MojaveComm: A View-Oriented Group Communication
Protocol with Support for Virtual Synchrony

Thesis by
David A. Noblet

In Partial Fulfillment of the Requirements
for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2008
(Submitted June 4, 2008)

ii

© 2008
David A. Noblet
All Rights Reserved

iii

To my supportive family and friends.

Acknowledgements

I would like to extend gratitude to my advisor, Professor Jason Hickey, and to all the members of
the Mojave Lab, past and present, who took the time to participate in all those lively whiteboard
discussions. In particular, I want to offer my special thanks to Cristian Tapus, Nathaniel Gray,

Mihai Florian, and Joshua Goldstein for all of their insightful input and contributions to this work.

Abstract

In this thesis, we explore the feasibility of implementing a general communication protocol that
addresses common classes of problems that one encounters in the development of distributed appli-
cations, such as: multipoint-to-multipoint communication, message (re)ordering, mutual exclusion,
and consensus. The paper details both the design and implementation of MojaveComm, a view-
oriented total-order group communication protocol suitable for deployment on wide-area networks.
Moreover, we provide a high-level overview of MojaveFS, a sequentially consistent distributed filesys-
tem, and show how we can use the message-ordering guarantees of MojaveComm as the basis for

the implementation of its sequential consistency guarantees.

vi

Contents

Acknowledgements
Abstract

1 Introduction
1.1 Related Work

1.2 Overview

2 MojaveComm Protocol Specification

2.1 Groups & Views
2.1.1 View Change Events
2.1.2 Failure Detection

2.2 Message Transmission & Delivery

2.3 Application Interface

3 MojaveComm Implementation

3.1 Design Choices & Goals L
3.2 Layerso e e e
3.2.1 Transporto .o
3.2.1.1 MojaveComm Reliable Multicast Protocol

3.2.1.2 Advanced Features L

3.2.2 SeqUENCEr ot e
3.2.3 View Manager
3.2.4 Protocol Stages e

4 MojaveFS: A Case Study
4.1 Overview
4.2 Sequential Consistency

4.2.1 Ensuring Consistency in MojaveFS

iv

11
11
13

15
15
16
17
18
19
19
22
23

5 Conclusion

Bibliography

vii

31

33

viii

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4

4.1
4.2
4.3

Multiple intersecting views L L 9
View synchronization that necessitates a ghost view change 10
Node B sends two messages in two different MojaveComm groups. 13
The layered architecture of MojaveComm. 17
A twelve-node view arranged into a ring by the token sequencer protocol. 20
This figure represents the state machine for the view management protocol. 22
Multiple views merging L 23
The layered architecture of MojaveFS. 26
Violating the sequential consistency constraints 28

A MojaveFS virtual server undergoes splitting & merging, altering its authority status

(indicated by the “A” circumscribed by a circle). o L. 30

Chapter 1

Introduction

In recent years, there has been a proliferation of network-enabled applications. In large part, this
is due to the advent of cheap and readily-available access to global communications infrastructure
provided by the Internet. Nevertheless, this physical access is only one contributing factor to the
momentum of this trend. Another influence, perhaps more important, is the success of the com-
munication protocols that run on top of this physical infrastructure: namely, the TCP-IP protocol
suite.

The Transmission Control Protocol (TCP [19]) has supported rapid expansion of network-enabled
services and applications because it significantly decreases the barrier to entry for developers. TCP
provides a concise set of strong communication guarantees upon which one can build more compli-
cated application-specific communication protocols to suit the needs of a specific service. Moreover,
these assurances provided by TCP represent a large common subset of the functionality required by
many applications while still maintaining a simple semantics that is easy to reason about (and build
upon).

As a testament to the ubiquity of TCP, many of the most popular network-enabled applications
and services make use of this protocol: web browsing (HTTP), email (POP, IMAP, and SMTP), file
transfer (FTP), remote login (telnet, ssh), chat (IRC), etc. Nevertheless, TCP is not ideally suited
for all applications. In particular, TCP provides only point-to-point communication between nodes.
In cases where data needs to be disseminated to multiple entities simultaneously, the use of TCP
may be inefficient — or the guarantees it provides may be insufficient to directly meet the needs of
the application.

This fundamental limitation of TCP has become more obvious as the push to develop larger and
more complex network-enabled systems moves forward. Specifically, the recent interest in distributed
systems by the software community has worked to move this issue to the forefront. Distributed
systems are a natural extension of traditional network-enabled applications. Traditional network
applications generally follow the client-server model, whereby some fixed set of network entities

provide service (called servers) to a dynamic set of network entities that request service from the

2

former (called clients). When a client needs to access some service, it connects directly to one of the
corresponding servers that provide that service and the server is then responsible for responding to
the request of the client. Customarily, the server with which the client is communicating is a single
network entity; in a distributed system, this is not necessarily true.

In the development of a distributed system, one seeks to provide a single service among multiple
network entities. These network entities then act as a coherent unit, in spite of the fact that this unit
is composed of distinct entities. Of course, in a distributed environment such as this, each individual
component of the system must be able to make local decisions that somehow contribute to the service
as a whole. Thus, in order to make informed decisions, the components must communicate with one
another (over the network).

By taking a distributed approach to the solution of many problems, it is possible to eliminate
many of the bottlenecks that are present in traditional centralized systems. The reasons for dis-

tributing a service over multiple distinct network entities are primarily threefold:

e Reliability - Through replication/redundancy, it is possible to ensure that the failure of one

component will not disrupt the entire system.

e Scalability - As demand for the service increases, it is possible to add more components dy-

namically to meet this need.

e Performance - The more components that contribute to the service, the faster the service can

respond (if the service is sufficiently parallelizable).

In fact, with current technology, many problems require a distributed solution to achieve the desired
scale and performance.

Of course, once one starts to distribute the processing of some service across multiple entities, it
becomes necessary to consider issues such as data consistency and communication loss/error. And,
to make matters worse, when such communication between entities is over unreliable communica-
tion channels, one runs up against fundamental impossibility results regarding consensus in this
context [10]. In the end, it is these types of problems that must be addressed when developing a dis-
tributed network application. And, often times, the solutions to these issues greatly complicates the
design and implementation of such protocols. Nevertheless, many of the problems that one encoun-
ters in the design of a distributed application or service are not specific to the particular application
in question, but are rather more general problems inherent in the design of such distributed systems.
For example, typical classes of problems include: multipoint-to-multipoint communication, message
(re)ordering, mutual exclusion, and consensus.

In this thesis, we address the question of whether it is possible to implement a general com-

munication protocol that solves these common distributed systems problems, providing evidence in

3

support of an answer in the affirmative. In the following text, we present the design and imple-
mentation of MojaveComm, a group communication protocol intended to allow groups of network
entities (called nodes) to self-organize into groups within which MojaveComm provides strong or-
dering guarantees with respect to the transmission and receipt of messages; the specification of this
protocol is given in Chapter 2 and an overview of the implementation is detailed in Chapter 3. And
Chapter 4 is a case study illustrating an application of MojaveComm to a particular domain (in this

case, distributed filesystems). Finally, we provide some closing remarks in Chapter 5.

1.1 Related Work

There is an extensive body of work in the area of reliable group communication systems that dates
back to the 1980’s. In early projects, like ISIS [5] and the process group extension to the V Kernel [7],
the emphasis on the respective group communication protocol is secondary to that of a larger system.
Nevertheless, many of these projects offer insight and develop abstractions that subsequent projects
on group communication systems will borrow (such as in [6] [9] [4] [8] [L7]). For example, nearly
all of the works cited in this section provide some type of group membership abstraction; moreover,
these projects also have at least limited support for state synchronization adhering to some flavor
or other of the virtual synchrony model. In the text below, we provide an overview of the history of
group communication systems (though this account is not exhaustive by any account).

The process group [7] extension to the V Kernel is among the earliest work in the area of group
communication systems. The V Kernel is designed to be a distributed kernel that transparently
coordinates multiple participating machines and presents them to the user as a single coherent sys-
tem. The extension described in the paper introduces the process group abstraction as a mechanism
whereby groups of processes may communicate with one another without prior explicit knowledge
of the group membership. A process group is distinguished by its identifier (simply an integer in the
implementation). In terms of governing group membership, a processes may create, join, or leave
a group. Processes exchange messages in the context of a group using send and recv. This type of
message exchange is considered to be reliable’.

The ISIS [5] project introduces an abstraction called a resilient object. Conceptually, a resilient
object is a record of data and operations that is replicated across multiple machines on a network.
The replicas of a resilient object act as a coherent entity. In particular, operations performed
on a resilient object are transactional in nature; either the operation is performed successfully
such that the result consistent across all the replicas, or the operation fails (and the result is not

reflected on any of the replicas). In its implementation, ISIS relies on a reliable, ordered message

I Although process groups in the V Kernel support reliable message delivery to members of the process group,
it is important to note that the definition of reliable delivery in this context refers to the case when a message is
successfully delivered to at least one member of the group (for the delivery to be considered a success, that is).

4

broadcast mechanism, GBCAST (for Group Broadcast), to ensure that replicas remain consistent. In
GBCAST, messages are sent within the context of a group (different groups correspond to individual
resilient objects in ISIS); each group has exactly one membership set and all messages sent to a group
using GBCAST are totally ordered within that set.

Consul [10] is a system that aims to provide the user with a set of basic abstractions that can be
used to build reliable systems based on the replicated state machine approach. Collectively, these
abstractions embody three services: multicast, membership, and recovery. In Consul terminology,
to send a message a process participates in a conversation with a set of processes; actual message
exchange is handled by the Psync protocol. During the lifetime of a conversation, Psync maintains
a “context graph” that satisfies the happens-before relation for all the messages exchanged in the
conversation. To ensure correct ordering on delivery, each message is paired with a list identifying
its dependencies calculated from this context graph. The membership protocol is responsible for
the detection of remote process failures for each conversation the local process participates in. In
the event of a failure (or detection thereof), the membership of the conversation is renegotiated and
the recovery protocol takes over to ensure that all processes have received the same set of messages.
As failure detection in Consul is conservative, it is possible that after a failure two or more distinct
membership sets may exist for a single conversation; Consul does not provide any special facilities
to handle this situation.

The VS [8] system provides explicit support for such partitionable group communication services
(whereby membership of the communicating set may partition and recombine arbitrarily). As such,
VS provides a group abstraction, similar to ISIS groups or Consul conversations, called a view.
Although, views differ from the aforementioned abstractions in that a view is more like a partition
or fragment of a group. Also, VS does not provide explicit recovery (i.e. message synchronization)
on changes in view membership; rather, it simply exposes enough information such that it is possible
to perform such synchronization at the upper layers if desired. An extension of VS, called DVS [20],
broadens support for such group partitions by introducing the abstraction of primary views to VS. A
primary view is usually considered to be the view that contains a majority of the available processes
in the system; but generally speaking, the definition of primary simply needs to ensure that there is
never more than one primary view at a time. The motivation is that, in spite of the fact many views
may exist, to maintain their consistency guarantees many distributed applications require that at
most one of these views be allowed to make progress.

The successors to ISIS, Horus and Ensemble [6], were an architectural and design effort to break
from the monolithic and single-purposed origin of their predecessor in an attempt to provide greater
flexibility and increased confidence in the correctness of the protocols. In both of these projects, the
drive specifically was to develop a general framework for providing group communication services.

The architecture was such that, although the interface is fixed, the specification can be satisfied

5

many ways in the implementation via the composition of different sets of micro-protocols. Because
of correctness and performance concerns, Ensemble emerged as a reimplementation of Horus using
the OCaml programming language; this was done to ensure that the developers could reason about
the behavior of Ensemble using the automated proof assistant NuPRL. With NuPRL, it was possible
to perform provably-correct code transformations to reduce overhead introduced by the many layers
of micro-protocols.

Newtop [9] is a group communication system that, in addition to strict total ordering guarantees
on message delivery, also provides explicit support for multiple groups and multiple views within
each group. In Newtop, a process creates a group by specifying its maximal member set. Thus,
initially all processes in a group have the same view membership. As there are network partitions
and/or process failures, Newtop’s failure detection mechanism renegotiates a new view with the
other members of the existing view in order to agree on a new view that is a strict subset of the
existing view membership. To join old members of a view, the process creates an entirely new group
with the desired membership.

The Spread [1] group communication system is specifically designed for wide-area deployment.
In order to remove the constraints placed on such a system by the diversity present in the physical
network, Spread constructs an overlay network upon which it exchanges messages. In order to
provide an efficient routing solution on top of this overlay, Spread introduces its own routing protocol,
called Hop. Although, in practice this overlay serves to increase performance and efficiency of the
protocol in general, Spread relies on a static configuration file to describe the underlying physical
network topology on top of which the overlay is installed.

More recently, work on the QSM [17] project addresses the scalability problems seemingly in-
herent with group communication systems. The key insight in this work is that it is possible to
take advantage of the potential overlap in separate group membership in order to deliver messages
more efficiently (i.e. without having to filter out as many of the unwanted messages). In particular,
the authors suggest a more efficient scheme to map application-level (“lightweight”) groups onto
low-level multicast (“heavyweight”) groups. The authors claim scalability on the order of hundreds
or thousands of participants for QSM using the scheme they present.

It is also worth mentioning work such as that found in [12], which attempts to make the ordering
of messages between groups more efficient by constructing a propagation graph instead of using the

traditional token-based protocols.

1.2 Overview

To put the project described in this paper into the context of the existing work, MojaveComm

is a partitionable view-oriented total-order group communication system designed for wide-area

6

deployment. In particular, in this work we strive to provide a highly distributed and dynamically-
configurable solution. For example, we avoid the use of a statically configured overlay network such
as the one used in [4]. Moreover, we try to embrace the reliability constraints imposed on our system
by targeting a wide-area network environment; to this end, we allow for group partitions to exist
(and even provide mechanisms to facilitate their detection and recovery).

In our express formulation of the VIRTUAL SYNCHRONY property (see Equation 2.1), it is possible
for many different sequencing and delivery policies to satisfy the specification. For example, because
of the conditional nature of our guarantee, it is possible for the MojaveComm implementation
to fine-tune its guarantees while still maintaining a consistent interface to the application-layer.
Nevertheless, in spite of this flexibility, we want to be able to provide a more rigid and well-defined
interface than that of [6] in order to avoid the problems of having an unconstrained protocol stack
(and the introduction of the resulting optimization problem).

Also, unlike [8], we opt to embed our message synchronization mechanism and corresponding
guarantees into the group communication system itself as we believe this makes applications imple-
mented on top of MojaveComm easier to reason about (and, thus, eases the burden on the developer).
And, although we recognize the utility of a system that natively supports a primary view abstrac-
tion (like [20]), we choose to defer this processing to the application. Even though MojaveComm
does not support primary views directly, we ensure that the application-layer interface is sufficiently
expressive to allow a wide range of application-specific primary view implementations on top of our

basic service.

Chapter 2

MojaveComm Protocol Specification

This chapter presents the abstract behavioral specification for a network communication protocol
called MojaveComm. This protocol is designed to provide strict message ordering guarantees between
sets of communicating network entities (called nodes).

MojaveComm makes weak assumptions regarding the underlying communication mechanism
upon which the protocol is built. The communication model for underlying message transport
is as follows: messages may take an arbitrarily long time in transit; messages can be lost, reordered,
and/or duplicated; and messages are not corrupted by the network (i.e. if a message is received, it
has the same payload as specified at its origin). In our model, nodes are fail-stop.

In order to identify which nodes can communicate with one another, MojaveComm introduces
an abstraction device called a group (see related work in Section 1.1). Conceptually, a group is a set
of nodes. Using MojaveComm, two nodes may only communicate if they are both members of the
same group simultaneously. The entire system may be comprised of many groups. It is possible for
groups to have intersecting membership.

MojaveComm imposes a total order on all of the messages sent within a group. In this way, each

node receives all the messages sent to the group in the same order (and without “gaps”).

2.1 Groups & Views

Group membership is dynamic and nodes may join or leave a group at any time. Since the underlying
communication mechanism is unordered and unreliable, from the perspective of individual nodes in
a group, group membership membership is not always globally consistent. This local perception of
group membership is known as a view (similar to views in [8], or subgroups in [9]).

Each node has exactly one view of each group of which that node is currently a member; a node
is always in its own view. Moreover, a node only appears in a view of a group if that node was once
a member of that group. To become a member of a particular group, a node simply includes itself

as the only member of a singleton view corresponding to that group. It is possible for this initial

8

view to expand by merging this view with the views of other group members (this is described in
Section 2.1.1).

In order to identify when two nodes “share” a view (i.e. when two nodes are members of the
same view at the same time), we introduce an identifying tag, called an epoch number (or simply
epoch), that we associate with a view so as to allow us to uniquely identify views with identical

membership®. In this way, we can represent a view as a triple:
(G, M, e) € group ID X node ID set x epoch

For convenience we use the notation GM to denote the triple (G, M,e). Note that two views, GM

and G'M', are equal iff each of their components is equal:

Gész’y/EG:G’/\M:M’/\e:e'

Locally, each node keeps track of the set of views of which it is a member. For a given node n,
we denote this set as V(n); V(n) is the sequence of the values of V(n) over time for node n. Also,
since it is often necessary to talk about a particular node being a member of some view, we will
introduce the operators €y and €y to represent this fact (for current and past view membership,

respectively):

ney G¥=GM cvin)AneM

nerGY =3Vey Vin): G eVaneM

Overall, there are two primary guarantees governing how view membership is related to group

membership at a given instance in time (which follow directly from the statements above):
1. The intersection of all views of a group is a subset of the actual group membership.

2. The union of all views of a group is a subset of all the nodes that have ever been a member of

that group (up to that point).

However, it is important to note that this definition allows for the possibility that a view of a
group contains one or more nodes that are not currently members of the group. Such a view is
known as a stale view. In general, it is not possible to detect accurately when a view is stale (see
the discussion on failure detection in Section 2.1.2). For example, consider the scenario presented
in Figure 2.1. Here, nodes A and B have split off from view GiA’B’C’D} to form views G124 and

e+1
GifiF}. Although the failure detection mechanism of MojaveComm will ensure that all remaining

IThe epoch number basically serves as a logical clock (as presented in [14]).

G{A,B,C,D}
Figure 2.1: Multiple intersecting views

members of GiA’B’C’D}, C and D, will eventually move on to new views, there may be a period of

time in which all three views depicted in the figure may exist simultaneously.

2.1.1 View Change Events

View membership may change for a variety of reasons: failure detection (i.e. when a process is
suspected to be dead; see Section 2.1.2), an explicit view synchronization request (i.e. a group Join
operation; see Section 2.3), or implicit synchronization initiated by remote instances of either of the
former events. This type of view synchronization event (no matter how it is initiated) is known as
a view change. When one of these synchronizations occurs, MojaveComm notifies the application of
this change through a view change event.

Although the installation of a new view itself is ultimately a local operation, there are a number
of global guarantees that MojaveComm enforces on a view change event. For example, consider the
situation where a node n receives a view change G " Furthermore, let us denote the previous view
change n has received as GM (where e # ¢’), and the sequence of messages n has received since view
change GM — but before the next view change — as R,,. In this case, MojaveComm guarantees the

following property:

WV GM e VAGY eV ANVV)YCpy Vi(n) = [VIRTUAL SYNCHRONY]|

VmeM 3V, V' :GM e VAGH eV A(V,V') Cy V(m) = R, =Ry (2.1)

In other words, all nodes that shared a previous view over the course of a single view change are
guaranteed to have received the same sequence of messages (i.e. the same messages in the same
order) in the previous view”.

Nevertheless, it is important to note that, when a node n receives a view change event G| it

2Note that, in conjunction with the message delivery guarantees of Section 2.2, it is possible that failure to deliver
messages in one group will result in a view change in another group (and may affect which nodes may be in the new
view).

Figure 2.2: View synchronization that necessitates a ghost view change

is not guaranteed that every node m € M also has received such a view change. Rather, it is only
guaranteed that it would be consistent if those nodes were to have received the same view change
event GM. We will refer to such a situation as a ghost view change.

Such ghost view changes are not directly observable by the application in the same way that
normal view changes are (though, for a node n, they do appear in the view history V(n)). Instead,
they only serve to inhibit future unsafe synchronization in the event of failure; the application is
never explicitly notified of such events. Thus, when a node n receives a view change event G,
MojaveComm ensures that every remote member m € M of the new view either has received a real
or ghost view change event in G corresponding to G.

Although we defer the discussion of the specifics of the implementation of the view management
protocol (the protocol in the implementation that governs view synchronization and the correspond-
ing view change events) to Section 3.2.3, it is worth introducing an example here to illustrate the
necessity of these ghost view change events. Consider the following situation depicted in Figure 2.2.
There are three nodes A, B, and C, that initially share a view. One node, C, splits off (initiating
a view synchronization) and nodes A and B start to form a new view. A and B proceed to the
stage of the protocol where they are prepared to commit the new view; however, they are still both
waiting for a final Commit message (upon receipt of which they will actually commit the view).
Node A receives the Commit but B doesn’t. At this point C has started, but not finished, its own
view change and, by the time B detects that it is missing a message from A, B and C continue a
view synchronization together and both successfully commit the new view.

In the scenario depicted above, it is necessary for node B to undergo a ghost view change
with the membership {A, B}. Otherwise, without any intermediate view change, it is possible for
node B to receive a view change event with membership {B,C} where the VIRTUAL SYNCHRONY
property holds (according to the definition presented by Equation 2.1). However, it is not possible
to guarantee that the VIRTUAL SYNCHRONY property can hold for two such views in general. This is

because it is possible for nodes in the two separate view fragments to have received different subsets

11

of the messages that were sent in the previous view. In such a case, this would violate VIRTUAL

SYNCHRONY; thus, we introduce the ghost view change mechanism to prevent this from occurring.

2.1.2 Failure Detection

As described in Section 2.1.1, failure detection is one of the triggers for a view change event. However,
as a result of the underlying communication model that MojaveComm uses, it is not possible to
perfectly determine when a node has actually failed. The fundamental problem, of course, is that
messages may take arbitrarily long in transit from the source to the destination. Since there is no
specific time limit within which all messages must be delivered, it becomes impossible to distinguish
between a node that has crashed and one whose messages take a long time to arrive.

In such an environment, it is important that we are always able to detect a failed node in a
finite amount of time; otherwise, it will be impossible to guarantee progress in general. Thus, we
adopt an approximate failure detection mechanism whereby we are always able to identify nodes
that actually have failed, but where we may inadvertently identify slow (but live) nodes as dead as
well. Although such behavior is obviously undesirable, the incorrect detection of node failure does
not affect the overall correctness of the guarantees that the MojaveComm protocol provides. Rather,
it only degrades protocol performance and/or impedes application-level progress.

For example, if one node is connected to the rest of the nodes in the view membership over some
slow and/or lossy physical link in the network, it is possible that the approximate failure detection
mechanism will incorrectly identify this node as having failed. This, in turn, will trigger a view
synchronization; during the view synchronization, transmission of pending application-level messages
is suspended. In the best case, this reduces efficiency and slows down the message transmission
rate. More severely, the slow node may even be ejected from the view, potentially halting any
application-level progress on that node or others (in the event that the nodes require some specific
view membership in order to advance). Overall, this situation only impacts the system liveness, not

its safety.

2.2 Message Transmission & Delivery

Of course, the whole reason we care about view membership is because we would like to be able to
make guarantees with respect to message ordering within a group. In particular, we would like to
constrain the behavior of message transmission and delivery (to the application) in such a way as to
ensure that the VIRTUAL SYNCHRONY property (see Equation 2.1) is met on each view change event
received by the application.

In order to send a message, a node must first assign the message a position in the group total

order. MojaveComm uses this sequence number as a mechanism by which to uniquely identify a

12

message and to constrain the ordering of message delivery. Thus, conceptually, a MojaveComm
message can be represented as a triple: (P,s, GM) € message payload x sequence number x view;
for convenience, we denote this as P, : GM. In this way, the pair (s, GM) serves as a unique identifier
for message P : GM.

In addition to the virtual synchrony property, MojaveComm provides the following guarantees

with respect to message transmission and delivery:

e For any two messages P; : GM and P’ i GM such that i < j, if a node n receives both messages
then n will deliver P; : GM before P’; : GM (no matter the order in which they are actually

received).

e For any two messages P; : GM and P’ i G (15\7[’ that originate from node n and are delivered to

node m, if i < j then m will deliver P; : GM to the application before it delivers P'; : G’ é\f[/.

M’

e For any two views GM and G',, , if a node n € M N M’ sends two messages P; : GM and

P';: G’y, (in that order), then i < j.

In other words, there are two ordering constraints to which all communicating participants must
adhere: the group order, and the node order. Thus, all nodes that share a view must receive all
messages sent in that view in the same order; moreover, all nodes (regardless of view membership)
must receive messages from the same node in the same order.

In order to enforce these ordering guarantees, MojaveComm adopts a policy that ensures the
first two properties specified above are always met®. Consider the following scenario. Suppose that
node n is a member of groups G;co..,, and that n has just received a message P; : (Gl)é\/f Node n
under the following conditions:

may only deliver P; : (Gi)M

e

M

Mis the next message in the sequence for view (Gy), .

e It is known, for all views corresponding to groups Gieo..m (k # i), that the next message to

M

deliver in the sequence for view (Gk)y , message P’ : (Gy), , has sequence number s > j.

The policy above is sufficient to directly enforce the first two ordering conditions detailed above.
The first component of the message transmission and delivery policy satisfies the group ordering
condition. If two messages sent in a group are delivered out of order (such that a message with
a higher sequence number is delivered before a message with a lower sequence number), then that
delivery necessarily must violate the first policy component (since messages are assigned sequence
numbers in strictly increasing order).

Moreover, the second component of the message transmission and delivery policy satisfies the

node ordering condition. If a node delivers a message in one group then it is possible to prove that

3To ensure that the final property is met, MojaveComm simply assigns sequence numbers to outgoing messages in
increasing order (though the sequence numbers need not be contiguous).

13

Group A Group B

. Message 1

Message 2

Figure 2.3: Node B sends two messages in two different MojaveComm groups.

the message has the smallest sequence number of the next message to deliver in any other group
of which that node is a member. Suppose that this most-recently delivered message is the message
that was delivered out of order for a given node. Next, suppose that we receive another message in
some group for that same node that was supposed to be delivered earlier. In that case, either the
message was in the same group (in which case we already know from the argument above that this
cannot happen) or the message is in a different group. In the case that the message was received
in a different group, if this message was supposed to be delivered before our most-recently delivered
message, then we know that it has a sequence number less than the one of that message. However,
we will only deliver a message if we know that the message has a smaller sequence number than that
of any other group of which that node is a member. As this leads to a contradiction, we know that
this case is also not possible.

Consider the scenario depicted in Figure 2.3. In the diagram, there are two views: AiA’B’C}
and B}A’B’D}; node B sends one message in each view. Without loss of generality, suppose B sends
message 1 before message 2. In this case, we know that the sequence number for message 1 is strictly
less than that for message 2. Thus, MojaveComm guarantees that all nodes in the intersection of the
two groups (i.e. {A, B}) receive the messages in the order (1,2). It is important to note, however,

that MojaveComm does not constrain the exact timing of delivery, only the order. In this way, for

example, it is possible for node D to deliver message 2 before A or B even receives message 1.

2.3 Application Interface

So far, we have described some of the message ordering guarantees that MojaveComm exposes
to the application, but we have not presented any specifics with respect to the actual interface
through which MojaveComm presents these features to the application. This section details an
abstract specification of the MojaveComm application interface. Conceptually, the interaction of
MojaveComm with the application can be grouped into two classes: application-initiated actions,

and network-initiated events (notifications).

14

From an abstract perspective, MojaveComm supports the following actions:
e Create - Become a member of group G

— Input: Idg, the identifier representing group G, the group of which to become a member

— QOutput: Hg, a unique handle representing the node’s membership in group G
e Destroy - Cease to remain a member of group G
— Input: Hg, a handle representing the node’s membership in group G

e Join - Attempt to synchronize views (for group G) with nodes NUM (where G is the node’s

view of G)

— Input: Hg, the handle to membership in group G; N, a set of identifiers representing

nodes in group G with which to attempt to synchronize views in addition to nodes in M

— Output: b, a Boolean representing success or failure (i.e. b = L iff no view synchronization

occurs)
e Send - Attempt to send a message P to view GM

— Input: Hg, the handle to membership in group G; P, a payload message to deliver to

nodes in GM
and issues the following notifications:
e Receive - Receive a message P in view G from node m € M

— Parameters: Hg, the handle to membership in group G; Id,, the identifier representing

node n; and P, a payload message received from node n in view GM
e View Change - The local view GM of group G has changed

— Parameters: GM | the new local view of the membership of group G; M,, C M, the
set of nodes for which the antecedent of the VIRTUAL SYNCHRONY property holds; i, an
optional message identifier representing the last message sent in the previous view (if

known, otherwise i is None)

15

Chapter 3

MojaveComm Implementation

This chapter provides design and implementation details for the reference implementation of Mo-
javeComm (available via subversion at [2]). The code-base for the reference implementation is written
in OCaml [3], and can be compiled to run on a variety of different platforms; for the time-being,
however, only Unix-based systems are supported.

The implementation is designed to adhere to the specification presented in Chapter 2. Of course,
as such an abstract description is not suitable to describe an actual working model of the protocol,

Chapter 3 describes in detail the design decisions we have made in our MojaveComm implementation.

3.1 Design Choices & Goals

Although the primary goals of the MojaveComm protocol are embodied in the guarantees detailed
in the abstract specification presented in Chapter 2, there are a number of secondary considerations
that we would like to take into account during the design of an actual realization of the protocol.
In particular, we would like to ensure that the implementation of MojaveComm is fully distributed
(i.e. there is no central point of failure), modular and configurable, and implemented on top of the
existing network infrastructure. These objectives, although ultimately orthogonal to the message
delivery guarantees of Chapter 2, are nevertheless important aspects of the design of the protocol and
serve to improve the reliability, scalability, performance, and ease of adoption of the MojaveComm
implementation.

One of the primary design considerations is the choice to utilize IP-multicast as the underlying
network transport mechanism for low-level MojaveComm message passing. Since MojaveComm
does not make strong assumptions about the underlying communication model in order to provide
its guarantees, many of the existing network protocols would be sufficient to use in the MojaveComm
implementation. In the interest of efficiency, it would be ideal to choose a protocol that provides
the most guarantees of which MojaveComm can take advantage, while adding the least amount of

overhead. The IP-multicast protocol appears to be a natural fit for this role, since MojaveComm

16

can clearly take advantage of the IP-multicast broadcast communication facility (as messages need
to be delivered to all members of each view) — and since IP-multicast provides exactly the best-effort
message delivery required by the MojaveComm abstract specification.

Another driving influence in the design of the protocol is the desire to ensure that MojaveComm is
fully distributed. In this way, we would like to avoid the use of any specific coordination infrastructure
that would introduce a central point of failure; such bottlenecks generally serve to decrease reliability
and scalability as a coordinator may fail or become overloaded. Moreover, a fully distributed solution
does not require any additional configuration to identify nodes with “elevated” privileges and/or
responsibilities in the network in order to function properly (although we still need to solve the
bootstrapping problem; see Section 3.2.3).

Given that the abstract MojaveComm specification does not tightly constrain many specific
design choices (such as those mentioned above), it is important to make the implementation of
MojaveComm modular and configurable. In this way, it is possible to easily expand the MojaveComm
implementation and to customize the behavior of the protocol as a whole in order to fit the needs
of a specific MojaveComm deployment. For example, although we strive in the implementation we
present in this text to avoid any centralized coordination, it is possible that a specific deployment
environment has a set of ultra-reliable high performance nodes that would make communication
more efficient if MojaveComm were able to exploit these. In such a case, the we intend that the

MojaveComm implementation architecture is flexible enough to accommodate this.

3.2 Layers

Conceptually, MojaveComm is organized into the following set of components: the transport, se-
quencer, view manager, and application modules. Each of these components presents an abstract

interface with which the other components interact. FEach module has the following responsibilities:

Transport - The transport module provides a reliable multicast primitive.

Sequencer - The sequencer module handles the sequencing and reordering of all incoming and

outgoing messages; it also keeps a cache of received messages (both delivered and undelivered).

View Manager - The view manager keeps track of the view membership and coordinates

view changes.

Application - The user provides the application module to drive the operation of Mo-

javeComm and to react to any notifications MojaveComm generates.

In Figure 3.1, we present a block diagram of the modules detailing the interactions between

them. The Sequencer and the View Manager comprise the topmost layer of MojaveComm. These

17

Application

View

Sequencer
q Manager

Transport

IP Multicast

Figure 3.1: The layered architecture of MojaveComm.

two components interact directly with one another and each expose a fraction of their interface to the
Application layer (though this is fully transparent as there is only one combined interface exposed
to the user). The Sequencer and the View Manager both communicate with the Transport layer in
order to send and receive both component-specific and application payload messages. Ultimately,
the Transport layer rests on top of standard IP Multicast; the IP Multicast layer is responsible
for the actual low-level message exchange. The dotted line in the figure that circumscribes the
Sequencer, View Manager, and Transport layers indicates the interface boundary with which external
components interact; in the implementation, there exists some glue code which presents a unified
interface to the external environment.

In the remaining sections of this chapter, the text details both the interface that each of the
modules exposes, as well as the specifics of the actual protocol implementation for each of the

components of the MojaveComm reference implementation.

3.2.1 Transport

The transport module is the bottommost layer of the MojaveComm protocol. This layer is re-
sponsible for providing a reliable point-to-multipoint communication mechanism. Reliability, in this
context, refers to two features: failure detection/notification, and automated message retransmission.

The interface for the transport module supports the following actions:
e Select - Wait for an I/O event (read/write) on tdesc, the specified transport descriptor.

e Send - Send an outgoing message, P, addressed to some set of nodes, M, on the specified

transport descriptor, tdesc.

and issues the following notifications:

18

e MessageReceived - Receive a message, P from node n on transport descriptor tdesc

e XmitFeedback - Receive notification of the set of nodes, M, for for which it is not possible

to guarantee that the message P was successfully delivered to such nodes.

e SelectEvent - Receive notification that descriptor tdesc has pending I/O events (i.e. read/write).

3.2.1.1 MojaveComm Reliable Multicast Protocol

The implementation of the transport protocol for the MojaveComm reference implementation is
called the MojaveComm Reliable Multicast Protocol (or MCRMP). MCRMP is a negative acknowl-
edgment (NACK) based point-to-multipoint communication protocol with congestion control imple-
mented on top of IP-multicast (modeled after the protocols in [11] and [13]). MCRMP provides one
primary guarantee: if a message P is sent from one node n to a set of nodes M, then eventually n will
receive feedback in the form of a set F' = {f|f € M An was not able to prove f received message P}.
Note that this feedback mechanism is consistent with the approximate failure detector of Sec-
tion 2.1.2.

MCRMP has four basic types of messages: payload, NACK, NACK-reply, and heartbeat. Payload
messages are responsible for transporting upper-layer message payloads to other nodes in the system.
MCRMP uses NACK messages to let a sender know that a recipient has not received a given payload
message; and MCRMP uses NACK-reply messages to retransmit NACKed messages. Each node
using MCRMP periodically sends heartbeat messages to all other nodes with which it is actively
communicating for the purpose of failure detection and to update its retransmission cache.

Conceptually, the MCRMP message types have the following format:
e Payload(ID, source, destination set, data)

— ID - An identifier uniquely identifying this message with respect to the source

source - The node identifier representing the origin of the message

destination set - A set of node identifiers, representing the destination(s) of the message

— data - The message payload
e NACK(NACK ID, source)

— NACK ID - The identifier of the message to negatively acknowledge

— source - The origin of message to negatively acknowledge
e NACK-reply(NACK ID, source, data)

— NACK ID - The identifier of the message to re-send

— source - The origin of the message to re-send

19

— data - The payload of the message to resend
e Heartbeat(source, delivered ID)

— source - The origin of the message

— delivered ID - The identifier of the last message delivered at source (for which the origin

was the recipient of this message)

3.2.1.2 Advanced Features

The description of the MCRMP message types presented in Section 3.2.1 is somewhat of an oversim-
plification. In particular, MCRMP supports both message fragmentation and congestion control —
two features that require additional communication beyond that which has already been described.
Although these features do not directly impact the guarantees provided by MojaveComm, they play
an instrumental role in ensuring high performance and usability for the protocol.

Message fragmentation allows MCRMP to split up a message into many smaller pieces (or frag-
ments) in order to send them in multiple distinct IP-multicast packets. One of the practical con-
siderations of introducing a message fragmentation mechanism at this layer is that IP-multicast has
constraints on the maximum size of a multicast message [18]. Thus, since MCRMP uses IP-multicast
to send all of its low-level messages, if the size of a MCRMP message exceeds this limit then that
message will not be delivered. In order to prevent such a situation from occurring, MCRMP allows
the destination set and the data fields of a payload message to be split up into multiple smaller
chunks and exchanged via separate packets over the network; MCRMP recombines these fragments
on the recipient end.

Also, MCRMP makes use of a rate-based congestion control algorithm in order to ensure that
no message recipient is being flooded with more messages than it can handle. In the event that
MCRMP detects this scenario (by paying attention to message transmission failures), it will limit
the transmission rate of the sender in order to compensate. To ensure that the rate does not get
stuck in a local minimum, MCRMP constantly performs an AIMD (additive increase, multiplicative

decrease) search of the available bandwidth.

3.2.2 Sequencer

The sequencer module is one of the two middle-layer components of the MojaveComm protocol stack
(the other is the view manager module; see Section 3.2.3). The sequencer is primarily responsible for
ordering payload messages that are sent using the MojaveComm protocol. For outgoing messages,
this involves assigning such messages appropriate sequence numbers; for incoming messages, the
sequencer is responsible for reordering the messages to ensure that messages are delivered in the

right sequence to the application.

(o]

Figure 3.2: A twelve-node view arranged into a ring by the token sequencer protocol.

As one of the responsibilities of the sequencer is to reorder incoming messages for in-order delivery
to the application, the sequencer must also perform some message caching (to postpone the delivery
of out-of-order messages). Since the sequencer is required to do this caching anyway to properly
reorder messages, this cache serves a dual purpose and is consulted by the view manager module
during the message synchronization phase of the view synchronization protocol (see Section 3.2.3).

In order to assign sequence numbers to outgoing messages, the sequencer module relies on a
token-based mutual exclusion protocol. The basic functionality of the protocol behaves as follows.
Associated with each unique view is a token. The protocol guarantees that at most one node in
each view has possession of (or “owns”) the token at one time. Upon a view change, one node
from the view membership is selected to initially take possession of the token for that view. The
actual protocol uses the fact that node identifiers are unique and totally ordered; so, by default, the
protocol chooses the node with the smallest identifier in the view as the initial owner of the token.
The protocol then arranges the view into a ring, where the successor of node n is the node with the
next-largest identifier to n (or the node with the smallest identifier, if n has the largest identifier in
the view). Figure 3.2 depicts the formation of such a ring for a view of twelve processes; n; holds
the token.

Associated with the token is a pair of values that travels around with the token as it is passed
from one node to another in the ring. One value represents the last sequence number assigned to
a message in this view (or a special value, None, if no messages have been assigned a sequence
number). The other value is the first available (i.e. unused) sequence number that may be assigned
to a message.

From the moment that a node assumes ownership of the token, it may assign sequence numbers to
pending outgoing messages and update the two token values appropriately. In order to determine the
exact placement of a message within the sequence of messages for a particular view, MojaveComm

includes both the sequence number of the message and the sequence number of the previously

21

sequenced message (in that view) in the message header. To ensure that each node in the view
gets a chance to sequence its messages, a node is only allowed to possess the token for at most
some maximum amount of time (this is configured statically; the value may be a function of the
view size). When a node relinquishes ownership of the token, it passes the token (along with its
associated satellite data) to the next node in the ring of nodes that the view has formed. It is
possible that communication failure may occur in attempting to pass the token on to the next node.
In this case, the nodes will detect the transmission failure, initiate a new view synchronization (see
Section 3.2.3), and create a new token for the next view.

Of course, assigning sequence numbers to outgoing messages is only one of the responsibilities of
the sequencer. The other primary function that the sequencer must perform is to reorder incoming
messages for in-order delivery to the application. According to the abstract specification of the
message delivery guarantees presented in Section 2.2, message delivery is subject to two ordering
constraints: node order, and view order.

In order to adhere to these constraints, the sequencer adopts the following policy. When a node
receives the token in some view, it increases the next available message ID to be at least as large
as one greater than the largest sequence number of any message the node has currently received (in
any view, regardless of whether or not this message has been delivered) so far (unless the current
value is already at least this large); while the node has possession of the token, this value is also
updated similarly on receipt of any subsequent messages (again, in any view). In this way, it is
possible for the node to locally establish a lower bound on the sequence number of the next message
to be sequenced in each view.

The sequencer uses this lower bound on the sequence number of the next message in each view
to determine if the second ordering constraint of Section 2.2 is satisfied for a given message that is
a candidate for delivery. It is possible for the node to determine if the first constraint is satisfied
directly, as each message contains both the sequence number for that message and the sequence
number for the previous message sent in that view.

In practice, the sequencer does not have an infinite amount of space to use as a cache for incoming
messages to reorder. Unfortunately, this means that it is possible that the sequencer will have to
drop some messages. The policy we choose in the implementation is to first drop any delivered
messages from the cache (in ascending order). Then we drop undelivered messages (in descending
order). This ensures that we always make room for undelivered messages (in the hopes of delivering
them) and that we drop undelivered messages with the least chance of being delivered (since we have
to deliver those messages before it, at least). Discarding an undelivered message ultimately results

in a new view synchronization.

22

commit

expanding contracting ayne

fixed point)) C(I) - Initiator Consensus

fixed point C(P) - Participant Consensus

IC - Initiator Contracting Stage

IE - Initiator Expanding Stage

MAR - Membership
Acknowledgment Request

MC - Membership Change

MSR - Membership Suggestion
Request

PC - Participant Contracting Stage

PE - Participant Expanding Stage

stage failure detected

consensus

MAR

Figure 3.3: This figure represents the state machine for the view management protocol.

3.2.3 View Manager

The view manager is the component of MojaveComm that is responsible for performing the view
synchronization required by the abstract protocol specification detailed in Chapter 2. Although the
view manager is primarily responsible for arbitrating consensus on view membership when nodes
fail or new nodes join, the view manager is also instrumental in enforcing the VIRTUAL SYNCHRONY
guarantee (see Equation 2.1). This involves both calculating a new view membership, identifying
the subset of nodes for which the VIRTUAL SYNCHRONY property will hold, and then making sure
that these nodes have the same set of messages sent in the previous view.

The view manager implementation embodies this process in a series of four stages: FEzrpanding,
Contracting, Consensus, and Wait Commit. Figure 3.3 depicts the state machine for the protocol.
Conceptually, there exists two “paths” from the beginning to the end of a view synchronization
using this protocol. One path is for the initiator of a view synchronization; the other is for a view
synchronization participant. Any node may be either an initiator or a participant. And, although a
node is never both an initiator and a participant (at least within the context of a single group) at
the same time, a node may assume both of the roles over the course of a single view synchronization.

Initially each node starts out in the In View state, where the node is not actively performing any
view synchronization. However, when a node is in this state, one of two events may trigger a view
synchronization: either one node issues a join request, or a node failure is detected. Join request
messages serve to notify members of one view that one or more members of another view wish to
merge views'. If a process is detected to have failed, then one or more members of the view initiate
a view change and try to exclude the process from the view.

If a node is the one to initiate a view synchronization, it assumes the role of the initiator, and
takes the upper path depicted in Figure 3.3. The initiator is responsible for coordinating the view
synchronization. Multiple nodes may simultaneously attempt to initiate a view change. In this

event, the view management protocol has a mechanism that allows one initiator to yield to another

INote that there is no corresponding operation to split views; we do not permit views to fragment at will.

23

—————————————————————

: View_2 View.s | View 2 View.s
! | .
I X K
| o/ . L =0
I\’ /T~ N SN S e
e N A .
1 View_s |
T T Expanded View New View

Figure 3.4: Multiple views merging

so that a single initiator is elected. Unfortunately, because of the possibility of transient failures, it
is impossible to guarantee that the initiator election will result in exactly one initiator; in this case,
multiple view synchronizations proceed simultaneously.

Nevertheless, one major advantage of our protocol is that it allows changes in view membership
to include, at the same time, multiple processes joining and leaving the view. For example, Figure 3.4
illustrates how, in one step, three views merge and some nodes from each view will be excluded as

they fail during the view change process.

3.2.4 Protocol Stages

The purpose of the first stage, the Expanding stage, of the view synchronization process is to collect
suggestions from the current members of the view and, from these suggestions, ascertain what the
new membership of the view should be. This stage is repeated until a fixed point is reached (nodes
are only added to the membership with each round of suggestions). In the example presented in
Figure 3.4 this is shown in the drawing to the left. At the end of the expanding stage, the expanded
view contains all the members of the three initial views.

During the Contracting stage, processes that have failed or that want to leave the group are
removed from the maximal fixed point view reached during the previous stage. The goal of this
stage is to reduce the membership of the view to the current set of active processes. It is important
to note that between a process expressing interest in joining a group and the commit of the view
change, that process could fail or there might be a network partition — in which case more than
one process might need to be excluded from the view. In Figure 3.4 the new view illustrates the
membership after the contracting stage, where failed nodes have been evicted from the final view.

The Consensus stage is critical for preserving VIRTUAL SYNCHRONY. During this stage, processes
that have survived so far agree on what messages they need to deliver to the application layer to
guarantee that all members of the view that survive the view change have delivered the same set
of messages in the previous view. The consensus stage is illustrated by the arrows in the second
drawing of Figure 3.4; here, each surviving process synchronizes with all the other processes in its
previous view.

In the last stage, the new view to be installed is broadcast to all of its members and is locally

24

installed by each member. The view change initiator sets the epoch of the new view to be larger
than the largest epoch involved in the view change. Also, the sequence number is reset to 0 and
the view manager propagates a view change event to the upper layer with the new epoch and the
new sequence number is broadcast to all members of the new view. Upon receiving the view change

event each node delivers it to the application (the upper layer running on top of MojaveComm).

25

Chapter 4

MojaveFS: A Case Study

MojaveFS [21] is a network-based distributed filesystem designed with the intent to be highly flexible
and fault tolerant while retaining the familiar read/write semantics of traditional local, centralized
filesystems. In particular, MojaveFS aims to provide location transparency and automatic data
replication; replicas may be added to or removed from the system dynamically without need to stop
the filesystem in order to perform the reconfiguration. Moreover, the ordering of all file operations
are bound by a strict consistency model that makes MojaveF'S a drop-in replacement for traditional
storage solutions.

Because of its distributed nature and strict ordering guarantees, we consider MojaveF'S to be
a good candidate for the type of application that would most be able to take advantage of the
MojaveComm protocol and the communication guarantees that it provides. In this chapter, we
present a high-level overview of the design and implementation of the MojaveFS filesystem, with
particular emphasis on the role that MojaveComm plays with respect to facilitating the file-access
semantics of MojaveFS. It is important to note that this chapter is not intended to provide an
exhaustive description of MojaveFS and/or its implementation; rather, this text aims to expose
enough details so as to give the reader sufficient context to understand how MojaveComm is used

in this system.

4.1 Overview

In most respects, MojaveFS acts like a typical Unix filesystem. For example, MojaveFS supports
the usual filesystem abstractions like files, directories, access permissions, and metadata. In terms
of the actual implementation, MojaveFS is written as a FUSE [1] module! and, when mounted, is
presented as a traditional Unix-style mount point. Thus, to access files stored in MojaveFS, a user

simply needs to mount an instance of MojaveF'S and access files in the usual manner via the regular

26

|
create, read, write, Y
getattr,etc. FUSE
A new file, data
create, read, write, ¥’

destroy o

view change, data

1
create, join, read, y'

write, store, destroy D|Q view change
A data, timeout
T

create, join, send,
set timer, destroy GC

Figure 4.1: The layered architecture of MojaveFS.

system calls for file manipulation.

The major differences between MojaveFS and most traditional local filesystems is that the file
data, file metadata, and the directory hierarchy itself is stored in a distributed manner across multiple
physical machines. In fact, this filesystem state may even be replicated in multiple places. In this
way, although this data distribution and replication is fully transparent from the user’s perspective,
from the perspective of the administrator MojaveFS provides a rich environment for tailoring the
data distribution and replication policy necessary for a specific deployment environment.

Conceptually, each file and directory in a MojaveFS filesystem is served by a unique wirtual
server”. A virtual server is comprised of multiple physical nodes; these nodes all serve as consistent
replicas of the file/directory. When a node contributes to the operation of a virtual server in this
way, it is said to be a member of that virtual server. A node may dynamically join or leave the
membership of a virtual server at any time. Moreover, a node may be a member of multiple virtual
servers simultaneously.

Virtual servers serve as the infrastructure for MojaveF'S; they provide the storage back-end.
However, nodes that mount the filesystem and access the files that the virtual servers provide are
known as clients. In practice, a member of a virtual server may also be a client.

In order to present the illusion that MojaveFS acts like a traditional local filesystem, MojaveFS
adopts a strict consistency model for the ordering of all file operations. Specifically, MojaveFS con-
forms to a consistency model called sequential consistency (see Section 4.2 for a detailed description).
Consistency is maintained at two levels: within each virtual server, and between virtual servers (this
is important when a client is using multiple virtual servers simultaneously).

From an implementation point of view, MojaveFS is split into three major components: nam-

ing/lookup, replication/data consistency, and operation-sequencing. Figure 4.1 depicts the layered

IThe FUSE project enables developers to write filesystems that execute their code outside of the operating system
kernel. FUSE implementations are currently available for both Linux and Mac OS X.

2 Actually, files are split into fixed-sized chunks, each of which is served by a separate virtual server; this is done
for performance reasons. For the purposes of this text, however, we pretend there is only one virtual server per file.
The distinction between chunks and files only serves to unnecessarily complicate the discussion.

27

architecture of the MojaveFS implementation; the bottom three layers correspond roughly to the
three components listed above, respectively. In particular, the Direct I/O (or DIO) layer is re-
sponsible for maintaining consistent copies of replicated data and, in conjunction with the Group

Communication (or GC) layer, enforcing the overall operation-sequencing guarantees of MojaveFsS.

4.2 Sequential Consistency

It is often the case that distributed/concurrent systems are more difficult to reason about than their
centralized, sequential counterparts. For the most part, this difficulty stems from the unnatural
evaluation semantics of such systems. In general, it is possible for operations of a node to be
observed in a different order on different nodes. In order to guarantee some agreement on the order
of operations, it is necessary for all the nodes in the system to adhere to an agreed-upon consistency
model.

The more strict the consistency model is, the more restrictions it imposes (and the more guar-
antees it provides) on the ordering of operations each node performs with respect to one another.
Generally speaking, in a distributed system, the choice of consistency model impacts the efficiency
of global operations within the system (because it may be necessary to postpone some operations,
as their execution may violate the consistency policy); the more strict the model, the less efficient
the system may be.

Nevertheless, in spite of the potential for reduced efficiency, it is generally easier to reason about
a system that adheres to a strict consistency model. In particular, the “gold standard” consistency
model in a distributed system is a model that closely resembles that of a centralized system. In the
strict consistency model, operations are required to be executed in the exact order that they are
issued on the remote nodes (i.e. the order the operations would be issued on a traditional centralized
system). However, the primary disadvantage of strict consistency is that it is only possible to be
implemented in a distributed environment where there is a perfectly synchronized globally-shared
clock available. Unfortunately, this is not typically available to most distributed systems and, worse,
not even possible to achieve over unreliable communication channels (i.e. those where messages may
be dropped) [10].

However, there is another consistency model, sequential consistency, that is more acceptable from
an implementation-perspective for distributed systems which operate in an environment without a
global synchronized clock. Consider the situation where a distributed system is comprised of a set
of N nodes (each of which has a local program from which it issues a set of operations). In this case,

sequential consistency guarantees the following two ordering constraints [15]:

1. For all nodes n € N, if n issues operations (0;..0) then all nodes m € N will observe (0;..0x)

in order.

28

P, Py P3 Py Py Pa
W(x,a) W(x,a) W(x,b)
W(x,b) R(x)=a
R(x)=b
R(x)=a
A W(y,b)
R(x)=b (x)=a R(y)=b
R(x)=b
y y y y y y
(a) Violation 1 (b) Violation 2

Figure 4.2: Violating the sequential consistency constraints

2. There exists a global sequence of operations (0;..0x) such that, for every node n € N, (05..0x)

is consistent with the observations of n.

In other words, all nodes see the operations of every other node in the order in which a node issues
those operations. Moreover, there exists some global order of operations that is consistent with what
each of the nodes individually observes.

Consider Figures 4.2(a) and 4.2(b); each represents a distributed system with a sequentially in-
consistent global execution. The operation highlighted in red indicates an operation that, if removed,
would restore sequential consistency to the system. Specifically, Figure 4.2(a) violates property 1

above and Figure 4.2(b) violates property 2.

4.2.1 Ensuring Consistency in MojaveFS

MojaveFS makes use of two mechanisms to ensure that operations are processed in a sequentially
consistent order. The first is that MojaveF'S maps each virtual server to a MojaveComm group; file
operations are sent as MojaveComm messages and, thus, are subject to the MojaveComm message-
ordering constraints. The second is that MojaveFS adopts an authority policy to guarantee that at
most one view of a group, the most up-to-date view, is able to make progress at any given time (i.e.
the view that is authoritative)®. The paper that first describes this approach is [22].

The first mechanism alone actually does most of the work for MojaveF'S with respect to providing
the sequential consistency guarantees. This is evident from the message-ordering guarantees of
MojaveComm presented in Section 2.2. For example, MojaveComm makes sure that all messages
sent from a single node are observed in the same order by all nodes (both within and between
groups). In this way, provided that MojaveFS issues MojaveComm messages for corresponding file
operations in the same order that those operations are requested, the first requirement for sequential

consistency is satisfied.

3Note that the authority policy is a special type of primary view (see [20]) where we base our decision on both
majority membership and possession of the most recent message sent in the view.

29

However, it is important to note that MojaveComm alone does not satisfy the second requirement
for sequential consistency. The main obstacle is that MojaveComm allows for there to exist multiple
views of the same group. If these views correspond to a single virtual server and if they are allowed
to make progress (i.e. process file operations), then it becomes impossible to come up with a single
global sequence of operations that is consistent with the observations of all the nodes in the system.

In order to prevent such a situation from occurring, MojaveFS makes use of the information that
MojaveComm passes upwards on a view change event. Specifically, MojaveFS adopts the following
policy enforced by the DIO layer of MojaveFS. When a new file is created, the initial view of the
corresponding MojaveComm group is marked as authoritative (each process keeps track of this status
locally). When a node receives a view change, MojaveFS considers the new view to be authoritative

when:

e There exists a node in the view that has received the most recent message sent in the previous

authoritative view.
e The view contains a majority* of the nodes from the previous authoritative view.

When a node receives a view change event from MojaveComm, it must gather information from
other nodes in order to determine if the above authority conditions are satisfied. The protocol for
determining view authority is split into three stages (effectively resulting in a two phase commit). In
order to facilitate this, each node n keeps track of a few attributes locally (for each group of which

it is a participant): the last authoritative view (AM) n participated in (if one exists), the message
M

e

ID of the last message n received in AM, and the message ID of the last message sent in AM (if
known).

In the first stage, each node n contributes its view, A} and the message ID of the last message
sent in AM (or None, if n does not have this information; see Section 2.3) to the other members
of the new candidate authoritative view. After a node receives the contributions from all the other
nodes in the view, it can make a local determination regarding whether or not the new view can
be marked as authoritative. In the second stage, each node contributes this local determination on
the authority of the new view; additionally, if at least one of these nodes considers the new view
to be authoritative, one of those nodes also contributes the latest copy of the data associated with
the virtual server corresponding to this group. Once a node has received all of the messages from
the second stage, each node knows whether or not the new view is authoritative. In the third stage,
each node acknowledges the receipt of all of the messages from the second stage. When all nodes
receive all of the messages from stage three, the authority of the new view is committed; if the view

is marked as authoritative, then the nodes in the view can process new operations at this point.

4For our definition of magjority, we allow the view to have half of the previous nodes, provided it also contains the
node with the smallest identifier (remember that node identifiers are totally-ordered).

30

0

aM,

o 0

GM
Géw View Change etl

e

(a) A three-way split of a virtual server group due to a (b) Three non-authoritative views merge to create a new
network failure. authoritative view.

Figure 4.3: A MojaveF'S virtual server undergoes splitting & merging, altering its authority status
(indicated by the “A” circumscribed by a circle).

In order to ensure that at most one view can be marked as authoritative at a given time, as soon
as a node sends a message as part of the third stage in this protocol it moves into a pre-commit state
where the node effectively forgets about the previous authoritative view of which it was a member.
This is necessary to prevent a situation where some nodes commit the view and others do not. In
such a case, if the nodes that do not commit are permitted to form a new authoritative view, then
it is possible for two authoritative views for the same group to exist at the same time.

It is important to note that it is possible to end up in a state where all views lose their authority
status and it is not possible to automatically reconstitute an authoritative view from the non-

authoritative fragments.

31

Chapter 5

Conclusion

Group communication facilities, in general, provide strong message-ordering guarantees that may
serve as the basis for the implementation of other applications and/or services. In this regard, Mo-
javeComm is no exception. In particular, as we can see from the discussion in Chapter 4 (specifically,
Section 4.2), MojaveComm provides sufficient guarantees to ensure that MojaveFS only needs to
introduce minimal effort on its own part in order to provide guarantees above and beyond the native
MojaveComm services.

Specifically, the message-ordering guarantees of MojaveComm lend themselves directly to the en-
forcement of sequential consistency in MojaveFS. In the event that the group membership is static
and there are no node failures, MojaveComm does most of the work with respect to ensuring se-
quential consistency among the MojaveF'S files. Rather, it is in the implementation of the MojaveF'S
“authority” policy where MojaveFS needs to do some extra work to ensure that recovery does not
introduce extra views of a virtual server group that are able to make progress (thereby violating
sequential consistency).

It is here that the flexibility in how MojaveComm allows for multiple views of a single group
seems to complicate the MojaveF'S design. The lack of direct support for a primary view abstraction
puts the onus on MojaveFS itself to provide this feature. Although this makes the implementation of
services like MojaveF'S more cumbersome, we made a specific design decision not to include support
for primary views directly in MojaveComm. One of the motivating factors is that the typical
definition of a primary view based simply on maintaining a majority of the available processes in a
group is not sufficient for ensuring sequential consistency in MojaveFS.

For example, consider a two-way split of a view corresponding to a MojaveFS virtual server. And
suppose that the smaller view fragment of has delivered more messages than the larger one, where
at least one of those messages corresponds to a write operation. Then, if the larger view fragment
continues to make progress after the split, and if the first operation is a read, this is a situation that
violates sequential consistency (since the members of the larger fragment did not see the write that

happened in the smaller fragment).

32

Of course, it is not possible to know what sort of primary view policy a given application might
require in general. Moreover, even if this were not the case, it may be unreasonable to impose the
extra overhead of maintaining a primary view policy on applications that do not need this feature.
Thus, in the design of MojaveComm, we opted simply to provide enough information in the view
change event notifications to allow the application to keep track of its own notion of a primary view,
if desired.

Overall, it seems as though the message-ordering guarantees of MojaveComm are certainly useful
in the development of distributed applications. However, the lack of direct support for elevating the
status of some view(s) of a group proves to be a hindrance. In future work, it might be worth
exploring the use of a mechanism for specifying a policy for governing primary view selection in a
group. Such a feature would likely simplify the implementation of distributed applications such as

MojaveFS.

33

Bibliography

(1]
2]

13l

4]

15]

[6]

7]

18]

19]

[10]

FUSE: Filesystem in userspace. http://fuse.sourceforge.net/. 4.1

The MojaveComm reference implementation. http://mojave.caltech.edu/svnroot/mojave/

mojavecomm. 3
The OCaml programming language. http://www.ocaml.org. 3

Yair Amir, Claudiu Danilov, and Jonathan Robert Stanton. A low latency, loss tolerant ar-
chitecture and protocol for wide area group communication. In DSN ’00: Proceedings of the
2000 International Conference on Dependable Systems and Networks (formerly FTCS-30 and
DCCA-8), pages 327-336, Washington, DC, USA, 2000. IEEE Computer Society. 1.1, 1.2

Kenneth P. Birman. Isis: A system for fault-tolerant distributed computing. 1986. 1.1

Kenneth P. Birman, Robert Constable, Mark Hayden, Jason Hickey, Christoph Kreitz, Rob-
bert Van Renesse, Ohad Rodeh, and Werner Vogels. The Horus and Ensemble projects: Ac-
complishments and limitations. Technical report, Ithaca, NY, USA, 1999. 1.1, 1.2

David R. Cheriton and Willy Zwaenepoel. Distributed process groups in the V Kernel. ACM
Trans. Comput. Syst., 3(2):77-107, 1985. 1.1

G. V. Chockler, N. Huleihel, and D. Dolev. An adaptive totally ordered multicast protocol that
tolerates partitions. In PODC ’98: Proceedings of the seventeenth annual ACM symposium on
Principles of distributed computing, pages 237-246, New York, NY, USA, 1998. ACM. 1.1, 1.2,
2.1

Paul D. Ezhilchelvan, Raimundo A. Macedo, and Santosh K. Shrivastava. Newtop: A fault-
tolerant group communication protocol. In International Conference on Distributed Computing

Systems, pages 296-306, 1995. 1.1, 2.1

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374-382, 1985. 1, 4.2

http://fuse.sourceforge.net/
http://mojave.caltech.edu/svnroot/mojave/mojavecomm
http://mojave.caltech.edu/svnroot/mojave/mojavecomm
http://www.ocaml.org

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

22]

34

Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia Zhang. A reliable
multicast framework for light-weight sessions and application level framing. IEEE/ACM Trans-
actions on Networking, 5(6):784-803, December 1997. 3.2.1.1

Hector Garcia-Molina and Annemarie Spauster. Ordered and reliable multicast communication.

ACM Transactions on Computer Systems, 9(3):242-271, August 1991. 1.1

Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM ’88, pages 314-329,
Stanford, CA, August 1988. 3.2.1.1

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.

ACM, 21(7):558-565, 1978. 1

Leslie Lamport. How to make a multiprocessor that correctly executes multiprocess programs.

IEEE Trans. Comput. C, 28(9):690-691, 1979. 4.2

Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. Consul: A communication
substrate for fault-tolerant distributed programs. Technical Report TR 91-32, Tucson, AZ
(USA), 1991. 1.1

Krzysztof Ostrowski and Kenneth P. Birman. Scalable group communication system for scalable
trust. In STC ’06: Proceedings of the first ACM workshop on Scalable trusted computing, pages
3-6, New York, NY, USA, 2006. ACM. 1.1

Jon Postel. User datagram protocol. RFC 768, Information Sciences Institute, University of

Southern California, 1980. 3.2.1.2

Jon Postel. Transmission control protocol. RFC 793, Information Sciences Institute, University

of Southern California, 1981. 1

Roberto De Prisco, Alan Fekete, Nancy Lynch, and Alex Shvartsman. A dynamic view-oriented
group communication service. In PODC ’98: Proceedings of the seventeenth annual ACM
symposium on Principles of distributed computing, pages 227-236, New York, NY, USA, 1998.
ACM. 1.1,1.2,3

Cristian Tapus, David Noblet, Vlad Grama, and Jason Hickey. MojaveFS: Providing sequential
consistency in a distributed objects system. In ISPDC ’06: Proceedings of The Fifth Interna-
tional Symposium on Parallel and Distributed Computing, pages 66—73, Washington, DC, USA,
2006. IEEE Computer Society. 4

Cristian Tapus, Aleksey Nogin, Jason Hickey, and Jerome White. A mechanism for sequential

consistency in a distributed objects system. In ISCA PDCS, pages 284-289, 2004. 4.2.1

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Overview

	2 MojaveComm Protocol Specification
	2.1 Groups & Views
	2.1.1 View Change Events
	2.1.2 Failure Detection

	2.2 Message Transmission & Delivery
	2.3 Application Interface

	3 MojaveComm Implementation
	3.1 Design Choices & Goals
	3.2 Layers
	3.2.1 Transport
	3.2.1.1 MojaveComm Reliable Multicast Protocol
	3.2.1.2 Advanced Features

	3.2.2 Sequencer
	3.2.3 View Manager
	3.2.4 Protocol Stages

	4 MojaveFS: A Case Study
	4.1 Overview
	4.2 Sequential Consistency
	4.2.1 Ensuring Consistency in MojaveFS

	5 Conclusion
	Bibliography

