temperature alone [Karato and Karki, 2001]. The P and S velocity
properties for the Superdomes proposed earlier by Masters et al. [2000] now appears to be
well accepted, further confirming the case for changing chemistry.

While Figure 3.1b predicts weak Scd synthetics when the phase-boundary is near the
CMB [Sidorin et al., 1998], recent studies identify Scd clearly beneath warm regions as
displayed along the lines in Figure 3.3c [He et al., 2006; Lay et al., 2006; Sun et al.,
2007a]. The latter study presents Scd data sampling beneath the middle of the South
African Superdome which is modeled with a velocity jump of 4% occurring 80km above
the CMB. In short, Sidorin’s model based on relative travel times needs to be re-examined
in terms of waveform modeling of record sections containing Scd detections at several
ranges to establish a true triplication with both amplitude and timing information. This is
particularly difficult since shallow upper mantle structure and mid-mantle slabs can alter
pulse waveforms [Song and Helmberger, 2007]. It appears that stacking high density
observations or detailed waveform modeling can help resolve these issues and provide a
clearer picture of the PV to PPV phase boundary and possible change from PPV back to
PV near the CMB [Hernlund et al., 2005].

Here we update Sidorin’s effort by developing a new phase boundary mapping tool. To
achieve this, we will investigate data sampling beneath Central America, a region well

studied, as discussed above.

3.3 Detailed Waveform Modeling for a Sample beneath Central

America

We used shear wave records of the broadband array CDROM for two deep earthquakes
in Northern Argentina on April 23, 2000 (Figure 3.4). The two events are roughly the same
location. Horizontal component seismograms are deconvolved by instrument responses and
bandpass filtered (0.01-1 Hz) before the rotation to SH component of displacement. The
SH velocity seismograms are filtered with a bandpass filter (0.02-0.2 Hz). Data from the

smaller of the two events is presented in Figure 3.5 along with synthetics generated for the
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Figure 3.4: Geometry of the event and stations together with Grand’s shear wave velocity
anomaly in the lowermost 240 km of the mantle [Grand, 2002]. The event (star),
receivers (triangles), and ray paths are shown in the inset. The pink open circles indicate
the ScS bounce points beneath the western Cocos Plate for the ray paths (red lines). The
yellow rectangle indicates the position where a large jump in D" discontinuity was
detected by Hutko et al. [2005]. The D" region along corridor A’A is addressed.
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Figure 3.5: Comparison of synthetics (red) of (a) displacement and (b) velocity with data
(black) for various models, starting from the left: 1D model, Grand’s tomographic model,

SPBLG and SPBUL model. The synthetics have been aligned on the S-wave
observations.
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Figure 3.6: The shear wave velocity anomaly of 2D cross-section A’A in Figure 3.4 for
different models. The models are a) Grand’s tomographic model [Grand, 2002], b)
SPBLG and c) SPBUL model. The reference 1D model is modified Grand’s 1D model,
which smoothes the ~1% Vs jump at the depth of ~250 km above the CMB at the origin
model, essentially treating this velocity jump in the same manner as tomographic model.
SPBLG model is constructed by adding a discontinuity and a compensating negative
gradient at the base of mantle. The phase transition is characterized by hy,n= 105 km, ypn =
6 MPa/K. The SPBUL model contains an additional phase boundary, and modified
velocities. The phase change boundary is shown by the white line. Grand’s tomographic
model is on a 2°x2° grid. The vertical resolution is around 200 km. Both SPBLN and
SPBUL have 0.5°x0.5°x2 km resolution by interpolating the Grand’s model above the
phase change boundary. The velocity structures are much smoother in the later models
than that in Grand’s model. The bottom panels show the vertical profiles for the cross-
section aa’, bb’, and cc’. Dotted lines indicate the PREM velocities. The dashed lines
show the shear velocity with added tomographic velocity perturbations on PREM values.
Red lines give the model by adding a discontinuity on an altered Grand’s model and a
LVZ above the CMB. SPBUL model also introduces a small negative jump (-1.7%) in
the middle of D" to represent PPV changing back to PV in the thermal boundary layer.
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displacement and b) velocity. Purple diamonds show the 1D and blue triangles show the
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The dotted lines indicate where a possible ULVZ could exist. These synthetics are
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three models. The records show strong and clear S 4 arrivals between S and ScS (Figure

3.5) at the epicentral distance (A) of 79° to 82°. Synthetics for 2D models were generated
with the semi-analytic code WKM which is discussed in chapter 2. An advantage of this
hybrid method is that it can be applied to existing tomographic models directly. In the 1D
model, we fix the discontinuity at the depth of 264 km above the CMB and characterize the
search as in Lay et al. [2004]. The velocity above the discontinuity is constant up to certain
depth H and a velocity jump is specified across the discontinuity. The velocity jump and H
are chosen by modeling the data. The preferred 1D model determined by grid-search in
Figure 3.6 is similar to the model SLHA [Lay and Helmberger, 1983]. While one can
obtain a good fit at the mid-distance, the timing is significantly off at the ends, the model is
too early at the top traces and too late at the bottom. One can obviously fit any one record
by adjusting the two parameters but we prefer a model that is more related to the
tomography. However, the tomographic model can not predict Scd as displayed in Figure
3.5 without a discontinuity. Thus, it is necessary to impose a velocity discontinuity in the
tomographic model for fitting the data as discussed above. In Figure 3.5, we found B =
1.7%, and hy, = 105 km as the best fit following a grid search, model SPBLG. The hy, is
smaller than the previous suggested value hy, = 200 km and P is also slightly larger than
1.5% in the former study [Sidorin et al., 1999], which is caused by using an updated
tomography model as applied locally. Deeply penetrating slabs may also contribute to the
difference in hy, by changing the chemistry. The velocity cross sections after the different
mapping are displayed in Figure 3.6.

The high velocity structure on the upward path of S.q decreases the separation between
Sca-S which mimics raising the discontinuity. The combined effects of both features
produces a good fit to the data. However, these features tend to also shorten the separation
of (ScS-S) which requires still greater velocity reductions approaching the CMB to
maintain Grand’s ScS travel times.

Model SPBUL fits the data somewhat better than SPBLG at ranges 80.1 to about 81.2
which can be seen in the correlations presented in Figure 3.7. This slight improvement is
caused by enhancing and shifting the structure just about the discontinuity. With the
mapping method here, model SPBUL captures the distinctive features of Scd of station
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Figure 3.6: Construction of synthetics (A=80°) shows the sensitivity to various aspects of
SPBUL velocity structure. The results for displacement are given on left with velocity on
the right.
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NO2 and NO4. But the strength of the ScS synthetic pulse at the two most distant

stations (NO1 and NO2) is too strong, suggesting that the ultralow velocity zone must
disappear or be a local feature beneath the southern stations only. But the velocity structure
below the fastest structure is not well resolved with this dataset as shown in Figure 3.8.
These synthetics were generated in parts where the model features have their field
contributions isolated. Note the dominance of S.q with its relative phase shift producing a
sizable down swing in displacement. The S.4 is phase-shifted since it is part of a triplication
and the presence of this negative pulse made it difficult to isolate the latter arrivals caused
by double crossing and ULVZ. Thus, it will be quite difficult to detect a PPV to PV
boundary in the presence of a complex S, at least at this range of distances as suggested
by Flores and Lay [2005].

While the range 79° to 81° is particularly effective for identifying Scq, it is too
restrictive to resolve deeper structure beneath the boundary except to delay ScS. Since both
the Scq and an ULVZ could enhance the strong negative pulse near 81°, we are faced with
considerable uncertainty. However, either interpretation requires extreme lateral variation
which a folded-slab could produce especially if it changes the local chemistry, i.e., thickens
the phase-boundary transition zone [Akber-Knutson et al., 2005]. There is also the issue of
predicted instabilities in the thermal boundary layer at the edge of slab structure from
dynamic modeling [7an et al., 2002]. Perhaps, the 2-dimensional array data from USArray
will help resolve some of these issues.

A phase-induced boundary at reduced lower mantle temperatures induced by slab
debris remains viable but probably requires other complications as suggested by Garnero

and Lay [2003] to explain rapid changes in Scd strengths.

3.4 Calibration of Tomographic Models

In this section, we will follow the basic procedure suggested by Sidorin et al. [1999]
except we will allow regional variation of y, /1, .a 8. Note that Sidorin et al. [1999] found
solutions along a rectangular corridor of 4, y space running from 2 <y < 12 MPa/K and
250 < h,, < 150 km. The best fitting least-squares solution is near 4,, = 200 km and y = 6
MPa/K for a uniform global model but y as high as 12 MPa/K were accepted. Here, we
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assume that the velocity perturbation of 6Vs in the D" layer is indicative of local

dynamics and constitutive state-properties. Thus, each sample of Scd in Figure 3.3b
(denoted by P, A, M, C) is assumed to have unique properties in terms of their dVs
averaged over a 2°x2° grid, and all other samples with the same JVswill affect the phase
boundary the same. To establish that functionality, we determine the best synthetic
waveform fits to observe record sections to set /,,(0Vs) for a number of y. By matching
both arrival times and amplitudes, we were forced to vary f or f(0Vs). The results are
presented in Figure 3.9 and will be followed by zone-by-zone comparisons of data with
synthetics. To investigate the effects of different Clapeyron slopes on our phase boundary
mapping, we tried 4 values of Clapeyron slope (y = 3, 6, 9, 12 MPa/K). For each y, we
repeat the calibration process to find the 4,,(0Vs), which matches the local triplication data
in each zone. The 4,, becomes small when increasing y for zone M and C. Both Zone M
and C have relatively large positive velocity anomaly (6Vs > 0) and negative non-adiabatic
temperature perturbation (47 < 0). With negative 4T in Equation (3.2), the 4, will decrease
by increasing y to make constant (%), which is required to fit the waveform data. If AT is a
small perturbation, the contribution from AT in Equation (3.2) is close to 0 and the change
of A, is subtle for zone P and A. The same velocity jump f(6Vs) are used for different y to
fit the amplitudes of the data.

In each zone, S and #,, are allowed to vary such that the predicted synthetic best
matches the observed waveforms. We allow f to vary from 1.0 to 4.5% and 4, from 50 to
300 km. Each combination is tested applying a grid-search where the tomographic map
(Figure 3.1a) is used as a reference model. The preferred combinations are given in Figure
3.9 where A, ranges from 100 to 240 km and f from 3.5 to 1.7% for all four different vy.
The variable (0V5) is defined relative to the tomographic model. The 1D velocity-depth plot
for the average ScS in each sample is given in the lower panel of Figure 3.9 indicating the
relatively large variation as a function of dVs. The large low velocity zone approaching the
CMB is mostly an artifact forced by fitting the ScS-S predictions from Grand’s model.
However, adding a PPV to PV reduces this feature but is difficult to distinguish at these
ranges [Flores and Lay, 2005; Sun et al., 2006]. Thus, we concentrate on the upper PV to
PPV phase transition.
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Figure 3.7: Results from various subregions with 4(dVs) in (a) for several y and S(6Vs) in
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given in (c) along with PREM as a reference. The y is equal to 6 MPa/K in the mapping.
Note that the ray paths for Scd are traveling horizontally at this point and are strongly
influenced by neighboring structure as can be seen in Figure 3.3.
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Figure 3.8: Display of synthetics (red traces) matching the recorded waveforms from area
P (black traces), which were recorded by the USArray of a shallow transform event
(20050710). The model in a) has 4,, = 220 km and = 3.5%. b) model has #4,;, = 200 km
and = 1.5%. y in both models are 6 MPa/K. Dotted lines are added to indicate the three
arrivals: S, Scd, and ScS.



41
3.4.1 Zone P

As discussed earlier, there are very few samples of Scd beneath the Central Pacific
because of the limitation imposed by the use of deep events and station-source geometry.
However, it appears that USArray and other large arrays will allow sufficient data to
identify Scd even from shallow events, Figure 3.10. This is a shallow transform event
occurring on the Western Chile Rise (Figure 3.3c). We have plotted the data (SH-
component only) over the triplication distances expected. Since shallow strike-slip events
generally produce two pulses of the same sign within a few seconds (S + sS), they merge
together to produce one simple pulse which is labeled S in the figure and idealized to the
first synthetic pulse. There is some variation of the observed S-pulse across the array which
could be caused by shallow receiver structure [Song and Helmberger, 2007] or generated in
the source region. However, both Scd and ScS appear to be recognizable. The tomographic
model predicts the separation of (ScS-S) very well which can be expected from the detailed
samplings of transform fault events by Grand [1994]. These 2D synthetics were generated
with the WKM routine [Ni et al., 2000] along 2D sections through the 3D model. Note
there are some variations along the record section caused by small changes in azimuth
along the various paths. The reference height and velocity jump for this match is 4,, = 220
km, f = 3.5%, where 0Vs =-0.5% and assumed y = 6 MPa/K. Synthetics generated by other
y-models (Figure 3.9a) produce nearly the same results. Figure 3.10b contains predictions
from the original Sidorin et al. [1999] mapping but with an updated tomographic map
[Personal communication with S. Grand], and where f = 1.7%. Obviously, the Scd is very
small and late in these predicted synthetics.

Because Scd is small relative to S and ScS in the data, it proves difficult to identify and
measure accurately. At distances 76° to 78°, it is generally isolated but weak. At distance
from 79° to 81°, it is generally stronger but can be contaminated by complex S. Even
though our preferred model has about the correct timing on average, there are obvious rapid
fluctuations in Scd observations both in strength and timing, i.e., near 76.2° and 78.6°. The
synthetics show some of this scatter which appears to be associated with small changes in
azimuth (Figure 3.3) as embedded in the tomography model. Allowing w,; to vary could

also affect such changes as indicated in Figure 3.11. Generally, Scd becomes smaller with
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increasing wy;, at these periods but variation in the tomography again causes fluctuations.

Also, note that with w,;, = 25 km, the effective transition occurs over 100 km (Figure 3.11b)
because of the functional form in Equation (3.1). This comparison of synthetics indicates
that the wy, parameter proves difficult to determine at this distance range. Thus for our
purposes, we fix w,, = 5 km. Much stronger effects are observed in the “C” samples as
discussed later. The large £ jump was required to generate a significant Scd pulse because
the lower mantle velocity gradient is so low, Figure 3.9c, compared to fast regions [Sidorin
et al., 1998].

The phase ScS is usually less well defined at this range, where ray paths begin to
sample the complexity of D". In the previous paragraph of detailed modeling, we try to
model whole records by measuring a misfit coefficient based on cross-correlations (CC)
both in displacement and velocity. Generally, simply overlying the observations with
synthetics provides a very effective means of judging the goodness of fit. Here, we used
this CC measure of fit but removed ScS by cutting the data and synthetics by 5s before
ScS. A plot of misfit errors for a grid-search over f and A, is displayed in Figure 3.12
where we have included predictions from the Sidorin et al. [1999] model. By examining
the record sections, one can easily pick out the better model. Although we have conducted
such misfit calculations for all the data, we will simply display the best-fitting synthetics in

the following analysis assuming y = 6 MPa/K.

3.4.2 Zone A

The paths from these observations (Figure 3.13) sample a region nearest to PREM in
that both S and P data (Figure 3.3) are relatively normal. The 4, is 180 km as displayed in
Figure 3.9a when y = 6 MPa/K. However, there is considerable variation in ScS—S times at
ranges 77° to 78°. This feature is modeled quite well by Grand’s tomographic model where
the mid-mantle slab plays a strong role. We have plotted the comparison between data and
synthetics in two ways, one aligned on data S arrival (Figure 3.13a) and one aligned on
predictions from the IASP91 reference model (Figure 3.13b), which displays obvious

variation in S travel times. Note that now ScS plots more on a line
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Figure 3.10: Display of misfit errors in modeling the data for area P with y = 6
MPa/K.where the preferred parameter search yields f = 3.5% with A,, = 220 km. The
black dot is the solution predicted by Figure 1b using the mapping proposed by Sidorin et
al. [1999]. The circles denote the error measure defined by (1 - CC), where CC is the
cross-correlation coefficient over the S and Scd wavetrain. The smaller circle means the
larger value of CC.
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Figure 3.11: Display of best-fitting synthetics (red traces) for record sections sampling
area A recorded by the POLARIS array of a deep South American event (20060917). The
model has £,, = 180 km and f= 1.7%. The displacement profiles are aligned on the
arrival of S in a) and the predicted arrival of S for the IASP91 model in b). Note the

remarkable predictions of S arrival times from the tomographic model.
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as well as Scd. Features such as the strong variations in S are becoming more

recognized with the advance of more arrays and makes the Scd mapping even more

challenging.

3.4.3 Zone M

This sample (Figure 3.14) was obtained mostly from the Canadian National Seismic
Network, Figure 3.3c. It contains the fastest D" velocity regions comparable to those found
beneath Central Asia [Wysession et al., 1998]. The tomographic results do not predict the
sScS-sS differential times as well as other samples, suggesting that the D" structure needs
to be faster. However, the Scd phase is quite clear and easily modeled yielding an 4,, = 240
km. The direct S phase was weak (nodal) which is why we have displayed the sS profile of
data. The depth effect helps to separate (sScd — sS) and aids in identifying and
characterizing the strength of Scd. We have calculated synthetics with parameters from the
zone “C” (Figure 3.9) to emphasize the difference in Scd sampling. Although not
displayed, predictions from the Sidorin et al. [1999] model do quite well for this section
since he assumed a similar = 1.5%. Thus, our new model will predict results quite similar

to his in fast regions.

3.4.4Zone C

This sample is in a region where many detailed studies have been conducted, where
rapid changes have been reported indicating some strong and some very weak Scd
observations [Garnero and Lay, 2003]. Migration of the array data suggests complex
features with interbedded layers of velocities [Thomas et al., 2004]. Some of this variation
can be seen in our sample C as recorded by USArray but reasonably modeled with 4, =
100 km as displayed in Figure 3.15a,b for ranges less than about 78.5°. We have included
two sensitivity displays indicating the effects of changing f = 3.5% (Figure 3.15c) and of
changing the 4, to that used in zone P (220 km) (Figure 3.15d). These two results do not fit
the data as well and indicate relatively delayed Scd relative to S which is distinctly different
than that predicted by the Sidorin’s model, as discussed in the next section. Beyond about

78°, the Scd ray paths sample the edge of the fast blue zone as displayed in Figure 3.3b and
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greatly complicate the waveforms. Some of this complexity is addressed in Sun et al.

[2006] and Helmberger et al. [2005], where both WKM and finite-difference modeling was
discussed. This laterally varying D" region sampling the same area is also discussed in
Thorne et al. [2007] where some 2D structures suggest double Scd arrivals. We will
address some of these issues in the next section by including these very late Scd arrivals

which are sampling the edge of the fast blue zone.

3.5 Mapping, Predicting, and Refining

In this section, we will apply the parameters determined in the previous section in
generating a new hybrid model. The model is still based on Grand’s tomographic images
and the relationship given in Equation (3.2). However, uniform 4,, is now replaced by
hy(6Vs), which is a function of the local shear velocity perturbation. We assume that the
bottom 240 km of Grand’s model or D" can be used to estimate regional differences.
Grand’s present model is presented in 2°x2° grids and contains a small velocity jump at
240 km above the CMB in the reference 1D model. This feature is smoothed-out and a
large number of layers and elements applied as in Sidorin et al. [1999]. We then average
the velocity perturbations in a circular cylinder over the depth of 240 km with a radius of 2°
to establish 0Fs. This 6Vs is then used to fix 4,, assuming the curve in Figure 3.9a. The
map of the phase height in Figure 3.16a is constructed in this manner assuming y = 6
MPa/K. Note that even though the slowest and fastest regions have about the same 4, their
actual phase-height is strongly modified by the tomographic model (roughly 50 km to 300
km) because of the temperature effect implied by the tomographic model. The 3D velocity
model is then generated by adding the variation in f in Equation (3.1) as modified to agree
regionally with Figure 3.9b. Cross-sections along a radial cut (AA') and along constant
azimuth (BB') are displayed in Figure 3.16b and c. The yellow halo-like structure in Figure
3.16a appearing around the raised plateau is caused by point C in Figure 3.9a and predicts
the strong drop in elevation at the edges of the original supposed buckled-slab. Ray paths
along two azimuths, one sampling the edge along the yellow trough (CC', Figure 3.16d)
and one sampling the fast blue zone essentially along section DD' (Figure 3.16¢) have been

included in 2D tomographic images. Obviously, we expect to see considerable complexity
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event in South America. Ray paths are included for S (blue) and ScS (red).
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bracketed between these two azimuths, especially along CC'. We have included

some example ray paths displaying the structure sampled by USArray in Figure 3.16d and
e. The sampling of the phase boundary (Scd) becomes very complex.

Figure 3.17 displays some of these features where the ScS bounce points are indicated
for two “fan shots” with one crossing the blue structure (red arc) and one just south of the
structure in black. We generated 2D synthetics (Figure 3.17b) at a constant distance of
79.5° for event A assuming two depths (150 km and 600 km). These synthetics are aligned
on PREM prediction. Note that Scd is particularly late at azimuths less than 280° and shifts
rapidly forward near 290° and again between 315° and 330°. The Scd timing changes by
over 12 s and its amplitude changes by about a factor of 3 along with significant wave
shape distortions caused by in-plane multi-pathing. Near 320°, the Scd phase shifts quite
close to S for the deep event which could easily be enclosed within the S-phase, thus
making it disappear abruptly.

These synthetics become even more complicated when we include azimuthal multi-
pathing as displayed in Figure 3.17c. To emphasize the variable nature of the 3D
synthetics, we have plotted each trace aligned relative to PREM prediction. Thus, paths
with azimuth greater than about 335° sample the fast velocities beneath the Midwest and
eastern seaboard producing earlier arrivals than PREM prediction while those to the west
are about 6 s late. This difference in travel times is caused by the rapid change in upper
mantle structure when crossing the Rocky Mountain Front and is well known [Hel/mberger
et al., 1985].

The 3D synthetics (Figure 3.17c) were generated from neighboring 2D sections
sampling the Fresnel zone by applying diffraction operators [ Helmberger and Ni, 2005a].
Rapid travel time changes near the fastest geometric ray can cause the pulses to spread out
(multipath), i.e., near 275° or spike-up as at 340°. These features are essentially controlled
by the travel-time curvature as a function of azimuth. It can affect all phases but appears to
be particularly strong for Scd. This feature could be the reason for the apparent unstable
nature of Scd detection [Garnero and Lay, 2003]. Both the 2D and 3D synthetics show a
jump near 320° for ranges near 81°. This feature is more subdued in the 79° fan-section

since the fast structure is slightly removed from the boundary (black arc in Figure 3.17a).
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Some of the predicted changes can be tested against existing data with some success, as

displayed in Figure 3.17d. The data contains paths to California (in black) and to Colorado
(in red). Note that Scd is stronger and delayed in the California stations at ranges greater
than 80.5° and nearly the same at shorter distance. The synthetics in Figure 3.17c display a
similar pattern as outlined in red and black zones. However, the differences predicted by
the model are not severe enough, which requires some added refinement by lowering the
trough along the fast region or adding a ULVZ at the CMB. This zone at the edge of the
blue structure will be well-sampled by USArray as it develops and the details of this
interesting structure can be improved. A sample is displayed in Figure 3.18a. Note the
abrupt change in character in the gray zones where the ray paths encounter the sharp jump
in phase-height. Beyond this range, the Scd becomes difficult to identify and the ScS phase
becomes complicated. The ScS phase should become asymptotic to S in travel time at the
larger ranges assuming a PREM model; however, ScS becomes weak and delayed for
many samples. The synthetic predictions are given in Figure 3.18b and display a similar
disruption but shifted slightly to shorter distances. Shifts of this magnitude are common
when attempting to model differential phases assuming enhanced tomographic images

[Helmberger and Ni, 2005b].

Figure 3.15: Simulations of seismic sections sampling the complex geometry of the phase
boundary variation. a) displays the phase boundary variation beneath Central America.
The red circles are ScS bounce points on the CMB for a “fan shot” for an event A in
South America (red star) at distance of 79.5°. The black circles indicate ScS bounce
points for a “fan” shot for event B at a distance of 79° assuming a source depth of 600 km.
b) displays 2D synthetics generated for event A at two different depths, 150 km and 600
km. The shaded zone indicates the sampling of the region of high phase boundary
elevation (blue zone in (a)). Records are aligned on the S-phase. ¢) shows the 3D
synthetics for event B at distance 79° and 81°, which align on [ASP91 travel time
predictions. The dark black traces correspond to azimuths towards California (TriNet)
and red traces relative to Colorado Stations (CDROM). d) Record sections for an event
(20000423) with the same location of event B in a). The black traces are recorded by
TRInet which are at smaller azimuth and relate to the dark black traces in c¢). The red
traces were recorded by CDROM array at large azimuth and relate to the red traces in c).
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Figure 3.16: Comparison between a) data and b) synthetics in velocity for event
20061113. The regions with rapid variation of Scd are marked with shaded area.
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We present (ScS-S) predictions from our model in Figure 3.19a where we have

included a large number of data samples measured from the recent USArray data. The
white symbols are differential times from the (ScS-S) waveforms presented earlier in
Figure 3.18a. The differential values are small and slightly negative at ranges 75° to about
84° and positive thereafter. Some large delays occur beyond 85°. Note that these values
occur for bounce points slightly under the elevated phase boundary as displayed in Figure
3.19b. These large delays can be explained by adding a ULVZ layer (20 km thick with a
shear velocity drop of 30%). However, most of the delays fall along the model predictions.
The other symbols are from events along the same corridor but tend to be negative
indicating that ScS is early, probably caused by the high velocity PPV layer.

Several researchers have reported on ULVZs near about N7.5°W90°, i.e., Revenaugh
and Meyer [1997], and more recently Sun et al. [2007a]. The latter study uses the cross-
correlation of PKPab to PKPdf to detect rapid changes in velocity with scale lengths
similar to those in Figure 3.19b. Low values of cross-correlations have been modeled by
Luo et al. [2001] with small pockets of ULVZs. It appears that another line of ULVZs
exists along the eastern boundary of the elevated phase-boundary although we await
USArray for a detailed ScS-S sample of this edge. Lastly, note that the large offset in Scd
travel times reported by Hutko et al. [2006] occurs along the southwest corner of our

structure in good agreement with their observation.

3.6 A Global Prediction of the New Mapping

We have generated a strategy for mapping the tomography model to phase boundary.
Because the mapping is based on limited samples beneath Central America, we want to
understand whether this mapping is accepted for global phase boundary. How well this
model predicts synthetics is presently being addressed but we expect it to work best when
sampling away from the edges of the slab debris of the lowermost mantle. An example is
given in Figure 3.20. This particular Hindu-Kush event is at a depth of 240 km and
provides the extra set of observations (sS) which has the advantage of separating receiver
effects from the target phase [Lay, 1986]. The new mapping produces the S¢q phase that can
be identified in many of the traces. Note the observed ScS phase (Figure 3.20c),
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Figure 3.17: a) shows the data (event 20061113 in Figure 3.18) and the predictions for
the differential ScS-S residuals. The models are Tomo (Grand’s tomography model),
Tomo+PB (phase mapping model), Tomo+PB+ULVZ (phase mapping model adding a
ULVZ layer with 20 km height and -30% shear velocity reduction at the base of the
mantle). b) The observed residuals of the differential ScS-S travel times with respect to
PREM are plotted at the bounce points of the ScS on the CMB. Positive and negative
residuals are indicated by the crosses and circles. Different colors relate to different
events beneath South America. The bounce points of event 20061113 are marked by
white symbols.
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Figure 3.18: Display of S.q sampling at a location where it has not been previously
detected. a) Location of source (Hindu-Kush, Feb. 20, 1998; star), stations (Kaapvaal
Array, triangles), and ScS bounce points (circles) at the CMB, plotted on the tomographic
background [Grand, 2002] b) Ray paths of S and ScS (black) and sS and sScS (gray)
with the shear velocity along the 2D cross-section from Grand’s latest tomography
model. ¢) and d) show comparisons of observations (heavy traces) and synthetics (light
traces) for old mapping method (with adjusted hp, = 160 km) from Sidorin’s model
[Sidorin et al., 1999] and new mapping introduced in this chapter.
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tends to match the synthetics quite well at the smaller ranges but becomes delayed at

the larger ranges. This feature is explained by the modeling of the Superdome [Sun et al.,

2007b] where ScS travels longer in the Superdome than does S.

3.7 Discussion and Conclusion

In this Chapter, we have revisited the earlier phase-transition mapping generated by
Sidorin et al. [1999], Figure 3.1b. Their paper used the relative timing between Scd and S
to determine y = 6 MPa/K, f = 1.5% (velocity jump) and global phase boundary reference
height £,, = 200 km. This model predicts relatively uniform and strong Scd beneath fast
regions but very small signals in other regions [Kendall and Shearer, 1994; Russell et al.,
1998]. We have solved this mapping difficulty by using waveform information and
matching synthetics against observations for four well-sampled regions. The most
significant difference between our results and the earlier model is the added strength of Scd
in slow regions and the sharp gradients (Halo-like structures) around the fastest zones. A
comparison of the two models for profile BB’ in Figure 3.16 is given in Figure 3.21 along
with recent results from Wang et al. [2006] and van der Hilst et al. [2007] using a new
inverse scattering method. These profiles essentially cross the structure along the same
section with the fastest shear wave anomaly beneath the middle portion. In Figure 3.21,
note that the left end of L1 ends at the same position where the new model steps down and
there is a short span of weak signals in the upper images before stepping back-up. Their
images also show an enhancement in low velocities just above the CMB beneath the
elevated jump.

While the sharp contours in the phase boundary are becoming clearer in the S-
velocities, the P-velocities appear to vary smoothly across this region, Figure 3.3a. This
feature can be explained by the lack of any significant Pcd observed for this region [Ding
and Helmberger, 1997], and the predictions from mineral physics [Hirose, 2006]. In short,
the phase-boundary structure appears to be a shear-velocity feature where the high velocity
slab material produces smooth high velocities in both P and S but no sharp feature without
the phase-change. While the smaller-scale ULVZ-type features are interesting, we still lack

a detailed description of where they are and their relationship with our model. However,
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Figure 3.19: A comparison of results from different methods of phase boundary imaging
for profile BB” in Figure 3.16. The upper two panels display reflectors from inverse
scattering techniques with positive reflections in blue (dark gray) and negative in pink
[after van der Hilst et al., 2007]. The lower of these two shows enhancement of the
reflectors along with a solid blue line indicating phase transition location from the
original Sidorin’s model [Sidorin et al., 1999] superimposed on Grand’s tomography
profile [Grand, 2002]. The bottom two models are our new phase boundary model and
Sidorin’s model. The phase boundary is indicated by white lines.
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small-scale features of this description are predicted by some dynamic models [7Tan et

al., 2002]. They also predict small-scale plumes along these boundaries which could help
explain the sharpness of the mapped structure (Figure 3.21). Up-welling could cancel the
cooling influence of slabs and, perhaps, the phase-change sharpness as well. This transition
from fast-to-normal velocities is probably not that well imaged by tomography and awaits
high-resolution studies.

Recently, broadband array measurements have demonstrated relatively strong Scd in
regions other than the Pacific Ring of high-velocities. A particularly interesting feature of
the V; structure in the high bulk modulus metastable model is the down-welling region near
the center (Figure 2.2d) that looks similar to global slab modeling. It appears that this
feature should help produce a S triplication which can, in fact, be seen in some data
displayed in Chapter 2. There is also strong evidence for a S¢q phase near the western edge
of the Pacific Superdome [He et al., 2006], with a thickness of 100 to 150 km. Some
evidence for a somewhat thicker zone along the eastern edge has been reported by Russell
et al. [1998; 1999]. Lay et al. [2006] find a lens of PPV near the eastern margin of the mid-
Pacific Superdome with a 2 to 3% jump in velocity by applying a double array stacking
procedure. Note that this jump is in general agreement with our prediction in Figure 3.22.

Lastly, one could speculate on the role of temperature gradient, 67, in controlling the
phase transition. Note that we have assumed a sharp phase transition (w,; = 5 km) in the
above analysis. Perhaps the phase transition has a more uniform onset globally but variable
sharpness where the bulk of the transformation from PV to PPV takes place, as mentioned
earlier in Figure 3.2 and Figure 3.11. Ohta et al. [2008] demonstrated the post-perovskite
phase transition in both pyrolitic and MORB materials occurs within a 5GPa pressure
range, which correspond to a lower mantle depth range of 90 km. The seismic synthetics
for models with different transition thicknesses (Figure 3.11) indicate that seismic data are
not particularly sensitive to the sharpness of the phase transition at the distance ranges of

75°~85°.
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Figure 3.20: The global prediction of a) phase boundary height above CMB for various
»’s and b) temperature at the phase boundary for these y.
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Another difference between the new model and Sidorin’s old model is the shear

velocity jump for slow velocity regions. The 3.5% velocity jump across the phase boundary
is much higher than Sidorin’s velocity jump (1.5%) and theoretical calculation for
perovskite to post-perovskite transition (-1% - 1.5%) [Ohta et al., 2008]. If a high degree
preferred orientation of post-perovskite is needed to explain this high shear velocity jump, a
strong anisotropy is expected in the lower mantle in this region [Hirose, 2006].

Significant seismic anisotropy has been observed in several regions of the lowermost
mantle [Garnero and Lay, 1997; Lay et al., 1998; Matzel et al., 1996; Thomas et al., 2007].
Beneath the D" discontinuity, the detected horizontally polarized S wave velocity (Vsp) is
faster by 1-3% than the vertically polarized S wave velocity (Vsy). Sun et al. [2007] report
the existence of the D" discontinuity beneath the center of African Superdome (slow
velocity region) from the SV component. The different anisotropy behaviors between the
fast and slow velocity region could be related to the dynamic flow pattern in each region.
At the edge of the fast velocity region, the flow pattern could be greatly affected by the
buckled slab, which will produce complicated Scd behavior in such regions.

With the function of % ,,(6Vs) and f(6Vs) defined as in Figure 3.9, we can generate
global phase boundary maps (Figure 3.22) for various y assuming Grand’s tomographic
model. Small y produce smooth variations of the phase boundary. When y = 3 MPa/K, the
heights of the phase boundary above CMB (h) beneath Africa and Central Pacific (slow
velocity region) are larger than 150 km. The phase boundary height beneath Central
America and Eurasian (high velocity region) is about 300 km. For increased v, the
difference of h between the slow velocity and high velocity region becomes larger. The
height of phase boundary is ~50 km beneath Africa for y = 9 MPa/K. Sun et al. [2007]
obtained evidence for a possible phase change at about 80 km above the CMB beneath
South Africa which is in rough agreement. Although it is difficult to sample the D" region
beneath the slow regions because of source-receiver locations, these few observations
suggest that y > 6 MPa/K.

Based on the above analysis, we can estimate the global mantle temperature at the
phase boundary. We assume a reference point with the pressure (P) of 124 GPa and the
temperature (T) of 2500 K [van der Hilst et al., 2007]. All the phase boundary lines with
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different y intersect at this reference point. The temperature for given height of the

phase boundary can then be estimated by assuming

T =2500+ 22124 (2.4)

v

The global temperature distribution at the phase boundary is shown in Figure 3.22. When y
= 3 MPa/K, the temperature at the high velocity region is less then 600 K. The high
velocity region is believed to be related to an old subducted slab, which has much higher
temperature than 600 K [Tan et al., 2002]. Therefore, y larger than 6 MPa/K is required for
producing reasonable temperature for the slab-debris in the lowermost mantle based on
present PV-PPV experiment results. A large v (y = 9 MPa/K) agrees with the results on
reconciling the core temperature and post-perovskite double crossing [Hernlund and
Labrosse, 2007] and recently experimental result with the MgO standard [Hirose, 2006].
The chemical heterogeneity in the lower mantle has been well accepted.
Unavoidably, the change of chemistry will add more complexity to the phase boundary
[Ohta et al., 2008]. Moreover, the local dynamics will play an important role on the phase
change. For example, the edge of a subducted slab just above the CMB could trap
significant heat [7an et al., 2002], which will move the phase boundary toward the CMB
(Zone C). To address these questions will require further efforts in geodynamics, mineral

physics, and more detailed seismological studies.
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Chapter 4

Direct Measures of Lateral Velocity Variation in
the Deep Earth*

4.1 Abstract

Current tomographic models of the Earth display perturbations to a radial stratified
reference model. However, structures in the deep mantle that are chemically dense with
low Rayleigh numbers can develop enormous relief, perhaps with boundaries closer to
vertical than radial. Such features are hard to detect with present tomographic modeling
technique because the timing anomalies are based on long period filtered waveforms with
complexity removed. Here, we develop a new tool for processing array data based on a
decomposition referred to as a multi-path detector which can be used to distinguish
between horizontal structure (in-plane multi-pathing) vs. vertical (out-of-plane multi-
pathing) directly from processing array waveforms. A lateral gradient coefficient based on
this detector provides a direct constraint on the sharpness of the boundaries and material
properties. We demonstrate the usefulness of this approach by processing samples of both
P and S data from the Kaapvaal array in Southern Africa which are compared with
synthetic predictions from a metastable dynamic model containing sharp edges. Both data
and simulations produce timing gradients larger than 2 s/deg in azimuthal changes for S-

waves, whereas only minor effects are obtained for P-waves. These results further validate

*This chapter appear as Direct Measures of Lateral Velocity Variation in the Deep Earth,
Daoyuan Sun, Don Helmberger, Sidao Ni, and Dan Bower, Jounral of Geophysical
Research (2009), 114, B05303, doi:10.1029/2008JB005873.
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the case for distinct chemistry inside the African Low Shear Velocity Province. We

also present evidence of a narrow plume-like feature emitting from the top of the large
African low-velocity structure in the lower mantle. The plume’s diameter is less than 150

km and is consistent with an iso-chemical, low-viscosity plume conduit.

4.2 Introduction

The upper mantle and crust display strong stratification apparently caused by mineral
density differentiation. Record sections of upper mantle triplications indicate
discontinuities in seismic velocity jumps at depths near 410 and 660 km depth in both P
and S velocity [Grand and Helmberger, 1984; Shearer, 1993]. These features have been
studied globally [Shearer, 1993], and are well accepted supporting a radial stratified
mantle. However, [Masters et al., 2000] argue for less uniformity in P and S velocity
compatibility in the lower mantle, leading [Anderson, 2002] to speculate on chemically
based structure. He concludes that such a layer would have high conductivity and viscosity
but very low thermal expansivity (small thermal buoyancy). Thus, in contrast to conditions
in the upper mantle, dynamically generated features in the lower mantle are predicted to be
sluggish, long-lived, and perhaps develop enormous relief [Davaille, 1999; Gonnermann et
al., 2002; Gurnis et al., 1998; Hansen and Yuen, 1989; Kellogg et al., 1999; Tackley, 2000;
Tan and Gurnis, 2005; 2007].

We can test for these types of predictions by searching for sharp velocity gradients
which may be oriented more vertically than horizontally. One method to achieve this is to
examine how wavefronts arrive at broadband two-dimensional arrays such as the Kaapvaal
array in South Africa as displayed in Figure 4.1. The various traces contain the diffracted
SH phases sampling produced by two deep earthquakes, one in the Western Pacific (A) and
one beneath South America (B). The record sections in Figure 4.1 are plotted with respect
to the travel time predictions from PREM [Dziewonski and Anderson, 1981]. That is, each
record is shifted in time for a distance correction such that it should be perfectly aligned
along the reference line at position zero if the Earth is adequately modeled by PREM. An
example of a record section for event A plotted as a function of distance is given in Figure

4.1b, and in azimuth in Figure 4.1c, a so-called “fan-shot”. The latter presentation is a
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Figure 4.1: Display of event paths and observations from the Kaapvaal Array. (a)
Locations of three deep earthquakes and their great circle paths to the array (left) and a
blow-up of a pattern of SKS-SKKS delays (exit points at the CMB) associated with the
boundary of the African Superdome (right). Delays of more than 5 s are shown in closed
triangles. Open triangles indicate no delay. The solid black line in a) indicates the
approximate position of the African Superdome. Sy data from event A is displayed in (b),
plotted with distance (record section) with azimuth in (c) (fan-shot) and P4 data in (d).
The e), f), and g) display the waveform data from event B plotted as a function of vy, a
combination of distance and azimuth as addressed in the text.
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common oil exploration tool to detect salt domes. The plot of event A in azimuth

(Figure 4.1¢) shows more order, with uniform behavior from trace-to-trace in timing and
shape. Thus, we suggest that the structure is varying more in azimuth than in distance and
that the structure is oriented more vertically than radially. We have included a set of heavy
lines in the azimuthal plots for event A (Figure 4.1c) to indicate pulses associated with
distinct paths. The first heavy line in Figure 4.1¢ corresponds to relatively fast paths that
avoid the slow structure by taking a northerly route. The second heavy line denotes delayed
signals following slow paths sampling inside the structure. Such complexity or multi-
pathing is expected for rapidly varying structures and can be modeled accordingly [Ni et
al., 2005].

While the S-waves display strong azimuthal patterns, the P-waves remain PREM-like
as displayed in Figure 4.1d. The events examined in this study and other recent reports do
not show many recognizable P-wave anomalies [Ni and Helmberger, 2003a; b; ¢; Wen et
al., 2001]. The uniformity of the P-waves suggests neglectable upper mantle variation
beneath the stations which is in agreement with the studies by James et al. [2001].
Moreover, since we are analyzing the same event, we are avoiding the many problems
concerning records assembled from multiple earthquakes, such as individual source
excitations, uncertain locations and origin times, which tend to smooth tomographic
images.

SKS ray paths from the southwest encounter the structure at right angles to the
anomalous structure where the delay can be seen directly, varying roughly 6s over a
distance of a few degrees, Figure 4.1a. Such time delays are measured by cross-correlation
and delays relative to PREM projected along the ray paths to their Core-Mantle Boundary
(CMB) exit points as displayed, see Helmberger and Ni [2005b] for details. Note the sharp
jump from distinct boundaries which delineate a broad structure changing from a
northwestern orientation to east-west below South Africa.

The delay gradient can also be seen directly in seismic sections as displayed in Figure
4.1e where ray paths approaching the array from the west sample the structural boundary at
an angle so that the wavefront is not perpendicular to the great circle path. To estimate this

angle (0), we simply perform a grid search of distance-azimuth combinations or y =
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Distance x Sin 6 + Azimuth x Cos 6 until we find the most orderly section in

waveform shape and timing. The angle is measured relative to the true azimuth so that £90°
corresponds to a normal distance section and 0° to pure azimuthal plot as given in Figure
4.1c. An example of a mixture in distance and azimuth is given in Figure 4.1e-g. Note that
the upper group of records for event B prefers a -70° approach while -40° fits the lower half
better. This indicates the gradual changes to east-west for the southernmost portion of the
array. We have included a northeast orientation (-50°) that shows the most disorder for
comparison (Figure 4.1g).

The waveform data recorded by the array from the various sources have been processed
to estimate their preferred delay gradient directions indicated by arrows with the results
included in Figure 4.1a. The general pattern is quite clear with the arrows consistently
pointing towards the middle of the structure. The same pattern is produced by the SKS and
SKKS delays, which is based solely on relative timing [Ni and Helmberger, 2003b].
However, some of these SKS appear to be multi-pathed which occurs along the boundaries.
Many of the observations recorded by the Kaapvaal array have been modeled following
two distinct strategies, one involving pure 2D (in-plane, Figure 4.1b) [Wang and Wen,
2007] and the other involving azimuthal multi-pathing (out-of-plane, Figure 4.1c) modeling
[NVi et al., 2005]. An earlier effort by Wen [2001] produced an excellent fit to individual
records where the data in Figure 4.1c (event A, 971222) is broken into sectors of azimuth
and modeled with a hybrid numerical formalism. In this case, the large second arrival is
actually a delayed ScS produced by a very slow basal layer (6Vs = -12%). This second
arrival can also be produced by an out-of-plane arrival. Thus, the interpretations of the two
approaches produce different models. These two models have distinctly different physical
interpretations as well. Gently sloping walls over a very low velocity basal layer favors
“stable piles” [McNamara and Zhong, 2004] while more vertical walls with more uniform
internal structure favors the “metastable” type interpretation proposed by [7an and Gurnis,
2005; 2007]. Thus, to address these important issues, we will introduce a new method of
using array data such as in Figure 4.1, to address in-plane vs. out-of-plane propagational
features directly. The method relies on the organization of the waveform complexity with

the relative timing between arrivals as a function of position. We introduce the approach
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with a review of a hybrid method of generating 3D synthetics, which suggests

that out-of-plane arrivals can be simulated by using diffraction operators. Each observation
is then approximated by four arrivals which sample the extended Fresnel zone. The array of
observations is then replaced by a footprint of timing shifts between interfering arrivals. To
interpret these maps, we present a set of training exercises on synthetics to develop a Multi-
path Defector (MPD) scheme which uses the gradient in differential arrivals to determine
in-plane vs. out-of-plane patterns. Then we apply MPD on two real data profiles to

demonstrate the sharp edges of the African Superdome.

4.3 Methodology

Dense arrays, as discussed above, are displaying obvious waveform complexities,
which makes travel time picking difficult. The usual solution adopted in tomography is to
low-pass filter until the waveforms are similar enough to cross-correlate [Masters et al.,
2000] or pick the first arrival. Here, we will introduce a new approach that uses more of the
waveform complexity to infer the presence of sharp boundaries. We will begin with a
numerical simulation of a simple block model with sharp walls followed by a brief review
of a recent technique developed to treat 3D structure. To illustrate azimuthal multi-pathing,
we generate synthetics for a uniform Low Velocity Structure (LVS) embedded in PREM
displayed in Figure 4.2 using the 3D spectral-element method (SEM) [Komatitsch and
Tromp., 2000a; b]. The synthetics were generated on a fine grid showing the effects of
paths crossing the sharp wall with two record sections displayed, one as a function of
azimuth (Figure 4.2b) and a normal function of distance record section (Figure 4.2c). For
azimuths near 270°, two arrivals of nearly the same amplitude are apparent with one lagged
by about 10s corresponding to the slow path inside the LVS. A similar pattern can be seen
along the other wall near 245°. The first arrival times produce a simple pattern (Figure 4.2a
on right) indicating the delayed patch of arrivals with a transition zone given along the edge
which we want to explore in terms of developing a new tomographic approach. In
particular, we address a method of characterizing the waveform distortion such as
displayed in Figure 4.2 in a relatively simple manner in preparation for constructing a

seismic model using ray paths as presented in [Zhu and Helmberger, 1998].
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Figure 4.2: Synthetic seismograms generated by SEM for the model given in (a) along
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section in distance appropriate for an azimuth of 270° is presented in (c).
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Figure 4.3: Construction of a reference plane directly above an edge is displayed where
the great-circle is along the edge. The Fresnel zone is indicated as a circle with half above
the slow zone (right-shaded) and half normal (left). We have included a line of samples
along an azimuthal arc where a 2D summation over the plane is replaced with a line
integration.
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One useful approach in treating such problems is to introduce a reference plane

and use Huygen’s principle. Suppose we place such a plane above the box and examine the
arrivals along the edge where a great circle path is located, Figure 4.3. A solution can then
be generated by summing over paths connecting every point on a 3D grid to the source and
receiver [Scott and Helmberger, 1985]. An exact solution can be generated in this way as
demonstrated in Helmberger and Ni [2005]. Fortunately, we can reduce this 3D summation
to an integration along a line as indicated in Figure 4.3 and still further to the summation of
just four responses by applying a sequence of approximations. Thus, we start with a brief
review of generating approximate synthetics for testing against those displayed in Figure
4.2.
4.3.1 Brief review of approximate methods.

A well known technique for generating 1D synthetics was introduced by Chapman

[1976], called the WKBJ method. The displacement wave-field can be written as

V(r,z,t) = %{D(z) * % *G*(r,z, t)} 4.1

where D(7) is the far-field time history of a simple shear-dislocation. G° is a 1D or 2D

Green’s function where the model has no azimuthal dependence
) 21
G (r,z,t)=,——Y(r,z,1) 4.2)
r

and r is the radial distance along an earth-flattened model, with z the vertical coordinate

and vy (1, z, t) the line source solution [Chapman, 2004]. The operator (1/ \/;) and the
(1/\/? ) essentially correct for the distance dependence in 2D propagation and extra
amplitude decay associated with 3D spreading. The function vy (1, z, t) relates the ray

parameter ( pl.) to the travel times (tl.) for a family of paths arriving near the receiver.

The WKBJ amplitudes can be approximated by

RakZ
S”(r,z,t)~2(§—tl) 4.3)
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where (8) measures the differences between neighboring paths. For smooth velocity

structures, &t, approaches zero at the first arrival (7, ), and

S"(r,z,t)zM . (4.4)

Jt—t,

As discussed in box 9.8 of Aki and Richards [2002] Equation (4.1) becomes

LH(—1)

d * —
V& [D() 7 \/ﬁ} D(t-t,), 4.5)

where D is the source time function.

Note that the (1/ Ji ) operator was obtained by assuming axial-symmetry. Thus, in
situations such as Figure 4.3, the arrivals from left to right vary in azimuth but remain
weighted by their distance from the geometric great circle path (Ay). Thus, geometry plays
an essential role and the sampling in azimuth becomes similar to (5 pi) in the radial
distance with points nearest A, contributing relative to a square-root singularity, as
indicated in Figure 4.4. We can simplify this convolution operator by assuming v (r, z, t) is
slowly varying relative to 1/ m near ¢=¢, and compute y at four locations controlled

by the Fresnel zone. We define its radius to be

52t T (4.6)

where t. is the differential travel time to the feature causing the complexity, o, the average

velocity and T the source duration. We then compute v (r, z, t) at A; and A4 defined by
= J62,1/4 and A,= (2 +1)a, @.7)

corresponding to the lit and diffraction zone. Next, we assume the seismic model is
smoothly varying above the reference plane and compute  at the surface. Adding As will
produce a broad band response as in adding ray paths in WKBJ theory, see [Helmberger
and Ni, 2005a] for details. Thus, to approximate non-great-circle path contributions, we

generate
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Figure 4.4: Presentation of a simplified Kirchhoff secondary source summation
procedure. (a) Reference surface positioned above a 3D target structure where we replace
a grid summation with an approximate solution. Four locations are indicated
corresponding to projections to the surface; A, the geometric path, A a sample of the lit
region, Ar the Fresnel zone limit, and A4 a sample of the diffracted contribution. The

dotted lines represent paths of constant distance. (b) The (l/\/; ) convolution operator

with t; indicating the half area position under the curve approximation which ends at tg,
similarly t4 from t; to oo.
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V(rz,t)=0,%G(4 )+ 0, *Gr(4,)+ 0, *G(4)+ 0, *GL(4,)  (48)

assuming that the right side and left side have distinct responses at A.and A4 on each side.
The operators are weighted by their distance away from A, with # the extra time taken to
travel to the Fresnel edge, or

_d|[(H(t) H(i-1,)) .
O“drKﬁ 7 j””}

and

_d H(t—tf)* )
b= {—\/; D(t )} . (4.9)

Figure 4.5 displays a diagram indicating the simulation relative to the boundary and Figure
4.6 presents the synthetics generated from the application of expression (8). All four
responses sample the box at azimuths 250° to 265°. At 268°, one sample, A4 on the left,
encounters the faster velocity and arrives early. Note its longer period nature. Directly
above the edge, two early and two late arrivals interfere. Note that these synthetics compare
well with those given in Figure 4.2 for wall crossings. In this zone, the relative timing
differential between the right and left is the most obvious and can be used to generate the
new tool, namely, the Multi-Path Detector (MPD). If we focus on short-periods, we can

greatly simplify the procedure and treat only the left and right aspects of the field.

V(1)=0*Gr(A)+0*G(A) (4.10)
where

dl 1 .
O(t)—E{ﬁ*D(t)} 4.11)

which becomes the point source solution. A common practice in modeling a triplication is

to pick a simple pulse from a forward branch and assume it is D (t), or empirical source

history [Gilbert and Helmberg, 1972]. Thus, we assume that any observation is constructed
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Figure 4.6: Synthetic training exercise with the problem setup displayed in Figure 4.2a
used in the SEM simulation. A comparison of 3D synthetics (DWKM) and MPD results
are displayed in a), and large array time delays given in b), c¢), and d). The results are
color-coded. The edge structures are highlighted with dash white lines in d).
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from O(f) (Equation 4.9) but split by some ¢, which is obvious in Figure 4.6. We can

then determine the timing shift and reference beginning time by direct grid search of each
seismogram. This approach generated the simulations in Figure 4.6. Note that we lose the
diffracted tails but still pick-up the edges very well. We recover two timing delays. One
associated with the shift between the left and the right branches (Azz), and the other
between the entire simulation relative to the reference model or total delay (Ar). The
differential times generated from a 2D array can then be used to construct the spatial
gradient of these delays as displayed on the right in Figure 4.6. These correspond to the two
wall cross-over which are slightly different caused by the geometry. The arrows
perpendicular with the radial direction suggests the waveform distortions are caused by out-
of-plane multi-pathing. Note that the vectors change sign at the maximum in shift denoted
by a heavy dotted white line which indicates the edge of the structure is parallel with the
radial direction. For the structure in Figure 4.7 which incorporates a tapered end, the “zero
gradient” line crosses the radial direction at an angle (Figure 4.7). The analyses, again,
retrieves the angle between the edge of the structure and the radial direction. Synthetics
from an idealized ultra velocity zone (ULVZ) structure are given in Figure 4.8. Note that
the arrows become parallel with the radial direction indicating that this structure will cause
mostly radial direction multi-pathing (in-plane). Thus, the footprints generated with the
MPD analysis of array data can be used directly to determine if the edges of a structure are
in-plane or out-of-plane. These examples are highly idealized and the issue of applicability
to more complex structures needs to be addressed. For such a demonstration, we chose a
dynamic model for the African Plume since it produces synthetics with features similar to

the observations in Figure 4.1.

4.3.2 Metastable Structures

If the intrinsic density Apch is depth-dependent and changes with depth faster than the
thermal density (Apu), it is possible to generate metastable structures as displayed in Figure
2.2 and Figure 4.9a. The V, and V, images are predictions from a material with a larger
bulk modulus (6%) than the ambient mantle and higher zero pressure density (2.25%)
(Chapter 2) [Tan and Gurnis, 2005]. The layer forms a single dynamic structure with a
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Figure 4.9: (a) 2D section through a metastable thermo-chemical structure with 6V, and
0V,. The average percentage drop is 3% for V; and less than 1% for V. The structure is
1000 km high and 1500 km wide. Note the plumes along the edges which are wider and
shifted internally for S relative to P, see Tan and Gurnis [2005] and Chapter 2. (b) Ray
paths traveling from a source beneath Fiji-Tonga to an imaginary array (triangles) at
various azimuths but constant distance (fan-shot) encountering a 3D structure containing
2D slices of metastable Superdome model represented by the purple ridge. The ridge
structure is aligned roughly with the northern edge as given in Figure 4.1. We assume the
ends are truncated as displayed, and obviously represent a greatly simplified structure.
Paths at 250° and 210° miss the structure and are PREM-like.
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nearly neutral average density. Note the plumes along the edges and the down-

welling near the middle. The parameters chosen in this particular model were an attempt to
explain a simplified 2D structure beneath South Africa, proposed by Ni and Helmberger
[2003 a,b,c] and Wang and Wen [2007]. Sun et al. [2007a] inserted this structure into
tomographic models and validated its usefulness in explaining 2D seismic waveform data.
The model in Figure 2.2 predicts more complexity at the edges than embedded in the
simple block structure by Ni et al. [2005] and looks more like that proposed by Wang and
Wen [2007]. However, the small scale convection inside the structure changes with time
and its 3D structure is probably extremely complicated since it must be influenced by the
large scale convection produced by global 3D plate history. Such structures are presently
being investigated [Bunge et al., 2003]. Here we produce a 3D structure by extending the
2D metastable Superdome model (Figure 2.2d and Figure 4.9a) into an elongated structure
with truncated ends (Figure 4.9b). The 3D synthetics for a “fan shot” are calculated for
both Sgifr (Figure 4.10a) and Pgisr (Figure 4.10d). The synthetics are generated with the
DWKM code discussed above. Partial responses are given in Figure 4.10b and 10c. For
Sditr, the waveforms are strongly distorted when the rays travel across the boundaries
(around 222° and 239°). Note the simplicity of Py relative to Sqisr as expected from the 2D
velocity sections, since the velocity anomaly is relatively small in Figure 4.10a for (6V),)
relative to 0V;. The components (Figure 4.11b and Figure 4.11c) suggest that the complex
waveforms are caused by the large differential times between branches sampling the
various paths as in the earlier examples. The longer the period, the greater the reach, and at
long enough periods the structure disappears. Obviously, the shorter periods are the most
useful in defining the edges so that working at the shortest periods possible is the most
diagnostic.

Figure 4.10e displays the MPD analysis for S-waves and although it neglects the longer
period diffractions, it captures the essential edge structure. A more detailed description of
the timing measurements is given in Figure 4.11 for both the P and S-waves. First, we
measure Arr the shift parameter (Figure 4.11a) and its spacial gradient given in Figure
Figure 4.11b. The two zones of interference are especially strong in S but with some

evidence in P. This is apparently caused by the reduced P-velocity along the edges of the
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Figure 4.10: Construction of approximate 3D synthetics for Sy4 at constant distance (A =
110°) is given in (a). (b) and (c) display the “lit” and “diffracted” contributions. d)
displays P4 which is much less dramatic but also sensitive to internal structure. (e)
contains a simulation by simple construction with MPD discussed in the text.
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Figure 4.11: Presentation of timing delays and their azimuthal derivatives (d/dA). (a)
Timing shift between the left side relative to the right (ALr) and (b) derivative of Arr
(dArgr /dA). The total shift of each trace relative to the reference model (PREM) and the
derivative are presented in (c) and (d).
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Superdome (Figure 4.10) and the fine-structure variation along the bottom. In the second
step, the output of the MPD is cross-correlated with the synthetics (data) in Figure 4.10a to
determine Ar (Figure 4.11c). There appears to be very little variation in Ar for P-waves,
whereas the S-variation is more apparent, especially for the narrow down-welling zone.
Even though these features are complicated, they are likely to be simplified compared to
the real African Superdome. However, we can examine existing array data searching for

diagnostic patterns as predicted above.
4.4 Application

Although there are many complex record sections sampling the edges of the African
Superdome, we have chosen data from events A and B discussed earlier and that display
particularly interesting features to demonstrate the usefulness of the MPD processing. The
geometry is displayed in Figure 4.1 where the great circle paths are arriving at the array

sampling the Superdome beneath the Indian Ocean.

4.4.1 Northern Edge (Event A)
We first determine or define an empirical source function, S(t), which is the simplest

waveform or wave train in the array, as found from a cross-correlation search. Next, we

generate a synthetic for a reference model (such as PREM) using this S(t) as D (t) in
Equation (4.11) and assume each recording can be modeled by summing S(t)/2 + S(t +
Arr)/2. We define A;r as the time separation which refers to the lag of the right half of the
Fresnel Zone relative to the left, or split time as discussed above. The data and simulation is
given in Figure 4.12a where the multi-pathing is recovered. Next, we correlate the
simulated trace (MPD) with observations to determine At as in the numerical tests. The
shifts required in this analysis are given in Figure 4.12b along with individual ray paths and
their associated time delays. The top panel displays the overall travel time delays showing
the slowdown of the wavefront as it samples the boundary. Note that these plots are
independent of how the original data was plotted as in Figure 4.1. The multi-pathing shifts,

Argr, are given in the bottom panel of Figure 4.12b and produce a rather simple picture
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from northeast-to-southwest.

A more complete picture is obtained by plotting the gradient, Figure 4.12c. This pattern
is more complex with some patches showing strong out-of-plane effects (longest arrows)
perpendicular with the radial direction and some indicating in-plane effects. It appears the
wall was never actually crossed or perhaps there are two steps with one associated with the
green to pink zone and another to the north. Such complexity in 2D has been addressed by
Wang and Wen [2007]. However, the P-wave data shows few signs of multi-pathing as
discussed earlier, with some complexity given in Figure 4.12d, which look more like small

ULVZs. The southern edge displays more P-wave distortions as discussed next.

4.4.2 Southern Edge (Event C)

The waveform data are presented in three frequency bands as given in the top panel of
Figure 4.13 as broadband, and low pass filtered to 5s and 10s. The upper traces and bottom
traces have relatively simple waveforms, but are offset by about 15s representing the
anomalous S-velocity structure. The edge is well sampled between 215° and 210°, with a
small diffraction wing indicated by a dotted-line. Note that at long periods, the edge
becomes less obvious as expected, however, the MPD still measures the pulse broadening
as displayed in the lower panel of Figure 4.13. We have included the cross-correlation (cc)
values averaged over the complete profiles which become slightly higher as the short-
periods are removed, although the fits are excellent.

In the broadband waveforms (Figure 4.13a), the source duration is short enough to
allow the Op operators to be distinct near 213° in azimuths producing multiple peaks.
These features are not observed when filtered to longer periods. However, the
characteristics of the multi-pathing delays are generally maintained as demonstrated in
Figure 4.14. Here we display the results in three columns indicating that the delays of Ar
are nearly the same (upper row in Figure 4.14). The gradient results are presented in the
bottom panel where the data showing the strongest azimuthal features remains clear at all
frequencies. Note the reversal in arrows near the top of the plots. Based on the training
exercises we interpret this as a wall-crossing with nearly all of the variation being in

azimuth. The multi-pathing arrows flip sign uniformly along the zero-line with stations to
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Figure 4.14: Delay time results for data (S4) in Figure 4.13 with different frequency bands
are presented for Ar in the top row and Arr in the bottom row. We have included the
gradient of Arr as arrows which display the wall-crossing position indicated by the heavy
dashed line. Some small-scale structures occur near the wall (circle A) and to the west
(circle B) which have the footprint of ULVZs.
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Figure 4.15: Delay time results for P4 (event C) are displayed in (a) and (b). (c¢)
Comparison of P4observations and MPD simulations. Note that the strong wall signature
apparent in S results (Figure 4.14) is nearly absent in P results. Some local or small-scale
features with circular patterns are displayed at position A (relatively strong in red), B
(weak in dashed blue), and C near the southern edge of the array. We have included some
timing lines to help identify a small delay at the top, which is seen in (a) as a slight
change in color.
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the north pointing south while stations to the south point in a northerly direction. The

strength of this multi-pathing requires a segment of the structure to be nearly aligned with
the ray-paths such that paths to the south are about 8 s faster than to the north. Note the
gradients are large, over 2 s/deg. Some smaller features can be seen in the broadband
results labeled A, B, and C. In these images, the multi-pathing is in both azimuthal and
radial directions and appears to be small in dimension. Perhaps this small structure along
the edge is of the type presented in the metastable model, associated with up-welling. The
other two zones are more difficult to interpret but could be similar to the small-scale
structures further to the south.

The above small-scale anomalies appear to be also observed in the P-wave analysis as
presented in Figure 4.15. The data is plotted relative to PREM and a small timing shift with
distance is apparent, with the traces near the bottom arriving slightly early. This feature can
be seen in the A results indicating about a 1.5s delay. These smaller scale features occur in
both azimuth and distance, which is more indicative of a D" feature, perhaps associated
with ultra-low velocity zones near the Superdome edges. Unfortunately, the P-waves
contain considerable noise which means more events need to be analyzed to confirm the
existence of these small-scale features. In contrast, there appears to be little evidence for
the wall-defining features in P, a result compatible with the Metastable Superdome

interpretation discussed earlier.

4.4.3 A narrow mid-mantle plume below Southern Africa

The resolution of global tomographic models, which have increased through
additional data while accounting for the finite frequency of seismic waves, have provided
more details on possible plumes in the lower and upper mantle [Montelli et al., 2004;
2006]. Although some of these features have small cylindrical forms, most are broad,
especially at the base of the mantle, where they are commonly referred to as Large Low
Shear Velocity Provinces (LLSVP, Figure 4.16a). Beneath the mid-Pacific and South
Africa are structures we refer to as superdomes because of their large size while appearing
rounded on top. Images show considerable differences between these structures but the

change of scale from about 1000 km in the lower mantle to a few hundred in the mid-
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Figure 4.16: A comparison of global tomographic images; (a) at the lower mantle with a
predicted cross section, (b) of seismic properties from a meta-stable thermo-chemical
structure. The anomalous material has a larger bulk modulus (6% above the ambient) and
higher density (2.25%). The S&G shear velocity (left) variations (= 3%, blue and red) are
from Grand [2002] and the PRI-S05 shear velocity (right) is from Montelli et al. [2006].
The agreement between these two models is remarkable considering the complete
independence of data and methodology used [Helmberger et al., 2005]. We interpret the
broad base in the data at the CMB (Africa) to be a large-scale chemical pile and the upper
small dimension feature to be a plume.
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mantle is a common feature of nearly all seismic inversions.

In Chapter 2, the high bulk modulus model is introduced to explain the African
Superdome. The model gives sharp vertical sides with the apparent long term stability of
the African Superdome [Helmberger and Ni, 2005b; Masters et al., 2000]. Particularly in
that model (Figure 4.16b), a narrow plume emerges from the top with a small amount of
entrainment of the high bulk modulus mantle.

Although we have used data in Figure 4.12 and Figure 4.14 to establish the sharpness
of the wall, the Sd phases are not not ideal for detailed study because of lack of
knowledge about the structure beneath the Indian Ocean [Wang and Wen, 2007]. A better
geometry is provided by the SKS paths sampling the mostly 2D structure from the west
over a 10° by 20° region forming a relatively dense sample (Figure 4.17). Although these
small crustal events along the East Pacific-Rise (EPR) have complicated wave trains they
remain stable in the MPD. The four EPR events were processed in this manner (Figure 1,
Appendix A).

The combined Ar delays are plotted with respect to CMB exit points (Figure 4.18a),
normalized by a constant time shift for all stations per event. Such baseline shifts are
common because of uncertainties in the event origin time and location. However, the
relative timing among the stations is maintained. Delays of up to 6s are obtained with the
four events producing compatible results. The paths overlay with some crossing paths
indicated by the arrows in Figure 4.18a. The splitting analysis is summarized in Figure
4.18a (right) where a serious distortion of waveforms occurs along the southern edge (-
45°N15°E). Unfortunately, the details are unclear because of the noisy complex arrivals
as well as limitations in data coverage. This location has been studied previously with
ScS-S analysis where they suggest a strong ultra low velocity-zone [Simmons and Grand,
2002; Wang and Wen, 2007; Wen et al., 2001], which may correlated with the slow
velocity edge structure in the high bulk modulus model (Figure 4.16b).

Because of SKS relatively steep ray paths, their spatial pattern proves highly effective in
mapping horizontal structure. Thus, we will assume that these patterns in Figure 4.18a are
controlled entirely by velocity variation along these SKS paths. Furthermore, we will

assume that paths inside the structure encounter a -3% reduction in velocity [Sun et al.,
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2007a]. This is a simplification but allows a structural image to be formed by performing

a SKS tomographic projection on Figure 4.18a upward to define the height. A plume
feature is added to the 2D profile based on the circular red pattern (Figure 4.18a) located
along the upper dotted line near the top of the dome to fit the A r delay. The observations
producing this pattern have late arriving energy, roughly delayed by 2 to 3s. These late
arriving ray paths are sampling the interior of a plume and are not often sampled directly
since energy from the exterior always arrives first, at least in the synthetic models when the
radius is less than 100 km. The fattening of observed pulses is clearly seen in the raw
seismograms (Figure 1, Appendix A). This type of observation seems to be a direct
measure of the existence of a plume. We constructed synthetics from structures with
circular plumes arising from the superdome, each with a different radii, by repeating the
MPD analysis on artificial data (Figure 4.18b—d). A sample of waveforms is given in
Figure 4.19 with the MPD timing results displayed in Figure 4.18 b—d which can be
compared directly with the pattern given in Figure 4.18a. Note that this pattern is back
projected from the surface along SKS paths to the CMB. Thus, the pattern shifts
northeastward for shallower mantle depths as indicated by the circles in Az of Figure
4.18a. Both the S-velocity of Grand [2002] and S-velocity of Montelli et al. [2006] predict
this behavior although the P-velocity results suggests some bifurcation at shallower depths
[Montelli et al., 2006].

The seismic results for the African structure suggest that a narrow low velocity,
generally cylindrical anomaly overlies a broad-scale low velocity structure. The overlying
narrow structure is probably smaller than about 150 km across (Figure 4.18). If the
structure is greater than 300 km across, we predict that the width of A;z anomaly is about
500 km with a strongly localized Ay, neither of which is consistent with the observations.
The region of strongly localized Ar in Figure 4.18d is presented as delayed SKS arrival
with no obvious waveform complexity (case with plume radius of 250 km in Figure 4.19),
which is not indicated by the data. Although we have constraints on only the basal region
of one putative plume, it would appear that lower mantle plumes are quite narrow, probably
less than 100 km in radius, in general agreement with geodynamical suggestions [Griffiths

and Campbell, 1991; Loper and Stacey, 1983]. Our result is in contrast with Montelli et al.
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Figure 4.17: Presentation of geometry involving the position of the Kaapvaal array in
South Africa, earthquake sources beneath the Pacific and East Pacific Rise (EPR)

Figure 4.18: Composite waveform information from four EPR events compared to
corresponding MPD analysis from various plume models. The delay Ar and differential
values Ajr are migrated down to the CMB and plotted in map form for various events in
(a). Two heavy lines are added to indicate the bottom and top of the superdome where the
SKS travel time delays climb to 6 s. Note the blue circle of vectors near the South tip of
Africa with radius of 1°. Three sets of simulations are displayed with circular shaped
plume (b—d) emitting from the top of the Superdome (Figure 4.19). As the radius of the
plume grows, a small zone of delayed At (dark red on the left) occurs because the
wavefield begins to resolve the interior directly which is not in the observations. The
small circle indicating the plume position at the CMB in (a) migrate to the northwest for
midmantle positions displayed at depths of 1900 km (red circle) and 1400 km (black
circle).
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Figure 4.19: 3D synthetics for thin (75 km) to thick (250 km) plumes. Although the MPD
maps used a large number of synthetics, we present crossing lines centered on the plume,
one (a) in the plane plotted in distance with azimuth of 135° and one as an azimuthal
profile (b) for a distance of 105°. Note the time delay (Ar) becomes obvious as the radius
grows, but it proves difficult to grid SEM for smooth conduits.
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20°

Figure 4.20: A 2D cross-section sampling the plume is displayed idealized with an
uniform reduction of 3% inside the superdome (yellow), a 1.5% drop inside the plume
(green), which extends about 1000 km into the top part of the lower mantle. A pink zone
is added at the edge although not actually modeled because of noisy data but at the proper
position. The model looks very much like the models presented in Figure 4.16a with a
broad base and a pipe-like feature extending upward towards the north.
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[2006] from finite frequency tomography, suggesting a range of widths from 200 to

800 km. Large widths are consistent with only a small viscosity between the plume and
mantle rising in the plume [Olson and Singer, 1985] or thermo-chemical structures—both
favor wide-blunt plumes.

A 2D section of our preferred model crossing through the plume is given in Figure
4.20, where we have assumed the velocity reduction inside the plume is 1.5%. Its height
trade-offs with this value because only the timing delay Azz ~ 3s is defined by the data.
We assumed this value to be compatible with estimates obtained by the high bulk
modulus model given in Figure 4.16b, while also being in agreement with tomographic
estimates. Two dynamic models have been proposed to explain the LLSVPs, the high
bulk modulus model [Tan and Gurnis, 2005; 2007] and the chemical pile model
[McNamara and Zhong, 2004; 2005]. The former has steeper sides (~70°) while the latter
one has gentle slopes (~30°). Our results are in the middle (50°~60°). Both MPD images
and multi-pathing in SS phase (Figure 2, Appendix A) suggest a rough top of the
superdome, which is more profound in high bulk modulus model. In this report, we only
covered the southern edge and more data are needed to complete the entire image, which

will greatly help to define the dynamics of the system.

4.5 Discussion

Travel time tomography has been one of the main tools in studying Earth structure.
Standard practices for geodynamists are to convert these velocity anomalies into density
and temperature and infer geophysical observables such as topography and gravity.
However, tomographic models produced by smooth, damper inversions underestimate the
sharpness of structures. To emphasis this point, we have generated 3D synthetics (Figure
4.21) for event A assuming the well developed model by Ritsema et al. [1999]. Generally
only sparse stations are used in such tomographic studies and time-delays are minimized by
adjusting locations and origin times. The array data, especially at the shorter periods,
indicates the sharpness of such structures which are generally missed in long period studies.
Fortunately, these tomographic studies do explain some of the delays and provide crucial

information about the geometry of the structure causing these waveform distortions.
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Figure 4.21: Direct comparison of synthetic predictions (solid traces) from Ritsema’s
tomographic model [Ritsema et al., 1999] with observations (dotted). (a) Observations
plotted in azimuth for event A against DWKM synthetics (broadband). (b) Long-period
synthetics filtered to 18 sec generated by SEM with data. The synthetics show less than
4s delays which is too small to satisfy the data. Tomography models are generally too
smooth to predict the multi-pathing observed here.



101
Simply enhancing the velocity anomalies and adding sharpness has been proven quite

useful in generating models that predict improved synthetics fit to data for both regional
data [Song and Helmberger, 2007] and lower mantle data [Helmberger and Ni, 2005a].
Another recent approach followed by Ritsema et al. [2007] is to examine a large class of
models that satisfy the tomographic data but explain additional constraints. DWKM
synthetics could then be generated and compared with data directly or use MPD to test for
significance of sharp features. In this study, we have provided a new tool for examining the
wavefield and providing guidance in how best to approach modification of tomographic
results in terms of vertical vs. horizontal structure. Instead of forcing array data to produce
pulses that cross-correlate well enough to obtain accurate travel time picks, we suggest
using the broad-band wavefield to derive additional MPD-type parameters. From the
footprint and timing gradient analysis for a single phase from a single event, we can only
determine how sharp the anomaly it is and the orientation of the anomaly. To get exact
location and size of the sharp anomaly, we need to combine the MPD parameters derived
from different phases and different events. Using different phases for the same event, we
can make some decision with respect to what features in the Earth are causing the multi-
pathing effects. As discussed in Song and Helmberger [2007], shallow structure in the
upper-mantle tends to disturb all phases from a particular azimuth, including P, PP, S and
SS etc. If all the phases have strong multi-pathing effects, the sharp anomaly should exist at
shallow depth, which affects all phases by the same degree. If strong multi-pathing only
appears on those phases sampling the deep mantle (ScS, PcP), we can estimate that the
origin of the anomaly is coming from the lower mantle. Figure 4.22 displays the MPD
patterns for a Kuril Island event recorded by USArray. The difference patterns between S
and ScS indicate anomalies occur not only in upper mantle but also in lower mantle, which
is only sampled by ScS. On the other hand, MPD is useful to detect the sharp edges in the
shallow structure as in Figure 4.23. The rays from different events sample the sharp
anomaly differently and generate different MPD patterns. Those patterns can be migrated
to different depths and find the coherent parts, which give the sharp boundary laterally. By
connecting those boundaries at different depth, we can construct a 3D image of the sharp

edges. Equation (4.7) shows that the radius of lit region changes with the depth of reference
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plane. The deeper the reference plane, the  wider the lit region. For an event station

couple, a migrated A;r image at certain depth is a circle centered at the ray piercing point at
that depth with radius A;. The value along the circle is Arr. The summation of all migrated
images for every event station couple will give a strong indication of sharp boundary if it
arises at that depth. This technique is similar to that used in the finite-frequency
tomography using adjoint methods, which the summation of finite-frequency sensitivity
kernels defines the overall misfit kernel [7ape et al., 2007]. We will discuss this migration
method in future efforts.

Since temperature and chemistry affect the P and S velocities differently, studying P
and S waveforms from the same events can provide unique detail into differential
measures, 1.e., R=dInVydInV,. This parameter is important in understanding the mineral
physics in the deep mantle [Masters et al., 2000]. An approximate value for R is
(Vioty/V,0t,) where ot, and o1, are travel time perturbations [Souriau and Woodhouse,
1985]. Accurate estimates of the Jt,and dt, are obtained from applying the above operators
as displayed in Figure 4.15 for event C. In this case, the R factor is quite high, R>6, because
the P-waves show very little change across the Superdome boundary. Generally, the P-
waves encounter some delays when crossing the edges, as discussed earlier, and the
average value found by Masters et al. [2000] of 3.8 for the Pacific and South African
Structures appear to be generally compatible with our results which are somewhat higher.
To estimate R, we average over samples inside the Superdome (top seven stations in Figure
4.14) for S-waves and for P-waves (Figure 4.15), where we normalize the A7 to the region
most-like PREM (bottom six stations).

Then

R L3Vt (S)

o i=1 VPAiT (P) ’
which yields R of about 5.5. Such a high value is compatible with the metastable model
that was designed for this ratio. Note there is a whole-family of Ap and K; that will yield
metastable Superdomes, Tan and Gurnis [2005] and resolving this number is essential in

defining possible mineralogy.
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Another measure of rapid changes in  material properties is to use the shift, or

Lateral Gradient Coefficient (LGC),

LGC = lzn:—VSA:LR(S)

n S Vedig(P)

or perhaps their derivatives with represent to azimuth as displayed in Figure 4.11. Sharp
changes in temperature usually yield similar changes in P and S velocities while chemistry
is more effective in producing large coefficients. Averaging over the length of arrows in
Figure 4.14 and Figure 4.15 for the same set of stations produces estimates greater than 8
where the P-waves are probably near the noise level. The arrow lengths in Figure 4.14a
suggest azimuthal jumps of over 2 s/deg, which agree with those produced by the
metastable model presented in Figure 4.9. We have not been able to explain such
significant lateral gradients without introducing a wall, which is difficult to detect at
periods greater than 20 s. In short, there appears to be a number of ways to quantify the
obvious complexity introduced in Figure 4.1. Some small-scale features, especially
prominent in the P-results given in Figure 4.15, appear to be associated with structure
inside the Superdome. More data needs to be processed to establish such detail since other
small—scale structures probably exist elsewhere in the Earth.

In summary, we have introduced a new method of processing array data which will
make it easier to identify structural boundaries and sharpen tomographic images. The
method decomposes observed pulses embedded in body wave observations and uses the
relative timing of these array arrivals to identify in-the-plane vs. out-of-plane multi-pathing.
Preliminary results for a few events observed by the South African Kaapvaal array reveal

strong evidence of 3D wave propagation and the fine-scale nature of boundaries.
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Appendix A

African Superdome and mid-mantle plume

After a detailed search for events that have suitable geometry for sampling the
superdome edge and possible plume, we found four events (Figure 4.17) that could be
analyzed as presented below. The record section in Figure A.la covers the epicentral
distances of 95° to 110°, where each record is plotted relative to PREM. Thus, each trace
should start at zero time if the Earth is PREM-like and the event was properly located.
However, since these four events are small, they are not well located, nor do they have
accurate origin times. But because we are only interested in their relative travel times
across the array, it does not cause a serious problem. Moreover, this array has been well
studied, with only minor station corrections [James et al., 2001]. Consequently, the travel
time delay for stations south of about 100° by 5s is caused by earth structure, assumed to be
the LLSVP. A 200 km layer with reduced S velocity of 3% produces 1s of SKS delay
relative to PREM. Unfortunately, determining these delays accurately in the presence of
noisy oceanic crustal events containing depth phases is difficult. In the first step, we
determine or define an empirical source function which is a wavetrain most simple and
common to the entire array by a cross-correlation search. The top trace was used in this
case. We then generate a synthetic seismogram for a reference model, PREM, and
determine the best Arr for each record by a grid search along with the Ay travel time delay
of the composite pulse relative to the reference model defined by Ar as discussed earlier.
The Ars are displayed along with their surface projected geometric ray tracks. Note that the
structure is roughly perpendicular to these paths producing roughly a 2D sampling. Many
of these pulses are broad indicating multi-pathing which appears to be organized as
presented in the bottom panels. Because these events are near the background noise, we can
expect some artifacts in Argr, however, by stacking results, we should highlight the
strongest features. The simplest sample is displayed in (a) displaying some strong effects at
the outer edge, Arr = 4 s, but a relatively uniform rise to over 4s delays. Event EPR3 in

Figure A.1b and EPR4 in Figure A.lc both show a strong anomaly at the outer edge
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(normal timing) and at the upper edge with  delays in Arr of up to 3s. The results for

EPR?2 are presented in Figure A.1d which display some broadening at the larger ranges but
these could be contaminated by SKPdS [Garnero, 2000]. However, the sharp delay Ar
between 100° and 106° is particularly obvious, and is shifted about 4° relative to the results
in Figure A.1b, which is compatible with our model prediction.

The height of the African Superdome structure remains an issue but some direct
evidence is available [Ni and Helmberger, 2003b]. Although the geometry for sources
and receivers is lacking for sampling the top of the Superdome with direct S, the phase
SS can be used as proposed by these authors where one leg of the SS phase samples
along the top of the LLSVP. The roughness of the upper structure also causes multi-
pathing, as given in Figure A.2 for the SS phase.
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Figure A.1: MPD pattern for four East Pacific-Rise events recorded by Kaapvaal Array in
South Africa
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