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Abstract 

The lower mantle plays an important role in the thermal and chemical evolution of the 

earth. Although recent advanced seismological imaging displays the heterogeneous nature 

of the lower mantle, most results are constrained to large scale and longer wavelength 

structures. This thesis involved waveform modeling studies of the detailed structures of the 

lower mantle, especially the African Superdome and D″ layer.  

A simple uniform 3% shear velocity reduction model can explain the observed 

seismological anomalies for the African Superdome (also refer as Africa Large Low Shear 

Velocity Province or Africa Superplume), but it lacks small scale complexity inside. In 

parallel with the seismic model, a composition-dependent compressibility model with a 

high bulk modulus is developed to explain the African Superdome. To validate this 

dynamic model, we map the modeled chemistry and temperature into P and S velocity 

models. Synthetic seismogram sections generated for this 2D model are then compared 

directly with the corresponding seismic observations. These results explain the anti-

correlation between the bulk velocity and shear velocity, as well as the sharpness of the 

edge.  

A lower mantle S-wave triplication with a Scd branch occurring between S and ScS has 

been recognized for many years and has been interpreted in a variety of ways. The 

triplication is particularly strong when sampling regions beneath the circum-Pacific lower 

mantle fast velocity belt seen in global tomographic models, where it has been modeled 

with a 2–3% jump in S-velocity. The D″ discontinuity may arise from a phase change for 

Perovskite to Post-Perovskite. We model the phase boundary height by mapping S-wave 

tomography into temperature. A few adjustable parameters involving reference phase 

boundary height and velocity jump are determined from comparing synthetic seismogram 

predictions with densely sampled observations. Adding 3D propagational effects caused by 

these structures through Perovskite to Post-Perovskite velocity jump predicted from 

mineral physics appears to generate compatible results with Scd waveform observations. 

In the last chapter, we develop a new tool based on a decomposition referred to as a 

multi-path detector which can be used to distinguish between horizontal structure (in-plane 
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multi-pathing) vs. vertical (out-of-plane multi-pathing) directly from processing array 

waveforms. A lateral gradient coefficient based on this detector provides a direct constraint 

on the sharpness of the boundaries and material properties. We demonstrate the usefulness 

of this approach by processing samples of both P and S data from the Kaapvaal array in 

Southern Africa. The results further validate the case for distinct chemistry inside the 

African Superdome. We also present evidence of a narrow plume-like feature coming off 

the top of the large African low-velocity structure in the lower mantle. The plume’s 

diameter is less than 150 km and consistent with an iso-chemical, low-viscosity plume 

conduit.  
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Chapter 1 

Introduction 
 

In the last decade, global seismic tomography has produced consistent images of the 

large-scale structure of the Earth’s lower mantle, with a belt of high velocity anomalies 

along the circum-Pacific and low-velocity anomalies beneath the Pacific Ocean and South 

Africa. Details of smaller-scale structure, i.e., slabs and plumes, are less well resolved and 

differ between studies. However, resolution of these structures proves crucial to the 

understanding of the driving mechanisms of plate-tectonics and mantle convection. Do 

slabs penetrate into the lower mantle and pile up on the core-mantle-boundary (CMB) [e.g., 

Grand, 2002]? Do plumes rise from the CMB to the surface [Montelli et al., 2006]? These 

issues remain hotly contested [Anderson, 2005]. This thesis presents seismological views of 

lower mantle structures and tries to answer some parts of those questions.  

 Synthetic seismograms generated from tomography models generally look like those 

calculated from the 1D reference model and lack the complexity commonly observed in 

many seismic sections. Such features require sharp jumps in velocity, ie. steep velocity 

gradients, which are apparently smoothed out in tomographic imaging because of model 

parameterization and uncertain source information about location and origin time. While 

waveform modeling can be useful for resolving strong velocity gradients, there remain 

many challenges in imaging complete 3D structures because of the lack of data coverage 

[Helmberger et al., 2005]. The two methods complement each other, and comparing 

observed waveforms with synthetic seismograms generated for models based on 

tomographic images can be used as a starting point for sharpening features required to fit 

the waveform data. We view this process in terms of tomography by providing the large-

scale geographic framework for the detailed “gedynamic features” sensed by waveform 

modeling. We apply waveform modeling to the two major structures in the lower mantle: 

Large Low Velocity Provinces (Chapter 2 and 4) and the D″ layer (Chapter 3).  
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The African Superdome has been modeled as a ~1500 km high structure with 

sharp edges and uniform 3% shear velocity drop inside [Ni and Helmberger, 2003a,b,c]. To 

explain the seismological observations, thermo-chemical dynamic convection models are 

generated [McNamara and Zhong, 2004; Tan and Gurnis, 2005]. Tan and Gurnis [2005] 

develop a high bulk modulus model starting with a heavy basal layer with distinct 

chemistry. Its bulk tabular shape remains relatively stable while its interior undergoes 

significant stirring with low-velocity conduits along its edges and down-welling near the 

middle. Given our present limitations in source-station geometry, we will rely more on 

dynamic modeling in designing seismic experiments to better resolve the small-scale 

structures inside (Chapter 2). We perform a mapping of chemistry and temperature into P 

and S velocity variations and replace a seismically derived structure with this hybrid model. 

Synthetic seismogram sections generated for this high bulk modulus model suggest that 

this model could be a candidate explanation for the African Superdome. 

In a typical tomography model, the D″ discontinuity is not included [Sidorin et al., 

1999]. To model the lower mantle triplication [Lay and Helmberger, 1983], a positive 

velocity jump across the D″ discontinuity needs to be added in the tomography models. 

Based on the phase change boundary explanation for the D″ discontinuity, a global phase 

boundary height map was generated [Sidorin et al., 1999]. This phase boundary is 

confirmed by both experimental and theoretical results for the the Perovskite to Post-

Perovskite phase change [Hirose, 2006]. In Chapter 3, we extend this mapping method to 

explain the complexities of the Scd phase. By allowing phase boundary mapping with 

localized parameters derived from tomography image, we can produce the rapid lateral 

change of the D” discontinuity.  

The main advantage of the waveform modeling is to capture structures with sharp 

edges [Helmberger et al., 2005]. Previous studies concentrated on the 2D in-plane 

structure. Numerous examples indicate that the structures vary more in azimuth than in 

distance and that the structure is oriented more vertically than radially [Ni et al., 2005]. 

Helmberger and Ni [2005a] developed a hybrid method to calculate 3D synthetics 

especially for structures with sharp walls. It is a challenge to distinguish in-plane and out-

plane multi-pathing, especially for the large amount of existing array data. In Chapter 4, we 
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introduce a Multi-Path Detector (MPD) that exploits the complexity and resolves sharp 

structures directly by decomposing the waveform. The array of observations is then 

replaced by a footprint of timing shifts between interfering arrivals, which indicate where 

the sharp edges are. In particular, we apply MPD for the array in South Africa to resolve 

the sharp edge of the African Superdome and provide the evidence of a narrow mid-mantle 

plume-like feature emitting from the top of the large African Superdome. 
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Chapter 2 

Seismological support for the metastable 

superdome model, sharp features, and phase-

changes within the lower mantle* 
 

 

 

2.1 Abstract  

Recently, a metastable thermal-chemical convection model was proposed to explain the 

African Superdome. Its bulk tabular shape remains relatively stable while its interior 

undergoes significant stirring with low-velocity conduits along its edges and down-welling 

near the middle. Here, we perform a mapping of chemistry and temperature into P and S 

velocity variations and replace a seismically derived structure with this hybrid model. 

Synthetic seismogram sections generated for this 2D model are then compared directly 

with corresponding seismic observations of P (P, PCP, PKP) and S (S, SCS, SKS) phases. 

These results explain the anti-correlation between the bulk velocity and shear velocity as 

well as the sharpness and level of SKS travel time delays. In addition, we present evidence 

for the existence of a D" triplication (a putative phase-change) beneath the down-welling 

structure. 

 

*This chapter appears as Seismological support for the metastable Superdome model, 
sharp features, and phase-changes within the lower mantle, Daoyuan Sun, Eh Tan, Don 
Helmberger, and Michael Gurnis, Proceedings of the National Academy of Sciences 
(2007), 104(22), 9151-9155. doi:10.1073/pnas. 0608160104. 
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2.2 Introduction 

The large-scale structure of the lower mantle has been well resolved by global 

tomography, with a belt of high seismic velocity along the circum-Pacific and two large 

low shear velocity provinces (LLSVPs) beneath South Africa and the mid-Pacific. The 

fastest regions appear to contain a sharp positive velocity jump associated with a phase-

change from perovskite (PV) to post-perovskite (PPV) [Helmberger et al., 2005], while the 

slowest regions contain VS/VP ratio > 2.5 and an anti-correlated bulk sound velocity V 

and shear velocity VS [Masters G, 2000; Su WJ, 1997]. Although both LLSVPs show these 

properties, their interior structures appear to differ, with the Pacific anomaly showing more 

complexity compared to the apparently monolithic African anomaly [Helmberger and Ni, 

2005b; Wang and Wen, 2007]. Tomographic studies of the African structure reveal a large-

scale feature which extends throughout the lower mantle. Predicted SKS delay patterns up 

to 3s for some of these tomographic models fit the observations at the South African 

seismic array well except for magnitude and sharpness, Figure 2.1, where the data require 

over 6s offsets [Helmberger and Ni, 2005b; Ni and Helmberger, 2003a]. Note that the SKS 

ray paths cross the CMB interface at relatively steep angles and their abrupt change in 

delays require nearly vertical walls to separate the normal Preliminary Reference Earth 

Model (PREM) from the anomalous structure denoted by the heavy green lines in Figure 

2.1b, review by [Helmberger and Ni, 2005b]. Such a structure with its sharp sides is 

suggestive of thermo-chemical convection containing a density increase [Ni et al., 2002]. 

2.3 Metastable Superdome 

The fate of a dense chemical basal layer in a convecting mantle has a well-developed 

history [Christensen, 1984; McNamara and Zhong, 2004]. Their results, involving dense 

piles, look similar to the LLSVPs in tomographic locations and appear compatible with the 

history of subduction. Stabilized by an intrinsically larger density (∆ρch), the pile will 

remain at the CMB until exceeded by a thermal density with opposite sign (∆ρth). However, 

if there is a difference in compressibility between the materials within the plume compared 

to ambient mantle, then metastable conditions are possible. Tan and Gurnis, 2005 have 
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generated a sequence of models with differences in zero pressure density (∆ρo), 

adiabatic bulk modulus (Ks) and initial layer thickness. They show that if ∆ρo is 2 to 3% 

and Ks from 4 to 8% larger than the ambient mantle, which are expected for material from 

subducted slabs (pyroxenite) [Lee et al., 2005], then metastable superdomes can form. The 

result that best matches the seismic data for the African Superdome, labeled HBMS (High 

Bulk Modulus Structure), is used in our subsequent analysis (Figure 2.2). 

At the base of the mantle, the anomalous material heats, becomes more buoyant than 

the background, and moves upward. However during ascent, its buoyancy gradually 

decreases, due to an increasing adiabatic density difference, and rises to a level where it is 

neutrally buoyant, height of neutral buoyancy (HNB). Above the HNB, the anomalous 

material becomes denser than the background and sinks. The structure stands high above 

the CMB (Figure 2.2) and remains metastable depending upon the equation of state and 

depth-dependence of the coefficient of thermal expansion [Tan and Gurnis, 2005].  

The existing seismic model of the African Low Velocity Structure (ALVS, Figure 2.1) 

is similar in shape to the dynamic models but lacks smaller scale complexity and low 

seismic velocities near the edges. Such features are in some of the seismic models 

presented by [Wen, 2001]. The earlier idealized seismic structure (Figure 2.1b) has a 

uniform 3% VS reduction with walls and a flat roof, so that the general character of the 

anomaly might be imaged more clearly with waveform data available, transforming the 

blurry tomographic model into this distinct structure [Ni and Helmberger, 2003c].  

We convert the temperature, composition, and density anomalies in HBMS model to 

seismic velocity anomalies in favoring the bulk properties of the seismic African 

Superdome model. The thermo-elastic parameters of the chemical anomalous material are 

chosen to be similar to those of MgSiO3 perovskite. In the HBMS model, the conversion 

from temperature (T) and composition (C) to seismic velocities is based on the following 

parameters: 

  %C/Kln TS 6  

  %.C/ln T 51   

  %T/Kln CS 6
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Figure 2.1: A map of events and stations (triangles) used in the construction of a 2D 
model along a corridor through the African Superdome. We use data from two arrays, 
South African, and the new Ethiopia/Kenya array  [Langston et al., 2002] of events 
arriving along a great circle in this study. SKS and SKKS exist points at the CMB are 
given in colored triangles, with blue indicating no delay and red over 5s. To produce the 
sharp jumps require a monolithic structure denoted in heavy green lines as the African 
Low Velocity Structure (ALVS), where the S velocity inside the box is reduced by 3% 
relative to PREM [Ni and Helmberger, 2003a]. We have included some example ray 
paths S, SKS, and SCS. The background tomographic model is most recently updated 
Grand’s model [Grand, 2002].  
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Figure 2.2: Display of a 2D section through a metastable thermo-chemical structure along 
with predicted VP and VS velocities [Tan and Gurnis, 2005]. Only the bottom 1200 km of 
the model is shown. Within the anomaly, the material has a larger bulk modulus (6% 
larger than ambient) and higher zero pressure density (2.25%). The layer forms a single 
dynamic structure with the average density near neutral. Note the plumes along the edges 
and the down-welling near the middle. a. Non-dimensional temperature, b. density 
anomaly, c. VP anomaly and d. VS anomaly. 
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  %T/ln C 15   

Here, Ks is the bulk modulus, and  is the shear modulus. The value of (ln Ks/C)T  is 

dictated by the dynamic model. The value of (ln /C)T is a free parameter and is chosen 

to fit the seismic observation. When scaled, the dimensional values of (ln Ks/T)C and 

(ln/T)C used in the conversion are -3.33x10-5 K-1 and -8.33x10-5 K-1, respectively. 

More information about the conversion is described by Tan and Gurnis [2007]. For 

reference, the dimensional values of (ln Ks/T)C and (/T)C for MgSiO3 perovskite are 

calculated to be -3.29x10-5 K-1 and -8.62x10-5 K-1, respectively [Oganov et al., 2001].  

2.4 Predicting Seismograms 

Here, synthetic seismograms generated from dynamically derived VS and VP models 

are tested against observed seismic phases and travel times. These synthetics were 

generated with the WKM technique introduced in [Ni et al., 2000]. The method is basically 

analytical, which satisfies the wave equation assuming tomographic-type models. The 

original idea of WKM was proposed by Wiggins and Madrid [1974] based on the 

comparison of 1D synthetic seismograms generated by complete methods against simple 

geometric approximations. The first step is to generate the ray paths for the 1D reference 

model, as in seismic tomography. We compute the ray paths reflecting-off every interface 

sampling the depth sensitivity of the seismic phase. The ray parameter (pi) and the travel 

time (ti) are used to form a numerical derivative 

   1 1/ .i i i i
i

dp

dt
p p t t                                           (2.1) 

In most tomography, the value of pi is held fixed along each ray segments and the ti can 

vary by adding velocity changes to blocks in various layers. Thus, the ray paths do not 

change as the velocity is perturbed.  We go beyond this approximation by allowing the pi to 

satisfy Snell’s law again in the perturbed heterogeneous model and compute corresponding 

changes made in the ray segments. Note that the paths will shift to avoid slow regions (see  



 

 

10
Ni et al. [2003]) for a validation study against numerical methods). In general, thin 

layers increase the accuracy. 

To test the HBMS model, we replace the box-like structure (Figure 2.1b) with the 

HBMS structure (Figure 2.3a), while assuming the same geometry for events and stations 

and then generate 2D synthetics. Then we compare the predicted synthetic seismograms 

with the observed seismic data. Specifically, (i) does HBMS display the sudden jump in 

SKS at the edges and remain relatively flat over extended distances while generating 

complex SKS waveform when sampling the edges; (ii) does HBMS satisfy the travel time 

data of diffracted S wave (Sd) and diffracted P wave (Pd), where Sd is delayed much more 

than Pd; and (iii) does it predict the much larger delayed SCSS than PCPP. We find that 

HBMS predicts the bulk characteristics about as well as the idealized seismic model 

(Figure 2.1b) but also predicts small-scale features near the edges and middle which can be 

seen in the observed waveform data. 

Although the early waveform studies of the African Superdome revealed sharp features 

based on differential phase relationships (SKS-S and S-SCS) [Ni and Helmberger, 2003a; 

b; Ritsema et al., 1998], the dense regional array data provided the most definitive evidence 

[Wen, 2001]. Thus, we will concentrate on array data and 2D synthetics generated from  

Figure 2.3: This figure presents seismic waveforms predicted by inserting the HBMS 
model into the earth beneath Africa, essentially replacing Figure 2.1b by Figure 2.2d, and 
comparing results against seismic observations. We have included the ALVS (Figure 
2.1b) results for comparison. Figure 2.3a displays the geometry and geometric ray paths 
along a 2D cross-section (East Pacific Rise to the South Africa Array) sampling the 
anomalous structure, SKS (red) and Sd (light blue). Figure 2.3b displays the differential 
timing derived by cross-correlating the observed waveforms [Helmberger and Ni, 
2005b], with synthetics relative to predictions from the 1D reference earth PREM. Since 
the structure is roughly symmetric, we included predictions with events occurs at the left 
side (heavy line) and the right side (light line) of this model. A comparison of travel time 
predictions generated from HBMS synthetics against those observed at the South Africa 
Array [James et al., 2001] are displayed in Figure 2.3c for diffracted S (Sd, solid 
triangles) and P (Pd, open triangles). Since the diffracted waves sample the top-edge of 
the structure first, the anomalous travel times have a gradual onset as predicted by the 
solid curves, heavy from the left, light from the right. Both the data and synthetic 
predictions display considerable scatter indicative of possible embedded fine-structure 
which is likely to be time-dependent. However, the magnitude of the anomalous S delays 
relative to P is well matched.  
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Figure 2.3 
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Figure 2.4: The figure presents SKS waveforms predicted for the HBMS model. The 
predictions with rays from both sides show a rapid delay of SKS and waveform 
complexity when sampling the boundary zone (shaded zone). The SKS ray paths are 
shown in Figure 2.3a. 
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Figure 2.5: Comparison of SCS-S and PCP-P predictions with observations [Helmberger 
and Ni, 2005b]. a) The ray paths of SCS (mangenta), S (cyan) and P (yellow) are shown 
sampling the HBMS model. b) Comparison of differential SCS-S (solid line) and PCP-P 
(dot line) predicted by the HBMS and ALVS models. The modeled PCP-P differential 
time is shifted up by 1s, considering the possible base-line shift for origin time correction.   
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events along the great circle paths displayed in Figure 2.1a. Synthetic waveforms for the 

HBMS model are processed using the same procedure as used in deriving Figure 2.1b, with 

results displayed in Figure 2.3. We also included reversed paths or flipping the HBMS 

model since the detailed velocity field is not unique, i.e., changes with time, etc. The 

HBMS results fit as well as ALVS although a few seconds of scatter remain. The synthetics 

are displayed in the Figure 2.4 where complexities develop near the boundary as can be 

observed [Ni et al., 2002], but these features remain difficult to quantify. 

Long-period P-wave diffraction (Pd) that passes through the African anomaly is less 

delayed than Sd from conventional tomography. This is most easily measured by 

comparing synthetic seismograms (PREM) against data [Ni and Helmberger, 2003a; b]. To 

avoid source location uncertainties, we compare Pd and Sd from the same event, Figure 2. 

3c. The geometry is presented in [Ni and Helmberger, 2003b], where the phases cross the 

boundary nearly at right angles to the structure. The observations display considerable 

scatter since the array is broad and the ray paths apparently encounter 3D variation, i.e. 

samples from the right side are about 1.5s smaller than those from the left. In short, the 

dynamic model captures some of this level of observed variation indicative of a convecting 

region. 

There are many advantages in sampling an unknown structure with paths following the 

same great circle as described earlier (Figure 2.1a). Here we display SCS-S and PCP-P for a 

Sandwich Island event (Figure 2.5). The P and S direct rays encounter gentle mantle 

structures as explored with various tomographic maps [Ni and Helmberger, 2003b]. Thus, 

the differential times remove the timing errors associated with origin time and location and 

provide an accurate differential measure between the P and S velocities inside the 

anomalous structures. Note that the SKS delays fix the position of the wall, simplifying the 

interpretation of the SCS-S delays and their increase with distance. The data scatter relative 

to the model similar to the Sd suggesting complexity in the upper boundary. 

2.5 Possible phase boundary 

While Sandwich Island events produce excellent PCP and SCS recording on the South 

African Array, they also produce samples of the CMB directly below South Africa (Figure 
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Figure 2.6: Modeling a D" triplication from the Ethiopia/Kenya array from a deep 
Sandwich Island event; (a) The recording geometry with green circles indicating the SCS 
sampling points at the CMB. (b) We assume the ALVS inside the Green Box in Figure 
2.1b is 1D and replace the velocities near the bottom with our preferred structure (b). We 
have included a model with a sharp 4% jump (CM) and a hybrid model. (c) displays 
geometric ray paths with arrival times given as lines on the data-synthetic record 
sections; (d) displays the comparison with observed waveforms against predictions from 
the HBMS model and (e) those from the Hybrid model and (f) CM model containing 
structure (b). 
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2.6) as recorded by the recently released Ethiopia/Kenya array data [Langston et al., 

2002]. Since this dataset is rather unique, we will display the record section and predictions 

from both the ALVS and HBMS models and suggested model changes involving a possible 

PV to PPV phase change. The geometry is shown in Figure 2.6a where SKS piercing points 

are denoted at the edges of the Superdome. The boundaries as discussed earlier are given as 

heavy dashed green lines. The SCS bounce points are near the center of the structure where 

the down-welling developed in Figure 2.2d. Record sections display the waveforms 

containing the various seismic arrivals with SKS arriving first followed by S and ending 

with SCS. The cross-over from S to SKS occurs about 2° early relative to PREM because of 

the delayed S, which is common for the African anomaly. 

Because of some small station timing offsets, record sections relative to predicted 

PREM times have small misalignments, which can be avoided by aligning directly on the 

peak of the S pulse as displayed in the record sections Figure 2.6d)–f). Synthetic prediction 

for HBMS reproduces observed arrivals reasonably well, except that the differential time 

between S and SKS is small at smaller ranges and SCS is late and complicated.  

Both the HBMS model and Ni’s model (Box I) (Figure 2.7) can not produce the large 

separation between S and SKS at small distances (82 ~ 84°) (Figure 2.8a, b). Adding the 

extra Box II in Figure 2.7, with the 2% velocity reduction, slows the arrival time of S and 

has no effect on the SKS phase, and produces the observed differential time between S and 

SKS in Figure 2.8c.  

In addition, there is a small arrival between S and SCS having the timing expected for 

the Scd phase. This extra arrival is produced by a small triplication near the CMB which 

appears between S and SCS at ranges 80° to 90° [Helmberger et al., 2005]. Because HBMS 

does not have such a phase boundary, we experimented with the original ALVS structure, 

Figure 1b. A significant feature in the HBMS model is the down-welling region near the 

center, which will cause a diffuse increase in seismic velocity. Then we added a linear 

gradient to mimic the down-welling followed by a small velocity jump (1.7%), a strategy 

used earlier by [Sidorin et al., 1998]. We conducted a grid search to derive the Hybrid 

model (Figure 2.6b) and synthetics displayed in Figure 2.6e. The small pulse with a phase 

velocity slightly higher than S labeled Scd is associated with this sharp boundary. We also 
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Figure 2.7: The cross sections from South Sandwich Island to the Ethiopia/Kenya array 
for a) Hybrid model and b) HBMS model with background Grand’s tomography model. 
In the Hybrid model, the S velocity anomaly inside the Box I is -3% and -2% inside Box 
II. The second Box II was added to fix the relative SKS and S timing issue by slowing S 
as can be seen in the ray path sampling. This is not unique and any extra S delays along 
these particular paths will satisfy the data.  
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Figure 2.8: The comparison with observed waveforms against predictions from the a) 
HBMS model. In b), only Box I in Figure 2.6 is enhanced. Both Box I and II are 
enhanced in c).  
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test a model with an abrupt shear velocity jump across the boundary. By grid search, 

we derive a model (CM model) with 4% jump located 100 km above the CMB, Figure 

2.6b. The synthetics for this model are shown in Figure 2.6f. Both models provide a 

reasonable fit to the data. The small velocity jump in the Hybrid model supports the 

possible PV to PPV transition across the boundary seen globally. Since the down-welling 

in the HBMS model raises the possibility of the occurrence of phase transition in this area, 

we prefer the hybrid interpretation. 

 The overall fattening of S at ranges 83° to 87° is caused by the high velocity gradient 

which is also present in the HBMS model. Unfortunately, it proves difficult to sample D" 

beneath the Superdomes because of the strong constraints of station geometry. Thus, we do 

not know if the structure presented is related to the down-welling, or perhaps PPV to PV. 

Note that Tsuchiya and Tsuchiya [2006] suggest that the PV to PPV transition for Fe-rich 

chemistry is likely to be accompanied by a negative VS jump [Tsuchiya and Tsuchiya, 

2006]. This implies that a positive VS jump then becomes a PPV to PV transition. The 

position and the magnitude of the negative velocity jump beneath the boundary is not well 

constrained, although adjustments can be made to correct the travel time of SCS. Because a 

velocity reduction is more difficult to detect than a velocity increase [Flores and Lay, 2005; 

Sun et al., 2006], there is no constraint on the exact velocity structure below the boundary 

of the positive velocity jump in both models. However, considerable support for a positive 

velocity jump comes from studies near the Pacific Superdome edge [He et al., 2006; Lay et 

al., 2006], along with very strong lateral variations in S-velocity structure, Figure 2.9. 

Strong variation in P-velocities has also been found near this same edge [Luo et al., 2001]. 

2.6 Edge Effects on P-waves 

The P-wave velocity structures in HBMS are not anomalous on average as pointed out 

earlier with respect to Pd. Moreover, the phases with nearly vertical ray paths in the mantle 

have the best chance of detecting the abrupt lateral changes near the edges, in particular the 

differential branches of PKP phases. Although the VP anomalies are small for the LLSVPs 

on average, the existence of sharp VP features occurring near their edges is poorly imaged 

seismically because of the lack of differential phases. PCP-P is not available for distances 
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Figure 2.9: Map of the northern edge of the Pacific Superdome displaying where 
anomalous seismic data has been studied relative to Grand’s tomographic model (after 
Luo et al, 2001). The piercing points of PKPab three Fiji-Tonga events, red, green, and 
blue, are indicated relative to a dotted line where the dotted PKP arrivals are 2s earlier 
than those to the north. The symbols indicted by asterisk or triangles are locations where 
PKPab display complexities (multi-pathed). The white trapezoid region shows rapid 
lateral variation of D" [He et al., 2006]. 
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Figure 2.10: Display of ray paths for PKP, PKPdf in cyan, and PKPab in magenta, for 
geometrics sampling the edge structures relative to PREM along with synthetic 
predictions. Solid traces correspond to the edge structure with dotted traces relative to 
PREM. Note the nearly 2s offset caused by sampling the edge structure. 
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beyond 70° where the reflection coefficient (PCP) becomes very small. Differential 

times, δtk, between PKPab and PKPdf has proven useful in studying D" with some success 

[Song and Helmberger, 1993]. Since the AB and DF paths only separate in the lower 

mantle, see Figure 2.10, their δtk becomes a useful measure of lateral variation. Due to the 

limited samples for African Superdome, we examine the PKP sample beneath Central 

Pacific. Some sharp jumps in δtk have been observed with no obvious explanation (Figure 

2.9). Figure 2.9 displays the CMB piercing points for the phase PKP(AB) for events 

beneath the Tonga-Fiji Islands as recorded in Spain [Luo et al., 2001]. The dotted line in 

Figure 2.9 separates normal arrival times from late arrivals (2s). It appears that these jumps 

in δtk can be explained by the anomalous edge structure along the HBMS. Moreover, many 

observations north of the dotted line in Figure 2.9 display waveform complexities which 

can be modeled by including ultralow velocity zone (ULVZ’s) [Luo et al., 2001]. The most 

probable cause of the ULVZ is partial melting at the base of the mantle [Garnero et al., 

1998]. Although the HBMS model did not include the melting process, the edges of the 

HBMS are substantially hotter than elsewhere, which become candidate locations for such 

zones.  

2.7 Summary 

In conclusion, we have tested a dynamic model HBMS by mapping excess T and 

density into VP and VS and comparing data against predicted synthetics. Not only did the 

dynamic model predict accurate results generated from the model, it suggests additional 

features that appear to be observable, such as plumes along the edges and a fast lens near 

the CMB, D". An observed record section sampling beneath the Superdome can be 

modeled by assuming a velocity gradient (fast lens) and a 1.7% jump in S velocity situated 

90 km above the CMB. However, since the above mapping is strongly dependent on 

assumed perturbations of the shear modulus to changes in T and composition, we have a 

self-compatible model which lacks uniqueness. The next step is to add the mineral physics 

constraints and retest all the appropriate datasets. We will then be in position to better 

understand the dynamics behind some of the largest coherent structures in the mantle.  
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Chapter 3 

Lower Mantle Tomography and Phase-change 

Mapping * 
 

 

 

3.1 Abstract  

A lower mantle S-wave triplication (Scd) has been recognized for many years and appears 

to be explained by the recently discovered Perovskite (PV) to Post-Perovskite (PPV) phase-

change. Seismic observations of Scd display (1) rapid changes in strength and timing 

relative to S and ScS, and (2) early arrivals beneath fast lower mantle regions. While the 

latter feature can be explained by a Clapeyron slope (γ) of 6 MPa/K and a velocity jump of 

1.5% when corrected by tomographic prediction [Sidorin et al., 1999], it does not explain 

(1). Here, we expand on Sidorin’s mapping approach by attempting a new parameterization 

that requires a sample of D" near the ScS bounce point where the phase height (hph) and 

velocity jump (β) are functions of shear velocity perturbation (δVS). These parameters are 

determined by modeling dense record sections collected from USArray and PASSCAL 

data where Grand’s tomographic model is the most detailed in D" structure beneath Central 

America. We also address the range of γ to generate new global models of the phase 

boundary and associated temperature variation. We conclude that a γ near 9 MPa/K is most 

* This chapter appears as  
Complexity of D” in the presence of slab-debris and phase changes, Daoyuan Sun, Teh-
Ru Alex Song, and Don Helmberger, Geophysical Research Letters (2006), 33, L12S07, 
doi:10.1029/2005GL025384. 
 
Lower mantle tomography and phase change mapping, Daoyuan Sun and Don Helmberger, 
Jounral of Geophysical Research (2008), 113, B10305, doi:10.1029/2007JB005289. 
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satisfactory but requires β to be non-uniform with a range from about 1.0 to 4.0% with 

some slow region samples requiring the largest values. Moreover, the edges of the 

supposed buckled slabs deliminated by both P and S-waves display very rapid changes in 

phase-boundary heights producing Scd multipathing. These features can explain the 

unstable nature of the Scd phase. The fine structure at the base of the mantle beneath these 

edges contains particularly strong reflections indicative of local ultralow velocity zones, 

which are predicted in some dynamic models.  

3.2 Introduction 

Large-scale structures in the lower mantle derived from numerous tomographic 

imaging consistently show a belt of high velocity anomalies along the circum-Pacific 

(Figure 3.1a). Low velocity anomalies beneath the mid-Pacific and Africa are also well 

established although with smaller-scale plume-like features which remain controversial 

[Anderson, 2005]. Relatively sharp features have been reported at mid-mantle depths 

beneath North America which appear to be slabs [Grand et al., 1997], and many 

researchers interpret the high velocity ring (Figure 3.1a) as slab debris, e.g., review by 

Garnero, [2004] and van der Hilst, [2004]. The deep earthquakes occurring in the down-

going slabs produce simple isolated body wave phases (P and S) which can be used to 

study the smaller-scale features. In particular, secondary arrivals can be seen between S and 

ScS forming a small triplication, roughly 75° to 85° (Figure 3.2). These arrivals can be 

commonly observed on recording stations (continental paths) sampling the fast Pacific 

Ring as first pointed out by Lay and Helmberger [1983]. The position of the triplication 

relative to S and ScS appears to vary regionally with the earliest occurring beneath eastern 

Asia [Wysession et al., 1998]. This depth-dependence of Scd triplications was used to 

attempt a phase-change interpretation by [Sidorin et al., 1998] in terms of a positive 

Clapeyron slope. He imposed a velocity jump defined by 
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where V(h) is the original tomographic velocity at the elevation h above the CMB, 

V' is the new velocity, β is the amplitude of the velocity jump,  is the latitude, and  is the 

longitude. The width of the phase transition is wph which was assumed to be 5 km in 

Sidorin’s efforts based on upper mantle studies. This sharpness produces a clear Scd in 

synthetics as displayed in Figure 3.2c and d, while a broad transition produces a gradual 

long-period onset (Figure 3.2b). A simple break in the velocity gradient (Figure 3.2a) 

produces only a long-period diffraction not easily seen at typical periods used in these 

studies. The rph in Equation (3.1) is defined by 

),,h(T
)h(g),,h(

),(hh),,h(r phph 

                 (3.2) 

where g is the gravitational acceleration in the mantle. ρ is the density, which is assumed to 

be same at different locations with the same depth of h here. ∆T is the non-adiabatic 

temperature perturbation. 

))(h(V)h(

),,h(V
),,h(T
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2





                               (3.3) 

ΔV is the velocity perturbation in tomographic model. α(h) is the depth- dependent 

coefficient of thermal expansion. Γ characterizes the temperature dependence of the shear 

modulus in the mantle. We concentrated on changes in β and h assuming  = 6. The phase 

elevation above CMB for the reference 1D model is defined by hph where the velocity jump 

occurs. Thus, only three parameters were needed to perform the mapping (Figure 3.1b), 

namely, β, hph, and γ. Sidorin et al [1999] calibrated this model to the Scd triplication data 

by matching the differential times (Scd – S) for various regions around the circum-Pacific. 

A 2D synthetic for each source-station pair was used to determine the hph and γ for each 

region following a least-square modeling procedure. The velocity jump β = 1.5% was 

assumed as the smallest possible jump to explain Scd in fast regions and thus help to 

explain the few values reported beneath warm regions [Wysession et al., 1998]. To preserve 

the ScS-S differential times used in deriving Grand’s model, Sidorin et al [1999] inserted a 

low velocity zone just above the CMB as part of the mapping procedure.  

Two major advances have occurred since this interpretation of the Scd phase data; one 

in mineral physics and the other in the advance of broadband seismic arrays. The obvious 
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Figure 3.1: Display of tomographic results from Grand [2002] along with possible 
mapping into thickness of a proposed post-perovskite layer at the CMB. a) contains the 
bottom 240 km layer variation in shear wave velocity. b) displays a map of a possible 
phase boundary discontinuity constructed from a) assuming that temperature can be 
deduced from these shear velocity variations (δVs) and uniform global chemistry with γ =  
6 MPa/K [Sidorin et al., 1999]. 
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Figure 3.2: The synthetics for possible 1D models of D". a) is the PREM model and the 
synthetics do not have the Scd phase. b) includes a linear velocity gradient and produces 
the extra Scd phase between S and ScS. c) has a sharp velocity jump plus a gradient, and 
d) has two sharp velocity jumps in the model, simulating a complex transition zone. 
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 major breakthrough was the direct experimental evidence for a post-perovskite 

phase transition under conditions close to those at the D" region [Murakami et al., 2004]. 

Highlights of this discovery have been given by several authors [Duffy, 2004; Garnero, 

2004]. Numerous studies, both theoretical and experimental, indicates that a phase 

transition with a positive γ should occur near D" with a velocity jump between 1.5 to 3% 

but perhaps over a 150 km zone depending on chemistry, e.g., review by Hirose [2006]. 

Although the details about this phase boundary (velocity jump, phase transition thickness, 

etc) are extremely important in interpreting Scd data as evident in Figure 3.2, they remain 

largely unknown. 

The second issue of modern arrays and their impact on D" is rapidly becoming apparent 

as discussed in Lay and Garnero [2007]. While Sidorin et al. [1999] averaged over regions 

treating variations as noise to obtain smoothly varying structure, recent studies by Hutko et 

al. [2006], Sun et al. [2006] and Kito et al. [2007] suggest rapid jumps in the phase 

boundary height occurring laterally over short-scale lengths of 50 km to 100 km. Are such 

features caused by buckled slabs since they occur near the edges of sharp structures or are 

they caused by phase boundary shifts induced by chemical changes or perhaps a 

combination? The greatly improved station coverage has also allowed better sampling and 

resolution of P-velocity structure. Since the predicted phase-change properties for P-waves 

are nearly negligible, such data becomes useful in defining slab-debris in D". In particular, 

the recent study of differential PKP phases (PKPab – PKPdf) strongly supports the detailed 

tomographic images beneath Central America [Sun et al., 2007b]. Accurate differential 

times come from measuring the waveform correlation between PKPdf and PKPab, which is 

sensitive to the bottom 500 km of the mantle. PKPab paths from deep South America 

earthquakes cross the Core-Mantle-Boundary (CMB) beneath Central America, as 

indicated by the circles and crosses in Figure 3.3a. These differential times can be predicted 

amazingly well from the P model (Figure 3.3a) scaled from Grand’s shear velocity 

tomographic model. Note the slow-to-fast structure beneath the Cocos Plate with a 

transition zone less than 300 km wide occurring just off the coast line. There is also a sharp 

drop in cross correlation coefficient between PKPdf and PKPab by over 30% along this same 

boundary indicative of ultralow velocity zones with small sharp features [Luo et al., 2001].
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Figure 3.3: a) Observations of (PKPab-PKPdf) residuals sampling beneath Central 
America along with proposed D" P-wave model in the background [Sun et al., 2007b]. b) 
contains a detailed map of Grand’s tomographic image of Central America. The four 
subregions, P, A, C, and M are studied in detail where ScS bounce points are indicated in 
diamonds, triangles, inverted triangles, and squares, respectively. c) Display of a map of 
events (stars) along with path geometry to various arrays (open triangles) superimposed 
on the tomographic results [Grand, 2002]. L1 [Lay et al., 2006], H1 [He et al., 2006], and 
S1 [Sun et al., 2007b] paths were used to quantify the D” structure beneath the slow 
velocity regions. 
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Combining the S and P wave results yields R = dlnVs/dlnVp of about 1.9 which is too 

low to be produced by temperature alone [Karato and Karki, 2001]. The P and S velocity 

properties for the Superdomes proposed earlier by Masters et al. [2000] now appears to be 

well accepted, further confirming the case for changing chemistry. 

While Figure 3.1b predicts weak Scd synthetics when the phase-boundary is near the 

CMB [Sidorin et al., 1998], recent studies identify Scd clearly beneath warm regions as 

displayed along the lines in Figure 3.3c [He et al., 2006; Lay et al., 2006; Sun et al., 

2007a]. The latter study presents Scd data sampling beneath the middle of the South 

African Superdome which is modeled with a velocity jump of 4% occurring 80km above 

the CMB. In short, Sidorin’s model based on relative travel times needs to be re-examined 

in terms of waveform modeling of record sections containing Scd detections at several 

ranges to establish a true triplication with both amplitude and timing information. This is 

particularly difficult since shallow upper mantle structure and mid-mantle slabs can alter 

pulse waveforms [Song and Helmberger, 2007]. It appears that stacking high density 

observations or detailed waveform modeling can help resolve these issues and provide a 

clearer picture of the PV to PPV phase boundary and possible change from PPV back to 

PV near the CMB [Hernlund et al., 2005].  

Here we update Sidorin’s effort by developing a new phase boundary mapping tool. To 

achieve this, we will investigate data sampling beneath Central America, a region well 

studied, as discussed above.  

3.3 Detailed Waveform Modeling for a Sample beneath Central 

America 

We used shear wave records of the broadband array CDROM for two deep earthquakes 

in Northern Argentina on April 23, 2000 (Figure 3.4). The two events are roughly the same 

location. Horizontal component seismograms are deconvolved by instrument responses and 

bandpass filtered (0.01–1 Hz) before the rotation to SH component of displacement. The 

SH velocity seismograms are filtered with a bandpass filter (0.02–0.2 Hz). Data from the 

smaller of the two events is presented in Figure 3.5 along with synthetics generated for the 
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Figure 3.4: Geometry of the event and stations together with Grand’s shear wave velocity 
anomaly in the lowermost 240 km of the mantle [Grand, 2002]. The event (star), 
receivers (triangles), and ray paths are shown in the inset. The pink open circles indicate 
the ScS bounce points beneath the western Cocos Plate for the ray paths (red lines). The 
yellow rectangle indicates the position where a large jump in D" discontinuity was 
detected by Hutko et al. [2005]. The D" region along corridor A’A is addressed. 
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Figure 3.5: Comparison of synthetics (red) of (a) displacement and (b) velocity with data 
(black) for various models, starting from the left: 1D model, Grand’s tomographic model, 
SPBLG and SPBUL model. The synthetics have been aligned on the S-wave 
observations.   
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Figure 3.6: The shear wave velocity anomaly of 2D cross-section A’A in Figure 3.4 for 
different models. The models are a) Grand’s tomographic model [Grand, 2002], b) 
SPBLG and c) SPBUL model. The reference 1D model is modified Grand’s 1D model, 
which smoothes the ~1% Vs jump at the depth of ~250 km above the CMB at the origin 
model, essentially treating this velocity jump in the same manner as tomographic model. 
SPBLG model is constructed by adding a discontinuity and a compensating negative 
gradient at the base of mantle. The phase transition is characterized by hph = 105 km, ph = 
6 MPa/K. The SPBUL model contains an additional phase boundary, and modified 
velocities. The phase change boundary is shown by the white line. Grand’s tomographic 
model is on a 22 grid. The vertical resolution is around 200 km. Both SPBLN and 
SPBUL have 0.50.52 km resolution by interpolating the Grand’s model above the 
phase change boundary. The velocity structures are much smoother in the later models 
than that in Grand’s model. The bottom panels show the vertical profiles for the cross-
section aa’, bb’, and cc’. Dotted lines indicate the PREM velocities. The dashed lines 
show the shear velocity with added tomographic velocity perturbations on PREM values. 
Red lines give the model by adding a discontinuity on an altered Grand’s model and a 
LVZ above the CMB. SPBUL model also introduces a small negative jump (-1.7%) in 
the middle of D" to represent PPV changing back to PV in the thermal boundary layer.  
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Figure 3.5: The results of cross-correlation between data and synthetics on both a) 
displacement and b) velocity. Purple diamonds show the 1D and blue triangles show the 
Grand’s tomographic model results. Red squares are the results of Sidorin’s type models. 
The dotted lines indicate where a possible ULVZ could exist. These synthetics are 
sampling the D" structure along the line of circles displayed in Figure 3.4. 
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three models. The records show strong and clear Scd arrivals between S and ScS (Figure 

3.5) at the epicentral distance (Δ) of 79° to 82°. Synthetics for 2D models were generated 

with the semi-analytic code WKM which is discussed in chapter 2. An advantage of this 

hybrid method is that it can be applied to existing tomographic models directly. In the 1D 

model, we fix the discontinuity at the depth of 264 km above the CMB and characterize the 

search as in Lay et al. [2004]. The velocity above the discontinuity is constant up to certain 

depth H and a velocity jump is specified across the discontinuity. The velocity jump and H 

are chosen by modeling the data. The preferred 1D model determined by grid-search in 

Figure 3.6 is similar to the model SLHA [Lay and Helmberger, 1983]. While one can 

obtain a good fit at the mid-distance, the timing is significantly off at the ends, the model is 

too early at the top traces and too late at the bottom. One can obviously fit any one record 

by adjusting the two parameters but we prefer a model that is more related to the 

tomography. However, the tomographic model can not predict Scd as displayed in Figure 

3.5 without a discontinuity. Thus, it is necessary to impose a velocity discontinuity in the 

tomographic model for fitting the data as discussed above. In Figure 3.5, we found β = 

1.7%, and hph = 105 km as the best fit following a grid search, model SPBLG. The hph is 

smaller than the previous suggested value hph = 200 km and β is also slightly larger than 

1.5% in the former study [Sidorin et al., 1999], which is caused by using an updated 

tomography model as applied locally. Deeply penetrating slabs may also contribute to the 

difference in hph by changing the chemistry. The velocity cross sections after the different 

mapping are displayed in Figure 3.6. 

The high velocity structure on the upward path of Scd decreases the separation between 

Scd-S which mimics raising the discontinuity. The combined effects of both features 

produces a good fit to the data. However, these features tend to also shorten the separation 

of (ScS-S) which requires still greater velocity reductions approaching the CMB to 

maintain Grand’s ScS travel times. 

Model SPBUL fits the data somewhat better than SPBLG at ranges 80.1 to about 81.2 

which can be seen in the correlations presented in Figure 3.7. This slight improvement is 

caused by enhancing and shifting the structure just about the discontinuity. With the 

mapping method here, model SPBUL captures the distinctive features of Scd of station 
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Figure 3.6: Construction of synthetics (∆=80°) shows the sensitivity to various aspects of 
SPBUL velocity structure. The results for displacement are given on left with velocity on 
the right. 
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N02 and N04. But the strength of the ScS synthetic pulse at the two most distant 

stations (N01 and N02) is too strong, suggesting that the ultralow velocity zone must 

disappear or be a local feature beneath the southern stations only. But the velocity structure 

below the fastest structure is not well resolved with this dataset as shown in Figure 3.8. 

These synthetics were generated in parts where the model features have their field 

contributions isolated. Note the dominance of Scd with its relative phase shift producing a 

sizable down swing in displacement. The Scd is phase-shifted since it is part of a triplication 

and the presence of this negative pulse made it difficult to isolate the latter arrivals caused 

by double crossing and ULVZ. Thus, it will be quite difficult to detect a PPV to PV 

boundary in the presence of a complex Scd, at least at this range of distances as suggested 

by Flores and Lay [2005]. 

While the range 79° to 81° is particularly effective for identifying Scd, it is too 

restrictive to resolve deeper structure beneath the boundary except to delay ScS. Since both 

the Scd and an ULVZ could enhance the strong negative pulse near 81°, we are faced with 

considerable uncertainty. However, either interpretation requires extreme lateral variation 

which a folded-slab could produce especially if it changes the local chemistry, i.e., thickens 

the phase-boundary transition zone [Akber-Knutson et al., 2005]. There is also the issue of 

predicted instabilities in the thermal boundary layer at the edge of slab structure from 

dynamic modeling [Tan et al., 2002]. Perhaps, the 2-dimensional array data from USArray 

will help resolve some of these issues. 

A phase-induced boundary at reduced lower mantle temperatures induced by slab 

debris remains viable but probably requires other complications as suggested by Garnero 

and Lay [2003] to explain rapid changes in Scd strengths. 

3.4 Calibration of Tomographic Models 

In this section, we will follow the basic procedure suggested by Sidorin et al. [1999] 

except we will allow regional variation of γ, hph and β. Note that Sidorin et al. [1999] found 

solutions along a rectangular corridor of hph: γ space running from 2 < γ < 12 MPa/K and 

250 < hph < 150 km. The best fitting least-squares solution is near hph = 200 km and γ = 6 

MPa/K for a uniform global model but γ as high as 12 MPa/K were accepted. Here, we 
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assume that the velocity perturbation of δVS in the D" layer is indicative of local 

dynamics and constitutive state-properties. Thus, each sample of Scd in Figure 3.3b 

(denoted by P, A, M, C) is assumed to have unique properties in terms of their δVS 

averaged over a 2°×2° grid, and all other samples with the same δVS will affect the phase 

boundary the same. To establish that functionality, we determine the best synthetic 

waveform fits to observe record sections to set hph(δVS) for a number of γ. By matching 

both arrival times and amplitudes, we were forced to vary β or β(δVS). The results are 

presented in Figure 3.9 and will be followed by zone-by-zone comparisons of data with 

synthetics. To investigate the effects of different Clapeyron slopes on our phase boundary 

mapping, we tried 4 values of Clapeyron slope (γ = 3, 6, 9, 12 MPa/K). For each γ, we 

repeat the calibration process to find the hph(δVs), which matches the local triplication data 

in each zone. The hph becomes small when increasing γ for zone M and C.  Both Zone M 

and C have relatively large positive velocity anomaly (δVs > 0) and negative non-adiabatic 

temperature perturbation (ΔT < 0). With negative ΔT in Equation (3.2), the hph will decrease 

by increasing γ to make constant (h), which is required to fit the waveform data.  If ΔT is a 

small perturbation, the contribution from ΔT in Equation (3.2) is close to 0 and the change 

of hph is subtle for zone P and A. The same velocity jump β(δVs) are used for different γ to 

fit the amplitudes of the data.  

In each zone, β and hph are allowed to vary such that the predicted synthetic best 

matches the observed waveforms. We allow β to vary from 1.0 to 4.5% and hph from 50 to 

300 km. Each combination is tested applying a grid-search where the tomographic map 

(Figure 3.1a) is used as a reference model. The preferred combinations are given in Figure 

3.9 where hph ranges from 100 to 240 km and β from 3.5 to 1.7% for all four different γ. 

The variable (δVs) is defined relative to the tomographic model. The 1D velocity-depth plot 

for the average ScS in each sample is given in the lower panel of Figure 3.9 indicating the 

relatively large variation as a function of δVS. The large low velocity zone approaching the 

CMB is mostly an artifact forced by fitting the ScS-S predictions from Grand’s model. 

However, adding a PPV to PV reduces this feature but is difficult to distinguish at these 

ranges [Flores and Lay, 2005; Sun et al., 2006]. Thus, we concentrate on the upper PV to 

PPV phase transition.  
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Figure 3.7: Results from various subregions with h(δVs) in (a) for several γ and β(δVs) in 
(b) which is the same for all γ. Velocity profiles for the midpoint of each subregion is 
given in (c) along with PREM as a reference. The γ is equal to 6 MPa/K in the mapping. 
Note that the ray paths for Scd are traveling horizontally at this point and are strongly 
influenced by neighboring structure as can be seen in Figure 3.3. 
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Figure 3.8: Display of synthetics (red traces) matching the recorded waveforms from area 
P (black traces), which were recorded by the USArray of a shallow transform event 
(20050710). The model in a) has hph = 220 km and β= 3.5%. b) model has hph = 200 km 
and β= 1.5%. γ in both models are 6 MPa/K. Dotted lines are added to indicate the three 
arrivals: S, Scd, and ScS. 



 

 

41
3.4.1 Zone P 

As discussed earlier, there are very few samples of Scd beneath the Central Pacific 

because of the limitation imposed by the use of deep events and station-source geometry. 

However, it appears that USArray and other large arrays will allow sufficient data to 

identify Scd even from shallow events, Figure 3.10. This is a shallow transform event 

occurring on the Western Chile Rise (Figure 3.3c). We have plotted the data (SH-

component only) over the triplication distances expected. Since shallow strike-slip events 

generally produce two pulses of the same sign within a few seconds (S + sS), they merge 

together to produce one simple pulse which is labeled S in the figure and idealized to the 

first synthetic pulse. There is some variation of the observed S-pulse across the array which 

could be caused by shallow receiver structure [Song and Helmberger, 2007] or generated in 

the source region. However, both Scd and ScS appear to be recognizable. The tomographic 

model predicts the separation of (ScS-S) very well which can be expected from the detailed 

samplings of transform fault events by Grand [1994]. These 2D synthetics were generated 

with the WKM routine [Ni et al., 2000] along 2D sections through the 3D model. Note 

there are some variations along the record section caused by small changes in azimuth 

along the various paths. The reference height and velocity jump for this match is hph = 220 

km, β = 3.5%, where δVs = -0.5% and assumed γ = 6 MPa/K. Synthetics generated by other 

γ-models (Figure 3.9a) produce nearly the same results. Figure 3.10b contains predictions 

from the original Sidorin et al. [1999] mapping but with an updated tomographic map 

[Personal communication with S. Grand], and where β = 1.7%. Obviously, the Scd is very 

small and late in these predicted synthetics.  

Because Scd is small relative to S and ScS in the data, it proves difficult to identify and 

measure accurately. At distances 76° to 78°, it is generally isolated but weak. At distance 

from 79° to 81°, it is generally stronger but can be contaminated by complex S. Even 

though our preferred model has about the correct timing on average, there are obvious rapid 

fluctuations in Scd observations both in strength and timing, i.e., near 76.2° and 78.6°. The 

synthetics show some of this scatter which appears to be associated with small changes in 

azimuth (Figure 3.3) as embedded in the tomography model. Allowing wph to vary could 

also affect such changes as indicated in Figure 3.11. Generally, Scd becomes smaller with  
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Figure 3.9: Comparison of a sensitivity test involving changes in wph from a) 5 km to b) 
25 km. The synthetics are calculated for zone P with hph = 220 km and β= 3.5%. The top 
panel shows the 1D vertical profiles (solid lines) in the middle of zone P for different wph 
along with PREM model (dash lines). 
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increasing wph at these periods but variation in the tomography again causes fluctuations. 

Also, note that with wph = 25 km, the effective transition occurs over 100 km (Figure 3.11b) 

because of the functional form in Equation (3.1). This comparison of synthetics indicates 

that the wph parameter proves difficult to determine at this distance range. Thus for our 

purposes, we fix wph = 5 km. Much stronger effects are observed in the “C” samples as 

discussed later.  The large β jump was required to generate a significant Scd pulse because 

the lower mantle velocity gradient is so low, Figure 3.9c, compared to fast regions [Sidorin 

et al., 1998]. 

The phase ScS is usually less well defined at this range, where ray paths begin to 

sample the complexity of D". In the previous paragraph of detailed modeling, we try to 

model whole records by measuring a misfit coefficient based on cross-correlations (CC) 

both in displacement and velocity. Generally, simply overlying the observations with 

synthetics provides a very effective means of judging the goodness of fit. Here, we used 

this CC measure of fit but removed ScS by cutting the data and synthetics by 5s before 

ScS. A plot of misfit errors for a grid-search over β and hph is displayed in Figure 3.12 

where we have included predictions from the Sidorin et al. [1999] model. By examining 

the record sections, one can easily pick out the better model. Although we have conducted 

such misfit calculations for all the data, we will simply display the best-fitting synthetics in 

the following analysis assuming γ = 6 MPa/K.  

3.4.2 Zone A 

The paths from these observations (Figure 3.13) sample a region nearest to PREM in 

that both S and P data (Figure 3.3) are relatively normal. The hph is 180 km as displayed in 

Figure 3.9a when γ = 6 MPa/K. However, there is considerable variation in ScS–S times at 

ranges 77° to 78°. This feature is modeled quite well by Grand’s tomographic model where 

the mid-mantle slab plays a strong role. We have plotted the comparison between data and 

synthetics in two ways, one aligned on data S arrival (Figure 3.13a) and one aligned on 

predictions from the IASP91 reference model (Figure 3.13b), which displays obvious 

variation in S travel times. Note that now ScS plots more on a line  
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Figure 3.10: Display of misfit errors in modeling the data for area P with γ = 6 
MPa/K.where the preferred parameter search yields β = 3.5% with hph = 220 km. The 
black dot is the solution predicted by Figure 1b using the mapping proposed by Sidorin et 
al. [1999]. The circles denote the error measure defined by (1 - CC), where CC is the 
cross-correlation coefficient over the S and Scd wavetrain. The smaller circle means the 
larger value of CC. 
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Figure 3.11: Display of best-fitting synthetics (red traces) for record sections sampling 
area A recorded by the POLARIS array of a deep South American event (20060917). The 
model has hph = 180 km and β= 1.7%. The displacement profiles are aligned on the 
arrival of S in a) and the predicted arrival of S for the IASP91 model in b). Note the 
remarkable predictions of S arrival times from the tomographic model. 
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as well as Scd. Features such as the strong variations in S are becoming more 

recognized with the advance of more arrays and makes the Scd mapping even more 

challenging. 

3.4.3 Zone M 

This sample (Figure 3.14) was obtained mostly from the Canadian National Seismic 

Network, Figure 3.3c. It contains the fastest D" velocity regions comparable to those found 

beneath Central Asia [Wysession et al., 1998]. The tomographic results do not predict the 

sScS-sS differential times as well as other samples, suggesting that the D" structure needs 

to be faster. However, the Scd phase is quite clear and easily modeled yielding an hph = 240 

km. The direct S phase was weak (nodal) which is why we have displayed the sS profile of 

data. The depth effect helps to separate (sScd – sS) and aids in identifying and 

characterizing the strength of Scd. We have calculated synthetics with parameters from the 

zone “C” (Figure 3.9) to emphasize the difference in Scd sampling. Although not 

displayed, predictions from the Sidorin et al. [1999] model do quite well for this section 

since he assumed a similar β = 1.5%. Thus, our new model will predict results quite similar 

to his in fast regions. 

3.4.4 Zone C 

This sample is in a region where many detailed studies have been conducted, where 

rapid changes have been reported indicating some strong and some very weak Scd 

observations [Garnero and Lay, 2003]. Migration of the array data suggests complex 

features with interbedded layers of velocities [Thomas et al., 2004]. Some of this variation 

can be seen in our sample C as recorded by USArray but reasonably modeled with hph = 

100 km as displayed in Figure 3.15a,b for ranges less than about 78.5°. We have included 

two sensitivity displays indicating the effects of changing β = 3.5% (Figure 3.15c) and of 

changing the hph to that used in zone P (220 km) (Figure 3.15d). These two results do not fit 

the data as well and indicate relatively delayed Scd relative to S which is distinctly different 

than that predicted by the Sidorin’s model, as discussed in the next section. Beyond about 

78°, the Scd ray paths sample the edge of the fast blue zone as displayed in Figure 3.3b and 
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Figure 3.12: Comparison of synthetics (red traces) with observations (black traces) from 
the Western Canadian stations of a Southern American event (20050726). For model a), 
hph = 240 km and β = 1.7%. The synthetics in b) are produced by a model with hph = 100 
km and β = 1.7% to indicates sensitivity relative to the model for zone C. 
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Figure 3.13: Comparison of synthetics (red traces) and observations (black traces) 
sampling subregion C of a deep South American event (20061113). a) shows the 
displacement profiles for a model with hph = 100 km and β = 1.7%. The velocity profiles 
for the same model are shown in b). c) displays results from a model defined by hph = 100 
km and β =3.5%, whereas d) assumes a model with hph = 220 km and β = 1.7%. Note that 
fits in b) are relatively good at distances less than 78.5 º. 
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greatly complicate the waveforms. Some of this complexity is addressed in Sun et al. 

[2006] and Helmberger et al. [2005], where both WKM and finite-difference modeling was 

discussed. This laterally varying D" region sampling the same area is also discussed in 

Thorne et al. [2007] where some 2D structures suggest double Scd arrivals. We will 

address some of these issues in the next section by including these very late Scd arrivals 

which are sampling the edge of the fast blue zone.  

3.5 Mapping, Predicting, and Refining 

In this section, we will apply the parameters determined in the previous section in 

generating a new hybrid model. The model is still based on Grand’s tomographic images 

and the relationship given in Equation (3.2). However, uniform hph is now replaced by 

hph(δVs), which is a function of the local shear velocity perturbation. We assume that the 

bottom 240 km of Grand’s model or D" can be used to estimate regional differences. 

Grand’s present model is presented in 2°×2° grids and contains a small velocity jump at 

240 km above the CMB in the reference 1D model. This feature is smoothed-out and a 

large number of layers and elements applied as in Sidorin et al. [1999]. We then average 

the velocity perturbations in a circular cylinder over the depth of 240 km with a radius of 2° 

to establish δVs. This δVs is then used to fix hph assuming the curve in Figure 3.9a. The 

map of the phase height in Figure 3.16a is constructed in this manner assuming γ = 6 

MPa/K. Note that even though the slowest and fastest regions have about the same hph their 

actual phase-height is strongly modified by the tomographic model (roughly 50 km to 300 

km) because of the temperature effect implied by the tomographic model. The 3D velocity 

model is then generated by adding the variation in β in Equation (3.1) as modified to agree 

regionally with Figure 3.9b. Cross-sections along a radial cut (AA') and along constant 

azimuth (BB') are displayed in Figure 3.16b and c. The yellow halo-like structure in Figure 

3.16a appearing around the raised plateau is caused by point C in Figure 3.9a and predicts 

the strong drop in elevation at the edges of the original supposed buckled-slab. Ray paths 

along two azimuths, one sampling the edge along the yellow trough (CC', Figure 3.16d) 

and one sampling the fast blue zone essentially along section DD' (Figure 3.16e) have been 

included in 2D tomographic images. Obviously, we expect to see considerable complexity 
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Figure 3.14: Detailed display of phase boundary topography; a) displays the phase 
boundary variation beneath Central America. Velocity cross sections along profiles AA′ 
and BB′ sampling the raised structure are given in b) and c). The phase boundary is 
indicated as white lines. d) and e) show the cross-section along path CC′ and DD′ from an 
event in South America. Ray paths are included for S (blue) and ScS (red). 
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bracketed between these two azimuths, especially along CC'. We have included 

some example ray paths displaying the structure sampled by USArray in Figure 3.16d and 

e. The sampling of the phase boundary (Scd) becomes very complex. 

Figure 3.17 displays some of these features where the ScS bounce points are indicated 

for two “fan shots” with one crossing the blue structure (red arc) and one just south of the 

structure in black. We generated 2D synthetics (Figure 3.17b) at a constant distance of 

79.5° for event A assuming two depths (150 km and 600 km). These synthetics are aligned 

on PREM prediction.  Note that Scd is particularly late at azimuths less than 280° and shifts 

rapidly forward near 290° and again between 315° and 330°. The Scd timing changes by 

over 12 s and its amplitude changes by about a factor of 3 along with significant wave 

shape distortions caused by in-plane multi-pathing. Near 320°, the Scd phase shifts quite 

close to S for the deep event which could easily be enclosed within the S-phase, thus 

making it disappear abruptly. 

These synthetics become even more complicated when we include azimuthal multi-

pathing as displayed in Figure 3.17c. To emphasize the variable nature of the 3D 

synthetics, we have plotted each trace aligned relative to PREM prediction. Thus, paths 

with azimuth greater than about 335° sample the fast velocities beneath the Midwest and 

eastern seaboard producing earlier arrivals than PREM prediction while those to the west 

are about 6 s late. This difference in travel times is caused by the rapid change in upper 

mantle structure when crossing the Rocky Mountain Front and is well known [Helmberger 

et al., 1985]. 

The 3D synthetics (Figure 3.17c) were generated from neighboring 2D sections 

sampling the Fresnel zone by applying diffraction operators [Helmberger and Ni, 2005a]. 

Rapid travel time changes near the fastest geometric ray can cause the pulses to spread out 

(multipath), i.e., near 275° or spike-up as at 340°. These features are essentially controlled 

by the travel-time curvature as a function of azimuth. It can affect all phases but appears to 

be particularly strong for Scd. This feature could be the reason for the apparent unstable 

nature of Scd detection [Garnero and Lay, 2003]. Both the 2D and 3D synthetics show a 

jump near 320° for ranges near 81°. This feature is more subdued in the 79° fan-section 

since the fast structure is slightly removed from the boundary (black arc in Figure 3.17a). 
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Some of the predicted changes can be tested against existing data with some success, as 

displayed in Figure 3.17d. The data contains paths to California (in black) and to Colorado 

(in red). Note that Scd is stronger and delayed in the California stations at ranges greater 

than 80.5° and nearly the same at shorter distance. The synthetics in Figure 3.17c display a 

similar pattern as outlined in red and black zones. However, the differences predicted by 

the model are not severe enough, which requires some added refinement by lowering the 

trough along the fast region or adding a ULVZ at the CMB. This zone at the edge of the 

blue structure will be well-sampled by USArray as it develops and the details of this 

interesting structure can be improved. A sample is displayed in Figure 3.18a. Note the 

abrupt change in character in the gray zones where the ray paths encounter the sharp jump 

in phase-height. Beyond this range, the Scd becomes difficult to identify and the ScS phase 

becomes complicated. The ScS phase should become asymptotic to S in travel time at the 

larger ranges assuming a PREM model; however, ScS becomes weak and delayed for 

many samples. The synthetic predictions are given in Figure 3.18b and display a similar 

disruption but shifted slightly to shorter distances. Shifts of this magnitude are common 

when attempting to model differential phases assuming enhanced tomographic images 

[Helmberger and Ni, 2005b]. 

 

__________________________________________________________________ 

Figure 3.15: Simulations of seismic sections sampling the complex geometry of the phase 
boundary variation. a) displays the phase boundary variation beneath Central America. 
The red circles are ScS bounce points on the CMB for a “fan shot” for an event A in 
South America (red star) at distance of 79.5º. The black circles indicate ScS bounce 
points for a “fan” shot for event B at a distance of 79º assuming a source depth of 600 km. 
b) displays 2D synthetics generated for event A at two different depths, 150 km and 600 
km. The shaded zone indicates the sampling of the region of high phase boundary 
elevation (blue zone in (a)). Records are aligned on the S-phase. c) shows the 3D 
synthetics for event B at distance 79° and 81°, which align on IASP91 travel time 
predictions. The dark black traces correspond to azimuths towards California (TriNet) 
and red traces relative to Colorado Stations (CDROM). d) Record sections for an event 
(20000423) with the same location of event B in a). The black traces are recorded by 
TRInet which are at smaller azimuth and relate to the dark black traces in c). The red 
traces were recorded by CDROM array at large azimuth and relate to the red traces in c). 
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Figure 3.16: Comparison between a) data and b) synthetics in velocity for event 
20061113. The regions with rapid variation of Scd are marked with shaded area. 
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We present (ScS-S) predictions from our model in Figure 3.19a where we have 

included a large number of data samples measured from the recent USArray data. The 

white symbols are differential times from the (ScS-S) waveforms presented earlier in 

Figure 3.18a. The differential values are small and slightly negative at ranges 75° to about 

84° and positive thereafter. Some large delays occur beyond 85°. Note that these values 

occur for bounce points slightly under the elevated phase boundary as displayed in Figure 

3.19b. These large delays can be explained by adding a ULVZ layer (20 km thick with a 

shear velocity drop of 30%). However, most of the delays fall along the model predictions. 

The other symbols are from events along the same corridor but tend to be negative 

indicating that ScS is early, probably caused by the high velocity PPV layer. 

Several researchers have reported on ULVZs near about N7.5°W90°, i.e., Revenaugh 

and Meyer [1997], and more recently Sun et al. [2007a]. The latter study uses the cross-

correlation of PKPab to PKPdf to detect rapid changes in velocity with scale lengths 

similar to those in Figure 3.19b. Low values of cross-correlations have been modeled by 

Luo et al. [2001] with small pockets of ULVZs. It appears that another line of ULVZs 

exists along the eastern boundary of the elevated phase-boundary although we await 

USArray for a detailed ScS-S sample of this edge. Lastly, note that the large offset in Scd 

travel times reported by Hutko et al. [2006] occurs along the southwest corner of our 

structure in good agreement with their observation. 

3.6 A Global Prediction of the New Mapping 

We have generated a strategy for mapping the tomography model to phase boundary. 

Because the mapping is based on limited samples beneath Central America, we want to 

understand whether this mapping is accepted for global phase boundary. How well this 

model predicts synthetics is presently being addressed but we expect it to work best when 

sampling away from the edges of the slab debris of the lowermost mantle. An example is 

given in Figure 3.20. This particular Hindu-Kush event is at a depth of 240 km and 

provides the extra set of observations (sS) which has the advantage of separating receiver 

effects from the target phase [Lay, 1986]. The new mapping produces the Scd phase that can 

be identified in many of the traces. Note the observed ScS phase (Figure 3.20c),
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Figure 3.17: a) shows the data (event 20061113 in Figure 3.18) and the predictions for 
the differential ScS-S residuals. The models are Tomo (Grand’s tomography model), 
Tomo+PB (phase mapping model), Tomo+PB+ULVZ (phase mapping model adding a 
ULVZ layer with 20 km height and -30% shear velocity reduction at the base of the 
mantle). b) The observed residuals of the differential ScS-S travel times with respect to 
PREM are plotted at the bounce points of the ScS on the CMB. Positive and negative 
residuals are indicated by the crosses and circles. Different colors relate to different 
events beneath South America. The bounce points of event 20061113 are marked by 
white symbols. 
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Figure 3.18: Display of Scd sampling at a location where it has not been previously 
detected. a) Location of source (Hindu-Kush, Feb. 20, 1998; star), stations (Kaapvaal 
Array, triangles), and ScS bounce points (circles) at the CMB, plotted on the tomographic 
background [Grand, 2002] b) Ray paths of S and ScS (black) and sS and sScS (gray) 
with the shear velocity along the 2D cross-section from Grand’s latest tomography 
model. c) and d) show comparisons of observations (heavy traces) and synthetics (light 
traces) for old mapping method (with adjusted hph = 160 km) from Sidorin’s model 
[Sidorin et al., 1999] and new mapping introduced in this chapter.  



 

 

58
tends to match the synthetics quite well at the smaller ranges but becomes delayed at 

the larger ranges. This feature is explained by the modeling of the Superdome [Sun et al., 

2007b] where ScS travels longer in the Superdome than does S. 

3.7 Discussion and Conclusion  

In this Chapter, we have revisited the earlier phase-transition mapping generated by 

Sidorin et al. [1999], Figure 3.1b. Their paper used the relative timing between Scd and S 

to determine γ = 6 MPa/K, β = 1.5% (velocity jump) and global phase boundary reference 

height hph = 200 km. This model predicts relatively uniform and strong Scd beneath fast 

regions but very small signals in other regions [Kendall and Shearer, 1994; Russell et al., 

1998]. We have solved this mapping difficulty by using waveform information and 

matching synthetics against observations for four well-sampled regions. The most 

significant difference between our results and the earlier model is the added strength of Scd 

in slow regions and the sharp gradients (Halo-like structures) around the fastest zones. A 

comparison of the two models for profile BB in Figure 3.16 is given in Figure 3.21 along 

with recent results from Wang et al. [2006] and van der Hilst et al. [2007] using a new 

inverse scattering method. These profiles essentially cross the structure along the same 

section with the fastest shear wave anomaly beneath the middle portion. In Figure 3.21, 

note that the left end of L1 ends at the same position where the new model steps down and 

there is a short span of weak signals in the upper images before stepping back-up. Their 

images also show an enhancement in low velocities just above the CMB beneath the 

elevated jump.  

While the sharp contours in the phase boundary are becoming clearer in the S-

velocities, the P-velocities appear to vary smoothly across this region, Figure 3.3a. This 

feature can be explained by the lack of any significant Pcd observed for this region [Ding 

and Helmberger, 1997], and the predictions from mineral physics [Hirose, 2006]. In short, 

the phase-boundary structure appears to be a shear-velocity feature where the high velocity 

slab material produces smooth high velocities in both P and S but no sharp feature without 

the phase-change. While the smaller-scale ULVZ-type features are interesting, we still lack 

a detailed description of where they are and their relationship with our model. However, 



 

 

59
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.19: A comparison of results from different methods of phase boundary imaging 
for profile BB´ in Figure 3.16. The upper two panels display reflectors from inverse 
scattering techniques with positive reflections in blue (dark gray) and negative in pink 
[after van der Hilst et al., 2007]. The lower of these two shows enhancement of the 
reflectors along with a solid blue line indicating phase transition location from the 
original Sidorin’s model [Sidorin et al., 1999] superimposed on Grand’s tomography 
profile [Grand, 2002]. The bottom two models are our new phase boundary model and 
Sidorin’s model. The phase boundary is indicated by white lines. 



 

 

60
small-scale features of this description are predicted by some dynamic models [Tan et 

al., 2002]. They also predict small-scale plumes along these boundaries which could help 

explain the sharpness of the mapped structure (Figure 3.21). Up-welling could cancel the 

cooling influence of slabs and, perhaps, the phase-change sharpness as well. This transition 

from fast-to-normal velocities is probably not that well imaged by tomography and awaits 

high-resolution studies.  

Recently, broadband array measurements have demonstrated relatively strong Scd in 

regions other than the Pacific Ring of high-velocities. A particularly interesting feature of 

the Vs structure in the high bulk modulus metastable model is the down-welling region near 

the center (Figure 2.2d) that looks similar to global slab modeling. It appears that this 

feature should help produce a Scd triplication which can, in fact, be seen in some data 

displayed in Chapter 2. There is also strong evidence for a Scd phase near the western edge 

of the Pacific Superdome [He et al., 2006], with a thickness of 100 to 150 km. Some 

evidence for a somewhat thicker zone along the eastern edge has been reported by Russell 

et al. [1998; 1999]. Lay et al. [2006] find a lens of PPV near the eastern margin of the mid-

Pacific Superdome with a 2 to 3% jump in velocity by applying a double array stacking 

procedure. Note that this jump is in general agreement with our prediction in Figure 3.22. 

Lastly, one could speculate on the role of temperature gradient, δT, in controlling the 

phase transition. Note that we have assumed a sharp phase transition (wph = 5 km) in the 

above analysis. Perhaps the phase transition has a more uniform onset globally but variable 

sharpness where the bulk of the transformation from PV to PPV takes place, as mentioned 

earlier in Figure 3.2 and Figure 3.11. Ohta et al. [2008] demonstrated the post-perovskite 

phase transition in both pyrolitic and MORB materials occurs within a 5GPa pressure 

range, which correspond to a lower mantle depth range of 90 km. The seismic synthetics 

for models with different transition thicknesses (Figure 3.11) indicate that seismic data are 

not particularly sensitive to the sharpness of the phase transition at the distance ranges of 

75°~85°.  
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Figure 3.20: The global prediction of a) phase boundary height above CMB for various 
γ’s  and b) temperature at the phase boundary for these γ. 
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Another difference between the new model and Sidorin’s old model is the shear 

velocity jump for slow velocity regions. The 3.5% velocity jump across the phase boundary 

is much higher than Sidorin’s velocity jump (1.5%) and theoretical calculation for 

perovskite to post-perovskite transition (-1% - 1.5%) [Ohta et al., 2008]. If a high degree 

preferred orientation of post-perovskite is needed to explain this high shear velocity jump, a 

strong anisotropy is expected in the lower mantle in this region [Hirose, 2006].  

Significant seismic anisotropy has been observed in several regions of the lowermost 

mantle [Garnero and Lay, 1997; Lay et al., 1998; Matzel et al., 1996; Thomas et al., 2007]. 

Beneath the D" discontinuity, the detected horizontally polarized S wave velocity (VSH) is 

faster by 1–3% than the vertically polarized S wave velocity (VSV). Sun et al. [2007] report 

the existence of the D" discontinuity beneath the center of African Superdome (slow 

velocity region) from the SV component. The different anisotropy behaviors between the 

fast and slow velocity region could be related to the dynamic flow pattern in each region. 

At the edge of the fast velocity region, the flow pattern could be greatly affected by the 

buckled slab, which will produce complicated Scd behavior in such regions.   

With the function of h ph(δVs) and β(δVs) defined as in Figure 3.9, we can generate 

global phase boundary maps (Figure 3.22) for various γ assuming Grand’s tomographic 

model. Small γ produce smooth variations of the phase boundary. When γ = 3 MPa/K, the 

heights of the phase boundary above CMB (h) beneath Africa and Central Pacific (slow 

velocity region) are larger than 150 km. The phase boundary height beneath Central 

America and Eurasian (high velocity region) is about 300 km. For increased γ, the 

difference of h between the slow velocity and high velocity region becomes larger. The 

height of phase boundary is ~50 km beneath Africa for γ = 9 MPa/K. Sun et al. [2007] 

obtained evidence for a possible phase change at about 80 km above the CMB beneath 

South Africa which is in rough agreement. Although it is difficult to sample the D" region 

beneath the slow regions because of source-receiver locations, these few observations 

suggest that γ > 6 MPa/K.  

Based on the above analysis, we can estimate the global mantle temperature at the 

phase boundary. We assume a reference point with the pressure (P) of 124 GPa and the 

temperature (T) of 2500 K [van der Hilst et al., 2007]. All the phase boundary lines with 
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different γ intersect at this reference point. The temperature for given height of the 

phase boundary can then be estimated by assuming 


124

2500



P

T .                                                 (2.4) 

The global temperature distribution at the phase boundary is shown in Figure 3.22. When γ 

= 3 MPa/K, the temperature at the high velocity region is less then 600 K. The high 

velocity region is believed to be related to an old subducted slab, which has much higher 

temperature than 600 K [Tan et al., 2002]. Therefore, γ larger than 6 MPa/K is required for 

producing reasonable temperature for the slab-debris in the lowermost mantle based on 

present PV-PPV experiment results. A large γ (γ ≈ 9 MPa/K) agrees with the results on 

reconciling the core temperature and post-perovskite double crossing [Hernlund and 

Labrosse, 2007] and recently experimental result with the MgO standard [Hirose, 2006].  

The chemical heterogeneity in the lower mantle has been well accepted. 

Unavoidably, the change of chemistry will add more complexity to the phase boundary 

[Ohta et al., 2008]. Moreover, the local dynamics will play an important role on the phase 

change. For example, the edge of a subducted slab just above the CMB could trap 

significant heat [Tan et al., 2002], which will move the phase boundary toward the CMB 

(Zone C). To address these questions will require further efforts in geodynamics, mineral 

physics, and more detailed seismological studies. 
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Chapter 4 

Direct Measures of Lateral Velocity Variation in 

the Deep Earth* 
 

 

 

4.1 Abstract  

Current tomographic models of the Earth display perturbations to a radial stratified 

reference model. However, structures in the deep mantle that are chemically dense with 

low Rayleigh numbers can develop enormous relief, perhaps with boundaries closer to 

vertical than radial. Such features are hard to detect with present tomographic modeling 

technique because the timing anomalies are based on long period filtered waveforms with 

complexity removed. Here, we develop a new tool for processing array data based on a 

decomposition referred to as a multi-path detector which can be used to distinguish 

between horizontal structure (in-plane multi-pathing) vs. vertical (out-of-plane multi-

pathing) directly from processing array waveforms. A lateral gradient coefficient based on 

this detector provides a direct constraint on the sharpness of the boundaries and material 

properties. We demonstrate the usefulness of this approach by processing samples of both 

P and S data from the Kaapvaal array in Southern Africa which are compared with 

synthetic predictions from a metastable dynamic model containing sharp edges. Both data 

and simulations produce timing gradients larger than 2 s/deg in azimuthal changes for S-

waves, whereas only minor effects are obtained for P-waves. These results further validate  

*This chapter appear as Direct Measures of Lateral Velocity Variation in the Deep Earth, 
Daoyuan Sun, Don Helmberger, Sidao Ni, and Dan Bower, Jounral of Geophysical 
Research (2009), 114, B05303, doi:10.1029/2008JB005873. 
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the case for distinct chemistry inside the African Low Shear Velocity Province. We 

also present evidence of a narrow plume-like feature emitting from the top of the large 

African low-velocity structure in the lower mantle. The plume’s diameter is less than 150 

km and is consistent with an iso-chemical, low-viscosity plume conduit. 

4.2 Introduction 

The upper mantle and crust display strong stratification apparently caused by mineral 

density differentiation. Record sections of upper mantle triplications indicate 

discontinuities in seismic velocity jumps at depths near 410 and 660 km depth in both P 

and S velocity [Grand and Helmberger, 1984; Shearer, 1993]. These features have been 

studied globally [Shearer, 1993], and are well accepted supporting a radial stratified 

mantle. However, [Masters et al., 2000] argue for less uniformity in P and S velocity 

compatibility in the lower mantle, leading [Anderson, 2002] to speculate on chemically 

based structure.  He concludes that such a layer would have high conductivity and viscosity 

but very low thermal expansivity (small thermal buoyancy).  Thus, in contrast to conditions 

in the upper mantle, dynamically generated features in the lower mantle are predicted to be 

sluggish, long-lived, and perhaps develop enormous relief [Davaille, 1999; Gonnermann et 

al., 2002; Gurnis et al., 1998; Hansen and Yuen, 1989; Kellogg et al., 1999; Tackley, 2000; 

Tan and Gurnis, 2005; 2007]. 

We can test for these types of predictions by searching for sharp velocity gradients 

which may be oriented more vertically than horizontally. One method to achieve this is to 

examine how wavefronts arrive at broadband two-dimensional arrays such as the Kaapvaal 

array in South Africa as displayed in Figure 4.1. The various traces contain the diffracted 

SH phases sampling produced by two deep earthquakes, one in the Western Pacific (A) and 

one beneath South America (B). The record sections in Figure 4.1 are plotted with respect 

to the travel time predictions from PREM [Dziewonski and Anderson, 1981]. That is, each 

record is shifted in time for a distance correction such that it should be perfectly aligned 

along the reference line at position zero if the Earth is adequately modeled by PREM. An 

example of a record section for event A plotted as a function of distance is given in Figure 

4.1b, and in azimuth in Figure 4.1c, a so-called “fan-shot”. The latter presentation is a 
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Figure 4.1: Display of event paths and observations from the Kaapvaal Array. (a) 
Locations of three deep earthquakes and their great circle paths to the array (left) and a 
blow-up of a pattern of SKS-SKKS delays (exit points at the CMB) associated with the 
boundary of the African Superdome (right). Delays of more than 5 s are shown in closed 
triangles. Open triangles indicate no delay. The solid black line in a) indicates the 
approximate position of the African Superdome. Sd data from event A is displayed in (b), 
plotted with distance (record section) with azimuth in (c) (fan-shot) and Pd data in (d). 
The e), f), and g) display the waveform data from event B plotted as a function of ψ, a 
combination of distance and azimuth as addressed in the text.  
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common oil exploration tool to detect salt domes. The plot of event A in azimuth 

(Figure 4.1c) shows more order, with uniform behavior from trace-to-trace in timing and 

shape.  Thus, we suggest that the structure is varying more in azimuth than in distance and 

that the structure is oriented more vertically than radially. We have included a set of heavy 

lines in the azimuthal plots for event A (Figure 4.1c) to indicate pulses associated with 

distinct paths. The first heavy line in Figure 4.1c corresponds to relatively fast paths that 

avoid the slow structure by taking a northerly route. The second heavy line denotes delayed 

signals following slow paths sampling inside the structure. Such complexity or multi-

pathing is expected for rapidly varying structures and can be modeled accordingly [Ni et 

al., 2005]. 

While the S-waves display strong azimuthal patterns, the P-waves remain PREM-like 

as displayed in Figure 4.1d. The events examined in this study and other recent reports do 

not show many recognizable P-wave anomalies [Ni and Helmberger, 2003a; b; c; Wen et 

al., 2001]. The uniformity of the P-waves suggests neglectable upper mantle variation 

beneath the stations which is in agreement with the studies by James et al. [2001]. 

Moreover, since we are analyzing the same event, we are avoiding the many problems 

concerning records assembled from multiple earthquakes, such as individual source 

excitations, uncertain locations and origin times, which tend to smooth tomographic 

images. 

SKS ray paths from the southwest encounter the structure at right angles to the 

anomalous structure where the delay can be seen directly, varying roughly 6s over a 

distance of a few degrees, Figure 4.1a.  Such time delays are measured by cross-correlation 

and delays relative to PREM projected along the ray paths to their Core-Mantle Boundary 

(CMB) exit points as displayed, see Helmberger and Ni [2005b] for details. Note the sharp 

jump from distinct boundaries which delineate a broad structure changing from a 

northwestern orientation to east-west below South Africa.  

The delay gradient can also be seen directly in seismic sections as displayed in Figure 

4.1e where ray paths approaching the array from the west sample the structural boundary at 

an angle so that the wavefront is not perpendicular to the great circle path. To estimate this 

angle (θ), we simply perform a grid search of distance-azimuth combinations or ψ = 
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Distance  Sin θ + Azimuth  Cos θ until we find the most orderly section in 

waveform shape and timing. The angle is measured relative to the true azimuth so that ±90° 

corresponds to a normal distance section and 0° to pure azimuthal plot as given in Figure 

4.1c. An example of a mixture in distance and azimuth is given in Figure 4.1e-g. Note that 

the upper group of records for event B prefers a -70° approach while -40° fits the lower half 

better. This indicates the gradual changes to east-west for the southernmost portion of the 

array. We have included a northeast orientation (-50°) that shows the most disorder for 

comparison (Figure 4.1g).  

The waveform data recorded by the array from the various sources have been processed 

to estimate their preferred delay gradient directions indicated by arrows with the results 

included in Figure 4.1a. The general pattern is quite clear with the arrows consistently 

pointing towards the middle of the structure. The same pattern is produced by the SKS and 

SKKS delays, which is based solely on relative timing [Ni and Helmberger, 2003b]. 

However, some of these SKS appear to be multi-pathed which occurs along the boundaries. 

Many of the observations recorded by the Kaapvaal array have been modeled following 

two distinct strategies, one involving pure 2D (in-plane, Figure 4.1b) [Wang and Wen, 

2007] and the other involving azimuthal multi-pathing (out-of-plane, Figure 4.1c) modeling 

[Ni et al., 2005]. An earlier effort by Wen [2001] produced an excellent fit to individual 

records where the data in Figure 4.1c (event A, 971222) is broken into sectors of azimuth 

and modeled with a hybrid numerical formalism. In this case, the large second arrival is 

actually a delayed ScS produced by a very slow basal layer (δVs = -12%). This second 

arrival can also be produced by an out-of-plane arrival. Thus, the interpretations of the two 

approaches produce different models. These two models have distinctly different physical 

interpretations as well. Gently sloping walls over a very low velocity basal layer favors 

“stable piles” [McNamara and Zhong, 2004] while more vertical walls with more uniform 

internal structure favors the “metastable” type interpretation proposed by [Tan and Gurnis, 

2005; 2007]. Thus, to address these important issues, we will introduce a new method of 

using array data such as in Figure 4.1, to address in-plane vs. out-of-plane propagational 

features directly. The method relies on the organization of the waveform complexity with 

the relative timing between arrivals as a function of position. We introduce the approach 
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with a review of a hybrid method of generating 3D synthetics, which suggests 

that out-of-plane arrivals can be simulated by using diffraction operators. Each observation 

is then approximated by four arrivals which sample the extended Fresnel zone. The array of 

observations is then replaced by a footprint of timing shifts between interfering arrivals. To 

interpret these maps, we present a set of training exercises on synthetics to develop a Multi-

path Defector (MPD) scheme which uses the gradient in differential arrivals to determine 

in-plane vs. out-of-plane patterns. Then we apply MPD on two real data profiles to 

demonstrate the sharp edges of the African Superdome. 

4.3 Methodology 

Dense arrays, as discussed above, are displaying obvious waveform complexities, 

which makes travel time picking difficult. The usual solution adopted in tomography is to 

low-pass filter until the waveforms are similar enough to cross-correlate [Masters et al., 

2000] or pick the first arrival. Here, we will introduce a new approach that uses more of the 

waveform complexity to infer the presence of sharp boundaries. We will begin with a 

numerical simulation of a simple block model with sharp walls followed by a brief review 

of a recent technique developed to treat 3D structure. To illustrate azimuthal multi-pathing, 

we generate synthetics for a uniform Low Velocity Structure (LVS) embedded in PREM 

displayed in Figure 4.2 using the 3D spectral-element method (SEM) [Komatitsch and 

Tromp., 2000a; b]. The synthetics were generated on a fine grid showing the effects of 

paths crossing the sharp wall with two record sections displayed, one as a function of 

azimuth (Figure 4.2b) and a normal function of distance record section (Figure 4.2c). For 

azimuths near 270°, two arrivals of nearly the same amplitude are apparent with one lagged 

by about 10s corresponding to the slow path inside the LVS. A similar pattern can be seen 

along the other wall near 245°. The first arrival times produce a simple pattern (Figure 4.2a 

on right) indicating the delayed patch of arrivals with a transition zone given along the edge 

which we want to explore in terms of developing a new tomographic approach. In 

particular, we address a method of characterizing the waveform distortion such as 

displayed in Figure 4.2 in a relatively simple manner in preparation for constructing a 

seismic model using ray paths as presented in [Zhu and Helmberger, 1998]. 
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Figure 4.2: Synthetic seismograms generated by SEM for the model given in (a) along 
with source-station geometry. (b) Fan-shot at a constant distance of 112°. A record 
section in distance appropriate for an azimuth of 270° is presented in (c). 
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Figure 4.3: Construction of a reference plane directly above an edge is displayed where 
the great-circle is along the edge. The Fresnel zone is indicated as a circle with half above 
the slow zone (right-shaded) and half normal (left). We have included a line of samples 
along an azimuthal arc where a 2D summation over the plane is replaced with a line 
integration. 
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One useful approach in treating such problems is to introduce a reference plane 

and use Huygen’s principle. Suppose we place such a plane above the box and examine the 

arrivals along the edge where a great circle path is located, Figure 4.3. A solution can then 

be generated by summing over paths connecting every point on a 3D grid to the source and  

receiver [Scott and Helmberger, 1985]. An exact solution can be generated in this way as 

demonstrated in Helmberger and Ni [2005]. Fortunately, we can reduce this 3D summation 

to an integration along a line as indicated in Figure 4.3 and still further to the summation of 

just four responses by applying a sequence of approximations. Thus, we start with a brief 

review of generating approximate synthetics for testing against those displayed in Figure 

4.2. 

4.3.1 Brief review of approximate methods. 

A well known technique for generating 1D synthetics was introduced by Chapman 

[1976], called the WKBJ method. The displacement wave-field can be written as 
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where )(tD  is the far-field time history of a simple shear-dislocation. G2 is a 1D or 2D 

Green’s function where the model has no azimuthal dependence 
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and r is the radial distance along an earth-flattened model, with z the vertical coordinate 

and ψ (r, z, t) the line source solution [Chapman, 2004]. The operator  t/1  and the 

 r/1  essentially correct for the distance dependence in 2D propagation and extra 

amplitude decay associated with 3D spreading. The function ψ (r, z, t) relates the ray 

parameter  ip  to the travel times  it  for a family of paths arriving near the receiver. 

The WKBJ amplitudes can be approximated by               
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where (δ) measures the differences between neighboring paths. For smooth velocity 

structures, it approaches zero at the first arrival  ot , and 

0

0

tt

)tt(H
)t,z,r(




  .                                                    (4.4) 

As discussed in box 9.8 of Aki and Richards [2002] Equation (4.1) becomes  
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where D  is the source time function. 

Note that the  1/ t operator was obtained by assuming axial-symmetry. Thus, in 

situations such as Figure 4.3, the arrivals from left to right vary in azimuth but remain 

weighted by their distance from the geometric great circle path (Δg). Thus, geometry plays 

an essential role and the sampling in azimuth becomes similar to  ip in the radial 

distance with points nearest Δg contributing relative to a square-root singularity, as 

indicated in Figure 4.4. We can simplify this convolution operator by assuming ψ (r, z, t) is 

slowly varying relative to 1/ ot t near ot t  and compute ψ at four locations controlled 

by the Fresnel zone. We define its radius to be 

Ttef
2
                                                               (4.6) 

where te is the differential travel time to the feature causing the complexity, δα the average 

velocity and T the source duration. We then compute ψ (r, z, t) at Δl and Δd defined by  

42 /Ttel    and   ld  12                                             (4.7) 

corresponding to the lit and diffraction zone. Next, we assume the seismic model is 

smoothly varying above the reference plane and compute ψ at the surface. Adding Δs will 

produce a broad band response as in adding ray paths in WKBJ theory, see [Helmberger 

and Ni, 2005a] for details. Thus, to approximate non-great-circle path contributions, we 

generate 
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Figure 4.4: Presentation of a simplified Kirchhoff secondary source summation 
procedure. (a) Reference surface positioned above a 3D target structure where we replace 
a grid summation with an approximate solution. Four locations are indicated 
corresponding to projections to the surface; ∆g the geometric path, ∆l a sample of the lit 
region, ∆f the Fresnel zone limit, and ∆d a sample of the diffracted contribution. The 

dotted lines represent paths of constant distance. (b) The  1/ t convolution operator 

with t1 indicating the half area position under the curve approximation which ends at tf, 
similarly td from tf to ∞. 

Δg ΔdΔfΔl
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Figure 4.5: Cartoon displaying the sampling of LVZ (shaded) vs. normal (white) at right 
angles to the great-circle path with four contributions, two lit L L

r lV and V and two 

diffracted D D
r lV and V . Note that the long-period diffractions can be early as in the middle 

panel or late as the receiver moves to the right.  
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assuming that the right side and left side have distinct responses at Δe and Δd on each side. 

The operators are weighted by their distance away from ∆f with tf the extra time taken to 

travel to the Fresnel edge, or  
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Figure 4.5 displays a diagram indicating the simulation relative to the boundary and Figure 

4.6 presents the synthetics generated from the application of expression (8). All four 

responses sample the box at azimuths 250° to 265°. At 268°, one sample, Δd on the left, 

encounters the faster velocity and arrives early. Note its longer period nature. Directly 

above the edge, two early and two late arrivals interfere. Note that these synthetics compare 

well with those given in Figure 4.2 for wall crossings. In this zone, the relative timing 

differential between the right and left is the most obvious and can be used to generate the 

new tool, namely, the Multi-Path Detector (MPD). If we focus on short-periods, we can 

greatly simplify the procedure and treat only the left and right aspects of the field. 
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which becomes the point source solution. A common practice in modeling a triplication is 

to pick a simple pulse from a forward branch and assume it is D (t), or empirical source 

history [Gilbert and Helmberg, 1972]. Thus, we assume that any observation is constructed 
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Figure 4.6: Synthetic training exercise with the problem setup displayed in Figure 4.2a 
used in the SEM simulation. A comparison of 3D synthetics (DWKM) and MPD results 
are displayed in a), and large array time delays given in b), c), and d). The results are 
color-coded. The edge structures are highlighted with dash white lines in d).  
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Figure 4.7: Synthetic training exercise for more complex structures containing a “tapered 
ended” large low velocity 
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Figure 4.8: Synthetic training exercise for more complex structures containing a ULVZ 
sample at the bottom 
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from O(t) (Equation 4.9) but split by some δt, which is obvious in Figure 4.6. We can 

then determine the timing shift and reference beginning time by direct grid search of each 

seismogram. This approach generated the simulations in Figure 4.6. Note that we lose the 

diffracted tails but still pick-up the edges very well. We recover two timing delays. One 

associated with the shift between the left and the right branches (∆LR), and the other 

between the entire simulation relative to the reference model or total delay (∆T). The 

differential times generated from a 2D array can then be used to construct the spatial 

gradient of these delays as displayed on the right in Figure 4.6. These correspond to the two 

wall cross-over which are slightly different caused by the geometry. The arrows 

perpendicular with the radial direction suggests the waveform distortions are caused by out-

of-plane multi-pathing. Note that the vectors change sign at the maximum in shift denoted 

by a heavy dotted white line which indicates the edge of the structure is parallel with the 

radial direction. For the structure in Figure 4.7 which incorporates a tapered end, the “zero 

gradient” line crosses the radial direction at an angle (Figure 4.7). The analyses, again, 

retrieves the angle between the edge of the structure and the radial direction. Synthetics 

from an idealized ultra velocity zone (ULVZ) structure are given in Figure 4.8. Note that 

the arrows become parallel with the radial direction indicating that this structure will cause 

mostly radial direction multi-pathing (in-plane). Thus, the footprints generated with the 

MPD analysis of array data can be used directly to determine if the edges of a structure are 

in-plane or out-of-plane. These examples are highly idealized and the issue of applicability 

to more complex structures needs to be addressed. For such a demonstration, we chose a 

dynamic model for the African Plume since it produces synthetics with features similar to 

the observations in Figure 4.1.  

4.3.2 Metastable Structures 

If the intrinsic density ∆ρch is depth-dependent and changes with depth faster than the 

thermal density (∆ρth), it is possible to generate metastable structures as displayed in Figure 

2.2 and Figure 4.9a. The Vp and Vs images are predictions from a material with a larger 

bulk modulus (6%) than the ambient mantle and higher zero pressure density (2.25%) 

(Chapter 2) [Tan and Gurnis, 2005]. The layer forms a single dynamic structure with a 
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Figure 4.9: (a) 2D section through a metastable thermo-chemical structure with δVp and 
δVs. The average percentage drop is 3% for Vs and less than 1% for Vp. The structure is 
1000 km high and 1500 km wide. Note the plumes along the edges which are wider and 
shifted internally for S relative to P, see Tan and Gurnis [2005] and Chapter 2. (b) Ray 
paths traveling from a source beneath Fiji-Tonga to an imaginary array (triangles) at 
various azimuths but constant distance (fan-shot) encountering a 3D structure containing 
2D slices of metastable Superdome model represented by the purple ridge. The ridge 
structure is aligned roughly with the northern edge as given in Figure 4.1. We assume the 
ends are truncated as displayed, and obviously represent a greatly simplified structure. 
Paths at 250° and 210° miss the structure and are PREM-like. 
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nearly neutral average density. Note the plumes along the edges and the down-

welling near the middle. The parameters chosen in this particular model were an attempt to 

explain a simplified 2D structure beneath South Africa, proposed by Ni and Helmberger 

[2003 a,b,c] and Wang and Wen [2007]. Sun et al. [2007a] inserted this structure into 

tomographic models and validated its usefulness in explaining 2D seismic waveform data. 

The model in Figure 2.2 predicts more complexity at the edges than embedded in the 

simple block structure by Ni et al. [2005] and looks more like that proposed by Wang and 

Wen [2007]. However, the small scale convection inside the structure changes with time 

and its 3D structure is probably extremely complicated since it must be influenced by the 

large scale convection produced by global 3D plate history. Such structures are presently 

being investigated [Bunge et al., 2003]. Here we produce a 3D structure by extending the 

2D metastable Superdome model (Figure 2.2d and Figure 4.9a) into an elongated structure 

with truncated ends (Figure 4.9b). The 3D synthetics for a “fan shot” are calculated for 

both Sdiff (Figure 4.10a) and Pdiff (Figure 4.10d). The synthetics are generated with the 

DWKM code discussed above. Partial responses are given in Figure 4.10b and 10c. For 

Sdiff, the waveforms are strongly distorted when the rays travel across the boundaries 

(around 222o and 239o). Note the simplicity of Pdiff relative to Sdiff as expected from the 2D 

velocity sections, since the velocity anomaly is relatively small in Figure 4.10a for (δVp) 

relative to δVs. The components (Figure 4.11b and Figure 4.11c) suggest that the complex 

waveforms are caused by the large differential times between branches sampling the 

various paths as in the earlier examples. The longer the period, the greater the reach, and at 

long enough periods the structure disappears. Obviously, the shorter periods are the most 

useful in defining the edges so that working at the shortest periods possible is the most 

diagnostic. 

Figure 4.10e displays the MPD analysis for S-waves and although it neglects the longer 

period diffractions, it captures the essential edge structure. A more detailed description of 

the timing measurements is given in Figure 4.11 for both the P and S-waves. First, we 

measure ΔLR the shift parameter (Figure 4.11a) and its spacial gradient given in Figure 

Figure 4.11b. The two zones of interference are especially strong in S but with some 

evidence in P. This is apparently caused by the reduced P-velocity along the edges of the  
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Figure 4.10: Construction of approximate 3D synthetics for Sd at constant distance (∆ = 
110°) is given in (a). (b) and (c) display the “lit” and “diffracted” contributions. d) 
displays Pd which is much less dramatic but also sensitive to internal structure. (e) 
contains a simulation by simple construction with MPD discussed in the text.  
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Figure 4.11: Presentation of timing delays and their azimuthal derivatives (d/dA). (a) 
Timing shift between the left side relative to the right (∆LR) and (b) derivative of ∆LR 
(d∆LR /dA). The total shift of each trace relative to the reference model (PREM) and the 
derivative are presented in (c) and (d).  
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Superdome (Figure 4.10) and the fine-structure variation along the bottom. In the second 

step, the output of the MPD is cross-correlated with the synthetics (data) in Figure 4.10a to 

determine ΔT (Figure 4.11c). There appears to be very little variation in ΔT for P-waves, 

whereas the S-variation is more apparent, especially for the narrow down-welling zone. 

Even though these features are complicated, they are likely to be simplified compared to 

the real African Superdome. However, we can examine existing array data searching for 

diagnostic patterns as predicted above. 

4.4 Application 

Although there are many complex record sections sampling the edges of the African 

Superdome, we have chosen data from events A and B discussed earlier and that display 

particularly interesting features to demonstrate the usefulness of the MPD processing. The 

geometry is displayed in Figure 4.1 where the great circle paths are arriving at the array 

sampling the Superdome beneath the Indian Ocean. 

4.4.1 Northern Edge (Event A) 

We first determine or define an empirical source function, S(t), which is the simplest 

waveform or wave train in the array, as found from a cross-correlation search. Next, we 

generate a synthetic for a reference model (such as PREM) using this S(t) as D (t) in 

Equation (4.11) and assume each recording can be modeled by summing S(t)/2 + S(t + 

ΔLR)/2. We define ΔLR as the time separation which refers to the lag of the right half of the 

Fresnel Zone relative to the left, or split time as discussed above. The data and simulation is 

given in Figure 4.12a where the multi-pathing is recovered. Next, we correlate the 

simulated trace (MPD) with observations to determine ΔT as in the numerical tests. The 

shifts required in this analysis are given in Figure 4.12b along with individual ray paths and 

their associated time delays. The top panel displays the overall travel time delays showing 

the slowdown of the wavefront as it samples the boundary. Note that these plots are 

independent of how the original data was plotted as in Figure 4.1. The multi-pathing shifts, 

ΔLR, are given in the bottom panel of Figure 4.12b and produce a rather simple picture
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Figure 4.12: The observations for event A (19971222) in Figure 4.1 along with the MPD 
results are presented in (a) with their travel time shifts in (b). The blue paths are fast 
relative to the red paths. The differential shifts (∆LR) reach 10s offsets near the top. (c) 
and (d) display the detailed comparison between the P and S results. 
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 from northeast-to-southwest. 

A more complete picture is obtained by plotting the gradient, Figure 4.12c. This pattern 

is more complex with some patches showing strong out-of-plane effects (longest arrows) 

perpendicular with the radial direction and some indicating in-plane effects. It appears the 

wall was never actually crossed or perhaps there are two steps with one associated with the 

green to pink zone and another to the north. Such complexity in 2D has been addressed by 

Wang and Wen [2007]. However, the P-wave data shows few signs of multi-pathing as 

discussed earlier, with some complexity given in Figure 4.12d, which look more like small 

ULVZs. The southern edge displays more P-wave distortions as discussed next. 

4.4.2 Southern Edge (Event C) 

The waveform data are presented in three frequency bands as given in the top panel of 

Figure 4.13 as broadband, and low pass filtered to 5s and 10s. The upper traces and bottom 

traces have relatively simple waveforms, but are offset by about 15s representing the 

anomalous S-velocity structure. The edge is well sampled between 215o and 210o, with a 

small diffraction wing indicated by a dotted-line. Note that at long periods, the edge 

becomes less obvious as expected, however, the MPD still measures the pulse broadening 

as displayed in the lower panel of Figure 4.13. We have included the cross-correlation (cc) 

values averaged over the complete profiles which become slightly higher as the short-

periods are removed, although the fits are excellent.  

In the broadband waveforms (Figure 4.13a), the source duration is short enough to 

allow the OD operators to be distinct near 213o in azimuths producing multiple peaks. 

These features are not observed when filtered to longer periods. However, the 

characteristics of the multi-pathing delays are generally maintained as demonstrated in 

Figure 4.14. Here we display the results in three columns indicating that the delays of ΔT 

are nearly the same (upper row in Figure 4.14). The gradient results are presented in the 

bottom panel where the data showing the strongest azimuthal features remains clear at all 

frequencies. Note the reversal in arrows near the top of the plots. Based on the training 

exercises we interpret this as a wall-crossing with nearly all of the variation being in 

azimuth. The multi-pathing arrows flip sign uniformly along the zero-line with stations to 



 

 

88
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Application of the MPD analyses to event C (970904) (paths in Figure 4.1) 
as a function of frequency with (a) broadband (BB), filtered to (b) longer than 5s and (c) 
longer than 10s. The upper panels contain the data with the MPD results given in the 
lower panels. Note that the fits remain high even at BB periods, with cross correlation 
coefficient of ~ 0.93. 
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Figure 4.14: Delay time results for data (Sd) in Figure 4.13 with different frequency bands 
are presented for ∆T in the top row and ∆LR in the bottom row. We have included the 
gradient of ∆LR as arrows which display the wall-crossing position indicated by the heavy 
dashed line. Some small-scale structures occur near the wall (circle A) and to the west 
(circle B) which have the footprint of ULVZs.  
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Figure 4.15: Delay time results for Pd (event C) are displayed in (a) and (b). (c) 
Comparison of Pd observations and MPD simulations. Note that the strong wall signature 
apparent in S results (Figure 4.14) is nearly absent in P results. Some local or small-scale 
features with circular patterns are displayed at position A (relatively strong in red), B 
(weak in dashed blue), and C near the southern edge of the array. We have included some 
timing lines to help identify a small delay at the top, which is seen in (a) as a slight 
change in color. 
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the north pointing south while stations to the south point in a northerly direction. The 

strength of this multi-pathing requires a segment of the structure to be nearly aligned with 

the ray-paths such that paths to the south are about 8 s faster than to the north. Note the 

gradients are large, over 2 s/deg. Some smaller features can be seen in the broadband 

results labeled A, B, and C. In these images, the multi-pathing is in both azimuthal and 

radial directions and appears to be small in dimension. Perhaps this small structure along 

the edge is of the type presented in the metastable model, associated with up-welling. The 

other two zones are more difficult to interpret but could be similar to the small-scale 

structures further to the south.  

The above small-scale anomalies appear to be also observed in the P-wave analysis as 

presented in Figure 4.15. The data is plotted relative to PREM and a small timing shift with 

distance is apparent, with the traces near the bottom arriving slightly early. This feature can 

be seen in the ∆T results indicating about a 1.5s delay. These smaller scale features occur in 

both azimuth and distance, which is more indicative of a D″ feature, perhaps associated 

with ultra-low velocity zones near the Superdome edges. Unfortunately, the P-waves 

contain considerable noise which means more events need to be analyzed to confirm the 

existence of these small-scale features. In contrast, there appears to be little evidence for 

the wall-defining features in P, a result compatible with the Metastable Superdome 

interpretation discussed earlier.  

4.4.3 A narrow mid-mantle plume below Southern Africa 

The resolution of global tomographic models, which have increased through 

additional data while accounting for the finite frequency of seismic waves, have provided 

more details on possible plumes in the lower and upper mantle [Montelli et al., 2004; 

2006]. Although some of these features have small cylindrical forms, most are broad, 

especially at the base of the mantle, where they are commonly referred to as Large Low 

Shear Velocity Provinces (LLSVP, Figure 4.16a). Beneath the mid-Pacific and South 

Africa are structures we refer to as superdomes because of their large size while appearing 

rounded on top. Images show considerable differences between these structures but the 

change of scale from about 1000 km in the lower mantle to a few hundred in the mid- 
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Figure 4.16: A comparison of global tomographic images; (a) at the lower mantle with a 
predicted cross section, (b) of seismic properties from a meta-stable thermo-chemical 
structure. The anomalous material has a larger bulk modulus (6% above the ambient) and 
higher density (2.25%). The S&G shear velocity (left) variations (± 3%, blue and red) are 
from Grand [2002] and the PRI-S05 shear velocity (right) is from Montelli et al. [2006]. 
The agreement between these two models is remarkable considering the complete 
independence of data and methodology used [Helmberger et al., 2005]. We interpret the 
broad base in the data at the CMB (Africa) to be a large-scale chemical pile and the upper 
small dimension feature to be a plume. 
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mantle is a common feature of nearly all seismic inversions. 

In Chapter 2, the high bulk modulus model is introduced to explain the African 

Superdome. The model gives sharp vertical sides with the apparent long term stability of 

the African Superdome [Helmberger and Ni, 2005b; Masters et al., 2000]. Particularly in 

that model (Figure 4.16b), a narrow plume emerges from the top with a small amount of 

entrainment of the high bulk modulus mantle.  

Although we have used data in Figure 4.12 and Figure 4.14 to establish the sharpness 

of the wall, the Sd phases are not not ideal for detailed study because of lack of 

knowledge about the structure beneath the Indian Ocean [Wang and Wen, 2007]. A better 

geometry is provided by the SKS paths sampling the mostly 2D structure from the west 

over a 10° by 20° region forming a relatively dense sample (Figure 4.17). Although these 

small crustal events along the East Pacific-Rise (EPR) have complicated wave trains they 

remain stable in the MPD. The four EPR events were processed in this manner (Figure 1, 

Appendix A). 

The combined ∆T delays are plotted with respect to CMB exit points (Figure 4.18a), 

normalized by a constant time shift for all stations per event. Such baseline shifts are 

common because of uncertainties in the event origin time and location. However, the 

relative timing among the stations is maintained. Delays of up to 6s are obtained with the 

four events producing compatible results. The paths overlay with some crossing paths 

indicated by the arrows in Figure 4.18a. The splitting analysis is summarized in Figure 

4.18a (right) where a serious distortion of waveforms occurs along the southern edge (-

45°N15°E). Unfortunately, the details are unclear because of the noisy complex arrivals 

as well as limitations in data coverage. This location has been studied previously with 

ScS-S analysis where they suggest a strong ultra low velocity-zone [Simmons and Grand, 

2002; Wang and Wen, 2007; Wen et al., 2001], which may correlated with the slow 

velocity edge structure in the high bulk modulus model (Figure 4.16b). 

Because of SKS relatively steep ray paths, their spatial pattern proves highly effective in 

mapping horizontal structure. Thus, we will assume that these patterns in Figure 4.18a are 

controlled entirely by velocity variation along these SKS paths. Furthermore, we will 

assume that paths inside the structure encounter a -3% reduction in velocity [Sun et al., 
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2007a]. This is a simplification but allows a structural image to be formed by performing 

a SKS tomographic projection on Figure 4.18a upward to define the height. A plume 

feature is added to the 2D profile based on the circular red pattern (Figure 4.18a) located 

along the upper dotted line near the top of the dome to fit the ∆LR delay. The observations 

producing this pattern have late arriving energy, roughly delayed by 2 to 3s. These late 

arriving ray paths are sampling the interior of a plume and are not often sampled directly 

since energy from the exterior always arrives first, at least in the synthetic models when the 

radius is less than 100 km. The fattening of observed pulses is clearly seen in the raw 

seismograms (Figure 1, Appendix A). This type of observation seems to be a direct 

measure of the existence of a plume. We constructed synthetics from structures with 

circular plumes arising from the superdome, each with a different radii, by repeating the 

MPD analysis on artificial data (Figure 4.18b–d). A sample of waveforms is given in 

Figure 4.19 with the MPD timing results displayed in Figure 4.18 b–d which can be 

compared directly with the pattern given in Figure 4.18a. Note that this pattern is back 

projected from the surface along SKS paths to the CMB. Thus, the pattern shifts 

northeastward for shallower mantle depths as indicated by the circles in ∆LR of Figure 

4.18a. Both the S-velocity of Grand [2002] and S-velocity of Montelli et al. [2006] predict 

this behavior although the P-velocity results suggests some bifurcation at shallower depths 

[Montelli et al., 2006].  

The seismic results for the African structure suggest that a narrow low velocity, 

generally cylindrical anomaly overlies a broad-scale low velocity structure. The overlying 

narrow structure is probably smaller than about 150 km across (Figure 4.18). If the 

structure is greater than 300 km across, we predict that the width of ∆LR anomaly is about 

500 km with a strongly localized ∆T, neither of which is consistent with the observations. 

The region of strongly localized ∆T in Figure 4.18d is presented as delayed SKS arrival 

with no obvious waveform complexity (case with plume radius of 250 km in Figure 4.19), 

which is not indicated by the data. Although we have constraints on only the basal region 

of one putative plume, it would appear that lower mantle plumes are quite narrow, probably 

less than 100 km in radius, in general agreement with geodynamical suggestions [Griffiths 

and Campbell, 1991; Loper and Stacey, 1983]. Our result is in contrast with Montelli et al.
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Figure 4.17: Presentation of geometry involving the position of the Kaapvaal array in 
South Africa, earthquake sources beneath the Pacific and East Pacific Rise (EPR) 

 
 
 
 

 
 
 
 
 

_________________________________________________________________ 
Figure 4.18: Composite waveform information from four EPR events compared to 
corresponding MPD analysis from various plume models. The delay ΔT and differential 
values ΔLR are migrated down to the CMB and plotted in map form for various events in 
(a). Two heavy lines are added to indicate the bottom and top of the superdome where the 
SKS travel time delays climb to 6 s. Note the blue circle of vectors near the South tip of 
Africa with radius of 1°. Three sets of simulations are displayed with circular shaped 
plume (b–d) emitting from the top of the Superdome (Figure 4.19). As the radius of the 
plume grows, a small zone of delayed ΔT (dark red on the left) occurs because the 
wavefield begins to resolve the interior directly which is not in the observations. The 
small circle indicating the plume position at the CMB in (a) migrate to the northwest for 
midmantle positions displayed at depths of 1900 km (red circle) and 1400 km (black 
circle). 
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Figure 4.19: 3D synthetics for thin (75 km) to thick (250 km) plumes. Although the MPD 
maps used a large number of synthetics, we present crossing lines centered on the plume, 
one (a) in the plane plotted in distance with azimuth of 135° and one as an azimuthal 
profile (b) for a distance of 105°. Note the time delay (ΔT) becomes obvious as the radius 
grows, but it proves difficult to grid SEM for smooth conduits. 
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Figure 4.20: A 2D cross-section sampling the plume is displayed idealized with an 
uniform reduction of 3% inside the superdome (yellow), a 1.5% drop inside the plume 
(green), which extends about 1000 km into the top part of the lower mantle. A pink zone 
is added at the edge although not actually modeled because of noisy data but at the proper 
position. The model looks very much like the models presented in Figure 4.16a with a 
broad base and a pipe-like feature extending upward towards the north.  
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[2006] from finite frequency tomography, suggesting a range of widths from 200 to 

800 km. Large widths are consistent with only a small viscosity between the plume and 

mantle rising in the plume [Olson and Singer, 1985] or thermo-chemical structures―both 

favor wide-blunt plumes. 

A 2D section of our preferred model crossing through the plume is given in Figure 

4.20, where we have assumed the velocity reduction inside the plume is 1.5%. Its height 

trade-offs with this value because only the timing delay ∆LR ~ 3s is defined by the data. 

We assumed this value to be compatible with estimates obtained by the high bulk 

modulus model given in Figure 4.16b, while also being in agreement with tomographic 

estimates. Two dynamic models have been proposed to explain the LLSVPs, the high 

bulk modulus model [Tan and Gurnis, 2005; 2007] and the chemical pile model 

[McNamara and Zhong, 2004; 2005]. The former has steeper sides (~70°) while the latter 

one has gentle slopes (~30°). Our results are in the middle (50°~60°). Both MPD images 

and multi-pathing in SS phase (Figure 2, Appendix A) suggest a rough top of the 

superdome, which is more profound in high bulk modulus model. In this report, we only 

covered the southern edge and more data are needed to complete the entire image, which 

will greatly help to define the dynamics of the system. 

4.5 Discussion 

Travel time tomography has been one of the main tools in studying Earth structure. 

Standard practices for geodynamists are to convert these velocity anomalies into density 

and temperature and infer geophysical observables such as topography and gravity. 

However, tomographic models produced by smooth, damper inversions underestimate the 

sharpness of structures. To emphasis this point, we have generated 3D synthetics (Figure 

4.21) for event A assuming the well developed model by Ritsema et al. [1999]. Generally 

only sparse stations are used in such tomographic studies and time-delays are minimized by 

adjusting locations and origin times. The array data, especially at the shorter periods, 

indicates the sharpness of such structures which are generally missed in long period studies. 

Fortunately, these tomographic studies do explain some of the delays and provide crucial 

information about the geometry of the structure causing these waveform distortions.  
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Figure 4.21: Direct comparison of synthetic predictions (solid traces) from Ritsema’s 
tomographic model [Ritsema et al., 1999] with observations (dotted). (a) Observations 
plotted in azimuth for event A against DWKM synthetics (broadband). (b) Long-period 
synthetics filtered to 18 sec generated by SEM with data. The synthetics show less than 
4s delays which is too small to satisfy the data. Tomography models are generally too 
smooth to predict the multi-pathing observed here. 
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Simply enhancing the velocity anomalies and adding sharpness has been proven quite 

useful in generating models that predict improved synthetics fit to data for both regional 

data [Song and Helmberger, 2007] and lower mantle data [Helmberger and Ni, 2005a]. 

Another recent approach followed by Ritsema et al. [2007] is to examine a large class of 

models that satisfy the tomographic data but explain additional constraints. DWKM 

synthetics could then be generated and compared with data directly or use MPD to test for 

significance of sharp features. In this study, we have provided a new tool for examining the 

wavefield and providing guidance in how best to approach modification of tomographic 

results in terms of vertical vs. horizontal structure. Instead of forcing array data to produce 

pulses that cross-correlate well enough to obtain accurate travel time picks, we suggest 

using the broad-band wavefield to derive additional MPD-type parameters. From the 

footprint and timing gradient analysis for a single phase from a single event, we can only 

determine how sharp the anomaly it is and the orientation of the anomaly. To get exact 

location and size of the sharp anomaly, we need to combine the MPD parameters derived 

from different phases and different events. Using different phases for the same event, we 

can make some decision with respect to what features in the Earth are causing the multi-

pathing effects. As discussed in Song and Helmberger [2007], shallow structure in the 

upper-mantle tends to disturb all phases from a particular azimuth, including P, PP, S and 

SS etc. If all the phases have strong multi-pathing effects, the sharp anomaly should exist at 

shallow depth, which affects all phases by the same degree. If strong multi-pathing only 

appears on those phases sampling the deep mantle (ScS, PcP), we can estimate that the 

origin of the anomaly is coming from the lower mantle. Figure 4.22 displays the MPD 

patterns for a Kuril Island event recorded by USArray. The difference patterns between S 

and ScS indicate anomalies occur not only in upper mantle but also in lower mantle, which 

is only sampled by ScS. On the other hand, MPD is useful to detect the sharp edges in the 

shallow structure as in Figure 4.23. The rays from different events sample the sharp 

anomaly differently and generate different MPD patterns. Those patterns can be migrated 

to different depths and find the coherent parts, which give the sharp boundary laterally. By 

connecting those boundaries at different depth, we can construct a 3D image of the sharp 

edges. Equation (4.7) shows that the radius of lit region changes with the depth of reference 
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Figure 4.22: MPD patterns of a) S and b) ScS for a Kuril Island event (July 16, 2007) 
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Figure 4.23: MPD patterns for a South American event (Oct 12, 2008). Note the large ∆LR 
could be related to Aspen anomaly, Jemez lineament, etc. 
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plane. The deeper the reference plane, the wider the lit region. For an event station 

couple, a migrated ΔLR image at certain depth is a circle centered at the ray piercing point at 

that depth with radius Δl. The value along the circle is ΔLR. The summation of all migrated 

images for every event station couple will give a strong indication of sharp boundary if it 

arises at that depth. This technique is similar to that used in the finite-frequency 

tomography using adjoint methods, which the summation of finite-frequency sensitivity 

kernels defines the overall misfit kernel [Tape et al., 2007]. We will discuss this migration 

method in future efforts. 

Since temperature and chemistry affect the P and S velocities differently, studying P 

and S waveforms from the same events can provide unique detail into differential 

measures, i.e., R=dlnVs/dlnVp. This parameter is important in understanding the mineral 

physics in the deep mantle [Masters et al., 2000]. An approximate value for R is 

(Vsδts/Vpδtp) where δts and δtp are travel time perturbations [Souriau and Woodhouse, 

1985]. Accurate estimates of the δts and δtp are obtained from applying the above operators 

as displayed in Figure 4.15 for event C. In this case, the R factor is quite high, R>6, because 

the P-waves show very little change across the Superdome boundary. Generally, the P-

waves encounter some delays when crossing the edges, as discussed earlier, and the 

average value found by Masters et al. [2000] of 3.8 for the Pacific and South African 

Structures appear to be generally compatible with our results which are somewhat higher. 

To estimate R, we average over samples inside the Superdome (top seven stations in Figure 

4.14) for S-waves and for P-waves (Figure 4.15), where we normalize the ∆T to the region 

most-like PREM (bottom six stations).  

Then 
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which yields R of about 5.5. Such a high value is compatible with the metastable model 

that was designed for this ratio. Note there is a whole-family of ∆ρ and Ks that will yield 

metastable Superdomes, Tan and Gurnis [2005] and resolving this number is essential in 

defining possible mineralogy. 
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Another measure of rapid changes in material properties is to use the shift, or 

Lateral Gradient Coefficient (LGC), 

 

 

or perhaps their derivatives with represent to azimuth as displayed in Figure 4.11. Sharp 

changes in temperature usually yield similar changes in P and S velocities while chemistry 

is more effective in producing large coefficients. Averaging over the length of arrows in 

Figure 4.14 and Figure 4.15 for the same set of stations produces estimates greater than 8 

where the P-waves are probably near the noise level. The arrow lengths in Figure 4.14a 

suggest azimuthal jumps of over 2 s/deg, which agree with those produced by the 

metastable model presented in Figure 4.9. We have not been able to explain such 

significant lateral gradients without introducing a wall, which is difficult to detect at 

periods greater than 20 s. In short, there appears to be a number of ways to quantify the 

obvious complexity introduced in Figure 4.1. Some small–scale features, especially 

prominent in the P-results given in Figure 4.15, appear to be associated with structure 

inside the Superdome. More data needs to be processed to establish such detail since other 

small–scale structures probably exist elsewhere in the Earth. 

In summary, we have introduced a new method of processing array data which will 

make it easier to identify structural boundaries and sharpen tomographic images. The 

method decomposes observed pulses embedded in body wave observations and uses the 

relative timing of these array arrivals to identify in-the-plane vs. out-of-plane multi-pathing. 

Preliminary results for a few events observed by the South African Kaapvaal array reveal 

strong evidence of 3D wave propagation and the fine-scale nature of boundaries. 
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 Appendix A 

African Superdome and mid-mantle plume 
After a detailed search for events that have suitable geometry for sampling the 

superdome edge and possible plume, we found four events (Figure 4.17) that could be 

analyzed as presented below. The record section in Figure A.1a covers the epicentral 

distances of 95° to 110°, where each record is plotted relative to PREM. Thus, each trace 

should start at zero time if the Earth is PREM-like and the event was properly located. 

However, since these four events are small, they are not well located, nor do they have 

accurate origin times. But because we are only interested in their relative travel times 

across the array, it does not cause a serious problem. Moreover, this array has been well 

studied, with only minor station corrections [James et al., 2001]. Consequently, the travel 

time delay for stations south of about 100° by 5s is caused by earth structure, assumed to be 

the LLSVP. A 200 km layer with reduced S velocity of 3% produces 1s of SKS delay 

relative to PREM. Unfortunately, determining these delays accurately in the presence of 

noisy oceanic crustal events containing depth phases is difficult. In the first step, we 

determine or define an empirical source function which is a wavetrain most simple and 

common to the entire array by a cross-correlation search. The top trace was used in this 

case. We then generate a synthetic seismogram for a reference model, PREM, and 

determine the best ΔLR for each record by a grid search along with the ΔT travel time delay 

of the composite pulse relative to the reference model defined by ΔT as discussed earlier. 

The ΔTs are displayed along with their surface projected geometric ray tracks. Note that the 

structure is roughly perpendicular to these paths producing roughly a 2D sampling. Many 

of these pulses are broad indicating multi-pathing which appears to be organized as 

presented in the bottom panels. Because these events are near the background noise, we can 

expect some artifacts in ΔLR, however, by stacking results, we should highlight the 

strongest features. The simplest sample is displayed in (a) displaying some strong effects at 

the outer edge, ΔLR ≈ 4 s, but a relatively uniform rise to over 4s delays. Event EPR3 in 

Figure A.1b and EPR4 in Figure A.1c both show a strong anomaly at the outer edge 
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(normal timing) and at the upper edge with delays in ΔLR of up to 3s. The results for 

EPR2 are presented in Figure A.1d which display some broadening at the larger ranges but 

these could be contaminated by SKPdS [Garnero, 2000]. However, the sharp delay ΔT 

between 100° and 106° is particularly obvious, and is shifted about 4° relative to the results 

in Figure A.1b, which is compatible with our model prediction.  

The height of the African Superdome structure remains an issue but some direct 

evidence is available [Ni and Helmberger, 2003b]. Although the geometry for sources 

and receivers is lacking for sampling the top of the Superdome with direct S, the phase 

SS can be used as proposed by these authors where one leg of the SS phase samples 

along the top of the LLSVP. The roughness of the upper structure also causes multi-

pathing, as given in Figure A.2 for the SS phase.  
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Figure A.1a 
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Figure A.1b 
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Figure A.1c 
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Figure A.1d 

Figure A.1: MPD pattern for four East Pacific-Rise events recorded by Kaapvaal Array in 
South Africa 
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Figure A.2: This record section is a continuation of the same event given in Figure 4.12 
but aligned on the SS travel time predictions (PREM). The epicentral distance spans 112° 
to 119° so that the SS phase is sampling a depth near 2000 km [Ni et al., 2005]. Many of 
these pulses are relatively fat, i.e., 238°–232°, which produces multi-pathing as displayed 
on the right. The bright red patch in ΔLR can be interpreted as a fast ridge relative to the 
slow anomaly as in Figure 4.16b 
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